f2fs: set page private for inmemory pages for truncation
[deliverable/linux.git] / fs / f2fs / segment.c
CommitLineData
0a8165d7 1/*
351df4b2
JK
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
690e4a3e 15#include <linux/prefetch.h>
6b4afdd7 16#include <linux/kthread.h>
351df4b2 17#include <linux/vmalloc.h>
74de593a 18#include <linux/swap.h>
351df4b2
JK
19
20#include "f2fs.h"
21#include "segment.h"
22#include "node.h"
6ec178da 23#include <trace/events/f2fs.h>
351df4b2 24
9a7f143a
CL
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
7fd9e544 27static struct kmem_cache *discard_entry_slab;
184a5cd2 28static struct kmem_cache *sit_entry_set_slab;
88b88a66 29static struct kmem_cache *inmem_entry_slab;
7fd9e544 30
9a7f143a
CL
31/*
32 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
33 * MSB and LSB are reversed in a byte by f2fs_set_bit.
34 */
35static inline unsigned long __reverse_ffs(unsigned long word)
36{
37 int num = 0;
38
39#if BITS_PER_LONG == 64
40 if ((word & 0xffffffff) == 0) {
41 num += 32;
42 word >>= 32;
43 }
44#endif
45 if ((word & 0xffff) == 0) {
46 num += 16;
47 word >>= 16;
48 }
49 if ((word & 0xff) == 0) {
50 num += 8;
51 word >>= 8;
52 }
53 if ((word & 0xf0) == 0)
54 num += 4;
55 else
56 word >>= 4;
57 if ((word & 0xc) == 0)
58 num += 2;
59 else
60 word >>= 2;
61 if ((word & 0x2) == 0)
62 num += 1;
63 return num;
64}
65
66/*
e1c42045 67 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
9a7f143a
CL
68 * f2fs_set_bit makes MSB and LSB reversed in a byte.
69 * Example:
70 * LSB <--> MSB
71 * f2fs_set_bit(0, bitmap) => 0000 0001
72 * f2fs_set_bit(7, bitmap) => 1000 0000
73 */
74static unsigned long __find_rev_next_bit(const unsigned long *addr,
75 unsigned long size, unsigned long offset)
76{
77 const unsigned long *p = addr + BIT_WORD(offset);
78 unsigned long result = offset & ~(BITS_PER_LONG - 1);
79 unsigned long tmp;
80 unsigned long mask, submask;
81 unsigned long quot, rest;
82
83 if (offset >= size)
84 return size;
85
86 size -= result;
87 offset %= BITS_PER_LONG;
88 if (!offset)
89 goto aligned;
90
91 tmp = *(p++);
92 quot = (offset >> 3) << 3;
93 rest = offset & 0x7;
94 mask = ~0UL << quot;
95 submask = (unsigned char)(0xff << rest) >> rest;
96 submask <<= quot;
97 mask &= submask;
98 tmp &= mask;
99 if (size < BITS_PER_LONG)
100 goto found_first;
101 if (tmp)
102 goto found_middle;
103
104 size -= BITS_PER_LONG;
105 result += BITS_PER_LONG;
106aligned:
107 while (size & ~(BITS_PER_LONG-1)) {
108 tmp = *(p++);
109 if (tmp)
110 goto found_middle;
111 result += BITS_PER_LONG;
112 size -= BITS_PER_LONG;
113 }
114 if (!size)
115 return result;
116 tmp = *p;
117found_first:
118 tmp &= (~0UL >> (BITS_PER_LONG - size));
119 if (tmp == 0UL) /* Are any bits set? */
120 return result + size; /* Nope. */
121found_middle:
122 return result + __reverse_ffs(tmp);
123}
124
125static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
126 unsigned long size, unsigned long offset)
127{
128 const unsigned long *p = addr + BIT_WORD(offset);
129 unsigned long result = offset & ~(BITS_PER_LONG - 1);
130 unsigned long tmp;
131 unsigned long mask, submask;
132 unsigned long quot, rest;
133
134 if (offset >= size)
135 return size;
136
137 size -= result;
138 offset %= BITS_PER_LONG;
139 if (!offset)
140 goto aligned;
141
142 tmp = *(p++);
143 quot = (offset >> 3) << 3;
144 rest = offset & 0x7;
145 mask = ~(~0UL << quot);
146 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
147 submask <<= quot;
148 mask += submask;
149 tmp |= mask;
150 if (size < BITS_PER_LONG)
151 goto found_first;
152 if (~tmp)
153 goto found_middle;
154
155 size -= BITS_PER_LONG;
156 result += BITS_PER_LONG;
157aligned:
158 while (size & ~(BITS_PER_LONG - 1)) {
159 tmp = *(p++);
160 if (~tmp)
161 goto found_middle;
162 result += BITS_PER_LONG;
163 size -= BITS_PER_LONG;
164 }
165 if (!size)
166 return result;
167 tmp = *p;
168
169found_first:
170 tmp |= ~0UL << size;
171 if (tmp == ~0UL) /* Are any bits zero? */
172 return result + size; /* Nope. */
173found_middle:
174 return result + __reverse_ffz(tmp);
175}
176
88b88a66
JK
177void register_inmem_page(struct inode *inode, struct page *page)
178{
179 struct f2fs_inode_info *fi = F2FS_I(inode);
180 struct inmem_pages *new;
34ba94ba 181 int err;
9be32d72 182
0722b101
JK
183 SetPagePrivate(page);
184
88b88a66
JK
185 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
186
187 /* add atomic page indices to the list */
188 new->page = page;
189 INIT_LIST_HEAD(&new->list);
9be32d72 190retry:
88b88a66
JK
191 /* increase reference count with clean state */
192 mutex_lock(&fi->inmem_lock);
34ba94ba
JK
193 err = radix_tree_insert(&fi->inmem_root, page->index, new);
194 if (err == -EEXIST) {
195 mutex_unlock(&fi->inmem_lock);
196 kmem_cache_free(inmem_entry_slab, new);
197 return;
198 } else if (err) {
199 mutex_unlock(&fi->inmem_lock);
34ba94ba
JK
200 goto retry;
201 }
88b88a66
JK
202 get_page(page);
203 list_add_tail(&new->list, &fi->inmem_pages);
204 mutex_unlock(&fi->inmem_lock);
205}
206
cbcb2872
JK
207void invalidate_inmem_page(struct inode *inode, struct page *page)
208{
209 struct f2fs_inode_info *fi = F2FS_I(inode);
210 struct inmem_pages *cur;
211
212 mutex_lock(&fi->inmem_lock);
213 cur = radix_tree_lookup(&fi->inmem_root, page->index);
214 if (cur) {
215 radix_tree_delete(&fi->inmem_root, cur->page->index);
216 f2fs_put_page(cur->page, 0);
217 list_del(&cur->list);
218 kmem_cache_free(inmem_entry_slab, cur);
219 }
220 mutex_unlock(&fi->inmem_lock);
221}
222
88b88a66
JK
223void commit_inmem_pages(struct inode *inode, bool abort)
224{
225 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
226 struct f2fs_inode_info *fi = F2FS_I(inode);
227 struct inmem_pages *cur, *tmp;
228 bool submit_bio = false;
229 struct f2fs_io_info fio = {
230 .type = DATA,
231 .rw = WRITE_SYNC,
232 };
233
0341845e
JK
234 /*
235 * The abort is true only when f2fs_evict_inode is called.
236 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
237 * that we don't need to call f2fs_balance_fs.
238 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
239 * inode becomes free by iget_locked in f2fs_iget.
240 */
241 if (!abort)
242 f2fs_balance_fs(sbi);
243
88b88a66
JK
244 f2fs_lock_op(sbi);
245
246 mutex_lock(&fi->inmem_lock);
247 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
248 lock_page(cur->page);
249 if (!abort && cur->page->mapping == inode->i_mapping) {
250 f2fs_wait_on_page_writeback(cur->page, DATA);
251 if (clear_page_dirty_for_io(cur->page))
252 inode_dec_dirty_pages(inode);
253 do_write_data_page(cur->page, &fio);
254 submit_bio = true;
255 }
34ba94ba 256 radix_tree_delete(&fi->inmem_root, cur->page->index);
88b88a66
JK
257 f2fs_put_page(cur->page, 1);
258 list_del(&cur->list);
259 kmem_cache_free(inmem_entry_slab, cur);
260 }
261 if (submit_bio)
262 f2fs_submit_merged_bio(sbi, DATA, WRITE);
263 mutex_unlock(&fi->inmem_lock);
264
265 filemap_fdatawait_range(inode->i_mapping, 0, LLONG_MAX);
266 f2fs_unlock_op(sbi);
267}
268
0a8165d7 269/*
351df4b2
JK
270 * This function balances dirty node and dentry pages.
271 * In addition, it controls garbage collection.
272 */
273void f2fs_balance_fs(struct f2fs_sb_info *sbi)
274{
351df4b2 275 /*
029cd28c
JK
276 * We should do GC or end up with checkpoint, if there are so many dirty
277 * dir/node pages without enough free segments.
351df4b2 278 */
43727527 279 if (has_not_enough_free_secs(sbi, 0)) {
351df4b2 280 mutex_lock(&sbi->gc_mutex);
408e9375 281 f2fs_gc(sbi);
351df4b2
JK
282 }
283}
284
4660f9c0
JK
285void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
286{
287 /* check the # of cached NAT entries and prefree segments */
288 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
e5e7ea3c
JK
289 excess_prefree_segs(sbi) ||
290 available_free_memory(sbi, INO_ENTRIES))
4660f9c0
JK
291 f2fs_sync_fs(sbi->sb, true);
292}
293
2163d198 294static int issue_flush_thread(void *data)
6b4afdd7
JK
295{
296 struct f2fs_sb_info *sbi = data;
a688b9d9
GZ
297 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
298 wait_queue_head_t *q = &fcc->flush_wait_queue;
6b4afdd7
JK
299repeat:
300 if (kthread_should_stop())
301 return 0;
302
721bd4d5 303 if (!llist_empty(&fcc->issue_list)) {
6b4afdd7
JK
304 struct bio *bio = bio_alloc(GFP_NOIO, 0);
305 struct flush_cmd *cmd, *next;
306 int ret;
307
721bd4d5
GZ
308 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
309 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
310
6b4afdd7
JK
311 bio->bi_bdev = sbi->sb->s_bdev;
312 ret = submit_bio_wait(WRITE_FLUSH, bio);
313
721bd4d5
GZ
314 llist_for_each_entry_safe(cmd, next,
315 fcc->dispatch_list, llnode) {
6b4afdd7 316 cmd->ret = ret;
6b4afdd7
JK
317 complete(&cmd->wait);
318 }
a4ed23f2 319 bio_put(bio);
a688b9d9 320 fcc->dispatch_list = NULL;
6b4afdd7
JK
321 }
322
a688b9d9 323 wait_event_interruptible(*q,
721bd4d5 324 kthread_should_stop() || !llist_empty(&fcc->issue_list));
6b4afdd7
JK
325 goto repeat;
326}
327
328int f2fs_issue_flush(struct f2fs_sb_info *sbi)
329{
a688b9d9 330 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
adf8d90b 331 struct flush_cmd cmd;
6b4afdd7 332
24a9ee0f
JK
333 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
334 test_opt(sbi, FLUSH_MERGE));
335
0f7b2abd
JK
336 if (test_opt(sbi, NOBARRIER))
337 return 0;
338
6b4afdd7
JK
339 if (!test_opt(sbi, FLUSH_MERGE))
340 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
341
adf8d90b 342 init_completion(&cmd.wait);
6b4afdd7 343
721bd4d5 344 llist_add(&cmd.llnode, &fcc->issue_list);
6b4afdd7 345
a688b9d9
GZ
346 if (!fcc->dispatch_list)
347 wake_up(&fcc->flush_wait_queue);
6b4afdd7 348
adf8d90b
CY
349 wait_for_completion(&cmd.wait);
350
351 return cmd.ret;
6b4afdd7
JK
352}
353
2163d198
GZ
354int create_flush_cmd_control(struct f2fs_sb_info *sbi)
355{
356 dev_t dev = sbi->sb->s_bdev->bd_dev;
357 struct flush_cmd_control *fcc;
358 int err = 0;
359
360 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
361 if (!fcc)
362 return -ENOMEM;
2163d198 363 init_waitqueue_head(&fcc->flush_wait_queue);
721bd4d5 364 init_llist_head(&fcc->issue_list);
6b2920a5 365 SM_I(sbi)->cmd_control_info = fcc;
2163d198
GZ
366 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
367 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
368 if (IS_ERR(fcc->f2fs_issue_flush)) {
369 err = PTR_ERR(fcc->f2fs_issue_flush);
370 kfree(fcc);
6b2920a5 371 SM_I(sbi)->cmd_control_info = NULL;
2163d198
GZ
372 return err;
373 }
2163d198
GZ
374
375 return err;
376}
377
378void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
379{
6b2920a5 380 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
2163d198
GZ
381
382 if (fcc && fcc->f2fs_issue_flush)
383 kthread_stop(fcc->f2fs_issue_flush);
384 kfree(fcc);
6b2920a5 385 SM_I(sbi)->cmd_control_info = NULL;
2163d198
GZ
386}
387
351df4b2
JK
388static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
389 enum dirty_type dirty_type)
390{
391 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
392
393 /* need not be added */
394 if (IS_CURSEG(sbi, segno))
395 return;
396
397 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
398 dirty_i->nr_dirty[dirty_type]++;
399
400 if (dirty_type == DIRTY) {
401 struct seg_entry *sentry = get_seg_entry(sbi, segno);
4625d6aa 402 enum dirty_type t = sentry->type;
b2f2c390 403
ec325b52
JK
404 if (unlikely(t >= DIRTY)) {
405 f2fs_bug_on(sbi, 1);
406 return;
407 }
4625d6aa
CL
408 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
409 dirty_i->nr_dirty[t]++;
351df4b2
JK
410 }
411}
412
413static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
414 enum dirty_type dirty_type)
415{
416 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
417
418 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
419 dirty_i->nr_dirty[dirty_type]--;
420
421 if (dirty_type == DIRTY) {
4625d6aa
CL
422 struct seg_entry *sentry = get_seg_entry(sbi, segno);
423 enum dirty_type t = sentry->type;
424
425 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
426 dirty_i->nr_dirty[t]--;
b2f2c390 427
5ec4e49f
JK
428 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
429 clear_bit(GET_SECNO(sbi, segno),
430 dirty_i->victim_secmap);
351df4b2
JK
431 }
432}
433
0a8165d7 434/*
351df4b2
JK
435 * Should not occur error such as -ENOMEM.
436 * Adding dirty entry into seglist is not critical operation.
437 * If a given segment is one of current working segments, it won't be added.
438 */
8d8451af 439static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
351df4b2
JK
440{
441 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
442 unsigned short valid_blocks;
443
444 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
445 return;
446
447 mutex_lock(&dirty_i->seglist_lock);
448
449 valid_blocks = get_valid_blocks(sbi, segno, 0);
450
451 if (valid_blocks == 0) {
452 __locate_dirty_segment(sbi, segno, PRE);
453 __remove_dirty_segment(sbi, segno, DIRTY);
454 } else if (valid_blocks < sbi->blocks_per_seg) {
455 __locate_dirty_segment(sbi, segno, DIRTY);
456 } else {
457 /* Recovery routine with SSR needs this */
458 __remove_dirty_segment(sbi, segno, DIRTY);
459 }
460
461 mutex_unlock(&dirty_i->seglist_lock);
351df4b2
JK
462}
463
1e87a78d 464static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
37208879
JK
465 block_t blkstart, block_t blklen)
466{
55cf9cb6
CY
467 sector_t start = SECTOR_FROM_BLOCK(blkstart);
468 sector_t len = SECTOR_FROM_BLOCK(blklen);
1661d07c 469 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
1e87a78d
JK
470 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
471}
472
cf2271e7 473void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
1e87a78d 474{
1e87a78d
JK
475 if (f2fs_issue_discard(sbi, blkaddr, 1)) {
476 struct page *page = grab_meta_page(sbi, blkaddr);
477 /* zero-filled page */
478 set_page_dirty(page);
479 f2fs_put_page(page, 1);
480 }
37208879
JK
481}
482
adf4983b
JK
483static void __add_discard_entry(struct f2fs_sb_info *sbi,
484 struct cp_control *cpc, unsigned int start, unsigned int end)
b2955550
JK
485{
486 struct list_head *head = &SM_I(sbi)->discard_list;
adf4983b
JK
487 struct discard_entry *new, *last;
488
489 if (!list_empty(head)) {
490 last = list_last_entry(head, struct discard_entry, list);
491 if (START_BLOCK(sbi, cpc->trim_start) + start ==
492 last->blkaddr + last->len) {
493 last->len += end - start;
494 goto done;
495 }
496 }
497
498 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
499 INIT_LIST_HEAD(&new->list);
500 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
501 new->len = end - start;
502 list_add_tail(&new->list, head);
503done:
504 SM_I(sbi)->nr_discards += end - start;
505 cpc->trimmed += end - start;
506}
507
508static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
509{
b2955550
JK
510 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
511 int max_blocks = sbi->blocks_per_seg;
4b2fecc8 512 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
b2955550
JK
513 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
514 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
515 unsigned long dmap[entries];
516 unsigned int start = 0, end = -1;
4b2fecc8 517 bool force = (cpc->reason == CP_DISCARD);
b2955550
JK
518 int i;
519
4b2fecc8 520 if (!force && !test_opt(sbi, DISCARD))
b2955550
JK
521 return;
522
4b2fecc8
JK
523 if (force && !se->valid_blocks) {
524 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
525 /*
526 * if this segment is registered in the prefree list, then
527 * we should skip adding a discard candidate, and let the
528 * checkpoint do that later.
529 */
530 mutex_lock(&dirty_i->seglist_lock);
531 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
532 mutex_unlock(&dirty_i->seglist_lock);
533 cpc->trimmed += sbi->blocks_per_seg;
534 return;
535 }
536 mutex_unlock(&dirty_i->seglist_lock);
537
adf4983b 538 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
4b2fecc8
JK
539 return;
540 }
541
b2955550
JK
542 /* zero block will be discarded through the prefree list */
543 if (!se->valid_blocks || se->valid_blocks == max_blocks)
544 return;
545
546 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
547 for (i = 0; i < entries; i++)
e3fb1b79 548 dmap[i] = ~(cur_map[i] | ckpt_map[i]);
b2955550 549
4b2fecc8 550 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
b2955550
JK
551 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
552 if (start >= max_blocks)
553 break;
554
555 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
556
4b2fecc8
JK
557 if (end - start < cpc->trim_minlen)
558 continue;
559
adf4983b 560 __add_discard_entry(sbi, cpc, start, end);
b2955550
JK
561 }
562}
563
4b2fecc8
JK
564void release_discard_addrs(struct f2fs_sb_info *sbi)
565{
566 struct list_head *head = &(SM_I(sbi)->discard_list);
567 struct discard_entry *entry, *this;
568
569 /* drop caches */
570 list_for_each_entry_safe(entry, this, head, list) {
571 list_del(&entry->list);
572 kmem_cache_free(discard_entry_slab, entry);
573 }
574}
575
0a8165d7 576/*
351df4b2
JK
577 * Should call clear_prefree_segments after checkpoint is done.
578 */
579static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
580{
581 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
b65ee148 582 unsigned int segno;
351df4b2
JK
583
584 mutex_lock(&dirty_i->seglist_lock);
7cd8558b 585 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
351df4b2 586 __set_test_and_free(sbi, segno);
351df4b2
JK
587 mutex_unlock(&dirty_i->seglist_lock);
588}
589
590void clear_prefree_segments(struct f2fs_sb_info *sbi)
591{
b2955550 592 struct list_head *head = &(SM_I(sbi)->discard_list);
2d7b822a 593 struct discard_entry *entry, *this;
351df4b2 594 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
29e59c14 595 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
29e59c14 596 unsigned int start = 0, end = -1;
351df4b2
JK
597
598 mutex_lock(&dirty_i->seglist_lock);
29e59c14 599
351df4b2 600 while (1) {
29e59c14 601 int i;
7cd8558b
JK
602 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
603 if (start >= MAIN_SEGS(sbi))
351df4b2 604 break;
7cd8558b
JK
605 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
606 start + 1);
29e59c14
CL
607
608 for (i = start; i < end; i++)
609 clear_bit(i, prefree_map);
610
611 dirty_i->nr_dirty[PRE] -= end - start;
612
613 if (!test_opt(sbi, DISCARD))
614 continue;
351df4b2 615
37208879
JK
616 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
617 (end - start) << sbi->log_blocks_per_seg);
351df4b2
JK
618 }
619 mutex_unlock(&dirty_i->seglist_lock);
b2955550
JK
620
621 /* send small discards */
2d7b822a 622 list_for_each_entry_safe(entry, this, head, list) {
37208879 623 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
b2955550
JK
624 list_del(&entry->list);
625 SM_I(sbi)->nr_discards -= entry->len;
626 kmem_cache_free(discard_entry_slab, entry);
627 }
351df4b2
JK
628}
629
184a5cd2 630static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
351df4b2
JK
631{
632 struct sit_info *sit_i = SIT_I(sbi);
184a5cd2
CY
633
634 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
351df4b2 635 sit_i->dirty_sentries++;
184a5cd2
CY
636 return false;
637 }
638
639 return true;
351df4b2
JK
640}
641
642static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
643 unsigned int segno, int modified)
644{
645 struct seg_entry *se = get_seg_entry(sbi, segno);
646 se->type = type;
647 if (modified)
648 __mark_sit_entry_dirty(sbi, segno);
649}
650
651static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
652{
653 struct seg_entry *se;
654 unsigned int segno, offset;
655 long int new_vblocks;
656
657 segno = GET_SEGNO(sbi, blkaddr);
658
659 se = get_seg_entry(sbi, segno);
660 new_vblocks = se->valid_blocks + del;
491c0854 661 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
351df4b2 662
9850cf4a 663 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
351df4b2
JK
664 (new_vblocks > sbi->blocks_per_seg)));
665
666 se->valid_blocks = new_vblocks;
667 se->mtime = get_mtime(sbi);
668 SIT_I(sbi)->max_mtime = se->mtime;
669
670 /* Update valid block bitmap */
671 if (del > 0) {
52aca074 672 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
05796763 673 f2fs_bug_on(sbi, 1);
351df4b2 674 } else {
52aca074 675 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
05796763 676 f2fs_bug_on(sbi, 1);
351df4b2
JK
677 }
678 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
679 se->ckpt_valid_blocks += del;
680
681 __mark_sit_entry_dirty(sbi, segno);
682
683 /* update total number of valid blocks to be written in ckpt area */
684 SIT_I(sbi)->written_valid_blocks += del;
685
686 if (sbi->segs_per_sec > 1)
687 get_sec_entry(sbi, segno)->valid_blocks += del;
688}
689
5e443818 690void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
351df4b2 691{
5e443818
JK
692 update_sit_entry(sbi, new, 1);
693 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
694 update_sit_entry(sbi, old, -1);
695
696 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
697 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
351df4b2
JK
698}
699
700void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
701{
702 unsigned int segno = GET_SEGNO(sbi, addr);
703 struct sit_info *sit_i = SIT_I(sbi);
704
9850cf4a 705 f2fs_bug_on(sbi, addr == NULL_ADDR);
351df4b2
JK
706 if (addr == NEW_ADDR)
707 return;
708
709 /* add it into sit main buffer */
710 mutex_lock(&sit_i->sentry_lock);
711
712 update_sit_entry(sbi, addr, -1);
713
714 /* add it into dirty seglist */
715 locate_dirty_segment(sbi, segno);
716
717 mutex_unlock(&sit_i->sentry_lock);
718}
719
0a8165d7 720/*
351df4b2
JK
721 * This function should be resided under the curseg_mutex lock
722 */
723static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
e79efe3b 724 struct f2fs_summary *sum)
351df4b2
JK
725{
726 struct curseg_info *curseg = CURSEG_I(sbi, type);
727 void *addr = curseg->sum_blk;
e79efe3b 728 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
351df4b2 729 memcpy(addr, sum, sizeof(struct f2fs_summary));
351df4b2
JK
730}
731
0a8165d7 732/*
351df4b2
JK
733 * Calculate the number of current summary pages for writing
734 */
735int npages_for_summary_flush(struct f2fs_sb_info *sbi)
736{
351df4b2 737 int valid_sum_count = 0;
9a47938b 738 int i, sum_in_page;
351df4b2
JK
739
740 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
741 if (sbi->ckpt->alloc_type[i] == SSR)
742 valid_sum_count += sbi->blocks_per_seg;
743 else
744 valid_sum_count += curseg_blkoff(sbi, i);
745 }
746
9a47938b
FL
747 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
748 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
749 if (valid_sum_count <= sum_in_page)
351df4b2 750 return 1;
9a47938b
FL
751 else if ((valid_sum_count - sum_in_page) <=
752 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
351df4b2
JK
753 return 2;
754 return 3;
755}
756
0a8165d7 757/*
351df4b2
JK
758 * Caller should put this summary page
759 */
760struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
761{
762 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
763}
764
765static void write_sum_page(struct f2fs_sb_info *sbi,
766 struct f2fs_summary_block *sum_blk, block_t blk_addr)
767{
768 struct page *page = grab_meta_page(sbi, blk_addr);
769 void *kaddr = page_address(page);
770 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
771 set_page_dirty(page);
772 f2fs_put_page(page, 1);
773}
774
60374688
JK
775static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
776{
777 struct curseg_info *curseg = CURSEG_I(sbi, type);
81fb5e87 778 unsigned int segno = curseg->segno + 1;
60374688
JK
779 struct free_segmap_info *free_i = FREE_I(sbi);
780
7cd8558b 781 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
81fb5e87 782 return !test_bit(segno, free_i->free_segmap);
60374688
JK
783 return 0;
784}
785
0a8165d7 786/*
351df4b2
JK
787 * Find a new segment from the free segments bitmap to right order
788 * This function should be returned with success, otherwise BUG
789 */
790static void get_new_segment(struct f2fs_sb_info *sbi,
791 unsigned int *newseg, bool new_sec, int dir)
792{
793 struct free_segmap_info *free_i = FREE_I(sbi);
351df4b2 794 unsigned int segno, secno, zoneno;
7cd8558b 795 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
351df4b2
JK
796 unsigned int hint = *newseg / sbi->segs_per_sec;
797 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
798 unsigned int left_start = hint;
799 bool init = true;
800 int go_left = 0;
801 int i;
802
803 write_lock(&free_i->segmap_lock);
804
805 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
806 segno = find_next_zero_bit(free_i->free_segmap,
7cd8558b 807 MAIN_SEGS(sbi), *newseg + 1);
33afa7fd
JK
808 if (segno - *newseg < sbi->segs_per_sec -
809 (*newseg % sbi->segs_per_sec))
351df4b2
JK
810 goto got_it;
811 }
812find_other_zone:
7cd8558b
JK
813 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
814 if (secno >= MAIN_SECS(sbi)) {
351df4b2
JK
815 if (dir == ALLOC_RIGHT) {
816 secno = find_next_zero_bit(free_i->free_secmap,
7cd8558b
JK
817 MAIN_SECS(sbi), 0);
818 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
351df4b2
JK
819 } else {
820 go_left = 1;
821 left_start = hint - 1;
822 }
823 }
824 if (go_left == 0)
825 goto skip_left;
826
827 while (test_bit(left_start, free_i->free_secmap)) {
828 if (left_start > 0) {
829 left_start--;
830 continue;
831 }
832 left_start = find_next_zero_bit(free_i->free_secmap,
7cd8558b
JK
833 MAIN_SECS(sbi), 0);
834 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
351df4b2
JK
835 break;
836 }
837 secno = left_start;
838skip_left:
839 hint = secno;
840 segno = secno * sbi->segs_per_sec;
841 zoneno = secno / sbi->secs_per_zone;
842
843 /* give up on finding another zone */
844 if (!init)
845 goto got_it;
846 if (sbi->secs_per_zone == 1)
847 goto got_it;
848 if (zoneno == old_zoneno)
849 goto got_it;
850 if (dir == ALLOC_LEFT) {
851 if (!go_left && zoneno + 1 >= total_zones)
852 goto got_it;
853 if (go_left && zoneno == 0)
854 goto got_it;
855 }
856 for (i = 0; i < NR_CURSEG_TYPE; i++)
857 if (CURSEG_I(sbi, i)->zone == zoneno)
858 break;
859
860 if (i < NR_CURSEG_TYPE) {
861 /* zone is in user, try another */
862 if (go_left)
863 hint = zoneno * sbi->secs_per_zone - 1;
864 else if (zoneno + 1 >= total_zones)
865 hint = 0;
866 else
867 hint = (zoneno + 1) * sbi->secs_per_zone;
868 init = false;
869 goto find_other_zone;
870 }
871got_it:
872 /* set it as dirty segment in free segmap */
9850cf4a 873 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
351df4b2
JK
874 __set_inuse(sbi, segno);
875 *newseg = segno;
876 write_unlock(&free_i->segmap_lock);
877}
878
879static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
880{
881 struct curseg_info *curseg = CURSEG_I(sbi, type);
882 struct summary_footer *sum_footer;
883
884 curseg->segno = curseg->next_segno;
885 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
886 curseg->next_blkoff = 0;
887 curseg->next_segno = NULL_SEGNO;
888
889 sum_footer = &(curseg->sum_blk->footer);
890 memset(sum_footer, 0, sizeof(struct summary_footer));
891 if (IS_DATASEG(type))
892 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
893 if (IS_NODESEG(type))
894 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
895 __set_sit_entry_type(sbi, type, curseg->segno, modified);
896}
897
0a8165d7 898/*
351df4b2
JK
899 * Allocate a current working segment.
900 * This function always allocates a free segment in LFS manner.
901 */
902static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
903{
904 struct curseg_info *curseg = CURSEG_I(sbi, type);
905 unsigned int segno = curseg->segno;
906 int dir = ALLOC_LEFT;
907
908 write_sum_page(sbi, curseg->sum_blk,
81fb5e87 909 GET_SUM_BLOCK(sbi, segno));
351df4b2
JK
910 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
911 dir = ALLOC_RIGHT;
912
913 if (test_opt(sbi, NOHEAP))
914 dir = ALLOC_RIGHT;
915
916 get_new_segment(sbi, &segno, new_sec, dir);
917 curseg->next_segno = segno;
918 reset_curseg(sbi, type, 1);
919 curseg->alloc_type = LFS;
920}
921
922static void __next_free_blkoff(struct f2fs_sb_info *sbi,
923 struct curseg_info *seg, block_t start)
924{
925 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
e81c93cf
CL
926 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
927 unsigned long target_map[entries];
928 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
929 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
930 int i, pos;
931
932 for (i = 0; i < entries; i++)
933 target_map[i] = ckpt_map[i] | cur_map[i];
934
935 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
936
937 seg->next_blkoff = pos;
351df4b2
JK
938}
939
0a8165d7 940/*
351df4b2
JK
941 * If a segment is written by LFS manner, next block offset is just obtained
942 * by increasing the current block offset. However, if a segment is written by
943 * SSR manner, next block offset obtained by calling __next_free_blkoff
944 */
945static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
946 struct curseg_info *seg)
947{
948 if (seg->alloc_type == SSR)
949 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
950 else
951 seg->next_blkoff++;
952}
953
0a8165d7 954/*
e1c42045 955 * This function always allocates a used segment(from dirty seglist) by SSR
351df4b2
JK
956 * manner, so it should recover the existing segment information of valid blocks
957 */
958static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
959{
960 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
961 struct curseg_info *curseg = CURSEG_I(sbi, type);
962 unsigned int new_segno = curseg->next_segno;
963 struct f2fs_summary_block *sum_node;
964 struct page *sum_page;
965
966 write_sum_page(sbi, curseg->sum_blk,
967 GET_SUM_BLOCK(sbi, curseg->segno));
968 __set_test_and_inuse(sbi, new_segno);
969
970 mutex_lock(&dirty_i->seglist_lock);
971 __remove_dirty_segment(sbi, new_segno, PRE);
972 __remove_dirty_segment(sbi, new_segno, DIRTY);
973 mutex_unlock(&dirty_i->seglist_lock);
974
975 reset_curseg(sbi, type, 1);
976 curseg->alloc_type = SSR;
977 __next_free_blkoff(sbi, curseg, 0);
978
979 if (reuse) {
980 sum_page = get_sum_page(sbi, new_segno);
981 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
982 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
983 f2fs_put_page(sum_page, 1);
984 }
985}
986
43727527
JK
987static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
988{
989 struct curseg_info *curseg = CURSEG_I(sbi, type);
990 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
991
992 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
993 return v_ops->get_victim(sbi,
994 &(curseg)->next_segno, BG_GC, type, SSR);
995
996 /* For data segments, let's do SSR more intensively */
997 for (; type >= CURSEG_HOT_DATA; type--)
998 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
999 BG_GC, type, SSR))
1000 return 1;
1001 return 0;
1002}
1003
351df4b2
JK
1004/*
1005 * flush out current segment and replace it with new segment
1006 * This function should be returned with success, otherwise BUG
1007 */
1008static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1009 int type, bool force)
1010{
1011 struct curseg_info *curseg = CURSEG_I(sbi, type);
351df4b2 1012
7b405275 1013 if (force)
351df4b2 1014 new_curseg(sbi, type, true);
7b405275 1015 else if (type == CURSEG_WARM_NODE)
351df4b2 1016 new_curseg(sbi, type, false);
60374688
JK
1017 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1018 new_curseg(sbi, type, false);
351df4b2
JK
1019 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1020 change_curseg(sbi, type, true);
1021 else
1022 new_curseg(sbi, type, false);
dcdfff65
JK
1023
1024 stat_inc_seg_type(sbi, curseg);
351df4b2
JK
1025}
1026
1027void allocate_new_segments(struct f2fs_sb_info *sbi)
1028{
1029 struct curseg_info *curseg;
1030 unsigned int old_curseg;
1031 int i;
1032
1033 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1034 curseg = CURSEG_I(sbi, i);
1035 old_curseg = curseg->segno;
1036 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1037 locate_dirty_segment(sbi, old_curseg);
1038 }
1039}
1040
1041static const struct segment_allocation default_salloc_ops = {
1042 .allocate_segment = allocate_segment_by_default,
1043};
1044
4b2fecc8
JK
1045int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1046{
4b2fecc8
JK
1047 __u64 start = range->start >> sbi->log_blocksize;
1048 __u64 end = start + (range->len >> sbi->log_blocksize) - 1;
4b2fecc8
JK
1049 unsigned int start_segno, end_segno;
1050 struct cp_control cpc;
1051
7cd8558b
JK
1052 if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1053 range->len < sbi->blocksize)
4b2fecc8
JK
1054 return -EINVAL;
1055
9bd27ae4 1056 cpc.trimmed = 0;
7cd8558b 1057 if (end <= MAIN_BLKADDR(sbi))
4b2fecc8
JK
1058 goto out;
1059
1060 /* start/end segment number in main_area */
7cd8558b
JK
1061 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1062 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1063 GET_SEGNO(sbi, end);
4b2fecc8
JK
1064 cpc.reason = CP_DISCARD;
1065 cpc.trim_start = start_segno;
1066 cpc.trim_end = end_segno;
1067 cpc.trim_minlen = range->minlen >> sbi->log_blocksize;
4b2fecc8
JK
1068
1069 /* do checkpoint to issue discard commands safely */
ca4b02ee 1070 mutex_lock(&sbi->gc_mutex);
4b2fecc8 1071 write_checkpoint(sbi, &cpc);
ca4b02ee 1072 mutex_unlock(&sbi->gc_mutex);
4b2fecc8
JK
1073out:
1074 range->len = cpc.trimmed << sbi->log_blocksize;
1075 return 0;
1076}
1077
351df4b2
JK
1078static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1079{
1080 struct curseg_info *curseg = CURSEG_I(sbi, type);
1081 if (curseg->next_blkoff < sbi->blocks_per_seg)
1082 return true;
1083 return false;
1084}
1085
1086static int __get_segment_type_2(struct page *page, enum page_type p_type)
1087{
1088 if (p_type == DATA)
1089 return CURSEG_HOT_DATA;
1090 else
1091 return CURSEG_HOT_NODE;
1092}
1093
1094static int __get_segment_type_4(struct page *page, enum page_type p_type)
1095{
1096 if (p_type == DATA) {
1097 struct inode *inode = page->mapping->host;
1098
1099 if (S_ISDIR(inode->i_mode))
1100 return CURSEG_HOT_DATA;
1101 else
1102 return CURSEG_COLD_DATA;
1103 } else {
a344b9fd
JK
1104 if (IS_DNODE(page) && is_cold_node(page))
1105 return CURSEG_WARM_NODE;
351df4b2
JK
1106 else
1107 return CURSEG_COLD_NODE;
1108 }
1109}
1110
1111static int __get_segment_type_6(struct page *page, enum page_type p_type)
1112{
1113 if (p_type == DATA) {
1114 struct inode *inode = page->mapping->host;
1115
1116 if (S_ISDIR(inode->i_mode))
1117 return CURSEG_HOT_DATA;
354a3399 1118 else if (is_cold_data(page) || file_is_cold(inode))
351df4b2
JK
1119 return CURSEG_COLD_DATA;
1120 else
1121 return CURSEG_WARM_DATA;
1122 } else {
1123 if (IS_DNODE(page))
1124 return is_cold_node(page) ? CURSEG_WARM_NODE :
1125 CURSEG_HOT_NODE;
1126 else
1127 return CURSEG_COLD_NODE;
1128 }
1129}
1130
1131static int __get_segment_type(struct page *page, enum page_type p_type)
1132{
4081363f 1133 switch (F2FS_P_SB(page)->active_logs) {
351df4b2
JK
1134 case 2:
1135 return __get_segment_type_2(page, p_type);
1136 case 4:
1137 return __get_segment_type_4(page, p_type);
351df4b2 1138 }
12a67146 1139 /* NR_CURSEG_TYPE(6) logs by default */
9850cf4a
JK
1140 f2fs_bug_on(F2FS_P_SB(page),
1141 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
12a67146 1142 return __get_segment_type_6(page, p_type);
351df4b2
JK
1143}
1144
bfad7c2d
JK
1145void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1146 block_t old_blkaddr, block_t *new_blkaddr,
1147 struct f2fs_summary *sum, int type)
351df4b2
JK
1148{
1149 struct sit_info *sit_i = SIT_I(sbi);
1150 struct curseg_info *curseg;
351df4b2 1151
351df4b2
JK
1152 curseg = CURSEG_I(sbi, type);
1153
1154 mutex_lock(&curseg->curseg_mutex);
1155
1156 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
351df4b2
JK
1157
1158 /*
1159 * __add_sum_entry should be resided under the curseg_mutex
1160 * because, this function updates a summary entry in the
1161 * current summary block.
1162 */
e79efe3b 1163 __add_sum_entry(sbi, type, sum);
351df4b2
JK
1164
1165 mutex_lock(&sit_i->sentry_lock);
1166 __refresh_next_blkoff(sbi, curseg);
dcdfff65
JK
1167
1168 stat_inc_block_count(sbi, curseg);
351df4b2 1169
5e443818
JK
1170 if (!__has_curseg_space(sbi, type))
1171 sit_i->s_ops->allocate_segment(sbi, type, false);
351df4b2
JK
1172 /*
1173 * SIT information should be updated before segment allocation,
1174 * since SSR needs latest valid block information.
1175 */
1176 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
5e443818 1177
351df4b2
JK
1178 mutex_unlock(&sit_i->sentry_lock);
1179
bfad7c2d 1180 if (page && IS_NODESEG(type))
351df4b2
JK
1181 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1182
bfad7c2d
JK
1183 mutex_unlock(&curseg->curseg_mutex);
1184}
1185
1186static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1187 block_t old_blkaddr, block_t *new_blkaddr,
1188 struct f2fs_summary *sum, struct f2fs_io_info *fio)
1189{
1190 int type = __get_segment_type(page, fio->type);
1191
1192 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1193
351df4b2 1194 /* writeout dirty page into bdev */
458e6197 1195 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
351df4b2
JK
1196}
1197
577e3495 1198void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
351df4b2 1199{
458e6197
JK
1200 struct f2fs_io_info fio = {
1201 .type = META,
7e8f2308 1202 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
458e6197
JK
1203 };
1204
351df4b2 1205 set_page_writeback(page);
458e6197 1206 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
351df4b2
JK
1207}
1208
1209void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
fb5566da 1210 struct f2fs_io_info *fio,
351df4b2
JK
1211 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1212{
1213 struct f2fs_summary sum;
1214 set_summary(&sum, nid, 0, 0);
fb5566da 1215 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
351df4b2
JK
1216}
1217
458e6197
JK
1218void write_data_page(struct page *page, struct dnode_of_data *dn,
1219 block_t *new_blkaddr, struct f2fs_io_info *fio)
351df4b2 1220{
4081363f 1221 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
351df4b2
JK
1222 struct f2fs_summary sum;
1223 struct node_info ni;
1224
9850cf4a 1225 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
351df4b2
JK
1226 get_node_info(sbi, dn->nid, &ni);
1227 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1228
458e6197 1229 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
351df4b2
JK
1230}
1231
6c311ec6
CF
1232void rewrite_data_page(struct page *page, block_t old_blkaddr,
1233 struct f2fs_io_info *fio)
351df4b2 1234{
4081363f 1235 f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
351df4b2
JK
1236}
1237
1238void recover_data_page(struct f2fs_sb_info *sbi,
1239 struct page *page, struct f2fs_summary *sum,
1240 block_t old_blkaddr, block_t new_blkaddr)
1241{
1242 struct sit_info *sit_i = SIT_I(sbi);
1243 struct curseg_info *curseg;
1244 unsigned int segno, old_cursegno;
1245 struct seg_entry *se;
1246 int type;
1247
1248 segno = GET_SEGNO(sbi, new_blkaddr);
1249 se = get_seg_entry(sbi, segno);
1250 type = se->type;
1251
1252 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1253 if (old_blkaddr == NULL_ADDR)
1254 type = CURSEG_COLD_DATA;
1255 else
1256 type = CURSEG_WARM_DATA;
1257 }
1258 curseg = CURSEG_I(sbi, type);
1259
1260 mutex_lock(&curseg->curseg_mutex);
1261 mutex_lock(&sit_i->sentry_lock);
1262
1263 old_cursegno = curseg->segno;
1264
1265 /* change the current segment */
1266 if (segno != curseg->segno) {
1267 curseg->next_segno = segno;
1268 change_curseg(sbi, type, true);
1269 }
1270
491c0854 1271 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
e79efe3b 1272 __add_sum_entry(sbi, type, sum);
351df4b2
JK
1273
1274 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
351df4b2 1275 locate_dirty_segment(sbi, old_cursegno);
351df4b2
JK
1276
1277 mutex_unlock(&sit_i->sentry_lock);
1278 mutex_unlock(&curseg->curseg_mutex);
1279}
1280
df0f8dc0
CY
1281static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1282 struct page *page, enum page_type type)
1283{
1284 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1285 struct f2fs_bio_info *io = &sbi->write_io[btype];
df0f8dc0
CY
1286 struct bio_vec *bvec;
1287 int i;
1288
1289 down_read(&io->io_rwsem);
ce23447f 1290 if (!io->bio)
df0f8dc0
CY
1291 goto out;
1292
ce23447f 1293 bio_for_each_segment_all(bvec, io->bio, i) {
df0f8dc0
CY
1294 if (page == bvec->bv_page) {
1295 up_read(&io->io_rwsem);
1296 return true;
1297 }
1298 }
1299
1300out:
1301 up_read(&io->io_rwsem);
1302 return false;
1303}
1304
93dfe2ac 1305void f2fs_wait_on_page_writeback(struct page *page,
5514f0aa 1306 enum page_type type)
93dfe2ac 1307{
93dfe2ac 1308 if (PageWriteback(page)) {
4081363f
JK
1309 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1310
df0f8dc0
CY
1311 if (is_merged_page(sbi, page, type))
1312 f2fs_submit_merged_bio(sbi, type, WRITE);
93dfe2ac
JK
1313 wait_on_page_writeback(page);
1314 }
1315}
1316
351df4b2
JK
1317static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1318{
1319 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1320 struct curseg_info *seg_i;
1321 unsigned char *kaddr;
1322 struct page *page;
1323 block_t start;
1324 int i, j, offset;
1325
1326 start = start_sum_block(sbi);
1327
1328 page = get_meta_page(sbi, start++);
1329 kaddr = (unsigned char *)page_address(page);
1330
1331 /* Step 1: restore nat cache */
1332 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1333 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1334
1335 /* Step 2: restore sit cache */
1336 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1337 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1338 SUM_JOURNAL_SIZE);
1339 offset = 2 * SUM_JOURNAL_SIZE;
1340
1341 /* Step 3: restore summary entries */
1342 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1343 unsigned short blk_off;
1344 unsigned int segno;
1345
1346 seg_i = CURSEG_I(sbi, i);
1347 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1348 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1349 seg_i->next_segno = segno;
1350 reset_curseg(sbi, i, 0);
1351 seg_i->alloc_type = ckpt->alloc_type[i];
1352 seg_i->next_blkoff = blk_off;
1353
1354 if (seg_i->alloc_type == SSR)
1355 blk_off = sbi->blocks_per_seg;
1356
1357 for (j = 0; j < blk_off; j++) {
1358 struct f2fs_summary *s;
1359 s = (struct f2fs_summary *)(kaddr + offset);
1360 seg_i->sum_blk->entries[j] = *s;
1361 offset += SUMMARY_SIZE;
1362 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1363 SUM_FOOTER_SIZE)
1364 continue;
1365
1366 f2fs_put_page(page, 1);
1367 page = NULL;
1368
1369 page = get_meta_page(sbi, start++);
1370 kaddr = (unsigned char *)page_address(page);
1371 offset = 0;
1372 }
1373 }
1374 f2fs_put_page(page, 1);
1375 return 0;
1376}
1377
1378static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1379{
1380 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1381 struct f2fs_summary_block *sum;
1382 struct curseg_info *curseg;
1383 struct page *new;
1384 unsigned short blk_off;
1385 unsigned int segno = 0;
1386 block_t blk_addr = 0;
1387
1388 /* get segment number and block addr */
1389 if (IS_DATASEG(type)) {
1390 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1391 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1392 CURSEG_HOT_DATA]);
25ca923b 1393 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
351df4b2
JK
1394 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1395 else
1396 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1397 } else {
1398 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1399 CURSEG_HOT_NODE]);
1400 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1401 CURSEG_HOT_NODE]);
25ca923b 1402 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
351df4b2
JK
1403 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1404 type - CURSEG_HOT_NODE);
1405 else
1406 blk_addr = GET_SUM_BLOCK(sbi, segno);
1407 }
1408
1409 new = get_meta_page(sbi, blk_addr);
1410 sum = (struct f2fs_summary_block *)page_address(new);
1411
1412 if (IS_NODESEG(type)) {
25ca923b 1413 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
351df4b2
JK
1414 struct f2fs_summary *ns = &sum->entries[0];
1415 int i;
1416 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1417 ns->version = 0;
1418 ns->ofs_in_node = 0;
1419 }
1420 } else {
d653788a
GZ
1421 int err;
1422
1423 err = restore_node_summary(sbi, segno, sum);
1424 if (err) {
351df4b2 1425 f2fs_put_page(new, 1);
d653788a 1426 return err;
351df4b2
JK
1427 }
1428 }
1429 }
1430
1431 /* set uncompleted segment to curseg */
1432 curseg = CURSEG_I(sbi, type);
1433 mutex_lock(&curseg->curseg_mutex);
1434 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1435 curseg->next_segno = segno;
1436 reset_curseg(sbi, type, 0);
1437 curseg->alloc_type = ckpt->alloc_type[type];
1438 curseg->next_blkoff = blk_off;
1439 mutex_unlock(&curseg->curseg_mutex);
1440 f2fs_put_page(new, 1);
1441 return 0;
1442}
1443
1444static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1445{
1446 int type = CURSEG_HOT_DATA;
e4fc5fbf 1447 int err;
351df4b2 1448
25ca923b 1449 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
351df4b2
JK
1450 /* restore for compacted data summary */
1451 if (read_compacted_summaries(sbi))
1452 return -EINVAL;
1453 type = CURSEG_HOT_NODE;
1454 }
1455
e4fc5fbf
CY
1456 for (; type <= CURSEG_COLD_NODE; type++) {
1457 err = read_normal_summaries(sbi, type);
1458 if (err)
1459 return err;
1460 }
1461
351df4b2
JK
1462 return 0;
1463}
1464
1465static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1466{
1467 struct page *page;
1468 unsigned char *kaddr;
1469 struct f2fs_summary *summary;
1470 struct curseg_info *seg_i;
1471 int written_size = 0;
1472 int i, j;
1473
1474 page = grab_meta_page(sbi, blkaddr++);
1475 kaddr = (unsigned char *)page_address(page);
1476
1477 /* Step 1: write nat cache */
1478 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1479 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1480 written_size += SUM_JOURNAL_SIZE;
1481
1482 /* Step 2: write sit cache */
1483 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1484 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1485 SUM_JOURNAL_SIZE);
1486 written_size += SUM_JOURNAL_SIZE;
1487
351df4b2
JK
1488 /* Step 3: write summary entries */
1489 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1490 unsigned short blkoff;
1491 seg_i = CURSEG_I(sbi, i);
1492 if (sbi->ckpt->alloc_type[i] == SSR)
1493 blkoff = sbi->blocks_per_seg;
1494 else
1495 blkoff = curseg_blkoff(sbi, i);
1496
1497 for (j = 0; j < blkoff; j++) {
1498 if (!page) {
1499 page = grab_meta_page(sbi, blkaddr++);
1500 kaddr = (unsigned char *)page_address(page);
1501 written_size = 0;
1502 }
1503 summary = (struct f2fs_summary *)(kaddr + written_size);
1504 *summary = seg_i->sum_blk->entries[j];
1505 written_size += SUMMARY_SIZE;
351df4b2
JK
1506
1507 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1508 SUM_FOOTER_SIZE)
1509 continue;
1510
e8d61a74 1511 set_page_dirty(page);
351df4b2
JK
1512 f2fs_put_page(page, 1);
1513 page = NULL;
1514 }
1515 }
e8d61a74
CY
1516 if (page) {
1517 set_page_dirty(page);
351df4b2 1518 f2fs_put_page(page, 1);
e8d61a74 1519 }
351df4b2
JK
1520}
1521
1522static void write_normal_summaries(struct f2fs_sb_info *sbi,
1523 block_t blkaddr, int type)
1524{
1525 int i, end;
1526 if (IS_DATASEG(type))
1527 end = type + NR_CURSEG_DATA_TYPE;
1528 else
1529 end = type + NR_CURSEG_NODE_TYPE;
1530
1531 for (i = type; i < end; i++) {
1532 struct curseg_info *sum = CURSEG_I(sbi, i);
1533 mutex_lock(&sum->curseg_mutex);
1534 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1535 mutex_unlock(&sum->curseg_mutex);
1536 }
1537}
1538
1539void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1540{
25ca923b 1541 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
351df4b2
JK
1542 write_compacted_summaries(sbi, start_blk);
1543 else
1544 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1545}
1546
1547void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1548{
25ca923b 1549 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
351df4b2 1550 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
351df4b2
JK
1551}
1552
1553int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1554 unsigned int val, int alloc)
1555{
1556 int i;
1557
1558 if (type == NAT_JOURNAL) {
1559 for (i = 0; i < nats_in_cursum(sum); i++) {
1560 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1561 return i;
1562 }
1563 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1564 return update_nats_in_cursum(sum, 1);
1565 } else if (type == SIT_JOURNAL) {
1566 for (i = 0; i < sits_in_cursum(sum); i++)
1567 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1568 return i;
1569 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1570 return update_sits_in_cursum(sum, 1);
1571 }
1572 return -1;
1573}
1574
1575static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1576 unsigned int segno)
1577{
2cc22186 1578 return get_meta_page(sbi, current_sit_addr(sbi, segno));
351df4b2
JK
1579}
1580
1581static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1582 unsigned int start)
1583{
1584 struct sit_info *sit_i = SIT_I(sbi);
1585 struct page *src_page, *dst_page;
1586 pgoff_t src_off, dst_off;
1587 void *src_addr, *dst_addr;
1588
1589 src_off = current_sit_addr(sbi, start);
1590 dst_off = next_sit_addr(sbi, src_off);
1591
1592 /* get current sit block page without lock */
1593 src_page = get_meta_page(sbi, src_off);
1594 dst_page = grab_meta_page(sbi, dst_off);
9850cf4a 1595 f2fs_bug_on(sbi, PageDirty(src_page));
351df4b2
JK
1596
1597 src_addr = page_address(src_page);
1598 dst_addr = page_address(dst_page);
1599 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1600
1601 set_page_dirty(dst_page);
1602 f2fs_put_page(src_page, 1);
1603
1604 set_to_next_sit(sit_i, start);
1605
1606 return dst_page;
1607}
1608
184a5cd2
CY
1609static struct sit_entry_set *grab_sit_entry_set(void)
1610{
1611 struct sit_entry_set *ses =
1612 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1613
1614 ses->entry_cnt = 0;
1615 INIT_LIST_HEAD(&ses->set_list);
1616 return ses;
1617}
1618
1619static void release_sit_entry_set(struct sit_entry_set *ses)
1620{
1621 list_del(&ses->set_list);
1622 kmem_cache_free(sit_entry_set_slab, ses);
1623}
1624
1625static void adjust_sit_entry_set(struct sit_entry_set *ses,
1626 struct list_head *head)
1627{
1628 struct sit_entry_set *next = ses;
1629
1630 if (list_is_last(&ses->set_list, head))
1631 return;
1632
1633 list_for_each_entry_continue(next, head, set_list)
1634 if (ses->entry_cnt <= next->entry_cnt)
1635 break;
1636
1637 list_move_tail(&ses->set_list, &next->set_list);
1638}
1639
1640static void add_sit_entry(unsigned int segno, struct list_head *head)
1641{
1642 struct sit_entry_set *ses;
1643 unsigned int start_segno = START_SEGNO(segno);
1644
1645 list_for_each_entry(ses, head, set_list) {
1646 if (ses->start_segno == start_segno) {
1647 ses->entry_cnt++;
1648 adjust_sit_entry_set(ses, head);
1649 return;
1650 }
1651 }
1652
1653 ses = grab_sit_entry_set();
1654
1655 ses->start_segno = start_segno;
1656 ses->entry_cnt++;
1657 list_add(&ses->set_list, head);
1658}
1659
1660static void add_sits_in_set(struct f2fs_sb_info *sbi)
1661{
1662 struct f2fs_sm_info *sm_info = SM_I(sbi);
1663 struct list_head *set_list = &sm_info->sit_entry_set;
1664 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
184a5cd2
CY
1665 unsigned int segno;
1666
7cd8558b 1667 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
184a5cd2
CY
1668 add_sit_entry(segno, set_list);
1669}
1670
1671static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
351df4b2
JK
1672{
1673 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1674 struct f2fs_summary_block *sum = curseg->sum_blk;
1675 int i;
1676
184a5cd2
CY
1677 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1678 unsigned int segno;
1679 bool dirtied;
1680
1681 segno = le32_to_cpu(segno_in_journal(sum, i));
1682 dirtied = __mark_sit_entry_dirty(sbi, segno);
1683
1684 if (!dirtied)
1685 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
351df4b2 1686 }
184a5cd2 1687 update_sits_in_cursum(sum, -sits_in_cursum(sum));
351df4b2
JK
1688}
1689
0a8165d7 1690/*
351df4b2
JK
1691 * CP calls this function, which flushes SIT entries including sit_journal,
1692 * and moves prefree segs to free segs.
1693 */
4b2fecc8 1694void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
351df4b2
JK
1695{
1696 struct sit_info *sit_i = SIT_I(sbi);
1697 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1698 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1699 struct f2fs_summary_block *sum = curseg->sum_blk;
184a5cd2
CY
1700 struct sit_entry_set *ses, *tmp;
1701 struct list_head *head = &SM_I(sbi)->sit_entry_set;
184a5cd2 1702 bool to_journal = true;
4b2fecc8 1703 struct seg_entry *se;
351df4b2
JK
1704
1705 mutex_lock(&curseg->curseg_mutex);
1706 mutex_lock(&sit_i->sentry_lock);
1707
1708 /*
184a5cd2
CY
1709 * add and account sit entries of dirty bitmap in sit entry
1710 * set temporarily
351df4b2 1711 */
184a5cd2 1712 add_sits_in_set(sbi);
351df4b2 1713
184a5cd2
CY
1714 /*
1715 * if there are no enough space in journal to store dirty sit
1716 * entries, remove all entries from journal and add and account
1717 * them in sit entry set.
1718 */
1719 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1720 remove_sits_in_journal(sbi);
b2955550 1721
184a5cd2
CY
1722 if (!sit_i->dirty_sentries)
1723 goto out;
351df4b2 1724
184a5cd2
CY
1725 /*
1726 * there are two steps to flush sit entries:
1727 * #1, flush sit entries to journal in current cold data summary block.
1728 * #2, flush sit entries to sit page.
1729 */
1730 list_for_each_entry_safe(ses, tmp, head, set_list) {
4a257ed6 1731 struct page *page = NULL;
184a5cd2
CY
1732 struct f2fs_sit_block *raw_sit = NULL;
1733 unsigned int start_segno = ses->start_segno;
1734 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
7cd8558b 1735 (unsigned long)MAIN_SEGS(sbi));
184a5cd2
CY
1736 unsigned int segno = start_segno;
1737
1738 if (to_journal &&
1739 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1740 to_journal = false;
1741
1742 if (!to_journal) {
1743 page = get_next_sit_page(sbi, start_segno);
1744 raw_sit = page_address(page);
351df4b2 1745 }
351df4b2 1746
184a5cd2
CY
1747 /* flush dirty sit entries in region of current sit set */
1748 for_each_set_bit_from(segno, bitmap, end) {
1749 int offset, sit_offset;
4b2fecc8
JK
1750
1751 se = get_seg_entry(sbi, segno);
184a5cd2
CY
1752
1753 /* add discard candidates */
4b2fecc8
JK
1754 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) {
1755 cpc->trim_start = segno;
1756 add_discard_addrs(sbi, cpc);
1757 }
184a5cd2
CY
1758
1759 if (to_journal) {
1760 offset = lookup_journal_in_cursum(sum,
1761 SIT_JOURNAL, segno, 1);
1762 f2fs_bug_on(sbi, offset < 0);
1763 segno_in_journal(sum, offset) =
1764 cpu_to_le32(segno);
1765 seg_info_to_raw_sit(se,
1766 &sit_in_journal(sum, offset));
1767 } else {
1768 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1769 seg_info_to_raw_sit(se,
1770 &raw_sit->entries[sit_offset]);
1771 }
351df4b2 1772
184a5cd2
CY
1773 __clear_bit(segno, bitmap);
1774 sit_i->dirty_sentries--;
1775 ses->entry_cnt--;
351df4b2
JK
1776 }
1777
184a5cd2
CY
1778 if (!to_journal)
1779 f2fs_put_page(page, 1);
1780
1781 f2fs_bug_on(sbi, ses->entry_cnt);
1782 release_sit_entry_set(ses);
351df4b2 1783 }
184a5cd2
CY
1784
1785 f2fs_bug_on(sbi, !list_empty(head));
1786 f2fs_bug_on(sbi, sit_i->dirty_sentries);
184a5cd2 1787out:
4b2fecc8
JK
1788 if (cpc->reason == CP_DISCARD) {
1789 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1790 add_discard_addrs(sbi, cpc);
1791 }
351df4b2
JK
1792 mutex_unlock(&sit_i->sentry_lock);
1793 mutex_unlock(&curseg->curseg_mutex);
1794
351df4b2
JK
1795 set_prefree_as_free_segments(sbi);
1796}
1797
1798static int build_sit_info(struct f2fs_sb_info *sbi)
1799{
1800 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1801 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1802 struct sit_info *sit_i;
1803 unsigned int sit_segs, start;
1804 char *src_bitmap, *dst_bitmap;
1805 unsigned int bitmap_size;
1806
1807 /* allocate memory for SIT information */
1808 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1809 if (!sit_i)
1810 return -ENOMEM;
1811
1812 SM_I(sbi)->sit_info = sit_i;
1813
7cd8558b 1814 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
351df4b2
JK
1815 if (!sit_i->sentries)
1816 return -ENOMEM;
1817
7cd8558b 1818 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
351df4b2
JK
1819 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1820 if (!sit_i->dirty_sentries_bitmap)
1821 return -ENOMEM;
1822
7cd8558b 1823 for (start = 0; start < MAIN_SEGS(sbi); start++) {
351df4b2
JK
1824 sit_i->sentries[start].cur_valid_map
1825 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1826 sit_i->sentries[start].ckpt_valid_map
1827 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1828 if (!sit_i->sentries[start].cur_valid_map
1829 || !sit_i->sentries[start].ckpt_valid_map)
1830 return -ENOMEM;
1831 }
1832
1833 if (sbi->segs_per_sec > 1) {
7cd8558b 1834 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
351df4b2
JK
1835 sizeof(struct sec_entry));
1836 if (!sit_i->sec_entries)
1837 return -ENOMEM;
1838 }
1839
1840 /* get information related with SIT */
1841 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1842
1843 /* setup SIT bitmap from ckeckpoint pack */
1844 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1845 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1846
79b5793b 1847 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
351df4b2
JK
1848 if (!dst_bitmap)
1849 return -ENOMEM;
351df4b2
JK
1850
1851 /* init SIT information */
1852 sit_i->s_ops = &default_salloc_ops;
1853
1854 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1855 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1856 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1857 sit_i->sit_bitmap = dst_bitmap;
1858 sit_i->bitmap_size = bitmap_size;
1859 sit_i->dirty_sentries = 0;
1860 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1861 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1862 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1863 mutex_init(&sit_i->sentry_lock);
1864 return 0;
1865}
1866
1867static int build_free_segmap(struct f2fs_sb_info *sbi)
1868{
351df4b2
JK
1869 struct free_segmap_info *free_i;
1870 unsigned int bitmap_size, sec_bitmap_size;
1871
1872 /* allocate memory for free segmap information */
1873 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1874 if (!free_i)
1875 return -ENOMEM;
1876
1877 SM_I(sbi)->free_info = free_i;
1878
7cd8558b 1879 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
351df4b2
JK
1880 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1881 if (!free_i->free_segmap)
1882 return -ENOMEM;
1883
7cd8558b 1884 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
351df4b2
JK
1885 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1886 if (!free_i->free_secmap)
1887 return -ENOMEM;
1888
1889 /* set all segments as dirty temporarily */
1890 memset(free_i->free_segmap, 0xff, bitmap_size);
1891 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1892
1893 /* init free segmap information */
7cd8558b 1894 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
351df4b2
JK
1895 free_i->free_segments = 0;
1896 free_i->free_sections = 0;
1897 rwlock_init(&free_i->segmap_lock);
1898 return 0;
1899}
1900
1901static int build_curseg(struct f2fs_sb_info *sbi)
1902{
1042d60f 1903 struct curseg_info *array;
351df4b2
JK
1904 int i;
1905
b434babf 1906 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
351df4b2
JK
1907 if (!array)
1908 return -ENOMEM;
1909
1910 SM_I(sbi)->curseg_array = array;
1911
1912 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1913 mutex_init(&array[i].curseg_mutex);
1914 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1915 if (!array[i].sum_blk)
1916 return -ENOMEM;
1917 array[i].segno = NULL_SEGNO;
1918 array[i].next_blkoff = 0;
1919 }
1920 return restore_curseg_summaries(sbi);
1921}
1922
1923static void build_sit_entries(struct f2fs_sb_info *sbi)
1924{
1925 struct sit_info *sit_i = SIT_I(sbi);
1926 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1927 struct f2fs_summary_block *sum = curseg->sum_blk;
74de593a
CY
1928 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1929 unsigned int i, start, end;
1930 unsigned int readed, start_blk = 0;
90a893c7 1931 int nrpages = MAX_BIO_BLOCKS(sbi);
351df4b2 1932
74de593a 1933 do {
662befda 1934 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
74de593a
CY
1935
1936 start = start_blk * sit_i->sents_per_block;
1937 end = (start_blk + readed) * sit_i->sents_per_block;
1938
7cd8558b 1939 for (; start < end && start < MAIN_SEGS(sbi); start++) {
74de593a
CY
1940 struct seg_entry *se = &sit_i->sentries[start];
1941 struct f2fs_sit_block *sit_blk;
1942 struct f2fs_sit_entry sit;
1943 struct page *page;
1944
1945 mutex_lock(&curseg->curseg_mutex);
1946 for (i = 0; i < sits_in_cursum(sum); i++) {
6c311ec6
CF
1947 if (le32_to_cpu(segno_in_journal(sum, i))
1948 == start) {
74de593a
CY
1949 sit = sit_in_journal(sum, i);
1950 mutex_unlock(&curseg->curseg_mutex);
1951 goto got_it;
1952 }
351df4b2 1953 }
74de593a
CY
1954 mutex_unlock(&curseg->curseg_mutex);
1955
1956 page = get_current_sit_page(sbi, start);
1957 sit_blk = (struct f2fs_sit_block *)page_address(page);
1958 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1959 f2fs_put_page(page, 1);
351df4b2 1960got_it:
74de593a
CY
1961 check_block_count(sbi, start, &sit);
1962 seg_info_from_raw_sit(se, &sit);
1963 if (sbi->segs_per_sec > 1) {
1964 struct sec_entry *e = get_sec_entry(sbi, start);
1965 e->valid_blocks += se->valid_blocks;
1966 }
351df4b2 1967 }
74de593a
CY
1968 start_blk += readed;
1969 } while (start_blk < sit_blk_cnt);
351df4b2
JK
1970}
1971
1972static void init_free_segmap(struct f2fs_sb_info *sbi)
1973{
1974 unsigned int start;
1975 int type;
1976
7cd8558b 1977 for (start = 0; start < MAIN_SEGS(sbi); start++) {
351df4b2
JK
1978 struct seg_entry *sentry = get_seg_entry(sbi, start);
1979 if (!sentry->valid_blocks)
1980 __set_free(sbi, start);
1981 }
1982
1983 /* set use the current segments */
1984 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1985 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1986 __set_test_and_inuse(sbi, curseg_t->segno);
1987 }
1988}
1989
1990static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1991{
1992 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1993 struct free_segmap_info *free_i = FREE_I(sbi);
7cd8558b 1994 unsigned int segno = 0, offset = 0;
351df4b2
JK
1995 unsigned short valid_blocks;
1996
8736fbf0 1997 while (1) {
351df4b2 1998 /* find dirty segment based on free segmap */
7cd8558b
JK
1999 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2000 if (segno >= MAIN_SEGS(sbi))
351df4b2
JK
2001 break;
2002 offset = segno + 1;
2003 valid_blocks = get_valid_blocks(sbi, segno, 0);
ec325b52 2004 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
351df4b2 2005 continue;
ec325b52
JK
2006 if (valid_blocks > sbi->blocks_per_seg) {
2007 f2fs_bug_on(sbi, 1);
2008 continue;
2009 }
351df4b2
JK
2010 mutex_lock(&dirty_i->seglist_lock);
2011 __locate_dirty_segment(sbi, segno, DIRTY);
2012 mutex_unlock(&dirty_i->seglist_lock);
2013 }
2014}
2015
5ec4e49f 2016static int init_victim_secmap(struct f2fs_sb_info *sbi)
351df4b2
JK
2017{
2018 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
7cd8558b 2019 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
351df4b2 2020
5ec4e49f
JK
2021 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2022 if (!dirty_i->victim_secmap)
351df4b2
JK
2023 return -ENOMEM;
2024 return 0;
2025}
2026
2027static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2028{
2029 struct dirty_seglist_info *dirty_i;
2030 unsigned int bitmap_size, i;
2031
2032 /* allocate memory for dirty segments list information */
2033 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2034 if (!dirty_i)
2035 return -ENOMEM;
2036
2037 SM_I(sbi)->dirty_info = dirty_i;
2038 mutex_init(&dirty_i->seglist_lock);
2039
7cd8558b 2040 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
351df4b2
JK
2041
2042 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2043 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
351df4b2
JK
2044 if (!dirty_i->dirty_segmap[i])
2045 return -ENOMEM;
2046 }
2047
2048 init_dirty_segmap(sbi);
5ec4e49f 2049 return init_victim_secmap(sbi);
351df4b2
JK
2050}
2051
0a8165d7 2052/*
351df4b2
JK
2053 * Update min, max modified time for cost-benefit GC algorithm
2054 */
2055static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2056{
2057 struct sit_info *sit_i = SIT_I(sbi);
2058 unsigned int segno;
2059
2060 mutex_lock(&sit_i->sentry_lock);
2061
2062 sit_i->min_mtime = LLONG_MAX;
2063
7cd8558b 2064 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
351df4b2
JK
2065 unsigned int i;
2066 unsigned long long mtime = 0;
2067
2068 for (i = 0; i < sbi->segs_per_sec; i++)
2069 mtime += get_seg_entry(sbi, segno + i)->mtime;
2070
2071 mtime = div_u64(mtime, sbi->segs_per_sec);
2072
2073 if (sit_i->min_mtime > mtime)
2074 sit_i->min_mtime = mtime;
2075 }
2076 sit_i->max_mtime = get_mtime(sbi);
2077 mutex_unlock(&sit_i->sentry_lock);
2078}
2079
2080int build_segment_manager(struct f2fs_sb_info *sbi)
2081{
2082 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2083 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1042d60f 2084 struct f2fs_sm_info *sm_info;
351df4b2
JK
2085 int err;
2086
2087 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2088 if (!sm_info)
2089 return -ENOMEM;
2090
2091 /* init sm info */
2092 sbi->sm_info = sm_info;
351df4b2
JK
2093 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2094 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2095 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2096 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2097 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2098 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2099 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
58c41035
JK
2100 sm_info->rec_prefree_segments = sm_info->main_segments *
2101 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
9b5f136f 2102 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
216fbd64 2103 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
c1ce1b02 2104 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
351df4b2 2105
7fd9e544
JK
2106 INIT_LIST_HEAD(&sm_info->discard_list);
2107 sm_info->nr_discards = 0;
2108 sm_info->max_discards = 0;
2109
184a5cd2
CY
2110 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2111
b270ad6f 2112 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2163d198
GZ
2113 err = create_flush_cmd_control(sbi);
2114 if (err)
a688b9d9 2115 return err;
6b4afdd7
JK
2116 }
2117
351df4b2
JK
2118 err = build_sit_info(sbi);
2119 if (err)
2120 return err;
2121 err = build_free_segmap(sbi);
2122 if (err)
2123 return err;
2124 err = build_curseg(sbi);
2125 if (err)
2126 return err;
2127
2128 /* reinit free segmap based on SIT */
2129 build_sit_entries(sbi);
2130
2131 init_free_segmap(sbi);
2132 err = build_dirty_segmap(sbi);
2133 if (err)
2134 return err;
2135
2136 init_min_max_mtime(sbi);
2137 return 0;
2138}
2139
2140static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2141 enum dirty_type dirty_type)
2142{
2143 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2144
2145 mutex_lock(&dirty_i->seglist_lock);
2146 kfree(dirty_i->dirty_segmap[dirty_type]);
2147 dirty_i->nr_dirty[dirty_type] = 0;
2148 mutex_unlock(&dirty_i->seglist_lock);
2149}
2150
5ec4e49f 2151static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
351df4b2
JK
2152{
2153 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5ec4e49f 2154 kfree(dirty_i->victim_secmap);
351df4b2
JK
2155}
2156
2157static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2158{
2159 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2160 int i;
2161
2162 if (!dirty_i)
2163 return;
2164
2165 /* discard pre-free/dirty segments list */
2166 for (i = 0; i < NR_DIRTY_TYPE; i++)
2167 discard_dirty_segmap(sbi, i);
2168
5ec4e49f 2169 destroy_victim_secmap(sbi);
351df4b2
JK
2170 SM_I(sbi)->dirty_info = NULL;
2171 kfree(dirty_i);
2172}
2173
2174static void destroy_curseg(struct f2fs_sb_info *sbi)
2175{
2176 struct curseg_info *array = SM_I(sbi)->curseg_array;
2177 int i;
2178
2179 if (!array)
2180 return;
2181 SM_I(sbi)->curseg_array = NULL;
2182 for (i = 0; i < NR_CURSEG_TYPE; i++)
2183 kfree(array[i].sum_blk);
2184 kfree(array);
2185}
2186
2187static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2188{
2189 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2190 if (!free_i)
2191 return;
2192 SM_I(sbi)->free_info = NULL;
2193 kfree(free_i->free_segmap);
2194 kfree(free_i->free_secmap);
2195 kfree(free_i);
2196}
2197
2198static void destroy_sit_info(struct f2fs_sb_info *sbi)
2199{
2200 struct sit_info *sit_i = SIT_I(sbi);
2201 unsigned int start;
2202
2203 if (!sit_i)
2204 return;
2205
2206 if (sit_i->sentries) {
7cd8558b 2207 for (start = 0; start < MAIN_SEGS(sbi); start++) {
351df4b2
JK
2208 kfree(sit_i->sentries[start].cur_valid_map);
2209 kfree(sit_i->sentries[start].ckpt_valid_map);
2210 }
2211 }
2212 vfree(sit_i->sentries);
2213 vfree(sit_i->sec_entries);
2214 kfree(sit_i->dirty_sentries_bitmap);
2215
2216 SM_I(sbi)->sit_info = NULL;
2217 kfree(sit_i->sit_bitmap);
2218 kfree(sit_i);
2219}
2220
2221void destroy_segment_manager(struct f2fs_sb_info *sbi)
2222{
2223 struct f2fs_sm_info *sm_info = SM_I(sbi);
a688b9d9 2224
3b03f724
CY
2225 if (!sm_info)
2226 return;
2163d198 2227 destroy_flush_cmd_control(sbi);
351df4b2
JK
2228 destroy_dirty_segmap(sbi);
2229 destroy_curseg(sbi);
2230 destroy_free_segmap(sbi);
2231 destroy_sit_info(sbi);
2232 sbi->sm_info = NULL;
2233 kfree(sm_info);
2234}
7fd9e544
JK
2235
2236int __init create_segment_manager_caches(void)
2237{
2238 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
e8512d2e 2239 sizeof(struct discard_entry));
7fd9e544 2240 if (!discard_entry_slab)
184a5cd2
CY
2241 goto fail;
2242
2243 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
c9ee0085 2244 sizeof(struct sit_entry_set));
184a5cd2
CY
2245 if (!sit_entry_set_slab)
2246 goto destory_discard_entry;
88b88a66
JK
2247
2248 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2249 sizeof(struct inmem_pages));
2250 if (!inmem_entry_slab)
2251 goto destroy_sit_entry_set;
7fd9e544 2252 return 0;
184a5cd2 2253
88b88a66
JK
2254destroy_sit_entry_set:
2255 kmem_cache_destroy(sit_entry_set_slab);
184a5cd2
CY
2256destory_discard_entry:
2257 kmem_cache_destroy(discard_entry_slab);
2258fail:
2259 return -ENOMEM;
7fd9e544
JK
2260}
2261
2262void destroy_segment_manager_caches(void)
2263{
184a5cd2 2264 kmem_cache_destroy(sit_entry_set_slab);
7fd9e544 2265 kmem_cache_destroy(discard_entry_slab);
88b88a66 2266 kmem_cache_destroy(inmem_entry_slab);
7fd9e544 2267}
This page took 0.217763 seconds and 5 git commands to generate.