shrinker: convert superblock shrinkers to new API
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
19156840 51 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6 65 * dentry->d_lock
19156840 66 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
232d2d60
WL
90/**
91 * read_seqbegin_or_lock - begin a sequence number check or locking block
92 * lock: sequence lock
93 * seq : sequence number to be checked
94 *
95 * First try it once optimistically without taking the lock. If that fails,
96 * take the lock. The sequence number is also used as a marker for deciding
97 * whether to be a reader (even) or writer (odd).
98 * N.B. seq must be initialized to an even number to begin with.
99 */
100static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
101{
48f5ec21 102 if (!(*seq & 1)) /* Even */
232d2d60 103 *seq = read_seqbegin(lock);
48f5ec21 104 else /* Odd */
232d2d60
WL
105 write_seqlock(lock);
106}
107
48f5ec21 108static inline int need_seqretry(seqlock_t *lock, int seq)
232d2d60 109{
48f5ec21
AV
110 return !(seq & 1) && read_seqretry(lock, seq);
111}
112
113static inline void done_seqretry(seqlock_t *lock, int seq)
114{
115 if (seq & 1)
232d2d60 116 write_sequnlock(lock);
232d2d60
WL
117}
118
1da177e4
LT
119/*
120 * This is the single most critical data structure when it comes
121 * to the dcache: the hashtable for lookups. Somebody should try
122 * to make this good - I've just made it work.
123 *
124 * This hash-function tries to avoid losing too many bits of hash
125 * information, yet avoid using a prime hash-size or similar.
126 */
127#define D_HASHBITS d_hash_shift
128#define D_HASHMASK d_hash_mask
129
fa3536cc
ED
130static unsigned int d_hash_mask __read_mostly;
131static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 132
b07ad996 133static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 134
8966be90 135static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 136 unsigned int hash)
ceb5bdc2 137{
6d7d1a0d
LT
138 hash += (unsigned long) parent / L1_CACHE_BYTES;
139 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
140 return dentry_hashtable + (hash & D_HASHMASK);
141}
142
1da177e4
LT
143/* Statistics gathering. */
144struct dentry_stat_t dentry_stat = {
145 .age_limit = 45,
146};
147
3942c07c 148static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 149static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
150
151#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
152
153/*
154 * Here we resort to our own counters instead of using generic per-cpu counters
155 * for consistency with what the vfs inode code does. We are expected to harvest
156 * better code and performance by having our own specialized counters.
157 *
158 * Please note that the loop is done over all possible CPUs, not over all online
159 * CPUs. The reason for this is that we don't want to play games with CPUs going
160 * on and off. If one of them goes off, we will just keep their counters.
161 *
162 * glommer: See cffbc8a for details, and if you ever intend to change this,
163 * please update all vfs counters to match.
164 */
3942c07c 165static long get_nr_dentry(void)
3e880fb5
NP
166{
167 int i;
3942c07c 168 long sum = 0;
3e880fb5
NP
169 for_each_possible_cpu(i)
170 sum += per_cpu(nr_dentry, i);
171 return sum < 0 ? 0 : sum;
172}
173
62d36c77
DC
174static long get_nr_dentry_unused(void)
175{
176 int i;
177 long sum = 0;
178 for_each_possible_cpu(i)
179 sum += per_cpu(nr_dentry_unused, i);
180 return sum < 0 ? 0 : sum;
181}
182
312d3ca8
CH
183int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
184 size_t *lenp, loff_t *ppos)
185{
3e880fb5 186 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 187 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 188 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
189}
190#endif
191
5483f18e
LT
192/*
193 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
194 * The strings are both count bytes long, and count is non-zero.
195 */
e419b4cc
LT
196#ifdef CONFIG_DCACHE_WORD_ACCESS
197
198#include <asm/word-at-a-time.h>
199/*
200 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
201 * aligned allocation for this particular component. We don't
202 * strictly need the load_unaligned_zeropad() safety, but it
203 * doesn't hurt either.
204 *
205 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
206 * need the careful unaligned handling.
207 */
94753db5 208static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 209{
bfcfaa77 210 unsigned long a,b,mask;
bfcfaa77
LT
211
212 for (;;) {
12f8ad4b 213 a = *(unsigned long *)cs;
e419b4cc 214 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
215 if (tcount < sizeof(unsigned long))
216 break;
217 if (unlikely(a != b))
218 return 1;
219 cs += sizeof(unsigned long);
220 ct += sizeof(unsigned long);
221 tcount -= sizeof(unsigned long);
222 if (!tcount)
223 return 0;
224 }
225 mask = ~(~0ul << tcount*8);
226 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
227}
228
bfcfaa77 229#else
e419b4cc 230
94753db5 231static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 232{
5483f18e
LT
233 do {
234 if (*cs != *ct)
235 return 1;
236 cs++;
237 ct++;
238 tcount--;
239 } while (tcount);
240 return 0;
241}
242
e419b4cc
LT
243#endif
244
94753db5
LT
245static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
246{
6326c71f 247 const unsigned char *cs;
94753db5
LT
248 /*
249 * Be careful about RCU walk racing with rename:
250 * use ACCESS_ONCE to fetch the name pointer.
251 *
252 * NOTE! Even if a rename will mean that the length
253 * was not loaded atomically, we don't care. The
254 * RCU walk will check the sequence count eventually,
255 * and catch it. And we won't overrun the buffer,
256 * because we're reading the name pointer atomically,
257 * and a dentry name is guaranteed to be properly
258 * terminated with a NUL byte.
259 *
260 * End result: even if 'len' is wrong, we'll exit
261 * early because the data cannot match (there can
262 * be no NUL in the ct/tcount data)
263 */
6326c71f
LT
264 cs = ACCESS_ONCE(dentry->d_name.name);
265 smp_read_barrier_depends();
266 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
267}
268
9c82ab9c 269static void __d_free(struct rcu_head *head)
1da177e4 270{
9c82ab9c
CH
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272
b3d9b7a3 273 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
274 if (dname_external(dentry))
275 kfree(dentry->d_name.name);
276 kmem_cache_free(dentry_cache, dentry);
277}
278
279/*
b5c84bf6 280 * no locks, please.
1da177e4
LT
281 */
282static void d_free(struct dentry *dentry)
283{
0d98439e 284 BUG_ON((int)dentry->d_lockref.count > 0);
3e880fb5 285 this_cpu_dec(nr_dentry);
1da177e4
LT
286 if (dentry->d_op && dentry->d_op->d_release)
287 dentry->d_op->d_release(dentry);
312d3ca8 288
dea3667b
LT
289 /* if dentry was never visible to RCU, immediate free is OK */
290 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 291 __d_free(&dentry->d_u.d_rcu);
b3423415 292 else
9c82ab9c 293 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
294}
295
31e6b01f
NP
296/**
297 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 298 * @dentry: the target dentry
31e6b01f
NP
299 * After this call, in-progress rcu-walk path lookup will fail. This
300 * should be called after unhashing, and after changing d_inode (if
301 * the dentry has not already been unhashed).
302 */
303static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
304{
305 assert_spin_locked(&dentry->d_lock);
306 /* Go through a barrier */
307 write_seqcount_barrier(&dentry->d_seq);
308}
309
1da177e4
LT
310/*
311 * Release the dentry's inode, using the filesystem
31e6b01f
NP
312 * d_iput() operation if defined. Dentry has no refcount
313 * and is unhashed.
1da177e4 314 */
858119e1 315static void dentry_iput(struct dentry * dentry)
31f3e0b3 316 __releases(dentry->d_lock)
873feea0 317 __releases(dentry->d_inode->i_lock)
1da177e4
LT
318{
319 struct inode *inode = dentry->d_inode;
320 if (inode) {
321 dentry->d_inode = NULL;
b3d9b7a3 322 hlist_del_init(&dentry->d_alias);
1da177e4 323 spin_unlock(&dentry->d_lock);
873feea0 324 spin_unlock(&inode->i_lock);
f805fbda
LT
325 if (!inode->i_nlink)
326 fsnotify_inoderemove(inode);
1da177e4
LT
327 if (dentry->d_op && dentry->d_op->d_iput)
328 dentry->d_op->d_iput(dentry, inode);
329 else
330 iput(inode);
331 } else {
332 spin_unlock(&dentry->d_lock);
1da177e4
LT
333 }
334}
335
31e6b01f
NP
336/*
337 * Release the dentry's inode, using the filesystem
338 * d_iput() operation if defined. dentry remains in-use.
339 */
340static void dentry_unlink_inode(struct dentry * dentry)
341 __releases(dentry->d_lock)
873feea0 342 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
343{
344 struct inode *inode = dentry->d_inode;
345 dentry->d_inode = NULL;
b3d9b7a3 346 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
347 dentry_rcuwalk_barrier(dentry);
348 spin_unlock(&dentry->d_lock);
873feea0 349 spin_unlock(&inode->i_lock);
31e6b01f
NP
350 if (!inode->i_nlink)
351 fsnotify_inoderemove(inode);
352 if (dentry->d_op && dentry->d_op->d_iput)
353 dentry->d_op->d_iput(dentry, inode);
354 else
355 iput(inode);
356}
357
da3bbdd4 358/*
dd1f6b2e 359 * dentry_lru_(add|del|move_list) must be called with d_lock held.
da3bbdd4
KM
360 */
361static void dentry_lru_add(struct dentry *dentry)
362{
8aab6a27 363 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) {
19156840 364 spin_lock(&dentry->d_sb->s_dentry_lru_lock);
8aab6a27 365 dentry->d_flags |= DCACHE_LRU_LIST;
a4633357
CH
366 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
367 dentry->d_sb->s_nr_dentry_unused++;
62d36c77 368 this_cpu_inc(nr_dentry_unused);
19156840 369 spin_unlock(&dentry->d_sb->s_dentry_lru_lock);
a4633357 370 }
da3bbdd4
KM
371}
372
23044507
NP
373static void __dentry_lru_del(struct dentry *dentry)
374{
375 list_del_init(&dentry->d_lru);
dd1f6b2e 376 dentry->d_flags &= ~DCACHE_LRU_LIST;
23044507 377 dentry->d_sb->s_nr_dentry_unused--;
62d36c77 378 this_cpu_dec(nr_dentry_unused);
23044507
NP
379}
380
f0023bc6
SW
381/*
382 * Remove a dentry with references from the LRU.
dd1f6b2e
DC
383 *
384 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
385 * lose our last reference through the parent walk. In this case, we need to
386 * remove ourselves from the shrink list, not the LRU.
f0023bc6 387 */
da3bbdd4
KM
388static void dentry_lru_del(struct dentry *dentry)
389{
dd1f6b2e
DC
390 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
391 list_del_init(&dentry->d_lru);
392 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
393 return;
394 }
395
da3bbdd4 396 if (!list_empty(&dentry->d_lru)) {
19156840 397 spin_lock(&dentry->d_sb->s_dentry_lru_lock);
23044507 398 __dentry_lru_del(dentry);
19156840 399 spin_unlock(&dentry->d_sb->s_dentry_lru_lock);
da3bbdd4
KM
400 }
401}
402
b48f03b3 403static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 404{
dd1f6b2e
DC
405 BUG_ON(dentry->d_flags & DCACHE_SHRINK_LIST);
406
19156840 407 spin_lock(&dentry->d_sb->s_dentry_lru_lock);
a4633357 408 if (list_empty(&dentry->d_lru)) {
8aab6a27 409 dentry->d_flags |= DCACHE_LRU_LIST;
b48f03b3 410 list_add_tail(&dentry->d_lru, list);
a4633357 411 } else {
b48f03b3 412 list_move_tail(&dentry->d_lru, list);
dd1f6b2e
DC
413 dentry->d_sb->s_nr_dentry_unused--;
414 this_cpu_dec(nr_dentry_unused);
da3bbdd4 415 }
19156840 416 spin_unlock(&dentry->d_sb->s_dentry_lru_lock);
da3bbdd4
KM
417}
418
d52b9086
MS
419/**
420 * d_kill - kill dentry and return parent
421 * @dentry: dentry to kill
ff5fdb61 422 * @parent: parent dentry
d52b9086 423 *
31f3e0b3 424 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
425 *
426 * If this is the root of the dentry tree, return NULL.
23044507 427 *
b5c84bf6
NP
428 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
429 * d_kill.
d52b9086 430 */
2fd6b7f5 431static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 432 __releases(dentry->d_lock)
2fd6b7f5 433 __releases(parent->d_lock)
873feea0 434 __releases(dentry->d_inode->i_lock)
d52b9086 435{
d52b9086 436 list_del(&dentry->d_u.d_child);
c83ce989
TM
437 /*
438 * Inform try_to_ascend() that we are no longer attached to the
439 * dentry tree
440 */
b161dfa6 441 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
442 if (parent)
443 spin_unlock(&parent->d_lock);
d52b9086 444 dentry_iput(dentry);
b7ab39f6
NP
445 /*
446 * dentry_iput drops the locks, at which point nobody (except
447 * transient RCU lookups) can reach this dentry.
448 */
d52b9086 449 d_free(dentry);
871c0067 450 return parent;
d52b9086
MS
451}
452
c6627c60
DH
453/*
454 * Unhash a dentry without inserting an RCU walk barrier or checking that
455 * dentry->d_lock is locked. The caller must take care of that, if
456 * appropriate.
457 */
458static void __d_shrink(struct dentry *dentry)
459{
460 if (!d_unhashed(dentry)) {
461 struct hlist_bl_head *b;
462 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
463 b = &dentry->d_sb->s_anon;
464 else
465 b = d_hash(dentry->d_parent, dentry->d_name.hash);
466
467 hlist_bl_lock(b);
468 __hlist_bl_del(&dentry->d_hash);
469 dentry->d_hash.pprev = NULL;
470 hlist_bl_unlock(b);
471 }
472}
473
789680d1
NP
474/**
475 * d_drop - drop a dentry
476 * @dentry: dentry to drop
477 *
478 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
479 * be found through a VFS lookup any more. Note that this is different from
480 * deleting the dentry - d_delete will try to mark the dentry negative if
481 * possible, giving a successful _negative_ lookup, while d_drop will
482 * just make the cache lookup fail.
483 *
484 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
485 * reason (NFS timeouts or autofs deletes).
486 *
487 * __d_drop requires dentry->d_lock.
488 */
489void __d_drop(struct dentry *dentry)
490{
dea3667b 491 if (!d_unhashed(dentry)) {
c6627c60 492 __d_shrink(dentry);
dea3667b 493 dentry_rcuwalk_barrier(dentry);
789680d1
NP
494 }
495}
496EXPORT_SYMBOL(__d_drop);
497
498void d_drop(struct dentry *dentry)
499{
789680d1
NP
500 spin_lock(&dentry->d_lock);
501 __d_drop(dentry);
502 spin_unlock(&dentry->d_lock);
789680d1
NP
503}
504EXPORT_SYMBOL(d_drop);
505
77812a1e
NP
506/*
507 * Finish off a dentry we've decided to kill.
508 * dentry->d_lock must be held, returns with it unlocked.
509 * If ref is non-zero, then decrement the refcount too.
510 * Returns dentry requiring refcount drop, or NULL if we're done.
511 */
dd1f6b2e
DC
512static inline struct dentry *
513dentry_kill(struct dentry *dentry, int unlock_on_failure)
77812a1e
NP
514 __releases(dentry->d_lock)
515{
873feea0 516 struct inode *inode;
77812a1e
NP
517 struct dentry *parent;
518
873feea0
NP
519 inode = dentry->d_inode;
520 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e 521relock:
dd1f6b2e
DC
522 if (unlock_on_failure) {
523 spin_unlock(&dentry->d_lock);
524 cpu_relax();
525 }
77812a1e
NP
526 return dentry; /* try again with same dentry */
527 }
528 if (IS_ROOT(dentry))
529 parent = NULL;
530 else
531 parent = dentry->d_parent;
532 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
533 if (inode)
534 spin_unlock(&inode->i_lock);
77812a1e
NP
535 goto relock;
536 }
31e6b01f 537
0d98439e
LT
538 /*
539 * The dentry is now unrecoverably dead to the world.
540 */
541 lockref_mark_dead(&dentry->d_lockref);
542
f0023bc6 543 /*
f0023bc6
SW
544 * inform the fs via d_prune that this dentry is about to be
545 * unhashed and destroyed.
546 */
590fb51f 547 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
548 dentry->d_op->d_prune(dentry);
549
550 dentry_lru_del(dentry);
77812a1e
NP
551 /* if it was on the hash then remove it */
552 __d_drop(dentry);
553 return d_kill(dentry, parent);
554}
555
1da177e4
LT
556/*
557 * This is dput
558 *
559 * This is complicated by the fact that we do not want to put
560 * dentries that are no longer on any hash chain on the unused
561 * list: we'd much rather just get rid of them immediately.
562 *
563 * However, that implies that we have to traverse the dentry
564 * tree upwards to the parents which might _also_ now be
565 * scheduled for deletion (it may have been only waiting for
566 * its last child to go away).
567 *
568 * This tail recursion is done by hand as we don't want to depend
569 * on the compiler to always get this right (gcc generally doesn't).
570 * Real recursion would eat up our stack space.
571 */
572
573/*
574 * dput - release a dentry
575 * @dentry: dentry to release
576 *
577 * Release a dentry. This will drop the usage count and if appropriate
578 * call the dentry unlink method as well as removing it from the queues and
579 * releasing its resources. If the parent dentries were scheduled for release
580 * they too may now get deleted.
1da177e4 581 */
1da177e4
LT
582void dput(struct dentry *dentry)
583{
8aab6a27 584 if (unlikely(!dentry))
1da177e4
LT
585 return;
586
587repeat:
98474236 588 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 589 return;
1da177e4 590
8aab6a27
LT
591 /* Unreachable? Get rid of it */
592 if (unlikely(d_unhashed(dentry)))
593 goto kill_it;
594
595 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 596 if (dentry->d_op->d_delete(dentry))
61f3dee4 597 goto kill_it;
1da177e4 598 }
265ac902 599
39e3c955 600 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 601 dentry_lru_add(dentry);
265ac902 602
98474236 603 dentry->d_lockref.count--;
61f3dee4 604 spin_unlock(&dentry->d_lock);
1da177e4
LT
605 return;
606
d52b9086 607kill_it:
dd1f6b2e 608 dentry = dentry_kill(dentry, 1);
d52b9086
MS
609 if (dentry)
610 goto repeat;
1da177e4 611}
ec4f8605 612EXPORT_SYMBOL(dput);
1da177e4
LT
613
614/**
615 * d_invalidate - invalidate a dentry
616 * @dentry: dentry to invalidate
617 *
618 * Try to invalidate the dentry if it turns out to be
619 * possible. If there are other dentries that can be
620 * reached through this one we can't delete it and we
621 * return -EBUSY. On success we return 0.
622 *
623 * no dcache lock.
624 */
625
626int d_invalidate(struct dentry * dentry)
627{
628 /*
629 * If it's already been dropped, return OK.
630 */
da502956 631 spin_lock(&dentry->d_lock);
1da177e4 632 if (d_unhashed(dentry)) {
da502956 633 spin_unlock(&dentry->d_lock);
1da177e4
LT
634 return 0;
635 }
636 /*
637 * Check whether to do a partial shrink_dcache
638 * to get rid of unused child entries.
639 */
640 if (!list_empty(&dentry->d_subdirs)) {
da502956 641 spin_unlock(&dentry->d_lock);
1da177e4 642 shrink_dcache_parent(dentry);
da502956 643 spin_lock(&dentry->d_lock);
1da177e4
LT
644 }
645
646 /*
647 * Somebody else still using it?
648 *
649 * If it's a directory, we can't drop it
650 * for fear of somebody re-populating it
651 * with children (even though dropping it
652 * would make it unreachable from the root,
653 * we might still populate it if it was a
654 * working directory or similar).
50e69630
AV
655 * We also need to leave mountpoints alone,
656 * directory or not.
1da177e4 657 */
98474236 658 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 659 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 660 spin_unlock(&dentry->d_lock);
1da177e4
LT
661 return -EBUSY;
662 }
663 }
664
665 __d_drop(dentry);
666 spin_unlock(&dentry->d_lock);
1da177e4
LT
667 return 0;
668}
ec4f8605 669EXPORT_SYMBOL(d_invalidate);
1da177e4 670
b5c84bf6 671/* This must be called with d_lock held */
dc0474be 672static inline void __dget_dlock(struct dentry *dentry)
23044507 673{
98474236 674 dentry->d_lockref.count++;
23044507
NP
675}
676
dc0474be 677static inline void __dget(struct dentry *dentry)
1da177e4 678{
98474236 679 lockref_get(&dentry->d_lockref);
1da177e4
LT
680}
681
b7ab39f6
NP
682struct dentry *dget_parent(struct dentry *dentry)
683{
df3d0bbc 684 int gotref;
b7ab39f6
NP
685 struct dentry *ret;
686
df3d0bbc
WL
687 /*
688 * Do optimistic parent lookup without any
689 * locking.
690 */
691 rcu_read_lock();
692 ret = ACCESS_ONCE(dentry->d_parent);
693 gotref = lockref_get_not_zero(&ret->d_lockref);
694 rcu_read_unlock();
695 if (likely(gotref)) {
696 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
697 return ret;
698 dput(ret);
699 }
700
b7ab39f6 701repeat:
a734eb45
NP
702 /*
703 * Don't need rcu_dereference because we re-check it was correct under
704 * the lock.
705 */
706 rcu_read_lock();
b7ab39f6 707 ret = dentry->d_parent;
a734eb45
NP
708 spin_lock(&ret->d_lock);
709 if (unlikely(ret != dentry->d_parent)) {
710 spin_unlock(&ret->d_lock);
711 rcu_read_unlock();
b7ab39f6
NP
712 goto repeat;
713 }
a734eb45 714 rcu_read_unlock();
98474236
WL
715 BUG_ON(!ret->d_lockref.count);
716 ret->d_lockref.count++;
b7ab39f6 717 spin_unlock(&ret->d_lock);
b7ab39f6
NP
718 return ret;
719}
720EXPORT_SYMBOL(dget_parent);
721
1da177e4
LT
722/**
723 * d_find_alias - grab a hashed alias of inode
724 * @inode: inode in question
32ba9c3f
LT
725 * @want_discon: flag, used by d_splice_alias, to request
726 * that only a DISCONNECTED alias be returned.
1da177e4
LT
727 *
728 * If inode has a hashed alias, or is a directory and has any alias,
729 * acquire the reference to alias and return it. Otherwise return NULL.
730 * Notice that if inode is a directory there can be only one alias and
731 * it can be unhashed only if it has no children, or if it is the root
732 * of a filesystem.
733 *
21c0d8fd 734 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
735 * any other hashed alias over that one unless @want_discon is set,
736 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 737 */
32ba9c3f 738static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 739{
da502956 740 struct dentry *alias, *discon_alias;
1da177e4 741
da502956
NP
742again:
743 discon_alias = NULL;
b67bfe0d 744 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 745 spin_lock(&alias->d_lock);
1da177e4 746 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 747 if (IS_ROOT(alias) &&
da502956 748 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 749 discon_alias = alias;
32ba9c3f 750 } else if (!want_discon) {
dc0474be 751 __dget_dlock(alias);
da502956
NP
752 spin_unlock(&alias->d_lock);
753 return alias;
754 }
755 }
756 spin_unlock(&alias->d_lock);
757 }
758 if (discon_alias) {
759 alias = discon_alias;
760 spin_lock(&alias->d_lock);
761 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
762 if (IS_ROOT(alias) &&
763 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 764 __dget_dlock(alias);
da502956 765 spin_unlock(&alias->d_lock);
1da177e4
LT
766 return alias;
767 }
768 }
da502956
NP
769 spin_unlock(&alias->d_lock);
770 goto again;
1da177e4 771 }
da502956 772 return NULL;
1da177e4
LT
773}
774
da502956 775struct dentry *d_find_alias(struct inode *inode)
1da177e4 776{
214fda1f
DH
777 struct dentry *de = NULL;
778
b3d9b7a3 779 if (!hlist_empty(&inode->i_dentry)) {
873feea0 780 spin_lock(&inode->i_lock);
32ba9c3f 781 de = __d_find_alias(inode, 0);
873feea0 782 spin_unlock(&inode->i_lock);
214fda1f 783 }
1da177e4
LT
784 return de;
785}
ec4f8605 786EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
787
788/*
789 * Try to kill dentries associated with this inode.
790 * WARNING: you must own a reference to inode.
791 */
792void d_prune_aliases(struct inode *inode)
793{
0cdca3f9 794 struct dentry *dentry;
1da177e4 795restart:
873feea0 796 spin_lock(&inode->i_lock);
b67bfe0d 797 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 798 spin_lock(&dentry->d_lock);
98474236 799 if (!dentry->d_lockref.count) {
590fb51f
YZ
800 /*
801 * inform the fs via d_prune that this dentry
802 * is about to be unhashed and destroyed.
803 */
804 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
805 !d_unhashed(dentry))
806 dentry->d_op->d_prune(dentry);
807
dc0474be 808 __dget_dlock(dentry);
1da177e4
LT
809 __d_drop(dentry);
810 spin_unlock(&dentry->d_lock);
873feea0 811 spin_unlock(&inode->i_lock);
1da177e4
LT
812 dput(dentry);
813 goto restart;
814 }
815 spin_unlock(&dentry->d_lock);
816 }
873feea0 817 spin_unlock(&inode->i_lock);
1da177e4 818}
ec4f8605 819EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
820
821/*
77812a1e
NP
822 * Try to throw away a dentry - free the inode, dput the parent.
823 * Requires dentry->d_lock is held, and dentry->d_count == 0.
824 * Releases dentry->d_lock.
d702ccb3 825 *
77812a1e 826 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 827 */
dd1f6b2e 828static struct dentry * try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 829 __releases(dentry->d_lock)
1da177e4 830{
77812a1e 831 struct dentry *parent;
d52b9086 832
dd1f6b2e 833 parent = dentry_kill(dentry, 0);
d52b9086 834 /*
77812a1e
NP
835 * If dentry_kill returns NULL, we have nothing more to do.
836 * if it returns the same dentry, trylocks failed. In either
837 * case, just loop again.
838 *
839 * Otherwise, we need to prune ancestors too. This is necessary
840 * to prevent quadratic behavior of shrink_dcache_parent(), but
841 * is also expected to be beneficial in reducing dentry cache
842 * fragmentation.
d52b9086 843 */
77812a1e 844 if (!parent)
dd1f6b2e 845 return NULL;
77812a1e 846 if (parent == dentry)
dd1f6b2e 847 return dentry;
77812a1e
NP
848
849 /* Prune ancestors. */
850 dentry = parent;
d52b9086 851 while (dentry) {
98474236 852 if (lockref_put_or_lock(&dentry->d_lockref))
dd1f6b2e
DC
853 return NULL;
854 dentry = dentry_kill(dentry, 1);
d52b9086 855 }
dd1f6b2e 856 return NULL;
1da177e4
LT
857}
858
3049cfe2 859static void shrink_dentry_list(struct list_head *list)
1da177e4 860{
da3bbdd4 861 struct dentry *dentry;
da3bbdd4 862
ec33679d
NP
863 rcu_read_lock();
864 for (;;) {
ec33679d
NP
865 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
866 if (&dentry->d_lru == list)
867 break; /* empty */
868 spin_lock(&dentry->d_lock);
869 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
870 spin_unlock(&dentry->d_lock);
23044507
NP
871 continue;
872 }
873
dd1f6b2e
DC
874 /*
875 * The dispose list is isolated and dentries are not accounted
876 * to the LRU here, so we can simply remove it from the list
877 * here regardless of whether it is referenced or not.
878 */
879 list_del_init(&dentry->d_lru);
880 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
881
1da177e4
LT
882 /*
883 * We found an inuse dentry which was not removed from
dd1f6b2e 884 * the LRU because of laziness during lookup. Do not free it.
1da177e4 885 */
98474236 886 if (dentry->d_lockref.count) {
da3bbdd4 887 spin_unlock(&dentry->d_lock);
1da177e4
LT
888 continue;
889 }
ec33679d 890 rcu_read_unlock();
77812a1e 891
dd1f6b2e 892 dentry = try_prune_one_dentry(dentry);
77812a1e 893
ec33679d 894 rcu_read_lock();
dd1f6b2e
DC
895 if (dentry) {
896 dentry->d_flags |= DCACHE_SHRINK_LIST;
897 list_add(&dentry->d_lru, list);
898 spin_unlock(&dentry->d_lock);
899 }
da3bbdd4 900 }
ec33679d 901 rcu_read_unlock();
3049cfe2
CH
902}
903
904/**
b48f03b3
DC
905 * prune_dcache_sb - shrink the dcache
906 * @sb: superblock
907 * @count: number of entries to try to free
908 *
909 * Attempt to shrink the superblock dcache LRU by @count entries. This is
910 * done when we need more memory an called from the superblock shrinker
911 * function.
3049cfe2 912 *
b48f03b3
DC
913 * This function may fail to free any resources if all the dentries are in
914 * use.
3049cfe2 915 */
0a234c6d 916long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan)
3049cfe2 917{
3049cfe2
CH
918 struct dentry *dentry;
919 LIST_HEAD(referenced);
920 LIST_HEAD(tmp);
0a234c6d 921 long freed = 0;
3049cfe2 922
23044507 923relock:
19156840 924 spin_lock(&sb->s_dentry_lru_lock);
3049cfe2
CH
925 while (!list_empty(&sb->s_dentry_lru)) {
926 dentry = list_entry(sb->s_dentry_lru.prev,
927 struct dentry, d_lru);
928 BUG_ON(dentry->d_sb != sb);
929
23044507 930 if (!spin_trylock(&dentry->d_lock)) {
19156840 931 spin_unlock(&sb->s_dentry_lru_lock);
23044507
NP
932 cpu_relax();
933 goto relock;
934 }
935
b48f03b3 936 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
937 dentry->d_flags &= ~DCACHE_REFERENCED;
938 list_move(&dentry->d_lru, &referenced);
3049cfe2 939 spin_unlock(&dentry->d_lock);
23044507 940 } else {
dd1f6b2e 941 list_move(&dentry->d_lru, &tmp);
eaf5f907 942 dentry->d_flags |= DCACHE_SHRINK_LIST;
dd1f6b2e
DC
943 this_cpu_dec(nr_dentry_unused);
944 sb->s_nr_dentry_unused--;
23044507 945 spin_unlock(&dentry->d_lock);
0a234c6d
DC
946 freed++;
947 if (!--nr_to_scan)
23044507 948 break;
3049cfe2 949 }
19156840 950 cond_resched_lock(&sb->s_dentry_lru_lock);
3049cfe2 951 }
da3bbdd4
KM
952 if (!list_empty(&referenced))
953 list_splice(&referenced, &sb->s_dentry_lru);
19156840 954 spin_unlock(&sb->s_dentry_lru_lock);
ec33679d
NP
955
956 shrink_dentry_list(&tmp);
0a234c6d 957 return freed;
da3bbdd4
KM
958}
959
dd1f6b2e
DC
960/*
961 * Mark all the dentries as on being the dispose list so we don't think they are
962 * still on the LRU if we try to kill them from ascending the parent chain in
963 * try_prune_one_dentry() rather than directly from the dispose list.
964 */
965static void
966shrink_dcache_list(
967 struct list_head *dispose)
968{
969 struct dentry *dentry;
970
971 rcu_read_lock();
972 list_for_each_entry_rcu(dentry, dispose, d_lru) {
973 spin_lock(&dentry->d_lock);
974 dentry->d_flags |= DCACHE_SHRINK_LIST;
975 spin_unlock(&dentry->d_lock);
976 }
977 rcu_read_unlock();
978 shrink_dentry_list(dispose);
979}
980
1da177e4
LT
981/**
982 * shrink_dcache_sb - shrink dcache for a superblock
983 * @sb: superblock
984 *
3049cfe2
CH
985 * Shrink the dcache for the specified super block. This is used to free
986 * the dcache before unmounting a file system.
1da177e4 987 */
3049cfe2 988void shrink_dcache_sb(struct super_block *sb)
1da177e4 989{
3049cfe2
CH
990 LIST_HEAD(tmp);
991
19156840 992 spin_lock(&sb->s_dentry_lru_lock);
3049cfe2 993 while (!list_empty(&sb->s_dentry_lru)) {
dd1f6b2e
DC
994 /*
995 * account for removal here so we don't need to handle it later
996 * even though the dentry is no longer on the lru list.
997 */
3049cfe2 998 list_splice_init(&sb->s_dentry_lru, &tmp);
dd1f6b2e
DC
999 this_cpu_sub(nr_dentry_unused, sb->s_nr_dentry_unused);
1000 sb->s_nr_dentry_unused = 0;
19156840 1001 spin_unlock(&sb->s_dentry_lru_lock);
dd1f6b2e
DC
1002
1003 shrink_dcache_list(&tmp);
1004
19156840 1005 spin_lock(&sb->s_dentry_lru_lock);
3049cfe2 1006 }
19156840 1007 spin_unlock(&sb->s_dentry_lru_lock);
1da177e4 1008}
ec4f8605 1009EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1010
c636ebdb
DH
1011/*
1012 * destroy a single subtree of dentries for unmount
1013 * - see the comments on shrink_dcache_for_umount() for a description of the
1014 * locking
1015 */
1016static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
1017{
1018 struct dentry *parent;
1019
1020 BUG_ON(!IS_ROOT(dentry));
1021
c636ebdb
DH
1022 for (;;) {
1023 /* descend to the first leaf in the current subtree */
43c1c9cd 1024 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
1025 dentry = list_entry(dentry->d_subdirs.next,
1026 struct dentry, d_u.d_child);
c636ebdb
DH
1027
1028 /* consume the dentries from this leaf up through its parents
1029 * until we find one with children or run out altogether */
1030 do {
1031 struct inode *inode;
1032
f0023bc6 1033 /*
61572bb1 1034 * inform the fs that this dentry is about to be
f0023bc6
SW
1035 * unhashed and destroyed.
1036 */
590fb51f
YZ
1037 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
1038 !d_unhashed(dentry))
61572bb1
YZ
1039 dentry->d_op->d_prune(dentry);
1040
1041 dentry_lru_del(dentry);
43c1c9cd
DH
1042 __d_shrink(dentry);
1043
98474236 1044 if (dentry->d_lockref.count != 0) {
c636ebdb
DH
1045 printk(KERN_ERR
1046 "BUG: Dentry %p{i=%lx,n=%s}"
1047 " still in use (%d)"
1048 " [unmount of %s %s]\n",
1049 dentry,
1050 dentry->d_inode ?
1051 dentry->d_inode->i_ino : 0UL,
1052 dentry->d_name.name,
98474236 1053 dentry->d_lockref.count,
c636ebdb
DH
1054 dentry->d_sb->s_type->name,
1055 dentry->d_sb->s_id);
1056 BUG();
1057 }
1058
2fd6b7f5 1059 if (IS_ROOT(dentry)) {
c636ebdb 1060 parent = NULL;
2fd6b7f5
NP
1061 list_del(&dentry->d_u.d_child);
1062 } else {
871c0067 1063 parent = dentry->d_parent;
98474236 1064 parent->d_lockref.count--;
2fd6b7f5 1065 list_del(&dentry->d_u.d_child);
871c0067 1066 }
c636ebdb 1067
c636ebdb
DH
1068 inode = dentry->d_inode;
1069 if (inode) {
1070 dentry->d_inode = NULL;
b3d9b7a3 1071 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
1072 if (dentry->d_op && dentry->d_op->d_iput)
1073 dentry->d_op->d_iput(dentry, inode);
1074 else
1075 iput(inode);
1076 }
1077
1078 d_free(dentry);
1079
1080 /* finished when we fall off the top of the tree,
1081 * otherwise we ascend to the parent and move to the
1082 * next sibling if there is one */
1083 if (!parent)
312d3ca8 1084 return;
c636ebdb 1085 dentry = parent;
c636ebdb
DH
1086 } while (list_empty(&dentry->d_subdirs));
1087
1088 dentry = list_entry(dentry->d_subdirs.next,
1089 struct dentry, d_u.d_child);
1090 }
1091}
1092
1093/*
1094 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 1095 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
1096 * - the superblock is detached from all mountings and open files, so the
1097 * dentry trees will not be rearranged by the VFS
1098 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1099 * any dentries belonging to this superblock that it comes across
1100 * - the filesystem itself is no longer permitted to rearrange the dentries
1101 * in this superblock
1102 */
1103void shrink_dcache_for_umount(struct super_block *sb)
1104{
1105 struct dentry *dentry;
1106
1107 if (down_read_trylock(&sb->s_umount))
1108 BUG();
1109
1110 dentry = sb->s_root;
1111 sb->s_root = NULL;
98474236 1112 dentry->d_lockref.count--;
c636ebdb
DH
1113 shrink_dcache_for_umount_subtree(dentry);
1114
ceb5bdc2
NP
1115 while (!hlist_bl_empty(&sb->s_anon)) {
1116 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1117 shrink_dcache_for_umount_subtree(dentry);
1118 }
1119}
1120
c826cb7d
LT
1121/*
1122 * This tries to ascend one level of parenthood, but
1123 * we can race with renaming, so we need to re-check
1124 * the parenthood after dropping the lock and check
1125 * that the sequence number still matches.
1126 */
48f5ec21 1127static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
c826cb7d
LT
1128{
1129 struct dentry *new = old->d_parent;
1130
1131 rcu_read_lock();
1132 spin_unlock(&old->d_lock);
1133 spin_lock(&new->d_lock);
1134
1135 /*
1136 * might go back up the wrong parent if we have had a rename
1137 * or deletion
1138 */
1139 if (new != old->d_parent ||
b161dfa6 1140 (old->d_flags & DCACHE_DENTRY_KILLED) ||
48f5ec21 1141 need_seqretry(&rename_lock, seq)) {
c826cb7d
LT
1142 spin_unlock(&new->d_lock);
1143 new = NULL;
1144 }
1145 rcu_read_unlock();
1146 return new;
1147}
1148
db14fc3a
MS
1149/**
1150 * enum d_walk_ret - action to talke during tree walk
1151 * @D_WALK_CONTINUE: contrinue walk
1152 * @D_WALK_QUIT: quit walk
1153 * @D_WALK_NORETRY: quit when retry is needed
1154 * @D_WALK_SKIP: skip this dentry and its children
1155 */
1156enum d_walk_ret {
1157 D_WALK_CONTINUE,
1158 D_WALK_QUIT,
1159 D_WALK_NORETRY,
1160 D_WALK_SKIP,
1161};
c826cb7d 1162
1da177e4 1163/**
db14fc3a
MS
1164 * d_walk - walk the dentry tree
1165 * @parent: start of walk
1166 * @data: data passed to @enter() and @finish()
1167 * @enter: callback when first entering the dentry
1168 * @finish: callback when successfully finished the walk
1da177e4 1169 *
db14fc3a 1170 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1171 */
db14fc3a
MS
1172static void d_walk(struct dentry *parent, void *data,
1173 enum d_walk_ret (*enter)(void *, struct dentry *),
1174 void (*finish)(void *))
1da177e4 1175{
949854d0 1176 struct dentry *this_parent;
1da177e4 1177 struct list_head *next;
48f5ec21 1178 unsigned seq = 0;
db14fc3a
MS
1179 enum d_walk_ret ret;
1180 bool retry = true;
949854d0 1181
58db63d0 1182again:
48f5ec21 1183 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1184 this_parent = parent;
2fd6b7f5 1185 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1186
1187 ret = enter(data, this_parent);
1188 switch (ret) {
1189 case D_WALK_CONTINUE:
1190 break;
1191 case D_WALK_QUIT:
1192 case D_WALK_SKIP:
1193 goto out_unlock;
1194 case D_WALK_NORETRY:
1195 retry = false;
1196 break;
1197 }
1da177e4
LT
1198repeat:
1199 next = this_parent->d_subdirs.next;
1200resume:
1201 while (next != &this_parent->d_subdirs) {
1202 struct list_head *tmp = next;
5160ee6f 1203 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1204 next = tmp->next;
2fd6b7f5
NP
1205
1206 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1207
1208 ret = enter(data, dentry);
1209 switch (ret) {
1210 case D_WALK_CONTINUE:
1211 break;
1212 case D_WALK_QUIT:
2fd6b7f5 1213 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1214 goto out_unlock;
1215 case D_WALK_NORETRY:
1216 retry = false;
1217 break;
1218 case D_WALK_SKIP:
1219 spin_unlock(&dentry->d_lock);
1220 continue;
2fd6b7f5 1221 }
db14fc3a 1222
1da177e4 1223 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1224 spin_unlock(&this_parent->d_lock);
1225 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1226 this_parent = dentry;
2fd6b7f5 1227 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1228 goto repeat;
1229 }
2fd6b7f5 1230 spin_unlock(&dentry->d_lock);
1da177e4
LT
1231 }
1232 /*
1233 * All done at this level ... ascend and resume the search.
1234 */
1235 if (this_parent != parent) {
c826cb7d 1236 struct dentry *child = this_parent;
48f5ec21 1237 this_parent = try_to_ascend(this_parent, seq);
c826cb7d 1238 if (!this_parent)
949854d0 1239 goto rename_retry;
949854d0 1240 next = child->d_u.d_child.next;
1da177e4
LT
1241 goto resume;
1242 }
48f5ec21 1243 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1244 spin_unlock(&this_parent->d_lock);
949854d0 1245 goto rename_retry;
db14fc3a
MS
1246 }
1247 if (finish)
1248 finish(data);
1249
1250out_unlock:
1251 spin_unlock(&this_parent->d_lock);
48f5ec21 1252 done_seqretry(&rename_lock, seq);
db14fc3a 1253 return;
58db63d0
NP
1254
1255rename_retry:
db14fc3a
MS
1256 if (!retry)
1257 return;
48f5ec21 1258 seq = 1;
58db63d0 1259 goto again;
1da177e4 1260}
db14fc3a
MS
1261
1262/*
1263 * Search for at least 1 mount point in the dentry's subdirs.
1264 * We descend to the next level whenever the d_subdirs
1265 * list is non-empty and continue searching.
1266 */
1267
1268/**
1269 * have_submounts - check for mounts over a dentry
1270 * @parent: dentry to check.
1271 *
1272 * Return true if the parent or its subdirectories contain
1273 * a mount point
1274 */
1275
1276static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1277{
1278 int *ret = data;
1279 if (d_mountpoint(dentry)) {
1280 *ret = 1;
1281 return D_WALK_QUIT;
1282 }
1283 return D_WALK_CONTINUE;
1284}
1285
1286int have_submounts(struct dentry *parent)
1287{
1288 int ret = 0;
1289
1290 d_walk(parent, &ret, check_mount, NULL);
1291
1292 return ret;
1293}
ec4f8605 1294EXPORT_SYMBOL(have_submounts);
1da177e4 1295
eed81007
MS
1296/*
1297 * Called by mount code to set a mountpoint and check if the mountpoint is
1298 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1299 * subtree can become unreachable).
1300 *
1301 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1302 * this reason take rename_lock and d_lock on dentry and ancestors.
1303 */
1304int d_set_mounted(struct dentry *dentry)
1305{
1306 struct dentry *p;
1307 int ret = -ENOENT;
1308 write_seqlock(&rename_lock);
1309 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1310 /* Need exclusion wrt. check_submounts_and_drop() */
1311 spin_lock(&p->d_lock);
1312 if (unlikely(d_unhashed(p))) {
1313 spin_unlock(&p->d_lock);
1314 goto out;
1315 }
1316 spin_unlock(&p->d_lock);
1317 }
1318 spin_lock(&dentry->d_lock);
1319 if (!d_unlinked(dentry)) {
1320 dentry->d_flags |= DCACHE_MOUNTED;
1321 ret = 0;
1322 }
1323 spin_unlock(&dentry->d_lock);
1324out:
1325 write_sequnlock(&rename_lock);
1326 return ret;
1327}
1328
1da177e4 1329/*
fd517909 1330 * Search the dentry child list of the specified parent,
1da177e4
LT
1331 * and move any unused dentries to the end of the unused
1332 * list for prune_dcache(). We descend to the next level
1333 * whenever the d_subdirs list is non-empty and continue
1334 * searching.
1335 *
1336 * It returns zero iff there are no unused children,
1337 * otherwise it returns the number of children moved to
1338 * the end of the unused list. This may not be the total
1339 * number of unused children, because select_parent can
1340 * drop the lock and return early due to latency
1341 * constraints.
1342 */
1da177e4 1343
db14fc3a
MS
1344struct select_data {
1345 struct dentry *start;
1346 struct list_head dispose;
1347 int found;
1348};
23044507 1349
db14fc3a
MS
1350static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1351{
1352 struct select_data *data = _data;
1353 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1354
db14fc3a
MS
1355 if (data->start == dentry)
1356 goto out;
2fd6b7f5 1357
1da177e4 1358 /*
db14fc3a
MS
1359 * move only zero ref count dentries to the dispose list.
1360 *
1361 * Those which are presently on the shrink list, being processed
1362 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1363 * loop in shrink_dcache_parent() might not make any progress
1364 * and loop forever.
1da177e4 1365 */
db14fc3a
MS
1366 if (dentry->d_lockref.count) {
1367 dentry_lru_del(dentry);
1368 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1369 dentry_lru_move_list(dentry, &data->dispose);
1370 dentry->d_flags |= DCACHE_SHRINK_LIST;
1371 data->found++;
1372 ret = D_WALK_NORETRY;
1da177e4 1373 }
db14fc3a
MS
1374 /*
1375 * We can return to the caller if we have found some (this
1376 * ensures forward progress). We'll be coming back to find
1377 * the rest.
1378 */
1379 if (data->found && need_resched())
1380 ret = D_WALK_QUIT;
1da177e4 1381out:
db14fc3a 1382 return ret;
1da177e4
LT
1383}
1384
1385/**
1386 * shrink_dcache_parent - prune dcache
1387 * @parent: parent of entries to prune
1388 *
1389 * Prune the dcache to remove unused children of the parent dentry.
1390 */
db14fc3a 1391void shrink_dcache_parent(struct dentry *parent)
1da177e4 1392{
db14fc3a
MS
1393 for (;;) {
1394 struct select_data data;
1da177e4 1395
db14fc3a
MS
1396 INIT_LIST_HEAD(&data.dispose);
1397 data.start = parent;
1398 data.found = 0;
1399
1400 d_walk(parent, &data, select_collect, NULL);
1401 if (!data.found)
1402 break;
1403
1404 shrink_dentry_list(&data.dispose);
421348f1
GT
1405 cond_resched();
1406 }
1da177e4 1407}
ec4f8605 1408EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1409
848ac114
MS
1410static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1411{
1412 struct select_data *data = _data;
1413
1414 if (d_mountpoint(dentry)) {
1415 data->found = -EBUSY;
1416 return D_WALK_QUIT;
1417 }
1418
1419 return select_collect(_data, dentry);
1420}
1421
1422static void check_and_drop(void *_data)
1423{
1424 struct select_data *data = _data;
1425
1426 if (d_mountpoint(data->start))
1427 data->found = -EBUSY;
1428 if (!data->found)
1429 __d_drop(data->start);
1430}
1431
1432/**
1433 * check_submounts_and_drop - prune dcache, check for submounts and drop
1434 *
1435 * All done as a single atomic operation relative to has_unlinked_ancestor().
1436 * Returns 0 if successfully unhashed @parent. If there were submounts then
1437 * return -EBUSY.
1438 *
1439 * @dentry: dentry to prune and drop
1440 */
1441int check_submounts_and_drop(struct dentry *dentry)
1442{
1443 int ret = 0;
1444
1445 /* Negative dentries can be dropped without further checks */
1446 if (!dentry->d_inode) {
1447 d_drop(dentry);
1448 goto out;
1449 }
1450
1451 for (;;) {
1452 struct select_data data;
1453
1454 INIT_LIST_HEAD(&data.dispose);
1455 data.start = dentry;
1456 data.found = 0;
1457
1458 d_walk(dentry, &data, check_and_collect, check_and_drop);
1459 ret = data.found;
1460
1461 if (!list_empty(&data.dispose))
1462 shrink_dentry_list(&data.dispose);
1463
1464 if (ret <= 0)
1465 break;
1466
1467 cond_resched();
1468 }
1469
1470out:
1471 return ret;
1472}
1473EXPORT_SYMBOL(check_submounts_and_drop);
1474
1da177e4 1475/**
a4464dbc
AV
1476 * __d_alloc - allocate a dcache entry
1477 * @sb: filesystem it will belong to
1da177e4
LT
1478 * @name: qstr of the name
1479 *
1480 * Allocates a dentry. It returns %NULL if there is insufficient memory
1481 * available. On a success the dentry is returned. The name passed in is
1482 * copied and the copy passed in may be reused after this call.
1483 */
1484
a4464dbc 1485struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1486{
1487 struct dentry *dentry;
1488 char *dname;
1489
e12ba74d 1490 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1491 if (!dentry)
1492 return NULL;
1493
6326c71f
LT
1494 /*
1495 * We guarantee that the inline name is always NUL-terminated.
1496 * This way the memcpy() done by the name switching in rename
1497 * will still always have a NUL at the end, even if we might
1498 * be overwriting an internal NUL character
1499 */
1500 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1501 if (name->len > DNAME_INLINE_LEN-1) {
1502 dname = kmalloc(name->len + 1, GFP_KERNEL);
1503 if (!dname) {
1504 kmem_cache_free(dentry_cache, dentry);
1505 return NULL;
1506 }
1507 } else {
1508 dname = dentry->d_iname;
1509 }
1da177e4
LT
1510
1511 dentry->d_name.len = name->len;
1512 dentry->d_name.hash = name->hash;
1513 memcpy(dname, name->name, name->len);
1514 dname[name->len] = 0;
1515
6326c71f
LT
1516 /* Make sure we always see the terminating NUL character */
1517 smp_wmb();
1518 dentry->d_name.name = dname;
1519
98474236 1520 dentry->d_lockref.count = 1;
dea3667b 1521 dentry->d_flags = 0;
1da177e4 1522 spin_lock_init(&dentry->d_lock);
31e6b01f 1523 seqcount_init(&dentry->d_seq);
1da177e4 1524 dentry->d_inode = NULL;
a4464dbc
AV
1525 dentry->d_parent = dentry;
1526 dentry->d_sb = sb;
1da177e4
LT
1527 dentry->d_op = NULL;
1528 dentry->d_fsdata = NULL;
ceb5bdc2 1529 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1530 INIT_LIST_HEAD(&dentry->d_lru);
1531 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1532 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1533 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1534 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1535
3e880fb5 1536 this_cpu_inc(nr_dentry);
312d3ca8 1537
1da177e4
LT
1538 return dentry;
1539}
a4464dbc
AV
1540
1541/**
1542 * d_alloc - allocate a dcache entry
1543 * @parent: parent of entry to allocate
1544 * @name: qstr of the name
1545 *
1546 * Allocates a dentry. It returns %NULL if there is insufficient memory
1547 * available. On a success the dentry is returned. The name passed in is
1548 * copied and the copy passed in may be reused after this call.
1549 */
1550struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1551{
1552 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1553 if (!dentry)
1554 return NULL;
1555
1556 spin_lock(&parent->d_lock);
1557 /*
1558 * don't need child lock because it is not subject
1559 * to concurrency here
1560 */
1561 __dget_dlock(parent);
1562 dentry->d_parent = parent;
1563 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1564 spin_unlock(&parent->d_lock);
1565
1566 return dentry;
1567}
ec4f8605 1568EXPORT_SYMBOL(d_alloc);
1da177e4 1569
4b936885
NP
1570struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1571{
a4464dbc
AV
1572 struct dentry *dentry = __d_alloc(sb, name);
1573 if (dentry)
4b936885 1574 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1575 return dentry;
1576}
1577EXPORT_SYMBOL(d_alloc_pseudo);
1578
1da177e4
LT
1579struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1580{
1581 struct qstr q;
1582
1583 q.name = name;
1584 q.len = strlen(name);
1585 q.hash = full_name_hash(q.name, q.len);
1586 return d_alloc(parent, &q);
1587}
ef26ca97 1588EXPORT_SYMBOL(d_alloc_name);
1da177e4 1589
fb045adb
NP
1590void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1591{
6f7f7caa
LT
1592 WARN_ON_ONCE(dentry->d_op);
1593 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1594 DCACHE_OP_COMPARE |
1595 DCACHE_OP_REVALIDATE |
ecf3d1f1 1596 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1597 DCACHE_OP_DELETE ));
1598 dentry->d_op = op;
1599 if (!op)
1600 return;
1601 if (op->d_hash)
1602 dentry->d_flags |= DCACHE_OP_HASH;
1603 if (op->d_compare)
1604 dentry->d_flags |= DCACHE_OP_COMPARE;
1605 if (op->d_revalidate)
1606 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1607 if (op->d_weak_revalidate)
1608 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1609 if (op->d_delete)
1610 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1611 if (op->d_prune)
1612 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1613
1614}
1615EXPORT_SYMBOL(d_set_d_op);
1616
360da900
OH
1617static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1618{
b23fb0a6 1619 spin_lock(&dentry->d_lock);
9875cf80
DH
1620 if (inode) {
1621 if (unlikely(IS_AUTOMOUNT(inode)))
1622 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1623 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1624 }
360da900 1625 dentry->d_inode = inode;
31e6b01f 1626 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1627 spin_unlock(&dentry->d_lock);
360da900
OH
1628 fsnotify_d_instantiate(dentry, inode);
1629}
1630
1da177e4
LT
1631/**
1632 * d_instantiate - fill in inode information for a dentry
1633 * @entry: dentry to complete
1634 * @inode: inode to attach to this dentry
1635 *
1636 * Fill in inode information in the entry.
1637 *
1638 * This turns negative dentries into productive full members
1639 * of society.
1640 *
1641 * NOTE! This assumes that the inode count has been incremented
1642 * (or otherwise set) by the caller to indicate that it is now
1643 * in use by the dcache.
1644 */
1645
1646void d_instantiate(struct dentry *entry, struct inode * inode)
1647{
b3d9b7a3 1648 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1649 if (inode)
1650 spin_lock(&inode->i_lock);
360da900 1651 __d_instantiate(entry, inode);
873feea0
NP
1652 if (inode)
1653 spin_unlock(&inode->i_lock);
1da177e4
LT
1654 security_d_instantiate(entry, inode);
1655}
ec4f8605 1656EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1657
1658/**
1659 * d_instantiate_unique - instantiate a non-aliased dentry
1660 * @entry: dentry to instantiate
1661 * @inode: inode to attach to this dentry
1662 *
1663 * Fill in inode information in the entry. On success, it returns NULL.
1664 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1665 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1666 *
1667 * Note that in order to avoid conflicts with rename() etc, the caller
1668 * had better be holding the parent directory semaphore.
e866cfa9
OD
1669 *
1670 * This also assumes that the inode count has been incremented
1671 * (or otherwise set) by the caller to indicate that it is now
1672 * in use by the dcache.
1da177e4 1673 */
770bfad8
DH
1674static struct dentry *__d_instantiate_unique(struct dentry *entry,
1675 struct inode *inode)
1da177e4
LT
1676{
1677 struct dentry *alias;
1678 int len = entry->d_name.len;
1679 const char *name = entry->d_name.name;
1680 unsigned int hash = entry->d_name.hash;
1681
770bfad8 1682 if (!inode) {
360da900 1683 __d_instantiate(entry, NULL);
770bfad8
DH
1684 return NULL;
1685 }
1686
b67bfe0d 1687 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1688 /*
1689 * Don't need alias->d_lock here, because aliases with
1690 * d_parent == entry->d_parent are not subject to name or
1691 * parent changes, because the parent inode i_mutex is held.
1692 */
12f8ad4b 1693 if (alias->d_name.hash != hash)
1da177e4
LT
1694 continue;
1695 if (alias->d_parent != entry->d_parent)
1696 continue;
ee983e89
LT
1697 if (alias->d_name.len != len)
1698 continue;
12f8ad4b 1699 if (dentry_cmp(alias, name, len))
1da177e4 1700 continue;
dc0474be 1701 __dget(alias);
1da177e4
LT
1702 return alias;
1703 }
770bfad8 1704
360da900 1705 __d_instantiate(entry, inode);
1da177e4
LT
1706 return NULL;
1707}
770bfad8
DH
1708
1709struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1710{
1711 struct dentry *result;
1712
b3d9b7a3 1713 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1714
873feea0
NP
1715 if (inode)
1716 spin_lock(&inode->i_lock);
770bfad8 1717 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1718 if (inode)
1719 spin_unlock(&inode->i_lock);
770bfad8
DH
1720
1721 if (!result) {
1722 security_d_instantiate(entry, inode);
1723 return NULL;
1724 }
1725
1726 BUG_ON(!d_unhashed(result));
1727 iput(inode);
1728 return result;
1729}
1730
1da177e4
LT
1731EXPORT_SYMBOL(d_instantiate_unique);
1732
adc0e91a
AV
1733struct dentry *d_make_root(struct inode *root_inode)
1734{
1735 struct dentry *res = NULL;
1736
1737 if (root_inode) {
26fe5750 1738 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1739
1740 res = __d_alloc(root_inode->i_sb, &name);
1741 if (res)
1742 d_instantiate(res, root_inode);
1743 else
1744 iput(root_inode);
1745 }
1746 return res;
1747}
1748EXPORT_SYMBOL(d_make_root);
1749
d891eedb
BF
1750static struct dentry * __d_find_any_alias(struct inode *inode)
1751{
1752 struct dentry *alias;
1753
b3d9b7a3 1754 if (hlist_empty(&inode->i_dentry))
d891eedb 1755 return NULL;
b3d9b7a3 1756 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1757 __dget(alias);
1758 return alias;
1759}
1760
46f72b34
SW
1761/**
1762 * d_find_any_alias - find any alias for a given inode
1763 * @inode: inode to find an alias for
1764 *
1765 * If any aliases exist for the given inode, take and return a
1766 * reference for one of them. If no aliases exist, return %NULL.
1767 */
1768struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1769{
1770 struct dentry *de;
1771
1772 spin_lock(&inode->i_lock);
1773 de = __d_find_any_alias(inode);
1774 spin_unlock(&inode->i_lock);
1775 return de;
1776}
46f72b34 1777EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1778
4ea3ada2
CH
1779/**
1780 * d_obtain_alias - find or allocate a dentry for a given inode
1781 * @inode: inode to allocate the dentry for
1782 *
1783 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1784 * similar open by handle operations. The returned dentry may be anonymous,
1785 * or may have a full name (if the inode was already in the cache).
1786 *
1787 * When called on a directory inode, we must ensure that the inode only ever
1788 * has one dentry. If a dentry is found, that is returned instead of
1789 * allocating a new one.
1790 *
1791 * On successful return, the reference to the inode has been transferred
44003728
CH
1792 * to the dentry. In case of an error the reference on the inode is released.
1793 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1794 * be passed in and will be the error will be propagate to the return value,
1795 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1796 */
1797struct dentry *d_obtain_alias(struct inode *inode)
1798{
b911a6bd 1799 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1800 struct dentry *tmp;
1801 struct dentry *res;
4ea3ada2
CH
1802
1803 if (!inode)
44003728 1804 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1805 if (IS_ERR(inode))
1806 return ERR_CAST(inode);
1807
d891eedb 1808 res = d_find_any_alias(inode);
9308a612
CH
1809 if (res)
1810 goto out_iput;
1811
a4464dbc 1812 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1813 if (!tmp) {
1814 res = ERR_PTR(-ENOMEM);
1815 goto out_iput;
4ea3ada2 1816 }
b5c84bf6 1817
873feea0 1818 spin_lock(&inode->i_lock);
d891eedb 1819 res = __d_find_any_alias(inode);
9308a612 1820 if (res) {
873feea0 1821 spin_unlock(&inode->i_lock);
9308a612
CH
1822 dput(tmp);
1823 goto out_iput;
1824 }
1825
1826 /* attach a disconnected dentry */
1827 spin_lock(&tmp->d_lock);
9308a612
CH
1828 tmp->d_inode = inode;
1829 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1830 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1831 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1832 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1833 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1834 spin_unlock(&tmp->d_lock);
873feea0 1835 spin_unlock(&inode->i_lock);
24ff6663 1836 security_d_instantiate(tmp, inode);
9308a612 1837
9308a612
CH
1838 return tmp;
1839
1840 out_iput:
24ff6663
JB
1841 if (res && !IS_ERR(res))
1842 security_d_instantiate(res, inode);
9308a612
CH
1843 iput(inode);
1844 return res;
4ea3ada2 1845}
adc48720 1846EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1847
1848/**
1849 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1850 * @inode: the inode which may have a disconnected dentry
1851 * @dentry: a negative dentry which we want to point to the inode.
1852 *
1853 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1854 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1855 * and return it, else simply d_add the inode to the dentry and return NULL.
1856 *
1857 * This is needed in the lookup routine of any filesystem that is exportable
1858 * (via knfsd) so that we can build dcache paths to directories effectively.
1859 *
1860 * If a dentry was found and moved, then it is returned. Otherwise NULL
1861 * is returned. This matches the expected return value of ->lookup.
1862 *
6d4ade98
SW
1863 * Cluster filesystems may call this function with a negative, hashed dentry.
1864 * In that case, we know that the inode will be a regular file, and also this
1865 * will only occur during atomic_open. So we need to check for the dentry
1866 * being already hashed only in the final case.
1da177e4
LT
1867 */
1868struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1869{
1870 struct dentry *new = NULL;
1871
a9049376
AV
1872 if (IS_ERR(inode))
1873 return ERR_CAST(inode);
1874
21c0d8fd 1875 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1876 spin_lock(&inode->i_lock);
32ba9c3f 1877 new = __d_find_alias(inode, 1);
1da177e4 1878 if (new) {
32ba9c3f 1879 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1880 spin_unlock(&inode->i_lock);
1da177e4 1881 security_d_instantiate(new, inode);
1da177e4
LT
1882 d_move(new, dentry);
1883 iput(inode);
1884 } else {
873feea0 1885 /* already taking inode->i_lock, so d_add() by hand */
360da900 1886 __d_instantiate(dentry, inode);
873feea0 1887 spin_unlock(&inode->i_lock);
1da177e4
LT
1888 security_d_instantiate(dentry, inode);
1889 d_rehash(dentry);
1890 }
6d4ade98
SW
1891 } else {
1892 d_instantiate(dentry, inode);
1893 if (d_unhashed(dentry))
1894 d_rehash(dentry);
1895 }
1da177e4
LT
1896 return new;
1897}
ec4f8605 1898EXPORT_SYMBOL(d_splice_alias);
1da177e4 1899
9403540c
BN
1900/**
1901 * d_add_ci - lookup or allocate new dentry with case-exact name
1902 * @inode: the inode case-insensitive lookup has found
1903 * @dentry: the negative dentry that was passed to the parent's lookup func
1904 * @name: the case-exact name to be associated with the returned dentry
1905 *
1906 * This is to avoid filling the dcache with case-insensitive names to the
1907 * same inode, only the actual correct case is stored in the dcache for
1908 * case-insensitive filesystems.
1909 *
1910 * For a case-insensitive lookup match and if the the case-exact dentry
1911 * already exists in in the dcache, use it and return it.
1912 *
1913 * If no entry exists with the exact case name, allocate new dentry with
1914 * the exact case, and return the spliced entry.
1915 */
e45b590b 1916struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1917 struct qstr *name)
1918{
9403540c
BN
1919 struct dentry *found;
1920 struct dentry *new;
1921
b6520c81
CH
1922 /*
1923 * First check if a dentry matching the name already exists,
1924 * if not go ahead and create it now.
1925 */
9403540c 1926 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1927 if (unlikely(IS_ERR(found)))
1928 goto err_out;
9403540c
BN
1929 if (!found) {
1930 new = d_alloc(dentry->d_parent, name);
1931 if (!new) {
4f522a24 1932 found = ERR_PTR(-ENOMEM);
9403540c
BN
1933 goto err_out;
1934 }
b6520c81 1935
9403540c
BN
1936 found = d_splice_alias(inode, new);
1937 if (found) {
1938 dput(new);
1939 return found;
1940 }
1941 return new;
1942 }
b6520c81
CH
1943
1944 /*
1945 * If a matching dentry exists, and it's not negative use it.
1946 *
1947 * Decrement the reference count to balance the iget() done
1948 * earlier on.
1949 */
9403540c
BN
1950 if (found->d_inode) {
1951 if (unlikely(found->d_inode != inode)) {
1952 /* This can't happen because bad inodes are unhashed. */
1953 BUG_ON(!is_bad_inode(inode));
1954 BUG_ON(!is_bad_inode(found->d_inode));
1955 }
9403540c
BN
1956 iput(inode);
1957 return found;
1958 }
b6520c81 1959
9403540c 1960 /*
9403540c 1961 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1962 * already has a dentry.
9403540c 1963 */
4513d899
AV
1964 new = d_splice_alias(inode, found);
1965 if (new) {
1966 dput(found);
1967 found = new;
9403540c 1968 }
4513d899 1969 return found;
9403540c
BN
1970
1971err_out:
1972 iput(inode);
4f522a24 1973 return found;
9403540c 1974}
ec4f8605 1975EXPORT_SYMBOL(d_add_ci);
1da177e4 1976
12f8ad4b
LT
1977/*
1978 * Do the slow-case of the dentry name compare.
1979 *
1980 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1981 * load the name and length information, so that the
12f8ad4b
LT
1982 * filesystem can rely on them, and can use the 'name' and
1983 * 'len' information without worrying about walking off the
1984 * end of memory etc.
1985 *
1986 * Thus the read_seqcount_retry() and the "duplicate" info
1987 * in arguments (the low-level filesystem should not look
1988 * at the dentry inode or name contents directly, since
1989 * rename can change them while we're in RCU mode).
1990 */
1991enum slow_d_compare {
1992 D_COMP_OK,
1993 D_COMP_NOMATCH,
1994 D_COMP_SEQRETRY,
1995};
1996
1997static noinline enum slow_d_compare slow_dentry_cmp(
1998 const struct dentry *parent,
12f8ad4b
LT
1999 struct dentry *dentry,
2000 unsigned int seq,
2001 const struct qstr *name)
2002{
2003 int tlen = dentry->d_name.len;
2004 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2005
2006 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2007 cpu_relax();
2008 return D_COMP_SEQRETRY;
2009 }
da53be12 2010 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2011 return D_COMP_NOMATCH;
2012 return D_COMP_OK;
2013}
2014
31e6b01f
NP
2015/**
2016 * __d_lookup_rcu - search for a dentry (racy, store-free)
2017 * @parent: parent dentry
2018 * @name: qstr of name we wish to find
1f1e6e52 2019 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2020 * Returns: dentry, or NULL
2021 *
2022 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2023 * resolution (store-free path walking) design described in
2024 * Documentation/filesystems/path-lookup.txt.
2025 *
2026 * This is not to be used outside core vfs.
2027 *
2028 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2029 * held, and rcu_read_lock held. The returned dentry must not be stored into
2030 * without taking d_lock and checking d_seq sequence count against @seq
2031 * returned here.
2032 *
15570086 2033 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2034 * function.
2035 *
2036 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2037 * the returned dentry, so long as its parent's seqlock is checked after the
2038 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2039 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2040 *
2041 * NOTE! The caller *has* to check the resulting dentry against the sequence
2042 * number we've returned before using any of the resulting dentry state!
31e6b01f 2043 */
8966be90
LT
2044struct dentry *__d_lookup_rcu(const struct dentry *parent,
2045 const struct qstr *name,
da53be12 2046 unsigned *seqp)
31e6b01f 2047{
26fe5750 2048 u64 hashlen = name->hash_len;
31e6b01f 2049 const unsigned char *str = name->name;
26fe5750 2050 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2051 struct hlist_bl_node *node;
31e6b01f
NP
2052 struct dentry *dentry;
2053
2054 /*
2055 * Note: There is significant duplication with __d_lookup_rcu which is
2056 * required to prevent single threaded performance regressions
2057 * especially on architectures where smp_rmb (in seqcounts) are costly.
2058 * Keep the two functions in sync.
2059 */
2060
2061 /*
2062 * The hash list is protected using RCU.
2063 *
2064 * Carefully use d_seq when comparing a candidate dentry, to avoid
2065 * races with d_move().
2066 *
2067 * It is possible that concurrent renames can mess up our list
2068 * walk here and result in missing our dentry, resulting in the
2069 * false-negative result. d_lookup() protects against concurrent
2070 * renames using rename_lock seqlock.
2071 *
b0a4bb83 2072 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2073 */
b07ad996 2074 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2075 unsigned seq;
31e6b01f 2076
31e6b01f 2077seqretry:
12f8ad4b
LT
2078 /*
2079 * The dentry sequence count protects us from concurrent
da53be12 2080 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2081 *
2082 * The caller must perform a seqcount check in order
da53be12 2083 * to do anything useful with the returned dentry.
12f8ad4b
LT
2084 *
2085 * NOTE! We do a "raw" seqcount_begin here. That means that
2086 * we don't wait for the sequence count to stabilize if it
2087 * is in the middle of a sequence change. If we do the slow
2088 * dentry compare, we will do seqretries until it is stable,
2089 * and if we end up with a successful lookup, we actually
2090 * want to exit RCU lookup anyway.
2091 */
2092 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2093 if (dentry->d_parent != parent)
2094 continue;
2e321806
LT
2095 if (d_unhashed(dentry))
2096 continue;
12f8ad4b 2097
830c0f0e 2098 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2099 if (dentry->d_name.hash != hashlen_hash(hashlen))
2100 continue;
da53be12
LT
2101 *seqp = seq;
2102 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2103 case D_COMP_OK:
2104 return dentry;
2105 case D_COMP_NOMATCH:
31e6b01f 2106 continue;
12f8ad4b
LT
2107 default:
2108 goto seqretry;
2109 }
31e6b01f 2110 }
12f8ad4b 2111
26fe5750 2112 if (dentry->d_name.hash_len != hashlen)
ee983e89 2113 continue;
da53be12 2114 *seqp = seq;
26fe5750 2115 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2116 return dentry;
31e6b01f
NP
2117 }
2118 return NULL;
2119}
2120
1da177e4
LT
2121/**
2122 * d_lookup - search for a dentry
2123 * @parent: parent dentry
2124 * @name: qstr of name we wish to find
b04f784e 2125 * Returns: dentry, or NULL
1da177e4 2126 *
b04f784e
NP
2127 * d_lookup searches the children of the parent dentry for the name in
2128 * question. If the dentry is found its reference count is incremented and the
2129 * dentry is returned. The caller must use dput to free the entry when it has
2130 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2131 */
da2d8455 2132struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2133{
31e6b01f 2134 struct dentry *dentry;
949854d0 2135 unsigned seq;
1da177e4
LT
2136
2137 do {
2138 seq = read_seqbegin(&rename_lock);
2139 dentry = __d_lookup(parent, name);
2140 if (dentry)
2141 break;
2142 } while (read_seqretry(&rename_lock, seq));
2143 return dentry;
2144}
ec4f8605 2145EXPORT_SYMBOL(d_lookup);
1da177e4 2146
31e6b01f 2147/**
b04f784e
NP
2148 * __d_lookup - search for a dentry (racy)
2149 * @parent: parent dentry
2150 * @name: qstr of name we wish to find
2151 * Returns: dentry, or NULL
2152 *
2153 * __d_lookup is like d_lookup, however it may (rarely) return a
2154 * false-negative result due to unrelated rename activity.
2155 *
2156 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2157 * however it must be used carefully, eg. with a following d_lookup in
2158 * the case of failure.
2159 *
2160 * __d_lookup callers must be commented.
2161 */
a713ca2a 2162struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2163{
2164 unsigned int len = name->len;
2165 unsigned int hash = name->hash;
2166 const unsigned char *str = name->name;
b07ad996 2167 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2168 struct hlist_bl_node *node;
31e6b01f 2169 struct dentry *found = NULL;
665a7583 2170 struct dentry *dentry;
1da177e4 2171
31e6b01f
NP
2172 /*
2173 * Note: There is significant duplication with __d_lookup_rcu which is
2174 * required to prevent single threaded performance regressions
2175 * especially on architectures where smp_rmb (in seqcounts) are costly.
2176 * Keep the two functions in sync.
2177 */
2178
b04f784e
NP
2179 /*
2180 * The hash list is protected using RCU.
2181 *
2182 * Take d_lock when comparing a candidate dentry, to avoid races
2183 * with d_move().
2184 *
2185 * It is possible that concurrent renames can mess up our list
2186 * walk here and result in missing our dentry, resulting in the
2187 * false-negative result. d_lookup() protects against concurrent
2188 * renames using rename_lock seqlock.
2189 *
b0a4bb83 2190 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2191 */
1da177e4
LT
2192 rcu_read_lock();
2193
b07ad996 2194 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2195
1da177e4
LT
2196 if (dentry->d_name.hash != hash)
2197 continue;
1da177e4
LT
2198
2199 spin_lock(&dentry->d_lock);
1da177e4
LT
2200 if (dentry->d_parent != parent)
2201 goto next;
d0185c08
LT
2202 if (d_unhashed(dentry))
2203 goto next;
2204
1da177e4
LT
2205 /*
2206 * It is safe to compare names since d_move() cannot
2207 * change the qstr (protected by d_lock).
2208 */
fb045adb 2209 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2210 int tlen = dentry->d_name.len;
2211 const char *tname = dentry->d_name.name;
da53be12 2212 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2213 goto next;
2214 } else {
ee983e89
LT
2215 if (dentry->d_name.len != len)
2216 goto next;
12f8ad4b 2217 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2218 goto next;
2219 }
2220
98474236 2221 dentry->d_lockref.count++;
d0185c08 2222 found = dentry;
1da177e4
LT
2223 spin_unlock(&dentry->d_lock);
2224 break;
2225next:
2226 spin_unlock(&dentry->d_lock);
2227 }
2228 rcu_read_unlock();
2229
2230 return found;
2231}
2232
3e7e241f
EB
2233/**
2234 * d_hash_and_lookup - hash the qstr then search for a dentry
2235 * @dir: Directory to search in
2236 * @name: qstr of name we wish to find
2237 *
4f522a24 2238 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2239 */
2240struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2241{
3e7e241f
EB
2242 /*
2243 * Check for a fs-specific hash function. Note that we must
2244 * calculate the standard hash first, as the d_op->d_hash()
2245 * routine may choose to leave the hash value unchanged.
2246 */
2247 name->hash = full_name_hash(name->name, name->len);
fb045adb 2248 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2249 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2250 if (unlikely(err < 0))
2251 return ERR_PTR(err);
3e7e241f 2252 }
4f522a24 2253 return d_lookup(dir, name);
3e7e241f 2254}
4f522a24 2255EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2256
1da177e4 2257/**
786a5e15 2258 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2259 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2260 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2261 *
2262 * An insecure source has sent us a dentry, here we verify it and dget() it.
2263 * This is used by ncpfs in its readdir implementation.
2264 * Zero is returned in the dentry is invalid.
786a5e15
NP
2265 *
2266 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2267 */
d3a23e16 2268int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2269{
786a5e15 2270 struct dentry *child;
d3a23e16 2271
2fd6b7f5 2272 spin_lock(&dparent->d_lock);
786a5e15
NP
2273 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2274 if (dentry == child) {
2fd6b7f5 2275 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2276 __dget_dlock(dentry);
2fd6b7f5
NP
2277 spin_unlock(&dentry->d_lock);
2278 spin_unlock(&dparent->d_lock);
1da177e4
LT
2279 return 1;
2280 }
2281 }
2fd6b7f5 2282 spin_unlock(&dparent->d_lock);
786a5e15 2283
1da177e4
LT
2284 return 0;
2285}
ec4f8605 2286EXPORT_SYMBOL(d_validate);
1da177e4
LT
2287
2288/*
2289 * When a file is deleted, we have two options:
2290 * - turn this dentry into a negative dentry
2291 * - unhash this dentry and free it.
2292 *
2293 * Usually, we want to just turn this into
2294 * a negative dentry, but if anybody else is
2295 * currently using the dentry or the inode
2296 * we can't do that and we fall back on removing
2297 * it from the hash queues and waiting for
2298 * it to be deleted later when it has no users
2299 */
2300
2301/**
2302 * d_delete - delete a dentry
2303 * @dentry: The dentry to delete
2304 *
2305 * Turn the dentry into a negative dentry if possible, otherwise
2306 * remove it from the hash queues so it can be deleted later
2307 */
2308
2309void d_delete(struct dentry * dentry)
2310{
873feea0 2311 struct inode *inode;
7a91bf7f 2312 int isdir = 0;
1da177e4
LT
2313 /*
2314 * Are we the only user?
2315 */
357f8e65 2316again:
1da177e4 2317 spin_lock(&dentry->d_lock);
873feea0
NP
2318 inode = dentry->d_inode;
2319 isdir = S_ISDIR(inode->i_mode);
98474236 2320 if (dentry->d_lockref.count == 1) {
1fe0c023 2321 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2322 spin_unlock(&dentry->d_lock);
2323 cpu_relax();
2324 goto again;
2325 }
13e3c5e5 2326 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2327 dentry_unlink_inode(dentry);
7a91bf7f 2328 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2329 return;
2330 }
2331
2332 if (!d_unhashed(dentry))
2333 __d_drop(dentry);
2334
2335 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2336
2337 fsnotify_nameremove(dentry, isdir);
1da177e4 2338}
ec4f8605 2339EXPORT_SYMBOL(d_delete);
1da177e4 2340
b07ad996 2341static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2342{
ceb5bdc2 2343 BUG_ON(!d_unhashed(entry));
1879fd6a 2344 hlist_bl_lock(b);
dea3667b 2345 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2346 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2347 hlist_bl_unlock(b);
1da177e4
LT
2348}
2349
770bfad8
DH
2350static void _d_rehash(struct dentry * entry)
2351{
2352 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2353}
2354
1da177e4
LT
2355/**
2356 * d_rehash - add an entry back to the hash
2357 * @entry: dentry to add to the hash
2358 *
2359 * Adds a dentry to the hash according to its name.
2360 */
2361
2362void d_rehash(struct dentry * entry)
2363{
1da177e4 2364 spin_lock(&entry->d_lock);
770bfad8 2365 _d_rehash(entry);
1da177e4 2366 spin_unlock(&entry->d_lock);
1da177e4 2367}
ec4f8605 2368EXPORT_SYMBOL(d_rehash);
1da177e4 2369
fb2d5b86
NP
2370/**
2371 * dentry_update_name_case - update case insensitive dentry with a new name
2372 * @dentry: dentry to be updated
2373 * @name: new name
2374 *
2375 * Update a case insensitive dentry with new case of name.
2376 *
2377 * dentry must have been returned by d_lookup with name @name. Old and new
2378 * name lengths must match (ie. no d_compare which allows mismatched name
2379 * lengths).
2380 *
2381 * Parent inode i_mutex must be held over d_lookup and into this call (to
2382 * keep renames and concurrent inserts, and readdir(2) away).
2383 */
2384void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2385{
7ebfa57f 2386 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2387 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2388
fb2d5b86 2389 spin_lock(&dentry->d_lock);
31e6b01f 2390 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2391 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2392 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2393 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2394}
2395EXPORT_SYMBOL(dentry_update_name_case);
2396
1da177e4
LT
2397static void switch_names(struct dentry *dentry, struct dentry *target)
2398{
2399 if (dname_external(target)) {
2400 if (dname_external(dentry)) {
2401 /*
2402 * Both external: swap the pointers
2403 */
9a8d5bb4 2404 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2405 } else {
2406 /*
2407 * dentry:internal, target:external. Steal target's
2408 * storage and make target internal.
2409 */
321bcf92
BF
2410 memcpy(target->d_iname, dentry->d_name.name,
2411 dentry->d_name.len + 1);
1da177e4
LT
2412 dentry->d_name.name = target->d_name.name;
2413 target->d_name.name = target->d_iname;
2414 }
2415 } else {
2416 if (dname_external(dentry)) {
2417 /*
2418 * dentry:external, target:internal. Give dentry's
2419 * storage to target and make dentry internal
2420 */
2421 memcpy(dentry->d_iname, target->d_name.name,
2422 target->d_name.len + 1);
2423 target->d_name.name = dentry->d_name.name;
2424 dentry->d_name.name = dentry->d_iname;
2425 } else {
2426 /*
2427 * Both are internal. Just copy target to dentry
2428 */
2429 memcpy(dentry->d_iname, target->d_name.name,
2430 target->d_name.len + 1);
dc711ca3
AV
2431 dentry->d_name.len = target->d_name.len;
2432 return;
1da177e4
LT
2433 }
2434 }
9a8d5bb4 2435 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2436}
2437
2fd6b7f5
NP
2438static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2439{
2440 /*
2441 * XXXX: do we really need to take target->d_lock?
2442 */
2443 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2444 spin_lock(&target->d_parent->d_lock);
2445 else {
2446 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2447 spin_lock(&dentry->d_parent->d_lock);
2448 spin_lock_nested(&target->d_parent->d_lock,
2449 DENTRY_D_LOCK_NESTED);
2450 } else {
2451 spin_lock(&target->d_parent->d_lock);
2452 spin_lock_nested(&dentry->d_parent->d_lock,
2453 DENTRY_D_LOCK_NESTED);
2454 }
2455 }
2456 if (target < dentry) {
2457 spin_lock_nested(&target->d_lock, 2);
2458 spin_lock_nested(&dentry->d_lock, 3);
2459 } else {
2460 spin_lock_nested(&dentry->d_lock, 2);
2461 spin_lock_nested(&target->d_lock, 3);
2462 }
2463}
2464
2465static void dentry_unlock_parents_for_move(struct dentry *dentry,
2466 struct dentry *target)
2467{
2468 if (target->d_parent != dentry->d_parent)
2469 spin_unlock(&dentry->d_parent->d_lock);
2470 if (target->d_parent != target)
2471 spin_unlock(&target->d_parent->d_lock);
2472}
2473
1da177e4 2474/*
2fd6b7f5
NP
2475 * When switching names, the actual string doesn't strictly have to
2476 * be preserved in the target - because we're dropping the target
2477 * anyway. As such, we can just do a simple memcpy() to copy over
2478 * the new name before we switch.
2479 *
2480 * Note that we have to be a lot more careful about getting the hash
2481 * switched - we have to switch the hash value properly even if it
2482 * then no longer matches the actual (corrupted) string of the target.
2483 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2484 */
9eaef27b 2485/*
18367501 2486 * __d_move - move a dentry
1da177e4
LT
2487 * @dentry: entry to move
2488 * @target: new dentry
2489 *
2490 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2491 * dcache entries should not be moved in this way. Caller must hold
2492 * rename_lock, the i_mutex of the source and target directories,
2493 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2494 */
18367501 2495static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2496{
1da177e4
LT
2497 if (!dentry->d_inode)
2498 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2499
2fd6b7f5
NP
2500 BUG_ON(d_ancestor(dentry, target));
2501 BUG_ON(d_ancestor(target, dentry));
2502
2fd6b7f5 2503 dentry_lock_for_move(dentry, target);
1da177e4 2504
31e6b01f
NP
2505 write_seqcount_begin(&dentry->d_seq);
2506 write_seqcount_begin(&target->d_seq);
2507
ceb5bdc2
NP
2508 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2509
2510 /*
2511 * Move the dentry to the target hash queue. Don't bother checking
2512 * for the same hash queue because of how unlikely it is.
2513 */
2514 __d_drop(dentry);
789680d1 2515 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2516
2517 /* Unhash the target: dput() will then get rid of it */
2518 __d_drop(target);
2519
5160ee6f
ED
2520 list_del(&dentry->d_u.d_child);
2521 list_del(&target->d_u.d_child);
1da177e4
LT
2522
2523 /* Switch the names.. */
2524 switch_names(dentry, target);
9a8d5bb4 2525 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2526
2527 /* ... and switch the parents */
2528 if (IS_ROOT(dentry)) {
2529 dentry->d_parent = target->d_parent;
2530 target->d_parent = target;
5160ee6f 2531 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2532 } else {
9a8d5bb4 2533 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2534
2535 /* And add them back to the (new) parent lists */
5160ee6f 2536 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2537 }
2538
5160ee6f 2539 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2540
31e6b01f
NP
2541 write_seqcount_end(&target->d_seq);
2542 write_seqcount_end(&dentry->d_seq);
2543
2fd6b7f5 2544 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2545 spin_unlock(&target->d_lock);
c32ccd87 2546 fsnotify_d_move(dentry);
1da177e4 2547 spin_unlock(&dentry->d_lock);
18367501
AV
2548}
2549
2550/*
2551 * d_move - move a dentry
2552 * @dentry: entry to move
2553 * @target: new dentry
2554 *
2555 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2556 * dcache entries should not be moved in this way. See the locking
2557 * requirements for __d_move.
18367501
AV
2558 */
2559void d_move(struct dentry *dentry, struct dentry *target)
2560{
2561 write_seqlock(&rename_lock);
2562 __d_move(dentry, target);
1da177e4 2563 write_sequnlock(&rename_lock);
9eaef27b 2564}
ec4f8605 2565EXPORT_SYMBOL(d_move);
1da177e4 2566
e2761a11
OH
2567/**
2568 * d_ancestor - search for an ancestor
2569 * @p1: ancestor dentry
2570 * @p2: child dentry
2571 *
2572 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2573 * an ancestor of p2, else NULL.
9eaef27b 2574 */
e2761a11 2575struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2576{
2577 struct dentry *p;
2578
871c0067 2579 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2580 if (p->d_parent == p1)
e2761a11 2581 return p;
9eaef27b 2582 }
e2761a11 2583 return NULL;
9eaef27b
TM
2584}
2585
2586/*
2587 * This helper attempts to cope with remotely renamed directories
2588 *
2589 * It assumes that the caller is already holding
18367501 2590 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2591 *
2592 * Note: If ever the locking in lock_rename() changes, then please
2593 * remember to update this too...
9eaef27b 2594 */
873feea0
NP
2595static struct dentry *__d_unalias(struct inode *inode,
2596 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2597{
2598 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2599 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2600
2601 /* If alias and dentry share a parent, then no extra locks required */
2602 if (alias->d_parent == dentry->d_parent)
2603 goto out_unalias;
2604
9eaef27b 2605 /* See lock_rename() */
9eaef27b
TM
2606 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2607 goto out_err;
2608 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2609 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2610 goto out_err;
2611 m2 = &alias->d_parent->d_inode->i_mutex;
2612out_unalias:
ee3efa91
AV
2613 if (likely(!d_mountpoint(alias))) {
2614 __d_move(alias, dentry);
2615 ret = alias;
2616 }
9eaef27b 2617out_err:
873feea0 2618 spin_unlock(&inode->i_lock);
9eaef27b
TM
2619 if (m2)
2620 mutex_unlock(m2);
2621 if (m1)
2622 mutex_unlock(m1);
2623 return ret;
2624}
2625
770bfad8
DH
2626/*
2627 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2628 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2629 * returns with anon->d_lock held!
770bfad8
DH
2630 */
2631static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2632{
740da42e 2633 struct dentry *dparent;
770bfad8 2634
2fd6b7f5 2635 dentry_lock_for_move(anon, dentry);
770bfad8 2636
31e6b01f
NP
2637 write_seqcount_begin(&dentry->d_seq);
2638 write_seqcount_begin(&anon->d_seq);
2639
770bfad8 2640 dparent = dentry->d_parent;
770bfad8 2641
2fd6b7f5
NP
2642 switch_names(dentry, anon);
2643 swap(dentry->d_name.hash, anon->d_name.hash);
2644
740da42e
AV
2645 dentry->d_parent = dentry;
2646 list_del_init(&dentry->d_u.d_child);
2647 anon->d_parent = dparent;
9ed53b12 2648 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2649
31e6b01f
NP
2650 write_seqcount_end(&dentry->d_seq);
2651 write_seqcount_end(&anon->d_seq);
2652
2fd6b7f5
NP
2653 dentry_unlock_parents_for_move(anon, dentry);
2654 spin_unlock(&dentry->d_lock);
2655
2656 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2657 anon->d_flags &= ~DCACHE_DISCONNECTED;
2658}
2659
2660/**
2661 * d_materialise_unique - introduce an inode into the tree
2662 * @dentry: candidate dentry
2663 * @inode: inode to bind to the dentry, to which aliases may be attached
2664 *
2665 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2666 * root directory alias in its place if there is one. Caller must hold the
2667 * i_mutex of the parent directory.
770bfad8
DH
2668 */
2669struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2670{
9eaef27b 2671 struct dentry *actual;
770bfad8
DH
2672
2673 BUG_ON(!d_unhashed(dentry));
2674
770bfad8
DH
2675 if (!inode) {
2676 actual = dentry;
360da900 2677 __d_instantiate(dentry, NULL);
357f8e65
NP
2678 d_rehash(actual);
2679 goto out_nolock;
770bfad8
DH
2680 }
2681
873feea0 2682 spin_lock(&inode->i_lock);
357f8e65 2683
9eaef27b
TM
2684 if (S_ISDIR(inode->i_mode)) {
2685 struct dentry *alias;
2686
2687 /* Does an aliased dentry already exist? */
32ba9c3f 2688 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2689 if (alias) {
2690 actual = alias;
18367501
AV
2691 write_seqlock(&rename_lock);
2692
2693 if (d_ancestor(alias, dentry)) {
2694 /* Check for loops */
2695 actual = ERR_PTR(-ELOOP);
b18dafc8 2696 spin_unlock(&inode->i_lock);
18367501
AV
2697 } else if (IS_ROOT(alias)) {
2698 /* Is this an anonymous mountpoint that we
2699 * could splice into our tree? */
9eaef27b 2700 __d_materialise_dentry(dentry, alias);
18367501 2701 write_sequnlock(&rename_lock);
9eaef27b
TM
2702 __d_drop(alias);
2703 goto found;
18367501
AV
2704 } else {
2705 /* Nope, but we must(!) avoid directory
b18dafc8 2706 * aliasing. This drops inode->i_lock */
18367501 2707 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2708 }
18367501 2709 write_sequnlock(&rename_lock);
dd179946
DH
2710 if (IS_ERR(actual)) {
2711 if (PTR_ERR(actual) == -ELOOP)
2712 pr_warn_ratelimited(
2713 "VFS: Lookup of '%s' in %s %s"
2714 " would have caused loop\n",
2715 dentry->d_name.name,
2716 inode->i_sb->s_type->name,
2717 inode->i_sb->s_id);
9eaef27b 2718 dput(alias);
dd179946 2719 }
9eaef27b
TM
2720 goto out_nolock;
2721 }
770bfad8
DH
2722 }
2723
2724 /* Add a unique reference */
2725 actual = __d_instantiate_unique(dentry, inode);
2726 if (!actual)
2727 actual = dentry;
357f8e65
NP
2728 else
2729 BUG_ON(!d_unhashed(actual));
770bfad8 2730
770bfad8
DH
2731 spin_lock(&actual->d_lock);
2732found:
2733 _d_rehash(actual);
2734 spin_unlock(&actual->d_lock);
873feea0 2735 spin_unlock(&inode->i_lock);
9eaef27b 2736out_nolock:
770bfad8
DH
2737 if (actual == dentry) {
2738 security_d_instantiate(dentry, inode);
2739 return NULL;
2740 }
2741
2742 iput(inode);
2743 return actual;
770bfad8 2744}
ec4f8605 2745EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2746
cdd16d02 2747static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2748{
2749 *buflen -= namelen;
2750 if (*buflen < 0)
2751 return -ENAMETOOLONG;
2752 *buffer -= namelen;
2753 memcpy(*buffer, str, namelen);
2754 return 0;
2755}
2756
232d2d60
WL
2757/**
2758 * prepend_name - prepend a pathname in front of current buffer pointer
2759 * buffer: buffer pointer
2760 * buflen: allocated length of the buffer
2761 * name: name string and length qstr structure
2762 *
2763 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2764 * make sure that either the old or the new name pointer and length are
2765 * fetched. However, there may be mismatch between length and pointer.
2766 * The length cannot be trusted, we need to copy it byte-by-byte until
2767 * the length is reached or a null byte is found. It also prepends "/" at
2768 * the beginning of the name. The sequence number check at the caller will
2769 * retry it again when a d_move() does happen. So any garbage in the buffer
2770 * due to mismatched pointer and length will be discarded.
2771 */
cdd16d02
MS
2772static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2773{
232d2d60
WL
2774 const char *dname = ACCESS_ONCE(name->name);
2775 u32 dlen = ACCESS_ONCE(name->len);
2776 char *p;
2777
2778 if (*buflen < dlen + 1)
2779 return -ENAMETOOLONG;
2780 *buflen -= dlen + 1;
2781 p = *buffer -= dlen + 1;
2782 *p++ = '/';
2783 while (dlen--) {
2784 char c = *dname++;
2785 if (!c)
2786 break;
2787 *p++ = c;
2788 }
2789 return 0;
cdd16d02
MS
2790}
2791
1da177e4 2792/**
208898c1 2793 * prepend_path - Prepend path string to a buffer
9d1bc601 2794 * @path: the dentry/vfsmount to report
02125a82 2795 * @root: root vfsmnt/dentry
f2eb6575
MS
2796 * @buffer: pointer to the end of the buffer
2797 * @buflen: pointer to buffer length
552ce544 2798 *
232d2d60
WL
2799 * The function tries to write out the pathname without taking any lock other
2800 * than the RCU read lock to make sure that dentries won't go away. It only
2801 * checks the sequence number of the global rename_lock as any change in the
2802 * dentry's d_seq will be preceded by changes in the rename_lock sequence
2803 * number. If the sequence number had been change, it will restart the whole
2804 * pathname back-tracing sequence again. It performs a total of 3 trials of
2805 * lockless back-tracing sequences before falling back to take the
2806 * rename_lock.
1da177e4 2807 */
02125a82
AV
2808static int prepend_path(const struct path *path,
2809 const struct path *root,
f2eb6575 2810 char **buffer, int *buflen)
1da177e4 2811{
9d1bc601
MS
2812 struct dentry *dentry = path->dentry;
2813 struct vfsmount *vfsmnt = path->mnt;
0714a533 2814 struct mount *mnt = real_mount(vfsmnt);
f2eb6575 2815 int error = 0;
232d2d60
WL
2816 unsigned seq = 0;
2817 char *bptr;
2818 int blen;
6092d048 2819
48f5ec21 2820 rcu_read_lock();
232d2d60
WL
2821restart:
2822 bptr = *buffer;
2823 blen = *buflen;
2824 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2825 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2826 struct dentry * parent;
2827
1da177e4 2828 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2829 /* Global root? */
232d2d60
WL
2830 if (mnt_has_parent(mnt)) {
2831 dentry = mnt->mnt_mountpoint;
2832 mnt = mnt->mnt_parent;
2833 vfsmnt = &mnt->mnt;
2834 continue;
2835 }
2836 /*
2837 * Filesystems needing to implement special "root names"
2838 * should do so with ->d_dname()
2839 */
2840 if (IS_ROOT(dentry) &&
2841 (dentry->d_name.len != 1 ||
2842 dentry->d_name.name[0] != '/')) {
2843 WARN(1, "Root dentry has weird name <%.*s>\n",
2844 (int) dentry->d_name.len,
2845 dentry->d_name.name);
2846 }
2847 if (!error)
2848 error = is_mounted(vfsmnt) ? 1 : 2;
2849 break;
1da177e4
LT
2850 }
2851 parent = dentry->d_parent;
2852 prefetch(parent);
232d2d60 2853 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2854 if (error)
2855 break;
2856
1da177e4
LT
2857 dentry = parent;
2858 }
48f5ec21
AV
2859 if (!(seq & 1))
2860 rcu_read_unlock();
2861 if (need_seqretry(&rename_lock, seq)) {
2862 seq = 1;
232d2d60 2863 goto restart;
48f5ec21
AV
2864 }
2865 done_seqretry(&rename_lock, seq);
1da177e4 2866
232d2d60
WL
2867 if (error >= 0 && bptr == *buffer) {
2868 if (--blen < 0)
2869 error = -ENAMETOOLONG;
2870 else
2871 *--bptr = '/';
2872 }
2873 *buffer = bptr;
2874 *buflen = blen;
7ea600b5 2875 return error;
f2eb6575 2876}
be285c71 2877
f2eb6575
MS
2878/**
2879 * __d_path - return the path of a dentry
2880 * @path: the dentry/vfsmount to report
02125a82 2881 * @root: root vfsmnt/dentry
cd956a1c 2882 * @buf: buffer to return value in
f2eb6575
MS
2883 * @buflen: buffer length
2884 *
ffd1f4ed 2885 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2886 *
2887 * Returns a pointer into the buffer or an error code if the
2888 * path was too long.
2889 *
be148247 2890 * "buflen" should be positive.
f2eb6575 2891 *
02125a82 2892 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2893 */
02125a82
AV
2894char *__d_path(const struct path *path,
2895 const struct path *root,
f2eb6575
MS
2896 char *buf, int buflen)
2897{
2898 char *res = buf + buflen;
2899 int error;
2900
2901 prepend(&res, &buflen, "\0", 1);
7ea600b5 2902 br_read_lock(&vfsmount_lock);
f2eb6575 2903 error = prepend_path(path, root, &res, &buflen);
7ea600b5 2904 br_read_unlock(&vfsmount_lock);
be148247 2905
02125a82
AV
2906 if (error < 0)
2907 return ERR_PTR(error);
2908 if (error > 0)
2909 return NULL;
2910 return res;
2911}
2912
2913char *d_absolute_path(const struct path *path,
2914 char *buf, int buflen)
2915{
2916 struct path root = {};
2917 char *res = buf + buflen;
2918 int error;
2919
2920 prepend(&res, &buflen, "\0", 1);
7ea600b5 2921 br_read_lock(&vfsmount_lock);
02125a82 2922 error = prepend_path(path, &root, &res, &buflen);
7ea600b5 2923 br_read_unlock(&vfsmount_lock);
02125a82
AV
2924
2925 if (error > 1)
2926 error = -EINVAL;
2927 if (error < 0)
f2eb6575 2928 return ERR_PTR(error);
f2eb6575 2929 return res;
1da177e4
LT
2930}
2931
ffd1f4ed
MS
2932/*
2933 * same as __d_path but appends "(deleted)" for unlinked files.
2934 */
02125a82
AV
2935static int path_with_deleted(const struct path *path,
2936 const struct path *root,
2937 char **buf, int *buflen)
ffd1f4ed
MS
2938{
2939 prepend(buf, buflen, "\0", 1);
2940 if (d_unlinked(path->dentry)) {
2941 int error = prepend(buf, buflen, " (deleted)", 10);
2942 if (error)
2943 return error;
2944 }
2945
2946 return prepend_path(path, root, buf, buflen);
2947}
2948
8df9d1a4
MS
2949static int prepend_unreachable(char **buffer, int *buflen)
2950{
2951 return prepend(buffer, buflen, "(unreachable)", 13);
2952}
2953
a03a8a70
JB
2954/**
2955 * d_path - return the path of a dentry
cf28b486 2956 * @path: path to report
a03a8a70
JB
2957 * @buf: buffer to return value in
2958 * @buflen: buffer length
2959 *
2960 * Convert a dentry into an ASCII path name. If the entry has been deleted
2961 * the string " (deleted)" is appended. Note that this is ambiguous.
2962 *
52afeefb
AV
2963 * Returns a pointer into the buffer or an error code if the path was
2964 * too long. Note: Callers should use the returned pointer, not the passed
2965 * in buffer, to use the name! The implementation often starts at an offset
2966 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2967 *
31f3e0b3 2968 * "buflen" should be positive.
a03a8a70 2969 */
20d4fdc1 2970char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2971{
ffd1f4ed 2972 char *res = buf + buflen;
6ac08c39 2973 struct path root;
ffd1f4ed 2974 int error;
1da177e4 2975
c23fbb6b
ED
2976 /*
2977 * We have various synthetic filesystems that never get mounted. On
2978 * these filesystems dentries are never used for lookup purposes, and
2979 * thus don't need to be hashed. They also don't need a name until a
2980 * user wants to identify the object in /proc/pid/fd/. The little hack
2981 * below allows us to generate a name for these objects on demand:
2982 */
cf28b486
JB
2983 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2984 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2985
f7ad3c6b 2986 get_fs_root(current->fs, &root);
7ea600b5 2987 br_read_lock(&vfsmount_lock);
02125a82 2988 error = path_with_deleted(path, &root, &res, &buflen);
7ea600b5 2989 br_read_unlock(&vfsmount_lock);
02125a82 2990 if (error < 0)
ffd1f4ed 2991 res = ERR_PTR(error);
6ac08c39 2992 path_put(&root);
1da177e4
LT
2993 return res;
2994}
ec4f8605 2995EXPORT_SYMBOL(d_path);
1da177e4 2996
c23fbb6b
ED
2997/*
2998 * Helper function for dentry_operations.d_dname() members
2999 */
3000char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3001 const char *fmt, ...)
3002{
3003 va_list args;
3004 char temp[64];
3005 int sz;
3006
3007 va_start(args, fmt);
3008 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3009 va_end(args);
3010
3011 if (sz > sizeof(temp) || sz > buflen)
3012 return ERR_PTR(-ENAMETOOLONG);
3013
3014 buffer += buflen - sz;
3015 return memcpy(buffer, temp, sz);
3016}
3017
118b2302
AV
3018char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3019{
3020 char *end = buffer + buflen;
3021 /* these dentries are never renamed, so d_lock is not needed */
3022 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3023 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3024 prepend(&end, &buflen, "/", 1))
3025 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3026 return end;
118b2302
AV
3027}
3028
6092d048
RP
3029/*
3030 * Write full pathname from the root of the filesystem into the buffer.
3031 */
ec2447c2 3032static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048 3033{
232d2d60
WL
3034 char *end, *retval;
3035 int len, seq = 0;
3036 int error = 0;
6092d048 3037
48f5ec21 3038 rcu_read_lock();
232d2d60
WL
3039restart:
3040 end = buf + buflen;
3041 len = buflen;
3042 prepend(&end, &len, "\0", 1);
6092d048
RP
3043 if (buflen < 1)
3044 goto Elong;
3045 /* Get '/' right */
3046 retval = end-1;
3047 *retval = '/';
232d2d60 3048 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3049 while (!IS_ROOT(dentry)) {
3050 struct dentry *parent = dentry->d_parent;
9abca360 3051 int error;
6092d048 3052
6092d048 3053 prefetch(parent);
232d2d60
WL
3054 error = prepend_name(&end, &len, &dentry->d_name);
3055 if (error)
3056 break;
6092d048
RP
3057
3058 retval = end;
3059 dentry = parent;
3060 }
48f5ec21
AV
3061 if (!(seq & 1))
3062 rcu_read_unlock();
3063 if (need_seqretry(&rename_lock, seq)) {
3064 seq = 1;
232d2d60 3065 goto restart;
48f5ec21
AV
3066 }
3067 done_seqretry(&rename_lock, seq);
232d2d60
WL
3068 if (error)
3069 goto Elong;
c103135c
AV
3070 return retval;
3071Elong:
3072 return ERR_PTR(-ENAMETOOLONG);
3073}
ec2447c2
NP
3074
3075char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3076{
232d2d60 3077 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3078}
3079EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3080
3081char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3082{
3083 char *p = NULL;
3084 char *retval;
3085
c103135c
AV
3086 if (d_unlinked(dentry)) {
3087 p = buf + buflen;
3088 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3089 goto Elong;
3090 buflen++;
3091 }
3092 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3093 if (!IS_ERR(retval) && p)
3094 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3095 return retval;
3096Elong:
6092d048
RP
3097 return ERR_PTR(-ENAMETOOLONG);
3098}
3099
1da177e4
LT
3100/*
3101 * NOTE! The user-level library version returns a
3102 * character pointer. The kernel system call just
3103 * returns the length of the buffer filled (which
3104 * includes the ending '\0' character), or a negative
3105 * error value. So libc would do something like
3106 *
3107 * char *getcwd(char * buf, size_t size)
3108 * {
3109 * int retval;
3110 *
3111 * retval = sys_getcwd(buf, size);
3112 * if (retval >= 0)
3113 * return buf;
3114 * errno = -retval;
3115 * return NULL;
3116 * }
3117 */
3cdad428 3118SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3119{
552ce544 3120 int error;
6ac08c39 3121 struct path pwd, root;
552ce544 3122 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
3123
3124 if (!page)
3125 return -ENOMEM;
3126
f7ad3c6b 3127 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 3128
552ce544 3129 error = -ENOENT;
7ea600b5 3130 br_read_lock(&vfsmount_lock);
f3da392e 3131 if (!d_unlinked(pwd.dentry)) {
552ce544 3132 unsigned long len;
8df9d1a4
MS
3133 char *cwd = page + PAGE_SIZE;
3134 int buflen = PAGE_SIZE;
1da177e4 3135
8df9d1a4 3136 prepend(&cwd, &buflen, "\0", 1);
02125a82 3137 error = prepend_path(&pwd, &root, &cwd, &buflen);
7ea600b5 3138 br_read_unlock(&vfsmount_lock);
552ce544 3139
02125a82 3140 if (error < 0)
552ce544
LT
3141 goto out;
3142
8df9d1a4 3143 /* Unreachable from current root */
02125a82 3144 if (error > 0) {
8df9d1a4
MS
3145 error = prepend_unreachable(&cwd, &buflen);
3146 if (error)
3147 goto out;
3148 }
3149
552ce544
LT
3150 error = -ERANGE;
3151 len = PAGE_SIZE + page - cwd;
3152 if (len <= size) {
3153 error = len;
3154 if (copy_to_user(buf, cwd, len))
3155 error = -EFAULT;
3156 }
949854d0 3157 } else {
7ea600b5 3158 br_read_unlock(&vfsmount_lock);
949854d0 3159 }
1da177e4
LT
3160
3161out:
6ac08c39
JB
3162 path_put(&pwd);
3163 path_put(&root);
1da177e4
LT
3164 free_page((unsigned long) page);
3165 return error;
3166}
3167
3168/*
3169 * Test whether new_dentry is a subdirectory of old_dentry.
3170 *
3171 * Trivially implemented using the dcache structure
3172 */
3173
3174/**
3175 * is_subdir - is new dentry a subdirectory of old_dentry
3176 * @new_dentry: new dentry
3177 * @old_dentry: old dentry
3178 *
3179 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3180 * Returns 0 otherwise.
3181 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3182 */
3183
e2761a11 3184int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3185{
3186 int result;
949854d0 3187 unsigned seq;
1da177e4 3188
e2761a11
OH
3189 if (new_dentry == old_dentry)
3190 return 1;
3191
e2761a11 3192 do {
1da177e4 3193 /* for restarting inner loop in case of seq retry */
1da177e4 3194 seq = read_seqbegin(&rename_lock);
949854d0
NP
3195 /*
3196 * Need rcu_readlock to protect against the d_parent trashing
3197 * due to d_move
3198 */
3199 rcu_read_lock();
e2761a11 3200 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3201 result = 1;
e2761a11
OH
3202 else
3203 result = 0;
949854d0 3204 rcu_read_unlock();
1da177e4 3205 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3206
3207 return result;
3208}
3209
db14fc3a 3210static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3211{
db14fc3a
MS
3212 struct dentry *root = data;
3213 if (dentry != root) {
3214 if (d_unhashed(dentry) || !dentry->d_inode)
3215 return D_WALK_SKIP;
1da177e4 3216
01ddc4ed
MS
3217 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3218 dentry->d_flags |= DCACHE_GENOCIDE;
3219 dentry->d_lockref.count--;
3220 }
1da177e4 3221 }
db14fc3a
MS
3222 return D_WALK_CONTINUE;
3223}
58db63d0 3224
db14fc3a
MS
3225void d_genocide(struct dentry *parent)
3226{
3227 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3228}
3229
60545d0d 3230void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3231{
60545d0d
AV
3232 inode_dec_link_count(inode);
3233 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3234 !hlist_unhashed(&dentry->d_alias) ||
3235 !d_unlinked(dentry));
3236 spin_lock(&dentry->d_parent->d_lock);
3237 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3238 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3239 (unsigned long long)inode->i_ino);
3240 spin_unlock(&dentry->d_lock);
3241 spin_unlock(&dentry->d_parent->d_lock);
3242 d_instantiate(dentry, inode);
1da177e4 3243}
60545d0d 3244EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3245
3246static __initdata unsigned long dhash_entries;
3247static int __init set_dhash_entries(char *str)
3248{
3249 if (!str)
3250 return 0;
3251 dhash_entries = simple_strtoul(str, &str, 0);
3252 return 1;
3253}
3254__setup("dhash_entries=", set_dhash_entries);
3255
3256static void __init dcache_init_early(void)
3257{
074b8517 3258 unsigned int loop;
1da177e4
LT
3259
3260 /* If hashes are distributed across NUMA nodes, defer
3261 * hash allocation until vmalloc space is available.
3262 */
3263 if (hashdist)
3264 return;
3265
3266 dentry_hashtable =
3267 alloc_large_system_hash("Dentry cache",
b07ad996 3268 sizeof(struct hlist_bl_head),
1da177e4
LT
3269 dhash_entries,
3270 13,
3271 HASH_EARLY,
3272 &d_hash_shift,
3273 &d_hash_mask,
31fe62b9 3274 0,
1da177e4
LT
3275 0);
3276
074b8517 3277 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3278 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3279}
3280
74bf17cf 3281static void __init dcache_init(void)
1da177e4 3282{
074b8517 3283 unsigned int loop;
1da177e4
LT
3284
3285 /*
3286 * A constructor could be added for stable state like the lists,
3287 * but it is probably not worth it because of the cache nature
3288 * of the dcache.
3289 */
0a31bd5f
CL
3290 dentry_cache = KMEM_CACHE(dentry,
3291 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3292
3293 /* Hash may have been set up in dcache_init_early */
3294 if (!hashdist)
3295 return;
3296
3297 dentry_hashtable =
3298 alloc_large_system_hash("Dentry cache",
b07ad996 3299 sizeof(struct hlist_bl_head),
1da177e4
LT
3300 dhash_entries,
3301 13,
3302 0,
3303 &d_hash_shift,
3304 &d_hash_mask,
31fe62b9 3305 0,
1da177e4
LT
3306 0);
3307
074b8517 3308 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3309 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3310}
3311
3312/* SLAB cache for __getname() consumers */
e18b890b 3313struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3314EXPORT_SYMBOL(names_cachep);
1da177e4 3315
1da177e4
LT
3316EXPORT_SYMBOL(d_genocide);
3317
1da177e4
LT
3318void __init vfs_caches_init_early(void)
3319{
3320 dcache_init_early();
3321 inode_init_early();
3322}
3323
3324void __init vfs_caches_init(unsigned long mempages)
3325{
3326 unsigned long reserve;
3327
3328 /* Base hash sizes on available memory, with a reserve equal to
3329 150% of current kernel size */
3330
3331 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3332 mempages -= reserve;
3333
3334 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3335 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3336
74bf17cf
DC
3337 dcache_init();
3338 inode_init();
1da177e4 3339 files_init(mempages);
74bf17cf 3340 mnt_init();
1da177e4
LT
3341 bdev_cache_init();
3342 chrdev_init();
3343}
This page took 0.98669 seconds and 5 git commands to generate.