Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * JFFS2 -- Journalling Flash File System, Version 2. | |
3 | * | |
c00c310e | 4 | * Copyright © 2001-2007 Red Hat, Inc. |
1da177e4 LT |
5 | * |
6 | * Created by David Woodhouse <dwmw2@infradead.org> | |
7 | * | |
8 | * For licensing information, see the file 'LICENCE' in this directory. | |
9 | * | |
1da177e4 LT |
10 | */ |
11 | ||
12 | #include <linux/kernel.h> | |
13 | #include <linux/slab.h> | |
14 | #include <linux/mtd/mtd.h> | |
15 | #include <linux/compiler.h> | |
16 | #include <linux/sched.h> /* For cond_resched() */ | |
17 | #include "nodelist.h" | |
e631ddba | 18 | #include "debug.h" |
1da177e4 LT |
19 | |
20 | /** | |
21 | * jffs2_reserve_space - request physical space to write nodes to flash | |
22 | * @c: superblock info | |
23 | * @minsize: Minimum acceptable size of allocation | |
1da177e4 LT |
24 | * @len: Returned value of allocation length |
25 | * @prio: Allocation type - ALLOC_{NORMAL,DELETION} | |
26 | * | |
27 | * Requests a block of physical space on the flash. Returns zero for success | |
9fe4854c DW |
28 | * and puts 'len' into the appropriate place, or returns -ENOSPC or other |
29 | * error if appropriate. Doesn't return len since that's | |
1da177e4 LT |
30 | * |
31 | * If it returns zero, jffs2_reserve_space() also downs the per-filesystem | |
32 | * allocation semaphore, to prevent more than one allocation from being | |
33 | * active at any time. The semaphore is later released by jffs2_commit_allocation() | |
34 | * | |
35 | * jffs2_reserve_space() may trigger garbage collection in order to make room | |
36 | * for the requested allocation. | |
37 | */ | |
38 | ||
e631ddba | 39 | static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, |
9fe4854c | 40 | uint32_t *len, uint32_t sumsize); |
1da177e4 | 41 | |
9fe4854c | 42 | int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, |
e631ddba | 43 | uint32_t *len, int prio, uint32_t sumsize) |
1da177e4 LT |
44 | { |
45 | int ret = -EAGAIN; | |
46 | int blocksneeded = c->resv_blocks_write; | |
47 | /* align it */ | |
48 | minsize = PAD(minsize); | |
49 | ||
50 | D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize)); | |
51 | down(&c->alloc_sem); | |
52 | ||
53 | D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n")); | |
54 | ||
55 | spin_lock(&c->erase_completion_lock); | |
56 | ||
57 | /* this needs a little more thought (true <tglx> :)) */ | |
58 | while(ret == -EAGAIN) { | |
59 | while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) { | |
60 | int ret; | |
61 | uint32_t dirty, avail; | |
62 | ||
63 | /* calculate real dirty size | |
64 | * dirty_size contains blocks on erase_pending_list | |
65 | * those blocks are counted in c->nr_erasing_blocks. | |
66 | * If one block is actually erased, it is not longer counted as dirty_space | |
67 | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | |
68 | * with c->nr_erasing_blocks * c->sector_size again. | |
69 | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | |
70 | * This helps us to force gc and pick eventually a clean block to spread the load. | |
71 | * We add unchecked_size here, as we hopefully will find some space to use. | |
72 | * This will affect the sum only once, as gc first finishes checking | |
73 | * of nodes. | |
74 | */ | |
75 | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; | |
76 | if (dirty < c->nospc_dirty_size) { | |
77 | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | |
4132ace8 | 78 | D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n")); |
1da177e4 LT |
79 | break; |
80 | } | |
81 | D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", | |
82 | dirty, c->unchecked_size, c->sector_size)); | |
83 | ||
84 | spin_unlock(&c->erase_completion_lock); | |
85 | up(&c->alloc_sem); | |
86 | return -ENOSPC; | |
87 | } | |
182ec4ee | 88 | |
1da177e4 LT |
89 | /* Calc possibly available space. Possibly available means that we |
90 | * don't know, if unchecked size contains obsoleted nodes, which could give us some | |
91 | * more usable space. This will affect the sum only once, as gc first finishes checking | |
92 | * of nodes. | |
182ec4ee | 93 | + Return -ENOSPC, if the maximum possibly available space is less or equal than |
1da177e4 LT |
94 | * blocksneeded * sector_size. |
95 | * This blocks endless gc looping on a filesystem, which is nearly full, even if | |
96 | * the check above passes. | |
97 | */ | |
98 | avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; | |
99 | if ( (avail / c->sector_size) <= blocksneeded) { | |
100 | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | |
4132ace8 | 101 | D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n")); |
1da177e4 LT |
102 | break; |
103 | } | |
104 | ||
105 | D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", | |
106 | avail, blocksneeded * c->sector_size)); | |
107 | spin_unlock(&c->erase_completion_lock); | |
108 | up(&c->alloc_sem); | |
109 | return -ENOSPC; | |
110 | } | |
111 | ||
112 | up(&c->alloc_sem); | |
113 | ||
114 | D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", | |
115 | c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size, | |
116 | c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size)); | |
117 | spin_unlock(&c->erase_completion_lock); | |
182ec4ee | 118 | |
1da177e4 LT |
119 | ret = jffs2_garbage_collect_pass(c); |
120 | if (ret) | |
121 | return ret; | |
122 | ||
123 | cond_resched(); | |
124 | ||
125 | if (signal_pending(current)) | |
126 | return -EINTR; | |
127 | ||
128 | down(&c->alloc_sem); | |
129 | spin_lock(&c->erase_completion_lock); | |
130 | } | |
131 | ||
9fe4854c | 132 | ret = jffs2_do_reserve_space(c, minsize, len, sumsize); |
1da177e4 LT |
133 | if (ret) { |
134 | D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret)); | |
135 | } | |
136 | } | |
137 | spin_unlock(&c->erase_completion_lock); | |
2f785402 | 138 | if (!ret) |
046b8b98 | 139 | ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1); |
1da177e4 LT |
140 | if (ret) |
141 | up(&c->alloc_sem); | |
142 | return ret; | |
143 | } | |
144 | ||
9fe4854c DW |
145 | int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, |
146 | uint32_t *len, uint32_t sumsize) | |
1da177e4 LT |
147 | { |
148 | int ret = -EAGAIN; | |
149 | minsize = PAD(minsize); | |
150 | ||
151 | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize)); | |
152 | ||
153 | spin_lock(&c->erase_completion_lock); | |
154 | while(ret == -EAGAIN) { | |
9fe4854c | 155 | ret = jffs2_do_reserve_space(c, minsize, len, sumsize); |
1da177e4 | 156 | if (ret) { |
ef53cb02 | 157 | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret)); |
1da177e4 LT |
158 | } |
159 | } | |
160 | spin_unlock(&c->erase_completion_lock); | |
2f785402 | 161 | if (!ret) |
046b8b98 | 162 | ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1); |
2f785402 | 163 | |
1da177e4 LT |
164 | return ret; |
165 | } | |
166 | ||
e631ddba FH |
167 | |
168 | /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */ | |
169 | ||
170 | static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | |
1da177e4 | 171 | { |
e631ddba | 172 | |
99c2594f AH |
173 | if (c->nextblock == NULL) { |
174 | D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n", | |
175 | jeb->offset)); | |
176 | return; | |
177 | } | |
e631ddba FH |
178 | /* Check, if we have a dirty block now, or if it was dirty already */ |
179 | if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) { | |
180 | c->dirty_size += jeb->wasted_size; | |
181 | c->wasted_size -= jeb->wasted_size; | |
182 | jeb->dirty_size += jeb->wasted_size; | |
183 | jeb->wasted_size = 0; | |
184 | if (VERYDIRTY(c, jeb->dirty_size)) { | |
185 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | |
186 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | |
187 | list_add_tail(&jeb->list, &c->very_dirty_list); | |
188 | } else { | |
189 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | |
190 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | |
191 | list_add_tail(&jeb->list, &c->dirty_list); | |
192 | } | |
182ec4ee | 193 | } else { |
e631ddba FH |
194 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
195 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | |
196 | list_add_tail(&jeb->list, &c->clean_list); | |
197 | } | |
198 | c->nextblock = NULL; | |
199 | ||
200 | } | |
201 | ||
202 | /* Select a new jeb for nextblock */ | |
203 | ||
204 | static int jffs2_find_nextblock(struct jffs2_sb_info *c) | |
205 | { | |
206 | struct list_head *next; | |
182ec4ee | 207 | |
e631ddba FH |
208 | /* Take the next block off the 'free' list */ |
209 | ||
210 | if (list_empty(&c->free_list)) { | |
211 | ||
212 | if (!c->nr_erasing_blocks && | |
213 | !list_empty(&c->erasable_list)) { | |
214 | struct jffs2_eraseblock *ejeb; | |
215 | ||
216 | ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list); | |
f116629d | 217 | list_move_tail(&ejeb->list, &c->erase_pending_list); |
e631ddba FH |
218 | c->nr_erasing_blocks++; |
219 | jffs2_erase_pending_trigger(c); | |
220 | D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n", | |
221 | ejeb->offset)); | |
222 | } | |
223 | ||
224 | if (!c->nr_erasing_blocks && | |
225 | !list_empty(&c->erasable_pending_wbuf_list)) { | |
226 | D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n")); | |
227 | /* c->nextblock is NULL, no update to c->nextblock allowed */ | |
1da177e4 | 228 | spin_unlock(&c->erase_completion_lock); |
1da177e4 LT |
229 | jffs2_flush_wbuf_pad(c); |
230 | spin_lock(&c->erase_completion_lock); | |
e631ddba FH |
231 | /* Have another go. It'll be on the erasable_list now */ |
232 | return -EAGAIN; | |
1da177e4 | 233 | } |
e631ddba FH |
234 | |
235 | if (!c->nr_erasing_blocks) { | |
236 | /* Ouch. We're in GC, or we wouldn't have got here. | |
237 | And there's no space left. At all. */ | |
182ec4ee TG |
238 | printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", |
239 | c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", | |
e631ddba FH |
240 | list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"); |
241 | return -ENOSPC; | |
1da177e4 | 242 | } |
e631ddba FH |
243 | |
244 | spin_unlock(&c->erase_completion_lock); | |
245 | /* Don't wait for it; just erase one right now */ | |
246 | jffs2_erase_pending_blocks(c, 1); | |
247 | spin_lock(&c->erase_completion_lock); | |
248 | ||
249 | /* An erase may have failed, decreasing the | |
250 | amount of free space available. So we must | |
251 | restart from the beginning */ | |
252 | return -EAGAIN; | |
1da177e4 | 253 | } |
e631ddba FH |
254 | |
255 | next = c->free_list.next; | |
256 | list_del(next); | |
257 | c->nextblock = list_entry(next, struct jffs2_eraseblock, list); | |
258 | c->nr_free_blocks--; | |
182ec4ee | 259 | |
e631ddba FH |
260 | jffs2_sum_reset_collected(c->summary); /* reset collected summary */ |
261 | ||
262 | D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset)); | |
263 | ||
264 | return 0; | |
265 | } | |
266 | ||
267 | /* Called with alloc sem _and_ erase_completion_lock */ | |
9fe4854c DW |
268 | static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, |
269 | uint32_t *len, uint32_t sumsize) | |
e631ddba FH |
270 | { |
271 | struct jffs2_eraseblock *jeb = c->nextblock; | |
9fe4854c | 272 | uint32_t reserved_size; /* for summary information at the end of the jeb */ |
e631ddba FH |
273 | int ret; |
274 | ||
275 | restart: | |
276 | reserved_size = 0; | |
277 | ||
278 | if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) { | |
279 | /* NOSUM_SIZE means not to generate summary */ | |
280 | ||
281 | if (jeb) { | |
282 | reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE); | |
733802d9 | 283 | dbg_summary("minsize=%d , jeb->free=%d ," |
e631ddba FH |
284 | "summary->size=%d , sumsize=%d\n", |
285 | minsize, jeb->free_size, | |
286 | c->summary->sum_size, sumsize); | |
287 | } | |
288 | ||
289 | /* Is there enough space for writing out the current node, or we have to | |
290 | write out summary information now, close this jeb and select new nextblock? */ | |
291 | if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize + | |
292 | JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) { | |
293 | ||
294 | /* Has summary been disabled for this jeb? */ | |
295 | if (jffs2_sum_is_disabled(c->summary)) { | |
296 | sumsize = JFFS2_SUMMARY_NOSUM_SIZE; | |
297 | goto restart; | |
1da177e4 LT |
298 | } |
299 | ||
e631ddba | 300 | /* Writing out the collected summary information */ |
733802d9 | 301 | dbg_summary("generating summary for 0x%08x.\n", jeb->offset); |
e631ddba FH |
302 | ret = jffs2_sum_write_sumnode(c); |
303 | ||
304 | if (ret) | |
305 | return ret; | |
306 | ||
307 | if (jffs2_sum_is_disabled(c->summary)) { | |
308 | /* jffs2_write_sumnode() couldn't write out the summary information | |
309 | diabling summary for this jeb and free the collected information | |
310 | */ | |
311 | sumsize = JFFS2_SUMMARY_NOSUM_SIZE; | |
312 | goto restart; | |
313 | } | |
314 | ||
315 | jffs2_close_nextblock(c, jeb); | |
316 | jeb = NULL; | |
34c0e906 FH |
317 | /* keep always valid value in reserved_size */ |
318 | reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE); | |
e631ddba FH |
319 | } |
320 | } else { | |
321 | if (jeb && minsize > jeb->free_size) { | |
fc6612f6 DW |
322 | uint32_t waste; |
323 | ||
e631ddba FH |
324 | /* Skip the end of this block and file it as having some dirty space */ |
325 | /* If there's a pending write to it, flush now */ | |
326 | ||
327 | if (jffs2_wbuf_dirty(c)) { | |
1da177e4 | 328 | spin_unlock(&c->erase_completion_lock); |
e631ddba | 329 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); |
1da177e4 LT |
330 | jffs2_flush_wbuf_pad(c); |
331 | spin_lock(&c->erase_completion_lock); | |
e631ddba FH |
332 | jeb = c->nextblock; |
333 | goto restart; | |
1da177e4 LT |
334 | } |
335 | ||
fc6612f6 DW |
336 | spin_unlock(&c->erase_completion_lock); |
337 | ||
338 | ret = jffs2_prealloc_raw_node_refs(c, jeb, 1); | |
339 | if (ret) | |
340 | return ret; | |
341 | /* Just lock it again and continue. Nothing much can change because | |
342 | we hold c->alloc_sem anyway. In fact, it's not entirely clear why | |
343 | we hold c->erase_completion_lock in the majority of this function... | |
344 | but that's a question for another (more caffeine-rich) day. */ | |
345 | spin_lock(&c->erase_completion_lock); | |
346 | ||
347 | waste = jeb->free_size; | |
348 | jffs2_link_node_ref(c, jeb, | |
349 | (jeb->offset + c->sector_size - waste) | REF_OBSOLETE, | |
350 | waste, NULL); | |
351 | /* FIXME: that made it count as dirty. Convert to wasted */ | |
352 | jeb->dirty_size -= waste; | |
353 | c->dirty_size -= waste; | |
354 | jeb->wasted_size += waste; | |
355 | c->wasted_size += waste; | |
1da177e4 | 356 | |
e631ddba FH |
357 | jffs2_close_nextblock(c, jeb); |
358 | jeb = NULL; | |
1da177e4 | 359 | } |
e631ddba FH |
360 | } |
361 | ||
362 | if (!jeb) { | |
363 | ||
364 | ret = jffs2_find_nextblock(c); | |
365 | if (ret) | |
366 | return ret; | |
1da177e4 | 367 | |
e631ddba | 368 | jeb = c->nextblock; |
1da177e4 LT |
369 | |
370 | if (jeb->free_size != c->sector_size - c->cleanmarker_size) { | |
371 | printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size); | |
372 | goto restart; | |
373 | } | |
374 | } | |
375 | /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has | |
376 | enough space */ | |
e631ddba | 377 | *len = jeb->free_size - reserved_size; |
1da177e4 LT |
378 | |
379 | if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size && | |
380 | !jeb->first_node->next_in_ino) { | |
182ec4ee | 381 | /* Only node in it beforehand was a CLEANMARKER node (we think). |
1da177e4 | 382 | So mark it obsolete now that there's going to be another node |
182ec4ee | 383 | in the block. This will reduce used_size to zero but We've |
1da177e4 LT |
384 | already set c->nextblock so that jffs2_mark_node_obsolete() |
385 | won't try to refile it to the dirty_list. | |
386 | */ | |
387 | spin_unlock(&c->erase_completion_lock); | |
388 | jffs2_mark_node_obsolete(c, jeb->first_node); | |
389 | spin_lock(&c->erase_completion_lock); | |
390 | } | |
391 | ||
9fe4854c DW |
392 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", |
393 | *len, jeb->offset + (c->sector_size - jeb->free_size))); | |
1da177e4 LT |
394 | return 0; |
395 | } | |
396 | ||
397 | /** | |
398 | * jffs2_add_physical_node_ref - add a physical node reference to the list | |
399 | * @c: superblock info | |
400 | * @new: new node reference to add | |
401 | * @len: length of this physical node | |
1da177e4 | 402 | * |
182ec4ee | 403 | * Should only be used to report nodes for which space has been allocated |
1da177e4 LT |
404 | * by jffs2_reserve_space. |
405 | * | |
406 | * Must be called with the alloc_sem held. | |
407 | */ | |
182ec4ee | 408 | |
2f785402 DW |
409 | struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c, |
410 | uint32_t ofs, uint32_t len, | |
411 | struct jffs2_inode_cache *ic) | |
1da177e4 LT |
412 | { |
413 | struct jffs2_eraseblock *jeb; | |
2f785402 | 414 | struct jffs2_raw_node_ref *new; |
1da177e4 | 415 | |
2f785402 | 416 | jeb = &c->blocks[ofs / c->sector_size]; |
1da177e4 | 417 | |
2f785402 DW |
418 | D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", |
419 | ofs & ~3, ofs & 3, len)); | |
1da177e4 | 420 | #if 1 |
2f785402 DW |
421 | /* Allow non-obsolete nodes only to be added at the end of c->nextblock, |
422 | if c->nextblock is set. Note that wbuf.c will file obsolete nodes | |
423 | even after refiling c->nextblock */ | |
424 | if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE)) | |
425 | && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) { | |
66bfaeaa DW |
426 | printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3); |
427 | if (c->nextblock) | |
428 | printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset); | |
429 | else | |
430 | printk(KERN_WARNING "No nextblock"); | |
431 | printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size)); | |
2f785402 | 432 | return ERR_PTR(-EINVAL); |
1da177e4 LT |
433 | } |
434 | #endif | |
435 | spin_lock(&c->erase_completion_lock); | |
436 | ||
2f785402 | 437 | new = jffs2_link_node_ref(c, jeb, ofs, len, ic); |
1da177e4 | 438 | |
9b88f473 | 439 | if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) { |
1da177e4 LT |
440 | /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ |
441 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | |
442 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | |
443 | if (jffs2_wbuf_dirty(c)) { | |
444 | /* Flush the last write in the block if it's outstanding */ | |
445 | spin_unlock(&c->erase_completion_lock); | |
446 | jffs2_flush_wbuf_pad(c); | |
447 | spin_lock(&c->erase_completion_lock); | |
448 | } | |
449 | ||
450 | list_add_tail(&jeb->list, &c->clean_list); | |
451 | c->nextblock = NULL; | |
452 | } | |
e0c8e42f AB |
453 | jffs2_dbg_acct_sanity_check_nolock(c,jeb); |
454 | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | |
1da177e4 LT |
455 | |
456 | spin_unlock(&c->erase_completion_lock); | |
457 | ||
2f785402 | 458 | return new; |
1da177e4 LT |
459 | } |
460 | ||
461 | ||
462 | void jffs2_complete_reservation(struct jffs2_sb_info *c) | |
463 | { | |
464 | D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n")); | |
465 | jffs2_garbage_collect_trigger(c); | |
466 | up(&c->alloc_sem); | |
467 | } | |
468 | ||
469 | static inline int on_list(struct list_head *obj, struct list_head *head) | |
470 | { | |
471 | struct list_head *this; | |
472 | ||
473 | list_for_each(this, head) { | |
474 | if (this == obj) { | |
475 | D1(printk("%p is on list at %p\n", obj, head)); | |
476 | return 1; | |
477 | ||
478 | } | |
479 | } | |
480 | return 0; | |
481 | } | |
482 | ||
483 | void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref) | |
484 | { | |
485 | struct jffs2_eraseblock *jeb; | |
486 | int blocknr; | |
487 | struct jffs2_unknown_node n; | |
488 | int ret, addedsize; | |
489 | size_t retlen; | |
1417fc44 | 490 | uint32_t freed_len; |
1da177e4 | 491 | |
9bfeb691 | 492 | if(unlikely(!ref)) { |
1da177e4 LT |
493 | printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); |
494 | return; | |
495 | } | |
496 | if (ref_obsolete(ref)) { | |
497 | D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref))); | |
498 | return; | |
499 | } | |
500 | blocknr = ref->flash_offset / c->sector_size; | |
501 | if (blocknr >= c->nr_blocks) { | |
502 | printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset); | |
503 | BUG(); | |
504 | } | |
505 | jeb = &c->blocks[blocknr]; | |
506 | ||
507 | if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) && | |
31fbdf7a | 508 | !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) { |
182ec4ee TG |
509 | /* Hm. This may confuse static lock analysis. If any of the above |
510 | three conditions is false, we're going to return from this | |
1da177e4 LT |
511 | function without actually obliterating any nodes or freeing |
512 | any jffs2_raw_node_refs. So we don't need to stop erases from | |
513 | happening, or protect against people holding an obsolete | |
514 | jffs2_raw_node_ref without the erase_completion_lock. */ | |
515 | down(&c->erase_free_sem); | |
516 | } | |
517 | ||
518 | spin_lock(&c->erase_completion_lock); | |
519 | ||
1417fc44 DW |
520 | freed_len = ref_totlen(c, jeb, ref); |
521 | ||
1da177e4 | 522 | if (ref_flags(ref) == REF_UNCHECKED) { |
1417fc44 | 523 | D1(if (unlikely(jeb->unchecked_size < freed_len)) { |
1da177e4 | 524 | printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", |
1417fc44 | 525 | freed_len, blocknr, ref->flash_offset, jeb->used_size); |
1da177e4 LT |
526 | BUG(); |
527 | }) | |
1417fc44 DW |
528 | D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len)); |
529 | jeb->unchecked_size -= freed_len; | |
530 | c->unchecked_size -= freed_len; | |
1da177e4 | 531 | } else { |
1417fc44 | 532 | D1(if (unlikely(jeb->used_size < freed_len)) { |
1da177e4 | 533 | printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", |
1417fc44 | 534 | freed_len, blocknr, ref->flash_offset, jeb->used_size); |
1da177e4 LT |
535 | BUG(); |
536 | }) | |
1417fc44 DW |
537 | D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len)); |
538 | jeb->used_size -= freed_len; | |
539 | c->used_size -= freed_len; | |
1da177e4 LT |
540 | } |
541 | ||
542 | // Take care, that wasted size is taken into concern | |
1417fc44 | 543 | if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) { |
c7c16c8e | 544 | D1(printk("Dirtying\n")); |
1417fc44 DW |
545 | addedsize = freed_len; |
546 | jeb->dirty_size += freed_len; | |
547 | c->dirty_size += freed_len; | |
1da177e4 LT |
548 | |
549 | /* Convert wasted space to dirty, if not a bad block */ | |
550 | if (jeb->wasted_size) { | |
551 | if (on_list(&jeb->list, &c->bad_used_list)) { | |
552 | D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n", | |
553 | jeb->offset)); | |
554 | addedsize = 0; /* To fool the refiling code later */ | |
555 | } else { | |
556 | D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n", | |
557 | jeb->wasted_size, jeb->offset)); | |
558 | addedsize += jeb->wasted_size; | |
559 | jeb->dirty_size += jeb->wasted_size; | |
560 | c->dirty_size += jeb->wasted_size; | |
561 | c->wasted_size -= jeb->wasted_size; | |
562 | jeb->wasted_size = 0; | |
563 | } | |
564 | } | |
565 | } else { | |
c7c16c8e | 566 | D1(printk("Wasting\n")); |
1da177e4 | 567 | addedsize = 0; |
1417fc44 DW |
568 | jeb->wasted_size += freed_len; |
569 | c->wasted_size += freed_len; | |
1da177e4 LT |
570 | } |
571 | ref->flash_offset = ref_offset(ref) | REF_OBSOLETE; | |
182ec4ee | 572 | |
e0c8e42f AB |
573 | jffs2_dbg_acct_sanity_check_nolock(c, jeb); |
574 | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | |
1da177e4 | 575 | |
31fbdf7a AB |
576 | if (c->flags & JFFS2_SB_FLAG_SCANNING) { |
577 | /* Flash scanning is in progress. Don't muck about with the block | |
1da177e4 | 578 | lists because they're not ready yet, and don't actually |
182ec4ee | 579 | obliterate nodes that look obsolete. If they weren't |
1da177e4 LT |
580 | marked obsolete on the flash at the time they _became_ |
581 | obsolete, there was probably a reason for that. */ | |
582 | spin_unlock(&c->erase_completion_lock); | |
583 | /* We didn't lock the erase_free_sem */ | |
584 | return; | |
585 | } | |
586 | ||
587 | if (jeb == c->nextblock) { | |
588 | D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset)); | |
589 | } else if (!jeb->used_size && !jeb->unchecked_size) { | |
590 | if (jeb == c->gcblock) { | |
591 | D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset)); | |
592 | c->gcblock = NULL; | |
593 | } else { | |
594 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset)); | |
595 | list_del(&jeb->list); | |
596 | } | |
597 | if (jffs2_wbuf_dirty(c)) { | |
598 | D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n")); | |
599 | list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); | |
600 | } else { | |
601 | if (jiffies & 127) { | |
602 | /* Most of the time, we just erase it immediately. Otherwise we | |
603 | spend ages scanning it on mount, etc. */ | |
604 | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | |
605 | list_add_tail(&jeb->list, &c->erase_pending_list); | |
606 | c->nr_erasing_blocks++; | |
607 | jffs2_erase_pending_trigger(c); | |
608 | } else { | |
609 | /* Sometimes, however, we leave it elsewhere so it doesn't get | |
610 | immediately reused, and we spread the load a bit. */ | |
611 | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | |
612 | list_add_tail(&jeb->list, &c->erasable_list); | |
182ec4ee | 613 | } |
1da177e4 LT |
614 | } |
615 | D1(printk(KERN_DEBUG "Done OK\n")); | |
616 | } else if (jeb == c->gcblock) { | |
617 | D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset)); | |
618 | } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { | |
619 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset)); | |
620 | list_del(&jeb->list); | |
621 | D1(printk(KERN_DEBUG "...and adding to dirty_list\n")); | |
622 | list_add_tail(&jeb->list, &c->dirty_list); | |
623 | } else if (VERYDIRTY(c, jeb->dirty_size) && | |
624 | !VERYDIRTY(c, jeb->dirty_size - addedsize)) { | |
625 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset)); | |
626 | list_del(&jeb->list); | |
627 | D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n")); | |
628 | list_add_tail(&jeb->list, &c->very_dirty_list); | |
629 | } else { | |
630 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", | |
182ec4ee TG |
631 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
632 | } | |
1da177e4 LT |
633 | |
634 | spin_unlock(&c->erase_completion_lock); | |
635 | ||
31fbdf7a AB |
636 | if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) || |
637 | (c->flags & JFFS2_SB_FLAG_BUILDING)) { | |
1da177e4 LT |
638 | /* We didn't lock the erase_free_sem */ |
639 | return; | |
640 | } | |
641 | ||
642 | /* The erase_free_sem is locked, and has been since before we marked the node obsolete | |
643 | and potentially put its eraseblock onto the erase_pending_list. Thus, we know that | |
644 | the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet | |
c38c1b61 | 645 | by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */ |
1da177e4 LT |
646 | |
647 | D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref))); | |
648 | ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | |
649 | if (ret) { | |
650 | printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); | |
651 | goto out_erase_sem; | |
652 | } | |
653 | if (retlen != sizeof(n)) { | |
654 | printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); | |
655 | goto out_erase_sem; | |
656 | } | |
1417fc44 DW |
657 | if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) { |
658 | printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len); | |
1da177e4 LT |
659 | goto out_erase_sem; |
660 | } | |
661 | if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { | |
662 | D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype))); | |
663 | goto out_erase_sem; | |
664 | } | |
665 | /* XXX FIXME: This is ugly now */ | |
666 | n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); | |
667 | ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | |
668 | if (ret) { | |
669 | printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); | |
670 | goto out_erase_sem; | |
671 | } | |
672 | if (retlen != sizeof(n)) { | |
673 | printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); | |
674 | goto out_erase_sem; | |
675 | } | |
676 | ||
677 | /* Nodes which have been marked obsolete no longer need to be | |
678 | associated with any inode. Remove them from the per-inode list. | |
182ec4ee TG |
679 | |
680 | Note we can't do this for NAND at the moment because we need | |
1da177e4 LT |
681 | obsolete dirent nodes to stay on the lists, because of the |
682 | horridness in jffs2_garbage_collect_deletion_dirent(). Also | |
182ec4ee | 683 | because we delete the inocache, and on NAND we need that to |
1da177e4 LT |
684 | stay around until all the nodes are actually erased, in order |
685 | to stop us from giving the same inode number to another newly | |
686 | created inode. */ | |
687 | if (ref->next_in_ino) { | |
688 | struct jffs2_inode_cache *ic; | |
689 | struct jffs2_raw_node_ref **p; | |
690 | ||
691 | spin_lock(&c->erase_completion_lock); | |
692 | ||
693 | ic = jffs2_raw_ref_to_ic(ref); | |
694 | for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino)) | |
695 | ; | |
696 | ||
697 | *p = ref->next_in_ino; | |
698 | ref->next_in_ino = NULL; | |
699 | ||
c9f700f8 KK |
700 | switch (ic->class) { |
701 | #ifdef CONFIG_JFFS2_FS_XATTR | |
702 | case RAWNODE_CLASS_XATTR_DATUM: | |
703 | jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic); | |
704 | break; | |
705 | case RAWNODE_CLASS_XATTR_REF: | |
706 | jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic); | |
707 | break; | |
708 | #endif | |
709 | default: | |
710 | if (ic->nodes == (void *)ic && ic->nlink == 0) | |
711 | jffs2_del_ino_cache(c, ic); | |
712 | break; | |
713 | } | |
1da177e4 LT |
714 | spin_unlock(&c->erase_completion_lock); |
715 | } | |
716 | ||
1da177e4 LT |
717 | out_erase_sem: |
718 | up(&c->erase_free_sem); | |
719 | } | |
720 | ||
1da177e4 LT |
721 | int jffs2_thread_should_wake(struct jffs2_sb_info *c) |
722 | { | |
723 | int ret = 0; | |
724 | uint32_t dirty; | |
725 | ||
726 | if (c->unchecked_size) { | |
727 | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n", | |
728 | c->unchecked_size, c->checked_ino)); | |
729 | return 1; | |
730 | } | |
731 | ||
732 | /* dirty_size contains blocks on erase_pending_list | |
733 | * those blocks are counted in c->nr_erasing_blocks. | |
734 | * If one block is actually erased, it is not longer counted as dirty_space | |
735 | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | |
736 | * with c->nr_erasing_blocks * c->sector_size again. | |
737 | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | |
738 | * This helps us to force gc and pick eventually a clean block to spread the load. | |
739 | */ | |
740 | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size; | |
741 | ||
182ec4ee TG |
742 | if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && |
743 | (dirty > c->nospc_dirty_size)) | |
1da177e4 LT |
744 | ret = 1; |
745 | ||
182ec4ee | 746 | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", |
1da177e4 LT |
747 | c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no")); |
748 | ||
749 | return ret; | |
750 | } |