btrfs: extend balance filter limit to take minimum and maximum
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
111const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
2b82032c
YZ
121static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 128
67a2c45e 129DEFINE_MUTEX(uuid_mutex);
8a4b83cc 130static LIST_HEAD(fs_uuids);
c73eccf7
AJ
131struct list_head *btrfs_get_fs_uuids(void)
132{
133 return &fs_uuids;
134}
8a4b83cc 135
2208a378
ID
136static struct btrfs_fs_devices *__alloc_fs_devices(void)
137{
138 struct btrfs_fs_devices *fs_devs;
139
140 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
141 if (!fs_devs)
142 return ERR_PTR(-ENOMEM);
143
144 mutex_init(&fs_devs->device_list_mutex);
145
146 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 147 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
148 INIT_LIST_HEAD(&fs_devs->alloc_list);
149 INIT_LIST_HEAD(&fs_devs->list);
150
151 return fs_devs;
152}
153
154/**
155 * alloc_fs_devices - allocate struct btrfs_fs_devices
156 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
157 * generated.
158 *
159 * Return: a pointer to a new &struct btrfs_fs_devices on success;
160 * ERR_PTR() on error. Returned struct is not linked onto any lists and
161 * can be destroyed with kfree() right away.
162 */
163static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164{
165 struct btrfs_fs_devices *fs_devs;
166
167 fs_devs = __alloc_fs_devices();
168 if (IS_ERR(fs_devs))
169 return fs_devs;
170
171 if (fsid)
172 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
173 else
174 generate_random_uuid(fs_devs->fsid);
175
176 return fs_devs;
177}
178
e4404d6e
YZ
179static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
180{
181 struct btrfs_device *device;
182 WARN_ON(fs_devices->opened);
183 while (!list_empty(&fs_devices->devices)) {
184 device = list_entry(fs_devices->devices.next,
185 struct btrfs_device, dev_list);
186 list_del(&device->dev_list);
606686ee 187 rcu_string_free(device->name);
e4404d6e
YZ
188 kfree(device);
189 }
190 kfree(fs_devices);
191}
192
b8b8ff59
LC
193static void btrfs_kobject_uevent(struct block_device *bdev,
194 enum kobject_action action)
195{
196 int ret;
197
198 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
199 if (ret)
efe120a0 200 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
201 action,
202 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
203 &disk_to_dev(bdev->bd_disk)->kobj);
204}
205
143bede5 206void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
207{
208 struct btrfs_fs_devices *fs_devices;
8a4b83cc 209
2b82032c
YZ
210 while (!list_empty(&fs_uuids)) {
211 fs_devices = list_entry(fs_uuids.next,
212 struct btrfs_fs_devices, list);
213 list_del(&fs_devices->list);
e4404d6e 214 free_fs_devices(fs_devices);
8a4b83cc 215 }
8a4b83cc
CM
216}
217
12bd2fc0
ID
218static struct btrfs_device *__alloc_device(void)
219{
220 struct btrfs_device *dev;
221
222 dev = kzalloc(sizeof(*dev), GFP_NOFS);
223 if (!dev)
224 return ERR_PTR(-ENOMEM);
225
226 INIT_LIST_HEAD(&dev->dev_list);
227 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 228 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
229
230 spin_lock_init(&dev->io_lock);
231
232 spin_lock_init(&dev->reada_lock);
233 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 234 atomic_set(&dev->dev_stats_ccnt, 0);
12bd2fc0
ID
235 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
236 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
237
238 return dev;
239}
240
a1b32a59
CM
241static noinline struct btrfs_device *__find_device(struct list_head *head,
242 u64 devid, u8 *uuid)
8a4b83cc
CM
243{
244 struct btrfs_device *dev;
8a4b83cc 245
c6e30871 246 list_for_each_entry(dev, head, dev_list) {
a443755f 247 if (dev->devid == devid &&
8f18cf13 248 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 249 return dev;
a443755f 250 }
8a4b83cc
CM
251 }
252 return NULL;
253}
254
a1b32a59 255static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 256{
8a4b83cc
CM
257 struct btrfs_fs_devices *fs_devices;
258
c6e30871 259 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
260 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
261 return fs_devices;
262 }
263 return NULL;
264}
265
beaf8ab3
SB
266static int
267btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
268 int flush, struct block_device **bdev,
269 struct buffer_head **bh)
270{
271 int ret;
272
273 *bdev = blkdev_get_by_path(device_path, flags, holder);
274
275 if (IS_ERR(*bdev)) {
276 ret = PTR_ERR(*bdev);
beaf8ab3
SB
277 goto error;
278 }
279
280 if (flush)
281 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
282 ret = set_blocksize(*bdev, 4096);
283 if (ret) {
284 blkdev_put(*bdev, flags);
285 goto error;
286 }
287 invalidate_bdev(*bdev);
288 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
289 if (IS_ERR(*bh)) {
290 ret = PTR_ERR(*bh);
beaf8ab3
SB
291 blkdev_put(*bdev, flags);
292 goto error;
293 }
294
295 return 0;
296
297error:
298 *bdev = NULL;
299 *bh = NULL;
300 return ret;
301}
302
ffbd517d
CM
303static void requeue_list(struct btrfs_pending_bios *pending_bios,
304 struct bio *head, struct bio *tail)
305{
306
307 struct bio *old_head;
308
309 old_head = pending_bios->head;
310 pending_bios->head = head;
311 if (pending_bios->tail)
312 tail->bi_next = old_head;
313 else
314 pending_bios->tail = tail;
315}
316
8b712842
CM
317/*
318 * we try to collect pending bios for a device so we don't get a large
319 * number of procs sending bios down to the same device. This greatly
320 * improves the schedulers ability to collect and merge the bios.
321 *
322 * But, it also turns into a long list of bios to process and that is sure
323 * to eventually make the worker thread block. The solution here is to
324 * make some progress and then put this work struct back at the end of
325 * the list if the block device is congested. This way, multiple devices
326 * can make progress from a single worker thread.
327 */
143bede5 328static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
329{
330 struct bio *pending;
331 struct backing_dev_info *bdi;
b64a2851 332 struct btrfs_fs_info *fs_info;
ffbd517d 333 struct btrfs_pending_bios *pending_bios;
8b712842
CM
334 struct bio *tail;
335 struct bio *cur;
336 int again = 0;
ffbd517d 337 unsigned long num_run;
d644d8a1 338 unsigned long batch_run = 0;
b64a2851 339 unsigned long limit;
b765ead5 340 unsigned long last_waited = 0;
d84275c9 341 int force_reg = 0;
0e588859 342 int sync_pending = 0;
211588ad
CM
343 struct blk_plug plug;
344
345 /*
346 * this function runs all the bios we've collected for
347 * a particular device. We don't want to wander off to
348 * another device without first sending all of these down.
349 * So, setup a plug here and finish it off before we return
350 */
351 blk_start_plug(&plug);
8b712842 352
bedf762b 353 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
354 fs_info = device->dev_root->fs_info;
355 limit = btrfs_async_submit_limit(fs_info);
356 limit = limit * 2 / 3;
357
8b712842
CM
358loop:
359 spin_lock(&device->io_lock);
360
a6837051 361loop_lock:
d84275c9 362 num_run = 0;
ffbd517d 363
8b712842
CM
364 /* take all the bios off the list at once and process them
365 * later on (without the lock held). But, remember the
366 * tail and other pointers so the bios can be properly reinserted
367 * into the list if we hit congestion
368 */
d84275c9 369 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 370 pending_bios = &device->pending_sync_bios;
d84275c9
CM
371 force_reg = 1;
372 } else {
ffbd517d 373 pending_bios = &device->pending_bios;
d84275c9
CM
374 force_reg = 0;
375 }
ffbd517d
CM
376
377 pending = pending_bios->head;
378 tail = pending_bios->tail;
8b712842 379 WARN_ON(pending && !tail);
8b712842
CM
380
381 /*
382 * if pending was null this time around, no bios need processing
383 * at all and we can stop. Otherwise it'll loop back up again
384 * and do an additional check so no bios are missed.
385 *
386 * device->running_pending is used to synchronize with the
387 * schedule_bio code.
388 */
ffbd517d
CM
389 if (device->pending_sync_bios.head == NULL &&
390 device->pending_bios.head == NULL) {
8b712842
CM
391 again = 0;
392 device->running_pending = 0;
ffbd517d
CM
393 } else {
394 again = 1;
395 device->running_pending = 1;
8b712842 396 }
ffbd517d
CM
397
398 pending_bios->head = NULL;
399 pending_bios->tail = NULL;
400
8b712842
CM
401 spin_unlock(&device->io_lock);
402
d397712b 403 while (pending) {
ffbd517d
CM
404
405 rmb();
d84275c9
CM
406 /* we want to work on both lists, but do more bios on the
407 * sync list than the regular list
408 */
409 if ((num_run > 32 &&
410 pending_bios != &device->pending_sync_bios &&
411 device->pending_sync_bios.head) ||
412 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
413 device->pending_bios.head)) {
ffbd517d
CM
414 spin_lock(&device->io_lock);
415 requeue_list(pending_bios, pending, tail);
416 goto loop_lock;
417 }
418
8b712842
CM
419 cur = pending;
420 pending = pending->bi_next;
421 cur->bi_next = NULL;
b64a2851 422
ee863954
DS
423 /*
424 * atomic_dec_return implies a barrier for waitqueue_active
425 */
66657b31 426 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
427 waitqueue_active(&fs_info->async_submit_wait))
428 wake_up(&fs_info->async_submit_wait);
492bb6de 429
dac56212 430 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 431
2ab1ba68
CM
432 /*
433 * if we're doing the sync list, record that our
434 * plug has some sync requests on it
435 *
436 * If we're doing the regular list and there are
437 * sync requests sitting around, unplug before
438 * we add more
439 */
440 if (pending_bios == &device->pending_sync_bios) {
441 sync_pending = 1;
442 } else if (sync_pending) {
443 blk_finish_plug(&plug);
444 blk_start_plug(&plug);
445 sync_pending = 0;
446 }
447
21adbd5c 448 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
449 num_run++;
450 batch_run++;
853d8ec4
DS
451
452 cond_resched();
8b712842
CM
453
454 /*
455 * we made progress, there is more work to do and the bdi
456 * is now congested. Back off and let other work structs
457 * run instead
458 */
57fd5a5f 459 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 460 fs_info->fs_devices->open_devices > 1) {
b765ead5 461 struct io_context *ioc;
8b712842 462
b765ead5
CM
463 ioc = current->io_context;
464
465 /*
466 * the main goal here is that we don't want to
467 * block if we're going to be able to submit
468 * more requests without blocking.
469 *
470 * This code does two great things, it pokes into
471 * the elevator code from a filesystem _and_
472 * it makes assumptions about how batching works.
473 */
474 if (ioc && ioc->nr_batch_requests > 0 &&
475 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
476 (last_waited == 0 ||
477 ioc->last_waited == last_waited)) {
478 /*
479 * we want to go through our batch of
480 * requests and stop. So, we copy out
481 * the ioc->last_waited time and test
482 * against it before looping
483 */
484 last_waited = ioc->last_waited;
853d8ec4 485 cond_resched();
b765ead5
CM
486 continue;
487 }
8b712842 488 spin_lock(&device->io_lock);
ffbd517d 489 requeue_list(pending_bios, pending, tail);
a6837051 490 device->running_pending = 1;
8b712842
CM
491
492 spin_unlock(&device->io_lock);
a8c93d4e
QW
493 btrfs_queue_work(fs_info->submit_workers,
494 &device->work);
8b712842
CM
495 goto done;
496 }
d85c8a6f
CM
497 /* unplug every 64 requests just for good measure */
498 if (batch_run % 64 == 0) {
499 blk_finish_plug(&plug);
500 blk_start_plug(&plug);
501 sync_pending = 0;
502 }
8b712842 503 }
ffbd517d 504
51684082
CM
505 cond_resched();
506 if (again)
507 goto loop;
508
509 spin_lock(&device->io_lock);
510 if (device->pending_bios.head || device->pending_sync_bios.head)
511 goto loop_lock;
512 spin_unlock(&device->io_lock);
513
8b712842 514done:
211588ad 515 blk_finish_plug(&plug);
8b712842
CM
516}
517
b2950863 518static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
519{
520 struct btrfs_device *device;
521
522 device = container_of(work, struct btrfs_device, work);
523 run_scheduled_bios(device);
524}
525
4fde46f0
AJ
526
527void btrfs_free_stale_device(struct btrfs_device *cur_dev)
528{
529 struct btrfs_fs_devices *fs_devs;
530 struct btrfs_device *dev;
531
532 if (!cur_dev->name)
533 return;
534
535 list_for_each_entry(fs_devs, &fs_uuids, list) {
536 int del = 1;
537
538 if (fs_devs->opened)
539 continue;
540 if (fs_devs->seeding)
541 continue;
542
543 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
544
545 if (dev == cur_dev)
546 continue;
547 if (!dev->name)
548 continue;
549
550 /*
551 * Todo: This won't be enough. What if the same device
552 * comes back (with new uuid and) with its mapper path?
553 * But for now, this does help as mostly an admin will
554 * either use mapper or non mapper path throughout.
555 */
556 rcu_read_lock();
557 del = strcmp(rcu_str_deref(dev->name),
558 rcu_str_deref(cur_dev->name));
559 rcu_read_unlock();
560 if (!del)
561 break;
562 }
563
564 if (!del) {
565 /* delete the stale device */
566 if (fs_devs->num_devices == 1) {
567 btrfs_sysfs_remove_fsid(fs_devs);
568 list_del(&fs_devs->list);
569 free_fs_devices(fs_devs);
570 } else {
571 fs_devs->num_devices--;
572 list_del(&dev->dev_list);
573 rcu_string_free(dev->name);
574 kfree(dev);
575 }
576 break;
577 }
578 }
579}
580
60999ca4
DS
581/*
582 * Add new device to list of registered devices
583 *
584 * Returns:
585 * 1 - first time device is seen
586 * 0 - device already known
587 * < 0 - error
588 */
a1b32a59 589static noinline int device_list_add(const char *path,
8a4b83cc
CM
590 struct btrfs_super_block *disk_super,
591 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
592{
593 struct btrfs_device *device;
594 struct btrfs_fs_devices *fs_devices;
606686ee 595 struct rcu_string *name;
60999ca4 596 int ret = 0;
8a4b83cc
CM
597 u64 found_transid = btrfs_super_generation(disk_super);
598
599 fs_devices = find_fsid(disk_super->fsid);
600 if (!fs_devices) {
2208a378
ID
601 fs_devices = alloc_fs_devices(disk_super->fsid);
602 if (IS_ERR(fs_devices))
603 return PTR_ERR(fs_devices);
604
8a4b83cc 605 list_add(&fs_devices->list, &fs_uuids);
2208a378 606
8a4b83cc
CM
607 device = NULL;
608 } else {
a443755f
CM
609 device = __find_device(&fs_devices->devices, devid,
610 disk_super->dev_item.uuid);
8a4b83cc 611 }
443f24fe 612
8a4b83cc 613 if (!device) {
2b82032c
YZ
614 if (fs_devices->opened)
615 return -EBUSY;
616
12bd2fc0
ID
617 device = btrfs_alloc_device(NULL, &devid,
618 disk_super->dev_item.uuid);
619 if (IS_ERR(device)) {
8a4b83cc 620 /* we can safely leave the fs_devices entry around */
12bd2fc0 621 return PTR_ERR(device);
8a4b83cc 622 }
606686ee
JB
623
624 name = rcu_string_strdup(path, GFP_NOFS);
625 if (!name) {
8a4b83cc
CM
626 kfree(device);
627 return -ENOMEM;
628 }
606686ee 629 rcu_assign_pointer(device->name, name);
90519d66 630
e5e9a520 631 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 632 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 633 fs_devices->num_devices++;
e5e9a520
CM
634 mutex_unlock(&fs_devices->device_list_mutex);
635
60999ca4 636 ret = 1;
2b82032c 637 device->fs_devices = fs_devices;
606686ee 638 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
639 /*
640 * When FS is already mounted.
641 * 1. If you are here and if the device->name is NULL that
642 * means this device was missing at time of FS mount.
643 * 2. If you are here and if the device->name is different
644 * from 'path' that means either
645 * a. The same device disappeared and reappeared with
646 * different name. or
647 * b. The missing-disk-which-was-replaced, has
648 * reappeared now.
649 *
650 * We must allow 1 and 2a above. But 2b would be a spurious
651 * and unintentional.
652 *
653 * Further in case of 1 and 2a above, the disk at 'path'
654 * would have missed some transaction when it was away and
655 * in case of 2a the stale bdev has to be updated as well.
656 * 2b must not be allowed at all time.
657 */
658
659 /*
0f23ae74
CM
660 * For now, we do allow update to btrfs_fs_device through the
661 * btrfs dev scan cli after FS has been mounted. We're still
662 * tracking a problem where systems fail mount by subvolume id
663 * when we reject replacement on a mounted FS.
b96de000 664 */
0f23ae74 665 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
666 /*
667 * That is if the FS is _not_ mounted and if you
668 * are here, that means there is more than one
669 * disk with same uuid and devid.We keep the one
670 * with larger generation number or the last-in if
671 * generation are equal.
672 */
0f23ae74 673 return -EEXIST;
77bdae4d 674 }
b96de000 675
606686ee 676 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
677 if (!name)
678 return -ENOMEM;
606686ee
JB
679 rcu_string_free(device->name);
680 rcu_assign_pointer(device->name, name);
cd02dca5
CM
681 if (device->missing) {
682 fs_devices->missing_devices--;
683 device->missing = 0;
684 }
8a4b83cc
CM
685 }
686
77bdae4d
AJ
687 /*
688 * Unmount does not free the btrfs_device struct but would zero
689 * generation along with most of the other members. So just update
690 * it back. We need it to pick the disk with largest generation
691 * (as above).
692 */
693 if (!fs_devices->opened)
694 device->generation = found_transid;
695
4fde46f0
AJ
696 /*
697 * if there is new btrfs on an already registered device,
698 * then remove the stale device entry.
699 */
700 btrfs_free_stale_device(device);
701
8a4b83cc 702 *fs_devices_ret = fs_devices;
60999ca4
DS
703
704 return ret;
8a4b83cc
CM
705}
706
e4404d6e
YZ
707static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
708{
709 struct btrfs_fs_devices *fs_devices;
710 struct btrfs_device *device;
711 struct btrfs_device *orig_dev;
712
2208a378
ID
713 fs_devices = alloc_fs_devices(orig->fsid);
714 if (IS_ERR(fs_devices))
715 return fs_devices;
e4404d6e 716
adbbb863 717 mutex_lock(&orig->device_list_mutex);
02db0844 718 fs_devices->total_devices = orig->total_devices;
e4404d6e 719
46224705 720 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 721 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
722 struct rcu_string *name;
723
12bd2fc0
ID
724 device = btrfs_alloc_device(NULL, &orig_dev->devid,
725 orig_dev->uuid);
726 if (IS_ERR(device))
e4404d6e
YZ
727 goto error;
728
606686ee
JB
729 /*
730 * This is ok to do without rcu read locked because we hold the
731 * uuid mutex so nothing we touch in here is going to disappear.
732 */
e755f780
AJ
733 if (orig_dev->name) {
734 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
735 if (!name) {
736 kfree(device);
737 goto error;
738 }
739 rcu_assign_pointer(device->name, name);
fd2696f3 740 }
e4404d6e 741
e4404d6e
YZ
742 list_add(&device->dev_list, &fs_devices->devices);
743 device->fs_devices = fs_devices;
744 fs_devices->num_devices++;
745 }
adbbb863 746 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
747 return fs_devices;
748error:
adbbb863 749 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
750 free_fs_devices(fs_devices);
751 return ERR_PTR(-ENOMEM);
752}
753
9eaed21e 754void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 755{
c6e30871 756 struct btrfs_device *device, *next;
443f24fe 757 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 758
dfe25020
CM
759 mutex_lock(&uuid_mutex);
760again:
46224705 761 /* This is the initialized path, it is safe to release the devices. */
c6e30871 762 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 763 if (device->in_fs_metadata) {
63a212ab 764 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
765 (!latest_dev ||
766 device->generation > latest_dev->generation)) {
767 latest_dev = device;
a6b0d5c8 768 }
2b82032c 769 continue;
a6b0d5c8 770 }
2b82032c 771
8dabb742
SB
772 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
773 /*
774 * In the first step, keep the device which has
775 * the correct fsid and the devid that is used
776 * for the dev_replace procedure.
777 * In the second step, the dev_replace state is
778 * read from the device tree and it is known
779 * whether the procedure is really active or
780 * not, which means whether this device is
781 * used or whether it should be removed.
782 */
783 if (step == 0 || device->is_tgtdev_for_dev_replace) {
784 continue;
785 }
786 }
2b82032c 787 if (device->bdev) {
d4d77629 788 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
789 device->bdev = NULL;
790 fs_devices->open_devices--;
791 }
792 if (device->writeable) {
793 list_del_init(&device->dev_alloc_list);
794 device->writeable = 0;
8dabb742
SB
795 if (!device->is_tgtdev_for_dev_replace)
796 fs_devices->rw_devices--;
2b82032c 797 }
e4404d6e
YZ
798 list_del_init(&device->dev_list);
799 fs_devices->num_devices--;
606686ee 800 rcu_string_free(device->name);
e4404d6e 801 kfree(device);
dfe25020 802 }
2b82032c
YZ
803
804 if (fs_devices->seed) {
805 fs_devices = fs_devices->seed;
2b82032c
YZ
806 goto again;
807 }
808
443f24fe 809 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 810
dfe25020 811 mutex_unlock(&uuid_mutex);
dfe25020 812}
a0af469b 813
1f78160c
XG
814static void __free_device(struct work_struct *work)
815{
816 struct btrfs_device *device;
817
818 device = container_of(work, struct btrfs_device, rcu_work);
819
820 if (device->bdev)
821 blkdev_put(device->bdev, device->mode);
822
606686ee 823 rcu_string_free(device->name);
1f78160c
XG
824 kfree(device);
825}
826
827static void free_device(struct rcu_head *head)
828{
829 struct btrfs_device *device;
830
831 device = container_of(head, struct btrfs_device, rcu);
832
833 INIT_WORK(&device->rcu_work, __free_device);
834 schedule_work(&device->rcu_work);
835}
836
2b82032c 837static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 838{
2037a093 839 struct btrfs_device *device, *tmp;
e4404d6e 840
2b82032c
YZ
841 if (--fs_devices->opened > 0)
842 return 0;
8a4b83cc 843
c9513edb 844 mutex_lock(&fs_devices->device_list_mutex);
2037a093 845 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 846 btrfs_close_one_device(device);
8a4b83cc 847 }
c9513edb
XG
848 mutex_unlock(&fs_devices->device_list_mutex);
849
e4404d6e
YZ
850 WARN_ON(fs_devices->open_devices);
851 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
852 fs_devices->opened = 0;
853 fs_devices->seeding = 0;
2b82032c 854
8a4b83cc
CM
855 return 0;
856}
857
2b82032c
YZ
858int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
859{
e4404d6e 860 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
861 int ret;
862
863 mutex_lock(&uuid_mutex);
864 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
865 if (!fs_devices->opened) {
866 seed_devices = fs_devices->seed;
867 fs_devices->seed = NULL;
868 }
2b82032c 869 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
870
871 while (seed_devices) {
872 fs_devices = seed_devices;
873 seed_devices = fs_devices->seed;
874 __btrfs_close_devices(fs_devices);
875 free_fs_devices(fs_devices);
876 }
bc178622
ES
877 /*
878 * Wait for rcu kworkers under __btrfs_close_devices
879 * to finish all blkdev_puts so device is really
880 * free when umount is done.
881 */
882 rcu_barrier();
2b82032c
YZ
883 return ret;
884}
885
e4404d6e
YZ
886static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
887 fmode_t flags, void *holder)
8a4b83cc 888{
d5e2003c 889 struct request_queue *q;
8a4b83cc
CM
890 struct block_device *bdev;
891 struct list_head *head = &fs_devices->devices;
8a4b83cc 892 struct btrfs_device *device;
443f24fe 893 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
894 struct buffer_head *bh;
895 struct btrfs_super_block *disk_super;
a0af469b 896 u64 devid;
2b82032c 897 int seeding = 1;
a0af469b 898 int ret = 0;
8a4b83cc 899
d4d77629
TH
900 flags |= FMODE_EXCL;
901
c6e30871 902 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
903 if (device->bdev)
904 continue;
dfe25020
CM
905 if (!device->name)
906 continue;
907
f63e0cca
ES
908 /* Just open everything we can; ignore failures here */
909 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
910 &bdev, &bh))
beaf8ab3 911 continue;
a0af469b
CM
912
913 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 914 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
915 if (devid != device->devid)
916 goto error_brelse;
917
2b82032c
YZ
918 if (memcmp(device->uuid, disk_super->dev_item.uuid,
919 BTRFS_UUID_SIZE))
920 goto error_brelse;
921
922 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
923 if (!latest_dev ||
924 device->generation > latest_dev->generation)
925 latest_dev = device;
a0af469b 926
2b82032c
YZ
927 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
928 device->writeable = 0;
929 } else {
930 device->writeable = !bdev_read_only(bdev);
931 seeding = 0;
932 }
933
d5e2003c 934 q = bdev_get_queue(bdev);
90180da4 935 if (blk_queue_discard(q))
d5e2003c 936 device->can_discard = 1;
d5e2003c 937
8a4b83cc 938 device->bdev = bdev;
dfe25020 939 device->in_fs_metadata = 0;
15916de8
CM
940 device->mode = flags;
941
c289811c
CM
942 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
943 fs_devices->rotating = 1;
944
a0af469b 945 fs_devices->open_devices++;
55e50e45
ID
946 if (device->writeable &&
947 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
948 fs_devices->rw_devices++;
949 list_add(&device->dev_alloc_list,
950 &fs_devices->alloc_list);
951 }
4f6c9328 952 brelse(bh);
a0af469b 953 continue;
a061fc8d 954
a0af469b
CM
955error_brelse:
956 brelse(bh);
d4d77629 957 blkdev_put(bdev, flags);
a0af469b 958 continue;
8a4b83cc 959 }
a0af469b 960 if (fs_devices->open_devices == 0) {
20bcd649 961 ret = -EINVAL;
a0af469b
CM
962 goto out;
963 }
2b82032c
YZ
964 fs_devices->seeding = seeding;
965 fs_devices->opened = 1;
443f24fe 966 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 967 fs_devices->total_rw_bytes = 0;
a0af469b 968out:
2b82032c
YZ
969 return ret;
970}
971
972int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 973 fmode_t flags, void *holder)
2b82032c
YZ
974{
975 int ret;
976
977 mutex_lock(&uuid_mutex);
978 if (fs_devices->opened) {
e4404d6e
YZ
979 fs_devices->opened++;
980 ret = 0;
2b82032c 981 } else {
15916de8 982 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 983 }
8a4b83cc 984 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
985 return ret;
986}
987
6f60cbd3
DS
988/*
989 * Look for a btrfs signature on a device. This may be called out of the mount path
990 * and we are not allowed to call set_blocksize during the scan. The superblock
991 * is read via pagecache
992 */
97288f2c 993int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
994 struct btrfs_fs_devices **fs_devices_ret)
995{
996 struct btrfs_super_block *disk_super;
997 struct block_device *bdev;
6f60cbd3
DS
998 struct page *page;
999 void *p;
1000 int ret = -EINVAL;
8a4b83cc 1001 u64 devid;
f2984462 1002 u64 transid;
02db0844 1003 u64 total_devices;
6f60cbd3
DS
1004 u64 bytenr;
1005 pgoff_t index;
8a4b83cc 1006
6f60cbd3
DS
1007 /*
1008 * we would like to check all the supers, but that would make
1009 * a btrfs mount succeed after a mkfs from a different FS.
1010 * So, we need to add a special mount option to scan for
1011 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1012 */
1013 bytenr = btrfs_sb_offset(0);
d4d77629 1014 flags |= FMODE_EXCL;
10f6327b 1015 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1016
1017 bdev = blkdev_get_by_path(path, flags, holder);
1018
1019 if (IS_ERR(bdev)) {
1020 ret = PTR_ERR(bdev);
beaf8ab3 1021 goto error;
6f60cbd3
DS
1022 }
1023
1024 /* make sure our super fits in the device */
1025 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1026 goto error_bdev_put;
1027
1028 /* make sure our super fits in the page */
1029 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1030 goto error_bdev_put;
1031
1032 /* make sure our super doesn't straddle pages on disk */
1033 index = bytenr >> PAGE_CACHE_SHIFT;
1034 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1035 goto error_bdev_put;
1036
1037 /* pull in the page with our super */
1038 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1039 index, GFP_NOFS);
1040
1041 if (IS_ERR_OR_NULL(page))
1042 goto error_bdev_put;
1043
1044 p = kmap(page);
1045
1046 /* align our pointer to the offset of the super block */
1047 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1048
1049 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 1050 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
1051 goto error_unmap;
1052
a343832f 1053 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1054 transid = btrfs_super_generation(disk_super);
02db0844 1055 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1056
8a4b83cc 1057 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1058 if (ret > 0) {
1059 if (disk_super->label[0]) {
1060 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1061 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1062 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1063 } else {
1064 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1065 }
1066
1067 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1068 ret = 0;
1069 }
02db0844
JB
1070 if (!ret && fs_devices_ret)
1071 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
1072
1073error_unmap:
1074 kunmap(page);
1075 page_cache_release(page);
1076
1077error_bdev_put:
d4d77629 1078 blkdev_put(bdev, flags);
8a4b83cc 1079error:
beaf8ab3 1080 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1081 return ret;
1082}
0b86a832 1083
6d07bcec
MX
1084/* helper to account the used device space in the range */
1085int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1086 u64 end, u64 *length)
1087{
1088 struct btrfs_key key;
1089 struct btrfs_root *root = device->dev_root;
1090 struct btrfs_dev_extent *dev_extent;
1091 struct btrfs_path *path;
1092 u64 extent_end;
1093 int ret;
1094 int slot;
1095 struct extent_buffer *l;
1096
1097 *length = 0;
1098
63a212ab 1099 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1100 return 0;
1101
1102 path = btrfs_alloc_path();
1103 if (!path)
1104 return -ENOMEM;
1105 path->reada = 2;
1106
1107 key.objectid = device->devid;
1108 key.offset = start;
1109 key.type = BTRFS_DEV_EXTENT_KEY;
1110
1111 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1112 if (ret < 0)
1113 goto out;
1114 if (ret > 0) {
1115 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1116 if (ret < 0)
1117 goto out;
1118 }
1119
1120 while (1) {
1121 l = path->nodes[0];
1122 slot = path->slots[0];
1123 if (slot >= btrfs_header_nritems(l)) {
1124 ret = btrfs_next_leaf(root, path);
1125 if (ret == 0)
1126 continue;
1127 if (ret < 0)
1128 goto out;
1129
1130 break;
1131 }
1132 btrfs_item_key_to_cpu(l, &key, slot);
1133
1134 if (key.objectid < device->devid)
1135 goto next;
1136
1137 if (key.objectid > device->devid)
1138 break;
1139
962a298f 1140 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1141 goto next;
1142
1143 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1144 extent_end = key.offset + btrfs_dev_extent_length(l,
1145 dev_extent);
1146 if (key.offset <= start && extent_end > end) {
1147 *length = end - start + 1;
1148 break;
1149 } else if (key.offset <= start && extent_end > start)
1150 *length += extent_end - start;
1151 else if (key.offset > start && extent_end <= end)
1152 *length += extent_end - key.offset;
1153 else if (key.offset > start && key.offset <= end) {
1154 *length += end - key.offset + 1;
1155 break;
1156 } else if (key.offset > end)
1157 break;
1158
1159next:
1160 path->slots[0]++;
1161 }
1162 ret = 0;
1163out:
1164 btrfs_free_path(path);
1165 return ret;
1166}
1167
499f377f 1168static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1169 struct btrfs_device *device,
1170 u64 *start, u64 len)
1171{
499f377f 1172 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1173 struct extent_map *em;
499f377f 1174 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1175 int ret = 0;
1b984508 1176 u64 physical_start = *start;
6df9a95e 1177
499f377f
JM
1178 if (transaction)
1179 search_list = &transaction->pending_chunks;
04216820
FM
1180again:
1181 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1182 struct map_lookup *map;
1183 int i;
1184
1185 map = (struct map_lookup *)em->bdev;
1186 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1187 u64 end;
1188
6df9a95e
JB
1189 if (map->stripes[i].dev != device)
1190 continue;
1b984508 1191 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1192 map->stripes[i].physical + em->orig_block_len <=
1b984508 1193 physical_start)
6df9a95e 1194 continue;
c152b63e
FM
1195 /*
1196 * Make sure that while processing the pinned list we do
1197 * not override our *start with a lower value, because
1198 * we can have pinned chunks that fall within this
1199 * device hole and that have lower physical addresses
1200 * than the pending chunks we processed before. If we
1201 * do not take this special care we can end up getting
1202 * 2 pending chunks that start at the same physical
1203 * device offsets because the end offset of a pinned
1204 * chunk can be equal to the start offset of some
1205 * pending chunk.
1206 */
1207 end = map->stripes[i].physical + em->orig_block_len;
1208 if (end > *start) {
1209 *start = end;
1210 ret = 1;
1211 }
6df9a95e
JB
1212 }
1213 }
499f377f
JM
1214 if (search_list != &fs_info->pinned_chunks) {
1215 search_list = &fs_info->pinned_chunks;
04216820
FM
1216 goto again;
1217 }
6df9a95e
JB
1218
1219 return ret;
1220}
1221
1222
0b86a832 1223/*
499f377f
JM
1224 * find_free_dev_extent_start - find free space in the specified device
1225 * @device: the device which we search the free space in
1226 * @num_bytes: the size of the free space that we need
1227 * @search_start: the position from which to begin the search
1228 * @start: store the start of the free space.
1229 * @len: the size of the free space. that we find, or the size
1230 * of the max free space if we don't find suitable free space
7bfc837d 1231 *
0b86a832
CM
1232 * this uses a pretty simple search, the expectation is that it is
1233 * called very infrequently and that a given device has a small number
1234 * of extents
7bfc837d
MX
1235 *
1236 * @start is used to store the start of the free space if we find. But if we
1237 * don't find suitable free space, it will be used to store the start position
1238 * of the max free space.
1239 *
1240 * @len is used to store the size of the free space that we find.
1241 * But if we don't find suitable free space, it is used to store the size of
1242 * the max free space.
0b86a832 1243 */
499f377f
JM
1244int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1245 struct btrfs_device *device, u64 num_bytes,
1246 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1247{
1248 struct btrfs_key key;
1249 struct btrfs_root *root = device->dev_root;
7bfc837d 1250 struct btrfs_dev_extent *dev_extent;
2b82032c 1251 struct btrfs_path *path;
7bfc837d
MX
1252 u64 hole_size;
1253 u64 max_hole_start;
1254 u64 max_hole_size;
1255 u64 extent_end;
0b86a832
CM
1256 u64 search_end = device->total_bytes;
1257 int ret;
7bfc837d 1258 int slot;
0b86a832
CM
1259 struct extent_buffer *l;
1260
6df9a95e
JB
1261 path = btrfs_alloc_path();
1262 if (!path)
1263 return -ENOMEM;
f2ab7618 1264
7bfc837d
MX
1265 max_hole_start = search_start;
1266 max_hole_size = 0;
1267
f2ab7618 1268again:
63a212ab 1269 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1270 ret = -ENOSPC;
6df9a95e 1271 goto out;
7bfc837d
MX
1272 }
1273
7bfc837d 1274 path->reada = 2;
6df9a95e
JB
1275 path->search_commit_root = 1;
1276 path->skip_locking = 1;
7bfc837d 1277
0b86a832
CM
1278 key.objectid = device->devid;
1279 key.offset = search_start;
1280 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1281
125ccb0a 1282 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1283 if (ret < 0)
7bfc837d 1284 goto out;
1fcbac58
YZ
1285 if (ret > 0) {
1286 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1287 if (ret < 0)
7bfc837d 1288 goto out;
1fcbac58 1289 }
7bfc837d 1290
0b86a832
CM
1291 while (1) {
1292 l = path->nodes[0];
1293 slot = path->slots[0];
1294 if (slot >= btrfs_header_nritems(l)) {
1295 ret = btrfs_next_leaf(root, path);
1296 if (ret == 0)
1297 continue;
1298 if (ret < 0)
7bfc837d
MX
1299 goto out;
1300
1301 break;
0b86a832
CM
1302 }
1303 btrfs_item_key_to_cpu(l, &key, slot);
1304
1305 if (key.objectid < device->devid)
1306 goto next;
1307
1308 if (key.objectid > device->devid)
7bfc837d 1309 break;
0b86a832 1310
962a298f 1311 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1312 goto next;
9779b72f 1313
7bfc837d
MX
1314 if (key.offset > search_start) {
1315 hole_size = key.offset - search_start;
9779b72f 1316
6df9a95e
JB
1317 /*
1318 * Have to check before we set max_hole_start, otherwise
1319 * we could end up sending back this offset anyway.
1320 */
499f377f 1321 if (contains_pending_extent(transaction, device,
6df9a95e 1322 &search_start,
1b984508
FL
1323 hole_size)) {
1324 if (key.offset >= search_start) {
1325 hole_size = key.offset - search_start;
1326 } else {
1327 WARN_ON_ONCE(1);
1328 hole_size = 0;
1329 }
1330 }
6df9a95e 1331
7bfc837d
MX
1332 if (hole_size > max_hole_size) {
1333 max_hole_start = search_start;
1334 max_hole_size = hole_size;
1335 }
9779b72f 1336
7bfc837d
MX
1337 /*
1338 * If this free space is greater than which we need,
1339 * it must be the max free space that we have found
1340 * until now, so max_hole_start must point to the start
1341 * of this free space and the length of this free space
1342 * is stored in max_hole_size. Thus, we return
1343 * max_hole_start and max_hole_size and go back to the
1344 * caller.
1345 */
1346 if (hole_size >= num_bytes) {
1347 ret = 0;
1348 goto out;
0b86a832
CM
1349 }
1350 }
0b86a832 1351
0b86a832 1352 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1353 extent_end = key.offset + btrfs_dev_extent_length(l,
1354 dev_extent);
1355 if (extent_end > search_start)
1356 search_start = extent_end;
0b86a832
CM
1357next:
1358 path->slots[0]++;
1359 cond_resched();
1360 }
0b86a832 1361
38c01b96 1362 /*
1363 * At this point, search_start should be the end of
1364 * allocated dev extents, and when shrinking the device,
1365 * search_end may be smaller than search_start.
1366 */
f2ab7618 1367 if (search_end > search_start) {
38c01b96 1368 hole_size = search_end - search_start;
1369
499f377f 1370 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1371 hole_size)) {
1372 btrfs_release_path(path);
1373 goto again;
1374 }
0b86a832 1375
f2ab7618
ZL
1376 if (hole_size > max_hole_size) {
1377 max_hole_start = search_start;
1378 max_hole_size = hole_size;
1379 }
6df9a95e
JB
1380 }
1381
7bfc837d 1382 /* See above. */
f2ab7618 1383 if (max_hole_size < num_bytes)
7bfc837d
MX
1384 ret = -ENOSPC;
1385 else
1386 ret = 0;
1387
1388out:
2b82032c 1389 btrfs_free_path(path);
7bfc837d 1390 *start = max_hole_start;
b2117a39 1391 if (len)
7bfc837d 1392 *len = max_hole_size;
0b86a832
CM
1393 return ret;
1394}
1395
499f377f
JM
1396int find_free_dev_extent(struct btrfs_trans_handle *trans,
1397 struct btrfs_device *device, u64 num_bytes,
1398 u64 *start, u64 *len)
1399{
1400 struct btrfs_root *root = device->dev_root;
1401 u64 search_start;
1402
1403 /* FIXME use last free of some kind */
1404
1405 /*
1406 * we don't want to overwrite the superblock on the drive,
1407 * so we make sure to start at an offset of at least 1MB
1408 */
1409 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1410 return find_free_dev_extent_start(trans->transaction, device,
1411 num_bytes, search_start, start, len);
1412}
1413
b2950863 1414static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1415 struct btrfs_device *device,
2196d6e8 1416 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1417{
1418 int ret;
1419 struct btrfs_path *path;
1420 struct btrfs_root *root = device->dev_root;
1421 struct btrfs_key key;
a061fc8d
CM
1422 struct btrfs_key found_key;
1423 struct extent_buffer *leaf = NULL;
1424 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1425
1426 path = btrfs_alloc_path();
1427 if (!path)
1428 return -ENOMEM;
1429
1430 key.objectid = device->devid;
1431 key.offset = start;
1432 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1433again:
8f18cf13 1434 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1435 if (ret > 0) {
1436 ret = btrfs_previous_item(root, path, key.objectid,
1437 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1438 if (ret)
1439 goto out;
a061fc8d
CM
1440 leaf = path->nodes[0];
1441 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1442 extent = btrfs_item_ptr(leaf, path->slots[0],
1443 struct btrfs_dev_extent);
1444 BUG_ON(found_key.offset > start || found_key.offset +
1445 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1446 key = found_key;
1447 btrfs_release_path(path);
1448 goto again;
a061fc8d
CM
1449 } else if (ret == 0) {
1450 leaf = path->nodes[0];
1451 extent = btrfs_item_ptr(leaf, path->slots[0],
1452 struct btrfs_dev_extent);
79787eaa 1453 } else {
a4553fef 1454 btrfs_std_error(root->fs_info, ret, "Slot search failed");
79787eaa 1455 goto out;
a061fc8d 1456 }
8f18cf13 1457
2196d6e8
MX
1458 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1459
8f18cf13 1460 ret = btrfs_del_item(trans, root, path);
79787eaa 1461 if (ret) {
a4553fef 1462 btrfs_std_error(root->fs_info, ret,
79787eaa 1463 "Failed to remove dev extent item");
13212b54 1464 } else {
3204d33c 1465 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1466 }
b0b802d7 1467out:
8f18cf13
CM
1468 btrfs_free_path(path);
1469 return ret;
1470}
1471
48a3b636
ES
1472static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1473 struct btrfs_device *device,
1474 u64 chunk_tree, u64 chunk_objectid,
1475 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1476{
1477 int ret;
1478 struct btrfs_path *path;
1479 struct btrfs_root *root = device->dev_root;
1480 struct btrfs_dev_extent *extent;
1481 struct extent_buffer *leaf;
1482 struct btrfs_key key;
1483
dfe25020 1484 WARN_ON(!device->in_fs_metadata);
63a212ab 1485 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1486 path = btrfs_alloc_path();
1487 if (!path)
1488 return -ENOMEM;
1489
0b86a832 1490 key.objectid = device->devid;
2b82032c 1491 key.offset = start;
0b86a832
CM
1492 key.type = BTRFS_DEV_EXTENT_KEY;
1493 ret = btrfs_insert_empty_item(trans, root, path, &key,
1494 sizeof(*extent));
2cdcecbc
MF
1495 if (ret)
1496 goto out;
0b86a832
CM
1497
1498 leaf = path->nodes[0];
1499 extent = btrfs_item_ptr(leaf, path->slots[0],
1500 struct btrfs_dev_extent);
e17cade2
CM
1501 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1502 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1503 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1504
1505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1506 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1507
0b86a832
CM
1508 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1509 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1510out:
0b86a832
CM
1511 btrfs_free_path(path);
1512 return ret;
1513}
1514
6df9a95e 1515static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1516{
6df9a95e
JB
1517 struct extent_map_tree *em_tree;
1518 struct extent_map *em;
1519 struct rb_node *n;
1520 u64 ret = 0;
0b86a832 1521
6df9a95e
JB
1522 em_tree = &fs_info->mapping_tree.map_tree;
1523 read_lock(&em_tree->lock);
1524 n = rb_last(&em_tree->map);
1525 if (n) {
1526 em = rb_entry(n, struct extent_map, rb_node);
1527 ret = em->start + em->len;
0b86a832 1528 }
6df9a95e
JB
1529 read_unlock(&em_tree->lock);
1530
0b86a832
CM
1531 return ret;
1532}
1533
53f10659
ID
1534static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1535 u64 *devid_ret)
0b86a832
CM
1536{
1537 int ret;
1538 struct btrfs_key key;
1539 struct btrfs_key found_key;
2b82032c
YZ
1540 struct btrfs_path *path;
1541
2b82032c
YZ
1542 path = btrfs_alloc_path();
1543 if (!path)
1544 return -ENOMEM;
0b86a832
CM
1545
1546 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1547 key.type = BTRFS_DEV_ITEM_KEY;
1548 key.offset = (u64)-1;
1549
53f10659 1550 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1551 if (ret < 0)
1552 goto error;
1553
79787eaa 1554 BUG_ON(ret == 0); /* Corruption */
0b86a832 1555
53f10659
ID
1556 ret = btrfs_previous_item(fs_info->chunk_root, path,
1557 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1558 BTRFS_DEV_ITEM_KEY);
1559 if (ret) {
53f10659 1560 *devid_ret = 1;
0b86a832
CM
1561 } else {
1562 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1563 path->slots[0]);
53f10659 1564 *devid_ret = found_key.offset + 1;
0b86a832
CM
1565 }
1566 ret = 0;
1567error:
2b82032c 1568 btrfs_free_path(path);
0b86a832
CM
1569 return ret;
1570}
1571
1572/*
1573 * the device information is stored in the chunk root
1574 * the btrfs_device struct should be fully filled in
1575 */
48a3b636
ES
1576static int btrfs_add_device(struct btrfs_trans_handle *trans,
1577 struct btrfs_root *root,
1578 struct btrfs_device *device)
0b86a832
CM
1579{
1580 int ret;
1581 struct btrfs_path *path;
1582 struct btrfs_dev_item *dev_item;
1583 struct extent_buffer *leaf;
1584 struct btrfs_key key;
1585 unsigned long ptr;
0b86a832
CM
1586
1587 root = root->fs_info->chunk_root;
1588
1589 path = btrfs_alloc_path();
1590 if (!path)
1591 return -ENOMEM;
1592
0b86a832
CM
1593 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1594 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1595 key.offset = device->devid;
0b86a832
CM
1596
1597 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1598 sizeof(*dev_item));
0b86a832
CM
1599 if (ret)
1600 goto out;
1601
1602 leaf = path->nodes[0];
1603 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1604
1605 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1606 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1607 btrfs_set_device_type(leaf, dev_item, device->type);
1608 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1609 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1610 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1611 btrfs_set_device_total_bytes(leaf, dev_item,
1612 btrfs_device_get_disk_total_bytes(device));
1613 btrfs_set_device_bytes_used(leaf, dev_item,
1614 btrfs_device_get_bytes_used(device));
e17cade2
CM
1615 btrfs_set_device_group(leaf, dev_item, 0);
1616 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1617 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1618 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1619
410ba3a2 1620 ptr = btrfs_device_uuid(dev_item);
e17cade2 1621 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1622 ptr = btrfs_device_fsid(dev_item);
2b82032c 1623 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1624 btrfs_mark_buffer_dirty(leaf);
0b86a832 1625
2b82032c 1626 ret = 0;
0b86a832
CM
1627out:
1628 btrfs_free_path(path);
1629 return ret;
1630}
8f18cf13 1631
5a1972bd
QW
1632/*
1633 * Function to update ctime/mtime for a given device path.
1634 * Mainly used for ctime/mtime based probe like libblkid.
1635 */
1636static void update_dev_time(char *path_name)
1637{
1638 struct file *filp;
1639
1640 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1641 if (IS_ERR(filp))
5a1972bd
QW
1642 return;
1643 file_update_time(filp);
1644 filp_close(filp, NULL);
1645 return;
1646}
1647
a061fc8d
CM
1648static int btrfs_rm_dev_item(struct btrfs_root *root,
1649 struct btrfs_device *device)
1650{
1651 int ret;
1652 struct btrfs_path *path;
a061fc8d 1653 struct btrfs_key key;
a061fc8d
CM
1654 struct btrfs_trans_handle *trans;
1655
1656 root = root->fs_info->chunk_root;
1657
1658 path = btrfs_alloc_path();
1659 if (!path)
1660 return -ENOMEM;
1661
a22285a6 1662 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1663 if (IS_ERR(trans)) {
1664 btrfs_free_path(path);
1665 return PTR_ERR(trans);
1666 }
a061fc8d
CM
1667 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1668 key.type = BTRFS_DEV_ITEM_KEY;
1669 key.offset = device->devid;
1670
1671 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1672 if (ret < 0)
1673 goto out;
1674
1675 if (ret > 0) {
1676 ret = -ENOENT;
1677 goto out;
1678 }
1679
1680 ret = btrfs_del_item(trans, root, path);
1681 if (ret)
1682 goto out;
a061fc8d
CM
1683out:
1684 btrfs_free_path(path);
1685 btrfs_commit_transaction(trans, root);
1686 return ret;
1687}
1688
1689int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1690{
1691 struct btrfs_device *device;
2b82032c 1692 struct btrfs_device *next_device;
a061fc8d 1693 struct block_device *bdev;
dfe25020 1694 struct buffer_head *bh = NULL;
a061fc8d 1695 struct btrfs_super_block *disk_super;
1f78160c 1696 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1697 u64 all_avail;
1698 u64 devid;
2b82032c
YZ
1699 u64 num_devices;
1700 u8 *dev_uuid;
de98ced9 1701 unsigned seq;
a061fc8d 1702 int ret = 0;
1f78160c 1703 bool clear_super = false;
a061fc8d 1704
a061fc8d
CM
1705 mutex_lock(&uuid_mutex);
1706
de98ced9
MX
1707 do {
1708 seq = read_seqbegin(&root->fs_info->profiles_lock);
1709
1710 all_avail = root->fs_info->avail_data_alloc_bits |
1711 root->fs_info->avail_system_alloc_bits |
1712 root->fs_info->avail_metadata_alloc_bits;
1713 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1714
8dabb742
SB
1715 num_devices = root->fs_info->fs_devices->num_devices;
1716 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1717 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1718 WARN_ON(num_devices < 1);
1719 num_devices--;
1720 }
1721 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1722
1723 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1724 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1725 goto out;
1726 }
1727
8dabb742 1728 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1729 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1730 goto out;
1731 }
1732
53b381b3
DW
1733 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1734 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1735 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1736 goto out;
1737 }
1738 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1739 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1740 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1741 goto out;
1742 }
1743
dfe25020 1744 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1745 struct list_head *devices;
1746 struct btrfs_device *tmp;
a061fc8d 1747
dfe25020
CM
1748 device = NULL;
1749 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1750 /*
1751 * It is safe to read the devices since the volume_mutex
1752 * is held.
1753 */
c6e30871 1754 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1755 if (tmp->in_fs_metadata &&
1756 !tmp->is_tgtdev_for_dev_replace &&
1757 !tmp->bdev) {
dfe25020
CM
1758 device = tmp;
1759 break;
1760 }
1761 }
1762 bdev = NULL;
1763 bh = NULL;
1764 disk_super = NULL;
1765 if (!device) {
183860f6 1766 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1767 goto out;
1768 }
dfe25020 1769 } else {
beaf8ab3 1770 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1771 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1772 root->fs_info->bdev_holder, 0,
1773 &bdev, &bh);
1774 if (ret)
dfe25020 1775 goto out;
dfe25020 1776 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1777 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1778 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1779 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1780 disk_super->fsid);
dfe25020
CM
1781 if (!device) {
1782 ret = -ENOENT;
1783 goto error_brelse;
1784 }
2b82032c 1785 }
dfe25020 1786
63a212ab 1787 if (device->is_tgtdev_for_dev_replace) {
183860f6 1788 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1789 goto error_brelse;
1790 }
1791
2b82032c 1792 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1793 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1794 goto error_brelse;
1795 }
1796
1797 if (device->writeable) {
0c1daee0 1798 lock_chunks(root);
2b82032c 1799 list_del_init(&device->dev_alloc_list);
c3929c36 1800 device->fs_devices->rw_devices--;
0c1daee0 1801 unlock_chunks(root);
1f78160c 1802 clear_super = true;
dfe25020 1803 }
a061fc8d 1804
d7901554 1805 mutex_unlock(&uuid_mutex);
a061fc8d 1806 ret = btrfs_shrink_device(device, 0);
d7901554 1807 mutex_lock(&uuid_mutex);
a061fc8d 1808 if (ret)
9b3517e9 1809 goto error_undo;
a061fc8d 1810
63a212ab
SB
1811 /*
1812 * TODO: the superblock still includes this device in its num_devices
1813 * counter although write_all_supers() is not locked out. This
1814 * could give a filesystem state which requires a degraded mount.
1815 */
a061fc8d
CM
1816 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1817 if (ret)
9b3517e9 1818 goto error_undo;
a061fc8d 1819
2b82032c 1820 device->in_fs_metadata = 0;
aa1b8cd4 1821 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1822
1823 /*
1824 * the device list mutex makes sure that we don't change
1825 * the device list while someone else is writing out all
d7306801
FDBM
1826 * the device supers. Whoever is writing all supers, should
1827 * lock the device list mutex before getting the number of
1828 * devices in the super block (super_copy). Conversely,
1829 * whoever updates the number of devices in the super block
1830 * (super_copy) should hold the device list mutex.
e5e9a520 1831 */
1f78160c
XG
1832
1833 cur_devices = device->fs_devices;
e5e9a520 1834 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1835 list_del_rcu(&device->dev_list);
e5e9a520 1836
e4404d6e 1837 device->fs_devices->num_devices--;
02db0844 1838 device->fs_devices->total_devices--;
2b82032c 1839
cd02dca5 1840 if (device->missing)
3a7d55c8 1841 device->fs_devices->missing_devices--;
cd02dca5 1842
2b82032c
YZ
1843 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1844 struct btrfs_device, dev_list);
1845 if (device->bdev == root->fs_info->sb->s_bdev)
1846 root->fs_info->sb->s_bdev = next_device->bdev;
1847 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1848 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1849
0bfaa9c5 1850 if (device->bdev) {
e4404d6e 1851 device->fs_devices->open_devices--;
0bfaa9c5 1852 /* remove sysfs entry */
32576040 1853 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1854 }
99994cde 1855
1f78160c 1856 call_rcu(&device->rcu, free_device);
e4404d6e 1857
6c41761f
DS
1858 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1859 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1860 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1861
1f78160c 1862 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1863 struct btrfs_fs_devices *fs_devices;
1864 fs_devices = root->fs_info->fs_devices;
1865 while (fs_devices) {
8321cf25
RS
1866 if (fs_devices->seed == cur_devices) {
1867 fs_devices->seed = cur_devices->seed;
e4404d6e 1868 break;
8321cf25 1869 }
e4404d6e 1870 fs_devices = fs_devices->seed;
2b82032c 1871 }
1f78160c 1872 cur_devices->seed = NULL;
1f78160c 1873 __btrfs_close_devices(cur_devices);
1f78160c 1874 free_fs_devices(cur_devices);
2b82032c
YZ
1875 }
1876
5af3e8cc
SB
1877 root->fs_info->num_tolerated_disk_barrier_failures =
1878 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1879
2b82032c
YZ
1880 /*
1881 * at this point, the device is zero sized. We want to
1882 * remove it from the devices list and zero out the old super
1883 */
aa1b8cd4 1884 if (clear_super && disk_super) {
4d90d28b
AJ
1885 u64 bytenr;
1886 int i;
1887
dfe25020
CM
1888 /* make sure this device isn't detected as part of
1889 * the FS anymore
1890 */
1891 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1892 set_buffer_dirty(bh);
1893 sync_dirty_buffer(bh);
4d90d28b
AJ
1894
1895 /* clear the mirror copies of super block on the disk
1896 * being removed, 0th copy is been taken care above and
1897 * the below would take of the rest
1898 */
1899 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1900 bytenr = btrfs_sb_offset(i);
1901 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1902 i_size_read(bdev->bd_inode))
1903 break;
1904
1905 brelse(bh);
1906 bh = __bread(bdev, bytenr / 4096,
1907 BTRFS_SUPER_INFO_SIZE);
1908 if (!bh)
1909 continue;
1910
1911 disk_super = (struct btrfs_super_block *)bh->b_data;
1912
1913 if (btrfs_super_bytenr(disk_super) != bytenr ||
1914 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1915 continue;
1916 }
1917 memset(&disk_super->magic, 0,
1918 sizeof(disk_super->magic));
1919 set_buffer_dirty(bh);
1920 sync_dirty_buffer(bh);
1921 }
dfe25020 1922 }
a061fc8d 1923
a061fc8d 1924 ret = 0;
a061fc8d 1925
5a1972bd
QW
1926 if (bdev) {
1927 /* Notify udev that device has changed */
3c911608 1928 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1929
5a1972bd
QW
1930 /* Update ctime/mtime for device path for libblkid */
1931 update_dev_time(device_path);
1932 }
1933
a061fc8d
CM
1934error_brelse:
1935 brelse(bh);
dfe25020 1936 if (bdev)
e525fd89 1937 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1938out:
1939 mutex_unlock(&uuid_mutex);
a061fc8d 1940 return ret;
9b3517e9
ID
1941error_undo:
1942 if (device->writeable) {
0c1daee0 1943 lock_chunks(root);
9b3517e9
ID
1944 list_add(&device->dev_alloc_list,
1945 &root->fs_info->fs_devices->alloc_list);
c3929c36 1946 device->fs_devices->rw_devices++;
0c1daee0 1947 unlock_chunks(root);
9b3517e9
ID
1948 }
1949 goto error_brelse;
a061fc8d
CM
1950}
1951
084b6e7c
QW
1952void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1953 struct btrfs_device *srcdev)
e93c89c1 1954{
d51908ce
AJ
1955 struct btrfs_fs_devices *fs_devices;
1956
e93c89c1 1957 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1958
25e8e911
AJ
1959 /*
1960 * in case of fs with no seed, srcdev->fs_devices will point
1961 * to fs_devices of fs_info. However when the dev being replaced is
1962 * a seed dev it will point to the seed's local fs_devices. In short
1963 * srcdev will have its correct fs_devices in both the cases.
1964 */
1965 fs_devices = srcdev->fs_devices;
d51908ce 1966
e93c89c1
SB
1967 list_del_rcu(&srcdev->dev_list);
1968 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1969 fs_devices->num_devices--;
82372bc8 1970 if (srcdev->missing)
d51908ce 1971 fs_devices->missing_devices--;
e93c89c1 1972
82372bc8
MX
1973 if (srcdev->writeable) {
1974 fs_devices->rw_devices--;
1975 /* zero out the old super if it is writable */
12b1c263
AJ
1976 btrfs_scratch_superblocks(srcdev->bdev,
1977 rcu_str_deref(srcdev->name));
1357272f
ID
1978 }
1979
82372bc8 1980 if (srcdev->bdev)
d51908ce 1981 fs_devices->open_devices--;
084b6e7c
QW
1982}
1983
1984void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1985 struct btrfs_device *srcdev)
1986{
1987 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1988
1989 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1990
1991 /*
1992 * unless fs_devices is seed fs, num_devices shouldn't go
1993 * zero
1994 */
1995 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1996
1997 /* if this is no devs we rather delete the fs_devices */
1998 if (!fs_devices->num_devices) {
1999 struct btrfs_fs_devices *tmp_fs_devices;
2000
2001 tmp_fs_devices = fs_info->fs_devices;
2002 while (tmp_fs_devices) {
2003 if (tmp_fs_devices->seed == fs_devices) {
2004 tmp_fs_devices->seed = fs_devices->seed;
2005 break;
2006 }
2007 tmp_fs_devices = tmp_fs_devices->seed;
2008 }
2009 fs_devices->seed = NULL;
8bef8401
AJ
2010 __btrfs_close_devices(fs_devices);
2011 free_fs_devices(fs_devices);
94d5f0c2 2012 }
e93c89c1
SB
2013}
2014
2015void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2016 struct btrfs_device *tgtdev)
2017{
2018 struct btrfs_device *next_device;
2019
67a2c45e 2020 mutex_lock(&uuid_mutex);
e93c89c1
SB
2021 WARN_ON(!tgtdev);
2022 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2023
32576040 2024 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2025
e93c89c1 2026 if (tgtdev->bdev) {
12b1c263
AJ
2027 btrfs_scratch_superblocks(tgtdev->bdev,
2028 rcu_str_deref(tgtdev->name));
e93c89c1
SB
2029 fs_info->fs_devices->open_devices--;
2030 }
2031 fs_info->fs_devices->num_devices--;
e93c89c1
SB
2032
2033 next_device = list_entry(fs_info->fs_devices->devices.next,
2034 struct btrfs_device, dev_list);
2035 if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 fs_info->sb->s_bdev = next_device->bdev;
2037 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 list_del_rcu(&tgtdev->dev_list);
2040
2041 call_rcu(&tgtdev->rcu, free_device);
2042
2043 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2044 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2045}
2046
48a3b636
ES
2047static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 struct btrfs_device **device)
7ba15b7d
SB
2049{
2050 int ret = 0;
2051 struct btrfs_super_block *disk_super;
2052 u64 devid;
2053 u8 *dev_uuid;
2054 struct block_device *bdev;
2055 struct buffer_head *bh;
2056
2057 *device = NULL;
2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 if (ret)
2061 return ret;
2062 disk_super = (struct btrfs_super_block *)bh->b_data;
2063 devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2066 disk_super->fsid);
2067 brelse(bh);
2068 if (!*device)
2069 ret = -ENOENT;
2070 blkdev_put(bdev, FMODE_READ);
2071 return ret;
2072}
2073
2074int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 char *device_path,
2076 struct btrfs_device **device)
2077{
2078 *device = NULL;
2079 if (strcmp(device_path, "missing") == 0) {
2080 struct list_head *devices;
2081 struct btrfs_device *tmp;
2082
2083 devices = &root->fs_info->fs_devices->devices;
2084 /*
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2087 */
2088 list_for_each_entry(tmp, devices, dev_list) {
2089 if (tmp->in_fs_metadata && !tmp->bdev) {
2090 *device = tmp;
2091 break;
2092 }
2093 }
2094
d74a6259
AJ
2095 if (!*device)
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2097
2098 return 0;
2099 } else {
2100 return btrfs_find_device_by_path(root, device_path, device);
2101 }
2102}
2103
2b82032c
YZ
2104/*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
125ccb0a 2107static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2108{
2109 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 struct btrfs_fs_devices *old_devices;
e4404d6e 2111 struct btrfs_fs_devices *seed_devices;
6c41761f 2112 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2113 struct btrfs_device *device;
2114 u64 super_flags;
2115
2116 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2117 if (!fs_devices->seeding)
2b82032c
YZ
2118 return -EINVAL;
2119
2208a378
ID
2120 seed_devices = __alloc_fs_devices();
2121 if (IS_ERR(seed_devices))
2122 return PTR_ERR(seed_devices);
2b82032c 2123
e4404d6e
YZ
2124 old_devices = clone_fs_devices(fs_devices);
2125 if (IS_ERR(old_devices)) {
2126 kfree(seed_devices);
2127 return PTR_ERR(old_devices);
2b82032c 2128 }
e4404d6e 2129
2b82032c
YZ
2130 list_add(&old_devices->list, &fs_uuids);
2131
e4404d6e
YZ
2132 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 seed_devices->opened = 1;
2134 INIT_LIST_HEAD(&seed_devices->devices);
2135 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2136 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2137
2138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2139 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 synchronize_rcu);
2196d6e8
MX
2141 list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 device->fs_devices = seed_devices;
c9513edb 2143
2196d6e8 2144 lock_chunks(root);
e4404d6e 2145 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2146 unlock_chunks(root);
e4404d6e 2147
2b82032c
YZ
2148 fs_devices->seeding = 0;
2149 fs_devices->num_devices = 0;
2150 fs_devices->open_devices = 0;
69611ac8 2151 fs_devices->missing_devices = 0;
69611ac8 2152 fs_devices->rotating = 0;
e4404d6e 2153 fs_devices->seed = seed_devices;
2b82032c
YZ
2154
2155 generate_random_uuid(fs_devices->fsid);
2156 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2b82032c
YZ
2160 super_flags = btrfs_super_flags(disk_super) &
2161 ~BTRFS_SUPER_FLAG_SEEDING;
2162 btrfs_set_super_flags(disk_super, super_flags);
2163
2164 return 0;
2165}
2166
2167/*
2168 * strore the expected generation for seed devices in device items.
2169 */
2170static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root)
2172{
2173 struct btrfs_path *path;
2174 struct extent_buffer *leaf;
2175 struct btrfs_dev_item *dev_item;
2176 struct btrfs_device *device;
2177 struct btrfs_key key;
2178 u8 fs_uuid[BTRFS_UUID_SIZE];
2179 u8 dev_uuid[BTRFS_UUID_SIZE];
2180 u64 devid;
2181 int ret;
2182
2183 path = btrfs_alloc_path();
2184 if (!path)
2185 return -ENOMEM;
2186
2187 root = root->fs_info->chunk_root;
2188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 key.offset = 0;
2190 key.type = BTRFS_DEV_ITEM_KEY;
2191
2192 while (1) {
2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 if (ret < 0)
2195 goto error;
2196
2197 leaf = path->nodes[0];
2198next_slot:
2199 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 ret = btrfs_next_leaf(root, path);
2201 if (ret > 0)
2202 break;
2203 if (ret < 0)
2204 goto error;
2205 leaf = path->nodes[0];
2206 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2207 btrfs_release_path(path);
2b82032c
YZ
2208 continue;
2209 }
2210
2211 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 key.type != BTRFS_DEV_ITEM_KEY)
2214 break;
2215
2216 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 struct btrfs_dev_item);
2218 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2219 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2220 BTRFS_UUID_SIZE);
1473b24e 2221 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2222 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2223 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 fs_uuid);
79787eaa 2225 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2226
2227 if (device->fs_devices->seeding) {
2228 btrfs_set_device_generation(leaf, dev_item,
2229 device->generation);
2230 btrfs_mark_buffer_dirty(leaf);
2231 }
2232
2233 path->slots[0]++;
2234 goto next_slot;
2235 }
2236 ret = 0;
2237error:
2238 btrfs_free_path(path);
2239 return ret;
2240}
2241
788f20eb
CM
2242int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243{
d5e2003c 2244 struct request_queue *q;
788f20eb
CM
2245 struct btrfs_trans_handle *trans;
2246 struct btrfs_device *device;
2247 struct block_device *bdev;
788f20eb 2248 struct list_head *devices;
2b82032c 2249 struct super_block *sb = root->fs_info->sb;
606686ee 2250 struct rcu_string *name;
3c1dbdf5 2251 u64 tmp;
2b82032c 2252 int seeding_dev = 0;
788f20eb
CM
2253 int ret = 0;
2254
2b82032c 2255 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2256 return -EROFS;
788f20eb 2257
a5d16333 2258 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2259 root->fs_info->bdev_holder);
7f59203a
JB
2260 if (IS_ERR(bdev))
2261 return PTR_ERR(bdev);
a2135011 2262
2b82032c
YZ
2263 if (root->fs_info->fs_devices->seeding) {
2264 seeding_dev = 1;
2265 down_write(&sb->s_umount);
2266 mutex_lock(&uuid_mutex);
2267 }
2268
8c8bee1d 2269 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2270
788f20eb 2271 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2272
2273 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2274 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2275 if (device->bdev == bdev) {
2276 ret = -EEXIST;
d25628bd
LB
2277 mutex_unlock(
2278 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2279 goto error;
788f20eb
CM
2280 }
2281 }
d25628bd 2282 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2283
12bd2fc0
ID
2284 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 if (IS_ERR(device)) {
788f20eb 2286 /* we can safely leave the fs_devices entry around */
12bd2fc0 2287 ret = PTR_ERR(device);
2b82032c 2288 goto error;
788f20eb
CM
2289 }
2290
606686ee
JB
2291 name = rcu_string_strdup(device_path, GFP_NOFS);
2292 if (!name) {
788f20eb 2293 kfree(device);
2b82032c
YZ
2294 ret = -ENOMEM;
2295 goto error;
788f20eb 2296 }
606686ee 2297 rcu_assign_pointer(device->name, name);
2b82032c 2298
a22285a6 2299 trans = btrfs_start_transaction(root, 0);
98d5dc13 2300 if (IS_ERR(trans)) {
606686ee 2301 rcu_string_free(device->name);
98d5dc13
TI
2302 kfree(device);
2303 ret = PTR_ERR(trans);
2304 goto error;
2305 }
2306
d5e2003c
JB
2307 q = bdev_get_queue(bdev);
2308 if (blk_queue_discard(q))
2309 device->can_discard = 1;
2b82032c 2310 device->writeable = 1;
2b82032c 2311 device->generation = trans->transid;
788f20eb
CM
2312 device->io_width = root->sectorsize;
2313 device->io_align = root->sectorsize;
2314 device->sector_size = root->sectorsize;
2315 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2316 device->disk_total_bytes = device->total_bytes;
935e5cc9 2317 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2318 device->dev_root = root->fs_info->dev_root;
2319 device->bdev = bdev;
dfe25020 2320 device->in_fs_metadata = 1;
63a212ab 2321 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2322 device->mode = FMODE_EXCL;
27087f37 2323 device->dev_stats_valid = 1;
2b82032c 2324 set_blocksize(device->bdev, 4096);
788f20eb 2325
2b82032c
YZ
2326 if (seeding_dev) {
2327 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2328 ret = btrfs_prepare_sprout(root);
79787eaa 2329 BUG_ON(ret); /* -ENOMEM */
2b82032c 2330 }
788f20eb 2331
2b82032c 2332 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2333
e5e9a520 2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2335 lock_chunks(root);
1f78160c 2336 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2337 list_add(&device->dev_alloc_list,
2338 &root->fs_info->fs_devices->alloc_list);
2339 root->fs_info->fs_devices->num_devices++;
2340 root->fs_info->fs_devices->open_devices++;
2341 root->fs_info->fs_devices->rw_devices++;
02db0844 2342 root->fs_info->fs_devices->total_devices++;
2b82032c 2343 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2344
2bf64758
JB
2345 spin_lock(&root->fs_info->free_chunk_lock);
2346 root->fs_info->free_chunk_space += device->total_bytes;
2347 spin_unlock(&root->fs_info->free_chunk_lock);
2348
c289811c
CM
2349 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 root->fs_info->fs_devices->rotating = 1;
2351
3c1dbdf5 2352 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2353 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2354 tmp + device->total_bytes);
788f20eb 2355
3c1dbdf5 2356 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2357 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2358 tmp + 1);
0d39376a
AJ
2359
2360 /* add sysfs device entry */
e3bd6973 2361 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2362
2196d6e8
MX
2363 /*
2364 * we've got more storage, clear any full flags on the space
2365 * infos
2366 */
2367 btrfs_clear_space_info_full(root->fs_info);
2368
2369 unlock_chunks(root);
e5e9a520 2370 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2371
2b82032c 2372 if (seeding_dev) {
2196d6e8 2373 lock_chunks(root);
2b82032c 2374 ret = init_first_rw_device(trans, root, device);
2196d6e8 2375 unlock_chunks(root);
005d6427
DS
2376 if (ret) {
2377 btrfs_abort_transaction(trans, root, ret);
79787eaa 2378 goto error_trans;
005d6427 2379 }
2196d6e8
MX
2380 }
2381
2382 ret = btrfs_add_device(trans, root, device);
2383 if (ret) {
2384 btrfs_abort_transaction(trans, root, ret);
2385 goto error_trans;
2386 }
2387
2388 if (seeding_dev) {
2389 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390
2b82032c 2391 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2392 if (ret) {
2393 btrfs_abort_transaction(trans, root, ret);
79787eaa 2394 goto error_trans;
005d6427 2395 }
b2373f25
AJ
2396
2397 /* Sprouting would change fsid of the mounted root,
2398 * so rename the fsid on the sysfs
2399 */
2400 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401 root->fs_info->fsid);
c1b7e474 2402 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2403 fsid_buf))
f14d104d
DS
2404 btrfs_warn(root->fs_info,
2405 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2406 }
2407
5af3e8cc
SB
2408 root->fs_info->num_tolerated_disk_barrier_failures =
2409 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2410 ret = btrfs_commit_transaction(trans, root);
a2135011 2411
2b82032c
YZ
2412 if (seeding_dev) {
2413 mutex_unlock(&uuid_mutex);
2414 up_write(&sb->s_umount);
788f20eb 2415
79787eaa
JM
2416 if (ret) /* transaction commit */
2417 return ret;
2418
2b82032c 2419 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2420 if (ret < 0)
a4553fef 2421 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2422 "Failed to relocate sys chunks after "
2423 "device initialization. This can be fixed "
2424 "using the \"btrfs balance\" command.");
671415b7
MX
2425 trans = btrfs_attach_transaction(root);
2426 if (IS_ERR(trans)) {
2427 if (PTR_ERR(trans) == -ENOENT)
2428 return 0;
2429 return PTR_ERR(trans);
2430 }
2431 ret = btrfs_commit_transaction(trans, root);
2b82032c 2432 }
c9e9f97b 2433
5a1972bd
QW
2434 /* Update ctime/mtime for libblkid */
2435 update_dev_time(device_path);
2b82032c 2436 return ret;
79787eaa
JM
2437
2438error_trans:
79787eaa 2439 btrfs_end_transaction(trans, root);
606686ee 2440 rcu_string_free(device->name);
32576040 2441 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2442 kfree(device);
2b82032c 2443error:
e525fd89 2444 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2445 if (seeding_dev) {
2446 mutex_unlock(&uuid_mutex);
2447 up_write(&sb->s_umount);
2448 }
c9e9f97b 2449 return ret;
788f20eb
CM
2450}
2451
e93c89c1 2452int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2453 struct btrfs_device *srcdev,
e93c89c1
SB
2454 struct btrfs_device **device_out)
2455{
2456 struct request_queue *q;
2457 struct btrfs_device *device;
2458 struct block_device *bdev;
2459 struct btrfs_fs_info *fs_info = root->fs_info;
2460 struct list_head *devices;
2461 struct rcu_string *name;
12bd2fc0 2462 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2463 int ret = 0;
2464
2465 *device_out = NULL;
1c43366d
MX
2466 if (fs_info->fs_devices->seeding) {
2467 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2468 return -EINVAL;
1c43366d 2469 }
e93c89c1
SB
2470
2471 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472 fs_info->bdev_holder);
1c43366d
MX
2473 if (IS_ERR(bdev)) {
2474 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2475 return PTR_ERR(bdev);
1c43366d 2476 }
e93c89c1
SB
2477
2478 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479
2480 devices = &fs_info->fs_devices->devices;
2481 list_for_each_entry(device, devices, dev_list) {
2482 if (device->bdev == bdev) {
1c43366d 2483 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2484 ret = -EEXIST;
2485 goto error;
2486 }
2487 }
2488
1c43366d 2489
7cc8e58d
MX
2490 if (i_size_read(bdev->bd_inode) <
2491 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2492 btrfs_err(fs_info, "target device is smaller than source device!");
2493 ret = -EINVAL;
2494 goto error;
2495 }
2496
2497
12bd2fc0
ID
2498 device = btrfs_alloc_device(NULL, &devid, NULL);
2499 if (IS_ERR(device)) {
2500 ret = PTR_ERR(device);
e93c89c1
SB
2501 goto error;
2502 }
2503
2504 name = rcu_string_strdup(device_path, GFP_NOFS);
2505 if (!name) {
2506 kfree(device);
2507 ret = -ENOMEM;
2508 goto error;
2509 }
2510 rcu_assign_pointer(device->name, name);
2511
2512 q = bdev_get_queue(bdev);
2513 if (blk_queue_discard(q))
2514 device->can_discard = 1;
2515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516 device->writeable = 1;
e93c89c1
SB
2517 device->generation = 0;
2518 device->io_width = root->sectorsize;
2519 device->io_align = root->sectorsize;
2520 device->sector_size = root->sectorsize;
7cc8e58d
MX
2521 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2524 ASSERT(list_empty(&srcdev->resized_list));
2525 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2526 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2527 device->dev_root = fs_info->dev_root;
2528 device->bdev = bdev;
2529 device->in_fs_metadata = 1;
2530 device->is_tgtdev_for_dev_replace = 1;
2531 device->mode = FMODE_EXCL;
27087f37 2532 device->dev_stats_valid = 1;
e93c89c1
SB
2533 set_blocksize(device->bdev, 4096);
2534 device->fs_devices = fs_info->fs_devices;
2535 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536 fs_info->fs_devices->num_devices++;
2537 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2538 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539
2540 *device_out = device;
2541 return ret;
2542
2543error:
2544 blkdev_put(bdev, FMODE_EXCL);
2545 return ret;
2546}
2547
2548void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549 struct btrfs_device *tgtdev)
2550{
2551 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552 tgtdev->io_width = fs_info->dev_root->sectorsize;
2553 tgtdev->io_align = fs_info->dev_root->sectorsize;
2554 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555 tgtdev->dev_root = fs_info->dev_root;
2556 tgtdev->in_fs_metadata = 1;
2557}
2558
d397712b
CM
2559static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560 struct btrfs_device *device)
0b86a832
CM
2561{
2562 int ret;
2563 struct btrfs_path *path;
2564 struct btrfs_root *root;
2565 struct btrfs_dev_item *dev_item;
2566 struct extent_buffer *leaf;
2567 struct btrfs_key key;
2568
2569 root = device->dev_root->fs_info->chunk_root;
2570
2571 path = btrfs_alloc_path();
2572 if (!path)
2573 return -ENOMEM;
2574
2575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576 key.type = BTRFS_DEV_ITEM_KEY;
2577 key.offset = device->devid;
2578
2579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580 if (ret < 0)
2581 goto out;
2582
2583 if (ret > 0) {
2584 ret = -ENOENT;
2585 goto out;
2586 }
2587
2588 leaf = path->nodes[0];
2589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591 btrfs_set_device_id(leaf, dev_item, device->devid);
2592 btrfs_set_device_type(leaf, dev_item, device->type);
2593 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2596 btrfs_set_device_total_bytes(leaf, dev_item,
2597 btrfs_device_get_disk_total_bytes(device));
2598 btrfs_set_device_bytes_used(leaf, dev_item,
2599 btrfs_device_get_bytes_used(device));
0b86a832
CM
2600 btrfs_mark_buffer_dirty(leaf);
2601
2602out:
2603 btrfs_free_path(path);
2604 return ret;
2605}
2606
2196d6e8 2607int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2608 struct btrfs_device *device, u64 new_size)
2609{
2610 struct btrfs_super_block *super_copy =
6c41761f 2611 device->dev_root->fs_info->super_copy;
935e5cc9 2612 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2613 u64 old_total;
2614 u64 diff;
8f18cf13 2615
2b82032c
YZ
2616 if (!device->writeable)
2617 return -EACCES;
2196d6e8
MX
2618
2619 lock_chunks(device->dev_root);
2620 old_total = btrfs_super_total_bytes(super_copy);
2621 diff = new_size - device->total_bytes;
2622
63a212ab 2623 if (new_size <= device->total_bytes ||
2196d6e8
MX
2624 device->is_tgtdev_for_dev_replace) {
2625 unlock_chunks(device->dev_root);
2b82032c 2626 return -EINVAL;
2196d6e8 2627 }
2b82032c 2628
935e5cc9 2629 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2630
8f18cf13 2631 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2632 device->fs_devices->total_rw_bytes += diff;
2633
7cc8e58d
MX
2634 btrfs_device_set_total_bytes(device, new_size);
2635 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2636 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2637 if (list_empty(&device->resized_list))
2638 list_add_tail(&device->resized_list,
2639 &fs_devices->resized_devices);
2196d6e8 2640 unlock_chunks(device->dev_root);
4184ea7f 2641
8f18cf13
CM
2642 return btrfs_update_device(trans, device);
2643}
2644
2645static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2646 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2647 u64 chunk_offset)
2648{
2649 int ret;
2650 struct btrfs_path *path;
2651 struct btrfs_key key;
2652
2653 root = root->fs_info->chunk_root;
2654 path = btrfs_alloc_path();
2655 if (!path)
2656 return -ENOMEM;
2657
2658 key.objectid = chunk_objectid;
2659 key.offset = chunk_offset;
2660 key.type = BTRFS_CHUNK_ITEM_KEY;
2661
2662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2663 if (ret < 0)
2664 goto out;
2665 else if (ret > 0) { /* Logic error or corruption */
a4553fef 2666 btrfs_std_error(root->fs_info, -ENOENT,
79787eaa
JM
2667 "Failed lookup while freeing chunk.");
2668 ret = -ENOENT;
2669 goto out;
2670 }
8f18cf13
CM
2671
2672 ret = btrfs_del_item(trans, root, path);
79787eaa 2673 if (ret < 0)
a4553fef 2674 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2675 "Failed to delete chunk item.");
2676out:
8f18cf13 2677 btrfs_free_path(path);
65a246c5 2678 return ret;
8f18cf13
CM
2679}
2680
b2950863 2681static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2682 chunk_offset)
2683{
6c41761f 2684 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2685 struct btrfs_disk_key *disk_key;
2686 struct btrfs_chunk *chunk;
2687 u8 *ptr;
2688 int ret = 0;
2689 u32 num_stripes;
2690 u32 array_size;
2691 u32 len = 0;
2692 u32 cur;
2693 struct btrfs_key key;
2694
2196d6e8 2695 lock_chunks(root);
8f18cf13
CM
2696 array_size = btrfs_super_sys_array_size(super_copy);
2697
2698 ptr = super_copy->sys_chunk_array;
2699 cur = 0;
2700
2701 while (cur < array_size) {
2702 disk_key = (struct btrfs_disk_key *)ptr;
2703 btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705 len = sizeof(*disk_key);
2706
2707 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708 chunk = (struct btrfs_chunk *)(ptr + len);
2709 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710 len += btrfs_chunk_item_size(num_stripes);
2711 } else {
2712 ret = -EIO;
2713 break;
2714 }
2715 if (key.objectid == chunk_objectid &&
2716 key.offset == chunk_offset) {
2717 memmove(ptr, ptr + len, array_size - (cur + len));
2718 array_size -= len;
2719 btrfs_set_super_sys_array_size(super_copy, array_size);
2720 } else {
2721 ptr += len;
2722 cur += len;
2723 }
2724 }
2196d6e8 2725 unlock_chunks(root);
8f18cf13
CM
2726 return ret;
2727}
2728
47ab2a6c
JB
2729int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2731{
2732 struct extent_map_tree *em_tree;
8f18cf13 2733 struct extent_map *em;
47ab2a6c 2734 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2735 struct map_lookup *map;
2196d6e8 2736 u64 dev_extent_len = 0;
47ab2a6c 2737 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2738 int i, ret = 0;
8f18cf13 2739
47ab2a6c 2740 /* Just in case */
8f18cf13 2741 root = root->fs_info->chunk_root;
8f18cf13
CM
2742 em_tree = &root->fs_info->mapping_tree.map_tree;
2743
890871be 2744 read_lock(&em_tree->lock);
8f18cf13 2745 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2746 read_unlock(&em_tree->lock);
8f18cf13 2747
47ab2a6c
JB
2748 if (!em || em->start > chunk_offset ||
2749 em->start + em->len < chunk_offset) {
2750 /*
2751 * This is a logic error, but we don't want to just rely on the
2752 * user having built with ASSERT enabled, so if ASSERT doens't
2753 * do anything we still error out.
2754 */
2755 ASSERT(0);
2756 if (em)
2757 free_extent_map(em);
2758 return -EINVAL;
2759 }
8f18cf13 2760 map = (struct map_lookup *)em->bdev;
39c2d7fa 2761 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2762 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2763 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2764
2765 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2766 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2767 ret = btrfs_free_dev_extent(trans, device,
2768 map->stripes[i].physical,
2769 &dev_extent_len);
47ab2a6c
JB
2770 if (ret) {
2771 btrfs_abort_transaction(trans, root, ret);
2772 goto out;
2773 }
a061fc8d 2774
2196d6e8
MX
2775 if (device->bytes_used > 0) {
2776 lock_chunks(root);
2777 btrfs_device_set_bytes_used(device,
2778 device->bytes_used - dev_extent_len);
2779 spin_lock(&root->fs_info->free_chunk_lock);
2780 root->fs_info->free_chunk_space += dev_extent_len;
2781 spin_unlock(&root->fs_info->free_chunk_lock);
2782 btrfs_clear_space_info_full(root->fs_info);
2783 unlock_chunks(root);
2784 }
a061fc8d 2785
dfe25020
CM
2786 if (map->stripes[i].dev) {
2787 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2788 if (ret) {
2789 btrfs_abort_transaction(trans, root, ret);
2790 goto out;
2791 }
dfe25020 2792 }
8f18cf13 2793 }
a688a04a 2794 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2795 if (ret) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 goto out;
2798 }
8f18cf13 2799
1abe9b8a 2800 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801
8f18cf13
CM
2802 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2804 if (ret) {
2805 btrfs_abort_transaction(trans, root, ret);
2806 goto out;
2807 }
8f18cf13
CM
2808 }
2809
04216820 2810 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2811 if (ret) {
2812 btrfs_abort_transaction(trans, extent_root, ret);
2813 goto out;
2814 }
2b82032c 2815
47ab2a6c 2816out:
2b82032c
YZ
2817 /* once for us */
2818 free_extent_map(em);
47ab2a6c
JB
2819 return ret;
2820}
2b82032c 2821
dc2ee4e2 2822static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2823{
2824 struct btrfs_root *extent_root;
2825 struct btrfs_trans_handle *trans;
2826 int ret;
2b82032c 2827
47ab2a6c
JB
2828 root = root->fs_info->chunk_root;
2829 extent_root = root->fs_info->extent_root;
2830
67c5e7d4
FM
2831 /*
2832 * Prevent races with automatic removal of unused block groups.
2833 * After we relocate and before we remove the chunk with offset
2834 * chunk_offset, automatic removal of the block group can kick in,
2835 * resulting in a failure when calling btrfs_remove_chunk() below.
2836 *
2837 * Make sure to acquire this mutex before doing a tree search (dev
2838 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840 * we release the path used to search the chunk/dev tree and before
2841 * the current task acquires this mutex and calls us.
2842 */
2843 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844
47ab2a6c
JB
2845 ret = btrfs_can_relocate(extent_root, chunk_offset);
2846 if (ret)
2847 return -ENOSPC;
2848
2849 /* step one, relocate all the extents inside this chunk */
55e3a601 2850 btrfs_scrub_pause(root);
47ab2a6c 2851 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2852 btrfs_scrub_continue(root);
47ab2a6c
JB
2853 if (ret)
2854 return ret;
2855
2856 trans = btrfs_start_transaction(root, 0);
2857 if (IS_ERR(trans)) {
2858 ret = PTR_ERR(trans);
a4553fef 2859 btrfs_std_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2860 return ret;
2861 }
2862
2863 /*
2864 * step two, delete the device extents and the
2865 * chunk tree entries
2866 */
2867 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2868 btrfs_end_transaction(trans, root);
47ab2a6c 2869 return ret;
2b82032c
YZ
2870}
2871
2872static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2873{
2874 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2875 struct btrfs_path *path;
2876 struct extent_buffer *leaf;
2877 struct btrfs_chunk *chunk;
2878 struct btrfs_key key;
2879 struct btrfs_key found_key;
2b82032c 2880 u64 chunk_type;
ba1bf481
JB
2881 bool retried = false;
2882 int failed = 0;
2b82032c
YZ
2883 int ret;
2884
2885 path = btrfs_alloc_path();
2886 if (!path)
2887 return -ENOMEM;
2888
ba1bf481 2889again:
2b82032c
YZ
2890 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2891 key.offset = (u64)-1;
2892 key.type = BTRFS_CHUNK_ITEM_KEY;
2893
2894 while (1) {
67c5e7d4 2895 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2896 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2897 if (ret < 0) {
2898 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2899 goto error;
67c5e7d4 2900 }
79787eaa 2901 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2902
2903 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2904 key.type);
67c5e7d4
FM
2905 if (ret)
2906 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2907 if (ret < 0)
2908 goto error;
2909 if (ret > 0)
2910 break;
1a40e23b 2911
2b82032c
YZ
2912 leaf = path->nodes[0];
2913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2914
2b82032c
YZ
2915 chunk = btrfs_item_ptr(leaf, path->slots[0],
2916 struct btrfs_chunk);
2917 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2918 btrfs_release_path(path);
8f18cf13 2919
2b82032c 2920 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2921 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2922 found_key.offset);
ba1bf481
JB
2923 if (ret == -ENOSPC)
2924 failed++;
14586651
HS
2925 else
2926 BUG_ON(ret);
2b82032c 2927 }
67c5e7d4 2928 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2929
2b82032c
YZ
2930 if (found_key.offset == 0)
2931 break;
2932 key.offset = found_key.offset - 1;
2933 }
2934 ret = 0;
ba1bf481
JB
2935 if (failed && !retried) {
2936 failed = 0;
2937 retried = true;
2938 goto again;
fae7f21c 2939 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2940 ret = -ENOSPC;
2941 }
2b82032c
YZ
2942error:
2943 btrfs_free_path(path);
2944 return ret;
8f18cf13
CM
2945}
2946
0940ebf6
ID
2947static int insert_balance_item(struct btrfs_root *root,
2948 struct btrfs_balance_control *bctl)
2949{
2950 struct btrfs_trans_handle *trans;
2951 struct btrfs_balance_item *item;
2952 struct btrfs_disk_balance_args disk_bargs;
2953 struct btrfs_path *path;
2954 struct extent_buffer *leaf;
2955 struct btrfs_key key;
2956 int ret, err;
2957
2958 path = btrfs_alloc_path();
2959 if (!path)
2960 return -ENOMEM;
2961
2962 trans = btrfs_start_transaction(root, 0);
2963 if (IS_ERR(trans)) {
2964 btrfs_free_path(path);
2965 return PTR_ERR(trans);
2966 }
2967
2968 key.objectid = BTRFS_BALANCE_OBJECTID;
2969 key.type = BTRFS_BALANCE_ITEM_KEY;
2970 key.offset = 0;
2971
2972 ret = btrfs_insert_empty_item(trans, root, path, &key,
2973 sizeof(*item));
2974 if (ret)
2975 goto out;
2976
2977 leaf = path->nodes[0];
2978 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2979
2980 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2981
2982 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2983 btrfs_set_balance_data(leaf, item, &disk_bargs);
2984 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2985 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2986 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2987 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2988
2989 btrfs_set_balance_flags(leaf, item, bctl->flags);
2990
2991 btrfs_mark_buffer_dirty(leaf);
2992out:
2993 btrfs_free_path(path);
2994 err = btrfs_commit_transaction(trans, root);
2995 if (err && !ret)
2996 ret = err;
2997 return ret;
2998}
2999
3000static int del_balance_item(struct btrfs_root *root)
3001{
3002 struct btrfs_trans_handle *trans;
3003 struct btrfs_path *path;
3004 struct btrfs_key key;
3005 int ret, err;
3006
3007 path = btrfs_alloc_path();
3008 if (!path)
3009 return -ENOMEM;
3010
3011 trans = btrfs_start_transaction(root, 0);
3012 if (IS_ERR(trans)) {
3013 btrfs_free_path(path);
3014 return PTR_ERR(trans);
3015 }
3016
3017 key.objectid = BTRFS_BALANCE_OBJECTID;
3018 key.type = BTRFS_BALANCE_ITEM_KEY;
3019 key.offset = 0;
3020
3021 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3022 if (ret < 0)
3023 goto out;
3024 if (ret > 0) {
3025 ret = -ENOENT;
3026 goto out;
3027 }
3028
3029 ret = btrfs_del_item(trans, root, path);
3030out:
3031 btrfs_free_path(path);
3032 err = btrfs_commit_transaction(trans, root);
3033 if (err && !ret)
3034 ret = err;
3035 return ret;
3036}
3037
59641015
ID
3038/*
3039 * This is a heuristic used to reduce the number of chunks balanced on
3040 * resume after balance was interrupted.
3041 */
3042static void update_balance_args(struct btrfs_balance_control *bctl)
3043{
3044 /*
3045 * Turn on soft mode for chunk types that were being converted.
3046 */
3047 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3048 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3049 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3050 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3051 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3052 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3053
3054 /*
3055 * Turn on usage filter if is not already used. The idea is
3056 * that chunks that we have already balanced should be
3057 * reasonably full. Don't do it for chunks that are being
3058 * converted - that will keep us from relocating unconverted
3059 * (albeit full) chunks.
3060 */
3061 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3062 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3063 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3064 bctl->data.usage = 90;
3065 }
3066 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3067 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3068 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3069 bctl->sys.usage = 90;
3070 }
3071 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3072 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3073 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3074 bctl->meta.usage = 90;
3075 }
3076}
3077
c9e9f97b
ID
3078/*
3079 * Should be called with both balance and volume mutexes held to
3080 * serialize other volume operations (add_dev/rm_dev/resize) with
3081 * restriper. Same goes for unset_balance_control.
3082 */
3083static void set_balance_control(struct btrfs_balance_control *bctl)
3084{
3085 struct btrfs_fs_info *fs_info = bctl->fs_info;
3086
3087 BUG_ON(fs_info->balance_ctl);
3088
3089 spin_lock(&fs_info->balance_lock);
3090 fs_info->balance_ctl = bctl;
3091 spin_unlock(&fs_info->balance_lock);
3092}
3093
3094static void unset_balance_control(struct btrfs_fs_info *fs_info)
3095{
3096 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3097
3098 BUG_ON(!fs_info->balance_ctl);
3099
3100 spin_lock(&fs_info->balance_lock);
3101 fs_info->balance_ctl = NULL;
3102 spin_unlock(&fs_info->balance_lock);
3103
3104 kfree(bctl);
3105}
3106
ed25e9b2
ID
3107/*
3108 * Balance filters. Return 1 if chunk should be filtered out
3109 * (should not be balanced).
3110 */
899c81ea 3111static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3112 struct btrfs_balance_args *bargs)
3113{
899c81ea
ID
3114 chunk_type = chunk_to_extended(chunk_type) &
3115 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3116
899c81ea 3117 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3118 return 0;
3119
3120 return 1;
3121}
3122
5ce5b3c0
ID
3123static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3124 struct btrfs_balance_args *bargs)
3125{
3126 struct btrfs_block_group_cache *cache;
3127 u64 chunk_used, user_thresh;
3128 int ret = 1;
3129
3130 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3131 chunk_used = btrfs_block_group_used(&cache->item);
3132
a105bb88 3133 if (bargs->usage == 0)
3e39cea6 3134 user_thresh = 1;
a105bb88
ID
3135 else if (bargs->usage > 100)
3136 user_thresh = cache->key.offset;
3137 else
3138 user_thresh = div_factor_fine(cache->key.offset,
3139 bargs->usage);
3140
5ce5b3c0
ID
3141 if (chunk_used < user_thresh)
3142 ret = 0;
3143
3144 btrfs_put_block_group(cache);
3145 return ret;
3146}
3147
409d404b
ID
3148static int chunk_devid_filter(struct extent_buffer *leaf,
3149 struct btrfs_chunk *chunk,
3150 struct btrfs_balance_args *bargs)
3151{
3152 struct btrfs_stripe *stripe;
3153 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3154 int i;
3155
3156 for (i = 0; i < num_stripes; i++) {
3157 stripe = btrfs_stripe_nr(chunk, i);
3158 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3159 return 0;
3160 }
3161
3162 return 1;
3163}
3164
94e60d5a
ID
3165/* [pstart, pend) */
3166static int chunk_drange_filter(struct extent_buffer *leaf,
3167 struct btrfs_chunk *chunk,
3168 u64 chunk_offset,
3169 struct btrfs_balance_args *bargs)
3170{
3171 struct btrfs_stripe *stripe;
3172 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3173 u64 stripe_offset;
3174 u64 stripe_length;
3175 int factor;
3176 int i;
3177
3178 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3179 return 0;
3180
3181 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3182 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3183 factor = num_stripes / 2;
3184 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3185 factor = num_stripes - 1;
3186 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3187 factor = num_stripes - 2;
3188 } else {
3189 factor = num_stripes;
3190 }
94e60d5a
ID
3191
3192 for (i = 0; i < num_stripes; i++) {
3193 stripe = btrfs_stripe_nr(chunk, i);
3194 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3195 continue;
3196
3197 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3198 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3199 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3200
3201 if (stripe_offset < bargs->pend &&
3202 stripe_offset + stripe_length > bargs->pstart)
3203 return 0;
3204 }
3205
3206 return 1;
3207}
3208
ea67176a
ID
3209/* [vstart, vend) */
3210static int chunk_vrange_filter(struct extent_buffer *leaf,
3211 struct btrfs_chunk *chunk,
3212 u64 chunk_offset,
3213 struct btrfs_balance_args *bargs)
3214{
3215 if (chunk_offset < bargs->vend &&
3216 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3217 /* at least part of the chunk is inside this vrange */
3218 return 0;
3219
3220 return 1;
3221}
3222
899c81ea 3223static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3224 struct btrfs_balance_args *bargs)
3225{
3226 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3227 return 0;
3228
899c81ea
ID
3229 chunk_type = chunk_to_extended(chunk_type) &
3230 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3231
899c81ea 3232 if (bargs->target == chunk_type)
cfa4c961
ID
3233 return 1;
3234
3235 return 0;
3236}
3237
f43ffb60
ID
3238static int should_balance_chunk(struct btrfs_root *root,
3239 struct extent_buffer *leaf,
3240 struct btrfs_chunk *chunk, u64 chunk_offset)
3241{
3242 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3243 struct btrfs_balance_args *bargs = NULL;
3244 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3245
3246 /* type filter */
3247 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3248 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3249 return 0;
3250 }
3251
3252 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3253 bargs = &bctl->data;
3254 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3255 bargs = &bctl->sys;
3256 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3257 bargs = &bctl->meta;
3258
ed25e9b2
ID
3259 /* profiles filter */
3260 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3261 chunk_profiles_filter(chunk_type, bargs)) {
3262 return 0;
5ce5b3c0
ID
3263 }
3264
3265 /* usage filter */
3266 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3267 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3268 return 0;
409d404b
ID
3269 }
3270
3271 /* devid filter */
3272 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3273 chunk_devid_filter(leaf, chunk, bargs)) {
3274 return 0;
94e60d5a
ID
3275 }
3276
3277 /* drange filter, makes sense only with devid filter */
3278 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3279 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3280 return 0;
ea67176a
ID
3281 }
3282
3283 /* vrange filter */
3284 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3285 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3286 return 0;
ed25e9b2
ID
3287 }
3288
cfa4c961
ID
3289 /* soft profile changing mode */
3290 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3291 chunk_soft_convert_filter(chunk_type, bargs)) {
3292 return 0;
3293 }
3294
7d824b6f
DS
3295 /*
3296 * limited by count, must be the last filter
3297 */
3298 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3299 if (bargs->limit == 0)
3300 return 0;
3301 else
3302 bargs->limit--;
12907fc7
DS
3303 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3304 /*
3305 * Same logic as the 'limit' filter; the minimum cannot be
3306 * determined here because we do not have the global informatoin
3307 * about the count of all chunks that satisfy the filters.
3308 */
3309 if (bargs->limit_max == 0)
3310 return 0;
3311 else
3312 bargs->limit_max--;
7d824b6f
DS
3313 }
3314
f43ffb60
ID
3315 return 1;
3316}
3317
c9e9f97b 3318static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3319{
19a39dce 3320 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3321 struct btrfs_root *chunk_root = fs_info->chunk_root;
3322 struct btrfs_root *dev_root = fs_info->dev_root;
3323 struct list_head *devices;
ec44a35c
CM
3324 struct btrfs_device *device;
3325 u64 old_size;
3326 u64 size_to_free;
12907fc7 3327 u64 chunk_type;
f43ffb60 3328 struct btrfs_chunk *chunk;
ec44a35c
CM
3329 struct btrfs_path *path;
3330 struct btrfs_key key;
ec44a35c 3331 struct btrfs_key found_key;
c9e9f97b 3332 struct btrfs_trans_handle *trans;
f43ffb60
ID
3333 struct extent_buffer *leaf;
3334 int slot;
c9e9f97b
ID
3335 int ret;
3336 int enospc_errors = 0;
19a39dce 3337 bool counting = true;
12907fc7 3338 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3339 u64 limit_data = bctl->data.limit;
3340 u64 limit_meta = bctl->meta.limit;
3341 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3342 u32 count_data = 0;
3343 u32 count_meta = 0;
3344 u32 count_sys = 0;
ec44a35c 3345
ec44a35c 3346 /* step one make some room on all the devices */
c9e9f97b 3347 devices = &fs_info->fs_devices->devices;
c6e30871 3348 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3349 old_size = btrfs_device_get_total_bytes(device);
ec44a35c
CM
3350 size_to_free = div_factor(old_size, 1);
3351 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3352 if (!device->writeable ||
7cc8e58d
MX
3353 btrfs_device_get_total_bytes(device) -
3354 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3355 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3356 continue;
3357
3358 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3359 if (ret == -ENOSPC)
3360 break;
ec44a35c
CM
3361 BUG_ON(ret);
3362
a22285a6 3363 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3364 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3365
3366 ret = btrfs_grow_device(trans, device, old_size);
3367 BUG_ON(ret);
3368
3369 btrfs_end_transaction(trans, dev_root);
3370 }
3371
3372 /* step two, relocate all the chunks */
3373 path = btrfs_alloc_path();
17e9f796
MF
3374 if (!path) {
3375 ret = -ENOMEM;
3376 goto error;
3377 }
19a39dce
ID
3378
3379 /* zero out stat counters */
3380 spin_lock(&fs_info->balance_lock);
3381 memset(&bctl->stat, 0, sizeof(bctl->stat));
3382 spin_unlock(&fs_info->balance_lock);
3383again:
7d824b6f 3384 if (!counting) {
12907fc7
DS
3385 /*
3386 * The single value limit and min/max limits use the same bytes
3387 * in the
3388 */
7d824b6f
DS
3389 bctl->data.limit = limit_data;
3390 bctl->meta.limit = limit_meta;
3391 bctl->sys.limit = limit_sys;
3392 }
ec44a35c
CM
3393 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3394 key.offset = (u64)-1;
3395 key.type = BTRFS_CHUNK_ITEM_KEY;
3396
d397712b 3397 while (1) {
19a39dce 3398 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3399 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3400 ret = -ECANCELED;
3401 goto error;
3402 }
3403
67c5e7d4 3404 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3405 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3406 if (ret < 0) {
3407 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3408 goto error;
67c5e7d4 3409 }
ec44a35c
CM
3410
3411 /*
3412 * this shouldn't happen, it means the last relocate
3413 * failed
3414 */
3415 if (ret == 0)
c9e9f97b 3416 BUG(); /* FIXME break ? */
ec44a35c
CM
3417
3418 ret = btrfs_previous_item(chunk_root, path, 0,
3419 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3420 if (ret) {
67c5e7d4 3421 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3422 ret = 0;
ec44a35c 3423 break;
c9e9f97b 3424 }
7d9eb12c 3425
f43ffb60
ID
3426 leaf = path->nodes[0];
3427 slot = path->slots[0];
3428 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3429
67c5e7d4
FM
3430 if (found_key.objectid != key.objectid) {
3431 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3432 break;
67c5e7d4 3433 }
7d9eb12c 3434
f43ffb60 3435 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3436 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3437
19a39dce
ID
3438 if (!counting) {
3439 spin_lock(&fs_info->balance_lock);
3440 bctl->stat.considered++;
3441 spin_unlock(&fs_info->balance_lock);
3442 }
3443
f43ffb60
ID
3444 ret = should_balance_chunk(chunk_root, leaf, chunk,
3445 found_key.offset);
b3b4aa74 3446 btrfs_release_path(path);
67c5e7d4
FM
3447 if (!ret) {
3448 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3449 goto loop;
67c5e7d4 3450 }
f43ffb60 3451
19a39dce 3452 if (counting) {
67c5e7d4 3453 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3454 spin_lock(&fs_info->balance_lock);
3455 bctl->stat.expected++;
3456 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3457
3458 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3459 count_data++;
3460 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3461 count_sys++;
3462 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3463 count_meta++;
3464
3465 goto loop;
3466 }
3467
3468 /*
3469 * Apply limit_min filter, no need to check if the LIMITS
3470 * filter is used, limit_min is 0 by default
3471 */
3472 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3473 count_data < bctl->data.limit_min)
3474 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3475 count_meta < bctl->meta.limit_min)
3476 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3477 count_sys < bctl->sys.limit_min)) {
3478 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3479 goto loop;
3480 }
3481
ec44a35c 3482 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3483 found_key.offset);
67c5e7d4 3484 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3485 if (ret && ret != -ENOSPC)
3486 goto error;
19a39dce 3487 if (ret == -ENOSPC) {
c9e9f97b 3488 enospc_errors++;
19a39dce
ID
3489 } else {
3490 spin_lock(&fs_info->balance_lock);
3491 bctl->stat.completed++;
3492 spin_unlock(&fs_info->balance_lock);
3493 }
f43ffb60 3494loop:
795a3321
ID
3495 if (found_key.offset == 0)
3496 break;
ba1bf481 3497 key.offset = found_key.offset - 1;
ec44a35c 3498 }
c9e9f97b 3499
19a39dce
ID
3500 if (counting) {
3501 btrfs_release_path(path);
3502 counting = false;
3503 goto again;
3504 }
ec44a35c
CM
3505error:
3506 btrfs_free_path(path);
c9e9f97b 3507 if (enospc_errors) {
efe120a0 3508 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3509 enospc_errors);
3510 if (!ret)
3511 ret = -ENOSPC;
3512 }
3513
ec44a35c
CM
3514 return ret;
3515}
3516
0c460c0d
ID
3517/**
3518 * alloc_profile_is_valid - see if a given profile is valid and reduced
3519 * @flags: profile to validate
3520 * @extended: if true @flags is treated as an extended profile
3521 */
3522static int alloc_profile_is_valid(u64 flags, int extended)
3523{
3524 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3525 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3526
3527 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3528
3529 /* 1) check that all other bits are zeroed */
3530 if (flags & ~mask)
3531 return 0;
3532
3533 /* 2) see if profile is reduced */
3534 if (flags == 0)
3535 return !extended; /* "0" is valid for usual profiles */
3536
3537 /* true if exactly one bit set */
3538 return (flags & (flags - 1)) == 0;
3539}
3540
837d5b6e
ID
3541static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3542{
a7e99c69
ID
3543 /* cancel requested || normal exit path */
3544 return atomic_read(&fs_info->balance_cancel_req) ||
3545 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3546 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3547}
3548
c9e9f97b
ID
3549static void __cancel_balance(struct btrfs_fs_info *fs_info)
3550{
0940ebf6
ID
3551 int ret;
3552
c9e9f97b 3553 unset_balance_control(fs_info);
0940ebf6 3554 ret = del_balance_item(fs_info->tree_root);
0f788c58 3555 if (ret)
a4553fef 3556 btrfs_std_error(fs_info, ret, NULL);
ed0fb78f
ID
3557
3558 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3559}
3560
bdcd3c97
AM
3561/* Non-zero return value signifies invalidity */
3562static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3563 u64 allowed)
3564{
3565 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3566 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3567 (bctl_arg->target & ~allowed)));
3568}
3569
c9e9f97b
ID
3570/*
3571 * Should be called with both balance and volume mutexes held
3572 */
3573int btrfs_balance(struct btrfs_balance_control *bctl,
3574 struct btrfs_ioctl_balance_args *bargs)
3575{
3576 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3577 u64 allowed;
e4837f8f 3578 int mixed = 0;
c9e9f97b 3579 int ret;
8dabb742 3580 u64 num_devices;
de98ced9 3581 unsigned seq;
c9e9f97b 3582
837d5b6e 3583 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3584 atomic_read(&fs_info->balance_pause_req) ||
3585 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3586 ret = -EINVAL;
3587 goto out;
3588 }
3589
e4837f8f
ID
3590 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3591 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3592 mixed = 1;
3593
f43ffb60
ID
3594 /*
3595 * In case of mixed groups both data and meta should be picked,
3596 * and identical options should be given for both of them.
3597 */
e4837f8f
ID
3598 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3599 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3600 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3601 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3602 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3603 btrfs_err(fs_info, "with mixed groups data and "
3604 "metadata balance options must be the same");
f43ffb60
ID
3605 ret = -EINVAL;
3606 goto out;
3607 }
3608 }
3609
8dabb742
SB
3610 num_devices = fs_info->fs_devices->num_devices;
3611 btrfs_dev_replace_lock(&fs_info->dev_replace);
3612 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3613 BUG_ON(num_devices < 1);
3614 num_devices--;
3615 }
3616 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3617 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3618 if (num_devices == 1)
e4d8ec0f 3619 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3620 else if (num_devices > 1)
e4d8ec0f 3621 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3622 if (num_devices > 2)
3623 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3624 if (num_devices > 3)
3625 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3626 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3627 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3628 btrfs_err(fs_info, "unable to start balance with target "
3629 "data profile %llu",
c1c9ff7c 3630 bctl->data.target);
e4d8ec0f
ID
3631 ret = -EINVAL;
3632 goto out;
3633 }
bdcd3c97 3634 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3635 btrfs_err(fs_info,
3636 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3637 bctl->meta.target);
e4d8ec0f
ID
3638 ret = -EINVAL;
3639 goto out;
3640 }
bdcd3c97 3641 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3642 btrfs_err(fs_info,
3643 "unable to start balance with target system profile %llu",
c1c9ff7c 3644 bctl->sys.target);
e4d8ec0f
ID
3645 ret = -EINVAL;
3646 goto out;
3647 }
3648
e4837f8f
ID
3649 /* allow dup'ed data chunks only in mixed mode */
3650 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3651 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3652 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3653 ret = -EINVAL;
3654 goto out;
3655 }
3656
3657 /* allow to reduce meta or sys integrity only if force set */
3658 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3659 BTRFS_BLOCK_GROUP_RAID10 |
3660 BTRFS_BLOCK_GROUP_RAID5 |
3661 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3662 do {
3663 seq = read_seqbegin(&fs_info->profiles_lock);
3664
3665 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3666 (fs_info->avail_system_alloc_bits & allowed) &&
3667 !(bctl->sys.target & allowed)) ||
3668 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3669 (fs_info->avail_metadata_alloc_bits & allowed) &&
3670 !(bctl->meta.target & allowed))) {
3671 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3672 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3673 } else {
efe120a0
FH
3674 btrfs_err(fs_info, "balance will reduce metadata "
3675 "integrity, use force if you want this");
de98ced9
MX
3676 ret = -EINVAL;
3677 goto out;
3678 }
e4d8ec0f 3679 }
de98ced9 3680 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3681
5af3e8cc 3682 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3683 fs_info->num_tolerated_disk_barrier_failures = min(
3684 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3685 btrfs_get_num_tolerated_disk_barrier_failures(
3686 bctl->sys.target));
5af3e8cc
SB
3687 }
3688
0940ebf6 3689 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3690 if (ret && ret != -EEXIST)
0940ebf6
ID
3691 goto out;
3692
59641015
ID
3693 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3694 BUG_ON(ret == -EEXIST);
3695 set_balance_control(bctl);
3696 } else {
3697 BUG_ON(ret != -EEXIST);
3698 spin_lock(&fs_info->balance_lock);
3699 update_balance_args(bctl);
3700 spin_unlock(&fs_info->balance_lock);
3701 }
c9e9f97b 3702
837d5b6e 3703 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3704 mutex_unlock(&fs_info->balance_mutex);
3705
3706 ret = __btrfs_balance(fs_info);
3707
3708 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3709 atomic_dec(&fs_info->balance_running);
c9e9f97b 3710
bf023ecf
ID
3711 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3712 fs_info->num_tolerated_disk_barrier_failures =
3713 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3714 }
3715
c9e9f97b
ID
3716 if (bargs) {
3717 memset(bargs, 0, sizeof(*bargs));
19a39dce 3718 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3719 }
3720
3a01aa7a
ID
3721 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3722 balance_need_close(fs_info)) {
3723 __cancel_balance(fs_info);
3724 }
3725
837d5b6e 3726 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3727
3728 return ret;
3729out:
59641015
ID
3730 if (bctl->flags & BTRFS_BALANCE_RESUME)
3731 __cancel_balance(fs_info);
ed0fb78f 3732 else {
59641015 3733 kfree(bctl);
ed0fb78f
ID
3734 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3735 }
59641015
ID
3736 return ret;
3737}
3738
3739static int balance_kthread(void *data)
3740{
2b6ba629 3741 struct btrfs_fs_info *fs_info = data;
9555c6c1 3742 int ret = 0;
59641015
ID
3743
3744 mutex_lock(&fs_info->volume_mutex);
3745 mutex_lock(&fs_info->balance_mutex);
3746
2b6ba629 3747 if (fs_info->balance_ctl) {
efe120a0 3748 btrfs_info(fs_info, "continuing balance");
2b6ba629 3749 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3750 }
59641015
ID
3751
3752 mutex_unlock(&fs_info->balance_mutex);
3753 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3754
59641015
ID
3755 return ret;
3756}
3757
2b6ba629
ID
3758int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3759{
3760 struct task_struct *tsk;
3761
3762 spin_lock(&fs_info->balance_lock);
3763 if (!fs_info->balance_ctl) {
3764 spin_unlock(&fs_info->balance_lock);
3765 return 0;
3766 }
3767 spin_unlock(&fs_info->balance_lock);
3768
3769 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3770 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3771 return 0;
3772 }
3773
3774 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3775 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3776}
3777
68310a5e 3778int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3779{
59641015
ID
3780 struct btrfs_balance_control *bctl;
3781 struct btrfs_balance_item *item;
3782 struct btrfs_disk_balance_args disk_bargs;
3783 struct btrfs_path *path;
3784 struct extent_buffer *leaf;
3785 struct btrfs_key key;
3786 int ret;
3787
3788 path = btrfs_alloc_path();
3789 if (!path)
3790 return -ENOMEM;
3791
59641015
ID
3792 key.objectid = BTRFS_BALANCE_OBJECTID;
3793 key.type = BTRFS_BALANCE_ITEM_KEY;
3794 key.offset = 0;
3795
68310a5e 3796 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3797 if (ret < 0)
68310a5e 3798 goto out;
59641015
ID
3799 if (ret > 0) { /* ret = -ENOENT; */
3800 ret = 0;
68310a5e
ID
3801 goto out;
3802 }
3803
3804 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3805 if (!bctl) {
3806 ret = -ENOMEM;
3807 goto out;
59641015
ID
3808 }
3809
3810 leaf = path->nodes[0];
3811 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3812
68310a5e
ID
3813 bctl->fs_info = fs_info;
3814 bctl->flags = btrfs_balance_flags(leaf, item);
3815 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3816
3817 btrfs_balance_data(leaf, item, &disk_bargs);
3818 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3819 btrfs_balance_meta(leaf, item, &disk_bargs);
3820 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3821 btrfs_balance_sys(leaf, item, &disk_bargs);
3822 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3823
ed0fb78f
ID
3824 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3825
68310a5e
ID
3826 mutex_lock(&fs_info->volume_mutex);
3827 mutex_lock(&fs_info->balance_mutex);
59641015 3828
68310a5e
ID
3829 set_balance_control(bctl);
3830
3831 mutex_unlock(&fs_info->balance_mutex);
3832 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3833out:
3834 btrfs_free_path(path);
ec44a35c
CM
3835 return ret;
3836}
3837
837d5b6e
ID
3838int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3839{
3840 int ret = 0;
3841
3842 mutex_lock(&fs_info->balance_mutex);
3843 if (!fs_info->balance_ctl) {
3844 mutex_unlock(&fs_info->balance_mutex);
3845 return -ENOTCONN;
3846 }
3847
3848 if (atomic_read(&fs_info->balance_running)) {
3849 atomic_inc(&fs_info->balance_pause_req);
3850 mutex_unlock(&fs_info->balance_mutex);
3851
3852 wait_event(fs_info->balance_wait_q,
3853 atomic_read(&fs_info->balance_running) == 0);
3854
3855 mutex_lock(&fs_info->balance_mutex);
3856 /* we are good with balance_ctl ripped off from under us */
3857 BUG_ON(atomic_read(&fs_info->balance_running));
3858 atomic_dec(&fs_info->balance_pause_req);
3859 } else {
3860 ret = -ENOTCONN;
3861 }
3862
3863 mutex_unlock(&fs_info->balance_mutex);
3864 return ret;
3865}
3866
a7e99c69
ID
3867int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3868{
e649e587
ID
3869 if (fs_info->sb->s_flags & MS_RDONLY)
3870 return -EROFS;
3871
a7e99c69
ID
3872 mutex_lock(&fs_info->balance_mutex);
3873 if (!fs_info->balance_ctl) {
3874 mutex_unlock(&fs_info->balance_mutex);
3875 return -ENOTCONN;
3876 }
3877
3878 atomic_inc(&fs_info->balance_cancel_req);
3879 /*
3880 * if we are running just wait and return, balance item is
3881 * deleted in btrfs_balance in this case
3882 */
3883 if (atomic_read(&fs_info->balance_running)) {
3884 mutex_unlock(&fs_info->balance_mutex);
3885 wait_event(fs_info->balance_wait_q,
3886 atomic_read(&fs_info->balance_running) == 0);
3887 mutex_lock(&fs_info->balance_mutex);
3888 } else {
3889 /* __cancel_balance needs volume_mutex */
3890 mutex_unlock(&fs_info->balance_mutex);
3891 mutex_lock(&fs_info->volume_mutex);
3892 mutex_lock(&fs_info->balance_mutex);
3893
3894 if (fs_info->balance_ctl)
3895 __cancel_balance(fs_info);
3896
3897 mutex_unlock(&fs_info->volume_mutex);
3898 }
3899
3900 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3901 atomic_dec(&fs_info->balance_cancel_req);
3902 mutex_unlock(&fs_info->balance_mutex);
3903 return 0;
3904}
3905
803b2f54
SB
3906static int btrfs_uuid_scan_kthread(void *data)
3907{
3908 struct btrfs_fs_info *fs_info = data;
3909 struct btrfs_root *root = fs_info->tree_root;
3910 struct btrfs_key key;
3911 struct btrfs_key max_key;
3912 struct btrfs_path *path = NULL;
3913 int ret = 0;
3914 struct extent_buffer *eb;
3915 int slot;
3916 struct btrfs_root_item root_item;
3917 u32 item_size;
f45388f3 3918 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3919
3920 path = btrfs_alloc_path();
3921 if (!path) {
3922 ret = -ENOMEM;
3923 goto out;
3924 }
3925
3926 key.objectid = 0;
3927 key.type = BTRFS_ROOT_ITEM_KEY;
3928 key.offset = 0;
3929
3930 max_key.objectid = (u64)-1;
3931 max_key.type = BTRFS_ROOT_ITEM_KEY;
3932 max_key.offset = (u64)-1;
3933
803b2f54 3934 while (1) {
6174d3cb 3935 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3936 if (ret) {
3937 if (ret > 0)
3938 ret = 0;
3939 break;
3940 }
3941
3942 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3943 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3944 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3945 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3946 goto skip;
3947
3948 eb = path->nodes[0];
3949 slot = path->slots[0];
3950 item_size = btrfs_item_size_nr(eb, slot);
3951 if (item_size < sizeof(root_item))
3952 goto skip;
3953
803b2f54
SB
3954 read_extent_buffer(eb, &root_item,
3955 btrfs_item_ptr_offset(eb, slot),
3956 (int)sizeof(root_item));
3957 if (btrfs_root_refs(&root_item) == 0)
3958 goto skip;
f45388f3
FDBM
3959
3960 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3961 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3962 if (trans)
3963 goto update_tree;
3964
3965 btrfs_release_path(path);
803b2f54
SB
3966 /*
3967 * 1 - subvol uuid item
3968 * 1 - received_subvol uuid item
3969 */
3970 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3971 if (IS_ERR(trans)) {
3972 ret = PTR_ERR(trans);
3973 break;
3974 }
f45388f3
FDBM
3975 continue;
3976 } else {
3977 goto skip;
3978 }
3979update_tree:
3980 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3981 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3982 root_item.uuid,
3983 BTRFS_UUID_KEY_SUBVOL,
3984 key.objectid);
3985 if (ret < 0) {
efe120a0 3986 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3987 ret);
803b2f54
SB
3988 break;
3989 }
3990 }
3991
3992 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3993 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3994 root_item.received_uuid,
3995 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3996 key.objectid);
3997 if (ret < 0) {
efe120a0 3998 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3999 ret);
803b2f54
SB
4000 break;
4001 }
4002 }
4003
f45388f3 4004skip:
803b2f54
SB
4005 if (trans) {
4006 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4007 trans = NULL;
803b2f54
SB
4008 if (ret)
4009 break;
4010 }
4011
803b2f54
SB
4012 btrfs_release_path(path);
4013 if (key.offset < (u64)-1) {
4014 key.offset++;
4015 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4016 key.offset = 0;
4017 key.type = BTRFS_ROOT_ITEM_KEY;
4018 } else if (key.objectid < (u64)-1) {
4019 key.offset = 0;
4020 key.type = BTRFS_ROOT_ITEM_KEY;
4021 key.objectid++;
4022 } else {
4023 break;
4024 }
4025 cond_resched();
4026 }
4027
4028out:
4029 btrfs_free_path(path);
f45388f3
FDBM
4030 if (trans && !IS_ERR(trans))
4031 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4032 if (ret)
efe120a0 4033 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
4034 else
4035 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
4036 up(&fs_info->uuid_tree_rescan_sem);
4037 return 0;
4038}
4039
70f80175
SB
4040/*
4041 * Callback for btrfs_uuid_tree_iterate().
4042 * returns:
4043 * 0 check succeeded, the entry is not outdated.
4044 * < 0 if an error occured.
4045 * > 0 if the check failed, which means the caller shall remove the entry.
4046 */
4047static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4048 u8 *uuid, u8 type, u64 subid)
4049{
4050 struct btrfs_key key;
4051 int ret = 0;
4052 struct btrfs_root *subvol_root;
4053
4054 if (type != BTRFS_UUID_KEY_SUBVOL &&
4055 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4056 goto out;
4057
4058 key.objectid = subid;
4059 key.type = BTRFS_ROOT_ITEM_KEY;
4060 key.offset = (u64)-1;
4061 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4062 if (IS_ERR(subvol_root)) {
4063 ret = PTR_ERR(subvol_root);
4064 if (ret == -ENOENT)
4065 ret = 1;
4066 goto out;
4067 }
4068
4069 switch (type) {
4070 case BTRFS_UUID_KEY_SUBVOL:
4071 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4072 ret = 1;
4073 break;
4074 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4075 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4076 BTRFS_UUID_SIZE))
4077 ret = 1;
4078 break;
4079 }
4080
4081out:
4082 return ret;
4083}
4084
4085static int btrfs_uuid_rescan_kthread(void *data)
4086{
4087 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4088 int ret;
4089
4090 /*
4091 * 1st step is to iterate through the existing UUID tree and
4092 * to delete all entries that contain outdated data.
4093 * 2nd step is to add all missing entries to the UUID tree.
4094 */
4095 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4096 if (ret < 0) {
efe120a0 4097 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4098 up(&fs_info->uuid_tree_rescan_sem);
4099 return ret;
4100 }
4101 return btrfs_uuid_scan_kthread(data);
4102}
4103
f7a81ea4
SB
4104int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4105{
4106 struct btrfs_trans_handle *trans;
4107 struct btrfs_root *tree_root = fs_info->tree_root;
4108 struct btrfs_root *uuid_root;
803b2f54
SB
4109 struct task_struct *task;
4110 int ret;
f7a81ea4
SB
4111
4112 /*
4113 * 1 - root node
4114 * 1 - root item
4115 */
4116 trans = btrfs_start_transaction(tree_root, 2);
4117 if (IS_ERR(trans))
4118 return PTR_ERR(trans);
4119
4120 uuid_root = btrfs_create_tree(trans, fs_info,
4121 BTRFS_UUID_TREE_OBJECTID);
4122 if (IS_ERR(uuid_root)) {
6d13f549
DS
4123 ret = PTR_ERR(uuid_root);
4124 btrfs_abort_transaction(trans, tree_root, ret);
4125 return ret;
f7a81ea4
SB
4126 }
4127
4128 fs_info->uuid_root = uuid_root;
4129
803b2f54
SB
4130 ret = btrfs_commit_transaction(trans, tree_root);
4131 if (ret)
4132 return ret;
4133
4134 down(&fs_info->uuid_tree_rescan_sem);
4135 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4136 if (IS_ERR(task)) {
70f80175 4137 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4138 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4139 up(&fs_info->uuid_tree_rescan_sem);
4140 return PTR_ERR(task);
4141 }
4142
4143 return 0;
f7a81ea4 4144}
803b2f54 4145
70f80175
SB
4146int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4147{
4148 struct task_struct *task;
4149
4150 down(&fs_info->uuid_tree_rescan_sem);
4151 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4152 if (IS_ERR(task)) {
4153 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4154 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4155 up(&fs_info->uuid_tree_rescan_sem);
4156 return PTR_ERR(task);
4157 }
4158
4159 return 0;
4160}
4161
8f18cf13
CM
4162/*
4163 * shrinking a device means finding all of the device extents past
4164 * the new size, and then following the back refs to the chunks.
4165 * The chunk relocation code actually frees the device extent
4166 */
4167int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4168{
4169 struct btrfs_trans_handle *trans;
4170 struct btrfs_root *root = device->dev_root;
4171 struct btrfs_dev_extent *dev_extent = NULL;
4172 struct btrfs_path *path;
4173 u64 length;
8f18cf13
CM
4174 u64 chunk_offset;
4175 int ret;
4176 int slot;
ba1bf481
JB
4177 int failed = 0;
4178 bool retried = false;
53e489bc 4179 bool checked_pending_chunks = false;
8f18cf13
CM
4180 struct extent_buffer *l;
4181 struct btrfs_key key;
6c41761f 4182 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4183 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4184 u64 old_size = btrfs_device_get_total_bytes(device);
4185 u64 diff = old_size - new_size;
8f18cf13 4186
63a212ab
SB
4187 if (device->is_tgtdev_for_dev_replace)
4188 return -EINVAL;
4189
8f18cf13
CM
4190 path = btrfs_alloc_path();
4191 if (!path)
4192 return -ENOMEM;
4193
8f18cf13
CM
4194 path->reada = 2;
4195
7d9eb12c
CM
4196 lock_chunks(root);
4197
7cc8e58d 4198 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4199 if (device->writeable) {
2b82032c 4200 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4201 spin_lock(&root->fs_info->free_chunk_lock);
4202 root->fs_info->free_chunk_space -= diff;
4203 spin_unlock(&root->fs_info->free_chunk_lock);
4204 }
7d9eb12c 4205 unlock_chunks(root);
8f18cf13 4206
ba1bf481 4207again:
8f18cf13
CM
4208 key.objectid = device->devid;
4209 key.offset = (u64)-1;
4210 key.type = BTRFS_DEV_EXTENT_KEY;
4211
213e64da 4212 do {
67c5e7d4 4213 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4214 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4215 if (ret < 0) {
4216 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4217 goto done;
67c5e7d4 4218 }
8f18cf13
CM
4219
4220 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4221 if (ret)
4222 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4223 if (ret < 0)
4224 goto done;
4225 if (ret) {
4226 ret = 0;
b3b4aa74 4227 btrfs_release_path(path);
bf1fb512 4228 break;
8f18cf13
CM
4229 }
4230
4231 l = path->nodes[0];
4232 slot = path->slots[0];
4233 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4234
ba1bf481 4235 if (key.objectid != device->devid) {
67c5e7d4 4236 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4237 btrfs_release_path(path);
bf1fb512 4238 break;
ba1bf481 4239 }
8f18cf13
CM
4240
4241 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4242 length = btrfs_dev_extent_length(l, dev_extent);
4243
ba1bf481 4244 if (key.offset + length <= new_size) {
67c5e7d4 4245 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4246 btrfs_release_path(path);
d6397bae 4247 break;
ba1bf481 4248 }
8f18cf13 4249
8f18cf13 4250 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4251 btrfs_release_path(path);
8f18cf13 4252
dc2ee4e2 4253 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4254 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4255 if (ret && ret != -ENOSPC)
8f18cf13 4256 goto done;
ba1bf481
JB
4257 if (ret == -ENOSPC)
4258 failed++;
213e64da 4259 } while (key.offset-- > 0);
ba1bf481
JB
4260
4261 if (failed && !retried) {
4262 failed = 0;
4263 retried = true;
4264 goto again;
4265 } else if (failed && retried) {
4266 ret = -ENOSPC;
ba1bf481 4267 goto done;
8f18cf13
CM
4268 }
4269
d6397bae 4270 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4271 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4272 if (IS_ERR(trans)) {
4273 ret = PTR_ERR(trans);
4274 goto done;
4275 }
4276
d6397bae 4277 lock_chunks(root);
53e489bc
FM
4278
4279 /*
4280 * We checked in the above loop all device extents that were already in
4281 * the device tree. However before we have updated the device's
4282 * total_bytes to the new size, we might have had chunk allocations that
4283 * have not complete yet (new block groups attached to transaction
4284 * handles), and therefore their device extents were not yet in the
4285 * device tree and we missed them in the loop above. So if we have any
4286 * pending chunk using a device extent that overlaps the device range
4287 * that we can not use anymore, commit the current transaction and
4288 * repeat the search on the device tree - this way we guarantee we will
4289 * not have chunks using device extents that end beyond 'new_size'.
4290 */
4291 if (!checked_pending_chunks) {
4292 u64 start = new_size;
4293 u64 len = old_size - new_size;
4294
499f377f
JM
4295 if (contains_pending_extent(trans->transaction, device,
4296 &start, len)) {
53e489bc
FM
4297 unlock_chunks(root);
4298 checked_pending_chunks = true;
4299 failed = 0;
4300 retried = false;
4301 ret = btrfs_commit_transaction(trans, root);
4302 if (ret)
4303 goto done;
4304 goto again;
4305 }
4306 }
4307
7cc8e58d 4308 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4309 if (list_empty(&device->resized_list))
4310 list_add_tail(&device->resized_list,
4311 &root->fs_info->fs_devices->resized_devices);
d6397bae 4312
d6397bae
CB
4313 WARN_ON(diff > old_total);
4314 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4315 unlock_chunks(root);
2196d6e8
MX
4316
4317 /* Now btrfs_update_device() will change the on-disk size. */
4318 ret = btrfs_update_device(trans, device);
d6397bae 4319 btrfs_end_transaction(trans, root);
8f18cf13
CM
4320done:
4321 btrfs_free_path(path);
53e489bc
FM
4322 if (ret) {
4323 lock_chunks(root);
4324 btrfs_device_set_total_bytes(device, old_size);
4325 if (device->writeable)
4326 device->fs_devices->total_rw_bytes += diff;
4327 spin_lock(&root->fs_info->free_chunk_lock);
4328 root->fs_info->free_chunk_space += diff;
4329 spin_unlock(&root->fs_info->free_chunk_lock);
4330 unlock_chunks(root);
4331 }
8f18cf13
CM
4332 return ret;
4333}
4334
125ccb0a 4335static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4336 struct btrfs_key *key,
4337 struct btrfs_chunk *chunk, int item_size)
4338{
6c41761f 4339 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4340 struct btrfs_disk_key disk_key;
4341 u32 array_size;
4342 u8 *ptr;
4343
fe48a5c0 4344 lock_chunks(root);
0b86a832 4345 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4346 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4347 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4348 unlock_chunks(root);
0b86a832 4349 return -EFBIG;
fe48a5c0 4350 }
0b86a832
CM
4351
4352 ptr = super_copy->sys_chunk_array + array_size;
4353 btrfs_cpu_key_to_disk(&disk_key, key);
4354 memcpy(ptr, &disk_key, sizeof(disk_key));
4355 ptr += sizeof(disk_key);
4356 memcpy(ptr, chunk, item_size);
4357 item_size += sizeof(disk_key);
4358 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4359 unlock_chunks(root);
4360
0b86a832
CM
4361 return 0;
4362}
4363
73c5de00
AJ
4364/*
4365 * sort the devices in descending order by max_avail, total_avail
4366 */
4367static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4368{
73c5de00
AJ
4369 const struct btrfs_device_info *di_a = a;
4370 const struct btrfs_device_info *di_b = b;
9b3f68b9 4371
73c5de00 4372 if (di_a->max_avail > di_b->max_avail)
b2117a39 4373 return -1;
73c5de00 4374 if (di_a->max_avail < di_b->max_avail)
b2117a39 4375 return 1;
73c5de00
AJ
4376 if (di_a->total_avail > di_b->total_avail)
4377 return -1;
4378 if (di_a->total_avail < di_b->total_avail)
4379 return 1;
4380 return 0;
b2117a39 4381}
0b86a832 4382
53b381b3
DW
4383static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4384{
4385 /* TODO allow them to set a preferred stripe size */
4386 return 64 * 1024;
4387}
4388
4389static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4390{
ffe2d203 4391 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4392 return;
4393
ceda0864 4394 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4395}
4396
23f8f9b7
GH
4397#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4398 - sizeof(struct btrfs_item) \
4399 - sizeof(struct btrfs_chunk)) \
4400 / sizeof(struct btrfs_stripe) + 1)
4401
4402#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4403 - 2 * sizeof(struct btrfs_disk_key) \
4404 - 2 * sizeof(struct btrfs_chunk)) \
4405 / sizeof(struct btrfs_stripe) + 1)
4406
73c5de00 4407static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4408 struct btrfs_root *extent_root, u64 start,
4409 u64 type)
b2117a39 4410{
73c5de00
AJ
4411 struct btrfs_fs_info *info = extent_root->fs_info;
4412 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4413 struct list_head *cur;
4414 struct map_lookup *map = NULL;
4415 struct extent_map_tree *em_tree;
4416 struct extent_map *em;
4417 struct btrfs_device_info *devices_info = NULL;
4418 u64 total_avail;
4419 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4420 int data_stripes; /* number of stripes that count for
4421 block group size */
73c5de00
AJ
4422 int sub_stripes; /* sub_stripes info for map */
4423 int dev_stripes; /* stripes per dev */
4424 int devs_max; /* max devs to use */
4425 int devs_min; /* min devs needed */
4426 int devs_increment; /* ndevs has to be a multiple of this */
4427 int ncopies; /* how many copies to data has */
4428 int ret;
4429 u64 max_stripe_size;
4430 u64 max_chunk_size;
4431 u64 stripe_size;
4432 u64 num_bytes;
53b381b3 4433 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4434 int ndevs;
4435 int i;
4436 int j;
31e50229 4437 int index;
593060d7 4438
0c460c0d 4439 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4440
73c5de00
AJ
4441 if (list_empty(&fs_devices->alloc_list))
4442 return -ENOSPC;
b2117a39 4443
31e50229 4444 index = __get_raid_index(type);
73c5de00 4445
31e50229
LB
4446 sub_stripes = btrfs_raid_array[index].sub_stripes;
4447 dev_stripes = btrfs_raid_array[index].dev_stripes;
4448 devs_max = btrfs_raid_array[index].devs_max;
4449 devs_min = btrfs_raid_array[index].devs_min;
4450 devs_increment = btrfs_raid_array[index].devs_increment;
4451 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4452
9b3f68b9 4453 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4454 max_stripe_size = 1024 * 1024 * 1024;
4455 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4456 if (!devs_max)
4457 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4458 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4459 /* for larger filesystems, use larger metadata chunks */
4460 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4461 max_stripe_size = 1024 * 1024 * 1024;
4462 else
4463 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4464 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4465 if (!devs_max)
4466 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4467 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4468 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4469 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4470 if (!devs_max)
4471 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4472 } else {
351fd353 4473 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4474 type);
4475 BUG_ON(1);
9b3f68b9
CM
4476 }
4477
2b82032c
YZ
4478 /* we don't want a chunk larger than 10% of writeable space */
4479 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4480 max_chunk_size);
9b3f68b9 4481
31e818fe 4482 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4483 GFP_NOFS);
4484 if (!devices_info)
4485 return -ENOMEM;
0cad8a11 4486
73c5de00 4487 cur = fs_devices->alloc_list.next;
9b3f68b9 4488
9f680ce0 4489 /*
73c5de00
AJ
4490 * in the first pass through the devices list, we gather information
4491 * about the available holes on each device.
9f680ce0 4492 */
73c5de00
AJ
4493 ndevs = 0;
4494 while (cur != &fs_devices->alloc_list) {
4495 struct btrfs_device *device;
4496 u64 max_avail;
4497 u64 dev_offset;
b2117a39 4498
73c5de00 4499 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4500
73c5de00 4501 cur = cur->next;
b2117a39 4502
73c5de00 4503 if (!device->writeable) {
31b1a2bd 4504 WARN(1, KERN_ERR
efe120a0 4505 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4506 continue;
4507 }
b2117a39 4508
63a212ab
SB
4509 if (!device->in_fs_metadata ||
4510 device->is_tgtdev_for_dev_replace)
73c5de00 4511 continue;
b2117a39 4512
73c5de00
AJ
4513 if (device->total_bytes > device->bytes_used)
4514 total_avail = device->total_bytes - device->bytes_used;
4515 else
4516 total_avail = 0;
38c01b96 4517
4518 /* If there is no space on this device, skip it. */
4519 if (total_avail == 0)
4520 continue;
b2117a39 4521
6df9a95e 4522 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4523 max_stripe_size * dev_stripes,
4524 &dev_offset, &max_avail);
4525 if (ret && ret != -ENOSPC)
4526 goto error;
b2117a39 4527
73c5de00
AJ
4528 if (ret == 0)
4529 max_avail = max_stripe_size * dev_stripes;
b2117a39 4530
73c5de00
AJ
4531 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4532 continue;
b2117a39 4533
063d006f
ES
4534 if (ndevs == fs_devices->rw_devices) {
4535 WARN(1, "%s: found more than %llu devices\n",
4536 __func__, fs_devices->rw_devices);
4537 break;
4538 }
73c5de00
AJ
4539 devices_info[ndevs].dev_offset = dev_offset;
4540 devices_info[ndevs].max_avail = max_avail;
4541 devices_info[ndevs].total_avail = total_avail;
4542 devices_info[ndevs].dev = device;
4543 ++ndevs;
4544 }
b2117a39 4545
73c5de00
AJ
4546 /*
4547 * now sort the devices by hole size / available space
4548 */
4549 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4550 btrfs_cmp_device_info, NULL);
b2117a39 4551
73c5de00
AJ
4552 /* round down to number of usable stripes */
4553 ndevs -= ndevs % devs_increment;
b2117a39 4554
73c5de00
AJ
4555 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4556 ret = -ENOSPC;
4557 goto error;
b2117a39 4558 }
9f680ce0 4559
73c5de00
AJ
4560 if (devs_max && ndevs > devs_max)
4561 ndevs = devs_max;
4562 /*
4563 * the primary goal is to maximize the number of stripes, so use as many
4564 * devices as possible, even if the stripes are not maximum sized.
4565 */
4566 stripe_size = devices_info[ndevs-1].max_avail;
4567 num_stripes = ndevs * dev_stripes;
b2117a39 4568
53b381b3
DW
4569 /*
4570 * this will have to be fixed for RAID1 and RAID10 over
4571 * more drives
4572 */
4573 data_stripes = num_stripes / ncopies;
4574
53b381b3
DW
4575 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4576 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4577 btrfs_super_stripesize(info->super_copy));
4578 data_stripes = num_stripes - 1;
4579 }
4580 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4581 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4582 btrfs_super_stripesize(info->super_copy));
4583 data_stripes = num_stripes - 2;
4584 }
86db2578
CM
4585
4586 /*
4587 * Use the number of data stripes to figure out how big this chunk
4588 * is really going to be in terms of logical address space,
4589 * and compare that answer with the max chunk size
4590 */
4591 if (stripe_size * data_stripes > max_chunk_size) {
4592 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4593
4594 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4595
4596 /* bump the answer up to a 16MB boundary */
4597 stripe_size = (stripe_size + mask) & ~mask;
4598
4599 /* but don't go higher than the limits we found
4600 * while searching for free extents
4601 */
4602 if (stripe_size > devices_info[ndevs-1].max_avail)
4603 stripe_size = devices_info[ndevs-1].max_avail;
4604 }
4605
b8b93add 4606 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4607
4608 /* align to BTRFS_STRIPE_LEN */
b8b93add 4609 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4610 stripe_size *= raid_stripe_len;
b2117a39
MX
4611
4612 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4613 if (!map) {
4614 ret = -ENOMEM;
4615 goto error;
4616 }
4617 map->num_stripes = num_stripes;
9b3f68b9 4618
73c5de00
AJ
4619 for (i = 0; i < ndevs; ++i) {
4620 for (j = 0; j < dev_stripes; ++j) {
4621 int s = i * dev_stripes + j;
4622 map->stripes[s].dev = devices_info[i].dev;
4623 map->stripes[s].physical = devices_info[i].dev_offset +
4624 j * stripe_size;
6324fbf3 4625 }
6324fbf3 4626 }
2b82032c 4627 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4628 map->stripe_len = raid_stripe_len;
4629 map->io_align = raid_stripe_len;
4630 map->io_width = raid_stripe_len;
2b82032c 4631 map->type = type;
2b82032c 4632 map->sub_stripes = sub_stripes;
0b86a832 4633
53b381b3 4634 num_bytes = stripe_size * data_stripes;
0b86a832 4635
73c5de00 4636 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4637
172ddd60 4638 em = alloc_extent_map();
2b82032c 4639 if (!em) {
298a8f9c 4640 kfree(map);
b2117a39
MX
4641 ret = -ENOMEM;
4642 goto error;
593060d7 4643 }
298a8f9c 4644 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4645 em->bdev = (struct block_device *)map;
4646 em->start = start;
73c5de00 4647 em->len = num_bytes;
2b82032c
YZ
4648 em->block_start = 0;
4649 em->block_len = em->len;
6df9a95e 4650 em->orig_block_len = stripe_size;
593060d7 4651
2b82032c 4652 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4653 write_lock(&em_tree->lock);
09a2a8f9 4654 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4655 if (!ret) {
4656 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4657 atomic_inc(&em->refs);
4658 }
890871be 4659 write_unlock(&em_tree->lock);
0f5d42b2
JB
4660 if (ret) {
4661 free_extent_map(em);
1dd4602f 4662 goto error;
0f5d42b2 4663 }
0b86a832 4664
04487488
JB
4665 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4666 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4667 start, num_bytes);
6df9a95e
JB
4668 if (ret)
4669 goto error_del_extent;
2b82032c 4670
7cc8e58d
MX
4671 for (i = 0; i < map->num_stripes; i++) {
4672 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4673 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4674 }
43530c46 4675
1c116187
MX
4676 spin_lock(&extent_root->fs_info->free_chunk_lock);
4677 extent_root->fs_info->free_chunk_space -= (stripe_size *
4678 map->num_stripes);
4679 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4680
0f5d42b2 4681 free_extent_map(em);
53b381b3
DW
4682 check_raid56_incompat_flag(extent_root->fs_info, type);
4683
b2117a39 4684 kfree(devices_info);
2b82032c 4685 return 0;
b2117a39 4686
6df9a95e 4687error_del_extent:
0f5d42b2
JB
4688 write_lock(&em_tree->lock);
4689 remove_extent_mapping(em_tree, em);
4690 write_unlock(&em_tree->lock);
4691
4692 /* One for our allocation */
4693 free_extent_map(em);
4694 /* One for the tree reference */
4695 free_extent_map(em);
495e64f4
FM
4696 /* One for the pending_chunks list reference */
4697 free_extent_map(em);
b2117a39 4698error:
b2117a39
MX
4699 kfree(devices_info);
4700 return ret;
2b82032c
YZ
4701}
4702
6df9a95e 4703int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4704 struct btrfs_root *extent_root,
6df9a95e 4705 u64 chunk_offset, u64 chunk_size)
2b82032c 4706{
2b82032c
YZ
4707 struct btrfs_key key;
4708 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4709 struct btrfs_device *device;
4710 struct btrfs_chunk *chunk;
4711 struct btrfs_stripe *stripe;
6df9a95e
JB
4712 struct extent_map_tree *em_tree;
4713 struct extent_map *em;
4714 struct map_lookup *map;
4715 size_t item_size;
4716 u64 dev_offset;
4717 u64 stripe_size;
4718 int i = 0;
2b82032c
YZ
4719 int ret;
4720
6df9a95e
JB
4721 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4722 read_lock(&em_tree->lock);
4723 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4724 read_unlock(&em_tree->lock);
4725
4726 if (!em) {
4727 btrfs_crit(extent_root->fs_info, "unable to find logical "
4728 "%Lu len %Lu", chunk_offset, chunk_size);
4729 return -EINVAL;
4730 }
4731
4732 if (em->start != chunk_offset || em->len != chunk_size) {
4733 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4734 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4735 chunk_size, em->start, em->len);
4736 free_extent_map(em);
4737 return -EINVAL;
4738 }
4739
4740 map = (struct map_lookup *)em->bdev;
4741 item_size = btrfs_chunk_item_size(map->num_stripes);
4742 stripe_size = em->orig_block_len;
4743
2b82032c 4744 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4745 if (!chunk) {
4746 ret = -ENOMEM;
4747 goto out;
4748 }
4749
4750 for (i = 0; i < map->num_stripes; i++) {
4751 device = map->stripes[i].dev;
4752 dev_offset = map->stripes[i].physical;
2b82032c 4753
0b86a832 4754 ret = btrfs_update_device(trans, device);
3acd3953 4755 if (ret)
6df9a95e
JB
4756 goto out;
4757 ret = btrfs_alloc_dev_extent(trans, device,
4758 chunk_root->root_key.objectid,
4759 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4760 chunk_offset, dev_offset,
4761 stripe_size);
4762 if (ret)
4763 goto out;
2b82032c
YZ
4764 }
4765
2b82032c 4766 stripe = &chunk->stripe;
6df9a95e
JB
4767 for (i = 0; i < map->num_stripes; i++) {
4768 device = map->stripes[i].dev;
4769 dev_offset = map->stripes[i].physical;
0b86a832 4770
e17cade2
CM
4771 btrfs_set_stack_stripe_devid(stripe, device->devid);
4772 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4773 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4774 stripe++;
0b86a832
CM
4775 }
4776
2b82032c 4777 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4778 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4779 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4780 btrfs_set_stack_chunk_type(chunk, map->type);
4781 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4782 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4783 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4784 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4785 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4786
2b82032c
YZ
4787 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4788 key.type = BTRFS_CHUNK_ITEM_KEY;
4789 key.offset = chunk_offset;
0b86a832 4790
2b82032c 4791 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4792 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4793 /*
4794 * TODO: Cleanup of inserted chunk root in case of
4795 * failure.
4796 */
125ccb0a 4797 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4798 item_size);
8f18cf13 4799 }
1abe9b8a 4800
6df9a95e 4801out:
0b86a832 4802 kfree(chunk);
6df9a95e 4803 free_extent_map(em);
4ed1d16e 4804 return ret;
2b82032c 4805}
0b86a832 4806
2b82032c
YZ
4807/*
4808 * Chunk allocation falls into two parts. The first part does works
4809 * that make the new allocated chunk useable, but not do any operation
4810 * that modifies the chunk tree. The second part does the works that
4811 * require modifying the chunk tree. This division is important for the
4812 * bootstrap process of adding storage to a seed btrfs.
4813 */
4814int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4815 struct btrfs_root *extent_root, u64 type)
4816{
4817 u64 chunk_offset;
2b82032c 4818
a9629596 4819 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4820 chunk_offset = find_next_chunk(extent_root->fs_info);
4821 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4822}
4823
d397712b 4824static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4825 struct btrfs_root *root,
4826 struct btrfs_device *device)
4827{
4828 u64 chunk_offset;
4829 u64 sys_chunk_offset;
2b82032c 4830 u64 alloc_profile;
2b82032c
YZ
4831 struct btrfs_fs_info *fs_info = root->fs_info;
4832 struct btrfs_root *extent_root = fs_info->extent_root;
4833 int ret;
4834
6df9a95e 4835 chunk_offset = find_next_chunk(fs_info);
de98ced9 4836 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4837 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4838 alloc_profile);
79787eaa
JM
4839 if (ret)
4840 return ret;
2b82032c 4841
6df9a95e 4842 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4843 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4844 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4845 alloc_profile);
79787eaa 4846 return ret;
2b82032c
YZ
4847}
4848
d20983b4
MX
4849static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4850{
4851 int max_errors;
4852
4853 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4854 BTRFS_BLOCK_GROUP_RAID10 |
4855 BTRFS_BLOCK_GROUP_RAID5 |
4856 BTRFS_BLOCK_GROUP_DUP)) {
4857 max_errors = 1;
4858 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4859 max_errors = 2;
4860 } else {
4861 max_errors = 0;
005d6427 4862 }
2b82032c 4863
d20983b4 4864 return max_errors;
2b82032c
YZ
4865}
4866
4867int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4868{
4869 struct extent_map *em;
4870 struct map_lookup *map;
4871 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4872 int readonly = 0;
d20983b4 4873 int miss_ndevs = 0;
2b82032c
YZ
4874 int i;
4875
890871be 4876 read_lock(&map_tree->map_tree.lock);
2b82032c 4877 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4878 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4879 if (!em)
4880 return 1;
4881
4882 map = (struct map_lookup *)em->bdev;
4883 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4884 if (map->stripes[i].dev->missing) {
4885 miss_ndevs++;
4886 continue;
4887 }
4888
2b82032c
YZ
4889 if (!map->stripes[i].dev->writeable) {
4890 readonly = 1;
d20983b4 4891 goto end;
2b82032c
YZ
4892 }
4893 }
d20983b4
MX
4894
4895 /*
4896 * If the number of missing devices is larger than max errors,
4897 * we can not write the data into that chunk successfully, so
4898 * set it readonly.
4899 */
4900 if (miss_ndevs > btrfs_chunk_max_errors(map))
4901 readonly = 1;
4902end:
0b86a832 4903 free_extent_map(em);
2b82032c 4904 return readonly;
0b86a832
CM
4905}
4906
4907void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4908{
a8067e02 4909 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4910}
4911
4912void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4913{
4914 struct extent_map *em;
4915
d397712b 4916 while (1) {
890871be 4917 write_lock(&tree->map_tree.lock);
0b86a832
CM
4918 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4919 if (em)
4920 remove_extent_mapping(&tree->map_tree, em);
890871be 4921 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4922 if (!em)
4923 break;
0b86a832
CM
4924 /* once for us */
4925 free_extent_map(em);
4926 /* once for the tree */
4927 free_extent_map(em);
4928 }
4929}
4930
5d964051 4931int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4932{
5d964051 4933 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4934 struct extent_map *em;
4935 struct map_lookup *map;
4936 struct extent_map_tree *em_tree = &map_tree->map_tree;
4937 int ret;
4938
890871be 4939 read_lock(&em_tree->lock);
f188591e 4940 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4941 read_unlock(&em_tree->lock);
f188591e 4942
fb7669b5
JB
4943 /*
4944 * We could return errors for these cases, but that could get ugly and
4945 * we'd probably do the same thing which is just not do anything else
4946 * and exit, so return 1 so the callers don't try to use other copies.
4947 */
4948 if (!em) {
351fd353 4949 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4950 logical+len);
4951 return 1;
4952 }
4953
4954 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4955 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4956 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4957 em->start + em->len);
7d3d1744 4958 free_extent_map(em);
fb7669b5
JB
4959 return 1;
4960 }
4961
f188591e
CM
4962 map = (struct map_lookup *)em->bdev;
4963 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4964 ret = map->num_stripes;
321aecc6
CM
4965 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4966 ret = map->sub_stripes;
53b381b3
DW
4967 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4968 ret = 2;
4969 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4970 ret = 3;
f188591e
CM
4971 else
4972 ret = 1;
4973 free_extent_map(em);
ad6d620e
SB
4974
4975 btrfs_dev_replace_lock(&fs_info->dev_replace);
4976 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4977 ret++;
4978 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4979
f188591e
CM
4980 return ret;
4981}
4982
53b381b3
DW
4983unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4984 struct btrfs_mapping_tree *map_tree,
4985 u64 logical)
4986{
4987 struct extent_map *em;
4988 struct map_lookup *map;
4989 struct extent_map_tree *em_tree = &map_tree->map_tree;
4990 unsigned long len = root->sectorsize;
4991
4992 read_lock(&em_tree->lock);
4993 em = lookup_extent_mapping(em_tree, logical, len);
4994 read_unlock(&em_tree->lock);
4995 BUG_ON(!em);
4996
4997 BUG_ON(em->start > logical || em->start + em->len < logical);
4998 map = (struct map_lookup *)em->bdev;
ffe2d203 4999 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5000 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5001 free_extent_map(em);
5002 return len;
5003}
5004
5005int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5006 u64 logical, u64 len, int mirror_num)
5007{
5008 struct extent_map *em;
5009 struct map_lookup *map;
5010 struct extent_map_tree *em_tree = &map_tree->map_tree;
5011 int ret = 0;
5012
5013 read_lock(&em_tree->lock);
5014 em = lookup_extent_mapping(em_tree, logical, len);
5015 read_unlock(&em_tree->lock);
5016 BUG_ON(!em);
5017
5018 BUG_ON(em->start > logical || em->start + em->len < logical);
5019 map = (struct map_lookup *)em->bdev;
ffe2d203 5020 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5021 ret = 1;
5022 free_extent_map(em);
5023 return ret;
5024}
5025
30d9861f
SB
5026static int find_live_mirror(struct btrfs_fs_info *fs_info,
5027 struct map_lookup *map, int first, int num,
5028 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5029{
5030 int i;
30d9861f
SB
5031 int tolerance;
5032 struct btrfs_device *srcdev;
5033
5034 if (dev_replace_is_ongoing &&
5035 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5036 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5037 srcdev = fs_info->dev_replace.srcdev;
5038 else
5039 srcdev = NULL;
5040
5041 /*
5042 * try to avoid the drive that is the source drive for a
5043 * dev-replace procedure, only choose it if no other non-missing
5044 * mirror is available
5045 */
5046 for (tolerance = 0; tolerance < 2; tolerance++) {
5047 if (map->stripes[optimal].dev->bdev &&
5048 (tolerance || map->stripes[optimal].dev != srcdev))
5049 return optimal;
5050 for (i = first; i < first + num; i++) {
5051 if (map->stripes[i].dev->bdev &&
5052 (tolerance || map->stripes[i].dev != srcdev))
5053 return i;
5054 }
dfe25020 5055 }
30d9861f 5056
dfe25020
CM
5057 /* we couldn't find one that doesn't fail. Just return something
5058 * and the io error handling code will clean up eventually
5059 */
5060 return optimal;
5061}
5062
53b381b3
DW
5063static inline int parity_smaller(u64 a, u64 b)
5064{
5065 return a > b;
5066}
5067
5068/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5069static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5070{
5071 struct btrfs_bio_stripe s;
5072 int i;
5073 u64 l;
5074 int again = 1;
5075
5076 while (again) {
5077 again = 0;
cc7539ed 5078 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5079 if (parity_smaller(bbio->raid_map[i],
5080 bbio->raid_map[i+1])) {
53b381b3 5081 s = bbio->stripes[i];
8e5cfb55 5082 l = bbio->raid_map[i];
53b381b3 5083 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5084 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5085 bbio->stripes[i+1] = s;
8e5cfb55 5086 bbio->raid_map[i+1] = l;
2c8cdd6e 5087
53b381b3
DW
5088 again = 1;
5089 }
5090 }
5091 }
5092}
5093
6e9606d2
ZL
5094static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5095{
5096 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5097 /* the size of the btrfs_bio */
6e9606d2 5098 sizeof(struct btrfs_bio) +
e57cf21e 5099 /* plus the variable array for the stripes */
6e9606d2 5100 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5101 /* plus the variable array for the tgt dev */
6e9606d2 5102 sizeof(int) * (real_stripes) +
e57cf21e
CM
5103 /*
5104 * plus the raid_map, which includes both the tgt dev
5105 * and the stripes
5106 */
5107 sizeof(u64) * (total_stripes),
277fb5fc 5108 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5109
5110 atomic_set(&bbio->error, 0);
5111 atomic_set(&bbio->refs, 1);
5112
5113 return bbio;
5114}
5115
5116void btrfs_get_bbio(struct btrfs_bio *bbio)
5117{
5118 WARN_ON(!atomic_read(&bbio->refs));
5119 atomic_inc(&bbio->refs);
5120}
5121
5122void btrfs_put_bbio(struct btrfs_bio *bbio)
5123{
5124 if (!bbio)
5125 return;
5126 if (atomic_dec_and_test(&bbio->refs))
5127 kfree(bbio);
5128}
5129
3ec706c8 5130static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5131 u64 logical, u64 *length,
a1d3c478 5132 struct btrfs_bio **bbio_ret,
8e5cfb55 5133 int mirror_num, int need_raid_map)
0b86a832
CM
5134{
5135 struct extent_map *em;
5136 struct map_lookup *map;
3ec706c8 5137 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5138 struct extent_map_tree *em_tree = &map_tree->map_tree;
5139 u64 offset;
593060d7 5140 u64 stripe_offset;
fce3bb9a 5141 u64 stripe_end_offset;
593060d7 5142 u64 stripe_nr;
fce3bb9a
LD
5143 u64 stripe_nr_orig;
5144 u64 stripe_nr_end;
53b381b3 5145 u64 stripe_len;
9d644a62 5146 u32 stripe_index;
cea9e445 5147 int i;
de11cc12 5148 int ret = 0;
f2d8d74d 5149 int num_stripes;
a236aed1 5150 int max_errors = 0;
2c8cdd6e 5151 int tgtdev_indexes = 0;
a1d3c478 5152 struct btrfs_bio *bbio = NULL;
472262f3
SB
5153 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5154 int dev_replace_is_ongoing = 0;
5155 int num_alloc_stripes;
ad6d620e
SB
5156 int patch_the_first_stripe_for_dev_replace = 0;
5157 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5158 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5159
890871be 5160 read_lock(&em_tree->lock);
0b86a832 5161 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5162 read_unlock(&em_tree->lock);
f2d8d74d 5163
3b951516 5164 if (!em) {
c2cf52eb 5165 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5166 logical, *length);
9bb91873
JB
5167 return -EINVAL;
5168 }
5169
5170 if (em->start > logical || em->start + em->len < logical) {
5171 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5172 "found %Lu-%Lu", logical, em->start,
9bb91873 5173 em->start + em->len);
7d3d1744 5174 free_extent_map(em);
9bb91873 5175 return -EINVAL;
3b951516 5176 }
0b86a832 5177
0b86a832
CM
5178 map = (struct map_lookup *)em->bdev;
5179 offset = logical - em->start;
593060d7 5180
53b381b3 5181 stripe_len = map->stripe_len;
593060d7
CM
5182 stripe_nr = offset;
5183 /*
5184 * stripe_nr counts the total number of stripes we have to stride
5185 * to get to this block
5186 */
47c5713f 5187 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5188
53b381b3 5189 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5190 BUG_ON(offset < stripe_offset);
5191
5192 /* stripe_offset is the offset of this block in its stripe*/
5193 stripe_offset = offset - stripe_offset;
5194
53b381b3 5195 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5196 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5197 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5198 raid56_full_stripe_start = offset;
5199
5200 /* allow a write of a full stripe, but make sure we don't
5201 * allow straddling of stripes
5202 */
47c5713f
DS
5203 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5204 full_stripe_len);
53b381b3
DW
5205 raid56_full_stripe_start *= full_stripe_len;
5206 }
5207
5208 if (rw & REQ_DISCARD) {
5209 /* we don't discard raid56 yet */
ffe2d203 5210 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5211 ret = -EOPNOTSUPP;
5212 goto out;
5213 }
fce3bb9a 5214 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5215 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5216 u64 max_len;
5217 /* For writes to RAID[56], allow a full stripeset across all disks.
5218 For other RAID types and for RAID[56] reads, just allow a single
5219 stripe (on a single disk). */
ffe2d203 5220 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5221 (rw & REQ_WRITE)) {
5222 max_len = stripe_len * nr_data_stripes(map) -
5223 (offset - raid56_full_stripe_start);
5224 } else {
5225 /* we limit the length of each bio to what fits in a stripe */
5226 max_len = stripe_len - stripe_offset;
5227 }
5228 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5229 } else {
5230 *length = em->len - offset;
5231 }
f2d8d74d 5232
53b381b3
DW
5233 /* This is for when we're called from btrfs_merge_bio_hook() and all
5234 it cares about is the length */
a1d3c478 5235 if (!bbio_ret)
cea9e445
CM
5236 goto out;
5237
472262f3
SB
5238 btrfs_dev_replace_lock(dev_replace);
5239 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5240 if (!dev_replace_is_ongoing)
5241 btrfs_dev_replace_unlock(dev_replace);
5242
ad6d620e
SB
5243 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5244 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5245 dev_replace->tgtdev != NULL) {
5246 /*
5247 * in dev-replace case, for repair case (that's the only
5248 * case where the mirror is selected explicitly when
5249 * calling btrfs_map_block), blocks left of the left cursor
5250 * can also be read from the target drive.
5251 * For REQ_GET_READ_MIRRORS, the target drive is added as
5252 * the last one to the array of stripes. For READ, it also
5253 * needs to be supported using the same mirror number.
5254 * If the requested block is not left of the left cursor,
5255 * EIO is returned. This can happen because btrfs_num_copies()
5256 * returns one more in the dev-replace case.
5257 */
5258 u64 tmp_length = *length;
5259 struct btrfs_bio *tmp_bbio = NULL;
5260 int tmp_num_stripes;
5261 u64 srcdev_devid = dev_replace->srcdev->devid;
5262 int index_srcdev = 0;
5263 int found = 0;
5264 u64 physical_of_found = 0;
5265
5266 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5267 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5268 if (ret) {
5269 WARN_ON(tmp_bbio != NULL);
5270 goto out;
5271 }
5272
5273 tmp_num_stripes = tmp_bbio->num_stripes;
5274 if (mirror_num > tmp_num_stripes) {
5275 /*
5276 * REQ_GET_READ_MIRRORS does not contain this
5277 * mirror, that means that the requested area
5278 * is not left of the left cursor
5279 */
5280 ret = -EIO;
6e9606d2 5281 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5282 goto out;
5283 }
5284
5285 /*
5286 * process the rest of the function using the mirror_num
5287 * of the source drive. Therefore look it up first.
5288 * At the end, patch the device pointer to the one of the
5289 * target drive.
5290 */
5291 for (i = 0; i < tmp_num_stripes; i++) {
5292 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5293 /*
5294 * In case of DUP, in order to keep it
5295 * simple, only add the mirror with the
5296 * lowest physical address
5297 */
5298 if (found &&
5299 physical_of_found <=
5300 tmp_bbio->stripes[i].physical)
5301 continue;
5302 index_srcdev = i;
5303 found = 1;
5304 physical_of_found =
5305 tmp_bbio->stripes[i].physical;
5306 }
5307 }
5308
5309 if (found) {
5310 mirror_num = index_srcdev + 1;
5311 patch_the_first_stripe_for_dev_replace = 1;
5312 physical_to_patch_in_first_stripe = physical_of_found;
5313 } else {
5314 WARN_ON(1);
5315 ret = -EIO;
6e9606d2 5316 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5317 goto out;
5318 }
5319
6e9606d2 5320 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5321 } else if (mirror_num > map->num_stripes) {
5322 mirror_num = 0;
5323 }
5324
f2d8d74d 5325 num_stripes = 1;
cea9e445 5326 stripe_index = 0;
fce3bb9a 5327 stripe_nr_orig = stripe_nr;
fda2832f 5328 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5329 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5330 stripe_end_offset = stripe_nr_end * map->stripe_len -
5331 (offset + *length);
53b381b3 5332
fce3bb9a
LD
5333 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5334 if (rw & REQ_DISCARD)
5335 num_stripes = min_t(u64, map->num_stripes,
5336 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5337 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5338 &stripe_index);
28e1cc7d
MX
5339 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5340 mirror_num = 1;
fce3bb9a 5341 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5342 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5343 num_stripes = map->num_stripes;
2fff734f 5344 else if (mirror_num)
f188591e 5345 stripe_index = mirror_num - 1;
dfe25020 5346 else {
30d9861f 5347 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5348 map->num_stripes,
30d9861f
SB
5349 current->pid % map->num_stripes,
5350 dev_replace_is_ongoing);
a1d3c478 5351 mirror_num = stripe_index + 1;
dfe25020 5352 }
2fff734f 5353
611f0e00 5354 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5355 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5356 num_stripes = map->num_stripes;
a1d3c478 5357 } else if (mirror_num) {
f188591e 5358 stripe_index = mirror_num - 1;
a1d3c478
JS
5359 } else {
5360 mirror_num = 1;
5361 }
2fff734f 5362
321aecc6 5363 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5364 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5365
47c5713f 5366 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5367 stripe_index *= map->sub_stripes;
5368
29a8d9a0 5369 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5370 num_stripes = map->sub_stripes;
fce3bb9a
LD
5371 else if (rw & REQ_DISCARD)
5372 num_stripes = min_t(u64, map->sub_stripes *
5373 (stripe_nr_end - stripe_nr_orig),
5374 map->num_stripes);
321aecc6
CM
5375 else if (mirror_num)
5376 stripe_index += mirror_num - 1;
dfe25020 5377 else {
3e74317a 5378 int old_stripe_index = stripe_index;
30d9861f
SB
5379 stripe_index = find_live_mirror(fs_info, map,
5380 stripe_index,
dfe25020 5381 map->sub_stripes, stripe_index +
30d9861f
SB
5382 current->pid % map->sub_stripes,
5383 dev_replace_is_ongoing);
3e74317a 5384 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5385 }
53b381b3 5386
ffe2d203 5387 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5388 if (need_raid_map &&
af8e2d1d
MX
5389 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5390 mirror_num > 1)) {
53b381b3 5391 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5392 stripe_nr = div_u64(raid56_full_stripe_start,
5393 stripe_len * nr_data_stripes(map));
53b381b3
DW
5394
5395 /* RAID[56] write or recovery. Return all stripes */
5396 num_stripes = map->num_stripes;
5397 max_errors = nr_parity_stripes(map);
5398
53b381b3
DW
5399 *length = map->stripe_len;
5400 stripe_index = 0;
5401 stripe_offset = 0;
5402 } else {
5403 /*
5404 * Mirror #0 or #1 means the original data block.
5405 * Mirror #2 is RAID5 parity block.
5406 * Mirror #3 is RAID6 Q block.
5407 */
47c5713f
DS
5408 stripe_nr = div_u64_rem(stripe_nr,
5409 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5410 if (mirror_num > 1)
5411 stripe_index = nr_data_stripes(map) +
5412 mirror_num - 2;
5413
5414 /* We distribute the parity blocks across stripes */
47c5713f
DS
5415 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5416 &stripe_index);
28e1cc7d
MX
5417 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5418 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5419 mirror_num = 1;
53b381b3 5420 }
8790d502
CM
5421 } else {
5422 /*
47c5713f
DS
5423 * after this, stripe_nr is the number of stripes on this
5424 * device we have to walk to find the data, and stripe_index is
5425 * the number of our device in the stripe array
8790d502 5426 */
47c5713f
DS
5427 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5428 &stripe_index);
a1d3c478 5429 mirror_num = stripe_index + 1;
8790d502 5430 }
593060d7 5431 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5432
472262f3 5433 num_alloc_stripes = num_stripes;
ad6d620e
SB
5434 if (dev_replace_is_ongoing) {
5435 if (rw & (REQ_WRITE | REQ_DISCARD))
5436 num_alloc_stripes <<= 1;
5437 if (rw & REQ_GET_READ_MIRRORS)
5438 num_alloc_stripes++;
2c8cdd6e 5439 tgtdev_indexes = num_stripes;
ad6d620e 5440 }
2c8cdd6e 5441
6e9606d2 5442 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5443 if (!bbio) {
5444 ret = -ENOMEM;
5445 goto out;
5446 }
2c8cdd6e
MX
5447 if (dev_replace_is_ongoing)
5448 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5449
8e5cfb55 5450 /* build raid_map */
ffe2d203 5451 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5452 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5453 mirror_num > 1)) {
5454 u64 tmp;
9d644a62 5455 unsigned rot;
8e5cfb55
ZL
5456
5457 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5458 sizeof(struct btrfs_bio_stripe) *
5459 num_alloc_stripes +
5460 sizeof(int) * tgtdev_indexes);
5461
5462 /* Work out the disk rotation on this stripe-set */
47c5713f 5463 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5464
5465 /* Fill in the logical address of each stripe */
5466 tmp = stripe_nr * nr_data_stripes(map);
5467 for (i = 0; i < nr_data_stripes(map); i++)
5468 bbio->raid_map[(i+rot) % num_stripes] =
5469 em->start + (tmp + i) * map->stripe_len;
5470
5471 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5472 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5473 bbio->raid_map[(i+rot+1) % num_stripes] =
5474 RAID6_Q_STRIPE;
5475 }
5476
fce3bb9a 5477 if (rw & REQ_DISCARD) {
9d644a62
DS
5478 u32 factor = 0;
5479 u32 sub_stripes = 0;
ec9ef7a1
LZ
5480 u64 stripes_per_dev = 0;
5481 u32 remaining_stripes = 0;
b89203f7 5482 u32 last_stripe = 0;
ec9ef7a1
LZ
5483
5484 if (map->type &
5485 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5486 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5487 sub_stripes = 1;
5488 else
5489 sub_stripes = map->sub_stripes;
5490
5491 factor = map->num_stripes / sub_stripes;
5492 stripes_per_dev = div_u64_rem(stripe_nr_end -
5493 stripe_nr_orig,
5494 factor,
5495 &remaining_stripes);
b89203f7
LB
5496 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5497 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5498 }
5499
fce3bb9a 5500 for (i = 0; i < num_stripes; i++) {
a1d3c478 5501 bbio->stripes[i].physical =
f2d8d74d
CM
5502 map->stripes[stripe_index].physical +
5503 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5504 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5505
ec9ef7a1
LZ
5506 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5507 BTRFS_BLOCK_GROUP_RAID10)) {
5508 bbio->stripes[i].length = stripes_per_dev *
5509 map->stripe_len;
b89203f7 5510
ec9ef7a1
LZ
5511 if (i / sub_stripes < remaining_stripes)
5512 bbio->stripes[i].length +=
5513 map->stripe_len;
b89203f7
LB
5514
5515 /*
5516 * Special for the first stripe and
5517 * the last stripe:
5518 *
5519 * |-------|...|-------|
5520 * |----------|
5521 * off end_off
5522 */
ec9ef7a1 5523 if (i < sub_stripes)
a1d3c478 5524 bbio->stripes[i].length -=
fce3bb9a 5525 stripe_offset;
b89203f7
LB
5526
5527 if (stripe_index >= last_stripe &&
5528 stripe_index <= (last_stripe +
5529 sub_stripes - 1))
a1d3c478 5530 bbio->stripes[i].length -=
fce3bb9a 5531 stripe_end_offset;
b89203f7 5532
ec9ef7a1
LZ
5533 if (i == sub_stripes - 1)
5534 stripe_offset = 0;
fce3bb9a 5535 } else
a1d3c478 5536 bbio->stripes[i].length = *length;
fce3bb9a
LD
5537
5538 stripe_index++;
5539 if (stripe_index == map->num_stripes) {
5540 /* This could only happen for RAID0/10 */
5541 stripe_index = 0;
5542 stripe_nr++;
5543 }
5544 }
5545 } else {
5546 for (i = 0; i < num_stripes; i++) {
a1d3c478 5547 bbio->stripes[i].physical =
212a17ab
LT
5548 map->stripes[stripe_index].physical +
5549 stripe_offset +
5550 stripe_nr * map->stripe_len;
a1d3c478 5551 bbio->stripes[i].dev =
212a17ab 5552 map->stripes[stripe_index].dev;
fce3bb9a 5553 stripe_index++;
f2d8d74d 5554 }
593060d7 5555 }
de11cc12 5556
d20983b4
MX
5557 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5558 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5559
8e5cfb55
ZL
5560 if (bbio->raid_map)
5561 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5562
2c8cdd6e 5563 tgtdev_indexes = 0;
472262f3
SB
5564 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5565 dev_replace->tgtdev != NULL) {
5566 int index_where_to_add;
5567 u64 srcdev_devid = dev_replace->srcdev->devid;
5568
5569 /*
5570 * duplicate the write operations while the dev replace
5571 * procedure is running. Since the copying of the old disk
5572 * to the new disk takes place at run time while the
5573 * filesystem is mounted writable, the regular write
5574 * operations to the old disk have to be duplicated to go
5575 * to the new disk as well.
5576 * Note that device->missing is handled by the caller, and
5577 * that the write to the old disk is already set up in the
5578 * stripes array.
5579 */
5580 index_where_to_add = num_stripes;
5581 for (i = 0; i < num_stripes; i++) {
5582 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5583 /* write to new disk, too */
5584 struct btrfs_bio_stripe *new =
5585 bbio->stripes + index_where_to_add;
5586 struct btrfs_bio_stripe *old =
5587 bbio->stripes + i;
5588
5589 new->physical = old->physical;
5590 new->length = old->length;
5591 new->dev = dev_replace->tgtdev;
2c8cdd6e 5592 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5593 index_where_to_add++;
5594 max_errors++;
2c8cdd6e 5595 tgtdev_indexes++;
472262f3
SB
5596 }
5597 }
5598 num_stripes = index_where_to_add;
ad6d620e
SB
5599 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5600 dev_replace->tgtdev != NULL) {
5601 u64 srcdev_devid = dev_replace->srcdev->devid;
5602 int index_srcdev = 0;
5603 int found = 0;
5604 u64 physical_of_found = 0;
5605
5606 /*
5607 * During the dev-replace procedure, the target drive can
5608 * also be used to read data in case it is needed to repair
5609 * a corrupt block elsewhere. This is possible if the
5610 * requested area is left of the left cursor. In this area,
5611 * the target drive is a full copy of the source drive.
5612 */
5613 for (i = 0; i < num_stripes; i++) {
5614 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5615 /*
5616 * In case of DUP, in order to keep it
5617 * simple, only add the mirror with the
5618 * lowest physical address
5619 */
5620 if (found &&
5621 physical_of_found <=
5622 bbio->stripes[i].physical)
5623 continue;
5624 index_srcdev = i;
5625 found = 1;
5626 physical_of_found = bbio->stripes[i].physical;
5627 }
5628 }
5629 if (found) {
258ece02 5630 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5631 dev_replace->cursor_left) {
5632 struct btrfs_bio_stripe *tgtdev_stripe =
5633 bbio->stripes + num_stripes;
5634
5635 tgtdev_stripe->physical = physical_of_found;
5636 tgtdev_stripe->length =
5637 bbio->stripes[index_srcdev].length;
5638 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5639 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5640
2c8cdd6e 5641 tgtdev_indexes++;
ad6d620e
SB
5642 num_stripes++;
5643 }
5644 }
472262f3
SB
5645 }
5646
de11cc12 5647 *bbio_ret = bbio;
10f11900 5648 bbio->map_type = map->type;
de11cc12
LZ
5649 bbio->num_stripes = num_stripes;
5650 bbio->max_errors = max_errors;
5651 bbio->mirror_num = mirror_num;
2c8cdd6e 5652 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5653
5654 /*
5655 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5656 * mirror_num == num_stripes + 1 && dev_replace target drive is
5657 * available as a mirror
5658 */
5659 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5660 WARN_ON(num_stripes > 1);
5661 bbio->stripes[0].dev = dev_replace->tgtdev;
5662 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5663 bbio->mirror_num = map->num_stripes + 1;
5664 }
cea9e445 5665out:
472262f3
SB
5666 if (dev_replace_is_ongoing)
5667 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5668 free_extent_map(em);
de11cc12 5669 return ret;
0b86a832
CM
5670}
5671
3ec706c8 5672int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5673 u64 logical, u64 *length,
a1d3c478 5674 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5675{
3ec706c8 5676 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5677 mirror_num, 0);
f2d8d74d
CM
5678}
5679
af8e2d1d
MX
5680/* For Scrub/replace */
5681int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5682 u64 logical, u64 *length,
5683 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5684 int need_raid_map)
af8e2d1d
MX
5685{
5686 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5687 mirror_num, need_raid_map);
af8e2d1d
MX
5688}
5689
a512bbf8
YZ
5690int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5691 u64 chunk_start, u64 physical, u64 devid,
5692 u64 **logical, int *naddrs, int *stripe_len)
5693{
5694 struct extent_map_tree *em_tree = &map_tree->map_tree;
5695 struct extent_map *em;
5696 struct map_lookup *map;
5697 u64 *buf;
5698 u64 bytenr;
5699 u64 length;
5700 u64 stripe_nr;
53b381b3 5701 u64 rmap_len;
a512bbf8
YZ
5702 int i, j, nr = 0;
5703
890871be 5704 read_lock(&em_tree->lock);
a512bbf8 5705 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5706 read_unlock(&em_tree->lock);
a512bbf8 5707
835d974f 5708 if (!em) {
efe120a0 5709 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5710 chunk_start);
5711 return -EIO;
5712 }
5713
5714 if (em->start != chunk_start) {
efe120a0 5715 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5716 em->start, chunk_start);
5717 free_extent_map(em);
5718 return -EIO;
5719 }
a512bbf8
YZ
5720 map = (struct map_lookup *)em->bdev;
5721
5722 length = em->len;
53b381b3
DW
5723 rmap_len = map->stripe_len;
5724
a512bbf8 5725 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5726 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5727 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5728 length = div_u64(length, map->num_stripes);
ffe2d203 5729 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5730 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5731 rmap_len = map->stripe_len * nr_data_stripes(map);
5732 }
a512bbf8 5733
31e818fe 5734 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5735 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5736
5737 for (i = 0; i < map->num_stripes; i++) {
5738 if (devid && map->stripes[i].dev->devid != devid)
5739 continue;
5740 if (map->stripes[i].physical > physical ||
5741 map->stripes[i].physical + length <= physical)
5742 continue;
5743
5744 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5745 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5746
5747 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5748 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5749 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5750 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5751 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5752 } /* else if RAID[56], multiply by nr_data_stripes().
5753 * Alternatively, just use rmap_len below instead of
5754 * map->stripe_len */
5755
5756 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5757 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5758 for (j = 0; j < nr; j++) {
5759 if (buf[j] == bytenr)
5760 break;
5761 }
934d375b
CM
5762 if (j == nr) {
5763 WARN_ON(nr >= map->num_stripes);
a512bbf8 5764 buf[nr++] = bytenr;
934d375b 5765 }
a512bbf8
YZ
5766 }
5767
a512bbf8
YZ
5768 *logical = buf;
5769 *naddrs = nr;
53b381b3 5770 *stripe_len = rmap_len;
a512bbf8
YZ
5771
5772 free_extent_map(em);
5773 return 0;
f2d8d74d
CM
5774}
5775
4246a0b6 5776static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5777{
326e1dbb
MS
5778 bio->bi_private = bbio->private;
5779 bio->bi_end_io = bbio->end_io;
4246a0b6 5780 bio_endio(bio);
326e1dbb 5781
6e9606d2 5782 btrfs_put_bbio(bbio);
8408c716
MX
5783}
5784
4246a0b6 5785static void btrfs_end_bio(struct bio *bio)
8790d502 5786{
9be3395b 5787 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5788 int is_orig_bio = 0;
8790d502 5789
4246a0b6 5790 if (bio->bi_error) {
a1d3c478 5791 atomic_inc(&bbio->error);
4246a0b6 5792 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5793 unsigned int stripe_index =
9be3395b 5794 btrfs_io_bio(bio)->stripe_index;
65f53338 5795 struct btrfs_device *dev;
442a4f63
SB
5796
5797 BUG_ON(stripe_index >= bbio->num_stripes);
5798 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5799 if (dev->bdev) {
5800 if (bio->bi_rw & WRITE)
5801 btrfs_dev_stat_inc(dev,
5802 BTRFS_DEV_STAT_WRITE_ERRS);
5803 else
5804 btrfs_dev_stat_inc(dev,
5805 BTRFS_DEV_STAT_READ_ERRS);
5806 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5807 btrfs_dev_stat_inc(dev,
5808 BTRFS_DEV_STAT_FLUSH_ERRS);
5809 btrfs_dev_stat_print_on_error(dev);
5810 }
442a4f63
SB
5811 }
5812 }
8790d502 5813
a1d3c478 5814 if (bio == bbio->orig_bio)
7d2b4daa
CM
5815 is_orig_bio = 1;
5816
c404e0dc
MX
5817 btrfs_bio_counter_dec(bbio->fs_info);
5818
a1d3c478 5819 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5820 if (!is_orig_bio) {
5821 bio_put(bio);
a1d3c478 5822 bio = bbio->orig_bio;
7d2b4daa 5823 }
c7b22bb1 5824
9be3395b 5825 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5826 /* only send an error to the higher layers if it is
53b381b3 5827 * beyond the tolerance of the btrfs bio
a236aed1 5828 */
a1d3c478 5829 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 5830 bio->bi_error = -EIO;
5dbc8fca 5831 } else {
1259ab75
CM
5832 /*
5833 * this bio is actually up to date, we didn't
5834 * go over the max number of errors
5835 */
4246a0b6 5836 bio->bi_error = 0;
1259ab75 5837 }
c55f1396 5838
4246a0b6 5839 btrfs_end_bbio(bbio, bio);
7d2b4daa 5840 } else if (!is_orig_bio) {
8790d502
CM
5841 bio_put(bio);
5842 }
8790d502
CM
5843}
5844
8b712842
CM
5845/*
5846 * see run_scheduled_bios for a description of why bios are collected for
5847 * async submit.
5848 *
5849 * This will add one bio to the pending list for a device and make sure
5850 * the work struct is scheduled.
5851 */
48a3b636
ES
5852static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5853 struct btrfs_device *device,
5854 int rw, struct bio *bio)
8b712842
CM
5855{
5856 int should_queue = 1;
ffbd517d 5857 struct btrfs_pending_bios *pending_bios;
8b712842 5858
53b381b3 5859 if (device->missing || !device->bdev) {
4246a0b6 5860 bio_io_error(bio);
53b381b3
DW
5861 return;
5862 }
5863
8b712842 5864 /* don't bother with additional async steps for reads, right now */
7b6d91da 5865 if (!(rw & REQ_WRITE)) {
492bb6de 5866 bio_get(bio);
21adbd5c 5867 btrfsic_submit_bio(rw, bio);
492bb6de 5868 bio_put(bio);
143bede5 5869 return;
8b712842
CM
5870 }
5871
5872 /*
0986fe9e 5873 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5874 * higher layers. Otherwise, the async bio makes it appear we have
5875 * made progress against dirty pages when we've really just put it
5876 * on a queue for later
5877 */
0986fe9e 5878 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5879 WARN_ON(bio->bi_next);
8b712842
CM
5880 bio->bi_next = NULL;
5881 bio->bi_rw |= rw;
5882
5883 spin_lock(&device->io_lock);
7b6d91da 5884 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5885 pending_bios = &device->pending_sync_bios;
5886 else
5887 pending_bios = &device->pending_bios;
8b712842 5888
ffbd517d
CM
5889 if (pending_bios->tail)
5890 pending_bios->tail->bi_next = bio;
8b712842 5891
ffbd517d
CM
5892 pending_bios->tail = bio;
5893 if (!pending_bios->head)
5894 pending_bios->head = bio;
8b712842
CM
5895 if (device->running_pending)
5896 should_queue = 0;
5897
5898 spin_unlock(&device->io_lock);
5899
5900 if (should_queue)
a8c93d4e
QW
5901 btrfs_queue_work(root->fs_info->submit_workers,
5902 &device->work);
8b712842
CM
5903}
5904
de1ee92a
JB
5905static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5906 struct bio *bio, u64 physical, int dev_nr,
5907 int rw, int async)
5908{
5909 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5910
5911 bio->bi_private = bbio;
9be3395b 5912 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5913 bio->bi_end_io = btrfs_end_bio;
4f024f37 5914 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5915#ifdef DEBUG
5916 {
5917 struct rcu_string *name;
5918
5919 rcu_read_lock();
5920 name = rcu_dereference(dev->name);
d1423248 5921 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 5922 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
5923 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5924 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
5925 rcu_read_unlock();
5926 }
5927#endif
5928 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5929
5930 btrfs_bio_counter_inc_noblocked(root->fs_info);
5931
de1ee92a 5932 if (async)
53b381b3 5933 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5934 else
5935 btrfsic_submit_bio(rw, bio);
5936}
5937
de1ee92a
JB
5938static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5939{
5940 atomic_inc(&bbio->error);
5941 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5942 /* Shoud be the original bio. */
5943 WARN_ON(bio != bbio->orig_bio);
5944
9be3395b 5945 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5946 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
5947 bio->bi_error = -EIO;
5948 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
5949 }
5950}
5951
f188591e 5952int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5953 int mirror_num, int async_submit)
0b86a832 5954{
0b86a832 5955 struct btrfs_device *dev;
8790d502 5956 struct bio *first_bio = bio;
4f024f37 5957 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5958 u64 length = 0;
5959 u64 map_length;
0b86a832 5960 int ret;
08da757d
ZL
5961 int dev_nr;
5962 int total_devs;
a1d3c478 5963 struct btrfs_bio *bbio = NULL;
0b86a832 5964
4f024f37 5965 length = bio->bi_iter.bi_size;
0b86a832 5966 map_length = length;
cea9e445 5967
c404e0dc 5968 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 5969 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 5970 mirror_num, 1);
c404e0dc
MX
5971 if (ret) {
5972 btrfs_bio_counter_dec(root->fs_info);
79787eaa 5973 return ret;
c404e0dc 5974 }
cea9e445 5975
a1d3c478 5976 total_devs = bbio->num_stripes;
53b381b3
DW
5977 bbio->orig_bio = first_bio;
5978 bbio->private = first_bio->bi_private;
5979 bbio->end_io = first_bio->bi_end_io;
c404e0dc 5980 bbio->fs_info = root->fs_info;
53b381b3
DW
5981 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5982
8e5cfb55 5983 if (bbio->raid_map) {
53b381b3
DW
5984 /* In this case, map_length has been set to the length of
5985 a single stripe; not the whole write */
5986 if (rw & WRITE) {
8e5cfb55 5987 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 5988 } else {
8e5cfb55 5989 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 5990 mirror_num, 1);
53b381b3 5991 }
4245215d 5992
c404e0dc
MX
5993 btrfs_bio_counter_dec(root->fs_info);
5994 return ret;
53b381b3
DW
5995 }
5996
cea9e445 5997 if (map_length < length) {
c2cf52eb 5998 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5999 logical, length, map_length);
cea9e445
CM
6000 BUG();
6001 }
a1d3c478 6002
08da757d 6003 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6004 dev = bbio->stripes[dev_nr].dev;
6005 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6006 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6007 continue;
6008 }
6009
a1d3c478 6010 if (dev_nr < total_devs - 1) {
9be3395b 6011 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6012 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6013 } else
a1d3c478 6014 bio = first_bio;
de1ee92a
JB
6015
6016 submit_stripe_bio(root, bbio, bio,
6017 bbio->stripes[dev_nr].physical, dev_nr, rw,
6018 async_submit);
8790d502 6019 }
c404e0dc 6020 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6021 return 0;
6022}
6023
aa1b8cd4 6024struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6025 u8 *uuid, u8 *fsid)
0b86a832 6026{
2b82032c
YZ
6027 struct btrfs_device *device;
6028 struct btrfs_fs_devices *cur_devices;
6029
aa1b8cd4 6030 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6031 while (cur_devices) {
6032 if (!fsid ||
6033 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6034 device = __find_device(&cur_devices->devices,
6035 devid, uuid);
6036 if (device)
6037 return device;
6038 }
6039 cur_devices = cur_devices->seed;
6040 }
6041 return NULL;
0b86a832
CM
6042}
6043
dfe25020 6044static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6045 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6046 u64 devid, u8 *dev_uuid)
6047{
6048 struct btrfs_device *device;
dfe25020 6049
12bd2fc0
ID
6050 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6051 if (IS_ERR(device))
7cbd8a83 6052 return NULL;
12bd2fc0
ID
6053
6054 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6055 device->fs_devices = fs_devices;
dfe25020 6056 fs_devices->num_devices++;
12bd2fc0
ID
6057
6058 device->missing = 1;
cd02dca5 6059 fs_devices->missing_devices++;
12bd2fc0 6060
dfe25020
CM
6061 return device;
6062}
6063
12bd2fc0
ID
6064/**
6065 * btrfs_alloc_device - allocate struct btrfs_device
6066 * @fs_info: used only for generating a new devid, can be NULL if
6067 * devid is provided (i.e. @devid != NULL).
6068 * @devid: a pointer to devid for this device. If NULL a new devid
6069 * is generated.
6070 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6071 * is generated.
6072 *
6073 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6074 * on error. Returned struct is not linked onto any lists and can be
6075 * destroyed with kfree() right away.
6076 */
6077struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6078 const u64 *devid,
6079 const u8 *uuid)
6080{
6081 struct btrfs_device *dev;
6082 u64 tmp;
6083
fae7f21c 6084 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6085 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6086
6087 dev = __alloc_device();
6088 if (IS_ERR(dev))
6089 return dev;
6090
6091 if (devid)
6092 tmp = *devid;
6093 else {
6094 int ret;
6095
6096 ret = find_next_devid(fs_info, &tmp);
6097 if (ret) {
6098 kfree(dev);
6099 return ERR_PTR(ret);
6100 }
6101 }
6102 dev->devid = tmp;
6103
6104 if (uuid)
6105 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6106 else
6107 generate_random_uuid(dev->uuid);
6108
9e0af237
LB
6109 btrfs_init_work(&dev->work, btrfs_submit_helper,
6110 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6111
6112 return dev;
6113}
6114
0b86a832
CM
6115static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6116 struct extent_buffer *leaf,
6117 struct btrfs_chunk *chunk)
6118{
6119 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6120 struct map_lookup *map;
6121 struct extent_map *em;
6122 u64 logical;
6123 u64 length;
6124 u64 devid;
a443755f 6125 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6126 int num_stripes;
0b86a832 6127 int ret;
593060d7 6128 int i;
0b86a832 6129
e17cade2
CM
6130 logical = key->offset;
6131 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 6132
890871be 6133 read_lock(&map_tree->map_tree.lock);
0b86a832 6134 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6135 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6136
6137 /* already mapped? */
6138 if (em && em->start <= logical && em->start + em->len > logical) {
6139 free_extent_map(em);
0b86a832
CM
6140 return 0;
6141 } else if (em) {
6142 free_extent_map(em);
6143 }
0b86a832 6144
172ddd60 6145 em = alloc_extent_map();
0b86a832
CM
6146 if (!em)
6147 return -ENOMEM;
593060d7
CM
6148 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6149 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6150 if (!map) {
6151 free_extent_map(em);
6152 return -ENOMEM;
6153 }
6154
298a8f9c 6155 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
6156 em->bdev = (struct block_device *)map;
6157 em->start = logical;
6158 em->len = length;
70c8a91c 6159 em->orig_start = 0;
0b86a832 6160 em->block_start = 0;
c8b97818 6161 em->block_len = em->len;
0b86a832 6162
593060d7
CM
6163 map->num_stripes = num_stripes;
6164 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6165 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6166 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6167 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6168 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6169 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6170 for (i = 0; i < num_stripes; i++) {
6171 map->stripes[i].physical =
6172 btrfs_stripe_offset_nr(leaf, chunk, i);
6173 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6174 read_extent_buffer(leaf, uuid, (unsigned long)
6175 btrfs_stripe_dev_uuid_nr(chunk, i),
6176 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6177 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6178 uuid, NULL);
dfe25020 6179 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6180 free_extent_map(em);
6181 return -EIO;
6182 }
dfe25020
CM
6183 if (!map->stripes[i].dev) {
6184 map->stripes[i].dev =
5f375835
MX
6185 add_missing_dev(root, root->fs_info->fs_devices,
6186 devid, uuid);
dfe25020 6187 if (!map->stripes[i].dev) {
dfe25020
CM
6188 free_extent_map(em);
6189 return -EIO;
6190 }
816fcebe
AJ
6191 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6192 devid, uuid);
dfe25020
CM
6193 }
6194 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6195 }
6196
890871be 6197 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6198 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6199 write_unlock(&map_tree->map_tree.lock);
79787eaa 6200 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6201 free_extent_map(em);
6202
6203 return 0;
6204}
6205
143bede5 6206static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6207 struct btrfs_dev_item *dev_item,
6208 struct btrfs_device *device)
6209{
6210 unsigned long ptr;
0b86a832
CM
6211
6212 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6213 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6214 device->total_bytes = device->disk_total_bytes;
935e5cc9 6215 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6216 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6217 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6218 device->type = btrfs_device_type(leaf, dev_item);
6219 device->io_align = btrfs_device_io_align(leaf, dev_item);
6220 device->io_width = btrfs_device_io_width(leaf, dev_item);
6221 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6222 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6223 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6224
410ba3a2 6225 ptr = btrfs_device_uuid(dev_item);
e17cade2 6226 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6227}
6228
5f375835
MX
6229static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6230 u8 *fsid)
2b82032c
YZ
6231{
6232 struct btrfs_fs_devices *fs_devices;
6233 int ret;
6234
b367e47f 6235 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6236
6237 fs_devices = root->fs_info->fs_devices->seed;
6238 while (fs_devices) {
5f375835
MX
6239 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6240 return fs_devices;
6241
2b82032c
YZ
6242 fs_devices = fs_devices->seed;
6243 }
6244
6245 fs_devices = find_fsid(fsid);
6246 if (!fs_devices) {
5f375835
MX
6247 if (!btrfs_test_opt(root, DEGRADED))
6248 return ERR_PTR(-ENOENT);
6249
6250 fs_devices = alloc_fs_devices(fsid);
6251 if (IS_ERR(fs_devices))
6252 return fs_devices;
6253
6254 fs_devices->seeding = 1;
6255 fs_devices->opened = 1;
6256 return fs_devices;
2b82032c 6257 }
e4404d6e
YZ
6258
6259 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6260 if (IS_ERR(fs_devices))
6261 return fs_devices;
2b82032c 6262
97288f2c 6263 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6264 root->fs_info->bdev_holder);
48d28232
JL
6265 if (ret) {
6266 free_fs_devices(fs_devices);
5f375835 6267 fs_devices = ERR_PTR(ret);
2b82032c 6268 goto out;
48d28232 6269 }
2b82032c
YZ
6270
6271 if (!fs_devices->seeding) {
6272 __btrfs_close_devices(fs_devices);
e4404d6e 6273 free_fs_devices(fs_devices);
5f375835 6274 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6275 goto out;
6276 }
6277
6278 fs_devices->seed = root->fs_info->fs_devices->seed;
6279 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6280out:
5f375835 6281 return fs_devices;
2b82032c
YZ
6282}
6283
0d81ba5d 6284static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6285 struct extent_buffer *leaf,
6286 struct btrfs_dev_item *dev_item)
6287{
5f375835 6288 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6289 struct btrfs_device *device;
6290 u64 devid;
6291 int ret;
2b82032c 6292 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6293 u8 dev_uuid[BTRFS_UUID_SIZE];
6294
0b86a832 6295 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6296 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6297 BTRFS_UUID_SIZE);
1473b24e 6298 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6299 BTRFS_UUID_SIZE);
6300
6301 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6302 fs_devices = open_seed_devices(root, fs_uuid);
6303 if (IS_ERR(fs_devices))
6304 return PTR_ERR(fs_devices);
2b82032c
YZ
6305 }
6306
aa1b8cd4 6307 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6308 if (!device) {
e4404d6e 6309 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6310 return -EIO;
6311
5f375835
MX
6312 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6313 if (!device)
6314 return -ENOMEM;
33b97e43
AJ
6315 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6316 devid, dev_uuid);
5f375835
MX
6317 } else {
6318 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6319 return -EIO;
6320
6321 if(!device->bdev && !device->missing) {
cd02dca5
CM
6322 /*
6323 * this happens when a device that was properly setup
6324 * in the device info lists suddenly goes bad.
6325 * device->bdev is NULL, and so we have to set
6326 * device->missing to one here
6327 */
5f375835 6328 device->fs_devices->missing_devices++;
cd02dca5 6329 device->missing = 1;
2b82032c 6330 }
5f375835
MX
6331
6332 /* Move the device to its own fs_devices */
6333 if (device->fs_devices != fs_devices) {
6334 ASSERT(device->missing);
6335
6336 list_move(&device->dev_list, &fs_devices->devices);
6337 device->fs_devices->num_devices--;
6338 fs_devices->num_devices++;
6339
6340 device->fs_devices->missing_devices--;
6341 fs_devices->missing_devices++;
6342
6343 device->fs_devices = fs_devices;
6344 }
2b82032c
YZ
6345 }
6346
6347 if (device->fs_devices != root->fs_info->fs_devices) {
6348 BUG_ON(device->writeable);
6349 if (device->generation !=
6350 btrfs_device_generation(leaf, dev_item))
6351 return -EINVAL;
6324fbf3 6352 }
0b86a832
CM
6353
6354 fill_device_from_item(leaf, dev_item, device);
dfe25020 6355 device->in_fs_metadata = 1;
63a212ab 6356 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6357 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6358 spin_lock(&root->fs_info->free_chunk_lock);
6359 root->fs_info->free_chunk_space += device->total_bytes -
6360 device->bytes_used;
6361 spin_unlock(&root->fs_info->free_chunk_lock);
6362 }
0b86a832 6363 ret = 0;
0b86a832
CM
6364 return ret;
6365}
6366
e4404d6e 6367int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6368{
6c41761f 6369 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6370 struct extent_buffer *sb;
0b86a832 6371 struct btrfs_disk_key *disk_key;
0b86a832 6372 struct btrfs_chunk *chunk;
1ffb22cf
DS
6373 u8 *array_ptr;
6374 unsigned long sb_array_offset;
84eed90f 6375 int ret = 0;
0b86a832
CM
6376 u32 num_stripes;
6377 u32 array_size;
6378 u32 len = 0;
1ffb22cf 6379 u32 cur_offset;
84eed90f 6380 struct btrfs_key key;
0b86a832 6381
a83fffb7
DS
6382 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6383 /*
6384 * This will create extent buffer of nodesize, superblock size is
6385 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6386 * overallocate but we can keep it as-is, only the first page is used.
6387 */
6388 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6389 if (!sb)
6390 return -ENOMEM;
6391 btrfs_set_buffer_uptodate(sb);
85d4e461 6392 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6393 /*
6394 * The sb extent buffer is artifical and just used to read the system array.
6395 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6396 * pages up-to-date when the page is larger: extent does not cover the
6397 * whole page and consequently check_page_uptodate does not find all
6398 * the page's extents up-to-date (the hole beyond sb),
6399 * write_extent_buffer then triggers a WARN_ON.
6400 *
6401 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6402 * but sb spans only this function. Add an explicit SetPageUptodate call
6403 * to silence the warning eg. on PowerPC 64.
6404 */
6405 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6406 SetPageUptodate(sb->pages[0]);
4008c04a 6407
a061fc8d 6408 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6409 array_size = btrfs_super_sys_array_size(super_copy);
6410
1ffb22cf
DS
6411 array_ptr = super_copy->sys_chunk_array;
6412 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6413 cur_offset = 0;
0b86a832 6414
1ffb22cf
DS
6415 while (cur_offset < array_size) {
6416 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6417 len = sizeof(*disk_key);
6418 if (cur_offset + len > array_size)
6419 goto out_short_read;
6420
0b86a832
CM
6421 btrfs_disk_key_to_cpu(&key, disk_key);
6422
1ffb22cf
DS
6423 array_ptr += len;
6424 sb_array_offset += len;
6425 cur_offset += len;
0b86a832 6426
0d81ba5d 6427 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6428 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6429 /*
6430 * At least one btrfs_chunk with one stripe must be
6431 * present, exact stripe count check comes afterwards
6432 */
6433 len = btrfs_chunk_item_size(1);
6434 if (cur_offset + len > array_size)
6435 goto out_short_read;
6436
6437 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6438 len = btrfs_chunk_item_size(num_stripes);
6439 if (cur_offset + len > array_size)
6440 goto out_short_read;
6441
0d81ba5d 6442 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6443 if (ret)
6444 break;
0b86a832 6445 } else {
84eed90f
CM
6446 ret = -EIO;
6447 break;
0b86a832 6448 }
1ffb22cf
DS
6449 array_ptr += len;
6450 sb_array_offset += len;
6451 cur_offset += len;
0b86a832 6452 }
a061fc8d 6453 free_extent_buffer(sb);
84eed90f 6454 return ret;
e3540eab
DS
6455
6456out_short_read:
6457 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6458 len, cur_offset);
6459 free_extent_buffer(sb);
6460 return -EIO;
0b86a832
CM
6461}
6462
6463int btrfs_read_chunk_tree(struct btrfs_root *root)
6464{
6465 struct btrfs_path *path;
6466 struct extent_buffer *leaf;
6467 struct btrfs_key key;
6468 struct btrfs_key found_key;
6469 int ret;
6470 int slot;
6471
6472 root = root->fs_info->chunk_root;
6473
6474 path = btrfs_alloc_path();
6475 if (!path)
6476 return -ENOMEM;
6477
b367e47f
LZ
6478 mutex_lock(&uuid_mutex);
6479 lock_chunks(root);
6480
395927a9
FDBM
6481 /*
6482 * Read all device items, and then all the chunk items. All
6483 * device items are found before any chunk item (their object id
6484 * is smaller than the lowest possible object id for a chunk
6485 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6486 */
6487 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6488 key.offset = 0;
6489 key.type = 0;
0b86a832 6490 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6491 if (ret < 0)
6492 goto error;
d397712b 6493 while (1) {
0b86a832
CM
6494 leaf = path->nodes[0];
6495 slot = path->slots[0];
6496 if (slot >= btrfs_header_nritems(leaf)) {
6497 ret = btrfs_next_leaf(root, path);
6498 if (ret == 0)
6499 continue;
6500 if (ret < 0)
6501 goto error;
6502 break;
6503 }
6504 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6505 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6506 struct btrfs_dev_item *dev_item;
6507 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6508 struct btrfs_dev_item);
395927a9
FDBM
6509 ret = read_one_dev(root, leaf, dev_item);
6510 if (ret)
6511 goto error;
0b86a832
CM
6512 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6513 struct btrfs_chunk *chunk;
6514 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6515 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6516 if (ret)
6517 goto error;
0b86a832
CM
6518 }
6519 path->slots[0]++;
6520 }
0b86a832
CM
6521 ret = 0;
6522error:
b367e47f
LZ
6523 unlock_chunks(root);
6524 mutex_unlock(&uuid_mutex);
6525
2b82032c 6526 btrfs_free_path(path);
0b86a832
CM
6527 return ret;
6528}
442a4f63 6529
cb517eab
MX
6530void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6531{
6532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6533 struct btrfs_device *device;
6534
29cc83f6
LB
6535 while (fs_devices) {
6536 mutex_lock(&fs_devices->device_list_mutex);
6537 list_for_each_entry(device, &fs_devices->devices, dev_list)
6538 device->dev_root = fs_info->dev_root;
6539 mutex_unlock(&fs_devices->device_list_mutex);
6540
6541 fs_devices = fs_devices->seed;
6542 }
cb517eab
MX
6543}
6544
733f4fbb
SB
6545static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6546{
6547 int i;
6548
6549 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6550 btrfs_dev_stat_reset(dev, i);
6551}
6552
6553int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6554{
6555 struct btrfs_key key;
6556 struct btrfs_key found_key;
6557 struct btrfs_root *dev_root = fs_info->dev_root;
6558 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6559 struct extent_buffer *eb;
6560 int slot;
6561 int ret = 0;
6562 struct btrfs_device *device;
6563 struct btrfs_path *path = NULL;
6564 int i;
6565
6566 path = btrfs_alloc_path();
6567 if (!path) {
6568 ret = -ENOMEM;
6569 goto out;
6570 }
6571
6572 mutex_lock(&fs_devices->device_list_mutex);
6573 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6574 int item_size;
6575 struct btrfs_dev_stats_item *ptr;
6576
6577 key.objectid = 0;
6578 key.type = BTRFS_DEV_STATS_KEY;
6579 key.offset = device->devid;
6580 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6581 if (ret) {
733f4fbb
SB
6582 __btrfs_reset_dev_stats(device);
6583 device->dev_stats_valid = 1;
6584 btrfs_release_path(path);
6585 continue;
6586 }
6587 slot = path->slots[0];
6588 eb = path->nodes[0];
6589 btrfs_item_key_to_cpu(eb, &found_key, slot);
6590 item_size = btrfs_item_size_nr(eb, slot);
6591
6592 ptr = btrfs_item_ptr(eb, slot,
6593 struct btrfs_dev_stats_item);
6594
6595 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6596 if (item_size >= (1 + i) * sizeof(__le64))
6597 btrfs_dev_stat_set(device, i,
6598 btrfs_dev_stats_value(eb, ptr, i));
6599 else
6600 btrfs_dev_stat_reset(device, i);
6601 }
6602
6603 device->dev_stats_valid = 1;
6604 btrfs_dev_stat_print_on_load(device);
6605 btrfs_release_path(path);
6606 }
6607 mutex_unlock(&fs_devices->device_list_mutex);
6608
6609out:
6610 btrfs_free_path(path);
6611 return ret < 0 ? ret : 0;
6612}
6613
6614static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6615 struct btrfs_root *dev_root,
6616 struct btrfs_device *device)
6617{
6618 struct btrfs_path *path;
6619 struct btrfs_key key;
6620 struct extent_buffer *eb;
6621 struct btrfs_dev_stats_item *ptr;
6622 int ret;
6623 int i;
6624
6625 key.objectid = 0;
6626 key.type = BTRFS_DEV_STATS_KEY;
6627 key.offset = device->devid;
6628
6629 path = btrfs_alloc_path();
6630 BUG_ON(!path);
6631 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6632 if (ret < 0) {
ecaeb14b
DS
6633 btrfs_warn_in_rcu(dev_root->fs_info,
6634 "error %d while searching for dev_stats item for device %s",
606686ee 6635 ret, rcu_str_deref(device->name));
733f4fbb
SB
6636 goto out;
6637 }
6638
6639 if (ret == 0 &&
6640 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6641 /* need to delete old one and insert a new one */
6642 ret = btrfs_del_item(trans, dev_root, path);
6643 if (ret != 0) {
ecaeb14b
DS
6644 btrfs_warn_in_rcu(dev_root->fs_info,
6645 "delete too small dev_stats item for device %s failed %d",
606686ee 6646 rcu_str_deref(device->name), ret);
733f4fbb
SB
6647 goto out;
6648 }
6649 ret = 1;
6650 }
6651
6652 if (ret == 1) {
6653 /* need to insert a new item */
6654 btrfs_release_path(path);
6655 ret = btrfs_insert_empty_item(trans, dev_root, path,
6656 &key, sizeof(*ptr));
6657 if (ret < 0) {
ecaeb14b
DS
6658 btrfs_warn_in_rcu(dev_root->fs_info,
6659 "insert dev_stats item for device %s failed %d",
6660 rcu_str_deref(device->name), ret);
733f4fbb
SB
6661 goto out;
6662 }
6663 }
6664
6665 eb = path->nodes[0];
6666 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6667 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6668 btrfs_set_dev_stats_value(eb, ptr, i,
6669 btrfs_dev_stat_read(device, i));
6670 btrfs_mark_buffer_dirty(eb);
6671
6672out:
6673 btrfs_free_path(path);
6674 return ret;
6675}
6676
6677/*
6678 * called from commit_transaction. Writes all changed device stats to disk.
6679 */
6680int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6681 struct btrfs_fs_info *fs_info)
6682{
6683 struct btrfs_root *dev_root = fs_info->dev_root;
6684 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6685 struct btrfs_device *device;
addc3fa7 6686 int stats_cnt;
733f4fbb
SB
6687 int ret = 0;
6688
6689 mutex_lock(&fs_devices->device_list_mutex);
6690 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6691 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6692 continue;
6693
addc3fa7 6694 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6695 ret = update_dev_stat_item(trans, dev_root, device);
6696 if (!ret)
addc3fa7 6697 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6698 }
6699 mutex_unlock(&fs_devices->device_list_mutex);
6700
6701 return ret;
6702}
6703
442a4f63
SB
6704void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6705{
6706 btrfs_dev_stat_inc(dev, index);
6707 btrfs_dev_stat_print_on_error(dev);
6708}
6709
48a3b636 6710static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6711{
733f4fbb
SB
6712 if (!dev->dev_stats_valid)
6713 return;
b14af3b4
DS
6714 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6715 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6716 rcu_str_deref(dev->name),
442a4f63
SB
6717 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6718 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6719 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6720 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6721 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6722}
c11d2c23 6723
733f4fbb
SB
6724static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6725{
a98cdb85
SB
6726 int i;
6727
6728 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6729 if (btrfs_dev_stat_read(dev, i) != 0)
6730 break;
6731 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6732 return; /* all values == 0, suppress message */
6733
ecaeb14b
DS
6734 btrfs_info_in_rcu(dev->dev_root->fs_info,
6735 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6736 rcu_str_deref(dev->name),
733f4fbb
SB
6737 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6738 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6739 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6740 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6741 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6742}
6743
c11d2c23 6744int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6745 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6746{
6747 struct btrfs_device *dev;
6748 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6749 int i;
6750
6751 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6752 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6753 mutex_unlock(&fs_devices->device_list_mutex);
6754
6755 if (!dev) {
efe120a0 6756 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6757 return -ENODEV;
733f4fbb 6758 } else if (!dev->dev_stats_valid) {
efe120a0 6759 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6760 return -ENODEV;
b27f7c0c 6761 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6762 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6763 if (stats->nr_items > i)
6764 stats->values[i] =
6765 btrfs_dev_stat_read_and_reset(dev, i);
6766 else
6767 btrfs_dev_stat_reset(dev, i);
6768 }
6769 } else {
6770 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6771 if (stats->nr_items > i)
6772 stats->values[i] = btrfs_dev_stat_read(dev, i);
6773 }
6774 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6775 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6776 return 0;
6777}
a8a6dab7 6778
12b1c263 6779void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
6780{
6781 struct buffer_head *bh;
6782 struct btrfs_super_block *disk_super;
12b1c263 6783 int copy_num;
a8a6dab7 6784
12b1c263
AJ
6785 if (!bdev)
6786 return;
a8a6dab7 6787
12b1c263
AJ
6788 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6789 copy_num++) {
a8a6dab7 6790
12b1c263
AJ
6791 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6792 continue;
6793
6794 disk_super = (struct btrfs_super_block *)bh->b_data;
6795
6796 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6797 set_buffer_dirty(bh);
6798 sync_dirty_buffer(bh);
6799 brelse(bh);
6800 }
6801
6802 /* Notify udev that device has changed */
6803 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6804
6805 /* Update ctime/mtime for device path for libblkid */
6806 update_dev_time(device_path);
a8a6dab7 6807}
935e5cc9
MX
6808
6809/*
6810 * Update the size of all devices, which is used for writing out the
6811 * super blocks.
6812 */
6813void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6814{
6815 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6816 struct btrfs_device *curr, *next;
6817
6818 if (list_empty(&fs_devices->resized_devices))
6819 return;
6820
6821 mutex_lock(&fs_devices->device_list_mutex);
6822 lock_chunks(fs_info->dev_root);
6823 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6824 resized_list) {
6825 list_del_init(&curr->resized_list);
6826 curr->commit_total_bytes = curr->disk_total_bytes;
6827 }
6828 unlock_chunks(fs_info->dev_root);
6829 mutex_unlock(&fs_devices->device_list_mutex);
6830}
ce7213c7
MX
6831
6832/* Must be invoked during the transaction commit */
6833void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6834 struct btrfs_transaction *transaction)
6835{
6836 struct extent_map *em;
6837 struct map_lookup *map;
6838 struct btrfs_device *dev;
6839 int i;
6840
6841 if (list_empty(&transaction->pending_chunks))
6842 return;
6843
6844 /* In order to kick the device replace finish process */
6845 lock_chunks(root);
6846 list_for_each_entry(em, &transaction->pending_chunks, list) {
6847 map = (struct map_lookup *)em->bdev;
6848
6849 for (i = 0; i < map->num_stripes; i++) {
6850 dev = map->stripes[i].dev;
6851 dev->commit_bytes_used = dev->bytes_used;
6852 }
6853 }
6854 unlock_chunks(root);
6855}
5a13f430
AJ
6856
6857void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6858{
6859 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6860 while (fs_devices) {
6861 fs_devices->fs_info = fs_info;
6862 fs_devices = fs_devices->seed;
6863 }
6864}
6865
6866void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6867{
6868 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6869 while (fs_devices) {
6870 fs_devices->fs_info = NULL;
6871 fs_devices = fs_devices->seed;
6872 }
6873}
f190aa47
AJ
6874
6875void btrfs_close_one_device(struct btrfs_device *device)
6876{
6877 struct btrfs_fs_devices *fs_devices = device->fs_devices;
6878 struct btrfs_device *new_device;
6879 struct rcu_string *name;
6880
6881 if (device->bdev)
6882 fs_devices->open_devices--;
6883
6884 if (device->writeable &&
6885 device->devid != BTRFS_DEV_REPLACE_DEVID) {
6886 list_del_init(&device->dev_alloc_list);
6887 fs_devices->rw_devices--;
6888 }
6889
6890 if (device->missing)
6891 fs_devices->missing_devices--;
6892
6893 new_device = btrfs_alloc_device(NULL, &device->devid,
6894 device->uuid);
6895 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
6896
6897 /* Safe because we are under uuid_mutex */
6898 if (device->name) {
6899 name = rcu_string_strdup(device->name->str, GFP_NOFS);
6900 BUG_ON(!name); /* -ENOMEM */
6901 rcu_assign_pointer(new_device->name, name);
6902 }
6903
6904 list_replace_rcu(&device->dev_list, &new_device->dev_list);
6905 new_device->fs_devices = device->fs_devices;
6906
6907 call_rcu(&device->rcu, free_device);
6908}
This page took 0.840701 seconds and 5 git commands to generate.