Btrfs: scrub, fix sleep in atomic context
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
67a2c45e 53DEFINE_MUTEX(uuid_mutex);
8a4b83cc
CM
54static LIST_HEAD(fs_uuids);
55
2208a378
ID
56static struct btrfs_fs_devices *__alloc_fs_devices(void)
57{
58 struct btrfs_fs_devices *fs_devs;
59
60 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61 if (!fs_devs)
62 return ERR_PTR(-ENOMEM);
63
64 mutex_init(&fs_devs->device_list_mutex);
65
66 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 67 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
68 INIT_LIST_HEAD(&fs_devs->alloc_list);
69 INIT_LIST_HEAD(&fs_devs->list);
70
71 return fs_devs;
72}
73
74/**
75 * alloc_fs_devices - allocate struct btrfs_fs_devices
76 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
77 * generated.
78 *
79 * Return: a pointer to a new &struct btrfs_fs_devices on success;
80 * ERR_PTR() on error. Returned struct is not linked onto any lists and
81 * can be destroyed with kfree() right away.
82 */
83static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84{
85 struct btrfs_fs_devices *fs_devs;
86
87 fs_devs = __alloc_fs_devices();
88 if (IS_ERR(fs_devs))
89 return fs_devs;
90
91 if (fsid)
92 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93 else
94 generate_random_uuid(fs_devs->fsid);
95
96 return fs_devs;
97}
98
e4404d6e
YZ
99static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100{
101 struct btrfs_device *device;
102 WARN_ON(fs_devices->opened);
103 while (!list_empty(&fs_devices->devices)) {
104 device = list_entry(fs_devices->devices.next,
105 struct btrfs_device, dev_list);
106 list_del(&device->dev_list);
606686ee 107 rcu_string_free(device->name);
e4404d6e
YZ
108 kfree(device);
109 }
110 kfree(fs_devices);
111}
112
b8b8ff59
LC
113static void btrfs_kobject_uevent(struct block_device *bdev,
114 enum kobject_action action)
115{
116 int ret;
117
118 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119 if (ret)
efe120a0 120 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
121 action,
122 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123 &disk_to_dev(bdev->bd_disk)->kobj);
124}
125
143bede5 126void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
127{
128 struct btrfs_fs_devices *fs_devices;
8a4b83cc 129
2b82032c
YZ
130 while (!list_empty(&fs_uuids)) {
131 fs_devices = list_entry(fs_uuids.next,
132 struct btrfs_fs_devices, list);
133 list_del(&fs_devices->list);
e4404d6e 134 free_fs_devices(fs_devices);
8a4b83cc 135 }
8a4b83cc
CM
136}
137
12bd2fc0
ID
138static struct btrfs_device *__alloc_device(void)
139{
140 struct btrfs_device *dev;
141
142 dev = kzalloc(sizeof(*dev), GFP_NOFS);
143 if (!dev)
144 return ERR_PTR(-ENOMEM);
145
146 INIT_LIST_HEAD(&dev->dev_list);
147 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 148 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
149
150 spin_lock_init(&dev->io_lock);
151
152 spin_lock_init(&dev->reada_lock);
153 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 154 atomic_set(&dev->dev_stats_ccnt, 0);
12bd2fc0
ID
155 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
156 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
157
158 return dev;
159}
160
a1b32a59
CM
161static noinline struct btrfs_device *__find_device(struct list_head *head,
162 u64 devid, u8 *uuid)
8a4b83cc
CM
163{
164 struct btrfs_device *dev;
8a4b83cc 165
c6e30871 166 list_for_each_entry(dev, head, dev_list) {
a443755f 167 if (dev->devid == devid &&
8f18cf13 168 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 169 return dev;
a443755f 170 }
8a4b83cc
CM
171 }
172 return NULL;
173}
174
a1b32a59 175static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 176{
8a4b83cc
CM
177 struct btrfs_fs_devices *fs_devices;
178
c6e30871 179 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
180 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
181 return fs_devices;
182 }
183 return NULL;
184}
185
beaf8ab3
SB
186static int
187btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
188 int flush, struct block_device **bdev,
189 struct buffer_head **bh)
190{
191 int ret;
192
193 *bdev = blkdev_get_by_path(device_path, flags, holder);
194
195 if (IS_ERR(*bdev)) {
196 ret = PTR_ERR(*bdev);
efe120a0 197 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
beaf8ab3
SB
198 goto error;
199 }
200
201 if (flush)
202 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
203 ret = set_blocksize(*bdev, 4096);
204 if (ret) {
205 blkdev_put(*bdev, flags);
206 goto error;
207 }
208 invalidate_bdev(*bdev);
209 *bh = btrfs_read_dev_super(*bdev);
210 if (!*bh) {
211 ret = -EINVAL;
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215
216 return 0;
217
218error:
219 *bdev = NULL;
220 *bh = NULL;
221 return ret;
222}
223
ffbd517d
CM
224static void requeue_list(struct btrfs_pending_bios *pending_bios,
225 struct bio *head, struct bio *tail)
226{
227
228 struct bio *old_head;
229
230 old_head = pending_bios->head;
231 pending_bios->head = head;
232 if (pending_bios->tail)
233 tail->bi_next = old_head;
234 else
235 pending_bios->tail = tail;
236}
237
8b712842
CM
238/*
239 * we try to collect pending bios for a device so we don't get a large
240 * number of procs sending bios down to the same device. This greatly
241 * improves the schedulers ability to collect and merge the bios.
242 *
243 * But, it also turns into a long list of bios to process and that is sure
244 * to eventually make the worker thread block. The solution here is to
245 * make some progress and then put this work struct back at the end of
246 * the list if the block device is congested. This way, multiple devices
247 * can make progress from a single worker thread.
248 */
143bede5 249static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
250{
251 struct bio *pending;
252 struct backing_dev_info *bdi;
b64a2851 253 struct btrfs_fs_info *fs_info;
ffbd517d 254 struct btrfs_pending_bios *pending_bios;
8b712842
CM
255 struct bio *tail;
256 struct bio *cur;
257 int again = 0;
ffbd517d 258 unsigned long num_run;
d644d8a1 259 unsigned long batch_run = 0;
b64a2851 260 unsigned long limit;
b765ead5 261 unsigned long last_waited = 0;
d84275c9 262 int force_reg = 0;
0e588859 263 int sync_pending = 0;
211588ad
CM
264 struct blk_plug plug;
265
266 /*
267 * this function runs all the bios we've collected for
268 * a particular device. We don't want to wander off to
269 * another device without first sending all of these down.
270 * So, setup a plug here and finish it off before we return
271 */
272 blk_start_plug(&plug);
8b712842 273
bedf762b 274 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
275 fs_info = device->dev_root->fs_info;
276 limit = btrfs_async_submit_limit(fs_info);
277 limit = limit * 2 / 3;
278
8b712842
CM
279loop:
280 spin_lock(&device->io_lock);
281
a6837051 282loop_lock:
d84275c9 283 num_run = 0;
ffbd517d 284
8b712842
CM
285 /* take all the bios off the list at once and process them
286 * later on (without the lock held). But, remember the
287 * tail and other pointers so the bios can be properly reinserted
288 * into the list if we hit congestion
289 */
d84275c9 290 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 291 pending_bios = &device->pending_sync_bios;
d84275c9
CM
292 force_reg = 1;
293 } else {
ffbd517d 294 pending_bios = &device->pending_bios;
d84275c9
CM
295 force_reg = 0;
296 }
ffbd517d
CM
297
298 pending = pending_bios->head;
299 tail = pending_bios->tail;
8b712842 300 WARN_ON(pending && !tail);
8b712842
CM
301
302 /*
303 * if pending was null this time around, no bios need processing
304 * at all and we can stop. Otherwise it'll loop back up again
305 * and do an additional check so no bios are missed.
306 *
307 * device->running_pending is used to synchronize with the
308 * schedule_bio code.
309 */
ffbd517d
CM
310 if (device->pending_sync_bios.head == NULL &&
311 device->pending_bios.head == NULL) {
8b712842
CM
312 again = 0;
313 device->running_pending = 0;
ffbd517d
CM
314 } else {
315 again = 1;
316 device->running_pending = 1;
8b712842 317 }
ffbd517d
CM
318
319 pending_bios->head = NULL;
320 pending_bios->tail = NULL;
321
8b712842
CM
322 spin_unlock(&device->io_lock);
323
d397712b 324 while (pending) {
ffbd517d
CM
325
326 rmb();
d84275c9
CM
327 /* we want to work on both lists, but do more bios on the
328 * sync list than the regular list
329 */
330 if ((num_run > 32 &&
331 pending_bios != &device->pending_sync_bios &&
332 device->pending_sync_bios.head) ||
333 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
334 device->pending_bios.head)) {
ffbd517d
CM
335 spin_lock(&device->io_lock);
336 requeue_list(pending_bios, pending, tail);
337 goto loop_lock;
338 }
339
8b712842
CM
340 cur = pending;
341 pending = pending->bi_next;
342 cur->bi_next = NULL;
b64a2851 343
66657b31 344 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
345 waitqueue_active(&fs_info->async_submit_wait))
346 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
347
348 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 349
2ab1ba68
CM
350 /*
351 * if we're doing the sync list, record that our
352 * plug has some sync requests on it
353 *
354 * If we're doing the regular list and there are
355 * sync requests sitting around, unplug before
356 * we add more
357 */
358 if (pending_bios == &device->pending_sync_bios) {
359 sync_pending = 1;
360 } else if (sync_pending) {
361 blk_finish_plug(&plug);
362 blk_start_plug(&plug);
363 sync_pending = 0;
364 }
365
21adbd5c 366 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
367 num_run++;
368 batch_run++;
7eaceacc 369 if (need_resched())
ffbd517d 370 cond_resched();
8b712842
CM
371
372 /*
373 * we made progress, there is more work to do and the bdi
374 * is now congested. Back off and let other work structs
375 * run instead
376 */
57fd5a5f 377 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 378 fs_info->fs_devices->open_devices > 1) {
b765ead5 379 struct io_context *ioc;
8b712842 380
b765ead5
CM
381 ioc = current->io_context;
382
383 /*
384 * the main goal here is that we don't want to
385 * block if we're going to be able to submit
386 * more requests without blocking.
387 *
388 * This code does two great things, it pokes into
389 * the elevator code from a filesystem _and_
390 * it makes assumptions about how batching works.
391 */
392 if (ioc && ioc->nr_batch_requests > 0 &&
393 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
394 (last_waited == 0 ||
395 ioc->last_waited == last_waited)) {
396 /*
397 * we want to go through our batch of
398 * requests and stop. So, we copy out
399 * the ioc->last_waited time and test
400 * against it before looping
401 */
402 last_waited = ioc->last_waited;
7eaceacc 403 if (need_resched())
ffbd517d 404 cond_resched();
b765ead5
CM
405 continue;
406 }
8b712842 407 spin_lock(&device->io_lock);
ffbd517d 408 requeue_list(pending_bios, pending, tail);
a6837051 409 device->running_pending = 1;
8b712842
CM
410
411 spin_unlock(&device->io_lock);
a8c93d4e
QW
412 btrfs_queue_work(fs_info->submit_workers,
413 &device->work);
8b712842
CM
414 goto done;
415 }
d85c8a6f
CM
416 /* unplug every 64 requests just for good measure */
417 if (batch_run % 64 == 0) {
418 blk_finish_plug(&plug);
419 blk_start_plug(&plug);
420 sync_pending = 0;
421 }
8b712842 422 }
ffbd517d 423
51684082
CM
424 cond_resched();
425 if (again)
426 goto loop;
427
428 spin_lock(&device->io_lock);
429 if (device->pending_bios.head || device->pending_sync_bios.head)
430 goto loop_lock;
431 spin_unlock(&device->io_lock);
432
8b712842 433done:
211588ad 434 blk_finish_plug(&plug);
8b712842
CM
435}
436
b2950863 437static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
438{
439 struct btrfs_device *device;
440
441 device = container_of(work, struct btrfs_device, work);
442 run_scheduled_bios(device);
443}
444
60999ca4
DS
445/*
446 * Add new device to list of registered devices
447 *
448 * Returns:
449 * 1 - first time device is seen
450 * 0 - device already known
451 * < 0 - error
452 */
a1b32a59 453static noinline int device_list_add(const char *path,
8a4b83cc
CM
454 struct btrfs_super_block *disk_super,
455 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
456{
457 struct btrfs_device *device;
458 struct btrfs_fs_devices *fs_devices;
606686ee 459 struct rcu_string *name;
60999ca4 460 int ret = 0;
8a4b83cc
CM
461 u64 found_transid = btrfs_super_generation(disk_super);
462
463 fs_devices = find_fsid(disk_super->fsid);
464 if (!fs_devices) {
2208a378
ID
465 fs_devices = alloc_fs_devices(disk_super->fsid);
466 if (IS_ERR(fs_devices))
467 return PTR_ERR(fs_devices);
468
8a4b83cc 469 list_add(&fs_devices->list, &fs_uuids);
2208a378 470
8a4b83cc
CM
471 device = NULL;
472 } else {
a443755f
CM
473 device = __find_device(&fs_devices->devices, devid,
474 disk_super->dev_item.uuid);
8a4b83cc 475 }
443f24fe 476
8a4b83cc 477 if (!device) {
2b82032c
YZ
478 if (fs_devices->opened)
479 return -EBUSY;
480
12bd2fc0
ID
481 device = btrfs_alloc_device(NULL, &devid,
482 disk_super->dev_item.uuid);
483 if (IS_ERR(device)) {
8a4b83cc 484 /* we can safely leave the fs_devices entry around */
12bd2fc0 485 return PTR_ERR(device);
8a4b83cc 486 }
606686ee
JB
487
488 name = rcu_string_strdup(path, GFP_NOFS);
489 if (!name) {
8a4b83cc
CM
490 kfree(device);
491 return -ENOMEM;
492 }
606686ee 493 rcu_assign_pointer(device->name, name);
90519d66 494
e5e9a520 495 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 496 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 497 fs_devices->num_devices++;
e5e9a520
CM
498 mutex_unlock(&fs_devices->device_list_mutex);
499
60999ca4 500 ret = 1;
2b82032c 501 device->fs_devices = fs_devices;
606686ee 502 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
503 /*
504 * When FS is already mounted.
505 * 1. If you are here and if the device->name is NULL that
506 * means this device was missing at time of FS mount.
507 * 2. If you are here and if the device->name is different
508 * from 'path' that means either
509 * a. The same device disappeared and reappeared with
510 * different name. or
511 * b. The missing-disk-which-was-replaced, has
512 * reappeared now.
513 *
514 * We must allow 1 and 2a above. But 2b would be a spurious
515 * and unintentional.
516 *
517 * Further in case of 1 and 2a above, the disk at 'path'
518 * would have missed some transaction when it was away and
519 * in case of 2a the stale bdev has to be updated as well.
520 * 2b must not be allowed at all time.
521 */
522
523 /*
0f23ae74
CM
524 * For now, we do allow update to btrfs_fs_device through the
525 * btrfs dev scan cli after FS has been mounted. We're still
526 * tracking a problem where systems fail mount by subvolume id
527 * when we reject replacement on a mounted FS.
b96de000 528 */
0f23ae74 529 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
530 /*
531 * That is if the FS is _not_ mounted and if you
532 * are here, that means there is more than one
533 * disk with same uuid and devid.We keep the one
534 * with larger generation number or the last-in if
535 * generation are equal.
536 */
0f23ae74 537 return -EEXIST;
77bdae4d 538 }
b96de000 539
606686ee 540 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
541 if (!name)
542 return -ENOMEM;
606686ee
JB
543 rcu_string_free(device->name);
544 rcu_assign_pointer(device->name, name);
cd02dca5
CM
545 if (device->missing) {
546 fs_devices->missing_devices--;
547 device->missing = 0;
548 }
8a4b83cc
CM
549 }
550
77bdae4d
AJ
551 /*
552 * Unmount does not free the btrfs_device struct but would zero
553 * generation along with most of the other members. So just update
554 * it back. We need it to pick the disk with largest generation
555 * (as above).
556 */
557 if (!fs_devices->opened)
558 device->generation = found_transid;
559
8a4b83cc 560 *fs_devices_ret = fs_devices;
60999ca4
DS
561
562 return ret;
8a4b83cc
CM
563}
564
e4404d6e
YZ
565static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
566{
567 struct btrfs_fs_devices *fs_devices;
568 struct btrfs_device *device;
569 struct btrfs_device *orig_dev;
570
2208a378
ID
571 fs_devices = alloc_fs_devices(orig->fsid);
572 if (IS_ERR(fs_devices))
573 return fs_devices;
e4404d6e 574
adbbb863 575 mutex_lock(&orig->device_list_mutex);
02db0844 576 fs_devices->total_devices = orig->total_devices;
e4404d6e 577
46224705 578 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 579 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
580 struct rcu_string *name;
581
12bd2fc0
ID
582 device = btrfs_alloc_device(NULL, &orig_dev->devid,
583 orig_dev->uuid);
584 if (IS_ERR(device))
e4404d6e
YZ
585 goto error;
586
606686ee
JB
587 /*
588 * This is ok to do without rcu read locked because we hold the
589 * uuid mutex so nothing we touch in here is going to disappear.
590 */
e755f780
AJ
591 if (orig_dev->name) {
592 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
593 if (!name) {
594 kfree(device);
595 goto error;
596 }
597 rcu_assign_pointer(device->name, name);
fd2696f3 598 }
e4404d6e 599
e4404d6e
YZ
600 list_add(&device->dev_list, &fs_devices->devices);
601 device->fs_devices = fs_devices;
602 fs_devices->num_devices++;
603 }
adbbb863 604 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
605 return fs_devices;
606error:
adbbb863 607 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
608 free_fs_devices(fs_devices);
609 return ERR_PTR(-ENOMEM);
610}
611
8dabb742
SB
612void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
613 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 614{
c6e30871 615 struct btrfs_device *device, *next;
443f24fe 616 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 617
dfe25020
CM
618 mutex_lock(&uuid_mutex);
619again:
46224705 620 /* This is the initialized path, it is safe to release the devices. */
c6e30871 621 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 622 if (device->in_fs_metadata) {
63a212ab 623 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
624 (!latest_dev ||
625 device->generation > latest_dev->generation)) {
626 latest_dev = device;
a6b0d5c8 627 }
2b82032c 628 continue;
a6b0d5c8 629 }
2b82032c 630
8dabb742
SB
631 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
632 /*
633 * In the first step, keep the device which has
634 * the correct fsid and the devid that is used
635 * for the dev_replace procedure.
636 * In the second step, the dev_replace state is
637 * read from the device tree and it is known
638 * whether the procedure is really active or
639 * not, which means whether this device is
640 * used or whether it should be removed.
641 */
642 if (step == 0 || device->is_tgtdev_for_dev_replace) {
643 continue;
644 }
645 }
2b82032c 646 if (device->bdev) {
d4d77629 647 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
648 device->bdev = NULL;
649 fs_devices->open_devices--;
650 }
651 if (device->writeable) {
652 list_del_init(&device->dev_alloc_list);
653 device->writeable = 0;
8dabb742
SB
654 if (!device->is_tgtdev_for_dev_replace)
655 fs_devices->rw_devices--;
2b82032c 656 }
e4404d6e
YZ
657 list_del_init(&device->dev_list);
658 fs_devices->num_devices--;
606686ee 659 rcu_string_free(device->name);
e4404d6e 660 kfree(device);
dfe25020 661 }
2b82032c
YZ
662
663 if (fs_devices->seed) {
664 fs_devices = fs_devices->seed;
2b82032c
YZ
665 goto again;
666 }
667
443f24fe 668 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 669
dfe25020 670 mutex_unlock(&uuid_mutex);
dfe25020 671}
a0af469b 672
1f78160c
XG
673static void __free_device(struct work_struct *work)
674{
675 struct btrfs_device *device;
676
677 device = container_of(work, struct btrfs_device, rcu_work);
678
679 if (device->bdev)
680 blkdev_put(device->bdev, device->mode);
681
606686ee 682 rcu_string_free(device->name);
1f78160c
XG
683 kfree(device);
684}
685
686static void free_device(struct rcu_head *head)
687{
688 struct btrfs_device *device;
689
690 device = container_of(head, struct btrfs_device, rcu);
691
692 INIT_WORK(&device->rcu_work, __free_device);
693 schedule_work(&device->rcu_work);
694}
695
2b82032c 696static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 697{
8a4b83cc 698 struct btrfs_device *device;
e4404d6e 699
2b82032c
YZ
700 if (--fs_devices->opened > 0)
701 return 0;
8a4b83cc 702
c9513edb 703 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 704 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 705 struct btrfs_device *new_device;
606686ee 706 struct rcu_string *name;
1f78160c
XG
707
708 if (device->bdev)
a0af469b 709 fs_devices->open_devices--;
1f78160c 710
f747cab7
ID
711 if (device->writeable &&
712 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
713 list_del_init(&device->dev_alloc_list);
714 fs_devices->rw_devices--;
715 }
716
726551eb
JB
717 if (device->missing)
718 fs_devices->missing_devices--;
d5e2003c 719
a1e8780a
ID
720 new_device = btrfs_alloc_device(NULL, &device->devid,
721 device->uuid);
722 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
723
724 /* Safe because we are under uuid_mutex */
99f5944b
JB
725 if (device->name) {
726 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 727 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
728 rcu_assign_pointer(new_device->name, name);
729 }
a1e8780a 730
1f78160c 731 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 732 new_device->fs_devices = device->fs_devices;
1f78160c
XG
733
734 call_rcu(&device->rcu, free_device);
8a4b83cc 735 }
c9513edb
XG
736 mutex_unlock(&fs_devices->device_list_mutex);
737
e4404d6e
YZ
738 WARN_ON(fs_devices->open_devices);
739 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
740 fs_devices->opened = 0;
741 fs_devices->seeding = 0;
2b82032c 742
8a4b83cc
CM
743 return 0;
744}
745
2b82032c
YZ
746int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
747{
e4404d6e 748 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
749 int ret;
750
751 mutex_lock(&uuid_mutex);
752 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
753 if (!fs_devices->opened) {
754 seed_devices = fs_devices->seed;
755 fs_devices->seed = NULL;
756 }
2b82032c 757 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
758
759 while (seed_devices) {
760 fs_devices = seed_devices;
761 seed_devices = fs_devices->seed;
762 __btrfs_close_devices(fs_devices);
763 free_fs_devices(fs_devices);
764 }
bc178622
ES
765 /*
766 * Wait for rcu kworkers under __btrfs_close_devices
767 * to finish all blkdev_puts so device is really
768 * free when umount is done.
769 */
770 rcu_barrier();
2b82032c
YZ
771 return ret;
772}
773
e4404d6e
YZ
774static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
775 fmode_t flags, void *holder)
8a4b83cc 776{
d5e2003c 777 struct request_queue *q;
8a4b83cc
CM
778 struct block_device *bdev;
779 struct list_head *head = &fs_devices->devices;
8a4b83cc 780 struct btrfs_device *device;
443f24fe 781 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
782 struct buffer_head *bh;
783 struct btrfs_super_block *disk_super;
a0af469b 784 u64 devid;
2b82032c 785 int seeding = 1;
a0af469b 786 int ret = 0;
8a4b83cc 787
d4d77629
TH
788 flags |= FMODE_EXCL;
789
c6e30871 790 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
791 if (device->bdev)
792 continue;
dfe25020
CM
793 if (!device->name)
794 continue;
795
f63e0cca
ES
796 /* Just open everything we can; ignore failures here */
797 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798 &bdev, &bh))
beaf8ab3 799 continue;
a0af469b
CM
800
801 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 802 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
803 if (devid != device->devid)
804 goto error_brelse;
805
2b82032c
YZ
806 if (memcmp(device->uuid, disk_super->dev_item.uuid,
807 BTRFS_UUID_SIZE))
808 goto error_brelse;
809
810 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
811 if (!latest_dev ||
812 device->generation > latest_dev->generation)
813 latest_dev = device;
a0af469b 814
2b82032c
YZ
815 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
816 device->writeable = 0;
817 } else {
818 device->writeable = !bdev_read_only(bdev);
819 seeding = 0;
820 }
821
d5e2003c 822 q = bdev_get_queue(bdev);
90180da4 823 if (blk_queue_discard(q))
d5e2003c 824 device->can_discard = 1;
d5e2003c 825
8a4b83cc 826 device->bdev = bdev;
dfe25020 827 device->in_fs_metadata = 0;
15916de8
CM
828 device->mode = flags;
829
c289811c
CM
830 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
831 fs_devices->rotating = 1;
832
a0af469b 833 fs_devices->open_devices++;
55e50e45
ID
834 if (device->writeable &&
835 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
836 fs_devices->rw_devices++;
837 list_add(&device->dev_alloc_list,
838 &fs_devices->alloc_list);
839 }
4f6c9328 840 brelse(bh);
a0af469b 841 continue;
a061fc8d 842
a0af469b
CM
843error_brelse:
844 brelse(bh);
d4d77629 845 blkdev_put(bdev, flags);
a0af469b 846 continue;
8a4b83cc 847 }
a0af469b 848 if (fs_devices->open_devices == 0) {
20bcd649 849 ret = -EINVAL;
a0af469b
CM
850 goto out;
851 }
2b82032c
YZ
852 fs_devices->seeding = seeding;
853 fs_devices->opened = 1;
443f24fe 854 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 855 fs_devices->total_rw_bytes = 0;
a0af469b 856out:
2b82032c
YZ
857 return ret;
858}
859
860int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 861 fmode_t flags, void *holder)
2b82032c
YZ
862{
863 int ret;
864
865 mutex_lock(&uuid_mutex);
866 if (fs_devices->opened) {
e4404d6e
YZ
867 fs_devices->opened++;
868 ret = 0;
2b82032c 869 } else {
15916de8 870 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 871 }
8a4b83cc 872 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
873 return ret;
874}
875
6f60cbd3
DS
876/*
877 * Look for a btrfs signature on a device. This may be called out of the mount path
878 * and we are not allowed to call set_blocksize during the scan. The superblock
879 * is read via pagecache
880 */
97288f2c 881int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
882 struct btrfs_fs_devices **fs_devices_ret)
883{
884 struct btrfs_super_block *disk_super;
885 struct block_device *bdev;
6f60cbd3
DS
886 struct page *page;
887 void *p;
888 int ret = -EINVAL;
8a4b83cc 889 u64 devid;
f2984462 890 u64 transid;
02db0844 891 u64 total_devices;
6f60cbd3
DS
892 u64 bytenr;
893 pgoff_t index;
8a4b83cc 894
6f60cbd3
DS
895 /*
896 * we would like to check all the supers, but that would make
897 * a btrfs mount succeed after a mkfs from a different FS.
898 * So, we need to add a special mount option to scan for
899 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
900 */
901 bytenr = btrfs_sb_offset(0);
d4d77629 902 flags |= FMODE_EXCL;
10f6327b 903 mutex_lock(&uuid_mutex);
6f60cbd3
DS
904
905 bdev = blkdev_get_by_path(path, flags, holder);
906
907 if (IS_ERR(bdev)) {
908 ret = PTR_ERR(bdev);
beaf8ab3 909 goto error;
6f60cbd3
DS
910 }
911
912 /* make sure our super fits in the device */
913 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
914 goto error_bdev_put;
915
916 /* make sure our super fits in the page */
917 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
918 goto error_bdev_put;
919
920 /* make sure our super doesn't straddle pages on disk */
921 index = bytenr >> PAGE_CACHE_SHIFT;
922 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
923 goto error_bdev_put;
924
925 /* pull in the page with our super */
926 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
927 index, GFP_NOFS);
928
929 if (IS_ERR_OR_NULL(page))
930 goto error_bdev_put;
931
932 p = kmap(page);
933
934 /* align our pointer to the offset of the super block */
935 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
936
937 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 938 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
939 goto error_unmap;
940
a343832f 941 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 942 transid = btrfs_super_generation(disk_super);
02db0844 943 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 944
8a4b83cc 945 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
946 if (ret > 0) {
947 if (disk_super->label[0]) {
948 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
949 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
950 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
951 } else {
952 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
953 }
954
955 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
956 ret = 0;
957 }
02db0844
JB
958 if (!ret && fs_devices_ret)
959 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
960
961error_unmap:
962 kunmap(page);
963 page_cache_release(page);
964
965error_bdev_put:
d4d77629 966 blkdev_put(bdev, flags);
8a4b83cc 967error:
beaf8ab3 968 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
969 return ret;
970}
0b86a832 971
6d07bcec
MX
972/* helper to account the used device space in the range */
973int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
974 u64 end, u64 *length)
975{
976 struct btrfs_key key;
977 struct btrfs_root *root = device->dev_root;
978 struct btrfs_dev_extent *dev_extent;
979 struct btrfs_path *path;
980 u64 extent_end;
981 int ret;
982 int slot;
983 struct extent_buffer *l;
984
985 *length = 0;
986
63a212ab 987 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
988 return 0;
989
990 path = btrfs_alloc_path();
991 if (!path)
992 return -ENOMEM;
993 path->reada = 2;
994
995 key.objectid = device->devid;
996 key.offset = start;
997 key.type = BTRFS_DEV_EXTENT_KEY;
998
999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000 if (ret < 0)
1001 goto out;
1002 if (ret > 0) {
1003 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1004 if (ret < 0)
1005 goto out;
1006 }
1007
1008 while (1) {
1009 l = path->nodes[0];
1010 slot = path->slots[0];
1011 if (slot >= btrfs_header_nritems(l)) {
1012 ret = btrfs_next_leaf(root, path);
1013 if (ret == 0)
1014 continue;
1015 if (ret < 0)
1016 goto out;
1017
1018 break;
1019 }
1020 btrfs_item_key_to_cpu(l, &key, slot);
1021
1022 if (key.objectid < device->devid)
1023 goto next;
1024
1025 if (key.objectid > device->devid)
1026 break;
1027
962a298f 1028 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1029 goto next;
1030
1031 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1032 extent_end = key.offset + btrfs_dev_extent_length(l,
1033 dev_extent);
1034 if (key.offset <= start && extent_end > end) {
1035 *length = end - start + 1;
1036 break;
1037 } else if (key.offset <= start && extent_end > start)
1038 *length += extent_end - start;
1039 else if (key.offset > start && extent_end <= end)
1040 *length += extent_end - key.offset;
1041 else if (key.offset > start && key.offset <= end) {
1042 *length += end - key.offset + 1;
1043 break;
1044 } else if (key.offset > end)
1045 break;
1046
1047next:
1048 path->slots[0]++;
1049 }
1050 ret = 0;
1051out:
1052 btrfs_free_path(path);
1053 return ret;
1054}
1055
6df9a95e
JB
1056static int contains_pending_extent(struct btrfs_trans_handle *trans,
1057 struct btrfs_device *device,
1058 u64 *start, u64 len)
1059{
1060 struct extent_map *em;
04216820 1061 struct list_head *search_list = &trans->transaction->pending_chunks;
6df9a95e
JB
1062 int ret = 0;
1063
04216820
FM
1064again:
1065 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1066 struct map_lookup *map;
1067 int i;
1068
1069 map = (struct map_lookup *)em->bdev;
1070 for (i = 0; i < map->num_stripes; i++) {
1071 if (map->stripes[i].dev != device)
1072 continue;
1073 if (map->stripes[i].physical >= *start + len ||
1074 map->stripes[i].physical + em->orig_block_len <=
1075 *start)
1076 continue;
1077 *start = map->stripes[i].physical +
1078 em->orig_block_len;
1079 ret = 1;
1080 }
1081 }
04216820
FM
1082 if (search_list == &trans->transaction->pending_chunks) {
1083 search_list = &trans->root->fs_info->pinned_chunks;
1084 goto again;
1085 }
6df9a95e
JB
1086
1087 return ret;
1088}
1089
1090
0b86a832 1091/*
7bfc837d 1092 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1093 * @device: the device which we search the free space in
1094 * @num_bytes: the size of the free space that we need
1095 * @start: store the start of the free space.
1096 * @len: the size of the free space. that we find, or the size of the max
1097 * free space if we don't find suitable free space
1098 *
0b86a832
CM
1099 * this uses a pretty simple search, the expectation is that it is
1100 * called very infrequently and that a given device has a small number
1101 * of extents
7bfc837d
MX
1102 *
1103 * @start is used to store the start of the free space if we find. But if we
1104 * don't find suitable free space, it will be used to store the start position
1105 * of the max free space.
1106 *
1107 * @len is used to store the size of the free space that we find.
1108 * But if we don't find suitable free space, it is used to store the size of
1109 * the max free space.
0b86a832 1110 */
6df9a95e
JB
1111int find_free_dev_extent(struct btrfs_trans_handle *trans,
1112 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1113 u64 *start, u64 *len)
0b86a832
CM
1114{
1115 struct btrfs_key key;
1116 struct btrfs_root *root = device->dev_root;
7bfc837d 1117 struct btrfs_dev_extent *dev_extent;
2b82032c 1118 struct btrfs_path *path;
7bfc837d
MX
1119 u64 hole_size;
1120 u64 max_hole_start;
1121 u64 max_hole_size;
1122 u64 extent_end;
1123 u64 search_start;
0b86a832
CM
1124 u64 search_end = device->total_bytes;
1125 int ret;
7bfc837d 1126 int slot;
0b86a832
CM
1127 struct extent_buffer *l;
1128
0b86a832
CM
1129 /* FIXME use last free of some kind */
1130
8a4b83cc
CM
1131 /* we don't want to overwrite the superblock on the drive,
1132 * so we make sure to start at an offset of at least 1MB
1133 */
a9c9bf68 1134 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1135
6df9a95e
JB
1136 path = btrfs_alloc_path();
1137 if (!path)
1138 return -ENOMEM;
1139again:
7bfc837d
MX
1140 max_hole_start = search_start;
1141 max_hole_size = 0;
38c01b96 1142 hole_size = 0;
7bfc837d 1143
63a212ab 1144 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1145 ret = -ENOSPC;
6df9a95e 1146 goto out;
7bfc837d
MX
1147 }
1148
7bfc837d 1149 path->reada = 2;
6df9a95e
JB
1150 path->search_commit_root = 1;
1151 path->skip_locking = 1;
7bfc837d 1152
0b86a832
CM
1153 key.objectid = device->devid;
1154 key.offset = search_start;
1155 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1156
125ccb0a 1157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1158 if (ret < 0)
7bfc837d 1159 goto out;
1fcbac58
YZ
1160 if (ret > 0) {
1161 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1162 if (ret < 0)
7bfc837d 1163 goto out;
1fcbac58 1164 }
7bfc837d 1165
0b86a832
CM
1166 while (1) {
1167 l = path->nodes[0];
1168 slot = path->slots[0];
1169 if (slot >= btrfs_header_nritems(l)) {
1170 ret = btrfs_next_leaf(root, path);
1171 if (ret == 0)
1172 continue;
1173 if (ret < 0)
7bfc837d
MX
1174 goto out;
1175
1176 break;
0b86a832
CM
1177 }
1178 btrfs_item_key_to_cpu(l, &key, slot);
1179
1180 if (key.objectid < device->devid)
1181 goto next;
1182
1183 if (key.objectid > device->devid)
7bfc837d 1184 break;
0b86a832 1185
962a298f 1186 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1187 goto next;
9779b72f 1188
7bfc837d
MX
1189 if (key.offset > search_start) {
1190 hole_size = key.offset - search_start;
9779b72f 1191
6df9a95e
JB
1192 /*
1193 * Have to check before we set max_hole_start, otherwise
1194 * we could end up sending back this offset anyway.
1195 */
1196 if (contains_pending_extent(trans, device,
1197 &search_start,
1198 hole_size))
1199 hole_size = 0;
1200
7bfc837d
MX
1201 if (hole_size > max_hole_size) {
1202 max_hole_start = search_start;
1203 max_hole_size = hole_size;
1204 }
9779b72f 1205
7bfc837d
MX
1206 /*
1207 * If this free space is greater than which we need,
1208 * it must be the max free space that we have found
1209 * until now, so max_hole_start must point to the start
1210 * of this free space and the length of this free space
1211 * is stored in max_hole_size. Thus, we return
1212 * max_hole_start and max_hole_size and go back to the
1213 * caller.
1214 */
1215 if (hole_size >= num_bytes) {
1216 ret = 0;
1217 goto out;
0b86a832
CM
1218 }
1219 }
0b86a832 1220
0b86a832 1221 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1222 extent_end = key.offset + btrfs_dev_extent_length(l,
1223 dev_extent);
1224 if (extent_end > search_start)
1225 search_start = extent_end;
0b86a832
CM
1226next:
1227 path->slots[0]++;
1228 cond_resched();
1229 }
0b86a832 1230
38c01b96 1231 /*
1232 * At this point, search_start should be the end of
1233 * allocated dev extents, and when shrinking the device,
1234 * search_end may be smaller than search_start.
1235 */
1236 if (search_end > search_start)
1237 hole_size = search_end - search_start;
1238
7bfc837d
MX
1239 if (hole_size > max_hole_size) {
1240 max_hole_start = search_start;
1241 max_hole_size = hole_size;
0b86a832 1242 }
0b86a832 1243
6df9a95e
JB
1244 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1245 btrfs_release_path(path);
1246 goto again;
1247 }
1248
7bfc837d
MX
1249 /* See above. */
1250 if (hole_size < num_bytes)
1251 ret = -ENOSPC;
1252 else
1253 ret = 0;
1254
1255out:
2b82032c 1256 btrfs_free_path(path);
7bfc837d 1257 *start = max_hole_start;
b2117a39 1258 if (len)
7bfc837d 1259 *len = max_hole_size;
0b86a832
CM
1260 return ret;
1261}
1262
b2950863 1263static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1264 struct btrfs_device *device,
2196d6e8 1265 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1266{
1267 int ret;
1268 struct btrfs_path *path;
1269 struct btrfs_root *root = device->dev_root;
1270 struct btrfs_key key;
a061fc8d
CM
1271 struct btrfs_key found_key;
1272 struct extent_buffer *leaf = NULL;
1273 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1274
1275 path = btrfs_alloc_path();
1276 if (!path)
1277 return -ENOMEM;
1278
1279 key.objectid = device->devid;
1280 key.offset = start;
1281 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1282again:
8f18cf13 1283 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1284 if (ret > 0) {
1285 ret = btrfs_previous_item(root, path, key.objectid,
1286 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1287 if (ret)
1288 goto out;
a061fc8d
CM
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1291 extent = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_dev_extent);
1293 BUG_ON(found_key.offset > start || found_key.offset +
1294 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1295 key = found_key;
1296 btrfs_release_path(path);
1297 goto again;
a061fc8d
CM
1298 } else if (ret == 0) {
1299 leaf = path->nodes[0];
1300 extent = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_dev_extent);
79787eaa
JM
1302 } else {
1303 btrfs_error(root->fs_info, ret, "Slot search failed");
1304 goto out;
a061fc8d 1305 }
8f18cf13 1306
2196d6e8
MX
1307 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1308
8f18cf13 1309 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1310 if (ret) {
1311 btrfs_error(root->fs_info, ret,
1312 "Failed to remove dev extent item");
1313 }
b0b802d7 1314out:
8f18cf13
CM
1315 btrfs_free_path(path);
1316 return ret;
1317}
1318
48a3b636
ES
1319static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1320 struct btrfs_device *device,
1321 u64 chunk_tree, u64 chunk_objectid,
1322 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1323{
1324 int ret;
1325 struct btrfs_path *path;
1326 struct btrfs_root *root = device->dev_root;
1327 struct btrfs_dev_extent *extent;
1328 struct extent_buffer *leaf;
1329 struct btrfs_key key;
1330
dfe25020 1331 WARN_ON(!device->in_fs_metadata);
63a212ab 1332 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1333 path = btrfs_alloc_path();
1334 if (!path)
1335 return -ENOMEM;
1336
0b86a832 1337 key.objectid = device->devid;
2b82032c 1338 key.offset = start;
0b86a832
CM
1339 key.type = BTRFS_DEV_EXTENT_KEY;
1340 ret = btrfs_insert_empty_item(trans, root, path, &key,
1341 sizeof(*extent));
2cdcecbc
MF
1342 if (ret)
1343 goto out;
0b86a832
CM
1344
1345 leaf = path->nodes[0];
1346 extent = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_dev_extent);
e17cade2
CM
1348 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1349 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1350 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1351
1352 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1353 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1354
0b86a832
CM
1355 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1356 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1357out:
0b86a832
CM
1358 btrfs_free_path(path);
1359 return ret;
1360}
1361
6df9a95e 1362static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1363{
6df9a95e
JB
1364 struct extent_map_tree *em_tree;
1365 struct extent_map *em;
1366 struct rb_node *n;
1367 u64 ret = 0;
0b86a832 1368
6df9a95e
JB
1369 em_tree = &fs_info->mapping_tree.map_tree;
1370 read_lock(&em_tree->lock);
1371 n = rb_last(&em_tree->map);
1372 if (n) {
1373 em = rb_entry(n, struct extent_map, rb_node);
1374 ret = em->start + em->len;
0b86a832 1375 }
6df9a95e
JB
1376 read_unlock(&em_tree->lock);
1377
0b86a832
CM
1378 return ret;
1379}
1380
53f10659
ID
1381static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1382 u64 *devid_ret)
0b86a832
CM
1383{
1384 int ret;
1385 struct btrfs_key key;
1386 struct btrfs_key found_key;
2b82032c
YZ
1387 struct btrfs_path *path;
1388
2b82032c
YZ
1389 path = btrfs_alloc_path();
1390 if (!path)
1391 return -ENOMEM;
0b86a832
CM
1392
1393 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1394 key.type = BTRFS_DEV_ITEM_KEY;
1395 key.offset = (u64)-1;
1396
53f10659 1397 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1398 if (ret < 0)
1399 goto error;
1400
79787eaa 1401 BUG_ON(ret == 0); /* Corruption */
0b86a832 1402
53f10659
ID
1403 ret = btrfs_previous_item(fs_info->chunk_root, path,
1404 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1405 BTRFS_DEV_ITEM_KEY);
1406 if (ret) {
53f10659 1407 *devid_ret = 1;
0b86a832
CM
1408 } else {
1409 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1410 path->slots[0]);
53f10659 1411 *devid_ret = found_key.offset + 1;
0b86a832
CM
1412 }
1413 ret = 0;
1414error:
2b82032c 1415 btrfs_free_path(path);
0b86a832
CM
1416 return ret;
1417}
1418
1419/*
1420 * the device information is stored in the chunk root
1421 * the btrfs_device struct should be fully filled in
1422 */
48a3b636
ES
1423static int btrfs_add_device(struct btrfs_trans_handle *trans,
1424 struct btrfs_root *root,
1425 struct btrfs_device *device)
0b86a832
CM
1426{
1427 int ret;
1428 struct btrfs_path *path;
1429 struct btrfs_dev_item *dev_item;
1430 struct extent_buffer *leaf;
1431 struct btrfs_key key;
1432 unsigned long ptr;
0b86a832
CM
1433
1434 root = root->fs_info->chunk_root;
1435
1436 path = btrfs_alloc_path();
1437 if (!path)
1438 return -ENOMEM;
1439
0b86a832
CM
1440 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1441 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1442 key.offset = device->devid;
0b86a832
CM
1443
1444 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1445 sizeof(*dev_item));
0b86a832
CM
1446 if (ret)
1447 goto out;
1448
1449 leaf = path->nodes[0];
1450 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1451
1452 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1453 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1454 btrfs_set_device_type(leaf, dev_item, device->type);
1455 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1456 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1457 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1458 btrfs_set_device_total_bytes(leaf, dev_item,
1459 btrfs_device_get_disk_total_bytes(device));
1460 btrfs_set_device_bytes_used(leaf, dev_item,
1461 btrfs_device_get_bytes_used(device));
e17cade2
CM
1462 btrfs_set_device_group(leaf, dev_item, 0);
1463 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1464 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1465 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1466
410ba3a2 1467 ptr = btrfs_device_uuid(dev_item);
e17cade2 1468 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1469 ptr = btrfs_device_fsid(dev_item);
2b82032c 1470 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1471 btrfs_mark_buffer_dirty(leaf);
0b86a832 1472
2b82032c 1473 ret = 0;
0b86a832
CM
1474out:
1475 btrfs_free_path(path);
1476 return ret;
1477}
8f18cf13 1478
5a1972bd
QW
1479/*
1480 * Function to update ctime/mtime for a given device path.
1481 * Mainly used for ctime/mtime based probe like libblkid.
1482 */
1483static void update_dev_time(char *path_name)
1484{
1485 struct file *filp;
1486
1487 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1488 if (IS_ERR(filp))
5a1972bd
QW
1489 return;
1490 file_update_time(filp);
1491 filp_close(filp, NULL);
1492 return;
1493}
1494
a061fc8d
CM
1495static int btrfs_rm_dev_item(struct btrfs_root *root,
1496 struct btrfs_device *device)
1497{
1498 int ret;
1499 struct btrfs_path *path;
a061fc8d 1500 struct btrfs_key key;
a061fc8d
CM
1501 struct btrfs_trans_handle *trans;
1502
1503 root = root->fs_info->chunk_root;
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return -ENOMEM;
1508
a22285a6 1509 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1510 if (IS_ERR(trans)) {
1511 btrfs_free_path(path);
1512 return PTR_ERR(trans);
1513 }
a061fc8d
CM
1514 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1515 key.type = BTRFS_DEV_ITEM_KEY;
1516 key.offset = device->devid;
1517
1518 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1519 if (ret < 0)
1520 goto out;
1521
1522 if (ret > 0) {
1523 ret = -ENOENT;
1524 goto out;
1525 }
1526
1527 ret = btrfs_del_item(trans, root, path);
1528 if (ret)
1529 goto out;
a061fc8d
CM
1530out:
1531 btrfs_free_path(path);
1532 btrfs_commit_transaction(trans, root);
1533 return ret;
1534}
1535
1536int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1537{
1538 struct btrfs_device *device;
2b82032c 1539 struct btrfs_device *next_device;
a061fc8d 1540 struct block_device *bdev;
dfe25020 1541 struct buffer_head *bh = NULL;
a061fc8d 1542 struct btrfs_super_block *disk_super;
1f78160c 1543 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1544 u64 all_avail;
1545 u64 devid;
2b82032c
YZ
1546 u64 num_devices;
1547 u8 *dev_uuid;
de98ced9 1548 unsigned seq;
a061fc8d 1549 int ret = 0;
1f78160c 1550 bool clear_super = false;
a061fc8d 1551
a061fc8d
CM
1552 mutex_lock(&uuid_mutex);
1553
de98ced9
MX
1554 do {
1555 seq = read_seqbegin(&root->fs_info->profiles_lock);
1556
1557 all_avail = root->fs_info->avail_data_alloc_bits |
1558 root->fs_info->avail_system_alloc_bits |
1559 root->fs_info->avail_metadata_alloc_bits;
1560 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1561
8dabb742
SB
1562 num_devices = root->fs_info->fs_devices->num_devices;
1563 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1564 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1565 WARN_ON(num_devices < 1);
1566 num_devices--;
1567 }
1568 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1569
1570 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1571 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1572 goto out;
1573 }
1574
8dabb742 1575 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1576 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1577 goto out;
1578 }
1579
53b381b3
DW
1580 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1581 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1582 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1583 goto out;
1584 }
1585 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1586 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1587 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1588 goto out;
1589 }
1590
dfe25020 1591 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1592 struct list_head *devices;
1593 struct btrfs_device *tmp;
a061fc8d 1594
dfe25020
CM
1595 device = NULL;
1596 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1597 /*
1598 * It is safe to read the devices since the volume_mutex
1599 * is held.
1600 */
c6e30871 1601 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1602 if (tmp->in_fs_metadata &&
1603 !tmp->is_tgtdev_for_dev_replace &&
1604 !tmp->bdev) {
dfe25020
CM
1605 device = tmp;
1606 break;
1607 }
1608 }
1609 bdev = NULL;
1610 bh = NULL;
1611 disk_super = NULL;
1612 if (!device) {
183860f6 1613 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1614 goto out;
1615 }
dfe25020 1616 } else {
beaf8ab3 1617 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1618 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1619 root->fs_info->bdev_holder, 0,
1620 &bdev, &bh);
1621 if (ret)
dfe25020 1622 goto out;
dfe25020 1623 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1624 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1625 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1626 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1627 disk_super->fsid);
dfe25020
CM
1628 if (!device) {
1629 ret = -ENOENT;
1630 goto error_brelse;
1631 }
2b82032c 1632 }
dfe25020 1633
63a212ab 1634 if (device->is_tgtdev_for_dev_replace) {
183860f6 1635 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1636 goto error_brelse;
1637 }
1638
2b82032c 1639 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1640 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1641 goto error_brelse;
1642 }
1643
1644 if (device->writeable) {
0c1daee0 1645 lock_chunks(root);
2b82032c 1646 list_del_init(&device->dev_alloc_list);
c3929c36 1647 device->fs_devices->rw_devices--;
0c1daee0 1648 unlock_chunks(root);
1f78160c 1649 clear_super = true;
dfe25020 1650 }
a061fc8d 1651
d7901554 1652 mutex_unlock(&uuid_mutex);
a061fc8d 1653 ret = btrfs_shrink_device(device, 0);
d7901554 1654 mutex_lock(&uuid_mutex);
a061fc8d 1655 if (ret)
9b3517e9 1656 goto error_undo;
a061fc8d 1657
63a212ab
SB
1658 /*
1659 * TODO: the superblock still includes this device in its num_devices
1660 * counter although write_all_supers() is not locked out. This
1661 * could give a filesystem state which requires a degraded mount.
1662 */
a061fc8d
CM
1663 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1664 if (ret)
9b3517e9 1665 goto error_undo;
a061fc8d 1666
2b82032c 1667 device->in_fs_metadata = 0;
aa1b8cd4 1668 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1669
1670 /*
1671 * the device list mutex makes sure that we don't change
1672 * the device list while someone else is writing out all
d7306801
FDBM
1673 * the device supers. Whoever is writing all supers, should
1674 * lock the device list mutex before getting the number of
1675 * devices in the super block (super_copy). Conversely,
1676 * whoever updates the number of devices in the super block
1677 * (super_copy) should hold the device list mutex.
e5e9a520 1678 */
1f78160c
XG
1679
1680 cur_devices = device->fs_devices;
e5e9a520 1681 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1682 list_del_rcu(&device->dev_list);
e5e9a520 1683
e4404d6e 1684 device->fs_devices->num_devices--;
02db0844 1685 device->fs_devices->total_devices--;
2b82032c 1686
cd02dca5 1687 if (device->missing)
3a7d55c8 1688 device->fs_devices->missing_devices--;
cd02dca5 1689
2b82032c
YZ
1690 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1691 struct btrfs_device, dev_list);
1692 if (device->bdev == root->fs_info->sb->s_bdev)
1693 root->fs_info->sb->s_bdev = next_device->bdev;
1694 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1695 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1696
0bfaa9c5 1697 if (device->bdev) {
e4404d6e 1698 device->fs_devices->open_devices--;
0bfaa9c5
ES
1699 /* remove sysfs entry */
1700 btrfs_kobj_rm_device(root->fs_info, device);
1701 }
99994cde 1702
1f78160c 1703 call_rcu(&device->rcu, free_device);
e4404d6e 1704
6c41761f
DS
1705 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1706 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1707 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1708
1f78160c 1709 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1710 struct btrfs_fs_devices *fs_devices;
1711 fs_devices = root->fs_info->fs_devices;
1712 while (fs_devices) {
8321cf25
RS
1713 if (fs_devices->seed == cur_devices) {
1714 fs_devices->seed = cur_devices->seed;
e4404d6e 1715 break;
8321cf25 1716 }
e4404d6e 1717 fs_devices = fs_devices->seed;
2b82032c 1718 }
1f78160c 1719 cur_devices->seed = NULL;
1f78160c 1720 __btrfs_close_devices(cur_devices);
1f78160c 1721 free_fs_devices(cur_devices);
2b82032c
YZ
1722 }
1723
5af3e8cc
SB
1724 root->fs_info->num_tolerated_disk_barrier_failures =
1725 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1726
2b82032c
YZ
1727 /*
1728 * at this point, the device is zero sized. We want to
1729 * remove it from the devices list and zero out the old super
1730 */
aa1b8cd4 1731 if (clear_super && disk_super) {
4d90d28b
AJ
1732 u64 bytenr;
1733 int i;
1734
dfe25020
CM
1735 /* make sure this device isn't detected as part of
1736 * the FS anymore
1737 */
1738 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1739 set_buffer_dirty(bh);
1740 sync_dirty_buffer(bh);
4d90d28b
AJ
1741
1742 /* clear the mirror copies of super block on the disk
1743 * being removed, 0th copy is been taken care above and
1744 * the below would take of the rest
1745 */
1746 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1747 bytenr = btrfs_sb_offset(i);
1748 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1749 i_size_read(bdev->bd_inode))
1750 break;
1751
1752 brelse(bh);
1753 bh = __bread(bdev, bytenr / 4096,
1754 BTRFS_SUPER_INFO_SIZE);
1755 if (!bh)
1756 continue;
1757
1758 disk_super = (struct btrfs_super_block *)bh->b_data;
1759
1760 if (btrfs_super_bytenr(disk_super) != bytenr ||
1761 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1762 continue;
1763 }
1764 memset(&disk_super->magic, 0,
1765 sizeof(disk_super->magic));
1766 set_buffer_dirty(bh);
1767 sync_dirty_buffer(bh);
1768 }
dfe25020 1769 }
a061fc8d 1770
a061fc8d 1771 ret = 0;
a061fc8d 1772
5a1972bd
QW
1773 if (bdev) {
1774 /* Notify udev that device has changed */
3c911608 1775 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1776
5a1972bd
QW
1777 /* Update ctime/mtime for device path for libblkid */
1778 update_dev_time(device_path);
1779 }
1780
a061fc8d
CM
1781error_brelse:
1782 brelse(bh);
dfe25020 1783 if (bdev)
e525fd89 1784 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1785out:
1786 mutex_unlock(&uuid_mutex);
a061fc8d 1787 return ret;
9b3517e9
ID
1788error_undo:
1789 if (device->writeable) {
0c1daee0 1790 lock_chunks(root);
9b3517e9
ID
1791 list_add(&device->dev_alloc_list,
1792 &root->fs_info->fs_devices->alloc_list);
c3929c36 1793 device->fs_devices->rw_devices++;
0c1daee0 1794 unlock_chunks(root);
9b3517e9
ID
1795 }
1796 goto error_brelse;
a061fc8d
CM
1797}
1798
084b6e7c
QW
1799void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1800 struct btrfs_device *srcdev)
e93c89c1 1801{
d51908ce
AJ
1802 struct btrfs_fs_devices *fs_devices;
1803
e93c89c1 1804 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1805
25e8e911
AJ
1806 /*
1807 * in case of fs with no seed, srcdev->fs_devices will point
1808 * to fs_devices of fs_info. However when the dev being replaced is
1809 * a seed dev it will point to the seed's local fs_devices. In short
1810 * srcdev will have its correct fs_devices in both the cases.
1811 */
1812 fs_devices = srcdev->fs_devices;
d51908ce 1813
e93c89c1
SB
1814 list_del_rcu(&srcdev->dev_list);
1815 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1816 fs_devices->num_devices--;
82372bc8 1817 if (srcdev->missing)
d51908ce 1818 fs_devices->missing_devices--;
e93c89c1 1819
82372bc8
MX
1820 if (srcdev->writeable) {
1821 fs_devices->rw_devices--;
1822 /* zero out the old super if it is writable */
1823 btrfs_scratch_superblock(srcdev);
1357272f
ID
1824 }
1825
82372bc8 1826 if (srcdev->bdev)
d51908ce 1827 fs_devices->open_devices--;
084b6e7c
QW
1828}
1829
1830void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1831 struct btrfs_device *srcdev)
1832{
1833 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1834
1835 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1836
1837 /*
1838 * unless fs_devices is seed fs, num_devices shouldn't go
1839 * zero
1840 */
1841 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1842
1843 /* if this is no devs we rather delete the fs_devices */
1844 if (!fs_devices->num_devices) {
1845 struct btrfs_fs_devices *tmp_fs_devices;
1846
1847 tmp_fs_devices = fs_info->fs_devices;
1848 while (tmp_fs_devices) {
1849 if (tmp_fs_devices->seed == fs_devices) {
1850 tmp_fs_devices->seed = fs_devices->seed;
1851 break;
1852 }
1853 tmp_fs_devices = tmp_fs_devices->seed;
1854 }
1855 fs_devices->seed = NULL;
8bef8401
AJ
1856 __btrfs_close_devices(fs_devices);
1857 free_fs_devices(fs_devices);
94d5f0c2 1858 }
e93c89c1
SB
1859}
1860
1861void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1862 struct btrfs_device *tgtdev)
1863{
1864 struct btrfs_device *next_device;
1865
67a2c45e 1866 mutex_lock(&uuid_mutex);
e93c89c1
SB
1867 WARN_ON(!tgtdev);
1868 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1869 if (tgtdev->bdev) {
1870 btrfs_scratch_superblock(tgtdev);
1871 fs_info->fs_devices->open_devices--;
1872 }
1873 fs_info->fs_devices->num_devices--;
e93c89c1
SB
1874
1875 next_device = list_entry(fs_info->fs_devices->devices.next,
1876 struct btrfs_device, dev_list);
1877 if (tgtdev->bdev == fs_info->sb->s_bdev)
1878 fs_info->sb->s_bdev = next_device->bdev;
1879 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1880 fs_info->fs_devices->latest_bdev = next_device->bdev;
1881 list_del_rcu(&tgtdev->dev_list);
1882
1883 call_rcu(&tgtdev->rcu, free_device);
1884
1885 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 1886 mutex_unlock(&uuid_mutex);
e93c89c1
SB
1887}
1888
48a3b636
ES
1889static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1890 struct btrfs_device **device)
7ba15b7d
SB
1891{
1892 int ret = 0;
1893 struct btrfs_super_block *disk_super;
1894 u64 devid;
1895 u8 *dev_uuid;
1896 struct block_device *bdev;
1897 struct buffer_head *bh;
1898
1899 *device = NULL;
1900 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1901 root->fs_info->bdev_holder, 0, &bdev, &bh);
1902 if (ret)
1903 return ret;
1904 disk_super = (struct btrfs_super_block *)bh->b_data;
1905 devid = btrfs_stack_device_id(&disk_super->dev_item);
1906 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1907 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1908 disk_super->fsid);
1909 brelse(bh);
1910 if (!*device)
1911 ret = -ENOENT;
1912 blkdev_put(bdev, FMODE_READ);
1913 return ret;
1914}
1915
1916int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1917 char *device_path,
1918 struct btrfs_device **device)
1919{
1920 *device = NULL;
1921 if (strcmp(device_path, "missing") == 0) {
1922 struct list_head *devices;
1923 struct btrfs_device *tmp;
1924
1925 devices = &root->fs_info->fs_devices->devices;
1926 /*
1927 * It is safe to read the devices since the volume_mutex
1928 * is held by the caller.
1929 */
1930 list_for_each_entry(tmp, devices, dev_list) {
1931 if (tmp->in_fs_metadata && !tmp->bdev) {
1932 *device = tmp;
1933 break;
1934 }
1935 }
1936
1937 if (!*device) {
efe120a0 1938 btrfs_err(root->fs_info, "no missing device found");
7ba15b7d
SB
1939 return -ENOENT;
1940 }
1941
1942 return 0;
1943 } else {
1944 return btrfs_find_device_by_path(root, device_path, device);
1945 }
1946}
1947
2b82032c
YZ
1948/*
1949 * does all the dirty work required for changing file system's UUID.
1950 */
125ccb0a 1951static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1952{
1953 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1954 struct btrfs_fs_devices *old_devices;
e4404d6e 1955 struct btrfs_fs_devices *seed_devices;
6c41761f 1956 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1957 struct btrfs_device *device;
1958 u64 super_flags;
1959
1960 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1961 if (!fs_devices->seeding)
2b82032c
YZ
1962 return -EINVAL;
1963
2208a378
ID
1964 seed_devices = __alloc_fs_devices();
1965 if (IS_ERR(seed_devices))
1966 return PTR_ERR(seed_devices);
2b82032c 1967
e4404d6e
YZ
1968 old_devices = clone_fs_devices(fs_devices);
1969 if (IS_ERR(old_devices)) {
1970 kfree(seed_devices);
1971 return PTR_ERR(old_devices);
2b82032c 1972 }
e4404d6e 1973
2b82032c
YZ
1974 list_add(&old_devices->list, &fs_uuids);
1975
e4404d6e
YZ
1976 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1977 seed_devices->opened = 1;
1978 INIT_LIST_HEAD(&seed_devices->devices);
1979 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1980 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1981
1982 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1983 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1984 synchronize_rcu);
2196d6e8
MX
1985 list_for_each_entry(device, &seed_devices->devices, dev_list)
1986 device->fs_devices = seed_devices;
c9513edb 1987
2196d6e8 1988 lock_chunks(root);
e4404d6e 1989 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 1990 unlock_chunks(root);
e4404d6e 1991
2b82032c
YZ
1992 fs_devices->seeding = 0;
1993 fs_devices->num_devices = 0;
1994 fs_devices->open_devices = 0;
69611ac8 1995 fs_devices->missing_devices = 0;
69611ac8 1996 fs_devices->rotating = 0;
e4404d6e 1997 fs_devices->seed = seed_devices;
2b82032c
YZ
1998
1999 generate_random_uuid(fs_devices->fsid);
2000 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2001 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2002 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2003
2b82032c
YZ
2004 super_flags = btrfs_super_flags(disk_super) &
2005 ~BTRFS_SUPER_FLAG_SEEDING;
2006 btrfs_set_super_flags(disk_super, super_flags);
2007
2008 return 0;
2009}
2010
2011/*
2012 * strore the expected generation for seed devices in device items.
2013 */
2014static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2015 struct btrfs_root *root)
2016{
2017 struct btrfs_path *path;
2018 struct extent_buffer *leaf;
2019 struct btrfs_dev_item *dev_item;
2020 struct btrfs_device *device;
2021 struct btrfs_key key;
2022 u8 fs_uuid[BTRFS_UUID_SIZE];
2023 u8 dev_uuid[BTRFS_UUID_SIZE];
2024 u64 devid;
2025 int ret;
2026
2027 path = btrfs_alloc_path();
2028 if (!path)
2029 return -ENOMEM;
2030
2031 root = root->fs_info->chunk_root;
2032 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2033 key.offset = 0;
2034 key.type = BTRFS_DEV_ITEM_KEY;
2035
2036 while (1) {
2037 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2038 if (ret < 0)
2039 goto error;
2040
2041 leaf = path->nodes[0];
2042next_slot:
2043 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2044 ret = btrfs_next_leaf(root, path);
2045 if (ret > 0)
2046 break;
2047 if (ret < 0)
2048 goto error;
2049 leaf = path->nodes[0];
2050 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2051 btrfs_release_path(path);
2b82032c
YZ
2052 continue;
2053 }
2054
2055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2056 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2057 key.type != BTRFS_DEV_ITEM_KEY)
2058 break;
2059
2060 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2061 struct btrfs_dev_item);
2062 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2063 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2064 BTRFS_UUID_SIZE);
1473b24e 2065 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2066 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2067 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2068 fs_uuid);
79787eaa 2069 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2070
2071 if (device->fs_devices->seeding) {
2072 btrfs_set_device_generation(leaf, dev_item,
2073 device->generation);
2074 btrfs_mark_buffer_dirty(leaf);
2075 }
2076
2077 path->slots[0]++;
2078 goto next_slot;
2079 }
2080 ret = 0;
2081error:
2082 btrfs_free_path(path);
2083 return ret;
2084}
2085
788f20eb
CM
2086int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2087{
d5e2003c 2088 struct request_queue *q;
788f20eb
CM
2089 struct btrfs_trans_handle *trans;
2090 struct btrfs_device *device;
2091 struct block_device *bdev;
788f20eb 2092 struct list_head *devices;
2b82032c 2093 struct super_block *sb = root->fs_info->sb;
606686ee 2094 struct rcu_string *name;
3c1dbdf5 2095 u64 tmp;
2b82032c 2096 int seeding_dev = 0;
788f20eb
CM
2097 int ret = 0;
2098
2b82032c 2099 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2100 return -EROFS;
788f20eb 2101
a5d16333 2102 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2103 root->fs_info->bdev_holder);
7f59203a
JB
2104 if (IS_ERR(bdev))
2105 return PTR_ERR(bdev);
a2135011 2106
2b82032c
YZ
2107 if (root->fs_info->fs_devices->seeding) {
2108 seeding_dev = 1;
2109 down_write(&sb->s_umount);
2110 mutex_lock(&uuid_mutex);
2111 }
2112
8c8bee1d 2113 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2114
788f20eb 2115 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2116
2117 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2118 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2119 if (device->bdev == bdev) {
2120 ret = -EEXIST;
d25628bd
LB
2121 mutex_unlock(
2122 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2123 goto error;
788f20eb
CM
2124 }
2125 }
d25628bd 2126 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2127
12bd2fc0
ID
2128 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2129 if (IS_ERR(device)) {
788f20eb 2130 /* we can safely leave the fs_devices entry around */
12bd2fc0 2131 ret = PTR_ERR(device);
2b82032c 2132 goto error;
788f20eb
CM
2133 }
2134
606686ee
JB
2135 name = rcu_string_strdup(device_path, GFP_NOFS);
2136 if (!name) {
788f20eb 2137 kfree(device);
2b82032c
YZ
2138 ret = -ENOMEM;
2139 goto error;
788f20eb 2140 }
606686ee 2141 rcu_assign_pointer(device->name, name);
2b82032c 2142
a22285a6 2143 trans = btrfs_start_transaction(root, 0);
98d5dc13 2144 if (IS_ERR(trans)) {
606686ee 2145 rcu_string_free(device->name);
98d5dc13
TI
2146 kfree(device);
2147 ret = PTR_ERR(trans);
2148 goto error;
2149 }
2150
d5e2003c
JB
2151 q = bdev_get_queue(bdev);
2152 if (blk_queue_discard(q))
2153 device->can_discard = 1;
2b82032c 2154 device->writeable = 1;
2b82032c 2155 device->generation = trans->transid;
788f20eb
CM
2156 device->io_width = root->sectorsize;
2157 device->io_align = root->sectorsize;
2158 device->sector_size = root->sectorsize;
2159 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2160 device->disk_total_bytes = device->total_bytes;
935e5cc9 2161 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2162 device->dev_root = root->fs_info->dev_root;
2163 device->bdev = bdev;
dfe25020 2164 device->in_fs_metadata = 1;
63a212ab 2165 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2166 device->mode = FMODE_EXCL;
27087f37 2167 device->dev_stats_valid = 1;
2b82032c 2168 set_blocksize(device->bdev, 4096);
788f20eb 2169
2b82032c
YZ
2170 if (seeding_dev) {
2171 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2172 ret = btrfs_prepare_sprout(root);
79787eaa 2173 BUG_ON(ret); /* -ENOMEM */
2b82032c 2174 }
788f20eb 2175
2b82032c 2176 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2177
e5e9a520 2178 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2179 lock_chunks(root);
1f78160c 2180 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2181 list_add(&device->dev_alloc_list,
2182 &root->fs_info->fs_devices->alloc_list);
2183 root->fs_info->fs_devices->num_devices++;
2184 root->fs_info->fs_devices->open_devices++;
2185 root->fs_info->fs_devices->rw_devices++;
02db0844 2186 root->fs_info->fs_devices->total_devices++;
2b82032c 2187 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2188
2bf64758
JB
2189 spin_lock(&root->fs_info->free_chunk_lock);
2190 root->fs_info->free_chunk_space += device->total_bytes;
2191 spin_unlock(&root->fs_info->free_chunk_lock);
2192
c289811c
CM
2193 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2194 root->fs_info->fs_devices->rotating = 1;
2195
3c1dbdf5 2196 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2197 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2198 tmp + device->total_bytes);
788f20eb 2199
3c1dbdf5 2200 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2201 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2202 tmp + 1);
0d39376a
AJ
2203
2204 /* add sysfs device entry */
2205 btrfs_kobj_add_device(root->fs_info, device);
2206
2196d6e8
MX
2207 /*
2208 * we've got more storage, clear any full flags on the space
2209 * infos
2210 */
2211 btrfs_clear_space_info_full(root->fs_info);
2212
2213 unlock_chunks(root);
e5e9a520 2214 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2215
2b82032c 2216 if (seeding_dev) {
2196d6e8 2217 lock_chunks(root);
2b82032c 2218 ret = init_first_rw_device(trans, root, device);
2196d6e8 2219 unlock_chunks(root);
005d6427
DS
2220 if (ret) {
2221 btrfs_abort_transaction(trans, root, ret);
79787eaa 2222 goto error_trans;
005d6427 2223 }
2196d6e8
MX
2224 }
2225
2226 ret = btrfs_add_device(trans, root, device);
2227 if (ret) {
2228 btrfs_abort_transaction(trans, root, ret);
2229 goto error_trans;
2230 }
2231
2232 if (seeding_dev) {
2233 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2234
2b82032c 2235 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2236 if (ret) {
2237 btrfs_abort_transaction(trans, root, ret);
79787eaa 2238 goto error_trans;
005d6427 2239 }
b2373f25
AJ
2240
2241 /* Sprouting would change fsid of the mounted root,
2242 * so rename the fsid on the sysfs
2243 */
2244 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2245 root->fs_info->fsid);
2246 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2247 goto error_trans;
2b82032c
YZ
2248 }
2249
5af3e8cc
SB
2250 root->fs_info->num_tolerated_disk_barrier_failures =
2251 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2252 ret = btrfs_commit_transaction(trans, root);
a2135011 2253
2b82032c
YZ
2254 if (seeding_dev) {
2255 mutex_unlock(&uuid_mutex);
2256 up_write(&sb->s_umount);
788f20eb 2257
79787eaa
JM
2258 if (ret) /* transaction commit */
2259 return ret;
2260
2b82032c 2261 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2262 if (ret < 0)
2263 btrfs_error(root->fs_info, ret,
2264 "Failed to relocate sys chunks after "
2265 "device initialization. This can be fixed "
2266 "using the \"btrfs balance\" command.");
671415b7
MX
2267 trans = btrfs_attach_transaction(root);
2268 if (IS_ERR(trans)) {
2269 if (PTR_ERR(trans) == -ENOENT)
2270 return 0;
2271 return PTR_ERR(trans);
2272 }
2273 ret = btrfs_commit_transaction(trans, root);
2b82032c 2274 }
c9e9f97b 2275
5a1972bd
QW
2276 /* Update ctime/mtime for libblkid */
2277 update_dev_time(device_path);
2b82032c 2278 return ret;
79787eaa
JM
2279
2280error_trans:
79787eaa 2281 btrfs_end_transaction(trans, root);
606686ee 2282 rcu_string_free(device->name);
0d39376a 2283 btrfs_kobj_rm_device(root->fs_info, device);
79787eaa 2284 kfree(device);
2b82032c 2285error:
e525fd89 2286 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2287 if (seeding_dev) {
2288 mutex_unlock(&uuid_mutex);
2289 up_write(&sb->s_umount);
2290 }
c9e9f97b 2291 return ret;
788f20eb
CM
2292}
2293
e93c89c1 2294int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2295 struct btrfs_device *srcdev,
e93c89c1
SB
2296 struct btrfs_device **device_out)
2297{
2298 struct request_queue *q;
2299 struct btrfs_device *device;
2300 struct block_device *bdev;
2301 struct btrfs_fs_info *fs_info = root->fs_info;
2302 struct list_head *devices;
2303 struct rcu_string *name;
12bd2fc0 2304 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2305 int ret = 0;
2306
2307 *device_out = NULL;
1c43366d
MX
2308 if (fs_info->fs_devices->seeding) {
2309 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2310 return -EINVAL;
1c43366d 2311 }
e93c89c1
SB
2312
2313 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2314 fs_info->bdev_holder);
1c43366d
MX
2315 if (IS_ERR(bdev)) {
2316 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2317 return PTR_ERR(bdev);
1c43366d 2318 }
e93c89c1
SB
2319
2320 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2321
2322 devices = &fs_info->fs_devices->devices;
2323 list_for_each_entry(device, devices, dev_list) {
2324 if (device->bdev == bdev) {
1c43366d 2325 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2326 ret = -EEXIST;
2327 goto error;
2328 }
2329 }
2330
1c43366d 2331
7cc8e58d
MX
2332 if (i_size_read(bdev->bd_inode) <
2333 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2334 btrfs_err(fs_info, "target device is smaller than source device!");
2335 ret = -EINVAL;
2336 goto error;
2337 }
2338
2339
12bd2fc0
ID
2340 device = btrfs_alloc_device(NULL, &devid, NULL);
2341 if (IS_ERR(device)) {
2342 ret = PTR_ERR(device);
e93c89c1
SB
2343 goto error;
2344 }
2345
2346 name = rcu_string_strdup(device_path, GFP_NOFS);
2347 if (!name) {
2348 kfree(device);
2349 ret = -ENOMEM;
2350 goto error;
2351 }
2352 rcu_assign_pointer(device->name, name);
2353
2354 q = bdev_get_queue(bdev);
2355 if (blk_queue_discard(q))
2356 device->can_discard = 1;
2357 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2358 device->writeable = 1;
e93c89c1
SB
2359 device->generation = 0;
2360 device->io_width = root->sectorsize;
2361 device->io_align = root->sectorsize;
2362 device->sector_size = root->sectorsize;
7cc8e58d
MX
2363 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2364 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2365 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2366 ASSERT(list_empty(&srcdev->resized_list));
2367 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2368 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2369 device->dev_root = fs_info->dev_root;
2370 device->bdev = bdev;
2371 device->in_fs_metadata = 1;
2372 device->is_tgtdev_for_dev_replace = 1;
2373 device->mode = FMODE_EXCL;
27087f37 2374 device->dev_stats_valid = 1;
e93c89c1
SB
2375 set_blocksize(device->bdev, 4096);
2376 device->fs_devices = fs_info->fs_devices;
2377 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2378 fs_info->fs_devices->num_devices++;
2379 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2380 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2381
2382 *device_out = device;
2383 return ret;
2384
2385error:
2386 blkdev_put(bdev, FMODE_EXCL);
2387 return ret;
2388}
2389
2390void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2391 struct btrfs_device *tgtdev)
2392{
2393 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2394 tgtdev->io_width = fs_info->dev_root->sectorsize;
2395 tgtdev->io_align = fs_info->dev_root->sectorsize;
2396 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2397 tgtdev->dev_root = fs_info->dev_root;
2398 tgtdev->in_fs_metadata = 1;
2399}
2400
d397712b
CM
2401static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2402 struct btrfs_device *device)
0b86a832
CM
2403{
2404 int ret;
2405 struct btrfs_path *path;
2406 struct btrfs_root *root;
2407 struct btrfs_dev_item *dev_item;
2408 struct extent_buffer *leaf;
2409 struct btrfs_key key;
2410
2411 root = device->dev_root->fs_info->chunk_root;
2412
2413 path = btrfs_alloc_path();
2414 if (!path)
2415 return -ENOMEM;
2416
2417 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2418 key.type = BTRFS_DEV_ITEM_KEY;
2419 key.offset = device->devid;
2420
2421 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2422 if (ret < 0)
2423 goto out;
2424
2425 if (ret > 0) {
2426 ret = -ENOENT;
2427 goto out;
2428 }
2429
2430 leaf = path->nodes[0];
2431 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2432
2433 btrfs_set_device_id(leaf, dev_item, device->devid);
2434 btrfs_set_device_type(leaf, dev_item, device->type);
2435 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2436 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2437 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2438 btrfs_set_device_total_bytes(leaf, dev_item,
2439 btrfs_device_get_disk_total_bytes(device));
2440 btrfs_set_device_bytes_used(leaf, dev_item,
2441 btrfs_device_get_bytes_used(device));
0b86a832
CM
2442 btrfs_mark_buffer_dirty(leaf);
2443
2444out:
2445 btrfs_free_path(path);
2446 return ret;
2447}
2448
2196d6e8 2449int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2450 struct btrfs_device *device, u64 new_size)
2451{
2452 struct btrfs_super_block *super_copy =
6c41761f 2453 device->dev_root->fs_info->super_copy;
935e5cc9 2454 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2455 u64 old_total;
2456 u64 diff;
8f18cf13 2457
2b82032c
YZ
2458 if (!device->writeable)
2459 return -EACCES;
2196d6e8
MX
2460
2461 lock_chunks(device->dev_root);
2462 old_total = btrfs_super_total_bytes(super_copy);
2463 diff = new_size - device->total_bytes;
2464
63a212ab 2465 if (new_size <= device->total_bytes ||
2196d6e8
MX
2466 device->is_tgtdev_for_dev_replace) {
2467 unlock_chunks(device->dev_root);
2b82032c 2468 return -EINVAL;
2196d6e8 2469 }
2b82032c 2470
935e5cc9 2471 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2472
8f18cf13 2473 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2474 device->fs_devices->total_rw_bytes += diff;
2475
7cc8e58d
MX
2476 btrfs_device_set_total_bytes(device, new_size);
2477 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2478 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2479 if (list_empty(&device->resized_list))
2480 list_add_tail(&device->resized_list,
2481 &fs_devices->resized_devices);
2196d6e8 2482 unlock_chunks(device->dev_root);
4184ea7f 2483
8f18cf13
CM
2484 return btrfs_update_device(trans, device);
2485}
2486
2487static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2488 struct btrfs_root *root,
2489 u64 chunk_tree, u64 chunk_objectid,
2490 u64 chunk_offset)
2491{
2492 int ret;
2493 struct btrfs_path *path;
2494 struct btrfs_key key;
2495
2496 root = root->fs_info->chunk_root;
2497 path = btrfs_alloc_path();
2498 if (!path)
2499 return -ENOMEM;
2500
2501 key.objectid = chunk_objectid;
2502 key.offset = chunk_offset;
2503 key.type = BTRFS_CHUNK_ITEM_KEY;
2504
2505 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2506 if (ret < 0)
2507 goto out;
2508 else if (ret > 0) { /* Logic error or corruption */
2509 btrfs_error(root->fs_info, -ENOENT,
2510 "Failed lookup while freeing chunk.");
2511 ret = -ENOENT;
2512 goto out;
2513 }
8f18cf13
CM
2514
2515 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2516 if (ret < 0)
2517 btrfs_error(root->fs_info, ret,
2518 "Failed to delete chunk item.");
2519out:
8f18cf13 2520 btrfs_free_path(path);
65a246c5 2521 return ret;
8f18cf13
CM
2522}
2523
b2950863 2524static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2525 chunk_offset)
2526{
6c41761f 2527 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2528 struct btrfs_disk_key *disk_key;
2529 struct btrfs_chunk *chunk;
2530 u8 *ptr;
2531 int ret = 0;
2532 u32 num_stripes;
2533 u32 array_size;
2534 u32 len = 0;
2535 u32 cur;
2536 struct btrfs_key key;
2537
2196d6e8 2538 lock_chunks(root);
8f18cf13
CM
2539 array_size = btrfs_super_sys_array_size(super_copy);
2540
2541 ptr = super_copy->sys_chunk_array;
2542 cur = 0;
2543
2544 while (cur < array_size) {
2545 disk_key = (struct btrfs_disk_key *)ptr;
2546 btrfs_disk_key_to_cpu(&key, disk_key);
2547
2548 len = sizeof(*disk_key);
2549
2550 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2551 chunk = (struct btrfs_chunk *)(ptr + len);
2552 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2553 len += btrfs_chunk_item_size(num_stripes);
2554 } else {
2555 ret = -EIO;
2556 break;
2557 }
2558 if (key.objectid == chunk_objectid &&
2559 key.offset == chunk_offset) {
2560 memmove(ptr, ptr + len, array_size - (cur + len));
2561 array_size -= len;
2562 btrfs_set_super_sys_array_size(super_copy, array_size);
2563 } else {
2564 ptr += len;
2565 cur += len;
2566 }
2567 }
2196d6e8 2568 unlock_chunks(root);
8f18cf13
CM
2569 return ret;
2570}
2571
47ab2a6c
JB
2572int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2573 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2574{
2575 struct extent_map_tree *em_tree;
8f18cf13 2576 struct extent_map *em;
47ab2a6c 2577 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2578 struct map_lookup *map;
2196d6e8 2579 u64 dev_extent_len = 0;
47ab2a6c
JB
2580 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2581 u64 chunk_tree = root->fs_info->chunk_root->objectid;
2582 int i, ret = 0;
8f18cf13 2583
47ab2a6c 2584 /* Just in case */
8f18cf13 2585 root = root->fs_info->chunk_root;
8f18cf13
CM
2586 em_tree = &root->fs_info->mapping_tree.map_tree;
2587
890871be 2588 read_lock(&em_tree->lock);
8f18cf13 2589 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2590 read_unlock(&em_tree->lock);
8f18cf13 2591
47ab2a6c
JB
2592 if (!em || em->start > chunk_offset ||
2593 em->start + em->len < chunk_offset) {
2594 /*
2595 * This is a logic error, but we don't want to just rely on the
2596 * user having built with ASSERT enabled, so if ASSERT doens't
2597 * do anything we still error out.
2598 */
2599 ASSERT(0);
2600 if (em)
2601 free_extent_map(em);
2602 return -EINVAL;
2603 }
8f18cf13
CM
2604 map = (struct map_lookup *)em->bdev;
2605
2606 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2607 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2608 ret = btrfs_free_dev_extent(trans, device,
2609 map->stripes[i].physical,
2610 &dev_extent_len);
47ab2a6c
JB
2611 if (ret) {
2612 btrfs_abort_transaction(trans, root, ret);
2613 goto out;
2614 }
a061fc8d 2615
2196d6e8
MX
2616 if (device->bytes_used > 0) {
2617 lock_chunks(root);
2618 btrfs_device_set_bytes_used(device,
2619 device->bytes_used - dev_extent_len);
2620 spin_lock(&root->fs_info->free_chunk_lock);
2621 root->fs_info->free_chunk_space += dev_extent_len;
2622 spin_unlock(&root->fs_info->free_chunk_lock);
2623 btrfs_clear_space_info_full(root->fs_info);
2624 unlock_chunks(root);
2625 }
a061fc8d 2626
dfe25020
CM
2627 if (map->stripes[i].dev) {
2628 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2629 if (ret) {
2630 btrfs_abort_transaction(trans, root, ret);
2631 goto out;
2632 }
dfe25020 2633 }
8f18cf13
CM
2634 }
2635 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2636 chunk_offset);
47ab2a6c
JB
2637 if (ret) {
2638 btrfs_abort_transaction(trans, root, ret);
2639 goto out;
2640 }
8f18cf13 2641
1abe9b8a 2642 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2643
8f18cf13
CM
2644 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2645 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2646 if (ret) {
2647 btrfs_abort_transaction(trans, root, ret);
2648 goto out;
2649 }
8f18cf13
CM
2650 }
2651
04216820 2652 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2653 if (ret) {
2654 btrfs_abort_transaction(trans, extent_root, ret);
2655 goto out;
2656 }
2b82032c 2657
47ab2a6c 2658out:
2b82032c
YZ
2659 /* once for us */
2660 free_extent_map(em);
47ab2a6c
JB
2661 return ret;
2662}
2b82032c 2663
47ab2a6c
JB
2664static int btrfs_relocate_chunk(struct btrfs_root *root,
2665 u64 chunk_tree, u64 chunk_objectid,
2666 u64 chunk_offset)
2667{
2668 struct btrfs_root *extent_root;
2669 struct btrfs_trans_handle *trans;
2670 int ret;
2b82032c 2671
47ab2a6c
JB
2672 root = root->fs_info->chunk_root;
2673 extent_root = root->fs_info->extent_root;
2674
2675 ret = btrfs_can_relocate(extent_root, chunk_offset);
2676 if (ret)
2677 return -ENOSPC;
2678
2679 /* step one, relocate all the extents inside this chunk */
2680 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2681 if (ret)
2682 return ret;
2683
2684 trans = btrfs_start_transaction(root, 0);
2685 if (IS_ERR(trans)) {
2686 ret = PTR_ERR(trans);
2687 btrfs_std_error(root->fs_info, ret);
2688 return ret;
2689 }
2690
2691 /*
2692 * step two, delete the device extents and the
2693 * chunk tree entries
2694 */
2695 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2696 btrfs_end_transaction(trans, root);
47ab2a6c 2697 return ret;
2b82032c
YZ
2698}
2699
2700static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2701{
2702 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2703 struct btrfs_path *path;
2704 struct extent_buffer *leaf;
2705 struct btrfs_chunk *chunk;
2706 struct btrfs_key key;
2707 struct btrfs_key found_key;
2708 u64 chunk_tree = chunk_root->root_key.objectid;
2709 u64 chunk_type;
ba1bf481
JB
2710 bool retried = false;
2711 int failed = 0;
2b82032c
YZ
2712 int ret;
2713
2714 path = btrfs_alloc_path();
2715 if (!path)
2716 return -ENOMEM;
2717
ba1bf481 2718again:
2b82032c
YZ
2719 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2720 key.offset = (u64)-1;
2721 key.type = BTRFS_CHUNK_ITEM_KEY;
2722
2723 while (1) {
2724 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2725 if (ret < 0)
2726 goto error;
79787eaa 2727 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2728
2729 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2730 key.type);
2731 if (ret < 0)
2732 goto error;
2733 if (ret > 0)
2734 break;
1a40e23b 2735
2b82032c
YZ
2736 leaf = path->nodes[0];
2737 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2738
2b82032c
YZ
2739 chunk = btrfs_item_ptr(leaf, path->slots[0],
2740 struct btrfs_chunk);
2741 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2742 btrfs_release_path(path);
8f18cf13 2743
2b82032c
YZ
2744 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2745 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2746 found_key.objectid,
2747 found_key.offset);
ba1bf481
JB
2748 if (ret == -ENOSPC)
2749 failed++;
14586651
HS
2750 else
2751 BUG_ON(ret);
2b82032c 2752 }
8f18cf13 2753
2b82032c
YZ
2754 if (found_key.offset == 0)
2755 break;
2756 key.offset = found_key.offset - 1;
2757 }
2758 ret = 0;
ba1bf481
JB
2759 if (failed && !retried) {
2760 failed = 0;
2761 retried = true;
2762 goto again;
fae7f21c 2763 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2764 ret = -ENOSPC;
2765 }
2b82032c
YZ
2766error:
2767 btrfs_free_path(path);
2768 return ret;
8f18cf13
CM
2769}
2770
0940ebf6
ID
2771static int insert_balance_item(struct btrfs_root *root,
2772 struct btrfs_balance_control *bctl)
2773{
2774 struct btrfs_trans_handle *trans;
2775 struct btrfs_balance_item *item;
2776 struct btrfs_disk_balance_args disk_bargs;
2777 struct btrfs_path *path;
2778 struct extent_buffer *leaf;
2779 struct btrfs_key key;
2780 int ret, err;
2781
2782 path = btrfs_alloc_path();
2783 if (!path)
2784 return -ENOMEM;
2785
2786 trans = btrfs_start_transaction(root, 0);
2787 if (IS_ERR(trans)) {
2788 btrfs_free_path(path);
2789 return PTR_ERR(trans);
2790 }
2791
2792 key.objectid = BTRFS_BALANCE_OBJECTID;
2793 key.type = BTRFS_BALANCE_ITEM_KEY;
2794 key.offset = 0;
2795
2796 ret = btrfs_insert_empty_item(trans, root, path, &key,
2797 sizeof(*item));
2798 if (ret)
2799 goto out;
2800
2801 leaf = path->nodes[0];
2802 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2803
2804 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2805
2806 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2807 btrfs_set_balance_data(leaf, item, &disk_bargs);
2808 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2809 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2810 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2811 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2812
2813 btrfs_set_balance_flags(leaf, item, bctl->flags);
2814
2815 btrfs_mark_buffer_dirty(leaf);
2816out:
2817 btrfs_free_path(path);
2818 err = btrfs_commit_transaction(trans, root);
2819 if (err && !ret)
2820 ret = err;
2821 return ret;
2822}
2823
2824static int del_balance_item(struct btrfs_root *root)
2825{
2826 struct btrfs_trans_handle *trans;
2827 struct btrfs_path *path;
2828 struct btrfs_key key;
2829 int ret, err;
2830
2831 path = btrfs_alloc_path();
2832 if (!path)
2833 return -ENOMEM;
2834
2835 trans = btrfs_start_transaction(root, 0);
2836 if (IS_ERR(trans)) {
2837 btrfs_free_path(path);
2838 return PTR_ERR(trans);
2839 }
2840
2841 key.objectid = BTRFS_BALANCE_OBJECTID;
2842 key.type = BTRFS_BALANCE_ITEM_KEY;
2843 key.offset = 0;
2844
2845 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2846 if (ret < 0)
2847 goto out;
2848 if (ret > 0) {
2849 ret = -ENOENT;
2850 goto out;
2851 }
2852
2853 ret = btrfs_del_item(trans, root, path);
2854out:
2855 btrfs_free_path(path);
2856 err = btrfs_commit_transaction(trans, root);
2857 if (err && !ret)
2858 ret = err;
2859 return ret;
2860}
2861
59641015
ID
2862/*
2863 * This is a heuristic used to reduce the number of chunks balanced on
2864 * resume after balance was interrupted.
2865 */
2866static void update_balance_args(struct btrfs_balance_control *bctl)
2867{
2868 /*
2869 * Turn on soft mode for chunk types that were being converted.
2870 */
2871 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2872 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2873 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2874 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2875 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2876 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2877
2878 /*
2879 * Turn on usage filter if is not already used. The idea is
2880 * that chunks that we have already balanced should be
2881 * reasonably full. Don't do it for chunks that are being
2882 * converted - that will keep us from relocating unconverted
2883 * (albeit full) chunks.
2884 */
2885 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2886 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2887 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2888 bctl->data.usage = 90;
2889 }
2890 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2891 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2892 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2893 bctl->sys.usage = 90;
2894 }
2895 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2896 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2897 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2898 bctl->meta.usage = 90;
2899 }
2900}
2901
c9e9f97b
ID
2902/*
2903 * Should be called with both balance and volume mutexes held to
2904 * serialize other volume operations (add_dev/rm_dev/resize) with
2905 * restriper. Same goes for unset_balance_control.
2906 */
2907static void set_balance_control(struct btrfs_balance_control *bctl)
2908{
2909 struct btrfs_fs_info *fs_info = bctl->fs_info;
2910
2911 BUG_ON(fs_info->balance_ctl);
2912
2913 spin_lock(&fs_info->balance_lock);
2914 fs_info->balance_ctl = bctl;
2915 spin_unlock(&fs_info->balance_lock);
2916}
2917
2918static void unset_balance_control(struct btrfs_fs_info *fs_info)
2919{
2920 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2921
2922 BUG_ON(!fs_info->balance_ctl);
2923
2924 spin_lock(&fs_info->balance_lock);
2925 fs_info->balance_ctl = NULL;
2926 spin_unlock(&fs_info->balance_lock);
2927
2928 kfree(bctl);
2929}
2930
ed25e9b2
ID
2931/*
2932 * Balance filters. Return 1 if chunk should be filtered out
2933 * (should not be balanced).
2934 */
899c81ea 2935static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2936 struct btrfs_balance_args *bargs)
2937{
899c81ea
ID
2938 chunk_type = chunk_to_extended(chunk_type) &
2939 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2940
899c81ea 2941 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2942 return 0;
2943
2944 return 1;
2945}
2946
5ce5b3c0
ID
2947static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2948 struct btrfs_balance_args *bargs)
2949{
2950 struct btrfs_block_group_cache *cache;
2951 u64 chunk_used, user_thresh;
2952 int ret = 1;
2953
2954 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2955 chunk_used = btrfs_block_group_used(&cache->item);
2956
a105bb88 2957 if (bargs->usage == 0)
3e39cea6 2958 user_thresh = 1;
a105bb88
ID
2959 else if (bargs->usage > 100)
2960 user_thresh = cache->key.offset;
2961 else
2962 user_thresh = div_factor_fine(cache->key.offset,
2963 bargs->usage);
2964
5ce5b3c0
ID
2965 if (chunk_used < user_thresh)
2966 ret = 0;
2967
2968 btrfs_put_block_group(cache);
2969 return ret;
2970}
2971
409d404b
ID
2972static int chunk_devid_filter(struct extent_buffer *leaf,
2973 struct btrfs_chunk *chunk,
2974 struct btrfs_balance_args *bargs)
2975{
2976 struct btrfs_stripe *stripe;
2977 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2978 int i;
2979
2980 for (i = 0; i < num_stripes; i++) {
2981 stripe = btrfs_stripe_nr(chunk, i);
2982 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2983 return 0;
2984 }
2985
2986 return 1;
2987}
2988
94e60d5a
ID
2989/* [pstart, pend) */
2990static int chunk_drange_filter(struct extent_buffer *leaf,
2991 struct btrfs_chunk *chunk,
2992 u64 chunk_offset,
2993 struct btrfs_balance_args *bargs)
2994{
2995 struct btrfs_stripe *stripe;
2996 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2997 u64 stripe_offset;
2998 u64 stripe_length;
2999 int factor;
3000 int i;
3001
3002 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3003 return 0;
3004
3005 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3006 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3007 factor = num_stripes / 2;
3008 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3009 factor = num_stripes - 1;
3010 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3011 factor = num_stripes - 2;
3012 } else {
3013 factor = num_stripes;
3014 }
94e60d5a
ID
3015
3016 for (i = 0; i < num_stripes; i++) {
3017 stripe = btrfs_stripe_nr(chunk, i);
3018 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3019 continue;
3020
3021 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3022 stripe_length = btrfs_chunk_length(leaf, chunk);
3023 do_div(stripe_length, factor);
3024
3025 if (stripe_offset < bargs->pend &&
3026 stripe_offset + stripe_length > bargs->pstart)
3027 return 0;
3028 }
3029
3030 return 1;
3031}
3032
ea67176a
ID
3033/* [vstart, vend) */
3034static int chunk_vrange_filter(struct extent_buffer *leaf,
3035 struct btrfs_chunk *chunk,
3036 u64 chunk_offset,
3037 struct btrfs_balance_args *bargs)
3038{
3039 if (chunk_offset < bargs->vend &&
3040 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3041 /* at least part of the chunk is inside this vrange */
3042 return 0;
3043
3044 return 1;
3045}
3046
899c81ea 3047static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3048 struct btrfs_balance_args *bargs)
3049{
3050 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3051 return 0;
3052
899c81ea
ID
3053 chunk_type = chunk_to_extended(chunk_type) &
3054 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3055
899c81ea 3056 if (bargs->target == chunk_type)
cfa4c961
ID
3057 return 1;
3058
3059 return 0;
3060}
3061
f43ffb60
ID
3062static int should_balance_chunk(struct btrfs_root *root,
3063 struct extent_buffer *leaf,
3064 struct btrfs_chunk *chunk, u64 chunk_offset)
3065{
3066 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3067 struct btrfs_balance_args *bargs = NULL;
3068 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3069
3070 /* type filter */
3071 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3072 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3073 return 0;
3074 }
3075
3076 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3077 bargs = &bctl->data;
3078 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3079 bargs = &bctl->sys;
3080 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3081 bargs = &bctl->meta;
3082
ed25e9b2
ID
3083 /* profiles filter */
3084 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3085 chunk_profiles_filter(chunk_type, bargs)) {
3086 return 0;
5ce5b3c0
ID
3087 }
3088
3089 /* usage filter */
3090 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3091 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3092 return 0;
409d404b
ID
3093 }
3094
3095 /* devid filter */
3096 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3097 chunk_devid_filter(leaf, chunk, bargs)) {
3098 return 0;
94e60d5a
ID
3099 }
3100
3101 /* drange filter, makes sense only with devid filter */
3102 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3103 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3104 return 0;
ea67176a
ID
3105 }
3106
3107 /* vrange filter */
3108 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3109 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3110 return 0;
ed25e9b2
ID
3111 }
3112
cfa4c961
ID
3113 /* soft profile changing mode */
3114 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3115 chunk_soft_convert_filter(chunk_type, bargs)) {
3116 return 0;
3117 }
3118
7d824b6f
DS
3119 /*
3120 * limited by count, must be the last filter
3121 */
3122 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3123 if (bargs->limit == 0)
3124 return 0;
3125 else
3126 bargs->limit--;
3127 }
3128
f43ffb60
ID
3129 return 1;
3130}
3131
c9e9f97b 3132static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3133{
19a39dce 3134 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3135 struct btrfs_root *chunk_root = fs_info->chunk_root;
3136 struct btrfs_root *dev_root = fs_info->dev_root;
3137 struct list_head *devices;
ec44a35c
CM
3138 struct btrfs_device *device;
3139 u64 old_size;
3140 u64 size_to_free;
f43ffb60 3141 struct btrfs_chunk *chunk;
ec44a35c
CM
3142 struct btrfs_path *path;
3143 struct btrfs_key key;
ec44a35c 3144 struct btrfs_key found_key;
c9e9f97b 3145 struct btrfs_trans_handle *trans;
f43ffb60
ID
3146 struct extent_buffer *leaf;
3147 int slot;
c9e9f97b
ID
3148 int ret;
3149 int enospc_errors = 0;
19a39dce 3150 bool counting = true;
7d824b6f
DS
3151 u64 limit_data = bctl->data.limit;
3152 u64 limit_meta = bctl->meta.limit;
3153 u64 limit_sys = bctl->sys.limit;
ec44a35c 3154
ec44a35c 3155 /* step one make some room on all the devices */
c9e9f97b 3156 devices = &fs_info->fs_devices->devices;
c6e30871 3157 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3158 old_size = btrfs_device_get_total_bytes(device);
ec44a35c
CM
3159 size_to_free = div_factor(old_size, 1);
3160 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3161 if (!device->writeable ||
7cc8e58d
MX
3162 btrfs_device_get_total_bytes(device) -
3163 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3164 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3165 continue;
3166
3167 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3168 if (ret == -ENOSPC)
3169 break;
ec44a35c
CM
3170 BUG_ON(ret);
3171
a22285a6 3172 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3173 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3174
3175 ret = btrfs_grow_device(trans, device, old_size);
3176 BUG_ON(ret);
3177
3178 btrfs_end_transaction(trans, dev_root);
3179 }
3180
3181 /* step two, relocate all the chunks */
3182 path = btrfs_alloc_path();
17e9f796
MF
3183 if (!path) {
3184 ret = -ENOMEM;
3185 goto error;
3186 }
19a39dce
ID
3187
3188 /* zero out stat counters */
3189 spin_lock(&fs_info->balance_lock);
3190 memset(&bctl->stat, 0, sizeof(bctl->stat));
3191 spin_unlock(&fs_info->balance_lock);
3192again:
7d824b6f
DS
3193 if (!counting) {
3194 bctl->data.limit = limit_data;
3195 bctl->meta.limit = limit_meta;
3196 bctl->sys.limit = limit_sys;
3197 }
ec44a35c
CM
3198 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3199 key.offset = (u64)-1;
3200 key.type = BTRFS_CHUNK_ITEM_KEY;
3201
d397712b 3202 while (1) {
19a39dce 3203 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3204 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3205 ret = -ECANCELED;
3206 goto error;
3207 }
3208
ec44a35c
CM
3209 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3210 if (ret < 0)
3211 goto error;
3212
3213 /*
3214 * this shouldn't happen, it means the last relocate
3215 * failed
3216 */
3217 if (ret == 0)
c9e9f97b 3218 BUG(); /* FIXME break ? */
ec44a35c
CM
3219
3220 ret = btrfs_previous_item(chunk_root, path, 0,
3221 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
3222 if (ret) {
3223 ret = 0;
ec44a35c 3224 break;
c9e9f97b 3225 }
7d9eb12c 3226
f43ffb60
ID
3227 leaf = path->nodes[0];
3228 slot = path->slots[0];
3229 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3230
ec44a35c
CM
3231 if (found_key.objectid != key.objectid)
3232 break;
7d9eb12c 3233
f43ffb60
ID
3234 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3235
19a39dce
ID
3236 if (!counting) {
3237 spin_lock(&fs_info->balance_lock);
3238 bctl->stat.considered++;
3239 spin_unlock(&fs_info->balance_lock);
3240 }
3241
f43ffb60
ID
3242 ret = should_balance_chunk(chunk_root, leaf, chunk,
3243 found_key.offset);
b3b4aa74 3244 btrfs_release_path(path);
f43ffb60
ID
3245 if (!ret)
3246 goto loop;
3247
19a39dce
ID
3248 if (counting) {
3249 spin_lock(&fs_info->balance_lock);
3250 bctl->stat.expected++;
3251 spin_unlock(&fs_info->balance_lock);
3252 goto loop;
3253 }
3254
ec44a35c
CM
3255 ret = btrfs_relocate_chunk(chunk_root,
3256 chunk_root->root_key.objectid,
3257 found_key.objectid,
3258 found_key.offset);
508794eb
JB
3259 if (ret && ret != -ENOSPC)
3260 goto error;
19a39dce 3261 if (ret == -ENOSPC) {
c9e9f97b 3262 enospc_errors++;
19a39dce
ID
3263 } else {
3264 spin_lock(&fs_info->balance_lock);
3265 bctl->stat.completed++;
3266 spin_unlock(&fs_info->balance_lock);
3267 }
f43ffb60 3268loop:
795a3321
ID
3269 if (found_key.offset == 0)
3270 break;
ba1bf481 3271 key.offset = found_key.offset - 1;
ec44a35c 3272 }
c9e9f97b 3273
19a39dce
ID
3274 if (counting) {
3275 btrfs_release_path(path);
3276 counting = false;
3277 goto again;
3278 }
ec44a35c
CM
3279error:
3280 btrfs_free_path(path);
c9e9f97b 3281 if (enospc_errors) {
efe120a0 3282 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3283 enospc_errors);
3284 if (!ret)
3285 ret = -ENOSPC;
3286 }
3287
ec44a35c
CM
3288 return ret;
3289}
3290
0c460c0d
ID
3291/**
3292 * alloc_profile_is_valid - see if a given profile is valid and reduced
3293 * @flags: profile to validate
3294 * @extended: if true @flags is treated as an extended profile
3295 */
3296static int alloc_profile_is_valid(u64 flags, int extended)
3297{
3298 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3299 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3300
3301 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3302
3303 /* 1) check that all other bits are zeroed */
3304 if (flags & ~mask)
3305 return 0;
3306
3307 /* 2) see if profile is reduced */
3308 if (flags == 0)
3309 return !extended; /* "0" is valid for usual profiles */
3310
3311 /* true if exactly one bit set */
3312 return (flags & (flags - 1)) == 0;
3313}
3314
837d5b6e
ID
3315static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3316{
a7e99c69
ID
3317 /* cancel requested || normal exit path */
3318 return atomic_read(&fs_info->balance_cancel_req) ||
3319 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3320 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3321}
3322
c9e9f97b
ID
3323static void __cancel_balance(struct btrfs_fs_info *fs_info)
3324{
0940ebf6
ID
3325 int ret;
3326
c9e9f97b 3327 unset_balance_control(fs_info);
0940ebf6 3328 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3329 if (ret)
3330 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3331
3332 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3333}
3334
c9e9f97b
ID
3335/*
3336 * Should be called with both balance and volume mutexes held
3337 */
3338int btrfs_balance(struct btrfs_balance_control *bctl,
3339 struct btrfs_ioctl_balance_args *bargs)
3340{
3341 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3342 u64 allowed;
e4837f8f 3343 int mixed = 0;
c9e9f97b 3344 int ret;
8dabb742 3345 u64 num_devices;
de98ced9 3346 unsigned seq;
c9e9f97b 3347
837d5b6e 3348 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3349 atomic_read(&fs_info->balance_pause_req) ||
3350 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3351 ret = -EINVAL;
3352 goto out;
3353 }
3354
e4837f8f
ID
3355 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3356 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3357 mixed = 1;
3358
f43ffb60
ID
3359 /*
3360 * In case of mixed groups both data and meta should be picked,
3361 * and identical options should be given for both of them.
3362 */
e4837f8f
ID
3363 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3364 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3365 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3366 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3367 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3368 btrfs_err(fs_info, "with mixed groups data and "
3369 "metadata balance options must be the same");
f43ffb60
ID
3370 ret = -EINVAL;
3371 goto out;
3372 }
3373 }
3374
8dabb742
SB
3375 num_devices = fs_info->fs_devices->num_devices;
3376 btrfs_dev_replace_lock(&fs_info->dev_replace);
3377 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3378 BUG_ON(num_devices < 1);
3379 num_devices--;
3380 }
3381 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3382 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3383 if (num_devices == 1)
e4d8ec0f 3384 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3385 else if (num_devices > 1)
e4d8ec0f 3386 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3387 if (num_devices > 2)
3388 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3389 if (num_devices > 3)
3390 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3391 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3392 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3393 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3394 (bctl->data.target & ~allowed))) {
efe120a0
FH
3395 btrfs_err(fs_info, "unable to start balance with target "
3396 "data profile %llu",
c1c9ff7c 3397 bctl->data.target);
e4d8ec0f
ID
3398 ret = -EINVAL;
3399 goto out;
3400 }
6728b198
ID
3401 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3402 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3403 (bctl->meta.target & ~allowed))) {
efe120a0
FH
3404 btrfs_err(fs_info,
3405 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3406 bctl->meta.target);
e4d8ec0f
ID
3407 ret = -EINVAL;
3408 goto out;
3409 }
6728b198
ID
3410 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3411 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3412 (bctl->sys.target & ~allowed))) {
efe120a0
FH
3413 btrfs_err(fs_info,
3414 "unable to start balance with target system profile %llu",
c1c9ff7c 3415 bctl->sys.target);
e4d8ec0f
ID
3416 ret = -EINVAL;
3417 goto out;
3418 }
3419
e4837f8f
ID
3420 /* allow dup'ed data chunks only in mixed mode */
3421 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3422 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3423 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3424 ret = -EINVAL;
3425 goto out;
3426 }
3427
3428 /* allow to reduce meta or sys integrity only if force set */
3429 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3430 BTRFS_BLOCK_GROUP_RAID10 |
3431 BTRFS_BLOCK_GROUP_RAID5 |
3432 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3433 do {
3434 seq = read_seqbegin(&fs_info->profiles_lock);
3435
3436 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3437 (fs_info->avail_system_alloc_bits & allowed) &&
3438 !(bctl->sys.target & allowed)) ||
3439 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3440 (fs_info->avail_metadata_alloc_bits & allowed) &&
3441 !(bctl->meta.target & allowed))) {
3442 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3443 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3444 } else {
efe120a0
FH
3445 btrfs_err(fs_info, "balance will reduce metadata "
3446 "integrity, use force if you want this");
de98ced9
MX
3447 ret = -EINVAL;
3448 goto out;
3449 }
e4d8ec0f 3450 }
de98ced9 3451 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3452
5af3e8cc
SB
3453 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3454 int num_tolerated_disk_barrier_failures;
3455 u64 target = bctl->sys.target;
3456
3457 num_tolerated_disk_barrier_failures =
3458 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3459 if (num_tolerated_disk_barrier_failures > 0 &&
3460 (target &
3461 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3462 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3463 num_tolerated_disk_barrier_failures = 0;
3464 else if (num_tolerated_disk_barrier_failures > 1 &&
3465 (target &
3466 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3467 num_tolerated_disk_barrier_failures = 1;
3468
3469 fs_info->num_tolerated_disk_barrier_failures =
3470 num_tolerated_disk_barrier_failures;
3471 }
3472
0940ebf6 3473 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3474 if (ret && ret != -EEXIST)
0940ebf6
ID
3475 goto out;
3476
59641015
ID
3477 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3478 BUG_ON(ret == -EEXIST);
3479 set_balance_control(bctl);
3480 } else {
3481 BUG_ON(ret != -EEXIST);
3482 spin_lock(&fs_info->balance_lock);
3483 update_balance_args(bctl);
3484 spin_unlock(&fs_info->balance_lock);
3485 }
c9e9f97b 3486
837d5b6e 3487 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3488 mutex_unlock(&fs_info->balance_mutex);
3489
3490 ret = __btrfs_balance(fs_info);
3491
3492 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3493 atomic_dec(&fs_info->balance_running);
c9e9f97b 3494
bf023ecf
ID
3495 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3496 fs_info->num_tolerated_disk_barrier_failures =
3497 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3498 }
3499
c9e9f97b
ID
3500 if (bargs) {
3501 memset(bargs, 0, sizeof(*bargs));
19a39dce 3502 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3503 }
3504
3a01aa7a
ID
3505 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3506 balance_need_close(fs_info)) {
3507 __cancel_balance(fs_info);
3508 }
3509
837d5b6e 3510 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3511
3512 return ret;
3513out:
59641015
ID
3514 if (bctl->flags & BTRFS_BALANCE_RESUME)
3515 __cancel_balance(fs_info);
ed0fb78f 3516 else {
59641015 3517 kfree(bctl);
ed0fb78f
ID
3518 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3519 }
59641015
ID
3520 return ret;
3521}
3522
3523static int balance_kthread(void *data)
3524{
2b6ba629 3525 struct btrfs_fs_info *fs_info = data;
9555c6c1 3526 int ret = 0;
59641015
ID
3527
3528 mutex_lock(&fs_info->volume_mutex);
3529 mutex_lock(&fs_info->balance_mutex);
3530
2b6ba629 3531 if (fs_info->balance_ctl) {
efe120a0 3532 btrfs_info(fs_info, "continuing balance");
2b6ba629 3533 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3534 }
59641015
ID
3535
3536 mutex_unlock(&fs_info->balance_mutex);
3537 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3538
59641015
ID
3539 return ret;
3540}
3541
2b6ba629
ID
3542int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3543{
3544 struct task_struct *tsk;
3545
3546 spin_lock(&fs_info->balance_lock);
3547 if (!fs_info->balance_ctl) {
3548 spin_unlock(&fs_info->balance_lock);
3549 return 0;
3550 }
3551 spin_unlock(&fs_info->balance_lock);
3552
3553 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3554 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3555 return 0;
3556 }
3557
3558 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3559 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3560}
3561
68310a5e 3562int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3563{
59641015
ID
3564 struct btrfs_balance_control *bctl;
3565 struct btrfs_balance_item *item;
3566 struct btrfs_disk_balance_args disk_bargs;
3567 struct btrfs_path *path;
3568 struct extent_buffer *leaf;
3569 struct btrfs_key key;
3570 int ret;
3571
3572 path = btrfs_alloc_path();
3573 if (!path)
3574 return -ENOMEM;
3575
59641015
ID
3576 key.objectid = BTRFS_BALANCE_OBJECTID;
3577 key.type = BTRFS_BALANCE_ITEM_KEY;
3578 key.offset = 0;
3579
68310a5e 3580 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3581 if (ret < 0)
68310a5e 3582 goto out;
59641015
ID
3583 if (ret > 0) { /* ret = -ENOENT; */
3584 ret = 0;
68310a5e
ID
3585 goto out;
3586 }
3587
3588 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3589 if (!bctl) {
3590 ret = -ENOMEM;
3591 goto out;
59641015
ID
3592 }
3593
3594 leaf = path->nodes[0];
3595 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3596
68310a5e
ID
3597 bctl->fs_info = fs_info;
3598 bctl->flags = btrfs_balance_flags(leaf, item);
3599 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3600
3601 btrfs_balance_data(leaf, item, &disk_bargs);
3602 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3603 btrfs_balance_meta(leaf, item, &disk_bargs);
3604 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3605 btrfs_balance_sys(leaf, item, &disk_bargs);
3606 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3607
ed0fb78f
ID
3608 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3609
68310a5e
ID
3610 mutex_lock(&fs_info->volume_mutex);
3611 mutex_lock(&fs_info->balance_mutex);
59641015 3612
68310a5e
ID
3613 set_balance_control(bctl);
3614
3615 mutex_unlock(&fs_info->balance_mutex);
3616 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3617out:
3618 btrfs_free_path(path);
ec44a35c
CM
3619 return ret;
3620}
3621
837d5b6e
ID
3622int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3623{
3624 int ret = 0;
3625
3626 mutex_lock(&fs_info->balance_mutex);
3627 if (!fs_info->balance_ctl) {
3628 mutex_unlock(&fs_info->balance_mutex);
3629 return -ENOTCONN;
3630 }
3631
3632 if (atomic_read(&fs_info->balance_running)) {
3633 atomic_inc(&fs_info->balance_pause_req);
3634 mutex_unlock(&fs_info->balance_mutex);
3635
3636 wait_event(fs_info->balance_wait_q,
3637 atomic_read(&fs_info->balance_running) == 0);
3638
3639 mutex_lock(&fs_info->balance_mutex);
3640 /* we are good with balance_ctl ripped off from under us */
3641 BUG_ON(atomic_read(&fs_info->balance_running));
3642 atomic_dec(&fs_info->balance_pause_req);
3643 } else {
3644 ret = -ENOTCONN;
3645 }
3646
3647 mutex_unlock(&fs_info->balance_mutex);
3648 return ret;
3649}
3650
a7e99c69
ID
3651int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3652{
e649e587
ID
3653 if (fs_info->sb->s_flags & MS_RDONLY)
3654 return -EROFS;
3655
a7e99c69
ID
3656 mutex_lock(&fs_info->balance_mutex);
3657 if (!fs_info->balance_ctl) {
3658 mutex_unlock(&fs_info->balance_mutex);
3659 return -ENOTCONN;
3660 }
3661
3662 atomic_inc(&fs_info->balance_cancel_req);
3663 /*
3664 * if we are running just wait and return, balance item is
3665 * deleted in btrfs_balance in this case
3666 */
3667 if (atomic_read(&fs_info->balance_running)) {
3668 mutex_unlock(&fs_info->balance_mutex);
3669 wait_event(fs_info->balance_wait_q,
3670 atomic_read(&fs_info->balance_running) == 0);
3671 mutex_lock(&fs_info->balance_mutex);
3672 } else {
3673 /* __cancel_balance needs volume_mutex */
3674 mutex_unlock(&fs_info->balance_mutex);
3675 mutex_lock(&fs_info->volume_mutex);
3676 mutex_lock(&fs_info->balance_mutex);
3677
3678 if (fs_info->balance_ctl)
3679 __cancel_balance(fs_info);
3680
3681 mutex_unlock(&fs_info->volume_mutex);
3682 }
3683
3684 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3685 atomic_dec(&fs_info->balance_cancel_req);
3686 mutex_unlock(&fs_info->balance_mutex);
3687 return 0;
3688}
3689
803b2f54
SB
3690static int btrfs_uuid_scan_kthread(void *data)
3691{
3692 struct btrfs_fs_info *fs_info = data;
3693 struct btrfs_root *root = fs_info->tree_root;
3694 struct btrfs_key key;
3695 struct btrfs_key max_key;
3696 struct btrfs_path *path = NULL;
3697 int ret = 0;
3698 struct extent_buffer *eb;
3699 int slot;
3700 struct btrfs_root_item root_item;
3701 u32 item_size;
f45388f3 3702 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3703
3704 path = btrfs_alloc_path();
3705 if (!path) {
3706 ret = -ENOMEM;
3707 goto out;
3708 }
3709
3710 key.objectid = 0;
3711 key.type = BTRFS_ROOT_ITEM_KEY;
3712 key.offset = 0;
3713
3714 max_key.objectid = (u64)-1;
3715 max_key.type = BTRFS_ROOT_ITEM_KEY;
3716 max_key.offset = (u64)-1;
3717
803b2f54 3718 while (1) {
6174d3cb 3719 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3720 if (ret) {
3721 if (ret > 0)
3722 ret = 0;
3723 break;
3724 }
3725
3726 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3727 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3728 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3729 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3730 goto skip;
3731
3732 eb = path->nodes[0];
3733 slot = path->slots[0];
3734 item_size = btrfs_item_size_nr(eb, slot);
3735 if (item_size < sizeof(root_item))
3736 goto skip;
3737
803b2f54
SB
3738 read_extent_buffer(eb, &root_item,
3739 btrfs_item_ptr_offset(eb, slot),
3740 (int)sizeof(root_item));
3741 if (btrfs_root_refs(&root_item) == 0)
3742 goto skip;
f45388f3
FDBM
3743
3744 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3745 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3746 if (trans)
3747 goto update_tree;
3748
3749 btrfs_release_path(path);
803b2f54
SB
3750 /*
3751 * 1 - subvol uuid item
3752 * 1 - received_subvol uuid item
3753 */
3754 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3755 if (IS_ERR(trans)) {
3756 ret = PTR_ERR(trans);
3757 break;
3758 }
f45388f3
FDBM
3759 continue;
3760 } else {
3761 goto skip;
3762 }
3763update_tree:
3764 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3765 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3766 root_item.uuid,
3767 BTRFS_UUID_KEY_SUBVOL,
3768 key.objectid);
3769 if (ret < 0) {
efe120a0 3770 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3771 ret);
803b2f54
SB
3772 break;
3773 }
3774 }
3775
3776 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3777 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3778 root_item.received_uuid,
3779 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3780 key.objectid);
3781 if (ret < 0) {
efe120a0 3782 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3783 ret);
803b2f54
SB
3784 break;
3785 }
3786 }
3787
f45388f3 3788skip:
803b2f54
SB
3789 if (trans) {
3790 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3791 trans = NULL;
803b2f54
SB
3792 if (ret)
3793 break;
3794 }
3795
803b2f54
SB
3796 btrfs_release_path(path);
3797 if (key.offset < (u64)-1) {
3798 key.offset++;
3799 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3800 key.offset = 0;
3801 key.type = BTRFS_ROOT_ITEM_KEY;
3802 } else if (key.objectid < (u64)-1) {
3803 key.offset = 0;
3804 key.type = BTRFS_ROOT_ITEM_KEY;
3805 key.objectid++;
3806 } else {
3807 break;
3808 }
3809 cond_resched();
3810 }
3811
3812out:
3813 btrfs_free_path(path);
f45388f3
FDBM
3814 if (trans && !IS_ERR(trans))
3815 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3816 if (ret)
efe120a0 3817 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3818 else
3819 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3820 up(&fs_info->uuid_tree_rescan_sem);
3821 return 0;
3822}
3823
70f80175
SB
3824/*
3825 * Callback for btrfs_uuid_tree_iterate().
3826 * returns:
3827 * 0 check succeeded, the entry is not outdated.
3828 * < 0 if an error occured.
3829 * > 0 if the check failed, which means the caller shall remove the entry.
3830 */
3831static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3832 u8 *uuid, u8 type, u64 subid)
3833{
3834 struct btrfs_key key;
3835 int ret = 0;
3836 struct btrfs_root *subvol_root;
3837
3838 if (type != BTRFS_UUID_KEY_SUBVOL &&
3839 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3840 goto out;
3841
3842 key.objectid = subid;
3843 key.type = BTRFS_ROOT_ITEM_KEY;
3844 key.offset = (u64)-1;
3845 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3846 if (IS_ERR(subvol_root)) {
3847 ret = PTR_ERR(subvol_root);
3848 if (ret == -ENOENT)
3849 ret = 1;
3850 goto out;
3851 }
3852
3853 switch (type) {
3854 case BTRFS_UUID_KEY_SUBVOL:
3855 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3856 ret = 1;
3857 break;
3858 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3859 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3860 BTRFS_UUID_SIZE))
3861 ret = 1;
3862 break;
3863 }
3864
3865out:
3866 return ret;
3867}
3868
3869static int btrfs_uuid_rescan_kthread(void *data)
3870{
3871 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3872 int ret;
3873
3874 /*
3875 * 1st step is to iterate through the existing UUID tree and
3876 * to delete all entries that contain outdated data.
3877 * 2nd step is to add all missing entries to the UUID tree.
3878 */
3879 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3880 if (ret < 0) {
efe120a0 3881 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
3882 up(&fs_info->uuid_tree_rescan_sem);
3883 return ret;
3884 }
3885 return btrfs_uuid_scan_kthread(data);
3886}
3887
f7a81ea4
SB
3888int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3889{
3890 struct btrfs_trans_handle *trans;
3891 struct btrfs_root *tree_root = fs_info->tree_root;
3892 struct btrfs_root *uuid_root;
803b2f54
SB
3893 struct task_struct *task;
3894 int ret;
f7a81ea4
SB
3895
3896 /*
3897 * 1 - root node
3898 * 1 - root item
3899 */
3900 trans = btrfs_start_transaction(tree_root, 2);
3901 if (IS_ERR(trans))
3902 return PTR_ERR(trans);
3903
3904 uuid_root = btrfs_create_tree(trans, fs_info,
3905 BTRFS_UUID_TREE_OBJECTID);
3906 if (IS_ERR(uuid_root)) {
3907 btrfs_abort_transaction(trans, tree_root,
3908 PTR_ERR(uuid_root));
3909 return PTR_ERR(uuid_root);
3910 }
3911
3912 fs_info->uuid_root = uuid_root;
3913
803b2f54
SB
3914 ret = btrfs_commit_transaction(trans, tree_root);
3915 if (ret)
3916 return ret;
3917
3918 down(&fs_info->uuid_tree_rescan_sem);
3919 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3920 if (IS_ERR(task)) {
70f80175 3921 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3922 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
3923 up(&fs_info->uuid_tree_rescan_sem);
3924 return PTR_ERR(task);
3925 }
3926
3927 return 0;
f7a81ea4 3928}
803b2f54 3929
70f80175
SB
3930int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3931{
3932 struct task_struct *task;
3933
3934 down(&fs_info->uuid_tree_rescan_sem);
3935 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3936 if (IS_ERR(task)) {
3937 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3938 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
3939 up(&fs_info->uuid_tree_rescan_sem);
3940 return PTR_ERR(task);
3941 }
3942
3943 return 0;
3944}
3945
8f18cf13
CM
3946/*
3947 * shrinking a device means finding all of the device extents past
3948 * the new size, and then following the back refs to the chunks.
3949 * The chunk relocation code actually frees the device extent
3950 */
3951int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3952{
3953 struct btrfs_trans_handle *trans;
3954 struct btrfs_root *root = device->dev_root;
3955 struct btrfs_dev_extent *dev_extent = NULL;
3956 struct btrfs_path *path;
3957 u64 length;
3958 u64 chunk_tree;
3959 u64 chunk_objectid;
3960 u64 chunk_offset;
3961 int ret;
3962 int slot;
ba1bf481
JB
3963 int failed = 0;
3964 bool retried = false;
8f18cf13
CM
3965 struct extent_buffer *l;
3966 struct btrfs_key key;
6c41761f 3967 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3968 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
3969 u64 old_size = btrfs_device_get_total_bytes(device);
3970 u64 diff = old_size - new_size;
8f18cf13 3971
63a212ab
SB
3972 if (device->is_tgtdev_for_dev_replace)
3973 return -EINVAL;
3974
8f18cf13
CM
3975 path = btrfs_alloc_path();
3976 if (!path)
3977 return -ENOMEM;
3978
8f18cf13
CM
3979 path->reada = 2;
3980
7d9eb12c
CM
3981 lock_chunks(root);
3982
7cc8e58d 3983 btrfs_device_set_total_bytes(device, new_size);
2bf64758 3984 if (device->writeable) {
2b82032c 3985 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3986 spin_lock(&root->fs_info->free_chunk_lock);
3987 root->fs_info->free_chunk_space -= diff;
3988 spin_unlock(&root->fs_info->free_chunk_lock);
3989 }
7d9eb12c 3990 unlock_chunks(root);
8f18cf13 3991
ba1bf481 3992again:
8f18cf13
CM
3993 key.objectid = device->devid;
3994 key.offset = (u64)-1;
3995 key.type = BTRFS_DEV_EXTENT_KEY;
3996
213e64da 3997 do {
8f18cf13
CM
3998 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3999 if (ret < 0)
4000 goto done;
4001
4002 ret = btrfs_previous_item(root, path, 0, key.type);
4003 if (ret < 0)
4004 goto done;
4005 if (ret) {
4006 ret = 0;
b3b4aa74 4007 btrfs_release_path(path);
bf1fb512 4008 break;
8f18cf13
CM
4009 }
4010
4011 l = path->nodes[0];
4012 slot = path->slots[0];
4013 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4014
ba1bf481 4015 if (key.objectid != device->devid) {
b3b4aa74 4016 btrfs_release_path(path);
bf1fb512 4017 break;
ba1bf481 4018 }
8f18cf13
CM
4019
4020 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4021 length = btrfs_dev_extent_length(l, dev_extent);
4022
ba1bf481 4023 if (key.offset + length <= new_size) {
b3b4aa74 4024 btrfs_release_path(path);
d6397bae 4025 break;
ba1bf481 4026 }
8f18cf13
CM
4027
4028 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
4029 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4030 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4031 btrfs_release_path(path);
8f18cf13
CM
4032
4033 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
4034 chunk_offset);
ba1bf481 4035 if (ret && ret != -ENOSPC)
8f18cf13 4036 goto done;
ba1bf481
JB
4037 if (ret == -ENOSPC)
4038 failed++;
213e64da 4039 } while (key.offset-- > 0);
ba1bf481
JB
4040
4041 if (failed && !retried) {
4042 failed = 0;
4043 retried = true;
4044 goto again;
4045 } else if (failed && retried) {
4046 ret = -ENOSPC;
4047 lock_chunks(root);
4048
7cc8e58d 4049 btrfs_device_set_total_bytes(device, old_size);
ba1bf481
JB
4050 if (device->writeable)
4051 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
4052 spin_lock(&root->fs_info->free_chunk_lock);
4053 root->fs_info->free_chunk_space += diff;
4054 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
4055 unlock_chunks(root);
4056 goto done;
8f18cf13
CM
4057 }
4058
d6397bae 4059 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4060 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4061 if (IS_ERR(trans)) {
4062 ret = PTR_ERR(trans);
4063 goto done;
4064 }
4065
d6397bae 4066 lock_chunks(root);
7cc8e58d 4067 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4068 if (list_empty(&device->resized_list))
4069 list_add_tail(&device->resized_list,
4070 &root->fs_info->fs_devices->resized_devices);
d6397bae 4071
d6397bae
CB
4072 WARN_ON(diff > old_total);
4073 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4074 unlock_chunks(root);
2196d6e8
MX
4075
4076 /* Now btrfs_update_device() will change the on-disk size. */
4077 ret = btrfs_update_device(trans, device);
d6397bae 4078 btrfs_end_transaction(trans, root);
8f18cf13
CM
4079done:
4080 btrfs_free_path(path);
4081 return ret;
4082}
4083
125ccb0a 4084static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4085 struct btrfs_key *key,
4086 struct btrfs_chunk *chunk, int item_size)
4087{
6c41761f 4088 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4089 struct btrfs_disk_key disk_key;
4090 u32 array_size;
4091 u8 *ptr;
4092
fe48a5c0 4093 lock_chunks(root);
0b86a832 4094 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4095 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4096 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4097 unlock_chunks(root);
0b86a832 4098 return -EFBIG;
fe48a5c0 4099 }
0b86a832
CM
4100
4101 ptr = super_copy->sys_chunk_array + array_size;
4102 btrfs_cpu_key_to_disk(&disk_key, key);
4103 memcpy(ptr, &disk_key, sizeof(disk_key));
4104 ptr += sizeof(disk_key);
4105 memcpy(ptr, chunk, item_size);
4106 item_size += sizeof(disk_key);
4107 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4108 unlock_chunks(root);
4109
0b86a832
CM
4110 return 0;
4111}
4112
73c5de00
AJ
4113/*
4114 * sort the devices in descending order by max_avail, total_avail
4115 */
4116static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4117{
73c5de00
AJ
4118 const struct btrfs_device_info *di_a = a;
4119 const struct btrfs_device_info *di_b = b;
9b3f68b9 4120
73c5de00 4121 if (di_a->max_avail > di_b->max_avail)
b2117a39 4122 return -1;
73c5de00 4123 if (di_a->max_avail < di_b->max_avail)
b2117a39 4124 return 1;
73c5de00
AJ
4125 if (di_a->total_avail > di_b->total_avail)
4126 return -1;
4127 if (di_a->total_avail < di_b->total_avail)
4128 return 1;
4129 return 0;
b2117a39 4130}
0b86a832 4131
48a3b636 4132static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
4133 [BTRFS_RAID_RAID10] = {
4134 .sub_stripes = 2,
4135 .dev_stripes = 1,
4136 .devs_max = 0, /* 0 == as many as possible */
4137 .devs_min = 4,
4138 .devs_increment = 2,
4139 .ncopies = 2,
4140 },
4141 [BTRFS_RAID_RAID1] = {
4142 .sub_stripes = 1,
4143 .dev_stripes = 1,
4144 .devs_max = 2,
4145 .devs_min = 2,
4146 .devs_increment = 2,
4147 .ncopies = 2,
4148 },
4149 [BTRFS_RAID_DUP] = {
4150 .sub_stripes = 1,
4151 .dev_stripes = 2,
4152 .devs_max = 1,
4153 .devs_min = 1,
4154 .devs_increment = 1,
4155 .ncopies = 2,
4156 },
4157 [BTRFS_RAID_RAID0] = {
4158 .sub_stripes = 1,
4159 .dev_stripes = 1,
4160 .devs_max = 0,
4161 .devs_min = 2,
4162 .devs_increment = 1,
4163 .ncopies = 1,
4164 },
4165 [BTRFS_RAID_SINGLE] = {
4166 .sub_stripes = 1,
4167 .dev_stripes = 1,
4168 .devs_max = 1,
4169 .devs_min = 1,
4170 .devs_increment = 1,
4171 .ncopies = 1,
4172 },
e942f883
CM
4173 [BTRFS_RAID_RAID5] = {
4174 .sub_stripes = 1,
4175 .dev_stripes = 1,
4176 .devs_max = 0,
4177 .devs_min = 2,
4178 .devs_increment = 1,
4179 .ncopies = 2,
4180 },
4181 [BTRFS_RAID_RAID6] = {
4182 .sub_stripes = 1,
4183 .dev_stripes = 1,
4184 .devs_max = 0,
4185 .devs_min = 3,
4186 .devs_increment = 1,
4187 .ncopies = 3,
4188 },
31e50229
LB
4189};
4190
53b381b3
DW
4191static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4192{
4193 /* TODO allow them to set a preferred stripe size */
4194 return 64 * 1024;
4195}
4196
4197static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4198{
ffe2d203 4199 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4200 return;
4201
ceda0864 4202 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4203}
4204
23f8f9b7
GH
4205#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4206 - sizeof(struct btrfs_item) \
4207 - sizeof(struct btrfs_chunk)) \
4208 / sizeof(struct btrfs_stripe) + 1)
4209
4210#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4211 - 2 * sizeof(struct btrfs_disk_key) \
4212 - 2 * sizeof(struct btrfs_chunk)) \
4213 / sizeof(struct btrfs_stripe) + 1)
4214
73c5de00 4215static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4216 struct btrfs_root *extent_root, u64 start,
4217 u64 type)
b2117a39 4218{
73c5de00
AJ
4219 struct btrfs_fs_info *info = extent_root->fs_info;
4220 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4221 struct list_head *cur;
4222 struct map_lookup *map = NULL;
4223 struct extent_map_tree *em_tree;
4224 struct extent_map *em;
4225 struct btrfs_device_info *devices_info = NULL;
4226 u64 total_avail;
4227 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4228 int data_stripes; /* number of stripes that count for
4229 block group size */
73c5de00
AJ
4230 int sub_stripes; /* sub_stripes info for map */
4231 int dev_stripes; /* stripes per dev */
4232 int devs_max; /* max devs to use */
4233 int devs_min; /* min devs needed */
4234 int devs_increment; /* ndevs has to be a multiple of this */
4235 int ncopies; /* how many copies to data has */
4236 int ret;
4237 u64 max_stripe_size;
4238 u64 max_chunk_size;
4239 u64 stripe_size;
4240 u64 num_bytes;
53b381b3 4241 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4242 int ndevs;
4243 int i;
4244 int j;
31e50229 4245 int index;
593060d7 4246
0c460c0d 4247 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4248
73c5de00
AJ
4249 if (list_empty(&fs_devices->alloc_list))
4250 return -ENOSPC;
b2117a39 4251
31e50229 4252 index = __get_raid_index(type);
73c5de00 4253
31e50229
LB
4254 sub_stripes = btrfs_raid_array[index].sub_stripes;
4255 dev_stripes = btrfs_raid_array[index].dev_stripes;
4256 devs_max = btrfs_raid_array[index].devs_max;
4257 devs_min = btrfs_raid_array[index].devs_min;
4258 devs_increment = btrfs_raid_array[index].devs_increment;
4259 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4260
9b3f68b9 4261 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4262 max_stripe_size = 1024 * 1024 * 1024;
4263 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4264 if (!devs_max)
4265 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4266 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4267 /* for larger filesystems, use larger metadata chunks */
4268 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4269 max_stripe_size = 1024 * 1024 * 1024;
4270 else
4271 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4272 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4273 if (!devs_max)
4274 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4275 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4276 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4277 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4278 if (!devs_max)
4279 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4280 } else {
351fd353 4281 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4282 type);
4283 BUG_ON(1);
9b3f68b9
CM
4284 }
4285
2b82032c
YZ
4286 /* we don't want a chunk larger than 10% of writeable space */
4287 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4288 max_chunk_size);
9b3f68b9 4289
73c5de00
AJ
4290 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4291 GFP_NOFS);
4292 if (!devices_info)
4293 return -ENOMEM;
0cad8a11 4294
73c5de00 4295 cur = fs_devices->alloc_list.next;
9b3f68b9 4296
9f680ce0 4297 /*
73c5de00
AJ
4298 * in the first pass through the devices list, we gather information
4299 * about the available holes on each device.
9f680ce0 4300 */
73c5de00
AJ
4301 ndevs = 0;
4302 while (cur != &fs_devices->alloc_list) {
4303 struct btrfs_device *device;
4304 u64 max_avail;
4305 u64 dev_offset;
b2117a39 4306
73c5de00 4307 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4308
73c5de00 4309 cur = cur->next;
b2117a39 4310
73c5de00 4311 if (!device->writeable) {
31b1a2bd 4312 WARN(1, KERN_ERR
efe120a0 4313 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4314 continue;
4315 }
b2117a39 4316
63a212ab
SB
4317 if (!device->in_fs_metadata ||
4318 device->is_tgtdev_for_dev_replace)
73c5de00 4319 continue;
b2117a39 4320
73c5de00
AJ
4321 if (device->total_bytes > device->bytes_used)
4322 total_avail = device->total_bytes - device->bytes_used;
4323 else
4324 total_avail = 0;
38c01b96 4325
4326 /* If there is no space on this device, skip it. */
4327 if (total_avail == 0)
4328 continue;
b2117a39 4329
6df9a95e 4330 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4331 max_stripe_size * dev_stripes,
4332 &dev_offset, &max_avail);
4333 if (ret && ret != -ENOSPC)
4334 goto error;
b2117a39 4335
73c5de00
AJ
4336 if (ret == 0)
4337 max_avail = max_stripe_size * dev_stripes;
b2117a39 4338
73c5de00
AJ
4339 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4340 continue;
b2117a39 4341
063d006f
ES
4342 if (ndevs == fs_devices->rw_devices) {
4343 WARN(1, "%s: found more than %llu devices\n",
4344 __func__, fs_devices->rw_devices);
4345 break;
4346 }
73c5de00
AJ
4347 devices_info[ndevs].dev_offset = dev_offset;
4348 devices_info[ndevs].max_avail = max_avail;
4349 devices_info[ndevs].total_avail = total_avail;
4350 devices_info[ndevs].dev = device;
4351 ++ndevs;
4352 }
b2117a39 4353
73c5de00
AJ
4354 /*
4355 * now sort the devices by hole size / available space
4356 */
4357 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4358 btrfs_cmp_device_info, NULL);
b2117a39 4359
73c5de00
AJ
4360 /* round down to number of usable stripes */
4361 ndevs -= ndevs % devs_increment;
b2117a39 4362
73c5de00
AJ
4363 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4364 ret = -ENOSPC;
4365 goto error;
b2117a39 4366 }
9f680ce0 4367
73c5de00
AJ
4368 if (devs_max && ndevs > devs_max)
4369 ndevs = devs_max;
4370 /*
4371 * the primary goal is to maximize the number of stripes, so use as many
4372 * devices as possible, even if the stripes are not maximum sized.
4373 */
4374 stripe_size = devices_info[ndevs-1].max_avail;
4375 num_stripes = ndevs * dev_stripes;
b2117a39 4376
53b381b3
DW
4377 /*
4378 * this will have to be fixed for RAID1 and RAID10 over
4379 * more drives
4380 */
4381 data_stripes = num_stripes / ncopies;
4382
53b381b3
DW
4383 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4384 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4385 btrfs_super_stripesize(info->super_copy));
4386 data_stripes = num_stripes - 1;
4387 }
4388 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4389 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4390 btrfs_super_stripesize(info->super_copy));
4391 data_stripes = num_stripes - 2;
4392 }
86db2578
CM
4393
4394 /*
4395 * Use the number of data stripes to figure out how big this chunk
4396 * is really going to be in terms of logical address space,
4397 * and compare that answer with the max chunk size
4398 */
4399 if (stripe_size * data_stripes > max_chunk_size) {
4400 u64 mask = (1ULL << 24) - 1;
4401 stripe_size = max_chunk_size;
4402 do_div(stripe_size, data_stripes);
4403
4404 /* bump the answer up to a 16MB boundary */
4405 stripe_size = (stripe_size + mask) & ~mask;
4406
4407 /* but don't go higher than the limits we found
4408 * while searching for free extents
4409 */
4410 if (stripe_size > devices_info[ndevs-1].max_avail)
4411 stripe_size = devices_info[ndevs-1].max_avail;
4412 }
4413
73c5de00 4414 do_div(stripe_size, dev_stripes);
37db63a4
ID
4415
4416 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4417 do_div(stripe_size, raid_stripe_len);
4418 stripe_size *= raid_stripe_len;
b2117a39
MX
4419
4420 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4421 if (!map) {
4422 ret = -ENOMEM;
4423 goto error;
4424 }
4425 map->num_stripes = num_stripes;
9b3f68b9 4426
73c5de00
AJ
4427 for (i = 0; i < ndevs; ++i) {
4428 for (j = 0; j < dev_stripes; ++j) {
4429 int s = i * dev_stripes + j;
4430 map->stripes[s].dev = devices_info[i].dev;
4431 map->stripes[s].physical = devices_info[i].dev_offset +
4432 j * stripe_size;
6324fbf3 4433 }
6324fbf3 4434 }
2b82032c 4435 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4436 map->stripe_len = raid_stripe_len;
4437 map->io_align = raid_stripe_len;
4438 map->io_width = raid_stripe_len;
2b82032c 4439 map->type = type;
2b82032c 4440 map->sub_stripes = sub_stripes;
0b86a832 4441
53b381b3 4442 num_bytes = stripe_size * data_stripes;
0b86a832 4443
73c5de00 4444 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4445
172ddd60 4446 em = alloc_extent_map();
2b82032c 4447 if (!em) {
298a8f9c 4448 kfree(map);
b2117a39
MX
4449 ret = -ENOMEM;
4450 goto error;
593060d7 4451 }
298a8f9c 4452 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4453 em->bdev = (struct block_device *)map;
4454 em->start = start;
73c5de00 4455 em->len = num_bytes;
2b82032c
YZ
4456 em->block_start = 0;
4457 em->block_len = em->len;
6df9a95e 4458 em->orig_block_len = stripe_size;
593060d7 4459
2b82032c 4460 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4461 write_lock(&em_tree->lock);
09a2a8f9 4462 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4463 if (!ret) {
4464 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4465 atomic_inc(&em->refs);
4466 }
890871be 4467 write_unlock(&em_tree->lock);
0f5d42b2
JB
4468 if (ret) {
4469 free_extent_map(em);
1dd4602f 4470 goto error;
0f5d42b2 4471 }
0b86a832 4472
04487488
JB
4473 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4474 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4475 start, num_bytes);
6df9a95e
JB
4476 if (ret)
4477 goto error_del_extent;
2b82032c 4478
7cc8e58d
MX
4479 for (i = 0; i < map->num_stripes; i++) {
4480 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4481 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4482 }
43530c46 4483
1c116187
MX
4484 spin_lock(&extent_root->fs_info->free_chunk_lock);
4485 extent_root->fs_info->free_chunk_space -= (stripe_size *
4486 map->num_stripes);
4487 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4488
0f5d42b2 4489 free_extent_map(em);
53b381b3
DW
4490 check_raid56_incompat_flag(extent_root->fs_info, type);
4491
b2117a39 4492 kfree(devices_info);
2b82032c 4493 return 0;
b2117a39 4494
6df9a95e 4495error_del_extent:
0f5d42b2
JB
4496 write_lock(&em_tree->lock);
4497 remove_extent_mapping(em_tree, em);
4498 write_unlock(&em_tree->lock);
4499
4500 /* One for our allocation */
4501 free_extent_map(em);
4502 /* One for the tree reference */
4503 free_extent_map(em);
495e64f4
FM
4504 /* One for the pending_chunks list reference */
4505 free_extent_map(em);
b2117a39 4506error:
b2117a39
MX
4507 kfree(devices_info);
4508 return ret;
2b82032c
YZ
4509}
4510
6df9a95e 4511int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4512 struct btrfs_root *extent_root,
6df9a95e 4513 u64 chunk_offset, u64 chunk_size)
2b82032c 4514{
2b82032c
YZ
4515 struct btrfs_key key;
4516 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4517 struct btrfs_device *device;
4518 struct btrfs_chunk *chunk;
4519 struct btrfs_stripe *stripe;
6df9a95e
JB
4520 struct extent_map_tree *em_tree;
4521 struct extent_map *em;
4522 struct map_lookup *map;
4523 size_t item_size;
4524 u64 dev_offset;
4525 u64 stripe_size;
4526 int i = 0;
2b82032c
YZ
4527 int ret;
4528
6df9a95e
JB
4529 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4530 read_lock(&em_tree->lock);
4531 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4532 read_unlock(&em_tree->lock);
4533
4534 if (!em) {
4535 btrfs_crit(extent_root->fs_info, "unable to find logical "
4536 "%Lu len %Lu", chunk_offset, chunk_size);
4537 return -EINVAL;
4538 }
4539
4540 if (em->start != chunk_offset || em->len != chunk_size) {
4541 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4542 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4543 chunk_size, em->start, em->len);
4544 free_extent_map(em);
4545 return -EINVAL;
4546 }
4547
4548 map = (struct map_lookup *)em->bdev;
4549 item_size = btrfs_chunk_item_size(map->num_stripes);
4550 stripe_size = em->orig_block_len;
4551
2b82032c 4552 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4553 if (!chunk) {
4554 ret = -ENOMEM;
4555 goto out;
4556 }
4557
4558 for (i = 0; i < map->num_stripes; i++) {
4559 device = map->stripes[i].dev;
4560 dev_offset = map->stripes[i].physical;
2b82032c 4561
0b86a832 4562 ret = btrfs_update_device(trans, device);
3acd3953 4563 if (ret)
6df9a95e
JB
4564 goto out;
4565 ret = btrfs_alloc_dev_extent(trans, device,
4566 chunk_root->root_key.objectid,
4567 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4568 chunk_offset, dev_offset,
4569 stripe_size);
4570 if (ret)
4571 goto out;
2b82032c
YZ
4572 }
4573
2b82032c 4574 stripe = &chunk->stripe;
6df9a95e
JB
4575 for (i = 0; i < map->num_stripes; i++) {
4576 device = map->stripes[i].dev;
4577 dev_offset = map->stripes[i].physical;
0b86a832 4578
e17cade2
CM
4579 btrfs_set_stack_stripe_devid(stripe, device->devid);
4580 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4581 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4582 stripe++;
0b86a832
CM
4583 }
4584
2b82032c 4585 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4586 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4587 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4588 btrfs_set_stack_chunk_type(chunk, map->type);
4589 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4590 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4591 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4592 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4593 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4594
2b82032c
YZ
4595 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4596 key.type = BTRFS_CHUNK_ITEM_KEY;
4597 key.offset = chunk_offset;
0b86a832 4598
2b82032c 4599 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4600 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4601 /*
4602 * TODO: Cleanup of inserted chunk root in case of
4603 * failure.
4604 */
125ccb0a 4605 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4606 item_size);
8f18cf13 4607 }
1abe9b8a 4608
6df9a95e 4609out:
0b86a832 4610 kfree(chunk);
6df9a95e 4611 free_extent_map(em);
4ed1d16e 4612 return ret;
2b82032c 4613}
0b86a832 4614
2b82032c
YZ
4615/*
4616 * Chunk allocation falls into two parts. The first part does works
4617 * that make the new allocated chunk useable, but not do any operation
4618 * that modifies the chunk tree. The second part does the works that
4619 * require modifying the chunk tree. This division is important for the
4620 * bootstrap process of adding storage to a seed btrfs.
4621 */
4622int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4623 struct btrfs_root *extent_root, u64 type)
4624{
4625 u64 chunk_offset;
2b82032c 4626
6df9a95e
JB
4627 chunk_offset = find_next_chunk(extent_root->fs_info);
4628 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4629}
4630
d397712b 4631static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4632 struct btrfs_root *root,
4633 struct btrfs_device *device)
4634{
4635 u64 chunk_offset;
4636 u64 sys_chunk_offset;
2b82032c 4637 u64 alloc_profile;
2b82032c
YZ
4638 struct btrfs_fs_info *fs_info = root->fs_info;
4639 struct btrfs_root *extent_root = fs_info->extent_root;
4640 int ret;
4641
6df9a95e 4642 chunk_offset = find_next_chunk(fs_info);
de98ced9 4643 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4644 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4645 alloc_profile);
79787eaa
JM
4646 if (ret)
4647 return ret;
2b82032c 4648
6df9a95e 4649 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4650 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4651 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4652 alloc_profile);
79787eaa 4653 return ret;
2b82032c
YZ
4654}
4655
d20983b4
MX
4656static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4657{
4658 int max_errors;
4659
4660 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4661 BTRFS_BLOCK_GROUP_RAID10 |
4662 BTRFS_BLOCK_GROUP_RAID5 |
4663 BTRFS_BLOCK_GROUP_DUP)) {
4664 max_errors = 1;
4665 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4666 max_errors = 2;
4667 } else {
4668 max_errors = 0;
005d6427 4669 }
2b82032c 4670
d20983b4 4671 return max_errors;
2b82032c
YZ
4672}
4673
4674int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4675{
4676 struct extent_map *em;
4677 struct map_lookup *map;
4678 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4679 int readonly = 0;
d20983b4 4680 int miss_ndevs = 0;
2b82032c
YZ
4681 int i;
4682
890871be 4683 read_lock(&map_tree->map_tree.lock);
2b82032c 4684 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4685 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4686 if (!em)
4687 return 1;
4688
4689 map = (struct map_lookup *)em->bdev;
4690 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4691 if (map->stripes[i].dev->missing) {
4692 miss_ndevs++;
4693 continue;
4694 }
4695
2b82032c
YZ
4696 if (!map->stripes[i].dev->writeable) {
4697 readonly = 1;
d20983b4 4698 goto end;
2b82032c
YZ
4699 }
4700 }
d20983b4
MX
4701
4702 /*
4703 * If the number of missing devices is larger than max errors,
4704 * we can not write the data into that chunk successfully, so
4705 * set it readonly.
4706 */
4707 if (miss_ndevs > btrfs_chunk_max_errors(map))
4708 readonly = 1;
4709end:
0b86a832 4710 free_extent_map(em);
2b82032c 4711 return readonly;
0b86a832
CM
4712}
4713
4714void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4715{
a8067e02 4716 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4717}
4718
4719void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4720{
4721 struct extent_map *em;
4722
d397712b 4723 while (1) {
890871be 4724 write_lock(&tree->map_tree.lock);
0b86a832
CM
4725 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4726 if (em)
4727 remove_extent_mapping(&tree->map_tree, em);
890871be 4728 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4729 if (!em)
4730 break;
0b86a832
CM
4731 /* once for us */
4732 free_extent_map(em);
4733 /* once for the tree */
4734 free_extent_map(em);
4735 }
4736}
4737
5d964051 4738int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4739{
5d964051 4740 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4741 struct extent_map *em;
4742 struct map_lookup *map;
4743 struct extent_map_tree *em_tree = &map_tree->map_tree;
4744 int ret;
4745
890871be 4746 read_lock(&em_tree->lock);
f188591e 4747 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4748 read_unlock(&em_tree->lock);
f188591e 4749
fb7669b5
JB
4750 /*
4751 * We could return errors for these cases, but that could get ugly and
4752 * we'd probably do the same thing which is just not do anything else
4753 * and exit, so return 1 so the callers don't try to use other copies.
4754 */
4755 if (!em) {
351fd353 4756 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4757 logical+len);
4758 return 1;
4759 }
4760
4761 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4762 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4763 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4764 em->start + em->len);
7d3d1744 4765 free_extent_map(em);
fb7669b5
JB
4766 return 1;
4767 }
4768
f188591e
CM
4769 map = (struct map_lookup *)em->bdev;
4770 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4771 ret = map->num_stripes;
321aecc6
CM
4772 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4773 ret = map->sub_stripes;
53b381b3
DW
4774 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4775 ret = 2;
4776 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4777 ret = 3;
f188591e
CM
4778 else
4779 ret = 1;
4780 free_extent_map(em);
ad6d620e
SB
4781
4782 btrfs_dev_replace_lock(&fs_info->dev_replace);
4783 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4784 ret++;
4785 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4786
f188591e
CM
4787 return ret;
4788}
4789
53b381b3
DW
4790unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4791 struct btrfs_mapping_tree *map_tree,
4792 u64 logical)
4793{
4794 struct extent_map *em;
4795 struct map_lookup *map;
4796 struct extent_map_tree *em_tree = &map_tree->map_tree;
4797 unsigned long len = root->sectorsize;
4798
4799 read_lock(&em_tree->lock);
4800 em = lookup_extent_mapping(em_tree, logical, len);
4801 read_unlock(&em_tree->lock);
4802 BUG_ON(!em);
4803
4804 BUG_ON(em->start > logical || em->start + em->len < logical);
4805 map = (struct map_lookup *)em->bdev;
ffe2d203 4806 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 4807 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
4808 free_extent_map(em);
4809 return len;
4810}
4811
4812int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4813 u64 logical, u64 len, int mirror_num)
4814{
4815 struct extent_map *em;
4816 struct map_lookup *map;
4817 struct extent_map_tree *em_tree = &map_tree->map_tree;
4818 int ret = 0;
4819
4820 read_lock(&em_tree->lock);
4821 em = lookup_extent_mapping(em_tree, logical, len);
4822 read_unlock(&em_tree->lock);
4823 BUG_ON(!em);
4824
4825 BUG_ON(em->start > logical || em->start + em->len < logical);
4826 map = (struct map_lookup *)em->bdev;
ffe2d203 4827 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
4828 ret = 1;
4829 free_extent_map(em);
4830 return ret;
4831}
4832
30d9861f
SB
4833static int find_live_mirror(struct btrfs_fs_info *fs_info,
4834 struct map_lookup *map, int first, int num,
4835 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4836{
4837 int i;
30d9861f
SB
4838 int tolerance;
4839 struct btrfs_device *srcdev;
4840
4841 if (dev_replace_is_ongoing &&
4842 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4843 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4844 srcdev = fs_info->dev_replace.srcdev;
4845 else
4846 srcdev = NULL;
4847
4848 /*
4849 * try to avoid the drive that is the source drive for a
4850 * dev-replace procedure, only choose it if no other non-missing
4851 * mirror is available
4852 */
4853 for (tolerance = 0; tolerance < 2; tolerance++) {
4854 if (map->stripes[optimal].dev->bdev &&
4855 (tolerance || map->stripes[optimal].dev != srcdev))
4856 return optimal;
4857 for (i = first; i < first + num; i++) {
4858 if (map->stripes[i].dev->bdev &&
4859 (tolerance || map->stripes[i].dev != srcdev))
4860 return i;
4861 }
dfe25020 4862 }
30d9861f 4863
dfe25020
CM
4864 /* we couldn't find one that doesn't fail. Just return something
4865 * and the io error handling code will clean up eventually
4866 */
4867 return optimal;
4868}
4869
53b381b3
DW
4870static inline int parity_smaller(u64 a, u64 b)
4871{
4872 return a > b;
4873}
4874
4875/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 4876static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
4877{
4878 struct btrfs_bio_stripe s;
4879 int i;
4880 u64 l;
4881 int again = 1;
4882
4883 while (again) {
4884 again = 0;
cc7539ed 4885 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
4886 if (parity_smaller(bbio->raid_map[i],
4887 bbio->raid_map[i+1])) {
53b381b3 4888 s = bbio->stripes[i];
8e5cfb55 4889 l = bbio->raid_map[i];
53b381b3 4890 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 4891 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 4892 bbio->stripes[i+1] = s;
8e5cfb55 4893 bbio->raid_map[i+1] = l;
2c8cdd6e 4894
53b381b3
DW
4895 again = 1;
4896 }
4897 }
4898 }
4899}
4900
6e9606d2
ZL
4901static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4902{
4903 struct btrfs_bio *bbio = kzalloc(
4904 sizeof(struct btrfs_bio) +
4905 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4906 sizeof(int) * (real_stripes) +
4907 sizeof(u64) * (real_stripes),
4908 GFP_NOFS);
4909 if (!bbio)
4910 return NULL;
4911
4912 atomic_set(&bbio->error, 0);
4913 atomic_set(&bbio->refs, 1);
4914
4915 return bbio;
4916}
4917
4918void btrfs_get_bbio(struct btrfs_bio *bbio)
4919{
4920 WARN_ON(!atomic_read(&bbio->refs));
4921 atomic_inc(&bbio->refs);
4922}
4923
4924void btrfs_put_bbio(struct btrfs_bio *bbio)
4925{
4926 if (!bbio)
4927 return;
4928 if (atomic_dec_and_test(&bbio->refs))
4929 kfree(bbio);
4930}
4931
3ec706c8 4932static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4933 u64 logical, u64 *length,
a1d3c478 4934 struct btrfs_bio **bbio_ret,
8e5cfb55 4935 int mirror_num, int need_raid_map)
0b86a832
CM
4936{
4937 struct extent_map *em;
4938 struct map_lookup *map;
3ec706c8 4939 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4940 struct extent_map_tree *em_tree = &map_tree->map_tree;
4941 u64 offset;
593060d7 4942 u64 stripe_offset;
fce3bb9a 4943 u64 stripe_end_offset;
593060d7 4944 u64 stripe_nr;
fce3bb9a
LD
4945 u64 stripe_nr_orig;
4946 u64 stripe_nr_end;
53b381b3 4947 u64 stripe_len;
593060d7 4948 int stripe_index;
cea9e445 4949 int i;
de11cc12 4950 int ret = 0;
f2d8d74d 4951 int num_stripes;
a236aed1 4952 int max_errors = 0;
2c8cdd6e 4953 int tgtdev_indexes = 0;
a1d3c478 4954 struct btrfs_bio *bbio = NULL;
472262f3
SB
4955 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4956 int dev_replace_is_ongoing = 0;
4957 int num_alloc_stripes;
ad6d620e
SB
4958 int patch_the_first_stripe_for_dev_replace = 0;
4959 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4960 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4961
890871be 4962 read_lock(&em_tree->lock);
0b86a832 4963 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4964 read_unlock(&em_tree->lock);
f2d8d74d 4965
3b951516 4966 if (!em) {
c2cf52eb 4967 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4968 logical, *length);
9bb91873
JB
4969 return -EINVAL;
4970 }
4971
4972 if (em->start > logical || em->start + em->len < logical) {
4973 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 4974 "found %Lu-%Lu", logical, em->start,
9bb91873 4975 em->start + em->len);
7d3d1744 4976 free_extent_map(em);
9bb91873 4977 return -EINVAL;
3b951516 4978 }
0b86a832 4979
0b86a832
CM
4980 map = (struct map_lookup *)em->bdev;
4981 offset = logical - em->start;
593060d7 4982
53b381b3 4983 stripe_len = map->stripe_len;
593060d7
CM
4984 stripe_nr = offset;
4985 /*
4986 * stripe_nr counts the total number of stripes we have to stride
4987 * to get to this block
4988 */
53b381b3 4989 do_div(stripe_nr, stripe_len);
593060d7 4990
53b381b3 4991 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4992 BUG_ON(offset < stripe_offset);
4993
4994 /* stripe_offset is the offset of this block in its stripe*/
4995 stripe_offset = offset - stripe_offset;
4996
53b381b3 4997 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 4998 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
4999 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5000 raid56_full_stripe_start = offset;
5001
5002 /* allow a write of a full stripe, but make sure we don't
5003 * allow straddling of stripes
5004 */
5005 do_div(raid56_full_stripe_start, full_stripe_len);
5006 raid56_full_stripe_start *= full_stripe_len;
5007 }
5008
5009 if (rw & REQ_DISCARD) {
5010 /* we don't discard raid56 yet */
ffe2d203 5011 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5012 ret = -EOPNOTSUPP;
5013 goto out;
5014 }
fce3bb9a 5015 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5016 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5017 u64 max_len;
5018 /* For writes to RAID[56], allow a full stripeset across all disks.
5019 For other RAID types and for RAID[56] reads, just allow a single
5020 stripe (on a single disk). */
ffe2d203 5021 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5022 (rw & REQ_WRITE)) {
5023 max_len = stripe_len * nr_data_stripes(map) -
5024 (offset - raid56_full_stripe_start);
5025 } else {
5026 /* we limit the length of each bio to what fits in a stripe */
5027 max_len = stripe_len - stripe_offset;
5028 }
5029 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5030 } else {
5031 *length = em->len - offset;
5032 }
f2d8d74d 5033
53b381b3
DW
5034 /* This is for when we're called from btrfs_merge_bio_hook() and all
5035 it cares about is the length */
a1d3c478 5036 if (!bbio_ret)
cea9e445
CM
5037 goto out;
5038
472262f3
SB
5039 btrfs_dev_replace_lock(dev_replace);
5040 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5041 if (!dev_replace_is_ongoing)
5042 btrfs_dev_replace_unlock(dev_replace);
5043
ad6d620e
SB
5044 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5045 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5046 dev_replace->tgtdev != NULL) {
5047 /*
5048 * in dev-replace case, for repair case (that's the only
5049 * case where the mirror is selected explicitly when
5050 * calling btrfs_map_block), blocks left of the left cursor
5051 * can also be read from the target drive.
5052 * For REQ_GET_READ_MIRRORS, the target drive is added as
5053 * the last one to the array of stripes. For READ, it also
5054 * needs to be supported using the same mirror number.
5055 * If the requested block is not left of the left cursor,
5056 * EIO is returned. This can happen because btrfs_num_copies()
5057 * returns one more in the dev-replace case.
5058 */
5059 u64 tmp_length = *length;
5060 struct btrfs_bio *tmp_bbio = NULL;
5061 int tmp_num_stripes;
5062 u64 srcdev_devid = dev_replace->srcdev->devid;
5063 int index_srcdev = 0;
5064 int found = 0;
5065 u64 physical_of_found = 0;
5066
5067 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5068 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5069 if (ret) {
5070 WARN_ON(tmp_bbio != NULL);
5071 goto out;
5072 }
5073
5074 tmp_num_stripes = tmp_bbio->num_stripes;
5075 if (mirror_num > tmp_num_stripes) {
5076 /*
5077 * REQ_GET_READ_MIRRORS does not contain this
5078 * mirror, that means that the requested area
5079 * is not left of the left cursor
5080 */
5081 ret = -EIO;
6e9606d2 5082 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5083 goto out;
5084 }
5085
5086 /*
5087 * process the rest of the function using the mirror_num
5088 * of the source drive. Therefore look it up first.
5089 * At the end, patch the device pointer to the one of the
5090 * target drive.
5091 */
5092 for (i = 0; i < tmp_num_stripes; i++) {
5093 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5094 /*
5095 * In case of DUP, in order to keep it
5096 * simple, only add the mirror with the
5097 * lowest physical address
5098 */
5099 if (found &&
5100 physical_of_found <=
5101 tmp_bbio->stripes[i].physical)
5102 continue;
5103 index_srcdev = i;
5104 found = 1;
5105 physical_of_found =
5106 tmp_bbio->stripes[i].physical;
5107 }
5108 }
5109
5110 if (found) {
5111 mirror_num = index_srcdev + 1;
5112 patch_the_first_stripe_for_dev_replace = 1;
5113 physical_to_patch_in_first_stripe = physical_of_found;
5114 } else {
5115 WARN_ON(1);
5116 ret = -EIO;
6e9606d2 5117 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5118 goto out;
5119 }
5120
6e9606d2 5121 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5122 } else if (mirror_num > map->num_stripes) {
5123 mirror_num = 0;
5124 }
5125
f2d8d74d 5126 num_stripes = 1;
cea9e445 5127 stripe_index = 0;
fce3bb9a 5128 stripe_nr_orig = stripe_nr;
fda2832f 5129 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
5130 do_div(stripe_nr_end, map->stripe_len);
5131 stripe_end_offset = stripe_nr_end * map->stripe_len -
5132 (offset + *length);
53b381b3 5133
fce3bb9a
LD
5134 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5135 if (rw & REQ_DISCARD)
5136 num_stripes = min_t(u64, map->num_stripes,
5137 stripe_nr_end - stripe_nr_orig);
5138 stripe_index = do_div(stripe_nr, map->num_stripes);
28e1cc7d
MX
5139 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5140 mirror_num = 1;
fce3bb9a 5141 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5142 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5143 num_stripes = map->num_stripes;
2fff734f 5144 else if (mirror_num)
f188591e 5145 stripe_index = mirror_num - 1;
dfe25020 5146 else {
30d9861f 5147 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5148 map->num_stripes,
30d9861f
SB
5149 current->pid % map->num_stripes,
5150 dev_replace_is_ongoing);
a1d3c478 5151 mirror_num = stripe_index + 1;
dfe25020 5152 }
2fff734f 5153
611f0e00 5154 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5155 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5156 num_stripes = map->num_stripes;
a1d3c478 5157 } else if (mirror_num) {
f188591e 5158 stripe_index = mirror_num - 1;
a1d3c478
JS
5159 } else {
5160 mirror_num = 1;
5161 }
2fff734f 5162
321aecc6
CM
5163 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5164 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
5165
5166 stripe_index = do_div(stripe_nr, factor);
5167 stripe_index *= map->sub_stripes;
5168
29a8d9a0 5169 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5170 num_stripes = map->sub_stripes;
fce3bb9a
LD
5171 else if (rw & REQ_DISCARD)
5172 num_stripes = min_t(u64, map->sub_stripes *
5173 (stripe_nr_end - stripe_nr_orig),
5174 map->num_stripes);
321aecc6
CM
5175 else if (mirror_num)
5176 stripe_index += mirror_num - 1;
dfe25020 5177 else {
3e74317a 5178 int old_stripe_index = stripe_index;
30d9861f
SB
5179 stripe_index = find_live_mirror(fs_info, map,
5180 stripe_index,
dfe25020 5181 map->sub_stripes, stripe_index +
30d9861f
SB
5182 current->pid % map->sub_stripes,
5183 dev_replace_is_ongoing);
3e74317a 5184 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5185 }
53b381b3 5186
ffe2d203 5187 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5188 if (need_raid_map &&
af8e2d1d
MX
5189 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5190 mirror_num > 1)) {
53b381b3
DW
5191 /* push stripe_nr back to the start of the full stripe */
5192 stripe_nr = raid56_full_stripe_start;
6de65650 5193 do_div(stripe_nr, stripe_len * nr_data_stripes(map));
53b381b3
DW
5194
5195 /* RAID[56] write or recovery. Return all stripes */
5196 num_stripes = map->num_stripes;
5197 max_errors = nr_parity_stripes(map);
5198
53b381b3
DW
5199 *length = map->stripe_len;
5200 stripe_index = 0;
5201 stripe_offset = 0;
5202 } else {
8e5cfb55
ZL
5203 u64 tmp;
5204
53b381b3
DW
5205 /*
5206 * Mirror #0 or #1 means the original data block.
5207 * Mirror #2 is RAID5 parity block.
5208 * Mirror #3 is RAID6 Q block.
5209 */
5210 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5211 if (mirror_num > 1)
5212 stripe_index = nr_data_stripes(map) +
5213 mirror_num - 2;
5214
5215 /* We distribute the parity blocks across stripes */
5216 tmp = stripe_nr + stripe_index;
5217 stripe_index = do_div(tmp, map->num_stripes);
28e1cc7d
MX
5218 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5219 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5220 mirror_num = 1;
53b381b3 5221 }
8790d502
CM
5222 } else {
5223 /*
5224 * after this do_div call, stripe_nr is the number of stripes
5225 * on this device we have to walk to find the data, and
5226 * stripe_index is the number of our device in the stripe array
5227 */
5228 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 5229 mirror_num = stripe_index + 1;
8790d502 5230 }
593060d7 5231 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5232
472262f3 5233 num_alloc_stripes = num_stripes;
ad6d620e
SB
5234 if (dev_replace_is_ongoing) {
5235 if (rw & (REQ_WRITE | REQ_DISCARD))
5236 num_alloc_stripes <<= 1;
5237 if (rw & REQ_GET_READ_MIRRORS)
5238 num_alloc_stripes++;
2c8cdd6e 5239 tgtdev_indexes = num_stripes;
ad6d620e 5240 }
2c8cdd6e 5241
6e9606d2 5242 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5243 if (!bbio) {
5244 ret = -ENOMEM;
5245 goto out;
5246 }
2c8cdd6e
MX
5247 if (dev_replace_is_ongoing)
5248 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5249
8e5cfb55 5250 /* build raid_map */
ffe2d203 5251 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5252 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5253 mirror_num > 1)) {
5254 u64 tmp;
5255 int i, rot;
5256
5257 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5258 sizeof(struct btrfs_bio_stripe) *
5259 num_alloc_stripes +
5260 sizeof(int) * tgtdev_indexes);
5261
5262 /* Work out the disk rotation on this stripe-set */
5263 tmp = stripe_nr;
5264 rot = do_div(tmp, num_stripes);
5265
5266 /* Fill in the logical address of each stripe */
5267 tmp = stripe_nr * nr_data_stripes(map);
5268 for (i = 0; i < nr_data_stripes(map); i++)
5269 bbio->raid_map[(i+rot) % num_stripes] =
5270 em->start + (tmp + i) * map->stripe_len;
5271
5272 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5273 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5274 bbio->raid_map[(i+rot+1) % num_stripes] =
5275 RAID6_Q_STRIPE;
5276 }
5277
fce3bb9a 5278 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
5279 int factor = 0;
5280 int sub_stripes = 0;
5281 u64 stripes_per_dev = 0;
5282 u32 remaining_stripes = 0;
b89203f7 5283 u32 last_stripe = 0;
ec9ef7a1
LZ
5284
5285 if (map->type &
5286 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5287 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5288 sub_stripes = 1;
5289 else
5290 sub_stripes = map->sub_stripes;
5291
5292 factor = map->num_stripes / sub_stripes;
5293 stripes_per_dev = div_u64_rem(stripe_nr_end -
5294 stripe_nr_orig,
5295 factor,
5296 &remaining_stripes);
b89203f7
LB
5297 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5298 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5299 }
5300
fce3bb9a 5301 for (i = 0; i < num_stripes; i++) {
a1d3c478 5302 bbio->stripes[i].physical =
f2d8d74d
CM
5303 map->stripes[stripe_index].physical +
5304 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5305 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5306
ec9ef7a1
LZ
5307 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5308 BTRFS_BLOCK_GROUP_RAID10)) {
5309 bbio->stripes[i].length = stripes_per_dev *
5310 map->stripe_len;
b89203f7 5311
ec9ef7a1
LZ
5312 if (i / sub_stripes < remaining_stripes)
5313 bbio->stripes[i].length +=
5314 map->stripe_len;
b89203f7
LB
5315
5316 /*
5317 * Special for the first stripe and
5318 * the last stripe:
5319 *
5320 * |-------|...|-------|
5321 * |----------|
5322 * off end_off
5323 */
ec9ef7a1 5324 if (i < sub_stripes)
a1d3c478 5325 bbio->stripes[i].length -=
fce3bb9a 5326 stripe_offset;
b89203f7
LB
5327
5328 if (stripe_index >= last_stripe &&
5329 stripe_index <= (last_stripe +
5330 sub_stripes - 1))
a1d3c478 5331 bbio->stripes[i].length -=
fce3bb9a 5332 stripe_end_offset;
b89203f7 5333
ec9ef7a1
LZ
5334 if (i == sub_stripes - 1)
5335 stripe_offset = 0;
fce3bb9a 5336 } else
a1d3c478 5337 bbio->stripes[i].length = *length;
fce3bb9a
LD
5338
5339 stripe_index++;
5340 if (stripe_index == map->num_stripes) {
5341 /* This could only happen for RAID0/10 */
5342 stripe_index = 0;
5343 stripe_nr++;
5344 }
5345 }
5346 } else {
5347 for (i = 0; i < num_stripes; i++) {
a1d3c478 5348 bbio->stripes[i].physical =
212a17ab
LT
5349 map->stripes[stripe_index].physical +
5350 stripe_offset +
5351 stripe_nr * map->stripe_len;
a1d3c478 5352 bbio->stripes[i].dev =
212a17ab 5353 map->stripes[stripe_index].dev;
fce3bb9a 5354 stripe_index++;
f2d8d74d 5355 }
593060d7 5356 }
de11cc12 5357
d20983b4
MX
5358 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5359 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5360
8e5cfb55
ZL
5361 if (bbio->raid_map)
5362 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5363
2c8cdd6e 5364 tgtdev_indexes = 0;
472262f3
SB
5365 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5366 dev_replace->tgtdev != NULL) {
5367 int index_where_to_add;
5368 u64 srcdev_devid = dev_replace->srcdev->devid;
5369
5370 /*
5371 * duplicate the write operations while the dev replace
5372 * procedure is running. Since the copying of the old disk
5373 * to the new disk takes place at run time while the
5374 * filesystem is mounted writable, the regular write
5375 * operations to the old disk have to be duplicated to go
5376 * to the new disk as well.
5377 * Note that device->missing is handled by the caller, and
5378 * that the write to the old disk is already set up in the
5379 * stripes array.
5380 */
5381 index_where_to_add = num_stripes;
5382 for (i = 0; i < num_stripes; i++) {
5383 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5384 /* write to new disk, too */
5385 struct btrfs_bio_stripe *new =
5386 bbio->stripes + index_where_to_add;
5387 struct btrfs_bio_stripe *old =
5388 bbio->stripes + i;
5389
5390 new->physical = old->physical;
5391 new->length = old->length;
5392 new->dev = dev_replace->tgtdev;
2c8cdd6e 5393 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5394 index_where_to_add++;
5395 max_errors++;
2c8cdd6e 5396 tgtdev_indexes++;
472262f3
SB
5397 }
5398 }
5399 num_stripes = index_where_to_add;
ad6d620e
SB
5400 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5401 dev_replace->tgtdev != NULL) {
5402 u64 srcdev_devid = dev_replace->srcdev->devid;
5403 int index_srcdev = 0;
5404 int found = 0;
5405 u64 physical_of_found = 0;
5406
5407 /*
5408 * During the dev-replace procedure, the target drive can
5409 * also be used to read data in case it is needed to repair
5410 * a corrupt block elsewhere. This is possible if the
5411 * requested area is left of the left cursor. In this area,
5412 * the target drive is a full copy of the source drive.
5413 */
5414 for (i = 0; i < num_stripes; i++) {
5415 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5416 /*
5417 * In case of DUP, in order to keep it
5418 * simple, only add the mirror with the
5419 * lowest physical address
5420 */
5421 if (found &&
5422 physical_of_found <=
5423 bbio->stripes[i].physical)
5424 continue;
5425 index_srcdev = i;
5426 found = 1;
5427 physical_of_found = bbio->stripes[i].physical;
5428 }
5429 }
5430 if (found) {
5431 u64 length = map->stripe_len;
5432
5433 if (physical_of_found + length <=
5434 dev_replace->cursor_left) {
5435 struct btrfs_bio_stripe *tgtdev_stripe =
5436 bbio->stripes + num_stripes;
5437
5438 tgtdev_stripe->physical = physical_of_found;
5439 tgtdev_stripe->length =
5440 bbio->stripes[index_srcdev].length;
5441 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5442 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5443
2c8cdd6e 5444 tgtdev_indexes++;
ad6d620e
SB
5445 num_stripes++;
5446 }
5447 }
472262f3
SB
5448 }
5449
de11cc12 5450 *bbio_ret = bbio;
10f11900 5451 bbio->map_type = map->type;
de11cc12
LZ
5452 bbio->num_stripes = num_stripes;
5453 bbio->max_errors = max_errors;
5454 bbio->mirror_num = mirror_num;
2c8cdd6e 5455 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5456
5457 /*
5458 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5459 * mirror_num == num_stripes + 1 && dev_replace target drive is
5460 * available as a mirror
5461 */
5462 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5463 WARN_ON(num_stripes > 1);
5464 bbio->stripes[0].dev = dev_replace->tgtdev;
5465 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5466 bbio->mirror_num = map->num_stripes + 1;
5467 }
cea9e445 5468out:
472262f3
SB
5469 if (dev_replace_is_ongoing)
5470 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5471 free_extent_map(em);
de11cc12 5472 return ret;
0b86a832
CM
5473}
5474
3ec706c8 5475int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5476 u64 logical, u64 *length,
a1d3c478 5477 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5478{
3ec706c8 5479 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5480 mirror_num, 0);
f2d8d74d
CM
5481}
5482
af8e2d1d
MX
5483/* For Scrub/replace */
5484int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5485 u64 logical, u64 *length,
5486 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5487 int need_raid_map)
af8e2d1d
MX
5488{
5489 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5490 mirror_num, need_raid_map);
af8e2d1d
MX
5491}
5492
a512bbf8
YZ
5493int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5494 u64 chunk_start, u64 physical, u64 devid,
5495 u64 **logical, int *naddrs, int *stripe_len)
5496{
5497 struct extent_map_tree *em_tree = &map_tree->map_tree;
5498 struct extent_map *em;
5499 struct map_lookup *map;
5500 u64 *buf;
5501 u64 bytenr;
5502 u64 length;
5503 u64 stripe_nr;
53b381b3 5504 u64 rmap_len;
a512bbf8
YZ
5505 int i, j, nr = 0;
5506
890871be 5507 read_lock(&em_tree->lock);
a512bbf8 5508 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5509 read_unlock(&em_tree->lock);
a512bbf8 5510
835d974f 5511 if (!em) {
efe120a0 5512 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5513 chunk_start);
5514 return -EIO;
5515 }
5516
5517 if (em->start != chunk_start) {
efe120a0 5518 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5519 em->start, chunk_start);
5520 free_extent_map(em);
5521 return -EIO;
5522 }
a512bbf8
YZ
5523 map = (struct map_lookup *)em->bdev;
5524
5525 length = em->len;
53b381b3
DW
5526 rmap_len = map->stripe_len;
5527
a512bbf8
YZ
5528 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5529 do_div(length, map->num_stripes / map->sub_stripes);
5530 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5531 do_div(length, map->num_stripes);
ffe2d203 5532 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5533 do_div(length, nr_data_stripes(map));
5534 rmap_len = map->stripe_len * nr_data_stripes(map);
5535 }
a512bbf8
YZ
5536
5537 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5538 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5539
5540 for (i = 0; i < map->num_stripes; i++) {
5541 if (devid && map->stripes[i].dev->devid != devid)
5542 continue;
5543 if (map->stripes[i].physical > physical ||
5544 map->stripes[i].physical + length <= physical)
5545 continue;
5546
5547 stripe_nr = physical - map->stripes[i].physical;
5548 do_div(stripe_nr, map->stripe_len);
5549
5550 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5551 stripe_nr = stripe_nr * map->num_stripes + i;
5552 do_div(stripe_nr, map->sub_stripes);
5553 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5554 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5555 } /* else if RAID[56], multiply by nr_data_stripes().
5556 * Alternatively, just use rmap_len below instead of
5557 * map->stripe_len */
5558
5559 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5560 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5561 for (j = 0; j < nr; j++) {
5562 if (buf[j] == bytenr)
5563 break;
5564 }
934d375b
CM
5565 if (j == nr) {
5566 WARN_ON(nr >= map->num_stripes);
a512bbf8 5567 buf[nr++] = bytenr;
934d375b 5568 }
a512bbf8
YZ
5569 }
5570
a512bbf8
YZ
5571 *logical = buf;
5572 *naddrs = nr;
53b381b3 5573 *stripe_len = rmap_len;
a512bbf8
YZ
5574
5575 free_extent_map(em);
5576 return 0;
f2d8d74d
CM
5577}
5578
8408c716
MX
5579static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5580{
5581 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5582 bio_endio_nodec(bio, err);
5583 else
5584 bio_endio(bio, err);
6e9606d2 5585 btrfs_put_bbio(bbio);
8408c716
MX
5586}
5587
a1d3c478 5588static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5589{
9be3395b 5590 struct btrfs_bio *bbio = bio->bi_private;
c404e0dc 5591 struct btrfs_device *dev = bbio->stripes[0].dev;
7d2b4daa 5592 int is_orig_bio = 0;
8790d502 5593
442a4f63 5594 if (err) {
a1d3c478 5595 atomic_inc(&bbio->error);
442a4f63
SB
5596 if (err == -EIO || err == -EREMOTEIO) {
5597 unsigned int stripe_index =
9be3395b 5598 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5599
5600 BUG_ON(stripe_index >= bbio->num_stripes);
5601 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5602 if (dev->bdev) {
5603 if (bio->bi_rw & WRITE)
5604 btrfs_dev_stat_inc(dev,
5605 BTRFS_DEV_STAT_WRITE_ERRS);
5606 else
5607 btrfs_dev_stat_inc(dev,
5608 BTRFS_DEV_STAT_READ_ERRS);
5609 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5610 btrfs_dev_stat_inc(dev,
5611 BTRFS_DEV_STAT_FLUSH_ERRS);
5612 btrfs_dev_stat_print_on_error(dev);
5613 }
442a4f63
SB
5614 }
5615 }
8790d502 5616
a1d3c478 5617 if (bio == bbio->orig_bio)
7d2b4daa
CM
5618 is_orig_bio = 1;
5619
c404e0dc
MX
5620 btrfs_bio_counter_dec(bbio->fs_info);
5621
a1d3c478 5622 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5623 if (!is_orig_bio) {
5624 bio_put(bio);
a1d3c478 5625 bio = bbio->orig_bio;
7d2b4daa 5626 }
c7b22bb1 5627
a1d3c478
JS
5628 bio->bi_private = bbio->private;
5629 bio->bi_end_io = bbio->end_io;
9be3395b 5630 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5631 /* only send an error to the higher layers if it is
53b381b3 5632 * beyond the tolerance of the btrfs bio
a236aed1 5633 */
a1d3c478 5634 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5635 err = -EIO;
5dbc8fca 5636 } else {
1259ab75
CM
5637 /*
5638 * this bio is actually up to date, we didn't
5639 * go over the max number of errors
5640 */
5641 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5642 err = 0;
1259ab75 5643 }
c55f1396 5644
8408c716 5645 btrfs_end_bbio(bbio, bio, err);
7d2b4daa 5646 } else if (!is_orig_bio) {
8790d502
CM
5647 bio_put(bio);
5648 }
8790d502
CM
5649}
5650
8b712842
CM
5651/*
5652 * see run_scheduled_bios for a description of why bios are collected for
5653 * async submit.
5654 *
5655 * This will add one bio to the pending list for a device and make sure
5656 * the work struct is scheduled.
5657 */
48a3b636
ES
5658static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5659 struct btrfs_device *device,
5660 int rw, struct bio *bio)
8b712842
CM
5661{
5662 int should_queue = 1;
ffbd517d 5663 struct btrfs_pending_bios *pending_bios;
8b712842 5664
53b381b3
DW
5665 if (device->missing || !device->bdev) {
5666 bio_endio(bio, -EIO);
5667 return;
5668 }
5669
8b712842 5670 /* don't bother with additional async steps for reads, right now */
7b6d91da 5671 if (!(rw & REQ_WRITE)) {
492bb6de 5672 bio_get(bio);
21adbd5c 5673 btrfsic_submit_bio(rw, bio);
492bb6de 5674 bio_put(bio);
143bede5 5675 return;
8b712842
CM
5676 }
5677
5678 /*
0986fe9e 5679 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5680 * higher layers. Otherwise, the async bio makes it appear we have
5681 * made progress against dirty pages when we've really just put it
5682 * on a queue for later
5683 */
0986fe9e 5684 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5685 WARN_ON(bio->bi_next);
8b712842
CM
5686 bio->bi_next = NULL;
5687 bio->bi_rw |= rw;
5688
5689 spin_lock(&device->io_lock);
7b6d91da 5690 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5691 pending_bios = &device->pending_sync_bios;
5692 else
5693 pending_bios = &device->pending_bios;
8b712842 5694
ffbd517d
CM
5695 if (pending_bios->tail)
5696 pending_bios->tail->bi_next = bio;
8b712842 5697
ffbd517d
CM
5698 pending_bios->tail = bio;
5699 if (!pending_bios->head)
5700 pending_bios->head = bio;
8b712842
CM
5701 if (device->running_pending)
5702 should_queue = 0;
5703
5704 spin_unlock(&device->io_lock);
5705
5706 if (should_queue)
a8c93d4e
QW
5707 btrfs_queue_work(root->fs_info->submit_workers,
5708 &device->work);
8b712842
CM
5709}
5710
de1ee92a
JB
5711static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5712 sector_t sector)
5713{
5714 struct bio_vec *prev;
5715 struct request_queue *q = bdev_get_queue(bdev);
475bf36f 5716 unsigned int max_sectors = queue_max_sectors(q);
de1ee92a
JB
5717 struct bvec_merge_data bvm = {
5718 .bi_bdev = bdev,
5719 .bi_sector = sector,
5720 .bi_rw = bio->bi_rw,
5721 };
5722
fae7f21c 5723 if (WARN_ON(bio->bi_vcnt == 0))
de1ee92a 5724 return 1;
de1ee92a
JB
5725
5726 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5727 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5728 return 0;
5729
5730 if (!q->merge_bvec_fn)
5731 return 1;
5732
4f024f37 5733 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
de1ee92a
JB
5734 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5735 return 0;
5736 return 1;
5737}
5738
5739static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5740 struct bio *bio, u64 physical, int dev_nr,
5741 int rw, int async)
5742{
5743 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5744
5745 bio->bi_private = bbio;
9be3395b 5746 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5747 bio->bi_end_io = btrfs_end_bio;
4f024f37 5748 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5749#ifdef DEBUG
5750 {
5751 struct rcu_string *name;
5752
5753 rcu_read_lock();
5754 name = rcu_dereference(dev->name);
d1423248 5755 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 5756 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
5757 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5758 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
5759 rcu_read_unlock();
5760 }
5761#endif
5762 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5763
5764 btrfs_bio_counter_inc_noblocked(root->fs_info);
5765
de1ee92a 5766 if (async)
53b381b3 5767 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5768 else
5769 btrfsic_submit_bio(rw, bio);
5770}
5771
5772static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5773 struct bio *first_bio, struct btrfs_device *dev,
5774 int dev_nr, int rw, int async)
5775{
5776 struct bio_vec *bvec = first_bio->bi_io_vec;
5777 struct bio *bio;
5778 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5779 u64 physical = bbio->stripes[dev_nr].physical;
5780
5781again:
5782 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5783 if (!bio)
5784 return -ENOMEM;
5785
5786 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5787 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5788 bvec->bv_offset) < bvec->bv_len) {
4f024f37 5789 u64 len = bio->bi_iter.bi_size;
de1ee92a
JB
5790
5791 atomic_inc(&bbio->stripes_pending);
5792 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5793 rw, async);
5794 physical += len;
5795 goto again;
5796 }
5797 bvec++;
5798 }
5799
5800 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5801 return 0;
5802}
5803
5804static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5805{
5806 atomic_inc(&bbio->error);
5807 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5808 /* Shoud be the original bio. */
5809 WARN_ON(bio != bbio->orig_bio);
5810
de1ee92a
JB
5811 bio->bi_private = bbio->private;
5812 bio->bi_end_io = bbio->end_io;
9be3395b 5813 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5814 bio->bi_iter.bi_sector = logical >> 9;
8408c716
MX
5815
5816 btrfs_end_bbio(bbio, bio, -EIO);
de1ee92a
JB
5817 }
5818}
5819
f188591e 5820int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5821 int mirror_num, int async_submit)
0b86a832 5822{
0b86a832 5823 struct btrfs_device *dev;
8790d502 5824 struct bio *first_bio = bio;
4f024f37 5825 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5826 u64 length = 0;
5827 u64 map_length;
0b86a832 5828 int ret;
8790d502
CM
5829 int dev_nr = 0;
5830 int total_devs = 1;
a1d3c478 5831 struct btrfs_bio *bbio = NULL;
0b86a832 5832
4f024f37 5833 length = bio->bi_iter.bi_size;
0b86a832 5834 map_length = length;
cea9e445 5835
c404e0dc 5836 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 5837 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 5838 mirror_num, 1);
c404e0dc
MX
5839 if (ret) {
5840 btrfs_bio_counter_dec(root->fs_info);
79787eaa 5841 return ret;
c404e0dc 5842 }
cea9e445 5843
a1d3c478 5844 total_devs = bbio->num_stripes;
53b381b3
DW
5845 bbio->orig_bio = first_bio;
5846 bbio->private = first_bio->bi_private;
5847 bbio->end_io = first_bio->bi_end_io;
c404e0dc 5848 bbio->fs_info = root->fs_info;
53b381b3
DW
5849 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5850
8e5cfb55 5851 if (bbio->raid_map) {
53b381b3
DW
5852 /* In this case, map_length has been set to the length of
5853 a single stripe; not the whole write */
5854 if (rw & WRITE) {
8e5cfb55 5855 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 5856 } else {
8e5cfb55 5857 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 5858 mirror_num, 1);
53b381b3 5859 }
4245215d 5860
c404e0dc
MX
5861 btrfs_bio_counter_dec(root->fs_info);
5862 return ret;
53b381b3
DW
5863 }
5864
cea9e445 5865 if (map_length < length) {
c2cf52eb 5866 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5867 logical, length, map_length);
cea9e445
CM
5868 BUG();
5869 }
a1d3c478 5870
d397712b 5871 while (dev_nr < total_devs) {
de1ee92a
JB
5872 dev = bbio->stripes[dev_nr].dev;
5873 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5874 bbio_error(bbio, first_bio, logical);
5875 dev_nr++;
5876 continue;
5877 }
5878
5879 /*
5880 * Check and see if we're ok with this bio based on it's size
5881 * and offset with the given device.
5882 */
5883 if (!bio_size_ok(dev->bdev, first_bio,
5884 bbio->stripes[dev_nr].physical >> 9)) {
5885 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5886 dev_nr, rw, async_submit);
5887 BUG_ON(ret);
5888 dev_nr++;
5889 continue;
5890 }
5891
a1d3c478 5892 if (dev_nr < total_devs - 1) {
9be3395b 5893 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5894 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5895 } else {
5896 bio = first_bio;
c55f1396 5897 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
8790d502 5898 }
de1ee92a
JB
5899
5900 submit_stripe_bio(root, bbio, bio,
5901 bbio->stripes[dev_nr].physical, dev_nr, rw,
5902 async_submit);
8790d502
CM
5903 dev_nr++;
5904 }
c404e0dc 5905 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
5906 return 0;
5907}
5908
aa1b8cd4 5909struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5910 u8 *uuid, u8 *fsid)
0b86a832 5911{
2b82032c
YZ
5912 struct btrfs_device *device;
5913 struct btrfs_fs_devices *cur_devices;
5914
aa1b8cd4 5915 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5916 while (cur_devices) {
5917 if (!fsid ||
5918 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5919 device = __find_device(&cur_devices->devices,
5920 devid, uuid);
5921 if (device)
5922 return device;
5923 }
5924 cur_devices = cur_devices->seed;
5925 }
5926 return NULL;
0b86a832
CM
5927}
5928
dfe25020 5929static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 5930 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
5931 u64 devid, u8 *dev_uuid)
5932{
5933 struct btrfs_device *device;
dfe25020 5934
12bd2fc0
ID
5935 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5936 if (IS_ERR(device))
7cbd8a83 5937 return NULL;
12bd2fc0
ID
5938
5939 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5940 device->fs_devices = fs_devices;
dfe25020 5941 fs_devices->num_devices++;
12bd2fc0
ID
5942
5943 device->missing = 1;
cd02dca5 5944 fs_devices->missing_devices++;
12bd2fc0 5945
dfe25020
CM
5946 return device;
5947}
5948
12bd2fc0
ID
5949/**
5950 * btrfs_alloc_device - allocate struct btrfs_device
5951 * @fs_info: used only for generating a new devid, can be NULL if
5952 * devid is provided (i.e. @devid != NULL).
5953 * @devid: a pointer to devid for this device. If NULL a new devid
5954 * is generated.
5955 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5956 * is generated.
5957 *
5958 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5959 * on error. Returned struct is not linked onto any lists and can be
5960 * destroyed with kfree() right away.
5961 */
5962struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5963 const u64 *devid,
5964 const u8 *uuid)
5965{
5966 struct btrfs_device *dev;
5967 u64 tmp;
5968
fae7f21c 5969 if (WARN_ON(!devid && !fs_info))
12bd2fc0 5970 return ERR_PTR(-EINVAL);
12bd2fc0
ID
5971
5972 dev = __alloc_device();
5973 if (IS_ERR(dev))
5974 return dev;
5975
5976 if (devid)
5977 tmp = *devid;
5978 else {
5979 int ret;
5980
5981 ret = find_next_devid(fs_info, &tmp);
5982 if (ret) {
5983 kfree(dev);
5984 return ERR_PTR(ret);
5985 }
5986 }
5987 dev->devid = tmp;
5988
5989 if (uuid)
5990 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5991 else
5992 generate_random_uuid(dev->uuid);
5993
9e0af237
LB
5994 btrfs_init_work(&dev->work, btrfs_submit_helper,
5995 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
5996
5997 return dev;
5998}
5999
0b86a832
CM
6000static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6001 struct extent_buffer *leaf,
6002 struct btrfs_chunk *chunk)
6003{
6004 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6005 struct map_lookup *map;
6006 struct extent_map *em;
6007 u64 logical;
6008 u64 length;
6009 u64 devid;
a443755f 6010 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6011 int num_stripes;
0b86a832 6012 int ret;
593060d7 6013 int i;
0b86a832 6014
e17cade2
CM
6015 logical = key->offset;
6016 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 6017
890871be 6018 read_lock(&map_tree->map_tree.lock);
0b86a832 6019 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6020 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6021
6022 /* already mapped? */
6023 if (em && em->start <= logical && em->start + em->len > logical) {
6024 free_extent_map(em);
0b86a832
CM
6025 return 0;
6026 } else if (em) {
6027 free_extent_map(em);
6028 }
0b86a832 6029
172ddd60 6030 em = alloc_extent_map();
0b86a832
CM
6031 if (!em)
6032 return -ENOMEM;
593060d7
CM
6033 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6034 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6035 if (!map) {
6036 free_extent_map(em);
6037 return -ENOMEM;
6038 }
6039
298a8f9c 6040 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
6041 em->bdev = (struct block_device *)map;
6042 em->start = logical;
6043 em->len = length;
70c8a91c 6044 em->orig_start = 0;
0b86a832 6045 em->block_start = 0;
c8b97818 6046 em->block_len = em->len;
0b86a832 6047
593060d7
CM
6048 map->num_stripes = num_stripes;
6049 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6050 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6051 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6052 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6053 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6054 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6055 for (i = 0; i < num_stripes; i++) {
6056 map->stripes[i].physical =
6057 btrfs_stripe_offset_nr(leaf, chunk, i);
6058 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6059 read_extent_buffer(leaf, uuid, (unsigned long)
6060 btrfs_stripe_dev_uuid_nr(chunk, i),
6061 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6062 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6063 uuid, NULL);
dfe25020 6064 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6065 free_extent_map(em);
6066 return -EIO;
6067 }
dfe25020
CM
6068 if (!map->stripes[i].dev) {
6069 map->stripes[i].dev =
5f375835
MX
6070 add_missing_dev(root, root->fs_info->fs_devices,
6071 devid, uuid);
dfe25020 6072 if (!map->stripes[i].dev) {
dfe25020
CM
6073 free_extent_map(em);
6074 return -EIO;
6075 }
6076 }
6077 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6078 }
6079
890871be 6080 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6081 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6082 write_unlock(&map_tree->map_tree.lock);
79787eaa 6083 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6084 free_extent_map(em);
6085
6086 return 0;
6087}
6088
143bede5 6089static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6090 struct btrfs_dev_item *dev_item,
6091 struct btrfs_device *device)
6092{
6093 unsigned long ptr;
0b86a832
CM
6094
6095 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6096 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6097 device->total_bytes = device->disk_total_bytes;
935e5cc9 6098 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6099 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6100 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6101 device->type = btrfs_device_type(leaf, dev_item);
6102 device->io_align = btrfs_device_io_align(leaf, dev_item);
6103 device->io_width = btrfs_device_io_width(leaf, dev_item);
6104 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6105 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6106 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6107
410ba3a2 6108 ptr = btrfs_device_uuid(dev_item);
e17cade2 6109 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6110}
6111
5f375835
MX
6112static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6113 u8 *fsid)
2b82032c
YZ
6114{
6115 struct btrfs_fs_devices *fs_devices;
6116 int ret;
6117
b367e47f 6118 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6119
6120 fs_devices = root->fs_info->fs_devices->seed;
6121 while (fs_devices) {
5f375835
MX
6122 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6123 return fs_devices;
6124
2b82032c
YZ
6125 fs_devices = fs_devices->seed;
6126 }
6127
6128 fs_devices = find_fsid(fsid);
6129 if (!fs_devices) {
5f375835
MX
6130 if (!btrfs_test_opt(root, DEGRADED))
6131 return ERR_PTR(-ENOENT);
6132
6133 fs_devices = alloc_fs_devices(fsid);
6134 if (IS_ERR(fs_devices))
6135 return fs_devices;
6136
6137 fs_devices->seeding = 1;
6138 fs_devices->opened = 1;
6139 return fs_devices;
2b82032c 6140 }
e4404d6e
YZ
6141
6142 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6143 if (IS_ERR(fs_devices))
6144 return fs_devices;
2b82032c 6145
97288f2c 6146 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6147 root->fs_info->bdev_holder);
48d28232
JL
6148 if (ret) {
6149 free_fs_devices(fs_devices);
5f375835 6150 fs_devices = ERR_PTR(ret);
2b82032c 6151 goto out;
48d28232 6152 }
2b82032c
YZ
6153
6154 if (!fs_devices->seeding) {
6155 __btrfs_close_devices(fs_devices);
e4404d6e 6156 free_fs_devices(fs_devices);
5f375835 6157 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6158 goto out;
6159 }
6160
6161 fs_devices->seed = root->fs_info->fs_devices->seed;
6162 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6163out:
5f375835 6164 return fs_devices;
2b82032c
YZ
6165}
6166
0d81ba5d 6167static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6168 struct extent_buffer *leaf,
6169 struct btrfs_dev_item *dev_item)
6170{
5f375835 6171 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6172 struct btrfs_device *device;
6173 u64 devid;
6174 int ret;
2b82032c 6175 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6176 u8 dev_uuid[BTRFS_UUID_SIZE];
6177
0b86a832 6178 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6179 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6180 BTRFS_UUID_SIZE);
1473b24e 6181 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6182 BTRFS_UUID_SIZE);
6183
6184 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6185 fs_devices = open_seed_devices(root, fs_uuid);
6186 if (IS_ERR(fs_devices))
6187 return PTR_ERR(fs_devices);
2b82032c
YZ
6188 }
6189
aa1b8cd4 6190 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6191 if (!device) {
e4404d6e 6192 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6193 return -EIO;
6194
5f375835
MX
6195 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6196 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6197 if (!device)
6198 return -ENOMEM;
6199 } else {
6200 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6201 return -EIO;
6202
6203 if(!device->bdev && !device->missing) {
cd02dca5
CM
6204 /*
6205 * this happens when a device that was properly setup
6206 * in the device info lists suddenly goes bad.
6207 * device->bdev is NULL, and so we have to set
6208 * device->missing to one here
6209 */
5f375835 6210 device->fs_devices->missing_devices++;
cd02dca5 6211 device->missing = 1;
2b82032c 6212 }
5f375835
MX
6213
6214 /* Move the device to its own fs_devices */
6215 if (device->fs_devices != fs_devices) {
6216 ASSERT(device->missing);
6217
6218 list_move(&device->dev_list, &fs_devices->devices);
6219 device->fs_devices->num_devices--;
6220 fs_devices->num_devices++;
6221
6222 device->fs_devices->missing_devices--;
6223 fs_devices->missing_devices++;
6224
6225 device->fs_devices = fs_devices;
6226 }
2b82032c
YZ
6227 }
6228
6229 if (device->fs_devices != root->fs_info->fs_devices) {
6230 BUG_ON(device->writeable);
6231 if (device->generation !=
6232 btrfs_device_generation(leaf, dev_item))
6233 return -EINVAL;
6324fbf3 6234 }
0b86a832
CM
6235
6236 fill_device_from_item(leaf, dev_item, device);
dfe25020 6237 device->in_fs_metadata = 1;
63a212ab 6238 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6239 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6240 spin_lock(&root->fs_info->free_chunk_lock);
6241 root->fs_info->free_chunk_space += device->total_bytes -
6242 device->bytes_used;
6243 spin_unlock(&root->fs_info->free_chunk_lock);
6244 }
0b86a832 6245 ret = 0;
0b86a832
CM
6246 return ret;
6247}
6248
e4404d6e 6249int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6250{
6c41761f 6251 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6252 struct extent_buffer *sb;
0b86a832 6253 struct btrfs_disk_key *disk_key;
0b86a832 6254 struct btrfs_chunk *chunk;
1ffb22cf
DS
6255 u8 *array_ptr;
6256 unsigned long sb_array_offset;
84eed90f 6257 int ret = 0;
0b86a832
CM
6258 u32 num_stripes;
6259 u32 array_size;
6260 u32 len = 0;
1ffb22cf 6261 u32 cur_offset;
84eed90f 6262 struct btrfs_key key;
0b86a832 6263
a83fffb7
DS
6264 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6265 /*
6266 * This will create extent buffer of nodesize, superblock size is
6267 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6268 * overallocate but we can keep it as-is, only the first page is used.
6269 */
6270 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6271 if (!sb)
6272 return -ENOMEM;
6273 btrfs_set_buffer_uptodate(sb);
85d4e461 6274 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6275 /*
6276 * The sb extent buffer is artifical and just used to read the system array.
6277 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6278 * pages up-to-date when the page is larger: extent does not cover the
6279 * whole page and consequently check_page_uptodate does not find all
6280 * the page's extents up-to-date (the hole beyond sb),
6281 * write_extent_buffer then triggers a WARN_ON.
6282 *
6283 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6284 * but sb spans only this function. Add an explicit SetPageUptodate call
6285 * to silence the warning eg. on PowerPC 64.
6286 */
6287 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6288 SetPageUptodate(sb->pages[0]);
4008c04a 6289
a061fc8d 6290 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6291 array_size = btrfs_super_sys_array_size(super_copy);
6292
1ffb22cf
DS
6293 array_ptr = super_copy->sys_chunk_array;
6294 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6295 cur_offset = 0;
0b86a832 6296
1ffb22cf
DS
6297 while (cur_offset < array_size) {
6298 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6299 len = sizeof(*disk_key);
6300 if (cur_offset + len > array_size)
6301 goto out_short_read;
6302
0b86a832
CM
6303 btrfs_disk_key_to_cpu(&key, disk_key);
6304
1ffb22cf
DS
6305 array_ptr += len;
6306 sb_array_offset += len;
6307 cur_offset += len;
0b86a832 6308
0d81ba5d 6309 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6310 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6311 /*
6312 * At least one btrfs_chunk with one stripe must be
6313 * present, exact stripe count check comes afterwards
6314 */
6315 len = btrfs_chunk_item_size(1);
6316 if (cur_offset + len > array_size)
6317 goto out_short_read;
6318
6319 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6320 len = btrfs_chunk_item_size(num_stripes);
6321 if (cur_offset + len > array_size)
6322 goto out_short_read;
6323
0d81ba5d 6324 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6325 if (ret)
6326 break;
0b86a832 6327 } else {
84eed90f
CM
6328 ret = -EIO;
6329 break;
0b86a832 6330 }
1ffb22cf
DS
6331 array_ptr += len;
6332 sb_array_offset += len;
6333 cur_offset += len;
0b86a832 6334 }
a061fc8d 6335 free_extent_buffer(sb);
84eed90f 6336 return ret;
e3540eab
DS
6337
6338out_short_read:
6339 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6340 len, cur_offset);
6341 free_extent_buffer(sb);
6342 return -EIO;
0b86a832
CM
6343}
6344
6345int btrfs_read_chunk_tree(struct btrfs_root *root)
6346{
6347 struct btrfs_path *path;
6348 struct extent_buffer *leaf;
6349 struct btrfs_key key;
6350 struct btrfs_key found_key;
6351 int ret;
6352 int slot;
6353
6354 root = root->fs_info->chunk_root;
6355
6356 path = btrfs_alloc_path();
6357 if (!path)
6358 return -ENOMEM;
6359
b367e47f
LZ
6360 mutex_lock(&uuid_mutex);
6361 lock_chunks(root);
6362
395927a9
FDBM
6363 /*
6364 * Read all device items, and then all the chunk items. All
6365 * device items are found before any chunk item (their object id
6366 * is smaller than the lowest possible object id for a chunk
6367 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6368 */
6369 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6370 key.offset = 0;
6371 key.type = 0;
0b86a832 6372 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6373 if (ret < 0)
6374 goto error;
d397712b 6375 while (1) {
0b86a832
CM
6376 leaf = path->nodes[0];
6377 slot = path->slots[0];
6378 if (slot >= btrfs_header_nritems(leaf)) {
6379 ret = btrfs_next_leaf(root, path);
6380 if (ret == 0)
6381 continue;
6382 if (ret < 0)
6383 goto error;
6384 break;
6385 }
6386 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6387 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6388 struct btrfs_dev_item *dev_item;
6389 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6390 struct btrfs_dev_item);
395927a9
FDBM
6391 ret = read_one_dev(root, leaf, dev_item);
6392 if (ret)
6393 goto error;
0b86a832
CM
6394 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6395 struct btrfs_chunk *chunk;
6396 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6397 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6398 if (ret)
6399 goto error;
0b86a832
CM
6400 }
6401 path->slots[0]++;
6402 }
0b86a832
CM
6403 ret = 0;
6404error:
b367e47f
LZ
6405 unlock_chunks(root);
6406 mutex_unlock(&uuid_mutex);
6407
2b82032c 6408 btrfs_free_path(path);
0b86a832
CM
6409 return ret;
6410}
442a4f63 6411
cb517eab
MX
6412void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6413{
6414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6415 struct btrfs_device *device;
6416
29cc83f6
LB
6417 while (fs_devices) {
6418 mutex_lock(&fs_devices->device_list_mutex);
6419 list_for_each_entry(device, &fs_devices->devices, dev_list)
6420 device->dev_root = fs_info->dev_root;
6421 mutex_unlock(&fs_devices->device_list_mutex);
6422
6423 fs_devices = fs_devices->seed;
6424 }
cb517eab
MX
6425}
6426
733f4fbb
SB
6427static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6428{
6429 int i;
6430
6431 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6432 btrfs_dev_stat_reset(dev, i);
6433}
6434
6435int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6436{
6437 struct btrfs_key key;
6438 struct btrfs_key found_key;
6439 struct btrfs_root *dev_root = fs_info->dev_root;
6440 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6441 struct extent_buffer *eb;
6442 int slot;
6443 int ret = 0;
6444 struct btrfs_device *device;
6445 struct btrfs_path *path = NULL;
6446 int i;
6447
6448 path = btrfs_alloc_path();
6449 if (!path) {
6450 ret = -ENOMEM;
6451 goto out;
6452 }
6453
6454 mutex_lock(&fs_devices->device_list_mutex);
6455 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6456 int item_size;
6457 struct btrfs_dev_stats_item *ptr;
6458
6459 key.objectid = 0;
6460 key.type = BTRFS_DEV_STATS_KEY;
6461 key.offset = device->devid;
6462 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6463 if (ret) {
733f4fbb
SB
6464 __btrfs_reset_dev_stats(device);
6465 device->dev_stats_valid = 1;
6466 btrfs_release_path(path);
6467 continue;
6468 }
6469 slot = path->slots[0];
6470 eb = path->nodes[0];
6471 btrfs_item_key_to_cpu(eb, &found_key, slot);
6472 item_size = btrfs_item_size_nr(eb, slot);
6473
6474 ptr = btrfs_item_ptr(eb, slot,
6475 struct btrfs_dev_stats_item);
6476
6477 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6478 if (item_size >= (1 + i) * sizeof(__le64))
6479 btrfs_dev_stat_set(device, i,
6480 btrfs_dev_stats_value(eb, ptr, i));
6481 else
6482 btrfs_dev_stat_reset(device, i);
6483 }
6484
6485 device->dev_stats_valid = 1;
6486 btrfs_dev_stat_print_on_load(device);
6487 btrfs_release_path(path);
6488 }
6489 mutex_unlock(&fs_devices->device_list_mutex);
6490
6491out:
6492 btrfs_free_path(path);
6493 return ret < 0 ? ret : 0;
6494}
6495
6496static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6497 struct btrfs_root *dev_root,
6498 struct btrfs_device *device)
6499{
6500 struct btrfs_path *path;
6501 struct btrfs_key key;
6502 struct extent_buffer *eb;
6503 struct btrfs_dev_stats_item *ptr;
6504 int ret;
6505 int i;
6506
6507 key.objectid = 0;
6508 key.type = BTRFS_DEV_STATS_KEY;
6509 key.offset = device->devid;
6510
6511 path = btrfs_alloc_path();
6512 BUG_ON(!path);
6513 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6514 if (ret < 0) {
efe120a0
FH
6515 printk_in_rcu(KERN_WARNING "BTRFS: "
6516 "error %d while searching for dev_stats item for device %s!\n",
606686ee 6517 ret, rcu_str_deref(device->name));
733f4fbb
SB
6518 goto out;
6519 }
6520
6521 if (ret == 0 &&
6522 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6523 /* need to delete old one and insert a new one */
6524 ret = btrfs_del_item(trans, dev_root, path);
6525 if (ret != 0) {
efe120a0
FH
6526 printk_in_rcu(KERN_WARNING "BTRFS: "
6527 "delete too small dev_stats item for device %s failed %d!\n",
606686ee 6528 rcu_str_deref(device->name), ret);
733f4fbb
SB
6529 goto out;
6530 }
6531 ret = 1;
6532 }
6533
6534 if (ret == 1) {
6535 /* need to insert a new item */
6536 btrfs_release_path(path);
6537 ret = btrfs_insert_empty_item(trans, dev_root, path,
6538 &key, sizeof(*ptr));
6539 if (ret < 0) {
efe120a0
FH
6540 printk_in_rcu(KERN_WARNING "BTRFS: "
6541 "insert dev_stats item for device %s failed %d!\n",
606686ee 6542 rcu_str_deref(device->name), ret);
733f4fbb
SB
6543 goto out;
6544 }
6545 }
6546
6547 eb = path->nodes[0];
6548 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6549 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6550 btrfs_set_dev_stats_value(eb, ptr, i,
6551 btrfs_dev_stat_read(device, i));
6552 btrfs_mark_buffer_dirty(eb);
6553
6554out:
6555 btrfs_free_path(path);
6556 return ret;
6557}
6558
6559/*
6560 * called from commit_transaction. Writes all changed device stats to disk.
6561 */
6562int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6563 struct btrfs_fs_info *fs_info)
6564{
6565 struct btrfs_root *dev_root = fs_info->dev_root;
6566 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6567 struct btrfs_device *device;
addc3fa7 6568 int stats_cnt;
733f4fbb
SB
6569 int ret = 0;
6570
6571 mutex_lock(&fs_devices->device_list_mutex);
6572 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6573 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6574 continue;
6575
addc3fa7 6576 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6577 ret = update_dev_stat_item(trans, dev_root, device);
6578 if (!ret)
addc3fa7 6579 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6580 }
6581 mutex_unlock(&fs_devices->device_list_mutex);
6582
6583 return ret;
6584}
6585
442a4f63
SB
6586void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6587{
6588 btrfs_dev_stat_inc(dev, index);
6589 btrfs_dev_stat_print_on_error(dev);
6590}
6591
48a3b636 6592static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6593{
733f4fbb
SB
6594 if (!dev->dev_stats_valid)
6595 return;
efe120a0
FH
6596 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6597 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6598 rcu_str_deref(dev->name),
442a4f63
SB
6599 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6600 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6601 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6602 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6603 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6604}
c11d2c23 6605
733f4fbb
SB
6606static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6607{
a98cdb85
SB
6608 int i;
6609
6610 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6611 if (btrfs_dev_stat_read(dev, i) != 0)
6612 break;
6613 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6614 return; /* all values == 0, suppress message */
6615
efe120a0
FH
6616 printk_in_rcu(KERN_INFO "BTRFS: "
6617 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6618 rcu_str_deref(dev->name),
733f4fbb
SB
6619 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6620 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6621 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6622 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6623 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6624}
6625
c11d2c23 6626int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6627 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6628{
6629 struct btrfs_device *dev;
6630 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6631 int i;
6632
6633 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6634 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6635 mutex_unlock(&fs_devices->device_list_mutex);
6636
6637 if (!dev) {
efe120a0 6638 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6639 return -ENODEV;
733f4fbb 6640 } else if (!dev->dev_stats_valid) {
efe120a0 6641 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6642 return -ENODEV;
b27f7c0c 6643 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6644 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6645 if (stats->nr_items > i)
6646 stats->values[i] =
6647 btrfs_dev_stat_read_and_reset(dev, i);
6648 else
6649 btrfs_dev_stat_reset(dev, i);
6650 }
6651 } else {
6652 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6653 if (stats->nr_items > i)
6654 stats->values[i] = btrfs_dev_stat_read(dev, i);
6655 }
6656 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6657 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6658 return 0;
6659}
a8a6dab7
SB
6660
6661int btrfs_scratch_superblock(struct btrfs_device *device)
6662{
6663 struct buffer_head *bh;
6664 struct btrfs_super_block *disk_super;
6665
6666 bh = btrfs_read_dev_super(device->bdev);
6667 if (!bh)
6668 return -EINVAL;
6669 disk_super = (struct btrfs_super_block *)bh->b_data;
6670
6671 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6672 set_buffer_dirty(bh);
6673 sync_dirty_buffer(bh);
6674 brelse(bh);
6675
6676 return 0;
6677}
935e5cc9
MX
6678
6679/*
6680 * Update the size of all devices, which is used for writing out the
6681 * super blocks.
6682 */
6683void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6684{
6685 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6686 struct btrfs_device *curr, *next;
6687
6688 if (list_empty(&fs_devices->resized_devices))
6689 return;
6690
6691 mutex_lock(&fs_devices->device_list_mutex);
6692 lock_chunks(fs_info->dev_root);
6693 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6694 resized_list) {
6695 list_del_init(&curr->resized_list);
6696 curr->commit_total_bytes = curr->disk_total_bytes;
6697 }
6698 unlock_chunks(fs_info->dev_root);
6699 mutex_unlock(&fs_devices->device_list_mutex);
6700}
ce7213c7
MX
6701
6702/* Must be invoked during the transaction commit */
6703void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6704 struct btrfs_transaction *transaction)
6705{
6706 struct extent_map *em;
6707 struct map_lookup *map;
6708 struct btrfs_device *dev;
6709 int i;
6710
6711 if (list_empty(&transaction->pending_chunks))
6712 return;
6713
6714 /* In order to kick the device replace finish process */
6715 lock_chunks(root);
6716 list_for_each_entry(em, &transaction->pending_chunks, list) {
6717 map = (struct map_lookup *)em->bdev;
6718
6719 for (i = 0; i < map->num_stripes; i++) {
6720 dev = map->stripes[i].dev;
6721 dev->commit_bytes_used = dev->bytes_used;
6722 }
6723 }
6724 unlock_chunks(root);
6725}
This page took 0.803749 seconds and 5 git commands to generate.