Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * fs/direct-io.c | |
3 | * | |
4 | * Copyright (C) 2002, Linus Torvalds. | |
5 | * | |
6 | * O_DIRECT | |
7 | * | |
e1f8e874 | 8 | * 04Jul2002 Andrew Morton |
1da177e4 LT |
9 | * Initial version |
10 | * 11Sep2002 janetinc@us.ibm.com | |
11 | * added readv/writev support. | |
e1f8e874 | 12 | * 29Oct2002 Andrew Morton |
1da177e4 LT |
13 | * rewrote bio_add_page() support. |
14 | * 30Oct2002 pbadari@us.ibm.com | |
15 | * added support for non-aligned IO. | |
16 | * 06Nov2002 pbadari@us.ibm.com | |
17 | * added asynchronous IO support. | |
18 | * 21Jul2003 nathans@sgi.com | |
19 | * added IO completion notifier. | |
20 | */ | |
21 | ||
22 | #include <linux/kernel.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/types.h> | |
25 | #include <linux/fs.h> | |
26 | #include <linux/mm.h> | |
27 | #include <linux/slab.h> | |
28 | #include <linux/highmem.h> | |
29 | #include <linux/pagemap.h> | |
98c4d57d | 30 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
31 | #include <linux/bio.h> |
32 | #include <linux/wait.h> | |
33 | #include <linux/err.h> | |
34 | #include <linux/blkdev.h> | |
35 | #include <linux/buffer_head.h> | |
36 | #include <linux/rwsem.h> | |
37 | #include <linux/uio.h> | |
38 | #include <asm/atomic.h> | |
39 | ||
40 | /* | |
41 | * How many user pages to map in one call to get_user_pages(). This determines | |
42 | * the size of a structure on the stack. | |
43 | */ | |
44 | #define DIO_PAGES 64 | |
45 | ||
46 | /* | |
47 | * This code generally works in units of "dio_blocks". A dio_block is | |
48 | * somewhere between the hard sector size and the filesystem block size. it | |
49 | * is determined on a per-invocation basis. When talking to the filesystem | |
50 | * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity | |
51 | * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted | |
52 | * to bio_block quantities by shifting left by blkfactor. | |
53 | * | |
54 | * If blkfactor is zero then the user's request was aligned to the filesystem's | |
55 | * blocksize. | |
1da177e4 LT |
56 | */ |
57 | ||
58 | struct dio { | |
59 | /* BIO submission state */ | |
60 | struct bio *bio; /* bio under assembly */ | |
61 | struct inode *inode; | |
62 | int rw; | |
29504ff3 | 63 | loff_t i_size; /* i_size when submitted */ |
5fe878ae | 64 | int flags; /* doesn't change */ |
1da177e4 LT |
65 | unsigned blkbits; /* doesn't change */ |
66 | unsigned blkfactor; /* When we're using an alignment which | |
67 | is finer than the filesystem's soft | |
68 | blocksize, this specifies how much | |
69 | finer. blkfactor=2 means 1/4-block | |
70 | alignment. Does not change */ | |
71 | unsigned start_zero_done; /* flag: sub-blocksize zeroing has | |
72 | been performed at the start of a | |
73 | write */ | |
74 | int pages_in_io; /* approximate total IO pages */ | |
75 | size_t size; /* total request size (doesn't change)*/ | |
76 | sector_t block_in_file; /* Current offset into the underlying | |
77 | file in dio_block units. */ | |
78 | unsigned blocks_available; /* At block_in_file. changes */ | |
79 | sector_t final_block_in_request;/* doesn't change */ | |
80 | unsigned first_block_in_page; /* doesn't change, Used only once */ | |
81 | int boundary; /* prev block is at a boundary */ | |
82 | int reap_counter; /* rate limit reaping */ | |
1d8fa7a2 | 83 | get_block_t *get_block; /* block mapping function */ |
1da177e4 LT |
84 | dio_iodone_t *end_io; /* IO completion function */ |
85 | sector_t final_block_in_bio; /* current final block in bio + 1 */ | |
86 | sector_t next_block_for_io; /* next block to be put under IO, | |
87 | in dio_blocks units */ | |
1d8fa7a2 | 88 | struct buffer_head map_bh; /* last get_block() result */ |
1da177e4 LT |
89 | |
90 | /* | |
91 | * Deferred addition of a page to the dio. These variables are | |
92 | * private to dio_send_cur_page(), submit_page_section() and | |
93 | * dio_bio_add_page(). | |
94 | */ | |
95 | struct page *cur_page; /* The page */ | |
96 | unsigned cur_page_offset; /* Offset into it, in bytes */ | |
97 | unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ | |
98 | sector_t cur_page_block; /* Where it starts */ | |
99 | ||
23aee091 JM |
100 | /* BIO completion state */ |
101 | spinlock_t bio_lock; /* protects BIO fields below */ | |
102 | unsigned long refcount; /* direct_io_worker() and bios */ | |
103 | struct bio *bio_list; /* singly linked via bi_private */ | |
104 | struct task_struct *waiter; /* waiting task (NULL if none) */ | |
105 | ||
106 | /* AIO related stuff */ | |
107 | struct kiocb *iocb; /* kiocb */ | |
108 | int is_async; /* is IO async ? */ | |
109 | int io_error; /* IO error in completion path */ | |
110 | ssize_t result; /* IO result */ | |
111 | ||
1da177e4 LT |
112 | /* |
113 | * Page fetching state. These variables belong to dio_refill_pages(). | |
114 | */ | |
115 | int curr_page; /* changes */ | |
116 | int total_pages; /* doesn't change */ | |
117 | unsigned long curr_user_address;/* changes */ | |
118 | ||
119 | /* | |
120 | * Page queue. These variables belong to dio_refill_pages() and | |
121 | * dio_get_page(). | |
122 | */ | |
1da177e4 LT |
123 | unsigned head; /* next page to process */ |
124 | unsigned tail; /* last valid page + 1 */ | |
125 | int page_errors; /* errno from get_user_pages() */ | |
126 | ||
23aee091 JM |
127 | /* |
128 | * pages[] (and any fields placed after it) are not zeroed out at | |
129 | * allocation time. Don't add new fields after pages[] unless you | |
130 | * wish that they not be zeroed. | |
131 | */ | |
132 | struct page *pages[DIO_PAGES]; /* page buffer */ | |
1da177e4 LT |
133 | }; |
134 | ||
135 | /* | |
136 | * How many pages are in the queue? | |
137 | */ | |
138 | static inline unsigned dio_pages_present(struct dio *dio) | |
139 | { | |
140 | return dio->tail - dio->head; | |
141 | } | |
142 | ||
143 | /* | |
144 | * Go grab and pin some userspace pages. Typically we'll get 64 at a time. | |
145 | */ | |
146 | static int dio_refill_pages(struct dio *dio) | |
147 | { | |
148 | int ret; | |
149 | int nr_pages; | |
150 | ||
151 | nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); | |
f5dd33c4 | 152 | ret = get_user_pages_fast( |
1da177e4 LT |
153 | dio->curr_user_address, /* Where from? */ |
154 | nr_pages, /* How many pages? */ | |
155 | dio->rw == READ, /* Write to memory? */ | |
f5dd33c4 | 156 | &dio->pages[0]); /* Put results here */ |
1da177e4 | 157 | |
b31dc66a | 158 | if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { |
557ed1fa | 159 | struct page *page = ZERO_PAGE(0); |
1da177e4 LT |
160 | /* |
161 | * A memory fault, but the filesystem has some outstanding | |
162 | * mapped blocks. We need to use those blocks up to avoid | |
163 | * leaking stale data in the file. | |
164 | */ | |
165 | if (dio->page_errors == 0) | |
166 | dio->page_errors = ret; | |
b5810039 NP |
167 | page_cache_get(page); |
168 | dio->pages[0] = page; | |
1da177e4 LT |
169 | dio->head = 0; |
170 | dio->tail = 1; | |
171 | ret = 0; | |
172 | goto out; | |
173 | } | |
174 | ||
175 | if (ret >= 0) { | |
176 | dio->curr_user_address += ret * PAGE_SIZE; | |
177 | dio->curr_page += ret; | |
178 | dio->head = 0; | |
179 | dio->tail = ret; | |
180 | ret = 0; | |
181 | } | |
182 | out: | |
183 | return ret; | |
184 | } | |
185 | ||
186 | /* | |
187 | * Get another userspace page. Returns an ERR_PTR on error. Pages are | |
188 | * buffered inside the dio so that we can call get_user_pages() against a | |
189 | * decent number of pages, less frequently. To provide nicer use of the | |
190 | * L1 cache. | |
191 | */ | |
192 | static struct page *dio_get_page(struct dio *dio) | |
193 | { | |
194 | if (dio_pages_present(dio) == 0) { | |
195 | int ret; | |
196 | ||
197 | ret = dio_refill_pages(dio); | |
198 | if (ret) | |
199 | return ERR_PTR(ret); | |
200 | BUG_ON(dio_pages_present(dio) == 0); | |
201 | } | |
202 | return dio->pages[dio->head++]; | |
203 | } | |
204 | ||
6d544bb4 ZB |
205 | /** |
206 | * dio_complete() - called when all DIO BIO I/O has been completed | |
207 | * @offset: the byte offset in the file of the completed operation | |
208 | * | |
209 | * This releases locks as dictated by the locking type, lets interested parties | |
210 | * know that a DIO operation has completed, and calculates the resulting return | |
211 | * code for the operation. | |
212 | * | |
213 | * It lets the filesystem know if it registered an interest earlier via | |
214 | * get_block. Pass the private field of the map buffer_head so that | |
215 | * filesystems can use it to hold additional state between get_block calls and | |
216 | * dio_complete. | |
1da177e4 | 217 | */ |
6d544bb4 | 218 | static int dio_complete(struct dio *dio, loff_t offset, int ret) |
1da177e4 | 219 | { |
6d544bb4 ZB |
220 | ssize_t transferred = 0; |
221 | ||
8459d86a ZB |
222 | /* |
223 | * AIO submission can race with bio completion to get here while | |
224 | * expecting to have the last io completed by bio completion. | |
225 | * In that case -EIOCBQUEUED is in fact not an error we want | |
226 | * to preserve through this call. | |
227 | */ | |
228 | if (ret == -EIOCBQUEUED) | |
229 | ret = 0; | |
230 | ||
6d544bb4 ZB |
231 | if (dio->result) { |
232 | transferred = dio->result; | |
233 | ||
234 | /* Check for short read case */ | |
235 | if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) | |
236 | transferred = dio->i_size - offset; | |
237 | } | |
238 | ||
1da177e4 | 239 | if (dio->end_io && dio->result) |
6d544bb4 ZB |
240 | dio->end_io(dio->iocb, offset, transferred, |
241 | dio->map_bh.b_private); | |
5fe878ae CH |
242 | |
243 | if (dio->flags & DIO_LOCKING) | |
d8aa905b IM |
244 | /* lockdep: non-owner release */ |
245 | up_read_non_owner(&dio->inode->i_alloc_sem); | |
6d544bb4 ZB |
246 | |
247 | if (ret == 0) | |
248 | ret = dio->page_errors; | |
249 | if (ret == 0) | |
250 | ret = dio->io_error; | |
251 | if (ret == 0) | |
252 | ret = transferred; | |
253 | ||
254 | return ret; | |
1da177e4 LT |
255 | } |
256 | ||
1da177e4 LT |
257 | static int dio_bio_complete(struct dio *dio, struct bio *bio); |
258 | /* | |
259 | * Asynchronous IO callback. | |
260 | */ | |
6712ecf8 | 261 | static void dio_bio_end_aio(struct bio *bio, int error) |
1da177e4 LT |
262 | { |
263 | struct dio *dio = bio->bi_private; | |
5eb6c7a2 ZB |
264 | unsigned long remaining; |
265 | unsigned long flags; | |
1da177e4 | 266 | |
1da177e4 LT |
267 | /* cleanup the bio */ |
268 | dio_bio_complete(dio, bio); | |
0273201e | 269 | |
5eb6c7a2 ZB |
270 | spin_lock_irqsave(&dio->bio_lock, flags); |
271 | remaining = --dio->refcount; | |
272 | if (remaining == 1 && dio->waiter) | |
20258b2b | 273 | wake_up_process(dio->waiter); |
5eb6c7a2 | 274 | spin_unlock_irqrestore(&dio->bio_lock, flags); |
20258b2b | 275 | |
8459d86a ZB |
276 | if (remaining == 0) { |
277 | int ret = dio_complete(dio, dio->iocb->ki_pos, 0); | |
278 | aio_complete(dio->iocb, ret, 0); | |
279 | kfree(dio); | |
280 | } | |
1da177e4 LT |
281 | } |
282 | ||
283 | /* | |
284 | * The BIO completion handler simply queues the BIO up for the process-context | |
285 | * handler. | |
286 | * | |
287 | * During I/O bi_private points at the dio. After I/O, bi_private is used to | |
288 | * implement a singly-linked list of completed BIOs, at dio->bio_list. | |
289 | */ | |
6712ecf8 | 290 | static void dio_bio_end_io(struct bio *bio, int error) |
1da177e4 LT |
291 | { |
292 | struct dio *dio = bio->bi_private; | |
293 | unsigned long flags; | |
294 | ||
1da177e4 LT |
295 | spin_lock_irqsave(&dio->bio_lock, flags); |
296 | bio->bi_private = dio->bio_list; | |
297 | dio->bio_list = bio; | |
5eb6c7a2 | 298 | if (--dio->refcount == 1 && dio->waiter) |
1da177e4 LT |
299 | wake_up_process(dio->waiter); |
300 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
1da177e4 LT |
301 | } |
302 | ||
303 | static int | |
304 | dio_bio_alloc(struct dio *dio, struct block_device *bdev, | |
305 | sector_t first_sector, int nr_vecs) | |
306 | { | |
307 | struct bio *bio; | |
308 | ||
309 | bio = bio_alloc(GFP_KERNEL, nr_vecs); | |
1da177e4 LT |
310 | |
311 | bio->bi_bdev = bdev; | |
312 | bio->bi_sector = first_sector; | |
313 | if (dio->is_async) | |
314 | bio->bi_end_io = dio_bio_end_aio; | |
315 | else | |
316 | bio->bi_end_io = dio_bio_end_io; | |
317 | ||
318 | dio->bio = bio; | |
319 | return 0; | |
320 | } | |
321 | ||
322 | /* | |
323 | * In the AIO read case we speculatively dirty the pages before starting IO. | |
324 | * During IO completion, any of these pages which happen to have been written | |
325 | * back will be redirtied by bio_check_pages_dirty(). | |
0273201e ZB |
326 | * |
327 | * bios hold a dio reference between submit_bio and ->end_io. | |
1da177e4 LT |
328 | */ |
329 | static void dio_bio_submit(struct dio *dio) | |
330 | { | |
331 | struct bio *bio = dio->bio; | |
5eb6c7a2 | 332 | unsigned long flags; |
1da177e4 LT |
333 | |
334 | bio->bi_private = dio; | |
5eb6c7a2 ZB |
335 | |
336 | spin_lock_irqsave(&dio->bio_lock, flags); | |
337 | dio->refcount++; | |
338 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
339 | ||
1da177e4 LT |
340 | if (dio->is_async && dio->rw == READ) |
341 | bio_set_pages_dirty(bio); | |
5eb6c7a2 | 342 | |
1da177e4 LT |
343 | submit_bio(dio->rw, bio); |
344 | ||
345 | dio->bio = NULL; | |
346 | dio->boundary = 0; | |
347 | } | |
348 | ||
349 | /* | |
350 | * Release any resources in case of a failure | |
351 | */ | |
352 | static void dio_cleanup(struct dio *dio) | |
353 | { | |
354 | while (dio_pages_present(dio)) | |
355 | page_cache_release(dio_get_page(dio)); | |
356 | } | |
357 | ||
358 | /* | |
0273201e ZB |
359 | * Wait for the next BIO to complete. Remove it and return it. NULL is |
360 | * returned once all BIOs have been completed. This must only be called once | |
361 | * all bios have been issued so that dio->refcount can only decrease. This | |
362 | * requires that that the caller hold a reference on the dio. | |
1da177e4 LT |
363 | */ |
364 | static struct bio *dio_await_one(struct dio *dio) | |
365 | { | |
366 | unsigned long flags; | |
0273201e | 367 | struct bio *bio = NULL; |
1da177e4 LT |
368 | |
369 | spin_lock_irqsave(&dio->bio_lock, flags); | |
5eb6c7a2 ZB |
370 | |
371 | /* | |
372 | * Wait as long as the list is empty and there are bios in flight. bio | |
373 | * completion drops the count, maybe adds to the list, and wakes while | |
374 | * holding the bio_lock so we don't need set_current_state()'s barrier | |
375 | * and can call it after testing our condition. | |
376 | */ | |
377 | while (dio->refcount > 1 && dio->bio_list == NULL) { | |
378 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
379 | dio->waiter = current; | |
380 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
381 | io_schedule(); | |
382 | /* wake up sets us TASK_RUNNING */ | |
383 | spin_lock_irqsave(&dio->bio_lock, flags); | |
384 | dio->waiter = NULL; | |
1da177e4 | 385 | } |
0273201e ZB |
386 | if (dio->bio_list) { |
387 | bio = dio->bio_list; | |
388 | dio->bio_list = bio->bi_private; | |
389 | } | |
1da177e4 LT |
390 | spin_unlock_irqrestore(&dio->bio_lock, flags); |
391 | return bio; | |
392 | } | |
393 | ||
394 | /* | |
395 | * Process one completed BIO. No locks are held. | |
396 | */ | |
397 | static int dio_bio_complete(struct dio *dio, struct bio *bio) | |
398 | { | |
399 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | |
400 | struct bio_vec *bvec = bio->bi_io_vec; | |
401 | int page_no; | |
402 | ||
403 | if (!uptodate) | |
174e27c6 | 404 | dio->io_error = -EIO; |
1da177e4 LT |
405 | |
406 | if (dio->is_async && dio->rw == READ) { | |
407 | bio_check_pages_dirty(bio); /* transfers ownership */ | |
408 | } else { | |
409 | for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { | |
410 | struct page *page = bvec[page_no].bv_page; | |
411 | ||
412 | if (dio->rw == READ && !PageCompound(page)) | |
413 | set_page_dirty_lock(page); | |
414 | page_cache_release(page); | |
415 | } | |
416 | bio_put(bio); | |
417 | } | |
1da177e4 LT |
418 | return uptodate ? 0 : -EIO; |
419 | } | |
420 | ||
421 | /* | |
0273201e ZB |
422 | * Wait on and process all in-flight BIOs. This must only be called once |
423 | * all bios have been issued so that the refcount can only decrease. | |
424 | * This just waits for all bios to make it through dio_bio_complete. IO | |
beb7dd86 | 425 | * errors are propagated through dio->io_error and should be propagated via |
0273201e | 426 | * dio_complete(). |
1da177e4 | 427 | */ |
6d544bb4 | 428 | static void dio_await_completion(struct dio *dio) |
1da177e4 | 429 | { |
0273201e ZB |
430 | struct bio *bio; |
431 | do { | |
432 | bio = dio_await_one(dio); | |
433 | if (bio) | |
434 | dio_bio_complete(dio, bio); | |
435 | } while (bio); | |
1da177e4 LT |
436 | } |
437 | ||
438 | /* | |
439 | * A really large O_DIRECT read or write can generate a lot of BIOs. So | |
440 | * to keep the memory consumption sane we periodically reap any completed BIOs | |
441 | * during the BIO generation phase. | |
442 | * | |
443 | * This also helps to limit the peak amount of pinned userspace memory. | |
444 | */ | |
445 | static int dio_bio_reap(struct dio *dio) | |
446 | { | |
447 | int ret = 0; | |
448 | ||
449 | if (dio->reap_counter++ >= 64) { | |
450 | while (dio->bio_list) { | |
451 | unsigned long flags; | |
452 | struct bio *bio; | |
453 | int ret2; | |
454 | ||
455 | spin_lock_irqsave(&dio->bio_lock, flags); | |
456 | bio = dio->bio_list; | |
457 | dio->bio_list = bio->bi_private; | |
458 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
459 | ret2 = dio_bio_complete(dio, bio); | |
460 | if (ret == 0) | |
461 | ret = ret2; | |
462 | } | |
463 | dio->reap_counter = 0; | |
464 | } | |
465 | return ret; | |
466 | } | |
467 | ||
468 | /* | |
469 | * Call into the fs to map some more disk blocks. We record the current number | |
470 | * of available blocks at dio->blocks_available. These are in units of the | |
471 | * fs blocksize, (1 << inode->i_blkbits). | |
472 | * | |
473 | * The fs is allowed to map lots of blocks at once. If it wants to do that, | |
474 | * it uses the passed inode-relative block number as the file offset, as usual. | |
475 | * | |
1d8fa7a2 | 476 | * get_block() is passed the number of i_blkbits-sized blocks which direct_io |
1da177e4 LT |
477 | * has remaining to do. The fs should not map more than this number of blocks. |
478 | * | |
479 | * If the fs has mapped a lot of blocks, it should populate bh->b_size to | |
480 | * indicate how much contiguous disk space has been made available at | |
481 | * bh->b_blocknr. | |
482 | * | |
483 | * If *any* of the mapped blocks are new, then the fs must set buffer_new(). | |
484 | * This isn't very efficient... | |
485 | * | |
486 | * In the case of filesystem holes: the fs may return an arbitrarily-large | |
487 | * hole by returning an appropriate value in b_size and by clearing | |
488 | * buffer_mapped(). However the direct-io code will only process holes one | |
1d8fa7a2 | 489 | * block at a time - it will repeatedly call get_block() as it walks the hole. |
1da177e4 LT |
490 | */ |
491 | static int get_more_blocks(struct dio *dio) | |
492 | { | |
493 | int ret; | |
494 | struct buffer_head *map_bh = &dio->map_bh; | |
495 | sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ | |
496 | unsigned long fs_count; /* Number of filesystem-sized blocks */ | |
497 | unsigned long dio_count;/* Number of dio_block-sized blocks */ | |
498 | unsigned long blkmask; | |
499 | int create; | |
500 | ||
501 | /* | |
502 | * If there was a memory error and we've overwritten all the | |
503 | * mapped blocks then we can now return that memory error | |
504 | */ | |
505 | ret = dio->page_errors; | |
506 | if (ret == 0) { | |
1da177e4 LT |
507 | BUG_ON(dio->block_in_file >= dio->final_block_in_request); |
508 | fs_startblk = dio->block_in_file >> dio->blkfactor; | |
509 | dio_count = dio->final_block_in_request - dio->block_in_file; | |
510 | fs_count = dio_count >> dio->blkfactor; | |
511 | blkmask = (1 << dio->blkfactor) - 1; | |
512 | if (dio_count & blkmask) | |
513 | fs_count++; | |
514 | ||
3c674e74 NS |
515 | map_bh->b_state = 0; |
516 | map_bh->b_size = fs_count << dio->inode->i_blkbits; | |
517 | ||
5fe878ae CH |
518 | /* |
519 | * For writes inside i_size on a DIO_SKIP_HOLES filesystem we | |
520 | * forbid block creations: only overwrites are permitted. | |
521 | * We will return early to the caller once we see an | |
522 | * unmapped buffer head returned, and the caller will fall | |
523 | * back to buffered I/O. | |
524 | * | |
525 | * Otherwise the decision is left to the get_blocks method, | |
526 | * which may decide to handle it or also return an unmapped | |
527 | * buffer head. | |
528 | */ | |
b31dc66a | 529 | create = dio->rw & WRITE; |
5fe878ae | 530 | if (dio->flags & DIO_SKIP_HOLES) { |
1da177e4 LT |
531 | if (dio->block_in_file < (i_size_read(dio->inode) >> |
532 | dio->blkbits)) | |
533 | create = 0; | |
1da177e4 | 534 | } |
3c674e74 | 535 | |
1d8fa7a2 | 536 | ret = (*dio->get_block)(dio->inode, fs_startblk, |
1da177e4 LT |
537 | map_bh, create); |
538 | } | |
539 | return ret; | |
540 | } | |
541 | ||
542 | /* | |
543 | * There is no bio. Make one now. | |
544 | */ | |
545 | static int dio_new_bio(struct dio *dio, sector_t start_sector) | |
546 | { | |
547 | sector_t sector; | |
548 | int ret, nr_pages; | |
549 | ||
550 | ret = dio_bio_reap(dio); | |
551 | if (ret) | |
552 | goto out; | |
553 | sector = start_sector << (dio->blkbits - 9); | |
554 | nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); | |
555 | BUG_ON(nr_pages <= 0); | |
556 | ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); | |
557 | dio->boundary = 0; | |
558 | out: | |
559 | return ret; | |
560 | } | |
561 | ||
562 | /* | |
563 | * Attempt to put the current chunk of 'cur_page' into the current BIO. If | |
564 | * that was successful then update final_block_in_bio and take a ref against | |
565 | * the just-added page. | |
566 | * | |
567 | * Return zero on success. Non-zero means the caller needs to start a new BIO. | |
568 | */ | |
569 | static int dio_bio_add_page(struct dio *dio) | |
570 | { | |
571 | int ret; | |
572 | ||
573 | ret = bio_add_page(dio->bio, dio->cur_page, | |
574 | dio->cur_page_len, dio->cur_page_offset); | |
575 | if (ret == dio->cur_page_len) { | |
576 | /* | |
577 | * Decrement count only, if we are done with this page | |
578 | */ | |
579 | if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) | |
580 | dio->pages_in_io--; | |
581 | page_cache_get(dio->cur_page); | |
582 | dio->final_block_in_bio = dio->cur_page_block + | |
583 | (dio->cur_page_len >> dio->blkbits); | |
584 | ret = 0; | |
585 | } else { | |
586 | ret = 1; | |
587 | } | |
588 | return ret; | |
589 | } | |
590 | ||
591 | /* | |
592 | * Put cur_page under IO. The section of cur_page which is described by | |
593 | * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page | |
594 | * starts on-disk at cur_page_block. | |
595 | * | |
596 | * We take a ref against the page here (on behalf of its presence in the bio). | |
597 | * | |
598 | * The caller of this function is responsible for removing cur_page from the | |
599 | * dio, and for dropping the refcount which came from that presence. | |
600 | */ | |
601 | static int dio_send_cur_page(struct dio *dio) | |
602 | { | |
603 | int ret = 0; | |
604 | ||
605 | if (dio->bio) { | |
606 | /* | |
607 | * See whether this new request is contiguous with the old | |
608 | */ | |
609 | if (dio->final_block_in_bio != dio->cur_page_block) | |
610 | dio_bio_submit(dio); | |
611 | /* | |
612 | * Submit now if the underlying fs is about to perform a | |
613 | * metadata read | |
614 | */ | |
615 | if (dio->boundary) | |
616 | dio_bio_submit(dio); | |
617 | } | |
618 | ||
619 | if (dio->bio == NULL) { | |
620 | ret = dio_new_bio(dio, dio->cur_page_block); | |
621 | if (ret) | |
622 | goto out; | |
623 | } | |
624 | ||
625 | if (dio_bio_add_page(dio) != 0) { | |
626 | dio_bio_submit(dio); | |
627 | ret = dio_new_bio(dio, dio->cur_page_block); | |
628 | if (ret == 0) { | |
629 | ret = dio_bio_add_page(dio); | |
630 | BUG_ON(ret != 0); | |
631 | } | |
632 | } | |
633 | out: | |
634 | return ret; | |
635 | } | |
636 | ||
637 | /* | |
638 | * An autonomous function to put a chunk of a page under deferred IO. | |
639 | * | |
640 | * The caller doesn't actually know (or care) whether this piece of page is in | |
641 | * a BIO, or is under IO or whatever. We just take care of all possible | |
642 | * situations here. The separation between the logic of do_direct_IO() and | |
643 | * that of submit_page_section() is important for clarity. Please don't break. | |
644 | * | |
645 | * The chunk of page starts on-disk at blocknr. | |
646 | * | |
647 | * We perform deferred IO, by recording the last-submitted page inside our | |
648 | * private part of the dio structure. If possible, we just expand the IO | |
649 | * across that page here. | |
650 | * | |
651 | * If that doesn't work out then we put the old page into the bio and add this | |
652 | * page to the dio instead. | |
653 | */ | |
654 | static int | |
655 | submit_page_section(struct dio *dio, struct page *page, | |
656 | unsigned offset, unsigned len, sector_t blocknr) | |
657 | { | |
658 | int ret = 0; | |
659 | ||
98c4d57d AM |
660 | if (dio->rw & WRITE) { |
661 | /* | |
662 | * Read accounting is performed in submit_bio() | |
663 | */ | |
664 | task_io_account_write(len); | |
665 | } | |
666 | ||
1da177e4 LT |
667 | /* |
668 | * Can we just grow the current page's presence in the dio? | |
669 | */ | |
670 | if ( (dio->cur_page == page) && | |
671 | (dio->cur_page_offset + dio->cur_page_len == offset) && | |
672 | (dio->cur_page_block + | |
673 | (dio->cur_page_len >> dio->blkbits) == blocknr)) { | |
674 | dio->cur_page_len += len; | |
675 | ||
676 | /* | |
677 | * If dio->boundary then we want to schedule the IO now to | |
678 | * avoid metadata seeks. | |
679 | */ | |
680 | if (dio->boundary) { | |
681 | ret = dio_send_cur_page(dio); | |
682 | page_cache_release(dio->cur_page); | |
683 | dio->cur_page = NULL; | |
684 | } | |
685 | goto out; | |
686 | } | |
687 | ||
688 | /* | |
689 | * If there's a deferred page already there then send it. | |
690 | */ | |
691 | if (dio->cur_page) { | |
692 | ret = dio_send_cur_page(dio); | |
693 | page_cache_release(dio->cur_page); | |
694 | dio->cur_page = NULL; | |
695 | if (ret) | |
696 | goto out; | |
697 | } | |
698 | ||
699 | page_cache_get(page); /* It is in dio */ | |
700 | dio->cur_page = page; | |
701 | dio->cur_page_offset = offset; | |
702 | dio->cur_page_len = len; | |
703 | dio->cur_page_block = blocknr; | |
704 | out: | |
705 | return ret; | |
706 | } | |
707 | ||
708 | /* | |
709 | * Clean any dirty buffers in the blockdev mapping which alias newly-created | |
710 | * file blocks. Only called for S_ISREG files - blockdevs do not set | |
711 | * buffer_new | |
712 | */ | |
713 | static void clean_blockdev_aliases(struct dio *dio) | |
714 | { | |
715 | unsigned i; | |
716 | unsigned nblocks; | |
717 | ||
718 | nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; | |
719 | ||
720 | for (i = 0; i < nblocks; i++) { | |
721 | unmap_underlying_metadata(dio->map_bh.b_bdev, | |
722 | dio->map_bh.b_blocknr + i); | |
723 | } | |
724 | } | |
725 | ||
726 | /* | |
727 | * If we are not writing the entire block and get_block() allocated | |
728 | * the block for us, we need to fill-in the unused portion of the | |
729 | * block with zeros. This happens only if user-buffer, fileoffset or | |
730 | * io length is not filesystem block-size multiple. | |
731 | * | |
732 | * `end' is zero if we're doing the start of the IO, 1 at the end of the | |
733 | * IO. | |
734 | */ | |
735 | static void dio_zero_block(struct dio *dio, int end) | |
736 | { | |
737 | unsigned dio_blocks_per_fs_block; | |
738 | unsigned this_chunk_blocks; /* In dio_blocks */ | |
739 | unsigned this_chunk_bytes; | |
740 | struct page *page; | |
741 | ||
742 | dio->start_zero_done = 1; | |
743 | if (!dio->blkfactor || !buffer_new(&dio->map_bh)) | |
744 | return; | |
745 | ||
746 | dio_blocks_per_fs_block = 1 << dio->blkfactor; | |
747 | this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); | |
748 | ||
749 | if (!this_chunk_blocks) | |
750 | return; | |
751 | ||
752 | /* | |
753 | * We need to zero out part of an fs block. It is either at the | |
754 | * beginning or the end of the fs block. | |
755 | */ | |
756 | if (end) | |
757 | this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; | |
758 | ||
759 | this_chunk_bytes = this_chunk_blocks << dio->blkbits; | |
760 | ||
557ed1fa | 761 | page = ZERO_PAGE(0); |
1da177e4 LT |
762 | if (submit_page_section(dio, page, 0, this_chunk_bytes, |
763 | dio->next_block_for_io)) | |
764 | return; | |
765 | ||
766 | dio->next_block_for_io += this_chunk_blocks; | |
767 | } | |
768 | ||
769 | /* | |
770 | * Walk the user pages, and the file, mapping blocks to disk and generating | |
771 | * a sequence of (page,offset,len,block) mappings. These mappings are injected | |
772 | * into submit_page_section(), which takes care of the next stage of submission | |
773 | * | |
774 | * Direct IO against a blockdev is different from a file. Because we can | |
775 | * happily perform page-sized but 512-byte aligned IOs. It is important that | |
776 | * blockdev IO be able to have fine alignment and large sizes. | |
777 | * | |
1d8fa7a2 | 778 | * So what we do is to permit the ->get_block function to populate bh.b_size |
1da177e4 LT |
779 | * with the size of IO which is permitted at this offset and this i_blkbits. |
780 | * | |
781 | * For best results, the blockdev should be set up with 512-byte i_blkbits and | |
1d8fa7a2 | 782 | * it should set b_size to PAGE_SIZE or more inside get_block(). This gives |
1da177e4 LT |
783 | * fine alignment but still allows this function to work in PAGE_SIZE units. |
784 | */ | |
785 | static int do_direct_IO(struct dio *dio) | |
786 | { | |
787 | const unsigned blkbits = dio->blkbits; | |
788 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; | |
789 | struct page *page; | |
790 | unsigned block_in_page; | |
791 | struct buffer_head *map_bh = &dio->map_bh; | |
792 | int ret = 0; | |
793 | ||
794 | /* The I/O can start at any block offset within the first page */ | |
795 | block_in_page = dio->first_block_in_page; | |
796 | ||
797 | while (dio->block_in_file < dio->final_block_in_request) { | |
798 | page = dio_get_page(dio); | |
799 | if (IS_ERR(page)) { | |
800 | ret = PTR_ERR(page); | |
801 | goto out; | |
802 | } | |
803 | ||
804 | while (block_in_page < blocks_per_page) { | |
805 | unsigned offset_in_page = block_in_page << blkbits; | |
806 | unsigned this_chunk_bytes; /* # of bytes mapped */ | |
807 | unsigned this_chunk_blocks; /* # of blocks */ | |
808 | unsigned u; | |
809 | ||
810 | if (dio->blocks_available == 0) { | |
811 | /* | |
812 | * Need to go and map some more disk | |
813 | */ | |
814 | unsigned long blkmask; | |
815 | unsigned long dio_remainder; | |
816 | ||
817 | ret = get_more_blocks(dio); | |
818 | if (ret) { | |
819 | page_cache_release(page); | |
820 | goto out; | |
821 | } | |
822 | if (!buffer_mapped(map_bh)) | |
823 | goto do_holes; | |
824 | ||
825 | dio->blocks_available = | |
826 | map_bh->b_size >> dio->blkbits; | |
827 | dio->next_block_for_io = | |
828 | map_bh->b_blocknr << dio->blkfactor; | |
829 | if (buffer_new(map_bh)) | |
830 | clean_blockdev_aliases(dio); | |
831 | ||
832 | if (!dio->blkfactor) | |
833 | goto do_holes; | |
834 | ||
835 | blkmask = (1 << dio->blkfactor) - 1; | |
836 | dio_remainder = (dio->block_in_file & blkmask); | |
837 | ||
838 | /* | |
839 | * If we are at the start of IO and that IO | |
840 | * starts partway into a fs-block, | |
841 | * dio_remainder will be non-zero. If the IO | |
842 | * is a read then we can simply advance the IO | |
843 | * cursor to the first block which is to be | |
844 | * read. But if the IO is a write and the | |
845 | * block was newly allocated we cannot do that; | |
846 | * the start of the fs block must be zeroed out | |
847 | * on-disk | |
848 | */ | |
849 | if (!buffer_new(map_bh)) | |
850 | dio->next_block_for_io += dio_remainder; | |
851 | dio->blocks_available -= dio_remainder; | |
852 | } | |
853 | do_holes: | |
854 | /* Handle holes */ | |
855 | if (!buffer_mapped(map_bh)) { | |
35dc8161 | 856 | loff_t i_size_aligned; |
1da177e4 LT |
857 | |
858 | /* AKPM: eargh, -ENOTBLK is a hack */ | |
b31dc66a | 859 | if (dio->rw & WRITE) { |
1da177e4 LT |
860 | page_cache_release(page); |
861 | return -ENOTBLK; | |
862 | } | |
863 | ||
35dc8161 JM |
864 | /* |
865 | * Be sure to account for a partial block as the | |
866 | * last block in the file | |
867 | */ | |
868 | i_size_aligned = ALIGN(i_size_read(dio->inode), | |
869 | 1 << blkbits); | |
1da177e4 | 870 | if (dio->block_in_file >= |
35dc8161 | 871 | i_size_aligned >> blkbits) { |
1da177e4 LT |
872 | /* We hit eof */ |
873 | page_cache_release(page); | |
874 | goto out; | |
875 | } | |
eebd2aa3 CL |
876 | zero_user(page, block_in_page << blkbits, |
877 | 1 << blkbits); | |
1da177e4 LT |
878 | dio->block_in_file++; |
879 | block_in_page++; | |
880 | goto next_block; | |
881 | } | |
882 | ||
883 | /* | |
884 | * If we're performing IO which has an alignment which | |
885 | * is finer than the underlying fs, go check to see if | |
886 | * we must zero out the start of this block. | |
887 | */ | |
888 | if (unlikely(dio->blkfactor && !dio->start_zero_done)) | |
889 | dio_zero_block(dio, 0); | |
890 | ||
891 | /* | |
892 | * Work out, in this_chunk_blocks, how much disk we | |
893 | * can add to this page | |
894 | */ | |
895 | this_chunk_blocks = dio->blocks_available; | |
896 | u = (PAGE_SIZE - offset_in_page) >> blkbits; | |
897 | if (this_chunk_blocks > u) | |
898 | this_chunk_blocks = u; | |
899 | u = dio->final_block_in_request - dio->block_in_file; | |
900 | if (this_chunk_blocks > u) | |
901 | this_chunk_blocks = u; | |
902 | this_chunk_bytes = this_chunk_blocks << blkbits; | |
903 | BUG_ON(this_chunk_bytes == 0); | |
904 | ||
905 | dio->boundary = buffer_boundary(map_bh); | |
906 | ret = submit_page_section(dio, page, offset_in_page, | |
907 | this_chunk_bytes, dio->next_block_for_io); | |
908 | if (ret) { | |
909 | page_cache_release(page); | |
910 | goto out; | |
911 | } | |
912 | dio->next_block_for_io += this_chunk_blocks; | |
913 | ||
914 | dio->block_in_file += this_chunk_blocks; | |
915 | block_in_page += this_chunk_blocks; | |
916 | dio->blocks_available -= this_chunk_blocks; | |
917 | next_block: | |
d4569d2e | 918 | BUG_ON(dio->block_in_file > dio->final_block_in_request); |
1da177e4 LT |
919 | if (dio->block_in_file == dio->final_block_in_request) |
920 | break; | |
921 | } | |
922 | ||
923 | /* Drop the ref which was taken in get_user_pages() */ | |
924 | page_cache_release(page); | |
925 | block_in_page = 0; | |
926 | } | |
927 | out: | |
928 | return ret; | |
929 | } | |
930 | ||
931 | /* | |
1b1dcc1b | 932 | * Releases both i_mutex and i_alloc_sem |
1da177e4 LT |
933 | */ |
934 | static ssize_t | |
935 | direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, | |
936 | const struct iovec *iov, loff_t offset, unsigned long nr_segs, | |
1d8fa7a2 | 937 | unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, |
1da177e4 LT |
938 | struct dio *dio) |
939 | { | |
940 | unsigned long user_addr; | |
5eb6c7a2 | 941 | unsigned long flags; |
1da177e4 LT |
942 | int seg; |
943 | ssize_t ret = 0; | |
944 | ssize_t ret2; | |
945 | size_t bytes; | |
946 | ||
1da177e4 LT |
947 | dio->inode = inode; |
948 | dio->rw = rw; | |
949 | dio->blkbits = blkbits; | |
950 | dio->blkfactor = inode->i_blkbits - blkbits; | |
1da177e4 | 951 | dio->block_in_file = offset >> blkbits; |
1da177e4 | 952 | |
1d8fa7a2 | 953 | dio->get_block = get_block; |
1da177e4 | 954 | dio->end_io = end_io; |
1da177e4 LT |
955 | dio->final_block_in_bio = -1; |
956 | dio->next_block_for_io = -1; | |
957 | ||
1da177e4 | 958 | dio->iocb = iocb; |
29504ff3 | 959 | dio->i_size = i_size_read(inode); |
1da177e4 | 960 | |
1da177e4 | 961 | spin_lock_init(&dio->bio_lock); |
5eb6c7a2 | 962 | dio->refcount = 1; |
1da177e4 LT |
963 | |
964 | /* | |
965 | * In case of non-aligned buffers, we may need 2 more | |
966 | * pages since we need to zero out first and last block. | |
967 | */ | |
968 | if (unlikely(dio->blkfactor)) | |
969 | dio->pages_in_io = 2; | |
1da177e4 LT |
970 | |
971 | for (seg = 0; seg < nr_segs; seg++) { | |
972 | user_addr = (unsigned long)iov[seg].iov_base; | |
973 | dio->pages_in_io += | |
974 | ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE | |
975 | - user_addr/PAGE_SIZE); | |
976 | } | |
977 | ||
978 | for (seg = 0; seg < nr_segs; seg++) { | |
979 | user_addr = (unsigned long)iov[seg].iov_base; | |
980 | dio->size += bytes = iov[seg].iov_len; | |
981 | ||
982 | /* Index into the first page of the first block */ | |
983 | dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; | |
984 | dio->final_block_in_request = dio->block_in_file + | |
985 | (bytes >> blkbits); | |
986 | /* Page fetching state */ | |
987 | dio->head = 0; | |
988 | dio->tail = 0; | |
989 | dio->curr_page = 0; | |
990 | ||
991 | dio->total_pages = 0; | |
992 | if (user_addr & (PAGE_SIZE-1)) { | |
993 | dio->total_pages++; | |
994 | bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); | |
995 | } | |
996 | dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; | |
997 | dio->curr_user_address = user_addr; | |
998 | ||
999 | ret = do_direct_IO(dio); | |
1000 | ||
1001 | dio->result += iov[seg].iov_len - | |
1002 | ((dio->final_block_in_request - dio->block_in_file) << | |
1003 | blkbits); | |
1004 | ||
1005 | if (ret) { | |
1006 | dio_cleanup(dio); | |
1007 | break; | |
1008 | } | |
1009 | } /* end iovec loop */ | |
1010 | ||
b31dc66a | 1011 | if (ret == -ENOTBLK && (rw & WRITE)) { |
1da177e4 LT |
1012 | /* |
1013 | * The remaining part of the request will be | |
1014 | * be handled by buffered I/O when we return | |
1015 | */ | |
1016 | ret = 0; | |
1017 | } | |
1018 | /* | |
1019 | * There may be some unwritten disk at the end of a part-written | |
1020 | * fs-block-sized block. Go zero that now. | |
1021 | */ | |
1022 | dio_zero_block(dio, 1); | |
1023 | ||
1024 | if (dio->cur_page) { | |
1025 | ret2 = dio_send_cur_page(dio); | |
1026 | if (ret == 0) | |
1027 | ret = ret2; | |
1028 | page_cache_release(dio->cur_page); | |
1029 | dio->cur_page = NULL; | |
1030 | } | |
1031 | if (dio->bio) | |
1032 | dio_bio_submit(dio); | |
1033 | ||
1034 | /* | |
1035 | * It is possible that, we return short IO due to end of file. | |
1036 | * In that case, we need to release all the pages we got hold on. | |
1037 | */ | |
1038 | dio_cleanup(dio); | |
1039 | ||
1040 | /* | |
1041 | * All block lookups have been performed. For READ requests | |
1b1dcc1b | 1042 | * we can let i_mutex go now that its achieved its purpose |
1da177e4 LT |
1043 | * of protecting us from looking up uninitialized blocks. |
1044 | */ | |
5fe878ae | 1045 | if (rw == READ && (dio->flags & DIO_LOCKING)) |
1b1dcc1b | 1046 | mutex_unlock(&dio->inode->i_mutex); |
1da177e4 LT |
1047 | |
1048 | /* | |
8459d86a ZB |
1049 | * The only time we want to leave bios in flight is when a successful |
1050 | * partial aio read or full aio write have been setup. In that case | |
1051 | * bio completion will call aio_complete. The only time it's safe to | |
1052 | * call aio_complete is when we return -EIOCBQUEUED, so we key on that. | |
1053 | * This had *better* be the only place that raises -EIOCBQUEUED. | |
1da177e4 | 1054 | */ |
8459d86a ZB |
1055 | BUG_ON(ret == -EIOCBQUEUED); |
1056 | if (dio->is_async && ret == 0 && dio->result && | |
1057 | ((rw & READ) || (dio->result == dio->size))) | |
1058 | ret = -EIOCBQUEUED; | |
0273201e | 1059 | |
cfb1e33e JM |
1060 | if (ret != -EIOCBQUEUED) { |
1061 | /* All IO is now issued, send it on its way */ | |
1062 | blk_run_address_space(inode->i_mapping); | |
6d544bb4 | 1063 | dio_await_completion(dio); |
cfb1e33e | 1064 | } |
1da177e4 | 1065 | |
8459d86a ZB |
1066 | /* |
1067 | * Sync will always be dropping the final ref and completing the | |
5eb6c7a2 ZB |
1068 | * operation. AIO can if it was a broken operation described above or |
1069 | * in fact if all the bios race to complete before we get here. In | |
1070 | * that case dio_complete() translates the EIOCBQUEUED into the proper | |
1071 | * return code that the caller will hand to aio_complete(). | |
1072 | * | |
1073 | * This is managed by the bio_lock instead of being an atomic_t so that | |
1074 | * completion paths can drop their ref and use the remaining count to | |
1075 | * decide to wake the submission path atomically. | |
8459d86a | 1076 | */ |
5eb6c7a2 ZB |
1077 | spin_lock_irqsave(&dio->bio_lock, flags); |
1078 | ret2 = --dio->refcount; | |
1079 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
fcb82f88 | 1080 | |
5eb6c7a2 | 1081 | if (ret2 == 0) { |
6d544bb4 | 1082 | ret = dio_complete(dio, offset, ret); |
8459d86a ZB |
1083 | kfree(dio); |
1084 | } else | |
1085 | BUG_ON(ret != -EIOCBQUEUED); | |
1da177e4 | 1086 | |
1da177e4 LT |
1087 | return ret; |
1088 | } | |
1089 | ||
1090 | /* | |
1091 | * This is a library function for use by filesystem drivers. | |
1da177e4 | 1092 | * |
5fe878ae CH |
1093 | * The locking rules are governed by the flags parameter: |
1094 | * - if the flags value contains DIO_LOCKING we use a fancy locking | |
1095 | * scheme for dumb filesystems. | |
1096 | * For writes this function is called under i_mutex and returns with | |
1097 | * i_mutex held, for reads, i_mutex is not held on entry, but it is | |
1098 | * taken and dropped again before returning. | |
1099 | * For reads and writes i_alloc_sem is taken in shared mode and released | |
1100 | * on I/O completion (which may happen asynchronously after returning to | |
1101 | * the caller). | |
1da177e4 | 1102 | * |
5fe878ae CH |
1103 | * - if the flags value does NOT contain DIO_LOCKING we don't use any |
1104 | * internal locking but rather rely on the filesystem to synchronize | |
1105 | * direct I/O reads/writes versus each other and truncate. | |
1106 | * For reads and writes both i_mutex and i_alloc_sem are not held on | |
1107 | * entry and are never taken. | |
1da177e4 LT |
1108 | */ |
1109 | ssize_t | |
1110 | __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, | |
1111 | struct block_device *bdev, const struct iovec *iov, loff_t offset, | |
1d8fa7a2 | 1112 | unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, |
5fe878ae | 1113 | int flags) |
1da177e4 LT |
1114 | { |
1115 | int seg; | |
1116 | size_t size; | |
1117 | unsigned long addr; | |
1118 | unsigned blkbits = inode->i_blkbits; | |
1119 | unsigned bdev_blkbits = 0; | |
1120 | unsigned blocksize_mask = (1 << blkbits) - 1; | |
1121 | ssize_t retval = -EINVAL; | |
1122 | loff_t end = offset; | |
1123 | struct dio *dio; | |
1da177e4 LT |
1124 | |
1125 | if (rw & WRITE) | |
d9449ce3 | 1126 | rw = WRITE_ODIRECT_PLUG; |
1da177e4 LT |
1127 | |
1128 | if (bdev) | |
e1defc4f | 1129 | bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev)); |
1da177e4 LT |
1130 | |
1131 | if (offset & blocksize_mask) { | |
1132 | if (bdev) | |
1133 | blkbits = bdev_blkbits; | |
1134 | blocksize_mask = (1 << blkbits) - 1; | |
1135 | if (offset & blocksize_mask) | |
1136 | goto out; | |
1137 | } | |
1138 | ||
1139 | /* Check the memory alignment. Blocks cannot straddle pages */ | |
1140 | for (seg = 0; seg < nr_segs; seg++) { | |
1141 | addr = (unsigned long)iov[seg].iov_base; | |
1142 | size = iov[seg].iov_len; | |
1143 | end += size; | |
1144 | if ((addr & blocksize_mask) || (size & blocksize_mask)) { | |
1145 | if (bdev) | |
1146 | blkbits = bdev_blkbits; | |
1147 | blocksize_mask = (1 << blkbits) - 1; | |
1148 | if ((addr & blocksize_mask) || (size & blocksize_mask)) | |
1149 | goto out; | |
1150 | } | |
1151 | } | |
1152 | ||
23aee091 | 1153 | dio = kmalloc(sizeof(*dio), GFP_KERNEL); |
1da177e4 LT |
1154 | retval = -ENOMEM; |
1155 | if (!dio) | |
1156 | goto out; | |
23aee091 JM |
1157 | /* |
1158 | * Believe it or not, zeroing out the page array caused a .5% | |
1159 | * performance regression in a database benchmark. So, we take | |
1160 | * care to only zero out what's needed. | |
1161 | */ | |
1162 | memset(dio, 0, offsetof(struct dio, pages)); | |
1da177e4 | 1163 | |
5fe878ae CH |
1164 | dio->flags = flags; |
1165 | if (dio->flags & DIO_LOCKING) { | |
1da177e4 LT |
1166 | /* watch out for a 0 len io from a tricksy fs */ |
1167 | if (rw == READ && end > offset) { | |
5fe878ae CH |
1168 | struct address_space *mapping = |
1169 | iocb->ki_filp->f_mapping; | |
1da177e4 | 1170 | |
5fe878ae CH |
1171 | /* will be released by direct_io_worker */ |
1172 | mutex_lock(&inode->i_mutex); | |
1da177e4 LT |
1173 | |
1174 | retval = filemap_write_and_wait_range(mapping, offset, | |
1175 | end - 1); | |
1176 | if (retval) { | |
5fe878ae | 1177 | mutex_unlock(&inode->i_mutex); |
1da177e4 LT |
1178 | kfree(dio); |
1179 | goto out; | |
1180 | } | |
1da177e4 LT |
1181 | } |
1182 | ||
5fe878ae CH |
1183 | /* |
1184 | * Will be released at I/O completion, possibly in a | |
1185 | * different thread. | |
1186 | */ | |
1187 | down_read_non_owner(&inode->i_alloc_sem); | |
1da177e4 LT |
1188 | } |
1189 | ||
1190 | /* | |
1191 | * For file extending writes updating i_size before data | |
1192 | * writeouts complete can expose uninitialized blocks. So | |
1193 | * even for AIO, we need to wait for i/o to complete before | |
1194 | * returning in this case. | |
1195 | */ | |
b31dc66a | 1196 | dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && |
1da177e4 LT |
1197 | (end > i_size_read(inode))); |
1198 | ||
1199 | retval = direct_io_worker(rw, iocb, inode, iov, offset, | |
1d8fa7a2 | 1200 | nr_segs, blkbits, get_block, end_io, dio); |
1da177e4 | 1201 | |
0f64415d DM |
1202 | /* |
1203 | * In case of error extending write may have instantiated a few | |
1204 | * blocks outside i_size. Trim these off again for DIO_LOCKING. | |
5fe878ae CH |
1205 | * |
1206 | * NOTE: filesystems with their own locking have to handle this | |
1207 | * on their own. | |
0f64415d | 1208 | */ |
06777d30 | 1209 | if (flags & DIO_LOCKING) { |
5fe878ae CH |
1210 | if (unlikely((rw & WRITE) && retval < 0)) { |
1211 | loff_t isize = i_size_read(inode); | |
1212 | if (end > isize) | |
1213 | vmtruncate(inode, isize); | |
1214 | } | |
0f64415d DM |
1215 | } |
1216 | ||
1da177e4 | 1217 | out: |
1da177e4 LT |
1218 | return retval; |
1219 | } | |
1220 | EXPORT_SYMBOL(__blockdev_direct_IO); |