Merge master.kernel.org:/pub/scm/linux/kernel/git/aia21/ntfs-2.6
[deliverable/linux.git] / fs / ntfs / aops.c
CommitLineData
1da177e4
LT
1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
b6ad6c52 5 * Copyright (c) 2001-2005 Anton Altaparmakov
1da177e4
LT
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
58 static DEFINE_SPINLOCK(page_uptodate_lock);
59 unsigned long flags;
60 struct buffer_head *tmp;
61 struct page *page;
62 ntfs_inode *ni;
63 int page_uptodate = 1;
64
65 page = bh->b_page;
66 ni = NTFS_I(page->mapping->host);
67
68 if (likely(uptodate)) {
07a4e2da 69 s64 file_ofs, initialized_size;
1da177e4
LT
70
71 set_buffer_uptodate(bh);
72
73 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 bh_offset(bh);
07a4e2da
AA
75 read_lock_irqsave(&ni->size_lock, flags);
76 initialized_size = ni->initialized_size;
77 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4 78 /* Check for the current buffer head overflowing. */
07a4e2da 79 if (file_ofs + bh->b_size > initialized_size) {
1da177e4
LT
80 char *addr;
81 int ofs = 0;
82
07a4e2da
AA
83 if (file_ofs < initialized_size)
84 ofs = initialized_size - file_ofs;
1da177e4
LT
85 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
86 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
87 flush_dcache_page(page);
88 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
89 }
90 } else {
91 clear_buffer_uptodate(bh);
92 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
93 (unsigned long long)bh->b_blocknr);
94 SetPageError(page);
95 }
96 spin_lock_irqsave(&page_uptodate_lock, flags);
97 clear_buffer_async_read(bh);
98 unlock_buffer(bh);
99 tmp = bh;
100 do {
101 if (!buffer_uptodate(tmp))
102 page_uptodate = 0;
103 if (buffer_async_read(tmp)) {
104 if (likely(buffer_locked(tmp)))
105 goto still_busy;
106 /* Async buffers must be locked. */
107 BUG();
108 }
109 tmp = tmp->b_this_page;
110 } while (tmp != bh);
111 spin_unlock_irqrestore(&page_uptodate_lock, flags);
112 /*
113 * If none of the buffers had errors then we can set the page uptodate,
114 * but we first have to perform the post read mst fixups, if the
115 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
116 * Note we ignore fixup errors as those are detected when
117 * map_mft_record() is called which gives us per record granularity
118 * rather than per page granularity.
119 */
120 if (!NInoMstProtected(ni)) {
121 if (likely(page_uptodate && !PageError(page)))
122 SetPageUptodate(page);
123 } else {
124 char *addr;
125 unsigned int i, recs;
126 u32 rec_size;
127
128 rec_size = ni->itype.index.block_size;
129 recs = PAGE_CACHE_SIZE / rec_size;
130 /* Should have been verified before we got here... */
131 BUG_ON(!recs);
132 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
133 for (i = 0; i < recs; i++)
134 post_read_mst_fixup((NTFS_RECORD*)(addr +
135 i * rec_size), rec_size);
136 flush_dcache_page(page);
137 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
b6ad6c52 138 if (likely(page_uptodate && !PageError(page)))
1da177e4
LT
139 SetPageUptodate(page);
140 }
141 unlock_page(page);
142 return;
143still_busy:
144 spin_unlock_irqrestore(&page_uptodate_lock, flags);
145 return;
146}
147
148/**
149 * ntfs_read_block - fill a @page of an address space with data
150 * @page: page cache page to fill with data
151 *
152 * Fill the page @page of the address space belonging to the @page->host inode.
153 * We read each buffer asynchronously and when all buffers are read in, our io
154 * completion handler ntfs_end_buffer_read_async(), if required, automatically
155 * applies the mst fixups to the page before finally marking it uptodate and
156 * unlocking it.
157 *
158 * We only enforce allocated_size limit because i_size is checked for in
159 * generic_file_read().
160 *
161 * Return 0 on success and -errno on error.
162 *
163 * Contains an adapted version of fs/buffer.c::block_read_full_page().
164 */
165static int ntfs_read_block(struct page *page)
166{
167 VCN vcn;
168 LCN lcn;
169 ntfs_inode *ni;
170 ntfs_volume *vol;
171 runlist_element *rl;
172 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
173 sector_t iblock, lblock, zblock;
07a4e2da 174 unsigned long flags;
1da177e4
LT
175 unsigned int blocksize, vcn_ofs;
176 int i, nr;
177 unsigned char blocksize_bits;
178
179 ni = NTFS_I(page->mapping->host);
180 vol = ni->vol;
181
182 /* $MFT/$DATA must have its complete runlist in memory at all times. */
183 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
184
185 blocksize_bits = VFS_I(ni)->i_blkbits;
186 blocksize = 1 << blocksize_bits;
187
188 if (!page_has_buffers(page))
189 create_empty_buffers(page, blocksize, 0);
190 bh = head = page_buffers(page);
191 if (unlikely(!bh)) {
192 unlock_page(page);
193 return -ENOMEM;
194 }
195
196 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
07a4e2da 197 read_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
198 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
199 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
07a4e2da 200 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
201
202 /* Loop through all the buffers in the page. */
203 rl = NULL;
204 nr = i = 0;
205 do {
206 u8 *kaddr;
207
208 if (unlikely(buffer_uptodate(bh)))
209 continue;
210 if (unlikely(buffer_mapped(bh))) {
211 arr[nr++] = bh;
212 continue;
213 }
214 bh->b_bdev = vol->sb->s_bdev;
215 /* Is the block within the allowed limits? */
216 if (iblock < lblock) {
217 BOOL is_retry = FALSE;
218
219 /* Convert iblock into corresponding vcn and offset. */
220 vcn = (VCN)iblock << blocksize_bits >>
221 vol->cluster_size_bits;
222 vcn_ofs = ((VCN)iblock << blocksize_bits) &
223 vol->cluster_size_mask;
224 if (!rl) {
225lock_retry_remap:
226 down_read(&ni->runlist.lock);
227 rl = ni->runlist.rl;
228 }
229 if (likely(rl != NULL)) {
230 /* Seek to element containing target vcn. */
231 while (rl->length && rl[1].vcn <= vcn)
232 rl++;
233 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
234 } else
235 lcn = LCN_RL_NOT_MAPPED;
236 /* Successful remap. */
237 if (lcn >= 0) {
238 /* Setup buffer head to correct block. */
239 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
240 + vcn_ofs) >> blocksize_bits;
241 set_buffer_mapped(bh);
242 /* Only read initialized data blocks. */
243 if (iblock < zblock) {
244 arr[nr++] = bh;
245 continue;
246 }
247 /* Fully non-initialized data block, zero it. */
248 goto handle_zblock;
249 }
250 /* It is a hole, need to zero it. */
251 if (lcn == LCN_HOLE)
252 goto handle_hole;
253 /* If first try and runlist unmapped, map and retry. */
254 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
255 int err;
256 is_retry = TRUE;
257 /*
258 * Attempt to map runlist, dropping lock for
259 * the duration.
260 */
261 up_read(&ni->runlist.lock);
262 err = ntfs_map_runlist(ni, vcn);
263 if (likely(!err))
264 goto lock_retry_remap;
265 rl = NULL;
266 lcn = err;
9f993fe4
AA
267 } else if (!rl)
268 up_read(&ni->runlist.lock);
1da177e4
LT
269 /* Hard error, zero out region. */
270 bh->b_blocknr = -1;
271 SetPageError(page);
272 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
273 "attribute type 0x%x, vcn 0x%llx, "
274 "offset 0x%x because its location on "
275 "disk could not be determined%s "
276 "(error code %lli).", ni->mft_no,
277 ni->type, (unsigned long long)vcn,
278 vcn_ofs, is_retry ? " even after "
279 "retrying" : "", (long long)lcn);
280 }
281 /*
282 * Either iblock was outside lblock limits or
283 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
284 * of the page and set the buffer uptodate.
285 */
286handle_hole:
287 bh->b_blocknr = -1UL;
288 clear_buffer_mapped(bh);
289handle_zblock:
290 kaddr = kmap_atomic(page, KM_USER0);
291 memset(kaddr + i * blocksize, 0, blocksize);
292 flush_dcache_page(page);
293 kunmap_atomic(kaddr, KM_USER0);
294 set_buffer_uptodate(bh);
295 } while (i++, iblock++, (bh = bh->b_this_page) != head);
296
297 /* Release the lock if we took it. */
298 if (rl)
299 up_read(&ni->runlist.lock);
300
301 /* Check we have at least one buffer ready for i/o. */
302 if (nr) {
303 struct buffer_head *tbh;
304
305 /* Lock the buffers. */
306 for (i = 0; i < nr; i++) {
307 tbh = arr[i];
308 lock_buffer(tbh);
309 tbh->b_end_io = ntfs_end_buffer_async_read;
310 set_buffer_async_read(tbh);
311 }
312 /* Finally, start i/o on the buffers. */
313 for (i = 0; i < nr; i++) {
314 tbh = arr[i];
315 if (likely(!buffer_uptodate(tbh)))
316 submit_bh(READ, tbh);
317 else
318 ntfs_end_buffer_async_read(tbh, 1);
319 }
320 return 0;
321 }
322 /* No i/o was scheduled on any of the buffers. */
323 if (likely(!PageError(page)))
324 SetPageUptodate(page);
325 else /* Signal synchronous i/o error. */
326 nr = -EIO;
327 unlock_page(page);
328 return nr;
329}
330
331/**
332 * ntfs_readpage - fill a @page of a @file with data from the device
333 * @file: open file to which the page @page belongs or NULL
334 * @page: page cache page to fill with data
335 *
336 * For non-resident attributes, ntfs_readpage() fills the @page of the open
337 * file @file by calling the ntfs version of the generic block_read_full_page()
338 * function, ntfs_read_block(), which in turn creates and reads in the buffers
339 * associated with the page asynchronously.
340 *
341 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
342 * data from the mft record (which at this stage is most likely in memory) and
343 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
344 * even if the mft record is not cached at this point in time, we need to wait
345 * for it to be read in before we can do the copy.
346 *
347 * Return 0 on success and -errno on error.
348 */
349static int ntfs_readpage(struct file *file, struct page *page)
350{
1da177e4
LT
351 ntfs_inode *ni, *base_ni;
352 u8 *kaddr;
353 ntfs_attr_search_ctx *ctx;
354 MFT_RECORD *mrec;
b6ad6c52 355 unsigned long flags;
1da177e4
LT
356 u32 attr_len;
357 int err = 0;
358
905685f6 359retry_readpage:
1da177e4
LT
360 BUG_ON(!PageLocked(page));
361 /*
362 * This can potentially happen because we clear PageUptodate() during
363 * ntfs_writepage() of MstProtected() attributes.
364 */
365 if (PageUptodate(page)) {
366 unlock_page(page);
367 return 0;
368 }
369 ni = NTFS_I(page->mapping->host);
370
371 /* NInoNonResident() == NInoIndexAllocPresent() */
372 if (NInoNonResident(ni)) {
373 /*
374 * Only unnamed $DATA attributes can be compressed or
375 * encrypted.
376 */
377 if (ni->type == AT_DATA && !ni->name_len) {
378 /* If file is encrypted, deny access, just like NT4. */
379 if (NInoEncrypted(ni)) {
380 err = -EACCES;
381 goto err_out;
382 }
383 /* Compressed data streams are handled in compress.c. */
384 if (NInoCompressed(ni))
385 return ntfs_read_compressed_block(page);
386 }
387 /* Normal data stream. */
388 return ntfs_read_block(page);
389 }
390 /*
391 * Attribute is resident, implying it is not compressed or encrypted.
392 * This also means the attribute is smaller than an mft record and
393 * hence smaller than a page, so can simply zero out any pages with
b6ad6c52 394 * index above 0.
1da177e4 395 */
b6ad6c52 396 if (unlikely(page->index > 0)) {
1da177e4
LT
397 kaddr = kmap_atomic(page, KM_USER0);
398 memset(kaddr, 0, PAGE_CACHE_SIZE);
399 flush_dcache_page(page);
400 kunmap_atomic(kaddr, KM_USER0);
401 goto done;
402 }
403 if (!NInoAttr(ni))
404 base_ni = ni;
405 else
406 base_ni = ni->ext.base_ntfs_ino;
407 /* Map, pin, and lock the mft record. */
408 mrec = map_mft_record(base_ni);
409 if (IS_ERR(mrec)) {
410 err = PTR_ERR(mrec);
411 goto err_out;
412 }
905685f6
AA
413 /*
414 * If a parallel write made the attribute non-resident, drop the mft
415 * record and retry the readpage.
416 */
417 if (unlikely(NInoNonResident(ni))) {
418 unmap_mft_record(base_ni);
419 goto retry_readpage;
420 }
1da177e4
LT
421 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
422 if (unlikely(!ctx)) {
423 err = -ENOMEM;
424 goto unm_err_out;
425 }
426 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
427 CASE_SENSITIVE, 0, NULL, 0, ctx);
428 if (unlikely(err))
429 goto put_unm_err_out;
430 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
b6ad6c52
AA
431 read_lock_irqsave(&ni->size_lock, flags);
432 if (unlikely(attr_len > ni->initialized_size))
433 attr_len = ni->initialized_size;
434 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
435 kaddr = kmap_atomic(page, KM_USER0);
436 /* Copy the data to the page. */
437 memcpy(kaddr, (u8*)ctx->attr +
438 le16_to_cpu(ctx->attr->data.resident.value_offset),
439 attr_len);
440 /* Zero the remainder of the page. */
441 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
442 flush_dcache_page(page);
443 kunmap_atomic(kaddr, KM_USER0);
444put_unm_err_out:
445 ntfs_attr_put_search_ctx(ctx);
446unm_err_out:
447 unmap_mft_record(base_ni);
448done:
449 SetPageUptodate(page);
450err_out:
451 unlock_page(page);
452 return err;
453}
454
455#ifdef NTFS_RW
456
457/**
458 * ntfs_write_block - write a @page to the backing store
459 * @page: page cache page to write out
460 * @wbc: writeback control structure
461 *
462 * This function is for writing pages belonging to non-resident, non-mst
463 * protected attributes to their backing store.
464 *
465 * For a page with buffers, map and write the dirty buffers asynchronously
466 * under page writeback. For a page without buffers, create buffers for the
467 * page, then proceed as above.
468 *
469 * If a page doesn't have buffers the page dirty state is definitive. If a page
470 * does have buffers, the page dirty state is just a hint, and the buffer dirty
471 * state is definitive. (A hint which has rules: dirty buffers against a clean
472 * page is illegal. Other combinations are legal and need to be handled. In
473 * particular a dirty page containing clean buffers for example.)
474 *
475 * Return 0 on success and -errno on error.
476 *
477 * Based on ntfs_read_block() and __block_write_full_page().
478 */
479static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
480{
481 VCN vcn;
482 LCN lcn;
07a4e2da
AA
483 s64 initialized_size;
484 loff_t i_size;
1da177e4
LT
485 sector_t block, dblock, iblock;
486 struct inode *vi;
487 ntfs_inode *ni;
488 ntfs_volume *vol;
489 runlist_element *rl;
490 struct buffer_head *bh, *head;
07a4e2da 491 unsigned long flags;
1da177e4
LT
492 unsigned int blocksize, vcn_ofs;
493 int err;
494 BOOL need_end_writeback;
495 unsigned char blocksize_bits;
496
497 vi = page->mapping->host;
498 ni = NTFS_I(vi);
499 vol = ni->vol;
500
501 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
502 "0x%lx.", ni->mft_no, ni->type, page->index);
503
504 BUG_ON(!NInoNonResident(ni));
505 BUG_ON(NInoMstProtected(ni));
506
507 blocksize_bits = vi->i_blkbits;
508 blocksize = 1 << blocksize_bits;
509
510 if (!page_has_buffers(page)) {
511 BUG_ON(!PageUptodate(page));
512 create_empty_buffers(page, blocksize,
513 (1 << BH_Uptodate) | (1 << BH_Dirty));
514 }
515 bh = head = page_buffers(page);
516 if (unlikely(!bh)) {
517 ntfs_warning(vol->sb, "Error allocating page buffers. "
518 "Redirtying page so we try again later.");
519 /*
520 * Put the page back on mapping->dirty_pages, but leave its
521 * buffer's dirty state as-is.
522 */
523 redirty_page_for_writepage(wbc, page);
524 unlock_page(page);
525 return 0;
526 }
527
528 /* NOTE: Different naming scheme to ntfs_read_block()! */
529
530 /* The first block in the page. */
531 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
532
07a4e2da
AA
533 read_lock_irqsave(&ni->size_lock, flags);
534 i_size = i_size_read(vi);
535 initialized_size = ni->initialized_size;
536 read_unlock_irqrestore(&ni->size_lock, flags);
537
1da177e4 538 /* The first out of bounds block for the data size. */
07a4e2da 539 dblock = (i_size + blocksize - 1) >> blocksize_bits;
1da177e4
LT
540
541 /* The last (fully or partially) initialized block. */
07a4e2da 542 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
543
544 /*
545 * Be very careful. We have no exclusion from __set_page_dirty_buffers
546 * here, and the (potentially unmapped) buffers may become dirty at
547 * any time. If a buffer becomes dirty here after we've inspected it
548 * then we just miss that fact, and the page stays dirty.
549 *
550 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
551 * handle that here by just cleaning them.
552 */
553
554 /*
555 * Loop through all the buffers in the page, mapping all the dirty
556 * buffers to disk addresses and handling any aliases from the
557 * underlying block device's mapping.
558 */
559 rl = NULL;
560 err = 0;
561 do {
562 BOOL is_retry = FALSE;
563
564 if (unlikely(block >= dblock)) {
565 /*
566 * Mapped buffers outside i_size will occur, because
567 * this page can be outside i_size when there is a
568 * truncate in progress. The contents of such buffers
569 * were zeroed by ntfs_writepage().
570 *
571 * FIXME: What about the small race window where
572 * ntfs_writepage() has not done any clearing because
573 * the page was within i_size but before we get here,
574 * vmtruncate() modifies i_size?
575 */
576 clear_buffer_dirty(bh);
577 set_buffer_uptodate(bh);
578 continue;
579 }
580
581 /* Clean buffers are not written out, so no need to map them. */
582 if (!buffer_dirty(bh))
583 continue;
584
585 /* Make sure we have enough initialized size. */
586 if (unlikely((block >= iblock) &&
07a4e2da 587 (initialized_size < i_size))) {
1da177e4
LT
588 /*
589 * If this page is fully outside initialized size, zero
590 * out all pages between the current initialized size
591 * and the current page. Just use ntfs_readpage() to do
592 * the zeroing transparently.
593 */
594 if (block > iblock) {
595 // TODO:
596 // For each page do:
597 // - read_cache_page()
598 // Again for each page do:
599 // - wait_on_page_locked()
600 // - Check (PageUptodate(page) &&
601 // !PageError(page))
602 // Update initialized size in the attribute and
603 // in the inode.
604 // Again, for each page do:
605 // __set_page_dirty_buffers();
606 // page_cache_release()
607 // We don't need to wait on the writes.
608 // Update iblock.
609 }
610 /*
611 * The current page straddles initialized size. Zero
612 * all non-uptodate buffers and set them uptodate (and
613 * dirty?). Note, there aren't any non-uptodate buffers
614 * if the page is uptodate.
615 * FIXME: For an uptodate page, the buffers may need to
616 * be written out because they were not initialized on
617 * disk before.
618 */
619 if (!PageUptodate(page)) {
620 // TODO:
621 // Zero any non-uptodate buffers up to i_size.
622 // Set them uptodate and dirty.
623 }
624 // TODO:
625 // Update initialized size in the attribute and in the
626 // inode (up to i_size).
627 // Update iblock.
628 // FIXME: This is inefficient. Try to batch the two
629 // size changes to happen in one go.
630 ntfs_error(vol->sb, "Writing beyond initialized size "
631 "is not supported yet. Sorry.");
632 err = -EOPNOTSUPP;
633 break;
634 // Do NOT set_buffer_new() BUT DO clear buffer range
635 // outside write request range.
636 // set_buffer_uptodate() on complete buffers as well as
637 // set_buffer_dirty().
638 }
639
640 /* No need to map buffers that are already mapped. */
641 if (buffer_mapped(bh))
642 continue;
643
644 /* Unmapped, dirty buffer. Need to map it. */
645 bh->b_bdev = vol->sb->s_bdev;
646
647 /* Convert block into corresponding vcn and offset. */
648 vcn = (VCN)block << blocksize_bits;
649 vcn_ofs = vcn & vol->cluster_size_mask;
650 vcn >>= vol->cluster_size_bits;
651 if (!rl) {
652lock_retry_remap:
653 down_read(&ni->runlist.lock);
654 rl = ni->runlist.rl;
655 }
656 if (likely(rl != NULL)) {
657 /* Seek to element containing target vcn. */
658 while (rl->length && rl[1].vcn <= vcn)
659 rl++;
660 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
661 } else
662 lcn = LCN_RL_NOT_MAPPED;
663 /* Successful remap. */
664 if (lcn >= 0) {
665 /* Setup buffer head to point to correct block. */
666 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
667 vcn_ofs) >> blocksize_bits;
668 set_buffer_mapped(bh);
669 continue;
670 }
671 /* It is a hole, need to instantiate it. */
672 if (lcn == LCN_HOLE) {
673 // TODO: Instantiate the hole.
674 // clear_buffer_new(bh);
675 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
676 ntfs_error(vol->sb, "Writing into sparse regions is "
677 "not supported yet. Sorry.");
678 err = -EOPNOTSUPP;
679 break;
680 }
681 /* If first try and runlist unmapped, map and retry. */
682 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
683 is_retry = TRUE;
684 /*
685 * Attempt to map runlist, dropping lock for
686 * the duration.
687 */
688 up_read(&ni->runlist.lock);
689 err = ntfs_map_runlist(ni, vcn);
690 if (likely(!err))
691 goto lock_retry_remap;
692 rl = NULL;
693 lcn = err;
9f993fe4
AA
694 } else if (!rl)
695 up_read(&ni->runlist.lock);
1da177e4
LT
696 /* Failed to map the buffer, even after retrying. */
697 bh->b_blocknr = -1;
698 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
699 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
700 "because its location on disk could not be "
701 "determined%s (error code %lli).", ni->mft_no,
702 ni->type, (unsigned long long)vcn,
703 vcn_ofs, is_retry ? " even after "
704 "retrying" : "", (long long)lcn);
705 if (!err)
706 err = -EIO;
707 break;
708 } while (block++, (bh = bh->b_this_page) != head);
709
710 /* Release the lock if we took it. */
711 if (rl)
712 up_read(&ni->runlist.lock);
713
714 /* For the error case, need to reset bh to the beginning. */
715 bh = head;
716
717 /* Just an optimization, so ->readpage() isn't called later. */
718 if (unlikely(!PageUptodate(page))) {
719 int uptodate = 1;
720 do {
721 if (!buffer_uptodate(bh)) {
722 uptodate = 0;
723 bh = head;
724 break;
725 }
726 } while ((bh = bh->b_this_page) != head);
727 if (uptodate)
728 SetPageUptodate(page);
729 }
730
731 /* Setup all mapped, dirty buffers for async write i/o. */
732 do {
733 get_bh(bh);
734 if (buffer_mapped(bh) && buffer_dirty(bh)) {
735 lock_buffer(bh);
736 if (test_clear_buffer_dirty(bh)) {
737 BUG_ON(!buffer_uptodate(bh));
738 mark_buffer_async_write(bh);
739 } else
740 unlock_buffer(bh);
741 } else if (unlikely(err)) {
742 /*
743 * For the error case. The buffer may have been set
744 * dirty during attachment to a dirty page.
745 */
746 if (err != -ENOMEM)
747 clear_buffer_dirty(bh);
748 }
749 } while ((bh = bh->b_this_page) != head);
750
751 if (unlikely(err)) {
752 // TODO: Remove the -EOPNOTSUPP check later on...
753 if (unlikely(err == -EOPNOTSUPP))
754 err = 0;
755 else if (err == -ENOMEM) {
756 ntfs_warning(vol->sb, "Error allocating memory. "
757 "Redirtying page so we try again "
758 "later.");
759 /*
760 * Put the page back on mapping->dirty_pages, but
761 * leave its buffer's dirty state as-is.
762 */
763 redirty_page_for_writepage(wbc, page);
764 err = 0;
765 } else
766 SetPageError(page);
767 }
768
769 BUG_ON(PageWriteback(page));
770 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
771 unlock_page(page);
772
773 /*
774 * Submit the prepared buffers for i/o. Note the page is unlocked,
775 * and the async write i/o completion handler can end_page_writeback()
776 * at any time after the *first* submit_bh(). So the buffers can then
777 * disappear...
778 */
779 need_end_writeback = TRUE;
780 do {
781 struct buffer_head *next = bh->b_this_page;
782 if (buffer_async_write(bh)) {
783 submit_bh(WRITE, bh);
784 need_end_writeback = FALSE;
785 }
786 put_bh(bh);
787 bh = next;
788 } while (bh != head);
789
790 /* If no i/o was started, need to end_page_writeback(). */
791 if (unlikely(need_end_writeback))
792 end_page_writeback(page);
793
794 ntfs_debug("Done.");
795 return err;
796}
797
798/**
799 * ntfs_write_mst_block - write a @page to the backing store
800 * @page: page cache page to write out
801 * @wbc: writeback control structure
802 *
803 * This function is for writing pages belonging to non-resident, mst protected
804 * attributes to their backing store. The only supported attributes are index
805 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
806 * supported for the index allocation case.
807 *
808 * The page must remain locked for the duration of the write because we apply
809 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
810 * page before undoing the fixups, any other user of the page will see the
811 * page contents as corrupt.
812 *
813 * We clear the page uptodate flag for the duration of the function to ensure
814 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
815 * are about to apply the mst fixups to.
816 *
817 * Return 0 on success and -errno on error.
818 *
819 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
820 * write_mft_record_nolock().
821 */
822static int ntfs_write_mst_block(struct page *page,
823 struct writeback_control *wbc)
824{
825 sector_t block, dblock, rec_block;
826 struct inode *vi = page->mapping->host;
827 ntfs_inode *ni = NTFS_I(vi);
828 ntfs_volume *vol = ni->vol;
829 u8 *kaddr;
1da177e4
LT
830 unsigned int rec_size = ni->itype.index.block_size;
831 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
832 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
d53ee322 833 struct buffer_head *bhs[MAX_BUF_PER_PAGE];
1da177e4 834 runlist_element *rl;
d53ee322
AA
835 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
836 unsigned bh_size, rec_size_bits;
1da177e4 837 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
d53ee322 838 unsigned char bh_size_bits;
1da177e4
LT
839
840 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
841 "0x%lx.", vi->i_ino, ni->type, page->index);
842 BUG_ON(!NInoNonResident(ni));
843 BUG_ON(!NInoMstProtected(ni));
844 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
845 /*
846 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
847 * in its page cache were to be marked dirty. However this should
848 * never happen with the current driver and considering we do not
849 * handle this case here we do want to BUG(), at least for now.
850 */
851 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
852 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
d53ee322
AA
853 bh_size_bits = vi->i_blkbits;
854 bh_size = 1 << bh_size_bits;
855 max_bhs = PAGE_CACHE_SIZE / bh_size;
1da177e4 856 BUG_ON(!max_bhs);
d53ee322 857 BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
1da177e4
LT
858
859 /* Were we called for sync purposes? */
860 sync = (wbc->sync_mode == WB_SYNC_ALL);
861
862 /* Make sure we have mapped buffers. */
863 BUG_ON(!page_has_buffers(page));
864 bh = head = page_buffers(page);
865 BUG_ON(!bh);
866
867 rec_size_bits = ni->itype.index.block_size_bits;
868 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
869 bhs_per_rec = rec_size >> bh_size_bits;
870 BUG_ON(!bhs_per_rec);
871
872 /* The first block in the page. */
873 rec_block = block = (sector_t)page->index <<
874 (PAGE_CACHE_SHIFT - bh_size_bits);
875
876 /* The first out of bounds block for the data size. */
07a4e2da 877 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
1da177e4
LT
878
879 rl = NULL;
880 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
881 page_is_dirty = rec_is_dirty = FALSE;
882 rec_start_bh = NULL;
883 do {
884 BOOL is_retry = FALSE;
885
886 if (likely(block < rec_block)) {
887 if (unlikely(block >= dblock)) {
888 clear_buffer_dirty(bh);
946929d8 889 set_buffer_uptodate(bh);
1da177e4
LT
890 continue;
891 }
892 /*
893 * This block is not the first one in the record. We
894 * ignore the buffer's dirty state because we could
895 * have raced with a parallel mark_ntfs_record_dirty().
896 */
897 if (!rec_is_dirty)
898 continue;
899 if (unlikely(err2)) {
900 if (err2 != -ENOMEM)
901 clear_buffer_dirty(bh);
902 continue;
903 }
904 } else /* if (block == rec_block) */ {
905 BUG_ON(block > rec_block);
906 /* This block is the first one in the record. */
907 rec_block += bhs_per_rec;
908 err2 = 0;
909 if (unlikely(block >= dblock)) {
910 clear_buffer_dirty(bh);
911 continue;
912 }
913 if (!buffer_dirty(bh)) {
914 /* Clean records are not written out. */
915 rec_is_dirty = FALSE;
916 continue;
917 }
918 rec_is_dirty = TRUE;
919 rec_start_bh = bh;
920 }
921 /* Need to map the buffer if it is not mapped already. */
922 if (unlikely(!buffer_mapped(bh))) {
923 VCN vcn;
924 LCN lcn;
925 unsigned int vcn_ofs;
926
927 /* Obtain the vcn and offset of the current block. */
928 vcn = (VCN)block << bh_size_bits;
929 vcn_ofs = vcn & vol->cluster_size_mask;
930 vcn >>= vol->cluster_size_bits;
931 if (!rl) {
932lock_retry_remap:
933 down_read(&ni->runlist.lock);
934 rl = ni->runlist.rl;
935 }
936 if (likely(rl != NULL)) {
937 /* Seek to element containing target vcn. */
938 while (rl->length && rl[1].vcn <= vcn)
939 rl++;
940 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
941 } else
942 lcn = LCN_RL_NOT_MAPPED;
943 /* Successful remap. */
944 if (likely(lcn >= 0)) {
945 /* Setup buffer head to correct block. */
946 bh->b_blocknr = ((lcn <<
947 vol->cluster_size_bits) +
948 vcn_ofs) >> bh_size_bits;
949 set_buffer_mapped(bh);
950 } else {
951 /*
952 * Remap failed. Retry to map the runlist once
953 * unless we are working on $MFT which always
954 * has the whole of its runlist in memory.
955 */
956 if (!is_mft && !is_retry &&
957 lcn == LCN_RL_NOT_MAPPED) {
958 is_retry = TRUE;
959 /*
960 * Attempt to map runlist, dropping
961 * lock for the duration.
962 */
963 up_read(&ni->runlist.lock);
964 err2 = ntfs_map_runlist(ni, vcn);
965 if (likely(!err2))
966 goto lock_retry_remap;
967 if (err2 == -ENOMEM)
968 page_is_dirty = TRUE;
969 lcn = err2;
9f993fe4 970 } else {
1da177e4 971 err2 = -EIO;
9f993fe4
AA
972 if (!rl)
973 up_read(&ni->runlist.lock);
974 }
1da177e4
LT
975 /* Hard error. Abort writing this record. */
976 if (!err || err == -ENOMEM)
977 err = err2;
978 bh->b_blocknr = -1;
979 ntfs_error(vol->sb, "Cannot write ntfs record "
980 "0x%llx (inode 0x%lx, "
981 "attribute type 0x%x) because "
982 "its location on disk could "
983 "not be determined (error "
8907547d
RD
984 "code %lli).",
985 (long long)block <<
1da177e4
LT
986 bh_size_bits >>
987 vol->mft_record_size_bits,
988 ni->mft_no, ni->type,
989 (long long)lcn);
990 /*
991 * If this is not the first buffer, remove the
992 * buffers in this record from the list of
993 * buffers to write and clear their dirty bit
994 * if not error -ENOMEM.
995 */
996 if (rec_start_bh != bh) {
997 while (bhs[--nr_bhs] != rec_start_bh)
998 ;
999 if (err2 != -ENOMEM) {
1000 do {
1001 clear_buffer_dirty(
1002 rec_start_bh);
1003 } while ((rec_start_bh =
1004 rec_start_bh->
1005 b_this_page) !=
1006 bh);
1007 }
1008 }
1009 continue;
1010 }
1011 }
1012 BUG_ON(!buffer_uptodate(bh));
1013 BUG_ON(nr_bhs >= max_bhs);
1014 bhs[nr_bhs++] = bh;
1015 } while (block++, (bh = bh->b_this_page) != head);
1016 if (unlikely(rl))
1017 up_read(&ni->runlist.lock);
1018 /* If there were no dirty buffers, we are done. */
1019 if (!nr_bhs)
1020 goto done;
1021 /* Map the page so we can access its contents. */
1022 kaddr = kmap(page);
1023 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1024 BUG_ON(!PageUptodate(page));
1025 ClearPageUptodate(page);
1026 for (i = 0; i < nr_bhs; i++) {
1027 unsigned int ofs;
1028
1029 /* Skip buffers which are not at the beginning of records. */
1030 if (i % bhs_per_rec)
1031 continue;
1032 tbh = bhs[i];
1033 ofs = bh_offset(tbh);
1034 if (is_mft) {
1035 ntfs_inode *tni;
1036 unsigned long mft_no;
1037
1038 /* Get the mft record number. */
1039 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1040 >> rec_size_bits;
1041 /* Check whether to write this mft record. */
1042 tni = NULL;
1043 if (!ntfs_may_write_mft_record(vol, mft_no,
1044 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1045 /*
1046 * The record should not be written. This
1047 * means we need to redirty the page before
1048 * returning.
1049 */
1050 page_is_dirty = TRUE;
1051 /*
1052 * Remove the buffers in this mft record from
1053 * the list of buffers to write.
1054 */
1055 do {
1056 bhs[i] = NULL;
1057 } while (++i % bhs_per_rec);
1058 continue;
1059 }
1060 /*
1061 * The record should be written. If a locked ntfs
1062 * inode was returned, add it to the array of locked
1063 * ntfs inodes.
1064 */
1065 if (tni)
1066 locked_nis[nr_locked_nis++] = tni;
1067 }
1068 /* Apply the mst protection fixups. */
1069 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1070 rec_size);
1071 if (unlikely(err2)) {
1072 if (!err || err == -ENOMEM)
1073 err = -EIO;
1074 ntfs_error(vol->sb, "Failed to apply mst fixups "
1075 "(inode 0x%lx, attribute type 0x%x, "
1076 "page index 0x%lx, page offset 0x%x)!"
1077 " Unmount and run chkdsk.", vi->i_ino,
1078 ni->type, page->index, ofs);
1079 /*
1080 * Mark all the buffers in this record clean as we do
1081 * not want to write corrupt data to disk.
1082 */
1083 do {
1084 clear_buffer_dirty(bhs[i]);
1085 bhs[i] = NULL;
1086 } while (++i % bhs_per_rec);
1087 continue;
1088 }
1089 nr_recs++;
1090 }
1091 /* If no records are to be written out, we are done. */
1092 if (!nr_recs)
1093 goto unm_done;
1094 flush_dcache_page(page);
1095 /* Lock buffers and start synchronous write i/o on them. */
1096 for (i = 0; i < nr_bhs; i++) {
1097 tbh = bhs[i];
1098 if (!tbh)
1099 continue;
1100 if (unlikely(test_set_buffer_locked(tbh)))
1101 BUG();
1102 /* The buffer dirty state is now irrelevant, just clean it. */
1103 clear_buffer_dirty(tbh);
1104 BUG_ON(!buffer_uptodate(tbh));
1105 BUG_ON(!buffer_mapped(tbh));
1106 get_bh(tbh);
1107 tbh->b_end_io = end_buffer_write_sync;
1108 submit_bh(WRITE, tbh);
1109 }
1110 /* Synchronize the mft mirror now if not @sync. */
1111 if (is_mft && !sync)
1112 goto do_mirror;
1113do_wait:
1114 /* Wait on i/o completion of buffers. */
1115 for (i = 0; i < nr_bhs; i++) {
1116 tbh = bhs[i];
1117 if (!tbh)
1118 continue;
1119 wait_on_buffer(tbh);
1120 if (unlikely(!buffer_uptodate(tbh))) {
1121 ntfs_error(vol->sb, "I/O error while writing ntfs "
1122 "record buffer (inode 0x%lx, "
1123 "attribute type 0x%x, page index "
1124 "0x%lx, page offset 0x%lx)! Unmount "
1125 "and run chkdsk.", vi->i_ino, ni->type,
1126 page->index, bh_offset(tbh));
1127 if (!err || err == -ENOMEM)
1128 err = -EIO;
1129 /*
1130 * Set the buffer uptodate so the page and buffer
1131 * states do not become out of sync.
1132 */
1133 set_buffer_uptodate(tbh);
1134 }
1135 }
1136 /* If @sync, now synchronize the mft mirror. */
1137 if (is_mft && sync) {
1138do_mirror:
1139 for (i = 0; i < nr_bhs; i++) {
1140 unsigned long mft_no;
1141 unsigned int ofs;
1142
1143 /*
1144 * Skip buffers which are not at the beginning of
1145 * records.
1146 */
1147 if (i % bhs_per_rec)
1148 continue;
1149 tbh = bhs[i];
1150 /* Skip removed buffers (and hence records). */
1151 if (!tbh)
1152 continue;
1153 ofs = bh_offset(tbh);
1154 /* Get the mft record number. */
1155 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1156 >> rec_size_bits;
1157 if (mft_no < vol->mftmirr_size)
1158 ntfs_sync_mft_mirror(vol, mft_no,
1159 (MFT_RECORD*)(kaddr + ofs),
1160 sync);
1161 }
1162 if (!sync)
1163 goto do_wait;
1164 }
1165 /* Remove the mst protection fixups again. */
1166 for (i = 0; i < nr_bhs; i++) {
1167 if (!(i % bhs_per_rec)) {
1168 tbh = bhs[i];
1169 if (!tbh)
1170 continue;
1171 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1172 bh_offset(tbh)));
1173 }
1174 }
1175 flush_dcache_page(page);
1176unm_done:
1177 /* Unlock any locked inodes. */
1178 while (nr_locked_nis-- > 0) {
1179 ntfs_inode *tni, *base_tni;
1180
1181 tni = locked_nis[nr_locked_nis];
1182 /* Get the base inode. */
1183 down(&tni->extent_lock);
1184 if (tni->nr_extents >= 0)
1185 base_tni = tni;
1186 else {
1187 base_tni = tni->ext.base_ntfs_ino;
1188 BUG_ON(!base_tni);
1189 }
1190 up(&tni->extent_lock);
1191 ntfs_debug("Unlocking %s inode 0x%lx.",
1192 tni == base_tni ? "base" : "extent",
1193 tni->mft_no);
1194 up(&tni->mrec_lock);
1195 atomic_dec(&tni->count);
1196 iput(VFS_I(base_tni));
1197 }
1198 SetPageUptodate(page);
1199 kunmap(page);
1200done:
1201 if (unlikely(err && err != -ENOMEM)) {
1202 /*
1203 * Set page error if there is only one ntfs record in the page.
1204 * Otherwise we would loose per-record granularity.
1205 */
1206 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1207 SetPageError(page);
1208 NVolSetErrors(vol);
1209 }
1210 if (page_is_dirty) {
1211 ntfs_debug("Page still contains one or more dirty ntfs "
1212 "records. Redirtying the page starting at "
1213 "record 0x%lx.", page->index <<
1214 (PAGE_CACHE_SHIFT - rec_size_bits));
1215 redirty_page_for_writepage(wbc, page);
1216 unlock_page(page);
1217 } else {
1218 /*
1219 * Keep the VM happy. This must be done otherwise the
1220 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1221 * the page is clean.
1222 */
1223 BUG_ON(PageWriteback(page));
1224 set_page_writeback(page);
1225 unlock_page(page);
1226 end_page_writeback(page);
1227 }
1228 if (likely(!err))
1229 ntfs_debug("Done.");
1230 return err;
1231}
1232
1233/**
1234 * ntfs_writepage - write a @page to the backing store
1235 * @page: page cache page to write out
1236 * @wbc: writeback control structure
1237 *
1238 * This is called from the VM when it wants to have a dirty ntfs page cache
1239 * page cleaned. The VM has already locked the page and marked it clean.
1240 *
1241 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1242 * the ntfs version of the generic block_write_full_page() function,
1243 * ntfs_write_block(), which in turn if necessary creates and writes the
1244 * buffers associated with the page asynchronously.
1245 *
1246 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1247 * the data to the mft record (which at this stage is most likely in memory).
1248 * The mft record is then marked dirty and written out asynchronously via the
1249 * vfs inode dirty code path for the inode the mft record belongs to or via the
1250 * vm page dirty code path for the page the mft record is in.
1251 *
1252 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1253 *
1254 * Return 0 on success and -errno on error.
1255 */
1256static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1257{
1258 loff_t i_size;
149f0c52
AA
1259 struct inode *vi = page->mapping->host;
1260 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1da177e4 1261 char *kaddr;
149f0c52
AA
1262 ntfs_attr_search_ctx *ctx = NULL;
1263 MFT_RECORD *m = NULL;
1da177e4
LT
1264 u32 attr_len;
1265 int err;
1266
905685f6 1267retry_writepage:
1da177e4 1268 BUG_ON(!PageLocked(page));
1da177e4 1269 i_size = i_size_read(vi);
1da177e4
LT
1270 /* Is the page fully outside i_size? (truncate in progress) */
1271 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1272 PAGE_CACHE_SHIFT)) {
1273 /*
1274 * The page may have dirty, unmapped buffers. Make them
1275 * freeable here, so the page does not leak.
1276 */
1277 block_invalidatepage(page, 0);
1278 unlock_page(page);
1279 ntfs_debug("Write outside i_size - truncated?");
1280 return 0;
1281 }
1da177e4
LT
1282 /* NInoNonResident() == NInoIndexAllocPresent() */
1283 if (NInoNonResident(ni)) {
1284 /*
1285 * Only unnamed $DATA attributes can be compressed, encrypted,
1286 * and/or sparse.
1287 */
1288 if (ni->type == AT_DATA && !ni->name_len) {
1289 /* If file is encrypted, deny access, just like NT4. */
1290 if (NInoEncrypted(ni)) {
1291 unlock_page(page);
1292 ntfs_debug("Denying write access to encrypted "
1293 "file.");
1294 return -EACCES;
1295 }
1296 /* Compressed data streams are handled in compress.c. */
1297 if (NInoCompressed(ni)) {
1298 // TODO: Implement and replace this check with
1299 // return ntfs_write_compressed_block(page);
1300 unlock_page(page);
1301 ntfs_error(vi->i_sb, "Writing to compressed "
1302 "files is not supported yet. "
1303 "Sorry.");
1304 return -EOPNOTSUPP;
1305 }
1306 // TODO: Implement and remove this check.
1307 if (NInoSparse(ni)) {
1308 unlock_page(page);
1309 ntfs_error(vi->i_sb, "Writing to sparse files "
1310 "is not supported yet. Sorry.");
1311 return -EOPNOTSUPP;
1312 }
1313 }
1314 /* We have to zero every time due to mmap-at-end-of-file. */
1315 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1316 /* The page straddles i_size. */
1317 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1318 kaddr = kmap_atomic(page, KM_USER0);
1319 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1320 flush_dcache_page(page);
1321 kunmap_atomic(kaddr, KM_USER0);
1322 }
1323 /* Handle mst protected attributes. */
1324 if (NInoMstProtected(ni))
1325 return ntfs_write_mst_block(page, wbc);
1326 /* Normal data stream. */
1327 return ntfs_write_block(page, wbc);
1328 }
1329 /*
1330 * Attribute is resident, implying it is not compressed, encrypted,
1331 * sparse, or mst protected. This also means the attribute is smaller
1332 * than an mft record and hence smaller than a page, so can simply
1333 * return error on any pages with index above 0.
1334 */
1335 BUG_ON(page_has_buffers(page));
1336 BUG_ON(!PageUptodate(page));
1337 if (unlikely(page->index > 0)) {
1338 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1339 "Aborting write.", page->index);
1340 BUG_ON(PageWriteback(page));
1341 set_page_writeback(page);
1342 unlock_page(page);
1343 end_page_writeback(page);
1344 return -EIO;
1345 }
1346 if (!NInoAttr(ni))
1347 base_ni = ni;
1348 else
1349 base_ni = ni->ext.base_ntfs_ino;
1350 /* Map, pin, and lock the mft record. */
1351 m = map_mft_record(base_ni);
1352 if (IS_ERR(m)) {
1353 err = PTR_ERR(m);
1354 m = NULL;
1355 ctx = NULL;
1356 goto err_out;
1357 }
905685f6
AA
1358 /*
1359 * If a parallel write made the attribute non-resident, drop the mft
1360 * record and retry the writepage.
1361 */
1362 if (unlikely(NInoNonResident(ni))) {
1363 unmap_mft_record(base_ni);
1364 goto retry_writepage;
1365 }
1da177e4
LT
1366 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1367 if (unlikely(!ctx)) {
1368 err = -ENOMEM;
1369 goto err_out;
1370 }
1371 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1372 CASE_SENSITIVE, 0, NULL, 0, ctx);
1373 if (unlikely(err))
1374 goto err_out;
1375 /*
1376 * Keep the VM happy. This must be done otherwise the radix-tree tag
1377 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1378 */
1379 BUG_ON(PageWriteback(page));
1380 set_page_writeback(page);
1381 unlock_page(page);
1382
1383 /*
1384 * Here, we don't need to zero the out of bounds area everytime because
1385 * the below memcpy() already takes care of the mmap-at-end-of-file
1386 * requirements. If the file is converted to a non-resident one, then
1387 * the code path use is switched to the non-resident one where the
1388 * zeroing happens on each ntfs_writepage() invocation.
1389 *
1390 * The above also applies nicely when i_size is decreased.
1391 *
1392 * When i_size is increased, the memory between the old and new i_size
1393 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1394 * expose data to userspace/disk which should never have been exposed.
1395 *
1396 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1397 * if we cannot guarantee that, then enable the zeroing below. If the
1398 * zeroing below is enabled, we MUST move the unlock_page() from above
1399 * to after the kunmap_atomic(), i.e. just before the
1400 * end_page_writeback().
1401 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1402 * increases for resident attributes so those are ok.
1403 * TODO: ntfs_truncate(), others?
1404 */
1405
1406 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
07a4e2da 1407 i_size = i_size_read(vi);
1da177e4 1408 if (unlikely(attr_len > i_size)) {
1da177e4 1409 attr_len = i_size;
f40661be 1410 ctx->attr->data.resident.value_length = cpu_to_le32(attr_len);
1da177e4 1411 }
f40661be 1412 kaddr = kmap_atomic(page, KM_USER0);
1da177e4
LT
1413 /* Copy the data from the page to the mft record. */
1414 memcpy((u8*)ctx->attr +
1415 le16_to_cpu(ctx->attr->data.resident.value_offset),
1416 kaddr, attr_len);
1417 flush_dcache_mft_record_page(ctx->ntfs_ino);
1418 /* Zero out of bounds area in the page cache page. */
1419 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1420 flush_dcache_page(page);
1421 kunmap_atomic(kaddr, KM_USER0);
1422
1423 end_page_writeback(page);
1424
1425 /* Mark the mft record dirty, so it gets written back. */
1426 mark_mft_record_dirty(ctx->ntfs_ino);
1427 ntfs_attr_put_search_ctx(ctx);
1428 unmap_mft_record(base_ni);
1429 return 0;
1430err_out:
1431 if (err == -ENOMEM) {
1432 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1433 "page so we try again later.");
1434 /*
1435 * Put the page back on mapping->dirty_pages, but leave its
1436 * buffers' dirty state as-is.
1437 */
1438 redirty_page_for_writepage(wbc, page);
1439 err = 0;
1440 } else {
1441 ntfs_error(vi->i_sb, "Resident attribute write failed with "
149f0c52 1442 "error %i.", err);
1da177e4 1443 SetPageError(page);
149f0c52
AA
1444 NVolSetErrors(ni->vol);
1445 make_bad_inode(vi);
1da177e4
LT
1446 }
1447 unlock_page(page);
1448 if (ctx)
1449 ntfs_attr_put_search_ctx(ctx);
1450 if (m)
1451 unmap_mft_record(base_ni);
1452 return err;
1453}
1454
1455/**
1456 * ntfs_prepare_nonresident_write -
1457 *
1458 */
1459static int ntfs_prepare_nonresident_write(struct page *page,
1460 unsigned from, unsigned to)
1461{
1462 VCN vcn;
1463 LCN lcn;
07a4e2da
AA
1464 s64 initialized_size;
1465 loff_t i_size;
1da177e4
LT
1466 sector_t block, ablock, iblock;
1467 struct inode *vi;
1468 ntfs_inode *ni;
1469 ntfs_volume *vol;
1470 runlist_element *rl;
1471 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
07a4e2da 1472 unsigned long flags;
1da177e4
LT
1473 unsigned int vcn_ofs, block_start, block_end, blocksize;
1474 int err;
1475 BOOL is_retry;
1476 unsigned char blocksize_bits;
1477
1478 vi = page->mapping->host;
1479 ni = NTFS_I(vi);
1480 vol = ni->vol;
1481
1482 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1483 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1484 page->index, from, to);
1485
1486 BUG_ON(!NInoNonResident(ni));
1487
1488 blocksize_bits = vi->i_blkbits;
1489 blocksize = 1 << blocksize_bits;
1490
1491 /*
1492 * create_empty_buffers() will create uptodate/dirty buffers if the
1493 * page is uptodate/dirty.
1494 */
1495 if (!page_has_buffers(page))
1496 create_empty_buffers(page, blocksize, 0);
1497 bh = head = page_buffers(page);
1498 if (unlikely(!bh))
1499 return -ENOMEM;
1500
1501 /* The first block in the page. */
1502 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1503
07a4e2da 1504 read_lock_irqsave(&ni->size_lock, flags);
1da177e4 1505 /*
b6ad6c52 1506 * The first out of bounds block for the allocated size. No need to
1da177e4
LT
1507 * round up as allocated_size is in multiples of cluster size and the
1508 * minimum cluster size is 512 bytes, which is equal to the smallest
1509 * blocksize.
1510 */
1511 ablock = ni->allocated_size >> blocksize_bits;
07a4e2da
AA
1512 i_size = i_size_read(vi);
1513 initialized_size = ni->initialized_size;
1514 read_unlock_irqrestore(&ni->size_lock, flags);
1515
1da177e4 1516 /* The last (fully or partially) initialized block. */
07a4e2da 1517 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
1518
1519 /* Loop through all the buffers in the page. */
1520 block_start = 0;
1521 rl = NULL;
1522 err = 0;
1523 do {
1524 block_end = block_start + blocksize;
1525 /*
1526 * If buffer @bh is outside the write, just mark it uptodate
1527 * if the page is uptodate and continue with the next buffer.
1528 */
1529 if (block_end <= from || block_start >= to) {
1530 if (PageUptodate(page)) {
1531 if (!buffer_uptodate(bh))
1532 set_buffer_uptodate(bh);
1533 }
1534 continue;
1535 }
1536 /*
1537 * @bh is at least partially being written to.
1538 * Make sure it is not marked as new.
1539 */
1540 //if (buffer_new(bh))
1541 // clear_buffer_new(bh);
1542
1543 if (block >= ablock) {
1544 // TODO: block is above allocated_size, need to
1545 // allocate it. Best done in one go to accommodate not
1546 // only block but all above blocks up to and including:
1547 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1548 // - 1) >> blobksize_bits. Obviously will need to round
1549 // up to next cluster boundary, too. This should be
1550 // done with a helper function, so it can be reused.
1551 ntfs_error(vol->sb, "Writing beyond allocated size "
1552 "is not supported yet. Sorry.");
1553 err = -EOPNOTSUPP;
1554 goto err_out;
1555 // Need to update ablock.
1556 // Need to set_buffer_new() on all block bhs that are
1557 // newly allocated.
1558 }
1559 /*
1560 * Now we have enough allocated size to fulfill the whole
1561 * request, i.e. block < ablock is true.
1562 */
1563 if (unlikely((block >= iblock) &&
07a4e2da 1564 (initialized_size < i_size))) {
1da177e4
LT
1565 /*
1566 * If this page is fully outside initialized size, zero
1567 * out all pages between the current initialized size
1568 * and the current page. Just use ntfs_readpage() to do
1569 * the zeroing transparently.
1570 */
1571 if (block > iblock) {
1572 // TODO:
1573 // For each page do:
1574 // - read_cache_page()
1575 // Again for each page do:
1576 // - wait_on_page_locked()
1577 // - Check (PageUptodate(page) &&
1578 // !PageError(page))
1579 // Update initialized size in the attribute and
1580 // in the inode.
1581 // Again, for each page do:
1582 // __set_page_dirty_buffers();
1583 // page_cache_release()
1584 // We don't need to wait on the writes.
1585 // Update iblock.
1586 }
1587 /*
1588 * The current page straddles initialized size. Zero
1589 * all non-uptodate buffers and set them uptodate (and
1590 * dirty?). Note, there aren't any non-uptodate buffers
1591 * if the page is uptodate.
1592 * FIXME: For an uptodate page, the buffers may need to
1593 * be written out because they were not initialized on
1594 * disk before.
1595 */
1596 if (!PageUptodate(page)) {
1597 // TODO:
1598 // Zero any non-uptodate buffers up to i_size.
1599 // Set them uptodate and dirty.
1600 }
1601 // TODO:
1602 // Update initialized size in the attribute and in the
1603 // inode (up to i_size).
1604 // Update iblock.
1605 // FIXME: This is inefficient. Try to batch the two
1606 // size changes to happen in one go.
1607 ntfs_error(vol->sb, "Writing beyond initialized size "
1608 "is not supported yet. Sorry.");
1609 err = -EOPNOTSUPP;
1610 goto err_out;
1611 // Do NOT set_buffer_new() BUT DO clear buffer range
1612 // outside write request range.
1613 // set_buffer_uptodate() on complete buffers as well as
1614 // set_buffer_dirty().
1615 }
1616
1617 /* Need to map unmapped buffers. */
1618 if (!buffer_mapped(bh)) {
1619 /* Unmapped buffer. Need to map it. */
1620 bh->b_bdev = vol->sb->s_bdev;
1621
1622 /* Convert block into corresponding vcn and offset. */
1623 vcn = (VCN)block << blocksize_bits >>
1624 vol->cluster_size_bits;
1625 vcn_ofs = ((VCN)block << blocksize_bits) &
1626 vol->cluster_size_mask;
1627
1628 is_retry = FALSE;
1629 if (!rl) {
1630lock_retry_remap:
1631 down_read(&ni->runlist.lock);
1632 rl = ni->runlist.rl;
1633 }
1634 if (likely(rl != NULL)) {
1635 /* Seek to element containing target vcn. */
1636 while (rl->length && rl[1].vcn <= vcn)
1637 rl++;
1638 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1639 } else
1640 lcn = LCN_RL_NOT_MAPPED;
1641 if (unlikely(lcn < 0)) {
1642 /*
1643 * We extended the attribute allocation above.
1644 * If we hit an ENOENT here it means that the
1645 * allocation was insufficient which is a bug.
1646 */
1647 BUG_ON(lcn == LCN_ENOENT);
1648
1649 /* It is a hole, need to instantiate it. */
1650 if (lcn == LCN_HOLE) {
1651 // TODO: Instantiate the hole.
1652 // clear_buffer_new(bh);
1653 // unmap_underlying_metadata(bh->b_bdev,
1654 // bh->b_blocknr);
1655 // For non-uptodate buffers, need to
1656 // zero out the region outside the
1657 // request in this bh or all bhs,
1658 // depending on what we implemented
1659 // above.
1660 // Need to flush_dcache_page().
1661 // Or could use set_buffer_new()
1662 // instead?
1663 ntfs_error(vol->sb, "Writing into "
1664 "sparse regions is "
1665 "not supported yet. "
1666 "Sorry.");
1667 err = -EOPNOTSUPP;
9f993fe4
AA
1668 if (!rl)
1669 up_read(&ni->runlist.lock);
1da177e4
LT
1670 goto err_out;
1671 } else if (!is_retry &&
1672 lcn == LCN_RL_NOT_MAPPED) {
1673 is_retry = TRUE;
1674 /*
1675 * Attempt to map runlist, dropping
1676 * lock for the duration.
1677 */
1678 up_read(&ni->runlist.lock);
1679 err = ntfs_map_runlist(ni, vcn);
1680 if (likely(!err))
1681 goto lock_retry_remap;
1682 rl = NULL;
1683 lcn = err;
9f993fe4
AA
1684 } else if (!rl)
1685 up_read(&ni->runlist.lock);
1da177e4
LT
1686 /*
1687 * Failed to map the buffer, even after
1688 * retrying.
1689 */
1690 bh->b_blocknr = -1;
1691 ntfs_error(vol->sb, "Failed to write to inode "
1692 "0x%lx, attribute type 0x%x, "
1693 "vcn 0x%llx, offset 0x%x "
1694 "because its location on disk "
1695 "could not be determined%s "
1696 "(error code %lli).",
1697 ni->mft_no, ni->type,
1698 (unsigned long long)vcn,
1699 vcn_ofs, is_retry ? " even "
1700 "after retrying" : "",
1701 (long long)lcn);
1702 if (!err)
1703 err = -EIO;
1704 goto err_out;
1705 }
1706 /* We now have a successful remap, i.e. lcn >= 0. */
1707
1708 /* Setup buffer head to correct block. */
1709 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1710 + vcn_ofs) >> blocksize_bits;
1711 set_buffer_mapped(bh);
1712
1713 // FIXME: Something analogous to this is needed for
1714 // each newly allocated block, i.e. BH_New.
1715 // FIXME: Might need to take this out of the
1716 // if (!buffer_mapped(bh)) {}, depending on how we
1717 // implement things during the allocated_size and
1718 // initialized_size extension code above.
1719 if (buffer_new(bh)) {
1720 clear_buffer_new(bh);
1721 unmap_underlying_metadata(bh->b_bdev,
1722 bh->b_blocknr);
1723 if (PageUptodate(page)) {
1724 set_buffer_uptodate(bh);
1725 continue;
1726 }
1727 /*
1728 * Page is _not_ uptodate, zero surrounding
1729 * region. NOTE: This is how we decide if to
1730 * zero or not!
1731 */
1732 if (block_end > to || block_start < from) {
1733 void *kaddr;
1734
1735 kaddr = kmap_atomic(page, KM_USER0);
1736 if (block_end > to)
1737 memset(kaddr + to, 0,
1738 block_end - to);
1739 if (block_start < from)
1740 memset(kaddr + block_start, 0,
1741 from -
1742 block_start);
1743 flush_dcache_page(page);
1744 kunmap_atomic(kaddr, KM_USER0);
1745 }
1746 continue;
1747 }
1748 }
1749 /* @bh is mapped, set it uptodate if the page is uptodate. */
1750 if (PageUptodate(page)) {
1751 if (!buffer_uptodate(bh))
1752 set_buffer_uptodate(bh);
1753 continue;
1754 }
1755 /*
1756 * The page is not uptodate. The buffer is mapped. If it is not
1757 * uptodate, and it is only partially being written to, we need
1758 * to read the buffer in before the write, i.e. right now.
1759 */
1760 if (!buffer_uptodate(bh) &&
1761 (block_start < from || block_end > to)) {
1762 ll_rw_block(READ, 1, &bh);
1763 *wait_bh++ = bh;
1764 }
1765 } while (block++, block_start = block_end,
1766 (bh = bh->b_this_page) != head);
1767
1768 /* Release the lock if we took it. */
1769 if (rl) {
1770 up_read(&ni->runlist.lock);
1771 rl = NULL;
1772 }
1773
1774 /* If we issued read requests, let them complete. */
1775 while (wait_bh > wait) {
1776 wait_on_buffer(*--wait_bh);
1777 if (!buffer_uptodate(*wait_bh))
1778 return -EIO;
1779 }
1780
1781 ntfs_debug("Done.");
1782 return 0;
1783err_out:
1784 /*
1785 * Zero out any newly allocated blocks to avoid exposing stale data.
1786 * If BH_New is set, we know that the block was newly allocated in the
1787 * above loop.
1788 * FIXME: What about initialized_size increments? Have we done all the
1789 * required zeroing above? If not this error handling is broken, and
1790 * in particular the if (block_end <= from) check is completely bogus.
1791 */
1792 bh = head;
1793 block_start = 0;
1794 is_retry = FALSE;
1795 do {
1796 block_end = block_start + blocksize;
1797 if (block_end <= from)
1798 continue;
1799 if (block_start >= to)
1800 break;
1801 if (buffer_new(bh)) {
1802 void *kaddr;
1803
1804 clear_buffer_new(bh);
1805 kaddr = kmap_atomic(page, KM_USER0);
1806 memset(kaddr + block_start, 0, bh->b_size);
1807 kunmap_atomic(kaddr, KM_USER0);
1808 set_buffer_uptodate(bh);
1809 mark_buffer_dirty(bh);
1810 is_retry = TRUE;
1811 }
1812 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1813 if (is_retry)
1814 flush_dcache_page(page);
1815 if (rl)
1816 up_read(&ni->runlist.lock);
1817 return err;
1818}
1819
1820/**
1821 * ntfs_prepare_write - prepare a page for receiving data
1822 *
1823 * This is called from generic_file_write() with i_sem held on the inode
1824 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1825 * data has not yet been copied into the @page.
1826 *
1827 * Need to extend the attribute/fill in holes if necessary, create blocks and
1828 * make partially overwritten blocks uptodate,
1829 *
1830 * i_size is not to be modified yet.
1831 *
1832 * Return 0 on success or -errno on error.
1833 *
1834 * Should be using block_prepare_write() [support for sparse files] or
1835 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1836 * ntfs specifics but can look at them for implementation guidance.
1837 *
1838 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1839 * the first byte in the page that will be written to and @to is the first byte
1840 * after the last byte that will be written to.
1841 */
1842static int ntfs_prepare_write(struct file *file, struct page *page,
1843 unsigned from, unsigned to)
1844{
1845 s64 new_size;
f40661be 1846 loff_t i_size;
1da177e4
LT
1847 struct inode *vi = page->mapping->host;
1848 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1849 ntfs_volume *vol = ni->vol;
1850 ntfs_attr_search_ctx *ctx = NULL;
1851 MFT_RECORD *m = NULL;
1852 ATTR_RECORD *a;
1853 u8 *kaddr;
1854 u32 attr_len;
1855 int err;
1856
1857 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1858 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1859 page->index, from, to);
1860 BUG_ON(!PageLocked(page));
1861 BUG_ON(from > PAGE_CACHE_SIZE);
1862 BUG_ON(to > PAGE_CACHE_SIZE);
1863 BUG_ON(from > to);
1864 BUG_ON(NInoMstProtected(ni));
1865 /*
1866 * If a previous ntfs_truncate() failed, repeat it and abort if it
1867 * fails again.
1868 */
1869 if (unlikely(NInoTruncateFailed(ni))) {
1870 down_write(&vi->i_alloc_sem);
1871 err = ntfs_truncate(vi);
1872 up_write(&vi->i_alloc_sem);
1873 if (err || NInoTruncateFailed(ni)) {
1874 if (!err)
1875 err = -EIO;
1876 goto err_out;
1877 }
1878 }
1879 /* If the attribute is not resident, deal with it elsewhere. */
1880 if (NInoNonResident(ni)) {
1881 /*
1882 * Only unnamed $DATA attributes can be compressed, encrypted,
1883 * and/or sparse.
1884 */
1885 if (ni->type == AT_DATA && !ni->name_len) {
1886 /* If file is encrypted, deny access, just like NT4. */
1887 if (NInoEncrypted(ni)) {
1888 ntfs_debug("Denying write access to encrypted "
1889 "file.");
1890 return -EACCES;
1891 }
1892 /* Compressed data streams are handled in compress.c. */
1893 if (NInoCompressed(ni)) {
1894 // TODO: Implement and replace this check with
1895 // return ntfs_write_compressed_block(page);
1896 ntfs_error(vi->i_sb, "Writing to compressed "
1897 "files is not supported yet. "
1898 "Sorry.");
1899 return -EOPNOTSUPP;
1900 }
1901 // TODO: Implement and remove this check.
1902 if (NInoSparse(ni)) {
1903 ntfs_error(vi->i_sb, "Writing to sparse files "
1904 "is not supported yet. Sorry.");
1905 return -EOPNOTSUPP;
1906 }
1907 }
1908 /* Normal data stream. */
1909 return ntfs_prepare_nonresident_write(page, from, to);
1910 }
1911 /*
1912 * Attribute is resident, implying it is not compressed, encrypted, or
1913 * sparse.
1914 */
1915 BUG_ON(page_has_buffers(page));
1916 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1917 /* If we do not need to resize the attribute allocation we are done. */
07a4e2da 1918 if (new_size <= i_size_read(vi))
1da177e4 1919 goto done;
1da177e4
LT
1920 /* Map, pin, and lock the (base) mft record. */
1921 if (!NInoAttr(ni))
1922 base_ni = ni;
1923 else
1924 base_ni = ni->ext.base_ntfs_ino;
1925 m = map_mft_record(base_ni);
1926 if (IS_ERR(m)) {
1927 err = PTR_ERR(m);
1928 m = NULL;
1929 ctx = NULL;
1930 goto err_out;
1931 }
1932 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1933 if (unlikely(!ctx)) {
1934 err = -ENOMEM;
1935 goto err_out;
1936 }
1937 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1938 CASE_SENSITIVE, 0, NULL, 0, ctx);
1939 if (unlikely(err)) {
1940 if (err == -ENOENT)
1941 err = -EIO;
1942 goto err_out;
1943 }
1944 m = ctx->mrec;
1945 a = ctx->attr;
1946 /* The total length of the attribute value. */
1947 attr_len = le32_to_cpu(a->data.resident.value_length);
946929d8 1948 /* Fix an eventual previous failure of ntfs_commit_write(). */
f40661be
AA
1949 i_size = i_size_read(vi);
1950 if (unlikely(attr_len > i_size)) {
1951 attr_len = i_size;
946929d8 1952 a->data.resident.value_length = cpu_to_le32(attr_len);
946929d8 1953 }
946929d8
AA
1954 /* If we do not need to resize the attribute allocation we are done. */
1955 if (new_size <= attr_len)
1956 goto done_unm;
1da177e4
LT
1957 /* Check if new size is allowed in $AttrDef. */
1958 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1959 if (unlikely(err)) {
1960 if (err == -ERANGE) {
1961 ntfs_error(vol->sb, "Write would cause the inode "
1962 "0x%lx to exceed the maximum size for "
1963 "its attribute type (0x%x). Aborting "
1964 "write.", vi->i_ino,
1965 le32_to_cpu(ni->type));
1966 } else {
1967 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1968 "attribute type 0x%x. Aborting "
1969 "write.", vi->i_ino,
1970 le32_to_cpu(ni->type));
1971 err = -EIO;
1972 }
1973 goto err_out2;
1974 }
1975 /*
1976 * Extend the attribute record to be able to store the new attribute
1977 * size.
1978 */
1979 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1980 le16_to_cpu(a->data.resident.value_offset) +
1981 new_size)) {
1982 /* Not enough space in the mft record. */
1983 ntfs_error(vol->sb, "Not enough space in the mft record for "
1984 "the resized attribute value. This is not "
1985 "supported yet. Aborting write.");
1986 err = -EOPNOTSUPP;
1987 goto err_out2;
1988 }
1989 /*
1990 * We have enough space in the mft record to fit the write. This
1991 * implies the attribute is smaller than the mft record and hence the
1992 * attribute must be in a single page and hence page->index must be 0.
1993 */
1994 BUG_ON(page->index);
1995 /*
1996 * If the beginning of the write is past the old size, enlarge the
1997 * attribute value up to the beginning of the write and fill it with
1998 * zeroes.
1999 */
2000 if (from > attr_len) {
2001 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
2002 attr_len, 0, from - attr_len);
2003 a->data.resident.value_length = cpu_to_le32(from);
2004 /* Zero the corresponding area in the page as well. */
2005 if (PageUptodate(page)) {
2006 kaddr = kmap_atomic(page, KM_USER0);
2007 memset(kaddr + attr_len, 0, from - attr_len);
2008 kunmap_atomic(kaddr, KM_USER0);
2009 flush_dcache_page(page);
2010 }
2011 }
2012 flush_dcache_mft_record_page(ctx->ntfs_ino);
2013 mark_mft_record_dirty(ctx->ntfs_ino);
946929d8 2014done_unm:
1da177e4
LT
2015 ntfs_attr_put_search_ctx(ctx);
2016 unmap_mft_record(base_ni);
2017 /*
2018 * Because resident attributes are handled by memcpy() to/from the
2019 * corresponding MFT record, and because this form of i/o is byte
2020 * aligned rather than block aligned, there is no need to bring the
2021 * page uptodate here as in the non-resident case where we need to
2022 * bring the buffers straddled by the write uptodate before
2023 * generic_file_write() does the copying from userspace.
2024 *
2025 * We thus defer the uptodate bringing of the page region outside the
2026 * region written to to ntfs_commit_write(), which makes the code
2027 * simpler and saves one atomic kmap which is good.
2028 */
2029done:
2030 ntfs_debug("Done.");
2031 return 0;
2032err_out:
2033 if (err == -ENOMEM)
2034 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2035 "prepare the write.");
2036 else {
2037 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
2038 "with error %i.", err);
2039 NVolSetErrors(vol);
2040 make_bad_inode(vi);
2041 }
2042err_out2:
2043 if (ctx)
2044 ntfs_attr_put_search_ctx(ctx);
2045 if (m)
2046 unmap_mft_record(base_ni);
2047 return err;
2048}
2049
2050/**
2051 * ntfs_commit_nonresident_write -
2052 *
2053 */
2054static int ntfs_commit_nonresident_write(struct page *page,
2055 unsigned from, unsigned to)
2056{
2057 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2058 struct inode *vi = page->mapping->host;
2059 struct buffer_head *bh, *head;
2060 unsigned int block_start, block_end, blocksize;
2061 BOOL partial;
2062
2063 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2064 "0x%lx, from = %u, to = %u.", vi->i_ino,
2065 NTFS_I(vi)->type, page->index, from, to);
2066 blocksize = 1 << vi->i_blkbits;
2067
2068 // FIXME: We need a whole slew of special cases in here for compressed
2069 // files for example...
2070 // For now, we know ntfs_prepare_write() would have failed so we can't
2071 // get here in any of the cases which we have to special case, so we
2072 // are just a ripped off, unrolled generic_commit_write().
2073
2074 bh = head = page_buffers(page);
2075 block_start = 0;
2076 partial = FALSE;
2077 do {
2078 block_end = block_start + blocksize;
2079 if (block_end <= from || block_start >= to) {
2080 if (!buffer_uptodate(bh))
2081 partial = TRUE;
2082 } else {
2083 set_buffer_uptodate(bh);
2084 mark_buffer_dirty(bh);
2085 }
2086 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2087 /*
2088 * If this is a partial write which happened to make all buffers
2089 * uptodate then we can optimize away a bogus ->readpage() for the next
2090 * read(). Here we 'discover' whether the page went uptodate as a
2091 * result of this (potentially partial) write.
2092 */
2093 if (!partial)
2094 SetPageUptodate(page);
2095 /*
2096 * Not convinced about this at all. See disparity comment above. For
2097 * now we know ntfs_prepare_write() would have failed in the write
2098 * exceeds i_size case, so this will never trigger which is fine.
2099 */
07a4e2da 2100 if (pos > i_size_read(vi)) {
1da177e4
LT
2101 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2102 "not supported yet. Sorry.");
2103 return -EOPNOTSUPP;
2104 // vi->i_size = pos;
2105 // mark_inode_dirty(vi);
2106 }
2107 ntfs_debug("Done.");
2108 return 0;
2109}
2110
2111/**
2112 * ntfs_commit_write - commit the received data
2113 *
2114 * This is called from generic_file_write() with i_sem held on the inode
2115 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2116 * data has already been copied into the @page. ntfs_prepare_write() has been
2117 * called before the data copied and it returned success so we can take the
2118 * results of various BUG checks and some error handling for granted.
2119 *
2120 * Need to mark modified blocks dirty so they get written out later when
2121 * ntfs_writepage() is invoked by the VM.
2122 *
2123 * Return 0 on success or -errno on error.
2124 *
2125 * Should be using generic_commit_write(). This marks buffers uptodate and
2126 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2127 * updates i_size if the end of io is beyond i_size. In that case, it also
2128 * marks the inode dirty.
2129 *
2130 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2131 * it for implementation guidance.
2132 *
2133 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2134 * need to do any page content modifications here at all, except in the write
2135 * to resident attribute case, where we need to do the uptodate bringing here
2136 * which we combine with the copying into the mft record which means we save
2137 * one atomic kmap.
2138 */
2139static int ntfs_commit_write(struct file *file, struct page *page,
2140 unsigned from, unsigned to)
2141{
2142 struct inode *vi = page->mapping->host;
2143 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2144 char *kaddr, *kattr;
2145 ntfs_attr_search_ctx *ctx;
2146 MFT_RECORD *m;
2147 ATTR_RECORD *a;
2148 u32 attr_len;
2149 int err;
2150
2151 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2152 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2153 page->index, from, to);
2154 /* If the attribute is not resident, deal with it elsewhere. */
2155 if (NInoNonResident(ni)) {
2156 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2157 if (ni->type == AT_DATA && !ni->name_len) {
2158 /* Encrypted files need separate handling. */
2159 if (NInoEncrypted(ni)) {
2160 // We never get here at present!
2161 BUG();
2162 }
2163 /* Compressed data streams are handled in compress.c. */
2164 if (NInoCompressed(ni)) {
2165 // TODO: Implement this!
2166 // return ntfs_write_compressed_block(page);
2167 // We never get here at present!
2168 BUG();
2169 }
2170 }
2171 /* Normal data stream. */
2172 return ntfs_commit_nonresident_write(page, from, to);
2173 }
2174 /*
2175 * Attribute is resident, implying it is not compressed, encrypted, or
2176 * sparse.
2177 */
2178 if (!NInoAttr(ni))
2179 base_ni = ni;
2180 else
2181 base_ni = ni->ext.base_ntfs_ino;
2182 /* Map, pin, and lock the mft record. */
2183 m = map_mft_record(base_ni);
2184 if (IS_ERR(m)) {
2185 err = PTR_ERR(m);
2186 m = NULL;
2187 ctx = NULL;
2188 goto err_out;
2189 }
2190 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2191 if (unlikely(!ctx)) {
2192 err = -ENOMEM;
2193 goto err_out;
2194 }
2195 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2196 CASE_SENSITIVE, 0, NULL, 0, ctx);
2197 if (unlikely(err)) {
2198 if (err == -ENOENT)
2199 err = -EIO;
2200 goto err_out;
2201 }
2202 a = ctx->attr;
2203 /* The total length of the attribute value. */
2204 attr_len = le32_to_cpu(a->data.resident.value_length);
2205 BUG_ON(from > attr_len);
2206 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2207 kaddr = kmap_atomic(page, KM_USER0);
2208 /* Copy the received data from the page to the mft record. */
2209 memcpy(kattr + from, kaddr + from, to - from);
2210 /* Update the attribute length if necessary. */
2211 if (to > attr_len) {
2212 attr_len = to;
2213 a->data.resident.value_length = cpu_to_le32(attr_len);
2214 }
2215 /*
2216 * If the page is not uptodate, bring the out of bounds area(s)
2217 * uptodate by copying data from the mft record to the page.
2218 */
2219 if (!PageUptodate(page)) {
2220 if (from > 0)
2221 memcpy(kaddr, kattr, from);
2222 if (to < attr_len)
2223 memcpy(kaddr + to, kattr + to, attr_len - to);
2224 /* Zero the region outside the end of the attribute value. */
2225 if (attr_len < PAGE_CACHE_SIZE)
2226 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2227 /*
2228 * The probability of not having done any of the above is
2229 * extremely small, so we just flush unconditionally.
2230 */
2231 flush_dcache_page(page);
2232 SetPageUptodate(page);
2233 }
2234 kunmap_atomic(kaddr, KM_USER0);
2235 /* Update i_size if necessary. */
07a4e2da
AA
2236 if (i_size_read(vi) < attr_len) {
2237 unsigned long flags;
2238
2239 write_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
2240 ni->allocated_size = ni->initialized_size = attr_len;
2241 i_size_write(vi, attr_len);
07a4e2da 2242 write_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
2243 }
2244 /* Mark the mft record dirty, so it gets written back. */
2245 flush_dcache_mft_record_page(ctx->ntfs_ino);
2246 mark_mft_record_dirty(ctx->ntfs_ino);
2247 ntfs_attr_put_search_ctx(ctx);
2248 unmap_mft_record(base_ni);
2249 ntfs_debug("Done.");
2250 return 0;
2251err_out:
2252 if (err == -ENOMEM) {
2253 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2254 "commit the write.");
2255 if (PageUptodate(page)) {
2256 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2257 "dirty so the write will be retried "
2258 "later on by the VM.");
2259 /*
2260 * Put the page on mapping->dirty_pages, but leave its
2261 * buffers' dirty state as-is.
2262 */
2263 __set_page_dirty_nobuffers(page);
2264 err = 0;
2265 } else
2266 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2267 "data has been lost.");
2268 } else {
2269 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2270 "with error %i.", err);
2271 NVolSetErrors(ni->vol);
2272 make_bad_inode(vi);
2273 }
2274 if (ctx)
2275 ntfs_attr_put_search_ctx(ctx);
2276 if (m)
2277 unmap_mft_record(base_ni);
2278 return err;
2279}
2280
2281#endif /* NTFS_RW */
2282
2283/**
2284 * ntfs_aops - general address space operations for inodes and attributes
2285 */
2286struct address_space_operations ntfs_aops = {
2287 .readpage = ntfs_readpage, /* Fill page with data. */
2288 .sync_page = block_sync_page, /* Currently, just unplugs the
2289 disk request queue. */
2290#ifdef NTFS_RW
2291 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2292 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2293 ready to receive data. */
2294 .commit_write = ntfs_commit_write, /* Commit received data. */
2295#endif /* NTFS_RW */
2296};
2297
2298/**
2299 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2300 * and attributes
2301 */
2302struct address_space_operations ntfs_mst_aops = {
2303 .readpage = ntfs_readpage, /* Fill page with data. */
2304 .sync_page = block_sync_page, /* Currently, just unplugs the
2305 disk request queue. */
2306#ifdef NTFS_RW
2307 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2308 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2309 without touching the buffers
2310 belonging to the page. */
2311#endif /* NTFS_RW */
2312};
2313
2314#ifdef NTFS_RW
2315
2316/**
2317 * mark_ntfs_record_dirty - mark an ntfs record dirty
2318 * @page: page containing the ntfs record to mark dirty
2319 * @ofs: byte offset within @page at which the ntfs record begins
2320 *
2321 * Set the buffers and the page in which the ntfs record is located dirty.
2322 *
2323 * The latter also marks the vfs inode the ntfs record belongs to dirty
2324 * (I_DIRTY_PAGES only).
2325 *
2326 * If the page does not have buffers, we create them and set them uptodate.
2327 * The page may not be locked which is why we need to handle the buffers under
2328 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2329 * need the lock since try_to_free_buffers() does not free dirty buffers.
2330 */
2331void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2332 struct address_space *mapping = page->mapping;
2333 ntfs_inode *ni = NTFS_I(mapping->host);
2334 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2335 unsigned int end, bh_size, bh_ofs;
2336
2337 BUG_ON(!PageUptodate(page));
2338 end = ofs + ni->itype.index.block_size;
2339 bh_size = 1 << VFS_I(ni)->i_blkbits;
2340 spin_lock(&mapping->private_lock);
2341 if (unlikely(!page_has_buffers(page))) {
2342 spin_unlock(&mapping->private_lock);
2343 bh = head = alloc_page_buffers(page, bh_size, 1);
2344 spin_lock(&mapping->private_lock);
2345 if (likely(!page_has_buffers(page))) {
2346 struct buffer_head *tail;
2347
2348 do {
2349 set_buffer_uptodate(bh);
2350 tail = bh;
2351 bh = bh->b_this_page;
2352 } while (bh);
2353 tail->b_this_page = head;
2354 attach_page_buffers(page, head);
2355 } else
2356 buffers_to_free = bh;
2357 }
2358 bh = head = page_buffers(page);
2359 do {
2360 bh_ofs = bh_offset(bh);
2361 if (bh_ofs + bh_size <= ofs)
2362 continue;
2363 if (unlikely(bh_ofs >= end))
2364 break;
2365 set_buffer_dirty(bh);
2366 } while ((bh = bh->b_this_page) != head);
2367 spin_unlock(&mapping->private_lock);
2368 __set_page_dirty_nobuffers(page);
2369 if (unlikely(buffers_to_free)) {
2370 do {
2371 bh = buffers_to_free->b_this_page;
2372 free_buffer_head(buffers_to_free);
2373 buffers_to_free = bh;
2374 } while (buffers_to_free);
2375 }
2376}
2377
2378#endif /* NTFS_RW */
This page took 0.136965 seconds and 5 git commands to generate.