Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / fs / jffs2 / wbuf.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
c00c310e
DW
4 * Copyright © 2001-2007 Red Hat, Inc.
5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
1da177e4
LT
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
1da177e4
LT
12 */
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/mtd/mtd.h>
17#include <linux/crc32.h>
18#include <linux/mtd/nand.h>
4e57b681 19#include <linux/jiffies.h>
914e2637 20#include <linux/sched.h>
4e57b681 21
1da177e4
LT
22#include "nodelist.h"
23
24/* For testing write failures */
25#undef BREAKME
26#undef BREAKMEHEADER
27
28#ifdef BREAKME
29static unsigned char *brokenbuf;
30#endif
31
daba5cc4
AB
32#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
33#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
34
1da177e4
LT
35/* max. erase failures before we mark a block bad */
36#define MAX_ERASE_FAILURES 2
37
1da177e4
LT
38struct jffs2_inodirty {
39 uint32_t ino;
40 struct jffs2_inodirty *next;
41};
42
43static struct jffs2_inodirty inodirty_nomem;
44
45static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
46{
47 struct jffs2_inodirty *this = c->wbuf_inodes;
48
49 /* If a malloc failed, consider _everything_ dirty */
50 if (this == &inodirty_nomem)
51 return 1;
52
53 /* If ino == 0, _any_ non-GC writes mean 'yes' */
54 if (this && !ino)
55 return 1;
56
57 /* Look to see if the inode in question is pending in the wbuf */
58 while (this) {
59 if (this->ino == ino)
60 return 1;
61 this = this->next;
62 }
63 return 0;
64}
65
66static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
67{
68 struct jffs2_inodirty *this;
69
70 this = c->wbuf_inodes;
71
72 if (this != &inodirty_nomem) {
73 while (this) {
74 struct jffs2_inodirty *next = this->next;
75 kfree(this);
76 this = next;
77 }
78 }
79 c->wbuf_inodes = NULL;
80}
81
82static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
83{
84 struct jffs2_inodirty *new;
85
86 /* Mark the superblock dirty so that kupdated will flush... */
64a5c2eb 87 jffs2_dirty_trigger(c);
1da177e4
LT
88
89 if (jffs2_wbuf_pending_for_ino(c, ino))
90 return;
91
92 new = kmalloc(sizeof(*new), GFP_KERNEL);
93 if (!new) {
94 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
95 jffs2_clear_wbuf_ino_list(c);
96 c->wbuf_inodes = &inodirty_nomem;
97 return;
98 }
99 new->ino = ino;
100 new->next = c->wbuf_inodes;
101 c->wbuf_inodes = new;
102 return;
103}
104
105static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
106{
107 struct list_head *this, *next;
108 static int n;
109
110 if (list_empty(&c->erasable_pending_wbuf_list))
111 return;
112
113 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
114 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
115
116 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
117 list_del(this);
118 if ((jiffies + (n++)) & 127) {
119 /* Most of the time, we just erase it immediately. Otherwise we
120 spend ages scanning it on mount, etc. */
121 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
122 list_add_tail(&jeb->list, &c->erase_pending_list);
123 c->nr_erasing_blocks++;
ae3b6ba0 124 jffs2_garbage_collect_trigger(c);
1da177e4
LT
125 } else {
126 /* Sometimes, however, we leave it elsewhere so it doesn't get
127 immediately reused, and we spread the load a bit. */
128 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
129 list_add_tail(&jeb->list, &c->erasable_list);
130 }
131 }
132}
133
7f716cf3
EH
134#define REFILE_NOTEMPTY 0
135#define REFILE_ANYWAY 1
136
137static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
1da177e4
LT
138{
139 D1(printk("About to refile bad block at %08x\n", jeb->offset));
140
1da177e4
LT
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
9b88f473 150 BUG_ON(allow_empty == REFILE_NOTEMPTY);
1da177e4
LT
151 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++;
ae3b6ba0 155 jffs2_garbage_collect_trigger(c);
1da177e4 156 }
1da177e4 157
9bfeb691
DW
158 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
159 uint32_t oldfree = jeb->free_size;
160
161 jffs2_link_node_ref(c, jeb,
162 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
163 oldfree, NULL);
164 /* convert to wasted */
165 c->wasted_size += oldfree;
166 jeb->wasted_size += oldfree;
167 c->dirty_size -= oldfree;
168 jeb->dirty_size -= oldfree;
169 }
1da177e4 170
e0c8e42f
AB
171 jffs2_dbg_dump_block_lists_nolock(c);
172 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
173 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4
LT
174}
175
9bfeb691
DW
176static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
177 struct jffs2_inode_info *f,
178 struct jffs2_raw_node_ref *raw,
179 union jffs2_node_union *node)
180{
181 struct jffs2_node_frag *frag;
182 struct jffs2_full_dirent *fd;
183
184 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
185 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
186
187 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
188 je16_to_cpu(node->u.magic) != 0);
189
190 switch (je16_to_cpu(node->u.nodetype)) {
191 case JFFS2_NODETYPE_INODE:
ddc58bd6
DW
192 if (f->metadata && f->metadata->raw == raw) {
193 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
194 return &f->metadata->raw;
195 }
9bfeb691
DW
196 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
197 BUG_ON(!frag);
198 /* Find a frag which refers to the full_dnode we want to modify */
199 while (!frag->node || frag->node->raw != raw) {
200 frag = frag_next(frag);
201 BUG_ON(!frag);
202 }
203 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
204 return &frag->node->raw;
9bfeb691
DW
205
206 case JFFS2_NODETYPE_DIRENT:
207 for (fd = f->dents; fd; fd = fd->next) {
208 if (fd->raw == raw) {
209 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
210 return &fd->raw;
211 }
212 }
213 BUG();
ddc58bd6 214
9bfeb691
DW
215 default:
216 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
217 je16_to_cpu(node->u.nodetype));
218 break;
219 }
220 return NULL;
221}
222
a6bc432e
DW
223#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
224static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
225 uint32_t ofs)
226{
227 int ret;
228 size_t retlen;
229 char *eccstr;
230
231 ret = c->mtd->read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
232 if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
233 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret);
234 return ret;
235 } else if (retlen != c->wbuf_pagesize) {
236 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize);
237 return -EIO;
238 }
239 if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
240 return 0;
241
242 if (ret == -EUCLEAN)
243 eccstr = "corrected";
244 else if (ret == -EBADMSG)
245 eccstr = "correction failed";
246 else
247 eccstr = "OK or unused";
248
249 printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n",
250 eccstr, c->wbuf_ofs);
251 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
252 c->wbuf, c->wbuf_pagesize, 0);
253
254 printk(KERN_WARNING "Read back:\n");
255 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
256 c->wbuf_verify, c->wbuf_pagesize, 0);
257
258 return -EIO;
259}
260#else
261#define jffs2_verify_write(c,b,o) (0)
262#endif
263
1da177e4
LT
264/* Recover from failure to write wbuf. Recover the nodes up to the
265 * wbuf, not the one which we were starting to try to write. */
266
267static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
268{
269 struct jffs2_eraseblock *jeb, *new_jeb;
9bfeb691 270 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
1da177e4
LT
271 size_t retlen;
272 int ret;
9bfeb691 273 int nr_refile = 0;
1da177e4
LT
274 unsigned char *buf;
275 uint32_t start, end, ofs, len;
276
046b8b98
DW
277 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
278
1da177e4 279 spin_lock(&c->erase_completion_lock);
180bfb31
VW
280 if (c->wbuf_ofs % c->mtd->erasesize)
281 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
282 else
283 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
9bfeb691
DW
284 spin_unlock(&c->erase_completion_lock);
285
286 BUG_ON(!ref_obsolete(jeb->last_node));
1da177e4
LT
287
288 /* Find the first node to be recovered, by skipping over every
289 node which ends before the wbuf starts, or which is obsolete. */
9bfeb691
DW
290 for (next = raw = jeb->first_node; next; raw = next) {
291 next = ref_next(raw);
292
293 if (ref_obsolete(raw) ||
294 (next && ref_offset(next) <= c->wbuf_ofs)) {
295 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
296 ref_offset(raw), ref_flags(raw),
297 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
298 c->wbuf_ofs);
299 continue;
300 }
301 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
302 ref_offset(raw), ref_flags(raw),
303 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
304
305 first_raw = raw;
306 break;
307 }
308
309 if (!first_raw) {
1da177e4
LT
310 /* All nodes were obsolete. Nothing to recover. */
311 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
9bfeb691 312 c->wbuf_len = 0;
1da177e4
LT
313 return;
314 }
315
9bfeb691
DW
316 start = ref_offset(first_raw);
317 end = ref_offset(jeb->last_node);
318 nr_refile = 1;
1da177e4 319
9bfeb691
DW
320 /* Count the number of refs which need to be copied */
321 while ((raw = ref_next(raw)) != jeb->last_node)
322 nr_refile++;
1da177e4 323
9bfeb691
DW
324 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
325 start, end, end - start, nr_refile);
1da177e4
LT
326
327 buf = NULL;
328 if (start < c->wbuf_ofs) {
329 /* First affected node was already partially written.
330 * Attempt to reread the old data into our buffer. */
331
332 buf = kmalloc(end - start, GFP_KERNEL);
333 if (!buf) {
334 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
335
336 goto read_failed;
337 }
338
339 /* Do the read... */
9223a456 340 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
182ec4ee 341
9a1fcdfd
TG
342 /* ECC recovered ? */
343 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
344 (retlen == c->wbuf_ofs - start))
1da177e4 345 ret = 0;
9a1fcdfd 346
1da177e4
LT
347 if (ret || retlen != c->wbuf_ofs - start) {
348 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
349
350 kfree(buf);
351 buf = NULL;
352 read_failed:
9bfeb691
DW
353 first_raw = ref_next(first_raw);
354 nr_refile--;
355 while (first_raw && ref_obsolete(first_raw)) {
356 first_raw = ref_next(first_raw);
357 nr_refile--;
358 }
359
1da177e4 360 /* If this was the only node to be recovered, give up */
9bfeb691
DW
361 if (!first_raw) {
362 c->wbuf_len = 0;
1da177e4 363 return;
9bfeb691 364 }
1da177e4
LT
365
366 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
9bfeb691
DW
367 start = ref_offset(first_raw);
368 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
369 start, end, end - start, nr_refile);
370
1da177e4
LT
371 } else {
372 /* Read succeeded. Copy the remaining data from the wbuf */
373 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
374 }
375 }
376 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
377 Either 'buf' contains the data, or we find it in the wbuf */
378
1da177e4 379 /* ... and get an allocation of space from a shiny new block instead */
9fe4854c 380 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
1da177e4
LT
381 if (ret) {
382 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
9b88f473 383 kfree(buf);
1da177e4
LT
384 return;
385 }
9bfeb691 386
7f762ab2
AH
387 /* The summary is not recovered, so it must be disabled for this erase block */
388 jffs2_sum_disable_collecting(c->summary);
389
9bfeb691
DW
390 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
391 if (ret) {
392 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
393 kfree(buf);
394 return;
395 }
396
9fe4854c
DW
397 ofs = write_ofs(c);
398
1da177e4 399 if (end-start >= c->wbuf_pagesize) {
7f716cf3 400 /* Need to do another write immediately, but it's possible
9b88f473 401 that this is just because the wbuf itself is completely
182ec4ee
TG
402 full, and there's nothing earlier read back from the
403 flash. Hence 'buf' isn't necessarily what we're writing
9b88f473 404 from. */
7f716cf3 405 unsigned char *rewrite_buf = buf?:c->wbuf;
1da177e4
LT
406 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
407
408 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
409 towrite, ofs));
182ec4ee 410
1da177e4
LT
411#ifdef BREAKMEHEADER
412 static int breakme;
413 if (breakme++ == 20) {
414 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
415 breakme = 0;
9223a456
TG
416 c->mtd->write(c->mtd, ofs, towrite, &retlen,
417 brokenbuf);
1da177e4
LT
418 ret = -EIO;
419 } else
420#endif
9223a456
TG
421 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
422 rewrite_buf);
1da177e4 423
a6bc432e 424 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
1da177e4
LT
425 /* Argh. We tried. Really we did. */
426 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
9b88f473 427 kfree(buf);
1da177e4 428
2f785402 429 if (retlen)
9bfeb691 430 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
1da177e4 431
1da177e4
LT
432 return;
433 }
434 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
435
436 c->wbuf_len = (end - start) - towrite;
437 c->wbuf_ofs = ofs + towrite;
7f716cf3 438 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
1da177e4 439 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
1da177e4
LT
440 } else {
441 /* OK, now we're left with the dregs in whichever buffer we're using */
442 if (buf) {
443 memcpy(c->wbuf, buf, end-start);
1da177e4
LT
444 } else {
445 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
446 }
447 c->wbuf_ofs = ofs;
448 c->wbuf_len = end - start;
449 }
450
451 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
452 new_jeb = &c->blocks[ofs / c->sector_size];
453
454 spin_lock(&c->erase_completion_lock);
9bfeb691
DW
455 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
456 uint32_t rawlen = ref_totlen(c, jeb, raw);
457 struct jffs2_inode_cache *ic;
458 struct jffs2_raw_node_ref *new_ref;
459 struct jffs2_raw_node_ref **adjust_ref = NULL;
460 struct jffs2_inode_info *f = NULL;
1da177e4
LT
461
462 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
9bfeb691
DW
463 rawlen, ref_offset(raw), ref_flags(raw), ofs));
464
465 ic = jffs2_raw_ref_to_ic(raw);
466
467 /* Ick. This XATTR mess should be fixed shortly... */
468 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
469 struct jffs2_xattr_datum *xd = (void *)ic;
470 BUG_ON(xd->node != raw);
471 adjust_ref = &xd->node;
472 raw->next_in_ino = NULL;
473 ic = NULL;
474 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
475 struct jffs2_xattr_datum *xr = (void *)ic;
476 BUG_ON(xr->node != raw);
477 adjust_ref = &xr->node;
478 raw->next_in_ino = NULL;
479 ic = NULL;
480 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
481 struct jffs2_raw_node_ref **p = &ic->nodes;
482
483 /* Remove the old node from the per-inode list */
484 while (*p && *p != (void *)ic) {
485 if (*p == raw) {
486 (*p) = (raw->next_in_ino);
487 raw->next_in_ino = NULL;
488 break;
489 }
490 p = &((*p)->next_in_ino);
491 }
1da177e4 492
9bfeb691
DW
493 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
494 /* If it's an in-core inode, then we have to adjust any
495 full_dirent or full_dnode structure to point to the
496 new version instead of the old */
27c72b04 497 f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
9bfeb691
DW
498 if (IS_ERR(f)) {
499 /* Should never happen; it _must_ be present */
500 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
501 ic->ino, PTR_ERR(f));
502 BUG();
503 }
504 /* We don't lock f->sem. There's a number of ways we could
505 end up in here with it already being locked, and nobody's
506 going to modify it on us anyway because we hold the
507 alloc_sem. We're only changing one ->raw pointer too,
508 which we can get away with without upsetting readers. */
509 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
510 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
511 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
512 ic->state != INO_STATE_CHECKEDABSENT &&
513 ic->state != INO_STATE_GC)) {
514 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
515 BUG();
516 }
517 }
518
519 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
520
521 if (adjust_ref) {
522 BUG_ON(*adjust_ref != raw);
523 *adjust_ref = new_ref;
524 }
525 if (f)
526 jffs2_gc_release_inode(c, f);
527
528 if (!ref_obsolete(raw)) {
1da177e4
LT
529 jeb->dirty_size += rawlen;
530 jeb->used_size -= rawlen;
531 c->dirty_size += rawlen;
9bfeb691
DW
532 c->used_size -= rawlen;
533 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
534 BUG_ON(raw->next_in_ino);
1da177e4 535 }
1da177e4 536 ofs += rawlen;
1da177e4
LT
537 }
538
9bfeb691
DW
539 kfree(buf);
540
1da177e4 541 /* Fix up the original jeb now it's on the bad_list */
9bfeb691 542 if (first_raw == jeb->first_node) {
1da177e4 543 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
f116629d 544 list_move(&jeb->list, &c->erase_pending_list);
1da177e4 545 c->nr_erasing_blocks++;
ae3b6ba0 546 jffs2_garbage_collect_trigger(c);
1da177e4 547 }
1da177e4 548
e0c8e42f 549 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
9bfeb691 550 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4 551
e0c8e42f 552 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
9bfeb691 553 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
1da177e4
LT
554
555 spin_unlock(&c->erase_completion_lock);
556
9bfeb691
DW
557 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
558
1da177e4
LT
559}
560
561/* Meaning of pad argument:
562 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
563 1: Pad, do not adjust nextblock free_size
564 2: Pad, adjust nextblock free_size
565*/
566#define NOPAD 0
567#define PAD_NOACCOUNT 1
568#define PAD_ACCOUNTING 2
569
570static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
571{
9bfeb691 572 struct jffs2_eraseblock *wbuf_jeb;
1da177e4
LT
573 int ret;
574 size_t retlen;
575
3be36675 576 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
1da177e4 577 del_timer() the timer we never initialised. */
3be36675 578 if (!jffs2_is_writebuffered(c))
1da177e4
LT
579 return 0;
580
51b11e36 581 if (!mutex_is_locked(&c->alloc_sem)) {
1da177e4
LT
582 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
583 BUG();
584 }
585
3be36675 586 if (!c->wbuf_len) /* already checked c->wbuf above */
1da177e4
LT
587 return 0;
588
9bfeb691
DW
589 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
590 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
2f785402
DW
591 return -ENOMEM;
592
1da177e4
LT
593 /* claim remaining space on the page
594 this happens, if we have a change to a new block,
595 or if fsync forces us to flush the writebuffer.
596 if we have a switch to next page, we will not have
182ec4ee 597 enough remaining space for this.
1da177e4 598 */
daba5cc4 599 if (pad ) {
1da177e4
LT
600 c->wbuf_len = PAD(c->wbuf_len);
601
602 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
603 with 8 byte page size */
604 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
182ec4ee 605
1da177e4
LT
606 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
607 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
608 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
609 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
610 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
611 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
612 }
613 }
614 /* else jffs2_flash_writev has actually filled in the rest of the
615 buffer for us, and will deal with the node refs etc. later. */
182ec4ee 616
1da177e4
LT
617#ifdef BREAKME
618 static int breakme;
619 if (breakme++ == 20) {
620 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
621 breakme = 0;
9223a456
TG
622 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
623 brokenbuf);
1da177e4 624 ret = -EIO;
182ec4ee 625 } else
1da177e4 626#endif
182ec4ee 627
1da177e4
LT
628 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
629
a6bc432e
DW
630 if (ret) {
631 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret);
632 goto wfail;
633 } else if (retlen != c->wbuf_pagesize) {
634 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
635 retlen, c->wbuf_pagesize);
636 ret = -EIO;
637 goto wfail;
638 } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
639 wfail:
1da177e4
LT
640 jffs2_wbuf_recover(c);
641
642 return ret;
643 }
644
1da177e4 645 /* Adjust free size of the block if we padded. */
daba5cc4 646 if (pad) {
0bcc099d 647 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
1da177e4 648
1da177e4 649 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
9bfeb691 650 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
1da177e4 651
182ec4ee 652 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
1da177e4
LT
653 padded. If there is less free space in the block than that,
654 something screwed up */
9bfeb691 655 if (wbuf_jeb->free_size < waste) {
1da177e4 656 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
0bcc099d 657 c->wbuf_ofs, c->wbuf_len, waste);
1da177e4 658 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
9bfeb691 659 wbuf_jeb->offset, wbuf_jeb->free_size);
1da177e4
LT
660 BUG();
661 }
0bcc099d
DW
662
663 spin_lock(&c->erase_completion_lock);
664
9bfeb691 665 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
0bcc099d 666 /* FIXME: that made it count as dirty. Convert to wasted */
9bfeb691 667 wbuf_jeb->dirty_size -= waste;
0bcc099d 668 c->dirty_size -= waste;
9bfeb691 669 wbuf_jeb->wasted_size += waste;
0bcc099d
DW
670 c->wasted_size += waste;
671 } else
672 spin_lock(&c->erase_completion_lock);
1da177e4
LT
673
674 /* Stick any now-obsoleted blocks on the erase_pending_list */
675 jffs2_refile_wbuf_blocks(c);
676 jffs2_clear_wbuf_ino_list(c);
677 spin_unlock(&c->erase_completion_lock);
678
679 memset(c->wbuf,0xff,c->wbuf_pagesize);
680 /* adjust write buffer offset, else we get a non contiguous write bug */
5bf17237 681 c->wbuf_ofs += c->wbuf_pagesize;
1da177e4
LT
682 c->wbuf_len = 0;
683 return 0;
684}
685
182ec4ee 686/* Trigger garbage collection to flush the write-buffer.
1da177e4 687 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
182ec4ee 688 outstanding. If ino arg non-zero, do it only if a write for the
1da177e4
LT
689 given inode is outstanding. */
690int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
691{
692 uint32_t old_wbuf_ofs;
693 uint32_t old_wbuf_len;
694 int ret = 0;
695
696 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
697
8aee6ac1
DW
698 if (!c->wbuf)
699 return 0;
700
ced22070 701 mutex_lock(&c->alloc_sem);
1da177e4
LT
702 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
703 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
ced22070 704 mutex_unlock(&c->alloc_sem);
1da177e4
LT
705 return 0;
706 }
707
708 old_wbuf_ofs = c->wbuf_ofs;
709 old_wbuf_len = c->wbuf_len;
710
711 if (c->unchecked_size) {
712 /* GC won't make any progress for a while */
713 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
714 down_write(&c->wbuf_sem);
715 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
716 /* retry flushing wbuf in case jffs2_wbuf_recover
717 left some data in the wbuf */
718 if (ret)
7f716cf3 719 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
720 up_write(&c->wbuf_sem);
721 } else while (old_wbuf_len &&
722 old_wbuf_ofs == c->wbuf_ofs) {
723
ced22070 724 mutex_unlock(&c->alloc_sem);
1da177e4
LT
725
726 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
727
728 ret = jffs2_garbage_collect_pass(c);
729 if (ret) {
730 /* GC failed. Flush it with padding instead */
ced22070 731 mutex_lock(&c->alloc_sem);
1da177e4
LT
732 down_write(&c->wbuf_sem);
733 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
734 /* retry flushing wbuf in case jffs2_wbuf_recover
735 left some data in the wbuf */
736 if (ret)
7f716cf3 737 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
738 up_write(&c->wbuf_sem);
739 break;
740 }
ced22070 741 mutex_lock(&c->alloc_sem);
1da177e4
LT
742 }
743
744 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
745
ced22070 746 mutex_unlock(&c->alloc_sem);
1da177e4
LT
747 return ret;
748}
749
750/* Pad write-buffer to end and write it, wasting space. */
751int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
752{
753 int ret;
754
8aee6ac1
DW
755 if (!c->wbuf)
756 return 0;
757
1da177e4
LT
758 down_write(&c->wbuf_sem);
759 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
7f716cf3
EH
760 /* retry - maybe wbuf recover left some data in wbuf. */
761 if (ret)
762 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
1da177e4
LT
763 up_write(&c->wbuf_sem);
764
765 return ret;
766}
dcb09328
TG
767
768static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
769 size_t len)
1da177e4 770{
dcb09328
TG
771 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
772 return 0;
773
774 if (len > (c->wbuf_pagesize - c->wbuf_len))
775 len = c->wbuf_pagesize - c->wbuf_len;
776 memcpy(c->wbuf + c->wbuf_len, buf, len);
777 c->wbuf_len += (uint32_t) len;
778 return len;
779}
780
781int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
782 unsigned long count, loff_t to, size_t *retlen,
783 uint32_t ino)
784{
785 struct jffs2_eraseblock *jeb;
786 size_t wbuf_retlen, donelen = 0;
1da177e4 787 uint32_t outvec_to = to;
dcb09328 788 int ret, invec;
1da177e4 789
dcb09328 790 /* If not writebuffered flash, don't bother */
3be36675 791 if (!jffs2_is_writebuffered(c))
1da177e4 792 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
182ec4ee 793
1da177e4
LT
794 down_write(&c->wbuf_sem);
795
796 /* If wbuf_ofs is not initialized, set it to target address */
797 if (c->wbuf_ofs == 0xFFFFFFFF) {
798 c->wbuf_ofs = PAGE_DIV(to);
182ec4ee 799 c->wbuf_len = PAGE_MOD(to);
1da177e4
LT
800 memset(c->wbuf,0xff,c->wbuf_pagesize);
801 }
802
dcb09328
TG
803 /*
804 * Sanity checks on target address. It's permitted to write
805 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
806 * write at the beginning of a new erase block. Anything else,
807 * and you die. New block starts at xxx000c (0-b = block
808 * header)
809 */
3be36675 810 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
1da177e4
LT
811 /* It's a write to a new block */
812 if (c->wbuf_len) {
dcb09328
TG
813 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
814 "causes flush of wbuf at 0x%08x\n",
815 (unsigned long)to, c->wbuf_ofs));
1da177e4 816 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
dcb09328
TG
817 if (ret)
818 goto outerr;
1da177e4
LT
819 }
820 /* set pointer to new block */
821 c->wbuf_ofs = PAGE_DIV(to);
182ec4ee
TG
822 c->wbuf_len = PAGE_MOD(to);
823 }
1da177e4
LT
824
825 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
826 /* We're not writing immediately after the writebuffer. Bad. */
dcb09328
TG
827 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
828 "to %08lx\n", (unsigned long)to);
1da177e4
LT
829 if (c->wbuf_len)
830 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
dcb09328 831 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
1da177e4
LT
832 BUG();
833 }
834
dcb09328
TG
835 /* adjust alignment offset */
836 if (c->wbuf_len != PAGE_MOD(to)) {
837 c->wbuf_len = PAGE_MOD(to);
838 /* take care of alignment to next page */
839 if (!c->wbuf_len) {
840 c->wbuf_len = c->wbuf_pagesize;
841 ret = __jffs2_flush_wbuf(c, NOPAD);
842 if (ret)
843 goto outerr;
1da177e4
LT
844 }
845 }
846
dcb09328
TG
847 for (invec = 0; invec < count; invec++) {
848 int vlen = invecs[invec].iov_len;
849 uint8_t *v = invecs[invec].iov_base;
7f716cf3 850
dcb09328 851 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
7f716cf3 852
dcb09328
TG
853 if (c->wbuf_len == c->wbuf_pagesize) {
854 ret = __jffs2_flush_wbuf(c, NOPAD);
855 if (ret)
856 goto outerr;
1da177e4 857 }
dcb09328
TG
858 vlen -= wbuf_retlen;
859 outvec_to += wbuf_retlen;
1da177e4 860 donelen += wbuf_retlen;
dcb09328
TG
861 v += wbuf_retlen;
862
863 if (vlen >= c->wbuf_pagesize) {
864 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
865 &wbuf_retlen, v);
866 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
867 goto outfile;
868
869 vlen -= wbuf_retlen;
870 outvec_to += wbuf_retlen;
871 c->wbuf_ofs = outvec_to;
872 donelen += wbuf_retlen;
873 v += wbuf_retlen;
1da177e4
LT
874 }
875
dcb09328
TG
876 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
877 if (c->wbuf_len == c->wbuf_pagesize) {
878 ret = __jffs2_flush_wbuf(c, NOPAD);
879 if (ret)
880 goto outerr;
881 }
1da177e4 882
dcb09328
TG
883 outvec_to += wbuf_retlen;
884 donelen += wbuf_retlen;
1da177e4 885 }
1da177e4 886
dcb09328
TG
887 /*
888 * If there's a remainder in the wbuf and it's a non-GC write,
889 * remember that the wbuf affects this ino
890 */
1da177e4
LT
891 *retlen = donelen;
892
e631ddba
FH
893 if (jffs2_sum_active()) {
894 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
895 if (res)
896 return res;
897 }
898
1da177e4
LT
899 if (c->wbuf_len && ino)
900 jffs2_wbuf_dirties_inode(c, ino);
901
902 ret = 0;
dcb09328
TG
903 up_write(&c->wbuf_sem);
904 return ret;
905
906outfile:
907 /*
908 * At this point we have no problem, c->wbuf is empty. However
909 * refile nextblock to avoid writing again to same address.
910 */
911
912 spin_lock(&c->erase_completion_lock);
913
914 jeb = &c->blocks[outvec_to / c->sector_size];
915 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
916
917 spin_unlock(&c->erase_completion_lock);
182ec4ee 918
dcb09328
TG
919outerr:
920 *retlen = 0;
1da177e4
LT
921 up_write(&c->wbuf_sem);
922 return ret;
923}
924
925/*
926 * This is the entry for flash write.
927 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
928*/
9bfeb691
DW
929int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
930 size_t *retlen, const u_char *buf)
1da177e4
LT
931{
932 struct kvec vecs[1];
933
3be36675 934 if (!jffs2_is_writebuffered(c))
e631ddba 935 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
1da177e4
LT
936
937 vecs[0].iov_base = (unsigned char *) buf;
938 vecs[0].iov_len = len;
939 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
940}
941
942/*
943 Handle readback from writebuffer and ECC failure return
944*/
945int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
946{
947 loff_t orbf = 0, owbf = 0, lwbf = 0;
948 int ret;
949
3be36675 950 if (!jffs2_is_writebuffered(c))
1da177e4
LT
951 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
952
3be36675 953 /* Read flash */
894214d1 954 down_read(&c->wbuf_sem);
9223a456 955 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
3be36675 956
9a1fcdfd
TG
957 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
958 if (ret == -EBADMSG)
959 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
960 " returned ECC error\n", len, ofs);
182ec4ee 961 /*
9a1fcdfd
TG
962 * We have the raw data without ECC correction in the buffer,
963 * maybe we are lucky and all data or parts are correct. We
964 * check the node. If data are corrupted node check will sort
965 * it out. We keep this block, it will fail on write or erase
966 * and the we mark it bad. Or should we do that now? But we
967 * should give him a chance. Maybe we had a system crash or
968 * power loss before the ecc write or a erase was completed.
3be36675
AV
969 * So we return success. :)
970 */
9a1fcdfd 971 ret = 0;
182ec4ee 972 }
3be36675 973
1da177e4
LT
974 /* if no writebuffer available or write buffer empty, return */
975 if (!c->wbuf_pagesize || !c->wbuf_len)
894214d1 976 goto exit;
1da177e4
LT
977
978 /* if we read in a different block, return */
3be36675 979 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
894214d1 980 goto exit;
1da177e4
LT
981
982 if (ofs >= c->wbuf_ofs) {
983 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
984 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
985 goto exit;
986 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
182ec4ee 987 if (lwbf > len)
1da177e4 988 lwbf = len;
182ec4ee 989 } else {
1da177e4
LT
990 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
991 if (orbf > len) /* is write beyond write buffer ? */
992 goto exit;
9a1fcdfd 993 lwbf = len - orbf; /* number of bytes to copy */
182ec4ee 994 if (lwbf > c->wbuf_len)
1da177e4 995 lwbf = c->wbuf_len;
182ec4ee 996 }
1da177e4
LT
997 if (lwbf > 0)
998 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
999
1000exit:
1001 up_read(&c->wbuf_sem);
1002 return ret;
1003}
1004
a7a6ace1
AB
1005#define NR_OOB_SCAN_PAGES 4
1006
09b3fba5
DW
1007/* For historical reasons we use only 8 bytes for OOB clean marker */
1008#define OOB_CM_SIZE 8
a7a6ace1
AB
1009
1010static const struct jffs2_unknown_node oob_cleanmarker =
1011{
566865a2
DW
1012 .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1013 .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1014 .totlen = constant_cpu_to_je32(8)
a7a6ace1 1015};
8593fbc6 1016
1da177e4 1017/*
a7a6ace1
AB
1018 * Check, if the out of band area is empty. This function knows about the clean
1019 * marker and if it is present in OOB, treats the OOB as empty anyway.
1da177e4 1020 */
8593fbc6
TG
1021int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1022 struct jffs2_eraseblock *jeb, int mode)
1da177e4 1023{
a7a6ace1
AB
1024 int i, ret;
1025 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
8593fbc6
TG
1026 struct mtd_oob_ops ops;
1027
0612b9dd 1028 ops.mode = MTD_OPS_AUTO_OOB;
a7a6ace1 1029 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
8593fbc6 1030 ops.oobbuf = c->oobbuf;
a7a6ace1 1031 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1032 ops.datbuf = NULL;
8593fbc6
TG
1033
1034 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
a7a6ace1 1035 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1036 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1037 " bytes, read %zd bytes, error %d\n",
1038 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1039 if (!ret)
1040 ret = -EIO;
8593fbc6 1041 return ret;
1da177e4 1042 }
182ec4ee 1043
a7a6ace1
AB
1044 for(i = 0; i < ops.ooblen; i++) {
1045 if (mode && i < cmlen)
1046 /* Yeah, we know about the cleanmarker */
1da177e4
LT
1047 continue;
1048
8593fbc6
TG
1049 if (ops.oobbuf[i] != 0xFF) {
1050 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1051 "%08x\n", ops.oobbuf[i], i, jeb->offset));
1052 return 1;
1da177e4
LT
1053 }
1054 }
1055
8593fbc6 1056 return 0;
1da177e4
LT
1057}
1058
1059/*
a7a6ace1
AB
1060 * Check for a valid cleanmarker.
1061 * Returns: 0 if a valid cleanmarker was found
ef53cb02
DW
1062 * 1 if no cleanmarker was found
1063 * negative error code if an error occurred
8593fbc6 1064 */
a7a6ace1
AB
1065int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1066 struct jffs2_eraseblock *jeb)
1da177e4 1067{
8593fbc6 1068 struct mtd_oob_ops ops;
a7a6ace1 1069 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1da177e4 1070
0612b9dd 1071 ops.mode = MTD_OPS_AUTO_OOB;
a7a6ace1 1072 ops.ooblen = cmlen;
8593fbc6 1073 ops.oobbuf = c->oobbuf;
a7a6ace1 1074 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1075 ops.datbuf = NULL;
1da177e4 1076
a7a6ace1
AB
1077 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1078 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1079 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1080 " bytes, read %zd bytes, error %d\n",
1081 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1082 if (!ret)
1083 ret = -EIO;
8593fbc6
TG
1084 return ret;
1085 }
1da177e4 1086
a7a6ace1 1087 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1da177e4
LT
1088}
1089
8593fbc6
TG
1090int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1091 struct jffs2_eraseblock *jeb)
1da177e4 1092{
a7a6ace1 1093 int ret;
8593fbc6 1094 struct mtd_oob_ops ops;
a7a6ace1 1095 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1da177e4 1096
0612b9dd 1097 ops.mode = MTD_OPS_AUTO_OOB;
a7a6ace1
AB
1098 ops.ooblen = cmlen;
1099 ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1100 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1101 ops.datbuf = NULL;
8593fbc6
TG
1102
1103 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
a7a6ace1 1104 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1105 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1106 " bytes, read %zd bytes, error %d\n",
1107 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1108 if (!ret)
1109 ret = -EIO;
1da177e4
LT
1110 return ret;
1111 }
a7a6ace1 1112
1da177e4
LT
1113 return 0;
1114}
1115
182ec4ee 1116/*
1da177e4 1117 * On NAND we try to mark this block bad. If the block was erased more
25985edc 1118 * than MAX_ERASE_FAILURES we mark it finally bad.
1da177e4
LT
1119 * Don't care about failures. This block remains on the erase-pending
1120 * or badblock list as long as nobody manipulates the flash with
1121 * a bootloader or something like that.
1122 */
1123
1124int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1125{
1126 int ret;
1127
1128 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1129 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1130 return 0;
1131
1132 if (!c->mtd->block_markbad)
1133 return 1; // What else can we do?
1134
0feba829 1135 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1da177e4 1136 ret = c->mtd->block_markbad(c->mtd, bad_offset);
182ec4ee 1137
1da177e4
LT
1138 if (ret) {
1139 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1140 return ret;
1141 }
1142 return 1;
1143}
1144
a7a6ace1 1145int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1da177e4 1146{
5bd34c09 1147 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1da177e4 1148
1da177e4
LT
1149 if (!c->mtd->oobsize)
1150 return 0;
182ec4ee 1151
1da177e4
LT
1152 /* Cleanmarker is out-of-band, so inline size zero */
1153 c->cleanmarker_size = 0;
1154
a7a6ace1
AB
1155 if (!oinfo || oinfo->oobavail == 0) {
1156 printk(KERN_ERR "inconsistent device description\n");
5bd34c09
TG
1157 return -EINVAL;
1158 }
182ec4ee 1159
a7a6ace1 1160 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
5bd34c09 1161
a7a6ace1 1162 c->oobavail = oinfo->oobavail;
1da177e4
LT
1163
1164 /* Initialise write buffer */
1165 init_rwsem(&c->wbuf_sem);
28318776 1166 c->wbuf_pagesize = c->mtd->writesize;
1da177e4 1167 c->wbuf_ofs = 0xFFFFFFFF;
182ec4ee 1168
1da177e4
LT
1169 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1170 if (!c->wbuf)
1171 return -ENOMEM;
1172
a7a6ace1
AB
1173 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1174 if (!c->oobbuf) {
1da177e4
LT
1175 kfree(c->wbuf);
1176 return -ENOMEM;
1177 }
a7a6ace1 1178
a6bc432e
DW
1179#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1180 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1181 if (!c->wbuf_verify) {
1182 kfree(c->oobbuf);
1183 kfree(c->wbuf);
1184 return -ENOMEM;
1185 }
1186#endif
a7a6ace1 1187 return 0;
1da177e4
LT
1188}
1189
1190void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1191{
a6bc432e
DW
1192#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1193 kfree(c->wbuf_verify);
1194#endif
1da177e4 1195 kfree(c->wbuf);
8593fbc6 1196 kfree(c->oobbuf);
1da177e4
LT
1197}
1198
8f15fd55
AV
1199int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1200 c->cleanmarker_size = 0; /* No cleanmarkers needed */
182ec4ee 1201
8f15fd55
AV
1202 /* Initialize write buffer */
1203 init_rwsem(&c->wbuf_sem);
8f15fd55 1204
182ec4ee 1205
daba5cc4 1206 c->wbuf_pagesize = c->mtd->erasesize;
182ec4ee 1207
daba5cc4
AB
1208 /* Find a suitable c->sector_size
1209 * - Not too much sectors
1210 * - Sectors have to be at least 4 K + some bytes
1211 * - All known dataflashes have erase sizes of 528 or 1056
1212 * - we take at least 8 eraseblocks and want to have at least 8K size
1213 * - The concatenation should be a power of 2
1214 */
1215
1216 c->sector_size = 8 * c->mtd->erasesize;
182ec4ee 1217
daba5cc4
AB
1218 while (c->sector_size < 8192) {
1219 c->sector_size *= 2;
1220 }
182ec4ee 1221
daba5cc4
AB
1222 /* It may be necessary to adjust the flash size */
1223 c->flash_size = c->mtd->size;
8f15fd55 1224
daba5cc4
AB
1225 if ((c->flash_size % c->sector_size) != 0) {
1226 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1227 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1228 };
182ec4ee 1229
daba5cc4 1230 c->wbuf_ofs = 0xFFFFFFFF;
8f15fd55
AV
1231 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1232 if (!c->wbuf)
1233 return -ENOMEM;
1234
cca15841 1235#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1236 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1237 if (!c->wbuf_verify) {
1238 kfree(c->oobbuf);
1239 kfree(c->wbuf);
1240 return -ENOMEM;
1241 }
1242#endif
1243
daba5cc4 1244 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
8f15fd55
AV
1245
1246 return 0;
1247}
1248
1249void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
cca15841 1250#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1251 kfree(c->wbuf_verify);
1252#endif
8f15fd55
AV
1253 kfree(c->wbuf);
1254}
8f15fd55 1255
59da721a 1256int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
c8b229de
JE
1257 /* Cleanmarker currently occupies whole programming regions,
1258 * either one or 2 for 8Byte STMicro flashes. */
1259 c->cleanmarker_size = max(16u, c->mtd->writesize);
59da721a
NP
1260
1261 /* Initialize write buffer */
1262 init_rwsem(&c->wbuf_sem);
28318776 1263 c->wbuf_pagesize = c->mtd->writesize;
59da721a
NP
1264 c->wbuf_ofs = 0xFFFFFFFF;
1265
1266 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1267 if (!c->wbuf)
1268 return -ENOMEM;
1269
bc8cec0d
MC
1270#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1271 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1272 if (!c->wbuf_verify) {
1273 kfree(c->wbuf);
1274 return -ENOMEM;
1275 }
1276#endif
59da721a
NP
1277 return 0;
1278}
1279
1280void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
bc8cec0d
MC
1281#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1282 kfree(c->wbuf_verify);
1283#endif
59da721a
NP
1284 kfree(c->wbuf);
1285}
0029da3b
AB
1286
1287int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1288 c->cleanmarker_size = 0;
1289
1290 if (c->mtd->writesize == 1)
1291 /* We do not need write-buffer */
1292 return 0;
1293
1294 init_rwsem(&c->wbuf_sem);
1295
1296 c->wbuf_pagesize = c->mtd->writesize;
1297 c->wbuf_ofs = 0xFFFFFFFF;
1298 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1299 if (!c->wbuf)
1300 return -ENOMEM;
1301
1302 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1303
1304 return 0;
1305}
1306
1307void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1308 kfree(c->wbuf);
1309}
This page took 0.502538 seconds and 5 git commands to generate.