Merge tag 'firewire-updates' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee139...
[deliverable/linux.git] / fs / f2fs / segment.h
CommitLineData
0a8165d7 1/*
39a53e0c
JK
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
ac5d156c 11#include <linux/blkdev.h>
66114cad 12#include <linux/backing-dev.h>
ac5d156c 13
39a53e0c
JK
14/* constant macro */
15#define NULL_SEGNO ((unsigned int)(~0))
5ec4e49f 16#define NULL_SECNO ((unsigned int)(~0))
39a53e0c 17
58c41035 18#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
81eb8d6e 19
6224da87 20/* L: Logical segment # in volume, R: Relative segment # in main area */
39a53e0c
JK
21#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23
61ae45c8
CL
24#define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25#define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
39a53e0c 26
5c773ba3
JK
27#define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
39a53e0c
JK
34
35#define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
48
7cd8558b
JK
49#define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50#define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51
52#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53#define MAIN_SECS(sbi) (sbi->total_sections)
54
55#define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57
58#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
8a21984d 59#define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
7cd8558b
JK
60 sbi->log_blocks_per_seg))
61
62#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
39a53e0c 63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
7cd8558b 64
39a53e0c
JK
65#define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67
7cd8558b 68#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
39a53e0c
JK
69#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
491c0854
JK
71#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73
39a53e0c
JK
74#define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78#define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82
83#define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
85
86#define GET_SUM_TYPE(footer) ((footer)->entry_type)
87#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88
89#define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
d3a14afd 91#define SIT_BLOCK_OFFSET(segno) \
39a53e0c 92 (segno / SIT_ENTRY_PER_BLOCK)
d3a14afd
CY
93#define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
74de593a 95#define SIT_BLK_CNT(sbi) \
7cd8558b 96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
39a53e0c
JK
97#define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
39a53e0c 99
55cf9cb6
CY
100#define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102#define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
90a893c7
JK
104#define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
3cd8a239 106
39a53e0c
JK
107/*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112enum {
113 ALLOC_RIGHT = 0,
114 ALLOC_LEFT
115};
116
117/*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 */
122enum {
123 LFS = 0,
124 SSR
125};
126
127/*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
131 */
132enum {
133 GC_CB = 0,
134 GC_GREEDY
135};
136
137/*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
6aefd93b 140 * FORCE_FG_GC means on-demand cleaning job in background.
39a53e0c
JK
141 */
142enum {
143 BG_GC = 0,
6aefd93b
JK
144 FG_GC,
145 FORCE_FG_GC,
39a53e0c
JK
146};
147
148/* for a function parameter to select a victim segment */
149struct victim_sel_policy {
150 int alloc_mode; /* LFS or SSR */
151 int gc_mode; /* GC_CB or GC_GREEDY */
152 unsigned long *dirty_segmap; /* dirty segment bitmap */
a26b7c8a 153 unsigned int max_search; /* maximum # of segments to search */
39a53e0c
JK
154 unsigned int offset; /* last scanned bitmap offset */
155 unsigned int ofs_unit; /* bitmap search unit */
156 unsigned int min_cost; /* minimum cost */
157 unsigned int min_segno; /* segment # having min. cost */
158};
159
160struct seg_entry {
161 unsigned short valid_blocks; /* # of valid blocks */
162 unsigned char *cur_valid_map; /* validity bitmap of blocks */
163 /*
164 * # of valid blocks and the validity bitmap stored in the the last
165 * checkpoint pack. This information is used by the SSR mode.
166 */
167 unsigned short ckpt_valid_blocks;
168 unsigned char *ckpt_valid_map;
a66cdd98 169 unsigned char *discard_map;
39a53e0c
JK
170 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
171 unsigned long long mtime; /* modification time of the segment */
172};
173
174struct sec_entry {
175 unsigned int valid_blocks; /* # of valid blocks in a section */
176};
177
178struct segment_allocation {
179 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
180};
181
decd36b6
CY
182/*
183 * this value is set in page as a private data which indicate that
184 * the page is atomically written, and it is in inmem_pages list.
185 */
186#define ATOMIC_WRITTEN_PAGE 0x0000ffff
187
188#define IS_ATOMIC_WRITTEN_PAGE(page) \
189 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
190
88b88a66
JK
191struct inmem_pages {
192 struct list_head list;
193 struct page *page;
194};
195
39a53e0c
JK
196struct sit_info {
197 const struct segment_allocation *s_ops;
198
199 block_t sit_base_addr; /* start block address of SIT area */
200 block_t sit_blocks; /* # of blocks used by SIT area */
201 block_t written_valid_blocks; /* # of valid blocks in main area */
202 char *sit_bitmap; /* SIT bitmap pointer */
203 unsigned int bitmap_size; /* SIT bitmap size */
204
60a3b782 205 unsigned long *tmp_map; /* bitmap for temporal use */
39a53e0c
JK
206 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
207 unsigned int dirty_sentries; /* # of dirty sentries */
208 unsigned int sents_per_block; /* # of SIT entries per block */
209 struct mutex sentry_lock; /* to protect SIT cache */
210 struct seg_entry *sentries; /* SIT segment-level cache */
211 struct sec_entry *sec_entries; /* SIT section-level cache */
212
213 /* for cost-benefit algorithm in cleaning procedure */
214 unsigned long long elapsed_time; /* elapsed time after mount */
215 unsigned long long mounted_time; /* mount time */
216 unsigned long long min_mtime; /* min. modification time */
217 unsigned long long max_mtime; /* max. modification time */
218};
219
220struct free_segmap_info {
221 unsigned int start_segno; /* start segment number logically */
222 unsigned int free_segments; /* # of free segments */
223 unsigned int free_sections; /* # of free sections */
1a118ccf 224 spinlock_t segmap_lock; /* free segmap lock */
39a53e0c
JK
225 unsigned long *free_segmap; /* free segment bitmap */
226 unsigned long *free_secmap; /* free section bitmap */
227};
228
229/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
230enum dirty_type {
231 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
232 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
233 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
234 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
235 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
236 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
237 DIRTY, /* to count # of dirty segments */
238 PRE, /* to count # of entirely obsolete segments */
239 NR_DIRTY_TYPE
240};
241
242struct dirty_seglist_info {
243 const struct victim_selection *v_ops; /* victim selction operation */
244 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
245 struct mutex seglist_lock; /* lock for segment bitmaps */
246 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
5ec4e49f 247 unsigned long *victim_secmap; /* background GC victims */
39a53e0c
JK
248};
249
250/* victim selection function for cleaning and SSR */
251struct victim_selection {
252 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
253 int, int, char);
254};
255
256/* for active log information */
257struct curseg_info {
258 struct mutex curseg_mutex; /* lock for consistency */
259 struct f2fs_summary_block *sum_blk; /* cached summary block */
260 unsigned char alloc_type; /* current allocation type */
261 unsigned int segno; /* current segment number */
262 unsigned short next_blkoff; /* next block offset to write */
263 unsigned int zone; /* current zone number */
264 unsigned int next_segno; /* preallocated segment */
265};
266
184a5cd2
CY
267struct sit_entry_set {
268 struct list_head set_list; /* link with all sit sets */
269 unsigned int start_segno; /* start segno of sits in set */
270 unsigned int entry_cnt; /* the # of sit entries in set */
271};
272
39a53e0c
JK
273/*
274 * inline functions
275 */
276static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
277{
278 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
279}
280
281static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
282 unsigned int segno)
283{
284 struct sit_info *sit_i = SIT_I(sbi);
285 return &sit_i->sentries[segno];
286}
287
288static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
289 unsigned int segno)
290{
291 struct sit_info *sit_i = SIT_I(sbi);
292 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
293}
294
295static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
296 unsigned int segno, int section)
297{
298 /*
299 * In order to get # of valid blocks in a section instantly from many
300 * segments, f2fs manages two counting structures separately.
301 */
302 if (section > 1)
303 return get_sec_entry(sbi, segno)->valid_blocks;
304 else
305 return get_seg_entry(sbi, segno)->valid_blocks;
306}
307
308static inline void seg_info_from_raw_sit(struct seg_entry *se,
309 struct f2fs_sit_entry *rs)
310{
311 se->valid_blocks = GET_SIT_VBLOCKS(rs);
312 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
313 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
314 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
315 se->type = GET_SIT_TYPE(rs);
316 se->mtime = le64_to_cpu(rs->mtime);
317}
318
319static inline void seg_info_to_raw_sit(struct seg_entry *se,
320 struct f2fs_sit_entry *rs)
321{
322 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
323 se->valid_blocks;
324 rs->vblocks = cpu_to_le16(raw_vblocks);
325 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
326 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
327 se->ckpt_valid_blocks = se->valid_blocks;
328 rs->mtime = cpu_to_le64(se->mtime);
329}
330
331static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
332 unsigned int max, unsigned int segno)
333{
334 unsigned int ret;
1a118ccf 335 spin_lock(&free_i->segmap_lock);
39a53e0c 336 ret = find_next_bit(free_i->free_segmap, max, segno);
1a118ccf 337 spin_unlock(&free_i->segmap_lock);
39a53e0c
JK
338 return ret;
339}
340
341static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
342{
343 struct free_segmap_info *free_i = FREE_I(sbi);
344 unsigned int secno = segno / sbi->segs_per_sec;
345 unsigned int start_segno = secno * sbi->segs_per_sec;
346 unsigned int next;
347
1a118ccf 348 spin_lock(&free_i->segmap_lock);
39a53e0c
JK
349 clear_bit(segno, free_i->free_segmap);
350 free_i->free_segments++;
351
7fd97019
WL
352 next = find_next_bit(free_i->free_segmap,
353 start_segno + sbi->segs_per_sec, start_segno);
39a53e0c
JK
354 if (next >= start_segno + sbi->segs_per_sec) {
355 clear_bit(secno, free_i->free_secmap);
356 free_i->free_sections++;
357 }
1a118ccf 358 spin_unlock(&free_i->segmap_lock);
39a53e0c
JK
359}
360
361static inline void __set_inuse(struct f2fs_sb_info *sbi,
362 unsigned int segno)
363{
364 struct free_segmap_info *free_i = FREE_I(sbi);
365 unsigned int secno = segno / sbi->segs_per_sec;
366 set_bit(segno, free_i->free_segmap);
367 free_i->free_segments--;
368 if (!test_and_set_bit(secno, free_i->free_secmap))
369 free_i->free_sections--;
370}
371
372static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
373 unsigned int segno)
374{
375 struct free_segmap_info *free_i = FREE_I(sbi);
376 unsigned int secno = segno / sbi->segs_per_sec;
377 unsigned int start_segno = secno * sbi->segs_per_sec;
378 unsigned int next;
379
1a118ccf 380 spin_lock(&free_i->segmap_lock);
39a53e0c
JK
381 if (test_and_clear_bit(segno, free_i->free_segmap)) {
382 free_i->free_segments++;
383
f1121ab0
CY
384 next = find_next_bit(free_i->free_segmap,
385 start_segno + sbi->segs_per_sec, start_segno);
39a53e0c
JK
386 if (next >= start_segno + sbi->segs_per_sec) {
387 if (test_and_clear_bit(secno, free_i->free_secmap))
388 free_i->free_sections++;
389 }
390 }
1a118ccf 391 spin_unlock(&free_i->segmap_lock);
39a53e0c
JK
392}
393
394static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
395 unsigned int segno)
396{
397 struct free_segmap_info *free_i = FREE_I(sbi);
398 unsigned int secno = segno / sbi->segs_per_sec;
1a118ccf 399 spin_lock(&free_i->segmap_lock);
39a53e0c
JK
400 if (!test_and_set_bit(segno, free_i->free_segmap)) {
401 free_i->free_segments--;
402 if (!test_and_set_bit(secno, free_i->free_secmap))
403 free_i->free_sections--;
404 }
1a118ccf 405 spin_unlock(&free_i->segmap_lock);
39a53e0c
JK
406}
407
408static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
409 void *dst_addr)
410{
411 struct sit_info *sit_i = SIT_I(sbi);
412 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
413}
414
415static inline block_t written_block_count(struct f2fs_sb_info *sbi)
416{
8b8343fa 417 return SIT_I(sbi)->written_valid_blocks;
39a53e0c
JK
418}
419
420static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
421{
8b8343fa 422 return FREE_I(sbi)->free_segments;
39a53e0c
JK
423}
424
425static inline int reserved_segments(struct f2fs_sb_info *sbi)
426{
427 return SM_I(sbi)->reserved_segments;
428}
429
430static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
431{
8b8343fa 432 return FREE_I(sbi)->free_sections;
39a53e0c
JK
433}
434
435static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
436{
437 return DIRTY_I(sbi)->nr_dirty[PRE];
438}
439
440static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
441{
442 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
443 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
444 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
445 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
446 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
447 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
448}
449
450static inline int overprovision_segments(struct f2fs_sb_info *sbi)
451{
452 return SM_I(sbi)->ovp_segments;
453}
454
455static inline int overprovision_sections(struct f2fs_sb_info *sbi)
456{
457 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
458}
459
460static inline int reserved_sections(struct f2fs_sb_info *sbi)
461{
462 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
463}
464
465static inline bool need_SSR(struct f2fs_sb_info *sbi)
466{
95dd8973
JK
467 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
468 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
469 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
470 reserved_sections(sbi) + 1);
39a53e0c
JK
471}
472
43727527 473static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
39a53e0c 474{
5ac206cf
NJ
475 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
476 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
43727527 477
caf0047e 478 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
029cd28c
JK
479 return false;
480
6c311ec6
CF
481 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
482 reserved_sections(sbi));
39a53e0c
JK
483}
484
81eb8d6e
JK
485static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
486{
6c311ec6 487 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
81eb8d6e
JK
488}
489
39a53e0c
JK
490static inline int utilization(struct f2fs_sb_info *sbi)
491{
6c311ec6
CF
492 return div_u64((u64)valid_user_blocks(sbi) * 100,
493 sbi->user_block_count);
39a53e0c
JK
494}
495
496/*
497 * Sometimes f2fs may be better to drop out-of-place update policy.
216fbd64
JK
498 * And, users can control the policy through sysfs entries.
499 * There are five policies with triggering conditions as follows.
500 * F2FS_IPU_FORCE - all the time,
501 * F2FS_IPU_SSR - if SSR mode is activated,
502 * F2FS_IPU_UTIL - if FS utilization is over threashold,
503 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
504 * threashold,
c1ce1b02
JK
505 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
506 * storages. IPU will be triggered only if the # of dirty
507 * pages over min_fsync_blocks.
216fbd64 508 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
39a53e0c 509 */
216fbd64 510#define DEF_MIN_IPU_UTIL 70
c1ce1b02 511#define DEF_MIN_FSYNC_BLOCKS 8
216fbd64
JK
512
513enum {
514 F2FS_IPU_FORCE,
515 F2FS_IPU_SSR,
516 F2FS_IPU_UTIL,
517 F2FS_IPU_SSR_UTIL,
c1ce1b02 518 F2FS_IPU_FSYNC,
216fbd64
JK
519};
520
39a53e0c
JK
521static inline bool need_inplace_update(struct inode *inode)
522{
4081363f 523 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9b5f136f 524 unsigned int policy = SM_I(sbi)->ipu_policy;
216fbd64
JK
525
526 /* IPU can be done only for the user data */
88b88a66 527 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
39a53e0c 528 return false;
216fbd64 529
9b5f136f 530 if (policy & (0x1 << F2FS_IPU_FORCE))
39a53e0c 531 return true;
9b5f136f
JK
532 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
533 return true;
534 if (policy & (0x1 << F2FS_IPU_UTIL) &&
535 utilization(sbi) > SM_I(sbi)->min_ipu_util)
536 return true;
537 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
538 utilization(sbi) > SM_I(sbi)->min_ipu_util)
539 return true;
540
541 /* this is only set during fdatasync */
542 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
543 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
544 return true;
545
39a53e0c
JK
546 return false;
547}
548
549static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
550 int type)
551{
552 struct curseg_info *curseg = CURSEG_I(sbi, type);
553 return curseg->segno;
554}
555
556static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
557 int type)
558{
559 struct curseg_info *curseg = CURSEG_I(sbi, type);
560 return curseg->alloc_type;
561}
562
563static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
564{
565 struct curseg_info *curseg = CURSEG_I(sbi, type);
566 return curseg->next_blkoff;
567}
568
569static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
570{
7a04f64d 571 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
39a53e0c
JK
572}
573
39a53e0c
JK
574static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
575{
7a04f64d
LX
576 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
577 || blk_addr >= MAX_BLKADDR(sbi));
39a53e0c
JK
578}
579
580/*
e1c42045 581 * Summary block is always treated as an invalid block
39a53e0c
JK
582 */
583static inline void check_block_count(struct f2fs_sb_info *sbi,
584 int segno, struct f2fs_sit_entry *raw_sit)
585{
4c278394 586#ifdef CONFIG_F2FS_CHECK_FS
44c60bf2 587 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
39a53e0c 588 int valid_blocks = 0;
44c60bf2 589 int cur_pos = 0, next_pos;
39a53e0c 590
39a53e0c 591 /* check bitmap with valid block count */
44c60bf2
CY
592 do {
593 if (is_valid) {
594 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
595 sbi->blocks_per_seg,
596 cur_pos);
597 valid_blocks += next_pos - cur_pos;
598 } else
599 next_pos = find_next_bit_le(&raw_sit->valid_map,
600 sbi->blocks_per_seg,
601 cur_pos);
602 cur_pos = next_pos;
603 is_valid = !is_valid;
604 } while (cur_pos < sbi->blocks_per_seg);
39a53e0c 605 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
5d56b671 606#endif
4c278394
JK
607 /* check segment usage, and check boundary of a given segment number */
608 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
609 || segno > TOTAL_SEGS(sbi) - 1);
7a04f64d 610}
39a53e0c
JK
611
612static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
613 unsigned int start)
614{
615 struct sit_info *sit_i = SIT_I(sbi);
d3a14afd 616 unsigned int offset = SIT_BLOCK_OFFSET(start);
39a53e0c
JK
617 block_t blk_addr = sit_i->sit_base_addr + offset;
618
619 check_seg_range(sbi, start);
620
621 /* calculate sit block address */
622 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
623 blk_addr += sit_i->sit_blocks;
624
625 return blk_addr;
626}
627
628static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
629 pgoff_t block_addr)
630{
631 struct sit_info *sit_i = SIT_I(sbi);
632 block_addr -= sit_i->sit_base_addr;
633 if (block_addr < sit_i->sit_blocks)
634 block_addr += sit_i->sit_blocks;
635 else
636 block_addr -= sit_i->sit_blocks;
637
638 return block_addr + sit_i->sit_base_addr;
639}
640
641static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
642{
d3a14afd 643 unsigned int block_off = SIT_BLOCK_OFFSET(start);
39a53e0c 644
c6ac4c0e 645 f2fs_change_bit(block_off, sit_i->sit_bitmap);
39a53e0c
JK
646}
647
648static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
649{
650 struct sit_info *sit_i = SIT_I(sbi);
651 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
652 sit_i->mounted_time;
653}
654
655static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
656 unsigned int ofs_in_node, unsigned char version)
657{
658 sum->nid = cpu_to_le32(nid);
659 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
660 sum->version = version;
661}
662
663static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
664{
665 return __start_cp_addr(sbi) +
666 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
667}
668
669static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
670{
671 return __start_cp_addr(sbi) +
672 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
673 - (base + 1) + type;
674}
5ec4e49f
JK
675
676static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
677{
678 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
679 return true;
680 return false;
681}
ac5d156c
JK
682
683static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
684{
685 struct block_device *bdev = sbi->sb->s_bdev;
686 struct request_queue *q = bdev_get_queue(bdev);
55cf9cb6 687 return SECTOR_TO_BLOCK(queue_max_sectors(q));
ac5d156c 688}
87d6f890
JK
689
690/*
691 * It is very important to gather dirty pages and write at once, so that we can
692 * submit a big bio without interfering other data writes.
693 * By default, 512 pages for directory data,
694 * 512 pages (2MB) * 3 for three types of nodes, and
695 * max_bio_blocks for meta are set.
696 */
697static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
698{
a88a341a 699 if (sbi->sb->s_bdi->wb.dirty_exceeded)
510184c8
JK
700 return 0;
701
a1257023
JK
702 if (type == DATA)
703 return sbi->blocks_per_seg;
704 else if (type == NODE)
87d6f890
JK
705 return 3 * sbi->blocks_per_seg;
706 else if (type == META)
90a893c7 707 return MAX_BIO_BLOCKS(sbi);
87d6f890
JK
708 else
709 return 0;
710}
50c8cdb3
JK
711
712/*
713 * When writing pages, it'd better align nr_to_write for segment size.
714 */
715static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
716 struct writeback_control *wbc)
717{
718 long nr_to_write, desired;
719
720 if (wbc->sync_mode != WB_SYNC_NONE)
721 return 0;
722
723 nr_to_write = wbc->nr_to_write;
724
725 if (type == DATA)
726 desired = 4096;
727 else if (type == NODE)
728 desired = 3 * max_hw_blocks(sbi);
729 else
90a893c7 730 desired = MAX_BIO_BLOCKS(sbi);
50c8cdb3
JK
731
732 wbc->nr_to_write = desired;
733 return desired - nr_to_write;
734}
This page took 0.204433 seconds and 5 git commands to generate.