ext4: Fix mmap/truncate race when blocksize < pagesize && delayed allocation
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
d2a17637 44#include "ext4_extents.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
678aaf48
JK
50static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
52{
7f5aa215
JK
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
678aaf48
JK
57}
58
64769240
AT
59static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
ac27a0ec
DK
61/*
62 * Test whether an inode is a fast symlink.
63 */
617ba13b 64static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 65{
617ba13b 66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
67 (inode->i_sb->s_blocksize >> 9) : 0;
68
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70}
71
72/*
617ba13b 73 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
76 *
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
0390131b
FM
80 *
81 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 82 */
617ba13b 83int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
de9a55b8 84 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
85{
86 int err;
87
0390131b
FM
88 if (!ext4_handle_valid(handle))
89 return 0;
90
ac27a0ec
DK
91 might_sleep();
92
93 BUFFER_TRACE(bh, "enter");
94
95 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
7f4520cc 96 "data mode %x\n",
ac27a0ec
DK
97 bh, is_metadata, inode->i_mode,
98 test_opt(inode->i_sb, DATA_FLAGS));
99
100 /* Never use the revoke function if we are doing full data
101 * journaling: there is no need to, and a V1 superblock won't
102 * support it. Otherwise, only skip the revoke on un-journaled
103 * data blocks. */
104
617ba13b
MC
105 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
106 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 107 if (bh) {
dab291af 108 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 109 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
110 }
111 return 0;
112 }
113
114 /*
115 * data!=journal && (is_metadata || should_journal_data(inode))
116 */
617ba13b
MC
117 BUFFER_TRACE(bh, "call ext4_journal_revoke");
118 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 119 if (err)
46e665e9 120 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
121 "error %d when attempting revoke", err);
122 BUFFER_TRACE(bh, "exit");
123 return err;
124}
125
126/*
127 * Work out how many blocks we need to proceed with the next chunk of a
128 * truncate transaction.
129 */
130static unsigned long blocks_for_truncate(struct inode *inode)
131{
725d26d3 132 ext4_lblk_t needed;
ac27a0ec
DK
133
134 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135
136 /* Give ourselves just enough room to cope with inodes in which
137 * i_blocks is corrupt: we've seen disk corruptions in the past
138 * which resulted in random data in an inode which looked enough
617ba13b 139 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
140 * will go a bit crazy if that happens, but at least we should
141 * try not to panic the whole kernel. */
142 if (needed < 2)
143 needed = 2;
144
145 /* But we need to bound the transaction so we don't overflow the
146 * journal. */
617ba13b
MC
147 if (needed > EXT4_MAX_TRANS_DATA)
148 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 149
617ba13b 150 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
151}
152
153/*
154 * Truncate transactions can be complex and absolutely huge. So we need to
155 * be able to restart the transaction at a conventient checkpoint to make
156 * sure we don't overflow the journal.
157 *
158 * start_transaction gets us a new handle for a truncate transaction,
159 * and extend_transaction tries to extend the existing one a bit. If
160 * extend fails, we need to propagate the failure up and restart the
161 * transaction in the top-level truncate loop. --sct
162 */
163static handle_t *start_transaction(struct inode *inode)
164{
165 handle_t *result;
166
617ba13b 167 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
168 if (!IS_ERR(result))
169 return result;
170
617ba13b 171 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
172 return result;
173}
174
175/*
176 * Try to extend this transaction for the purposes of truncation.
177 *
178 * Returns 0 if we managed to create more room. If we can't create more
179 * room, and the transaction must be restarted we return 1.
180 */
181static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182{
0390131b
FM
183 if (!ext4_handle_valid(handle))
184 return 0;
185 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 186 return 0;
617ba13b 187 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
188 return 0;
189 return 1;
190}
191
192/*
193 * Restart the transaction associated with *handle. This does a commit,
194 * so before we call here everything must be consistently dirtied against
195 * this transaction.
196 */
617ba13b 197static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 198{
0390131b 199 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 200 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 201 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
202}
203
204/*
205 * Called at the last iput() if i_nlink is zero.
206 */
af5bc92d 207void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
208{
209 handle_t *handle;
bc965ab3 210 int err;
ac27a0ec 211
678aaf48
JK
212 if (ext4_should_order_data(inode))
213 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
214 truncate_inode_pages(&inode->i_data, 0);
215
216 if (is_bad_inode(inode))
217 goto no_delete;
218
bc965ab3 219 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 220 if (IS_ERR(handle)) {
bc965ab3 221 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
222 /*
223 * If we're going to skip the normal cleanup, we still need to
224 * make sure that the in-core orphan linked list is properly
225 * cleaned up.
226 */
617ba13b 227 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
228 goto no_delete;
229 }
230
231 if (IS_SYNC(inode))
0390131b 232 ext4_handle_sync(handle);
ac27a0ec 233 inode->i_size = 0;
bc965ab3
TT
234 err = ext4_mark_inode_dirty(handle, inode);
235 if (err) {
236 ext4_warning(inode->i_sb, __func__,
237 "couldn't mark inode dirty (err %d)", err);
238 goto stop_handle;
239 }
ac27a0ec 240 if (inode->i_blocks)
617ba13b 241 ext4_truncate(inode);
bc965ab3
TT
242
243 /*
244 * ext4_ext_truncate() doesn't reserve any slop when it
245 * restarts journal transactions; therefore there may not be
246 * enough credits left in the handle to remove the inode from
247 * the orphan list and set the dtime field.
248 */
0390131b 249 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
250 err = ext4_journal_extend(handle, 3);
251 if (err > 0)
252 err = ext4_journal_restart(handle, 3);
253 if (err != 0) {
254 ext4_warning(inode->i_sb, __func__,
255 "couldn't extend journal (err %d)", err);
256 stop_handle:
257 ext4_journal_stop(handle);
258 goto no_delete;
259 }
260 }
261
ac27a0ec 262 /*
617ba13b 263 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 264 * AKPM: I think this can be inside the above `if'.
617ba13b 265 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 266 * deletion of a non-existent orphan - this is because we don't
617ba13b 267 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
268 * (Well, we could do this if we need to, but heck - it works)
269 */
617ba13b
MC
270 ext4_orphan_del(handle, inode);
271 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
272
273 /*
274 * One subtle ordering requirement: if anything has gone wrong
275 * (transaction abort, IO errors, whatever), then we can still
276 * do these next steps (the fs will already have been marked as
277 * having errors), but we can't free the inode if the mark_dirty
278 * fails.
279 */
617ba13b 280 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
281 /* If that failed, just do the required in-core inode clear. */
282 clear_inode(inode);
283 else
617ba13b
MC
284 ext4_free_inode(handle, inode);
285 ext4_journal_stop(handle);
ac27a0ec
DK
286 return;
287no_delete:
288 clear_inode(inode); /* We must guarantee clearing of inode... */
289}
290
291typedef struct {
292 __le32 *p;
293 __le32 key;
294 struct buffer_head *bh;
295} Indirect;
296
297static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
298{
299 p->key = *(p->p = v);
300 p->bh = bh;
301}
302
ac27a0ec 303/**
617ba13b 304 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
305 * @inode: inode in question (we are only interested in its superblock)
306 * @i_block: block number to be parsed
307 * @offsets: array to store the offsets in
8c55e204
DK
308 * @boundary: set this non-zero if the referred-to block is likely to be
309 * followed (on disk) by an indirect block.
ac27a0ec 310 *
617ba13b 311 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
312 * for UNIX filesystems - tree of pointers anchored in the inode, with
313 * data blocks at leaves and indirect blocks in intermediate nodes.
314 * This function translates the block number into path in that tree -
315 * return value is the path length and @offsets[n] is the offset of
316 * pointer to (n+1)th node in the nth one. If @block is out of range
317 * (negative or too large) warning is printed and zero returned.
318 *
319 * Note: function doesn't find node addresses, so no IO is needed. All
320 * we need to know is the capacity of indirect blocks (taken from the
321 * inode->i_sb).
322 */
323
324/*
325 * Portability note: the last comparison (check that we fit into triple
326 * indirect block) is spelled differently, because otherwise on an
327 * architecture with 32-bit longs and 8Kb pages we might get into trouble
328 * if our filesystem had 8Kb blocks. We might use long long, but that would
329 * kill us on x86. Oh, well, at least the sign propagation does not matter -
330 * i_block would have to be negative in the very beginning, so we would not
331 * get there at all.
332 */
333
617ba13b 334static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
335 ext4_lblk_t i_block,
336 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 337{
617ba13b
MC
338 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
339 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
340 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
341 indirect_blocks = ptrs,
342 double_blocks = (1 << (ptrs_bits * 2));
343 int n = 0;
344 int final = 0;
345
346 if (i_block < 0) {
af5bc92d 347 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
348 } else if (i_block < direct_blocks) {
349 offsets[n++] = i_block;
350 final = direct_blocks;
af5bc92d 351 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 352 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
353 offsets[n++] = i_block;
354 final = ptrs;
355 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 356 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
357 offsets[n++] = i_block >> ptrs_bits;
358 offsets[n++] = i_block & (ptrs - 1);
359 final = ptrs;
360 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 361 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
362 offsets[n++] = i_block >> (ptrs_bits * 2);
363 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
364 offsets[n++] = i_block & (ptrs - 1);
365 final = ptrs;
366 } else {
e2b46574 367 ext4_warning(inode->i_sb, "ext4_block_to_path",
de9a55b8
TT
368 "block %lu > max in inode %lu",
369 i_block + direct_blocks +
370 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
371 }
372 if (boundary)
373 *boundary = final - 1 - (i_block & (ptrs - 1));
374 return n;
375}
376
fe2c8191 377static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
378 __le32 *p, unsigned int max)
379{
f73953c0 380 __le32 *bref = p;
6fd058f7
TT
381 unsigned int blk;
382
fe2c8191 383 while (bref < p+max) {
6fd058f7 384 blk = le32_to_cpu(*bref++);
de9a55b8
TT
385 if (blk &&
386 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 387 blk, 1))) {
fe2c8191 388 ext4_error(inode->i_sb, function,
6fd058f7
TT
389 "invalid block reference %u "
390 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
391 return -EIO;
392 }
393 }
394 return 0;
fe2c8191
TN
395}
396
397
398#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 399 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
400 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
401
402#define ext4_check_inode_blockref(inode) \
de9a55b8 403 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
404 EXT4_NDIR_BLOCKS)
405
ac27a0ec 406/**
617ba13b 407 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
408 * @inode: inode in question
409 * @depth: depth of the chain (1 - direct pointer, etc.)
410 * @offsets: offsets of pointers in inode/indirect blocks
411 * @chain: place to store the result
412 * @err: here we store the error value
413 *
414 * Function fills the array of triples <key, p, bh> and returns %NULL
415 * if everything went OK or the pointer to the last filled triple
416 * (incomplete one) otherwise. Upon the return chain[i].key contains
417 * the number of (i+1)-th block in the chain (as it is stored in memory,
418 * i.e. little-endian 32-bit), chain[i].p contains the address of that
419 * number (it points into struct inode for i==0 and into the bh->b_data
420 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
421 * block for i>0 and NULL for i==0. In other words, it holds the block
422 * numbers of the chain, addresses they were taken from (and where we can
423 * verify that chain did not change) and buffer_heads hosting these
424 * numbers.
425 *
426 * Function stops when it stumbles upon zero pointer (absent block)
427 * (pointer to last triple returned, *@err == 0)
428 * or when it gets an IO error reading an indirect block
429 * (ditto, *@err == -EIO)
ac27a0ec
DK
430 * or when it reads all @depth-1 indirect blocks successfully and finds
431 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
432 *
433 * Need to be called with
0e855ac8 434 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 435 */
725d26d3
AK
436static Indirect *ext4_get_branch(struct inode *inode, int depth,
437 ext4_lblk_t *offsets,
ac27a0ec
DK
438 Indirect chain[4], int *err)
439{
440 struct super_block *sb = inode->i_sb;
441 Indirect *p = chain;
442 struct buffer_head *bh;
443
444 *err = 0;
445 /* i_data is not going away, no lock needed */
af5bc92d 446 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
447 if (!p->key)
448 goto no_block;
449 while (--depth) {
fe2c8191
TN
450 bh = sb_getblk(sb, le32_to_cpu(p->key));
451 if (unlikely(!bh))
ac27a0ec 452 goto failure;
de9a55b8 453
fe2c8191
TN
454 if (!bh_uptodate_or_lock(bh)) {
455 if (bh_submit_read(bh) < 0) {
456 put_bh(bh);
457 goto failure;
458 }
459 /* validate block references */
460 if (ext4_check_indirect_blockref(inode, bh)) {
461 put_bh(bh);
462 goto failure;
463 }
464 }
de9a55b8 465
af5bc92d 466 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
467 /* Reader: end */
468 if (!p->key)
469 goto no_block;
470 }
471 return NULL;
472
ac27a0ec
DK
473failure:
474 *err = -EIO;
475no_block:
476 return p;
477}
478
479/**
617ba13b 480 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
481 * @inode: owner
482 * @ind: descriptor of indirect block.
483 *
1cc8dcf5 484 * This function returns the preferred place for block allocation.
ac27a0ec
DK
485 * It is used when heuristic for sequential allocation fails.
486 * Rules are:
487 * + if there is a block to the left of our position - allocate near it.
488 * + if pointer will live in indirect block - allocate near that block.
489 * + if pointer will live in inode - allocate in the same
490 * cylinder group.
491 *
492 * In the latter case we colour the starting block by the callers PID to
493 * prevent it from clashing with concurrent allocations for a different inode
494 * in the same block group. The PID is used here so that functionally related
495 * files will be close-by on-disk.
496 *
497 * Caller must make sure that @ind is valid and will stay that way.
498 */
617ba13b 499static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 500{
617ba13b 501 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 502 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 503 __le32 *p;
617ba13b 504 ext4_fsblk_t bg_start;
74d3487f 505 ext4_fsblk_t last_block;
617ba13b 506 ext4_grpblk_t colour;
a4912123
TT
507 ext4_group_t block_group;
508 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
509
510 /* Try to find previous block */
511 for (p = ind->p - 1; p >= start; p--) {
512 if (*p)
513 return le32_to_cpu(*p);
514 }
515
516 /* No such thing, so let's try location of indirect block */
517 if (ind->bh)
518 return ind->bh->b_blocknr;
519
520 /*
521 * It is going to be referred to from the inode itself? OK, just put it
522 * into the same cylinder group then.
523 */
a4912123
TT
524 block_group = ei->i_block_group;
525 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
526 block_group &= ~(flex_size-1);
527 if (S_ISREG(inode->i_mode))
528 block_group++;
529 }
530 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
531 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
532
a4912123
TT
533 /*
534 * If we are doing delayed allocation, we don't need take
535 * colour into account.
536 */
537 if (test_opt(inode->i_sb, DELALLOC))
538 return bg_start;
539
74d3487f
VC
540 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
541 colour = (current->pid % 16) *
617ba13b 542 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
543 else
544 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
545 return bg_start + colour;
546}
547
548/**
1cc8dcf5 549 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
550 * @inode: owner
551 * @block: block we want
ac27a0ec 552 * @partial: pointer to the last triple within a chain
ac27a0ec 553 *
1cc8dcf5 554 * Normally this function find the preferred place for block allocation,
fb01bfda 555 * returns it.
ac27a0ec 556 */
725d26d3 557static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 558 Indirect *partial)
ac27a0ec 559{
ac27a0ec 560 /*
c2ea3fde 561 * XXX need to get goal block from mballoc's data structures
ac27a0ec 562 */
ac27a0ec 563
617ba13b 564 return ext4_find_near(inode, partial);
ac27a0ec
DK
565}
566
567/**
617ba13b 568 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
569 * of direct blocks need to be allocated for the given branch.
570 *
571 * @branch: chain of indirect blocks
572 * @k: number of blocks need for indirect blocks
573 * @blks: number of data blocks to be mapped.
574 * @blocks_to_boundary: the offset in the indirect block
575 *
576 * return the total number of blocks to be allocate, including the
577 * direct and indirect blocks.
578 */
498e5f24 579static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 580 int blocks_to_boundary)
ac27a0ec 581{
498e5f24 582 unsigned int count = 0;
ac27a0ec
DK
583
584 /*
585 * Simple case, [t,d]Indirect block(s) has not allocated yet
586 * then it's clear blocks on that path have not allocated
587 */
588 if (k > 0) {
589 /* right now we don't handle cross boundary allocation */
590 if (blks < blocks_to_boundary + 1)
591 count += blks;
592 else
593 count += blocks_to_boundary + 1;
594 return count;
595 }
596
597 count++;
598 while (count < blks && count <= blocks_to_boundary &&
599 le32_to_cpu(*(branch[0].p + count)) == 0) {
600 count++;
601 }
602 return count;
603}
604
605/**
617ba13b 606 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
607 * @indirect_blks: the number of blocks need to allocate for indirect
608 * blocks
609 *
610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block,
612 * @blks: on return it will store the total number of allocated
613 * direct blocks
614 */
617ba13b 615static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
616 ext4_lblk_t iblock, ext4_fsblk_t goal,
617 int indirect_blks, int blks,
618 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 619{
815a1130 620 struct ext4_allocation_request ar;
ac27a0ec 621 int target, i;
7061eba7 622 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 623 int index = 0;
617ba13b 624 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
625 int ret = 0;
626
627 /*
628 * Here we try to allocate the requested multiple blocks at once,
629 * on a best-effort basis.
630 * To build a branch, we should allocate blocks for
631 * the indirect blocks(if not allocated yet), and at least
632 * the first direct block of this branch. That's the
633 * minimum number of blocks need to allocate(required)
634 */
7061eba7
AK
635 /* first we try to allocate the indirect blocks */
636 target = indirect_blks;
637 while (target > 0) {
ac27a0ec
DK
638 count = target;
639 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
640 current_block = ext4_new_meta_blocks(handle, inode,
641 goal, &count, err);
ac27a0ec
DK
642 if (*err)
643 goto failed_out;
644
645 target -= count;
646 /* allocate blocks for indirect blocks */
647 while (index < indirect_blks && count) {
648 new_blocks[index++] = current_block++;
649 count--;
650 }
7061eba7
AK
651 if (count > 0) {
652 /*
653 * save the new block number
654 * for the first direct block
655 */
656 new_blocks[index] = current_block;
657 printk(KERN_INFO "%s returned more blocks than "
658 "requested\n", __func__);
659 WARN_ON(1);
ac27a0ec 660 break;
7061eba7 661 }
ac27a0ec
DK
662 }
663
7061eba7
AK
664 target = blks - count ;
665 blk_allocated = count;
666 if (!target)
667 goto allocated;
668 /* Now allocate data blocks */
815a1130
TT
669 memset(&ar, 0, sizeof(ar));
670 ar.inode = inode;
671 ar.goal = goal;
672 ar.len = target;
673 ar.logical = iblock;
674 if (S_ISREG(inode->i_mode))
675 /* enable in-core preallocation only for regular files */
676 ar.flags = EXT4_MB_HINT_DATA;
677
678 current_block = ext4_mb_new_blocks(handle, &ar, err);
679
7061eba7
AK
680 if (*err && (target == blks)) {
681 /*
682 * if the allocation failed and we didn't allocate
683 * any blocks before
684 */
685 goto failed_out;
686 }
687 if (!*err) {
688 if (target == blks) {
de9a55b8
TT
689 /*
690 * save the new block number
691 * for the first direct block
692 */
7061eba7
AK
693 new_blocks[index] = current_block;
694 }
815a1130 695 blk_allocated += ar.len;
7061eba7
AK
696 }
697allocated:
ac27a0ec 698 /* total number of blocks allocated for direct blocks */
7061eba7 699 ret = blk_allocated;
ac27a0ec
DK
700 *err = 0;
701 return ret;
702failed_out:
af5bc92d 703 for (i = 0; i < index; i++)
c9de560d 704 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
705 return ret;
706}
707
708/**
617ba13b 709 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
710 * @inode: owner
711 * @indirect_blks: number of allocated indirect blocks
712 * @blks: number of allocated direct blocks
713 * @offsets: offsets (in the blocks) to store the pointers to next.
714 * @branch: place to store the chain in.
715 *
716 * This function allocates blocks, zeroes out all but the last one,
717 * links them into chain and (if we are synchronous) writes them to disk.
718 * In other words, it prepares a branch that can be spliced onto the
719 * inode. It stores the information about that chain in the branch[], in
617ba13b 720 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
721 * we had read the existing part of chain and partial points to the last
722 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 723 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
724 * place chain is disconnected - *branch->p is still zero (we did not
725 * set the last link), but branch->key contains the number that should
726 * be placed into *branch->p to fill that gap.
727 *
728 * If allocation fails we free all blocks we've allocated (and forget
729 * their buffer_heads) and return the error value the from failed
617ba13b 730 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
731 * as described above and return 0.
732 */
617ba13b 733static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
734 ext4_lblk_t iblock, int indirect_blks,
735 int *blks, ext4_fsblk_t goal,
736 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
737{
738 int blocksize = inode->i_sb->s_blocksize;
739 int i, n = 0;
740 int err = 0;
741 struct buffer_head *bh;
742 int num;
617ba13b
MC
743 ext4_fsblk_t new_blocks[4];
744 ext4_fsblk_t current_block;
ac27a0ec 745
7061eba7 746 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
747 *blks, new_blocks, &err);
748 if (err)
749 return err;
750
751 branch[0].key = cpu_to_le32(new_blocks[0]);
752 /*
753 * metadata blocks and data blocks are allocated.
754 */
755 for (n = 1; n <= indirect_blks; n++) {
756 /*
757 * Get buffer_head for parent block, zero it out
758 * and set the pointer to new one, then send
759 * parent to disk.
760 */
761 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
762 branch[n].bh = bh;
763 lock_buffer(bh);
764 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 765 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
766 if (err) {
767 unlock_buffer(bh);
768 brelse(bh);
769 goto failed;
770 }
771
772 memset(bh->b_data, 0, blocksize);
773 branch[n].p = (__le32 *) bh->b_data + offsets[n];
774 branch[n].key = cpu_to_le32(new_blocks[n]);
775 *branch[n].p = branch[n].key;
af5bc92d 776 if (n == indirect_blks) {
ac27a0ec
DK
777 current_block = new_blocks[n];
778 /*
779 * End of chain, update the last new metablock of
780 * the chain to point to the new allocated
781 * data blocks numbers
782 */
de9a55b8 783 for (i = 1; i < num; i++)
ac27a0ec
DK
784 *(branch[n].p + i) = cpu_to_le32(++current_block);
785 }
786 BUFFER_TRACE(bh, "marking uptodate");
787 set_buffer_uptodate(bh);
788 unlock_buffer(bh);
789
0390131b
FM
790 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
791 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
792 if (err)
793 goto failed;
794 }
795 *blks = num;
796 return err;
797failed:
798 /* Allocation failed, free what we already allocated */
799 for (i = 1; i <= n ; i++) {
dab291af 800 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 801 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 802 }
af5bc92d 803 for (i = 0; i < indirect_blks; i++)
c9de560d 804 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 805
c9de560d 806 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
807
808 return err;
809}
810
811/**
617ba13b 812 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
813 * @inode: owner
814 * @block: (logical) number of block we are adding
815 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 816 * ext4_alloc_branch)
ac27a0ec
DK
817 * @where: location of missing link
818 * @num: number of indirect blocks we are adding
819 * @blks: number of direct blocks we are adding
820 *
821 * This function fills the missing link and does all housekeeping needed in
822 * inode (->i_blocks, etc.). In case of success we end up with the full
823 * chain to new block and return 0.
824 */
617ba13b 825static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
826 ext4_lblk_t block, Indirect *where, int num,
827 int blks)
ac27a0ec
DK
828{
829 int i;
830 int err = 0;
617ba13b 831 ext4_fsblk_t current_block;
ac27a0ec 832
ac27a0ec
DK
833 /*
834 * If we're splicing into a [td]indirect block (as opposed to the
835 * inode) then we need to get write access to the [td]indirect block
836 * before the splice.
837 */
838 if (where->bh) {
839 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 840 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
841 if (err)
842 goto err_out;
843 }
844 /* That's it */
845
846 *where->p = where->key;
847
848 /*
849 * Update the host buffer_head or inode to point to more just allocated
850 * direct blocks blocks
851 */
852 if (num == 0 && blks > 1) {
853 current_block = le32_to_cpu(where->key) + 1;
854 for (i = 1; i < blks; i++)
af5bc92d 855 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
856 }
857
ac27a0ec 858 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
859 /* had we spliced it onto indirect block? */
860 if (where->bh) {
861 /*
862 * If we spliced it onto an indirect block, we haven't
863 * altered the inode. Note however that if it is being spliced
864 * onto an indirect block at the very end of the file (the
865 * file is growing) then we *will* alter the inode to reflect
866 * the new i_size. But that is not done here - it is done in
617ba13b 867 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
868 */
869 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
870 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
872 if (err)
873 goto err_out;
874 } else {
875 /*
876 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 877 */
41591750 878 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
879 jbd_debug(5, "splicing direct\n");
880 }
881 return err;
882
883err_out:
884 for (i = 1; i <= num; i++) {
dab291af 885 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 886 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
887 ext4_free_blocks(handle, inode,
888 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 889 }
c9de560d 890 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
891
892 return err;
893}
894
895/*
b920c755
TT
896 * The ext4_ind_get_blocks() function handles non-extents inodes
897 * (i.e., using the traditional indirect/double-indirect i_blocks
898 * scheme) for ext4_get_blocks().
899 *
ac27a0ec
DK
900 * Allocation strategy is simple: if we have to allocate something, we will
901 * have to go the whole way to leaf. So let's do it before attaching anything
902 * to tree, set linkage between the newborn blocks, write them if sync is
903 * required, recheck the path, free and repeat if check fails, otherwise
904 * set the last missing link (that will protect us from any truncate-generated
905 * removals - all blocks on the path are immune now) and possibly force the
906 * write on the parent block.
907 * That has a nice additional property: no special recovery from the failed
908 * allocations is needed - we simply release blocks and do not touch anything
909 * reachable from inode.
910 *
911 * `handle' can be NULL if create == 0.
912 *
ac27a0ec
DK
913 * return > 0, # of blocks mapped or allocated.
914 * return = 0, if plain lookup failed.
915 * return < 0, error case.
c278bfec 916 *
b920c755
TT
917 * The ext4_ind_get_blocks() function should be called with
918 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
921 * blocks.
ac27a0ec 922 */
e4d996ca 923static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
924 ext4_lblk_t iblock, unsigned int maxblocks,
925 struct buffer_head *bh_result,
926 int flags)
ac27a0ec
DK
927{
928 int err = -EIO;
725d26d3 929 ext4_lblk_t offsets[4];
ac27a0ec
DK
930 Indirect chain[4];
931 Indirect *partial;
617ba13b 932 ext4_fsblk_t goal;
ac27a0ec
DK
933 int indirect_blks;
934 int blocks_to_boundary = 0;
935 int depth;
ac27a0ec 936 int count = 0;
617ba13b 937 ext4_fsblk_t first_block = 0;
ac27a0ec 938
a86c6181 939 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 941 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 942 &blocks_to_boundary);
ac27a0ec
DK
943
944 if (depth == 0)
945 goto out;
946
617ba13b 947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
948
949 /* Simplest case - block found, no allocation needed */
950 if (!partial) {
951 first_block = le32_to_cpu(chain[depth - 1].key);
952 clear_buffer_new(bh_result);
953 count++;
954 /*map more blocks*/
955 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 956 ext4_fsblk_t blk;
ac27a0ec 957
ac27a0ec
DK
958 blk = le32_to_cpu(*(chain[depth-1].p + count));
959
960 if (blk == first_block + count)
961 count++;
962 else
963 break;
964 }
c278bfec 965 goto got_it;
ac27a0ec
DK
966 }
967
968 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 969 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
970 goto cleanup;
971
ac27a0ec 972 /*
c2ea3fde 973 * Okay, we need to do block allocation.
ac27a0ec 974 */
fb01bfda 975 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
976
977 /* the number of blocks need to allocate for [d,t]indirect blocks */
978 indirect_blks = (chain + depth) - partial - 1;
979
980 /*
981 * Next look up the indirect map to count the totoal number of
982 * direct blocks to allocate for this branch.
983 */
617ba13b 984 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
985 maxblocks, blocks_to_boundary);
986 /*
617ba13b 987 * Block out ext4_truncate while we alter the tree
ac27a0ec 988 */
7061eba7 989 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
990 &count, goal,
991 offsets + (partial - chain), partial);
ac27a0ec
DK
992
993 /*
617ba13b 994 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
995 * on the new chain if there is a failure, but that risks using
996 * up transaction credits, especially for bitmaps where the
997 * credits cannot be returned. Can we handle this somehow? We
998 * may need to return -EAGAIN upwards in the worst case. --sct
999 */
1000 if (!err)
617ba13b 1001 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8
TT
1002 partial, indirect_blks, count);
1003 else
ac27a0ec
DK
1004 goto cleanup;
1005
1006 set_buffer_new(bh_result);
1007got_it:
1008 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1009 if (count > blocks_to_boundary)
1010 set_buffer_boundary(bh_result);
1011 err = count;
1012 /* Clean up and exit */
1013 partial = chain + depth - 1; /* the whole chain */
1014cleanup:
1015 while (partial > chain) {
1016 BUFFER_TRACE(partial->bh, "call brelse");
1017 brelse(partial->bh);
1018 partial--;
1019 }
1020 BUFFER_TRACE(bh_result, "returned");
1021out:
1022 return err;
1023}
1024
60e58e0f
MC
1025qsize_t ext4_get_reserved_space(struct inode *inode)
1026{
1027 unsigned long long total;
1028
1029 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1030 total = EXT4_I(inode)->i_reserved_data_blocks +
1031 EXT4_I(inode)->i_reserved_meta_blocks;
1032 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1033
1034 return total;
1035}
12219aea
AK
1036/*
1037 * Calculate the number of metadata blocks need to reserve
1038 * to allocate @blocks for non extent file based file
1039 */
1040static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1041{
1042 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1043 int ind_blks, dind_blks, tind_blks;
1044
1045 /* number of new indirect blocks needed */
1046 ind_blks = (blocks + icap - 1) / icap;
1047
1048 dind_blks = (ind_blks + icap - 1) / icap;
1049
1050 tind_blks = 1;
1051
1052 return ind_blks + dind_blks + tind_blks;
1053}
1054
1055/*
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate given number of blocks
1058 */
1059static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1060{
cd213226
MC
1061 if (!blocks)
1062 return 0;
1063
12219aea
AK
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 return ext4_ext_calc_metadata_amount(inode, blocks);
1066
1067 return ext4_indirect_calc_metadata_amount(inode, blocks);
1068}
1069
1070static void ext4_da_update_reserve_space(struct inode *inode, int used)
1071{
1072 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1073 int total, mdb, mdb_free;
1074
1075 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1076 /* recalculate the number of metablocks still need to be reserved */
1077 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1078 mdb = ext4_calc_metadata_amount(inode, total);
1079
1080 /* figure out how many metablocks to release */
1081 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1082 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1083
6bc6e63f
AK
1084 if (mdb_free) {
1085 /* Account for allocated meta_blocks */
1086 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1087
1088 /* update fs dirty blocks counter */
1089 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1091 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1092 }
12219aea
AK
1093
1094 /* update per-inode reservations */
1095 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1096 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1097 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1098
1099 /*
1100 * free those over-booking quota for metadata blocks
1101 */
60e58e0f
MC
1102 if (mdb_free)
1103 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1104
1105 /*
1106 * If we have done all the pending block allocations and if
1107 * there aren't any writers on the inode, we can discard the
1108 * inode's preallocations.
1109 */
1110 if (!total && (atomic_read(&inode->i_writecount) == 0))
1111 ext4_discard_preallocations(inode);
12219aea
AK
1112}
1113
6fd058f7
TT
1114static int check_block_validity(struct inode *inode, sector_t logical,
1115 sector_t phys, int len)
1116{
1117 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1118 ext4_error(inode->i_sb, "check_block_validity",
1119 "inode #%lu logical block %llu mapped to %llu "
1120 "(size %d)", inode->i_ino,
1121 (unsigned long long) logical,
1122 (unsigned long long) phys, len);
1123 WARN_ON(1);
1124 return -EIO;
1125 }
1126 return 0;
1127}
1128
f5ab0d1f 1129/*
12b7ac17 1130 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1131 * and returns if the blocks are already mapped.
f5ab0d1f 1132 *
f5ab0d1f
MC
1133 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1134 * and store the allocated blocks in the result buffer head and mark it
1135 * mapped.
1136 *
1137 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1138 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1139 * based files
1140 *
1141 * On success, it returns the number of blocks being mapped or allocate.
1142 * if create==0 and the blocks are pre-allocated and uninitialized block,
1143 * the result buffer head is unmapped. If the create ==1, it will make sure
1144 * the buffer head is mapped.
1145 *
1146 * It returns 0 if plain look up failed (blocks have not been allocated), in
1147 * that casem, buffer head is unmapped
1148 *
1149 * It returns the error in case of allocation failure.
1150 */
12b7ac17
TT
1151int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1152 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1153 int flags)
0e855ac8
AK
1154{
1155 int retval;
f5ab0d1f
MC
1156
1157 clear_buffer_mapped(bh);
2a8964d6 1158 clear_buffer_unwritten(bh);
f5ab0d1f 1159
4df3d265 1160 /*
b920c755
TT
1161 * Try to see if we can get the block without requesting a new
1162 * file system block.
4df3d265
AK
1163 */
1164 down_read((&EXT4_I(inode)->i_data_sem));
1165 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1166 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1167 bh, 0);
0e855ac8 1168 } else {
e4d996ca 1169 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1170 bh, 0);
0e855ac8 1171 }
4df3d265 1172 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1173
6fd058f7 1174 if (retval > 0 && buffer_mapped(bh)) {
de9a55b8 1175 int ret = check_block_validity(inode, block,
6fd058f7
TT
1176 bh->b_blocknr, retval);
1177 if (ret != 0)
1178 return ret;
1179 }
1180
f5ab0d1f 1181 /* If it is only a block(s) look up */
c2177057 1182 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1183 return retval;
1184
1185 /*
1186 * Returns if the blocks have already allocated
1187 *
1188 * Note that if blocks have been preallocated
1189 * ext4_ext_get_block() returns th create = 0
1190 * with buffer head unmapped.
1191 */
1192 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1193 return retval;
1194
2a8964d6
AK
1195 /*
1196 * When we call get_blocks without the create flag, the
1197 * BH_Unwritten flag could have gotten set if the blocks
1198 * requested were part of a uninitialized extent. We need to
1199 * clear this flag now that we are committed to convert all or
1200 * part of the uninitialized extent to be an initialized
1201 * extent. This is because we need to avoid the combination
1202 * of BH_Unwritten and BH_Mapped flags being simultaneously
1203 * set on the buffer_head.
1204 */
1205 clear_buffer_unwritten(bh);
1206
4df3d265 1207 /*
f5ab0d1f
MC
1208 * New blocks allocate and/or writing to uninitialized extent
1209 * will possibly result in updating i_data, so we take
1210 * the write lock of i_data_sem, and call get_blocks()
1211 * with create == 1 flag.
4df3d265
AK
1212 */
1213 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1214
1215 /*
1216 * if the caller is from delayed allocation writeout path
1217 * we have already reserved fs blocks for allocation
1218 * let the underlying get_block() function know to
1219 * avoid double accounting
1220 */
c2177057 1221 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1222 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1223 /*
1224 * We need to check for EXT4 here because migrate
1225 * could have changed the inode type in between
1226 */
0e855ac8
AK
1227 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1228 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1229 bh, flags);
0e855ac8 1230 } else {
e4d996ca 1231 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1232 max_blocks, bh, flags);
267e4db9
AK
1233
1234 if (retval > 0 && buffer_new(bh)) {
1235 /*
1236 * We allocated new blocks which will result in
1237 * i_data's format changing. Force the migrate
1238 * to fail by clearing migrate flags
1239 */
1240 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1241 ~EXT4_EXT_MIGRATE;
1242 }
0e855ac8 1243 }
d2a17637 1244
2ac3b6e0 1245 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1246 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1247
1248 /*
1249 * Update reserved blocks/metadata blocks after successful
1250 * block allocation which had been deferred till now.
1251 */
1252 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1253 ext4_da_update_reserve_space(inode, retval);
d2a17637 1254
4df3d265 1255 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1256 if (retval > 0 && buffer_mapped(bh)) {
de9a55b8 1257 int ret = check_block_validity(inode, block,
6fd058f7
TT
1258 bh->b_blocknr, retval);
1259 if (ret != 0)
1260 return ret;
1261 }
0e855ac8
AK
1262 return retval;
1263}
1264
f3bd1f3f
MC
1265/* Maximum number of blocks we map for direct IO at once. */
1266#define DIO_MAX_BLOCKS 4096
1267
6873fa0d
ES
1268int ext4_get_block(struct inode *inode, sector_t iblock,
1269 struct buffer_head *bh_result, int create)
ac27a0ec 1270{
3e4fdaf8 1271 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1272 int ret = 0, started = 0;
ac27a0ec 1273 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1274 int dio_credits;
ac27a0ec 1275
7fb5409d
JK
1276 if (create && !handle) {
1277 /* Direct IO write... */
1278 if (max_blocks > DIO_MAX_BLOCKS)
1279 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1280 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1281 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1282 if (IS_ERR(handle)) {
ac27a0ec 1283 ret = PTR_ERR(handle);
7fb5409d 1284 goto out;
ac27a0ec 1285 }
7fb5409d 1286 started = 1;
ac27a0ec
DK
1287 }
1288
12b7ac17 1289 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1290 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1291 if (ret > 0) {
1292 bh_result->b_size = (ret << inode->i_blkbits);
1293 ret = 0;
ac27a0ec 1294 }
7fb5409d
JK
1295 if (started)
1296 ext4_journal_stop(handle);
1297out:
ac27a0ec
DK
1298 return ret;
1299}
1300
1301/*
1302 * `handle' can be NULL if create is zero
1303 */
617ba13b 1304struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1305 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1306{
1307 struct buffer_head dummy;
1308 int fatal = 0, err;
03f5d8bc 1309 int flags = 0;
ac27a0ec
DK
1310
1311 J_ASSERT(handle != NULL || create == 0);
1312
1313 dummy.b_state = 0;
1314 dummy.b_blocknr = -1000;
1315 buffer_trace_init(&dummy.b_history);
c2177057
TT
1316 if (create)
1317 flags |= EXT4_GET_BLOCKS_CREATE;
1318 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1319 /*
c2177057
TT
1320 * ext4_get_blocks() returns number of blocks mapped. 0 in
1321 * case of a HOLE.
ac27a0ec
DK
1322 */
1323 if (err > 0) {
1324 if (err > 1)
1325 WARN_ON(1);
1326 err = 0;
1327 }
1328 *errp = err;
1329 if (!err && buffer_mapped(&dummy)) {
1330 struct buffer_head *bh;
1331 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1332 if (!bh) {
1333 *errp = -EIO;
1334 goto err;
1335 }
1336 if (buffer_new(&dummy)) {
1337 J_ASSERT(create != 0);
ac39849d 1338 J_ASSERT(handle != NULL);
ac27a0ec
DK
1339
1340 /*
1341 * Now that we do not always journal data, we should
1342 * keep in mind whether this should always journal the
1343 * new buffer as metadata. For now, regular file
617ba13b 1344 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1345 * problem.
1346 */
1347 lock_buffer(bh);
1348 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1349 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1350 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1351 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1352 set_buffer_uptodate(bh);
1353 }
1354 unlock_buffer(bh);
0390131b
FM
1355 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1356 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1357 if (!fatal)
1358 fatal = err;
1359 } else {
1360 BUFFER_TRACE(bh, "not a new buffer");
1361 }
1362 if (fatal) {
1363 *errp = fatal;
1364 brelse(bh);
1365 bh = NULL;
1366 }
1367 return bh;
1368 }
1369err:
1370 return NULL;
1371}
1372
617ba13b 1373struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1374 ext4_lblk_t block, int create, int *err)
ac27a0ec 1375{
af5bc92d 1376 struct buffer_head *bh;
ac27a0ec 1377
617ba13b 1378 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1379 if (!bh)
1380 return bh;
1381 if (buffer_uptodate(bh))
1382 return bh;
1383 ll_rw_block(READ_META, 1, &bh);
1384 wait_on_buffer(bh);
1385 if (buffer_uptodate(bh))
1386 return bh;
1387 put_bh(bh);
1388 *err = -EIO;
1389 return NULL;
1390}
1391
af5bc92d
TT
1392static int walk_page_buffers(handle_t *handle,
1393 struct buffer_head *head,
1394 unsigned from,
1395 unsigned to,
1396 int *partial,
1397 int (*fn)(handle_t *handle,
1398 struct buffer_head *bh))
ac27a0ec
DK
1399{
1400 struct buffer_head *bh;
1401 unsigned block_start, block_end;
1402 unsigned blocksize = head->b_size;
1403 int err, ret = 0;
1404 struct buffer_head *next;
1405
af5bc92d
TT
1406 for (bh = head, block_start = 0;
1407 ret == 0 && (bh != head || !block_start);
de9a55b8 1408 block_start = block_end, bh = next) {
ac27a0ec
DK
1409 next = bh->b_this_page;
1410 block_end = block_start + blocksize;
1411 if (block_end <= from || block_start >= to) {
1412 if (partial && !buffer_uptodate(bh))
1413 *partial = 1;
1414 continue;
1415 }
1416 err = (*fn)(handle, bh);
1417 if (!ret)
1418 ret = err;
1419 }
1420 return ret;
1421}
1422
1423/*
1424 * To preserve ordering, it is essential that the hole instantiation and
1425 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1426 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1427 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1428 * prepare_write() is the right place.
1429 *
617ba13b
MC
1430 * Also, this function can nest inside ext4_writepage() ->
1431 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1432 * has generated enough buffer credits to do the whole page. So we won't
1433 * block on the journal in that case, which is good, because the caller may
1434 * be PF_MEMALLOC.
1435 *
617ba13b 1436 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1437 * quota file writes. If we were to commit the transaction while thus
1438 * reentered, there can be a deadlock - we would be holding a quota
1439 * lock, and the commit would never complete if another thread had a
1440 * transaction open and was blocking on the quota lock - a ranking
1441 * violation.
1442 *
dab291af 1443 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1444 * will _not_ run commit under these circumstances because handle->h_ref
1445 * is elevated. We'll still have enough credits for the tiny quotafile
1446 * write.
1447 */
1448static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1449 struct buffer_head *bh)
ac27a0ec
DK
1450{
1451 if (!buffer_mapped(bh) || buffer_freed(bh))
1452 return 0;
617ba13b 1453 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1454}
1455
bfc1af65 1456static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1457 loff_t pos, unsigned len, unsigned flags,
1458 struct page **pagep, void **fsdata)
ac27a0ec 1459{
af5bc92d 1460 struct inode *inode = mapping->host;
1938a150 1461 int ret, needed_blocks;
ac27a0ec
DK
1462 handle_t *handle;
1463 int retries = 0;
af5bc92d 1464 struct page *page;
de9a55b8 1465 pgoff_t index;
af5bc92d 1466 unsigned from, to;
bfc1af65 1467
9bffad1e 1468 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1469 /*
1470 * Reserve one block more for addition to orphan list in case
1471 * we allocate blocks but write fails for some reason
1472 */
1473 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1474 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1475 from = pos & (PAGE_CACHE_SIZE - 1);
1476 to = from + len;
ac27a0ec
DK
1477
1478retry:
af5bc92d
TT
1479 handle = ext4_journal_start(inode, needed_blocks);
1480 if (IS_ERR(handle)) {
1481 ret = PTR_ERR(handle);
1482 goto out;
7479d2b9 1483 }
ac27a0ec 1484
ebd3610b
JK
1485 /* We cannot recurse into the filesystem as the transaction is already
1486 * started */
1487 flags |= AOP_FLAG_NOFS;
1488
54566b2c 1489 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1490 if (!page) {
1491 ext4_journal_stop(handle);
1492 ret = -ENOMEM;
1493 goto out;
1494 }
1495 *pagep = page;
1496
bfc1af65 1497 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1498 ext4_get_block);
bfc1af65
NP
1499
1500 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1501 ret = walk_page_buffers(handle, page_buffers(page),
1502 from, to, NULL, do_journal_get_write_access);
1503 }
bfc1af65
NP
1504
1505 if (ret) {
af5bc92d 1506 unlock_page(page);
af5bc92d 1507 page_cache_release(page);
ae4d5372
AK
1508 /*
1509 * block_write_begin may have instantiated a few blocks
1510 * outside i_size. Trim these off again. Don't need
1511 * i_size_read because we hold i_mutex.
1938a150
AK
1512 *
1513 * Add inode to orphan list in case we crash before
1514 * truncate finishes
ae4d5372 1515 */
ffacfa7a 1516 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1517 ext4_orphan_add(handle, inode);
1518
1519 ext4_journal_stop(handle);
1520 if (pos + len > inode->i_size) {
ffacfa7a 1521 ext4_truncate(inode);
de9a55b8 1522 /*
ffacfa7a 1523 * If truncate failed early the inode might
1938a150
AK
1524 * still be on the orphan list; we need to
1525 * make sure the inode is removed from the
1526 * orphan list in that case.
1527 */
1528 if (inode->i_nlink)
1529 ext4_orphan_del(NULL, inode);
1530 }
bfc1af65
NP
1531 }
1532
617ba13b 1533 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1534 goto retry;
7479d2b9 1535out:
ac27a0ec
DK
1536 return ret;
1537}
1538
bfc1af65
NP
1539/* For write_end() in data=journal mode */
1540static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1541{
1542 if (!buffer_mapped(bh) || buffer_freed(bh))
1543 return 0;
1544 set_buffer_uptodate(bh);
0390131b 1545 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1546}
1547
f8514083 1548static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1549 struct address_space *mapping,
1550 loff_t pos, unsigned len, unsigned copied,
1551 struct page *page, void *fsdata)
f8514083
AK
1552{
1553 int i_size_changed = 0;
1554 struct inode *inode = mapping->host;
1555 handle_t *handle = ext4_journal_current_handle();
1556
1557 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1558
1559 /*
1560 * No need to use i_size_read() here, the i_size
1561 * cannot change under us because we hold i_mutex.
1562 *
1563 * But it's important to update i_size while still holding page lock:
1564 * page writeout could otherwise come in and zero beyond i_size.
1565 */
1566 if (pos + copied > inode->i_size) {
1567 i_size_write(inode, pos + copied);
1568 i_size_changed = 1;
1569 }
1570
1571 if (pos + copied > EXT4_I(inode)->i_disksize) {
1572 /* We need to mark inode dirty even if
1573 * new_i_size is less that inode->i_size
1574 * bu greater than i_disksize.(hint delalloc)
1575 */
1576 ext4_update_i_disksize(inode, (pos + copied));
1577 i_size_changed = 1;
1578 }
1579 unlock_page(page);
1580 page_cache_release(page);
1581
1582 /*
1583 * Don't mark the inode dirty under page lock. First, it unnecessarily
1584 * makes the holding time of page lock longer. Second, it forces lock
1585 * ordering of page lock and transaction start for journaling
1586 * filesystems.
1587 */
1588 if (i_size_changed)
1589 ext4_mark_inode_dirty(handle, inode);
1590
1591 return copied;
1592}
1593
ac27a0ec
DK
1594/*
1595 * We need to pick up the new inode size which generic_commit_write gave us
1596 * `file' can be NULL - eg, when called from page_symlink().
1597 *
617ba13b 1598 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1599 * buffers are managed internally.
1600 */
bfc1af65 1601static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1602 struct address_space *mapping,
1603 loff_t pos, unsigned len, unsigned copied,
1604 struct page *page, void *fsdata)
ac27a0ec 1605{
617ba13b 1606 handle_t *handle = ext4_journal_current_handle();
cf108bca 1607 struct inode *inode = mapping->host;
ac27a0ec
DK
1608 int ret = 0, ret2;
1609
9bffad1e 1610 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1611 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1612
1613 if (ret == 0) {
f8514083 1614 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1615 page, fsdata);
f8a87d89 1616 copied = ret2;
ffacfa7a 1617 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1618 /* if we have allocated more blocks and copied
1619 * less. We will have blocks allocated outside
1620 * inode->i_size. So truncate them
1621 */
1622 ext4_orphan_add(handle, inode);
f8a87d89
RK
1623 if (ret2 < 0)
1624 ret = ret2;
ac27a0ec 1625 }
617ba13b 1626 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1627 if (!ret)
1628 ret = ret2;
bfc1af65 1629
f8514083 1630 if (pos + len > inode->i_size) {
ffacfa7a 1631 ext4_truncate(inode);
de9a55b8 1632 /*
ffacfa7a 1633 * If truncate failed early the inode might still be
f8514083
AK
1634 * on the orphan list; we need to make sure the inode
1635 * is removed from the orphan list in that case.
1636 */
1637 if (inode->i_nlink)
1638 ext4_orphan_del(NULL, inode);
1639 }
1640
1641
bfc1af65 1642 return ret ? ret : copied;
ac27a0ec
DK
1643}
1644
bfc1af65 1645static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1646 struct address_space *mapping,
1647 loff_t pos, unsigned len, unsigned copied,
1648 struct page *page, void *fsdata)
ac27a0ec 1649{
617ba13b 1650 handle_t *handle = ext4_journal_current_handle();
cf108bca 1651 struct inode *inode = mapping->host;
ac27a0ec 1652 int ret = 0, ret2;
ac27a0ec 1653
9bffad1e 1654 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1655 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1656 page, fsdata);
f8a87d89 1657 copied = ret2;
ffacfa7a 1658 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1659 /* if we have allocated more blocks and copied
1660 * less. We will have blocks allocated outside
1661 * inode->i_size. So truncate them
1662 */
1663 ext4_orphan_add(handle, inode);
1664
f8a87d89
RK
1665 if (ret2 < 0)
1666 ret = ret2;
ac27a0ec 1667
617ba13b 1668 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1669 if (!ret)
1670 ret = ret2;
bfc1af65 1671
f8514083 1672 if (pos + len > inode->i_size) {
ffacfa7a 1673 ext4_truncate(inode);
de9a55b8 1674 /*
ffacfa7a 1675 * If truncate failed early the inode might still be
f8514083
AK
1676 * on the orphan list; we need to make sure the inode
1677 * is removed from the orphan list in that case.
1678 */
1679 if (inode->i_nlink)
1680 ext4_orphan_del(NULL, inode);
1681 }
1682
bfc1af65 1683 return ret ? ret : copied;
ac27a0ec
DK
1684}
1685
bfc1af65 1686static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1687 struct address_space *mapping,
1688 loff_t pos, unsigned len, unsigned copied,
1689 struct page *page, void *fsdata)
ac27a0ec 1690{
617ba13b 1691 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1692 struct inode *inode = mapping->host;
ac27a0ec
DK
1693 int ret = 0, ret2;
1694 int partial = 0;
bfc1af65 1695 unsigned from, to;
cf17fea6 1696 loff_t new_i_size;
ac27a0ec 1697
9bffad1e 1698 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1699 from = pos & (PAGE_CACHE_SIZE - 1);
1700 to = from + len;
1701
1702 if (copied < len) {
1703 if (!PageUptodate(page))
1704 copied = 0;
1705 page_zero_new_buffers(page, from+copied, to);
1706 }
ac27a0ec
DK
1707
1708 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1709 to, &partial, write_end_fn);
ac27a0ec
DK
1710 if (!partial)
1711 SetPageUptodate(page);
cf17fea6
AK
1712 new_i_size = pos + copied;
1713 if (new_i_size > inode->i_size)
bfc1af65 1714 i_size_write(inode, pos+copied);
617ba13b 1715 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1716 if (new_i_size > EXT4_I(inode)->i_disksize) {
1717 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1718 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1719 if (!ret)
1720 ret = ret2;
1721 }
bfc1af65 1722
cf108bca 1723 unlock_page(page);
f8514083 1724 page_cache_release(page);
ffacfa7a 1725 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1726 /* if we have allocated more blocks and copied
1727 * less. We will have blocks allocated outside
1728 * inode->i_size. So truncate them
1729 */
1730 ext4_orphan_add(handle, inode);
1731
617ba13b 1732 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1733 if (!ret)
1734 ret = ret2;
f8514083 1735 if (pos + len > inode->i_size) {
ffacfa7a 1736 ext4_truncate(inode);
de9a55b8 1737 /*
ffacfa7a 1738 * If truncate failed early the inode might still be
f8514083
AK
1739 * on the orphan list; we need to make sure the inode
1740 * is removed from the orphan list in that case.
1741 */
1742 if (inode->i_nlink)
1743 ext4_orphan_del(NULL, inode);
1744 }
bfc1af65
NP
1745
1746 return ret ? ret : copied;
ac27a0ec 1747}
d2a17637
MC
1748
1749static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1750{
030ba6bc 1751 int retries = 0;
60e58e0f
MC
1752 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1753 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1754
1755 /*
1756 * recalculate the amount of metadata blocks to reserve
1757 * in order to allocate nrblocks
1758 * worse case is one extent per block
1759 */
030ba6bc 1760repeat:
d2a17637
MC
1761 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1762 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1763 mdblocks = ext4_calc_metadata_amount(inode, total);
1764 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1765
1766 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1767 total = md_needed + nrblocks;
1768
60e58e0f
MC
1769 /*
1770 * Make quota reservation here to prevent quota overflow
1771 * later. Real quota accounting is done at pages writeout
1772 * time.
1773 */
1774 if (vfs_dq_reserve_block(inode, total)) {
1775 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1776 return -EDQUOT;
1777 }
1778
a30d542a 1779 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1780 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1781 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1782 yield();
1783 goto repeat;
1784 }
60e58e0f 1785 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1786 return -ENOSPC;
1787 }
d2a17637
MC
1788 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1789 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1790
1791 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1792 return 0; /* success */
1793}
1794
12219aea 1795static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1796{
1797 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1798 int total, mdb, mdb_free, release;
1799
cd213226
MC
1800 if (!to_free)
1801 return; /* Nothing to release, exit */
1802
d2a17637 1803 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1804
1805 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1806 /*
1807 * if there is no reserved blocks, but we try to free some
1808 * then the counter is messed up somewhere.
1809 * but since this function is called from invalidate
1810 * page, it's harmless to return without any action
1811 */
1812 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1813 "blocks for inode %lu, but there is no reserved "
1814 "data blocks\n", to_free, inode->i_ino);
1815 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1816 return;
1817 }
1818
d2a17637 1819 /* recalculate the number of metablocks still need to be reserved */
12219aea 1820 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1821 mdb = ext4_calc_metadata_amount(inode, total);
1822
1823 /* figure out how many metablocks to release */
1824 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1825 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1826
d2a17637
MC
1827 release = to_free + mdb_free;
1828
6bc6e63f
AK
1829 /* update fs dirty blocks counter for truncate case */
1830 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1831
1832 /* update per-inode reservations */
12219aea
AK
1833 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1834 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1835
1836 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1837 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1838 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1839
1840 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1841}
1842
1843static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1844 unsigned long offset)
d2a17637
MC
1845{
1846 int to_release = 0;
1847 struct buffer_head *head, *bh;
1848 unsigned int curr_off = 0;
1849
1850 head = page_buffers(page);
1851 bh = head;
1852 do {
1853 unsigned int next_off = curr_off + bh->b_size;
1854
1855 if ((offset <= curr_off) && (buffer_delay(bh))) {
1856 to_release++;
1857 clear_buffer_delay(bh);
1858 }
1859 curr_off = next_off;
1860 } while ((bh = bh->b_this_page) != head);
12219aea 1861 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1862}
ac27a0ec 1863
64769240
AT
1864/*
1865 * Delayed allocation stuff
1866 */
1867
1868struct mpage_da_data {
1869 struct inode *inode;
8dc207c0
TT
1870 sector_t b_blocknr; /* start block number of extent */
1871 size_t b_size; /* size of extent */
1872 unsigned long b_state; /* state of the extent */
64769240 1873 unsigned long first_page, next_page; /* extent of pages */
64769240 1874 struct writeback_control *wbc;
a1d6cc56 1875 int io_done;
498e5f24 1876 int pages_written;
df22291f 1877 int retval;
64769240
AT
1878};
1879
1880/*
1881 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1882 * them with writepage() call back
64769240
AT
1883 *
1884 * @mpd->inode: inode
1885 * @mpd->first_page: first page of the extent
1886 * @mpd->next_page: page after the last page of the extent
64769240
AT
1887 *
1888 * By the time mpage_da_submit_io() is called we expect all blocks
1889 * to be allocated. this may be wrong if allocation failed.
1890 *
1891 * As pages are already locked by write_cache_pages(), we can't use it
1892 */
1893static int mpage_da_submit_io(struct mpage_da_data *mpd)
1894{
22208ded 1895 long pages_skipped;
791b7f08
AK
1896 struct pagevec pvec;
1897 unsigned long index, end;
1898 int ret = 0, err, nr_pages, i;
1899 struct inode *inode = mpd->inode;
1900 struct address_space *mapping = inode->i_mapping;
64769240
AT
1901
1902 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1903 /*
1904 * We need to start from the first_page to the next_page - 1
1905 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1906 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1907 * at the currently mapped buffer_heads.
1908 */
64769240
AT
1909 index = mpd->first_page;
1910 end = mpd->next_page - 1;
1911
791b7f08 1912 pagevec_init(&pvec, 0);
64769240 1913 while (index <= end) {
791b7f08 1914 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1915 if (nr_pages == 0)
1916 break;
1917 for (i = 0; i < nr_pages; i++) {
1918 struct page *page = pvec.pages[i];
1919
791b7f08
AK
1920 index = page->index;
1921 if (index > end)
1922 break;
1923 index++;
1924
1925 BUG_ON(!PageLocked(page));
1926 BUG_ON(PageWriteback(page));
1927
22208ded 1928 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1929 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1930 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1931 /*
1932 * have successfully written the page
1933 * without skipping the same
1934 */
a1d6cc56 1935 mpd->pages_written++;
64769240
AT
1936 /*
1937 * In error case, we have to continue because
1938 * remaining pages are still locked
1939 * XXX: unlock and re-dirty them?
1940 */
1941 if (ret == 0)
1942 ret = err;
1943 }
1944 pagevec_release(&pvec);
1945 }
64769240
AT
1946 return ret;
1947}
1948
1949/*
1950 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1951 *
1952 * @mpd->inode - inode to walk through
1953 * @exbh->b_blocknr - first block on a disk
1954 * @exbh->b_size - amount of space in bytes
1955 * @logical - first logical block to start assignment with
1956 *
1957 * the function goes through all passed space and put actual disk
29fa89d0 1958 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1959 */
1960static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1961 struct buffer_head *exbh)
1962{
1963 struct inode *inode = mpd->inode;
1964 struct address_space *mapping = inode->i_mapping;
1965 int blocks = exbh->b_size >> inode->i_blkbits;
1966 sector_t pblock = exbh->b_blocknr, cur_logical;
1967 struct buffer_head *head, *bh;
a1d6cc56 1968 pgoff_t index, end;
64769240
AT
1969 struct pagevec pvec;
1970 int nr_pages, i;
1971
1972 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1973 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1974 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1975
1976 pagevec_init(&pvec, 0);
1977
1978 while (index <= end) {
1979 /* XXX: optimize tail */
1980 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1981 if (nr_pages == 0)
1982 break;
1983 for (i = 0; i < nr_pages; i++) {
1984 struct page *page = pvec.pages[i];
1985
1986 index = page->index;
1987 if (index > end)
1988 break;
1989 index++;
1990
1991 BUG_ON(!PageLocked(page));
1992 BUG_ON(PageWriteback(page));
1993 BUG_ON(!page_has_buffers(page));
1994
1995 bh = page_buffers(page);
1996 head = bh;
1997
1998 /* skip blocks out of the range */
1999 do {
2000 if (cur_logical >= logical)
2001 break;
2002 cur_logical++;
2003 } while ((bh = bh->b_this_page) != head);
2004
2005 do {
2006 if (cur_logical >= logical + blocks)
2007 break;
29fa89d0
AK
2008
2009 if (buffer_delay(bh) ||
2010 buffer_unwritten(bh)) {
2011
2012 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2013
2014 if (buffer_delay(bh)) {
2015 clear_buffer_delay(bh);
2016 bh->b_blocknr = pblock;
2017 } else {
2018 /*
2019 * unwritten already should have
2020 * blocknr assigned. Verify that
2021 */
2022 clear_buffer_unwritten(bh);
2023 BUG_ON(bh->b_blocknr != pblock);
2024 }
2025
61628a3f 2026 } else if (buffer_mapped(bh))
64769240 2027 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2028
2029 cur_logical++;
2030 pblock++;
2031 } while ((bh = bh->b_this_page) != head);
2032 }
2033 pagevec_release(&pvec);
2034 }
2035}
2036
2037
2038/*
2039 * __unmap_underlying_blocks - just a helper function to unmap
2040 * set of blocks described by @bh
2041 */
2042static inline void __unmap_underlying_blocks(struct inode *inode,
2043 struct buffer_head *bh)
2044{
2045 struct block_device *bdev = inode->i_sb->s_bdev;
2046 int blocks, i;
2047
2048 blocks = bh->b_size >> inode->i_blkbits;
2049 for (i = 0; i < blocks; i++)
2050 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2051}
2052
c4a0c46e
AK
2053static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2054 sector_t logical, long blk_cnt)
2055{
2056 int nr_pages, i;
2057 pgoff_t index, end;
2058 struct pagevec pvec;
2059 struct inode *inode = mpd->inode;
2060 struct address_space *mapping = inode->i_mapping;
2061
2062 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2063 end = (logical + blk_cnt - 1) >>
2064 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2065 while (index <= end) {
2066 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2067 if (nr_pages == 0)
2068 break;
2069 for (i = 0; i < nr_pages; i++) {
2070 struct page *page = pvec.pages[i];
2071 index = page->index;
2072 if (index > end)
2073 break;
2074 index++;
2075
2076 BUG_ON(!PageLocked(page));
2077 BUG_ON(PageWriteback(page));
2078 block_invalidatepage(page, 0);
2079 ClearPageUptodate(page);
2080 unlock_page(page);
2081 }
2082 }
2083 return;
2084}
2085
df22291f
AK
2086static void ext4_print_free_blocks(struct inode *inode)
2087{
2088 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2089 printk(KERN_EMERG "Total free blocks count %lld\n",
2090 ext4_count_free_blocks(inode->i_sb));
2091 printk(KERN_EMERG "Free/Dirty block details\n");
2092 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 2093 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 2094 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 2095 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 2096 printk(KERN_EMERG "Block reservation details\n");
498e5f24 2097 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 2098 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 2099 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
2100 EXT4_I(inode)->i_reserved_meta_blocks);
2101 return;
2102}
2103
64769240
AT
2104/*
2105 * mpage_da_map_blocks - go through given space
2106 *
8dc207c0 2107 * @mpd - bh describing space
64769240
AT
2108 *
2109 * The function skips space we know is already mapped to disk blocks.
2110 *
64769240 2111 */
ed5bde0b 2112static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2113{
2ac3b6e0 2114 int err, blks, get_blocks_flags;
030ba6bc 2115 struct buffer_head new;
2fa3cdfb
TT
2116 sector_t next = mpd->b_blocknr;
2117 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2118 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2119 handle_t *handle = NULL;
64769240
AT
2120
2121 /*
2122 * We consider only non-mapped and non-allocated blocks
2123 */
8dc207c0 2124 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2125 !(mpd->b_state & (1 << BH_Delay)) &&
2126 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2127 return 0;
2fa3cdfb
TT
2128
2129 /*
2130 * If we didn't accumulate anything to write simply return
2131 */
2132 if (!mpd->b_size)
2133 return 0;
2134
2135 handle = ext4_journal_current_handle();
2136 BUG_ON(!handle);
2137
79ffab34 2138 /*
2ac3b6e0
TT
2139 * Call ext4_get_blocks() to allocate any delayed allocation
2140 * blocks, or to convert an uninitialized extent to be
2141 * initialized (in the case where we have written into
2142 * one or more preallocated blocks).
2143 *
2144 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2145 * indicate that we are on the delayed allocation path. This
2146 * affects functions in many different parts of the allocation
2147 * call path. This flag exists primarily because we don't
2148 * want to change *many* call functions, so ext4_get_blocks()
2149 * will set the magic i_delalloc_reserved_flag once the
2150 * inode's allocation semaphore is taken.
2151 *
2152 * If the blocks in questions were delalloc blocks, set
2153 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2154 * variables are updated after the blocks have been allocated.
79ffab34 2155 */
2ac3b6e0
TT
2156 new.b_state = 0;
2157 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2158 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2159 if (mpd->b_state & (1 << BH_Delay))
2160 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2161 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2162 &new, get_blocks_flags);
2fa3cdfb
TT
2163 if (blks < 0) {
2164 err = blks;
ed5bde0b
TT
2165 /*
2166 * If get block returns with error we simply
2167 * return. Later writepage will redirty the page and
2168 * writepages will find the dirty page again
c4a0c46e
AK
2169 */
2170 if (err == -EAGAIN)
2171 return 0;
df22291f
AK
2172
2173 if (err == -ENOSPC &&
ed5bde0b 2174 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2175 mpd->retval = err;
2176 return 0;
2177 }
2178
c4a0c46e 2179 /*
ed5bde0b
TT
2180 * get block failure will cause us to loop in
2181 * writepages, because a_ops->writepage won't be able
2182 * to make progress. The page will be redirtied by
2183 * writepage and writepages will again try to write
2184 * the same.
c4a0c46e
AK
2185 */
2186 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2187 "at logical offset %llu with max blocks "
2188 "%zd with error %d\n",
2189 __func__, mpd->inode->i_ino,
2190 (unsigned long long)next,
8dc207c0 2191 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2192 printk(KERN_EMERG "This should not happen.!! "
2193 "Data will be lost\n");
030ba6bc 2194 if (err == -ENOSPC) {
df22291f 2195 ext4_print_free_blocks(mpd->inode);
030ba6bc 2196 }
2fa3cdfb 2197 /* invalidate all the pages */
c4a0c46e 2198 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2199 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2200 return err;
2201 }
2fa3cdfb
TT
2202 BUG_ON(blks == 0);
2203
2204 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2205
a1d6cc56
AK
2206 if (buffer_new(&new))
2207 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2208
a1d6cc56
AK
2209 /*
2210 * If blocks are delayed marked, we need to
2211 * put actual blocknr and drop delayed bit
2212 */
8dc207c0
TT
2213 if ((mpd->b_state & (1 << BH_Delay)) ||
2214 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2215 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2216
2fa3cdfb
TT
2217 if (ext4_should_order_data(mpd->inode)) {
2218 err = ext4_jbd2_file_inode(handle, mpd->inode);
2219 if (err)
2220 return err;
2221 }
2222
2223 /*
03f5d8bc 2224 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2225 */
2226 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2227 if (disksize > i_size_read(mpd->inode))
2228 disksize = i_size_read(mpd->inode);
2229 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2230 ext4_update_i_disksize(mpd->inode, disksize);
2231 return ext4_mark_inode_dirty(handle, mpd->inode);
2232 }
2233
c4a0c46e 2234 return 0;
64769240
AT
2235}
2236
bf068ee2
AK
2237#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2238 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2239
2240/*
2241 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2242 *
2243 * @mpd->lbh - extent of blocks
2244 * @logical - logical number of the block in the file
2245 * @bh - bh of the block (used to access block's state)
2246 *
2247 * the function is used to collect contig. blocks in same state
2248 */
2249static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2250 sector_t logical, size_t b_size,
2251 unsigned long b_state)
64769240 2252{
64769240 2253 sector_t next;
8dc207c0 2254 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2255
525f4ed8
MC
2256 /* check if thereserved journal credits might overflow */
2257 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2258 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2259 /*
2260 * With non-extent format we are limited by the journal
2261 * credit available. Total credit needed to insert
2262 * nrblocks contiguous blocks is dependent on the
2263 * nrblocks. So limit nrblocks.
2264 */
2265 goto flush_it;
2266 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2267 EXT4_MAX_TRANS_DATA) {
2268 /*
2269 * Adding the new buffer_head would make it cross the
2270 * allowed limit for which we have journal credit
2271 * reserved. So limit the new bh->b_size
2272 */
2273 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2274 mpd->inode->i_blkbits;
2275 /* we will do mpage_da_submit_io in the next loop */
2276 }
2277 }
64769240
AT
2278 /*
2279 * First block in the extent
2280 */
8dc207c0
TT
2281 if (mpd->b_size == 0) {
2282 mpd->b_blocknr = logical;
2283 mpd->b_size = b_size;
2284 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2285 return;
2286 }
2287
8dc207c0 2288 next = mpd->b_blocknr + nrblocks;
64769240
AT
2289 /*
2290 * Can we merge the block to our big extent?
2291 */
8dc207c0
TT
2292 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2293 mpd->b_size += b_size;
64769240
AT
2294 return;
2295 }
2296
525f4ed8 2297flush_it:
64769240
AT
2298 /*
2299 * We couldn't merge the block to our extent, so we
2300 * need to flush current extent and start new one
2301 */
c4a0c46e
AK
2302 if (mpage_da_map_blocks(mpd) == 0)
2303 mpage_da_submit_io(mpd);
a1d6cc56
AK
2304 mpd->io_done = 1;
2305 return;
64769240
AT
2306}
2307
c364b22c 2308static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2309{
c364b22c 2310 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2311}
2312
64769240
AT
2313/*
2314 * __mpage_da_writepage - finds extent of pages and blocks
2315 *
2316 * @page: page to consider
2317 * @wbc: not used, we just follow rules
2318 * @data: context
2319 *
2320 * The function finds extents of pages and scan them for all blocks.
2321 */
2322static int __mpage_da_writepage(struct page *page,
2323 struct writeback_control *wbc, void *data)
2324{
2325 struct mpage_da_data *mpd = data;
2326 struct inode *inode = mpd->inode;
8dc207c0 2327 struct buffer_head *bh, *head;
64769240
AT
2328 sector_t logical;
2329
a1d6cc56
AK
2330 if (mpd->io_done) {
2331 /*
2332 * Rest of the page in the page_vec
2333 * redirty then and skip then. We will
2334 * try to to write them again after
2335 * starting a new transaction
2336 */
2337 redirty_page_for_writepage(wbc, page);
2338 unlock_page(page);
2339 return MPAGE_DA_EXTENT_TAIL;
2340 }
64769240
AT
2341 /*
2342 * Can we merge this page to current extent?
2343 */
2344 if (mpd->next_page != page->index) {
2345 /*
2346 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2347 * and start IO on them using writepage()
64769240
AT
2348 */
2349 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2350 if (mpage_da_map_blocks(mpd) == 0)
2351 mpage_da_submit_io(mpd);
a1d6cc56
AK
2352 /*
2353 * skip rest of the page in the page_vec
2354 */
2355 mpd->io_done = 1;
2356 redirty_page_for_writepage(wbc, page);
2357 unlock_page(page);
2358 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2359 }
2360
2361 /*
2362 * Start next extent of pages ...
2363 */
2364 mpd->first_page = page->index;
2365
2366 /*
2367 * ... and blocks
2368 */
8dc207c0
TT
2369 mpd->b_size = 0;
2370 mpd->b_state = 0;
2371 mpd->b_blocknr = 0;
64769240
AT
2372 }
2373
2374 mpd->next_page = page->index + 1;
2375 logical = (sector_t) page->index <<
2376 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2377
2378 if (!page_has_buffers(page)) {
8dc207c0
TT
2379 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2380 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2381 if (mpd->io_done)
2382 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2383 } else {
2384 /*
2385 * Page with regular buffer heads, just add all dirty ones
2386 */
2387 head = page_buffers(page);
2388 bh = head;
2389 do {
2390 BUG_ON(buffer_locked(bh));
791b7f08
AK
2391 /*
2392 * We need to try to allocate
2393 * unmapped blocks in the same page.
2394 * Otherwise we won't make progress
2395 * with the page in ext4_da_writepage
2396 */
c364b22c 2397 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2398 mpage_add_bh_to_extent(mpd, logical,
2399 bh->b_size,
2400 bh->b_state);
a1d6cc56
AK
2401 if (mpd->io_done)
2402 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2403 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2404 /*
2405 * mapped dirty buffer. We need to update
2406 * the b_state because we look at
2407 * b_state in mpage_da_map_blocks. We don't
2408 * update b_size because if we find an
2409 * unmapped buffer_head later we need to
2410 * use the b_state flag of that buffer_head.
2411 */
8dc207c0
TT
2412 if (mpd->b_size == 0)
2413 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2414 }
64769240
AT
2415 logical++;
2416 } while ((bh = bh->b_this_page) != head);
2417 }
2418
2419 return 0;
2420}
2421
64769240 2422/*
b920c755
TT
2423 * This is a special get_blocks_t callback which is used by
2424 * ext4_da_write_begin(). It will either return mapped block or
2425 * reserve space for a single block.
29fa89d0
AK
2426 *
2427 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2428 * We also have b_blocknr = -1 and b_bdev initialized properly
2429 *
2430 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2431 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2432 * initialized properly.
64769240
AT
2433 */
2434static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2435 struct buffer_head *bh_result, int create)
2436{
2437 int ret = 0;
33b9817e
AK
2438 sector_t invalid_block = ~((sector_t) 0xffff);
2439
2440 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2441 invalid_block = ~0;
64769240
AT
2442
2443 BUG_ON(create == 0);
2444 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2445
2446 /*
2447 * first, we need to know whether the block is allocated already
2448 * preallocated blocks are unmapped but should treated
2449 * the same as allocated blocks.
2450 */
c2177057 2451 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2452 if ((ret == 0) && !buffer_delay(bh_result)) {
2453 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2454 /*
2455 * XXX: __block_prepare_write() unmaps passed block,
2456 * is it OK?
2457 */
d2a17637
MC
2458 ret = ext4_da_reserve_space(inode, 1);
2459 if (ret)
2460 /* not enough space to reserve */
2461 return ret;
2462
33b9817e 2463 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2464 set_buffer_new(bh_result);
2465 set_buffer_delay(bh_result);
2466 } else if (ret > 0) {
2467 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2468 if (buffer_unwritten(bh_result)) {
2469 /* A delayed write to unwritten bh should
2470 * be marked new and mapped. Mapped ensures
2471 * that we don't do get_block multiple times
2472 * when we write to the same offset and new
2473 * ensures that we do proper zero out for
2474 * partial write.
2475 */
9c1ee184 2476 set_buffer_new(bh_result);
29fa89d0
AK
2477 set_buffer_mapped(bh_result);
2478 }
64769240
AT
2479 ret = 0;
2480 }
2481
2482 return ret;
2483}
61628a3f 2484
b920c755
TT
2485/*
2486 * This function is used as a standard get_block_t calback function
2487 * when there is no desire to allocate any blocks. It is used as a
2488 * callback function for block_prepare_write(), nobh_writepage(), and
2489 * block_write_full_page(). These functions should only try to map a
2490 * single block at a time.
2491 *
2492 * Since this function doesn't do block allocations even if the caller
2493 * requests it by passing in create=1, it is critically important that
2494 * any caller checks to make sure that any buffer heads are returned
2495 * by this function are either all already mapped or marked for
2496 * delayed allocation before calling nobh_writepage() or
2497 * block_write_full_page(). Otherwise, b_blocknr could be left
2498 * unitialized, and the page write functions will be taken by
2499 * surprise.
2500 */
2501static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2502 struct buffer_head *bh_result, int create)
2503{
2504 int ret = 0;
2505 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2506
a2dc52b5
TT
2507 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2508
f0e6c985
AK
2509 /*
2510 * we don't want to do block allocation in writepage
2511 * so call get_block_wrap with create = 0
2512 */
c2177057 2513 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2514 if (ret > 0) {
2515 bh_result->b_size = (ret << inode->i_blkbits);
2516 ret = 0;
2517 }
2518 return ret;
61628a3f
MC
2519}
2520
61628a3f 2521/*
b920c755
TT
2522 * This function can get called via...
2523 * - ext4_da_writepages after taking page lock (have journal handle)
2524 * - journal_submit_inode_data_buffers (no journal handle)
2525 * - shrink_page_list via pdflush (no journal handle)
2526 * - grab_page_cache when doing write_begin (have journal handle)
61628a3f 2527 */
64769240 2528static int ext4_da_writepage(struct page *page,
c364b22c 2529 struct writeback_control *wbc)
64769240 2530{
64769240 2531 int ret = 0;
61628a3f 2532 loff_t size;
498e5f24 2533 unsigned int len;
61628a3f
MC
2534 struct buffer_head *page_bufs;
2535 struct inode *inode = page->mapping->host;
2536
9bffad1e 2537 trace_ext4_da_writepage(inode, page);
f0e6c985
AK
2538 size = i_size_read(inode);
2539 if (page->index == size >> PAGE_CACHE_SHIFT)
2540 len = size & ~PAGE_CACHE_MASK;
2541 else
2542 len = PAGE_CACHE_SIZE;
64769240 2543
f0e6c985 2544 if (page_has_buffers(page)) {
61628a3f 2545 page_bufs = page_buffers(page);
f0e6c985 2546 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2547 ext4_bh_delay_or_unwritten)) {
61628a3f 2548 /*
f0e6c985
AK
2549 * We don't want to do block allocation
2550 * So redirty the page and return
cd1aac32
AK
2551 * We may reach here when we do a journal commit
2552 * via journal_submit_inode_data_buffers.
2553 * If we don't have mapping block we just ignore
f0e6c985
AK
2554 * them. We can also reach here via shrink_page_list
2555 */
2556 redirty_page_for_writepage(wbc, page);
2557 unlock_page(page);
2558 return 0;
2559 }
2560 } else {
2561 /*
2562 * The test for page_has_buffers() is subtle:
2563 * We know the page is dirty but it lost buffers. That means
2564 * that at some moment in time after write_begin()/write_end()
2565 * has been called all buffers have been clean and thus they
2566 * must have been written at least once. So they are all
2567 * mapped and we can happily proceed with mapping them
2568 * and writing the page.
2569 *
2570 * Try to initialize the buffer_heads and check whether
2571 * all are mapped and non delay. We don't want to
2572 * do block allocation here.
2573 */
b767e78a 2574 ret = block_prepare_write(page, 0, len,
b920c755 2575 noalloc_get_block_write);
f0e6c985
AK
2576 if (!ret) {
2577 page_bufs = page_buffers(page);
2578 /* check whether all are mapped and non delay */
2579 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2580 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2581 redirty_page_for_writepage(wbc, page);
2582 unlock_page(page);
2583 return 0;
2584 }
2585 } else {
2586 /*
2587 * We can't do block allocation here
2588 * so just redity the page and unlock
2589 * and return
61628a3f 2590 */
61628a3f
MC
2591 redirty_page_for_writepage(wbc, page);
2592 unlock_page(page);
2593 return 0;
2594 }
ed9b3e33 2595 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2596 block_commit_write(page, 0, len);
64769240
AT
2597 }
2598
2599 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2600 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2601 else
b920c755
TT
2602 ret = block_write_full_page(page, noalloc_get_block_write,
2603 wbc);
64769240 2604
64769240
AT
2605 return ret;
2606}
2607
61628a3f 2608/*
525f4ed8
MC
2609 * This is called via ext4_da_writepages() to
2610 * calulate the total number of credits to reserve to fit
2611 * a single extent allocation into a single transaction,
2612 * ext4_da_writpeages() will loop calling this before
2613 * the block allocation.
61628a3f 2614 */
525f4ed8
MC
2615
2616static int ext4_da_writepages_trans_blocks(struct inode *inode)
2617{
2618 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2619
2620 /*
2621 * With non-extent format the journal credit needed to
2622 * insert nrblocks contiguous block is dependent on
2623 * number of contiguous block. So we will limit
2624 * number of contiguous block to a sane value
2625 */
2626 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2627 (max_blocks > EXT4_MAX_TRANS_DATA))
2628 max_blocks = EXT4_MAX_TRANS_DATA;
2629
2630 return ext4_chunk_trans_blocks(inode, max_blocks);
2631}
61628a3f 2632
64769240 2633static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2634 struct writeback_control *wbc)
64769240 2635{
22208ded
AK
2636 pgoff_t index;
2637 int range_whole = 0;
61628a3f 2638 handle_t *handle = NULL;
df22291f 2639 struct mpage_da_data mpd;
5e745b04 2640 struct inode *inode = mapping->host;
22208ded 2641 int no_nrwrite_index_update;
498e5f24
TT
2642 int pages_written = 0;
2643 long pages_skipped;
2acf2c26 2644 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2645 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2646 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2647
9bffad1e 2648 trace_ext4_da_writepages(inode, wbc);
ba80b101 2649
61628a3f
MC
2650 /*
2651 * No pages to write? This is mainly a kludge to avoid starting
2652 * a transaction for special inodes like journal inode on last iput()
2653 * because that could violate lock ordering on umount
2654 */
a1d6cc56 2655 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2656 return 0;
2a21e37e
TT
2657
2658 /*
2659 * If the filesystem has aborted, it is read-only, so return
2660 * right away instead of dumping stack traces later on that
2661 * will obscure the real source of the problem. We test
4ab2f15b 2662 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2663 * the latter could be true if the filesystem is mounted
2664 * read-only, and in that case, ext4_da_writepages should
2665 * *never* be called, so if that ever happens, we would want
2666 * the stack trace.
2667 */
4ab2f15b 2668 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2669 return -EROFS;
2670
5e745b04
AK
2671 /*
2672 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2673 * This make sure small files blocks are allocated in
2674 * single attempt. This ensure that small files
2675 * get less fragmented.
2676 */
2677 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2678 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2679 wbc->nr_to_write = sbi->s_mb_stream_request;
2680 }
22208ded
AK
2681 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2682 range_whole = 1;
61628a3f 2683
2acf2c26
AK
2684 range_cyclic = wbc->range_cyclic;
2685 if (wbc->range_cyclic) {
22208ded 2686 index = mapping->writeback_index;
2acf2c26
AK
2687 if (index)
2688 cycled = 0;
2689 wbc->range_start = index << PAGE_CACHE_SHIFT;
2690 wbc->range_end = LLONG_MAX;
2691 wbc->range_cyclic = 0;
2692 } else
22208ded 2693 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2694
df22291f
AK
2695 mpd.wbc = wbc;
2696 mpd.inode = mapping->host;
2697
22208ded
AK
2698 /*
2699 * we don't want write_cache_pages to update
2700 * nr_to_write and writeback_index
2701 */
2702 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2703 wbc->no_nrwrite_index_update = 1;
2704 pages_skipped = wbc->pages_skipped;
2705
2acf2c26 2706retry:
22208ded 2707 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2708
2709 /*
2710 * we insert one extent at a time. So we need
2711 * credit needed for single extent allocation.
2712 * journalled mode is currently not supported
2713 * by delalloc
2714 */
2715 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2716 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2717
61628a3f
MC
2718 /* start a new transaction*/
2719 handle = ext4_journal_start(inode, needed_blocks);
2720 if (IS_ERR(handle)) {
2721 ret = PTR_ERR(handle);
2a21e37e 2722 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2723 "%ld pages, ino %lu; err %d\n", __func__,
2724 wbc->nr_to_write, inode->i_ino, ret);
2725 dump_stack();
61628a3f
MC
2726 goto out_writepages;
2727 }
f63e6005
TT
2728
2729 /*
2730 * Now call __mpage_da_writepage to find the next
2731 * contiguous region of logical blocks that need
2732 * blocks to be allocated by ext4. We don't actually
2733 * submit the blocks for I/O here, even though
2734 * write_cache_pages thinks it will, and will set the
2735 * pages as clean for write before calling
2736 * __mpage_da_writepage().
2737 */
2738 mpd.b_size = 0;
2739 mpd.b_state = 0;
2740 mpd.b_blocknr = 0;
2741 mpd.first_page = 0;
2742 mpd.next_page = 0;
2743 mpd.io_done = 0;
2744 mpd.pages_written = 0;
2745 mpd.retval = 0;
2746 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2747 &mpd);
2748 /*
2749 * If we have a contigous extent of pages and we
2750 * haven't done the I/O yet, map the blocks and submit
2751 * them for I/O.
2752 */
2753 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2754 if (mpage_da_map_blocks(&mpd) == 0)
2755 mpage_da_submit_io(&mpd);
2756 mpd.io_done = 1;
2757 ret = MPAGE_DA_EXTENT_TAIL;
2758 }
2759 wbc->nr_to_write -= mpd.pages_written;
df22291f 2760
61628a3f 2761 ext4_journal_stop(handle);
df22291f 2762
8f64b32e 2763 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2764 /* commit the transaction which would
2765 * free blocks released in the transaction
2766 * and try again
2767 */
df22291f 2768 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2769 wbc->pages_skipped = pages_skipped;
2770 ret = 0;
2771 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2772 /*
2773 * got one extent now try with
2774 * rest of the pages
2775 */
22208ded
AK
2776 pages_written += mpd.pages_written;
2777 wbc->pages_skipped = pages_skipped;
a1d6cc56 2778 ret = 0;
2acf2c26 2779 io_done = 1;
22208ded 2780 } else if (wbc->nr_to_write)
61628a3f
MC
2781 /*
2782 * There is no more writeout needed
2783 * or we requested for a noblocking writeout
2784 * and we found the device congested
2785 */
61628a3f 2786 break;
a1d6cc56 2787 }
2acf2c26
AK
2788 if (!io_done && !cycled) {
2789 cycled = 1;
2790 index = 0;
2791 wbc->range_start = index << PAGE_CACHE_SHIFT;
2792 wbc->range_end = mapping->writeback_index - 1;
2793 goto retry;
2794 }
22208ded
AK
2795 if (pages_skipped != wbc->pages_skipped)
2796 printk(KERN_EMERG "This should not happen leaving %s "
2797 "with nr_to_write = %ld ret = %d\n",
2798 __func__, wbc->nr_to_write, ret);
2799
2800 /* Update index */
2801 index += pages_written;
2acf2c26 2802 wbc->range_cyclic = range_cyclic;
22208ded
AK
2803 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2804 /*
2805 * set the writeback_index so that range_cyclic
2806 * mode will write it back later
2807 */
2808 mapping->writeback_index = index;
a1d6cc56 2809
61628a3f 2810out_writepages:
22208ded
AK
2811 if (!no_nrwrite_index_update)
2812 wbc->no_nrwrite_index_update = 0;
2813 wbc->nr_to_write -= nr_to_writebump;
9bffad1e 2814 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2815 return ret;
64769240
AT
2816}
2817
79f0be8d
AK
2818#define FALL_BACK_TO_NONDELALLOC 1
2819static int ext4_nonda_switch(struct super_block *sb)
2820{
2821 s64 free_blocks, dirty_blocks;
2822 struct ext4_sb_info *sbi = EXT4_SB(sb);
2823
2824 /*
2825 * switch to non delalloc mode if we are running low
2826 * on free block. The free block accounting via percpu
179f7ebf 2827 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2828 * accumulated on each CPU without updating global counters
2829 * Delalloc need an accurate free block accounting. So switch
2830 * to non delalloc when we are near to error range.
2831 */
2832 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2833 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2834 if (2 * free_blocks < 3 * dirty_blocks ||
2835 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2836 /*
2837 * free block count is less that 150% of dirty blocks
2838 * or free blocks is less that watermark
2839 */
2840 return 1;
2841 }
2842 return 0;
2843}
2844
64769240 2845static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2846 loff_t pos, unsigned len, unsigned flags,
2847 struct page **pagep, void **fsdata)
64769240 2848{
d2a17637 2849 int ret, retries = 0;
64769240
AT
2850 struct page *page;
2851 pgoff_t index;
2852 unsigned from, to;
2853 struct inode *inode = mapping->host;
2854 handle_t *handle;
2855
2856 index = pos >> PAGE_CACHE_SHIFT;
2857 from = pos & (PAGE_CACHE_SIZE - 1);
2858 to = from + len;
79f0be8d
AK
2859
2860 if (ext4_nonda_switch(inode->i_sb)) {
2861 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2862 return ext4_write_begin(file, mapping, pos,
2863 len, flags, pagep, fsdata);
2864 }
2865 *fsdata = (void *)0;
9bffad1e 2866 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2867retry:
64769240
AT
2868 /*
2869 * With delayed allocation, we don't log the i_disksize update
2870 * if there is delayed block allocation. But we still need
2871 * to journalling the i_disksize update if writes to the end
2872 * of file which has an already mapped buffer.
2873 */
2874 handle = ext4_journal_start(inode, 1);
2875 if (IS_ERR(handle)) {
2876 ret = PTR_ERR(handle);
2877 goto out;
2878 }
ebd3610b
JK
2879 /* We cannot recurse into the filesystem as the transaction is already
2880 * started */
2881 flags |= AOP_FLAG_NOFS;
64769240 2882
54566b2c 2883 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2884 if (!page) {
2885 ext4_journal_stop(handle);
2886 ret = -ENOMEM;
2887 goto out;
2888 }
64769240
AT
2889 *pagep = page;
2890
2891 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 2892 ext4_da_get_block_prep);
64769240
AT
2893 if (ret < 0) {
2894 unlock_page(page);
2895 ext4_journal_stop(handle);
2896 page_cache_release(page);
ae4d5372
AK
2897 /*
2898 * block_write_begin may have instantiated a few blocks
2899 * outside i_size. Trim these off again. Don't need
2900 * i_size_read because we hold i_mutex.
2901 */
2902 if (pos + len > inode->i_size)
ffacfa7a 2903 ext4_truncate(inode);
64769240
AT
2904 }
2905
d2a17637
MC
2906 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2907 goto retry;
64769240
AT
2908out:
2909 return ret;
2910}
2911
632eaeab
MC
2912/*
2913 * Check if we should update i_disksize
2914 * when write to the end of file but not require block allocation
2915 */
2916static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2917 unsigned long offset)
632eaeab
MC
2918{
2919 struct buffer_head *bh;
2920 struct inode *inode = page->mapping->host;
2921 unsigned int idx;
2922 int i;
2923
2924 bh = page_buffers(page);
2925 idx = offset >> inode->i_blkbits;
2926
af5bc92d 2927 for (i = 0; i < idx; i++)
632eaeab
MC
2928 bh = bh->b_this_page;
2929
29fa89d0 2930 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2931 return 0;
2932 return 1;
2933}
2934
64769240 2935static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2936 struct address_space *mapping,
2937 loff_t pos, unsigned len, unsigned copied,
2938 struct page *page, void *fsdata)
64769240
AT
2939{
2940 struct inode *inode = mapping->host;
2941 int ret = 0, ret2;
2942 handle_t *handle = ext4_journal_current_handle();
2943 loff_t new_i_size;
632eaeab 2944 unsigned long start, end;
79f0be8d
AK
2945 int write_mode = (int)(unsigned long)fsdata;
2946
2947 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2948 if (ext4_should_order_data(inode)) {
2949 return ext4_ordered_write_end(file, mapping, pos,
2950 len, copied, page, fsdata);
2951 } else if (ext4_should_writeback_data(inode)) {
2952 return ext4_writeback_write_end(file, mapping, pos,
2953 len, copied, page, fsdata);
2954 } else {
2955 BUG();
2956 }
2957 }
632eaeab 2958
9bffad1e 2959 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2960 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2961 end = start + copied - 1;
64769240
AT
2962
2963 /*
2964 * generic_write_end() will run mark_inode_dirty() if i_size
2965 * changes. So let's piggyback the i_disksize mark_inode_dirty
2966 * into that.
2967 */
2968
2969 new_i_size = pos + copied;
632eaeab
MC
2970 if (new_i_size > EXT4_I(inode)->i_disksize) {
2971 if (ext4_da_should_update_i_disksize(page, end)) {
2972 down_write(&EXT4_I(inode)->i_data_sem);
2973 if (new_i_size > EXT4_I(inode)->i_disksize) {
2974 /*
2975 * Updating i_disksize when extending file
2976 * without needing block allocation
2977 */
2978 if (ext4_should_order_data(inode))
2979 ret = ext4_jbd2_file_inode(handle,
2980 inode);
64769240 2981
632eaeab
MC
2982 EXT4_I(inode)->i_disksize = new_i_size;
2983 }
2984 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2985 /* We need to mark inode dirty even if
2986 * new_i_size is less that inode->i_size
2987 * bu greater than i_disksize.(hint delalloc)
2988 */
2989 ext4_mark_inode_dirty(handle, inode);
64769240 2990 }
632eaeab 2991 }
64769240
AT
2992 ret2 = generic_write_end(file, mapping, pos, len, copied,
2993 page, fsdata);
2994 copied = ret2;
2995 if (ret2 < 0)
2996 ret = ret2;
2997 ret2 = ext4_journal_stop(handle);
2998 if (!ret)
2999 ret = ret2;
3000
3001 return ret ? ret : copied;
3002}
3003
3004static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3005{
64769240
AT
3006 /*
3007 * Drop reserved blocks
3008 */
3009 BUG_ON(!PageLocked(page));
3010 if (!page_has_buffers(page))
3011 goto out;
3012
d2a17637 3013 ext4_da_page_release_reservation(page, offset);
64769240
AT
3014
3015out:
3016 ext4_invalidatepage(page, offset);
3017
3018 return;
3019}
3020
ccd2506b
TT
3021/*
3022 * Force all delayed allocation blocks to be allocated for a given inode.
3023 */
3024int ext4_alloc_da_blocks(struct inode *inode)
3025{
3026 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3027 !EXT4_I(inode)->i_reserved_meta_blocks)
3028 return 0;
3029
3030 /*
3031 * We do something simple for now. The filemap_flush() will
3032 * also start triggering a write of the data blocks, which is
3033 * not strictly speaking necessary (and for users of
3034 * laptop_mode, not even desirable). However, to do otherwise
3035 * would require replicating code paths in:
de9a55b8 3036 *
ccd2506b
TT
3037 * ext4_da_writepages() ->
3038 * write_cache_pages() ---> (via passed in callback function)
3039 * __mpage_da_writepage() -->
3040 * mpage_add_bh_to_extent()
3041 * mpage_da_map_blocks()
3042 *
3043 * The problem is that write_cache_pages(), located in
3044 * mm/page-writeback.c, marks pages clean in preparation for
3045 * doing I/O, which is not desirable if we're not planning on
3046 * doing I/O at all.
3047 *
3048 * We could call write_cache_pages(), and then redirty all of
3049 * the pages by calling redirty_page_for_writeback() but that
3050 * would be ugly in the extreme. So instead we would need to
3051 * replicate parts of the code in the above functions,
3052 * simplifying them becuase we wouldn't actually intend to
3053 * write out the pages, but rather only collect contiguous
3054 * logical block extents, call the multi-block allocator, and
3055 * then update the buffer heads with the block allocations.
de9a55b8 3056 *
ccd2506b
TT
3057 * For now, though, we'll cheat by calling filemap_flush(),
3058 * which will map the blocks, and start the I/O, but not
3059 * actually wait for the I/O to complete.
3060 */
3061 return filemap_flush(inode->i_mapping);
3062}
64769240 3063
ac27a0ec
DK
3064/*
3065 * bmap() is special. It gets used by applications such as lilo and by
3066 * the swapper to find the on-disk block of a specific piece of data.
3067 *
3068 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3069 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3070 * filesystem and enables swap, then they may get a nasty shock when the
3071 * data getting swapped to that swapfile suddenly gets overwritten by
3072 * the original zero's written out previously to the journal and
3073 * awaiting writeback in the kernel's buffer cache.
3074 *
3075 * So, if we see any bmap calls here on a modified, data-journaled file,
3076 * take extra steps to flush any blocks which might be in the cache.
3077 */
617ba13b 3078static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3079{
3080 struct inode *inode = mapping->host;
3081 journal_t *journal;
3082 int err;
3083
64769240
AT
3084 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3085 test_opt(inode->i_sb, DELALLOC)) {
3086 /*
3087 * With delalloc we want to sync the file
3088 * so that we can make sure we allocate
3089 * blocks for file
3090 */
3091 filemap_write_and_wait(mapping);
3092 }
3093
0390131b 3094 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3095 /*
3096 * This is a REALLY heavyweight approach, but the use of
3097 * bmap on dirty files is expected to be extremely rare:
3098 * only if we run lilo or swapon on a freshly made file
3099 * do we expect this to happen.
3100 *
3101 * (bmap requires CAP_SYS_RAWIO so this does not
3102 * represent an unprivileged user DOS attack --- we'd be
3103 * in trouble if mortal users could trigger this path at
3104 * will.)
3105 *
617ba13b 3106 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3107 * regular files. If somebody wants to bmap a directory
3108 * or symlink and gets confused because the buffer
3109 * hasn't yet been flushed to disk, they deserve
3110 * everything they get.
3111 */
3112
617ba13b
MC
3113 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3114 journal = EXT4_JOURNAL(inode);
dab291af
MC
3115 jbd2_journal_lock_updates(journal);
3116 err = jbd2_journal_flush(journal);
3117 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3118
3119 if (err)
3120 return 0;
3121 }
3122
af5bc92d 3123 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3124}
3125
3126static int bget_one(handle_t *handle, struct buffer_head *bh)
3127{
3128 get_bh(bh);
3129 return 0;
3130}
3131
3132static int bput_one(handle_t *handle, struct buffer_head *bh)
3133{
3134 put_bh(bh);
3135 return 0;
3136}
3137
ac27a0ec 3138/*
678aaf48
JK
3139 * Note that we don't need to start a transaction unless we're journaling data
3140 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3141 * need to file the inode to the transaction's list in ordered mode because if
3142 * we are writing back data added by write(), the inode is already there and if
3143 * we are writing back data modified via mmap(), noone guarantees in which
3144 * transaction the data will hit the disk. In case we are journaling data, we
3145 * cannot start transaction directly because transaction start ranks above page
3146 * lock so we have to do some magic.
ac27a0ec 3147 *
678aaf48 3148 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3149 *
3150 * Problem:
3151 *
617ba13b
MC
3152 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3153 * ext4_writepage()
ac27a0ec
DK
3154 *
3155 * Similar for:
3156 *
617ba13b 3157 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3158 *
617ba13b 3159 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3160 * lock_journal and i_data_sem
ac27a0ec
DK
3161 *
3162 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3163 * allocations fail.
3164 *
3165 * 16May01: If we're reentered then journal_current_handle() will be
3166 * non-zero. We simply *return*.
3167 *
3168 * 1 July 2001: @@@ FIXME:
3169 * In journalled data mode, a data buffer may be metadata against the
3170 * current transaction. But the same file is part of a shared mapping
3171 * and someone does a writepage() on it.
3172 *
3173 * We will move the buffer onto the async_data list, but *after* it has
3174 * been dirtied. So there's a small window where we have dirty data on
3175 * BJ_Metadata.
3176 *
3177 * Note that this only applies to the last partial page in the file. The
3178 * bit which block_write_full_page() uses prepare/commit for. (That's
3179 * broken code anyway: it's wrong for msync()).
3180 *
3181 * It's a rare case: affects the final partial page, for journalled data
3182 * where the file is subject to bith write() and writepage() in the same
3183 * transction. To fix it we'll need a custom block_write_full_page().
3184 * We'll probably need that anyway for journalling writepage() output.
3185 *
3186 * We don't honour synchronous mounts for writepage(). That would be
3187 * disastrous. Any write() or metadata operation will sync the fs for
3188 * us.
3189 *
ac27a0ec 3190 */
678aaf48 3191static int __ext4_normal_writepage(struct page *page,
de9a55b8 3192 struct writeback_control *wbc)
cf108bca
JK
3193{
3194 struct inode *inode = page->mapping->host;
3195
3196 if (test_opt(inode->i_sb, NOBH))
b920c755 3197 return nobh_writepage(page, noalloc_get_block_write, wbc);
cf108bca 3198 else
b920c755
TT
3199 return block_write_full_page(page, noalloc_get_block_write,
3200 wbc);
cf108bca
JK
3201}
3202
678aaf48 3203static int ext4_normal_writepage(struct page *page,
de9a55b8 3204 struct writeback_control *wbc)
ac27a0ec
DK
3205{
3206 struct inode *inode = page->mapping->host;
cf108bca
JK
3207 loff_t size = i_size_read(inode);
3208 loff_t len;
3209
9bffad1e 3210 trace_ext4_normal_writepage(inode, page);
cf108bca 3211 J_ASSERT(PageLocked(page));
cf108bca
JK
3212 if (page->index == size >> PAGE_CACHE_SHIFT)
3213 len = size & ~PAGE_CACHE_MASK;
3214 else
3215 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3216
3217 if (page_has_buffers(page)) {
3218 /* if page has buffers it should all be mapped
3219 * and allocated. If there are not buffers attached
3220 * to the page we know the page is dirty but it lost
3221 * buffers. That means that at some moment in time
3222 * after write_begin() / write_end() has been called
3223 * all buffers have been clean and thus they must have been
3224 * written at least once. So they are all mapped and we can
3225 * happily proceed with mapping them and writing the page.
3226 */
3227 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
c364b22c 3228 ext4_bh_delay_or_unwritten));
f0e6c985 3229 }
cf108bca
JK
3230
3231 if (!ext4_journal_current_handle())
678aaf48 3232 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3233
3234 redirty_page_for_writepage(wbc, page);
3235 unlock_page(page);
3236 return 0;
3237}
3238
3239static int __ext4_journalled_writepage(struct page *page,
de9a55b8 3240 struct writeback_control *wbc)
cf108bca 3241{
b767e78a
AK
3242 loff_t size;
3243 unsigned int len;
cf108bca
JK
3244 struct address_space *mapping = page->mapping;
3245 struct inode *inode = mapping->host;
3246 struct buffer_head *page_bufs;
ac27a0ec
DK
3247 handle_t *handle = NULL;
3248 int ret = 0;
3249 int err;
3250
b767e78a
AK
3251 size = i_size_read(inode);
3252 if (page->index == size >> PAGE_CACHE_SHIFT)
3253 len = size & ~PAGE_CACHE_MASK;
3254 else
3255 len = PAGE_CACHE_SIZE;
3256 ret = block_prepare_write(page, 0, len, noalloc_get_block_write);
cf108bca
JK
3257 if (ret != 0)
3258 goto out_unlock;
3259
3260 page_bufs = page_buffers(page);
b767e78a 3261 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
cf108bca
JK
3262 /* As soon as we unlock the page, it can go away, but we have
3263 * references to buffers so we are safe */
3264 unlock_page(page);
ac27a0ec 3265
617ba13b 3266 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3267 if (IS_ERR(handle)) {
3268 ret = PTR_ERR(handle);
cf108bca 3269 goto out;
ac27a0ec
DK
3270 }
3271
b767e78a
AK
3272 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
3273 do_journal_get_write_access);
ac27a0ec 3274
b767e78a
AK
3275 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
3276 write_end_fn);
cf108bca
JK
3277 if (ret == 0)
3278 ret = err;
617ba13b 3279 err = ext4_journal_stop(handle);
ac27a0ec
DK
3280 if (!ret)
3281 ret = err;
ac27a0ec 3282
b767e78a 3283 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
cf108bca
JK
3284 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3285 goto out;
3286
3287out_unlock:
ac27a0ec 3288 unlock_page(page);
cf108bca 3289out:
ac27a0ec
DK
3290 return ret;
3291}
3292
617ba13b 3293static int ext4_journalled_writepage(struct page *page,
de9a55b8 3294 struct writeback_control *wbc)
ac27a0ec
DK
3295{
3296 struct inode *inode = page->mapping->host;
cf108bca
JK
3297 loff_t size = i_size_read(inode);
3298 loff_t len;
ac27a0ec 3299
9bffad1e 3300 trace_ext4_journalled_writepage(inode, page);
cf108bca 3301 J_ASSERT(PageLocked(page));
cf108bca
JK
3302 if (page->index == size >> PAGE_CACHE_SHIFT)
3303 len = size & ~PAGE_CACHE_MASK;
3304 else
3305 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3306
3307 if (page_has_buffers(page)) {
3308 /* if page has buffers it should all be mapped
3309 * and allocated. If there are not buffers attached
3310 * to the page we know the page is dirty but it lost
3311 * buffers. That means that at some moment in time
3312 * after write_begin() / write_end() has been called
3313 * all buffers have been clean and thus they must have been
3314 * written at least once. So they are all mapped and we can
3315 * happily proceed with mapping them and writing the page.
3316 */
3317 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
c364b22c 3318 ext4_bh_delay_or_unwritten));
f0e6c985 3319 }
ac27a0ec 3320
cf108bca 3321 if (ext4_journal_current_handle())
ac27a0ec 3322 goto no_write;
ac27a0ec 3323
cf108bca 3324 if (PageChecked(page)) {
ac27a0ec
DK
3325 /*
3326 * It's mmapped pagecache. Add buffers and journal it. There
3327 * doesn't seem much point in redirtying the page here.
3328 */
3329 ClearPageChecked(page);
cf108bca 3330 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3331 } else {
3332 /*
3333 * It may be a page full of checkpoint-mode buffers. We don't
3334 * really know unless we go poke around in the buffer_heads.
3335 * But block_write_full_page will do the right thing.
3336 */
b920c755
TT
3337 return block_write_full_page(page, noalloc_get_block_write,
3338 wbc);
ac27a0ec 3339 }
ac27a0ec
DK
3340no_write:
3341 redirty_page_for_writepage(wbc, page);
ac27a0ec 3342 unlock_page(page);
cf108bca 3343 return 0;
ac27a0ec
DK
3344}
3345
617ba13b 3346static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3347{
617ba13b 3348 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3349}
3350
3351static int
617ba13b 3352ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3353 struct list_head *pages, unsigned nr_pages)
3354{
617ba13b 3355 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3356}
3357
617ba13b 3358static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3359{
617ba13b 3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3361
3362 /*
3363 * If it's a full truncate we just forget about the pending dirtying
3364 */
3365 if (offset == 0)
3366 ClearPageChecked(page);
3367
0390131b
FM
3368 if (journal)
3369 jbd2_journal_invalidatepage(journal, page, offset);
3370 else
3371 block_invalidatepage(page, offset);
ac27a0ec
DK
3372}
3373
617ba13b 3374static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3375{
617ba13b 3376 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3377
3378 WARN_ON(PageChecked(page));
3379 if (!page_has_buffers(page))
3380 return 0;
0390131b
FM
3381 if (journal)
3382 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3383 else
3384 return try_to_free_buffers(page);
ac27a0ec
DK
3385}
3386
3387/*
3388 * If the O_DIRECT write will extend the file then add this inode to the
3389 * orphan list. So recovery will truncate it back to the original size
3390 * if the machine crashes during the write.
3391 *
3392 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3393 * crashes then stale disk data _may_ be exposed inside the file. But current
3394 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3395 */
617ba13b 3396static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3397 const struct iovec *iov, loff_t offset,
3398 unsigned long nr_segs)
ac27a0ec
DK
3399{
3400 struct file *file = iocb->ki_filp;
3401 struct inode *inode = file->f_mapping->host;
617ba13b 3402 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3403 handle_t *handle;
ac27a0ec
DK
3404 ssize_t ret;
3405 int orphan = 0;
3406 size_t count = iov_length(iov, nr_segs);
3407
3408 if (rw == WRITE) {
3409 loff_t final_size = offset + count;
3410
ac27a0ec 3411 if (final_size > inode->i_size) {
7fb5409d
JK
3412 /* Credits for sb + inode write */
3413 handle = ext4_journal_start(inode, 2);
3414 if (IS_ERR(handle)) {
3415 ret = PTR_ERR(handle);
3416 goto out;
3417 }
617ba13b 3418 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3419 if (ret) {
3420 ext4_journal_stop(handle);
3421 goto out;
3422 }
ac27a0ec
DK
3423 orphan = 1;
3424 ei->i_disksize = inode->i_size;
7fb5409d 3425 ext4_journal_stop(handle);
ac27a0ec
DK
3426 }
3427 }
3428
3429 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3430 offset, nr_segs,
617ba13b 3431 ext4_get_block, NULL);
ac27a0ec 3432
7fb5409d 3433 if (orphan) {
ac27a0ec
DK
3434 int err;
3435
7fb5409d
JK
3436 /* Credits for sb + inode write */
3437 handle = ext4_journal_start(inode, 2);
3438 if (IS_ERR(handle)) {
3439 /* This is really bad luck. We've written the data
3440 * but cannot extend i_size. Bail out and pretend
3441 * the write failed... */
3442 ret = PTR_ERR(handle);
3443 goto out;
3444 }
3445 if (inode->i_nlink)
617ba13b 3446 ext4_orphan_del(handle, inode);
7fb5409d 3447 if (ret > 0) {
ac27a0ec
DK
3448 loff_t end = offset + ret;
3449 if (end > inode->i_size) {
3450 ei->i_disksize = end;
3451 i_size_write(inode, end);
3452 /*
3453 * We're going to return a positive `ret'
3454 * here due to non-zero-length I/O, so there's
3455 * no way of reporting error returns from
617ba13b 3456 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3457 * ignore it.
3458 */
617ba13b 3459 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3460 }
3461 }
617ba13b 3462 err = ext4_journal_stop(handle);
ac27a0ec
DK
3463 if (ret == 0)
3464 ret = err;
3465 }
3466out:
3467 return ret;
3468}
3469
3470/*
617ba13b 3471 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3472 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3473 * much here because ->set_page_dirty is called under VFS locks. The page is
3474 * not necessarily locked.
3475 *
3476 * We cannot just dirty the page and leave attached buffers clean, because the
3477 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3478 * or jbddirty because all the journalling code will explode.
3479 *
3480 * So what we do is to mark the page "pending dirty" and next time writepage
3481 * is called, propagate that into the buffers appropriately.
3482 */
617ba13b 3483static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3484{
3485 SetPageChecked(page);
3486 return __set_page_dirty_nobuffers(page);
3487}
3488
617ba13b 3489static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3490 .readpage = ext4_readpage,
3491 .readpages = ext4_readpages,
3492 .writepage = ext4_normal_writepage,
3493 .sync_page = block_sync_page,
3494 .write_begin = ext4_write_begin,
3495 .write_end = ext4_ordered_write_end,
3496 .bmap = ext4_bmap,
3497 .invalidatepage = ext4_invalidatepage,
3498 .releasepage = ext4_releasepage,
3499 .direct_IO = ext4_direct_IO,
3500 .migratepage = buffer_migrate_page,
3501 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3502};
3503
617ba13b 3504static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3505 .readpage = ext4_readpage,
3506 .readpages = ext4_readpages,
3507 .writepage = ext4_normal_writepage,
3508 .sync_page = block_sync_page,
3509 .write_begin = ext4_write_begin,
3510 .write_end = ext4_writeback_write_end,
3511 .bmap = ext4_bmap,
3512 .invalidatepage = ext4_invalidatepage,
3513 .releasepage = ext4_releasepage,
3514 .direct_IO = ext4_direct_IO,
3515 .migratepage = buffer_migrate_page,
3516 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3517};
3518
617ba13b 3519static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3520 .readpage = ext4_readpage,
3521 .readpages = ext4_readpages,
3522 .writepage = ext4_journalled_writepage,
3523 .sync_page = block_sync_page,
3524 .write_begin = ext4_write_begin,
3525 .write_end = ext4_journalled_write_end,
3526 .set_page_dirty = ext4_journalled_set_page_dirty,
3527 .bmap = ext4_bmap,
3528 .invalidatepage = ext4_invalidatepage,
3529 .releasepage = ext4_releasepage,
3530 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3531};
3532
64769240 3533static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3534 .readpage = ext4_readpage,
3535 .readpages = ext4_readpages,
3536 .writepage = ext4_da_writepage,
3537 .writepages = ext4_da_writepages,
3538 .sync_page = block_sync_page,
3539 .write_begin = ext4_da_write_begin,
3540 .write_end = ext4_da_write_end,
3541 .bmap = ext4_bmap,
3542 .invalidatepage = ext4_da_invalidatepage,
3543 .releasepage = ext4_releasepage,
3544 .direct_IO = ext4_direct_IO,
3545 .migratepage = buffer_migrate_page,
3546 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3547};
3548
617ba13b 3549void ext4_set_aops(struct inode *inode)
ac27a0ec 3550{
cd1aac32
AK
3551 if (ext4_should_order_data(inode) &&
3552 test_opt(inode->i_sb, DELALLOC))
3553 inode->i_mapping->a_ops = &ext4_da_aops;
3554 else if (ext4_should_order_data(inode))
617ba13b 3555 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3556 else if (ext4_should_writeback_data(inode) &&
3557 test_opt(inode->i_sb, DELALLOC))
3558 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3559 else if (ext4_should_writeback_data(inode))
3560 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3561 else
617ba13b 3562 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3563}
3564
3565/*
617ba13b 3566 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3567 * up to the end of the block which corresponds to `from'.
3568 * This required during truncate. We need to physically zero the tail end
3569 * of that block so it doesn't yield old data if the file is later grown.
3570 */
cf108bca 3571int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3572 struct address_space *mapping, loff_t from)
3573{
617ba13b 3574 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3575 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3576 unsigned blocksize, length, pos;
3577 ext4_lblk_t iblock;
ac27a0ec
DK
3578 struct inode *inode = mapping->host;
3579 struct buffer_head *bh;
cf108bca 3580 struct page *page;
ac27a0ec 3581 int err = 0;
ac27a0ec 3582
f4a01017
TT
3583 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3584 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3585 if (!page)
3586 return -EINVAL;
3587
ac27a0ec
DK
3588 blocksize = inode->i_sb->s_blocksize;
3589 length = blocksize - (offset & (blocksize - 1));
3590 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3591
3592 /*
3593 * For "nobh" option, we can only work if we don't need to
3594 * read-in the page - otherwise we create buffers to do the IO.
3595 */
3596 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3597 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3598 zero_user(page, offset, length);
ac27a0ec
DK
3599 set_page_dirty(page);
3600 goto unlock;
3601 }
3602
3603 if (!page_has_buffers(page))
3604 create_empty_buffers(page, blocksize, 0);
3605
3606 /* Find the buffer that contains "offset" */
3607 bh = page_buffers(page);
3608 pos = blocksize;
3609 while (offset >= pos) {
3610 bh = bh->b_this_page;
3611 iblock++;
3612 pos += blocksize;
3613 }
3614
3615 err = 0;
3616 if (buffer_freed(bh)) {
3617 BUFFER_TRACE(bh, "freed: skip");
3618 goto unlock;
3619 }
3620
3621 if (!buffer_mapped(bh)) {
3622 BUFFER_TRACE(bh, "unmapped");
617ba13b 3623 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3624 /* unmapped? It's a hole - nothing to do */
3625 if (!buffer_mapped(bh)) {
3626 BUFFER_TRACE(bh, "still unmapped");
3627 goto unlock;
3628 }
3629 }
3630
3631 /* Ok, it's mapped. Make sure it's up-to-date */
3632 if (PageUptodate(page))
3633 set_buffer_uptodate(bh);
3634
3635 if (!buffer_uptodate(bh)) {
3636 err = -EIO;
3637 ll_rw_block(READ, 1, &bh);
3638 wait_on_buffer(bh);
3639 /* Uhhuh. Read error. Complain and punt. */
3640 if (!buffer_uptodate(bh))
3641 goto unlock;
3642 }
3643
617ba13b 3644 if (ext4_should_journal_data(inode)) {
ac27a0ec 3645 BUFFER_TRACE(bh, "get write access");
617ba13b 3646 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3647 if (err)
3648 goto unlock;
3649 }
3650
eebd2aa3 3651 zero_user(page, offset, length);
ac27a0ec
DK
3652
3653 BUFFER_TRACE(bh, "zeroed end of block");
3654
3655 err = 0;
617ba13b 3656 if (ext4_should_journal_data(inode)) {
0390131b 3657 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3658 } else {
617ba13b 3659 if (ext4_should_order_data(inode))
678aaf48 3660 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3661 mark_buffer_dirty(bh);
3662 }
3663
3664unlock:
3665 unlock_page(page);
3666 page_cache_release(page);
3667 return err;
3668}
3669
3670/*
3671 * Probably it should be a library function... search for first non-zero word
3672 * or memcmp with zero_page, whatever is better for particular architecture.
3673 * Linus?
3674 */
3675static inline int all_zeroes(__le32 *p, __le32 *q)
3676{
3677 while (p < q)
3678 if (*p++)
3679 return 0;
3680 return 1;
3681}
3682
3683/**
617ba13b 3684 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3685 * @inode: inode in question
3686 * @depth: depth of the affected branch
617ba13b 3687 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3688 * @chain: place to store the pointers to partial indirect blocks
3689 * @top: place to the (detached) top of branch
3690 *
617ba13b 3691 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3692 *
3693 * When we do truncate() we may have to clean the ends of several
3694 * indirect blocks but leave the blocks themselves alive. Block is
3695 * partially truncated if some data below the new i_size is refered
3696 * from it (and it is on the path to the first completely truncated
3697 * data block, indeed). We have to free the top of that path along
3698 * with everything to the right of the path. Since no allocation
617ba13b 3699 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3700 * finishes, we may safely do the latter, but top of branch may
3701 * require special attention - pageout below the truncation point
3702 * might try to populate it.
3703 *
3704 * We atomically detach the top of branch from the tree, store the
3705 * block number of its root in *@top, pointers to buffer_heads of
3706 * partially truncated blocks - in @chain[].bh and pointers to
3707 * their last elements that should not be removed - in
3708 * @chain[].p. Return value is the pointer to last filled element
3709 * of @chain.
3710 *
3711 * The work left to caller to do the actual freeing of subtrees:
3712 * a) free the subtree starting from *@top
3713 * b) free the subtrees whose roots are stored in
3714 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3715 * c) free the subtrees growing from the inode past the @chain[0].
3716 * (no partially truncated stuff there). */
3717
617ba13b 3718static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
3719 ext4_lblk_t offsets[4], Indirect chain[4],
3720 __le32 *top)
ac27a0ec
DK
3721{
3722 Indirect *partial, *p;
3723 int k, err;
3724
3725 *top = 0;
3726 /* Make k index the deepest non-null offest + 1 */
3727 for (k = depth; k > 1 && !offsets[k-1]; k--)
3728 ;
617ba13b 3729 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3730 /* Writer: pointers */
3731 if (!partial)
3732 partial = chain + k-1;
3733 /*
3734 * If the branch acquired continuation since we've looked at it -
3735 * fine, it should all survive and (new) top doesn't belong to us.
3736 */
3737 if (!partial->key && *partial->p)
3738 /* Writer: end */
3739 goto no_top;
af5bc92d 3740 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3741 ;
3742 /*
3743 * OK, we've found the last block that must survive. The rest of our
3744 * branch should be detached before unlocking. However, if that rest
3745 * of branch is all ours and does not grow immediately from the inode
3746 * it's easier to cheat and just decrement partial->p.
3747 */
3748 if (p == chain + k - 1 && p > chain) {
3749 p->p--;
3750 } else {
3751 *top = *p->p;
617ba13b 3752 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3753#if 0
3754 *p->p = 0;
3755#endif
3756 }
3757 /* Writer: end */
3758
af5bc92d 3759 while (partial > p) {
ac27a0ec
DK
3760 brelse(partial->bh);
3761 partial--;
3762 }
3763no_top:
3764 return partial;
3765}
3766
3767/*
3768 * Zero a number of block pointers in either an inode or an indirect block.
3769 * If we restart the transaction we must again get write access to the
3770 * indirect block for further modification.
3771 *
3772 * We release `count' blocks on disk, but (last - first) may be greater
3773 * than `count' because there can be holes in there.
3774 */
617ba13b 3775static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
3776 struct buffer_head *bh,
3777 ext4_fsblk_t block_to_free,
3778 unsigned long count, __le32 *first,
3779 __le32 *last)
ac27a0ec
DK
3780{
3781 __le32 *p;
3782 if (try_to_extend_transaction(handle, inode)) {
3783 if (bh) {
0390131b
FM
3784 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3785 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3786 }
617ba13b
MC
3787 ext4_mark_inode_dirty(handle, inode);
3788 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3789 if (bh) {
3790 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3791 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3792 }
3793 }
3794
3795 /*
de9a55b8
TT
3796 * Any buffers which are on the journal will be in memory. We
3797 * find them on the hash table so jbd2_journal_revoke() will
3798 * run jbd2_journal_forget() on them. We've already detached
3799 * each block from the file, so bforget() in
3800 * jbd2_journal_forget() should be safe.
ac27a0ec 3801 *
dab291af 3802 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3803 */
3804 for (p = first; p < last; p++) {
3805 u32 nr = le32_to_cpu(*p);
3806 if (nr) {
1d03ec98 3807 struct buffer_head *tbh;
ac27a0ec
DK
3808
3809 *p = 0;
1d03ec98
AK
3810 tbh = sb_find_get_block(inode->i_sb, nr);
3811 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3812 }
3813 }
3814
c9de560d 3815 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3816}
3817
3818/**
617ba13b 3819 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3820 * @handle: handle for this transaction
3821 * @inode: inode we are dealing with
3822 * @this_bh: indirect buffer_head which contains *@first and *@last
3823 * @first: array of block numbers
3824 * @last: points immediately past the end of array
3825 *
3826 * We are freeing all blocks refered from that array (numbers are stored as
3827 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3828 *
3829 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3830 * blocks are contiguous then releasing them at one time will only affect one
3831 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3832 * actually use a lot of journal space.
3833 *
3834 * @this_bh will be %NULL if @first and @last point into the inode's direct
3835 * block pointers.
3836 */
617ba13b 3837static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3838 struct buffer_head *this_bh,
3839 __le32 *first, __le32 *last)
3840{
617ba13b 3841 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3842 unsigned long count = 0; /* Number of blocks in the run */
3843 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3844 corresponding to
3845 block_to_free */
617ba13b 3846 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3847 __le32 *p; /* Pointer into inode/ind
3848 for current block */
3849 int err;
3850
3851 if (this_bh) { /* For indirect block */
3852 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3853 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3854 /* Important: if we can't update the indirect pointers
3855 * to the blocks, we can't free them. */
3856 if (err)
3857 return;
3858 }
3859
3860 for (p = first; p < last; p++) {
3861 nr = le32_to_cpu(*p);
3862 if (nr) {
3863 /* accumulate blocks to free if they're contiguous */
3864 if (count == 0) {
3865 block_to_free = nr;
3866 block_to_free_p = p;
3867 count = 1;
3868 } else if (nr == block_to_free + count) {
3869 count++;
3870 } else {
617ba13b 3871 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3872 block_to_free,
3873 count, block_to_free_p, p);
3874 block_to_free = nr;
3875 block_to_free_p = p;
3876 count = 1;
3877 }
3878 }
3879 }
3880
3881 if (count > 0)
617ba13b 3882 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3883 count, block_to_free_p, p);
3884
3885 if (this_bh) {
0390131b 3886 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3887
3888 /*
3889 * The buffer head should have an attached journal head at this
3890 * point. However, if the data is corrupted and an indirect
3891 * block pointed to itself, it would have been detached when
3892 * the block was cleared. Check for this instead of OOPSing.
3893 */
e7f07968 3894 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3895 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3896 else
3897 ext4_error(inode->i_sb, __func__,
3898 "circular indirect block detected, "
3899 "inode=%lu, block=%llu",
3900 inode->i_ino,
3901 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3902 }
3903}
3904
3905/**
617ba13b 3906 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3907 * @handle: JBD handle for this transaction
3908 * @inode: inode we are dealing with
3909 * @parent_bh: the buffer_head which contains *@first and *@last
3910 * @first: array of block numbers
3911 * @last: pointer immediately past the end of array
3912 * @depth: depth of the branches to free
3913 *
3914 * We are freeing all blocks refered from these branches (numbers are
3915 * stored as little-endian 32-bit) and updating @inode->i_blocks
3916 * appropriately.
3917 */
617ba13b 3918static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3919 struct buffer_head *parent_bh,
3920 __le32 *first, __le32 *last, int depth)
3921{
617ba13b 3922 ext4_fsblk_t nr;
ac27a0ec
DK
3923 __le32 *p;
3924
0390131b 3925 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3926 return;
3927
3928 if (depth--) {
3929 struct buffer_head *bh;
617ba13b 3930 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3931 p = last;
3932 while (--p >= first) {
3933 nr = le32_to_cpu(*p);
3934 if (!nr)
3935 continue; /* A hole */
3936
3937 /* Go read the buffer for the next level down */
3938 bh = sb_bread(inode->i_sb, nr);
3939
3940 /*
3941 * A read failure? Report error and clear slot
3942 * (should be rare).
3943 */
3944 if (!bh) {
617ba13b 3945 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3946 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3947 inode->i_ino, nr);
3948 continue;
3949 }
3950
3951 /* This zaps the entire block. Bottom up. */
3952 BUFFER_TRACE(bh, "free child branches");
617ba13b 3953 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3954 (__le32 *) bh->b_data,
3955 (__le32 *) bh->b_data + addr_per_block,
3956 depth);
ac27a0ec
DK
3957
3958 /*
3959 * We've probably journalled the indirect block several
3960 * times during the truncate. But it's no longer
3961 * needed and we now drop it from the transaction via
dab291af 3962 * jbd2_journal_revoke().
ac27a0ec
DK
3963 *
3964 * That's easy if it's exclusively part of this
3965 * transaction. But if it's part of the committing
dab291af 3966 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3967 * brelse() it. That means that if the underlying
617ba13b 3968 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3969 * unmap_underlying_metadata() will find this block
3970 * and will try to get rid of it. damn, damn.
3971 *
3972 * If this block has already been committed to the
3973 * journal, a revoke record will be written. And
3974 * revoke records must be emitted *before* clearing
3975 * this block's bit in the bitmaps.
3976 */
617ba13b 3977 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3978
3979 /*
3980 * Everything below this this pointer has been
3981 * released. Now let this top-of-subtree go.
3982 *
3983 * We want the freeing of this indirect block to be
3984 * atomic in the journal with the updating of the
3985 * bitmap block which owns it. So make some room in
3986 * the journal.
3987 *
3988 * We zero the parent pointer *after* freeing its
3989 * pointee in the bitmaps, so if extend_transaction()
3990 * for some reason fails to put the bitmap changes and
3991 * the release into the same transaction, recovery
3992 * will merely complain about releasing a free block,
3993 * rather than leaking blocks.
3994 */
0390131b 3995 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3996 return;
3997 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3998 ext4_mark_inode_dirty(handle, inode);
3999 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
4000 }
4001
c9de560d 4002 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
4003
4004 if (parent_bh) {
4005 /*
4006 * The block which we have just freed is
4007 * pointed to by an indirect block: journal it
4008 */
4009 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4010 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4011 parent_bh)){
4012 *p = 0;
4013 BUFFER_TRACE(parent_bh,
0390131b
FM
4014 "call ext4_handle_dirty_metadata");
4015 ext4_handle_dirty_metadata(handle,
4016 inode,
4017 parent_bh);
ac27a0ec
DK
4018 }
4019 }
4020 }
4021 } else {
4022 /* We have reached the bottom of the tree. */
4023 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4024 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4025 }
4026}
4027
91ef4caf
DG
4028int ext4_can_truncate(struct inode *inode)
4029{
4030 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4031 return 0;
4032 if (S_ISREG(inode->i_mode))
4033 return 1;
4034 if (S_ISDIR(inode->i_mode))
4035 return 1;
4036 if (S_ISLNK(inode->i_mode))
4037 return !ext4_inode_is_fast_symlink(inode);
4038 return 0;
4039}
4040
ac27a0ec 4041/*
617ba13b 4042 * ext4_truncate()
ac27a0ec 4043 *
617ba13b
MC
4044 * We block out ext4_get_block() block instantiations across the entire
4045 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4046 * simultaneously on behalf of the same inode.
4047 *
4048 * As we work through the truncate and commmit bits of it to the journal there
4049 * is one core, guiding principle: the file's tree must always be consistent on
4050 * disk. We must be able to restart the truncate after a crash.
4051 *
4052 * The file's tree may be transiently inconsistent in memory (although it
4053 * probably isn't), but whenever we close off and commit a journal transaction,
4054 * the contents of (the filesystem + the journal) must be consistent and
4055 * restartable. It's pretty simple, really: bottom up, right to left (although
4056 * left-to-right works OK too).
4057 *
4058 * Note that at recovery time, journal replay occurs *before* the restart of
4059 * truncate against the orphan inode list.
4060 *
4061 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4062 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4063 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4064 * ext4_truncate() to have another go. So there will be instantiated blocks
4065 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4066 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4067 * ext4_truncate() run will find them and release them.
ac27a0ec 4068 */
617ba13b 4069void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4070{
4071 handle_t *handle;
617ba13b 4072 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4073 __le32 *i_data = ei->i_data;
617ba13b 4074 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4075 struct address_space *mapping = inode->i_mapping;
725d26d3 4076 ext4_lblk_t offsets[4];
ac27a0ec
DK
4077 Indirect chain[4];
4078 Indirect *partial;
4079 __le32 nr = 0;
4080 int n;
725d26d3 4081 ext4_lblk_t last_block;
ac27a0ec 4082 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4083
91ef4caf 4084 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4085 return;
4086
0eab9282
TT
4087 if (ei->i_disksize && inode->i_size == 0 &&
4088 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4089 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4090
1d03ec98 4091 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4092 ext4_ext_truncate(inode);
1d03ec98
AK
4093 return;
4094 }
a86c6181 4095
ac27a0ec 4096 handle = start_transaction(inode);
cf108bca 4097 if (IS_ERR(handle))
ac27a0ec 4098 return; /* AKPM: return what? */
ac27a0ec
DK
4099
4100 last_block = (inode->i_size + blocksize-1)
617ba13b 4101 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4102
cf108bca
JK
4103 if (inode->i_size & (blocksize - 1))
4104 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4105 goto out_stop;
ac27a0ec 4106
617ba13b 4107 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4108 if (n == 0)
4109 goto out_stop; /* error */
4110
4111 /*
4112 * OK. This truncate is going to happen. We add the inode to the
4113 * orphan list, so that if this truncate spans multiple transactions,
4114 * and we crash, we will resume the truncate when the filesystem
4115 * recovers. It also marks the inode dirty, to catch the new size.
4116 *
4117 * Implication: the file must always be in a sane, consistent
4118 * truncatable state while each transaction commits.
4119 */
617ba13b 4120 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4121 goto out_stop;
4122
632eaeab
MC
4123 /*
4124 * From here we block out all ext4_get_block() callers who want to
4125 * modify the block allocation tree.
4126 */
4127 down_write(&ei->i_data_sem);
b4df2030 4128
c2ea3fde 4129 ext4_discard_preallocations(inode);
b4df2030 4130
ac27a0ec
DK
4131 /*
4132 * The orphan list entry will now protect us from any crash which
4133 * occurs before the truncate completes, so it is now safe to propagate
4134 * the new, shorter inode size (held for now in i_size) into the
4135 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4136 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4137 */
4138 ei->i_disksize = inode->i_size;
4139
ac27a0ec 4140 if (n == 1) { /* direct blocks */
617ba13b
MC
4141 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4142 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4143 goto do_indirects;
4144 }
4145
617ba13b 4146 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4147 /* Kill the top of shared branch (not detached) */
4148 if (nr) {
4149 if (partial == chain) {
4150 /* Shared branch grows from the inode */
617ba13b 4151 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4152 &nr, &nr+1, (chain+n-1) - partial);
4153 *partial->p = 0;
4154 /*
4155 * We mark the inode dirty prior to restart,
4156 * and prior to stop. No need for it here.
4157 */
4158 } else {
4159 /* Shared branch grows from an indirect block */
4160 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4161 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4162 partial->p,
4163 partial->p+1, (chain+n-1) - partial);
4164 }
4165 }
4166 /* Clear the ends of indirect blocks on the shared branch */
4167 while (partial > chain) {
617ba13b 4168 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4169 (__le32*)partial->bh->b_data+addr_per_block,
4170 (chain+n-1) - partial);
4171 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4172 brelse(partial->bh);
ac27a0ec
DK
4173 partial--;
4174 }
4175do_indirects:
4176 /* Kill the remaining (whole) subtrees */
4177 switch (offsets[0]) {
4178 default:
617ba13b 4179 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4180 if (nr) {
617ba13b
MC
4181 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4182 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4183 }
617ba13b
MC
4184 case EXT4_IND_BLOCK:
4185 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4186 if (nr) {
617ba13b
MC
4187 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4188 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4189 }
617ba13b
MC
4190 case EXT4_DIND_BLOCK:
4191 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4192 if (nr) {
617ba13b
MC
4193 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4194 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4195 }
617ba13b 4196 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4197 ;
4198 }
4199
0e855ac8 4200 up_write(&ei->i_data_sem);
ef7f3835 4201 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4202 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4203
4204 /*
4205 * In a multi-transaction truncate, we only make the final transaction
4206 * synchronous
4207 */
4208 if (IS_SYNC(inode))
0390131b 4209 ext4_handle_sync(handle);
ac27a0ec
DK
4210out_stop:
4211 /*
4212 * If this was a simple ftruncate(), and the file will remain alive
4213 * then we need to clear up the orphan record which we created above.
4214 * However, if this was a real unlink then we were called by
617ba13b 4215 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4216 * orphan info for us.
4217 */
4218 if (inode->i_nlink)
617ba13b 4219 ext4_orphan_del(handle, inode);
ac27a0ec 4220
617ba13b 4221 ext4_journal_stop(handle);
ac27a0ec
DK
4222}
4223
ac27a0ec 4224/*
617ba13b 4225 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4226 * underlying buffer_head on success. If 'in_mem' is true, we have all
4227 * data in memory that is needed to recreate the on-disk version of this
4228 * inode.
4229 */
617ba13b
MC
4230static int __ext4_get_inode_loc(struct inode *inode,
4231 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4232{
240799cd
TT
4233 struct ext4_group_desc *gdp;
4234 struct buffer_head *bh;
4235 struct super_block *sb = inode->i_sb;
4236 ext4_fsblk_t block;
4237 int inodes_per_block, inode_offset;
4238
3a06d778 4239 iloc->bh = NULL;
240799cd
TT
4240 if (!ext4_valid_inum(sb, inode->i_ino))
4241 return -EIO;
ac27a0ec 4242
240799cd
TT
4243 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4244 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4245 if (!gdp)
ac27a0ec
DK
4246 return -EIO;
4247
240799cd
TT
4248 /*
4249 * Figure out the offset within the block group inode table
4250 */
4251 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4252 inode_offset = ((inode->i_ino - 1) %
4253 EXT4_INODES_PER_GROUP(sb));
4254 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4255 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4256
4257 bh = sb_getblk(sb, block);
ac27a0ec 4258 if (!bh) {
240799cd
TT
4259 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4260 "inode block - inode=%lu, block=%llu",
4261 inode->i_ino, block);
ac27a0ec
DK
4262 return -EIO;
4263 }
4264 if (!buffer_uptodate(bh)) {
4265 lock_buffer(bh);
9c83a923
HK
4266
4267 /*
4268 * If the buffer has the write error flag, we have failed
4269 * to write out another inode in the same block. In this
4270 * case, we don't have to read the block because we may
4271 * read the old inode data successfully.
4272 */
4273 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4274 set_buffer_uptodate(bh);
4275
ac27a0ec
DK
4276 if (buffer_uptodate(bh)) {
4277 /* someone brought it uptodate while we waited */
4278 unlock_buffer(bh);
4279 goto has_buffer;
4280 }
4281
4282 /*
4283 * If we have all information of the inode in memory and this
4284 * is the only valid inode in the block, we need not read the
4285 * block.
4286 */
4287 if (in_mem) {
4288 struct buffer_head *bitmap_bh;
240799cd 4289 int i, start;
ac27a0ec 4290
240799cd 4291 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4292
240799cd
TT
4293 /* Is the inode bitmap in cache? */
4294 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4295 if (!bitmap_bh)
4296 goto make_io;
4297
4298 /*
4299 * If the inode bitmap isn't in cache then the
4300 * optimisation may end up performing two reads instead
4301 * of one, so skip it.
4302 */
4303 if (!buffer_uptodate(bitmap_bh)) {
4304 brelse(bitmap_bh);
4305 goto make_io;
4306 }
240799cd 4307 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4308 if (i == inode_offset)
4309 continue;
617ba13b 4310 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4311 break;
4312 }
4313 brelse(bitmap_bh);
240799cd 4314 if (i == start + inodes_per_block) {
ac27a0ec
DK
4315 /* all other inodes are free, so skip I/O */
4316 memset(bh->b_data, 0, bh->b_size);
4317 set_buffer_uptodate(bh);
4318 unlock_buffer(bh);
4319 goto has_buffer;
4320 }
4321 }
4322
4323make_io:
240799cd
TT
4324 /*
4325 * If we need to do any I/O, try to pre-readahead extra
4326 * blocks from the inode table.
4327 */
4328 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4329 ext4_fsblk_t b, end, table;
4330 unsigned num;
4331
4332 table = ext4_inode_table(sb, gdp);
b713a5ec 4333 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4334 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4335 if (table > b)
4336 b = table;
4337 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4338 num = EXT4_INODES_PER_GROUP(sb);
4339 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4340 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4341 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4342 table += num / inodes_per_block;
4343 if (end > table)
4344 end = table;
4345 while (b <= end)
4346 sb_breadahead(sb, b++);
4347 }
4348
ac27a0ec
DK
4349 /*
4350 * There are other valid inodes in the buffer, this inode
4351 * has in-inode xattrs, or we don't have this inode in memory.
4352 * Read the block from disk.
4353 */
4354 get_bh(bh);
4355 bh->b_end_io = end_buffer_read_sync;
4356 submit_bh(READ_META, bh);
4357 wait_on_buffer(bh);
4358 if (!buffer_uptodate(bh)) {
240799cd
TT
4359 ext4_error(sb, __func__,
4360 "unable to read inode block - inode=%lu, "
4361 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4362 brelse(bh);
4363 return -EIO;
4364 }
4365 }
4366has_buffer:
4367 iloc->bh = bh;
4368 return 0;
4369}
4370
617ba13b 4371int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4372{
4373 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4374 return __ext4_get_inode_loc(inode, iloc,
4375 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4376}
4377
617ba13b 4378void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4379{
617ba13b 4380 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4381
4382 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4383 if (flags & EXT4_SYNC_FL)
ac27a0ec 4384 inode->i_flags |= S_SYNC;
617ba13b 4385 if (flags & EXT4_APPEND_FL)
ac27a0ec 4386 inode->i_flags |= S_APPEND;
617ba13b 4387 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4388 inode->i_flags |= S_IMMUTABLE;
617ba13b 4389 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4390 inode->i_flags |= S_NOATIME;
617ba13b 4391 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4392 inode->i_flags |= S_DIRSYNC;
4393}
4394
ff9ddf7e
JK
4395/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4396void ext4_get_inode_flags(struct ext4_inode_info *ei)
4397{
4398 unsigned int flags = ei->vfs_inode.i_flags;
4399
4400 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4401 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4402 if (flags & S_SYNC)
4403 ei->i_flags |= EXT4_SYNC_FL;
4404 if (flags & S_APPEND)
4405 ei->i_flags |= EXT4_APPEND_FL;
4406 if (flags & S_IMMUTABLE)
4407 ei->i_flags |= EXT4_IMMUTABLE_FL;
4408 if (flags & S_NOATIME)
4409 ei->i_flags |= EXT4_NOATIME_FL;
4410 if (flags & S_DIRSYNC)
4411 ei->i_flags |= EXT4_DIRSYNC_FL;
4412}
de9a55b8 4413
0fc1b451 4414static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4415 struct ext4_inode_info *ei)
0fc1b451
AK
4416{
4417 blkcnt_t i_blocks ;
8180a562
AK
4418 struct inode *inode = &(ei->vfs_inode);
4419 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4420
4421 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4422 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4423 /* we are using combined 48 bit field */
4424 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4425 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4426 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4427 /* i_blocks represent file system block size */
4428 return i_blocks << (inode->i_blkbits - 9);
4429 } else {
4430 return i_blocks;
4431 }
0fc1b451
AK
4432 } else {
4433 return le32_to_cpu(raw_inode->i_blocks_lo);
4434 }
4435}
ff9ddf7e 4436
1d1fe1ee 4437struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4438{
617ba13b
MC
4439 struct ext4_iloc iloc;
4440 struct ext4_inode *raw_inode;
1d1fe1ee 4441 struct ext4_inode_info *ei;
ac27a0ec 4442 struct buffer_head *bh;
1d1fe1ee
DH
4443 struct inode *inode;
4444 long ret;
ac27a0ec
DK
4445 int block;
4446
1d1fe1ee
DH
4447 inode = iget_locked(sb, ino);
4448 if (!inode)
4449 return ERR_PTR(-ENOMEM);
4450 if (!(inode->i_state & I_NEW))
4451 return inode;
4452
4453 ei = EXT4_I(inode);
ac27a0ec 4454
1d1fe1ee
DH
4455 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4456 if (ret < 0)
ac27a0ec
DK
4457 goto bad_inode;
4458 bh = iloc.bh;
617ba13b 4459 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4460 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4461 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4462 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4463 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4464 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4465 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4466 }
4467 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4468
4469 ei->i_state = 0;
4470 ei->i_dir_start_lookup = 0;
4471 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4472 /* We now have enough fields to check if the inode was active or not.
4473 * This is needed because nfsd might try to access dead inodes
4474 * the test is that same one that e2fsck uses
4475 * NeilBrown 1999oct15
4476 */
4477 if (inode->i_nlink == 0) {
4478 if (inode->i_mode == 0 ||
617ba13b 4479 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4480 /* this inode is deleted */
af5bc92d 4481 brelse(bh);
1d1fe1ee 4482 ret = -ESTALE;
ac27a0ec
DK
4483 goto bad_inode;
4484 }
4485 /* The only unlinked inodes we let through here have
4486 * valid i_mode and are being read by the orphan
4487 * recovery code: that's fine, we're about to complete
4488 * the process of deleting those. */
4489 }
ac27a0ec 4490 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4491 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4492 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4493 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4494 ei->i_file_acl |=
4495 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4496 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4497 ei->i_disksize = inode->i_size;
4498 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4499 ei->i_block_group = iloc.block_group;
a4912123 4500 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4501 /*
4502 * NOTE! The in-memory inode i_data array is in little-endian order
4503 * even on big-endian machines: we do NOT byteswap the block numbers!
4504 */
617ba13b 4505 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4506 ei->i_data[block] = raw_inode->i_block[block];
4507 INIT_LIST_HEAD(&ei->i_orphan);
4508
0040d987 4509 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4510 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4511 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4512 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4513 brelse(bh);
1d1fe1ee 4514 ret = -EIO;
ac27a0ec 4515 goto bad_inode;
e5d2861f 4516 }
ac27a0ec
DK
4517 if (ei->i_extra_isize == 0) {
4518 /* The extra space is currently unused. Use it. */
617ba13b
MC
4519 ei->i_extra_isize = sizeof(struct ext4_inode) -
4520 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4521 } else {
4522 __le32 *magic = (void *)raw_inode +
617ba13b 4523 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4524 ei->i_extra_isize;
617ba13b 4525 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
de9a55b8 4526 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4527 }
4528 } else
4529 ei->i_extra_isize = 0;
4530
ef7f3835
KS
4531 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4532 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4533 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4534 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4535
25ec56b5
JNC
4536 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4537 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4538 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4539 inode->i_version |=
4540 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4541 }
4542
c4b5a614 4543 ret = 0;
485c26ec 4544 if (ei->i_file_acl &&
de9a55b8 4545 ((ei->i_file_acl <
485c26ec
TT
4546 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4547 EXT4_SB(sb)->s_gdb_count)) ||
4548 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4549 ext4_error(sb, __func__,
4550 "bad extended attribute block %llu in inode #%lu",
4551 ei->i_file_acl, inode->i_ino);
4552 ret = -EIO;
4553 goto bad_inode;
4554 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4555 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4556 (S_ISLNK(inode->i_mode) &&
4557 !ext4_inode_is_fast_symlink(inode)))
4558 /* Validate extent which is part of inode */
4559 ret = ext4_ext_check_inode(inode);
de9a55b8 4560 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4561 (S_ISLNK(inode->i_mode) &&
4562 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4563 /* Validate block references which are part of inode */
fe2c8191
TN
4564 ret = ext4_check_inode_blockref(inode);
4565 }
4566 if (ret) {
de9a55b8
TT
4567 brelse(bh);
4568 goto bad_inode;
7a262f7c
AK
4569 }
4570
ac27a0ec 4571 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4572 inode->i_op = &ext4_file_inode_operations;
4573 inode->i_fop = &ext4_file_operations;
4574 ext4_set_aops(inode);
ac27a0ec 4575 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4576 inode->i_op = &ext4_dir_inode_operations;
4577 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4578 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4579 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4580 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4581 nd_terminate_link(ei->i_data, inode->i_size,
4582 sizeof(ei->i_data) - 1);
4583 } else {
617ba13b
MC
4584 inode->i_op = &ext4_symlink_inode_operations;
4585 ext4_set_aops(inode);
ac27a0ec 4586 }
563bdd61
TT
4587 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4588 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4589 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4590 if (raw_inode->i_block[0])
4591 init_special_inode(inode, inode->i_mode,
4592 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4593 else
4594 init_special_inode(inode, inode->i_mode,
4595 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4596 } else {
4597 brelse(bh);
4598 ret = -EIO;
de9a55b8 4599 ext4_error(inode->i_sb, __func__,
563bdd61
TT
4600 "bogus i_mode (%o) for inode=%lu",
4601 inode->i_mode, inode->i_ino);
4602 goto bad_inode;
ac27a0ec 4603 }
af5bc92d 4604 brelse(iloc.bh);
617ba13b 4605 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4606 unlock_new_inode(inode);
4607 return inode;
ac27a0ec
DK
4608
4609bad_inode:
1d1fe1ee
DH
4610 iget_failed(inode);
4611 return ERR_PTR(ret);
ac27a0ec
DK
4612}
4613
0fc1b451
AK
4614static int ext4_inode_blocks_set(handle_t *handle,
4615 struct ext4_inode *raw_inode,
4616 struct ext4_inode_info *ei)
4617{
4618 struct inode *inode = &(ei->vfs_inode);
4619 u64 i_blocks = inode->i_blocks;
4620 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4621
4622 if (i_blocks <= ~0U) {
4623 /*
4624 * i_blocks can be represnted in a 32 bit variable
4625 * as multiple of 512 bytes
4626 */
8180a562 4627 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4628 raw_inode->i_blocks_high = 0;
8180a562 4629 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4630 return 0;
4631 }
4632 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4633 return -EFBIG;
4634
4635 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4636 /*
4637 * i_blocks can be represented in a 48 bit variable
4638 * as multiple of 512 bytes
4639 */
8180a562 4640 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4641 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4642 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4643 } else {
8180a562
AK
4644 ei->i_flags |= EXT4_HUGE_FILE_FL;
4645 /* i_block is stored in file system block size */
4646 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4647 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4648 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4649 }
f287a1a5 4650 return 0;
0fc1b451
AK
4651}
4652
ac27a0ec
DK
4653/*
4654 * Post the struct inode info into an on-disk inode location in the
4655 * buffer-cache. This gobbles the caller's reference to the
4656 * buffer_head in the inode location struct.
4657 *
4658 * The caller must have write access to iloc->bh.
4659 */
617ba13b 4660static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4661 struct inode *inode,
617ba13b 4662 struct ext4_iloc *iloc)
ac27a0ec 4663{
617ba13b
MC
4664 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4666 struct buffer_head *bh = iloc->bh;
4667 int err = 0, rc, block;
4668
4669 /* For fields not not tracking in the in-memory inode,
4670 * initialise them to zero for new inodes. */
617ba13b
MC
4671 if (ei->i_state & EXT4_STATE_NEW)
4672 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4673
ff9ddf7e 4674 ext4_get_inode_flags(ei);
ac27a0ec 4675 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4676 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4677 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4678 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4679/*
4680 * Fix up interoperability with old kernels. Otherwise, old inodes get
4681 * re-used with the upper 16 bits of the uid/gid intact
4682 */
af5bc92d 4683 if (!ei->i_dtime) {
ac27a0ec
DK
4684 raw_inode->i_uid_high =
4685 cpu_to_le16(high_16_bits(inode->i_uid));
4686 raw_inode->i_gid_high =
4687 cpu_to_le16(high_16_bits(inode->i_gid));
4688 } else {
4689 raw_inode->i_uid_high = 0;
4690 raw_inode->i_gid_high = 0;
4691 }
4692 } else {
4693 raw_inode->i_uid_low =
4694 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4695 raw_inode->i_gid_low =
4696 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4697 raw_inode->i_uid_high = 0;
4698 raw_inode->i_gid_high = 0;
4699 }
4700 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4701
4702 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4703 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4704 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4705 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4706
0fc1b451
AK
4707 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4708 goto out_brelse;
ac27a0ec 4709 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4710 /* clear the migrate flag in the raw_inode */
4711 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4712 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4713 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4714 raw_inode->i_file_acl_high =
4715 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4716 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4717 ext4_isize_set(raw_inode, ei->i_disksize);
4718 if (ei->i_disksize > 0x7fffffffULL) {
4719 struct super_block *sb = inode->i_sb;
4720 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4721 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4722 EXT4_SB(sb)->s_es->s_rev_level ==
4723 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4724 /* If this is the first large file
4725 * created, add a flag to the superblock.
4726 */
4727 err = ext4_journal_get_write_access(handle,
4728 EXT4_SB(sb)->s_sbh);
4729 if (err)
4730 goto out_brelse;
4731 ext4_update_dynamic_rev(sb);
4732 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4733 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4734 sb->s_dirt = 1;
0390131b
FM
4735 ext4_handle_sync(handle);
4736 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4737 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4738 }
4739 }
4740 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4741 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4742 if (old_valid_dev(inode->i_rdev)) {
4743 raw_inode->i_block[0] =
4744 cpu_to_le32(old_encode_dev(inode->i_rdev));
4745 raw_inode->i_block[1] = 0;
4746 } else {
4747 raw_inode->i_block[0] = 0;
4748 raw_inode->i_block[1] =
4749 cpu_to_le32(new_encode_dev(inode->i_rdev));
4750 raw_inode->i_block[2] = 0;
4751 }
de9a55b8
TT
4752 } else
4753 for (block = 0; block < EXT4_N_BLOCKS; block++)
4754 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4755
25ec56b5
JNC
4756 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4757 if (ei->i_extra_isize) {
4758 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4759 raw_inode->i_version_hi =
4760 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4761 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4762 }
4763
0390131b
FM
4764 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4765 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4766 if (!err)
4767 err = rc;
617ba13b 4768 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4769
4770out_brelse:
af5bc92d 4771 brelse(bh);
617ba13b 4772 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4773 return err;
4774}
4775
4776/*
617ba13b 4777 * ext4_write_inode()
ac27a0ec
DK
4778 *
4779 * We are called from a few places:
4780 *
4781 * - Within generic_file_write() for O_SYNC files.
4782 * Here, there will be no transaction running. We wait for any running
4783 * trasnaction to commit.
4784 *
4785 * - Within sys_sync(), kupdate and such.
4786 * We wait on commit, if tol to.
4787 *
4788 * - Within prune_icache() (PF_MEMALLOC == true)
4789 * Here we simply return. We can't afford to block kswapd on the
4790 * journal commit.
4791 *
4792 * In all cases it is actually safe for us to return without doing anything,
4793 * because the inode has been copied into a raw inode buffer in
617ba13b 4794 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4795 * knfsd.
4796 *
4797 * Note that we are absolutely dependent upon all inode dirtiers doing the
4798 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4799 * which we are interested.
4800 *
4801 * It would be a bug for them to not do this. The code:
4802 *
4803 * mark_inode_dirty(inode)
4804 * stuff();
4805 * inode->i_size = expr;
4806 *
4807 * is in error because a kswapd-driven write_inode() could occur while
4808 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4809 * will no longer be on the superblock's dirty inode list.
4810 */
617ba13b 4811int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4812{
4813 if (current->flags & PF_MEMALLOC)
4814 return 0;
4815
617ba13b 4816 if (ext4_journal_current_handle()) {
b38bd33a 4817 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4818 dump_stack();
4819 return -EIO;
4820 }
4821
4822 if (!wait)
4823 return 0;
4824
617ba13b 4825 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4826}
4827
4828/*
617ba13b 4829 * ext4_setattr()
ac27a0ec
DK
4830 *
4831 * Called from notify_change.
4832 *
4833 * We want to trap VFS attempts to truncate the file as soon as
4834 * possible. In particular, we want to make sure that when the VFS
4835 * shrinks i_size, we put the inode on the orphan list and modify
4836 * i_disksize immediately, so that during the subsequent flushing of
4837 * dirty pages and freeing of disk blocks, we can guarantee that any
4838 * commit will leave the blocks being flushed in an unused state on
4839 * disk. (On recovery, the inode will get truncated and the blocks will
4840 * be freed, so we have a strong guarantee that no future commit will
4841 * leave these blocks visible to the user.)
4842 *
678aaf48
JK
4843 * Another thing we have to assure is that if we are in ordered mode
4844 * and inode is still attached to the committing transaction, we must
4845 * we start writeout of all the dirty pages which are being truncated.
4846 * This way we are sure that all the data written in the previous
4847 * transaction are already on disk (truncate waits for pages under
4848 * writeback).
4849 *
4850 * Called with inode->i_mutex down.
ac27a0ec 4851 */
617ba13b 4852int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4853{
4854 struct inode *inode = dentry->d_inode;
4855 int error, rc = 0;
4856 const unsigned int ia_valid = attr->ia_valid;
4857
4858 error = inode_change_ok(inode, attr);
4859 if (error)
4860 return error;
4861
4862 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4863 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4864 handle_t *handle;
4865
4866 /* (user+group)*(old+new) structure, inode write (sb,
4867 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4868 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4869 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4870 if (IS_ERR(handle)) {
4871 error = PTR_ERR(handle);
4872 goto err_out;
4873 }
a269eb18 4874 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4875 if (error) {
617ba13b 4876 ext4_journal_stop(handle);
ac27a0ec
DK
4877 return error;
4878 }
4879 /* Update corresponding info in inode so that everything is in
4880 * one transaction */
4881 if (attr->ia_valid & ATTR_UID)
4882 inode->i_uid = attr->ia_uid;
4883 if (attr->ia_valid & ATTR_GID)
4884 inode->i_gid = attr->ia_gid;
617ba13b
MC
4885 error = ext4_mark_inode_dirty(handle, inode);
4886 ext4_journal_stop(handle);
ac27a0ec
DK
4887 }
4888
e2b46574
ES
4889 if (attr->ia_valid & ATTR_SIZE) {
4890 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4891 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4892
4893 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4894 error = -EFBIG;
4895 goto err_out;
4896 }
4897 }
4898 }
4899
ac27a0ec
DK
4900 if (S_ISREG(inode->i_mode) &&
4901 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4902 handle_t *handle;
4903
617ba13b 4904 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4905 if (IS_ERR(handle)) {
4906 error = PTR_ERR(handle);
4907 goto err_out;
4908 }
4909
617ba13b
MC
4910 error = ext4_orphan_add(handle, inode);
4911 EXT4_I(inode)->i_disksize = attr->ia_size;
4912 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4913 if (!error)
4914 error = rc;
617ba13b 4915 ext4_journal_stop(handle);
678aaf48
JK
4916
4917 if (ext4_should_order_data(inode)) {
4918 error = ext4_begin_ordered_truncate(inode,
4919 attr->ia_size);
4920 if (error) {
4921 /* Do as much error cleanup as possible */
4922 handle = ext4_journal_start(inode, 3);
4923 if (IS_ERR(handle)) {
4924 ext4_orphan_del(NULL, inode);
4925 goto err_out;
4926 }
4927 ext4_orphan_del(handle, inode);
4928 ext4_journal_stop(handle);
4929 goto err_out;
4930 }
4931 }
ac27a0ec
DK
4932 }
4933
4934 rc = inode_setattr(inode, attr);
4935
617ba13b 4936 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4937 * transaction handle at all, we need to clean up the in-core
4938 * orphan list manually. */
4939 if (inode->i_nlink)
617ba13b 4940 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4941
4942 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4943 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4944
4945err_out:
617ba13b 4946 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4947 if (!error)
4948 error = rc;
4949 return error;
4950}
4951
3e3398a0
MC
4952int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4953 struct kstat *stat)
4954{
4955 struct inode *inode;
4956 unsigned long delalloc_blocks;
4957
4958 inode = dentry->d_inode;
4959 generic_fillattr(inode, stat);
4960
4961 /*
4962 * We can't update i_blocks if the block allocation is delayed
4963 * otherwise in the case of system crash before the real block
4964 * allocation is done, we will have i_blocks inconsistent with
4965 * on-disk file blocks.
4966 * We always keep i_blocks updated together with real
4967 * allocation. But to not confuse with user, stat
4968 * will return the blocks that include the delayed allocation
4969 * blocks for this file.
4970 */
4971 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4972 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4973 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4974
4975 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4976 return 0;
4977}
ac27a0ec 4978
a02908f1
MC
4979static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4980 int chunk)
4981{
4982 int indirects;
4983
4984 /* if nrblocks are contiguous */
4985 if (chunk) {
4986 /*
4987 * With N contiguous data blocks, it need at most
4988 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4989 * 2 dindirect blocks
4990 * 1 tindirect block
4991 */
4992 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4993 return indirects + 3;
4994 }
4995 /*
4996 * if nrblocks are not contiguous, worse case, each block touch
4997 * a indirect block, and each indirect block touch a double indirect
4998 * block, plus a triple indirect block
4999 */
5000 indirects = nrblocks * 2 + 1;
5001 return indirects;
5002}
5003
5004static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5005{
5006 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5007 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5008 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5009}
ac51d837 5010
ac27a0ec 5011/*
a02908f1
MC
5012 * Account for index blocks, block groups bitmaps and block group
5013 * descriptor blocks if modify datablocks and index blocks
5014 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5015 *
a02908f1
MC
5016 * If datablocks are discontiguous, they are possible to spread over
5017 * different block groups too. If they are contiugous, with flexbg,
5018 * they could still across block group boundary.
ac27a0ec 5019 *
a02908f1
MC
5020 * Also account for superblock, inode, quota and xattr blocks
5021 */
5022int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5023{
8df9675f
TT
5024 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5025 int gdpblocks;
a02908f1
MC
5026 int idxblocks;
5027 int ret = 0;
5028
5029 /*
5030 * How many index blocks need to touch to modify nrblocks?
5031 * The "Chunk" flag indicating whether the nrblocks is
5032 * physically contiguous on disk
5033 *
5034 * For Direct IO and fallocate, they calls get_block to allocate
5035 * one single extent at a time, so they could set the "Chunk" flag
5036 */
5037 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5038
5039 ret = idxblocks;
5040
5041 /*
5042 * Now let's see how many group bitmaps and group descriptors need
5043 * to account
5044 */
5045 groups = idxblocks;
5046 if (chunk)
5047 groups += 1;
5048 else
5049 groups += nrblocks;
5050
5051 gdpblocks = groups;
8df9675f
TT
5052 if (groups > ngroups)
5053 groups = ngroups;
a02908f1
MC
5054 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5055 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5056
5057 /* bitmaps and block group descriptor blocks */
5058 ret += groups + gdpblocks;
5059
5060 /* Blocks for super block, inode, quota and xattr blocks */
5061 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5062
5063 return ret;
5064}
5065
5066/*
5067 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5068 * the modification of a single pages into a single transaction,
5069 * which may include multiple chunks of block allocations.
ac27a0ec 5070 *
525f4ed8 5071 * This could be called via ext4_write_begin()
ac27a0ec 5072 *
525f4ed8 5073 * We need to consider the worse case, when
a02908f1 5074 * one new block per extent.
ac27a0ec 5075 */
a86c6181 5076int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5077{
617ba13b 5078 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5079 int ret;
5080
a02908f1 5081 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5082
a02908f1 5083 /* Account for data blocks for journalled mode */
617ba13b 5084 if (ext4_should_journal_data(inode))
a02908f1 5085 ret += bpp;
ac27a0ec
DK
5086 return ret;
5087}
f3bd1f3f
MC
5088
5089/*
5090 * Calculate the journal credits for a chunk of data modification.
5091 *
5092 * This is called from DIO, fallocate or whoever calling
12b7ac17 5093 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5094 *
5095 * journal buffers for data blocks are not included here, as DIO
5096 * and fallocate do no need to journal data buffers.
5097 */
5098int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5099{
5100 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5101}
5102
ac27a0ec 5103/*
617ba13b 5104 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5105 * Give this, we know that the caller already has write access to iloc->bh.
5106 */
617ba13b 5107int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5108 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5109{
5110 int err = 0;
5111
25ec56b5
JNC
5112 if (test_opt(inode->i_sb, I_VERSION))
5113 inode_inc_iversion(inode);
5114
ac27a0ec
DK
5115 /* the do_update_inode consumes one bh->b_count */
5116 get_bh(iloc->bh);
5117
dab291af 5118 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5119 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5120 put_bh(iloc->bh);
5121 return err;
5122}
5123
5124/*
5125 * On success, We end up with an outstanding reference count against
5126 * iloc->bh. This _must_ be cleaned up later.
5127 */
5128
5129int
617ba13b
MC
5130ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5131 struct ext4_iloc *iloc)
ac27a0ec 5132{
0390131b
FM
5133 int err;
5134
5135 err = ext4_get_inode_loc(inode, iloc);
5136 if (!err) {
5137 BUFFER_TRACE(iloc->bh, "get_write_access");
5138 err = ext4_journal_get_write_access(handle, iloc->bh);
5139 if (err) {
5140 brelse(iloc->bh);
5141 iloc->bh = NULL;
ac27a0ec
DK
5142 }
5143 }
617ba13b 5144 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5145 return err;
5146}
5147
6dd4ee7c
KS
5148/*
5149 * Expand an inode by new_extra_isize bytes.
5150 * Returns 0 on success or negative error number on failure.
5151 */
1d03ec98
AK
5152static int ext4_expand_extra_isize(struct inode *inode,
5153 unsigned int new_extra_isize,
5154 struct ext4_iloc iloc,
5155 handle_t *handle)
6dd4ee7c
KS
5156{
5157 struct ext4_inode *raw_inode;
5158 struct ext4_xattr_ibody_header *header;
5159 struct ext4_xattr_entry *entry;
5160
5161 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5162 return 0;
5163
5164 raw_inode = ext4_raw_inode(&iloc);
5165
5166 header = IHDR(inode, raw_inode);
5167 entry = IFIRST(header);
5168
5169 /* No extended attributes present */
5170 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5171 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5172 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5173 new_extra_isize);
5174 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5175 return 0;
5176 }
5177
5178 /* try to expand with EAs present */
5179 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5180 raw_inode, handle);
5181}
5182
ac27a0ec
DK
5183/*
5184 * What we do here is to mark the in-core inode as clean with respect to inode
5185 * dirtiness (it may still be data-dirty).
5186 * This means that the in-core inode may be reaped by prune_icache
5187 * without having to perform any I/O. This is a very good thing,
5188 * because *any* task may call prune_icache - even ones which
5189 * have a transaction open against a different journal.
5190 *
5191 * Is this cheating? Not really. Sure, we haven't written the
5192 * inode out, but prune_icache isn't a user-visible syncing function.
5193 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5194 * we start and wait on commits.
5195 *
5196 * Is this efficient/effective? Well, we're being nice to the system
5197 * by cleaning up our inodes proactively so they can be reaped
5198 * without I/O. But we are potentially leaving up to five seconds'
5199 * worth of inodes floating about which prune_icache wants us to
5200 * write out. One way to fix that would be to get prune_icache()
5201 * to do a write_super() to free up some memory. It has the desired
5202 * effect.
5203 */
617ba13b 5204int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5205{
617ba13b 5206 struct ext4_iloc iloc;
6dd4ee7c
KS
5207 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5208 static unsigned int mnt_count;
5209 int err, ret;
ac27a0ec
DK
5210
5211 might_sleep();
617ba13b 5212 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5213 if (ext4_handle_valid(handle) &&
5214 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5215 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5216 /*
5217 * We need extra buffer credits since we may write into EA block
5218 * with this same handle. If journal_extend fails, then it will
5219 * only result in a minor loss of functionality for that inode.
5220 * If this is felt to be critical, then e2fsck should be run to
5221 * force a large enough s_min_extra_isize.
5222 */
5223 if ((jbd2_journal_extend(handle,
5224 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5225 ret = ext4_expand_extra_isize(inode,
5226 sbi->s_want_extra_isize,
5227 iloc, handle);
5228 if (ret) {
5229 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5230 if (mnt_count !=
5231 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5232 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5233 "Unable to expand inode %lu. Delete"
5234 " some EAs or run e2fsck.",
5235 inode->i_ino);
c1bddad9
AK
5236 mnt_count =
5237 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5238 }
5239 }
5240 }
5241 }
ac27a0ec 5242 if (!err)
617ba13b 5243 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5244 return err;
5245}
5246
5247/*
617ba13b 5248 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5249 *
5250 * We're really interested in the case where a file is being extended.
5251 * i_size has been changed by generic_commit_write() and we thus need
5252 * to include the updated inode in the current transaction.
5253 *
a269eb18 5254 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5255 * are allocated to the file.
5256 *
5257 * If the inode is marked synchronous, we don't honour that here - doing
5258 * so would cause a commit on atime updates, which we don't bother doing.
5259 * We handle synchronous inodes at the highest possible level.
5260 */
617ba13b 5261void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5262{
617ba13b 5263 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5264 handle_t *handle;
5265
0390131b
FM
5266 if (!ext4_handle_valid(current_handle)) {
5267 ext4_mark_inode_dirty(current_handle, inode);
5268 return;
5269 }
5270
617ba13b 5271 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5272 if (IS_ERR(handle))
5273 goto out;
5274 if (current_handle &&
5275 current_handle->h_transaction != handle->h_transaction) {
5276 /* This task has a transaction open against a different fs */
5277 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5278 __func__);
ac27a0ec
DK
5279 } else {
5280 jbd_debug(5, "marking dirty. outer handle=%p\n",
5281 current_handle);
617ba13b 5282 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5283 }
617ba13b 5284 ext4_journal_stop(handle);
ac27a0ec
DK
5285out:
5286 return;
5287}
5288
5289#if 0
5290/*
5291 * Bind an inode's backing buffer_head into this transaction, to prevent
5292 * it from being flushed to disk early. Unlike
617ba13b 5293 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5294 * returns no iloc structure, so the caller needs to repeat the iloc
5295 * lookup to mark the inode dirty later.
5296 */
617ba13b 5297static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5298{
617ba13b 5299 struct ext4_iloc iloc;
ac27a0ec
DK
5300
5301 int err = 0;
5302 if (handle) {
617ba13b 5303 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5304 if (!err) {
5305 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5306 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5307 if (!err)
0390131b
FM
5308 err = ext4_handle_dirty_metadata(handle,
5309 inode,
5310 iloc.bh);
ac27a0ec
DK
5311 brelse(iloc.bh);
5312 }
5313 }
617ba13b 5314 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5315 return err;
5316}
5317#endif
5318
617ba13b 5319int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5320{
5321 journal_t *journal;
5322 handle_t *handle;
5323 int err;
5324
5325 /*
5326 * We have to be very careful here: changing a data block's
5327 * journaling status dynamically is dangerous. If we write a
5328 * data block to the journal, change the status and then delete
5329 * that block, we risk forgetting to revoke the old log record
5330 * from the journal and so a subsequent replay can corrupt data.
5331 * So, first we make sure that the journal is empty and that
5332 * nobody is changing anything.
5333 */
5334
617ba13b 5335 journal = EXT4_JOURNAL(inode);
0390131b
FM
5336 if (!journal)
5337 return 0;
d699594d 5338 if (is_journal_aborted(journal))
ac27a0ec
DK
5339 return -EROFS;
5340
dab291af
MC
5341 jbd2_journal_lock_updates(journal);
5342 jbd2_journal_flush(journal);
ac27a0ec
DK
5343
5344 /*
5345 * OK, there are no updates running now, and all cached data is
5346 * synced to disk. We are now in a completely consistent state
5347 * which doesn't have anything in the journal, and we know that
5348 * no filesystem updates are running, so it is safe to modify
5349 * the inode's in-core data-journaling state flag now.
5350 */
5351
5352 if (val)
617ba13b 5353 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5354 else
617ba13b
MC
5355 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5356 ext4_set_aops(inode);
ac27a0ec 5357
dab291af 5358 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5359
5360 /* Finally we can mark the inode as dirty. */
5361
617ba13b 5362 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5363 if (IS_ERR(handle))
5364 return PTR_ERR(handle);
5365
617ba13b 5366 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5367 ext4_handle_sync(handle);
617ba13b
MC
5368 ext4_journal_stop(handle);
5369 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5370
5371 return err;
5372}
2e9ee850
AK
5373
5374static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5375{
5376 return !buffer_mapped(bh);
5377}
5378
c2ec175c 5379int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5380{
c2ec175c 5381 struct page *page = vmf->page;
2e9ee850
AK
5382 loff_t size;
5383 unsigned long len;
5384 int ret = -EINVAL;
79f0be8d 5385 void *fsdata;
2e9ee850
AK
5386 struct file *file = vma->vm_file;
5387 struct inode *inode = file->f_path.dentry->d_inode;
5388 struct address_space *mapping = inode->i_mapping;
5389
5390 /*
5391 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5392 * get i_mutex because we are already holding mmap_sem.
5393 */
5394 down_read(&inode->i_alloc_sem);
5395 size = i_size_read(inode);
5396 if (page->mapping != mapping || size <= page_offset(page)
5397 || !PageUptodate(page)) {
5398 /* page got truncated from under us? */
5399 goto out_unlock;
5400 }
5401 ret = 0;
5402 if (PageMappedToDisk(page))
5403 goto out_unlock;
5404
5405 if (page->index == size >> PAGE_CACHE_SHIFT)
5406 len = size & ~PAGE_CACHE_MASK;
5407 else
5408 len = PAGE_CACHE_SIZE;
5409
5410 if (page_has_buffers(page)) {
5411 /* return if we have all the buffers mapped */
5412 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5413 ext4_bh_unmapped))
5414 goto out_unlock;
5415 }
5416 /*
5417 * OK, we need to fill the hole... Do write_begin write_end
5418 * to do block allocation/reservation.We are not holding
5419 * inode.i__mutex here. That allow * parallel write_begin,
5420 * write_end call. lock_page prevent this from happening
5421 * on the same page though
5422 */
5423 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5424 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5425 if (ret < 0)
5426 goto out_unlock;
5427 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5428 len, len, page, fsdata);
2e9ee850
AK
5429 if (ret < 0)
5430 goto out_unlock;
5431 ret = 0;
5432out_unlock:
c2ec175c
NP
5433 if (ret)
5434 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5435 up_read(&inode->i_alloc_sem);
5436 return ret;
5437}
This page took 0.659171 seconds and 5 git commands to generate.