Merge branch 'dock' into release
[deliverable/linux.git] / fs / reiserfs / fix_node.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
0222e657
JM
33 **
34 **
1da177e4
LT
35 **/
36
1da177e4
LT
37#include <linux/time.h>
38#include <linux/string.h>
39#include <linux/reiserfs_fs.h>
40#include <linux/buffer_head.h>
41
1da177e4
LT
42/* To make any changes in the tree we find a node, that contains item
43 to be changed/deleted or position in the node we insert a new item
44 to. We call this node S. To do balancing we need to decide what we
45 will shift to left/right neighbor, or to a new node, where new item
46 will be etc. To make this analysis simpler we build virtual
47 node. Virtual node is an array of items, that will replace items of
48 node S. (For instance if we are going to delete an item, virtual
49 node does not contain it). Virtual node keeps information about
50 item sizes and types, mergeability of first and last items, sizes
51 of all entries in directory item. We use this array of items when
52 calculating what we can shift to neighbors and how many nodes we
53 have to have if we do not any shiftings, if we shift to left/right
54 neighbor or to both. */
55
1da177e4 56/* taking item number in virtual node, returns number of item, that it has in source buffer */
bd4c625c 57static inline int old_item_num(int new_num, int affected_item_num, int mode)
1da177e4 58{
bd4c625c
LT
59 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60 return new_num;
1da177e4 61
bd4c625c 62 if (mode == M_INSERT) {
1da177e4 63
bd4c625c
LT
64 RFALSE(new_num == 0,
65 "vs-8005: for INSERT mode and item number of inserted item");
1da177e4 66
bd4c625c
LT
67 return new_num - 1;
68 }
1da177e4 69
bd4c625c
LT
70 RFALSE(mode != M_DELETE,
71 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72 mode);
73 /* delete mode */
74 return new_num + 1;
1da177e4
LT
75}
76
bd4c625c 77static void create_virtual_node(struct tree_balance *tb, int h)
1da177e4 78{
bd4c625c
LT
79 struct item_head *ih;
80 struct virtual_node *vn = tb->tb_vn;
81 int new_num;
82 struct buffer_head *Sh; /* this comes from tb->S[h] */
1da177e4 83
bd4c625c 84 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1da177e4 85
bd4c625c
LT
86 /* size of changed node */
87 vn->vn_size =
88 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
1da177e4 89
bd4c625c
LT
90 /* for internal nodes array if virtual items is not created */
91 if (h) {
92 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93 return;
1da177e4 94 }
1da177e4 95
bd4c625c
LT
96 /* number of items in virtual node */
97 vn->vn_nr_item =
98 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99 ((vn->vn_mode == M_DELETE) ? 1 : 0);
100
101 /* first virtual item */
102 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105
106 /* first item in the node */
107 ih = B_N_PITEM_HEAD(Sh, 0);
108
109 /* define the mergeability for 0-th item (if it is not being deleted) */
110 if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113
114 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
115 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116 int j;
117 struct virtual_item *vi = vn->vn_vi + new_num;
118 int is_affected =
119 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120
121 if (is_affected && vn->vn_mode == M_INSERT)
122 continue;
123
124 /* get item number in source node */
125 j = old_item_num(new_num, vn->vn_affected_item_num,
126 vn->vn_mode);
127
128 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129 vi->vi_ih = ih + j;
130 vi->vi_item = B_I_PITEM(Sh, ih + j);
131 vi->vi_uarea = vn->vn_free_ptr;
132
133 // FIXME: there is no check, that item operation did not
134 // consume too much memory
135 vn->vn_free_ptr +=
136 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
c3a9c210 138 reiserfs_panic(tb->tb_sb, "vs-8030",
bd4c625c
LT
139 "virtual node space consumed");
140
141 if (!is_affected)
142 /* this is not being changed */
143 continue;
144
145 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
146 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
147 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
148 }
1da177e4 149 }
bd4c625c
LT
150
151 /* virtual inserted item is not defined yet */
152 if (vn->vn_mode == M_INSERT) {
153 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
154
9dce07f1 155 RFALSE(vn->vn_ins_ih == NULL,
bd4c625c
LT
156 "vs-8040: item header of inserted item is not specified");
157 vi->vi_item_len = tb->insert_size[0];
158 vi->vi_ih = vn->vn_ins_ih;
159 vi->vi_item = vn->vn_data;
160 vi->vi_uarea = vn->vn_free_ptr;
161
162 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
163 tb->insert_size[0]);
164 }
165
166 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
167 if (tb->CFR[0]) {
168 struct reiserfs_key *key;
169
170 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
171 if (op_is_left_mergeable(key, Sh->b_size)
172 && (vn->vn_mode != M_DELETE
173 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
174 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
175 VI_TYPE_RIGHT_MERGEABLE;
176
177#ifdef CONFIG_REISERFS_CHECK
178 if (op_is_left_mergeable(key, Sh->b_size) &&
179 !(vn->vn_mode != M_DELETE
180 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
181 /* we delete last item and it could be merged with right neighbor's first item */
182 if (!
183 (B_NR_ITEMS(Sh) == 1
184 && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
185 && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
186 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
187 print_block(Sh, 0, -1, -1);
c3a9c210
JM
188 reiserfs_panic(tb->tb_sb, "vs-8045",
189 "rdkey %k, affected item==%d "
190 "(mode==%c) Must be %c",
bd4c625c
LT
191 key, vn->vn_affected_item_num,
192 vn->vn_mode, M_DELETE);
cd02b966 193 }
bd4c625c 194 }
1da177e4 195#endif
1da177e4 196
bd4c625c
LT
197 }
198}
1da177e4
LT
199
200/* using virtual node check, how many items can be shifted to left
201 neighbor */
bd4c625c 202static void check_left(struct tree_balance *tb, int h, int cur_free)
1da177e4 203{
bd4c625c
LT
204 int i;
205 struct virtual_node *vn = tb->tb_vn;
206 struct virtual_item *vi;
207 int d_size, ih_size;
1da177e4 208
bd4c625c 209 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
1da177e4 210
bd4c625c
LT
211 /* internal level */
212 if (h > 0) {
213 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214 return;
215 }
1da177e4 216
bd4c625c 217 /* leaf level */
1da177e4 218
bd4c625c
LT
219 if (!cur_free || !vn->vn_nr_item) {
220 /* no free space or nothing to move */
221 tb->lnum[h] = 0;
222 tb->lbytes = -1;
223 return;
224 }
1da177e4 225
bd4c625c
LT
226 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227 "vs-8055: parent does not exist or invalid");
1da177e4 228
bd4c625c
LT
229 vi = vn->vn_vi;
230 if ((unsigned int)cur_free >=
231 (vn->vn_size -
232 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233 /* all contents of S[0] fits into L[0] */
1da177e4 234
bd4c625c
LT
235 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236 "vs-8055: invalid mode or balance condition failed");
1da177e4 237
bd4c625c
LT
238 tb->lnum[0] = vn->vn_nr_item;
239 tb->lbytes = -1;
240 return;
1da177e4 241 }
bd4c625c
LT
242
243 d_size = 0, ih_size = IH_SIZE;
244
245 /* first item may be merge with last item in left neighbor */
246 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247 d_size = -((int)IH_SIZE), ih_size = 0;
248
249 tb->lnum[0] = 0;
250 for (i = 0; i < vn->vn_nr_item;
251 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252 d_size += vi->vi_item_len;
253 if (cur_free >= d_size) {
254 /* the item can be shifted entirely */
255 cur_free -= d_size;
256 tb->lnum[0]++;
257 continue;
258 }
259
260 /* the item cannot be shifted entirely, try to split it */
261 /* check whether L[0] can hold ih and at least one byte of the item body */
262 if (cur_free <= ih_size) {
263 /* cannot shift even a part of the current item */
264 tb->lbytes = -1;
265 return;
266 }
267 cur_free -= ih_size;
268
269 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270 if (tb->lbytes != -1)
271 /* count partially shifted item */
272 tb->lnum[0]++;
273
274 break;
1da177e4 275 }
1da177e4 276
bd4c625c
LT
277 return;
278}
1da177e4
LT
279
280/* using virtual node check, how many items can be shifted to right
281 neighbor */
bd4c625c 282static void check_right(struct tree_balance *tb, int h, int cur_free)
1da177e4 283{
bd4c625c
LT
284 int i;
285 struct virtual_node *vn = tb->tb_vn;
286 struct virtual_item *vi;
287 int d_size, ih_size;
288
289 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290
291 /* internal level */
292 if (h > 0) {
293 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294 return;
1da177e4 295 }
bd4c625c
LT
296
297 /* leaf level */
298
299 if (!cur_free || !vn->vn_nr_item) {
300 /* no free space */
301 tb->rnum[h] = 0;
302 tb->rbytes = -1;
303 return;
1da177e4 304 }
1da177e4 305
bd4c625c
LT
306 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307 "vs-8075: parent does not exist or invalid");
308
309 vi = vn->vn_vi + vn->vn_nr_item - 1;
310 if ((unsigned int)cur_free >=
311 (vn->vn_size -
312 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313 /* all contents of S[0] fits into R[0] */
314
315 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316 "vs-8080: invalid mode or balance condition failed");
317
318 tb->rnum[h] = vn->vn_nr_item;
319 tb->rbytes = -1;
320 return;
321 }
322
323 d_size = 0, ih_size = IH_SIZE;
324
325 /* last item may be merge with first item in right neighbor */
326 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327 d_size = -(int)IH_SIZE, ih_size = 0;
328
329 tb->rnum[0] = 0;
330 for (i = vn->vn_nr_item - 1; i >= 0;
331 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332 d_size += vi->vi_item_len;
333 if (cur_free >= d_size) {
334 /* the item can be shifted entirely */
335 cur_free -= d_size;
336 tb->rnum[0]++;
337 continue;
338 }
339
340 /* check whether R[0] can hold ih and at least one byte of the item body */
341 if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
342 tb->rbytes = -1;
343 return;
344 }
345
346 /* R[0] can hold the header of the item and at least one byte of its body */
347 cur_free -= ih_size; /* cur_free is still > 0 */
348
349 tb->rbytes = op_check_right(vi, cur_free);
350 if (tb->rbytes != -1)
351 /* count partially shifted item */
352 tb->rnum[0]++;
353
354 break;
355 }
356
357 return;
358}
1da177e4
LT
359
360/*
361 * from - number of items, which are shifted to left neighbor entirely
362 * to - number of item, which are shifted to right neighbor entirely
363 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
bd4c625c
LT
365static int get_num_ver(int mode, struct tree_balance *tb, int h,
366 int from, int from_bytes,
367 int to, int to_bytes, short *snum012, int flow)
1da177e4 368{
bd4c625c
LT
369 int i;
370 int cur_free;
371 // int bytes;
372 int units;
373 struct virtual_node *vn = tb->tb_vn;
374 // struct virtual_item * vi;
375
376 int total_node_size, max_node_size, current_item_size;
377 int needed_nodes;
378 int start_item, /* position of item we start filling node from */
379 end_item, /* position of item we finish filling node by */
0222e657 380 start_bytes, /* number of first bytes (entries for directory) of start_item-th item
bd4c625c 381 we do not include into node that is being filled */
0222e657 382 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
bd4c625c
LT
383 we do node include into node that is being filled */
384 int split_item_positions[2]; /* these are positions in virtual item of
385 items, that are split between S[0] and
386 S1new and S1new and S2new */
387
388 split_item_positions[0] = -1;
389 split_item_positions[1] = -1;
390
391 /* We only create additional nodes if we are in insert or paste mode
392 or we are in replace mode at the internal level. If h is 0 and
393 the mode is M_REPLACE then in fix_nodes we change the mode to
394 paste or insert before we get here in the code. */
395 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396 "vs-8100: insert_size < 0 in overflow");
397
398 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399
400 /* snum012 [0-2] - number of items, that lay
401 to S[0], first new node and second new node */
402 snum012[3] = -1; /* s1bytes */
403 snum012[4] = -1; /* s2bytes */
404
405 /* internal level */
406 if (h > 0) {
407 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408 if (i == max_node_size)
409 return 1;
410 return (i / max_node_size + 1);
1da177e4
LT
411 }
412
bd4c625c
LT
413 /* leaf level */
414 needed_nodes = 1;
415 total_node_size = 0;
416 cur_free = max_node_size;
417
418 // start from 'from'-th item
419 start_item = from;
420 // skip its first 'start_bytes' units
421 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422
423 // last included item is the 'end_item'-th one
424 end_item = vn->vn_nr_item - to - 1;
425 // do not count last 'end_bytes' units of 'end_item'-th item
426 end_bytes = (to_bytes != -1) ? to_bytes : 0;
427
428 /* go through all item beginning from the start_item-th item and ending by
429 the end_item-th item. Do not count first 'start_bytes' units of
430 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431
432 for (i = start_item; i <= end_item; i++) {
433 struct virtual_item *vi = vn->vn_vi + i;
434 int skip_from_end = ((i == end_item) ? end_bytes : 0);
435
436 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437
438 /* get size of current item */
439 current_item_size = vi->vi_item_len;
440
441 /* do not take in calculation head part (from_bytes) of from-th item */
442 current_item_size -=
443 op_part_size(vi, 0 /*from start */ , start_bytes);
444
445 /* do not take in calculation tail part of last item */
446 current_item_size -=
447 op_part_size(vi, 1 /*from end */ , skip_from_end);
448
449 /* if item fits into current node entierly */
450 if (total_node_size + current_item_size <= max_node_size) {
451 snum012[needed_nodes - 1]++;
452 total_node_size += current_item_size;
453 start_bytes = 0;
454 continue;
455 }
456
457 if (current_item_size > max_node_size) {
458 /* virtual item length is longer, than max size of item in
459 a node. It is impossible for direct item */
460 RFALSE(is_direct_le_ih(vi->vi_ih),
461 "vs-8110: "
462 "direct item length is %d. It can not be longer than %d",
463 current_item_size, max_node_size);
464 /* we will try to split it */
465 flow = 1;
466 }
467
468 if (!flow) {
469 /* as we do not split items, take new node and continue */
470 needed_nodes++;
471 i--;
472 total_node_size = 0;
473 continue;
474 }
475 // calculate number of item units which fit into node being
476 // filled
477 {
478 int free_space;
479
480 free_space = max_node_size - total_node_size - IH_SIZE;
481 units =
482 op_check_left(vi, free_space, start_bytes,
483 skip_from_end);
484 if (units == -1) {
485 /* nothing fits into current node, take new node and continue */
486 needed_nodes++, i--, total_node_size = 0;
487 continue;
488 }
489 }
490
491 /* something fits into the current node */
492 //if (snum012[3] != -1 || needed_nodes != 1)
493 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495 start_bytes += units;
496 snum012[needed_nodes - 1 + 3] = units;
497
498 if (needed_nodes > 2)
45b03d5e
JM
499 reiserfs_warning(tb->tb_sb, "vs-8111",
500 "split_item_position is out of range");
bd4c625c
LT
501 snum012[needed_nodes - 1]++;
502 split_item_positions[needed_nodes - 1] = i;
503 needed_nodes++;
504 /* continue from the same item with start_bytes != -1 */
505 start_item = i;
506 i--;
507 total_node_size = 0;
1da177e4
LT
508 }
509
bd4c625c
LT
510 // sum012[4] (if it is not -1) contains number of units of which
511 // are to be in S1new, snum012[3] - to be in S0. They are supposed
512 // to be S1bytes and S2bytes correspondingly, so recalculate
513 if (snum012[4] > 0) {
514 int split_item_num;
515 int bytes_to_r, bytes_to_l;
516 int bytes_to_S1new;
517
518 split_item_num = split_item_positions[1];
519 bytes_to_l =
520 ((from == split_item_num
521 && from_bytes != -1) ? from_bytes : 0);
522 bytes_to_r =
523 ((end_item == split_item_num
524 && end_bytes != -1) ? end_bytes : 0);
525 bytes_to_S1new =
526 ((split_item_positions[0] ==
527 split_item_positions[1]) ? snum012[3] : 0);
528
529 // s2bytes
530 snum012[4] =
531 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532 bytes_to_r - bytes_to_l - bytes_to_S1new;
533
534 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
45b03d5e
JM
536 reiserfs_warning(tb->tb_sb, "vs-8115",
537 "not directory or indirect item");
1da177e4
LT
538 }
539
bd4c625c
LT
540 /* now we know S2bytes, calculate S1bytes */
541 if (snum012[3] > 0) {
542 int split_item_num;
543 int bytes_to_r, bytes_to_l;
544 int bytes_to_S2new;
545
546 split_item_num = split_item_positions[0];
547 bytes_to_l =
548 ((from == split_item_num
549 && from_bytes != -1) ? from_bytes : 0);
550 bytes_to_r =
551 ((end_item == split_item_num
552 && end_bytes != -1) ? end_bytes : 0);
553 bytes_to_S2new =
554 ((split_item_positions[0] == split_item_positions[1]
555 && snum012[4] != -1) ? snum012[4] : 0);
556
557 // s1bytes
558 snum012[3] =
559 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560 bytes_to_r - bytes_to_l - bytes_to_S2new;
1da177e4
LT
561 }
562
bd4c625c 563 return needed_nodes;
1da177e4
LT
564}
565
1da177e4 566
1da177e4
LT
567/* Set parameters for balancing.
568 * Performs write of results of analysis of balancing into structure tb,
0222e657 569 * where it will later be used by the functions that actually do the balancing.
1da177e4
LT
570 * Parameters:
571 * tb tree_balance structure;
572 * h current level of the node;
573 * lnum number of items from S[h] that must be shifted to L[h];
574 * rnum number of items from S[h] that must be shifted to R[h];
575 * blk_num number of blocks that S[h] will be splitted into;
576 * s012 number of items that fall into splitted nodes.
577 * lbytes number of bytes which flow to the left neighbor from the item that is not
578 * not shifted entirely
579 * rbytes number of bytes which flow to the right neighbor from the item that is not
580 * not shifted entirely
581 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
582 */
583
bd4c625c
LT
584static void set_parameters(struct tree_balance *tb, int h, int lnum,
585 int rnum, int blk_num, short *s012, int lb, int rb)
1da177e4
LT
586{
587
bd4c625c
LT
588 tb->lnum[h] = lnum;
589 tb->rnum[h] = rnum;
590 tb->blknum[h] = blk_num;
1da177e4 591
bd4c625c
LT
592 if (h == 0) { /* only for leaf level */
593 if (s012 != NULL) {
594 tb->s0num = *s012++,
595 tb->s1num = *s012++, tb->s2num = *s012++;
596 tb->s1bytes = *s012++;
597 tb->s2bytes = *s012;
598 }
599 tb->lbytes = lb;
600 tb->rbytes = rb;
1da177e4 601 }
bd4c625c
LT
602 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
603 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
1da177e4 604
bd4c625c
LT
605 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
606 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
607}
1da177e4
LT
608
609/* check, does node disappear if we shift tb->lnum[0] items to left
610 neighbor and tb->rnum[0] to the right one. */
bd4c625c 611static int is_leaf_removable(struct tree_balance *tb)
1da177e4 612{
bd4c625c
LT
613 struct virtual_node *vn = tb->tb_vn;
614 int to_left, to_right;
615 int size;
616 int remain_items;
617
618 /* number of items, that will be shifted to left (right) neighbor
619 entirely */
620 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
621 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
622 remain_items = vn->vn_nr_item;
623
624 /* how many items remain in S[0] after shiftings to neighbors */
625 remain_items -= (to_left + to_right);
626
627 if (remain_items < 1) {
628 /* all content of node can be shifted to neighbors */
629 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
630 NULL, -1, -1);
631 return 1;
632 }
1da177e4 633
bd4c625c
LT
634 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
635 /* S[0] is not removable */
636 return 0;
637
638 /* check, whether we can divide 1 remaining item between neighbors */
639
640 /* get size of remaining item (in item units) */
641 size = op_unit_num(&(vn->vn_vi[to_left]));
642
643 if (tb->lbytes + tb->rbytes >= size) {
644 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
645 tb->lbytes, -1);
646 return 1;
647 }
648
649 return 0;
650}
1da177e4
LT
651
652/* check whether L, S, R can be joined in one node */
bd4c625c 653static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
1da177e4 654{
bd4c625c
LT
655 struct virtual_node *vn = tb->tb_vn;
656 int ih_size;
657 struct buffer_head *S0;
658
659 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
660
661 ih_size = 0;
662 if (vn->vn_nr_item) {
663 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
664 ih_size += IH_SIZE;
665
666 if (vn->vn_vi[vn->vn_nr_item - 1].
667 vi_type & VI_TYPE_RIGHT_MERGEABLE)
668 ih_size += IH_SIZE;
669 } else {
670 /* there was only one item and it will be deleted */
671 struct item_head *ih;
672
673 RFALSE(B_NR_ITEMS(S0) != 1,
674 "vs-8125: item number must be 1: it is %d",
675 B_NR_ITEMS(S0));
676
677 ih = B_N_PITEM_HEAD(S0, 0);
678 if (tb->CFR[0]
679 && !comp_short_le_keys(&(ih->ih_key),
680 B_N_PDELIM_KEY(tb->CFR[0],
681 tb->rkey[0])))
682 if (is_direntry_le_ih(ih)) {
683 /* Directory must be in correct state here: that is
684 somewhere at the left side should exist first directory
685 item. But the item being deleted can not be that first
686 one because its right neighbor is item of the same
687 directory. (But first item always gets deleted in last
688 turn). So, neighbors of deleted item can be merged, so
689 we can save ih_size */
690 ih_size = IH_SIZE;
691
692 /* we might check that left neighbor exists and is of the
693 same directory */
694 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
695 "vs-8130: first directory item can not be removed until directory is not empty");
696 }
1da177e4 697
bd4c625c
LT
698 }
699
700 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
701 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
702 PROC_INFO_INC(tb->tb_sb, leaves_removable);
703 return 1;
704 }
705 return 0;
1da177e4 706
bd4c625c 707}
1da177e4
LT
708
709/* when we do not split item, lnum and rnum are numbers of entire items */
710#define SET_PAR_SHIFT_LEFT \
711if (h)\
712{\
713 int to_l;\
714 \
715 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
716 (MAX_NR_KEY(Sh) + 1 - lpar);\
717 \
718 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
719}\
720else \
721{\
722 if (lset==LEFT_SHIFT_FLOW)\
723 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
724 tb->lbytes, -1);\
725 else\
726 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
727 -1, -1);\
728}
729
1da177e4
LT
730#define SET_PAR_SHIFT_RIGHT \
731if (h)\
732{\
733 int to_r;\
734 \
735 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
736 \
737 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
738}\
739else \
740{\
741 if (rset==RIGHT_SHIFT_FLOW)\
742 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
743 -1, tb->rbytes);\
744 else\
745 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
746 -1, -1);\
747}
748
a063ae17 749static void free_buffers_in_tb(struct tree_balance *tb)
bd4c625c 750{
ee93961b 751 int i;
bd4c625c 752
a063ae17 753 pathrelse(tb->tb_path);
bd4c625c 754
ee93961b
JM
755 for (i = 0; i < MAX_HEIGHT; i++) {
756 brelse(tb->L[i]);
757 brelse(tb->R[i]);
758 brelse(tb->FL[i]);
759 brelse(tb->FR[i]);
760 brelse(tb->CFL[i]);
761 brelse(tb->CFR[i]);
762
763 tb->L[i] = NULL;
764 tb->R[i] = NULL;
765 tb->FL[i] = NULL;
766 tb->FR[i] = NULL;
767 tb->CFL[i] = NULL;
768 tb->CFR[i] = NULL;
bd4c625c 769 }
1da177e4
LT
770}
771
1da177e4
LT
772/* Get new buffers for storing new nodes that are created while balancing.
773 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
774 * CARRY_ON - schedule didn't occur while the function worked;
775 * NO_DISK_SPACE - no disk space.
776 */
777/* The function is NOT SCHEDULE-SAFE! */
ee93961b 778static int get_empty_nodes(struct tree_balance *tb, int h)
bd4c625c 779{
d68caa95 780 struct buffer_head *new_bh,
ee93961b
JM
781 *Sh = PATH_H_PBUFFER(tb->tb_path, h);
782 b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
783 int counter, number_of_freeblk, amount_needed, /* number of needed empty blocks */
784 retval = CARRY_ON;
a063ae17 785 struct super_block *sb = tb->tb_sb;
bd4c625c
LT
786
787 /* number_of_freeblk is the number of empty blocks which have been
788 acquired for use by the balancing algorithm minus the number of
789 empty blocks used in the previous levels of the analysis,
790 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
791 after empty blocks are acquired, and the balancing analysis is
792 then restarted, amount_needed is the number needed by this level
ee93961b 793 (h) of the balancing analysis.
bd4c625c
LT
794
795 Note that for systems with many processes writing, it would be
796 more layout optimal to calculate the total number needed by all
797 levels and then to run reiserfs_new_blocks to get all of them at once. */
798
799 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
800 the analysis or 0 if not restarted, then subtract the amount needed
ee93961b
JM
801 by all of the levels of the tree below h. */
802 /* blknum includes S[h], so we subtract 1 in this calculation */
803 for (counter = 0, number_of_freeblk = tb->cur_blknum;
804 counter < h; counter++)
805 number_of_freeblk -=
806 (tb->blknum[counter]) ? (tb->blknum[counter] -
bd4c625c
LT
807 1) : 0;
808
809 /* Allocate missing empty blocks. */
d68caa95 810 /* if Sh == 0 then we are getting a new root */
ee93961b 811 amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
bd4c625c 812 /* Amount_needed = the amount that we need more than the amount that we have. */
ee93961b
JM
813 if (amount_needed > number_of_freeblk)
814 amount_needed -= number_of_freeblk;
bd4c625c
LT
815 else /* If we have enough already then there is nothing to do. */
816 return CARRY_ON;
817
818 /* No need to check quota - is not allocated for blocks used for formatted nodes */
ee93961b
JM
819 if (reiserfs_new_form_blocknrs(tb, blocknrs,
820 amount_needed) == NO_DISK_SPACE)
bd4c625c
LT
821 return NO_DISK_SPACE;
822
823 /* for each blocknumber we just got, get a buffer and stick it on FEB */
ee93961b
JM
824 for (blocknr = blocknrs, counter = 0;
825 counter < amount_needed; blocknr++, counter++) {
bd4c625c 826
d68caa95 827 RFALSE(!*blocknr,
bd4c625c
LT
828 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
829
d68caa95
JM
830 new_bh = sb_getblk(sb, *blocknr);
831 RFALSE(buffer_dirty(new_bh) ||
832 buffer_journaled(new_bh) ||
833 buffer_journal_dirty(new_bh),
febe29d9 834 "PAP-8140: journaled or dirty buffer %b for the new block",
d68caa95 835 new_bh);
bd4c625c
LT
836
837 /* Put empty buffers into the array. */
a063ae17 838 RFALSE(tb->FEB[tb->cur_blknum],
bd4c625c
LT
839 "PAP-8141: busy slot for new buffer");
840
d68caa95
JM
841 set_buffer_journal_new(new_bh);
842 tb->FEB[tb->cur_blknum++] = new_bh;
bd4c625c
LT
843 }
844
ee93961b
JM
845 if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
846 retval = REPEAT_SEARCH;
1da177e4 847
ee93961b 848 return retval;
bd4c625c 849}
1da177e4
LT
850
851/* Get free space of the left neighbor, which is stored in the parent
852 * node of the left neighbor. */
bd4c625c 853static int get_lfree(struct tree_balance *tb, int h)
1da177e4 854{
bd4c625c
LT
855 struct buffer_head *l, *f;
856 int order;
1da177e4 857
9dce07f1
AV
858 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
859 (l = tb->FL[h]) == NULL)
bd4c625c 860 return 0;
1da177e4 861
bd4c625c
LT
862 if (f == l)
863 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
864 else {
865 order = B_NR_ITEMS(l);
866 f = l;
867 }
1da177e4 868
bd4c625c 869 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
1da177e4
LT
870}
871
1da177e4
LT
872/* Get free space of the right neighbor,
873 * which is stored in the parent node of the right neighbor.
874 */
bd4c625c 875static int get_rfree(struct tree_balance *tb, int h)
1da177e4 876{
bd4c625c
LT
877 struct buffer_head *r, *f;
878 int order;
1da177e4 879
9dce07f1
AV
880 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
881 (r = tb->FR[h]) == NULL)
bd4c625c 882 return 0;
1da177e4 883
bd4c625c
LT
884 if (f == r)
885 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
886 else {
887 order = 0;
888 f = r;
889 }
1da177e4 890
bd4c625c 891 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
1da177e4
LT
892
893}
894
1da177e4 895/* Check whether left neighbor is in memory. */
ee93961b 896static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
bd4c625c 897{
d68caa95 898 struct buffer_head *father, *left;
a063ae17 899 struct super_block *sb = tb->tb_sb;
ee93961b
JM
900 b_blocknr_t left_neighbor_blocknr;
901 int left_neighbor_position;
bd4c625c 902
a063ae17 903 /* Father of the left neighbor does not exist. */
ee93961b 904 if (!tb->FL[h])
bd4c625c
LT
905 return 0;
906
907 /* Calculate father of the node to be balanced. */
ee93961b 908 father = PATH_H_PBUFFER(tb->tb_path, h + 1);
bd4c625c 909
d68caa95
JM
910 RFALSE(!father ||
911 !B_IS_IN_TREE(father) ||
ee93961b 912 !B_IS_IN_TREE(tb->FL[h]) ||
d68caa95 913 !buffer_uptodate(father) ||
ee93961b 914 !buffer_uptodate(tb->FL[h]),
bd4c625c 915 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
ee93961b 916 father, tb->FL[h]);
bd4c625c
LT
917
918 /* Get position of the pointer to the left neighbor into the left father. */
ee93961b
JM
919 left_neighbor_position = (father == tb->FL[h]) ?
920 tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
bd4c625c 921 /* Get left neighbor block number. */
ee93961b
JM
922 left_neighbor_blocknr =
923 B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
bd4c625c 924 /* Look for the left neighbor in the cache. */
ee93961b 925 if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
bd4c625c
LT
926
927 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
928 "vs-8170: left neighbor (%b %z) is not in the tree",
929 left, left);
930 put_bh(left);
931 return 1;
932 }
1da177e4 933
bd4c625c
LT
934 return 0;
935}
1da177e4
LT
936
937#define LEFT_PARENTS 'l'
938#define RIGHT_PARENTS 'r'
939
d68caa95 940static void decrement_key(struct cpu_key *key)
1da177e4 941{
bd4c625c 942 // call item specific function for this key
d68caa95 943 item_ops[cpu_key_k_type(key)]->decrement_key(key);
1da177e4
LT
944}
945
1da177e4
LT
946/* Calculate far left/right parent of the left/right neighbor of the current node, that
947 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
948 * Calculate left/right common parent of the current node and L[h]/R[h].
949 * Calculate left/right delimiting key position.
950 * Returns: PATH_INCORRECT - path in the tree is not correct;
951 SCHEDULE_OCCURRED - schedule occurred while the function worked;
952 * CARRY_ON - schedule didn't occur while the function worked;
953 */
a063ae17 954static int get_far_parent(struct tree_balance *tb,
ee93961b 955 int h,
d68caa95
JM
956 struct buffer_head **pfather,
957 struct buffer_head **pcom_father, char c_lr_par)
1da177e4 958{
d68caa95 959 struct buffer_head *parent;
bd4c625c 960 INITIALIZE_PATH(s_path_to_neighbor_father);
d68caa95 961 struct treepath *path = tb->tb_path;
bd4c625c 962 struct cpu_key s_lr_father_key;
ee93961b
JM
963 int counter,
964 position = INT_MAX,
965 first_last_position = 0,
966 path_offset = PATH_H_PATH_OFFSET(path, h);
bd4c625c 967
ee93961b
JM
968 /* Starting from F[h] go upwards in the tree, and look for the common
969 ancestor of F[h], and its neighbor l/r, that should be obtained. */
bd4c625c 970
ee93961b 971 counter = path_offset;
bd4c625c 972
ee93961b 973 RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
bd4c625c
LT
974 "PAP-8180: invalid path length");
975
ee93961b 976 for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
bd4c625c
LT
977 /* Check whether parent of the current buffer in the path is really parent in the tree. */
978 if (!B_IS_IN_TREE
ee93961b 979 (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
bd4c625c
LT
980 return REPEAT_SEARCH;
981 /* Check whether position in the parent is correct. */
ee93961b 982 if ((position =
d68caa95 983 PATH_OFFSET_POSITION(path,
ee93961b 984 counter - 1)) >
d68caa95 985 B_NR_ITEMS(parent))
bd4c625c
LT
986 return REPEAT_SEARCH;
987 /* Check whether parent at the path really points to the child. */
ee93961b
JM
988 if (B_N_CHILD_NUM(parent, position) !=
989 PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
bd4c625c
LT
990 return REPEAT_SEARCH;
991 /* Return delimiting key if position in the parent is not equal to first/last one. */
992 if (c_lr_par == RIGHT_PARENTS)
ee93961b
JM
993 first_last_position = B_NR_ITEMS(parent);
994 if (position != first_last_position) {
d68caa95
JM
995 *pcom_father = parent;
996 get_bh(*pcom_father);
997 /*(*pcom_father = parent)->b_count++; */
bd4c625c
LT
998 break;
999 }
1da177e4 1000 }
bd4c625c
LT
1001
1002 /* if we are in the root of the tree, then there is no common father */
ee93961b 1003 if (counter == FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c
LT
1004 /* Check whether first buffer in the path is the root of the tree. */
1005 if (PATH_OFFSET_PBUFFER
a063ae17 1006 (tb->tb_path,
bd4c625c 1007 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
a063ae17 1008 SB_ROOT_BLOCK(tb->tb_sb)) {
d68caa95 1009 *pfather = *pcom_father = NULL;
bd4c625c
LT
1010 return CARRY_ON;
1011 }
1012 return REPEAT_SEARCH;
1da177e4 1013 }
1da177e4 1014
d68caa95 1015 RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
bd4c625c 1016 "PAP-8185: (%b %z) level too small",
d68caa95 1017 *pcom_father, *pcom_father);
1da177e4 1018
bd4c625c 1019 /* Check whether the common parent is locked. */
1da177e4 1020
d68caa95 1021 if (buffer_locked(*pcom_father)) {
8ebc4232
FW
1022
1023 /* Release the write lock while the buffer is busy */
1024 reiserfs_write_unlock(tb->tb_sb);
d68caa95 1025 __wait_on_buffer(*pcom_father);
8ebc4232 1026 reiserfs_write_lock(tb->tb_sb);
a063ae17 1027 if (FILESYSTEM_CHANGED_TB(tb)) {
d68caa95 1028 brelse(*pcom_father);
bd4c625c
LT
1029 return REPEAT_SEARCH;
1030 }
1da177e4 1031 }
1da177e4 1032
bd4c625c
LT
1033 /* So, we got common parent of the current node and its left/right neighbor.
1034 Now we are geting the parent of the left/right neighbor. */
1da177e4 1035
bd4c625c
LT
1036 /* Form key to get parent of the left/right neighbor. */
1037 le_key2cpu_key(&s_lr_father_key,
d68caa95 1038 B_N_PDELIM_KEY(*pcom_father,
bd4c625c 1039 (c_lr_par ==
ee93961b
JM
1040 LEFT_PARENTS) ? (tb->lkey[h - 1] =
1041 position -
1042 1) : (tb->rkey[h -
bd4c625c 1043 1] =
ee93961b 1044 position)));
1da177e4 1045
bd4c625c
LT
1046 if (c_lr_par == LEFT_PARENTS)
1047 decrement_key(&s_lr_father_key);
1da177e4 1048
bd4c625c 1049 if (search_by_key
a063ae17 1050 (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
ee93961b 1051 h + 1) == IO_ERROR)
bd4c625c
LT
1052 // path is released
1053 return IO_ERROR;
1da177e4 1054
a063ae17 1055 if (FILESYSTEM_CHANGED_TB(tb)) {
3cd6dbe6 1056 pathrelse(&s_path_to_neighbor_father);
d68caa95 1057 brelse(*pcom_father);
bd4c625c
LT
1058 return REPEAT_SEARCH;
1059 }
1da177e4 1060
d68caa95 1061 *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1da177e4 1062
ee93961b 1063 RFALSE(B_LEVEL(*pfather) != h + 1,
d68caa95 1064 "PAP-8190: (%b %z) level too small", *pfather, *pfather);
bd4c625c
LT
1065 RFALSE(s_path_to_neighbor_father.path_length <
1066 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1da177e4 1067
bd4c625c 1068 s_path_to_neighbor_father.path_length--;
3cd6dbe6 1069 pathrelse(&s_path_to_neighbor_father);
bd4c625c 1070 return CARRY_ON;
1da177e4
LT
1071}
1072
ee93961b
JM
1073/* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1074 * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1075 * FR[path_offset], CFL[path_offset], CFR[path_offset].
1076 * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1da177e4
LT
1077 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1078 * CARRY_ON - schedule didn't occur while the function worked;
1079 */
ee93961b 1080static int get_parents(struct tree_balance *tb, int h)
1da177e4 1081{
d68caa95 1082 struct treepath *path = tb->tb_path;
ee93961b
JM
1083 int position,
1084 ret,
1085 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
d68caa95 1086 struct buffer_head *curf, *curcf;
bd4c625c
LT
1087
1088 /* Current node is the root of the tree or will be root of the tree */
ee93961b 1089 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c
LT
1090 /* The root can not have parents.
1091 Release nodes which previously were obtained as parents of the current node neighbors. */
ee93961b
JM
1092 brelse(tb->FL[h]);
1093 brelse(tb->CFL[h]);
1094 brelse(tb->FR[h]);
1095 brelse(tb->CFR[h]);
1096 tb->FL[h] = NULL;
1097 tb->CFL[h] = NULL;
1098 tb->FR[h] = NULL;
1099 tb->CFR[h] = NULL;
bd4c625c
LT
1100 return CARRY_ON;
1101 }
1102
ee93961b
JM
1103 /* Get parent FL[path_offset] of L[path_offset]. */
1104 position = PATH_OFFSET_POSITION(path, path_offset - 1);
1105 if (position) {
bd4c625c 1106 /* Current node is not the first child of its parent. */
ee93961b
JM
1107 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1108 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
d68caa95
JM
1109 get_bh(curf);
1110 get_bh(curf);
ee93961b 1111 tb->lkey[h] = position - 1;
bd4c625c 1112 } else {
ee93961b
JM
1113 /* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1114 Calculate current common parent of L[path_offset] and the current node. Note that
1115 CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1116 Calculate lkey[path_offset]. */
1117 if ((ret = get_far_parent(tb, h + 1, &curf,
d68caa95 1118 &curcf,
bd4c625c 1119 LEFT_PARENTS)) != CARRY_ON)
ee93961b 1120 return ret;
bd4c625c
LT
1121 }
1122
ee93961b
JM
1123 brelse(tb->FL[h]);
1124 tb->FL[h] = curf; /* New initialization of FL[h]. */
1125 brelse(tb->CFL[h]);
1126 tb->CFL[h] = curcf; /* New initialization of CFL[h]. */
bd4c625c 1127
d68caa95
JM
1128 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1129 (curcf && !B_IS_IN_TREE(curcf)),
1130 "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1da177e4 1131
ee93961b 1132/* Get parent FR[h] of R[h]. */
1da177e4 1133
ee93961b
JM
1134/* Current node is the last child of F[h]. FR[h] != F[h]. */
1135 if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1136/* Calculate current parent of R[h], which is the right neighbor of F[h].
1137 Calculate current common parent of R[h] and current node. Note that CFR[h]
1138 not equal FR[path_offset] and CFR[h] not equal F[h]. */
1139 if ((ret =
1140 get_far_parent(tb, h + 1, &curf, &curcf,
bd4c625c 1141 RIGHT_PARENTS)) != CARRY_ON)
ee93961b 1142 return ret;
bd4c625c 1143 } else {
ee93961b
JM
1144/* Current node is not the last child of its parent F[h]. */
1145 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1146 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
d68caa95
JM
1147 get_bh(curf);
1148 get_bh(curf);
ee93961b 1149 tb->rkey[h] = position;
bd4c625c 1150 }
1da177e4 1151
ee93961b
JM
1152 brelse(tb->FR[h]);
1153 /* New initialization of FR[path_offset]. */
1154 tb->FR[h] = curf;
bd4c625c 1155
ee93961b
JM
1156 brelse(tb->CFR[h]);
1157 /* New initialization of CFR[path_offset]. */
1158 tb->CFR[h] = curcf;
bd4c625c 1159
d68caa95
JM
1160 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1161 (curcf && !B_IS_IN_TREE(curcf)),
1162 "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
bd4c625c
LT
1163
1164 return CARRY_ON;
1165}
1da177e4
LT
1166
1167/* it is possible to remove node as result of shiftings to
1168 neighbors even when we insert or paste item. */
bd4c625c
LT
1169static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1170 struct tree_balance *tb, int h)
1da177e4 1171{
bd4c625c
LT
1172 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1173 int levbytes = tb->insert_size[h];
1174 struct item_head *ih;
1175 struct reiserfs_key *r_key = NULL;
1176
1177 ih = B_N_PITEM_HEAD(Sh, 0);
1178 if (tb->CFR[h])
1179 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1180
1181 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1182 /* shifting may merge items which might save space */
1183 -
1184 ((!h
1185 && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1186 -
1187 ((!h && r_key
1188 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1189 + ((h) ? KEY_SIZE : 0)) {
1190 /* node can not be removed */
1191 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1192 if (!h)
1193 tb->s0num =
1194 B_NR_ITEMS(Sh) +
1195 ((mode == M_INSERT) ? 1 : 0);
1196 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1197 return NO_BALANCING_NEEDED;
1198 }
1da177e4 1199 }
bd4c625c
LT
1200 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1201 return !NO_BALANCING_NEEDED;
1da177e4
LT
1202}
1203
1da177e4
LT
1204/* Check whether current node S[h] is balanced when increasing its size by
1205 * Inserting or Pasting.
1206 * Calculate parameters for balancing for current level h.
1207 * Parameters:
1208 * tb tree_balance structure;
1209 * h current level of the node;
1210 * inum item number in S[h];
1211 * mode i - insert, p - paste;
0222e657 1212 * Returns: 1 - schedule occurred;
1da177e4
LT
1213 * 0 - balancing for higher levels needed;
1214 * -1 - no balancing for higher levels needed;
1215 * -2 - no disk space.
1216 */
1217/* ip means Inserting or Pasting */
bd4c625c 1218static int ip_check_balance(struct tree_balance *tb, int h)
1da177e4 1219{
bd4c625c
LT
1220 struct virtual_node *vn = tb->tb_vn;
1221 int levbytes, /* Number of bytes that must be inserted into (value
1222 is negative if bytes are deleted) buffer which
1223 contains node being balanced. The mnemonic is
1224 that the attempted change in node space used level
1225 is levbytes bytes. */
ee93961b 1226 ret;
bd4c625c
LT
1227
1228 int lfree, sfree, rfree /* free space in L, S and R */ ;
1229
1230 /* nver is short for number of vertixes, and lnver is the number if
1231 we shift to the left, rnver is the number if we shift to the
1232 right, and lrnver is the number if we shift in both directions.
1233 The goal is to minimize first the number of vertixes, and second,
1234 the number of vertixes whose contents are changed by shifting,
1235 and third the number of uncached vertixes whose contents are
1236 changed by shifting and must be read from disk. */
1237 int nver, lnver, rnver, lrnver;
1238
1239 /* used at leaf level only, S0 = S[0] is the node being balanced,
1240 sInum [ I = 0,1,2 ] is the number of items that will
1241 remain in node SI after balancing. S1 and S2 are new
1242 nodes that might be created. */
1243
1244 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1245 where 4th parameter is s1bytes and 5th - s2bytes
1246 */
0222e657 1247 short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
bd4c625c
LT
1248 0,1 - do not shift and do not shift but bottle
1249 2 - shift only whole item to left
1250 3 - shift to left and bottle as much as possible
1251 4,5 - shift to right (whole items and as much as possible
1252 6,7 - shift to both directions (whole items and as much as possible)
1253 */
1254
1255 /* Sh is the node whose balance is currently being checked */
1256 struct buffer_head *Sh;
1257
1258 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1259 levbytes = tb->insert_size[h];
1260
1261 /* Calculate balance parameters for creating new root. */
1262 if (!Sh) {
1263 if (!h)
c3a9c210
JM
1264 reiserfs_panic(tb->tb_sb, "vs-8210",
1265 "S[0] can not be 0");
ee93961b 1266 switch (ret = get_empty_nodes(tb, h)) {
bd4c625c
LT
1267 case CARRY_ON:
1268 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1269 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1270
1271 case NO_DISK_SPACE:
1272 case REPEAT_SEARCH:
ee93961b 1273 return ret;
bd4c625c 1274 default:
c3a9c210
JM
1275 reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1276 "return value of get_empty_nodes");
bd4c625c 1277 }
1da177e4 1278 }
1da177e4 1279
ee93961b
JM
1280 if ((ret = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
1281 return ret;
1da177e4 1282
bd4c625c
LT
1283 sfree = B_FREE_SPACE(Sh);
1284
1285 /* get free space of neighbors */
1286 rfree = get_rfree(tb, h);
1287 lfree = get_lfree(tb, h);
1288
1289 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1290 NO_BALANCING_NEEDED)
1291 /* and new item fits into node S[h] without any shifting */
1292 return NO_BALANCING_NEEDED;
1da177e4 1293
bd4c625c 1294 create_virtual_node(tb, h);
1da177e4 1295
0222e657 1296 /*
bd4c625c
LT
1297 determine maximal number of items we can shift to the left neighbor (in tb structure)
1298 and the maximal number of bytes that can flow to the left neighbor
1299 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1da177e4 1300 */
bd4c625c 1301 check_left(tb, h, lfree);
1da177e4 1302
bd4c625c
LT
1303 /*
1304 determine maximal number of items we can shift to the right neighbor (in tb structure)
1305 and the maximal number of bytes that can flow to the right neighbor
1306 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1307 */
1308 check_right(tb, h, rfree);
1309
1310 /* all contents of internal node S[h] can be moved into its
1311 neighbors, S[h] will be removed after balancing */
1312 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1313 int to_r;
1314
1315 /* Since we are working on internal nodes, and our internal
1316 nodes have fixed size entries, then we can balance by the
1317 number of items rather than the space they consume. In this
1318 routine we set the left node equal to the right node,
1319 allowing a difference of less than or equal to 1 child
1320 pointer. */
1321 to_r =
1322 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1323 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1324 tb->rnum[h]);
1325 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1326 -1, -1);
1327 return CARRY_ON;
1328 }
1329
1330 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1331 RFALSE(h &&
1332 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1333 tb->rnum[h] >= vn->vn_nr_item + 1),
1334 "vs-8220: tree is not balanced on internal level");
1335 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1336 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1337 "vs-8225: tree is not balanced on leaf level");
1338
1339 /* all contents of S[0] can be moved into its neighbors
1340 S[0] will be removed after balancing. */
1341 if (!h && is_leaf_removable(tb))
1342 return CARRY_ON;
1343
1344 /* why do we perform this check here rather than earlier??
1345 Answer: we can win 1 node in some cases above. Moreover we
1346 checked it above, when we checked, that S[0] is not removable
1347 in principle */
1348 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1349 if (!h)
1350 tb->s0num = vn->vn_nr_item;
1351 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1352 return NO_BALANCING_NEEDED;
1353 }
1354
1355 {
1356 int lpar, rpar, nset, lset, rset, lrset;
0222e657 1357 /*
bd4c625c
LT
1358 * regular overflowing of the node
1359 */
1360
0222e657 1361 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
bd4c625c 1362 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
0222e657 1363 nset, lset, rset, lrset - shows, whether flowing items give better packing
bd4c625c 1364 */
1da177e4 1365#define FLOW 1
bd4c625c 1366#define NO_FLOW 0 /* do not any splitting */
1da177e4 1367
bd4c625c 1368 /* we choose one the following */
1da177e4
LT
1369#define NOTHING_SHIFT_NO_FLOW 0
1370#define NOTHING_SHIFT_FLOW 5
1371#define LEFT_SHIFT_NO_FLOW 10
1372#define LEFT_SHIFT_FLOW 15
1373#define RIGHT_SHIFT_NO_FLOW 20
1374#define RIGHT_SHIFT_FLOW 25
1375#define LR_SHIFT_NO_FLOW 30
1376#define LR_SHIFT_FLOW 35
1377
bd4c625c
LT
1378 lpar = tb->lnum[h];
1379 rpar = tb->rnum[h];
1380
1381 /* calculate number of blocks S[h] must be split into when
1382 nothing is shifted to the neighbors,
1383 as well as number of items in each part of the split node (s012 numbers),
1384 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1385 nset = NOTHING_SHIFT_NO_FLOW;
1386 nver = get_num_ver(vn->vn_mode, tb, h,
1387 0, -1, h ? vn->vn_nr_item : 0, -1,
1388 snum012, NO_FLOW);
1389
1390 if (!h) {
1391 int nver1;
1392
1393 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1394 nver1 = get_num_ver(vn->vn_mode, tb, h,
1395 0, -1, 0, -1,
1396 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1397 if (nver > nver1)
1398 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1399 }
1da177e4 1400
bd4c625c
LT
1401 /* calculate number of blocks S[h] must be split into when
1402 l_shift_num first items and l_shift_bytes of the right most
1403 liquid item to be shifted are shifted to the left neighbor,
1404 as well as number of items in each part of the splitted node (s012 numbers),
1405 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1406 */
1407 lset = LEFT_SHIFT_NO_FLOW;
1408 lnver = get_num_ver(vn->vn_mode, tb, h,
1409 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1410 -1, h ? vn->vn_nr_item : 0, -1,
1411 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1412 if (!h) {
1413 int lnver1;
1414
1415 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1416 lpar -
1417 ((tb->lbytes != -1) ? 1 : 0),
1418 tb->lbytes, 0, -1,
1419 snum012 + LEFT_SHIFT_FLOW, FLOW);
1420 if (lnver > lnver1)
1421 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1422 }
1da177e4 1423
bd4c625c
LT
1424 /* calculate number of blocks S[h] must be split into when
1425 r_shift_num first items and r_shift_bytes of the left most
1426 liquid item to be shifted are shifted to the right neighbor,
1427 as well as number of items in each part of the splitted node (s012 numbers),
1428 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1429 */
1430 rset = RIGHT_SHIFT_NO_FLOW;
1431 rnver = get_num_ver(vn->vn_mode, tb, h,
1432 0, -1,
1433 h ? (vn->vn_nr_item - rpar) : (rpar -
1434 ((tb->
1435 rbytes !=
1436 -1) ? 1 :
1437 0)), -1,
1438 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1439 if (!h) {
1440 int rnver1;
1441
1442 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1443 0, -1,
1444 (rpar -
1445 ((tb->rbytes != -1) ? 1 : 0)),
1446 tb->rbytes,
1447 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1448
1449 if (rnver > rnver1)
1450 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1451 }
1da177e4 1452
bd4c625c
LT
1453 /* calculate number of blocks S[h] must be split into when
1454 items are shifted in both directions,
1455 as well as number of items in each part of the splitted node (s012 numbers),
1456 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1457 */
1458 lrset = LR_SHIFT_NO_FLOW;
1459 lrnver = get_num_ver(vn->vn_mode, tb, h,
1460 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1461 -1,
1462 h ? (vn->vn_nr_item - rpar) : (rpar -
1463 ((tb->
1464 rbytes !=
1465 -1) ? 1 :
1466 0)), -1,
1467 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1468 if (!h) {
1469 int lrnver1;
1470
1471 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1472 lpar -
1473 ((tb->lbytes != -1) ? 1 : 0),
1474 tb->lbytes,
1475 (rpar -
1476 ((tb->rbytes != -1) ? 1 : 0)),
1477 tb->rbytes,
1478 snum012 + LR_SHIFT_FLOW, FLOW);
1479 if (lrnver > lrnver1)
1480 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1481 }
1da177e4 1482
bd4c625c
LT
1483 /* Our general shifting strategy is:
1484 1) to minimized number of new nodes;
1485 2) to minimized number of neighbors involved in shifting;
1486 3) to minimized number of disk reads; */
1487
1488 /* we can win TWO or ONE nodes by shifting in both directions */
1489 if (lrnver < lnver && lrnver < rnver) {
1490 RFALSE(h &&
1491 (tb->lnum[h] != 1 ||
1492 tb->rnum[h] != 1 ||
1493 lrnver != 1 || rnver != 2 || lnver != 2
1494 || h != 1), "vs-8230: bad h");
1495 if (lrset == LR_SHIFT_FLOW)
1496 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1497 lrnver, snum012 + lrset,
1498 tb->lbytes, tb->rbytes);
1499 else
1500 set_parameters(tb, h,
1501 tb->lnum[h] -
1502 ((tb->lbytes == -1) ? 0 : 1),
1503 tb->rnum[h] -
1504 ((tb->rbytes == -1) ? 0 : 1),
1505 lrnver, snum012 + lrset, -1, -1);
1506
1507 return CARRY_ON;
1508 }
1da177e4 1509
bd4c625c
LT
1510 /* if shifting doesn't lead to better packing then don't shift */
1511 if (nver == lrnver) {
1512 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1513 -1);
1514 return CARRY_ON;
1515 }
1da177e4 1516
bd4c625c
LT
1517 /* now we know that for better packing shifting in only one
1518 direction either to the left or to the right is required */
1da177e4 1519
bd4c625c
LT
1520 /* if shifting to the left is better than shifting to the right */
1521 if (lnver < rnver) {
1522 SET_PAR_SHIFT_LEFT;
1523 return CARRY_ON;
1524 }
1da177e4 1525
bd4c625c
LT
1526 /* if shifting to the right is better than shifting to the left */
1527 if (lnver > rnver) {
1528 SET_PAR_SHIFT_RIGHT;
1529 return CARRY_ON;
1530 }
1da177e4 1531
bd4c625c
LT
1532 /* now shifting in either direction gives the same number
1533 of nodes and we can make use of the cached neighbors */
1534 if (is_left_neighbor_in_cache(tb, h)) {
1535 SET_PAR_SHIFT_LEFT;
1536 return CARRY_ON;
1537 }
1da177e4 1538
bd4c625c
LT
1539 /* shift to the right independently on whether the right neighbor in cache or not */
1540 SET_PAR_SHIFT_RIGHT;
1541 return CARRY_ON;
1da177e4 1542 }
1da177e4
LT
1543}
1544
1da177e4
LT
1545/* Check whether current node S[h] is balanced when Decreasing its size by
1546 * Deleting or Cutting for INTERNAL node of S+tree.
1547 * Calculate parameters for balancing for current level h.
1548 * Parameters:
1549 * tb tree_balance structure;
1550 * h current level of the node;
1551 * inum item number in S[h];
1552 * mode i - insert, p - paste;
0222e657 1553 * Returns: 1 - schedule occurred;
1da177e4
LT
1554 * 0 - balancing for higher levels needed;
1555 * -1 - no balancing for higher levels needed;
1556 * -2 - no disk space.
1557 *
1558 * Note: Items of internal nodes have fixed size, so the balance condition for
1559 * the internal part of S+tree is as for the B-trees.
1560 */
bd4c625c 1561static int dc_check_balance_internal(struct tree_balance *tb, int h)
1da177e4 1562{
bd4c625c 1563 struct virtual_node *vn = tb->tb_vn;
1da177e4 1564
bd4c625c
LT
1565 /* Sh is the node whose balance is currently being checked,
1566 and Fh is its father. */
1567 struct buffer_head *Sh, *Fh;
ee93961b 1568 int maxsize, ret;
bd4c625c 1569 int lfree, rfree /* free space in L and R */ ;
1da177e4 1570
bd4c625c
LT
1571 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1572 Fh = PATH_H_PPARENT(tb->tb_path, h);
1da177e4 1573
bd4c625c 1574 maxsize = MAX_CHILD_SIZE(Sh);
1da177e4
LT
1575
1576/* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1577/* new_nr_item = number of items node would have if operation is */
1578/* performed without balancing (new_nr_item); */
bd4c625c 1579 create_virtual_node(tb, h);
1da177e4 1580
bd4c625c
LT
1581 if (!Fh) { /* S[h] is the root. */
1582 if (vn->vn_nr_item > 0) {
1583 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1584 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1585 }
1586 /* new_nr_item == 0.
1587 * Current root will be deleted resulting in
1588 * decrementing the tree height. */
1589 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1590 return CARRY_ON;
1591 }
1592
ee93961b
JM
1593 if ((ret = get_parents(tb, h)) != CARRY_ON)
1594 return ret;
bd4c625c
LT
1595
1596 /* get free space of neighbors */
1597 rfree = get_rfree(tb, h);
1598 lfree = get_lfree(tb, h);
1599
1600 /* determine maximal number of items we can fit into neighbors */
1601 check_left(tb, h, lfree);
1602 check_right(tb, h, rfree);
1603
1604 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1605 * In this case we balance only if it leads to better packing. */
1606 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1607 * which is impossible with greater values of new_nr_item. */
1608 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1609 /* All contents of S[h] can be moved to L[h]. */
1610 int n;
1611 int order_L;
1612
1613 order_L =
1614 ((n =
1615 PATH_H_B_ITEM_ORDER(tb->tb_path,
1616 h)) ==
1617 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1618 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1619 (DC_SIZE + KEY_SIZE);
1620 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1621 -1);
1622 return CARRY_ON;
1623 }
1624
1625 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1626 /* All contents of S[h] can be moved to R[h]. */
1627 int n;
1628 int order_R;
1629
1630 order_R =
1631 ((n =
1632 PATH_H_B_ITEM_ORDER(tb->tb_path,
1633 h)) ==
1634 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1635 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1636 (DC_SIZE + KEY_SIZE);
1637 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1638 -1);
1639 return CARRY_ON;
1640 }
1641 }
1642
1643 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1644 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1645 int to_r;
1646
1647 to_r =
1648 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1649 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1650 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1651 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1652 0, NULL, -1, -1);
1653 return CARRY_ON;
1654 }
1655
1656 /* Balancing does not lead to better packing. */
1657 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1658 return NO_BALANCING_NEEDED;
1da177e4 1659 }
bd4c625c
LT
1660
1661 /* Current node contain insufficient number of items. Balancing is required. */
1662 /* Check whether we can merge S[h] with left neighbor. */
1663 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1664 if (is_left_neighbor_in_cache(tb, h)
1665 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1666 int n;
1667 int order_L;
1668
1669 order_L =
1670 ((n =
1671 PATH_H_B_ITEM_ORDER(tb->tb_path,
1672 h)) ==
1673 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1674 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1675 KEY_SIZE);
1676 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1677 return CARRY_ON;
1678 }
1679
1680 /* Check whether we can merge S[h] with right neighbor. */
1681 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1682 int n;
1683 int order_R;
1684
1685 order_R =
1686 ((n =
1687 PATH_H_B_ITEM_ORDER(tb->tb_path,
1688 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1689 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1690 KEY_SIZE);
1691 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1692 return CARRY_ON;
1da177e4
LT
1693 }
1694
bd4c625c
LT
1695 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1696 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1697 int to_r;
1698
1699 to_r =
1700 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1701 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1702 tb->rnum[h]);
1703 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1704 -1, -1);
1705 return CARRY_ON;
1706 }
1da177e4 1707
bd4c625c
LT
1708 /* For internal nodes try to borrow item from a neighbor */
1709 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1710
1711 /* Borrow one or two items from caching neighbor */
1712 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1713 int from_l;
1714
1715 from_l =
1716 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1717 1) / 2 - (vn->vn_nr_item + 1);
1718 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1719 return CARRY_ON;
1da177e4
LT
1720 }
1721
bd4c625c
LT
1722 set_parameters(tb, h, 0,
1723 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1724 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1da177e4 1725 return CARRY_ON;
1da177e4
LT
1726}
1727
1da177e4
LT
1728/* Check whether current node S[h] is balanced when Decreasing its size by
1729 * Deleting or Truncating for LEAF node of S+tree.
1730 * Calculate parameters for balancing for current level h.
1731 * Parameters:
1732 * tb tree_balance structure;
1733 * h current level of the node;
1734 * inum item number in S[h];
1735 * mode i - insert, p - paste;
0222e657 1736 * Returns: 1 - schedule occurred;
1da177e4
LT
1737 * 0 - balancing for higher levels needed;
1738 * -1 - no balancing for higher levels needed;
1739 * -2 - no disk space.
1740 */
bd4c625c 1741static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1da177e4 1742{
bd4c625c
LT
1743 struct virtual_node *vn = tb->tb_vn;
1744
1745 /* Number of bytes that must be deleted from
1746 (value is negative if bytes are deleted) buffer which
1747 contains node being balanced. The mnemonic is that the
1748 attempted change in node space used level is levbytes bytes. */
1749 int levbytes;
1750 /* the maximal item size */
ee93961b 1751 int maxsize, ret;
bd4c625c
LT
1752 /* S0 is the node whose balance is currently being checked,
1753 and F0 is its father. */
1754 struct buffer_head *S0, *F0;
1755 int lfree, rfree /* free space in L and R */ ;
1756
1757 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1758 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1da177e4 1759
bd4c625c 1760 levbytes = tb->insert_size[h];
1da177e4 1761
bd4c625c
LT
1762 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1763
1764 if (!F0) { /* S[0] is the root now. */
1765
1766 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1767 "vs-8240: attempt to create empty buffer tree");
1768
1769 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1770 return NO_BALANCING_NEEDED;
1771 }
1772
ee93961b
JM
1773 if ((ret = get_parents(tb, h)) != CARRY_ON)
1774 return ret;
bd4c625c
LT
1775
1776 /* get free space of neighbors */
1777 rfree = get_rfree(tb, h);
1778 lfree = get_lfree(tb, h);
1779
1780 create_virtual_node(tb, h);
1781
1782 /* if 3 leaves can be merge to one, set parameters and return */
1783 if (are_leaves_removable(tb, lfree, rfree))
1784 return CARRY_ON;
1785
1786 /* determine maximal number of items we can shift to the left/right neighbor
1787 and the maximal number of bytes that can flow to the left/right neighbor
1788 from the left/right most liquid item that cannot be shifted from S[0] entirely
1789 */
1790 check_left(tb, h, lfree);
1791 check_right(tb, h, rfree);
1792
1793 /* check whether we can merge S with left neighbor. */
1794 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1795 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1796 !tb->FR[h]) {
1797
1798 RFALSE(!tb->FL[h],
1799 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1800
1801 /* set parameter to merge S[0] with its left neighbor */
1802 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1803 return CARRY_ON;
1804 }
1805
1806 /* check whether we can merge S[0] with right neighbor. */
1807 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1808 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1809 return CARRY_ON;
1810 }
1811
1812 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1813 if (is_leaf_removable(tb))
1814 return CARRY_ON;
1815
1816 /* Balancing is not required. */
1817 tb->s0num = vn->vn_nr_item;
1818 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1819 return NO_BALANCING_NEEDED;
1820}
1da177e4
LT
1821
1822/* Check whether current node S[h] is balanced when Decreasing its size by
1823 * Deleting or Cutting.
1824 * Calculate parameters for balancing for current level h.
1825 * Parameters:
1826 * tb tree_balance structure;
1827 * h current level of the node;
1828 * inum item number in S[h];
1829 * mode d - delete, c - cut.
0222e657 1830 * Returns: 1 - schedule occurred;
1da177e4
LT
1831 * 0 - balancing for higher levels needed;
1832 * -1 - no balancing for higher levels needed;
1833 * -2 - no disk space.
1834 */
bd4c625c 1835static int dc_check_balance(struct tree_balance *tb, int h)
1da177e4 1836{
bd4c625c
LT
1837 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1838 "vs-8250: S is not initialized");
1da177e4 1839
bd4c625c
LT
1840 if (h)
1841 return dc_check_balance_internal(tb, h);
1842 else
1843 return dc_check_balance_leaf(tb, h);
1da177e4
LT
1844}
1845
1da177e4
LT
1846/* Check whether current node S[h] is balanced.
1847 * Calculate parameters for balancing for current level h.
1848 * Parameters:
1849 *
1850 * tb tree_balance structure:
1851 *
1852 * tb is a large structure that must be read about in the header file
1853 * at the same time as this procedure if the reader is to successfully
1854 * understand this procedure
1855 *
1856 * h current level of the node;
1857 * inum item number in S[h];
1858 * mode i - insert, p - paste, d - delete, c - cut.
0222e657 1859 * Returns: 1 - schedule occurred;
1da177e4
LT
1860 * 0 - balancing for higher levels needed;
1861 * -1 - no balancing for higher levels needed;
1862 * -2 - no disk space.
1863 */
bd4c625c
LT
1864static int check_balance(int mode,
1865 struct tree_balance *tb,
1866 int h,
1867 int inum,
1868 int pos_in_item,
1869 struct item_head *ins_ih, const void *data)
1da177e4 1870{
bd4c625c 1871 struct virtual_node *vn;
1da177e4 1872
bd4c625c
LT
1873 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1874 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1875 vn->vn_mode = mode;
1876 vn->vn_affected_item_num = inum;
1877 vn->vn_pos_in_item = pos_in_item;
1878 vn->vn_ins_ih = ins_ih;
1879 vn->vn_data = data;
1da177e4 1880
bd4c625c
LT
1881 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1882 "vs-8255: ins_ih can not be 0 in insert mode");
1da177e4 1883
bd4c625c
LT
1884 if (tb->insert_size[h] > 0)
1885 /* Calculate balance parameters when size of node is increasing. */
1886 return ip_check_balance(tb, h);
1da177e4 1887
bd4c625c
LT
1888 /* Calculate balance parameters when size of node is decreasing. */
1889 return dc_check_balance(tb, h);
1da177e4
LT
1890}
1891
bd4c625c 1892/* Check whether parent at the path is the really parent of the current node.*/
ee93961b 1893static int get_direct_parent(struct tree_balance *tb, int h)
bd4c625c 1894{
ad31a4fc 1895 struct buffer_head *bh;
d68caa95 1896 struct treepath *path = tb->tb_path;
ee93961b
JM
1897 int position,
1898 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
bd4c625c
LT
1899
1900 /* We are in the root or in the new root. */
ee93961b 1901 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c 1902
ee93961b 1903 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
bd4c625c
LT
1904 "PAP-8260: invalid offset in the path");
1905
d68caa95 1906 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
a063ae17 1907 b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
bd4c625c 1908 /* Root is not changed. */
ee93961b
JM
1909 PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1910 PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
bd4c625c
LT
1911 return CARRY_ON;
1912 }
1913 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1914 }
1915
1916 if (!B_IS_IN_TREE
ee93961b 1917 (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
bd4c625c 1918 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1da177e4 1919
ee93961b 1920 if ((position =
d68caa95 1921 PATH_OFFSET_POSITION(path,
ee93961b 1922 path_offset - 1)) > B_NR_ITEMS(bh))
bd4c625c 1923 return REPEAT_SEARCH;
1da177e4 1924
ee93961b
JM
1925 if (B_N_CHILD_NUM(bh, position) !=
1926 PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
bd4c625c
LT
1927 /* Parent in the path is not parent of the current node in the tree. */
1928 return REPEAT_SEARCH;
1929
ad31a4fc 1930 if (buffer_locked(bh)) {
8ebc4232 1931 reiserfs_write_unlock(tb->tb_sb);
ad31a4fc 1932 __wait_on_buffer(bh);
8ebc4232 1933 reiserfs_write_lock(tb->tb_sb);
a063ae17 1934 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 1935 return REPEAT_SEARCH;
1da177e4 1936 }
1da177e4 1937
bd4c625c
LT
1938 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
1939}
1da177e4 1940
ee93961b
JM
1941/* Using lnum[h] and rnum[h] we should determine what neighbors
1942 * of S[h] we
1943 * need in order to balance S[h], and get them if necessary.
1da177e4
LT
1944 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1945 * CARRY_ON - schedule didn't occur while the function worked;
1946 */
ee93961b 1947static int get_neighbors(struct tree_balance *tb, int h)
bd4c625c 1948{
ee93961b
JM
1949 int child_position,
1950 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1951 unsigned long son_number;
a063ae17 1952 struct super_block *sb = tb->tb_sb;
ad31a4fc 1953 struct buffer_head *bh;
bd4c625c 1954
ee93961b 1955 PROC_INFO_INC(sb, get_neighbors[h]);
bd4c625c 1956
ee93961b
JM
1957 if (tb->lnum[h]) {
1958 /* We need left neighbor to balance S[h]. */
1959 PROC_INFO_INC(sb, need_l_neighbor[h]);
1960 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
bd4c625c 1961
ee93961b
JM
1962 RFALSE(bh == tb->FL[h] &&
1963 !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
bd4c625c
LT
1964 "PAP-8270: invalid position in the parent");
1965
ee93961b 1966 child_position =
ad31a4fc 1967 (bh ==
ee93961b
JM
1968 tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1969 FL[h]);
1970 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
148d3504 1971 reiserfs_write_unlock(sb);
ee93961b 1972 bh = sb_bread(sb, son_number);
148d3504 1973 reiserfs_write_lock(sb);
ad31a4fc 1974 if (!bh)
bd4c625c 1975 return IO_ERROR;
a063ae17 1976 if (FILESYSTEM_CHANGED_TB(tb)) {
ad31a4fc 1977 brelse(bh);
ee93961b 1978 PROC_INFO_INC(sb, get_neighbors_restart[h]);
bd4c625c
LT
1979 return REPEAT_SEARCH;
1980 }
1981
ee93961b
JM
1982 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1983 child_position > B_NR_ITEMS(tb->FL[h]) ||
1984 B_N_CHILD_NUM(tb->FL[h], child_position) !=
ad31a4fc
JM
1985 bh->b_blocknr, "PAP-8275: invalid parent");
1986 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
ee93961b 1987 RFALSE(!h &&
ad31a4fc
JM
1988 B_FREE_SPACE(bh) !=
1989 MAX_CHILD_SIZE(bh) -
ee93961b 1990 dc_size(B_N_CHILD(tb->FL[0], child_position)),
bd4c625c
LT
1991 "PAP-8290: invalid child size of left neighbor");
1992
ee93961b
JM
1993 brelse(tb->L[h]);
1994 tb->L[h] = bh;
1da177e4 1995 }
bd4c625c 1996
ee93961b
JM
1997 /* We need right neighbor to balance S[path_offset]. */
1998 if (tb->rnum[h]) { /* We need right neighbor to balance S[path_offset]. */
1999 PROC_INFO_INC(sb, need_r_neighbor[h]);
2000 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
bd4c625c 2001
ee93961b 2002 RFALSE(bh == tb->FR[h] &&
a063ae17 2003 PATH_OFFSET_POSITION(tb->tb_path,
ee93961b 2004 path_offset) >=
ad31a4fc 2005 B_NR_ITEMS(bh),
bd4c625c
LT
2006 "PAP-8295: invalid position in the parent");
2007
ee93961b
JM
2008 child_position =
2009 (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2010 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
148d3504 2011 reiserfs_write_unlock(sb);
ee93961b 2012 bh = sb_bread(sb, son_number);
148d3504 2013 reiserfs_write_lock(sb);
ad31a4fc 2014 if (!bh)
bd4c625c 2015 return IO_ERROR;
a063ae17 2016 if (FILESYSTEM_CHANGED_TB(tb)) {
ad31a4fc 2017 brelse(bh);
ee93961b 2018 PROC_INFO_INC(sb, get_neighbors_restart[h]);
bd4c625c
LT
2019 return REPEAT_SEARCH;
2020 }
ee93961b
JM
2021 brelse(tb->R[h]);
2022 tb->R[h] = bh;
bd4c625c 2023
ee93961b 2024 RFALSE(!h
ad31a4fc
JM
2025 && B_FREE_SPACE(bh) !=
2026 MAX_CHILD_SIZE(bh) -
ee93961b 2027 dc_size(B_N_CHILD(tb->FR[0], child_position)),
bd4c625c 2028 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
ad31a4fc 2029 B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
ee93961b 2030 dc_size(B_N_CHILD(tb->FR[0], child_position)));
bd4c625c 2031
1da177e4 2032 }
bd4c625c 2033 return CARRY_ON;
1da177e4
LT
2034}
2035
bd4c625c 2036static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
1da177e4 2037{
bd4c625c
LT
2038 int max_num_of_items;
2039 int max_num_of_entries;
2040 unsigned long blocksize = sb->s_blocksize;
1da177e4
LT
2041
2042#define MIN_NAME_LEN 1
2043
bd4c625c
LT
2044 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2045 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2046 (DEH_SIZE + MIN_NAME_LEN);
1da177e4 2047
bd4c625c
LT
2048 return sizeof(struct virtual_node) +
2049 max(max_num_of_items * sizeof(struct virtual_item),
2050 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2051 (max_num_of_entries - 1) * sizeof(__u16));
1da177e4
LT
2052}
2053
1da177e4
LT
2054/* maybe we should fail balancing we are going to perform when kmalloc
2055 fails several times. But now it will loop until kmalloc gets
2056 required memory */
bd4c625c 2057static int get_mem_for_virtual_node(struct tree_balance *tb)
1da177e4 2058{
bd4c625c
LT
2059 int check_fs = 0;
2060 int size;
2061 char *buf;
2062
2063 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2064
2065 if (size > tb->vn_buf_size) {
2066 /* we have to allocate more memory for virtual node */
2067 if (tb->vn_buf) {
2068 /* free memory allocated before */
d739b42b 2069 kfree(tb->vn_buf);
bd4c625c
LT
2070 /* this is not needed if kfree is atomic */
2071 check_fs = 1;
2072 }
1da177e4 2073
bd4c625c
LT
2074 /* virtual node requires now more memory */
2075 tb->vn_buf_size = size;
2076
2077 /* get memory for virtual item */
d739b42b 2078 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
bd4c625c
LT
2079 if (!buf) {
2080 /* getting memory with GFP_KERNEL priority may involve
2081 balancing now (due to indirect_to_direct conversion on
2082 dcache shrinking). So, release path and collected
2083 resources here */
2084 free_buffers_in_tb(tb);
d739b42b 2085 buf = kmalloc(size, GFP_NOFS);
bd4c625c 2086 if (!buf) {
bd4c625c
LT
2087 tb->vn_buf_size = 0;
2088 }
2089 tb->vn_buf = buf;
2090 schedule();
2091 return REPEAT_SEARCH;
2092 }
1da177e4 2093
bd4c625c
LT
2094 tb->vn_buf = buf;
2095 }
1da177e4 2096
bd4c625c
LT
2097 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2098 return REPEAT_SEARCH;
1da177e4 2099
bd4c625c 2100 return CARRY_ON;
1da177e4
LT
2101}
2102
1da177e4 2103#ifdef CONFIG_REISERFS_CHECK
a9dd3643 2104static void tb_buffer_sanity_check(struct super_block *sb,
ad31a4fc 2105 struct buffer_head *bh,
bd4c625c 2106 const char *descr, int level)
1da177e4 2107{
ad31a4fc
JM
2108 if (bh) {
2109 if (atomic_read(&(bh->b_count)) <= 0)
1da177e4 2110
a9dd3643 2111 reiserfs_panic(sb, "jmacd-1", "negative or zero "
c3a9c210 2112 "reference counter for buffer %s[%d] "
ad31a4fc 2113 "(%b)", descr, level, bh);
1da177e4 2114
ad31a4fc 2115 if (!buffer_uptodate(bh))
a9dd3643 2116 reiserfs_panic(sb, "jmacd-2", "buffer is not up "
c3a9c210 2117 "to date %s[%d] (%b)",
ad31a4fc 2118 descr, level, bh);
1da177e4 2119
ad31a4fc 2120 if (!B_IS_IN_TREE(bh))
a9dd3643 2121 reiserfs_panic(sb, "jmacd-3", "buffer is not "
c3a9c210 2122 "in tree %s[%d] (%b)",
ad31a4fc 2123 descr, level, bh);
1da177e4 2124
ad31a4fc 2125 if (bh->b_bdev != sb->s_bdev)
a9dd3643 2126 reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
c3a9c210 2127 "device %s[%d] (%b)",
ad31a4fc 2128 descr, level, bh);
1da177e4 2129
ad31a4fc 2130 if (bh->b_size != sb->s_blocksize)
a9dd3643 2131 reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
c3a9c210 2132 "blocksize %s[%d] (%b)",
ad31a4fc 2133 descr, level, bh);
1da177e4 2134
ad31a4fc 2135 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
a9dd3643 2136 reiserfs_panic(sb, "jmacd-6", "buffer block "
c3a9c210 2137 "number too high %s[%d] (%b)",
ad31a4fc 2138 descr, level, bh);
bd4c625c
LT
2139 }
2140}
2141#else
a9dd3643 2142static void tb_buffer_sanity_check(struct super_block *sb,
ad31a4fc 2143 struct buffer_head *bh,
bd4c625c
LT
2144 const char *descr, int level)
2145{;
2146}
2147#endif
1da177e4 2148
bd4c625c
LT
2149static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2150{
2151 return reiserfs_prepare_for_journal(s, bh, 0);
2152}
1da177e4 2153
a063ae17 2154static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
bd4c625c
LT
2155{
2156 struct buffer_head *locked;
2157#ifdef CONFIG_REISERFS_CHECK
2158 int repeat_counter = 0;
2159#endif
2160 int i;
1da177e4 2161
bd4c625c 2162 do {
1da177e4 2163
bd4c625c
LT
2164 locked = NULL;
2165
a063ae17 2166 for (i = tb->tb_path->path_length;
bd4c625c 2167 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
a063ae17 2168 if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
bd4c625c
LT
2169 /* if I understand correctly, we can only be sure the last buffer
2170 ** in the path is in the tree --clm
2171 */
2172#ifdef CONFIG_REISERFS_CHECK
a063ae17
JM
2173 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2174 PATH_OFFSET_PBUFFER(tb->tb_path, i))
2175 tb_buffer_sanity_check(tb->tb_sb,
bd4c625c 2176 PATH_OFFSET_PBUFFER
a063ae17 2177 (tb->tb_path,
bd4c625c 2178 i), "S",
a063ae17 2179 tb->tb_path->
bd4c625c 2180 path_length - i);
bd4c625c 2181#endif
a063ae17 2182 if (!clear_all_dirty_bits(tb->tb_sb,
bd4c625c 2183 PATH_OFFSET_PBUFFER
a063ae17 2184 (tb->tb_path,
bd4c625c
LT
2185 i))) {
2186 locked =
a063ae17 2187 PATH_OFFSET_PBUFFER(tb->tb_path,
bd4c625c
LT
2188 i);
2189 }
2190 }
1da177e4
LT
2191 }
2192
a063ae17 2193 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
bd4c625c
LT
2194 i++) {
2195
a063ae17 2196 if (tb->lnum[i]) {
bd4c625c 2197
a063ae17
JM
2198 if (tb->L[i]) {
2199 tb_buffer_sanity_check(tb->tb_sb,
2200 tb->L[i],
bd4c625c
LT
2201 "L", i);
2202 if (!clear_all_dirty_bits
a063ae17
JM
2203 (tb->tb_sb, tb->L[i]))
2204 locked = tb->L[i];
bd4c625c
LT
2205 }
2206
a063ae17
JM
2207 if (!locked && tb->FL[i]) {
2208 tb_buffer_sanity_check(tb->tb_sb,
2209 tb->FL[i],
bd4c625c
LT
2210 "FL", i);
2211 if (!clear_all_dirty_bits
a063ae17
JM
2212 (tb->tb_sb, tb->FL[i]))
2213 locked = tb->FL[i];
bd4c625c
LT
2214 }
2215
a063ae17
JM
2216 if (!locked && tb->CFL[i]) {
2217 tb_buffer_sanity_check(tb->tb_sb,
2218 tb->CFL[i],
bd4c625c
LT
2219 "CFL", i);
2220 if (!clear_all_dirty_bits
a063ae17
JM
2221 (tb->tb_sb, tb->CFL[i]))
2222 locked = tb->CFL[i];
bd4c625c
LT
2223 }
2224
2225 }
2226
a063ae17 2227 if (!locked && (tb->rnum[i])) {
bd4c625c 2228
a063ae17
JM
2229 if (tb->R[i]) {
2230 tb_buffer_sanity_check(tb->tb_sb,
2231 tb->R[i],
bd4c625c
LT
2232 "R", i);
2233 if (!clear_all_dirty_bits
a063ae17
JM
2234 (tb->tb_sb, tb->R[i]))
2235 locked = tb->R[i];
bd4c625c
LT
2236 }
2237
a063ae17
JM
2238 if (!locked && tb->FR[i]) {
2239 tb_buffer_sanity_check(tb->tb_sb,
2240 tb->FR[i],
bd4c625c
LT
2241 "FR", i);
2242 if (!clear_all_dirty_bits
a063ae17
JM
2243 (tb->tb_sb, tb->FR[i]))
2244 locked = tb->FR[i];
bd4c625c
LT
2245 }
2246
a063ae17
JM
2247 if (!locked && tb->CFR[i]) {
2248 tb_buffer_sanity_check(tb->tb_sb,
2249 tb->CFR[i],
bd4c625c
LT
2250 "CFR", i);
2251 if (!clear_all_dirty_bits
a063ae17
JM
2252 (tb->tb_sb, tb->CFR[i]))
2253 locked = tb->CFR[i];
bd4c625c
LT
2254 }
2255 }
2256 }
2257 /* as far as I can tell, this is not required. The FEB list seems
2258 ** to be full of newly allocated nodes, which will never be locked,
2259 ** dirty, or anything else.
2260 ** To be safe, I'm putting in the checks and waits in. For the moment,
2261 ** they are needed to keep the code in journal.c from complaining
2262 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2263 ** --clm
2264 */
2265 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
a063ae17 2266 if (tb->FEB[i]) {
bd4c625c 2267 if (!clear_all_dirty_bits
a063ae17
JM
2268 (tb->tb_sb, tb->FEB[i]))
2269 locked = tb->FEB[i];
bd4c625c 2270 }
1da177e4 2271 }
1da177e4 2272
bd4c625c 2273 if (locked) {
1da177e4 2274#ifdef CONFIG_REISERFS_CHECK
bd4c625c
LT
2275 repeat_counter++;
2276 if ((repeat_counter % 10000) == 0) {
a063ae17 2277 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
45b03d5e
JM
2278 "too many iterations waiting "
2279 "for buffer to unlock "
bd4c625c
LT
2280 "(%b)", locked);
2281
2282 /* Don't loop forever. Try to recover from possible error. */
2283
a063ae17 2284 return (FILESYSTEM_CHANGED_TB(tb)) ?
bd4c625c
LT
2285 REPEAT_SEARCH : CARRY_ON;
2286 }
1da177e4 2287#endif
8ebc4232 2288 reiserfs_write_unlock(tb->tb_sb);
bd4c625c 2289 __wait_on_buffer(locked);
8ebc4232 2290 reiserfs_write_lock(tb->tb_sb);
a063ae17 2291 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 2292 return REPEAT_SEARCH;
bd4c625c 2293 }
1da177e4 2294
bd4c625c 2295 } while (locked);
1da177e4 2296
bd4c625c 2297 return CARRY_ON;
1da177e4
LT
2298}
2299
1da177e4
LT
2300/* Prepare for balancing, that is
2301 * get all necessary parents, and neighbors;
2302 * analyze what and where should be moved;
2303 * get sufficient number of new nodes;
2304 * Balancing will start only after all resources will be collected at a time.
0222e657 2305 *
1da177e4
LT
2306 * When ported to SMP kernels, only at the last moment after all needed nodes
2307 * are collected in cache, will the resources be locked using the usual
2308 * textbook ordered lock acquisition algorithms. Note that ensuring that
2309 * this code neither write locks what it does not need to write lock nor locks out of order
2310 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
0222e657 2311 *
1da177e4 2312 * fix is meant in the sense of render unchanging
0222e657 2313 *
1da177e4
LT
2314 * Latency might be improved by first gathering a list of what buffers are needed
2315 * and then getting as many of them in parallel as possible? -Hans
2316 *
2317 * Parameters:
2318 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2319 * tb tree_balance structure;
2320 * inum item number in S[h];
2321 * pos_in_item - comment this if you can
a063ae17
JM
2322 * ins_ih item head of item being inserted
2323 * data inserted item or data to be pasted
1da177e4
LT
2324 * Returns: 1 - schedule occurred while the function worked;
2325 * 0 - schedule didn't occur while the function worked;
0222e657 2326 * -1 - if no_disk_space
1da177e4
LT
2327 */
2328
ee93961b 2329int fix_nodes(int op_mode, struct tree_balance *tb,
d68caa95 2330 struct item_head *ins_ih, const void *data)
bd4c625c 2331{
ee93961b
JM
2332 int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2333 int pos_in_item;
1da177e4 2334
bd4c625c
LT
2335 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2336 ** during wait_tb_buffers_run
2337 */
2338 int wait_tb_buffers_run = 0;
a063ae17 2339 struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
1da177e4 2340
a063ae17 2341 ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
bd4c625c 2342
ee93961b 2343 pos_in_item = tb->tb_path->pos_in_item;
bd4c625c 2344
a063ae17 2345 tb->fs_gen = get_generation(tb->tb_sb);
1da177e4 2346
bd4c625c
LT
2347 /* we prepare and log the super here so it will already be in the
2348 ** transaction when do_balance needs to change it.
2349 ** This way do_balance won't have to schedule when trying to prepare
2350 ** the super for logging
2351 */
a063ae17
JM
2352 reiserfs_prepare_for_journal(tb->tb_sb,
2353 SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2354 journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2355 SB_BUFFER_WITH_SB(tb->tb_sb));
2356 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 2357 return REPEAT_SEARCH;
1da177e4 2358
bd4c625c 2359 /* if it possible in indirect_to_direct conversion */
a063ae17 2360 if (buffer_locked(tbS0)) {
8ebc4232 2361 reiserfs_write_unlock(tb->tb_sb);
a063ae17 2362 __wait_on_buffer(tbS0);
8ebc4232 2363 reiserfs_write_lock(tb->tb_sb);
a063ae17 2364 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c
LT
2365 return REPEAT_SEARCH;
2366 }
2367#ifdef CONFIG_REISERFS_CHECK
08f14fc8 2368 if (REISERFS_SB(tb->tb_sb)->cur_tb) {
bd4c625c 2369 print_cur_tb("fix_nodes");
a063ae17 2370 reiserfs_panic(tb->tb_sb, "PAP-8305",
c3a9c210 2371 "there is pending do_balance");
bd4c625c 2372 }
1da177e4 2373
a063ae17
JM
2374 if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2375 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
c3a9c210
JM
2376 "not uptodate at the beginning of fix_nodes "
2377 "or not in tree (mode %c)",
ee93961b 2378 tbS0, tbS0, op_mode);
1da177e4 2379
bd4c625c 2380 /* Check parameters. */
ee93961b 2381 switch (op_mode) {
bd4c625c 2382 case M_INSERT:
ee93961b 2383 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
a063ae17 2384 reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
c3a9c210 2385 "item number %d (in S0 - %d) in case "
ee93961b 2386 "of insert", item_num,
a063ae17 2387 B_NR_ITEMS(tbS0));
bd4c625c
LT
2388 break;
2389 case M_PASTE:
2390 case M_DELETE:
2391 case M_CUT:
ee93961b 2392 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
a063ae17
JM
2393 print_block(tbS0, 0, -1, -1);
2394 reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
c3a9c210
JM
2395 "item number(%d); mode = %c "
2396 "insert_size = %d",
ee93961b 2397 item_num, op_mode,
a063ae17 2398 tb->insert_size[0]);
1da177e4 2399 }
1da177e4 2400 break;
bd4c625c 2401 default:
a063ae17 2402 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
c3a9c210 2403 "of operation");
1da177e4 2404 }
bd4c625c 2405#endif
1da177e4 2406
a063ae17 2407 if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
bd4c625c
LT
2408 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2409 return REPEAT_SEARCH;
1da177e4 2410
ee93961b
JM
2411 /* Starting from the leaf level; for all levels h of the tree. */
2412 for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2413 ret = get_direct_parent(tb, h);
2414 if (ret != CARRY_ON)
bd4c625c 2415 goto repeat;
1da177e4 2416
ee93961b
JM
2417 ret = check_balance(op_mode, tb, h, item_num,
2418 pos_in_item, ins_ih, data);
2419 if (ret != CARRY_ON) {
2420 if (ret == NO_BALANCING_NEEDED) {
bd4c625c 2421 /* No balancing for higher levels needed. */
ee93961b
JM
2422 ret = get_neighbors(tb, h);
2423 if (ret != CARRY_ON)
bd4c625c 2424 goto repeat;
ee93961b
JM
2425 if (h != MAX_HEIGHT - 1)
2426 tb->insert_size[h + 1] = 0;
bd4c625c
LT
2427 /* ok, analysis and resource gathering are complete */
2428 break;
2429 }
2430 goto repeat;
2431 }
1da177e4 2432
ee93961b
JM
2433 ret = get_neighbors(tb, h);
2434 if (ret != CARRY_ON)
bd4c625c 2435 goto repeat;
bd4c625c 2436
a063ae17
JM
2437 /* No disk space, or schedule occurred and analysis may be
2438 * invalid and needs to be redone. */
ee93961b
JM
2439 ret = get_empty_nodes(tb, h);
2440 if (ret != CARRY_ON)
a063ae17 2441 goto repeat;
bd4c625c 2442
ee93961b 2443 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
bd4c625c
LT
2444 /* We have a positive insert size but no nodes exist on this
2445 level, this means that we are creating a new root. */
2446
ee93961b 2447 RFALSE(tb->blknum[h] != 1,
bd4c625c
LT
2448 "PAP-8350: creating new empty root");
2449
ee93961b
JM
2450 if (h < MAX_HEIGHT - 1)
2451 tb->insert_size[h + 1] = 0;
2452 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2453 if (tb->blknum[h] > 1) {
2454 /* The tree needs to be grown, so this node S[h]
bd4c625c 2455 which is the root node is split into two nodes,
ee93961b 2456 and a new node (S[h+1]) will be created to
bd4c625c
LT
2457 become the root node. */
2458
ee93961b 2459 RFALSE(h == MAX_HEIGHT - 1,
bd4c625c
LT
2460 "PAP-8355: attempt to create too high of a tree");
2461
ee93961b 2462 tb->insert_size[h + 1] =
bd4c625c 2463 (DC_SIZE +
ee93961b 2464 KEY_SIZE) * (tb->blknum[h] - 1) +
bd4c625c 2465 DC_SIZE;
ee93961b
JM
2466 } else if (h < MAX_HEIGHT - 1)
2467 tb->insert_size[h + 1] = 0;
bd4c625c 2468 } else
ee93961b
JM
2469 tb->insert_size[h + 1] =
2470 (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
1da177e4 2471 }
1da177e4 2472
ee93961b
JM
2473 ret = wait_tb_buffers_until_unlocked(tb);
2474 if (ret == CARRY_ON) {
a063ae17 2475 if (FILESYSTEM_CHANGED_TB(tb)) {
bd4c625c 2476 wait_tb_buffers_run = 1;
ee93961b 2477 ret = REPEAT_SEARCH;
bd4c625c
LT
2478 goto repeat;
2479 } else {
2480 return CARRY_ON;
2481 }
1da177e4 2482 } else {
bd4c625c
LT
2483 wait_tb_buffers_run = 1;
2484 goto repeat;
1da177e4
LT
2485 }
2486
bd4c625c
LT
2487 repeat:
2488 // fix_nodes was unable to perform its calculation due to
2489 // filesystem got changed under us, lack of free disk space or i/o
2490 // failure. If the first is the case - the search will be
2491 // repeated. For now - free all resources acquired so far except
2492 // for the new allocated nodes
2493 {
2494 int i;
2495
2496 /* Release path buffers. */
2497 if (wait_tb_buffers_run) {
a063ae17 2498 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
bd4c625c 2499 } else {
a063ae17 2500 pathrelse(tb->tb_path);
bd4c625c
LT
2501 }
2502 /* brelse all resources collected for balancing */
2503 for (i = 0; i < MAX_HEIGHT; i++) {
2504 if (wait_tb_buffers_run) {
a063ae17
JM
2505 reiserfs_restore_prepared_buffer(tb->tb_sb,
2506 tb->L[i]);
2507 reiserfs_restore_prepared_buffer(tb->tb_sb,
2508 tb->R[i]);
2509 reiserfs_restore_prepared_buffer(tb->tb_sb,
2510 tb->FL[i]);
2511 reiserfs_restore_prepared_buffer(tb->tb_sb,
2512 tb->FR[i]);
2513 reiserfs_restore_prepared_buffer(tb->tb_sb,
2514 tb->
bd4c625c 2515 CFL[i]);
a063ae17
JM
2516 reiserfs_restore_prepared_buffer(tb->tb_sb,
2517 tb->
bd4c625c
LT
2518 CFR[i]);
2519 }
2520
a063ae17
JM
2521 brelse(tb->L[i]);
2522 brelse(tb->R[i]);
2523 brelse(tb->FL[i]);
2524 brelse(tb->FR[i]);
2525 brelse(tb->CFL[i]);
2526 brelse(tb->CFR[i]);
2527
2528 tb->L[i] = NULL;
2529 tb->R[i] = NULL;
2530 tb->FL[i] = NULL;
2531 tb->FR[i] = NULL;
2532 tb->CFL[i] = NULL;
2533 tb->CFR[i] = NULL;
bd4c625c
LT
2534 }
2535
2536 if (wait_tb_buffers_run) {
2537 for (i = 0; i < MAX_FEB_SIZE; i++) {
a063ae17 2538 if (tb->FEB[i])
bd4c625c 2539 reiserfs_restore_prepared_buffer
a063ae17 2540 (tb->tb_sb, tb->FEB[i]);
bd4c625c 2541 }
1da177e4 2542 }
ee93961b 2543 return ret;
1da177e4 2544 }
1da177e4
LT
2545
2546}
2547
a063ae17 2548/* Anatoly will probably forgive me renaming tb to tb. I just
1da177e4 2549 wanted to make lines shorter */
bd4c625c 2550void unfix_nodes(struct tree_balance *tb)
1da177e4 2551{
bd4c625c 2552 int i;
1da177e4 2553
bd4c625c
LT
2554 /* Release path buffers. */
2555 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
1da177e4 2556
bd4c625c
LT
2557 /* brelse all resources collected for balancing */
2558 for (i = 0; i < MAX_HEIGHT; i++) {
2559 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2560 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2561 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2562 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2563 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2564 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2565
2566 brelse(tb->L[i]);
2567 brelse(tb->R[i]);
2568 brelse(tb->FL[i]);
2569 brelse(tb->FR[i]);
2570 brelse(tb->CFL[i]);
2571 brelse(tb->CFR[i]);
2572 }
1da177e4 2573
bd4c625c
LT
2574 /* deal with list of allocated (used and unused) nodes */
2575 for (i = 0; i < MAX_FEB_SIZE; i++) {
2576 if (tb->FEB[i]) {
2577 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2578 /* de-allocated block which was not used by balancing and
2579 bforget about buffer for it */
2580 brelse(tb->FEB[i]);
2581 reiserfs_free_block(tb->transaction_handle, NULL,
2582 blocknr, 0);
2583 }
2584 if (tb->used[i]) {
2585 /* release used as new nodes including a new root */
2586 brelse(tb->used[i]);
2587 }
2588 }
1da177e4 2589
d739b42b 2590 kfree(tb->vn_buf);
1da177e4 2591
bd4c625c 2592}
This page took 0.561506 seconds and 5 git commands to generate.