Btrfs: fix unprotected assignment of the target device
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
efe120a0 129 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 162 atomic_set(&dev->dev_stats_ccnt, 0);
12bd2fc0
ID
163 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
164 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
165
166 return dev;
167}
168
a1b32a59
CM
169static noinline struct btrfs_device *__find_device(struct list_head *head,
170 u64 devid, u8 *uuid)
8a4b83cc
CM
171{
172 struct btrfs_device *dev;
8a4b83cc 173
c6e30871 174 list_for_each_entry(dev, head, dev_list) {
a443755f 175 if (dev->devid == devid &&
8f18cf13 176 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 177 return dev;
a443755f 178 }
8a4b83cc
CM
179 }
180 return NULL;
181}
182
a1b32a59 183static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 184{
8a4b83cc
CM
185 struct btrfs_fs_devices *fs_devices;
186
c6e30871 187 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
188 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
189 return fs_devices;
190 }
191 return NULL;
192}
193
beaf8ab3
SB
194static int
195btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
196 int flush, struct block_device **bdev,
197 struct buffer_head **bh)
198{
199 int ret;
200
201 *bdev = blkdev_get_by_path(device_path, flags, holder);
202
203 if (IS_ERR(*bdev)) {
204 ret = PTR_ERR(*bdev);
efe120a0 205 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
beaf8ab3
SB
206 goto error;
207 }
208
209 if (flush)
210 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
211 ret = set_blocksize(*bdev, 4096);
212 if (ret) {
213 blkdev_put(*bdev, flags);
214 goto error;
215 }
216 invalidate_bdev(*bdev);
217 *bh = btrfs_read_dev_super(*bdev);
218 if (!*bh) {
219 ret = -EINVAL;
220 blkdev_put(*bdev, flags);
221 goto error;
222 }
223
224 return 0;
225
226error:
227 *bdev = NULL;
228 *bh = NULL;
229 return ret;
230}
231
ffbd517d
CM
232static void requeue_list(struct btrfs_pending_bios *pending_bios,
233 struct bio *head, struct bio *tail)
234{
235
236 struct bio *old_head;
237
238 old_head = pending_bios->head;
239 pending_bios->head = head;
240 if (pending_bios->tail)
241 tail->bi_next = old_head;
242 else
243 pending_bios->tail = tail;
244}
245
8b712842
CM
246/*
247 * we try to collect pending bios for a device so we don't get a large
248 * number of procs sending bios down to the same device. This greatly
249 * improves the schedulers ability to collect and merge the bios.
250 *
251 * But, it also turns into a long list of bios to process and that is sure
252 * to eventually make the worker thread block. The solution here is to
253 * make some progress and then put this work struct back at the end of
254 * the list if the block device is congested. This way, multiple devices
255 * can make progress from a single worker thread.
256 */
143bede5 257static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
258{
259 struct bio *pending;
260 struct backing_dev_info *bdi;
b64a2851 261 struct btrfs_fs_info *fs_info;
ffbd517d 262 struct btrfs_pending_bios *pending_bios;
8b712842
CM
263 struct bio *tail;
264 struct bio *cur;
265 int again = 0;
ffbd517d 266 unsigned long num_run;
d644d8a1 267 unsigned long batch_run = 0;
b64a2851 268 unsigned long limit;
b765ead5 269 unsigned long last_waited = 0;
d84275c9 270 int force_reg = 0;
0e588859 271 int sync_pending = 0;
211588ad
CM
272 struct blk_plug plug;
273
274 /*
275 * this function runs all the bios we've collected for
276 * a particular device. We don't want to wander off to
277 * another device without first sending all of these down.
278 * So, setup a plug here and finish it off before we return
279 */
280 blk_start_plug(&plug);
8b712842 281
bedf762b 282 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
283 fs_info = device->dev_root->fs_info;
284 limit = btrfs_async_submit_limit(fs_info);
285 limit = limit * 2 / 3;
286
8b712842
CM
287loop:
288 spin_lock(&device->io_lock);
289
a6837051 290loop_lock:
d84275c9 291 num_run = 0;
ffbd517d 292
8b712842
CM
293 /* take all the bios off the list at once and process them
294 * later on (without the lock held). But, remember the
295 * tail and other pointers so the bios can be properly reinserted
296 * into the list if we hit congestion
297 */
d84275c9 298 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 299 pending_bios = &device->pending_sync_bios;
d84275c9
CM
300 force_reg = 1;
301 } else {
ffbd517d 302 pending_bios = &device->pending_bios;
d84275c9
CM
303 force_reg = 0;
304 }
ffbd517d
CM
305
306 pending = pending_bios->head;
307 tail = pending_bios->tail;
8b712842 308 WARN_ON(pending && !tail);
8b712842
CM
309
310 /*
311 * if pending was null this time around, no bios need processing
312 * at all and we can stop. Otherwise it'll loop back up again
313 * and do an additional check so no bios are missed.
314 *
315 * device->running_pending is used to synchronize with the
316 * schedule_bio code.
317 */
ffbd517d
CM
318 if (device->pending_sync_bios.head == NULL &&
319 device->pending_bios.head == NULL) {
8b712842
CM
320 again = 0;
321 device->running_pending = 0;
ffbd517d
CM
322 } else {
323 again = 1;
324 device->running_pending = 1;
8b712842 325 }
ffbd517d
CM
326
327 pending_bios->head = NULL;
328 pending_bios->tail = NULL;
329
8b712842
CM
330 spin_unlock(&device->io_lock);
331
d397712b 332 while (pending) {
ffbd517d
CM
333
334 rmb();
d84275c9
CM
335 /* we want to work on both lists, but do more bios on the
336 * sync list than the regular list
337 */
338 if ((num_run > 32 &&
339 pending_bios != &device->pending_sync_bios &&
340 device->pending_sync_bios.head) ||
341 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
342 device->pending_bios.head)) {
ffbd517d
CM
343 spin_lock(&device->io_lock);
344 requeue_list(pending_bios, pending, tail);
345 goto loop_lock;
346 }
347
8b712842
CM
348 cur = pending;
349 pending = pending->bi_next;
350 cur->bi_next = NULL;
b64a2851 351
66657b31 352 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
353 waitqueue_active(&fs_info->async_submit_wait))
354 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
355
356 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 357
2ab1ba68
CM
358 /*
359 * if we're doing the sync list, record that our
360 * plug has some sync requests on it
361 *
362 * If we're doing the regular list and there are
363 * sync requests sitting around, unplug before
364 * we add more
365 */
366 if (pending_bios == &device->pending_sync_bios) {
367 sync_pending = 1;
368 } else if (sync_pending) {
369 blk_finish_plug(&plug);
370 blk_start_plug(&plug);
371 sync_pending = 0;
372 }
373
21adbd5c 374 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
375 num_run++;
376 batch_run++;
7eaceacc 377 if (need_resched())
ffbd517d 378 cond_resched();
8b712842
CM
379
380 /*
381 * we made progress, there is more work to do and the bdi
382 * is now congested. Back off and let other work structs
383 * run instead
384 */
57fd5a5f 385 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 386 fs_info->fs_devices->open_devices > 1) {
b765ead5 387 struct io_context *ioc;
8b712842 388
b765ead5
CM
389 ioc = current->io_context;
390
391 /*
392 * the main goal here is that we don't want to
393 * block if we're going to be able to submit
394 * more requests without blocking.
395 *
396 * This code does two great things, it pokes into
397 * the elevator code from a filesystem _and_
398 * it makes assumptions about how batching works.
399 */
400 if (ioc && ioc->nr_batch_requests > 0 &&
401 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
402 (last_waited == 0 ||
403 ioc->last_waited == last_waited)) {
404 /*
405 * we want to go through our batch of
406 * requests and stop. So, we copy out
407 * the ioc->last_waited time and test
408 * against it before looping
409 */
410 last_waited = ioc->last_waited;
7eaceacc 411 if (need_resched())
ffbd517d 412 cond_resched();
b765ead5
CM
413 continue;
414 }
8b712842 415 spin_lock(&device->io_lock);
ffbd517d 416 requeue_list(pending_bios, pending, tail);
a6837051 417 device->running_pending = 1;
8b712842
CM
418
419 spin_unlock(&device->io_lock);
a8c93d4e
QW
420 btrfs_queue_work(fs_info->submit_workers,
421 &device->work);
8b712842
CM
422 goto done;
423 }
d85c8a6f
CM
424 /* unplug every 64 requests just for good measure */
425 if (batch_run % 64 == 0) {
426 blk_finish_plug(&plug);
427 blk_start_plug(&plug);
428 sync_pending = 0;
429 }
8b712842 430 }
ffbd517d 431
51684082
CM
432 cond_resched();
433 if (again)
434 goto loop;
435
436 spin_lock(&device->io_lock);
437 if (device->pending_bios.head || device->pending_sync_bios.head)
438 goto loop_lock;
439 spin_unlock(&device->io_lock);
440
8b712842 441done:
211588ad 442 blk_finish_plug(&plug);
8b712842
CM
443}
444
b2950863 445static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
446{
447 struct btrfs_device *device;
448
449 device = container_of(work, struct btrfs_device, work);
450 run_scheduled_bios(device);
451}
452
60999ca4
DS
453/*
454 * Add new device to list of registered devices
455 *
456 * Returns:
457 * 1 - first time device is seen
458 * 0 - device already known
459 * < 0 - error
460 */
a1b32a59 461static noinline int device_list_add(const char *path,
8a4b83cc
CM
462 struct btrfs_super_block *disk_super,
463 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
464{
465 struct btrfs_device *device;
466 struct btrfs_fs_devices *fs_devices;
606686ee 467 struct rcu_string *name;
60999ca4 468 int ret = 0;
8a4b83cc
CM
469 u64 found_transid = btrfs_super_generation(disk_super);
470
471 fs_devices = find_fsid(disk_super->fsid);
472 if (!fs_devices) {
2208a378
ID
473 fs_devices = alloc_fs_devices(disk_super->fsid);
474 if (IS_ERR(fs_devices))
475 return PTR_ERR(fs_devices);
476
8a4b83cc 477 list_add(&fs_devices->list, &fs_uuids);
2208a378 478
8a4b83cc
CM
479 device = NULL;
480 } else {
a443755f
CM
481 device = __find_device(&fs_devices->devices, devid,
482 disk_super->dev_item.uuid);
8a4b83cc 483 }
443f24fe 484
8a4b83cc 485 if (!device) {
2b82032c
YZ
486 if (fs_devices->opened)
487 return -EBUSY;
488
12bd2fc0
ID
489 device = btrfs_alloc_device(NULL, &devid,
490 disk_super->dev_item.uuid);
491 if (IS_ERR(device)) {
8a4b83cc 492 /* we can safely leave the fs_devices entry around */
12bd2fc0 493 return PTR_ERR(device);
8a4b83cc 494 }
606686ee
JB
495
496 name = rcu_string_strdup(path, GFP_NOFS);
497 if (!name) {
8a4b83cc
CM
498 kfree(device);
499 return -ENOMEM;
500 }
606686ee 501 rcu_assign_pointer(device->name, name);
90519d66 502
e5e9a520 503 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 504 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 505 fs_devices->num_devices++;
e5e9a520
CM
506 mutex_unlock(&fs_devices->device_list_mutex);
507
60999ca4 508 ret = 1;
2b82032c 509 device->fs_devices = fs_devices;
606686ee 510 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
511 /*
512 * When FS is already mounted.
513 * 1. If you are here and if the device->name is NULL that
514 * means this device was missing at time of FS mount.
515 * 2. If you are here and if the device->name is different
516 * from 'path' that means either
517 * a. The same device disappeared and reappeared with
518 * different name. or
519 * b. The missing-disk-which-was-replaced, has
520 * reappeared now.
521 *
522 * We must allow 1 and 2a above. But 2b would be a spurious
523 * and unintentional.
524 *
525 * Further in case of 1 and 2a above, the disk at 'path'
526 * would have missed some transaction when it was away and
527 * in case of 2a the stale bdev has to be updated as well.
528 * 2b must not be allowed at all time.
529 */
530
531 /*
532 * As of now don't allow update to btrfs_fs_device through
533 * the btrfs dev scan cli, after FS has been mounted.
534 */
77bdae4d 535 if (fs_devices->opened) {
b96de000 536 return -EBUSY;
77bdae4d
AJ
537 } else {
538 /*
539 * That is if the FS is _not_ mounted and if you
540 * are here, that means there is more than one
541 * disk with same uuid and devid.We keep the one
542 * with larger generation number or the last-in if
543 * generation are equal.
544 */
545 if (found_transid < device->generation)
546 return -EEXIST;
547 }
b96de000 548
606686ee 549 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
550 if (!name)
551 return -ENOMEM;
606686ee
JB
552 rcu_string_free(device->name);
553 rcu_assign_pointer(device->name, name);
cd02dca5
CM
554 if (device->missing) {
555 fs_devices->missing_devices--;
556 device->missing = 0;
557 }
8a4b83cc
CM
558 }
559
77bdae4d
AJ
560 /*
561 * Unmount does not free the btrfs_device struct but would zero
562 * generation along with most of the other members. So just update
563 * it back. We need it to pick the disk with largest generation
564 * (as above).
565 */
566 if (!fs_devices->opened)
567 device->generation = found_transid;
568
8a4b83cc 569 *fs_devices_ret = fs_devices;
60999ca4
DS
570
571 return ret;
8a4b83cc
CM
572}
573
e4404d6e
YZ
574static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
575{
576 struct btrfs_fs_devices *fs_devices;
577 struct btrfs_device *device;
578 struct btrfs_device *orig_dev;
579
2208a378
ID
580 fs_devices = alloc_fs_devices(orig->fsid);
581 if (IS_ERR(fs_devices))
582 return fs_devices;
e4404d6e 583
02db0844 584 fs_devices->total_devices = orig->total_devices;
e4404d6e 585
46224705 586 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 587 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
588 struct rcu_string *name;
589
12bd2fc0
ID
590 device = btrfs_alloc_device(NULL, &orig_dev->devid,
591 orig_dev->uuid);
592 if (IS_ERR(device))
e4404d6e
YZ
593 goto error;
594
606686ee
JB
595 /*
596 * This is ok to do without rcu read locked because we hold the
597 * uuid mutex so nothing we touch in here is going to disappear.
598 */
e755f780
AJ
599 if (orig_dev->name) {
600 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
601 if (!name) {
602 kfree(device);
603 goto error;
604 }
605 rcu_assign_pointer(device->name, name);
fd2696f3 606 }
e4404d6e 607
e4404d6e
YZ
608 list_add(&device->dev_list, &fs_devices->devices);
609 device->fs_devices = fs_devices;
610 fs_devices->num_devices++;
611 }
612 return fs_devices;
613error:
614 free_fs_devices(fs_devices);
615 return ERR_PTR(-ENOMEM);
616}
617
8dabb742
SB
618void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
619 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 620{
c6e30871 621 struct btrfs_device *device, *next;
443f24fe 622 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 623
dfe25020
CM
624 mutex_lock(&uuid_mutex);
625again:
46224705 626 /* This is the initialized path, it is safe to release the devices. */
c6e30871 627 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 628 if (device->in_fs_metadata) {
63a212ab 629 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
630 (!latest_dev ||
631 device->generation > latest_dev->generation)) {
632 latest_dev = device;
a6b0d5c8 633 }
2b82032c 634 continue;
a6b0d5c8 635 }
2b82032c 636
8dabb742
SB
637 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
638 /*
639 * In the first step, keep the device which has
640 * the correct fsid and the devid that is used
641 * for the dev_replace procedure.
642 * In the second step, the dev_replace state is
643 * read from the device tree and it is known
644 * whether the procedure is really active or
645 * not, which means whether this device is
646 * used or whether it should be removed.
647 */
648 if (step == 0 || device->is_tgtdev_for_dev_replace) {
649 continue;
650 }
651 }
2b82032c 652 if (device->bdev) {
d4d77629 653 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
654 device->bdev = NULL;
655 fs_devices->open_devices--;
656 }
657 if (device->writeable) {
658 list_del_init(&device->dev_alloc_list);
659 device->writeable = 0;
8dabb742
SB
660 if (!device->is_tgtdev_for_dev_replace)
661 fs_devices->rw_devices--;
2b82032c 662 }
e4404d6e
YZ
663 list_del_init(&device->dev_list);
664 fs_devices->num_devices--;
606686ee 665 rcu_string_free(device->name);
e4404d6e 666 kfree(device);
dfe25020 667 }
2b82032c
YZ
668
669 if (fs_devices->seed) {
670 fs_devices = fs_devices->seed;
2b82032c
YZ
671 goto again;
672 }
673
443f24fe 674 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 675
dfe25020 676 mutex_unlock(&uuid_mutex);
dfe25020 677}
a0af469b 678
1f78160c
XG
679static void __free_device(struct work_struct *work)
680{
681 struct btrfs_device *device;
682
683 device = container_of(work, struct btrfs_device, rcu_work);
684
685 if (device->bdev)
686 blkdev_put(device->bdev, device->mode);
687
606686ee 688 rcu_string_free(device->name);
1f78160c
XG
689 kfree(device);
690}
691
692static void free_device(struct rcu_head *head)
693{
694 struct btrfs_device *device;
695
696 device = container_of(head, struct btrfs_device, rcu);
697
698 INIT_WORK(&device->rcu_work, __free_device);
699 schedule_work(&device->rcu_work);
700}
701
2b82032c 702static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 703{
8a4b83cc 704 struct btrfs_device *device;
e4404d6e 705
2b82032c
YZ
706 if (--fs_devices->opened > 0)
707 return 0;
8a4b83cc 708
c9513edb 709 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 710 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 711 struct btrfs_device *new_device;
606686ee 712 struct rcu_string *name;
1f78160c
XG
713
714 if (device->bdev)
a0af469b 715 fs_devices->open_devices--;
1f78160c 716
f747cab7
ID
717 if (device->writeable &&
718 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
719 list_del_init(&device->dev_alloc_list);
720 fs_devices->rw_devices--;
721 }
722
726551eb
JB
723 if (device->missing)
724 fs_devices->missing_devices--;
d5e2003c 725
a1e8780a
ID
726 new_device = btrfs_alloc_device(NULL, &device->devid,
727 device->uuid);
728 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
729
730 /* Safe because we are under uuid_mutex */
99f5944b
JB
731 if (device->name) {
732 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 733 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
734 rcu_assign_pointer(new_device->name, name);
735 }
a1e8780a 736
1f78160c 737 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 738 new_device->fs_devices = device->fs_devices;
1f78160c
XG
739
740 call_rcu(&device->rcu, free_device);
8a4b83cc 741 }
c9513edb
XG
742 mutex_unlock(&fs_devices->device_list_mutex);
743
e4404d6e
YZ
744 WARN_ON(fs_devices->open_devices);
745 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
746 fs_devices->opened = 0;
747 fs_devices->seeding = 0;
2b82032c 748
8a4b83cc
CM
749 return 0;
750}
751
2b82032c
YZ
752int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
753{
e4404d6e 754 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
755 int ret;
756
757 mutex_lock(&uuid_mutex);
758 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
759 if (!fs_devices->opened) {
760 seed_devices = fs_devices->seed;
761 fs_devices->seed = NULL;
762 }
2b82032c 763 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
764
765 while (seed_devices) {
766 fs_devices = seed_devices;
767 seed_devices = fs_devices->seed;
768 __btrfs_close_devices(fs_devices);
769 free_fs_devices(fs_devices);
770 }
bc178622
ES
771 /*
772 * Wait for rcu kworkers under __btrfs_close_devices
773 * to finish all blkdev_puts so device is really
774 * free when umount is done.
775 */
776 rcu_barrier();
2b82032c
YZ
777 return ret;
778}
779
e4404d6e
YZ
780static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
781 fmode_t flags, void *holder)
8a4b83cc 782{
d5e2003c 783 struct request_queue *q;
8a4b83cc
CM
784 struct block_device *bdev;
785 struct list_head *head = &fs_devices->devices;
8a4b83cc 786 struct btrfs_device *device;
443f24fe 787 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
788 struct buffer_head *bh;
789 struct btrfs_super_block *disk_super;
a0af469b 790 u64 devid;
2b82032c 791 int seeding = 1;
a0af469b 792 int ret = 0;
8a4b83cc 793
d4d77629
TH
794 flags |= FMODE_EXCL;
795
c6e30871 796 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
797 if (device->bdev)
798 continue;
dfe25020
CM
799 if (!device->name)
800 continue;
801
f63e0cca
ES
802 /* Just open everything we can; ignore failures here */
803 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
804 &bdev, &bh))
beaf8ab3 805 continue;
a0af469b
CM
806
807 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 808 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
809 if (devid != device->devid)
810 goto error_brelse;
811
2b82032c
YZ
812 if (memcmp(device->uuid, disk_super->dev_item.uuid,
813 BTRFS_UUID_SIZE))
814 goto error_brelse;
815
816 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
817 if (!latest_dev ||
818 device->generation > latest_dev->generation)
819 latest_dev = device;
a0af469b 820
2b82032c
YZ
821 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
822 device->writeable = 0;
823 } else {
824 device->writeable = !bdev_read_only(bdev);
825 seeding = 0;
826 }
827
d5e2003c 828 q = bdev_get_queue(bdev);
90180da4 829 if (blk_queue_discard(q))
d5e2003c 830 device->can_discard = 1;
d5e2003c 831
8a4b83cc 832 device->bdev = bdev;
dfe25020 833 device->in_fs_metadata = 0;
15916de8
CM
834 device->mode = flags;
835
c289811c
CM
836 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
837 fs_devices->rotating = 1;
838
a0af469b 839 fs_devices->open_devices++;
55e50e45
ID
840 if (device->writeable &&
841 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
842 fs_devices->rw_devices++;
843 list_add(&device->dev_alloc_list,
844 &fs_devices->alloc_list);
845 }
4f6c9328 846 brelse(bh);
a0af469b 847 continue;
a061fc8d 848
a0af469b
CM
849error_brelse:
850 brelse(bh);
d4d77629 851 blkdev_put(bdev, flags);
a0af469b 852 continue;
8a4b83cc 853 }
a0af469b 854 if (fs_devices->open_devices == 0) {
20bcd649 855 ret = -EINVAL;
a0af469b
CM
856 goto out;
857 }
2b82032c
YZ
858 fs_devices->seeding = seeding;
859 fs_devices->opened = 1;
443f24fe 860 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 861 fs_devices->total_rw_bytes = 0;
a0af469b 862out:
2b82032c
YZ
863 return ret;
864}
865
866int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 867 fmode_t flags, void *holder)
2b82032c
YZ
868{
869 int ret;
870
871 mutex_lock(&uuid_mutex);
872 if (fs_devices->opened) {
e4404d6e
YZ
873 fs_devices->opened++;
874 ret = 0;
2b82032c 875 } else {
15916de8 876 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 877 }
8a4b83cc 878 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
879 return ret;
880}
881
6f60cbd3
DS
882/*
883 * Look for a btrfs signature on a device. This may be called out of the mount path
884 * and we are not allowed to call set_blocksize during the scan. The superblock
885 * is read via pagecache
886 */
97288f2c 887int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
888 struct btrfs_fs_devices **fs_devices_ret)
889{
890 struct btrfs_super_block *disk_super;
891 struct block_device *bdev;
6f60cbd3
DS
892 struct page *page;
893 void *p;
894 int ret = -EINVAL;
8a4b83cc 895 u64 devid;
f2984462 896 u64 transid;
02db0844 897 u64 total_devices;
6f60cbd3
DS
898 u64 bytenr;
899 pgoff_t index;
8a4b83cc 900
6f60cbd3
DS
901 /*
902 * we would like to check all the supers, but that would make
903 * a btrfs mount succeed after a mkfs from a different FS.
904 * So, we need to add a special mount option to scan for
905 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
906 */
907 bytenr = btrfs_sb_offset(0);
d4d77629 908 flags |= FMODE_EXCL;
10f6327b 909 mutex_lock(&uuid_mutex);
6f60cbd3
DS
910
911 bdev = blkdev_get_by_path(path, flags, holder);
912
913 if (IS_ERR(bdev)) {
914 ret = PTR_ERR(bdev);
beaf8ab3 915 goto error;
6f60cbd3
DS
916 }
917
918 /* make sure our super fits in the device */
919 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
920 goto error_bdev_put;
921
922 /* make sure our super fits in the page */
923 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
924 goto error_bdev_put;
925
926 /* make sure our super doesn't straddle pages on disk */
927 index = bytenr >> PAGE_CACHE_SHIFT;
928 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
929 goto error_bdev_put;
930
931 /* pull in the page with our super */
932 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
933 index, GFP_NOFS);
934
935 if (IS_ERR_OR_NULL(page))
936 goto error_bdev_put;
937
938 p = kmap(page);
939
940 /* align our pointer to the offset of the super block */
941 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
942
943 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 944 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
945 goto error_unmap;
946
a343832f 947 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 948 transid = btrfs_super_generation(disk_super);
02db0844 949 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 950
8a4b83cc 951 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
952 if (ret > 0) {
953 if (disk_super->label[0]) {
954 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
955 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
956 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
957 } else {
958 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
959 }
960
961 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
962 ret = 0;
963 }
02db0844
JB
964 if (!ret && fs_devices_ret)
965 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
966
967error_unmap:
968 kunmap(page);
969 page_cache_release(page);
970
971error_bdev_put:
d4d77629 972 blkdev_put(bdev, flags);
8a4b83cc 973error:
beaf8ab3 974 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
975 return ret;
976}
0b86a832 977
6d07bcec
MX
978/* helper to account the used device space in the range */
979int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
980 u64 end, u64 *length)
981{
982 struct btrfs_key key;
983 struct btrfs_root *root = device->dev_root;
984 struct btrfs_dev_extent *dev_extent;
985 struct btrfs_path *path;
986 u64 extent_end;
987 int ret;
988 int slot;
989 struct extent_buffer *l;
990
991 *length = 0;
992
63a212ab 993 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
994 return 0;
995
996 path = btrfs_alloc_path();
997 if (!path)
998 return -ENOMEM;
999 path->reada = 2;
1000
1001 key.objectid = device->devid;
1002 key.offset = start;
1003 key.type = BTRFS_DEV_EXTENT_KEY;
1004
1005 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1006 if (ret < 0)
1007 goto out;
1008 if (ret > 0) {
1009 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1010 if (ret < 0)
1011 goto out;
1012 }
1013
1014 while (1) {
1015 l = path->nodes[0];
1016 slot = path->slots[0];
1017 if (slot >= btrfs_header_nritems(l)) {
1018 ret = btrfs_next_leaf(root, path);
1019 if (ret == 0)
1020 continue;
1021 if (ret < 0)
1022 goto out;
1023
1024 break;
1025 }
1026 btrfs_item_key_to_cpu(l, &key, slot);
1027
1028 if (key.objectid < device->devid)
1029 goto next;
1030
1031 if (key.objectid > device->devid)
1032 break;
1033
962a298f 1034 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1035 goto next;
1036
1037 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1038 extent_end = key.offset + btrfs_dev_extent_length(l,
1039 dev_extent);
1040 if (key.offset <= start && extent_end > end) {
1041 *length = end - start + 1;
1042 break;
1043 } else if (key.offset <= start && extent_end > start)
1044 *length += extent_end - start;
1045 else if (key.offset > start && extent_end <= end)
1046 *length += extent_end - key.offset;
1047 else if (key.offset > start && key.offset <= end) {
1048 *length += end - key.offset + 1;
1049 break;
1050 } else if (key.offset > end)
1051 break;
1052
1053next:
1054 path->slots[0]++;
1055 }
1056 ret = 0;
1057out:
1058 btrfs_free_path(path);
1059 return ret;
1060}
1061
6df9a95e
JB
1062static int contains_pending_extent(struct btrfs_trans_handle *trans,
1063 struct btrfs_device *device,
1064 u64 *start, u64 len)
1065{
1066 struct extent_map *em;
1067 int ret = 0;
1068
1069 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1070 struct map_lookup *map;
1071 int i;
1072
1073 map = (struct map_lookup *)em->bdev;
1074 for (i = 0; i < map->num_stripes; i++) {
1075 if (map->stripes[i].dev != device)
1076 continue;
1077 if (map->stripes[i].physical >= *start + len ||
1078 map->stripes[i].physical + em->orig_block_len <=
1079 *start)
1080 continue;
1081 *start = map->stripes[i].physical +
1082 em->orig_block_len;
1083 ret = 1;
1084 }
1085 }
1086
1087 return ret;
1088}
1089
1090
0b86a832 1091/*
7bfc837d 1092 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1093 * @device: the device which we search the free space in
1094 * @num_bytes: the size of the free space that we need
1095 * @start: store the start of the free space.
1096 * @len: the size of the free space. that we find, or the size of the max
1097 * free space if we don't find suitable free space
1098 *
0b86a832
CM
1099 * this uses a pretty simple search, the expectation is that it is
1100 * called very infrequently and that a given device has a small number
1101 * of extents
7bfc837d
MX
1102 *
1103 * @start is used to store the start of the free space if we find. But if we
1104 * don't find suitable free space, it will be used to store the start position
1105 * of the max free space.
1106 *
1107 * @len is used to store the size of the free space that we find.
1108 * But if we don't find suitable free space, it is used to store the size of
1109 * the max free space.
0b86a832 1110 */
6df9a95e
JB
1111int find_free_dev_extent(struct btrfs_trans_handle *trans,
1112 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1113 u64 *start, u64 *len)
0b86a832
CM
1114{
1115 struct btrfs_key key;
1116 struct btrfs_root *root = device->dev_root;
7bfc837d 1117 struct btrfs_dev_extent *dev_extent;
2b82032c 1118 struct btrfs_path *path;
7bfc837d
MX
1119 u64 hole_size;
1120 u64 max_hole_start;
1121 u64 max_hole_size;
1122 u64 extent_end;
1123 u64 search_start;
0b86a832
CM
1124 u64 search_end = device->total_bytes;
1125 int ret;
7bfc837d 1126 int slot;
0b86a832
CM
1127 struct extent_buffer *l;
1128
0b86a832
CM
1129 /* FIXME use last free of some kind */
1130
8a4b83cc
CM
1131 /* we don't want to overwrite the superblock on the drive,
1132 * so we make sure to start at an offset of at least 1MB
1133 */
a9c9bf68 1134 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1135
6df9a95e
JB
1136 path = btrfs_alloc_path();
1137 if (!path)
1138 return -ENOMEM;
1139again:
7bfc837d
MX
1140 max_hole_start = search_start;
1141 max_hole_size = 0;
38c01b96 1142 hole_size = 0;
7bfc837d 1143
63a212ab 1144 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1145 ret = -ENOSPC;
6df9a95e 1146 goto out;
7bfc837d
MX
1147 }
1148
7bfc837d 1149 path->reada = 2;
6df9a95e
JB
1150 path->search_commit_root = 1;
1151 path->skip_locking = 1;
7bfc837d 1152
0b86a832
CM
1153 key.objectid = device->devid;
1154 key.offset = search_start;
1155 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1156
125ccb0a 1157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1158 if (ret < 0)
7bfc837d 1159 goto out;
1fcbac58
YZ
1160 if (ret > 0) {
1161 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1162 if (ret < 0)
7bfc837d 1163 goto out;
1fcbac58 1164 }
7bfc837d 1165
0b86a832
CM
1166 while (1) {
1167 l = path->nodes[0];
1168 slot = path->slots[0];
1169 if (slot >= btrfs_header_nritems(l)) {
1170 ret = btrfs_next_leaf(root, path);
1171 if (ret == 0)
1172 continue;
1173 if (ret < 0)
7bfc837d
MX
1174 goto out;
1175
1176 break;
0b86a832
CM
1177 }
1178 btrfs_item_key_to_cpu(l, &key, slot);
1179
1180 if (key.objectid < device->devid)
1181 goto next;
1182
1183 if (key.objectid > device->devid)
7bfc837d 1184 break;
0b86a832 1185
962a298f 1186 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1187 goto next;
9779b72f 1188
7bfc837d
MX
1189 if (key.offset > search_start) {
1190 hole_size = key.offset - search_start;
9779b72f 1191
6df9a95e
JB
1192 /*
1193 * Have to check before we set max_hole_start, otherwise
1194 * we could end up sending back this offset anyway.
1195 */
1196 if (contains_pending_extent(trans, device,
1197 &search_start,
1198 hole_size))
1199 hole_size = 0;
1200
7bfc837d
MX
1201 if (hole_size > max_hole_size) {
1202 max_hole_start = search_start;
1203 max_hole_size = hole_size;
1204 }
9779b72f 1205
7bfc837d
MX
1206 /*
1207 * If this free space is greater than which we need,
1208 * it must be the max free space that we have found
1209 * until now, so max_hole_start must point to the start
1210 * of this free space and the length of this free space
1211 * is stored in max_hole_size. Thus, we return
1212 * max_hole_start and max_hole_size and go back to the
1213 * caller.
1214 */
1215 if (hole_size >= num_bytes) {
1216 ret = 0;
1217 goto out;
0b86a832
CM
1218 }
1219 }
0b86a832 1220
0b86a832 1221 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1222 extent_end = key.offset + btrfs_dev_extent_length(l,
1223 dev_extent);
1224 if (extent_end > search_start)
1225 search_start = extent_end;
0b86a832
CM
1226next:
1227 path->slots[0]++;
1228 cond_resched();
1229 }
0b86a832 1230
38c01b96 1231 /*
1232 * At this point, search_start should be the end of
1233 * allocated dev extents, and when shrinking the device,
1234 * search_end may be smaller than search_start.
1235 */
1236 if (search_end > search_start)
1237 hole_size = search_end - search_start;
1238
7bfc837d
MX
1239 if (hole_size > max_hole_size) {
1240 max_hole_start = search_start;
1241 max_hole_size = hole_size;
0b86a832 1242 }
0b86a832 1243
6df9a95e
JB
1244 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1245 btrfs_release_path(path);
1246 goto again;
1247 }
1248
7bfc837d
MX
1249 /* See above. */
1250 if (hole_size < num_bytes)
1251 ret = -ENOSPC;
1252 else
1253 ret = 0;
1254
1255out:
2b82032c 1256 btrfs_free_path(path);
7bfc837d 1257 *start = max_hole_start;
b2117a39 1258 if (len)
7bfc837d 1259 *len = max_hole_size;
0b86a832
CM
1260 return ret;
1261}
1262
b2950863 1263static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1264 struct btrfs_device *device,
1265 u64 start)
1266{
1267 int ret;
1268 struct btrfs_path *path;
1269 struct btrfs_root *root = device->dev_root;
1270 struct btrfs_key key;
a061fc8d
CM
1271 struct btrfs_key found_key;
1272 struct extent_buffer *leaf = NULL;
1273 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1274
1275 path = btrfs_alloc_path();
1276 if (!path)
1277 return -ENOMEM;
1278
1279 key.objectid = device->devid;
1280 key.offset = start;
1281 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1282again:
8f18cf13 1283 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1284 if (ret > 0) {
1285 ret = btrfs_previous_item(root, path, key.objectid,
1286 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1287 if (ret)
1288 goto out;
a061fc8d
CM
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1291 extent = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_dev_extent);
1293 BUG_ON(found_key.offset > start || found_key.offset +
1294 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1295 key = found_key;
1296 btrfs_release_path(path);
1297 goto again;
a061fc8d
CM
1298 } else if (ret == 0) {
1299 leaf = path->nodes[0];
1300 extent = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_dev_extent);
79787eaa
JM
1302 } else {
1303 btrfs_error(root->fs_info, ret, "Slot search failed");
1304 goto out;
a061fc8d 1305 }
8f18cf13 1306
2bf64758
JB
1307 if (device->bytes_used > 0) {
1308 u64 len = btrfs_dev_extent_length(leaf, extent);
1309 device->bytes_used -= len;
1310 spin_lock(&root->fs_info->free_chunk_lock);
1311 root->fs_info->free_chunk_space += len;
1312 spin_unlock(&root->fs_info->free_chunk_lock);
1313 }
8f18cf13 1314 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1315 if (ret) {
1316 btrfs_error(root->fs_info, ret,
1317 "Failed to remove dev extent item");
1318 }
b0b802d7 1319out:
8f18cf13
CM
1320 btrfs_free_path(path);
1321 return ret;
1322}
1323
48a3b636
ES
1324static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1325 struct btrfs_device *device,
1326 u64 chunk_tree, u64 chunk_objectid,
1327 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1328{
1329 int ret;
1330 struct btrfs_path *path;
1331 struct btrfs_root *root = device->dev_root;
1332 struct btrfs_dev_extent *extent;
1333 struct extent_buffer *leaf;
1334 struct btrfs_key key;
1335
dfe25020 1336 WARN_ON(!device->in_fs_metadata);
63a212ab 1337 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1338 path = btrfs_alloc_path();
1339 if (!path)
1340 return -ENOMEM;
1341
0b86a832 1342 key.objectid = device->devid;
2b82032c 1343 key.offset = start;
0b86a832
CM
1344 key.type = BTRFS_DEV_EXTENT_KEY;
1345 ret = btrfs_insert_empty_item(trans, root, path, &key,
1346 sizeof(*extent));
2cdcecbc
MF
1347 if (ret)
1348 goto out;
0b86a832
CM
1349
1350 leaf = path->nodes[0];
1351 extent = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_dev_extent);
e17cade2
CM
1353 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1354 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1355 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1356
1357 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1358 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1359
0b86a832
CM
1360 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1361 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1362out:
0b86a832
CM
1363 btrfs_free_path(path);
1364 return ret;
1365}
1366
6df9a95e 1367static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1368{
6df9a95e
JB
1369 struct extent_map_tree *em_tree;
1370 struct extent_map *em;
1371 struct rb_node *n;
1372 u64 ret = 0;
0b86a832 1373
6df9a95e
JB
1374 em_tree = &fs_info->mapping_tree.map_tree;
1375 read_lock(&em_tree->lock);
1376 n = rb_last(&em_tree->map);
1377 if (n) {
1378 em = rb_entry(n, struct extent_map, rb_node);
1379 ret = em->start + em->len;
0b86a832 1380 }
6df9a95e
JB
1381 read_unlock(&em_tree->lock);
1382
0b86a832
CM
1383 return ret;
1384}
1385
53f10659
ID
1386static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1387 u64 *devid_ret)
0b86a832
CM
1388{
1389 int ret;
1390 struct btrfs_key key;
1391 struct btrfs_key found_key;
2b82032c
YZ
1392 struct btrfs_path *path;
1393
2b82032c
YZ
1394 path = btrfs_alloc_path();
1395 if (!path)
1396 return -ENOMEM;
0b86a832
CM
1397
1398 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1399 key.type = BTRFS_DEV_ITEM_KEY;
1400 key.offset = (u64)-1;
1401
53f10659 1402 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1403 if (ret < 0)
1404 goto error;
1405
79787eaa 1406 BUG_ON(ret == 0); /* Corruption */
0b86a832 1407
53f10659
ID
1408 ret = btrfs_previous_item(fs_info->chunk_root, path,
1409 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1410 BTRFS_DEV_ITEM_KEY);
1411 if (ret) {
53f10659 1412 *devid_ret = 1;
0b86a832
CM
1413 } else {
1414 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1415 path->slots[0]);
53f10659 1416 *devid_ret = found_key.offset + 1;
0b86a832
CM
1417 }
1418 ret = 0;
1419error:
2b82032c 1420 btrfs_free_path(path);
0b86a832
CM
1421 return ret;
1422}
1423
1424/*
1425 * the device information is stored in the chunk root
1426 * the btrfs_device struct should be fully filled in
1427 */
48a3b636
ES
1428static int btrfs_add_device(struct btrfs_trans_handle *trans,
1429 struct btrfs_root *root,
1430 struct btrfs_device *device)
0b86a832
CM
1431{
1432 int ret;
1433 struct btrfs_path *path;
1434 struct btrfs_dev_item *dev_item;
1435 struct extent_buffer *leaf;
1436 struct btrfs_key key;
1437 unsigned long ptr;
0b86a832
CM
1438
1439 root = root->fs_info->chunk_root;
1440
1441 path = btrfs_alloc_path();
1442 if (!path)
1443 return -ENOMEM;
1444
0b86a832
CM
1445 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1446 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1447 key.offset = device->devid;
0b86a832
CM
1448
1449 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1450 sizeof(*dev_item));
0b86a832
CM
1451 if (ret)
1452 goto out;
1453
1454 leaf = path->nodes[0];
1455 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1456
1457 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1458 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1459 btrfs_set_device_type(leaf, dev_item, device->type);
1460 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1461 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1462 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7df69d3e 1463 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832 1464 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1465 btrfs_set_device_group(leaf, dev_item, 0);
1466 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1467 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1468 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1469
410ba3a2 1470 ptr = btrfs_device_uuid(dev_item);
e17cade2 1471 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1472 ptr = btrfs_device_fsid(dev_item);
2b82032c 1473 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1474 btrfs_mark_buffer_dirty(leaf);
0b86a832 1475
2b82032c 1476 ret = 0;
0b86a832
CM
1477out:
1478 btrfs_free_path(path);
1479 return ret;
1480}
8f18cf13 1481
5a1972bd
QW
1482/*
1483 * Function to update ctime/mtime for a given device path.
1484 * Mainly used for ctime/mtime based probe like libblkid.
1485 */
1486static void update_dev_time(char *path_name)
1487{
1488 struct file *filp;
1489
1490 filp = filp_open(path_name, O_RDWR, 0);
1491 if (!filp)
1492 return;
1493 file_update_time(filp);
1494 filp_close(filp, NULL);
1495 return;
1496}
1497
a061fc8d
CM
1498static int btrfs_rm_dev_item(struct btrfs_root *root,
1499 struct btrfs_device *device)
1500{
1501 int ret;
1502 struct btrfs_path *path;
a061fc8d 1503 struct btrfs_key key;
a061fc8d
CM
1504 struct btrfs_trans_handle *trans;
1505
1506 root = root->fs_info->chunk_root;
1507
1508 path = btrfs_alloc_path();
1509 if (!path)
1510 return -ENOMEM;
1511
a22285a6 1512 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1513 if (IS_ERR(trans)) {
1514 btrfs_free_path(path);
1515 return PTR_ERR(trans);
1516 }
a061fc8d
CM
1517 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1518 key.type = BTRFS_DEV_ITEM_KEY;
1519 key.offset = device->devid;
7d9eb12c 1520 lock_chunks(root);
a061fc8d
CM
1521
1522 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1523 if (ret < 0)
1524 goto out;
1525
1526 if (ret > 0) {
1527 ret = -ENOENT;
1528 goto out;
1529 }
1530
1531 ret = btrfs_del_item(trans, root, path);
1532 if (ret)
1533 goto out;
a061fc8d
CM
1534out:
1535 btrfs_free_path(path);
7d9eb12c 1536 unlock_chunks(root);
a061fc8d
CM
1537 btrfs_commit_transaction(trans, root);
1538 return ret;
1539}
1540
1541int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1542{
1543 struct btrfs_device *device;
2b82032c 1544 struct btrfs_device *next_device;
a061fc8d 1545 struct block_device *bdev;
dfe25020 1546 struct buffer_head *bh = NULL;
a061fc8d 1547 struct btrfs_super_block *disk_super;
1f78160c 1548 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1549 u64 all_avail;
1550 u64 devid;
2b82032c
YZ
1551 u64 num_devices;
1552 u8 *dev_uuid;
de98ced9 1553 unsigned seq;
a061fc8d 1554 int ret = 0;
1f78160c 1555 bool clear_super = false;
a061fc8d 1556
a061fc8d
CM
1557 mutex_lock(&uuid_mutex);
1558
de98ced9
MX
1559 do {
1560 seq = read_seqbegin(&root->fs_info->profiles_lock);
1561
1562 all_avail = root->fs_info->avail_data_alloc_bits |
1563 root->fs_info->avail_system_alloc_bits |
1564 root->fs_info->avail_metadata_alloc_bits;
1565 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1566
8dabb742
SB
1567 num_devices = root->fs_info->fs_devices->num_devices;
1568 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1569 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1570 WARN_ON(num_devices < 1);
1571 num_devices--;
1572 }
1573 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1574
1575 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1576 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1577 goto out;
1578 }
1579
8dabb742 1580 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1581 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1582 goto out;
1583 }
1584
53b381b3
DW
1585 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1586 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1587 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1588 goto out;
1589 }
1590 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1591 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1592 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1593 goto out;
1594 }
1595
dfe25020 1596 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1597 struct list_head *devices;
1598 struct btrfs_device *tmp;
a061fc8d 1599
dfe25020
CM
1600 device = NULL;
1601 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1602 /*
1603 * It is safe to read the devices since the volume_mutex
1604 * is held.
1605 */
c6e30871 1606 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1607 if (tmp->in_fs_metadata &&
1608 !tmp->is_tgtdev_for_dev_replace &&
1609 !tmp->bdev) {
dfe25020
CM
1610 device = tmp;
1611 break;
1612 }
1613 }
1614 bdev = NULL;
1615 bh = NULL;
1616 disk_super = NULL;
1617 if (!device) {
183860f6 1618 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1619 goto out;
1620 }
dfe25020 1621 } else {
beaf8ab3 1622 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1623 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1624 root->fs_info->bdev_holder, 0,
1625 &bdev, &bh);
1626 if (ret)
dfe25020 1627 goto out;
dfe25020 1628 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1629 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1630 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1631 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1632 disk_super->fsid);
dfe25020
CM
1633 if (!device) {
1634 ret = -ENOENT;
1635 goto error_brelse;
1636 }
2b82032c 1637 }
dfe25020 1638
63a212ab 1639 if (device->is_tgtdev_for_dev_replace) {
183860f6 1640 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1641 goto error_brelse;
1642 }
1643
2b82032c 1644 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1645 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1646 goto error_brelse;
1647 }
1648
1649 if (device->writeable) {
0c1daee0 1650 lock_chunks(root);
2b82032c 1651 list_del_init(&device->dev_alloc_list);
0c1daee0 1652 unlock_chunks(root);
2b82032c 1653 root->fs_info->fs_devices->rw_devices--;
1f78160c 1654 clear_super = true;
dfe25020 1655 }
a061fc8d 1656
d7901554 1657 mutex_unlock(&uuid_mutex);
a061fc8d 1658 ret = btrfs_shrink_device(device, 0);
d7901554 1659 mutex_lock(&uuid_mutex);
a061fc8d 1660 if (ret)
9b3517e9 1661 goto error_undo;
a061fc8d 1662
63a212ab
SB
1663 /*
1664 * TODO: the superblock still includes this device in its num_devices
1665 * counter although write_all_supers() is not locked out. This
1666 * could give a filesystem state which requires a degraded mount.
1667 */
a061fc8d
CM
1668 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1669 if (ret)
9b3517e9 1670 goto error_undo;
a061fc8d 1671
2bf64758
JB
1672 spin_lock(&root->fs_info->free_chunk_lock);
1673 root->fs_info->free_chunk_space = device->total_bytes -
1674 device->bytes_used;
1675 spin_unlock(&root->fs_info->free_chunk_lock);
1676
2b82032c 1677 device->in_fs_metadata = 0;
aa1b8cd4 1678 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1679
1680 /*
1681 * the device list mutex makes sure that we don't change
1682 * the device list while someone else is writing out all
d7306801
FDBM
1683 * the device supers. Whoever is writing all supers, should
1684 * lock the device list mutex before getting the number of
1685 * devices in the super block (super_copy). Conversely,
1686 * whoever updates the number of devices in the super block
1687 * (super_copy) should hold the device list mutex.
e5e9a520 1688 */
1f78160c
XG
1689
1690 cur_devices = device->fs_devices;
e5e9a520 1691 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1692 list_del_rcu(&device->dev_list);
e5e9a520 1693
e4404d6e 1694 device->fs_devices->num_devices--;
02db0844 1695 device->fs_devices->total_devices--;
2b82032c 1696
cd02dca5 1697 if (device->missing)
3a7d55c8 1698 device->fs_devices->missing_devices--;
cd02dca5 1699
2b82032c
YZ
1700 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1701 struct btrfs_device, dev_list);
1702 if (device->bdev == root->fs_info->sb->s_bdev)
1703 root->fs_info->sb->s_bdev = next_device->bdev;
1704 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1705 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1706
0bfaa9c5 1707 if (device->bdev) {
e4404d6e 1708 device->fs_devices->open_devices--;
0bfaa9c5
ES
1709 /* remove sysfs entry */
1710 btrfs_kobj_rm_device(root->fs_info, device);
1711 }
99994cde 1712
1f78160c 1713 call_rcu(&device->rcu, free_device);
e4404d6e 1714
6c41761f
DS
1715 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1716 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1717 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1718
1f78160c 1719 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1720 struct btrfs_fs_devices *fs_devices;
1721 fs_devices = root->fs_info->fs_devices;
1722 while (fs_devices) {
8321cf25
RS
1723 if (fs_devices->seed == cur_devices) {
1724 fs_devices->seed = cur_devices->seed;
e4404d6e 1725 break;
8321cf25 1726 }
e4404d6e 1727 fs_devices = fs_devices->seed;
2b82032c 1728 }
1f78160c 1729 cur_devices->seed = NULL;
0c1daee0 1730 lock_chunks(root);
1f78160c 1731 __btrfs_close_devices(cur_devices);
0c1daee0 1732 unlock_chunks(root);
1f78160c 1733 free_fs_devices(cur_devices);
2b82032c
YZ
1734 }
1735
5af3e8cc
SB
1736 root->fs_info->num_tolerated_disk_barrier_failures =
1737 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1738
2b82032c
YZ
1739 /*
1740 * at this point, the device is zero sized. We want to
1741 * remove it from the devices list and zero out the old super
1742 */
aa1b8cd4 1743 if (clear_super && disk_super) {
4d90d28b
AJ
1744 u64 bytenr;
1745 int i;
1746
dfe25020
CM
1747 /* make sure this device isn't detected as part of
1748 * the FS anymore
1749 */
1750 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1751 set_buffer_dirty(bh);
1752 sync_dirty_buffer(bh);
4d90d28b
AJ
1753
1754 /* clear the mirror copies of super block on the disk
1755 * being removed, 0th copy is been taken care above and
1756 * the below would take of the rest
1757 */
1758 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1759 bytenr = btrfs_sb_offset(i);
1760 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1761 i_size_read(bdev->bd_inode))
1762 break;
1763
1764 brelse(bh);
1765 bh = __bread(bdev, bytenr / 4096,
1766 BTRFS_SUPER_INFO_SIZE);
1767 if (!bh)
1768 continue;
1769
1770 disk_super = (struct btrfs_super_block *)bh->b_data;
1771
1772 if (btrfs_super_bytenr(disk_super) != bytenr ||
1773 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1774 continue;
1775 }
1776 memset(&disk_super->magic, 0,
1777 sizeof(disk_super->magic));
1778 set_buffer_dirty(bh);
1779 sync_dirty_buffer(bh);
1780 }
dfe25020 1781 }
a061fc8d 1782
a061fc8d 1783 ret = 0;
a061fc8d 1784
5a1972bd
QW
1785 if (bdev) {
1786 /* Notify udev that device has changed */
3c911608 1787 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1788
5a1972bd
QW
1789 /* Update ctime/mtime for device path for libblkid */
1790 update_dev_time(device_path);
1791 }
1792
a061fc8d
CM
1793error_brelse:
1794 brelse(bh);
dfe25020 1795 if (bdev)
e525fd89 1796 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1797out:
1798 mutex_unlock(&uuid_mutex);
a061fc8d 1799 return ret;
9b3517e9
ID
1800error_undo:
1801 if (device->writeable) {
0c1daee0 1802 lock_chunks(root);
9b3517e9
ID
1803 list_add(&device->dev_alloc_list,
1804 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1805 unlock_chunks(root);
9b3517e9
ID
1806 root->fs_info->fs_devices->rw_devices++;
1807 }
1808 goto error_brelse;
a061fc8d
CM
1809}
1810
e93c89c1
SB
1811void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1812 struct btrfs_device *srcdev)
1813{
d51908ce
AJ
1814 struct btrfs_fs_devices *fs_devices;
1815
e93c89c1 1816 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1817
25e8e911
AJ
1818 /*
1819 * in case of fs with no seed, srcdev->fs_devices will point
1820 * to fs_devices of fs_info. However when the dev being replaced is
1821 * a seed dev it will point to the seed's local fs_devices. In short
1822 * srcdev will have its correct fs_devices in both the cases.
1823 */
1824 fs_devices = srcdev->fs_devices;
d51908ce 1825
e93c89c1
SB
1826 list_del_rcu(&srcdev->dev_list);
1827 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1828 fs_devices->num_devices--;
e93c89c1 1829 if (srcdev->missing) {
d51908ce 1830 fs_devices->missing_devices--;
b2efedca
AJ
1831 if (!fs_devices->seeding)
1832 fs_devices->rw_devices++;
e93c89c1 1833 }
90180da4 1834
1357272f 1835 if (srcdev->bdev) {
d51908ce 1836 fs_devices->open_devices--;
e93c89c1 1837
ff61d17c
MX
1838 /*
1839 * zero out the old super if it is not writable
1840 * (e.g. seed device)
1841 */
1842 if (srcdev->writeable)
1843 btrfs_scratch_superblock(srcdev);
1357272f
ID
1844 }
1845
e93c89c1 1846 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1847
1848 /*
1849 * unless fs_devices is seed fs, num_devices shouldn't go
1850 * zero
1851 */
1852 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1853
1854 /* if this is no devs we rather delete the fs_devices */
1855 if (!fs_devices->num_devices) {
1856 struct btrfs_fs_devices *tmp_fs_devices;
1857
1858 tmp_fs_devices = fs_info->fs_devices;
1859 while (tmp_fs_devices) {
1860 if (tmp_fs_devices->seed == fs_devices) {
1861 tmp_fs_devices->seed = fs_devices->seed;
1862 break;
1863 }
1864 tmp_fs_devices = tmp_fs_devices->seed;
1865 }
1866 fs_devices->seed = NULL;
8bef8401
AJ
1867 __btrfs_close_devices(fs_devices);
1868 free_fs_devices(fs_devices);
94d5f0c2 1869 }
e93c89c1
SB
1870}
1871
1872void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1873 struct btrfs_device *tgtdev)
1874{
1875 struct btrfs_device *next_device;
1876
1877 WARN_ON(!tgtdev);
1878 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1879 if (tgtdev->bdev) {
1880 btrfs_scratch_superblock(tgtdev);
1881 fs_info->fs_devices->open_devices--;
1882 }
1883 fs_info->fs_devices->num_devices--;
e93c89c1
SB
1884
1885 next_device = list_entry(fs_info->fs_devices->devices.next,
1886 struct btrfs_device, dev_list);
1887 if (tgtdev->bdev == fs_info->sb->s_bdev)
1888 fs_info->sb->s_bdev = next_device->bdev;
1889 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1890 fs_info->fs_devices->latest_bdev = next_device->bdev;
1891 list_del_rcu(&tgtdev->dev_list);
1892
1893 call_rcu(&tgtdev->rcu, free_device);
1894
1895 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1896}
1897
48a3b636
ES
1898static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1899 struct btrfs_device **device)
7ba15b7d
SB
1900{
1901 int ret = 0;
1902 struct btrfs_super_block *disk_super;
1903 u64 devid;
1904 u8 *dev_uuid;
1905 struct block_device *bdev;
1906 struct buffer_head *bh;
1907
1908 *device = NULL;
1909 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1910 root->fs_info->bdev_holder, 0, &bdev, &bh);
1911 if (ret)
1912 return ret;
1913 disk_super = (struct btrfs_super_block *)bh->b_data;
1914 devid = btrfs_stack_device_id(&disk_super->dev_item);
1915 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1916 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1917 disk_super->fsid);
1918 brelse(bh);
1919 if (!*device)
1920 ret = -ENOENT;
1921 blkdev_put(bdev, FMODE_READ);
1922 return ret;
1923}
1924
1925int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1926 char *device_path,
1927 struct btrfs_device **device)
1928{
1929 *device = NULL;
1930 if (strcmp(device_path, "missing") == 0) {
1931 struct list_head *devices;
1932 struct btrfs_device *tmp;
1933
1934 devices = &root->fs_info->fs_devices->devices;
1935 /*
1936 * It is safe to read the devices since the volume_mutex
1937 * is held by the caller.
1938 */
1939 list_for_each_entry(tmp, devices, dev_list) {
1940 if (tmp->in_fs_metadata && !tmp->bdev) {
1941 *device = tmp;
1942 break;
1943 }
1944 }
1945
1946 if (!*device) {
efe120a0 1947 btrfs_err(root->fs_info, "no missing device found");
7ba15b7d
SB
1948 return -ENOENT;
1949 }
1950
1951 return 0;
1952 } else {
1953 return btrfs_find_device_by_path(root, device_path, device);
1954 }
1955}
1956
2b82032c
YZ
1957/*
1958 * does all the dirty work required for changing file system's UUID.
1959 */
125ccb0a 1960static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1961{
1962 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1963 struct btrfs_fs_devices *old_devices;
e4404d6e 1964 struct btrfs_fs_devices *seed_devices;
6c41761f 1965 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1966 struct btrfs_device *device;
1967 u64 super_flags;
1968
1969 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1970 if (!fs_devices->seeding)
2b82032c
YZ
1971 return -EINVAL;
1972
2208a378
ID
1973 seed_devices = __alloc_fs_devices();
1974 if (IS_ERR(seed_devices))
1975 return PTR_ERR(seed_devices);
2b82032c 1976
e4404d6e
YZ
1977 old_devices = clone_fs_devices(fs_devices);
1978 if (IS_ERR(old_devices)) {
1979 kfree(seed_devices);
1980 return PTR_ERR(old_devices);
2b82032c 1981 }
e4404d6e 1982
2b82032c
YZ
1983 list_add(&old_devices->list, &fs_uuids);
1984
e4404d6e
YZ
1985 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1986 seed_devices->opened = 1;
1987 INIT_LIST_HEAD(&seed_devices->devices);
1988 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1989 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1990
1991 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1992 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1993 synchronize_rcu);
c9513edb 1994
e4404d6e
YZ
1995 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1996 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1997 device->fs_devices = seed_devices;
1998 }
1999
2b82032c
YZ
2000 fs_devices->seeding = 0;
2001 fs_devices->num_devices = 0;
2002 fs_devices->open_devices = 0;
69611ac8 2003 fs_devices->missing_devices = 0;
69611ac8 2004 fs_devices->rotating = 0;
e4404d6e 2005 fs_devices->seed = seed_devices;
2b82032c
YZ
2006
2007 generate_random_uuid(fs_devices->fsid);
2008 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2009 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2010 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2011
2b82032c
YZ
2012 super_flags = btrfs_super_flags(disk_super) &
2013 ~BTRFS_SUPER_FLAG_SEEDING;
2014 btrfs_set_super_flags(disk_super, super_flags);
2015
2016 return 0;
2017}
2018
2019/*
2020 * strore the expected generation for seed devices in device items.
2021 */
2022static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2023 struct btrfs_root *root)
2024{
2025 struct btrfs_path *path;
2026 struct extent_buffer *leaf;
2027 struct btrfs_dev_item *dev_item;
2028 struct btrfs_device *device;
2029 struct btrfs_key key;
2030 u8 fs_uuid[BTRFS_UUID_SIZE];
2031 u8 dev_uuid[BTRFS_UUID_SIZE];
2032 u64 devid;
2033 int ret;
2034
2035 path = btrfs_alloc_path();
2036 if (!path)
2037 return -ENOMEM;
2038
2039 root = root->fs_info->chunk_root;
2040 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2041 key.offset = 0;
2042 key.type = BTRFS_DEV_ITEM_KEY;
2043
2044 while (1) {
2045 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2046 if (ret < 0)
2047 goto error;
2048
2049 leaf = path->nodes[0];
2050next_slot:
2051 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2052 ret = btrfs_next_leaf(root, path);
2053 if (ret > 0)
2054 break;
2055 if (ret < 0)
2056 goto error;
2057 leaf = path->nodes[0];
2058 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2059 btrfs_release_path(path);
2b82032c
YZ
2060 continue;
2061 }
2062
2063 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2064 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2065 key.type != BTRFS_DEV_ITEM_KEY)
2066 break;
2067
2068 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2069 struct btrfs_dev_item);
2070 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2071 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2072 BTRFS_UUID_SIZE);
1473b24e 2073 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2074 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2075 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2076 fs_uuid);
79787eaa 2077 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2078
2079 if (device->fs_devices->seeding) {
2080 btrfs_set_device_generation(leaf, dev_item,
2081 device->generation);
2082 btrfs_mark_buffer_dirty(leaf);
2083 }
2084
2085 path->slots[0]++;
2086 goto next_slot;
2087 }
2088 ret = 0;
2089error:
2090 btrfs_free_path(path);
2091 return ret;
2092}
2093
788f20eb
CM
2094int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2095{
d5e2003c 2096 struct request_queue *q;
788f20eb
CM
2097 struct btrfs_trans_handle *trans;
2098 struct btrfs_device *device;
2099 struct block_device *bdev;
788f20eb 2100 struct list_head *devices;
2b82032c 2101 struct super_block *sb = root->fs_info->sb;
606686ee 2102 struct rcu_string *name;
3c1dbdf5 2103 u64 tmp;
2b82032c 2104 int seeding_dev = 0;
788f20eb
CM
2105 int ret = 0;
2106
2b82032c 2107 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2108 return -EROFS;
788f20eb 2109
a5d16333 2110 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2111 root->fs_info->bdev_holder);
7f59203a
JB
2112 if (IS_ERR(bdev))
2113 return PTR_ERR(bdev);
a2135011 2114
2b82032c
YZ
2115 if (root->fs_info->fs_devices->seeding) {
2116 seeding_dev = 1;
2117 down_write(&sb->s_umount);
2118 mutex_lock(&uuid_mutex);
2119 }
2120
8c8bee1d 2121 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2122
788f20eb 2123 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2124
2125 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2126 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2127 if (device->bdev == bdev) {
2128 ret = -EEXIST;
d25628bd
LB
2129 mutex_unlock(
2130 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2131 goto error;
788f20eb
CM
2132 }
2133 }
d25628bd 2134 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2135
12bd2fc0
ID
2136 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2137 if (IS_ERR(device)) {
788f20eb 2138 /* we can safely leave the fs_devices entry around */
12bd2fc0 2139 ret = PTR_ERR(device);
2b82032c 2140 goto error;
788f20eb
CM
2141 }
2142
606686ee
JB
2143 name = rcu_string_strdup(device_path, GFP_NOFS);
2144 if (!name) {
788f20eb 2145 kfree(device);
2b82032c
YZ
2146 ret = -ENOMEM;
2147 goto error;
788f20eb 2148 }
606686ee 2149 rcu_assign_pointer(device->name, name);
2b82032c 2150
a22285a6 2151 trans = btrfs_start_transaction(root, 0);
98d5dc13 2152 if (IS_ERR(trans)) {
606686ee 2153 rcu_string_free(device->name);
98d5dc13
TI
2154 kfree(device);
2155 ret = PTR_ERR(trans);
2156 goto error;
2157 }
2158
2b82032c
YZ
2159 lock_chunks(root);
2160
d5e2003c
JB
2161 q = bdev_get_queue(bdev);
2162 if (blk_queue_discard(q))
2163 device->can_discard = 1;
2b82032c 2164 device->writeable = 1;
2b82032c 2165 device->generation = trans->transid;
788f20eb
CM
2166 device->io_width = root->sectorsize;
2167 device->io_align = root->sectorsize;
2168 device->sector_size = root->sectorsize;
2169 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2170 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2171 device->dev_root = root->fs_info->dev_root;
2172 device->bdev = bdev;
dfe25020 2173 device->in_fs_metadata = 1;
63a212ab 2174 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2175 device->mode = FMODE_EXCL;
27087f37 2176 device->dev_stats_valid = 1;
2b82032c 2177 set_blocksize(device->bdev, 4096);
788f20eb 2178
2b82032c
YZ
2179 if (seeding_dev) {
2180 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2181 ret = btrfs_prepare_sprout(root);
79787eaa 2182 BUG_ON(ret); /* -ENOMEM */
2b82032c 2183 }
788f20eb 2184
2b82032c 2185 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2186
e5e9a520 2187 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2188 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2189 list_add(&device->dev_alloc_list,
2190 &root->fs_info->fs_devices->alloc_list);
2191 root->fs_info->fs_devices->num_devices++;
2192 root->fs_info->fs_devices->open_devices++;
2193 root->fs_info->fs_devices->rw_devices++;
02db0844 2194 root->fs_info->fs_devices->total_devices++;
2b82032c 2195 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2196
2bf64758
JB
2197 spin_lock(&root->fs_info->free_chunk_lock);
2198 root->fs_info->free_chunk_space += device->total_bytes;
2199 spin_unlock(&root->fs_info->free_chunk_lock);
2200
c289811c
CM
2201 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2202 root->fs_info->fs_devices->rotating = 1;
2203
3c1dbdf5 2204 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2205 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2206 tmp + device->total_bytes);
788f20eb 2207
3c1dbdf5 2208 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2209 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2210 tmp + 1);
0d39376a
AJ
2211
2212 /* add sysfs device entry */
2213 btrfs_kobj_add_device(root->fs_info, device);
2214
e5e9a520 2215 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2216
2b82032c 2217 if (seeding_dev) {
b2373f25 2218 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2b82032c 2219 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2220 if (ret) {
2221 btrfs_abort_transaction(trans, root, ret);
79787eaa 2222 goto error_trans;
005d6427 2223 }
2b82032c 2224 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2225 if (ret) {
2226 btrfs_abort_transaction(trans, root, ret);
79787eaa 2227 goto error_trans;
005d6427 2228 }
b2373f25
AJ
2229
2230 /* Sprouting would change fsid of the mounted root,
2231 * so rename the fsid on the sysfs
2232 */
2233 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2234 root->fs_info->fsid);
2235 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2236 goto error_trans;
2b82032c
YZ
2237 } else {
2238 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2239 if (ret) {
2240 btrfs_abort_transaction(trans, root, ret);
79787eaa 2241 goto error_trans;
005d6427 2242 }
2b82032c
YZ
2243 }
2244
913d952e
CM
2245 /*
2246 * we've got more storage, clear any full flags on the space
2247 * infos
2248 */
2249 btrfs_clear_space_info_full(root->fs_info);
2250
7d9eb12c 2251 unlock_chunks(root);
5af3e8cc
SB
2252 root->fs_info->num_tolerated_disk_barrier_failures =
2253 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2254 ret = btrfs_commit_transaction(trans, root);
a2135011 2255
2b82032c
YZ
2256 if (seeding_dev) {
2257 mutex_unlock(&uuid_mutex);
2258 up_write(&sb->s_umount);
788f20eb 2259
79787eaa
JM
2260 if (ret) /* transaction commit */
2261 return ret;
2262
2b82032c 2263 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2264 if (ret < 0)
2265 btrfs_error(root->fs_info, ret,
2266 "Failed to relocate sys chunks after "
2267 "device initialization. This can be fixed "
2268 "using the \"btrfs balance\" command.");
671415b7
MX
2269 trans = btrfs_attach_transaction(root);
2270 if (IS_ERR(trans)) {
2271 if (PTR_ERR(trans) == -ENOENT)
2272 return 0;
2273 return PTR_ERR(trans);
2274 }
2275 ret = btrfs_commit_transaction(trans, root);
2b82032c 2276 }
c9e9f97b 2277
5a1972bd
QW
2278 /* Update ctime/mtime for libblkid */
2279 update_dev_time(device_path);
2b82032c 2280 return ret;
79787eaa
JM
2281
2282error_trans:
2283 unlock_chunks(root);
79787eaa 2284 btrfs_end_transaction(trans, root);
606686ee 2285 rcu_string_free(device->name);
0d39376a 2286 btrfs_kobj_rm_device(root->fs_info, device);
79787eaa 2287 kfree(device);
2b82032c 2288error:
e525fd89 2289 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2290 if (seeding_dev) {
2291 mutex_unlock(&uuid_mutex);
2292 up_write(&sb->s_umount);
2293 }
c9e9f97b 2294 return ret;
788f20eb
CM
2295}
2296
e93c89c1 2297int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2298 struct btrfs_device *srcdev,
e93c89c1
SB
2299 struct btrfs_device **device_out)
2300{
2301 struct request_queue *q;
2302 struct btrfs_device *device;
2303 struct block_device *bdev;
2304 struct btrfs_fs_info *fs_info = root->fs_info;
2305 struct list_head *devices;
2306 struct rcu_string *name;
12bd2fc0 2307 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2308 int ret = 0;
2309
2310 *device_out = NULL;
1c43366d
MX
2311 if (fs_info->fs_devices->seeding) {
2312 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2313 return -EINVAL;
1c43366d 2314 }
e93c89c1
SB
2315
2316 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2317 fs_info->bdev_holder);
1c43366d
MX
2318 if (IS_ERR(bdev)) {
2319 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2320 return PTR_ERR(bdev);
1c43366d 2321 }
e93c89c1
SB
2322
2323 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2324
2325 devices = &fs_info->fs_devices->devices;
2326 list_for_each_entry(device, devices, dev_list) {
2327 if (device->bdev == bdev) {
1c43366d 2328 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2329 ret = -EEXIST;
2330 goto error;
2331 }
2332 }
2333
1c43366d
MX
2334
2335 if (i_size_read(bdev->bd_inode) < srcdev->total_bytes) {
2336 btrfs_err(fs_info, "target device is smaller than source device!");
2337 ret = -EINVAL;
2338 goto error;
2339 }
2340
2341
12bd2fc0
ID
2342 device = btrfs_alloc_device(NULL, &devid, NULL);
2343 if (IS_ERR(device)) {
2344 ret = PTR_ERR(device);
e93c89c1
SB
2345 goto error;
2346 }
2347
2348 name = rcu_string_strdup(device_path, GFP_NOFS);
2349 if (!name) {
2350 kfree(device);
2351 ret = -ENOMEM;
2352 goto error;
2353 }
2354 rcu_assign_pointer(device->name, name);
2355
2356 q = bdev_get_queue(bdev);
2357 if (blk_queue_discard(q))
2358 device->can_discard = 1;
2359 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2360 device->writeable = 1;
e93c89c1
SB
2361 device->generation = 0;
2362 device->io_width = root->sectorsize;
2363 device->io_align = root->sectorsize;
2364 device->sector_size = root->sectorsize;
1c43366d
MX
2365 device->total_bytes = srcdev->total_bytes;
2366 device->disk_total_bytes = srcdev->disk_total_bytes;
2367 device->bytes_used = srcdev->bytes_used;
e93c89c1
SB
2368 device->dev_root = fs_info->dev_root;
2369 device->bdev = bdev;
2370 device->in_fs_metadata = 1;
2371 device->is_tgtdev_for_dev_replace = 1;
2372 device->mode = FMODE_EXCL;
27087f37 2373 device->dev_stats_valid = 1;
e93c89c1
SB
2374 set_blocksize(device->bdev, 4096);
2375 device->fs_devices = fs_info->fs_devices;
2376 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2377 fs_info->fs_devices->num_devices++;
2378 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2379 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2380
2381 *device_out = device;
2382 return ret;
2383
2384error:
2385 blkdev_put(bdev, FMODE_EXCL);
2386 return ret;
2387}
2388
2389void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2390 struct btrfs_device *tgtdev)
2391{
2392 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2393 tgtdev->io_width = fs_info->dev_root->sectorsize;
2394 tgtdev->io_align = fs_info->dev_root->sectorsize;
2395 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2396 tgtdev->dev_root = fs_info->dev_root;
2397 tgtdev->in_fs_metadata = 1;
2398}
2399
d397712b
CM
2400static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2401 struct btrfs_device *device)
0b86a832
CM
2402{
2403 int ret;
2404 struct btrfs_path *path;
2405 struct btrfs_root *root;
2406 struct btrfs_dev_item *dev_item;
2407 struct extent_buffer *leaf;
2408 struct btrfs_key key;
2409
2410 root = device->dev_root->fs_info->chunk_root;
2411
2412 path = btrfs_alloc_path();
2413 if (!path)
2414 return -ENOMEM;
2415
2416 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2417 key.type = BTRFS_DEV_ITEM_KEY;
2418 key.offset = device->devid;
2419
2420 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2421 if (ret < 0)
2422 goto out;
2423
2424 if (ret > 0) {
2425 ret = -ENOENT;
2426 goto out;
2427 }
2428
2429 leaf = path->nodes[0];
2430 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2431
2432 btrfs_set_device_id(leaf, dev_item, device->devid);
2433 btrfs_set_device_type(leaf, dev_item, device->type);
2434 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2435 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2436 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2437 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2438 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2439 btrfs_mark_buffer_dirty(leaf);
2440
2441out:
2442 btrfs_free_path(path);
2443 return ret;
2444}
2445
7d9eb12c 2446static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2447 struct btrfs_device *device, u64 new_size)
2448{
2449 struct btrfs_super_block *super_copy =
6c41761f 2450 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2451 u64 old_total = btrfs_super_total_bytes(super_copy);
2452 u64 diff = new_size - device->total_bytes;
2453
2b82032c
YZ
2454 if (!device->writeable)
2455 return -EACCES;
63a212ab
SB
2456 if (new_size <= device->total_bytes ||
2457 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2458 return -EINVAL;
2459
8f18cf13 2460 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2461 device->fs_devices->total_rw_bytes += diff;
2462
2463 device->total_bytes = new_size;
9779b72f 2464 device->disk_total_bytes = new_size;
4184ea7f
CM
2465 btrfs_clear_space_info_full(device->dev_root->fs_info);
2466
8f18cf13
CM
2467 return btrfs_update_device(trans, device);
2468}
2469
7d9eb12c
CM
2470int btrfs_grow_device(struct btrfs_trans_handle *trans,
2471 struct btrfs_device *device, u64 new_size)
2472{
2473 int ret;
2474 lock_chunks(device->dev_root);
2475 ret = __btrfs_grow_device(trans, device, new_size);
2476 unlock_chunks(device->dev_root);
2477 return ret;
2478}
2479
8f18cf13
CM
2480static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2481 struct btrfs_root *root,
2482 u64 chunk_tree, u64 chunk_objectid,
2483 u64 chunk_offset)
2484{
2485 int ret;
2486 struct btrfs_path *path;
2487 struct btrfs_key key;
2488
2489 root = root->fs_info->chunk_root;
2490 path = btrfs_alloc_path();
2491 if (!path)
2492 return -ENOMEM;
2493
2494 key.objectid = chunk_objectid;
2495 key.offset = chunk_offset;
2496 key.type = BTRFS_CHUNK_ITEM_KEY;
2497
2498 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2499 if (ret < 0)
2500 goto out;
2501 else if (ret > 0) { /* Logic error or corruption */
2502 btrfs_error(root->fs_info, -ENOENT,
2503 "Failed lookup while freeing chunk.");
2504 ret = -ENOENT;
2505 goto out;
2506 }
8f18cf13
CM
2507
2508 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2509 if (ret < 0)
2510 btrfs_error(root->fs_info, ret,
2511 "Failed to delete chunk item.");
2512out:
8f18cf13 2513 btrfs_free_path(path);
65a246c5 2514 return ret;
8f18cf13
CM
2515}
2516
b2950863 2517static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2518 chunk_offset)
2519{
6c41761f 2520 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2521 struct btrfs_disk_key *disk_key;
2522 struct btrfs_chunk *chunk;
2523 u8 *ptr;
2524 int ret = 0;
2525 u32 num_stripes;
2526 u32 array_size;
2527 u32 len = 0;
2528 u32 cur;
2529 struct btrfs_key key;
2530
2531 array_size = btrfs_super_sys_array_size(super_copy);
2532
2533 ptr = super_copy->sys_chunk_array;
2534 cur = 0;
2535
2536 while (cur < array_size) {
2537 disk_key = (struct btrfs_disk_key *)ptr;
2538 btrfs_disk_key_to_cpu(&key, disk_key);
2539
2540 len = sizeof(*disk_key);
2541
2542 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2543 chunk = (struct btrfs_chunk *)(ptr + len);
2544 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2545 len += btrfs_chunk_item_size(num_stripes);
2546 } else {
2547 ret = -EIO;
2548 break;
2549 }
2550 if (key.objectid == chunk_objectid &&
2551 key.offset == chunk_offset) {
2552 memmove(ptr, ptr + len, array_size - (cur + len));
2553 array_size -= len;
2554 btrfs_set_super_sys_array_size(super_copy, array_size);
2555 } else {
2556 ptr += len;
2557 cur += len;
2558 }
2559 }
2560 return ret;
2561}
2562
b2950863 2563static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2564 u64 chunk_tree, u64 chunk_objectid,
2565 u64 chunk_offset)
2566{
2567 struct extent_map_tree *em_tree;
2568 struct btrfs_root *extent_root;
2569 struct btrfs_trans_handle *trans;
2570 struct extent_map *em;
2571 struct map_lookup *map;
2572 int ret;
2573 int i;
2574
2575 root = root->fs_info->chunk_root;
2576 extent_root = root->fs_info->extent_root;
2577 em_tree = &root->fs_info->mapping_tree.map_tree;
2578
ba1bf481
JB
2579 ret = btrfs_can_relocate(extent_root, chunk_offset);
2580 if (ret)
2581 return -ENOSPC;
2582
8f18cf13 2583 /* step one, relocate all the extents inside this chunk */
1a40e23b 2584 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2585 if (ret)
2586 return ret;
8f18cf13 2587
a22285a6 2588 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2589 if (IS_ERR(trans)) {
2590 ret = PTR_ERR(trans);
2591 btrfs_std_error(root->fs_info, ret);
2592 return ret;
2593 }
8f18cf13 2594
7d9eb12c
CM
2595 lock_chunks(root);
2596
8f18cf13
CM
2597 /*
2598 * step two, delete the device extents and the
2599 * chunk tree entries
2600 */
890871be 2601 read_lock(&em_tree->lock);
8f18cf13 2602 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2603 read_unlock(&em_tree->lock);
8f18cf13 2604
285190d9 2605 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2606 em->start + em->len < chunk_offset);
8f18cf13
CM
2607 map = (struct map_lookup *)em->bdev;
2608
2609 for (i = 0; i < map->num_stripes; i++) {
2610 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2611 map->stripes[i].physical);
2612 BUG_ON(ret);
a061fc8d 2613
dfe25020
CM
2614 if (map->stripes[i].dev) {
2615 ret = btrfs_update_device(trans, map->stripes[i].dev);
2616 BUG_ON(ret);
2617 }
8f18cf13
CM
2618 }
2619 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2620 chunk_offset);
2621
2622 BUG_ON(ret);
2623
1abe9b8a 2624 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2625
8f18cf13
CM
2626 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2627 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2628 BUG_ON(ret);
8f18cf13
CM
2629 }
2630
2b82032c
YZ
2631 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2632 BUG_ON(ret);
2633
890871be 2634 write_lock(&em_tree->lock);
2b82032c 2635 remove_extent_mapping(em_tree, em);
890871be 2636 write_unlock(&em_tree->lock);
2b82032c 2637
2b82032c
YZ
2638 /* once for the tree */
2639 free_extent_map(em);
2640 /* once for us */
2641 free_extent_map(em);
2642
2643 unlock_chunks(root);
2644 btrfs_end_transaction(trans, root);
2645 return 0;
2646}
2647
2648static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2649{
2650 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2651 struct btrfs_path *path;
2652 struct extent_buffer *leaf;
2653 struct btrfs_chunk *chunk;
2654 struct btrfs_key key;
2655 struct btrfs_key found_key;
2656 u64 chunk_tree = chunk_root->root_key.objectid;
2657 u64 chunk_type;
ba1bf481
JB
2658 bool retried = false;
2659 int failed = 0;
2b82032c
YZ
2660 int ret;
2661
2662 path = btrfs_alloc_path();
2663 if (!path)
2664 return -ENOMEM;
2665
ba1bf481 2666again:
2b82032c
YZ
2667 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2668 key.offset = (u64)-1;
2669 key.type = BTRFS_CHUNK_ITEM_KEY;
2670
2671 while (1) {
2672 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2673 if (ret < 0)
2674 goto error;
79787eaa 2675 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2676
2677 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2678 key.type);
2679 if (ret < 0)
2680 goto error;
2681 if (ret > 0)
2682 break;
1a40e23b 2683
2b82032c
YZ
2684 leaf = path->nodes[0];
2685 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2686
2b82032c
YZ
2687 chunk = btrfs_item_ptr(leaf, path->slots[0],
2688 struct btrfs_chunk);
2689 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2690 btrfs_release_path(path);
8f18cf13 2691
2b82032c
YZ
2692 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2693 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2694 found_key.objectid,
2695 found_key.offset);
ba1bf481
JB
2696 if (ret == -ENOSPC)
2697 failed++;
14586651
HS
2698 else
2699 BUG_ON(ret);
2b82032c 2700 }
8f18cf13 2701
2b82032c
YZ
2702 if (found_key.offset == 0)
2703 break;
2704 key.offset = found_key.offset - 1;
2705 }
2706 ret = 0;
ba1bf481
JB
2707 if (failed && !retried) {
2708 failed = 0;
2709 retried = true;
2710 goto again;
fae7f21c 2711 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2712 ret = -ENOSPC;
2713 }
2b82032c
YZ
2714error:
2715 btrfs_free_path(path);
2716 return ret;
8f18cf13
CM
2717}
2718
0940ebf6
ID
2719static int insert_balance_item(struct btrfs_root *root,
2720 struct btrfs_balance_control *bctl)
2721{
2722 struct btrfs_trans_handle *trans;
2723 struct btrfs_balance_item *item;
2724 struct btrfs_disk_balance_args disk_bargs;
2725 struct btrfs_path *path;
2726 struct extent_buffer *leaf;
2727 struct btrfs_key key;
2728 int ret, err;
2729
2730 path = btrfs_alloc_path();
2731 if (!path)
2732 return -ENOMEM;
2733
2734 trans = btrfs_start_transaction(root, 0);
2735 if (IS_ERR(trans)) {
2736 btrfs_free_path(path);
2737 return PTR_ERR(trans);
2738 }
2739
2740 key.objectid = BTRFS_BALANCE_OBJECTID;
2741 key.type = BTRFS_BALANCE_ITEM_KEY;
2742 key.offset = 0;
2743
2744 ret = btrfs_insert_empty_item(trans, root, path, &key,
2745 sizeof(*item));
2746 if (ret)
2747 goto out;
2748
2749 leaf = path->nodes[0];
2750 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2751
2752 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2753
2754 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2755 btrfs_set_balance_data(leaf, item, &disk_bargs);
2756 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2757 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2758 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2759 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2760
2761 btrfs_set_balance_flags(leaf, item, bctl->flags);
2762
2763 btrfs_mark_buffer_dirty(leaf);
2764out:
2765 btrfs_free_path(path);
2766 err = btrfs_commit_transaction(trans, root);
2767 if (err && !ret)
2768 ret = err;
2769 return ret;
2770}
2771
2772static int del_balance_item(struct btrfs_root *root)
2773{
2774 struct btrfs_trans_handle *trans;
2775 struct btrfs_path *path;
2776 struct btrfs_key key;
2777 int ret, err;
2778
2779 path = btrfs_alloc_path();
2780 if (!path)
2781 return -ENOMEM;
2782
2783 trans = btrfs_start_transaction(root, 0);
2784 if (IS_ERR(trans)) {
2785 btrfs_free_path(path);
2786 return PTR_ERR(trans);
2787 }
2788
2789 key.objectid = BTRFS_BALANCE_OBJECTID;
2790 key.type = BTRFS_BALANCE_ITEM_KEY;
2791 key.offset = 0;
2792
2793 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2794 if (ret < 0)
2795 goto out;
2796 if (ret > 0) {
2797 ret = -ENOENT;
2798 goto out;
2799 }
2800
2801 ret = btrfs_del_item(trans, root, path);
2802out:
2803 btrfs_free_path(path);
2804 err = btrfs_commit_transaction(trans, root);
2805 if (err && !ret)
2806 ret = err;
2807 return ret;
2808}
2809
59641015
ID
2810/*
2811 * This is a heuristic used to reduce the number of chunks balanced on
2812 * resume after balance was interrupted.
2813 */
2814static void update_balance_args(struct btrfs_balance_control *bctl)
2815{
2816 /*
2817 * Turn on soft mode for chunk types that were being converted.
2818 */
2819 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2820 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2821 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2822 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2823 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2824 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2825
2826 /*
2827 * Turn on usage filter if is not already used. The idea is
2828 * that chunks that we have already balanced should be
2829 * reasonably full. Don't do it for chunks that are being
2830 * converted - that will keep us from relocating unconverted
2831 * (albeit full) chunks.
2832 */
2833 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2834 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2835 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2836 bctl->data.usage = 90;
2837 }
2838 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2839 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2840 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2841 bctl->sys.usage = 90;
2842 }
2843 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2844 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2845 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2846 bctl->meta.usage = 90;
2847 }
2848}
2849
c9e9f97b
ID
2850/*
2851 * Should be called with both balance and volume mutexes held to
2852 * serialize other volume operations (add_dev/rm_dev/resize) with
2853 * restriper. Same goes for unset_balance_control.
2854 */
2855static void set_balance_control(struct btrfs_balance_control *bctl)
2856{
2857 struct btrfs_fs_info *fs_info = bctl->fs_info;
2858
2859 BUG_ON(fs_info->balance_ctl);
2860
2861 spin_lock(&fs_info->balance_lock);
2862 fs_info->balance_ctl = bctl;
2863 spin_unlock(&fs_info->balance_lock);
2864}
2865
2866static void unset_balance_control(struct btrfs_fs_info *fs_info)
2867{
2868 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2869
2870 BUG_ON(!fs_info->balance_ctl);
2871
2872 spin_lock(&fs_info->balance_lock);
2873 fs_info->balance_ctl = NULL;
2874 spin_unlock(&fs_info->balance_lock);
2875
2876 kfree(bctl);
2877}
2878
ed25e9b2
ID
2879/*
2880 * Balance filters. Return 1 if chunk should be filtered out
2881 * (should not be balanced).
2882 */
899c81ea 2883static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2884 struct btrfs_balance_args *bargs)
2885{
899c81ea
ID
2886 chunk_type = chunk_to_extended(chunk_type) &
2887 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2888
899c81ea 2889 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2890 return 0;
2891
2892 return 1;
2893}
2894
5ce5b3c0
ID
2895static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2896 struct btrfs_balance_args *bargs)
2897{
2898 struct btrfs_block_group_cache *cache;
2899 u64 chunk_used, user_thresh;
2900 int ret = 1;
2901
2902 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2903 chunk_used = btrfs_block_group_used(&cache->item);
2904
a105bb88 2905 if (bargs->usage == 0)
3e39cea6 2906 user_thresh = 1;
a105bb88
ID
2907 else if (bargs->usage > 100)
2908 user_thresh = cache->key.offset;
2909 else
2910 user_thresh = div_factor_fine(cache->key.offset,
2911 bargs->usage);
2912
5ce5b3c0
ID
2913 if (chunk_used < user_thresh)
2914 ret = 0;
2915
2916 btrfs_put_block_group(cache);
2917 return ret;
2918}
2919
409d404b
ID
2920static int chunk_devid_filter(struct extent_buffer *leaf,
2921 struct btrfs_chunk *chunk,
2922 struct btrfs_balance_args *bargs)
2923{
2924 struct btrfs_stripe *stripe;
2925 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2926 int i;
2927
2928 for (i = 0; i < num_stripes; i++) {
2929 stripe = btrfs_stripe_nr(chunk, i);
2930 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2931 return 0;
2932 }
2933
2934 return 1;
2935}
2936
94e60d5a
ID
2937/* [pstart, pend) */
2938static int chunk_drange_filter(struct extent_buffer *leaf,
2939 struct btrfs_chunk *chunk,
2940 u64 chunk_offset,
2941 struct btrfs_balance_args *bargs)
2942{
2943 struct btrfs_stripe *stripe;
2944 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2945 u64 stripe_offset;
2946 u64 stripe_length;
2947 int factor;
2948 int i;
2949
2950 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2951 return 0;
2952
2953 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2954 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2955 factor = num_stripes / 2;
2956 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2957 factor = num_stripes - 1;
2958 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2959 factor = num_stripes - 2;
2960 } else {
2961 factor = num_stripes;
2962 }
94e60d5a
ID
2963
2964 for (i = 0; i < num_stripes; i++) {
2965 stripe = btrfs_stripe_nr(chunk, i);
2966 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2967 continue;
2968
2969 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2970 stripe_length = btrfs_chunk_length(leaf, chunk);
2971 do_div(stripe_length, factor);
2972
2973 if (stripe_offset < bargs->pend &&
2974 stripe_offset + stripe_length > bargs->pstart)
2975 return 0;
2976 }
2977
2978 return 1;
2979}
2980
ea67176a
ID
2981/* [vstart, vend) */
2982static int chunk_vrange_filter(struct extent_buffer *leaf,
2983 struct btrfs_chunk *chunk,
2984 u64 chunk_offset,
2985 struct btrfs_balance_args *bargs)
2986{
2987 if (chunk_offset < bargs->vend &&
2988 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2989 /* at least part of the chunk is inside this vrange */
2990 return 0;
2991
2992 return 1;
2993}
2994
899c81ea 2995static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2996 struct btrfs_balance_args *bargs)
2997{
2998 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2999 return 0;
3000
899c81ea
ID
3001 chunk_type = chunk_to_extended(chunk_type) &
3002 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3003
899c81ea 3004 if (bargs->target == chunk_type)
cfa4c961
ID
3005 return 1;
3006
3007 return 0;
3008}
3009
f43ffb60
ID
3010static int should_balance_chunk(struct btrfs_root *root,
3011 struct extent_buffer *leaf,
3012 struct btrfs_chunk *chunk, u64 chunk_offset)
3013{
3014 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3015 struct btrfs_balance_args *bargs = NULL;
3016 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3017
3018 /* type filter */
3019 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3020 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3021 return 0;
3022 }
3023
3024 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3025 bargs = &bctl->data;
3026 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3027 bargs = &bctl->sys;
3028 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3029 bargs = &bctl->meta;
3030
ed25e9b2
ID
3031 /* profiles filter */
3032 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3033 chunk_profiles_filter(chunk_type, bargs)) {
3034 return 0;
5ce5b3c0
ID
3035 }
3036
3037 /* usage filter */
3038 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3039 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3040 return 0;
409d404b
ID
3041 }
3042
3043 /* devid filter */
3044 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3045 chunk_devid_filter(leaf, chunk, bargs)) {
3046 return 0;
94e60d5a
ID
3047 }
3048
3049 /* drange filter, makes sense only with devid filter */
3050 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3051 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3052 return 0;
ea67176a
ID
3053 }
3054
3055 /* vrange filter */
3056 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3057 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3058 return 0;
ed25e9b2
ID
3059 }
3060
cfa4c961
ID
3061 /* soft profile changing mode */
3062 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3063 chunk_soft_convert_filter(chunk_type, bargs)) {
3064 return 0;
3065 }
3066
7d824b6f
DS
3067 /*
3068 * limited by count, must be the last filter
3069 */
3070 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3071 if (bargs->limit == 0)
3072 return 0;
3073 else
3074 bargs->limit--;
3075 }
3076
f43ffb60
ID
3077 return 1;
3078}
3079
c9e9f97b 3080static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3081{
19a39dce 3082 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3083 struct btrfs_root *chunk_root = fs_info->chunk_root;
3084 struct btrfs_root *dev_root = fs_info->dev_root;
3085 struct list_head *devices;
ec44a35c
CM
3086 struct btrfs_device *device;
3087 u64 old_size;
3088 u64 size_to_free;
f43ffb60 3089 struct btrfs_chunk *chunk;
ec44a35c
CM
3090 struct btrfs_path *path;
3091 struct btrfs_key key;
ec44a35c 3092 struct btrfs_key found_key;
c9e9f97b 3093 struct btrfs_trans_handle *trans;
f43ffb60
ID
3094 struct extent_buffer *leaf;
3095 int slot;
c9e9f97b
ID
3096 int ret;
3097 int enospc_errors = 0;
19a39dce 3098 bool counting = true;
7d824b6f
DS
3099 u64 limit_data = bctl->data.limit;
3100 u64 limit_meta = bctl->meta.limit;
3101 u64 limit_sys = bctl->sys.limit;
ec44a35c 3102
ec44a35c 3103 /* step one make some room on all the devices */
c9e9f97b 3104 devices = &fs_info->fs_devices->devices;
c6e30871 3105 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
3106 old_size = device->total_bytes;
3107 size_to_free = div_factor(old_size, 1);
3108 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3109 if (!device->writeable ||
63a212ab
SB
3110 device->total_bytes - device->bytes_used > size_to_free ||
3111 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3112 continue;
3113
3114 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3115 if (ret == -ENOSPC)
3116 break;
ec44a35c
CM
3117 BUG_ON(ret);
3118
a22285a6 3119 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3120 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3121
3122 ret = btrfs_grow_device(trans, device, old_size);
3123 BUG_ON(ret);
3124
3125 btrfs_end_transaction(trans, dev_root);
3126 }
3127
3128 /* step two, relocate all the chunks */
3129 path = btrfs_alloc_path();
17e9f796
MF
3130 if (!path) {
3131 ret = -ENOMEM;
3132 goto error;
3133 }
19a39dce
ID
3134
3135 /* zero out stat counters */
3136 spin_lock(&fs_info->balance_lock);
3137 memset(&bctl->stat, 0, sizeof(bctl->stat));
3138 spin_unlock(&fs_info->balance_lock);
3139again:
7d824b6f
DS
3140 if (!counting) {
3141 bctl->data.limit = limit_data;
3142 bctl->meta.limit = limit_meta;
3143 bctl->sys.limit = limit_sys;
3144 }
ec44a35c
CM
3145 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3146 key.offset = (u64)-1;
3147 key.type = BTRFS_CHUNK_ITEM_KEY;
3148
d397712b 3149 while (1) {
19a39dce 3150 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3151 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3152 ret = -ECANCELED;
3153 goto error;
3154 }
3155
ec44a35c
CM
3156 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3157 if (ret < 0)
3158 goto error;
3159
3160 /*
3161 * this shouldn't happen, it means the last relocate
3162 * failed
3163 */
3164 if (ret == 0)
c9e9f97b 3165 BUG(); /* FIXME break ? */
ec44a35c
CM
3166
3167 ret = btrfs_previous_item(chunk_root, path, 0,
3168 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
3169 if (ret) {
3170 ret = 0;
ec44a35c 3171 break;
c9e9f97b 3172 }
7d9eb12c 3173
f43ffb60
ID
3174 leaf = path->nodes[0];
3175 slot = path->slots[0];
3176 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3177
ec44a35c
CM
3178 if (found_key.objectid != key.objectid)
3179 break;
7d9eb12c 3180
f43ffb60
ID
3181 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3182
19a39dce
ID
3183 if (!counting) {
3184 spin_lock(&fs_info->balance_lock);
3185 bctl->stat.considered++;
3186 spin_unlock(&fs_info->balance_lock);
3187 }
3188
f43ffb60
ID
3189 ret = should_balance_chunk(chunk_root, leaf, chunk,
3190 found_key.offset);
b3b4aa74 3191 btrfs_release_path(path);
f43ffb60
ID
3192 if (!ret)
3193 goto loop;
3194
19a39dce
ID
3195 if (counting) {
3196 spin_lock(&fs_info->balance_lock);
3197 bctl->stat.expected++;
3198 spin_unlock(&fs_info->balance_lock);
3199 goto loop;
3200 }
3201
ec44a35c
CM
3202 ret = btrfs_relocate_chunk(chunk_root,
3203 chunk_root->root_key.objectid,
3204 found_key.objectid,
3205 found_key.offset);
508794eb
JB
3206 if (ret && ret != -ENOSPC)
3207 goto error;
19a39dce 3208 if (ret == -ENOSPC) {
c9e9f97b 3209 enospc_errors++;
19a39dce
ID
3210 } else {
3211 spin_lock(&fs_info->balance_lock);
3212 bctl->stat.completed++;
3213 spin_unlock(&fs_info->balance_lock);
3214 }
f43ffb60 3215loop:
795a3321
ID
3216 if (found_key.offset == 0)
3217 break;
ba1bf481 3218 key.offset = found_key.offset - 1;
ec44a35c 3219 }
c9e9f97b 3220
19a39dce
ID
3221 if (counting) {
3222 btrfs_release_path(path);
3223 counting = false;
3224 goto again;
3225 }
ec44a35c
CM
3226error:
3227 btrfs_free_path(path);
c9e9f97b 3228 if (enospc_errors) {
efe120a0 3229 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3230 enospc_errors);
3231 if (!ret)
3232 ret = -ENOSPC;
3233 }
3234
ec44a35c
CM
3235 return ret;
3236}
3237
0c460c0d
ID
3238/**
3239 * alloc_profile_is_valid - see if a given profile is valid and reduced
3240 * @flags: profile to validate
3241 * @extended: if true @flags is treated as an extended profile
3242 */
3243static int alloc_profile_is_valid(u64 flags, int extended)
3244{
3245 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3246 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3247
3248 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3249
3250 /* 1) check that all other bits are zeroed */
3251 if (flags & ~mask)
3252 return 0;
3253
3254 /* 2) see if profile is reduced */
3255 if (flags == 0)
3256 return !extended; /* "0" is valid for usual profiles */
3257
3258 /* true if exactly one bit set */
3259 return (flags & (flags - 1)) == 0;
3260}
3261
837d5b6e
ID
3262static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3263{
a7e99c69
ID
3264 /* cancel requested || normal exit path */
3265 return atomic_read(&fs_info->balance_cancel_req) ||
3266 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3267 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3268}
3269
c9e9f97b
ID
3270static void __cancel_balance(struct btrfs_fs_info *fs_info)
3271{
0940ebf6
ID
3272 int ret;
3273
c9e9f97b 3274 unset_balance_control(fs_info);
0940ebf6 3275 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3276 if (ret)
3277 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3278
3279 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3280}
3281
c9e9f97b
ID
3282/*
3283 * Should be called with both balance and volume mutexes held
3284 */
3285int btrfs_balance(struct btrfs_balance_control *bctl,
3286 struct btrfs_ioctl_balance_args *bargs)
3287{
3288 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3289 u64 allowed;
e4837f8f 3290 int mixed = 0;
c9e9f97b 3291 int ret;
8dabb742 3292 u64 num_devices;
de98ced9 3293 unsigned seq;
c9e9f97b 3294
837d5b6e 3295 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3296 atomic_read(&fs_info->balance_pause_req) ||
3297 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3298 ret = -EINVAL;
3299 goto out;
3300 }
3301
e4837f8f
ID
3302 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3303 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3304 mixed = 1;
3305
f43ffb60
ID
3306 /*
3307 * In case of mixed groups both data and meta should be picked,
3308 * and identical options should be given for both of them.
3309 */
e4837f8f
ID
3310 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3311 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3312 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3313 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3314 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3315 btrfs_err(fs_info, "with mixed groups data and "
3316 "metadata balance options must be the same");
f43ffb60
ID
3317 ret = -EINVAL;
3318 goto out;
3319 }
3320 }
3321
8dabb742
SB
3322 num_devices = fs_info->fs_devices->num_devices;
3323 btrfs_dev_replace_lock(&fs_info->dev_replace);
3324 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3325 BUG_ON(num_devices < 1);
3326 num_devices--;
3327 }
3328 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3329 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3330 if (num_devices == 1)
e4d8ec0f 3331 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3332 else if (num_devices > 1)
e4d8ec0f 3333 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3334 if (num_devices > 2)
3335 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3336 if (num_devices > 3)
3337 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3338 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3339 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3340 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3341 (bctl->data.target & ~allowed))) {
efe120a0
FH
3342 btrfs_err(fs_info, "unable to start balance with target "
3343 "data profile %llu",
c1c9ff7c 3344 bctl->data.target);
e4d8ec0f
ID
3345 ret = -EINVAL;
3346 goto out;
3347 }
6728b198
ID
3348 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3349 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3350 (bctl->meta.target & ~allowed))) {
efe120a0
FH
3351 btrfs_err(fs_info,
3352 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3353 bctl->meta.target);
e4d8ec0f
ID
3354 ret = -EINVAL;
3355 goto out;
3356 }
6728b198
ID
3357 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3358 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3359 (bctl->sys.target & ~allowed))) {
efe120a0
FH
3360 btrfs_err(fs_info,
3361 "unable to start balance with target system profile %llu",
c1c9ff7c 3362 bctl->sys.target);
e4d8ec0f
ID
3363 ret = -EINVAL;
3364 goto out;
3365 }
3366
e4837f8f
ID
3367 /* allow dup'ed data chunks only in mixed mode */
3368 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3369 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3370 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3371 ret = -EINVAL;
3372 goto out;
3373 }
3374
3375 /* allow to reduce meta or sys integrity only if force set */
3376 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3377 BTRFS_BLOCK_GROUP_RAID10 |
3378 BTRFS_BLOCK_GROUP_RAID5 |
3379 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3380 do {
3381 seq = read_seqbegin(&fs_info->profiles_lock);
3382
3383 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3384 (fs_info->avail_system_alloc_bits & allowed) &&
3385 !(bctl->sys.target & allowed)) ||
3386 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3387 (fs_info->avail_metadata_alloc_bits & allowed) &&
3388 !(bctl->meta.target & allowed))) {
3389 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3390 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3391 } else {
efe120a0
FH
3392 btrfs_err(fs_info, "balance will reduce metadata "
3393 "integrity, use force if you want this");
de98ced9
MX
3394 ret = -EINVAL;
3395 goto out;
3396 }
e4d8ec0f 3397 }
de98ced9 3398 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3399
5af3e8cc
SB
3400 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3401 int num_tolerated_disk_barrier_failures;
3402 u64 target = bctl->sys.target;
3403
3404 num_tolerated_disk_barrier_failures =
3405 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3406 if (num_tolerated_disk_barrier_failures > 0 &&
3407 (target &
3408 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3409 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3410 num_tolerated_disk_barrier_failures = 0;
3411 else if (num_tolerated_disk_barrier_failures > 1 &&
3412 (target &
3413 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3414 num_tolerated_disk_barrier_failures = 1;
3415
3416 fs_info->num_tolerated_disk_barrier_failures =
3417 num_tolerated_disk_barrier_failures;
3418 }
3419
0940ebf6 3420 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3421 if (ret && ret != -EEXIST)
0940ebf6
ID
3422 goto out;
3423
59641015
ID
3424 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3425 BUG_ON(ret == -EEXIST);
3426 set_balance_control(bctl);
3427 } else {
3428 BUG_ON(ret != -EEXIST);
3429 spin_lock(&fs_info->balance_lock);
3430 update_balance_args(bctl);
3431 spin_unlock(&fs_info->balance_lock);
3432 }
c9e9f97b 3433
837d5b6e 3434 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3435 mutex_unlock(&fs_info->balance_mutex);
3436
3437 ret = __btrfs_balance(fs_info);
3438
3439 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3440 atomic_dec(&fs_info->balance_running);
c9e9f97b 3441
bf023ecf
ID
3442 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3443 fs_info->num_tolerated_disk_barrier_failures =
3444 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3445 }
3446
c9e9f97b
ID
3447 if (bargs) {
3448 memset(bargs, 0, sizeof(*bargs));
19a39dce 3449 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3450 }
3451
3a01aa7a
ID
3452 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3453 balance_need_close(fs_info)) {
3454 __cancel_balance(fs_info);
3455 }
3456
837d5b6e 3457 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3458
3459 return ret;
3460out:
59641015
ID
3461 if (bctl->flags & BTRFS_BALANCE_RESUME)
3462 __cancel_balance(fs_info);
ed0fb78f 3463 else {
59641015 3464 kfree(bctl);
ed0fb78f
ID
3465 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3466 }
59641015
ID
3467 return ret;
3468}
3469
3470static int balance_kthread(void *data)
3471{
2b6ba629 3472 struct btrfs_fs_info *fs_info = data;
9555c6c1 3473 int ret = 0;
59641015
ID
3474
3475 mutex_lock(&fs_info->volume_mutex);
3476 mutex_lock(&fs_info->balance_mutex);
3477
2b6ba629 3478 if (fs_info->balance_ctl) {
efe120a0 3479 btrfs_info(fs_info, "continuing balance");
2b6ba629 3480 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3481 }
59641015
ID
3482
3483 mutex_unlock(&fs_info->balance_mutex);
3484 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3485
59641015
ID
3486 return ret;
3487}
3488
2b6ba629
ID
3489int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3490{
3491 struct task_struct *tsk;
3492
3493 spin_lock(&fs_info->balance_lock);
3494 if (!fs_info->balance_ctl) {
3495 spin_unlock(&fs_info->balance_lock);
3496 return 0;
3497 }
3498 spin_unlock(&fs_info->balance_lock);
3499
3500 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3501 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3502 return 0;
3503 }
3504
3505 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3506 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3507}
3508
68310a5e 3509int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3510{
59641015
ID
3511 struct btrfs_balance_control *bctl;
3512 struct btrfs_balance_item *item;
3513 struct btrfs_disk_balance_args disk_bargs;
3514 struct btrfs_path *path;
3515 struct extent_buffer *leaf;
3516 struct btrfs_key key;
3517 int ret;
3518
3519 path = btrfs_alloc_path();
3520 if (!path)
3521 return -ENOMEM;
3522
59641015
ID
3523 key.objectid = BTRFS_BALANCE_OBJECTID;
3524 key.type = BTRFS_BALANCE_ITEM_KEY;
3525 key.offset = 0;
3526
68310a5e 3527 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3528 if (ret < 0)
68310a5e 3529 goto out;
59641015
ID
3530 if (ret > 0) { /* ret = -ENOENT; */
3531 ret = 0;
68310a5e
ID
3532 goto out;
3533 }
3534
3535 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3536 if (!bctl) {
3537 ret = -ENOMEM;
3538 goto out;
59641015
ID
3539 }
3540
3541 leaf = path->nodes[0];
3542 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3543
68310a5e
ID
3544 bctl->fs_info = fs_info;
3545 bctl->flags = btrfs_balance_flags(leaf, item);
3546 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3547
3548 btrfs_balance_data(leaf, item, &disk_bargs);
3549 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3550 btrfs_balance_meta(leaf, item, &disk_bargs);
3551 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3552 btrfs_balance_sys(leaf, item, &disk_bargs);
3553 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3554
ed0fb78f
ID
3555 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3556
68310a5e
ID
3557 mutex_lock(&fs_info->volume_mutex);
3558 mutex_lock(&fs_info->balance_mutex);
59641015 3559
68310a5e
ID
3560 set_balance_control(bctl);
3561
3562 mutex_unlock(&fs_info->balance_mutex);
3563 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3564out:
3565 btrfs_free_path(path);
ec44a35c
CM
3566 return ret;
3567}
3568
837d5b6e
ID
3569int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3570{
3571 int ret = 0;
3572
3573 mutex_lock(&fs_info->balance_mutex);
3574 if (!fs_info->balance_ctl) {
3575 mutex_unlock(&fs_info->balance_mutex);
3576 return -ENOTCONN;
3577 }
3578
3579 if (atomic_read(&fs_info->balance_running)) {
3580 atomic_inc(&fs_info->balance_pause_req);
3581 mutex_unlock(&fs_info->balance_mutex);
3582
3583 wait_event(fs_info->balance_wait_q,
3584 atomic_read(&fs_info->balance_running) == 0);
3585
3586 mutex_lock(&fs_info->balance_mutex);
3587 /* we are good with balance_ctl ripped off from under us */
3588 BUG_ON(atomic_read(&fs_info->balance_running));
3589 atomic_dec(&fs_info->balance_pause_req);
3590 } else {
3591 ret = -ENOTCONN;
3592 }
3593
3594 mutex_unlock(&fs_info->balance_mutex);
3595 return ret;
3596}
3597
a7e99c69
ID
3598int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3599{
e649e587
ID
3600 if (fs_info->sb->s_flags & MS_RDONLY)
3601 return -EROFS;
3602
a7e99c69
ID
3603 mutex_lock(&fs_info->balance_mutex);
3604 if (!fs_info->balance_ctl) {
3605 mutex_unlock(&fs_info->balance_mutex);
3606 return -ENOTCONN;
3607 }
3608
3609 atomic_inc(&fs_info->balance_cancel_req);
3610 /*
3611 * if we are running just wait and return, balance item is
3612 * deleted in btrfs_balance in this case
3613 */
3614 if (atomic_read(&fs_info->balance_running)) {
3615 mutex_unlock(&fs_info->balance_mutex);
3616 wait_event(fs_info->balance_wait_q,
3617 atomic_read(&fs_info->balance_running) == 0);
3618 mutex_lock(&fs_info->balance_mutex);
3619 } else {
3620 /* __cancel_balance needs volume_mutex */
3621 mutex_unlock(&fs_info->balance_mutex);
3622 mutex_lock(&fs_info->volume_mutex);
3623 mutex_lock(&fs_info->balance_mutex);
3624
3625 if (fs_info->balance_ctl)
3626 __cancel_balance(fs_info);
3627
3628 mutex_unlock(&fs_info->volume_mutex);
3629 }
3630
3631 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3632 atomic_dec(&fs_info->balance_cancel_req);
3633 mutex_unlock(&fs_info->balance_mutex);
3634 return 0;
3635}
3636
803b2f54
SB
3637static int btrfs_uuid_scan_kthread(void *data)
3638{
3639 struct btrfs_fs_info *fs_info = data;
3640 struct btrfs_root *root = fs_info->tree_root;
3641 struct btrfs_key key;
3642 struct btrfs_key max_key;
3643 struct btrfs_path *path = NULL;
3644 int ret = 0;
3645 struct extent_buffer *eb;
3646 int slot;
3647 struct btrfs_root_item root_item;
3648 u32 item_size;
f45388f3 3649 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3650
3651 path = btrfs_alloc_path();
3652 if (!path) {
3653 ret = -ENOMEM;
3654 goto out;
3655 }
3656
3657 key.objectid = 0;
3658 key.type = BTRFS_ROOT_ITEM_KEY;
3659 key.offset = 0;
3660
3661 max_key.objectid = (u64)-1;
3662 max_key.type = BTRFS_ROOT_ITEM_KEY;
3663 max_key.offset = (u64)-1;
3664
803b2f54 3665 while (1) {
6174d3cb 3666 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3667 if (ret) {
3668 if (ret > 0)
3669 ret = 0;
3670 break;
3671 }
3672
3673 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3674 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3675 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3676 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3677 goto skip;
3678
3679 eb = path->nodes[0];
3680 slot = path->slots[0];
3681 item_size = btrfs_item_size_nr(eb, slot);
3682 if (item_size < sizeof(root_item))
3683 goto skip;
3684
803b2f54
SB
3685 read_extent_buffer(eb, &root_item,
3686 btrfs_item_ptr_offset(eb, slot),
3687 (int)sizeof(root_item));
3688 if (btrfs_root_refs(&root_item) == 0)
3689 goto skip;
f45388f3
FDBM
3690
3691 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3692 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3693 if (trans)
3694 goto update_tree;
3695
3696 btrfs_release_path(path);
803b2f54
SB
3697 /*
3698 * 1 - subvol uuid item
3699 * 1 - received_subvol uuid item
3700 */
3701 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3702 if (IS_ERR(trans)) {
3703 ret = PTR_ERR(trans);
3704 break;
3705 }
f45388f3
FDBM
3706 continue;
3707 } else {
3708 goto skip;
3709 }
3710update_tree:
3711 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3712 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3713 root_item.uuid,
3714 BTRFS_UUID_KEY_SUBVOL,
3715 key.objectid);
3716 if (ret < 0) {
efe120a0 3717 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3718 ret);
803b2f54
SB
3719 break;
3720 }
3721 }
3722
3723 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3724 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3725 root_item.received_uuid,
3726 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3727 key.objectid);
3728 if (ret < 0) {
efe120a0 3729 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3730 ret);
803b2f54
SB
3731 break;
3732 }
3733 }
3734
f45388f3 3735skip:
803b2f54
SB
3736 if (trans) {
3737 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3738 trans = NULL;
803b2f54
SB
3739 if (ret)
3740 break;
3741 }
3742
803b2f54
SB
3743 btrfs_release_path(path);
3744 if (key.offset < (u64)-1) {
3745 key.offset++;
3746 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3747 key.offset = 0;
3748 key.type = BTRFS_ROOT_ITEM_KEY;
3749 } else if (key.objectid < (u64)-1) {
3750 key.offset = 0;
3751 key.type = BTRFS_ROOT_ITEM_KEY;
3752 key.objectid++;
3753 } else {
3754 break;
3755 }
3756 cond_resched();
3757 }
3758
3759out:
3760 btrfs_free_path(path);
f45388f3
FDBM
3761 if (trans && !IS_ERR(trans))
3762 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3763 if (ret)
efe120a0 3764 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3765 else
3766 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3767 up(&fs_info->uuid_tree_rescan_sem);
3768 return 0;
3769}
3770
70f80175
SB
3771/*
3772 * Callback for btrfs_uuid_tree_iterate().
3773 * returns:
3774 * 0 check succeeded, the entry is not outdated.
3775 * < 0 if an error occured.
3776 * > 0 if the check failed, which means the caller shall remove the entry.
3777 */
3778static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3779 u8 *uuid, u8 type, u64 subid)
3780{
3781 struct btrfs_key key;
3782 int ret = 0;
3783 struct btrfs_root *subvol_root;
3784
3785 if (type != BTRFS_UUID_KEY_SUBVOL &&
3786 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3787 goto out;
3788
3789 key.objectid = subid;
3790 key.type = BTRFS_ROOT_ITEM_KEY;
3791 key.offset = (u64)-1;
3792 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3793 if (IS_ERR(subvol_root)) {
3794 ret = PTR_ERR(subvol_root);
3795 if (ret == -ENOENT)
3796 ret = 1;
3797 goto out;
3798 }
3799
3800 switch (type) {
3801 case BTRFS_UUID_KEY_SUBVOL:
3802 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3803 ret = 1;
3804 break;
3805 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3806 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3807 BTRFS_UUID_SIZE))
3808 ret = 1;
3809 break;
3810 }
3811
3812out:
3813 return ret;
3814}
3815
3816static int btrfs_uuid_rescan_kthread(void *data)
3817{
3818 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3819 int ret;
3820
3821 /*
3822 * 1st step is to iterate through the existing UUID tree and
3823 * to delete all entries that contain outdated data.
3824 * 2nd step is to add all missing entries to the UUID tree.
3825 */
3826 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3827 if (ret < 0) {
efe120a0 3828 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
3829 up(&fs_info->uuid_tree_rescan_sem);
3830 return ret;
3831 }
3832 return btrfs_uuid_scan_kthread(data);
3833}
3834
f7a81ea4
SB
3835int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3836{
3837 struct btrfs_trans_handle *trans;
3838 struct btrfs_root *tree_root = fs_info->tree_root;
3839 struct btrfs_root *uuid_root;
803b2f54
SB
3840 struct task_struct *task;
3841 int ret;
f7a81ea4
SB
3842
3843 /*
3844 * 1 - root node
3845 * 1 - root item
3846 */
3847 trans = btrfs_start_transaction(tree_root, 2);
3848 if (IS_ERR(trans))
3849 return PTR_ERR(trans);
3850
3851 uuid_root = btrfs_create_tree(trans, fs_info,
3852 BTRFS_UUID_TREE_OBJECTID);
3853 if (IS_ERR(uuid_root)) {
3854 btrfs_abort_transaction(trans, tree_root,
3855 PTR_ERR(uuid_root));
3856 return PTR_ERR(uuid_root);
3857 }
3858
3859 fs_info->uuid_root = uuid_root;
3860
803b2f54
SB
3861 ret = btrfs_commit_transaction(trans, tree_root);
3862 if (ret)
3863 return ret;
3864
3865 down(&fs_info->uuid_tree_rescan_sem);
3866 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3867 if (IS_ERR(task)) {
70f80175 3868 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3869 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
3870 up(&fs_info->uuid_tree_rescan_sem);
3871 return PTR_ERR(task);
3872 }
3873
3874 return 0;
f7a81ea4 3875}
803b2f54 3876
70f80175
SB
3877int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3878{
3879 struct task_struct *task;
3880
3881 down(&fs_info->uuid_tree_rescan_sem);
3882 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3883 if (IS_ERR(task)) {
3884 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3885 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
3886 up(&fs_info->uuid_tree_rescan_sem);
3887 return PTR_ERR(task);
3888 }
3889
3890 return 0;
3891}
3892
8f18cf13
CM
3893/*
3894 * shrinking a device means finding all of the device extents past
3895 * the new size, and then following the back refs to the chunks.
3896 * The chunk relocation code actually frees the device extent
3897 */
3898int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3899{
3900 struct btrfs_trans_handle *trans;
3901 struct btrfs_root *root = device->dev_root;
3902 struct btrfs_dev_extent *dev_extent = NULL;
3903 struct btrfs_path *path;
3904 u64 length;
3905 u64 chunk_tree;
3906 u64 chunk_objectid;
3907 u64 chunk_offset;
3908 int ret;
3909 int slot;
ba1bf481
JB
3910 int failed = 0;
3911 bool retried = false;
8f18cf13
CM
3912 struct extent_buffer *l;
3913 struct btrfs_key key;
6c41761f 3914 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3915 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3916 u64 old_size = device->total_bytes;
8f18cf13
CM
3917 u64 diff = device->total_bytes - new_size;
3918
63a212ab
SB
3919 if (device->is_tgtdev_for_dev_replace)
3920 return -EINVAL;
3921
8f18cf13
CM
3922 path = btrfs_alloc_path();
3923 if (!path)
3924 return -ENOMEM;
3925
8f18cf13
CM
3926 path->reada = 2;
3927
7d9eb12c
CM
3928 lock_chunks(root);
3929
8f18cf13 3930 device->total_bytes = new_size;
2bf64758 3931 if (device->writeable) {
2b82032c 3932 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3933 spin_lock(&root->fs_info->free_chunk_lock);
3934 root->fs_info->free_chunk_space -= diff;
3935 spin_unlock(&root->fs_info->free_chunk_lock);
3936 }
7d9eb12c 3937 unlock_chunks(root);
8f18cf13 3938
ba1bf481 3939again:
8f18cf13
CM
3940 key.objectid = device->devid;
3941 key.offset = (u64)-1;
3942 key.type = BTRFS_DEV_EXTENT_KEY;
3943
213e64da 3944 do {
8f18cf13
CM
3945 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3946 if (ret < 0)
3947 goto done;
3948
3949 ret = btrfs_previous_item(root, path, 0, key.type);
3950 if (ret < 0)
3951 goto done;
3952 if (ret) {
3953 ret = 0;
b3b4aa74 3954 btrfs_release_path(path);
bf1fb512 3955 break;
8f18cf13
CM
3956 }
3957
3958 l = path->nodes[0];
3959 slot = path->slots[0];
3960 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3961
ba1bf481 3962 if (key.objectid != device->devid) {
b3b4aa74 3963 btrfs_release_path(path);
bf1fb512 3964 break;
ba1bf481 3965 }
8f18cf13
CM
3966
3967 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3968 length = btrfs_dev_extent_length(l, dev_extent);
3969
ba1bf481 3970 if (key.offset + length <= new_size) {
b3b4aa74 3971 btrfs_release_path(path);
d6397bae 3972 break;
ba1bf481 3973 }
8f18cf13
CM
3974
3975 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3976 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3977 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3978 btrfs_release_path(path);
8f18cf13
CM
3979
3980 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3981 chunk_offset);
ba1bf481 3982 if (ret && ret != -ENOSPC)
8f18cf13 3983 goto done;
ba1bf481
JB
3984 if (ret == -ENOSPC)
3985 failed++;
213e64da 3986 } while (key.offset-- > 0);
ba1bf481
JB
3987
3988 if (failed && !retried) {
3989 failed = 0;
3990 retried = true;
3991 goto again;
3992 } else if (failed && retried) {
3993 ret = -ENOSPC;
3994 lock_chunks(root);
3995
3996 device->total_bytes = old_size;
3997 if (device->writeable)
3998 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3999 spin_lock(&root->fs_info->free_chunk_lock);
4000 root->fs_info->free_chunk_space += diff;
4001 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
4002 unlock_chunks(root);
4003 goto done;
8f18cf13
CM
4004 }
4005
d6397bae 4006 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4007 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4008 if (IS_ERR(trans)) {
4009 ret = PTR_ERR(trans);
4010 goto done;
4011 }
4012
d6397bae
CB
4013 lock_chunks(root);
4014
4015 device->disk_total_bytes = new_size;
4016 /* Now btrfs_update_device() will change the on-disk size. */
4017 ret = btrfs_update_device(trans, device);
4018 if (ret) {
4019 unlock_chunks(root);
4020 btrfs_end_transaction(trans, root);
4021 goto done;
4022 }
4023 WARN_ON(diff > old_total);
4024 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4025 unlock_chunks(root);
4026 btrfs_end_transaction(trans, root);
8f18cf13
CM
4027done:
4028 btrfs_free_path(path);
4029 return ret;
4030}
4031
125ccb0a 4032static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4033 struct btrfs_key *key,
4034 struct btrfs_chunk *chunk, int item_size)
4035{
6c41761f 4036 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4037 struct btrfs_disk_key disk_key;
4038 u32 array_size;
4039 u8 *ptr;
4040
4041 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e
GH
4042 if (array_size + item_size + sizeof(disk_key)
4043 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
4044 return -EFBIG;
4045
4046 ptr = super_copy->sys_chunk_array + array_size;
4047 btrfs_cpu_key_to_disk(&disk_key, key);
4048 memcpy(ptr, &disk_key, sizeof(disk_key));
4049 ptr += sizeof(disk_key);
4050 memcpy(ptr, chunk, item_size);
4051 item_size += sizeof(disk_key);
4052 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4053 return 0;
4054}
4055
73c5de00
AJ
4056/*
4057 * sort the devices in descending order by max_avail, total_avail
4058 */
4059static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4060{
73c5de00
AJ
4061 const struct btrfs_device_info *di_a = a;
4062 const struct btrfs_device_info *di_b = b;
9b3f68b9 4063
73c5de00 4064 if (di_a->max_avail > di_b->max_avail)
b2117a39 4065 return -1;
73c5de00 4066 if (di_a->max_avail < di_b->max_avail)
b2117a39 4067 return 1;
73c5de00
AJ
4068 if (di_a->total_avail > di_b->total_avail)
4069 return -1;
4070 if (di_a->total_avail < di_b->total_avail)
4071 return 1;
4072 return 0;
b2117a39 4073}
0b86a832 4074
48a3b636 4075static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
4076 [BTRFS_RAID_RAID10] = {
4077 .sub_stripes = 2,
4078 .dev_stripes = 1,
4079 .devs_max = 0, /* 0 == as many as possible */
4080 .devs_min = 4,
4081 .devs_increment = 2,
4082 .ncopies = 2,
4083 },
4084 [BTRFS_RAID_RAID1] = {
4085 .sub_stripes = 1,
4086 .dev_stripes = 1,
4087 .devs_max = 2,
4088 .devs_min = 2,
4089 .devs_increment = 2,
4090 .ncopies = 2,
4091 },
4092 [BTRFS_RAID_DUP] = {
4093 .sub_stripes = 1,
4094 .dev_stripes = 2,
4095 .devs_max = 1,
4096 .devs_min = 1,
4097 .devs_increment = 1,
4098 .ncopies = 2,
4099 },
4100 [BTRFS_RAID_RAID0] = {
4101 .sub_stripes = 1,
4102 .dev_stripes = 1,
4103 .devs_max = 0,
4104 .devs_min = 2,
4105 .devs_increment = 1,
4106 .ncopies = 1,
4107 },
4108 [BTRFS_RAID_SINGLE] = {
4109 .sub_stripes = 1,
4110 .dev_stripes = 1,
4111 .devs_max = 1,
4112 .devs_min = 1,
4113 .devs_increment = 1,
4114 .ncopies = 1,
4115 },
e942f883
CM
4116 [BTRFS_RAID_RAID5] = {
4117 .sub_stripes = 1,
4118 .dev_stripes = 1,
4119 .devs_max = 0,
4120 .devs_min = 2,
4121 .devs_increment = 1,
4122 .ncopies = 2,
4123 },
4124 [BTRFS_RAID_RAID6] = {
4125 .sub_stripes = 1,
4126 .dev_stripes = 1,
4127 .devs_max = 0,
4128 .devs_min = 3,
4129 .devs_increment = 1,
4130 .ncopies = 3,
4131 },
31e50229
LB
4132};
4133
53b381b3
DW
4134static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4135{
4136 /* TODO allow them to set a preferred stripe size */
4137 return 64 * 1024;
4138}
4139
4140static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4141{
53b381b3
DW
4142 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4143 return;
4144
ceda0864 4145 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4146}
4147
23f8f9b7
GH
4148#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4149 - sizeof(struct btrfs_item) \
4150 - sizeof(struct btrfs_chunk)) \
4151 / sizeof(struct btrfs_stripe) + 1)
4152
4153#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4154 - 2 * sizeof(struct btrfs_disk_key) \
4155 - 2 * sizeof(struct btrfs_chunk)) \
4156 / sizeof(struct btrfs_stripe) + 1)
4157
73c5de00 4158static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4159 struct btrfs_root *extent_root, u64 start,
4160 u64 type)
b2117a39 4161{
73c5de00
AJ
4162 struct btrfs_fs_info *info = extent_root->fs_info;
4163 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4164 struct list_head *cur;
4165 struct map_lookup *map = NULL;
4166 struct extent_map_tree *em_tree;
4167 struct extent_map *em;
4168 struct btrfs_device_info *devices_info = NULL;
4169 u64 total_avail;
4170 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4171 int data_stripes; /* number of stripes that count for
4172 block group size */
73c5de00
AJ
4173 int sub_stripes; /* sub_stripes info for map */
4174 int dev_stripes; /* stripes per dev */
4175 int devs_max; /* max devs to use */
4176 int devs_min; /* min devs needed */
4177 int devs_increment; /* ndevs has to be a multiple of this */
4178 int ncopies; /* how many copies to data has */
4179 int ret;
4180 u64 max_stripe_size;
4181 u64 max_chunk_size;
4182 u64 stripe_size;
4183 u64 num_bytes;
53b381b3 4184 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4185 int ndevs;
4186 int i;
4187 int j;
31e50229 4188 int index;
593060d7 4189
0c460c0d 4190 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4191
73c5de00
AJ
4192 if (list_empty(&fs_devices->alloc_list))
4193 return -ENOSPC;
b2117a39 4194
31e50229 4195 index = __get_raid_index(type);
73c5de00 4196
31e50229
LB
4197 sub_stripes = btrfs_raid_array[index].sub_stripes;
4198 dev_stripes = btrfs_raid_array[index].dev_stripes;
4199 devs_max = btrfs_raid_array[index].devs_max;
4200 devs_min = btrfs_raid_array[index].devs_min;
4201 devs_increment = btrfs_raid_array[index].devs_increment;
4202 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4203
9b3f68b9 4204 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4205 max_stripe_size = 1024 * 1024 * 1024;
4206 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4207 if (!devs_max)
4208 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4209 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4210 /* for larger filesystems, use larger metadata chunks */
4211 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4212 max_stripe_size = 1024 * 1024 * 1024;
4213 else
4214 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4215 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4216 if (!devs_max)
4217 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4218 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4219 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4220 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4221 if (!devs_max)
4222 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4223 } else {
351fd353 4224 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4225 type);
4226 BUG_ON(1);
9b3f68b9
CM
4227 }
4228
2b82032c
YZ
4229 /* we don't want a chunk larger than 10% of writeable space */
4230 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4231 max_chunk_size);
9b3f68b9 4232
73c5de00
AJ
4233 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4234 GFP_NOFS);
4235 if (!devices_info)
4236 return -ENOMEM;
0cad8a11 4237
73c5de00 4238 cur = fs_devices->alloc_list.next;
9b3f68b9 4239
9f680ce0 4240 /*
73c5de00
AJ
4241 * in the first pass through the devices list, we gather information
4242 * about the available holes on each device.
9f680ce0 4243 */
73c5de00
AJ
4244 ndevs = 0;
4245 while (cur != &fs_devices->alloc_list) {
4246 struct btrfs_device *device;
4247 u64 max_avail;
4248 u64 dev_offset;
b2117a39 4249
73c5de00 4250 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4251
73c5de00 4252 cur = cur->next;
b2117a39 4253
73c5de00 4254 if (!device->writeable) {
31b1a2bd 4255 WARN(1, KERN_ERR
efe120a0 4256 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4257 continue;
4258 }
b2117a39 4259
63a212ab
SB
4260 if (!device->in_fs_metadata ||
4261 device->is_tgtdev_for_dev_replace)
73c5de00 4262 continue;
b2117a39 4263
73c5de00
AJ
4264 if (device->total_bytes > device->bytes_used)
4265 total_avail = device->total_bytes - device->bytes_used;
4266 else
4267 total_avail = 0;
38c01b96 4268
4269 /* If there is no space on this device, skip it. */
4270 if (total_avail == 0)
4271 continue;
b2117a39 4272
6df9a95e 4273 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4274 max_stripe_size * dev_stripes,
4275 &dev_offset, &max_avail);
4276 if (ret && ret != -ENOSPC)
4277 goto error;
b2117a39 4278
73c5de00
AJ
4279 if (ret == 0)
4280 max_avail = max_stripe_size * dev_stripes;
b2117a39 4281
73c5de00
AJ
4282 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4283 continue;
b2117a39 4284
063d006f
ES
4285 if (ndevs == fs_devices->rw_devices) {
4286 WARN(1, "%s: found more than %llu devices\n",
4287 __func__, fs_devices->rw_devices);
4288 break;
4289 }
73c5de00
AJ
4290 devices_info[ndevs].dev_offset = dev_offset;
4291 devices_info[ndevs].max_avail = max_avail;
4292 devices_info[ndevs].total_avail = total_avail;
4293 devices_info[ndevs].dev = device;
4294 ++ndevs;
4295 }
b2117a39 4296
73c5de00
AJ
4297 /*
4298 * now sort the devices by hole size / available space
4299 */
4300 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4301 btrfs_cmp_device_info, NULL);
b2117a39 4302
73c5de00
AJ
4303 /* round down to number of usable stripes */
4304 ndevs -= ndevs % devs_increment;
b2117a39 4305
73c5de00
AJ
4306 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4307 ret = -ENOSPC;
4308 goto error;
b2117a39 4309 }
9f680ce0 4310
73c5de00
AJ
4311 if (devs_max && ndevs > devs_max)
4312 ndevs = devs_max;
4313 /*
4314 * the primary goal is to maximize the number of stripes, so use as many
4315 * devices as possible, even if the stripes are not maximum sized.
4316 */
4317 stripe_size = devices_info[ndevs-1].max_avail;
4318 num_stripes = ndevs * dev_stripes;
b2117a39 4319
53b381b3
DW
4320 /*
4321 * this will have to be fixed for RAID1 and RAID10 over
4322 * more drives
4323 */
4324 data_stripes = num_stripes / ncopies;
4325
53b381b3
DW
4326 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4327 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4328 btrfs_super_stripesize(info->super_copy));
4329 data_stripes = num_stripes - 1;
4330 }
4331 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4332 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4333 btrfs_super_stripesize(info->super_copy));
4334 data_stripes = num_stripes - 2;
4335 }
86db2578
CM
4336
4337 /*
4338 * Use the number of data stripes to figure out how big this chunk
4339 * is really going to be in terms of logical address space,
4340 * and compare that answer with the max chunk size
4341 */
4342 if (stripe_size * data_stripes > max_chunk_size) {
4343 u64 mask = (1ULL << 24) - 1;
4344 stripe_size = max_chunk_size;
4345 do_div(stripe_size, data_stripes);
4346
4347 /* bump the answer up to a 16MB boundary */
4348 stripe_size = (stripe_size + mask) & ~mask;
4349
4350 /* but don't go higher than the limits we found
4351 * while searching for free extents
4352 */
4353 if (stripe_size > devices_info[ndevs-1].max_avail)
4354 stripe_size = devices_info[ndevs-1].max_avail;
4355 }
4356
73c5de00 4357 do_div(stripe_size, dev_stripes);
37db63a4
ID
4358
4359 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4360 do_div(stripe_size, raid_stripe_len);
4361 stripe_size *= raid_stripe_len;
b2117a39
MX
4362
4363 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4364 if (!map) {
4365 ret = -ENOMEM;
4366 goto error;
4367 }
4368 map->num_stripes = num_stripes;
9b3f68b9 4369
73c5de00
AJ
4370 for (i = 0; i < ndevs; ++i) {
4371 for (j = 0; j < dev_stripes; ++j) {
4372 int s = i * dev_stripes + j;
4373 map->stripes[s].dev = devices_info[i].dev;
4374 map->stripes[s].physical = devices_info[i].dev_offset +
4375 j * stripe_size;
6324fbf3 4376 }
6324fbf3 4377 }
2b82032c 4378 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4379 map->stripe_len = raid_stripe_len;
4380 map->io_align = raid_stripe_len;
4381 map->io_width = raid_stripe_len;
2b82032c 4382 map->type = type;
2b82032c 4383 map->sub_stripes = sub_stripes;
0b86a832 4384
53b381b3 4385 num_bytes = stripe_size * data_stripes;
0b86a832 4386
73c5de00 4387 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4388
172ddd60 4389 em = alloc_extent_map();
2b82032c 4390 if (!em) {
298a8f9c 4391 kfree(map);
b2117a39
MX
4392 ret = -ENOMEM;
4393 goto error;
593060d7 4394 }
298a8f9c 4395 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4396 em->bdev = (struct block_device *)map;
4397 em->start = start;
73c5de00 4398 em->len = num_bytes;
2b82032c
YZ
4399 em->block_start = 0;
4400 em->block_len = em->len;
6df9a95e 4401 em->orig_block_len = stripe_size;
593060d7 4402
2b82032c 4403 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4404 write_lock(&em_tree->lock);
09a2a8f9 4405 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4406 if (!ret) {
4407 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4408 atomic_inc(&em->refs);
4409 }
890871be 4410 write_unlock(&em_tree->lock);
0f5d42b2
JB
4411 if (ret) {
4412 free_extent_map(em);
1dd4602f 4413 goto error;
0f5d42b2 4414 }
0b86a832 4415
04487488
JB
4416 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4417 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4418 start, num_bytes);
6df9a95e
JB
4419 if (ret)
4420 goto error_del_extent;
2b82032c 4421
0f5d42b2 4422 free_extent_map(em);
53b381b3
DW
4423 check_raid56_incompat_flag(extent_root->fs_info, type);
4424
b2117a39 4425 kfree(devices_info);
2b82032c 4426 return 0;
b2117a39 4427
6df9a95e 4428error_del_extent:
0f5d42b2
JB
4429 write_lock(&em_tree->lock);
4430 remove_extent_mapping(em_tree, em);
4431 write_unlock(&em_tree->lock);
4432
4433 /* One for our allocation */
4434 free_extent_map(em);
4435 /* One for the tree reference */
4436 free_extent_map(em);
b2117a39 4437error:
b2117a39
MX
4438 kfree(devices_info);
4439 return ret;
2b82032c
YZ
4440}
4441
6df9a95e 4442int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4443 struct btrfs_root *extent_root,
6df9a95e 4444 u64 chunk_offset, u64 chunk_size)
2b82032c 4445{
2b82032c
YZ
4446 struct btrfs_key key;
4447 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4448 struct btrfs_device *device;
4449 struct btrfs_chunk *chunk;
4450 struct btrfs_stripe *stripe;
6df9a95e
JB
4451 struct extent_map_tree *em_tree;
4452 struct extent_map *em;
4453 struct map_lookup *map;
4454 size_t item_size;
4455 u64 dev_offset;
4456 u64 stripe_size;
4457 int i = 0;
2b82032c
YZ
4458 int ret;
4459
6df9a95e
JB
4460 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4461 read_lock(&em_tree->lock);
4462 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4463 read_unlock(&em_tree->lock);
4464
4465 if (!em) {
4466 btrfs_crit(extent_root->fs_info, "unable to find logical "
4467 "%Lu len %Lu", chunk_offset, chunk_size);
4468 return -EINVAL;
4469 }
4470
4471 if (em->start != chunk_offset || em->len != chunk_size) {
4472 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4473 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4474 chunk_size, em->start, em->len);
4475 free_extent_map(em);
4476 return -EINVAL;
4477 }
4478
4479 map = (struct map_lookup *)em->bdev;
4480 item_size = btrfs_chunk_item_size(map->num_stripes);
4481 stripe_size = em->orig_block_len;
4482
2b82032c 4483 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4484 if (!chunk) {
4485 ret = -ENOMEM;
4486 goto out;
4487 }
4488
4489 for (i = 0; i < map->num_stripes; i++) {
4490 device = map->stripes[i].dev;
4491 dev_offset = map->stripes[i].physical;
2b82032c 4492
2b82032c 4493 device->bytes_used += stripe_size;
0b86a832 4494 ret = btrfs_update_device(trans, device);
3acd3953 4495 if (ret)
6df9a95e
JB
4496 goto out;
4497 ret = btrfs_alloc_dev_extent(trans, device,
4498 chunk_root->root_key.objectid,
4499 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4500 chunk_offset, dev_offset,
4501 stripe_size);
4502 if (ret)
4503 goto out;
2b82032c
YZ
4504 }
4505
2bf64758
JB
4506 spin_lock(&extent_root->fs_info->free_chunk_lock);
4507 extent_root->fs_info->free_chunk_space -= (stripe_size *
4508 map->num_stripes);
4509 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4510
2b82032c 4511 stripe = &chunk->stripe;
6df9a95e
JB
4512 for (i = 0; i < map->num_stripes; i++) {
4513 device = map->stripes[i].dev;
4514 dev_offset = map->stripes[i].physical;
0b86a832 4515
e17cade2
CM
4516 btrfs_set_stack_stripe_devid(stripe, device->devid);
4517 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4518 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4519 stripe++;
0b86a832
CM
4520 }
4521
2b82032c 4522 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4523 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4524 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4525 btrfs_set_stack_chunk_type(chunk, map->type);
4526 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4527 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4528 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4529 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4530 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4531
2b82032c
YZ
4532 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4533 key.type = BTRFS_CHUNK_ITEM_KEY;
4534 key.offset = chunk_offset;
0b86a832 4535
2b82032c 4536 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4537 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4538 /*
4539 * TODO: Cleanup of inserted chunk root in case of
4540 * failure.
4541 */
125ccb0a 4542 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4543 item_size);
8f18cf13 4544 }
1abe9b8a 4545
6df9a95e 4546out:
0b86a832 4547 kfree(chunk);
6df9a95e 4548 free_extent_map(em);
4ed1d16e 4549 return ret;
2b82032c 4550}
0b86a832 4551
2b82032c
YZ
4552/*
4553 * Chunk allocation falls into two parts. The first part does works
4554 * that make the new allocated chunk useable, but not do any operation
4555 * that modifies the chunk tree. The second part does the works that
4556 * require modifying the chunk tree. This division is important for the
4557 * bootstrap process of adding storage to a seed btrfs.
4558 */
4559int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4560 struct btrfs_root *extent_root, u64 type)
4561{
4562 u64 chunk_offset;
2b82032c 4563
6df9a95e
JB
4564 chunk_offset = find_next_chunk(extent_root->fs_info);
4565 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4566}
4567
d397712b 4568static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4569 struct btrfs_root *root,
4570 struct btrfs_device *device)
4571{
4572 u64 chunk_offset;
4573 u64 sys_chunk_offset;
2b82032c 4574 u64 alloc_profile;
2b82032c
YZ
4575 struct btrfs_fs_info *fs_info = root->fs_info;
4576 struct btrfs_root *extent_root = fs_info->extent_root;
4577 int ret;
4578
6df9a95e 4579 chunk_offset = find_next_chunk(fs_info);
de98ced9 4580 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4581 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4582 alloc_profile);
79787eaa
JM
4583 if (ret)
4584 return ret;
2b82032c 4585
6df9a95e 4586 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4587 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4588 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4589 alloc_profile);
005d6427
DS
4590 if (ret) {
4591 btrfs_abort_transaction(trans, root, ret);
4592 goto out;
4593 }
2b82032c
YZ
4594
4595 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4596 if (ret)
005d6427 4597 btrfs_abort_transaction(trans, root, ret);
005d6427 4598out:
79787eaa 4599 return ret;
2b82032c
YZ
4600}
4601
d20983b4
MX
4602static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4603{
4604 int max_errors;
4605
4606 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4607 BTRFS_BLOCK_GROUP_RAID10 |
4608 BTRFS_BLOCK_GROUP_RAID5 |
4609 BTRFS_BLOCK_GROUP_DUP)) {
4610 max_errors = 1;
4611 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4612 max_errors = 2;
4613 } else {
4614 max_errors = 0;
4615 }
4616
4617 return max_errors;
4618}
4619
2b82032c
YZ
4620int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4621{
4622 struct extent_map *em;
4623 struct map_lookup *map;
4624 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4625 int readonly = 0;
d20983b4 4626 int miss_ndevs = 0;
2b82032c
YZ
4627 int i;
4628
890871be 4629 read_lock(&map_tree->map_tree.lock);
2b82032c 4630 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4631 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4632 if (!em)
4633 return 1;
4634
4635 map = (struct map_lookup *)em->bdev;
4636 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4637 if (map->stripes[i].dev->missing) {
4638 miss_ndevs++;
4639 continue;
4640 }
4641
2b82032c
YZ
4642 if (!map->stripes[i].dev->writeable) {
4643 readonly = 1;
d20983b4 4644 goto end;
2b82032c
YZ
4645 }
4646 }
d20983b4
MX
4647
4648 /*
4649 * If the number of missing devices is larger than max errors,
4650 * we can not write the data into that chunk successfully, so
4651 * set it readonly.
4652 */
4653 if (miss_ndevs > btrfs_chunk_max_errors(map))
4654 readonly = 1;
4655end:
0b86a832 4656 free_extent_map(em);
2b82032c 4657 return readonly;
0b86a832
CM
4658}
4659
4660void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4661{
a8067e02 4662 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4663}
4664
4665void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4666{
4667 struct extent_map *em;
4668
d397712b 4669 while (1) {
890871be 4670 write_lock(&tree->map_tree.lock);
0b86a832
CM
4671 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4672 if (em)
4673 remove_extent_mapping(&tree->map_tree, em);
890871be 4674 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4675 if (!em)
4676 break;
0b86a832
CM
4677 /* once for us */
4678 free_extent_map(em);
4679 /* once for the tree */
4680 free_extent_map(em);
4681 }
4682}
4683
5d964051 4684int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4685{
5d964051 4686 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4687 struct extent_map *em;
4688 struct map_lookup *map;
4689 struct extent_map_tree *em_tree = &map_tree->map_tree;
4690 int ret;
4691
890871be 4692 read_lock(&em_tree->lock);
f188591e 4693 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4694 read_unlock(&em_tree->lock);
f188591e 4695
fb7669b5
JB
4696 /*
4697 * We could return errors for these cases, but that could get ugly and
4698 * we'd probably do the same thing which is just not do anything else
4699 * and exit, so return 1 so the callers don't try to use other copies.
4700 */
4701 if (!em) {
351fd353 4702 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4703 logical+len);
4704 return 1;
4705 }
4706
4707 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4708 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4709 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4710 em->start + em->len);
7d3d1744 4711 free_extent_map(em);
fb7669b5
JB
4712 return 1;
4713 }
4714
f188591e
CM
4715 map = (struct map_lookup *)em->bdev;
4716 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4717 ret = map->num_stripes;
321aecc6
CM
4718 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4719 ret = map->sub_stripes;
53b381b3
DW
4720 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4721 ret = 2;
4722 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4723 ret = 3;
f188591e
CM
4724 else
4725 ret = 1;
4726 free_extent_map(em);
ad6d620e
SB
4727
4728 btrfs_dev_replace_lock(&fs_info->dev_replace);
4729 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4730 ret++;
4731 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4732
f188591e
CM
4733 return ret;
4734}
4735
53b381b3
DW
4736unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4737 struct btrfs_mapping_tree *map_tree,
4738 u64 logical)
4739{
4740 struct extent_map *em;
4741 struct map_lookup *map;
4742 struct extent_map_tree *em_tree = &map_tree->map_tree;
4743 unsigned long len = root->sectorsize;
4744
4745 read_lock(&em_tree->lock);
4746 em = lookup_extent_mapping(em_tree, logical, len);
4747 read_unlock(&em_tree->lock);
4748 BUG_ON(!em);
4749
4750 BUG_ON(em->start > logical || em->start + em->len < logical);
4751 map = (struct map_lookup *)em->bdev;
4752 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4753 BTRFS_BLOCK_GROUP_RAID6)) {
4754 len = map->stripe_len * nr_data_stripes(map);
4755 }
4756 free_extent_map(em);
4757 return len;
4758}
4759
4760int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4761 u64 logical, u64 len, int mirror_num)
4762{
4763 struct extent_map *em;
4764 struct map_lookup *map;
4765 struct extent_map_tree *em_tree = &map_tree->map_tree;
4766 int ret = 0;
4767
4768 read_lock(&em_tree->lock);
4769 em = lookup_extent_mapping(em_tree, logical, len);
4770 read_unlock(&em_tree->lock);
4771 BUG_ON(!em);
4772
4773 BUG_ON(em->start > logical || em->start + em->len < logical);
4774 map = (struct map_lookup *)em->bdev;
4775 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4776 BTRFS_BLOCK_GROUP_RAID6))
4777 ret = 1;
4778 free_extent_map(em);
4779 return ret;
4780}
4781
30d9861f
SB
4782static int find_live_mirror(struct btrfs_fs_info *fs_info,
4783 struct map_lookup *map, int first, int num,
4784 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4785{
4786 int i;
30d9861f
SB
4787 int tolerance;
4788 struct btrfs_device *srcdev;
4789
4790 if (dev_replace_is_ongoing &&
4791 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4792 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4793 srcdev = fs_info->dev_replace.srcdev;
4794 else
4795 srcdev = NULL;
4796
4797 /*
4798 * try to avoid the drive that is the source drive for a
4799 * dev-replace procedure, only choose it if no other non-missing
4800 * mirror is available
4801 */
4802 for (tolerance = 0; tolerance < 2; tolerance++) {
4803 if (map->stripes[optimal].dev->bdev &&
4804 (tolerance || map->stripes[optimal].dev != srcdev))
4805 return optimal;
4806 for (i = first; i < first + num; i++) {
4807 if (map->stripes[i].dev->bdev &&
4808 (tolerance || map->stripes[i].dev != srcdev))
4809 return i;
4810 }
dfe25020 4811 }
30d9861f 4812
dfe25020
CM
4813 /* we couldn't find one that doesn't fail. Just return something
4814 * and the io error handling code will clean up eventually
4815 */
4816 return optimal;
4817}
4818
53b381b3
DW
4819static inline int parity_smaller(u64 a, u64 b)
4820{
4821 return a > b;
4822}
4823
4824/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4825static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4826{
4827 struct btrfs_bio_stripe s;
4828 int i;
4829 u64 l;
4830 int again = 1;
4831
4832 while (again) {
4833 again = 0;
4834 for (i = 0; i < bbio->num_stripes - 1; i++) {
4835 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4836 s = bbio->stripes[i];
4837 l = raid_map[i];
4838 bbio->stripes[i] = bbio->stripes[i+1];
4839 raid_map[i] = raid_map[i+1];
4840 bbio->stripes[i+1] = s;
4841 raid_map[i+1] = l;
4842 again = 1;
4843 }
4844 }
4845 }
4846}
4847
3ec706c8 4848static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4849 u64 logical, u64 *length,
a1d3c478 4850 struct btrfs_bio **bbio_ret,
53b381b3 4851 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4852{
4853 struct extent_map *em;
4854 struct map_lookup *map;
3ec706c8 4855 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4856 struct extent_map_tree *em_tree = &map_tree->map_tree;
4857 u64 offset;
593060d7 4858 u64 stripe_offset;
fce3bb9a 4859 u64 stripe_end_offset;
593060d7 4860 u64 stripe_nr;
fce3bb9a
LD
4861 u64 stripe_nr_orig;
4862 u64 stripe_nr_end;
53b381b3
DW
4863 u64 stripe_len;
4864 u64 *raid_map = NULL;
593060d7 4865 int stripe_index;
cea9e445 4866 int i;
de11cc12 4867 int ret = 0;
f2d8d74d 4868 int num_stripes;
a236aed1 4869 int max_errors = 0;
a1d3c478 4870 struct btrfs_bio *bbio = NULL;
472262f3
SB
4871 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4872 int dev_replace_is_ongoing = 0;
4873 int num_alloc_stripes;
ad6d620e
SB
4874 int patch_the_first_stripe_for_dev_replace = 0;
4875 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4876 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4877
890871be 4878 read_lock(&em_tree->lock);
0b86a832 4879 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4880 read_unlock(&em_tree->lock);
f2d8d74d 4881
3b951516 4882 if (!em) {
c2cf52eb 4883 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4884 logical, *length);
9bb91873
JB
4885 return -EINVAL;
4886 }
4887
4888 if (em->start > logical || em->start + em->len < logical) {
4889 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 4890 "found %Lu-%Lu", logical, em->start,
9bb91873 4891 em->start + em->len);
7d3d1744 4892 free_extent_map(em);
9bb91873 4893 return -EINVAL;
3b951516 4894 }
0b86a832 4895
0b86a832
CM
4896 map = (struct map_lookup *)em->bdev;
4897 offset = logical - em->start;
593060d7 4898
53b381b3 4899 stripe_len = map->stripe_len;
593060d7
CM
4900 stripe_nr = offset;
4901 /*
4902 * stripe_nr counts the total number of stripes we have to stride
4903 * to get to this block
4904 */
53b381b3 4905 do_div(stripe_nr, stripe_len);
593060d7 4906
53b381b3 4907 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4908 BUG_ON(offset < stripe_offset);
4909
4910 /* stripe_offset is the offset of this block in its stripe*/
4911 stripe_offset = offset - stripe_offset;
4912
53b381b3
DW
4913 /* if we're here for raid56, we need to know the stripe aligned start */
4914 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4915 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4916 raid56_full_stripe_start = offset;
4917
4918 /* allow a write of a full stripe, but make sure we don't
4919 * allow straddling of stripes
4920 */
4921 do_div(raid56_full_stripe_start, full_stripe_len);
4922 raid56_full_stripe_start *= full_stripe_len;
4923 }
4924
4925 if (rw & REQ_DISCARD) {
4926 /* we don't discard raid56 yet */
4927 if (map->type &
4928 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4929 ret = -EOPNOTSUPP;
4930 goto out;
4931 }
fce3bb9a 4932 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4933 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4934 u64 max_len;
4935 /* For writes to RAID[56], allow a full stripeset across all disks.
4936 For other RAID types and for RAID[56] reads, just allow a single
4937 stripe (on a single disk). */
4938 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4939 (rw & REQ_WRITE)) {
4940 max_len = stripe_len * nr_data_stripes(map) -
4941 (offset - raid56_full_stripe_start);
4942 } else {
4943 /* we limit the length of each bio to what fits in a stripe */
4944 max_len = stripe_len - stripe_offset;
4945 }
4946 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4947 } else {
4948 *length = em->len - offset;
4949 }
f2d8d74d 4950
53b381b3
DW
4951 /* This is for when we're called from btrfs_merge_bio_hook() and all
4952 it cares about is the length */
a1d3c478 4953 if (!bbio_ret)
cea9e445
CM
4954 goto out;
4955
472262f3
SB
4956 btrfs_dev_replace_lock(dev_replace);
4957 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4958 if (!dev_replace_is_ongoing)
4959 btrfs_dev_replace_unlock(dev_replace);
4960
ad6d620e
SB
4961 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4962 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4963 dev_replace->tgtdev != NULL) {
4964 /*
4965 * in dev-replace case, for repair case (that's the only
4966 * case where the mirror is selected explicitly when
4967 * calling btrfs_map_block), blocks left of the left cursor
4968 * can also be read from the target drive.
4969 * For REQ_GET_READ_MIRRORS, the target drive is added as
4970 * the last one to the array of stripes. For READ, it also
4971 * needs to be supported using the same mirror number.
4972 * If the requested block is not left of the left cursor,
4973 * EIO is returned. This can happen because btrfs_num_copies()
4974 * returns one more in the dev-replace case.
4975 */
4976 u64 tmp_length = *length;
4977 struct btrfs_bio *tmp_bbio = NULL;
4978 int tmp_num_stripes;
4979 u64 srcdev_devid = dev_replace->srcdev->devid;
4980 int index_srcdev = 0;
4981 int found = 0;
4982 u64 physical_of_found = 0;
4983
4984 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4985 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4986 if (ret) {
4987 WARN_ON(tmp_bbio != NULL);
4988 goto out;
4989 }
4990
4991 tmp_num_stripes = tmp_bbio->num_stripes;
4992 if (mirror_num > tmp_num_stripes) {
4993 /*
4994 * REQ_GET_READ_MIRRORS does not contain this
4995 * mirror, that means that the requested area
4996 * is not left of the left cursor
4997 */
4998 ret = -EIO;
4999 kfree(tmp_bbio);
5000 goto out;
5001 }
5002
5003 /*
5004 * process the rest of the function using the mirror_num
5005 * of the source drive. Therefore look it up first.
5006 * At the end, patch the device pointer to the one of the
5007 * target drive.
5008 */
5009 for (i = 0; i < tmp_num_stripes; i++) {
5010 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5011 /*
5012 * In case of DUP, in order to keep it
5013 * simple, only add the mirror with the
5014 * lowest physical address
5015 */
5016 if (found &&
5017 physical_of_found <=
5018 tmp_bbio->stripes[i].physical)
5019 continue;
5020 index_srcdev = i;
5021 found = 1;
5022 physical_of_found =
5023 tmp_bbio->stripes[i].physical;
5024 }
5025 }
5026
5027 if (found) {
5028 mirror_num = index_srcdev + 1;
5029 patch_the_first_stripe_for_dev_replace = 1;
5030 physical_to_patch_in_first_stripe = physical_of_found;
5031 } else {
5032 WARN_ON(1);
5033 ret = -EIO;
5034 kfree(tmp_bbio);
5035 goto out;
5036 }
5037
5038 kfree(tmp_bbio);
5039 } else if (mirror_num > map->num_stripes) {
5040 mirror_num = 0;
5041 }
5042
f2d8d74d 5043 num_stripes = 1;
cea9e445 5044 stripe_index = 0;
fce3bb9a 5045 stripe_nr_orig = stripe_nr;
fda2832f 5046 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
5047 do_div(stripe_nr_end, map->stripe_len);
5048 stripe_end_offset = stripe_nr_end * map->stripe_len -
5049 (offset + *length);
53b381b3 5050
fce3bb9a
LD
5051 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5052 if (rw & REQ_DISCARD)
5053 num_stripes = min_t(u64, map->num_stripes,
5054 stripe_nr_end - stripe_nr_orig);
5055 stripe_index = do_div(stripe_nr, map->num_stripes);
5056 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5057 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5058 num_stripes = map->num_stripes;
2fff734f 5059 else if (mirror_num)
f188591e 5060 stripe_index = mirror_num - 1;
dfe25020 5061 else {
30d9861f 5062 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5063 map->num_stripes,
30d9861f
SB
5064 current->pid % map->num_stripes,
5065 dev_replace_is_ongoing);
a1d3c478 5066 mirror_num = stripe_index + 1;
dfe25020 5067 }
2fff734f 5068
611f0e00 5069 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5070 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5071 num_stripes = map->num_stripes;
a1d3c478 5072 } else if (mirror_num) {
f188591e 5073 stripe_index = mirror_num - 1;
a1d3c478
JS
5074 } else {
5075 mirror_num = 1;
5076 }
2fff734f 5077
321aecc6
CM
5078 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5079 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
5080
5081 stripe_index = do_div(stripe_nr, factor);
5082 stripe_index *= map->sub_stripes;
5083
29a8d9a0 5084 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5085 num_stripes = map->sub_stripes;
fce3bb9a
LD
5086 else if (rw & REQ_DISCARD)
5087 num_stripes = min_t(u64, map->sub_stripes *
5088 (stripe_nr_end - stripe_nr_orig),
5089 map->num_stripes);
321aecc6
CM
5090 else if (mirror_num)
5091 stripe_index += mirror_num - 1;
dfe25020 5092 else {
3e74317a 5093 int old_stripe_index = stripe_index;
30d9861f
SB
5094 stripe_index = find_live_mirror(fs_info, map,
5095 stripe_index,
dfe25020 5096 map->sub_stripes, stripe_index +
30d9861f
SB
5097 current->pid % map->sub_stripes,
5098 dev_replace_is_ongoing);
3e74317a 5099 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5100 }
53b381b3
DW
5101
5102 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5103 BTRFS_BLOCK_GROUP_RAID6)) {
5104 u64 tmp;
5105
5106 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
5107 && raid_map_ret) {
5108 int i, rot;
5109
5110 /* push stripe_nr back to the start of the full stripe */
5111 stripe_nr = raid56_full_stripe_start;
5112 do_div(stripe_nr, stripe_len);
5113
5114 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5115
5116 /* RAID[56] write or recovery. Return all stripes */
5117 num_stripes = map->num_stripes;
5118 max_errors = nr_parity_stripes(map);
5119
d9b0d9ba 5120 raid_map = kmalloc_array(num_stripes, sizeof(u64),
53b381b3
DW
5121 GFP_NOFS);
5122 if (!raid_map) {
5123 ret = -ENOMEM;
5124 goto out;
5125 }
5126
5127 /* Work out the disk rotation on this stripe-set */
5128 tmp = stripe_nr;
5129 rot = do_div(tmp, num_stripes);
5130
5131 /* Fill in the logical address of each stripe */
5132 tmp = stripe_nr * nr_data_stripes(map);
5133 for (i = 0; i < nr_data_stripes(map); i++)
5134 raid_map[(i+rot) % num_stripes] =
5135 em->start + (tmp + i) * map->stripe_len;
5136
5137 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5138 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5139 raid_map[(i+rot+1) % num_stripes] =
5140 RAID6_Q_STRIPE;
5141
5142 *length = map->stripe_len;
5143 stripe_index = 0;
5144 stripe_offset = 0;
5145 } else {
5146 /*
5147 * Mirror #0 or #1 means the original data block.
5148 * Mirror #2 is RAID5 parity block.
5149 * Mirror #3 is RAID6 Q block.
5150 */
5151 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5152 if (mirror_num > 1)
5153 stripe_index = nr_data_stripes(map) +
5154 mirror_num - 2;
5155
5156 /* We distribute the parity blocks across stripes */
5157 tmp = stripe_nr + stripe_index;
5158 stripe_index = do_div(tmp, map->num_stripes);
5159 }
8790d502
CM
5160 } else {
5161 /*
5162 * after this do_div call, stripe_nr is the number of stripes
5163 * on this device we have to walk to find the data, and
5164 * stripe_index is the number of our device in the stripe array
5165 */
5166 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 5167 mirror_num = stripe_index + 1;
8790d502 5168 }
593060d7 5169 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5170
472262f3 5171 num_alloc_stripes = num_stripes;
ad6d620e
SB
5172 if (dev_replace_is_ongoing) {
5173 if (rw & (REQ_WRITE | REQ_DISCARD))
5174 num_alloc_stripes <<= 1;
5175 if (rw & REQ_GET_READ_MIRRORS)
5176 num_alloc_stripes++;
5177 }
472262f3 5178 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 5179 if (!bbio) {
eb2067f7 5180 kfree(raid_map);
de11cc12
LZ
5181 ret = -ENOMEM;
5182 goto out;
5183 }
5184 atomic_set(&bbio->error, 0);
5185
fce3bb9a 5186 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
5187 int factor = 0;
5188 int sub_stripes = 0;
5189 u64 stripes_per_dev = 0;
5190 u32 remaining_stripes = 0;
b89203f7 5191 u32 last_stripe = 0;
ec9ef7a1
LZ
5192
5193 if (map->type &
5194 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5195 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5196 sub_stripes = 1;
5197 else
5198 sub_stripes = map->sub_stripes;
5199
5200 factor = map->num_stripes / sub_stripes;
5201 stripes_per_dev = div_u64_rem(stripe_nr_end -
5202 stripe_nr_orig,
5203 factor,
5204 &remaining_stripes);
b89203f7
LB
5205 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5206 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5207 }
5208
fce3bb9a 5209 for (i = 0; i < num_stripes; i++) {
a1d3c478 5210 bbio->stripes[i].physical =
f2d8d74d
CM
5211 map->stripes[stripe_index].physical +
5212 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5213 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5214
ec9ef7a1
LZ
5215 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5216 BTRFS_BLOCK_GROUP_RAID10)) {
5217 bbio->stripes[i].length = stripes_per_dev *
5218 map->stripe_len;
b89203f7 5219
ec9ef7a1
LZ
5220 if (i / sub_stripes < remaining_stripes)
5221 bbio->stripes[i].length +=
5222 map->stripe_len;
b89203f7
LB
5223
5224 /*
5225 * Special for the first stripe and
5226 * the last stripe:
5227 *
5228 * |-------|...|-------|
5229 * |----------|
5230 * off end_off
5231 */
ec9ef7a1 5232 if (i < sub_stripes)
a1d3c478 5233 bbio->stripes[i].length -=
fce3bb9a 5234 stripe_offset;
b89203f7
LB
5235
5236 if (stripe_index >= last_stripe &&
5237 stripe_index <= (last_stripe +
5238 sub_stripes - 1))
a1d3c478 5239 bbio->stripes[i].length -=
fce3bb9a 5240 stripe_end_offset;
b89203f7 5241
ec9ef7a1
LZ
5242 if (i == sub_stripes - 1)
5243 stripe_offset = 0;
fce3bb9a 5244 } else
a1d3c478 5245 bbio->stripes[i].length = *length;
fce3bb9a
LD
5246
5247 stripe_index++;
5248 if (stripe_index == map->num_stripes) {
5249 /* This could only happen for RAID0/10 */
5250 stripe_index = 0;
5251 stripe_nr++;
5252 }
5253 }
5254 } else {
5255 for (i = 0; i < num_stripes; i++) {
a1d3c478 5256 bbio->stripes[i].physical =
212a17ab
LT
5257 map->stripes[stripe_index].physical +
5258 stripe_offset +
5259 stripe_nr * map->stripe_len;
a1d3c478 5260 bbio->stripes[i].dev =
212a17ab 5261 map->stripes[stripe_index].dev;
fce3bb9a 5262 stripe_index++;
f2d8d74d 5263 }
593060d7 5264 }
de11cc12 5265
d20983b4
MX
5266 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5267 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5268
472262f3
SB
5269 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5270 dev_replace->tgtdev != NULL) {
5271 int index_where_to_add;
5272 u64 srcdev_devid = dev_replace->srcdev->devid;
5273
5274 /*
5275 * duplicate the write operations while the dev replace
5276 * procedure is running. Since the copying of the old disk
5277 * to the new disk takes place at run time while the
5278 * filesystem is mounted writable, the regular write
5279 * operations to the old disk have to be duplicated to go
5280 * to the new disk as well.
5281 * Note that device->missing is handled by the caller, and
5282 * that the write to the old disk is already set up in the
5283 * stripes array.
5284 */
5285 index_where_to_add = num_stripes;
5286 for (i = 0; i < num_stripes; i++) {
5287 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5288 /* write to new disk, too */
5289 struct btrfs_bio_stripe *new =
5290 bbio->stripes + index_where_to_add;
5291 struct btrfs_bio_stripe *old =
5292 bbio->stripes + i;
5293
5294 new->physical = old->physical;
5295 new->length = old->length;
5296 new->dev = dev_replace->tgtdev;
5297 index_where_to_add++;
5298 max_errors++;
5299 }
5300 }
5301 num_stripes = index_where_to_add;
ad6d620e
SB
5302 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5303 dev_replace->tgtdev != NULL) {
5304 u64 srcdev_devid = dev_replace->srcdev->devid;
5305 int index_srcdev = 0;
5306 int found = 0;
5307 u64 physical_of_found = 0;
5308
5309 /*
5310 * During the dev-replace procedure, the target drive can
5311 * also be used to read data in case it is needed to repair
5312 * a corrupt block elsewhere. This is possible if the
5313 * requested area is left of the left cursor. In this area,
5314 * the target drive is a full copy of the source drive.
5315 */
5316 for (i = 0; i < num_stripes; i++) {
5317 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5318 /*
5319 * In case of DUP, in order to keep it
5320 * simple, only add the mirror with the
5321 * lowest physical address
5322 */
5323 if (found &&
5324 physical_of_found <=
5325 bbio->stripes[i].physical)
5326 continue;
5327 index_srcdev = i;
5328 found = 1;
5329 physical_of_found = bbio->stripes[i].physical;
5330 }
5331 }
5332 if (found) {
5333 u64 length = map->stripe_len;
5334
5335 if (physical_of_found + length <=
5336 dev_replace->cursor_left) {
5337 struct btrfs_bio_stripe *tgtdev_stripe =
5338 bbio->stripes + num_stripes;
5339
5340 tgtdev_stripe->physical = physical_of_found;
5341 tgtdev_stripe->length =
5342 bbio->stripes[index_srcdev].length;
5343 tgtdev_stripe->dev = dev_replace->tgtdev;
5344
5345 num_stripes++;
5346 }
5347 }
472262f3
SB
5348 }
5349
de11cc12
LZ
5350 *bbio_ret = bbio;
5351 bbio->num_stripes = num_stripes;
5352 bbio->max_errors = max_errors;
5353 bbio->mirror_num = mirror_num;
ad6d620e
SB
5354
5355 /*
5356 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5357 * mirror_num == num_stripes + 1 && dev_replace target drive is
5358 * available as a mirror
5359 */
5360 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5361 WARN_ON(num_stripes > 1);
5362 bbio->stripes[0].dev = dev_replace->tgtdev;
5363 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5364 bbio->mirror_num = map->num_stripes + 1;
5365 }
53b381b3
DW
5366 if (raid_map) {
5367 sort_parity_stripes(bbio, raid_map);
5368 *raid_map_ret = raid_map;
5369 }
cea9e445 5370out:
472262f3
SB
5371 if (dev_replace_is_ongoing)
5372 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5373 free_extent_map(em);
de11cc12 5374 return ret;
0b86a832
CM
5375}
5376
3ec706c8 5377int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5378 u64 logical, u64 *length,
a1d3c478 5379 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5380{
3ec706c8 5381 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5382 mirror_num, NULL);
f2d8d74d
CM
5383}
5384
a512bbf8
YZ
5385int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5386 u64 chunk_start, u64 physical, u64 devid,
5387 u64 **logical, int *naddrs, int *stripe_len)
5388{
5389 struct extent_map_tree *em_tree = &map_tree->map_tree;
5390 struct extent_map *em;
5391 struct map_lookup *map;
5392 u64 *buf;
5393 u64 bytenr;
5394 u64 length;
5395 u64 stripe_nr;
53b381b3 5396 u64 rmap_len;
a512bbf8
YZ
5397 int i, j, nr = 0;
5398
890871be 5399 read_lock(&em_tree->lock);
a512bbf8 5400 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5401 read_unlock(&em_tree->lock);
a512bbf8 5402
835d974f 5403 if (!em) {
efe120a0 5404 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5405 chunk_start);
5406 return -EIO;
5407 }
5408
5409 if (em->start != chunk_start) {
efe120a0 5410 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5411 em->start, chunk_start);
5412 free_extent_map(em);
5413 return -EIO;
5414 }
a512bbf8
YZ
5415 map = (struct map_lookup *)em->bdev;
5416
5417 length = em->len;
53b381b3
DW
5418 rmap_len = map->stripe_len;
5419
a512bbf8
YZ
5420 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5421 do_div(length, map->num_stripes / map->sub_stripes);
5422 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5423 do_div(length, map->num_stripes);
53b381b3
DW
5424 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5425 BTRFS_BLOCK_GROUP_RAID6)) {
5426 do_div(length, nr_data_stripes(map));
5427 rmap_len = map->stripe_len * nr_data_stripes(map);
5428 }
a512bbf8
YZ
5429
5430 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5431 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5432
5433 for (i = 0; i < map->num_stripes; i++) {
5434 if (devid && map->stripes[i].dev->devid != devid)
5435 continue;
5436 if (map->stripes[i].physical > physical ||
5437 map->stripes[i].physical + length <= physical)
5438 continue;
5439
5440 stripe_nr = physical - map->stripes[i].physical;
5441 do_div(stripe_nr, map->stripe_len);
5442
5443 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5444 stripe_nr = stripe_nr * map->num_stripes + i;
5445 do_div(stripe_nr, map->sub_stripes);
5446 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5447 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5448 } /* else if RAID[56], multiply by nr_data_stripes().
5449 * Alternatively, just use rmap_len below instead of
5450 * map->stripe_len */
5451
5452 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5453 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5454 for (j = 0; j < nr; j++) {
5455 if (buf[j] == bytenr)
5456 break;
5457 }
934d375b
CM
5458 if (j == nr) {
5459 WARN_ON(nr >= map->num_stripes);
a512bbf8 5460 buf[nr++] = bytenr;
934d375b 5461 }
a512bbf8
YZ
5462 }
5463
a512bbf8
YZ
5464 *logical = buf;
5465 *naddrs = nr;
53b381b3 5466 *stripe_len = rmap_len;
a512bbf8
YZ
5467
5468 free_extent_map(em);
5469 return 0;
f2d8d74d
CM
5470}
5471
8408c716
MX
5472static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5473{
5474 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5475 bio_endio_nodec(bio, err);
5476 else
5477 bio_endio(bio, err);
5478 kfree(bbio);
5479}
5480
a1d3c478 5481static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5482{
9be3395b 5483 struct btrfs_bio *bbio = bio->bi_private;
c404e0dc 5484 struct btrfs_device *dev = bbio->stripes[0].dev;
7d2b4daa 5485 int is_orig_bio = 0;
8790d502 5486
442a4f63 5487 if (err) {
a1d3c478 5488 atomic_inc(&bbio->error);
442a4f63
SB
5489 if (err == -EIO || err == -EREMOTEIO) {
5490 unsigned int stripe_index =
9be3395b 5491 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5492
5493 BUG_ON(stripe_index >= bbio->num_stripes);
5494 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5495 if (dev->bdev) {
5496 if (bio->bi_rw & WRITE)
5497 btrfs_dev_stat_inc(dev,
5498 BTRFS_DEV_STAT_WRITE_ERRS);
5499 else
5500 btrfs_dev_stat_inc(dev,
5501 BTRFS_DEV_STAT_READ_ERRS);
5502 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5503 btrfs_dev_stat_inc(dev,
5504 BTRFS_DEV_STAT_FLUSH_ERRS);
5505 btrfs_dev_stat_print_on_error(dev);
5506 }
442a4f63
SB
5507 }
5508 }
8790d502 5509
a1d3c478 5510 if (bio == bbio->orig_bio)
7d2b4daa
CM
5511 is_orig_bio = 1;
5512
c404e0dc
MX
5513 btrfs_bio_counter_dec(bbio->fs_info);
5514
a1d3c478 5515 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5516 if (!is_orig_bio) {
5517 bio_put(bio);
a1d3c478 5518 bio = bbio->orig_bio;
7d2b4daa 5519 }
c7b22bb1 5520
a1d3c478
JS
5521 bio->bi_private = bbio->private;
5522 bio->bi_end_io = bbio->end_io;
9be3395b 5523 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5524 /* only send an error to the higher layers if it is
53b381b3 5525 * beyond the tolerance of the btrfs bio
a236aed1 5526 */
a1d3c478 5527 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5528 err = -EIO;
5dbc8fca 5529 } else {
1259ab75
CM
5530 /*
5531 * this bio is actually up to date, we didn't
5532 * go over the max number of errors
5533 */
5534 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5535 err = 0;
1259ab75 5536 }
c55f1396 5537
8408c716 5538 btrfs_end_bbio(bbio, bio, err);
7d2b4daa 5539 } else if (!is_orig_bio) {
8790d502
CM
5540 bio_put(bio);
5541 }
8790d502
CM
5542}
5543
8b712842
CM
5544/*
5545 * see run_scheduled_bios for a description of why bios are collected for
5546 * async submit.
5547 *
5548 * This will add one bio to the pending list for a device and make sure
5549 * the work struct is scheduled.
5550 */
48a3b636
ES
5551static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5552 struct btrfs_device *device,
5553 int rw, struct bio *bio)
8b712842
CM
5554{
5555 int should_queue = 1;
ffbd517d 5556 struct btrfs_pending_bios *pending_bios;
8b712842 5557
53b381b3
DW
5558 if (device->missing || !device->bdev) {
5559 bio_endio(bio, -EIO);
5560 return;
5561 }
5562
8b712842 5563 /* don't bother with additional async steps for reads, right now */
7b6d91da 5564 if (!(rw & REQ_WRITE)) {
492bb6de 5565 bio_get(bio);
21adbd5c 5566 btrfsic_submit_bio(rw, bio);
492bb6de 5567 bio_put(bio);
143bede5 5568 return;
8b712842
CM
5569 }
5570
5571 /*
0986fe9e 5572 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5573 * higher layers. Otherwise, the async bio makes it appear we have
5574 * made progress against dirty pages when we've really just put it
5575 * on a queue for later
5576 */
0986fe9e 5577 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5578 WARN_ON(bio->bi_next);
8b712842
CM
5579 bio->bi_next = NULL;
5580 bio->bi_rw |= rw;
5581
5582 spin_lock(&device->io_lock);
7b6d91da 5583 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5584 pending_bios = &device->pending_sync_bios;
5585 else
5586 pending_bios = &device->pending_bios;
8b712842 5587
ffbd517d
CM
5588 if (pending_bios->tail)
5589 pending_bios->tail->bi_next = bio;
8b712842 5590
ffbd517d
CM
5591 pending_bios->tail = bio;
5592 if (!pending_bios->head)
5593 pending_bios->head = bio;
8b712842
CM
5594 if (device->running_pending)
5595 should_queue = 0;
5596
5597 spin_unlock(&device->io_lock);
5598
5599 if (should_queue)
a8c93d4e
QW
5600 btrfs_queue_work(root->fs_info->submit_workers,
5601 &device->work);
8b712842
CM
5602}
5603
de1ee92a
JB
5604static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5605 sector_t sector)
5606{
5607 struct bio_vec *prev;
5608 struct request_queue *q = bdev_get_queue(bdev);
475bf36f 5609 unsigned int max_sectors = queue_max_sectors(q);
de1ee92a
JB
5610 struct bvec_merge_data bvm = {
5611 .bi_bdev = bdev,
5612 .bi_sector = sector,
5613 .bi_rw = bio->bi_rw,
5614 };
5615
fae7f21c 5616 if (WARN_ON(bio->bi_vcnt == 0))
de1ee92a 5617 return 1;
de1ee92a
JB
5618
5619 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5620 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5621 return 0;
5622
5623 if (!q->merge_bvec_fn)
5624 return 1;
5625
4f024f37 5626 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
de1ee92a
JB
5627 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5628 return 0;
5629 return 1;
5630}
5631
5632static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5633 struct bio *bio, u64 physical, int dev_nr,
5634 int rw, int async)
5635{
5636 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5637
5638 bio->bi_private = bbio;
9be3395b 5639 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5640 bio->bi_end_io = btrfs_end_bio;
4f024f37 5641 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5642#ifdef DEBUG
5643 {
5644 struct rcu_string *name;
5645
5646 rcu_read_lock();
5647 name = rcu_dereference(dev->name);
d1423248 5648 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5649 "(%s id %llu), size=%u\n", rw,
5650 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5651 name->str, dev->devid, bio->bi_size);
5652 rcu_read_unlock();
5653 }
5654#endif
5655 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5656
5657 btrfs_bio_counter_inc_noblocked(root->fs_info);
5658
de1ee92a 5659 if (async)
53b381b3 5660 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5661 else
5662 btrfsic_submit_bio(rw, bio);
5663}
5664
5665static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5666 struct bio *first_bio, struct btrfs_device *dev,
5667 int dev_nr, int rw, int async)
5668{
5669 struct bio_vec *bvec = first_bio->bi_io_vec;
5670 struct bio *bio;
5671 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5672 u64 physical = bbio->stripes[dev_nr].physical;
5673
5674again:
5675 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5676 if (!bio)
5677 return -ENOMEM;
5678
5679 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5680 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5681 bvec->bv_offset) < bvec->bv_len) {
4f024f37 5682 u64 len = bio->bi_iter.bi_size;
de1ee92a
JB
5683
5684 atomic_inc(&bbio->stripes_pending);
5685 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5686 rw, async);
5687 physical += len;
5688 goto again;
5689 }
5690 bvec++;
5691 }
5692
5693 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5694 return 0;
5695}
5696
5697static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5698{
5699 atomic_inc(&bbio->error);
5700 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5701 /* Shoud be the original bio. */
5702 WARN_ON(bio != bbio->orig_bio);
5703
de1ee92a
JB
5704 bio->bi_private = bbio->private;
5705 bio->bi_end_io = bbio->end_io;
9be3395b 5706 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5707 bio->bi_iter.bi_sector = logical >> 9;
8408c716
MX
5708
5709 btrfs_end_bbio(bbio, bio, -EIO);
de1ee92a
JB
5710 }
5711}
5712
f188591e 5713int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5714 int mirror_num, int async_submit)
0b86a832 5715{
0b86a832 5716 struct btrfs_device *dev;
8790d502 5717 struct bio *first_bio = bio;
4f024f37 5718 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5719 u64 length = 0;
5720 u64 map_length;
53b381b3 5721 u64 *raid_map = NULL;
0b86a832 5722 int ret;
8790d502
CM
5723 int dev_nr = 0;
5724 int total_devs = 1;
a1d3c478 5725 struct btrfs_bio *bbio = NULL;
0b86a832 5726
4f024f37 5727 length = bio->bi_iter.bi_size;
0b86a832 5728 map_length = length;
cea9e445 5729
c404e0dc 5730 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3
DW
5731 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5732 mirror_num, &raid_map);
c404e0dc
MX
5733 if (ret) {
5734 btrfs_bio_counter_dec(root->fs_info);
79787eaa 5735 return ret;
c404e0dc 5736 }
cea9e445 5737
a1d3c478 5738 total_devs = bbio->num_stripes;
53b381b3
DW
5739 bbio->orig_bio = first_bio;
5740 bbio->private = first_bio->bi_private;
5741 bbio->end_io = first_bio->bi_end_io;
c404e0dc 5742 bbio->fs_info = root->fs_info;
53b381b3
DW
5743 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5744
5745 if (raid_map) {
5746 /* In this case, map_length has been set to the length of
5747 a single stripe; not the whole write */
5748 if (rw & WRITE) {
c404e0dc
MX
5749 ret = raid56_parity_write(root, bio, bbio,
5750 raid_map, map_length);
53b381b3 5751 } else {
c404e0dc
MX
5752 ret = raid56_parity_recover(root, bio, bbio,
5753 raid_map, map_length,
5754 mirror_num);
53b381b3 5755 }
c404e0dc
MX
5756 /*
5757 * FIXME, replace dosen't support raid56 yet, please fix
5758 * it in the future.
5759 */
5760 btrfs_bio_counter_dec(root->fs_info);
5761 return ret;
53b381b3
DW
5762 }
5763
cea9e445 5764 if (map_length < length) {
c2cf52eb 5765 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5766 logical, length, map_length);
cea9e445
CM
5767 BUG();
5768 }
a1d3c478 5769
d397712b 5770 while (dev_nr < total_devs) {
de1ee92a
JB
5771 dev = bbio->stripes[dev_nr].dev;
5772 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5773 bbio_error(bbio, first_bio, logical);
5774 dev_nr++;
5775 continue;
5776 }
5777
5778 /*
5779 * Check and see if we're ok with this bio based on it's size
5780 * and offset with the given device.
5781 */
5782 if (!bio_size_ok(dev->bdev, first_bio,
5783 bbio->stripes[dev_nr].physical >> 9)) {
5784 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5785 dev_nr, rw, async_submit);
5786 BUG_ON(ret);
5787 dev_nr++;
5788 continue;
5789 }
5790
a1d3c478 5791 if (dev_nr < total_devs - 1) {
9be3395b 5792 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5793 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5794 } else {
5795 bio = first_bio;
c55f1396 5796 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
8790d502 5797 }
de1ee92a
JB
5798
5799 submit_stripe_bio(root, bbio, bio,
5800 bbio->stripes[dev_nr].physical, dev_nr, rw,
5801 async_submit);
8790d502
CM
5802 dev_nr++;
5803 }
c404e0dc 5804 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
5805 return 0;
5806}
5807
aa1b8cd4 5808struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5809 u8 *uuid, u8 *fsid)
0b86a832 5810{
2b82032c
YZ
5811 struct btrfs_device *device;
5812 struct btrfs_fs_devices *cur_devices;
5813
aa1b8cd4 5814 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5815 while (cur_devices) {
5816 if (!fsid ||
5817 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5818 device = __find_device(&cur_devices->devices,
5819 devid, uuid);
5820 if (device)
5821 return device;
5822 }
5823 cur_devices = cur_devices->seed;
5824 }
5825 return NULL;
0b86a832
CM
5826}
5827
dfe25020
CM
5828static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5829 u64 devid, u8 *dev_uuid)
5830{
5831 struct btrfs_device *device;
5832 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5833
12bd2fc0
ID
5834 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5835 if (IS_ERR(device))
7cbd8a83 5836 return NULL;
12bd2fc0
ID
5837
5838 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5839 device->fs_devices = fs_devices;
dfe25020 5840 fs_devices->num_devices++;
12bd2fc0
ID
5841
5842 device->missing = 1;
cd02dca5 5843 fs_devices->missing_devices++;
12bd2fc0 5844
dfe25020
CM
5845 return device;
5846}
5847
12bd2fc0
ID
5848/**
5849 * btrfs_alloc_device - allocate struct btrfs_device
5850 * @fs_info: used only for generating a new devid, can be NULL if
5851 * devid is provided (i.e. @devid != NULL).
5852 * @devid: a pointer to devid for this device. If NULL a new devid
5853 * is generated.
5854 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5855 * is generated.
5856 *
5857 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5858 * on error. Returned struct is not linked onto any lists and can be
5859 * destroyed with kfree() right away.
5860 */
5861struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5862 const u64 *devid,
5863 const u8 *uuid)
5864{
5865 struct btrfs_device *dev;
5866 u64 tmp;
5867
fae7f21c 5868 if (WARN_ON(!devid && !fs_info))
12bd2fc0 5869 return ERR_PTR(-EINVAL);
12bd2fc0
ID
5870
5871 dev = __alloc_device();
5872 if (IS_ERR(dev))
5873 return dev;
5874
5875 if (devid)
5876 tmp = *devid;
5877 else {
5878 int ret;
5879
5880 ret = find_next_devid(fs_info, &tmp);
5881 if (ret) {
5882 kfree(dev);
5883 return ERR_PTR(ret);
5884 }
5885 }
5886 dev->devid = tmp;
5887
5888 if (uuid)
5889 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5890 else
5891 generate_random_uuid(dev->uuid);
5892
9e0af237
LB
5893 btrfs_init_work(&dev->work, btrfs_submit_helper,
5894 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
5895
5896 return dev;
5897}
5898
0b86a832
CM
5899static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5900 struct extent_buffer *leaf,
5901 struct btrfs_chunk *chunk)
5902{
5903 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5904 struct map_lookup *map;
5905 struct extent_map *em;
5906 u64 logical;
5907 u64 length;
5908 u64 devid;
a443755f 5909 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5910 int num_stripes;
0b86a832 5911 int ret;
593060d7 5912 int i;
0b86a832 5913
e17cade2
CM
5914 logical = key->offset;
5915 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5916
890871be 5917 read_lock(&map_tree->map_tree.lock);
0b86a832 5918 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5919 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5920
5921 /* already mapped? */
5922 if (em && em->start <= logical && em->start + em->len > logical) {
5923 free_extent_map(em);
0b86a832
CM
5924 return 0;
5925 } else if (em) {
5926 free_extent_map(em);
5927 }
0b86a832 5928
172ddd60 5929 em = alloc_extent_map();
0b86a832
CM
5930 if (!em)
5931 return -ENOMEM;
593060d7
CM
5932 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5933 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5934 if (!map) {
5935 free_extent_map(em);
5936 return -ENOMEM;
5937 }
5938
298a8f9c 5939 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
5940 em->bdev = (struct block_device *)map;
5941 em->start = logical;
5942 em->len = length;
70c8a91c 5943 em->orig_start = 0;
0b86a832 5944 em->block_start = 0;
c8b97818 5945 em->block_len = em->len;
0b86a832 5946
593060d7
CM
5947 map->num_stripes = num_stripes;
5948 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5949 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5950 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5951 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5952 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5953 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5954 for (i = 0; i < num_stripes; i++) {
5955 map->stripes[i].physical =
5956 btrfs_stripe_offset_nr(leaf, chunk, i);
5957 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5958 read_extent_buffer(leaf, uuid, (unsigned long)
5959 btrfs_stripe_dev_uuid_nr(chunk, i),
5960 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5961 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5962 uuid, NULL);
dfe25020 5963 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5964 free_extent_map(em);
5965 return -EIO;
5966 }
dfe25020
CM
5967 if (!map->stripes[i].dev) {
5968 map->stripes[i].dev =
5969 add_missing_dev(root, devid, uuid);
5970 if (!map->stripes[i].dev) {
dfe25020
CM
5971 free_extent_map(em);
5972 return -EIO;
5973 }
5974 }
5975 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5976 }
5977
890871be 5978 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5979 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5980 write_unlock(&map_tree->map_tree.lock);
79787eaa 5981 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5982 free_extent_map(em);
5983
5984 return 0;
5985}
5986
143bede5 5987static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5988 struct btrfs_dev_item *dev_item,
5989 struct btrfs_device *device)
5990{
5991 unsigned long ptr;
0b86a832
CM
5992
5993 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5994 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5995 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5996 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5997 device->type = btrfs_device_type(leaf, dev_item);
5998 device->io_align = btrfs_device_io_align(leaf, dev_item);
5999 device->io_width = btrfs_device_io_width(leaf, dev_item);
6000 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6001 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6002 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6003
410ba3a2 6004 ptr = btrfs_device_uuid(dev_item);
e17cade2 6005 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6006}
6007
2b82032c
YZ
6008static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
6009{
6010 struct btrfs_fs_devices *fs_devices;
6011 int ret;
6012
b367e47f 6013 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6014
6015 fs_devices = root->fs_info->fs_devices->seed;
6016 while (fs_devices) {
6017 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6018 ret = 0;
6019 goto out;
6020 }
6021 fs_devices = fs_devices->seed;
6022 }
6023
6024 fs_devices = find_fsid(fsid);
6025 if (!fs_devices) {
6026 ret = -ENOENT;
6027 goto out;
6028 }
e4404d6e
YZ
6029
6030 fs_devices = clone_fs_devices(fs_devices);
6031 if (IS_ERR(fs_devices)) {
6032 ret = PTR_ERR(fs_devices);
2b82032c
YZ
6033 goto out;
6034 }
6035
97288f2c 6036 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6037 root->fs_info->bdev_holder);
48d28232
JL
6038 if (ret) {
6039 free_fs_devices(fs_devices);
2b82032c 6040 goto out;
48d28232 6041 }
2b82032c
YZ
6042
6043 if (!fs_devices->seeding) {
6044 __btrfs_close_devices(fs_devices);
e4404d6e 6045 free_fs_devices(fs_devices);
2b82032c
YZ
6046 ret = -EINVAL;
6047 goto out;
6048 }
6049
6050 fs_devices->seed = root->fs_info->fs_devices->seed;
6051 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6052out:
2b82032c
YZ
6053 return ret;
6054}
6055
0d81ba5d 6056static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6057 struct extent_buffer *leaf,
6058 struct btrfs_dev_item *dev_item)
6059{
6060 struct btrfs_device *device;
6061 u64 devid;
6062 int ret;
2b82032c 6063 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6064 u8 dev_uuid[BTRFS_UUID_SIZE];
6065
0b86a832 6066 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6067 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6068 BTRFS_UUID_SIZE);
1473b24e 6069 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6070 BTRFS_UUID_SIZE);
6071
6072 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6073 ret = open_seed_devices(root, fs_uuid);
e4404d6e 6074 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 6075 return ret;
2b82032c
YZ
6076 }
6077
aa1b8cd4 6078 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 6079 if (!device || !device->bdev) {
e4404d6e 6080 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6081 return -EIO;
6082
6083 if (!device) {
c1c9ff7c 6084 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
6085 device = add_missing_dev(root, devid, dev_uuid);
6086 if (!device)
6087 return -ENOMEM;
cd02dca5
CM
6088 } else if (!device->missing) {
6089 /*
6090 * this happens when a device that was properly setup
6091 * in the device info lists suddenly goes bad.
6092 * device->bdev is NULL, and so we have to set
6093 * device->missing to one here
6094 */
6095 root->fs_info->fs_devices->missing_devices++;
6096 device->missing = 1;
2b82032c
YZ
6097 }
6098 }
6099
6100 if (device->fs_devices != root->fs_info->fs_devices) {
6101 BUG_ON(device->writeable);
6102 if (device->generation !=
6103 btrfs_device_generation(leaf, dev_item))
6104 return -EINVAL;
6324fbf3 6105 }
0b86a832
CM
6106
6107 fill_device_from_item(leaf, dev_item, device);
dfe25020 6108 device->in_fs_metadata = 1;
63a212ab 6109 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6110 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6111 spin_lock(&root->fs_info->free_chunk_lock);
6112 root->fs_info->free_chunk_space += device->total_bytes -
6113 device->bytes_used;
6114 spin_unlock(&root->fs_info->free_chunk_lock);
6115 }
0b86a832 6116 ret = 0;
0b86a832
CM
6117 return ret;
6118}
6119
e4404d6e 6120int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6121{
6c41761f 6122 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6123 struct extent_buffer *sb;
0b86a832 6124 struct btrfs_disk_key *disk_key;
0b86a832 6125 struct btrfs_chunk *chunk;
84eed90f
CM
6126 u8 *ptr;
6127 unsigned long sb_ptr;
6128 int ret = 0;
0b86a832
CM
6129 u32 num_stripes;
6130 u32 array_size;
6131 u32 len = 0;
0b86a832 6132 u32 cur;
84eed90f 6133 struct btrfs_key key;
0b86a832 6134
e4404d6e 6135 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
6136 BTRFS_SUPER_INFO_SIZE);
6137 if (!sb)
6138 return -ENOMEM;
6139 btrfs_set_buffer_uptodate(sb);
85d4e461 6140 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6141 /*
6142 * The sb extent buffer is artifical and just used to read the system array.
6143 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6144 * pages up-to-date when the page is larger: extent does not cover the
6145 * whole page and consequently check_page_uptodate does not find all
6146 * the page's extents up-to-date (the hole beyond sb),
6147 * write_extent_buffer then triggers a WARN_ON.
6148 *
6149 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6150 * but sb spans only this function. Add an explicit SetPageUptodate call
6151 * to silence the warning eg. on PowerPC 64.
6152 */
6153 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6154 SetPageUptodate(sb->pages[0]);
4008c04a 6155
a061fc8d 6156 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6157 array_size = btrfs_super_sys_array_size(super_copy);
6158
0b86a832
CM
6159 ptr = super_copy->sys_chunk_array;
6160 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6161 cur = 0;
6162
6163 while (cur < array_size) {
6164 disk_key = (struct btrfs_disk_key *)ptr;
6165 btrfs_disk_key_to_cpu(&key, disk_key);
6166
a061fc8d 6167 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
6168 sb_ptr += len;
6169 cur += len;
6170
0d81ba5d 6171 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 6172 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 6173 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6174 if (ret)
6175 break;
0b86a832
CM
6176 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6177 len = btrfs_chunk_item_size(num_stripes);
6178 } else {
84eed90f
CM
6179 ret = -EIO;
6180 break;
0b86a832
CM
6181 }
6182 ptr += len;
6183 sb_ptr += len;
6184 cur += len;
6185 }
a061fc8d 6186 free_extent_buffer(sb);
84eed90f 6187 return ret;
0b86a832
CM
6188}
6189
6190int btrfs_read_chunk_tree(struct btrfs_root *root)
6191{
6192 struct btrfs_path *path;
6193 struct extent_buffer *leaf;
6194 struct btrfs_key key;
6195 struct btrfs_key found_key;
6196 int ret;
6197 int slot;
6198
6199 root = root->fs_info->chunk_root;
6200
6201 path = btrfs_alloc_path();
6202 if (!path)
6203 return -ENOMEM;
6204
b367e47f
LZ
6205 mutex_lock(&uuid_mutex);
6206 lock_chunks(root);
6207
395927a9
FDBM
6208 /*
6209 * Read all device items, and then all the chunk items. All
6210 * device items are found before any chunk item (their object id
6211 * is smaller than the lowest possible object id for a chunk
6212 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6213 */
6214 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6215 key.offset = 0;
6216 key.type = 0;
0b86a832 6217 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6218 if (ret < 0)
6219 goto error;
d397712b 6220 while (1) {
0b86a832
CM
6221 leaf = path->nodes[0];
6222 slot = path->slots[0];
6223 if (slot >= btrfs_header_nritems(leaf)) {
6224 ret = btrfs_next_leaf(root, path);
6225 if (ret == 0)
6226 continue;
6227 if (ret < 0)
6228 goto error;
6229 break;
6230 }
6231 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6232 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6233 struct btrfs_dev_item *dev_item;
6234 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6235 struct btrfs_dev_item);
395927a9
FDBM
6236 ret = read_one_dev(root, leaf, dev_item);
6237 if (ret)
6238 goto error;
0b86a832
CM
6239 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6240 struct btrfs_chunk *chunk;
6241 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6242 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6243 if (ret)
6244 goto error;
0b86a832
CM
6245 }
6246 path->slots[0]++;
6247 }
0b86a832
CM
6248 ret = 0;
6249error:
b367e47f
LZ
6250 unlock_chunks(root);
6251 mutex_unlock(&uuid_mutex);
6252
2b82032c 6253 btrfs_free_path(path);
0b86a832
CM
6254 return ret;
6255}
442a4f63 6256
cb517eab
MX
6257void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6258{
6259 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6260 struct btrfs_device *device;
6261
29cc83f6
LB
6262 while (fs_devices) {
6263 mutex_lock(&fs_devices->device_list_mutex);
6264 list_for_each_entry(device, &fs_devices->devices, dev_list)
6265 device->dev_root = fs_info->dev_root;
6266 mutex_unlock(&fs_devices->device_list_mutex);
6267
6268 fs_devices = fs_devices->seed;
6269 }
cb517eab
MX
6270}
6271
733f4fbb
SB
6272static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6273{
6274 int i;
6275
6276 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6277 btrfs_dev_stat_reset(dev, i);
6278}
6279
6280int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6281{
6282 struct btrfs_key key;
6283 struct btrfs_key found_key;
6284 struct btrfs_root *dev_root = fs_info->dev_root;
6285 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6286 struct extent_buffer *eb;
6287 int slot;
6288 int ret = 0;
6289 struct btrfs_device *device;
6290 struct btrfs_path *path = NULL;
6291 int i;
6292
6293 path = btrfs_alloc_path();
6294 if (!path) {
6295 ret = -ENOMEM;
6296 goto out;
6297 }
6298
6299 mutex_lock(&fs_devices->device_list_mutex);
6300 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6301 int item_size;
6302 struct btrfs_dev_stats_item *ptr;
6303
6304 key.objectid = 0;
6305 key.type = BTRFS_DEV_STATS_KEY;
6306 key.offset = device->devid;
6307 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6308 if (ret) {
733f4fbb
SB
6309 __btrfs_reset_dev_stats(device);
6310 device->dev_stats_valid = 1;
6311 btrfs_release_path(path);
6312 continue;
6313 }
6314 slot = path->slots[0];
6315 eb = path->nodes[0];
6316 btrfs_item_key_to_cpu(eb, &found_key, slot);
6317 item_size = btrfs_item_size_nr(eb, slot);
6318
6319 ptr = btrfs_item_ptr(eb, slot,
6320 struct btrfs_dev_stats_item);
6321
6322 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6323 if (item_size >= (1 + i) * sizeof(__le64))
6324 btrfs_dev_stat_set(device, i,
6325 btrfs_dev_stats_value(eb, ptr, i));
6326 else
6327 btrfs_dev_stat_reset(device, i);
6328 }
6329
6330 device->dev_stats_valid = 1;
6331 btrfs_dev_stat_print_on_load(device);
6332 btrfs_release_path(path);
6333 }
6334 mutex_unlock(&fs_devices->device_list_mutex);
6335
6336out:
6337 btrfs_free_path(path);
6338 return ret < 0 ? ret : 0;
6339}
6340
6341static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6342 struct btrfs_root *dev_root,
6343 struct btrfs_device *device)
6344{
6345 struct btrfs_path *path;
6346 struct btrfs_key key;
6347 struct extent_buffer *eb;
6348 struct btrfs_dev_stats_item *ptr;
6349 int ret;
6350 int i;
6351
6352 key.objectid = 0;
6353 key.type = BTRFS_DEV_STATS_KEY;
6354 key.offset = device->devid;
6355
6356 path = btrfs_alloc_path();
6357 BUG_ON(!path);
6358 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6359 if (ret < 0) {
efe120a0
FH
6360 printk_in_rcu(KERN_WARNING "BTRFS: "
6361 "error %d while searching for dev_stats item for device %s!\n",
606686ee 6362 ret, rcu_str_deref(device->name));
733f4fbb
SB
6363 goto out;
6364 }
6365
6366 if (ret == 0 &&
6367 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6368 /* need to delete old one and insert a new one */
6369 ret = btrfs_del_item(trans, dev_root, path);
6370 if (ret != 0) {
efe120a0
FH
6371 printk_in_rcu(KERN_WARNING "BTRFS: "
6372 "delete too small dev_stats item for device %s failed %d!\n",
606686ee 6373 rcu_str_deref(device->name), ret);
733f4fbb
SB
6374 goto out;
6375 }
6376 ret = 1;
6377 }
6378
6379 if (ret == 1) {
6380 /* need to insert a new item */
6381 btrfs_release_path(path);
6382 ret = btrfs_insert_empty_item(trans, dev_root, path,
6383 &key, sizeof(*ptr));
6384 if (ret < 0) {
efe120a0
FH
6385 printk_in_rcu(KERN_WARNING "BTRFS: "
6386 "insert dev_stats item for device %s failed %d!\n",
606686ee 6387 rcu_str_deref(device->name), ret);
733f4fbb
SB
6388 goto out;
6389 }
6390 }
6391
6392 eb = path->nodes[0];
6393 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6394 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6395 btrfs_set_dev_stats_value(eb, ptr, i,
6396 btrfs_dev_stat_read(device, i));
6397 btrfs_mark_buffer_dirty(eb);
6398
6399out:
6400 btrfs_free_path(path);
6401 return ret;
6402}
6403
6404/*
6405 * called from commit_transaction. Writes all changed device stats to disk.
6406 */
6407int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6408 struct btrfs_fs_info *fs_info)
6409{
6410 struct btrfs_root *dev_root = fs_info->dev_root;
6411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6412 struct btrfs_device *device;
addc3fa7 6413 int stats_cnt;
733f4fbb
SB
6414 int ret = 0;
6415
6416 mutex_lock(&fs_devices->device_list_mutex);
6417 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6418 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6419 continue;
6420
addc3fa7 6421 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6422 ret = update_dev_stat_item(trans, dev_root, device);
6423 if (!ret)
addc3fa7 6424 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6425 }
6426 mutex_unlock(&fs_devices->device_list_mutex);
6427
6428 return ret;
6429}
6430
442a4f63
SB
6431void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6432{
6433 btrfs_dev_stat_inc(dev, index);
6434 btrfs_dev_stat_print_on_error(dev);
6435}
6436
48a3b636 6437static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6438{
733f4fbb
SB
6439 if (!dev->dev_stats_valid)
6440 return;
efe120a0
FH
6441 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6442 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6443 rcu_str_deref(dev->name),
442a4f63
SB
6444 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6445 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6446 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6447 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6448 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6449}
c11d2c23 6450
733f4fbb
SB
6451static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6452{
a98cdb85
SB
6453 int i;
6454
6455 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6456 if (btrfs_dev_stat_read(dev, i) != 0)
6457 break;
6458 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6459 return; /* all values == 0, suppress message */
6460
efe120a0
FH
6461 printk_in_rcu(KERN_INFO "BTRFS: "
6462 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6463 rcu_str_deref(dev->name),
733f4fbb
SB
6464 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6465 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6466 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6467 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6468 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6469}
6470
c11d2c23 6471int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6472 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6473{
6474 struct btrfs_device *dev;
6475 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6476 int i;
6477
6478 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6479 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6480 mutex_unlock(&fs_devices->device_list_mutex);
6481
6482 if (!dev) {
efe120a0 6483 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6484 return -ENODEV;
733f4fbb 6485 } else if (!dev->dev_stats_valid) {
efe120a0 6486 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6487 return -ENODEV;
b27f7c0c 6488 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6489 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6490 if (stats->nr_items > i)
6491 stats->values[i] =
6492 btrfs_dev_stat_read_and_reset(dev, i);
6493 else
6494 btrfs_dev_stat_reset(dev, i);
6495 }
6496 } else {
6497 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6498 if (stats->nr_items > i)
6499 stats->values[i] = btrfs_dev_stat_read(dev, i);
6500 }
6501 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6502 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6503 return 0;
6504}
a8a6dab7
SB
6505
6506int btrfs_scratch_superblock(struct btrfs_device *device)
6507{
6508 struct buffer_head *bh;
6509 struct btrfs_super_block *disk_super;
6510
6511 bh = btrfs_read_dev_super(device->bdev);
6512 if (!bh)
6513 return -EINVAL;
6514 disk_super = (struct btrfs_super_block *)bh->b_data;
6515
6516 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6517 set_buffer_dirty(bh);
6518 sync_dirty_buffer(bh);
6519 brelse(bh);
6520
6521 return 0;
6522}
This page took 0.689989 seconds and 5 git commands to generate.