Commit | Line | Data |
---|---|---|
f400e126 PL |
1 | /* |
2 | * Squashfs - a compressed read only filesystem for Linux | |
3 | * | |
4 | * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 | |
5 | * Phillip Lougher <phillip@lougher.demon.co.uk> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU General Public License | |
9 | * as published by the Free Software Foundation; either version 2, | |
10 | * or (at your option) any later version. | |
11 | * | |
12 | * This program is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | * GNU General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU General Public License | |
18 | * along with this program; if not, write to the Free Software | |
19 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | |
20 | * | |
21 | * cache.c | |
22 | */ | |
23 | ||
24 | /* | |
25 | * Blocks in Squashfs are compressed. To avoid repeatedly decompressing | |
26 | * recently accessed data Squashfs uses two small metadata and fragment caches. | |
27 | * | |
28 | * This file implements a generic cache implementation used for both caches, | |
29 | * plus functions layered ontop of the generic cache implementation to | |
30 | * access the metadata and fragment caches. | |
31 | * | |
32 | * To avoid out of memory and fragmentation isssues with vmalloc the cache | |
33 | * uses sequences of kmalloced PAGE_CACHE_SIZE buffers. | |
34 | * | |
35 | * It should be noted that the cache is not used for file datablocks, these | |
36 | * are decompressed and cached in the page-cache in the normal way. The | |
37 | * cache is only used to temporarily cache fragment and metadata blocks | |
38 | * which have been read as as a result of a metadata (i.e. inode or | |
39 | * directory) or fragment access. Because metadata and fragments are packed | |
40 | * together into blocks (to gain greater compression) the read of a particular | |
41 | * piece of metadata or fragment will retrieve other metadata/fragments which | |
42 | * have been packed with it, these because of locality-of-reference may be read | |
43 | * in the near future. Temporarily caching them ensures they are available for | |
44 | * near future access without requiring an additional read and decompress. | |
45 | */ | |
46 | ||
47 | #include <linux/fs.h> | |
48 | #include <linux/vfs.h> | |
49 | #include <linux/slab.h> | |
50 | #include <linux/vmalloc.h> | |
51 | #include <linux/sched.h> | |
52 | #include <linux/spinlock.h> | |
53 | #include <linux/wait.h> | |
f400e126 PL |
54 | #include <linux/pagemap.h> |
55 | ||
56 | #include "squashfs_fs.h" | |
57 | #include "squashfs_fs_sb.h" | |
f400e126 PL |
58 | #include "squashfs.h" |
59 | ||
60 | /* | |
61 | * Look-up block in cache, and increment usage count. If not in cache, read | |
62 | * and decompress it from disk. | |
63 | */ | |
64 | struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb, | |
65 | struct squashfs_cache *cache, u64 block, int length) | |
66 | { | |
67 | int i, n; | |
68 | struct squashfs_cache_entry *entry; | |
69 | ||
70 | spin_lock(&cache->lock); | |
71 | ||
72 | while (1) { | |
73 | for (i = 0; i < cache->entries; i++) | |
74 | if (cache->entry[i].block == block) | |
75 | break; | |
76 | ||
77 | if (i == cache->entries) { | |
78 | /* | |
79 | * Block not in cache, if all cache entries are used | |
80 | * go to sleep waiting for one to become available. | |
81 | */ | |
82 | if (cache->unused == 0) { | |
83 | cache->num_waiters++; | |
84 | spin_unlock(&cache->lock); | |
85 | wait_event(cache->wait_queue, cache->unused); | |
86 | spin_lock(&cache->lock); | |
87 | cache->num_waiters--; | |
88 | continue; | |
89 | } | |
90 | ||
91 | /* | |
92 | * At least one unused cache entry. A simple | |
93 | * round-robin strategy is used to choose the entry to | |
94 | * be evicted from the cache. | |
95 | */ | |
96 | i = cache->next_blk; | |
97 | for (n = 0; n < cache->entries; n++) { | |
98 | if (cache->entry[i].refcount == 0) | |
99 | break; | |
100 | i = (i + 1) % cache->entries; | |
101 | } | |
102 | ||
103 | cache->next_blk = (i + 1) % cache->entries; | |
104 | entry = &cache->entry[i]; | |
105 | ||
106 | /* | |
107 | * Initialise choosen cache entry, and fill it in from | |
108 | * disk. | |
109 | */ | |
110 | cache->unused--; | |
111 | entry->block = block; | |
112 | entry->refcount = 1; | |
113 | entry->pending = 1; | |
114 | entry->num_waiters = 0; | |
115 | entry->error = 0; | |
116 | spin_unlock(&cache->lock); | |
117 | ||
118 | entry->length = squashfs_read_data(sb, entry->data, | |
119 | block, length, &entry->next_index, | |
118e1ef6 | 120 | cache->block_size, cache->pages); |
f400e126 PL |
121 | |
122 | spin_lock(&cache->lock); | |
123 | ||
124 | if (entry->length < 0) | |
125 | entry->error = entry->length; | |
126 | ||
127 | entry->pending = 0; | |
128 | ||
129 | /* | |
130 | * While filling this entry one or more other processes | |
131 | * have looked it up in the cache, and have slept | |
132 | * waiting for it to become available. | |
133 | */ | |
134 | if (entry->num_waiters) { | |
135 | spin_unlock(&cache->lock); | |
136 | wake_up_all(&entry->wait_queue); | |
137 | } else | |
138 | spin_unlock(&cache->lock); | |
139 | ||
140 | goto out; | |
141 | } | |
142 | ||
143 | /* | |
144 | * Block already in cache. Increment refcount so it doesn't | |
145 | * get reused until we're finished with it, if it was | |
146 | * previously unused there's one less cache entry available | |
147 | * for reuse. | |
148 | */ | |
149 | entry = &cache->entry[i]; | |
150 | if (entry->refcount == 0) | |
151 | cache->unused--; | |
152 | entry->refcount++; | |
153 | ||
154 | /* | |
155 | * If the entry is currently being filled in by another process | |
156 | * go to sleep waiting for it to become available. | |
157 | */ | |
158 | if (entry->pending) { | |
159 | entry->num_waiters++; | |
160 | spin_unlock(&cache->lock); | |
161 | wait_event(entry->wait_queue, !entry->pending); | |
162 | } else | |
163 | spin_unlock(&cache->lock); | |
164 | ||
165 | goto out; | |
166 | } | |
167 | ||
168 | out: | |
169 | TRACE("Got %s %d, start block %lld, refcount %d, error %d\n", | |
170 | cache->name, i, entry->block, entry->refcount, entry->error); | |
171 | ||
172 | if (entry->error) | |
173 | ERROR("Unable to read %s cache entry [%llx]\n", cache->name, | |
174 | block); | |
175 | return entry; | |
176 | } | |
177 | ||
178 | ||
179 | /* | |
180 | * Release cache entry, once usage count is zero it can be reused. | |
181 | */ | |
182 | void squashfs_cache_put(struct squashfs_cache_entry *entry) | |
183 | { | |
184 | struct squashfs_cache *cache = entry->cache; | |
185 | ||
186 | spin_lock(&cache->lock); | |
187 | entry->refcount--; | |
188 | if (entry->refcount == 0) { | |
189 | cache->unused++; | |
190 | /* | |
191 | * If there's any processes waiting for a block to become | |
192 | * available, wake one up. | |
193 | */ | |
194 | if (cache->num_waiters) { | |
195 | spin_unlock(&cache->lock); | |
196 | wake_up(&cache->wait_queue); | |
197 | return; | |
198 | } | |
199 | } | |
200 | spin_unlock(&cache->lock); | |
201 | } | |
202 | ||
203 | /* | |
204 | * Delete cache reclaiming all kmalloced buffers. | |
205 | */ | |
206 | void squashfs_cache_delete(struct squashfs_cache *cache) | |
207 | { | |
208 | int i, j; | |
209 | ||
210 | if (cache == NULL) | |
211 | return; | |
212 | ||
213 | for (i = 0; i < cache->entries; i++) { | |
214 | if (cache->entry[i].data) { | |
215 | for (j = 0; j < cache->pages; j++) | |
216 | kfree(cache->entry[i].data[j]); | |
217 | kfree(cache->entry[i].data); | |
218 | } | |
219 | } | |
220 | ||
221 | kfree(cache->entry); | |
222 | kfree(cache); | |
223 | } | |
224 | ||
225 | ||
226 | /* | |
227 | * Initialise cache allocating the specified number of entries, each of | |
228 | * size block_size. To avoid vmalloc fragmentation issues each entry | |
229 | * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers. | |
230 | */ | |
231 | struct squashfs_cache *squashfs_cache_init(char *name, int entries, | |
232 | int block_size) | |
233 | { | |
234 | int i, j; | |
235 | struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL); | |
236 | ||
237 | if (cache == NULL) { | |
238 | ERROR("Failed to allocate %s cache\n", name); | |
239 | return NULL; | |
240 | } | |
241 | ||
242 | cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL); | |
243 | if (cache->entry == NULL) { | |
244 | ERROR("Failed to allocate %s cache\n", name); | |
245 | goto cleanup; | |
246 | } | |
247 | ||
248 | cache->next_blk = 0; | |
249 | cache->unused = entries; | |
250 | cache->entries = entries; | |
251 | cache->block_size = block_size; | |
252 | cache->pages = block_size >> PAGE_CACHE_SHIFT; | |
a37b06d5 | 253 | cache->pages = cache->pages ? cache->pages : 1; |
f400e126 PL |
254 | cache->name = name; |
255 | cache->num_waiters = 0; | |
256 | spin_lock_init(&cache->lock); | |
257 | init_waitqueue_head(&cache->wait_queue); | |
258 | ||
259 | for (i = 0; i < entries; i++) { | |
260 | struct squashfs_cache_entry *entry = &cache->entry[i]; | |
261 | ||
262 | init_waitqueue_head(&cache->entry[i].wait_queue); | |
263 | entry->cache = cache; | |
264 | entry->block = SQUASHFS_INVALID_BLK; | |
265 | entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL); | |
266 | if (entry->data == NULL) { | |
267 | ERROR("Failed to allocate %s cache entry\n", name); | |
268 | goto cleanup; | |
269 | } | |
270 | ||
271 | for (j = 0; j < cache->pages; j++) { | |
272 | entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL); | |
273 | if (entry->data[j] == NULL) { | |
274 | ERROR("Failed to allocate %s buffer\n", name); | |
275 | goto cleanup; | |
276 | } | |
277 | } | |
278 | } | |
279 | ||
280 | return cache; | |
281 | ||
282 | cleanup: | |
283 | squashfs_cache_delete(cache); | |
284 | return NULL; | |
285 | } | |
286 | ||
287 | ||
288 | /* | |
289 | * Copy upto length bytes from cache entry to buffer starting at offset bytes | |
290 | * into the cache entry. If there's not length bytes then copy the number of | |
291 | * bytes available. In all cases return the number of bytes copied. | |
292 | */ | |
293 | int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry, | |
294 | int offset, int length) | |
295 | { | |
296 | int remaining = length; | |
297 | ||
298 | if (length == 0) | |
299 | return 0; | |
300 | else if (buffer == NULL) | |
301 | return min(length, entry->length - offset); | |
302 | ||
303 | while (offset < entry->length) { | |
304 | void *buff = entry->data[offset / PAGE_CACHE_SIZE] | |
305 | + (offset % PAGE_CACHE_SIZE); | |
306 | int bytes = min_t(int, entry->length - offset, | |
307 | PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE)); | |
308 | ||
309 | if (bytes >= remaining) { | |
310 | memcpy(buffer, buff, remaining); | |
311 | remaining = 0; | |
312 | break; | |
313 | } | |
314 | ||
315 | memcpy(buffer, buff, bytes); | |
316 | buffer += bytes; | |
317 | remaining -= bytes; | |
318 | offset += bytes; | |
319 | } | |
320 | ||
321 | return length - remaining; | |
322 | } | |
323 | ||
324 | ||
325 | /* | |
326 | * Read length bytes from metadata position <block, offset> (block is the | |
327 | * start of the compressed block on disk, and offset is the offset into | |
328 | * the block once decompressed). Data is packed into consecutive blocks, | |
329 | * and length bytes may require reading more than one block. | |
330 | */ | |
331 | int squashfs_read_metadata(struct super_block *sb, void *buffer, | |
332 | u64 *block, int *offset, int length) | |
333 | { | |
334 | struct squashfs_sb_info *msblk = sb->s_fs_info; | |
335 | int bytes, copied = length; | |
336 | struct squashfs_cache_entry *entry; | |
337 | ||
338 | TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset); | |
339 | ||
340 | while (length) { | |
341 | entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0); | |
342 | if (entry->error) | |
343 | return entry->error; | |
344 | else if (*offset >= entry->length) | |
345 | return -EIO; | |
346 | ||
347 | bytes = squashfs_copy_data(buffer, entry, *offset, length); | |
348 | if (buffer) | |
349 | buffer += bytes; | |
350 | length -= bytes; | |
351 | *offset += bytes; | |
352 | ||
353 | if (*offset == entry->length) { | |
354 | *block = entry->next_index; | |
355 | *offset = 0; | |
356 | } | |
357 | ||
358 | squashfs_cache_put(entry); | |
359 | } | |
360 | ||
361 | return copied; | |
362 | } | |
363 | ||
364 | ||
365 | /* | |
366 | * Look-up in the fragmment cache the fragment located at <start_block> in the | |
367 | * filesystem. If necessary read and decompress it from disk. | |
368 | */ | |
369 | struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb, | |
370 | u64 start_block, int length) | |
371 | { | |
372 | struct squashfs_sb_info *msblk = sb->s_fs_info; | |
373 | ||
374 | return squashfs_cache_get(sb, msblk->fragment_cache, start_block, | |
375 | length); | |
376 | } | |
377 | ||
378 | ||
379 | /* | |
380 | * Read and decompress the datablock located at <start_block> in the | |
381 | * filesystem. The cache is used here to avoid duplicating locking and | |
382 | * read/decompress code. | |
383 | */ | |
384 | struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb, | |
385 | u64 start_block, int length) | |
386 | { | |
387 | struct squashfs_sb_info *msblk = sb->s_fs_info; | |
388 | ||
389 | return squashfs_cache_get(sb, msblk->read_page, start_block, length); | |
390 | } | |
391 | ||
392 | ||
393 | /* | |
394 | * Read a filesystem table (uncompressed sequence of bytes) from disk | |
395 | */ | |
396 | int squashfs_read_table(struct super_block *sb, void *buffer, u64 block, | |
397 | int length) | |
398 | { | |
399 | int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | |
400 | int i, res; | |
401 | void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL); | |
402 | if (data == NULL) | |
403 | return -ENOMEM; | |
404 | ||
405 | for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE) | |
406 | data[i] = buffer; | |
407 | res = squashfs_read_data(sb, data, block, length | | |
118e1ef6 | 408 | SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages); |
f400e126 PL |
409 | kfree(data); |
410 | return res; | |
411 | } |