ext3: Use lowercase names of quota functions
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
374/**
617ba13b 375 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
376 * @inode: inode in question
377 * @depth: depth of the chain (1 - direct pointer, etc.)
378 * @offsets: offsets of pointers in inode/indirect blocks
379 * @chain: place to store the result
380 * @err: here we store the error value
381 *
382 * Function fills the array of triples <key, p, bh> and returns %NULL
383 * if everything went OK or the pointer to the last filled triple
384 * (incomplete one) otherwise. Upon the return chain[i].key contains
385 * the number of (i+1)-th block in the chain (as it is stored in memory,
386 * i.e. little-endian 32-bit), chain[i].p contains the address of that
387 * number (it points into struct inode for i==0 and into the bh->b_data
388 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389 * block for i>0 and NULL for i==0. In other words, it holds the block
390 * numbers of the chain, addresses they were taken from (and where we can
391 * verify that chain did not change) and buffer_heads hosting these
392 * numbers.
393 *
394 * Function stops when it stumbles upon zero pointer (absent block)
395 * (pointer to last triple returned, *@err == 0)
396 * or when it gets an IO error reading an indirect block
397 * (ditto, *@err == -EIO)
ac27a0ec
DK
398 * or when it reads all @depth-1 indirect blocks successfully and finds
399 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
400 *
401 * Need to be called with
0e855ac8 402 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 403 */
725d26d3
AK
404static Indirect *ext4_get_branch(struct inode *inode, int depth,
405 ext4_lblk_t *offsets,
ac27a0ec
DK
406 Indirect chain[4], int *err)
407{
408 struct super_block *sb = inode->i_sb;
409 Indirect *p = chain;
410 struct buffer_head *bh;
411
412 *err = 0;
413 /* i_data is not going away, no lock needed */
af5bc92d 414 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
415 if (!p->key)
416 goto no_block;
417 while (--depth) {
418 bh = sb_bread(sb, le32_to_cpu(p->key));
419 if (!bh)
420 goto failure;
af5bc92d 421 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
422 /* Reader: end */
423 if (!p->key)
424 goto no_block;
425 }
426 return NULL;
427
ac27a0ec
DK
428failure:
429 *err = -EIO;
430no_block:
431 return p;
432}
433
434/**
617ba13b 435 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
436 * @inode: owner
437 * @ind: descriptor of indirect block.
438 *
1cc8dcf5 439 * This function returns the preferred place for block allocation.
ac27a0ec
DK
440 * It is used when heuristic for sequential allocation fails.
441 * Rules are:
442 * + if there is a block to the left of our position - allocate near it.
443 * + if pointer will live in indirect block - allocate near that block.
444 * + if pointer will live in inode - allocate in the same
445 * cylinder group.
446 *
447 * In the latter case we colour the starting block by the callers PID to
448 * prevent it from clashing with concurrent allocations for a different inode
449 * in the same block group. The PID is used here so that functionally related
450 * files will be close-by on-disk.
451 *
452 * Caller must make sure that @ind is valid and will stay that way.
453 */
617ba13b 454static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 455{
617ba13b 456 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 457 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 458 __le32 *p;
617ba13b 459 ext4_fsblk_t bg_start;
74d3487f 460 ext4_fsblk_t last_block;
617ba13b 461 ext4_grpblk_t colour;
ac27a0ec
DK
462
463 /* Try to find previous block */
464 for (p = ind->p - 1; p >= start; p--) {
465 if (*p)
466 return le32_to_cpu(*p);
467 }
468
469 /* No such thing, so let's try location of indirect block */
470 if (ind->bh)
471 return ind->bh->b_blocknr;
472
473 /*
474 * It is going to be referred to from the inode itself? OK, just put it
475 * into the same cylinder group then.
476 */
617ba13b 477 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
478 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
479
480 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
481 colour = (current->pid % 16) *
617ba13b 482 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
483 else
484 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
485 return bg_start + colour;
486}
487
488/**
1cc8dcf5 489 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
490 * @inode: owner
491 * @block: block we want
ac27a0ec 492 * @partial: pointer to the last triple within a chain
ac27a0ec 493 *
1cc8dcf5 494 * Normally this function find the preferred place for block allocation,
fb01bfda 495 * returns it.
ac27a0ec 496 */
725d26d3 497static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 498 Indirect *partial)
ac27a0ec 499{
ac27a0ec 500 /*
c2ea3fde 501 * XXX need to get goal block from mballoc's data structures
ac27a0ec 502 */
ac27a0ec 503
617ba13b 504 return ext4_find_near(inode, partial);
ac27a0ec
DK
505}
506
507/**
617ba13b 508 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
509 * of direct blocks need to be allocated for the given branch.
510 *
511 * @branch: chain of indirect blocks
512 * @k: number of blocks need for indirect blocks
513 * @blks: number of data blocks to be mapped.
514 * @blocks_to_boundary: the offset in the indirect block
515 *
516 * return the total number of blocks to be allocate, including the
517 * direct and indirect blocks.
518 */
498e5f24 519static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
520 int blocks_to_boundary)
521{
498e5f24 522 unsigned int count = 0;
ac27a0ec
DK
523
524 /*
525 * Simple case, [t,d]Indirect block(s) has not allocated yet
526 * then it's clear blocks on that path have not allocated
527 */
528 if (k > 0) {
529 /* right now we don't handle cross boundary allocation */
530 if (blks < blocks_to_boundary + 1)
531 count += blks;
532 else
533 count += blocks_to_boundary + 1;
534 return count;
535 }
536
537 count++;
538 while (count < blks && count <= blocks_to_boundary &&
539 le32_to_cpu(*(branch[0].p + count)) == 0) {
540 count++;
541 }
542 return count;
543}
544
545/**
617ba13b 546 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
547 * @indirect_blks: the number of blocks need to allocate for indirect
548 * blocks
549 *
550 * @new_blocks: on return it will store the new block numbers for
551 * the indirect blocks(if needed) and the first direct block,
552 * @blks: on return it will store the total number of allocated
553 * direct blocks
554 */
617ba13b 555static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
556 ext4_lblk_t iblock, ext4_fsblk_t goal,
557 int indirect_blks, int blks,
558 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 559{
815a1130 560 struct ext4_allocation_request ar;
ac27a0ec 561 int target, i;
7061eba7 562 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 563 int index = 0;
617ba13b 564 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
565 int ret = 0;
566
567 /*
568 * Here we try to allocate the requested multiple blocks at once,
569 * on a best-effort basis.
570 * To build a branch, we should allocate blocks for
571 * the indirect blocks(if not allocated yet), and at least
572 * the first direct block of this branch. That's the
573 * minimum number of blocks need to allocate(required)
574 */
7061eba7
AK
575 /* first we try to allocate the indirect blocks */
576 target = indirect_blks;
577 while (target > 0) {
ac27a0ec
DK
578 count = target;
579 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
580 current_block = ext4_new_meta_blocks(handle, inode,
581 goal, &count, err);
ac27a0ec
DK
582 if (*err)
583 goto failed_out;
584
585 target -= count;
586 /* allocate blocks for indirect blocks */
587 while (index < indirect_blks && count) {
588 new_blocks[index++] = current_block++;
589 count--;
590 }
7061eba7
AK
591 if (count > 0) {
592 /*
593 * save the new block number
594 * for the first direct block
595 */
596 new_blocks[index] = current_block;
597 printk(KERN_INFO "%s returned more blocks than "
598 "requested\n", __func__);
599 WARN_ON(1);
ac27a0ec 600 break;
7061eba7 601 }
ac27a0ec
DK
602 }
603
7061eba7
AK
604 target = blks - count ;
605 blk_allocated = count;
606 if (!target)
607 goto allocated;
608 /* Now allocate data blocks */
815a1130
TT
609 memset(&ar, 0, sizeof(ar));
610 ar.inode = inode;
611 ar.goal = goal;
612 ar.len = target;
613 ar.logical = iblock;
614 if (S_ISREG(inode->i_mode))
615 /* enable in-core preallocation only for regular files */
616 ar.flags = EXT4_MB_HINT_DATA;
617
618 current_block = ext4_mb_new_blocks(handle, &ar, err);
619
7061eba7
AK
620 if (*err && (target == blks)) {
621 /*
622 * if the allocation failed and we didn't allocate
623 * any blocks before
624 */
625 goto failed_out;
626 }
627 if (!*err) {
628 if (target == blks) {
629 /*
630 * save the new block number
631 * for the first direct block
632 */
633 new_blocks[index] = current_block;
634 }
815a1130 635 blk_allocated += ar.len;
7061eba7
AK
636 }
637allocated:
ac27a0ec 638 /* total number of blocks allocated for direct blocks */
7061eba7 639 ret = blk_allocated;
ac27a0ec
DK
640 *err = 0;
641 return ret;
642failed_out:
af5bc92d 643 for (i = 0; i < index; i++)
c9de560d 644 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
645 return ret;
646}
647
648/**
617ba13b 649 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
650 * @inode: owner
651 * @indirect_blks: number of allocated indirect blocks
652 * @blks: number of allocated direct blocks
653 * @offsets: offsets (in the blocks) to store the pointers to next.
654 * @branch: place to store the chain in.
655 *
656 * This function allocates blocks, zeroes out all but the last one,
657 * links them into chain and (if we are synchronous) writes them to disk.
658 * In other words, it prepares a branch that can be spliced onto the
659 * inode. It stores the information about that chain in the branch[], in
617ba13b 660 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
661 * we had read the existing part of chain and partial points to the last
662 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 663 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
664 * place chain is disconnected - *branch->p is still zero (we did not
665 * set the last link), but branch->key contains the number that should
666 * be placed into *branch->p to fill that gap.
667 *
668 * If allocation fails we free all blocks we've allocated (and forget
669 * their buffer_heads) and return the error value the from failed
617ba13b 670 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
671 * as described above and return 0.
672 */
617ba13b 673static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
674 ext4_lblk_t iblock, int indirect_blks,
675 int *blks, ext4_fsblk_t goal,
676 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
677{
678 int blocksize = inode->i_sb->s_blocksize;
679 int i, n = 0;
680 int err = 0;
681 struct buffer_head *bh;
682 int num;
617ba13b
MC
683 ext4_fsblk_t new_blocks[4];
684 ext4_fsblk_t current_block;
ac27a0ec 685
7061eba7 686 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
687 *blks, new_blocks, &err);
688 if (err)
689 return err;
690
691 branch[0].key = cpu_to_le32(new_blocks[0]);
692 /*
693 * metadata blocks and data blocks are allocated.
694 */
695 for (n = 1; n <= indirect_blks; n++) {
696 /*
697 * Get buffer_head for parent block, zero it out
698 * and set the pointer to new one, then send
699 * parent to disk.
700 */
701 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
702 branch[n].bh = bh;
703 lock_buffer(bh);
704 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 705 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
706 if (err) {
707 unlock_buffer(bh);
708 brelse(bh);
709 goto failed;
710 }
711
712 memset(bh->b_data, 0, blocksize);
713 branch[n].p = (__le32 *) bh->b_data + offsets[n];
714 branch[n].key = cpu_to_le32(new_blocks[n]);
715 *branch[n].p = branch[n].key;
af5bc92d 716 if (n == indirect_blks) {
ac27a0ec
DK
717 current_block = new_blocks[n];
718 /*
719 * End of chain, update the last new metablock of
720 * the chain to point to the new allocated
721 * data blocks numbers
722 */
723 for (i=1; i < num; i++)
724 *(branch[n].p + i) = cpu_to_le32(++current_block);
725 }
726 BUFFER_TRACE(bh, "marking uptodate");
727 set_buffer_uptodate(bh);
728 unlock_buffer(bh);
729
0390131b
FM
730 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
731 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
732 if (err)
733 goto failed;
734 }
735 *blks = num;
736 return err;
737failed:
738 /* Allocation failed, free what we already allocated */
739 for (i = 1; i <= n ; i++) {
dab291af 740 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 741 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 742 }
af5bc92d 743 for (i = 0; i < indirect_blks; i++)
c9de560d 744 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 745
c9de560d 746 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
747
748 return err;
749}
750
751/**
617ba13b 752 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
753 * @inode: owner
754 * @block: (logical) number of block we are adding
755 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 756 * ext4_alloc_branch)
ac27a0ec
DK
757 * @where: location of missing link
758 * @num: number of indirect blocks we are adding
759 * @blks: number of direct blocks we are adding
760 *
761 * This function fills the missing link and does all housekeeping needed in
762 * inode (->i_blocks, etc.). In case of success we end up with the full
763 * chain to new block and return 0.
764 */
617ba13b 765static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 766 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
767{
768 int i;
769 int err = 0;
617ba13b 770 ext4_fsblk_t current_block;
ac27a0ec 771
ac27a0ec
DK
772 /*
773 * If we're splicing into a [td]indirect block (as opposed to the
774 * inode) then we need to get write access to the [td]indirect block
775 * before the splice.
776 */
777 if (where->bh) {
778 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 779 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
780 if (err)
781 goto err_out;
782 }
783 /* That's it */
784
785 *where->p = where->key;
786
787 /*
788 * Update the host buffer_head or inode to point to more just allocated
789 * direct blocks blocks
790 */
791 if (num == 0 && blks > 1) {
792 current_block = le32_to_cpu(where->key) + 1;
793 for (i = 1; i < blks; i++)
af5bc92d 794 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
795 }
796
ac27a0ec
DK
797 /* We are done with atomic stuff, now do the rest of housekeeping */
798
ef7f3835 799 inode->i_ctime = ext4_current_time(inode);
617ba13b 800 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
801
802 /* had we spliced it onto indirect block? */
803 if (where->bh) {
804 /*
805 * If we spliced it onto an indirect block, we haven't
806 * altered the inode. Note however that if it is being spliced
807 * onto an indirect block at the very end of the file (the
808 * file is growing) then we *will* alter the inode to reflect
809 * the new i_size. But that is not done here - it is done in
617ba13b 810 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
811 */
812 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
813 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
814 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
815 if (err)
816 goto err_out;
817 } else {
818 /*
819 * OK, we spliced it into the inode itself on a direct block.
820 * Inode was dirtied above.
821 */
822 jbd_debug(5, "splicing direct\n");
823 }
824 return err;
825
826err_out:
827 for (i = 1; i <= num; i++) {
dab291af 828 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 829 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
830 ext4_free_blocks(handle, inode,
831 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 832 }
c9de560d 833 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
834
835 return err;
836}
837
838/*
839 * Allocation strategy is simple: if we have to allocate something, we will
840 * have to go the whole way to leaf. So let's do it before attaching anything
841 * to tree, set linkage between the newborn blocks, write them if sync is
842 * required, recheck the path, free and repeat if check fails, otherwise
843 * set the last missing link (that will protect us from any truncate-generated
844 * removals - all blocks on the path are immune now) and possibly force the
845 * write on the parent block.
846 * That has a nice additional property: no special recovery from the failed
847 * allocations is needed - we simply release blocks and do not touch anything
848 * reachable from inode.
849 *
850 * `handle' can be NULL if create == 0.
851 *
ac27a0ec
DK
852 * return > 0, # of blocks mapped or allocated.
853 * return = 0, if plain lookup failed.
854 * return < 0, error case.
c278bfec
AK
855 *
856 *
857 * Need to be called with
0e855ac8
AK
858 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
859 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 860 */
498e5f24
TT
861static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
862 ext4_lblk_t iblock, unsigned int maxblocks,
863 struct buffer_head *bh_result,
864 int create, int extend_disksize)
ac27a0ec
DK
865{
866 int err = -EIO;
725d26d3 867 ext4_lblk_t offsets[4];
ac27a0ec
DK
868 Indirect chain[4];
869 Indirect *partial;
617ba13b 870 ext4_fsblk_t goal;
ac27a0ec
DK
871 int indirect_blks;
872 int blocks_to_boundary = 0;
873 int depth;
617ba13b 874 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 875 int count = 0;
617ba13b 876 ext4_fsblk_t first_block = 0;
61628a3f 877 loff_t disksize;
ac27a0ec
DK
878
879
a86c6181 880 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 881 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
882 depth = ext4_block_to_path(inode, iblock, offsets,
883 &blocks_to_boundary);
ac27a0ec
DK
884
885 if (depth == 0)
886 goto out;
887
617ba13b 888 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
889
890 /* Simplest case - block found, no allocation needed */
891 if (!partial) {
892 first_block = le32_to_cpu(chain[depth - 1].key);
893 clear_buffer_new(bh_result);
894 count++;
895 /*map more blocks*/
896 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 897 ext4_fsblk_t blk;
ac27a0ec 898
ac27a0ec
DK
899 blk = le32_to_cpu(*(chain[depth-1].p + count));
900
901 if (blk == first_block + count)
902 count++;
903 else
904 break;
905 }
c278bfec 906 goto got_it;
ac27a0ec
DK
907 }
908
909 /* Next simple case - plain lookup or failed read of indirect block */
910 if (!create || err == -EIO)
911 goto cleanup;
912
ac27a0ec 913 /*
c2ea3fde 914 * Okay, we need to do block allocation.
ac27a0ec 915 */
fb01bfda 916 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
917
918 /* the number of blocks need to allocate for [d,t]indirect blocks */
919 indirect_blks = (chain + depth) - partial - 1;
920
921 /*
922 * Next look up the indirect map to count the totoal number of
923 * direct blocks to allocate for this branch.
924 */
617ba13b 925 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
926 maxblocks, blocks_to_boundary);
927 /*
617ba13b 928 * Block out ext4_truncate while we alter the tree
ac27a0ec 929 */
7061eba7
AK
930 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
931 &count, goal,
932 offsets + (partial - chain), partial);
ac27a0ec
DK
933
934 /*
617ba13b 935 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
936 * on the new chain if there is a failure, but that risks using
937 * up transaction credits, especially for bitmaps where the
938 * credits cannot be returned. Can we handle this somehow? We
939 * may need to return -EAGAIN upwards in the worst case. --sct
940 */
941 if (!err)
617ba13b 942 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
943 partial, indirect_blks, count);
944 /*
0e855ac8 945 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 946 * protect it if you're about to implement concurrent
617ba13b 947 * ext4_get_block() -bzzz
ac27a0ec 948 */
61628a3f
MC
949 if (!err && extend_disksize) {
950 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
951 if (disksize > i_size_read(inode))
952 disksize = i_size_read(inode);
953 if (disksize > ei->i_disksize)
954 ei->i_disksize = disksize;
955 }
ac27a0ec
DK
956 if (err)
957 goto cleanup;
958
959 set_buffer_new(bh_result);
960got_it:
961 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
962 if (count > blocks_to_boundary)
963 set_buffer_boundary(bh_result);
964 err = count;
965 /* Clean up and exit */
966 partial = chain + depth - 1; /* the whole chain */
967cleanup:
968 while (partial > chain) {
969 BUFFER_TRACE(partial->bh, "call brelse");
970 brelse(partial->bh);
971 partial--;
972 }
973 BUFFER_TRACE(bh_result, "returned");
974out:
975 return err;
976}
977
60e58e0f
MC
978qsize_t ext4_get_reserved_space(struct inode *inode)
979{
980 unsigned long long total;
981
982 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
983 total = EXT4_I(inode)->i_reserved_data_blocks +
984 EXT4_I(inode)->i_reserved_meta_blocks;
985 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
986
987 return total;
988}
12219aea
AK
989/*
990 * Calculate the number of metadata blocks need to reserve
991 * to allocate @blocks for non extent file based file
992 */
993static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
994{
995 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
996 int ind_blks, dind_blks, tind_blks;
997
998 /* number of new indirect blocks needed */
999 ind_blks = (blocks + icap - 1) / icap;
1000
1001 dind_blks = (ind_blks + icap - 1) / icap;
1002
1003 tind_blks = 1;
1004
1005 return ind_blks + dind_blks + tind_blks;
1006}
1007
1008/*
1009 * Calculate the number of metadata blocks need to reserve
1010 * to allocate given number of blocks
1011 */
1012static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1013{
cd213226
MC
1014 if (!blocks)
1015 return 0;
1016
12219aea
AK
1017 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1018 return ext4_ext_calc_metadata_amount(inode, blocks);
1019
1020 return ext4_indirect_calc_metadata_amount(inode, blocks);
1021}
1022
1023static void ext4_da_update_reserve_space(struct inode *inode, int used)
1024{
1025 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1026 int total, mdb, mdb_free;
1027
1028 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1029 /* recalculate the number of metablocks still need to be reserved */
1030 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1031 mdb = ext4_calc_metadata_amount(inode, total);
1032
1033 /* figure out how many metablocks to release */
1034 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1035 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1036
6bc6e63f
AK
1037 if (mdb_free) {
1038 /* Account for allocated meta_blocks */
1039 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1040
1041 /* update fs dirty blocks counter */
1042 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1043 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1044 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1045 }
12219aea
AK
1046
1047 /* update per-inode reservations */
1048 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1049 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1050 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1051
1052 /*
1053 * free those over-booking quota for metadata blocks
1054 */
1055
1056 if (mdb_free)
1057 vfs_dq_release_reservation_block(inode, mdb_free);
12219aea
AK
1058}
1059
f5ab0d1f 1060/*
2b2d6d01
TT
1061 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1062 * and returns if the blocks are already mapped.
f5ab0d1f 1063 *
f5ab0d1f
MC
1064 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1065 * and store the allocated blocks in the result buffer head and mark it
1066 * mapped.
1067 *
1068 * If file type is extents based, it will call ext4_ext_get_blocks(),
1069 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1070 * based files
1071 *
1072 * On success, it returns the number of blocks being mapped or allocate.
1073 * if create==0 and the blocks are pre-allocated and uninitialized block,
1074 * the result buffer head is unmapped. If the create ==1, it will make sure
1075 * the buffer head is mapped.
1076 *
1077 * It returns 0 if plain look up failed (blocks have not been allocated), in
1078 * that casem, buffer head is unmapped
1079 *
1080 * It returns the error in case of allocation failure.
1081 */
0e855ac8 1082int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
498e5f24 1083 unsigned int max_blocks, struct buffer_head *bh,
d2a17637 1084 int create, int extend_disksize, int flag)
0e855ac8
AK
1085{
1086 int retval;
f5ab0d1f
MC
1087
1088 clear_buffer_mapped(bh);
1089
4df3d265
AK
1090 /*
1091 * Try to see if we can get the block without requesting
1092 * for new file system block.
1093 */
1094 down_read((&EXT4_I(inode)->i_data_sem));
1095 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1096 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1097 bh, 0, 0);
0e855ac8 1098 } else {
4df3d265
AK
1099 retval = ext4_get_blocks_handle(handle,
1100 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1101 }
4df3d265 1102 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1103
1104 /* If it is only a block(s) look up */
1105 if (!create)
1106 return retval;
1107
1108 /*
1109 * Returns if the blocks have already allocated
1110 *
1111 * Note that if blocks have been preallocated
1112 * ext4_ext_get_block() returns th create = 0
1113 * with buffer head unmapped.
1114 */
1115 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1116 return retval;
1117
1118 /*
f5ab0d1f
MC
1119 * New blocks allocate and/or writing to uninitialized extent
1120 * will possibly result in updating i_data, so we take
1121 * the write lock of i_data_sem, and call get_blocks()
1122 * with create == 1 flag.
4df3d265
AK
1123 */
1124 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1125
1126 /*
1127 * if the caller is from delayed allocation writeout path
1128 * we have already reserved fs blocks for allocation
1129 * let the underlying get_block() function know to
1130 * avoid double accounting
1131 */
1132 if (flag)
1133 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1134 /*
1135 * We need to check for EXT4 here because migrate
1136 * could have changed the inode type in between
1137 */
0e855ac8
AK
1138 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1139 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1140 bh, create, extend_disksize);
1141 } else {
1142 retval = ext4_get_blocks_handle(handle, inode, block,
1143 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1144
1145 if (retval > 0 && buffer_new(bh)) {
1146 /*
1147 * We allocated new blocks which will result in
1148 * i_data's format changing. Force the migrate
1149 * to fail by clearing migrate flags
1150 */
1151 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1152 ~EXT4_EXT_MIGRATE;
1153 }
0e855ac8 1154 }
d2a17637
MC
1155
1156 if (flag) {
1157 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1158 /*
1159 * Update reserved blocks/metadata blocks
1160 * after successful block allocation
1161 * which were deferred till now
1162 */
1163 if ((retval > 0) && buffer_delay(bh))
12219aea 1164 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1165 }
1166
4df3d265 1167 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1168 return retval;
1169}
1170
f3bd1f3f
MC
1171/* Maximum number of blocks we map for direct IO at once. */
1172#define DIO_MAX_BLOCKS 4096
1173
6873fa0d
ES
1174int ext4_get_block(struct inode *inode, sector_t iblock,
1175 struct buffer_head *bh_result, int create)
ac27a0ec 1176{
3e4fdaf8 1177 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1178 int ret = 0, started = 0;
ac27a0ec 1179 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1180 int dio_credits;
ac27a0ec 1181
7fb5409d
JK
1182 if (create && !handle) {
1183 /* Direct IO write... */
1184 if (max_blocks > DIO_MAX_BLOCKS)
1185 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1186 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1187 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1188 if (IS_ERR(handle)) {
ac27a0ec 1189 ret = PTR_ERR(handle);
7fb5409d 1190 goto out;
ac27a0ec 1191 }
7fb5409d 1192 started = 1;
ac27a0ec
DK
1193 }
1194
7fb5409d 1195 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1196 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1197 if (ret > 0) {
1198 bh_result->b_size = (ret << inode->i_blkbits);
1199 ret = 0;
ac27a0ec 1200 }
7fb5409d
JK
1201 if (started)
1202 ext4_journal_stop(handle);
1203out:
ac27a0ec
DK
1204 return ret;
1205}
1206
1207/*
1208 * `handle' can be NULL if create is zero
1209 */
617ba13b 1210struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1211 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1212{
1213 struct buffer_head dummy;
1214 int fatal = 0, err;
1215
1216 J_ASSERT(handle != NULL || create == 0);
1217
1218 dummy.b_state = 0;
1219 dummy.b_blocknr = -1000;
1220 buffer_trace_init(&dummy.b_history);
a86c6181 1221 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1222 &dummy, create, 1, 0);
ac27a0ec 1223 /*
617ba13b 1224 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1225 * mapped. 0 in case of a HOLE.
1226 */
1227 if (err > 0) {
1228 if (err > 1)
1229 WARN_ON(1);
1230 err = 0;
1231 }
1232 *errp = err;
1233 if (!err && buffer_mapped(&dummy)) {
1234 struct buffer_head *bh;
1235 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1236 if (!bh) {
1237 *errp = -EIO;
1238 goto err;
1239 }
1240 if (buffer_new(&dummy)) {
1241 J_ASSERT(create != 0);
ac39849d 1242 J_ASSERT(handle != NULL);
ac27a0ec
DK
1243
1244 /*
1245 * Now that we do not always journal data, we should
1246 * keep in mind whether this should always journal the
1247 * new buffer as metadata. For now, regular file
617ba13b 1248 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1249 * problem.
1250 */
1251 lock_buffer(bh);
1252 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1253 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1254 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1255 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1256 set_buffer_uptodate(bh);
1257 }
1258 unlock_buffer(bh);
0390131b
FM
1259 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1260 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1261 if (!fatal)
1262 fatal = err;
1263 } else {
1264 BUFFER_TRACE(bh, "not a new buffer");
1265 }
1266 if (fatal) {
1267 *errp = fatal;
1268 brelse(bh);
1269 bh = NULL;
1270 }
1271 return bh;
1272 }
1273err:
1274 return NULL;
1275}
1276
617ba13b 1277struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1278 ext4_lblk_t block, int create, int *err)
ac27a0ec 1279{
af5bc92d 1280 struct buffer_head *bh;
ac27a0ec 1281
617ba13b 1282 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1283 if (!bh)
1284 return bh;
1285 if (buffer_uptodate(bh))
1286 return bh;
1287 ll_rw_block(READ_META, 1, &bh);
1288 wait_on_buffer(bh);
1289 if (buffer_uptodate(bh))
1290 return bh;
1291 put_bh(bh);
1292 *err = -EIO;
1293 return NULL;
1294}
1295
af5bc92d
TT
1296static int walk_page_buffers(handle_t *handle,
1297 struct buffer_head *head,
1298 unsigned from,
1299 unsigned to,
1300 int *partial,
1301 int (*fn)(handle_t *handle,
1302 struct buffer_head *bh))
ac27a0ec
DK
1303{
1304 struct buffer_head *bh;
1305 unsigned block_start, block_end;
1306 unsigned blocksize = head->b_size;
1307 int err, ret = 0;
1308 struct buffer_head *next;
1309
af5bc92d
TT
1310 for (bh = head, block_start = 0;
1311 ret == 0 && (bh != head || !block_start);
1312 block_start = block_end, bh = next)
ac27a0ec
DK
1313 {
1314 next = bh->b_this_page;
1315 block_end = block_start + blocksize;
1316 if (block_end <= from || block_start >= to) {
1317 if (partial && !buffer_uptodate(bh))
1318 *partial = 1;
1319 continue;
1320 }
1321 err = (*fn)(handle, bh);
1322 if (!ret)
1323 ret = err;
1324 }
1325 return ret;
1326}
1327
1328/*
1329 * To preserve ordering, it is essential that the hole instantiation and
1330 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1331 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1332 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1333 * prepare_write() is the right place.
1334 *
617ba13b
MC
1335 * Also, this function can nest inside ext4_writepage() ->
1336 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1337 * has generated enough buffer credits to do the whole page. So we won't
1338 * block on the journal in that case, which is good, because the caller may
1339 * be PF_MEMALLOC.
1340 *
617ba13b 1341 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1342 * quota file writes. If we were to commit the transaction while thus
1343 * reentered, there can be a deadlock - we would be holding a quota
1344 * lock, and the commit would never complete if another thread had a
1345 * transaction open and was blocking on the quota lock - a ranking
1346 * violation.
1347 *
dab291af 1348 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1349 * will _not_ run commit under these circumstances because handle->h_ref
1350 * is elevated. We'll still have enough credits for the tiny quotafile
1351 * write.
1352 */
1353static int do_journal_get_write_access(handle_t *handle,
1354 struct buffer_head *bh)
1355{
1356 if (!buffer_mapped(bh) || buffer_freed(bh))
1357 return 0;
617ba13b 1358 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1359}
1360
bfc1af65
NP
1361static int ext4_write_begin(struct file *file, struct address_space *mapping,
1362 loff_t pos, unsigned len, unsigned flags,
1363 struct page **pagep, void **fsdata)
ac27a0ec 1364{
af5bc92d 1365 struct inode *inode = mapping->host;
7479d2b9 1366 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1367 handle_t *handle;
1368 int retries = 0;
af5bc92d 1369 struct page *page;
bfc1af65 1370 pgoff_t index;
af5bc92d 1371 unsigned from, to;
bfc1af65 1372
ba80b101
TT
1373 trace_mark(ext4_write_begin,
1374 "dev %s ino %lu pos %llu len %u flags %u",
1375 inode->i_sb->s_id, inode->i_ino,
1376 (unsigned long long) pos, len, flags);
bfc1af65 1377 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1378 from = pos & (PAGE_CACHE_SIZE - 1);
1379 to = from + len;
ac27a0ec
DK
1380
1381retry:
af5bc92d
TT
1382 handle = ext4_journal_start(inode, needed_blocks);
1383 if (IS_ERR(handle)) {
1384 ret = PTR_ERR(handle);
1385 goto out;
7479d2b9 1386 }
ac27a0ec 1387
ebd3610b
JK
1388 /* We cannot recurse into the filesystem as the transaction is already
1389 * started */
1390 flags |= AOP_FLAG_NOFS;
1391
54566b2c 1392 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1393 if (!page) {
1394 ext4_journal_stop(handle);
1395 ret = -ENOMEM;
1396 goto out;
1397 }
1398 *pagep = page;
1399
bfc1af65 1400 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1401 ext4_get_block);
bfc1af65
NP
1402
1403 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1404 ret = walk_page_buffers(handle, page_buffers(page),
1405 from, to, NULL, do_journal_get_write_access);
1406 }
bfc1af65
NP
1407
1408 if (ret) {
af5bc92d 1409 unlock_page(page);
cf108bca 1410 ext4_journal_stop(handle);
af5bc92d 1411 page_cache_release(page);
ae4d5372
AK
1412 /*
1413 * block_write_begin may have instantiated a few blocks
1414 * outside i_size. Trim these off again. Don't need
1415 * i_size_read because we hold i_mutex.
1416 */
1417 if (pos + len > inode->i_size)
1418 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1419 }
1420
617ba13b 1421 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1422 goto retry;
7479d2b9 1423out:
ac27a0ec
DK
1424 return ret;
1425}
1426
bfc1af65
NP
1427/* For write_end() in data=journal mode */
1428static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1429{
1430 if (!buffer_mapped(bh) || buffer_freed(bh))
1431 return 0;
1432 set_buffer_uptodate(bh);
0390131b 1433 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1434}
1435
1436/*
1437 * We need to pick up the new inode size which generic_commit_write gave us
1438 * `file' can be NULL - eg, when called from page_symlink().
1439 *
617ba13b 1440 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1441 * buffers are managed internally.
1442 */
bfc1af65
NP
1443static int ext4_ordered_write_end(struct file *file,
1444 struct address_space *mapping,
1445 loff_t pos, unsigned len, unsigned copied,
1446 struct page *page, void *fsdata)
ac27a0ec 1447{
617ba13b 1448 handle_t *handle = ext4_journal_current_handle();
cf108bca 1449 struct inode *inode = mapping->host;
ac27a0ec
DK
1450 int ret = 0, ret2;
1451
ba80b101
TT
1452 trace_mark(ext4_ordered_write_end,
1453 "dev %s ino %lu pos %llu len %u copied %u",
1454 inode->i_sb->s_id, inode->i_ino,
1455 (unsigned long long) pos, len, copied);
678aaf48 1456 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1457
1458 if (ret == 0) {
ac27a0ec
DK
1459 loff_t new_i_size;
1460
bfc1af65 1461 new_i_size = pos + copied;
cf17fea6
AK
1462 if (new_i_size > EXT4_I(inode)->i_disksize) {
1463 ext4_update_i_disksize(inode, new_i_size);
1464 /* We need to mark inode dirty even if
1465 * new_i_size is less that inode->i_size
1466 * bu greater than i_disksize.(hint delalloc)
1467 */
1468 ext4_mark_inode_dirty(handle, inode);
1469 }
1470
cf108bca 1471 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1472 page, fsdata);
f8a87d89
RK
1473 copied = ret2;
1474 if (ret2 < 0)
1475 ret = ret2;
ac27a0ec 1476 }
617ba13b 1477 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1478 if (!ret)
1479 ret = ret2;
bfc1af65
NP
1480
1481 return ret ? ret : copied;
ac27a0ec
DK
1482}
1483
bfc1af65
NP
1484static int ext4_writeback_write_end(struct file *file,
1485 struct address_space *mapping,
1486 loff_t pos, unsigned len, unsigned copied,
1487 struct page *page, void *fsdata)
ac27a0ec 1488{
617ba13b 1489 handle_t *handle = ext4_journal_current_handle();
cf108bca 1490 struct inode *inode = mapping->host;
ac27a0ec
DK
1491 int ret = 0, ret2;
1492 loff_t new_i_size;
1493
ba80b101
TT
1494 trace_mark(ext4_writeback_write_end,
1495 "dev %s ino %lu pos %llu len %u copied %u",
1496 inode->i_sb->s_id, inode->i_ino,
1497 (unsigned long long) pos, len, copied);
bfc1af65 1498 new_i_size = pos + copied;
cf17fea6
AK
1499 if (new_i_size > EXT4_I(inode)->i_disksize) {
1500 ext4_update_i_disksize(inode, new_i_size);
1501 /* We need to mark inode dirty even if
1502 * new_i_size is less that inode->i_size
1503 * bu greater than i_disksize.(hint delalloc)
1504 */
1505 ext4_mark_inode_dirty(handle, inode);
1506 }
ac27a0ec 1507
cf108bca 1508 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1509 page, fsdata);
f8a87d89
RK
1510 copied = ret2;
1511 if (ret2 < 0)
1512 ret = ret2;
ac27a0ec 1513
617ba13b 1514 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1515 if (!ret)
1516 ret = ret2;
bfc1af65
NP
1517
1518 return ret ? ret : copied;
ac27a0ec
DK
1519}
1520
bfc1af65
NP
1521static int ext4_journalled_write_end(struct file *file,
1522 struct address_space *mapping,
1523 loff_t pos, unsigned len, unsigned copied,
1524 struct page *page, void *fsdata)
ac27a0ec 1525{
617ba13b 1526 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1527 struct inode *inode = mapping->host;
ac27a0ec
DK
1528 int ret = 0, ret2;
1529 int partial = 0;
bfc1af65 1530 unsigned from, to;
cf17fea6 1531 loff_t new_i_size;
ac27a0ec 1532
ba80b101
TT
1533 trace_mark(ext4_journalled_write_end,
1534 "dev %s ino %lu pos %llu len %u copied %u",
1535 inode->i_sb->s_id, inode->i_ino,
1536 (unsigned long long) pos, len, copied);
bfc1af65
NP
1537 from = pos & (PAGE_CACHE_SIZE - 1);
1538 to = from + len;
1539
1540 if (copied < len) {
1541 if (!PageUptodate(page))
1542 copied = 0;
1543 page_zero_new_buffers(page, from+copied, to);
1544 }
ac27a0ec
DK
1545
1546 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1547 to, &partial, write_end_fn);
ac27a0ec
DK
1548 if (!partial)
1549 SetPageUptodate(page);
cf17fea6
AK
1550 new_i_size = pos + copied;
1551 if (new_i_size > inode->i_size)
bfc1af65 1552 i_size_write(inode, pos+copied);
617ba13b 1553 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1554 if (new_i_size > EXT4_I(inode)->i_disksize) {
1555 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1556 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1557 if (!ret)
1558 ret = ret2;
1559 }
bfc1af65 1560
cf108bca 1561 unlock_page(page);
617ba13b 1562 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1563 if (!ret)
1564 ret = ret2;
bfc1af65
NP
1565 page_cache_release(page);
1566
1567 return ret ? ret : copied;
ac27a0ec 1568}
d2a17637
MC
1569
1570static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1571{
030ba6bc 1572 int retries = 0;
60e58e0f
MC
1573 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1574 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1575
1576 /*
1577 * recalculate the amount of metadata blocks to reserve
1578 * in order to allocate nrblocks
1579 * worse case is one extent per block
1580 */
030ba6bc 1581repeat:
d2a17637
MC
1582 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1583 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1584 mdblocks = ext4_calc_metadata_amount(inode, total);
1585 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1586
1587 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1588 total = md_needed + nrblocks;
1589
60e58e0f
MC
1590 /*
1591 * Make quota reservation here to prevent quota overflow
1592 * later. Real quota accounting is done at pages writeout
1593 * time.
1594 */
1595 if (vfs_dq_reserve_block(inode, total)) {
1596 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1597 return -EDQUOT;
1598 }
1599
a30d542a 1600 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1602 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1603 yield();
1604 goto repeat;
1605 }
60e58e0f 1606 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1607 return -ENOSPC;
1608 }
d2a17637
MC
1609 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1610 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1611
1612 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1613 return 0; /* success */
1614}
1615
12219aea 1616static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1617{
1618 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1619 int total, mdb, mdb_free, release;
1620
cd213226
MC
1621 if (!to_free)
1622 return; /* Nothing to release, exit */
1623
d2a17637 1624 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1625
1626 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1627 /*
1628 * if there is no reserved blocks, but we try to free some
1629 * then the counter is messed up somewhere.
1630 * but since this function is called from invalidate
1631 * page, it's harmless to return without any action
1632 */
1633 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1634 "blocks for inode %lu, but there is no reserved "
1635 "data blocks\n", to_free, inode->i_ino);
1636 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1637 return;
1638 }
1639
d2a17637 1640 /* recalculate the number of metablocks still need to be reserved */
12219aea 1641 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1642 mdb = ext4_calc_metadata_amount(inode, total);
1643
1644 /* figure out how many metablocks to release */
1645 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1646 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1647
d2a17637
MC
1648 release = to_free + mdb_free;
1649
6bc6e63f
AK
1650 /* update fs dirty blocks counter for truncate case */
1651 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1652
1653 /* update per-inode reservations */
12219aea
AK
1654 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1655 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1656
1657 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1658 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1659 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1660
1661 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1662}
1663
1664static void ext4_da_page_release_reservation(struct page *page,
1665 unsigned long offset)
1666{
1667 int to_release = 0;
1668 struct buffer_head *head, *bh;
1669 unsigned int curr_off = 0;
1670
1671 head = page_buffers(page);
1672 bh = head;
1673 do {
1674 unsigned int next_off = curr_off + bh->b_size;
1675
1676 if ((offset <= curr_off) && (buffer_delay(bh))) {
1677 to_release++;
1678 clear_buffer_delay(bh);
1679 }
1680 curr_off = next_off;
1681 } while ((bh = bh->b_this_page) != head);
12219aea 1682 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1683}
ac27a0ec 1684
64769240
AT
1685/*
1686 * Delayed allocation stuff
1687 */
1688
1689struct mpage_da_data {
1690 struct inode *inode;
1691 struct buffer_head lbh; /* extent of blocks */
1692 unsigned long first_page, next_page; /* extent of pages */
1693 get_block_t *get_block;
1694 struct writeback_control *wbc;
a1d6cc56 1695 int io_done;
498e5f24 1696 int pages_written;
df22291f 1697 int retval;
64769240
AT
1698};
1699
1700/*
1701 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1702 * them with writepage() call back
64769240
AT
1703 *
1704 * @mpd->inode: inode
1705 * @mpd->first_page: first page of the extent
1706 * @mpd->next_page: page after the last page of the extent
1707 * @mpd->get_block: the filesystem's block mapper function
1708 *
1709 * By the time mpage_da_submit_io() is called we expect all blocks
1710 * to be allocated. this may be wrong if allocation failed.
1711 *
1712 * As pages are already locked by write_cache_pages(), we can't use it
1713 */
1714static int mpage_da_submit_io(struct mpage_da_data *mpd)
1715{
22208ded 1716 long pages_skipped;
791b7f08
AK
1717 struct pagevec pvec;
1718 unsigned long index, end;
1719 int ret = 0, err, nr_pages, i;
1720 struct inode *inode = mpd->inode;
1721 struct address_space *mapping = inode->i_mapping;
64769240
AT
1722
1723 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1724 /*
1725 * We need to start from the first_page to the next_page - 1
1726 * to make sure we also write the mapped dirty buffer_heads.
1727 * If we look at mpd->lbh.b_blocknr we would only be looking
1728 * at the currently mapped buffer_heads.
1729 */
64769240
AT
1730 index = mpd->first_page;
1731 end = mpd->next_page - 1;
1732
791b7f08 1733 pagevec_init(&pvec, 0);
64769240 1734 while (index <= end) {
791b7f08 1735 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1736 if (nr_pages == 0)
1737 break;
1738 for (i = 0; i < nr_pages; i++) {
1739 struct page *page = pvec.pages[i];
1740
791b7f08
AK
1741 index = page->index;
1742 if (index > end)
1743 break;
1744 index++;
1745
1746 BUG_ON(!PageLocked(page));
1747 BUG_ON(PageWriteback(page));
1748
22208ded 1749 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1750 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1751 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1752 /*
1753 * have successfully written the page
1754 * without skipping the same
1755 */
a1d6cc56 1756 mpd->pages_written++;
64769240
AT
1757 /*
1758 * In error case, we have to continue because
1759 * remaining pages are still locked
1760 * XXX: unlock and re-dirty them?
1761 */
1762 if (ret == 0)
1763 ret = err;
1764 }
1765 pagevec_release(&pvec);
1766 }
64769240
AT
1767 return ret;
1768}
1769
1770/*
1771 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1772 *
1773 * @mpd->inode - inode to walk through
1774 * @exbh->b_blocknr - first block on a disk
1775 * @exbh->b_size - amount of space in bytes
1776 * @logical - first logical block to start assignment with
1777 *
1778 * the function goes through all passed space and put actual disk
1779 * block numbers into buffer heads, dropping BH_Delay
1780 */
1781static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1782 struct buffer_head *exbh)
1783{
1784 struct inode *inode = mpd->inode;
1785 struct address_space *mapping = inode->i_mapping;
1786 int blocks = exbh->b_size >> inode->i_blkbits;
1787 sector_t pblock = exbh->b_blocknr, cur_logical;
1788 struct buffer_head *head, *bh;
a1d6cc56 1789 pgoff_t index, end;
64769240
AT
1790 struct pagevec pvec;
1791 int nr_pages, i;
1792
1793 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1794 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1795 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1796
1797 pagevec_init(&pvec, 0);
1798
1799 while (index <= end) {
1800 /* XXX: optimize tail */
1801 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1802 if (nr_pages == 0)
1803 break;
1804 for (i = 0; i < nr_pages; i++) {
1805 struct page *page = pvec.pages[i];
1806
1807 index = page->index;
1808 if (index > end)
1809 break;
1810 index++;
1811
1812 BUG_ON(!PageLocked(page));
1813 BUG_ON(PageWriteback(page));
1814 BUG_ON(!page_has_buffers(page));
1815
1816 bh = page_buffers(page);
1817 head = bh;
1818
1819 /* skip blocks out of the range */
1820 do {
1821 if (cur_logical >= logical)
1822 break;
1823 cur_logical++;
1824 } while ((bh = bh->b_this_page) != head);
1825
1826 do {
1827 if (cur_logical >= logical + blocks)
1828 break;
64769240
AT
1829 if (buffer_delay(bh)) {
1830 bh->b_blocknr = pblock;
1831 clear_buffer_delay(bh);
bf068ee2
AK
1832 bh->b_bdev = inode->i_sb->s_bdev;
1833 } else if (buffer_unwritten(bh)) {
1834 bh->b_blocknr = pblock;
1835 clear_buffer_unwritten(bh);
1836 set_buffer_mapped(bh);
1837 set_buffer_new(bh);
1838 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1839 } else if (buffer_mapped(bh))
64769240 1840 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1841
1842 cur_logical++;
1843 pblock++;
1844 } while ((bh = bh->b_this_page) != head);
1845 }
1846 pagevec_release(&pvec);
1847 }
1848}
1849
1850
1851/*
1852 * __unmap_underlying_blocks - just a helper function to unmap
1853 * set of blocks described by @bh
1854 */
1855static inline void __unmap_underlying_blocks(struct inode *inode,
1856 struct buffer_head *bh)
1857{
1858 struct block_device *bdev = inode->i_sb->s_bdev;
1859 int blocks, i;
1860
1861 blocks = bh->b_size >> inode->i_blkbits;
1862 for (i = 0; i < blocks; i++)
1863 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1864}
1865
c4a0c46e
AK
1866static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1867 sector_t logical, long blk_cnt)
1868{
1869 int nr_pages, i;
1870 pgoff_t index, end;
1871 struct pagevec pvec;
1872 struct inode *inode = mpd->inode;
1873 struct address_space *mapping = inode->i_mapping;
1874
1875 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1876 end = (logical + blk_cnt - 1) >>
1877 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878 while (index <= end) {
1879 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1880 if (nr_pages == 0)
1881 break;
1882 for (i = 0; i < nr_pages; i++) {
1883 struct page *page = pvec.pages[i];
1884 index = page->index;
1885 if (index > end)
1886 break;
1887 index++;
1888
1889 BUG_ON(!PageLocked(page));
1890 BUG_ON(PageWriteback(page));
1891 block_invalidatepage(page, 0);
1892 ClearPageUptodate(page);
1893 unlock_page(page);
1894 }
1895 }
1896 return;
1897}
1898
df22291f
AK
1899static void ext4_print_free_blocks(struct inode *inode)
1900{
1901 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1902 printk(KERN_EMERG "Total free blocks count %lld\n",
1903 ext4_count_free_blocks(inode->i_sb));
1904 printk(KERN_EMERG "Free/Dirty block details\n");
1905 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1906 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1907 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1908 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 1909 printk(KERN_EMERG "Block reservation details\n");
498e5f24 1910 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 1911 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 1912 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
1913 EXT4_I(inode)->i_reserved_meta_blocks);
1914 return;
1915}
1916
64769240
AT
1917/*
1918 * mpage_da_map_blocks - go through given space
1919 *
1920 * @mpd->lbh - bh describing space
1921 * @mpd->get_block - the filesystem's block mapper function
1922 *
1923 * The function skips space we know is already mapped to disk blocks.
1924 *
64769240 1925 */
c4a0c46e 1926static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1927{
a1d6cc56 1928 int err = 0;
030ba6bc 1929 struct buffer_head new;
64769240 1930 struct buffer_head *lbh = &mpd->lbh;
df22291f 1931 sector_t next;
64769240
AT
1932
1933 /*
1934 * We consider only non-mapped and non-allocated blocks
1935 */
1936 if (buffer_mapped(lbh) && !buffer_delay(lbh))
c4a0c46e 1937 return 0;
a1d6cc56
AK
1938 new.b_state = lbh->b_state;
1939 new.b_blocknr = 0;
1940 new.b_size = lbh->b_size;
df22291f 1941 next = lbh->b_blocknr;
a1d6cc56
AK
1942 /*
1943 * If we didn't accumulate anything
1944 * to write simply return
1945 */
1946 if (!new.b_size)
c4a0c46e 1947 return 0;
a1d6cc56 1948 err = mpd->get_block(mpd->inode, next, &new, 1);
c4a0c46e
AK
1949 if (err) {
1950
1951 /* If get block returns with error
1952 * we simply return. Later writepage
1953 * will redirty the page and writepages
1954 * will find the dirty page again
1955 */
1956 if (err == -EAGAIN)
1957 return 0;
df22291f
AK
1958
1959 if (err == -ENOSPC &&
1960 ext4_count_free_blocks(mpd->inode->i_sb)) {
1961 mpd->retval = err;
1962 return 0;
1963 }
1964
c4a0c46e
AK
1965 /*
1966 * get block failure will cause us
1967 * to loop in writepages. Because
1968 * a_ops->writepage won't be able to
1969 * make progress. The page will be redirtied
1970 * by writepage and writepages will again
1971 * try to write the same.
1972 */
1973 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1974 "at logical offset %llu with max blocks "
1975 "%zd with error %d\n",
1976 __func__, mpd->inode->i_ino,
1977 (unsigned long long)next,
1978 lbh->b_size >> mpd->inode->i_blkbits, err);
1979 printk(KERN_EMERG "This should not happen.!! "
1980 "Data will be lost\n");
030ba6bc 1981 if (err == -ENOSPC) {
df22291f 1982 ext4_print_free_blocks(mpd->inode);
030ba6bc 1983 }
c4a0c46e
AK
1984 /* invlaidate all the pages */
1985 ext4_da_block_invalidatepages(mpd, next,
1986 lbh->b_size >> mpd->inode->i_blkbits);
1987 return err;
1988 }
a1d6cc56 1989 BUG_ON(new.b_size == 0);
64769240 1990
a1d6cc56
AK
1991 if (buffer_new(&new))
1992 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1993
a1d6cc56
AK
1994 /*
1995 * If blocks are delayed marked, we need to
1996 * put actual blocknr and drop delayed bit
1997 */
1998 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1999 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2000
c4a0c46e 2001 return 0;
64769240
AT
2002}
2003
bf068ee2
AK
2004#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2005 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2006
2007/*
2008 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2009 *
2010 * @mpd->lbh - extent of blocks
2011 * @logical - logical number of the block in the file
2012 * @bh - bh of the block (used to access block's state)
2013 *
2014 * the function is used to collect contig. blocks in same state
2015 */
2016static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2017 sector_t logical, struct buffer_head *bh)
2018{
64769240 2019 sector_t next;
525f4ed8
MC
2020 size_t b_size = bh->b_size;
2021 struct buffer_head *lbh = &mpd->lbh;
2022 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 2023
525f4ed8
MC
2024 /* check if thereserved journal credits might overflow */
2025 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2026 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2027 /*
2028 * With non-extent format we are limited by the journal
2029 * credit available. Total credit needed to insert
2030 * nrblocks contiguous blocks is dependent on the
2031 * nrblocks. So limit nrblocks.
2032 */
2033 goto flush_it;
2034 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2035 EXT4_MAX_TRANS_DATA) {
2036 /*
2037 * Adding the new buffer_head would make it cross the
2038 * allowed limit for which we have journal credit
2039 * reserved. So limit the new bh->b_size
2040 */
2041 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2042 mpd->inode->i_blkbits;
2043 /* we will do mpage_da_submit_io in the next loop */
2044 }
2045 }
64769240
AT
2046 /*
2047 * First block in the extent
2048 */
2049 if (lbh->b_size == 0) {
2050 lbh->b_blocknr = logical;
525f4ed8 2051 lbh->b_size = b_size;
64769240
AT
2052 lbh->b_state = bh->b_state & BH_FLAGS;
2053 return;
2054 }
2055
525f4ed8 2056 next = lbh->b_blocknr + nrblocks;
64769240
AT
2057 /*
2058 * Can we merge the block to our big extent?
2059 */
2060 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 2061 lbh->b_size += b_size;
64769240
AT
2062 return;
2063 }
2064
525f4ed8 2065flush_it:
64769240
AT
2066 /*
2067 * We couldn't merge the block to our extent, so we
2068 * need to flush current extent and start new one
2069 */
c4a0c46e
AK
2070 if (mpage_da_map_blocks(mpd) == 0)
2071 mpage_da_submit_io(mpd);
a1d6cc56
AK
2072 mpd->io_done = 1;
2073 return;
64769240
AT
2074}
2075
2076/*
2077 * __mpage_da_writepage - finds extent of pages and blocks
2078 *
2079 * @page: page to consider
2080 * @wbc: not used, we just follow rules
2081 * @data: context
2082 *
2083 * The function finds extents of pages and scan them for all blocks.
2084 */
2085static int __mpage_da_writepage(struct page *page,
2086 struct writeback_control *wbc, void *data)
2087{
2088 struct mpage_da_data *mpd = data;
2089 struct inode *inode = mpd->inode;
2090 struct buffer_head *bh, *head, fake;
2091 sector_t logical;
2092
a1d6cc56
AK
2093 if (mpd->io_done) {
2094 /*
2095 * Rest of the page in the page_vec
2096 * redirty then and skip then. We will
2097 * try to to write them again after
2098 * starting a new transaction
2099 */
2100 redirty_page_for_writepage(wbc, page);
2101 unlock_page(page);
2102 return MPAGE_DA_EXTENT_TAIL;
2103 }
64769240
AT
2104 /*
2105 * Can we merge this page to current extent?
2106 */
2107 if (mpd->next_page != page->index) {
2108 /*
2109 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2110 * and start IO on them using writepage()
64769240
AT
2111 */
2112 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2113 if (mpage_da_map_blocks(mpd) == 0)
2114 mpage_da_submit_io(mpd);
a1d6cc56
AK
2115 /*
2116 * skip rest of the page in the page_vec
2117 */
2118 mpd->io_done = 1;
2119 redirty_page_for_writepage(wbc, page);
2120 unlock_page(page);
2121 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2122 }
2123
2124 /*
2125 * Start next extent of pages ...
2126 */
2127 mpd->first_page = page->index;
2128
2129 /*
2130 * ... and blocks
2131 */
2132 mpd->lbh.b_size = 0;
2133 mpd->lbh.b_state = 0;
2134 mpd->lbh.b_blocknr = 0;
2135 }
2136
2137 mpd->next_page = page->index + 1;
2138 logical = (sector_t) page->index <<
2139 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2140
2141 if (!page_has_buffers(page)) {
2142 /*
2143 * There is no attached buffer heads yet (mmap?)
2144 * we treat the page asfull of dirty blocks
2145 */
2146 bh = &fake;
2147 bh->b_size = PAGE_CACHE_SIZE;
2148 bh->b_state = 0;
2149 set_buffer_dirty(bh);
2150 set_buffer_uptodate(bh);
2151 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2152 if (mpd->io_done)
2153 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2154 } else {
2155 /*
2156 * Page with regular buffer heads, just add all dirty ones
2157 */
2158 head = page_buffers(page);
2159 bh = head;
2160 do {
2161 BUG_ON(buffer_locked(bh));
791b7f08
AK
2162 /*
2163 * We need to try to allocate
2164 * unmapped blocks in the same page.
2165 * Otherwise we won't make progress
2166 * with the page in ext4_da_writepage
2167 */
a1d6cc56
AK
2168 if (buffer_dirty(bh) &&
2169 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 2170 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2171 if (mpd->io_done)
2172 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2173 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2174 /*
2175 * mapped dirty buffer. We need to update
2176 * the b_state because we look at
2177 * b_state in mpage_da_map_blocks. We don't
2178 * update b_size because if we find an
2179 * unmapped buffer_head later we need to
2180 * use the b_state flag of that buffer_head.
2181 */
2182 if (mpd->lbh.b_size == 0)
2183 mpd->lbh.b_state =
2184 bh->b_state & BH_FLAGS;
a1d6cc56 2185 }
64769240
AT
2186 logical++;
2187 } while ((bh = bh->b_this_page) != head);
2188 }
2189
2190 return 0;
2191}
2192
2193/*
2194 * mpage_da_writepages - walk the list of dirty pages of the given
2195 * address space, allocates non-allocated blocks, maps newly-allocated
2196 * blocks to existing bhs and issue IO them
2197 *
2198 * @mapping: address space structure to write
2199 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2200 * @get_block: the filesystem's block mapper function.
2201 *
2202 * This is a library function, which implements the writepages()
2203 * address_space_operation.
64769240
AT
2204 */
2205static int mpage_da_writepages(struct address_space *mapping,
2206 struct writeback_control *wbc,
df22291f 2207 struct mpage_da_data *mpd)
64769240 2208{
64769240
AT
2209 int ret;
2210
df22291f 2211 if (!mpd->get_block)
64769240
AT
2212 return generic_writepages(mapping, wbc);
2213
df22291f
AK
2214 mpd->lbh.b_size = 0;
2215 mpd->lbh.b_state = 0;
2216 mpd->lbh.b_blocknr = 0;
2217 mpd->first_page = 0;
2218 mpd->next_page = 0;
2219 mpd->io_done = 0;
2220 mpd->pages_written = 0;
2221 mpd->retval = 0;
a1d6cc56 2222
df22291f 2223 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
64769240
AT
2224 /*
2225 * Handle last extent of pages
2226 */
df22291f
AK
2227 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2228 if (mpage_da_map_blocks(mpd) == 0)
2229 mpage_da_submit_io(mpd);
64769240 2230
22208ded
AK
2231 mpd->io_done = 1;
2232 ret = MPAGE_DA_EXTENT_TAIL;
2233 }
2234 wbc->nr_to_write -= mpd->pages_written;
64769240
AT
2235 return ret;
2236}
2237
2238/*
2239 * this is a special callback for ->write_begin() only
2240 * it's intention is to return mapped block or reserve space
2241 */
2242static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2243 struct buffer_head *bh_result, int create)
2244{
2245 int ret = 0;
2246
2247 BUG_ON(create == 0);
2248 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2249
2250 /*
2251 * first, we need to know whether the block is allocated already
2252 * preallocated blocks are unmapped but should treated
2253 * the same as allocated blocks.
2254 */
d2a17637
MC
2255 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2256 if ((ret == 0) && !buffer_delay(bh_result)) {
2257 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2258 /*
2259 * XXX: __block_prepare_write() unmaps passed block,
2260 * is it OK?
2261 */
d2a17637
MC
2262 ret = ext4_da_reserve_space(inode, 1);
2263 if (ret)
2264 /* not enough space to reserve */
2265 return ret;
2266
64769240
AT
2267 map_bh(bh_result, inode->i_sb, 0);
2268 set_buffer_new(bh_result);
2269 set_buffer_delay(bh_result);
2270 } else if (ret > 0) {
2271 bh_result->b_size = (ret << inode->i_blkbits);
2272 ret = 0;
2273 }
2274
2275 return ret;
2276}
d2a17637 2277#define EXT4_DELALLOC_RSVED 1
64769240
AT
2278static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2279 struct buffer_head *bh_result, int create)
2280{
61628a3f 2281 int ret;
64769240
AT
2282 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2283 loff_t disksize = EXT4_I(inode)->i_disksize;
2284 handle_t *handle = NULL;
2285
61628a3f 2286 handle = ext4_journal_current_handle();
166348dd
AK
2287 BUG_ON(!handle);
2288 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2289 bh_result, create, 0, EXT4_DELALLOC_RSVED);
64769240 2290 if (ret > 0) {
166348dd 2291
64769240
AT
2292 bh_result->b_size = (ret << inode->i_blkbits);
2293
166348dd
AK
2294 if (ext4_should_order_data(inode)) {
2295 int retval;
2296 retval = ext4_jbd2_file_inode(handle, inode);
2297 if (retval)
2298 /*
2299 * Failed to add inode for ordered
2300 * mode. Don't update file size
2301 */
2302 return retval;
2303 }
2304
64769240
AT
2305 /*
2306 * Update on-disk size along with block allocation
2307 * we don't use 'extend_disksize' as size may change
2308 * within already allocated block -bzzz
2309 */
2310 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2311 if (disksize > i_size_read(inode))
2312 disksize = i_size_read(inode);
2313 if (disksize > EXT4_I(inode)->i_disksize) {
cf17fea6
AK
2314 ext4_update_i_disksize(inode, disksize);
2315 ret = ext4_mark_inode_dirty(handle, inode);
2316 return ret;
64769240 2317 }
64769240
AT
2318 ret = 0;
2319 }
64769240
AT
2320 return ret;
2321}
61628a3f
MC
2322
2323static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2324{
f0e6c985
AK
2325 /*
2326 * unmapped buffer is possible for holes.
2327 * delay buffer is possible with delayed allocation
2328 */
2329 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2330}
2331
2332static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2333 struct buffer_head *bh_result, int create)
2334{
2335 int ret = 0;
2336 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2337
2338 /*
2339 * we don't want to do block allocation in writepage
2340 * so call get_block_wrap with create = 0
2341 */
2342 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2343 bh_result, 0, 0, 0);
2344 if (ret > 0) {
2345 bh_result->b_size = (ret << inode->i_blkbits);
2346 ret = 0;
2347 }
2348 return ret;
61628a3f
MC
2349}
2350
61628a3f 2351/*
f0e6c985
AK
2352 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2353 * get called via journal_submit_inode_data_buffers (no journal handle)
2354 * get called via shrink_page_list via pdflush (no journal handle)
2355 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2356 */
64769240
AT
2357static int ext4_da_writepage(struct page *page,
2358 struct writeback_control *wbc)
2359{
64769240 2360 int ret = 0;
61628a3f 2361 loff_t size;
498e5f24 2362 unsigned int len;
61628a3f
MC
2363 struct buffer_head *page_bufs;
2364 struct inode *inode = page->mapping->host;
2365
ba80b101
TT
2366 trace_mark(ext4_da_writepage,
2367 "dev %s ino %lu page_index %lu",
2368 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2369 size = i_size_read(inode);
2370 if (page->index == size >> PAGE_CACHE_SHIFT)
2371 len = size & ~PAGE_CACHE_MASK;
2372 else
2373 len = PAGE_CACHE_SIZE;
64769240 2374
f0e6c985 2375 if (page_has_buffers(page)) {
61628a3f 2376 page_bufs = page_buffers(page);
f0e6c985
AK
2377 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2378 ext4_bh_unmapped_or_delay)) {
61628a3f 2379 /*
f0e6c985
AK
2380 * We don't want to do block allocation
2381 * So redirty the page and return
cd1aac32
AK
2382 * We may reach here when we do a journal commit
2383 * via journal_submit_inode_data_buffers.
2384 * If we don't have mapping block we just ignore
f0e6c985
AK
2385 * them. We can also reach here via shrink_page_list
2386 */
2387 redirty_page_for_writepage(wbc, page);
2388 unlock_page(page);
2389 return 0;
2390 }
2391 } else {
2392 /*
2393 * The test for page_has_buffers() is subtle:
2394 * We know the page is dirty but it lost buffers. That means
2395 * that at some moment in time after write_begin()/write_end()
2396 * has been called all buffers have been clean and thus they
2397 * must have been written at least once. So they are all
2398 * mapped and we can happily proceed with mapping them
2399 * and writing the page.
2400 *
2401 * Try to initialize the buffer_heads and check whether
2402 * all are mapped and non delay. We don't want to
2403 * do block allocation here.
2404 */
2405 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2406 ext4_normal_get_block_write);
2407 if (!ret) {
2408 page_bufs = page_buffers(page);
2409 /* check whether all are mapped and non delay */
2410 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2411 ext4_bh_unmapped_or_delay)) {
2412 redirty_page_for_writepage(wbc, page);
2413 unlock_page(page);
2414 return 0;
2415 }
2416 } else {
2417 /*
2418 * We can't do block allocation here
2419 * so just redity the page and unlock
2420 * and return
61628a3f 2421 */
61628a3f
MC
2422 redirty_page_for_writepage(wbc, page);
2423 unlock_page(page);
2424 return 0;
2425 }
ed9b3e33
AK
2426 /* now mark the buffer_heads as dirty and uptodate */
2427 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2428 }
2429
2430 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2431 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2432 else
f0e6c985
AK
2433 ret = block_write_full_page(page,
2434 ext4_normal_get_block_write,
2435 wbc);
64769240 2436
64769240
AT
2437 return ret;
2438}
2439
61628a3f 2440/*
525f4ed8
MC
2441 * This is called via ext4_da_writepages() to
2442 * calulate the total number of credits to reserve to fit
2443 * a single extent allocation into a single transaction,
2444 * ext4_da_writpeages() will loop calling this before
2445 * the block allocation.
61628a3f 2446 */
525f4ed8
MC
2447
2448static int ext4_da_writepages_trans_blocks(struct inode *inode)
2449{
2450 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2451
2452 /*
2453 * With non-extent format the journal credit needed to
2454 * insert nrblocks contiguous block is dependent on
2455 * number of contiguous block. So we will limit
2456 * number of contiguous block to a sane value
2457 */
2458 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2459 (max_blocks > EXT4_MAX_TRANS_DATA))
2460 max_blocks = EXT4_MAX_TRANS_DATA;
2461
2462 return ext4_chunk_trans_blocks(inode, max_blocks);
2463}
61628a3f 2464
64769240 2465static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2466 struct writeback_control *wbc)
64769240 2467{
22208ded
AK
2468 pgoff_t index;
2469 int range_whole = 0;
61628a3f 2470 handle_t *handle = NULL;
df22291f 2471 struct mpage_da_data mpd;
5e745b04 2472 struct inode *inode = mapping->host;
22208ded 2473 int no_nrwrite_index_update;
498e5f24
TT
2474 int pages_written = 0;
2475 long pages_skipped;
2acf2c26 2476 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2477 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2478 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2479
ba80b101
TT
2480 trace_mark(ext4_da_writepages,
2481 "dev %s ino %lu nr_t_write %ld "
2482 "pages_skipped %ld range_start %llu "
2483 "range_end %llu nonblocking %d "
2484 "for_kupdate %d for_reclaim %d "
2485 "for_writepages %d range_cyclic %d",
2486 inode->i_sb->s_id, inode->i_ino,
2487 wbc->nr_to_write, wbc->pages_skipped,
2488 (unsigned long long) wbc->range_start,
2489 (unsigned long long) wbc->range_end,
2490 wbc->nonblocking, wbc->for_kupdate,
2491 wbc->for_reclaim, wbc->for_writepages,
2492 wbc->range_cyclic);
2493
61628a3f
MC
2494 /*
2495 * No pages to write? This is mainly a kludge to avoid starting
2496 * a transaction for special inodes like journal inode on last iput()
2497 * because that could violate lock ordering on umount
2498 */
a1d6cc56 2499 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2500 return 0;
2a21e37e
TT
2501
2502 /*
2503 * If the filesystem has aborted, it is read-only, so return
2504 * right away instead of dumping stack traces later on that
2505 * will obscure the real source of the problem. We test
2506 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2507 * the latter could be true if the filesystem is mounted
2508 * read-only, and in that case, ext4_da_writepages should
2509 * *never* be called, so if that ever happens, we would want
2510 * the stack trace.
2511 */
2512 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2513 return -EROFS;
2514
5e745b04
AK
2515 /*
2516 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2517 * This make sure small files blocks are allocated in
2518 * single attempt. This ensure that small files
2519 * get less fragmented.
2520 */
2521 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2522 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2523 wbc->nr_to_write = sbi->s_mb_stream_request;
2524 }
22208ded
AK
2525 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2526 range_whole = 1;
61628a3f 2527
2acf2c26
AK
2528 range_cyclic = wbc->range_cyclic;
2529 if (wbc->range_cyclic) {
22208ded 2530 index = mapping->writeback_index;
2acf2c26
AK
2531 if (index)
2532 cycled = 0;
2533 wbc->range_start = index << PAGE_CACHE_SHIFT;
2534 wbc->range_end = LLONG_MAX;
2535 wbc->range_cyclic = 0;
2536 } else
22208ded 2537 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2538
df22291f
AK
2539 mpd.wbc = wbc;
2540 mpd.inode = mapping->host;
2541
22208ded
AK
2542 /*
2543 * we don't want write_cache_pages to update
2544 * nr_to_write and writeback_index
2545 */
2546 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2547 wbc->no_nrwrite_index_update = 1;
2548 pages_skipped = wbc->pages_skipped;
2549
2acf2c26 2550retry:
22208ded 2551 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2552
2553 /*
2554 * we insert one extent at a time. So we need
2555 * credit needed for single extent allocation.
2556 * journalled mode is currently not supported
2557 * by delalloc
2558 */
2559 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2560 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2561
61628a3f
MC
2562 /* start a new transaction*/
2563 handle = ext4_journal_start(inode, needed_blocks);
2564 if (IS_ERR(handle)) {
2565 ret = PTR_ERR(handle);
2a21e37e 2566 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2567 "%ld pages, ino %lu; err %d\n", __func__,
2568 wbc->nr_to_write, inode->i_ino, ret);
2569 dump_stack();
61628a3f
MC
2570 goto out_writepages;
2571 }
df22291f
AK
2572 mpd.get_block = ext4_da_get_block_write;
2573 ret = mpage_da_writepages(mapping, wbc, &mpd);
2574
61628a3f 2575 ext4_journal_stop(handle);
df22291f 2576
8f64b32e 2577 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2578 /* commit the transaction which would
2579 * free blocks released in the transaction
2580 * and try again
2581 */
df22291f 2582 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2583 wbc->pages_skipped = pages_skipped;
2584 ret = 0;
2585 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2586 /*
2587 * got one extent now try with
2588 * rest of the pages
2589 */
22208ded
AK
2590 pages_written += mpd.pages_written;
2591 wbc->pages_skipped = pages_skipped;
a1d6cc56 2592 ret = 0;
2acf2c26 2593 io_done = 1;
22208ded 2594 } else if (wbc->nr_to_write)
61628a3f
MC
2595 /*
2596 * There is no more writeout needed
2597 * or we requested for a noblocking writeout
2598 * and we found the device congested
2599 */
61628a3f 2600 break;
a1d6cc56 2601 }
2acf2c26
AK
2602 if (!io_done && !cycled) {
2603 cycled = 1;
2604 index = 0;
2605 wbc->range_start = index << PAGE_CACHE_SHIFT;
2606 wbc->range_end = mapping->writeback_index - 1;
2607 goto retry;
2608 }
22208ded
AK
2609 if (pages_skipped != wbc->pages_skipped)
2610 printk(KERN_EMERG "This should not happen leaving %s "
2611 "with nr_to_write = %ld ret = %d\n",
2612 __func__, wbc->nr_to_write, ret);
2613
2614 /* Update index */
2615 index += pages_written;
2acf2c26 2616 wbc->range_cyclic = range_cyclic;
22208ded
AK
2617 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2618 /*
2619 * set the writeback_index so that range_cyclic
2620 * mode will write it back later
2621 */
2622 mapping->writeback_index = index;
a1d6cc56 2623
61628a3f 2624out_writepages:
22208ded
AK
2625 if (!no_nrwrite_index_update)
2626 wbc->no_nrwrite_index_update = 0;
2627 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2628 trace_mark(ext4_da_writepage_result,
2629 "dev %s ino %lu ret %d pages_written %d "
2630 "pages_skipped %ld congestion %d "
2631 "more_io %d no_nrwrite_index_update %d",
2632 inode->i_sb->s_id, inode->i_ino, ret,
2633 pages_written, wbc->pages_skipped,
2634 wbc->encountered_congestion, wbc->more_io,
2635 wbc->no_nrwrite_index_update);
61628a3f 2636 return ret;
64769240
AT
2637}
2638
79f0be8d
AK
2639#define FALL_BACK_TO_NONDELALLOC 1
2640static int ext4_nonda_switch(struct super_block *sb)
2641{
2642 s64 free_blocks, dirty_blocks;
2643 struct ext4_sb_info *sbi = EXT4_SB(sb);
2644
2645 /*
2646 * switch to non delalloc mode if we are running low
2647 * on free block. The free block accounting via percpu
179f7ebf 2648 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2649 * accumulated on each CPU without updating global counters
2650 * Delalloc need an accurate free block accounting. So switch
2651 * to non delalloc when we are near to error range.
2652 */
2653 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2654 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2655 if (2 * free_blocks < 3 * dirty_blocks ||
2656 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2657 /*
2658 * free block count is less that 150% of dirty blocks
2659 * or free blocks is less that watermark
2660 */
2661 return 1;
2662 }
2663 return 0;
2664}
2665
64769240
AT
2666static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2667 loff_t pos, unsigned len, unsigned flags,
2668 struct page **pagep, void **fsdata)
2669{
d2a17637 2670 int ret, retries = 0;
64769240
AT
2671 struct page *page;
2672 pgoff_t index;
2673 unsigned from, to;
2674 struct inode *inode = mapping->host;
2675 handle_t *handle;
2676
2677 index = pos >> PAGE_CACHE_SHIFT;
2678 from = pos & (PAGE_CACHE_SIZE - 1);
2679 to = from + len;
79f0be8d
AK
2680
2681 if (ext4_nonda_switch(inode->i_sb)) {
2682 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2683 return ext4_write_begin(file, mapping, pos,
2684 len, flags, pagep, fsdata);
2685 }
2686 *fsdata = (void *)0;
ba80b101
TT
2687
2688 trace_mark(ext4_da_write_begin,
2689 "dev %s ino %lu pos %llu len %u flags %u",
2690 inode->i_sb->s_id, inode->i_ino,
2691 (unsigned long long) pos, len, flags);
d2a17637 2692retry:
64769240
AT
2693 /*
2694 * With delayed allocation, we don't log the i_disksize update
2695 * if there is delayed block allocation. But we still need
2696 * to journalling the i_disksize update if writes to the end
2697 * of file which has an already mapped buffer.
2698 */
2699 handle = ext4_journal_start(inode, 1);
2700 if (IS_ERR(handle)) {
2701 ret = PTR_ERR(handle);
2702 goto out;
2703 }
ebd3610b
JK
2704 /* We cannot recurse into the filesystem as the transaction is already
2705 * started */
2706 flags |= AOP_FLAG_NOFS;
64769240 2707
54566b2c 2708 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2709 if (!page) {
2710 ext4_journal_stop(handle);
2711 ret = -ENOMEM;
2712 goto out;
2713 }
64769240
AT
2714 *pagep = page;
2715
2716 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2717 ext4_da_get_block_prep);
2718 if (ret < 0) {
2719 unlock_page(page);
2720 ext4_journal_stop(handle);
2721 page_cache_release(page);
ae4d5372
AK
2722 /*
2723 * block_write_begin may have instantiated a few blocks
2724 * outside i_size. Trim these off again. Don't need
2725 * i_size_read because we hold i_mutex.
2726 */
2727 if (pos + len > inode->i_size)
2728 vmtruncate(inode, inode->i_size);
64769240
AT
2729 }
2730
d2a17637
MC
2731 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2732 goto retry;
64769240
AT
2733out:
2734 return ret;
2735}
2736
632eaeab
MC
2737/*
2738 * Check if we should update i_disksize
2739 * when write to the end of file but not require block allocation
2740 */
2741static int ext4_da_should_update_i_disksize(struct page *page,
2742 unsigned long offset)
2743{
2744 struct buffer_head *bh;
2745 struct inode *inode = page->mapping->host;
2746 unsigned int idx;
2747 int i;
2748
2749 bh = page_buffers(page);
2750 idx = offset >> inode->i_blkbits;
2751
af5bc92d 2752 for (i = 0; i < idx; i++)
632eaeab
MC
2753 bh = bh->b_this_page;
2754
2755 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2756 return 0;
2757 return 1;
2758}
2759
64769240
AT
2760static int ext4_da_write_end(struct file *file,
2761 struct address_space *mapping,
2762 loff_t pos, unsigned len, unsigned copied,
2763 struct page *page, void *fsdata)
2764{
2765 struct inode *inode = mapping->host;
2766 int ret = 0, ret2;
2767 handle_t *handle = ext4_journal_current_handle();
2768 loff_t new_i_size;
632eaeab 2769 unsigned long start, end;
79f0be8d
AK
2770 int write_mode = (int)(unsigned long)fsdata;
2771
2772 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2773 if (ext4_should_order_data(inode)) {
2774 return ext4_ordered_write_end(file, mapping, pos,
2775 len, copied, page, fsdata);
2776 } else if (ext4_should_writeback_data(inode)) {
2777 return ext4_writeback_write_end(file, mapping, pos,
2778 len, copied, page, fsdata);
2779 } else {
2780 BUG();
2781 }
2782 }
632eaeab 2783
ba80b101
TT
2784 trace_mark(ext4_da_write_end,
2785 "dev %s ino %lu pos %llu len %u copied %u",
2786 inode->i_sb->s_id, inode->i_ino,
2787 (unsigned long long) pos, len, copied);
632eaeab 2788 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2789 end = start + copied - 1;
64769240
AT
2790
2791 /*
2792 * generic_write_end() will run mark_inode_dirty() if i_size
2793 * changes. So let's piggyback the i_disksize mark_inode_dirty
2794 * into that.
2795 */
2796
2797 new_i_size = pos + copied;
632eaeab
MC
2798 if (new_i_size > EXT4_I(inode)->i_disksize) {
2799 if (ext4_da_should_update_i_disksize(page, end)) {
2800 down_write(&EXT4_I(inode)->i_data_sem);
2801 if (new_i_size > EXT4_I(inode)->i_disksize) {
2802 /*
2803 * Updating i_disksize when extending file
2804 * without needing block allocation
2805 */
2806 if (ext4_should_order_data(inode))
2807 ret = ext4_jbd2_file_inode(handle,
2808 inode);
64769240 2809
632eaeab
MC
2810 EXT4_I(inode)->i_disksize = new_i_size;
2811 }
2812 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2813 /* We need to mark inode dirty even if
2814 * new_i_size is less that inode->i_size
2815 * bu greater than i_disksize.(hint delalloc)
2816 */
2817 ext4_mark_inode_dirty(handle, inode);
64769240 2818 }
632eaeab 2819 }
64769240
AT
2820 ret2 = generic_write_end(file, mapping, pos, len, copied,
2821 page, fsdata);
2822 copied = ret2;
2823 if (ret2 < 0)
2824 ret = ret2;
2825 ret2 = ext4_journal_stop(handle);
2826 if (!ret)
2827 ret = ret2;
2828
2829 return ret ? ret : copied;
2830}
2831
2832static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2833{
64769240
AT
2834 /*
2835 * Drop reserved blocks
2836 */
2837 BUG_ON(!PageLocked(page));
2838 if (!page_has_buffers(page))
2839 goto out;
2840
d2a17637 2841 ext4_da_page_release_reservation(page, offset);
64769240
AT
2842
2843out:
2844 ext4_invalidatepage(page, offset);
2845
2846 return;
2847}
2848
2849
ac27a0ec
DK
2850/*
2851 * bmap() is special. It gets used by applications such as lilo and by
2852 * the swapper to find the on-disk block of a specific piece of data.
2853 *
2854 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2855 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2856 * filesystem and enables swap, then they may get a nasty shock when the
2857 * data getting swapped to that swapfile suddenly gets overwritten by
2858 * the original zero's written out previously to the journal and
2859 * awaiting writeback in the kernel's buffer cache.
2860 *
2861 * So, if we see any bmap calls here on a modified, data-journaled file,
2862 * take extra steps to flush any blocks which might be in the cache.
2863 */
617ba13b 2864static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2865{
2866 struct inode *inode = mapping->host;
2867 journal_t *journal;
2868 int err;
2869
64769240
AT
2870 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2871 test_opt(inode->i_sb, DELALLOC)) {
2872 /*
2873 * With delalloc we want to sync the file
2874 * so that we can make sure we allocate
2875 * blocks for file
2876 */
2877 filemap_write_and_wait(mapping);
2878 }
2879
0390131b 2880 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2881 /*
2882 * This is a REALLY heavyweight approach, but the use of
2883 * bmap on dirty files is expected to be extremely rare:
2884 * only if we run lilo or swapon on a freshly made file
2885 * do we expect this to happen.
2886 *
2887 * (bmap requires CAP_SYS_RAWIO so this does not
2888 * represent an unprivileged user DOS attack --- we'd be
2889 * in trouble if mortal users could trigger this path at
2890 * will.)
2891 *
617ba13b 2892 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2893 * regular files. If somebody wants to bmap a directory
2894 * or symlink and gets confused because the buffer
2895 * hasn't yet been flushed to disk, they deserve
2896 * everything they get.
2897 */
2898
617ba13b
MC
2899 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2900 journal = EXT4_JOURNAL(inode);
dab291af
MC
2901 jbd2_journal_lock_updates(journal);
2902 err = jbd2_journal_flush(journal);
2903 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2904
2905 if (err)
2906 return 0;
2907 }
2908
af5bc92d 2909 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2910}
2911
2912static int bget_one(handle_t *handle, struct buffer_head *bh)
2913{
2914 get_bh(bh);
2915 return 0;
2916}
2917
2918static int bput_one(handle_t *handle, struct buffer_head *bh)
2919{
2920 put_bh(bh);
2921 return 0;
2922}
2923
ac27a0ec 2924/*
678aaf48
JK
2925 * Note that we don't need to start a transaction unless we're journaling data
2926 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2927 * need to file the inode to the transaction's list in ordered mode because if
2928 * we are writing back data added by write(), the inode is already there and if
2929 * we are writing back data modified via mmap(), noone guarantees in which
2930 * transaction the data will hit the disk. In case we are journaling data, we
2931 * cannot start transaction directly because transaction start ranks above page
2932 * lock so we have to do some magic.
ac27a0ec 2933 *
678aaf48 2934 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2935 *
2936 * Problem:
2937 *
617ba13b
MC
2938 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2939 * ext4_writepage()
ac27a0ec
DK
2940 *
2941 * Similar for:
2942 *
617ba13b 2943 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2944 *
617ba13b 2945 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2946 * lock_journal and i_data_sem
ac27a0ec
DK
2947 *
2948 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2949 * allocations fail.
2950 *
2951 * 16May01: If we're reentered then journal_current_handle() will be
2952 * non-zero. We simply *return*.
2953 *
2954 * 1 July 2001: @@@ FIXME:
2955 * In journalled data mode, a data buffer may be metadata against the
2956 * current transaction. But the same file is part of a shared mapping
2957 * and someone does a writepage() on it.
2958 *
2959 * We will move the buffer onto the async_data list, but *after* it has
2960 * been dirtied. So there's a small window where we have dirty data on
2961 * BJ_Metadata.
2962 *
2963 * Note that this only applies to the last partial page in the file. The
2964 * bit which block_write_full_page() uses prepare/commit for. (That's
2965 * broken code anyway: it's wrong for msync()).
2966 *
2967 * It's a rare case: affects the final partial page, for journalled data
2968 * where the file is subject to bith write() and writepage() in the same
2969 * transction. To fix it we'll need a custom block_write_full_page().
2970 * We'll probably need that anyway for journalling writepage() output.
2971 *
2972 * We don't honour synchronous mounts for writepage(). That would be
2973 * disastrous. Any write() or metadata operation will sync the fs for
2974 * us.
2975 *
ac27a0ec 2976 */
678aaf48 2977static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2978 struct writeback_control *wbc)
2979{
2980 struct inode *inode = page->mapping->host;
2981
2982 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2983 return nobh_writepage(page,
2984 ext4_normal_get_block_write, wbc);
cf108bca 2985 else
f0e6c985
AK
2986 return block_write_full_page(page,
2987 ext4_normal_get_block_write,
2988 wbc);
cf108bca
JK
2989}
2990
678aaf48 2991static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2992 struct writeback_control *wbc)
2993{
2994 struct inode *inode = page->mapping->host;
cf108bca
JK
2995 loff_t size = i_size_read(inode);
2996 loff_t len;
2997
ba80b101
TT
2998 trace_mark(ext4_normal_writepage,
2999 "dev %s ino %lu page_index %lu",
3000 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3001 J_ASSERT(PageLocked(page));
cf108bca
JK
3002 if (page->index == size >> PAGE_CACHE_SHIFT)
3003 len = size & ~PAGE_CACHE_MASK;
3004 else
3005 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3006
3007 if (page_has_buffers(page)) {
3008 /* if page has buffers it should all be mapped
3009 * and allocated. If there are not buffers attached
3010 * to the page we know the page is dirty but it lost
3011 * buffers. That means that at some moment in time
3012 * after write_begin() / write_end() has been called
3013 * all buffers have been clean and thus they must have been
3014 * written at least once. So they are all mapped and we can
3015 * happily proceed with mapping them and writing the page.
3016 */
3017 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3018 ext4_bh_unmapped_or_delay));
3019 }
cf108bca
JK
3020
3021 if (!ext4_journal_current_handle())
678aaf48 3022 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3023
3024 redirty_page_for_writepage(wbc, page);
3025 unlock_page(page);
3026 return 0;
3027}
3028
3029static int __ext4_journalled_writepage(struct page *page,
3030 struct writeback_control *wbc)
3031{
3032 struct address_space *mapping = page->mapping;
3033 struct inode *inode = mapping->host;
3034 struct buffer_head *page_bufs;
ac27a0ec
DK
3035 handle_t *handle = NULL;
3036 int ret = 0;
3037 int err;
3038
f0e6c985
AK
3039 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3040 ext4_normal_get_block_write);
cf108bca
JK
3041 if (ret != 0)
3042 goto out_unlock;
3043
3044 page_bufs = page_buffers(page);
3045 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3046 bget_one);
3047 /* As soon as we unlock the page, it can go away, but we have
3048 * references to buffers so we are safe */
3049 unlock_page(page);
ac27a0ec 3050
617ba13b 3051 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3052 if (IS_ERR(handle)) {
3053 ret = PTR_ERR(handle);
cf108bca 3054 goto out;
ac27a0ec
DK
3055 }
3056
cf108bca
JK
3057 ret = walk_page_buffers(handle, page_bufs, 0,
3058 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3059
cf108bca
JK
3060 err = walk_page_buffers(handle, page_bufs, 0,
3061 PAGE_CACHE_SIZE, NULL, write_end_fn);
3062 if (ret == 0)
3063 ret = err;
617ba13b 3064 err = ext4_journal_stop(handle);
ac27a0ec
DK
3065 if (!ret)
3066 ret = err;
ac27a0ec 3067
cf108bca
JK
3068 walk_page_buffers(handle, page_bufs, 0,
3069 PAGE_CACHE_SIZE, NULL, bput_one);
3070 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3071 goto out;
3072
3073out_unlock:
ac27a0ec 3074 unlock_page(page);
cf108bca 3075out:
ac27a0ec
DK
3076 return ret;
3077}
3078
617ba13b 3079static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3080 struct writeback_control *wbc)
3081{
3082 struct inode *inode = page->mapping->host;
cf108bca
JK
3083 loff_t size = i_size_read(inode);
3084 loff_t len;
ac27a0ec 3085
ba80b101
TT
3086 trace_mark(ext4_journalled_writepage,
3087 "dev %s ino %lu page_index %lu",
3088 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3089 J_ASSERT(PageLocked(page));
cf108bca
JK
3090 if (page->index == size >> PAGE_CACHE_SHIFT)
3091 len = size & ~PAGE_CACHE_MASK;
3092 else
3093 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3094
3095 if (page_has_buffers(page)) {
3096 /* if page has buffers it should all be mapped
3097 * and allocated. If there are not buffers attached
3098 * to the page we know the page is dirty but it lost
3099 * buffers. That means that at some moment in time
3100 * after write_begin() / write_end() has been called
3101 * all buffers have been clean and thus they must have been
3102 * written at least once. So they are all mapped and we can
3103 * happily proceed with mapping them and writing the page.
3104 */
3105 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3106 ext4_bh_unmapped_or_delay));
3107 }
ac27a0ec 3108
cf108bca 3109 if (ext4_journal_current_handle())
ac27a0ec 3110 goto no_write;
ac27a0ec 3111
cf108bca 3112 if (PageChecked(page)) {
ac27a0ec
DK
3113 /*
3114 * It's mmapped pagecache. Add buffers and journal it. There
3115 * doesn't seem much point in redirtying the page here.
3116 */
3117 ClearPageChecked(page);
cf108bca 3118 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3119 } else {
3120 /*
3121 * It may be a page full of checkpoint-mode buffers. We don't
3122 * really know unless we go poke around in the buffer_heads.
3123 * But block_write_full_page will do the right thing.
3124 */
f0e6c985
AK
3125 return block_write_full_page(page,
3126 ext4_normal_get_block_write,
3127 wbc);
ac27a0ec 3128 }
ac27a0ec
DK
3129no_write:
3130 redirty_page_for_writepage(wbc, page);
ac27a0ec 3131 unlock_page(page);
cf108bca 3132 return 0;
ac27a0ec
DK
3133}
3134
617ba13b 3135static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3136{
617ba13b 3137 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3138}
3139
3140static int
617ba13b 3141ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3142 struct list_head *pages, unsigned nr_pages)
3143{
617ba13b 3144 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3145}
3146
617ba13b 3147static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3148{
617ba13b 3149 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3150
3151 /*
3152 * If it's a full truncate we just forget about the pending dirtying
3153 */
3154 if (offset == 0)
3155 ClearPageChecked(page);
3156
0390131b
FM
3157 if (journal)
3158 jbd2_journal_invalidatepage(journal, page, offset);
3159 else
3160 block_invalidatepage(page, offset);
ac27a0ec
DK
3161}
3162
617ba13b 3163static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3164{
617ba13b 3165 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3166
3167 WARN_ON(PageChecked(page));
3168 if (!page_has_buffers(page))
3169 return 0;
0390131b
FM
3170 if (journal)
3171 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3172 else
3173 return try_to_free_buffers(page);
ac27a0ec
DK
3174}
3175
3176/*
3177 * If the O_DIRECT write will extend the file then add this inode to the
3178 * orphan list. So recovery will truncate it back to the original size
3179 * if the machine crashes during the write.
3180 *
3181 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3182 * crashes then stale disk data _may_ be exposed inside the file. But current
3183 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3184 */
617ba13b 3185static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3186 const struct iovec *iov, loff_t offset,
3187 unsigned long nr_segs)
3188{
3189 struct file *file = iocb->ki_filp;
3190 struct inode *inode = file->f_mapping->host;
617ba13b 3191 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3192 handle_t *handle;
ac27a0ec
DK
3193 ssize_t ret;
3194 int orphan = 0;
3195 size_t count = iov_length(iov, nr_segs);
3196
3197 if (rw == WRITE) {
3198 loff_t final_size = offset + count;
3199
ac27a0ec 3200 if (final_size > inode->i_size) {
7fb5409d
JK
3201 /* Credits for sb + inode write */
3202 handle = ext4_journal_start(inode, 2);
3203 if (IS_ERR(handle)) {
3204 ret = PTR_ERR(handle);
3205 goto out;
3206 }
617ba13b 3207 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3208 if (ret) {
3209 ext4_journal_stop(handle);
3210 goto out;
3211 }
ac27a0ec
DK
3212 orphan = 1;
3213 ei->i_disksize = inode->i_size;
7fb5409d 3214 ext4_journal_stop(handle);
ac27a0ec
DK
3215 }
3216 }
3217
3218 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3219 offset, nr_segs,
617ba13b 3220 ext4_get_block, NULL);
ac27a0ec 3221
7fb5409d 3222 if (orphan) {
ac27a0ec
DK
3223 int err;
3224
7fb5409d
JK
3225 /* Credits for sb + inode write */
3226 handle = ext4_journal_start(inode, 2);
3227 if (IS_ERR(handle)) {
3228 /* This is really bad luck. We've written the data
3229 * but cannot extend i_size. Bail out and pretend
3230 * the write failed... */
3231 ret = PTR_ERR(handle);
3232 goto out;
3233 }
3234 if (inode->i_nlink)
617ba13b 3235 ext4_orphan_del(handle, inode);
7fb5409d 3236 if (ret > 0) {
ac27a0ec
DK
3237 loff_t end = offset + ret;
3238 if (end > inode->i_size) {
3239 ei->i_disksize = end;
3240 i_size_write(inode, end);
3241 /*
3242 * We're going to return a positive `ret'
3243 * here due to non-zero-length I/O, so there's
3244 * no way of reporting error returns from
617ba13b 3245 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3246 * ignore it.
3247 */
617ba13b 3248 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3249 }
3250 }
617ba13b 3251 err = ext4_journal_stop(handle);
ac27a0ec
DK
3252 if (ret == 0)
3253 ret = err;
3254 }
3255out:
3256 return ret;
3257}
3258
3259/*
617ba13b 3260 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3261 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3262 * much here because ->set_page_dirty is called under VFS locks. The page is
3263 * not necessarily locked.
3264 *
3265 * We cannot just dirty the page and leave attached buffers clean, because the
3266 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3267 * or jbddirty because all the journalling code will explode.
3268 *
3269 * So what we do is to mark the page "pending dirty" and next time writepage
3270 * is called, propagate that into the buffers appropriately.
3271 */
617ba13b 3272static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3273{
3274 SetPageChecked(page);
3275 return __set_page_dirty_nobuffers(page);
3276}
3277
617ba13b 3278static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3279 .readpage = ext4_readpage,
3280 .readpages = ext4_readpages,
3281 .writepage = ext4_normal_writepage,
3282 .sync_page = block_sync_page,
3283 .write_begin = ext4_write_begin,
3284 .write_end = ext4_ordered_write_end,
3285 .bmap = ext4_bmap,
3286 .invalidatepage = ext4_invalidatepage,
3287 .releasepage = ext4_releasepage,
3288 .direct_IO = ext4_direct_IO,
3289 .migratepage = buffer_migrate_page,
3290 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3291};
3292
617ba13b 3293static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3294 .readpage = ext4_readpage,
3295 .readpages = ext4_readpages,
3296 .writepage = ext4_normal_writepage,
3297 .sync_page = block_sync_page,
3298 .write_begin = ext4_write_begin,
3299 .write_end = ext4_writeback_write_end,
3300 .bmap = ext4_bmap,
3301 .invalidatepage = ext4_invalidatepage,
3302 .releasepage = ext4_releasepage,
3303 .direct_IO = ext4_direct_IO,
3304 .migratepage = buffer_migrate_page,
3305 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3306};
3307
617ba13b 3308static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3309 .readpage = ext4_readpage,
3310 .readpages = ext4_readpages,
3311 .writepage = ext4_journalled_writepage,
3312 .sync_page = block_sync_page,
3313 .write_begin = ext4_write_begin,
3314 .write_end = ext4_journalled_write_end,
3315 .set_page_dirty = ext4_journalled_set_page_dirty,
3316 .bmap = ext4_bmap,
3317 .invalidatepage = ext4_invalidatepage,
3318 .releasepage = ext4_releasepage,
3319 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3320};
3321
64769240 3322static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3323 .readpage = ext4_readpage,
3324 .readpages = ext4_readpages,
3325 .writepage = ext4_da_writepage,
3326 .writepages = ext4_da_writepages,
3327 .sync_page = block_sync_page,
3328 .write_begin = ext4_da_write_begin,
3329 .write_end = ext4_da_write_end,
3330 .bmap = ext4_bmap,
3331 .invalidatepage = ext4_da_invalidatepage,
3332 .releasepage = ext4_releasepage,
3333 .direct_IO = ext4_direct_IO,
3334 .migratepage = buffer_migrate_page,
3335 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3336};
3337
617ba13b 3338void ext4_set_aops(struct inode *inode)
ac27a0ec 3339{
cd1aac32
AK
3340 if (ext4_should_order_data(inode) &&
3341 test_opt(inode->i_sb, DELALLOC))
3342 inode->i_mapping->a_ops = &ext4_da_aops;
3343 else if (ext4_should_order_data(inode))
617ba13b 3344 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3345 else if (ext4_should_writeback_data(inode) &&
3346 test_opt(inode->i_sb, DELALLOC))
3347 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3348 else if (ext4_should_writeback_data(inode))
3349 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3350 else
617ba13b 3351 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3352}
3353
3354/*
617ba13b 3355 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3356 * up to the end of the block which corresponds to `from'.
3357 * This required during truncate. We need to physically zero the tail end
3358 * of that block so it doesn't yield old data if the file is later grown.
3359 */
cf108bca 3360int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3361 struct address_space *mapping, loff_t from)
3362{
617ba13b 3363 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3364 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3365 unsigned blocksize, length, pos;
3366 ext4_lblk_t iblock;
ac27a0ec
DK
3367 struct inode *inode = mapping->host;
3368 struct buffer_head *bh;
cf108bca 3369 struct page *page;
ac27a0ec 3370 int err = 0;
ac27a0ec 3371
cf108bca
JK
3372 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3373 if (!page)
3374 return -EINVAL;
3375
ac27a0ec
DK
3376 blocksize = inode->i_sb->s_blocksize;
3377 length = blocksize - (offset & (blocksize - 1));
3378 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3379
3380 /*
3381 * For "nobh" option, we can only work if we don't need to
3382 * read-in the page - otherwise we create buffers to do the IO.
3383 */
3384 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3385 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3386 zero_user(page, offset, length);
ac27a0ec
DK
3387 set_page_dirty(page);
3388 goto unlock;
3389 }
3390
3391 if (!page_has_buffers(page))
3392 create_empty_buffers(page, blocksize, 0);
3393
3394 /* Find the buffer that contains "offset" */
3395 bh = page_buffers(page);
3396 pos = blocksize;
3397 while (offset >= pos) {
3398 bh = bh->b_this_page;
3399 iblock++;
3400 pos += blocksize;
3401 }
3402
3403 err = 0;
3404 if (buffer_freed(bh)) {
3405 BUFFER_TRACE(bh, "freed: skip");
3406 goto unlock;
3407 }
3408
3409 if (!buffer_mapped(bh)) {
3410 BUFFER_TRACE(bh, "unmapped");
617ba13b 3411 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3412 /* unmapped? It's a hole - nothing to do */
3413 if (!buffer_mapped(bh)) {
3414 BUFFER_TRACE(bh, "still unmapped");
3415 goto unlock;
3416 }
3417 }
3418
3419 /* Ok, it's mapped. Make sure it's up-to-date */
3420 if (PageUptodate(page))
3421 set_buffer_uptodate(bh);
3422
3423 if (!buffer_uptodate(bh)) {
3424 err = -EIO;
3425 ll_rw_block(READ, 1, &bh);
3426 wait_on_buffer(bh);
3427 /* Uhhuh. Read error. Complain and punt. */
3428 if (!buffer_uptodate(bh))
3429 goto unlock;
3430 }
3431
617ba13b 3432 if (ext4_should_journal_data(inode)) {
ac27a0ec 3433 BUFFER_TRACE(bh, "get write access");
617ba13b 3434 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3435 if (err)
3436 goto unlock;
3437 }
3438
eebd2aa3 3439 zero_user(page, offset, length);
ac27a0ec
DK
3440
3441 BUFFER_TRACE(bh, "zeroed end of block");
3442
3443 err = 0;
617ba13b 3444 if (ext4_should_journal_data(inode)) {
0390131b 3445 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3446 } else {
617ba13b 3447 if (ext4_should_order_data(inode))
678aaf48 3448 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3449 mark_buffer_dirty(bh);
3450 }
3451
3452unlock:
3453 unlock_page(page);
3454 page_cache_release(page);
3455 return err;
3456}
3457
3458/*
3459 * Probably it should be a library function... search for first non-zero word
3460 * or memcmp with zero_page, whatever is better for particular architecture.
3461 * Linus?
3462 */
3463static inline int all_zeroes(__le32 *p, __le32 *q)
3464{
3465 while (p < q)
3466 if (*p++)
3467 return 0;
3468 return 1;
3469}
3470
3471/**
617ba13b 3472 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3473 * @inode: inode in question
3474 * @depth: depth of the affected branch
617ba13b 3475 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3476 * @chain: place to store the pointers to partial indirect blocks
3477 * @top: place to the (detached) top of branch
3478 *
617ba13b 3479 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3480 *
3481 * When we do truncate() we may have to clean the ends of several
3482 * indirect blocks but leave the blocks themselves alive. Block is
3483 * partially truncated if some data below the new i_size is refered
3484 * from it (and it is on the path to the first completely truncated
3485 * data block, indeed). We have to free the top of that path along
3486 * with everything to the right of the path. Since no allocation
617ba13b 3487 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3488 * finishes, we may safely do the latter, but top of branch may
3489 * require special attention - pageout below the truncation point
3490 * might try to populate it.
3491 *
3492 * We atomically detach the top of branch from the tree, store the
3493 * block number of its root in *@top, pointers to buffer_heads of
3494 * partially truncated blocks - in @chain[].bh and pointers to
3495 * their last elements that should not be removed - in
3496 * @chain[].p. Return value is the pointer to last filled element
3497 * of @chain.
3498 *
3499 * The work left to caller to do the actual freeing of subtrees:
3500 * a) free the subtree starting from *@top
3501 * b) free the subtrees whose roots are stored in
3502 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3503 * c) free the subtrees growing from the inode past the @chain[0].
3504 * (no partially truncated stuff there). */
3505
617ba13b 3506static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3507 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3508{
3509 Indirect *partial, *p;
3510 int k, err;
3511
3512 *top = 0;
3513 /* Make k index the deepest non-null offest + 1 */
3514 for (k = depth; k > 1 && !offsets[k-1]; k--)
3515 ;
617ba13b 3516 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3517 /* Writer: pointers */
3518 if (!partial)
3519 partial = chain + k-1;
3520 /*
3521 * If the branch acquired continuation since we've looked at it -
3522 * fine, it should all survive and (new) top doesn't belong to us.
3523 */
3524 if (!partial->key && *partial->p)
3525 /* Writer: end */
3526 goto no_top;
af5bc92d 3527 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3528 ;
3529 /*
3530 * OK, we've found the last block that must survive. The rest of our
3531 * branch should be detached before unlocking. However, if that rest
3532 * of branch is all ours and does not grow immediately from the inode
3533 * it's easier to cheat and just decrement partial->p.
3534 */
3535 if (p == chain + k - 1 && p > chain) {
3536 p->p--;
3537 } else {
3538 *top = *p->p;
617ba13b 3539 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3540#if 0
3541 *p->p = 0;
3542#endif
3543 }
3544 /* Writer: end */
3545
af5bc92d 3546 while (partial > p) {
ac27a0ec
DK
3547 brelse(partial->bh);
3548 partial--;
3549 }
3550no_top:
3551 return partial;
3552}
3553
3554/*
3555 * Zero a number of block pointers in either an inode or an indirect block.
3556 * If we restart the transaction we must again get write access to the
3557 * indirect block for further modification.
3558 *
3559 * We release `count' blocks on disk, but (last - first) may be greater
3560 * than `count' because there can be holes in there.
3561 */
617ba13b
MC
3562static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3563 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3564 unsigned long count, __le32 *first, __le32 *last)
3565{
3566 __le32 *p;
3567 if (try_to_extend_transaction(handle, inode)) {
3568 if (bh) {
0390131b
FM
3569 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3570 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3571 }
617ba13b
MC
3572 ext4_mark_inode_dirty(handle, inode);
3573 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3574 if (bh) {
3575 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3576 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3577 }
3578 }
3579
3580 /*
3581 * Any buffers which are on the journal will be in memory. We find
dab291af 3582 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3583 * on them. We've already detached each block from the file, so
dab291af 3584 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3585 *
dab291af 3586 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3587 */
3588 for (p = first; p < last; p++) {
3589 u32 nr = le32_to_cpu(*p);
3590 if (nr) {
1d03ec98 3591 struct buffer_head *tbh;
ac27a0ec
DK
3592
3593 *p = 0;
1d03ec98
AK
3594 tbh = sb_find_get_block(inode->i_sb, nr);
3595 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3596 }
3597 }
3598
c9de560d 3599 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3600}
3601
3602/**
617ba13b 3603 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3604 * @handle: handle for this transaction
3605 * @inode: inode we are dealing with
3606 * @this_bh: indirect buffer_head which contains *@first and *@last
3607 * @first: array of block numbers
3608 * @last: points immediately past the end of array
3609 *
3610 * We are freeing all blocks refered from that array (numbers are stored as
3611 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3612 *
3613 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3614 * blocks are contiguous then releasing them at one time will only affect one
3615 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3616 * actually use a lot of journal space.
3617 *
3618 * @this_bh will be %NULL if @first and @last point into the inode's direct
3619 * block pointers.
3620 */
617ba13b 3621static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3622 struct buffer_head *this_bh,
3623 __le32 *first, __le32 *last)
3624{
617ba13b 3625 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3626 unsigned long count = 0; /* Number of blocks in the run */
3627 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3628 corresponding to
3629 block_to_free */
617ba13b 3630 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3631 __le32 *p; /* Pointer into inode/ind
3632 for current block */
3633 int err;
3634
3635 if (this_bh) { /* For indirect block */
3636 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3637 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3638 /* Important: if we can't update the indirect pointers
3639 * to the blocks, we can't free them. */
3640 if (err)
3641 return;
3642 }
3643
3644 for (p = first; p < last; p++) {
3645 nr = le32_to_cpu(*p);
3646 if (nr) {
3647 /* accumulate blocks to free if they're contiguous */
3648 if (count == 0) {
3649 block_to_free = nr;
3650 block_to_free_p = p;
3651 count = 1;
3652 } else if (nr == block_to_free + count) {
3653 count++;
3654 } else {
617ba13b 3655 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3656 block_to_free,
3657 count, block_to_free_p, p);
3658 block_to_free = nr;
3659 block_to_free_p = p;
3660 count = 1;
3661 }
3662 }
3663 }
3664
3665 if (count > 0)
617ba13b 3666 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3667 count, block_to_free_p, p);
3668
3669 if (this_bh) {
0390131b 3670 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3671
3672 /*
3673 * The buffer head should have an attached journal head at this
3674 * point. However, if the data is corrupted and an indirect
3675 * block pointed to itself, it would have been detached when
3676 * the block was cleared. Check for this instead of OOPSing.
3677 */
e7f07968 3678 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3679 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3680 else
3681 ext4_error(inode->i_sb, __func__,
3682 "circular indirect block detected, "
3683 "inode=%lu, block=%llu",
3684 inode->i_ino,
3685 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3686 }
3687}
3688
3689/**
617ba13b 3690 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3691 * @handle: JBD handle for this transaction
3692 * @inode: inode we are dealing with
3693 * @parent_bh: the buffer_head which contains *@first and *@last
3694 * @first: array of block numbers
3695 * @last: pointer immediately past the end of array
3696 * @depth: depth of the branches to free
3697 *
3698 * We are freeing all blocks refered from these branches (numbers are
3699 * stored as little-endian 32-bit) and updating @inode->i_blocks
3700 * appropriately.
3701 */
617ba13b 3702static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3703 struct buffer_head *parent_bh,
3704 __le32 *first, __le32 *last, int depth)
3705{
617ba13b 3706 ext4_fsblk_t nr;
ac27a0ec
DK
3707 __le32 *p;
3708
0390131b 3709 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3710 return;
3711
3712 if (depth--) {
3713 struct buffer_head *bh;
617ba13b 3714 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3715 p = last;
3716 while (--p >= first) {
3717 nr = le32_to_cpu(*p);
3718 if (!nr)
3719 continue; /* A hole */
3720
3721 /* Go read the buffer for the next level down */
3722 bh = sb_bread(inode->i_sb, nr);
3723
3724 /*
3725 * A read failure? Report error and clear slot
3726 * (should be rare).
3727 */
3728 if (!bh) {
617ba13b 3729 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3730 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3731 inode->i_ino, nr);
3732 continue;
3733 }
3734
3735 /* This zaps the entire block. Bottom up. */
3736 BUFFER_TRACE(bh, "free child branches");
617ba13b 3737 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3738 (__le32 *) bh->b_data,
3739 (__le32 *) bh->b_data + addr_per_block,
3740 depth);
ac27a0ec
DK
3741
3742 /*
3743 * We've probably journalled the indirect block several
3744 * times during the truncate. But it's no longer
3745 * needed and we now drop it from the transaction via
dab291af 3746 * jbd2_journal_revoke().
ac27a0ec
DK
3747 *
3748 * That's easy if it's exclusively part of this
3749 * transaction. But if it's part of the committing
dab291af 3750 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3751 * brelse() it. That means that if the underlying
617ba13b 3752 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3753 * unmap_underlying_metadata() will find this block
3754 * and will try to get rid of it. damn, damn.
3755 *
3756 * If this block has already been committed to the
3757 * journal, a revoke record will be written. And
3758 * revoke records must be emitted *before* clearing
3759 * this block's bit in the bitmaps.
3760 */
617ba13b 3761 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3762
3763 /*
3764 * Everything below this this pointer has been
3765 * released. Now let this top-of-subtree go.
3766 *
3767 * We want the freeing of this indirect block to be
3768 * atomic in the journal with the updating of the
3769 * bitmap block which owns it. So make some room in
3770 * the journal.
3771 *
3772 * We zero the parent pointer *after* freeing its
3773 * pointee in the bitmaps, so if extend_transaction()
3774 * for some reason fails to put the bitmap changes and
3775 * the release into the same transaction, recovery
3776 * will merely complain about releasing a free block,
3777 * rather than leaking blocks.
3778 */
0390131b 3779 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3780 return;
3781 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3782 ext4_mark_inode_dirty(handle, inode);
3783 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3784 }
3785
c9de560d 3786 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3787
3788 if (parent_bh) {
3789 /*
3790 * The block which we have just freed is
3791 * pointed to by an indirect block: journal it
3792 */
3793 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3794 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3795 parent_bh)){
3796 *p = 0;
3797 BUFFER_TRACE(parent_bh,
0390131b
FM
3798 "call ext4_handle_dirty_metadata");
3799 ext4_handle_dirty_metadata(handle,
3800 inode,
3801 parent_bh);
ac27a0ec
DK
3802 }
3803 }
3804 }
3805 } else {
3806 /* We have reached the bottom of the tree. */
3807 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3808 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3809 }
3810}
3811
91ef4caf
DG
3812int ext4_can_truncate(struct inode *inode)
3813{
3814 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3815 return 0;
3816 if (S_ISREG(inode->i_mode))
3817 return 1;
3818 if (S_ISDIR(inode->i_mode))
3819 return 1;
3820 if (S_ISLNK(inode->i_mode))
3821 return !ext4_inode_is_fast_symlink(inode);
3822 return 0;
3823}
3824
ac27a0ec 3825/*
617ba13b 3826 * ext4_truncate()
ac27a0ec 3827 *
617ba13b
MC
3828 * We block out ext4_get_block() block instantiations across the entire
3829 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3830 * simultaneously on behalf of the same inode.
3831 *
3832 * As we work through the truncate and commmit bits of it to the journal there
3833 * is one core, guiding principle: the file's tree must always be consistent on
3834 * disk. We must be able to restart the truncate after a crash.
3835 *
3836 * The file's tree may be transiently inconsistent in memory (although it
3837 * probably isn't), but whenever we close off and commit a journal transaction,
3838 * the contents of (the filesystem + the journal) must be consistent and
3839 * restartable. It's pretty simple, really: bottom up, right to left (although
3840 * left-to-right works OK too).
3841 *
3842 * Note that at recovery time, journal replay occurs *before* the restart of
3843 * truncate against the orphan inode list.
3844 *
3845 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3846 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3847 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3848 * ext4_truncate() to have another go. So there will be instantiated blocks
3849 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3850 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3851 * ext4_truncate() run will find them and release them.
ac27a0ec 3852 */
617ba13b 3853void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3854{
3855 handle_t *handle;
617ba13b 3856 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3857 __le32 *i_data = ei->i_data;
617ba13b 3858 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3859 struct address_space *mapping = inode->i_mapping;
725d26d3 3860 ext4_lblk_t offsets[4];
ac27a0ec
DK
3861 Indirect chain[4];
3862 Indirect *partial;
3863 __le32 nr = 0;
3864 int n;
725d26d3 3865 ext4_lblk_t last_block;
ac27a0ec 3866 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3867
91ef4caf 3868 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3869 return;
3870
1d03ec98 3871 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3872 ext4_ext_truncate(inode);
1d03ec98
AK
3873 return;
3874 }
a86c6181 3875
ac27a0ec 3876 handle = start_transaction(inode);
cf108bca 3877 if (IS_ERR(handle))
ac27a0ec 3878 return; /* AKPM: return what? */
ac27a0ec
DK
3879
3880 last_block = (inode->i_size + blocksize-1)
617ba13b 3881 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3882
cf108bca
JK
3883 if (inode->i_size & (blocksize - 1))
3884 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3885 goto out_stop;
ac27a0ec 3886
617ba13b 3887 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3888 if (n == 0)
3889 goto out_stop; /* error */
3890
3891 /*
3892 * OK. This truncate is going to happen. We add the inode to the
3893 * orphan list, so that if this truncate spans multiple transactions,
3894 * and we crash, we will resume the truncate when the filesystem
3895 * recovers. It also marks the inode dirty, to catch the new size.
3896 *
3897 * Implication: the file must always be in a sane, consistent
3898 * truncatable state while each transaction commits.
3899 */
617ba13b 3900 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3901 goto out_stop;
3902
632eaeab
MC
3903 /*
3904 * From here we block out all ext4_get_block() callers who want to
3905 * modify the block allocation tree.
3906 */
3907 down_write(&ei->i_data_sem);
b4df2030 3908
c2ea3fde 3909 ext4_discard_preallocations(inode);
b4df2030 3910
ac27a0ec
DK
3911 /*
3912 * The orphan list entry will now protect us from any crash which
3913 * occurs before the truncate completes, so it is now safe to propagate
3914 * the new, shorter inode size (held for now in i_size) into the
3915 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3916 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3917 */
3918 ei->i_disksize = inode->i_size;
3919
ac27a0ec 3920 if (n == 1) { /* direct blocks */
617ba13b
MC
3921 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3922 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3923 goto do_indirects;
3924 }
3925
617ba13b 3926 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3927 /* Kill the top of shared branch (not detached) */
3928 if (nr) {
3929 if (partial == chain) {
3930 /* Shared branch grows from the inode */
617ba13b 3931 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3932 &nr, &nr+1, (chain+n-1) - partial);
3933 *partial->p = 0;
3934 /*
3935 * We mark the inode dirty prior to restart,
3936 * and prior to stop. No need for it here.
3937 */
3938 } else {
3939 /* Shared branch grows from an indirect block */
3940 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3941 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3942 partial->p,
3943 partial->p+1, (chain+n-1) - partial);
3944 }
3945 }
3946 /* Clear the ends of indirect blocks on the shared branch */
3947 while (partial > chain) {
617ba13b 3948 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3949 (__le32*)partial->bh->b_data+addr_per_block,
3950 (chain+n-1) - partial);
3951 BUFFER_TRACE(partial->bh, "call brelse");
3952 brelse (partial->bh);
3953 partial--;
3954 }
3955do_indirects:
3956 /* Kill the remaining (whole) subtrees */
3957 switch (offsets[0]) {
3958 default:
617ba13b 3959 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3960 if (nr) {
617ba13b
MC
3961 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3962 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3963 }
617ba13b
MC
3964 case EXT4_IND_BLOCK:
3965 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3966 if (nr) {
617ba13b
MC
3967 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3968 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3969 }
617ba13b
MC
3970 case EXT4_DIND_BLOCK:
3971 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3972 if (nr) {
617ba13b
MC
3973 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3974 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3975 }
617ba13b 3976 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3977 ;
3978 }
3979
0e855ac8 3980 up_write(&ei->i_data_sem);
ef7f3835 3981 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3982 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3983
3984 /*
3985 * In a multi-transaction truncate, we only make the final transaction
3986 * synchronous
3987 */
3988 if (IS_SYNC(inode))
0390131b 3989 ext4_handle_sync(handle);
ac27a0ec
DK
3990out_stop:
3991 /*
3992 * If this was a simple ftruncate(), and the file will remain alive
3993 * then we need to clear up the orphan record which we created above.
3994 * However, if this was a real unlink then we were called by
617ba13b 3995 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3996 * orphan info for us.
3997 */
3998 if (inode->i_nlink)
617ba13b 3999 ext4_orphan_del(handle, inode);
ac27a0ec 4000
617ba13b 4001 ext4_journal_stop(handle);
ac27a0ec
DK
4002}
4003
ac27a0ec 4004/*
617ba13b 4005 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4006 * underlying buffer_head on success. If 'in_mem' is true, we have all
4007 * data in memory that is needed to recreate the on-disk version of this
4008 * inode.
4009 */
617ba13b
MC
4010static int __ext4_get_inode_loc(struct inode *inode,
4011 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4012{
240799cd
TT
4013 struct ext4_group_desc *gdp;
4014 struct buffer_head *bh;
4015 struct super_block *sb = inode->i_sb;
4016 ext4_fsblk_t block;
4017 int inodes_per_block, inode_offset;
4018
3a06d778 4019 iloc->bh = NULL;
240799cd
TT
4020 if (!ext4_valid_inum(sb, inode->i_ino))
4021 return -EIO;
ac27a0ec 4022
240799cd
TT
4023 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4024 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4025 if (!gdp)
ac27a0ec
DK
4026 return -EIO;
4027
240799cd
TT
4028 /*
4029 * Figure out the offset within the block group inode table
4030 */
4031 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4032 inode_offset = ((inode->i_ino - 1) %
4033 EXT4_INODES_PER_GROUP(sb));
4034 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4035 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4036
4037 bh = sb_getblk(sb, block);
ac27a0ec 4038 if (!bh) {
240799cd
TT
4039 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4040 "inode block - inode=%lu, block=%llu",
4041 inode->i_ino, block);
ac27a0ec
DK
4042 return -EIO;
4043 }
4044 if (!buffer_uptodate(bh)) {
4045 lock_buffer(bh);
9c83a923
HK
4046
4047 /*
4048 * If the buffer has the write error flag, we have failed
4049 * to write out another inode in the same block. In this
4050 * case, we don't have to read the block because we may
4051 * read the old inode data successfully.
4052 */
4053 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4054 set_buffer_uptodate(bh);
4055
ac27a0ec
DK
4056 if (buffer_uptodate(bh)) {
4057 /* someone brought it uptodate while we waited */
4058 unlock_buffer(bh);
4059 goto has_buffer;
4060 }
4061
4062 /*
4063 * If we have all information of the inode in memory and this
4064 * is the only valid inode in the block, we need not read the
4065 * block.
4066 */
4067 if (in_mem) {
4068 struct buffer_head *bitmap_bh;
240799cd 4069 int i, start;
ac27a0ec 4070
240799cd 4071 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4072
240799cd
TT
4073 /* Is the inode bitmap in cache? */
4074 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4075 if (!bitmap_bh)
4076 goto make_io;
4077
4078 /*
4079 * If the inode bitmap isn't in cache then the
4080 * optimisation may end up performing two reads instead
4081 * of one, so skip it.
4082 */
4083 if (!buffer_uptodate(bitmap_bh)) {
4084 brelse(bitmap_bh);
4085 goto make_io;
4086 }
240799cd 4087 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4088 if (i == inode_offset)
4089 continue;
617ba13b 4090 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4091 break;
4092 }
4093 brelse(bitmap_bh);
240799cd 4094 if (i == start + inodes_per_block) {
ac27a0ec
DK
4095 /* all other inodes are free, so skip I/O */
4096 memset(bh->b_data, 0, bh->b_size);
4097 set_buffer_uptodate(bh);
4098 unlock_buffer(bh);
4099 goto has_buffer;
4100 }
4101 }
4102
4103make_io:
240799cd
TT
4104 /*
4105 * If we need to do any I/O, try to pre-readahead extra
4106 * blocks from the inode table.
4107 */
4108 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4109 ext4_fsblk_t b, end, table;
4110 unsigned num;
4111
4112 table = ext4_inode_table(sb, gdp);
4113 /* Make sure s_inode_readahead_blks is a power of 2 */
4114 while (EXT4_SB(sb)->s_inode_readahead_blks &
4115 (EXT4_SB(sb)->s_inode_readahead_blks-1))
4116 EXT4_SB(sb)->s_inode_readahead_blks =
4117 (EXT4_SB(sb)->s_inode_readahead_blks &
4118 (EXT4_SB(sb)->s_inode_readahead_blks-1));
4119 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4120 if (table > b)
4121 b = table;
4122 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4123 num = EXT4_INODES_PER_GROUP(sb);
4124 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4125 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4126 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4127 table += num / inodes_per_block;
4128 if (end > table)
4129 end = table;
4130 while (b <= end)
4131 sb_breadahead(sb, b++);
4132 }
4133
ac27a0ec
DK
4134 /*
4135 * There are other valid inodes in the buffer, this inode
4136 * has in-inode xattrs, or we don't have this inode in memory.
4137 * Read the block from disk.
4138 */
4139 get_bh(bh);
4140 bh->b_end_io = end_buffer_read_sync;
4141 submit_bh(READ_META, bh);
4142 wait_on_buffer(bh);
4143 if (!buffer_uptodate(bh)) {
240799cd
TT
4144 ext4_error(sb, __func__,
4145 "unable to read inode block - inode=%lu, "
4146 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4147 brelse(bh);
4148 return -EIO;
4149 }
4150 }
4151has_buffer:
4152 iloc->bh = bh;
4153 return 0;
4154}
4155
617ba13b 4156int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4157{
4158 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4159 return __ext4_get_inode_loc(inode, iloc,
4160 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4161}
4162
617ba13b 4163void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4164{
617ba13b 4165 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4166
4167 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4168 if (flags & EXT4_SYNC_FL)
ac27a0ec 4169 inode->i_flags |= S_SYNC;
617ba13b 4170 if (flags & EXT4_APPEND_FL)
ac27a0ec 4171 inode->i_flags |= S_APPEND;
617ba13b 4172 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4173 inode->i_flags |= S_IMMUTABLE;
617ba13b 4174 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4175 inode->i_flags |= S_NOATIME;
617ba13b 4176 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4177 inode->i_flags |= S_DIRSYNC;
4178}
4179
ff9ddf7e
JK
4180/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4181void ext4_get_inode_flags(struct ext4_inode_info *ei)
4182{
4183 unsigned int flags = ei->vfs_inode.i_flags;
4184
4185 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4186 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4187 if (flags & S_SYNC)
4188 ei->i_flags |= EXT4_SYNC_FL;
4189 if (flags & S_APPEND)
4190 ei->i_flags |= EXT4_APPEND_FL;
4191 if (flags & S_IMMUTABLE)
4192 ei->i_flags |= EXT4_IMMUTABLE_FL;
4193 if (flags & S_NOATIME)
4194 ei->i_flags |= EXT4_NOATIME_FL;
4195 if (flags & S_DIRSYNC)
4196 ei->i_flags |= EXT4_DIRSYNC_FL;
4197}
0fc1b451
AK
4198static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4199 struct ext4_inode_info *ei)
4200{
4201 blkcnt_t i_blocks ;
8180a562
AK
4202 struct inode *inode = &(ei->vfs_inode);
4203 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4204
4205 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4206 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4207 /* we are using combined 48 bit field */
4208 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4209 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4210 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4211 /* i_blocks represent file system block size */
4212 return i_blocks << (inode->i_blkbits - 9);
4213 } else {
4214 return i_blocks;
4215 }
0fc1b451
AK
4216 } else {
4217 return le32_to_cpu(raw_inode->i_blocks_lo);
4218 }
4219}
ff9ddf7e 4220
1d1fe1ee 4221struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4222{
617ba13b
MC
4223 struct ext4_iloc iloc;
4224 struct ext4_inode *raw_inode;
1d1fe1ee 4225 struct ext4_inode_info *ei;
ac27a0ec 4226 struct buffer_head *bh;
1d1fe1ee
DH
4227 struct inode *inode;
4228 long ret;
ac27a0ec
DK
4229 int block;
4230
1d1fe1ee
DH
4231 inode = iget_locked(sb, ino);
4232 if (!inode)
4233 return ERR_PTR(-ENOMEM);
4234 if (!(inode->i_state & I_NEW))
4235 return inode;
4236
4237 ei = EXT4_I(inode);
03010a33 4238#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4239 ei->i_acl = EXT4_ACL_NOT_CACHED;
4240 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4241#endif
ac27a0ec 4242
1d1fe1ee
DH
4243 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4244 if (ret < 0)
ac27a0ec
DK
4245 goto bad_inode;
4246 bh = iloc.bh;
617ba13b 4247 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4248 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4249 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4250 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4251 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4252 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4253 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4254 }
4255 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4256
4257 ei->i_state = 0;
4258 ei->i_dir_start_lookup = 0;
4259 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4260 /* We now have enough fields to check if the inode was active or not.
4261 * This is needed because nfsd might try to access dead inodes
4262 * the test is that same one that e2fsck uses
4263 * NeilBrown 1999oct15
4264 */
4265 if (inode->i_nlink == 0) {
4266 if (inode->i_mode == 0 ||
617ba13b 4267 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4268 /* this inode is deleted */
af5bc92d 4269 brelse(bh);
1d1fe1ee 4270 ret = -ESTALE;
ac27a0ec
DK
4271 goto bad_inode;
4272 }
4273 /* The only unlinked inodes we let through here have
4274 * valid i_mode and are being read by the orphan
4275 * recovery code: that's fine, we're about to complete
4276 * the process of deleting those. */
4277 }
ac27a0ec 4278 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4279 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4280 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4281 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4282 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4283 ei->i_file_acl |=
4284 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4285 }
a48380f7 4286 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4287 ei->i_disksize = inode->i_size;
4288 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4289 ei->i_block_group = iloc.block_group;
4290 /*
4291 * NOTE! The in-memory inode i_data array is in little-endian order
4292 * even on big-endian machines: we do NOT byteswap the block numbers!
4293 */
617ba13b 4294 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4295 ei->i_data[block] = raw_inode->i_block[block];
4296 INIT_LIST_HEAD(&ei->i_orphan);
4297
0040d987 4298 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4299 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4300 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4301 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4302 brelse(bh);
1d1fe1ee 4303 ret = -EIO;
ac27a0ec 4304 goto bad_inode;
e5d2861f 4305 }
ac27a0ec
DK
4306 if (ei->i_extra_isize == 0) {
4307 /* The extra space is currently unused. Use it. */
617ba13b
MC
4308 ei->i_extra_isize = sizeof(struct ext4_inode) -
4309 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4310 } else {
4311 __le32 *magic = (void *)raw_inode +
617ba13b 4312 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4313 ei->i_extra_isize;
617ba13b
MC
4314 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4315 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4316 }
4317 } else
4318 ei->i_extra_isize = 0;
4319
ef7f3835
KS
4320 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4321 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4322 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4323 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4324
25ec56b5
JNC
4325 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4326 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4328 inode->i_version |=
4329 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4330 }
4331
ac27a0ec 4332 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4333 inode->i_op = &ext4_file_inode_operations;
4334 inode->i_fop = &ext4_file_operations;
4335 ext4_set_aops(inode);
ac27a0ec 4336 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4337 inode->i_op = &ext4_dir_inode_operations;
4338 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4339 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4340 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4341 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4342 nd_terminate_link(ei->i_data, inode->i_size,
4343 sizeof(ei->i_data) - 1);
4344 } else {
617ba13b
MC
4345 inode->i_op = &ext4_symlink_inode_operations;
4346 ext4_set_aops(inode);
ac27a0ec
DK
4347 }
4348 } else {
617ba13b 4349 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4350 if (raw_inode->i_block[0])
4351 init_special_inode(inode, inode->i_mode,
4352 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4353 else
4354 init_special_inode(inode, inode->i_mode,
4355 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4356 }
af5bc92d 4357 brelse(iloc.bh);
617ba13b 4358 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4359 unlock_new_inode(inode);
4360 return inode;
ac27a0ec
DK
4361
4362bad_inode:
1d1fe1ee
DH
4363 iget_failed(inode);
4364 return ERR_PTR(ret);
ac27a0ec
DK
4365}
4366
0fc1b451
AK
4367static int ext4_inode_blocks_set(handle_t *handle,
4368 struct ext4_inode *raw_inode,
4369 struct ext4_inode_info *ei)
4370{
4371 struct inode *inode = &(ei->vfs_inode);
4372 u64 i_blocks = inode->i_blocks;
4373 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4374
4375 if (i_blocks <= ~0U) {
4376 /*
4377 * i_blocks can be represnted in a 32 bit variable
4378 * as multiple of 512 bytes
4379 */
8180a562 4380 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4381 raw_inode->i_blocks_high = 0;
8180a562 4382 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4383 return 0;
4384 }
4385 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4386 return -EFBIG;
4387
4388 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4389 /*
4390 * i_blocks can be represented in a 48 bit variable
4391 * as multiple of 512 bytes
4392 */
8180a562 4393 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4394 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4395 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4396 } else {
8180a562
AK
4397 ei->i_flags |= EXT4_HUGE_FILE_FL;
4398 /* i_block is stored in file system block size */
4399 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4400 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4401 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4402 }
f287a1a5 4403 return 0;
0fc1b451
AK
4404}
4405
ac27a0ec
DK
4406/*
4407 * Post the struct inode info into an on-disk inode location in the
4408 * buffer-cache. This gobbles the caller's reference to the
4409 * buffer_head in the inode location struct.
4410 *
4411 * The caller must have write access to iloc->bh.
4412 */
617ba13b 4413static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4414 struct inode *inode,
617ba13b 4415 struct ext4_iloc *iloc)
ac27a0ec 4416{
617ba13b
MC
4417 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4418 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4419 struct buffer_head *bh = iloc->bh;
4420 int err = 0, rc, block;
4421
4422 /* For fields not not tracking in the in-memory inode,
4423 * initialise them to zero for new inodes. */
617ba13b
MC
4424 if (ei->i_state & EXT4_STATE_NEW)
4425 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4426
ff9ddf7e 4427 ext4_get_inode_flags(ei);
ac27a0ec 4428 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4429 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4430 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4431 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4432/*
4433 * Fix up interoperability with old kernels. Otherwise, old inodes get
4434 * re-used with the upper 16 bits of the uid/gid intact
4435 */
af5bc92d 4436 if (!ei->i_dtime) {
ac27a0ec
DK
4437 raw_inode->i_uid_high =
4438 cpu_to_le16(high_16_bits(inode->i_uid));
4439 raw_inode->i_gid_high =
4440 cpu_to_le16(high_16_bits(inode->i_gid));
4441 } else {
4442 raw_inode->i_uid_high = 0;
4443 raw_inode->i_gid_high = 0;
4444 }
4445 } else {
4446 raw_inode->i_uid_low =
4447 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4448 raw_inode->i_gid_low =
4449 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4450 raw_inode->i_uid_high = 0;
4451 raw_inode->i_gid_high = 0;
4452 }
4453 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4454
4455 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4456 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4457 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4458 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4459
0fc1b451
AK
4460 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4461 goto out_brelse;
ac27a0ec 4462 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4463 /* clear the migrate flag in the raw_inode */
4464 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4465 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4466 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4467 raw_inode->i_file_acl_high =
4468 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4469 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4470 ext4_isize_set(raw_inode, ei->i_disksize);
4471 if (ei->i_disksize > 0x7fffffffULL) {
4472 struct super_block *sb = inode->i_sb;
4473 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4474 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4475 EXT4_SB(sb)->s_es->s_rev_level ==
4476 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4477 /* If this is the first large file
4478 * created, add a flag to the superblock.
4479 */
4480 err = ext4_journal_get_write_access(handle,
4481 EXT4_SB(sb)->s_sbh);
4482 if (err)
4483 goto out_brelse;
4484 ext4_update_dynamic_rev(sb);
4485 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4486 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4487 sb->s_dirt = 1;
0390131b
FM
4488 ext4_handle_sync(handle);
4489 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4490 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4491 }
4492 }
4493 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4494 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4495 if (old_valid_dev(inode->i_rdev)) {
4496 raw_inode->i_block[0] =
4497 cpu_to_le32(old_encode_dev(inode->i_rdev));
4498 raw_inode->i_block[1] = 0;
4499 } else {
4500 raw_inode->i_block[0] = 0;
4501 raw_inode->i_block[1] =
4502 cpu_to_le32(new_encode_dev(inode->i_rdev));
4503 raw_inode->i_block[2] = 0;
4504 }
617ba13b 4505 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4506 raw_inode->i_block[block] = ei->i_data[block];
4507
25ec56b5
JNC
4508 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4509 if (ei->i_extra_isize) {
4510 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4511 raw_inode->i_version_hi =
4512 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4513 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4514 }
4515
0390131b
FM
4516 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4517 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4518 if (!err)
4519 err = rc;
617ba13b 4520 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4521
4522out_brelse:
af5bc92d 4523 brelse(bh);
617ba13b 4524 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4525 return err;
4526}
4527
4528/*
617ba13b 4529 * ext4_write_inode()
ac27a0ec
DK
4530 *
4531 * We are called from a few places:
4532 *
4533 * - Within generic_file_write() for O_SYNC files.
4534 * Here, there will be no transaction running. We wait for any running
4535 * trasnaction to commit.
4536 *
4537 * - Within sys_sync(), kupdate and such.
4538 * We wait on commit, if tol to.
4539 *
4540 * - Within prune_icache() (PF_MEMALLOC == true)
4541 * Here we simply return. We can't afford to block kswapd on the
4542 * journal commit.
4543 *
4544 * In all cases it is actually safe for us to return without doing anything,
4545 * because the inode has been copied into a raw inode buffer in
617ba13b 4546 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4547 * knfsd.
4548 *
4549 * Note that we are absolutely dependent upon all inode dirtiers doing the
4550 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4551 * which we are interested.
4552 *
4553 * It would be a bug for them to not do this. The code:
4554 *
4555 * mark_inode_dirty(inode)
4556 * stuff();
4557 * inode->i_size = expr;
4558 *
4559 * is in error because a kswapd-driven write_inode() could occur while
4560 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4561 * will no longer be on the superblock's dirty inode list.
4562 */
617ba13b 4563int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4564{
4565 if (current->flags & PF_MEMALLOC)
4566 return 0;
4567
617ba13b 4568 if (ext4_journal_current_handle()) {
b38bd33a 4569 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4570 dump_stack();
4571 return -EIO;
4572 }
4573
4574 if (!wait)
4575 return 0;
4576
617ba13b 4577 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4578}
4579
0390131b
FM
4580int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4581{
4582 int err = 0;
4583
4584 mark_buffer_dirty(bh);
4585 if (inode && inode_needs_sync(inode)) {
4586 sync_dirty_buffer(bh);
4587 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4588 ext4_error(inode->i_sb, __func__,
4589 "IO error syncing inode, "
4590 "inode=%lu, block=%llu",
4591 inode->i_ino,
4592 (unsigned long long)bh->b_blocknr);
4593 err = -EIO;
4594 }
4595 }
4596 return err;
4597}
4598
ac27a0ec 4599/*
617ba13b 4600 * ext4_setattr()
ac27a0ec
DK
4601 *
4602 * Called from notify_change.
4603 *
4604 * We want to trap VFS attempts to truncate the file as soon as
4605 * possible. In particular, we want to make sure that when the VFS
4606 * shrinks i_size, we put the inode on the orphan list and modify
4607 * i_disksize immediately, so that during the subsequent flushing of
4608 * dirty pages and freeing of disk blocks, we can guarantee that any
4609 * commit will leave the blocks being flushed in an unused state on
4610 * disk. (On recovery, the inode will get truncated and the blocks will
4611 * be freed, so we have a strong guarantee that no future commit will
4612 * leave these blocks visible to the user.)
4613 *
678aaf48
JK
4614 * Another thing we have to assure is that if we are in ordered mode
4615 * and inode is still attached to the committing transaction, we must
4616 * we start writeout of all the dirty pages which are being truncated.
4617 * This way we are sure that all the data written in the previous
4618 * transaction are already on disk (truncate waits for pages under
4619 * writeback).
4620 *
4621 * Called with inode->i_mutex down.
ac27a0ec 4622 */
617ba13b 4623int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4624{
4625 struct inode *inode = dentry->d_inode;
4626 int error, rc = 0;
4627 const unsigned int ia_valid = attr->ia_valid;
4628
4629 error = inode_change_ok(inode, attr);
4630 if (error)
4631 return error;
4632
4633 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4634 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4635 handle_t *handle;
4636
4637 /* (user+group)*(old+new) structure, inode write (sb,
4638 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4639 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4640 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4641 if (IS_ERR(handle)) {
4642 error = PTR_ERR(handle);
4643 goto err_out;
4644 }
4645 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4646 if (error) {
617ba13b 4647 ext4_journal_stop(handle);
ac27a0ec
DK
4648 return error;
4649 }
4650 /* Update corresponding info in inode so that everything is in
4651 * one transaction */
4652 if (attr->ia_valid & ATTR_UID)
4653 inode->i_uid = attr->ia_uid;
4654 if (attr->ia_valid & ATTR_GID)
4655 inode->i_gid = attr->ia_gid;
617ba13b
MC
4656 error = ext4_mark_inode_dirty(handle, inode);
4657 ext4_journal_stop(handle);
ac27a0ec
DK
4658 }
4659
e2b46574
ES
4660 if (attr->ia_valid & ATTR_SIZE) {
4661 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4662 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4663
4664 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4665 error = -EFBIG;
4666 goto err_out;
4667 }
4668 }
4669 }
4670
ac27a0ec
DK
4671 if (S_ISREG(inode->i_mode) &&
4672 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4673 handle_t *handle;
4674
617ba13b 4675 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4676 if (IS_ERR(handle)) {
4677 error = PTR_ERR(handle);
4678 goto err_out;
4679 }
4680
617ba13b
MC
4681 error = ext4_orphan_add(handle, inode);
4682 EXT4_I(inode)->i_disksize = attr->ia_size;
4683 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4684 if (!error)
4685 error = rc;
617ba13b 4686 ext4_journal_stop(handle);
678aaf48
JK
4687
4688 if (ext4_should_order_data(inode)) {
4689 error = ext4_begin_ordered_truncate(inode,
4690 attr->ia_size);
4691 if (error) {
4692 /* Do as much error cleanup as possible */
4693 handle = ext4_journal_start(inode, 3);
4694 if (IS_ERR(handle)) {
4695 ext4_orphan_del(NULL, inode);
4696 goto err_out;
4697 }
4698 ext4_orphan_del(handle, inode);
4699 ext4_journal_stop(handle);
4700 goto err_out;
4701 }
4702 }
ac27a0ec
DK
4703 }
4704
4705 rc = inode_setattr(inode, attr);
4706
617ba13b 4707 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4708 * transaction handle at all, we need to clean up the in-core
4709 * orphan list manually. */
4710 if (inode->i_nlink)
617ba13b 4711 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4712
4713 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4714 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4715
4716err_out:
617ba13b 4717 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4718 if (!error)
4719 error = rc;
4720 return error;
4721}
4722
3e3398a0
MC
4723int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4724 struct kstat *stat)
4725{
4726 struct inode *inode;
4727 unsigned long delalloc_blocks;
4728
4729 inode = dentry->d_inode;
4730 generic_fillattr(inode, stat);
4731
4732 /*
4733 * We can't update i_blocks if the block allocation is delayed
4734 * otherwise in the case of system crash before the real block
4735 * allocation is done, we will have i_blocks inconsistent with
4736 * on-disk file blocks.
4737 * We always keep i_blocks updated together with real
4738 * allocation. But to not confuse with user, stat
4739 * will return the blocks that include the delayed allocation
4740 * blocks for this file.
4741 */
4742 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4743 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4744 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4745
4746 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4747 return 0;
4748}
ac27a0ec 4749
a02908f1
MC
4750static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4751 int chunk)
4752{
4753 int indirects;
4754
4755 /* if nrblocks are contiguous */
4756 if (chunk) {
4757 /*
4758 * With N contiguous data blocks, it need at most
4759 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4760 * 2 dindirect blocks
4761 * 1 tindirect block
4762 */
4763 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4764 return indirects + 3;
4765 }
4766 /*
4767 * if nrblocks are not contiguous, worse case, each block touch
4768 * a indirect block, and each indirect block touch a double indirect
4769 * block, plus a triple indirect block
4770 */
4771 indirects = nrblocks * 2 + 1;
4772 return indirects;
4773}
4774
4775static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4776{
4777 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4778 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4779 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4780}
ac51d837 4781
ac27a0ec 4782/*
a02908f1
MC
4783 * Account for index blocks, block groups bitmaps and block group
4784 * descriptor blocks if modify datablocks and index blocks
4785 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4786 *
a02908f1
MC
4787 * If datablocks are discontiguous, they are possible to spread over
4788 * different block groups too. If they are contiugous, with flexbg,
4789 * they could still across block group boundary.
ac27a0ec 4790 *
a02908f1
MC
4791 * Also account for superblock, inode, quota and xattr blocks
4792 */
4793int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4794{
4795 int groups, gdpblocks;
4796 int idxblocks;
4797 int ret = 0;
4798
4799 /*
4800 * How many index blocks need to touch to modify nrblocks?
4801 * The "Chunk" flag indicating whether the nrblocks is
4802 * physically contiguous on disk
4803 *
4804 * For Direct IO and fallocate, they calls get_block to allocate
4805 * one single extent at a time, so they could set the "Chunk" flag
4806 */
4807 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4808
4809 ret = idxblocks;
4810
4811 /*
4812 * Now let's see how many group bitmaps and group descriptors need
4813 * to account
4814 */
4815 groups = idxblocks;
4816 if (chunk)
4817 groups += 1;
4818 else
4819 groups += nrblocks;
4820
4821 gdpblocks = groups;
4822 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4823 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4824 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4825 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4826
4827 /* bitmaps and block group descriptor blocks */
4828 ret += groups + gdpblocks;
4829
4830 /* Blocks for super block, inode, quota and xattr blocks */
4831 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4832
4833 return ret;
4834}
4835
4836/*
4837 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4838 * the modification of a single pages into a single transaction,
4839 * which may include multiple chunks of block allocations.
ac27a0ec 4840 *
525f4ed8 4841 * This could be called via ext4_write_begin()
ac27a0ec 4842 *
525f4ed8 4843 * We need to consider the worse case, when
a02908f1 4844 * one new block per extent.
ac27a0ec 4845 */
a86c6181 4846int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4847{
617ba13b 4848 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4849 int ret;
4850
a02908f1 4851 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4852
a02908f1 4853 /* Account for data blocks for journalled mode */
617ba13b 4854 if (ext4_should_journal_data(inode))
a02908f1 4855 ret += bpp;
ac27a0ec
DK
4856 return ret;
4857}
f3bd1f3f
MC
4858
4859/*
4860 * Calculate the journal credits for a chunk of data modification.
4861 *
4862 * This is called from DIO, fallocate or whoever calling
4863 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4864 *
4865 * journal buffers for data blocks are not included here, as DIO
4866 * and fallocate do no need to journal data buffers.
4867 */
4868int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4869{
4870 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4871}
4872
ac27a0ec 4873/*
617ba13b 4874 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4875 * Give this, we know that the caller already has write access to iloc->bh.
4876 */
617ba13b
MC
4877int ext4_mark_iloc_dirty(handle_t *handle,
4878 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4879{
4880 int err = 0;
4881
25ec56b5
JNC
4882 if (test_opt(inode->i_sb, I_VERSION))
4883 inode_inc_iversion(inode);
4884
ac27a0ec
DK
4885 /* the do_update_inode consumes one bh->b_count */
4886 get_bh(iloc->bh);
4887
dab291af 4888 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4889 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4890 put_bh(iloc->bh);
4891 return err;
4892}
4893
4894/*
4895 * On success, We end up with an outstanding reference count against
4896 * iloc->bh. This _must_ be cleaned up later.
4897 */
4898
4899int
617ba13b
MC
4900ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4901 struct ext4_iloc *iloc)
ac27a0ec 4902{
0390131b
FM
4903 int err;
4904
4905 err = ext4_get_inode_loc(inode, iloc);
4906 if (!err) {
4907 BUFFER_TRACE(iloc->bh, "get_write_access");
4908 err = ext4_journal_get_write_access(handle, iloc->bh);
4909 if (err) {
4910 brelse(iloc->bh);
4911 iloc->bh = NULL;
ac27a0ec
DK
4912 }
4913 }
617ba13b 4914 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4915 return err;
4916}
4917
6dd4ee7c
KS
4918/*
4919 * Expand an inode by new_extra_isize bytes.
4920 * Returns 0 on success or negative error number on failure.
4921 */
1d03ec98
AK
4922static int ext4_expand_extra_isize(struct inode *inode,
4923 unsigned int new_extra_isize,
4924 struct ext4_iloc iloc,
4925 handle_t *handle)
6dd4ee7c
KS
4926{
4927 struct ext4_inode *raw_inode;
4928 struct ext4_xattr_ibody_header *header;
4929 struct ext4_xattr_entry *entry;
4930
4931 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4932 return 0;
4933
4934 raw_inode = ext4_raw_inode(&iloc);
4935
4936 header = IHDR(inode, raw_inode);
4937 entry = IFIRST(header);
4938
4939 /* No extended attributes present */
4940 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4941 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4942 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4943 new_extra_isize);
4944 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4945 return 0;
4946 }
4947
4948 /* try to expand with EAs present */
4949 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4950 raw_inode, handle);
4951}
4952
ac27a0ec
DK
4953/*
4954 * What we do here is to mark the in-core inode as clean with respect to inode
4955 * dirtiness (it may still be data-dirty).
4956 * This means that the in-core inode may be reaped by prune_icache
4957 * without having to perform any I/O. This is a very good thing,
4958 * because *any* task may call prune_icache - even ones which
4959 * have a transaction open against a different journal.
4960 *
4961 * Is this cheating? Not really. Sure, we haven't written the
4962 * inode out, but prune_icache isn't a user-visible syncing function.
4963 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4964 * we start and wait on commits.
4965 *
4966 * Is this efficient/effective? Well, we're being nice to the system
4967 * by cleaning up our inodes proactively so they can be reaped
4968 * without I/O. But we are potentially leaving up to five seconds'
4969 * worth of inodes floating about which prune_icache wants us to
4970 * write out. One way to fix that would be to get prune_icache()
4971 * to do a write_super() to free up some memory. It has the desired
4972 * effect.
4973 */
617ba13b 4974int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4975{
617ba13b 4976 struct ext4_iloc iloc;
6dd4ee7c
KS
4977 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4978 static unsigned int mnt_count;
4979 int err, ret;
ac27a0ec
DK
4980
4981 might_sleep();
617ba13b 4982 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4983 if (ext4_handle_valid(handle) &&
4984 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
4985 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4986 /*
4987 * We need extra buffer credits since we may write into EA block
4988 * with this same handle. If journal_extend fails, then it will
4989 * only result in a minor loss of functionality for that inode.
4990 * If this is felt to be critical, then e2fsck should be run to
4991 * force a large enough s_min_extra_isize.
4992 */
4993 if ((jbd2_journal_extend(handle,
4994 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4995 ret = ext4_expand_extra_isize(inode,
4996 sbi->s_want_extra_isize,
4997 iloc, handle);
4998 if (ret) {
4999 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5000 if (mnt_count !=
5001 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5002 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5003 "Unable to expand inode %lu. Delete"
5004 " some EAs or run e2fsck.",
5005 inode->i_ino);
c1bddad9
AK
5006 mnt_count =
5007 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5008 }
5009 }
5010 }
5011 }
ac27a0ec 5012 if (!err)
617ba13b 5013 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5014 return err;
5015}
5016
5017/*
617ba13b 5018 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5019 *
5020 * We're really interested in the case where a file is being extended.
5021 * i_size has been changed by generic_commit_write() and we thus need
5022 * to include the updated inode in the current transaction.
5023 *
5024 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
5025 * are allocated to the file.
5026 *
5027 * If the inode is marked synchronous, we don't honour that here - doing
5028 * so would cause a commit on atime updates, which we don't bother doing.
5029 * We handle synchronous inodes at the highest possible level.
5030 */
617ba13b 5031void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5032{
617ba13b 5033 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5034 handle_t *handle;
5035
0390131b
FM
5036 if (!ext4_handle_valid(current_handle)) {
5037 ext4_mark_inode_dirty(current_handle, inode);
5038 return;
5039 }
5040
617ba13b 5041 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5042 if (IS_ERR(handle))
5043 goto out;
5044 if (current_handle &&
5045 current_handle->h_transaction != handle->h_transaction) {
5046 /* This task has a transaction open against a different fs */
5047 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5048 __func__);
ac27a0ec
DK
5049 } else {
5050 jbd_debug(5, "marking dirty. outer handle=%p\n",
5051 current_handle);
617ba13b 5052 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5053 }
617ba13b 5054 ext4_journal_stop(handle);
ac27a0ec
DK
5055out:
5056 return;
5057}
5058
5059#if 0
5060/*
5061 * Bind an inode's backing buffer_head into this transaction, to prevent
5062 * it from being flushed to disk early. Unlike
617ba13b 5063 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5064 * returns no iloc structure, so the caller needs to repeat the iloc
5065 * lookup to mark the inode dirty later.
5066 */
617ba13b 5067static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5068{
617ba13b 5069 struct ext4_iloc iloc;
ac27a0ec
DK
5070
5071 int err = 0;
5072 if (handle) {
617ba13b 5073 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5074 if (!err) {
5075 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5076 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5077 if (!err)
0390131b
FM
5078 err = ext4_handle_dirty_metadata(handle,
5079 inode,
5080 iloc.bh);
ac27a0ec
DK
5081 brelse(iloc.bh);
5082 }
5083 }
617ba13b 5084 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5085 return err;
5086}
5087#endif
5088
617ba13b 5089int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5090{
5091 journal_t *journal;
5092 handle_t *handle;
5093 int err;
5094
5095 /*
5096 * We have to be very careful here: changing a data block's
5097 * journaling status dynamically is dangerous. If we write a
5098 * data block to the journal, change the status and then delete
5099 * that block, we risk forgetting to revoke the old log record
5100 * from the journal and so a subsequent replay can corrupt data.
5101 * So, first we make sure that the journal is empty and that
5102 * nobody is changing anything.
5103 */
5104
617ba13b 5105 journal = EXT4_JOURNAL(inode);
0390131b
FM
5106 if (!journal)
5107 return 0;
d699594d 5108 if (is_journal_aborted(journal))
ac27a0ec
DK
5109 return -EROFS;
5110
dab291af
MC
5111 jbd2_journal_lock_updates(journal);
5112 jbd2_journal_flush(journal);
ac27a0ec
DK
5113
5114 /*
5115 * OK, there are no updates running now, and all cached data is
5116 * synced to disk. We are now in a completely consistent state
5117 * which doesn't have anything in the journal, and we know that
5118 * no filesystem updates are running, so it is safe to modify
5119 * the inode's in-core data-journaling state flag now.
5120 */
5121
5122 if (val)
617ba13b 5123 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5124 else
617ba13b
MC
5125 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5126 ext4_set_aops(inode);
ac27a0ec 5127
dab291af 5128 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5129
5130 /* Finally we can mark the inode as dirty. */
5131
617ba13b 5132 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5133 if (IS_ERR(handle))
5134 return PTR_ERR(handle);
5135
617ba13b 5136 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5137 ext4_handle_sync(handle);
617ba13b
MC
5138 ext4_journal_stop(handle);
5139 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5140
5141 return err;
5142}
2e9ee850
AK
5143
5144static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5145{
5146 return !buffer_mapped(bh);
5147}
5148
5149int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5150{
5151 loff_t size;
5152 unsigned long len;
5153 int ret = -EINVAL;
79f0be8d 5154 void *fsdata;
2e9ee850
AK
5155 struct file *file = vma->vm_file;
5156 struct inode *inode = file->f_path.dentry->d_inode;
5157 struct address_space *mapping = inode->i_mapping;
5158
5159 /*
5160 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5161 * get i_mutex because we are already holding mmap_sem.
5162 */
5163 down_read(&inode->i_alloc_sem);
5164 size = i_size_read(inode);
5165 if (page->mapping != mapping || size <= page_offset(page)
5166 || !PageUptodate(page)) {
5167 /* page got truncated from under us? */
5168 goto out_unlock;
5169 }
5170 ret = 0;
5171 if (PageMappedToDisk(page))
5172 goto out_unlock;
5173
5174 if (page->index == size >> PAGE_CACHE_SHIFT)
5175 len = size & ~PAGE_CACHE_MASK;
5176 else
5177 len = PAGE_CACHE_SIZE;
5178
5179 if (page_has_buffers(page)) {
5180 /* return if we have all the buffers mapped */
5181 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5182 ext4_bh_unmapped))
5183 goto out_unlock;
5184 }
5185 /*
5186 * OK, we need to fill the hole... Do write_begin write_end
5187 * to do block allocation/reservation.We are not holding
5188 * inode.i__mutex here. That allow * parallel write_begin,
5189 * write_end call. lock_page prevent this from happening
5190 * on the same page though
5191 */
5192 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5193 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5194 if (ret < 0)
5195 goto out_unlock;
5196 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5197 len, len, page, fsdata);
2e9ee850
AK
5198 if (ret < 0)
5199 goto out_unlock;
5200 ret = 0;
5201out_unlock:
5202 up_read(&inode->i_alloc_sem);
5203 return ret;
5204}
This page took 0.587587 seconds and 5 git commands to generate.