UBIFS: various minor commentary fixes
[deliverable/linux.git] / fs / ubifs / debug.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#define UBIFS_DBG_PRESERVE_UBI
31
32#include "ubifs.h"
33#include <linux/module.h>
34#include <linux/moduleparam.h>
552ff317 35#include <linux/debugfs.h>
4d61db4f 36#include <linux/math64.h>
1e51764a
AB
37
38#ifdef CONFIG_UBIFS_FS_DEBUG
39
40DEFINE_SPINLOCK(dbg_lock);
41
42static char dbg_key_buf0[128];
43static char dbg_key_buf1[128];
44
45unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47unsigned int ubifs_tst_flags;
48
49module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52
53MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54MODULE_PARM_DESC(debug_chks, "Debug check flags");
55MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56
57static const char *get_key_fmt(int fmt)
58{
59 switch (fmt) {
60 case UBIFS_SIMPLE_KEY_FMT:
61 return "simple";
62 default:
63 return "unknown/invalid format";
64 }
65}
66
67static const char *get_key_hash(int hash)
68{
69 switch (hash) {
70 case UBIFS_KEY_HASH_R5:
71 return "R5";
72 case UBIFS_KEY_HASH_TEST:
73 return "test";
74 default:
75 return "unknown/invalid name hash";
76 }
77}
78
79static const char *get_key_type(int type)
80{
81 switch (type) {
82 case UBIFS_INO_KEY:
83 return "inode";
84 case UBIFS_DENT_KEY:
85 return "direntry";
86 case UBIFS_XENT_KEY:
87 return "xentry";
88 case UBIFS_DATA_KEY:
89 return "data";
90 case UBIFS_TRUN_KEY:
91 return "truncate";
92 default:
93 return "unknown/invalid key";
94 }
95}
96
97static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 char *buffer)
99{
100 char *p = buffer;
101 int type = key_type(c, key);
102
103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 switch (type) {
105 case UBIFS_INO_KEY:
e84461ad 106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
1e51764a
AB
107 get_key_type(type));
108 break;
109 case UBIFS_DENT_KEY:
110 case UBIFS_XENT_KEY:
e84461ad
AB
111 sprintf(p, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c, key),
1e51764a
AB
113 get_key_type(type), key_hash(c, key));
114 break;
115 case UBIFS_DATA_KEY:
e84461ad
AB
116 sprintf(p, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c, key),
1e51764a
AB
118 get_key_type(type), key_block(c, key));
119 break;
120 case UBIFS_TRUN_KEY:
121 sprintf(p, "(%lu, %s)",
e84461ad
AB
122 (unsigned long)key_inum(c, key),
123 get_key_type(type));
1e51764a
AB
124 break;
125 default:
126 sprintf(p, "(bad key type: %#08x, %#08x)",
127 key->u32[0], key->u32[1]);
128 }
129 } else
130 sprintf(p, "bad key format %d", c->key_fmt);
131}
132
133const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134{
135 /* dbg_lock must be held */
136 sprintf_key(c, key, dbg_key_buf0);
137 return dbg_key_buf0;
138}
139
140const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141{
142 /* dbg_lock must be held */
143 sprintf_key(c, key, dbg_key_buf1);
144 return dbg_key_buf1;
145}
146
147const char *dbg_ntype(int type)
148{
149 switch (type) {
150 case UBIFS_PAD_NODE:
151 return "padding node";
152 case UBIFS_SB_NODE:
153 return "superblock node";
154 case UBIFS_MST_NODE:
155 return "master node";
156 case UBIFS_REF_NODE:
157 return "reference node";
158 case UBIFS_INO_NODE:
159 return "inode node";
160 case UBIFS_DENT_NODE:
161 return "direntry node";
162 case UBIFS_XENT_NODE:
163 return "xentry node";
164 case UBIFS_DATA_NODE:
165 return "data node";
166 case UBIFS_TRUN_NODE:
167 return "truncate node";
168 case UBIFS_IDX_NODE:
169 return "indexing node";
170 case UBIFS_CS_NODE:
171 return "commit start node";
172 case UBIFS_ORPH_NODE:
173 return "orphan node";
174 default:
175 return "unknown node";
176 }
177}
178
179static const char *dbg_gtype(int type)
180{
181 switch (type) {
182 case UBIFS_NO_NODE_GROUP:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP:
187 return "last of node group";
188 default:
189 return "unknown";
190 }
191}
192
193const char *dbg_cstate(int cmt_state)
194{
195 switch (cmt_state) {
196 case COMMIT_RESTING:
197 return "commit resting";
198 case COMMIT_BACKGROUND:
199 return "background commit requested";
200 case COMMIT_REQUIRED:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED:
205 return "commit running and required";
206 case COMMIT_BROKEN:
207 return "broken commit";
208 default:
209 return "unknown commit state";
210 }
211}
212
77a7ae58
AB
213const char *dbg_jhead(int jhead)
214{
215 switch (jhead) {
216 case GCHD:
217 return "0 (GC)";
218 case BASEHD:
219 return "1 (base)";
220 case DATAHD:
221 return "2 (data)";
222 default:
223 return "unknown journal head";
224 }
225}
226
1e51764a
AB
227static void dump_ch(const struct ubifs_ch *ch)
228{
229 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
230 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
231 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
232 dbg_ntype(ch->node_type));
233 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
234 dbg_gtype(ch->group_type));
235 printk(KERN_DEBUG "\tsqnum %llu\n",
236 (unsigned long long)le64_to_cpu(ch->sqnum));
237 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
238}
239
240void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
241{
242 const struct ubifs_inode *ui = ubifs_inode(inode);
243
b5e426e9
AB
244 printk(KERN_DEBUG "Dump in-memory inode:");
245 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
246 printk(KERN_DEBUG "\tsize %llu\n",
1e51764a 247 (unsigned long long)i_size_read(inode));
b5e426e9
AB
248 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
249 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
250 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
251 printk(KERN_DEBUG "\tatime %u.%u\n",
1e51764a
AB
252 (unsigned int)inode->i_atime.tv_sec,
253 (unsigned int)inode->i_atime.tv_nsec);
b5e426e9 254 printk(KERN_DEBUG "\tmtime %u.%u\n",
1e51764a
AB
255 (unsigned int)inode->i_mtime.tv_sec,
256 (unsigned int)inode->i_mtime.tv_nsec);
b5e426e9 257 printk(KERN_DEBUG "\tctime %u.%u\n",
1e51764a
AB
258 (unsigned int)inode->i_ctime.tv_sec,
259 (unsigned int)inode->i_ctime.tv_nsec);
b5e426e9
AB
260 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
261 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
262 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
263 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
264 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
265 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
266 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
268 (unsigned long long)ui->synced_i_size);
269 printk(KERN_DEBUG "\tui_size %llu\n",
270 (unsigned long long)ui->ui_size);
271 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
272 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
273 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
275 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
1e51764a
AB
276}
277
278void dbg_dump_node(const struct ubifs_info *c, const void *node)
279{
280 int i, n;
281 union ubifs_key key;
282 const struct ubifs_ch *ch = node;
283
284 if (dbg_failure_mode)
285 return;
286
287 /* If the magic is incorrect, just hexdump the first bytes */
288 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291 (void *)node, UBIFS_CH_SZ, 1);
292 return;
293 }
294
295 spin_lock(&dbg_lock);
296 dump_ch(node);
297
298 switch (ch->node_type) {
299 case UBIFS_PAD_NODE:
300 {
301 const struct ubifs_pad_node *pad = node;
302
303 printk(KERN_DEBUG "\tpad_len %u\n",
304 le32_to_cpu(pad->pad_len));
305 break;
306 }
307 case UBIFS_SB_NODE:
308 {
309 const struct ubifs_sb_node *sup = node;
310 unsigned int sup_flags = le32_to_cpu(sup->flags);
311
312 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
313 (int)sup->key_hash, get_key_hash(sup->key_hash));
314 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
315 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
317 printk(KERN_DEBUG "\t big_lpt %u\n",
318 !!(sup_flags & UBIFS_FLG_BIGLPT));
319 printk(KERN_DEBUG "\tmin_io_size %u\n",
320 le32_to_cpu(sup->min_io_size));
321 printk(KERN_DEBUG "\tleb_size %u\n",
322 le32_to_cpu(sup->leb_size));
323 printk(KERN_DEBUG "\tleb_cnt %u\n",
324 le32_to_cpu(sup->leb_cnt));
325 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
326 le32_to_cpu(sup->max_leb_cnt));
327 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
328 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329 printk(KERN_DEBUG "\tlog_lebs %u\n",
330 le32_to_cpu(sup->log_lebs));
331 printk(KERN_DEBUG "\tlpt_lebs %u\n",
332 le32_to_cpu(sup->lpt_lebs));
333 printk(KERN_DEBUG "\torph_lebs %u\n",
334 le32_to_cpu(sup->orph_lebs));
335 printk(KERN_DEBUG "\tjhead_cnt %u\n",
336 le32_to_cpu(sup->jhead_cnt));
337 printk(KERN_DEBUG "\tfanout %u\n",
338 le32_to_cpu(sup->fanout));
339 printk(KERN_DEBUG "\tlsave_cnt %u\n",
340 le32_to_cpu(sup->lsave_cnt));
341 printk(KERN_DEBUG "\tdefault_compr %u\n",
342 (int)le16_to_cpu(sup->default_compr));
343 printk(KERN_DEBUG "\trp_size %llu\n",
344 (unsigned long long)le64_to_cpu(sup->rp_size));
345 printk(KERN_DEBUG "\trp_uid %u\n",
346 le32_to_cpu(sup->rp_uid));
347 printk(KERN_DEBUG "\trp_gid %u\n",
348 le32_to_cpu(sup->rp_gid));
349 printk(KERN_DEBUG "\tfmt_version %u\n",
350 le32_to_cpu(sup->fmt_version));
351 printk(KERN_DEBUG "\ttime_gran %u\n",
352 le32_to_cpu(sup->time_gran));
353 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X"
354 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
355 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
356 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
357 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
358 sup->uuid[12], sup->uuid[13], sup->uuid[14],
359 sup->uuid[15]);
360 break;
361 }
362 case UBIFS_MST_NODE:
363 {
364 const struct ubifs_mst_node *mst = node;
365
366 printk(KERN_DEBUG "\thighest_inum %llu\n",
367 (unsigned long long)le64_to_cpu(mst->highest_inum));
368 printk(KERN_DEBUG "\tcommit number %llu\n",
369 (unsigned long long)le64_to_cpu(mst->cmt_no));
370 printk(KERN_DEBUG "\tflags %#x\n",
371 le32_to_cpu(mst->flags));
372 printk(KERN_DEBUG "\tlog_lnum %u\n",
373 le32_to_cpu(mst->log_lnum));
374 printk(KERN_DEBUG "\troot_lnum %u\n",
375 le32_to_cpu(mst->root_lnum));
376 printk(KERN_DEBUG "\troot_offs %u\n",
377 le32_to_cpu(mst->root_offs));
378 printk(KERN_DEBUG "\troot_len %u\n",
379 le32_to_cpu(mst->root_len));
380 printk(KERN_DEBUG "\tgc_lnum %u\n",
381 le32_to_cpu(mst->gc_lnum));
382 printk(KERN_DEBUG "\tihead_lnum %u\n",
383 le32_to_cpu(mst->ihead_lnum));
384 printk(KERN_DEBUG "\tihead_offs %u\n",
385 le32_to_cpu(mst->ihead_offs));
0ecb9529
HH
386 printk(KERN_DEBUG "\tindex_size %llu\n",
387 (unsigned long long)le64_to_cpu(mst->index_size));
1e51764a
AB
388 printk(KERN_DEBUG "\tlpt_lnum %u\n",
389 le32_to_cpu(mst->lpt_lnum));
390 printk(KERN_DEBUG "\tlpt_offs %u\n",
391 le32_to_cpu(mst->lpt_offs));
392 printk(KERN_DEBUG "\tnhead_lnum %u\n",
393 le32_to_cpu(mst->nhead_lnum));
394 printk(KERN_DEBUG "\tnhead_offs %u\n",
395 le32_to_cpu(mst->nhead_offs));
396 printk(KERN_DEBUG "\tltab_lnum %u\n",
397 le32_to_cpu(mst->ltab_lnum));
398 printk(KERN_DEBUG "\tltab_offs %u\n",
399 le32_to_cpu(mst->ltab_offs));
400 printk(KERN_DEBUG "\tlsave_lnum %u\n",
401 le32_to_cpu(mst->lsave_lnum));
402 printk(KERN_DEBUG "\tlsave_offs %u\n",
403 le32_to_cpu(mst->lsave_offs));
404 printk(KERN_DEBUG "\tlscan_lnum %u\n",
405 le32_to_cpu(mst->lscan_lnum));
406 printk(KERN_DEBUG "\tleb_cnt %u\n",
407 le32_to_cpu(mst->leb_cnt));
408 printk(KERN_DEBUG "\tempty_lebs %u\n",
409 le32_to_cpu(mst->empty_lebs));
410 printk(KERN_DEBUG "\tidx_lebs %u\n",
411 le32_to_cpu(mst->idx_lebs));
412 printk(KERN_DEBUG "\ttotal_free %llu\n",
413 (unsigned long long)le64_to_cpu(mst->total_free));
414 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
415 (unsigned long long)le64_to_cpu(mst->total_dirty));
416 printk(KERN_DEBUG "\ttotal_used %llu\n",
417 (unsigned long long)le64_to_cpu(mst->total_used));
418 printk(KERN_DEBUG "\ttotal_dead %llu\n",
419 (unsigned long long)le64_to_cpu(mst->total_dead));
420 printk(KERN_DEBUG "\ttotal_dark %llu\n",
421 (unsigned long long)le64_to_cpu(mst->total_dark));
422 break;
423 }
424 case UBIFS_REF_NODE:
425 {
426 const struct ubifs_ref_node *ref = node;
427
428 printk(KERN_DEBUG "\tlnum %u\n",
429 le32_to_cpu(ref->lnum));
430 printk(KERN_DEBUG "\toffs %u\n",
431 le32_to_cpu(ref->offs));
432 printk(KERN_DEBUG "\tjhead %u\n",
433 le32_to_cpu(ref->jhead));
434 break;
435 }
436 case UBIFS_INO_NODE:
437 {
438 const struct ubifs_ino_node *ino = node;
439
440 key_read(c, &ino->key, &key);
441 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
442 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
443 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
444 printk(KERN_DEBUG "\tsize %llu\n",
445 (unsigned long long)le64_to_cpu(ino->size));
446 printk(KERN_DEBUG "\tnlink %u\n",
447 le32_to_cpu(ino->nlink));
448 printk(KERN_DEBUG "\tatime %lld.%u\n",
449 (long long)le64_to_cpu(ino->atime_sec),
450 le32_to_cpu(ino->atime_nsec));
451 printk(KERN_DEBUG "\tmtime %lld.%u\n",
452 (long long)le64_to_cpu(ino->mtime_sec),
453 le32_to_cpu(ino->mtime_nsec));
454 printk(KERN_DEBUG "\tctime %lld.%u\n",
455 (long long)le64_to_cpu(ino->ctime_sec),
456 le32_to_cpu(ino->ctime_nsec));
457 printk(KERN_DEBUG "\tuid %u\n",
458 le32_to_cpu(ino->uid));
459 printk(KERN_DEBUG "\tgid %u\n",
460 le32_to_cpu(ino->gid));
461 printk(KERN_DEBUG "\tmode %u\n",
462 le32_to_cpu(ino->mode));
463 printk(KERN_DEBUG "\tflags %#x\n",
464 le32_to_cpu(ino->flags));
465 printk(KERN_DEBUG "\txattr_cnt %u\n",
466 le32_to_cpu(ino->xattr_cnt));
467 printk(KERN_DEBUG "\txattr_size %u\n",
468 le32_to_cpu(ino->xattr_size));
469 printk(KERN_DEBUG "\txattr_names %u\n",
470 le32_to_cpu(ino->xattr_names));
471 printk(KERN_DEBUG "\tcompr_type %#x\n",
472 (int)le16_to_cpu(ino->compr_type));
473 printk(KERN_DEBUG "\tdata len %u\n",
474 le32_to_cpu(ino->data_len));
475 break;
476 }
477 case UBIFS_DENT_NODE:
478 case UBIFS_XENT_NODE:
479 {
480 const struct ubifs_dent_node *dent = node;
481 int nlen = le16_to_cpu(dent->nlen);
482
483 key_read(c, &dent->key, &key);
484 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
485 printk(KERN_DEBUG "\tinum %llu\n",
486 (unsigned long long)le64_to_cpu(dent->inum));
487 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
488 printk(KERN_DEBUG "\tnlen %d\n", nlen);
489 printk(KERN_DEBUG "\tname ");
490
491 if (nlen > UBIFS_MAX_NLEN)
492 printk(KERN_DEBUG "(bad name length, not printing, "
493 "bad or corrupted node)");
494 else {
495 for (i = 0; i < nlen && dent->name[i]; i++)
c9927c3e 496 printk(KERN_CONT "%c", dent->name[i]);
1e51764a 497 }
c9927c3e 498 printk(KERN_CONT "\n");
1e51764a
AB
499
500 break;
501 }
502 case UBIFS_DATA_NODE:
503 {
504 const struct ubifs_data_node *dn = node;
505 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
506
507 key_read(c, &dn->key, &key);
508 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
509 printk(KERN_DEBUG "\tsize %u\n",
510 le32_to_cpu(dn->size));
511 printk(KERN_DEBUG "\tcompr_typ %d\n",
512 (int)le16_to_cpu(dn->compr_type));
513 printk(KERN_DEBUG "\tdata size %d\n",
514 dlen);
515 printk(KERN_DEBUG "\tdata:\n");
516 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
517 (void *)&dn->data, dlen, 0);
518 break;
519 }
520 case UBIFS_TRUN_NODE:
521 {
522 const struct ubifs_trun_node *trun = node;
523
524 printk(KERN_DEBUG "\tinum %u\n",
525 le32_to_cpu(trun->inum));
526 printk(KERN_DEBUG "\told_size %llu\n",
527 (unsigned long long)le64_to_cpu(trun->old_size));
528 printk(KERN_DEBUG "\tnew_size %llu\n",
529 (unsigned long long)le64_to_cpu(trun->new_size));
530 break;
531 }
532 case UBIFS_IDX_NODE:
533 {
534 const struct ubifs_idx_node *idx = node;
535
536 n = le16_to_cpu(idx->child_cnt);
537 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
538 printk(KERN_DEBUG "\tlevel %d\n",
539 (int)le16_to_cpu(idx->level));
540 printk(KERN_DEBUG "\tBranches:\n");
541
542 for (i = 0; i < n && i < c->fanout - 1; i++) {
543 const struct ubifs_branch *br;
544
545 br = ubifs_idx_branch(c, idx, i);
546 key_read(c, &br->key, &key);
547 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
548 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
549 le32_to_cpu(br->len), DBGKEY(&key));
550 }
551 break;
552 }
553 case UBIFS_CS_NODE:
554 break;
555 case UBIFS_ORPH_NODE:
556 {
557 const struct ubifs_orph_node *orph = node;
558
559 printk(KERN_DEBUG "\tcommit number %llu\n",
560 (unsigned long long)
561 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 printk(KERN_DEBUG "\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
565 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
566 for (i = 0; i < n; i++)
567 printk(KERN_DEBUG "\t ino %llu\n",
7424bac8 568 (unsigned long long)le64_to_cpu(orph->inos[i]));
1e51764a
AB
569 break;
570 }
571 default:
572 printk(KERN_DEBUG "node type %d was not recognized\n",
573 (int)ch->node_type);
574 }
575 spin_unlock(&dbg_lock);
576}
577
578void dbg_dump_budget_req(const struct ubifs_budget_req *req)
579{
580 spin_lock(&dbg_lock);
581 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
582 req->new_ino, req->dirtied_ino);
583 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
584 req->new_ino_d, req->dirtied_ino_d);
585 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
586 req->new_page, req->dirtied_page);
587 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
588 req->new_dent, req->mod_dent);
589 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
590 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
591 req->data_growth, req->dd_growth);
592 spin_unlock(&dbg_lock);
593}
594
595void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
596{
597 spin_lock(&dbg_lock);
1de94159
AB
598 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
599 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
1e51764a
AB
600 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
601 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
602 lst->total_dirty);
603 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
604 "total_dead %lld\n", lst->total_used, lst->total_dark,
605 lst->total_dead);
606 spin_unlock(&dbg_lock);
607}
608
609void dbg_dump_budg(struct ubifs_info *c)
610{
611 int i;
612 struct rb_node *rb;
613 struct ubifs_bud *bud;
614 struct ubifs_gced_idx_leb *idx_gc;
21a60258 615 long long available, outstanding, free;
1e51764a 616
21a60258 617 ubifs_assert(spin_is_locked(&c->space_lock));
1e51764a 618 spin_lock(&dbg_lock);
1de94159
AB
619 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
620 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
1e51764a
AB
621 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
622 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
623 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
624 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
625 c->freeable_cnt);
626 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
627 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
628 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
629 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
630 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
631 atomic_long_read(&c->dirty_zn_cnt),
632 atomic_long_read(&c->clean_zn_cnt));
633 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
634 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
635 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
636 c->gc_lnum, c->ihead_lnum);
84abf972
AB
637 /* If we are in R/O mode, journal heads do not exist */
638 if (c->jheads)
639 for (i = 0; i < c->jhead_cnt; i++)
77a7ae58
AB
640 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
641 dbg_jhead(c->jheads[i].wbuf.jhead),
642 c->jheads[i].wbuf.lnum);
1e51764a
AB
643 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
644 bud = rb_entry(rb, struct ubifs_bud, rb);
645 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
646 }
647 list_for_each_entry(bud, &c->old_buds, list)
648 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
649 list_for_each_entry(idx_gc, &c->idx_gc, list)
650 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
651 idx_gc->lnum, idx_gc->unmap);
652 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
21a60258
AB
653
654 /* Print budgeting predictions */
655 available = ubifs_calc_available(c, c->min_idx_lebs);
656 outstanding = c->budg_data_growth + c->budg_dd_growth;
84abf972 657 free = ubifs_get_free_space_nolock(c);
21a60258
AB
658 printk(KERN_DEBUG "Budgeting predictions:\n");
659 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
660 available, outstanding, free);
1e51764a
AB
661 spin_unlock(&dbg_lock);
662}
663
664void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
665{
666 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
667 "flags %#x\n", lp->lnum, lp->free, lp->dirty,
668 c->leb_size - lp->free - lp->dirty, lp->flags);
669}
670
671void dbg_dump_lprops(struct ubifs_info *c)
672{
673 int lnum, err;
674 struct ubifs_lprops lp;
675 struct ubifs_lp_stats lst;
676
2ba5f7ae
AB
677 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
678 current->pid);
1e51764a
AB
679 ubifs_get_lp_stats(c, &lst);
680 dbg_dump_lstats(&lst);
681
682 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
683 err = ubifs_read_one_lp(c, lnum, &lp);
684 if (err)
685 ubifs_err("cannot read lprops for LEB %d", lnum);
686
687 dbg_dump_lprop(c, &lp);
688 }
2ba5f7ae
AB
689 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
690 current->pid);
1e51764a
AB
691}
692
73944a6d
AH
693void dbg_dump_lpt_info(struct ubifs_info *c)
694{
695 int i;
696
697 spin_lock(&dbg_lock);
2ba5f7ae 698 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
73944a6d
AH
699 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
700 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
701 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
702 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
703 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
704 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
705 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
706 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
707 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
708 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
709 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
710 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
711 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
712 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
713 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
714 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
715 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
716 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
717 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
718 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
719 c->nhead_lnum, c->nhead_offs);
f92b9826
AB
720 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
721 c->ltab_lnum, c->ltab_offs);
73944a6d
AH
722 if (c->big_lpt)
723 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
724 c->lsave_lnum, c->lsave_offs);
725 for (i = 0; i < c->lpt_lebs; i++)
726 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
727 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
728 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
729 spin_unlock(&dbg_lock);
730}
731
1e51764a
AB
732void dbg_dump_leb(const struct ubifs_info *c, int lnum)
733{
734 struct ubifs_scan_leb *sleb;
735 struct ubifs_scan_node *snod;
736
737 if (dbg_failure_mode)
738 return;
739
2ba5f7ae
AB
740 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
741 current->pid, lnum);
348709ba 742 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
1e51764a
AB
743 if (IS_ERR(sleb)) {
744 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
745 return;
746 }
747
748 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
749 sleb->nodes_cnt, sleb->endpt);
750
751 list_for_each_entry(snod, &sleb->nodes, list) {
752 cond_resched();
753 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
754 snod->offs, snod->len);
755 dbg_dump_node(c, snod->node);
756 }
757
2ba5f7ae
AB
758 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
759 current->pid, lnum);
1e51764a
AB
760 ubifs_scan_destroy(sleb);
761 return;
762}
763
764void dbg_dump_znode(const struct ubifs_info *c,
765 const struct ubifs_znode *znode)
766{
767 int n;
768 const struct ubifs_zbranch *zbr;
769
770 spin_lock(&dbg_lock);
771 if (znode->parent)
772 zbr = &znode->parent->zbranch[znode->iip];
773 else
774 zbr = &c->zroot;
775
776 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
777 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
778 zbr->len, znode->parent, znode->iip, znode->level,
779 znode->child_cnt, znode->flags);
780
781 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
782 spin_unlock(&dbg_lock);
783 return;
784 }
785
786 printk(KERN_DEBUG "zbranches:\n");
787 for (n = 0; n < znode->child_cnt; n++) {
788 zbr = &znode->zbranch[n];
789 if (znode->level > 0)
790 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
791 "%s\n", n, zbr->znode, zbr->lnum,
792 zbr->offs, zbr->len,
793 DBGKEY(&zbr->key));
794 else
795 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
796 "%s\n", n, zbr->znode, zbr->lnum,
797 zbr->offs, zbr->len,
798 DBGKEY(&zbr->key));
799 }
800 spin_unlock(&dbg_lock);
801}
802
803void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
804{
805 int i;
806
2ba5f7ae 807 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
1de94159 808 current->pid, cat, heap->cnt);
1e51764a
AB
809 for (i = 0; i < heap->cnt; i++) {
810 struct ubifs_lprops *lprops = heap->arr[i];
811
812 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
813 "flags %d\n", i, lprops->lnum, lprops->hpos,
814 lprops->free, lprops->dirty, lprops->flags);
815 }
2ba5f7ae 816 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
1e51764a
AB
817}
818
819void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
820 struct ubifs_nnode *parent, int iip)
821{
822 int i;
823
2ba5f7ae 824 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
1e51764a
AB
825 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
826 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
827 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
828 pnode->flags, iip, pnode->level, pnode->num);
829 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
830 struct ubifs_lprops *lp = &pnode->lprops[i];
831
832 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
833 i, lp->free, lp->dirty, lp->flags, lp->lnum);
834 }
835}
836
837void dbg_dump_tnc(struct ubifs_info *c)
838{
839 struct ubifs_znode *znode;
840 int level;
841
842 printk(KERN_DEBUG "\n");
2ba5f7ae 843 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1e51764a
AB
844 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
845 level = znode->level;
846 printk(KERN_DEBUG "== Level %d ==\n", level);
847 while (znode) {
848 if (level != znode->level) {
849 level = znode->level;
850 printk(KERN_DEBUG "== Level %d ==\n", level);
851 }
852 dbg_dump_znode(c, znode);
853 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
854 }
2ba5f7ae 855 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1e51764a
AB
856}
857
858static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
859 void *priv)
860{
861 dbg_dump_znode(c, znode);
862 return 0;
863}
864
865/**
866 * dbg_dump_index - dump the on-flash index.
867 * @c: UBIFS file-system description object
868 *
869 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
870 * which dumps only in-memory znodes and does not read znodes which from flash.
871 */
872void dbg_dump_index(struct ubifs_info *c)
873{
874 dbg_walk_index(c, NULL, dump_znode, NULL);
875}
876
84abf972
AB
877/**
878 * dbg_save_space_info - save information about flash space.
879 * @c: UBIFS file-system description object
880 *
881 * This function saves information about UBIFS free space, dirty space, etc, in
882 * order to check it later.
883 */
884void dbg_save_space_info(struct ubifs_info *c)
885{
886 struct ubifs_debug_info *d = c->dbg;
887
888 ubifs_get_lp_stats(c, &d->saved_lst);
889
890 spin_lock(&c->space_lock);
891 d->saved_free = ubifs_get_free_space_nolock(c);
892 spin_unlock(&c->space_lock);
893}
894
895/**
896 * dbg_check_space_info - check flash space information.
897 * @c: UBIFS file-system description object
898 *
899 * This function compares current flash space information with the information
900 * which was saved when the 'dbg_save_space_info()' function was called.
901 * Returns zero if the information has not changed, and %-EINVAL it it has
902 * changed.
903 */
904int dbg_check_space_info(struct ubifs_info *c)
905{
906 struct ubifs_debug_info *d = c->dbg;
907 struct ubifs_lp_stats lst;
908 long long avail, free;
909
910 spin_lock(&c->space_lock);
911 avail = ubifs_calc_available(c, c->min_idx_lebs);
912 spin_unlock(&c->space_lock);
913 free = ubifs_get_free_space(c);
914
915 if (free != d->saved_free) {
916 ubifs_err("free space changed from %lld to %lld",
917 d->saved_free, free);
918 goto out;
919 }
920
921 return 0;
922
923out:
924 ubifs_msg("saved lprops statistics dump");
925 dbg_dump_lstats(&d->saved_lst);
926 ubifs_get_lp_stats(c, &lst);
927 ubifs_msg("current lprops statistics dump");
928 dbg_dump_lstats(&d->saved_lst);
929 spin_lock(&c->space_lock);
930 dbg_dump_budg(c);
931 spin_unlock(&c->space_lock);
932 dump_stack();
933 return -EINVAL;
934}
935
1e51764a
AB
936/**
937 * dbg_check_synced_i_size - check synchronized inode size.
938 * @inode: inode to check
939 *
940 * If inode is clean, synchronized inode size has to be equivalent to current
941 * inode size. This function has to be called only for locked inodes (@i_mutex
942 * has to be locked). Returns %0 if synchronized inode size if correct, and
943 * %-EINVAL if not.
944 */
945int dbg_check_synced_i_size(struct inode *inode)
946{
947 int err = 0;
948 struct ubifs_inode *ui = ubifs_inode(inode);
949
950 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
951 return 0;
952 if (!S_ISREG(inode->i_mode))
953 return 0;
954
955 mutex_lock(&ui->ui_mutex);
956 spin_lock(&ui->ui_lock);
957 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
958 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
959 "is clean", ui->ui_size, ui->synced_i_size);
960 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
961 inode->i_mode, i_size_read(inode));
962 dbg_dump_stack();
963 err = -EINVAL;
964 }
965 spin_unlock(&ui->ui_lock);
966 mutex_unlock(&ui->ui_mutex);
967 return err;
968}
969
970/*
971 * dbg_check_dir - check directory inode size and link count.
972 * @c: UBIFS file-system description object
973 * @dir: the directory to calculate size for
974 * @size: the result is returned here
975 *
976 * This function makes sure that directory size and link count are correct.
977 * Returns zero in case of success and a negative error code in case of
978 * failure.
979 *
980 * Note, it is good idea to make sure the @dir->i_mutex is locked before
981 * calling this function.
982 */
983int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
984{
985 unsigned int nlink = 2;
986 union ubifs_key key;
987 struct ubifs_dent_node *dent, *pdent = NULL;
988 struct qstr nm = { .name = NULL };
989 loff_t size = UBIFS_INO_NODE_SZ;
990
991 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
992 return 0;
993
994 if (!S_ISDIR(dir->i_mode))
995 return 0;
996
997 lowest_dent_key(c, &key, dir->i_ino);
998 while (1) {
999 int err;
1000
1001 dent = ubifs_tnc_next_ent(c, &key, &nm);
1002 if (IS_ERR(dent)) {
1003 err = PTR_ERR(dent);
1004 if (err == -ENOENT)
1005 break;
1006 return err;
1007 }
1008
1009 nm.name = dent->name;
1010 nm.len = le16_to_cpu(dent->nlen);
1011 size += CALC_DENT_SIZE(nm.len);
1012 if (dent->type == UBIFS_ITYPE_DIR)
1013 nlink += 1;
1014 kfree(pdent);
1015 pdent = dent;
1016 key_read(c, &dent->key, &key);
1017 }
1018 kfree(pdent);
1019
1020 if (i_size_read(dir) != size) {
1021 ubifs_err("directory inode %lu has size %llu, "
1022 "but calculated size is %llu", dir->i_ino,
1023 (unsigned long long)i_size_read(dir),
1024 (unsigned long long)size);
1025 dump_stack();
1026 return -EINVAL;
1027 }
1028 if (dir->i_nlink != nlink) {
1029 ubifs_err("directory inode %lu has nlink %u, but calculated "
1030 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1031 dump_stack();
1032 return -EINVAL;
1033 }
1034
1035 return 0;
1036}
1037
1038/**
1039 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1040 * @c: UBIFS file-system description object
1041 * @zbr1: first zbranch
1042 * @zbr2: following zbranch
1043 *
1044 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1045 * names of the direntries/xentries which are referred by the keys. This
1046 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1047 * sure the name of direntry/xentry referred by @zbr1 is less than
1048 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1049 * and a negative error code in case of failure.
1050 */
1051static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1052 struct ubifs_zbranch *zbr2)
1053{
1054 int err, nlen1, nlen2, cmp;
1055 struct ubifs_dent_node *dent1, *dent2;
1056 union ubifs_key key;
1057
1058 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1059 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1060 if (!dent1)
1061 return -ENOMEM;
1062 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1063 if (!dent2) {
1064 err = -ENOMEM;
1065 goto out_free;
1066 }
1067
1068 err = ubifs_tnc_read_node(c, zbr1, dent1);
1069 if (err)
1070 goto out_free;
1071 err = ubifs_validate_entry(c, dent1);
1072 if (err)
1073 goto out_free;
1074
1075 err = ubifs_tnc_read_node(c, zbr2, dent2);
1076 if (err)
1077 goto out_free;
1078 err = ubifs_validate_entry(c, dent2);
1079 if (err)
1080 goto out_free;
1081
1082 /* Make sure node keys are the same as in zbranch */
1083 err = 1;
1084 key_read(c, &dent1->key, &key);
1085 if (keys_cmp(c, &zbr1->key, &key)) {
5d38b3ac
AB
1086 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1087 zbr1->offs, DBGKEY(&key));
1088 dbg_err("but it should have key %s according to tnc",
1089 DBGKEY(&zbr1->key));
2ba5f7ae 1090 dbg_dump_node(c, dent1);
552ff317 1091 goto out_free;
1e51764a
AB
1092 }
1093
1094 key_read(c, &dent2->key, &key);
1095 if (keys_cmp(c, &zbr2->key, &key)) {
5d38b3ac
AB
1096 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1097 zbr1->offs, DBGKEY(&key));
1098 dbg_err("but it should have key %s according to tnc",
1099 DBGKEY(&zbr2->key));
2ba5f7ae 1100 dbg_dump_node(c, dent2);
552ff317 1101 goto out_free;
1e51764a
AB
1102 }
1103
1104 nlen1 = le16_to_cpu(dent1->nlen);
1105 nlen2 = le16_to_cpu(dent2->nlen);
1106
1107 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1108 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1109 err = 0;
1110 goto out_free;
1111 }
1112 if (cmp == 0 && nlen1 == nlen2)
5d38b3ac 1113 dbg_err("2 xent/dent nodes with the same name");
1e51764a 1114 else
5d38b3ac 1115 dbg_err("bad order of colliding key %s",
1e51764a
AB
1116 DBGKEY(&key));
1117
552ff317 1118 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1e51764a 1119 dbg_dump_node(c, dent1);
552ff317 1120 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1e51764a
AB
1121 dbg_dump_node(c, dent2);
1122
1123out_free:
1124 kfree(dent2);
1125 kfree(dent1);
1126 return err;
1127}
1128
1129/**
1130 * dbg_check_znode - check if znode is all right.
1131 * @c: UBIFS file-system description object
1132 * @zbr: zbranch which points to this znode
1133 *
1134 * This function makes sure that znode referred to by @zbr is all right.
1135 * Returns zero if it is, and %-EINVAL if it is not.
1136 */
1137static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1138{
1139 struct ubifs_znode *znode = zbr->znode;
1140 struct ubifs_znode *zp = znode->parent;
1141 int n, err, cmp;
1142
1143 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1144 err = 1;
1145 goto out;
1146 }
1147 if (znode->level < 0) {
1148 err = 2;
1149 goto out;
1150 }
1151 if (znode->iip < 0 || znode->iip >= c->fanout) {
1152 err = 3;
1153 goto out;
1154 }
1155
1156 if (zbr->len == 0)
1157 /* Only dirty zbranch may have no on-flash nodes */
1158 if (!ubifs_zn_dirty(znode)) {
1159 err = 4;
1160 goto out;
1161 }
1162
1163 if (ubifs_zn_dirty(znode)) {
1164 /*
1165 * If znode is dirty, its parent has to be dirty as well. The
1166 * order of the operation is important, so we have to have
1167 * memory barriers.
1168 */
1169 smp_mb();
1170 if (zp && !ubifs_zn_dirty(zp)) {
1171 /*
1172 * The dirty flag is atomic and is cleared outside the
1173 * TNC mutex, so znode's dirty flag may now have
1174 * been cleared. The child is always cleared before the
1175 * parent, so we just need to check again.
1176 */
1177 smp_mb();
1178 if (ubifs_zn_dirty(znode)) {
1179 err = 5;
1180 goto out;
1181 }
1182 }
1183 }
1184
1185 if (zp) {
1186 const union ubifs_key *min, *max;
1187
1188 if (znode->level != zp->level - 1) {
1189 err = 6;
1190 goto out;
1191 }
1192
1193 /* Make sure the 'parent' pointer in our znode is correct */
1194 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1195 if (!err) {
1196 /* This zbranch does not exist in the parent */
1197 err = 7;
1198 goto out;
1199 }
1200
1201 if (znode->iip >= zp->child_cnt) {
1202 err = 8;
1203 goto out;
1204 }
1205
1206 if (znode->iip != n) {
1207 /* This may happen only in case of collisions */
1208 if (keys_cmp(c, &zp->zbranch[n].key,
1209 &zp->zbranch[znode->iip].key)) {
1210 err = 9;
1211 goto out;
1212 }
1213 n = znode->iip;
1214 }
1215
1216 /*
1217 * Make sure that the first key in our znode is greater than or
1218 * equal to the key in the pointing zbranch.
1219 */
1220 min = &zbr->key;
1221 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1222 if (cmp == 1) {
1223 err = 10;
1224 goto out;
1225 }
1226
1227 if (n + 1 < zp->child_cnt) {
1228 max = &zp->zbranch[n + 1].key;
1229
1230 /*
1231 * Make sure the last key in our znode is less or
7d4e9ccb 1232 * equivalent than the key in the zbranch which goes
1e51764a
AB
1233 * after our pointing zbranch.
1234 */
1235 cmp = keys_cmp(c, max,
1236 &znode->zbranch[znode->child_cnt - 1].key);
1237 if (cmp == -1) {
1238 err = 11;
1239 goto out;
1240 }
1241 }
1242 } else {
1243 /* This may only be root znode */
1244 if (zbr != &c->zroot) {
1245 err = 12;
1246 goto out;
1247 }
1248 }
1249
1250 /*
1251 * Make sure that next key is greater or equivalent then the previous
1252 * one.
1253 */
1254 for (n = 1; n < znode->child_cnt; n++) {
1255 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1256 &znode->zbranch[n].key);
1257 if (cmp > 0) {
1258 err = 13;
1259 goto out;
1260 }
1261 if (cmp == 0) {
1262 /* This can only be keys with colliding hash */
1263 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1264 err = 14;
1265 goto out;
1266 }
1267
1268 if (znode->level != 0 || c->replaying)
1269 continue;
1270
1271 /*
1272 * Colliding keys should follow binary order of
1273 * corresponding xentry/dentry names.
1274 */
1275 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1276 &znode->zbranch[n]);
1277 if (err < 0)
1278 return err;
1279 if (err) {
1280 err = 15;
1281 goto out;
1282 }
1283 }
1284 }
1285
1286 for (n = 0; n < znode->child_cnt; n++) {
1287 if (!znode->zbranch[n].znode &&
1288 (znode->zbranch[n].lnum == 0 ||
1289 znode->zbranch[n].len == 0)) {
1290 err = 16;
1291 goto out;
1292 }
1293
1294 if (znode->zbranch[n].lnum != 0 &&
1295 znode->zbranch[n].len == 0) {
1296 err = 17;
1297 goto out;
1298 }
1299
1300 if (znode->zbranch[n].lnum == 0 &&
1301 znode->zbranch[n].len != 0) {
1302 err = 18;
1303 goto out;
1304 }
1305
1306 if (znode->zbranch[n].lnum == 0 &&
1307 znode->zbranch[n].offs != 0) {
1308 err = 19;
1309 goto out;
1310 }
1311
1312 if (znode->level != 0 && znode->zbranch[n].znode)
1313 if (znode->zbranch[n].znode->parent != znode) {
1314 err = 20;
1315 goto out;
1316 }
1317 }
1318
1319 return 0;
1320
1321out:
1322 ubifs_err("failed, error %d", err);
1323 ubifs_msg("dump of the znode");
1324 dbg_dump_znode(c, znode);
1325 if (zp) {
1326 ubifs_msg("dump of the parent znode");
1327 dbg_dump_znode(c, zp);
1328 }
1329 dump_stack();
1330 return -EINVAL;
1331}
1332
1333/**
1334 * dbg_check_tnc - check TNC tree.
1335 * @c: UBIFS file-system description object
1336 * @extra: do extra checks that are possible at start commit
1337 *
1338 * This function traverses whole TNC tree and checks every znode. Returns zero
1339 * if everything is all right and %-EINVAL if something is wrong with TNC.
1340 */
1341int dbg_check_tnc(struct ubifs_info *c, int extra)
1342{
1343 struct ubifs_znode *znode;
1344 long clean_cnt = 0, dirty_cnt = 0;
1345 int err, last;
1346
1347 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1348 return 0;
1349
1350 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1351 if (!c->zroot.znode)
1352 return 0;
1353
1354 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1355 while (1) {
1356 struct ubifs_znode *prev;
1357 struct ubifs_zbranch *zbr;
1358
1359 if (!znode->parent)
1360 zbr = &c->zroot;
1361 else
1362 zbr = &znode->parent->zbranch[znode->iip];
1363
1364 err = dbg_check_znode(c, zbr);
1365 if (err)
1366 return err;
1367
1368 if (extra) {
1369 if (ubifs_zn_dirty(znode))
1370 dirty_cnt += 1;
1371 else
1372 clean_cnt += 1;
1373 }
1374
1375 prev = znode;
1376 znode = ubifs_tnc_postorder_next(znode);
1377 if (!znode)
1378 break;
1379
1380 /*
1381 * If the last key of this znode is equivalent to the first key
1382 * of the next znode (collision), then check order of the keys.
1383 */
1384 last = prev->child_cnt - 1;
1385 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1386 !keys_cmp(c, &prev->zbranch[last].key,
1387 &znode->zbranch[0].key)) {
1388 err = dbg_check_key_order(c, &prev->zbranch[last],
1389 &znode->zbranch[0]);
1390 if (err < 0)
1391 return err;
1392 if (err) {
1393 ubifs_msg("first znode");
1394 dbg_dump_znode(c, prev);
1395 ubifs_msg("second znode");
1396 dbg_dump_znode(c, znode);
1397 return -EINVAL;
1398 }
1399 }
1400 }
1401
1402 if (extra) {
1403 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1404 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1405 atomic_long_read(&c->clean_zn_cnt),
1406 clean_cnt);
1407 return -EINVAL;
1408 }
1409 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1410 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1411 atomic_long_read(&c->dirty_zn_cnt),
1412 dirty_cnt);
1413 return -EINVAL;
1414 }
1415 }
1416
1417 return 0;
1418}
1419
1420/**
1421 * dbg_walk_index - walk the on-flash index.
1422 * @c: UBIFS file-system description object
1423 * @leaf_cb: called for each leaf node
1424 * @znode_cb: called for each indexing node
227c75c9 1425 * @priv: private data which is passed to callbacks
1e51764a
AB
1426 *
1427 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1428 * node and @znode_cb for each indexing node. Returns zero in case of success
1429 * and a negative error code in case of failure.
1430 *
1431 * It would be better if this function removed every znode it pulled to into
1432 * the TNC, so that the behavior more closely matched the non-debugging
1433 * behavior.
1434 */
1435int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1436 dbg_znode_callback znode_cb, void *priv)
1437{
1438 int err;
1439 struct ubifs_zbranch *zbr;
1440 struct ubifs_znode *znode, *child;
1441
1442 mutex_lock(&c->tnc_mutex);
1443 /* If the root indexing node is not in TNC - pull it */
1444 if (!c->zroot.znode) {
1445 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1446 if (IS_ERR(c->zroot.znode)) {
1447 err = PTR_ERR(c->zroot.znode);
1448 c->zroot.znode = NULL;
1449 goto out_unlock;
1450 }
1451 }
1452
1453 /*
1454 * We are going to traverse the indexing tree in the postorder manner.
1455 * Go down and find the leftmost indexing node where we are going to
1456 * start from.
1457 */
1458 znode = c->zroot.znode;
1459 while (znode->level > 0) {
1460 zbr = &znode->zbranch[0];
1461 child = zbr->znode;
1462 if (!child) {
1463 child = ubifs_load_znode(c, zbr, znode, 0);
1464 if (IS_ERR(child)) {
1465 err = PTR_ERR(child);
1466 goto out_unlock;
1467 }
1468 zbr->znode = child;
1469 }
1470
1471 znode = child;
1472 }
1473
1474 /* Iterate over all indexing nodes */
1475 while (1) {
1476 int idx;
1477
1478 cond_resched();
1479
1480 if (znode_cb) {
1481 err = znode_cb(c, znode, priv);
1482 if (err) {
1483 ubifs_err("znode checking function returned "
1484 "error %d", err);
1485 dbg_dump_znode(c, znode);
1486 goto out_dump;
1487 }
1488 }
1489 if (leaf_cb && znode->level == 0) {
1490 for (idx = 0; idx < znode->child_cnt; idx++) {
1491 zbr = &znode->zbranch[idx];
1492 err = leaf_cb(c, zbr, priv);
1493 if (err) {
1494 ubifs_err("leaf checking function "
1495 "returned error %d, for leaf "
1496 "at LEB %d:%d",
1497 err, zbr->lnum, zbr->offs);
1498 goto out_dump;
1499 }
1500 }
1501 }
1502
1503 if (!znode->parent)
1504 break;
1505
1506 idx = znode->iip + 1;
1507 znode = znode->parent;
1508 if (idx < znode->child_cnt) {
1509 /* Switch to the next index in the parent */
1510 zbr = &znode->zbranch[idx];
1511 child = zbr->znode;
1512 if (!child) {
1513 child = ubifs_load_znode(c, zbr, znode, idx);
1514 if (IS_ERR(child)) {
1515 err = PTR_ERR(child);
1516 goto out_unlock;
1517 }
1518 zbr->znode = child;
1519 }
1520 znode = child;
1521 } else
1522 /*
1523 * This is the last child, switch to the parent and
1524 * continue.
1525 */
1526 continue;
1527
1528 /* Go to the lowest leftmost znode in the new sub-tree */
1529 while (znode->level > 0) {
1530 zbr = &znode->zbranch[0];
1531 child = zbr->znode;
1532 if (!child) {
1533 child = ubifs_load_znode(c, zbr, znode, 0);
1534 if (IS_ERR(child)) {
1535 err = PTR_ERR(child);
1536 goto out_unlock;
1537 }
1538 zbr->znode = child;
1539 }
1540 znode = child;
1541 }
1542 }
1543
1544 mutex_unlock(&c->tnc_mutex);
1545 return 0;
1546
1547out_dump:
1548 if (znode->parent)
1549 zbr = &znode->parent->zbranch[znode->iip];
1550 else
1551 zbr = &c->zroot;
1552 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1553 dbg_dump_znode(c, znode);
1554out_unlock:
1555 mutex_unlock(&c->tnc_mutex);
1556 return err;
1557}
1558
1559/**
1560 * add_size - add znode size to partially calculated index size.
1561 * @c: UBIFS file-system description object
1562 * @znode: znode to add size for
1563 * @priv: partially calculated index size
1564 *
1565 * This is a helper function for 'dbg_check_idx_size()' which is called for
1566 * every indexing node and adds its size to the 'long long' variable pointed to
1567 * by @priv.
1568 */
1569static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1570{
1571 long long *idx_size = priv;
1572 int add;
1573
1574 add = ubifs_idx_node_sz(c, znode->child_cnt);
1575 add = ALIGN(add, 8);
1576 *idx_size += add;
1577 return 0;
1578}
1579
1580/**
1581 * dbg_check_idx_size - check index size.
1582 * @c: UBIFS file-system description object
1583 * @idx_size: size to check
1584 *
1585 * This function walks the UBIFS index, calculates its size and checks that the
1586 * size is equivalent to @idx_size. Returns zero in case of success and a
1587 * negative error code in case of failure.
1588 */
1589int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1590{
1591 int err;
1592 long long calc = 0;
1593
1594 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1595 return 0;
1596
1597 err = dbg_walk_index(c, NULL, add_size, &calc);
1598 if (err) {
1599 ubifs_err("error %d while walking the index", err);
1600 return err;
1601 }
1602
1603 if (calc != idx_size) {
1604 ubifs_err("index size check failed: calculated size is %lld, "
1605 "should be %lld", calc, idx_size);
1606 dump_stack();
1607 return -EINVAL;
1608 }
1609
1610 return 0;
1611}
1612
1613/**
1614 * struct fsck_inode - information about an inode used when checking the file-system.
1615 * @rb: link in the RB-tree of inodes
1616 * @inum: inode number
1617 * @mode: inode type, permissions, etc
1618 * @nlink: inode link count
1619 * @xattr_cnt: count of extended attributes
1620 * @references: how many directory/xattr entries refer this inode (calculated
1621 * while walking the index)
1622 * @calc_cnt: for directory inode count of child directories
1623 * @size: inode size (read from on-flash inode)
1624 * @xattr_sz: summary size of all extended attributes (read from on-flash
1625 * inode)
1626 * @calc_sz: for directories calculated directory size
1627 * @calc_xcnt: count of extended attributes
1628 * @calc_xsz: calculated summary size of all extended attributes
1629 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1630 * inode (read from on-flash inode)
1631 * @calc_xnms: calculated sum of lengths of all extended attribute names
1632 */
1633struct fsck_inode {
1634 struct rb_node rb;
1635 ino_t inum;
1636 umode_t mode;
1637 unsigned int nlink;
1638 unsigned int xattr_cnt;
1639 int references;
1640 int calc_cnt;
1641 long long size;
1642 unsigned int xattr_sz;
1643 long long calc_sz;
1644 long long calc_xcnt;
1645 long long calc_xsz;
1646 unsigned int xattr_nms;
1647 long long calc_xnms;
1648};
1649
1650/**
1651 * struct fsck_data - private FS checking information.
1652 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1653 */
1654struct fsck_data {
1655 struct rb_root inodes;
1656};
1657
1658/**
1659 * add_inode - add inode information to RB-tree of inodes.
1660 * @c: UBIFS file-system description object
1661 * @fsckd: FS checking information
1662 * @ino: raw UBIFS inode to add
1663 *
1664 * This is a helper function for 'check_leaf()' which adds information about
1665 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1666 * case of success and a negative error code in case of failure.
1667 */
1668static struct fsck_inode *add_inode(struct ubifs_info *c,
1669 struct fsck_data *fsckd,
1670 struct ubifs_ino_node *ino)
1671{
1672 struct rb_node **p, *parent = NULL;
1673 struct fsck_inode *fscki;
1674 ino_t inum = key_inum_flash(c, &ino->key);
1675
1676 p = &fsckd->inodes.rb_node;
1677 while (*p) {
1678 parent = *p;
1679 fscki = rb_entry(parent, struct fsck_inode, rb);
1680 if (inum < fscki->inum)
1681 p = &(*p)->rb_left;
1682 else if (inum > fscki->inum)
1683 p = &(*p)->rb_right;
1684 else
1685 return fscki;
1686 }
1687
1688 if (inum > c->highest_inum) {
1689 ubifs_err("too high inode number, max. is %lu",
e84461ad 1690 (unsigned long)c->highest_inum);
1e51764a
AB
1691 return ERR_PTR(-EINVAL);
1692 }
1693
1694 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1695 if (!fscki)
1696 return ERR_PTR(-ENOMEM);
1697
1698 fscki->inum = inum;
1699 fscki->nlink = le32_to_cpu(ino->nlink);
1700 fscki->size = le64_to_cpu(ino->size);
1701 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1702 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1703 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1704 fscki->mode = le32_to_cpu(ino->mode);
1705 if (S_ISDIR(fscki->mode)) {
1706 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1707 fscki->calc_cnt = 2;
1708 }
1709 rb_link_node(&fscki->rb, parent, p);
1710 rb_insert_color(&fscki->rb, &fsckd->inodes);
1711 return fscki;
1712}
1713
1714/**
1715 * search_inode - search inode in the RB-tree of inodes.
1716 * @fsckd: FS checking information
1717 * @inum: inode number to search
1718 *
1719 * This is a helper function for 'check_leaf()' which searches inode @inum in
1720 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1721 * the inode was not found.
1722 */
1723static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1724{
1725 struct rb_node *p;
1726 struct fsck_inode *fscki;
1727
1728 p = fsckd->inodes.rb_node;
1729 while (p) {
1730 fscki = rb_entry(p, struct fsck_inode, rb);
1731 if (inum < fscki->inum)
1732 p = p->rb_left;
1733 else if (inum > fscki->inum)
1734 p = p->rb_right;
1735 else
1736 return fscki;
1737 }
1738 return NULL;
1739}
1740
1741/**
1742 * read_add_inode - read inode node and add it to RB-tree of inodes.
1743 * @c: UBIFS file-system description object
1744 * @fsckd: FS checking information
1745 * @inum: inode number to read
1746 *
1747 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1748 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1749 * information pointer in case of success and a negative error code in case of
1750 * failure.
1751 */
1752static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1753 struct fsck_data *fsckd, ino_t inum)
1754{
1755 int n, err;
1756 union ubifs_key key;
1757 struct ubifs_znode *znode;
1758 struct ubifs_zbranch *zbr;
1759 struct ubifs_ino_node *ino;
1760 struct fsck_inode *fscki;
1761
1762 fscki = search_inode(fsckd, inum);
1763 if (fscki)
1764 return fscki;
1765
1766 ino_key_init(c, &key, inum);
1767 err = ubifs_lookup_level0(c, &key, &znode, &n);
1768 if (!err) {
e84461ad 1769 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1e51764a
AB
1770 return ERR_PTR(-ENOENT);
1771 } else if (err < 0) {
e84461ad
AB
1772 ubifs_err("error %d while looking up inode %lu",
1773 err, (unsigned long)inum);
1e51764a
AB
1774 return ERR_PTR(err);
1775 }
1776
1777 zbr = &znode->zbranch[n];
1778 if (zbr->len < UBIFS_INO_NODE_SZ) {
e84461ad
AB
1779 ubifs_err("bad node %lu node length %d",
1780 (unsigned long)inum, zbr->len);
1e51764a
AB
1781 return ERR_PTR(-EINVAL);
1782 }
1783
1784 ino = kmalloc(zbr->len, GFP_NOFS);
1785 if (!ino)
1786 return ERR_PTR(-ENOMEM);
1787
1788 err = ubifs_tnc_read_node(c, zbr, ino);
1789 if (err) {
1790 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1791 zbr->lnum, zbr->offs, err);
1792 kfree(ino);
1793 return ERR_PTR(err);
1794 }
1795
1796 fscki = add_inode(c, fsckd, ino);
1797 kfree(ino);
1798 if (IS_ERR(fscki)) {
1799 ubifs_err("error %ld while adding inode %lu node",
e84461ad 1800 PTR_ERR(fscki), (unsigned long)inum);
1e51764a
AB
1801 return fscki;
1802 }
1803
1804 return fscki;
1805}
1806
1807/**
1808 * check_leaf - check leaf node.
1809 * @c: UBIFS file-system description object
1810 * @zbr: zbranch of the leaf node to check
1811 * @priv: FS checking information
1812 *
1813 * This is a helper function for 'dbg_check_filesystem()' which is called for
1814 * every single leaf node while walking the indexing tree. It checks that the
1815 * leaf node referred from the indexing tree exists, has correct CRC, and does
1816 * some other basic validation. This function is also responsible for building
1817 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1818 * calculates reference count, size, etc for each inode in order to later
1819 * compare them to the information stored inside the inodes and detect possible
1820 * inconsistencies. Returns zero in case of success and a negative error code
1821 * in case of failure.
1822 */
1823static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1824 void *priv)
1825{
1826 ino_t inum;
1827 void *node;
1828 struct ubifs_ch *ch;
1829 int err, type = key_type(c, &zbr->key);
1830 struct fsck_inode *fscki;
1831
1832 if (zbr->len < UBIFS_CH_SZ) {
1833 ubifs_err("bad leaf length %d (LEB %d:%d)",
1834 zbr->len, zbr->lnum, zbr->offs);
1835 return -EINVAL;
1836 }
1837
1838 node = kmalloc(zbr->len, GFP_NOFS);
1839 if (!node)
1840 return -ENOMEM;
1841
1842 err = ubifs_tnc_read_node(c, zbr, node);
1843 if (err) {
1844 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1845 zbr->lnum, zbr->offs, err);
1846 goto out_free;
1847 }
1848
1849 /* If this is an inode node, add it to RB-tree of inodes */
1850 if (type == UBIFS_INO_KEY) {
1851 fscki = add_inode(c, priv, node);
1852 if (IS_ERR(fscki)) {
1853 err = PTR_ERR(fscki);
1854 ubifs_err("error %d while adding inode node", err);
1855 goto out_dump;
1856 }
1857 goto out;
1858 }
1859
1860 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1861 type != UBIFS_DATA_KEY) {
1862 ubifs_err("unexpected node type %d at LEB %d:%d",
1863 type, zbr->lnum, zbr->offs);
1864 err = -EINVAL;
1865 goto out_free;
1866 }
1867
1868 ch = node;
1869 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1870 ubifs_err("too high sequence number, max. is %llu",
1871 c->max_sqnum);
1872 err = -EINVAL;
1873 goto out_dump;
1874 }
1875
1876 if (type == UBIFS_DATA_KEY) {
1877 long long blk_offs;
1878 struct ubifs_data_node *dn = node;
1879
1880 /*
1881 * Search the inode node this data node belongs to and insert
1882 * it to the RB-tree of inodes.
1883 */
1884 inum = key_inum_flash(c, &dn->key);
1885 fscki = read_add_inode(c, priv, inum);
1886 if (IS_ERR(fscki)) {
1887 err = PTR_ERR(fscki);
1888 ubifs_err("error %d while processing data node and "
e84461ad
AB
1889 "trying to find inode node %lu",
1890 err, (unsigned long)inum);
1e51764a
AB
1891 goto out_dump;
1892 }
1893
1894 /* Make sure the data node is within inode size */
1895 blk_offs = key_block_flash(c, &dn->key);
1896 blk_offs <<= UBIFS_BLOCK_SHIFT;
1897 blk_offs += le32_to_cpu(dn->size);
1898 if (blk_offs > fscki->size) {
1899 ubifs_err("data node at LEB %d:%d is not within inode "
1900 "size %lld", zbr->lnum, zbr->offs,
1901 fscki->size);
1902 err = -EINVAL;
1903 goto out_dump;
1904 }
1905 } else {
1906 int nlen;
1907 struct ubifs_dent_node *dent = node;
1908 struct fsck_inode *fscki1;
1909
1910 err = ubifs_validate_entry(c, dent);
1911 if (err)
1912 goto out_dump;
1913
1914 /*
1915 * Search the inode node this entry refers to and the parent
1916 * inode node and insert them to the RB-tree of inodes.
1917 */
1918 inum = le64_to_cpu(dent->inum);
1919 fscki = read_add_inode(c, priv, inum);
1920 if (IS_ERR(fscki)) {
1921 err = PTR_ERR(fscki);
1922 ubifs_err("error %d while processing entry node and "
e84461ad
AB
1923 "trying to find inode node %lu",
1924 err, (unsigned long)inum);
1e51764a
AB
1925 goto out_dump;
1926 }
1927
1928 /* Count how many direntries or xentries refers this inode */
1929 fscki->references += 1;
1930
1931 inum = key_inum_flash(c, &dent->key);
1932 fscki1 = read_add_inode(c, priv, inum);
1933 if (IS_ERR(fscki1)) {
1934 err = PTR_ERR(fscki);
1935 ubifs_err("error %d while processing entry node and "
1936 "trying to find parent inode node %lu",
e84461ad 1937 err, (unsigned long)inum);
1e51764a
AB
1938 goto out_dump;
1939 }
1940
1941 nlen = le16_to_cpu(dent->nlen);
1942 if (type == UBIFS_XENT_KEY) {
1943 fscki1->calc_xcnt += 1;
1944 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1945 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1946 fscki1->calc_xnms += nlen;
1947 } else {
1948 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1949 if (dent->type == UBIFS_ITYPE_DIR)
1950 fscki1->calc_cnt += 1;
1951 }
1952 }
1953
1954out:
1955 kfree(node);
1956 return 0;
1957
1958out_dump:
1959 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1960 dbg_dump_node(c, node);
1961out_free:
1962 kfree(node);
1963 return err;
1964}
1965
1966/**
1967 * free_inodes - free RB-tree of inodes.
1968 * @fsckd: FS checking information
1969 */
1970static void free_inodes(struct fsck_data *fsckd)
1971{
1972 struct rb_node *this = fsckd->inodes.rb_node;
1973 struct fsck_inode *fscki;
1974
1975 while (this) {
1976 if (this->rb_left)
1977 this = this->rb_left;
1978 else if (this->rb_right)
1979 this = this->rb_right;
1980 else {
1981 fscki = rb_entry(this, struct fsck_inode, rb);
1982 this = rb_parent(this);
1983 if (this) {
1984 if (this->rb_left == &fscki->rb)
1985 this->rb_left = NULL;
1986 else
1987 this->rb_right = NULL;
1988 }
1989 kfree(fscki);
1990 }
1991 }
1992}
1993
1994/**
1995 * check_inodes - checks all inodes.
1996 * @c: UBIFS file-system description object
1997 * @fsckd: FS checking information
1998 *
1999 * This is a helper function for 'dbg_check_filesystem()' which walks the
2000 * RB-tree of inodes after the index scan has been finished, and checks that
2001 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2002 * %-EINVAL if not, and a negative error code in case of failure.
2003 */
2004static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2005{
2006 int n, err;
2007 union ubifs_key key;
2008 struct ubifs_znode *znode;
2009 struct ubifs_zbranch *zbr;
2010 struct ubifs_ino_node *ino;
2011 struct fsck_inode *fscki;
2012 struct rb_node *this = rb_first(&fsckd->inodes);
2013
2014 while (this) {
2015 fscki = rb_entry(this, struct fsck_inode, rb);
2016 this = rb_next(this);
2017
2018 if (S_ISDIR(fscki->mode)) {
2019 /*
2020 * Directories have to have exactly one reference (they
2021 * cannot have hardlinks), although root inode is an
2022 * exception.
2023 */
2024 if (fscki->inum != UBIFS_ROOT_INO &&
2025 fscki->references != 1) {
2026 ubifs_err("directory inode %lu has %d "
2027 "direntries which refer it, but "
e84461ad
AB
2028 "should be 1",
2029 (unsigned long)fscki->inum,
1e51764a
AB
2030 fscki->references);
2031 goto out_dump;
2032 }
2033 if (fscki->inum == UBIFS_ROOT_INO &&
2034 fscki->references != 0) {
2035 ubifs_err("root inode %lu has non-zero (%d) "
2036 "direntries which refer it",
e84461ad
AB
2037 (unsigned long)fscki->inum,
2038 fscki->references);
1e51764a
AB
2039 goto out_dump;
2040 }
2041 if (fscki->calc_sz != fscki->size) {
2042 ubifs_err("directory inode %lu size is %lld, "
2043 "but calculated size is %lld",
e84461ad
AB
2044 (unsigned long)fscki->inum,
2045 fscki->size, fscki->calc_sz);
1e51764a
AB
2046 goto out_dump;
2047 }
2048 if (fscki->calc_cnt != fscki->nlink) {
2049 ubifs_err("directory inode %lu nlink is %d, "
2050 "but calculated nlink is %d",
e84461ad
AB
2051 (unsigned long)fscki->inum,
2052 fscki->nlink, fscki->calc_cnt);
1e51764a
AB
2053 goto out_dump;
2054 }
2055 } else {
2056 if (fscki->references != fscki->nlink) {
2057 ubifs_err("inode %lu nlink is %d, but "
e84461ad
AB
2058 "calculated nlink is %d",
2059 (unsigned long)fscki->inum,
1e51764a
AB
2060 fscki->nlink, fscki->references);
2061 goto out_dump;
2062 }
2063 }
2064 if (fscki->xattr_sz != fscki->calc_xsz) {
2065 ubifs_err("inode %lu has xattr size %u, but "
2066 "calculated size is %lld",
e84461ad 2067 (unsigned long)fscki->inum, fscki->xattr_sz,
1e51764a
AB
2068 fscki->calc_xsz);
2069 goto out_dump;
2070 }
2071 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2072 ubifs_err("inode %lu has %u xattrs, but "
e84461ad
AB
2073 "calculated count is %lld",
2074 (unsigned long)fscki->inum,
1e51764a
AB
2075 fscki->xattr_cnt, fscki->calc_xcnt);
2076 goto out_dump;
2077 }
2078 if (fscki->xattr_nms != fscki->calc_xnms) {
2079 ubifs_err("inode %lu has xattr names' size %u, but "
2080 "calculated names' size is %lld",
e84461ad 2081 (unsigned long)fscki->inum, fscki->xattr_nms,
1e51764a
AB
2082 fscki->calc_xnms);
2083 goto out_dump;
2084 }
2085 }
2086
2087 return 0;
2088
2089out_dump:
2090 /* Read the bad inode and dump it */
2091 ino_key_init(c, &key, fscki->inum);
2092 err = ubifs_lookup_level0(c, &key, &znode, &n);
2093 if (!err) {
e84461ad
AB
2094 ubifs_err("inode %lu not found in index",
2095 (unsigned long)fscki->inum);
1e51764a
AB
2096 return -ENOENT;
2097 } else if (err < 0) {
2098 ubifs_err("error %d while looking up inode %lu",
e84461ad 2099 err, (unsigned long)fscki->inum);
1e51764a
AB
2100 return err;
2101 }
2102
2103 zbr = &znode->zbranch[n];
2104 ino = kmalloc(zbr->len, GFP_NOFS);
2105 if (!ino)
2106 return -ENOMEM;
2107
2108 err = ubifs_tnc_read_node(c, zbr, ino);
2109 if (err) {
2110 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2111 zbr->lnum, zbr->offs, err);
2112 kfree(ino);
2113 return err;
2114 }
2115
2116 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
e84461ad 2117 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
1e51764a
AB
2118 dbg_dump_node(c, ino);
2119 kfree(ino);
2120 return -EINVAL;
2121}
2122
2123/**
2124 * dbg_check_filesystem - check the file-system.
2125 * @c: UBIFS file-system description object
2126 *
2127 * This function checks the file system, namely:
2128 * o makes sure that all leaf nodes exist and their CRCs are correct;
2129 * o makes sure inode nlink, size, xattr size/count are correct (for all
2130 * inodes).
2131 *
2132 * The function reads whole indexing tree and all nodes, so it is pretty
2133 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2134 * not, and a negative error code in case of failure.
2135 */
2136int dbg_check_filesystem(struct ubifs_info *c)
2137{
2138 int err;
2139 struct fsck_data fsckd;
2140
2141 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2142 return 0;
2143
2144 fsckd.inodes = RB_ROOT;
2145 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2146 if (err)
2147 goto out_free;
2148
2149 err = check_inodes(c, &fsckd);
2150 if (err)
2151 goto out_free;
2152
2153 free_inodes(&fsckd);
2154 return 0;
2155
2156out_free:
2157 ubifs_err("file-system check failed with error %d", err);
2158 dump_stack();
2159 free_inodes(&fsckd);
2160 return err;
2161}
2162
2163static int invocation_cnt;
2164
2165int dbg_force_in_the_gaps(void)
2166{
2167 if (!dbg_force_in_the_gaps_enabled)
2168 return 0;
2169 /* Force in-the-gaps every 8th commit */
2170 return !((invocation_cnt++) & 0x7);
2171}
2172
2173/* Failure mode for recovery testing */
2174
2175#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2176
2177struct failure_mode_info {
2178 struct list_head list;
2179 struct ubifs_info *c;
2180};
2181
2182static LIST_HEAD(fmi_list);
2183static DEFINE_SPINLOCK(fmi_lock);
2184
2185static unsigned int next;
2186
2187static int simple_rand(void)
2188{
2189 if (next == 0)
2190 next = current->pid;
2191 next = next * 1103515245 + 12345;
2192 return (next >> 16) & 32767;
2193}
2194
17c2f9f8 2195static void failure_mode_init(struct ubifs_info *c)
1e51764a
AB
2196{
2197 struct failure_mode_info *fmi;
2198
2199 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2200 if (!fmi) {
552ff317 2201 ubifs_err("Failed to register failure mode - no memory");
1e51764a
AB
2202 return;
2203 }
2204 fmi->c = c;
2205 spin_lock(&fmi_lock);
2206 list_add_tail(&fmi->list, &fmi_list);
2207 spin_unlock(&fmi_lock);
2208}
2209
17c2f9f8 2210static void failure_mode_exit(struct ubifs_info *c)
1e51764a
AB
2211{
2212 struct failure_mode_info *fmi, *tmp;
2213
2214 spin_lock(&fmi_lock);
2215 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2216 if (fmi->c == c) {
2217 list_del(&fmi->list);
2218 kfree(fmi);
2219 }
2220 spin_unlock(&fmi_lock);
2221}
2222
2223static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2224{
2225 struct failure_mode_info *fmi;
2226
2227 spin_lock(&fmi_lock);
2228 list_for_each_entry(fmi, &fmi_list, list)
2229 if (fmi->c->ubi == desc) {
2230 struct ubifs_info *c = fmi->c;
2231
2232 spin_unlock(&fmi_lock);
2233 return c;
2234 }
2235 spin_unlock(&fmi_lock);
2236 return NULL;
2237}
2238
2239static int in_failure_mode(struct ubi_volume_desc *desc)
2240{
2241 struct ubifs_info *c = dbg_find_info(desc);
2242
2243 if (c && dbg_failure_mode)
17c2f9f8 2244 return c->dbg->failure_mode;
1e51764a
AB
2245 return 0;
2246}
2247
2248static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2249{
2250 struct ubifs_info *c = dbg_find_info(desc);
17c2f9f8 2251 struct ubifs_debug_info *d;
1e51764a
AB
2252
2253 if (!c || !dbg_failure_mode)
2254 return 0;
17c2f9f8
AB
2255 d = c->dbg;
2256 if (d->failure_mode)
1e51764a 2257 return 1;
17c2f9f8 2258 if (!d->fail_cnt) {
1e51764a
AB
2259 /* First call - decide delay to failure */
2260 if (chance(1, 2)) {
2261 unsigned int delay = 1 << (simple_rand() >> 11);
2262
2263 if (chance(1, 2)) {
17c2f9f8
AB
2264 d->fail_delay = 1;
2265 d->fail_timeout = jiffies +
1e51764a
AB
2266 msecs_to_jiffies(delay);
2267 dbg_rcvry("failing after %ums", delay);
2268 } else {
17c2f9f8
AB
2269 d->fail_delay = 2;
2270 d->fail_cnt_max = delay;
1e51764a
AB
2271 dbg_rcvry("failing after %u calls", delay);
2272 }
2273 }
17c2f9f8 2274 d->fail_cnt += 1;
1e51764a
AB
2275 }
2276 /* Determine if failure delay has expired */
17c2f9f8
AB
2277 if (d->fail_delay == 1) {
2278 if (time_before(jiffies, d->fail_timeout))
1e51764a 2279 return 0;
17c2f9f8
AB
2280 } else if (d->fail_delay == 2)
2281 if (d->fail_cnt++ < d->fail_cnt_max)
1e51764a
AB
2282 return 0;
2283 if (lnum == UBIFS_SB_LNUM) {
2284 if (write) {
2285 if (chance(1, 2))
2286 return 0;
2287 } else if (chance(19, 20))
2288 return 0;
2289 dbg_rcvry("failing in super block LEB %d", lnum);
2290 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2291 if (chance(19, 20))
2292 return 0;
2293 dbg_rcvry("failing in master LEB %d", lnum);
2294 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2295 if (write) {
2296 if (chance(99, 100))
2297 return 0;
2298 } else if (chance(399, 400))
2299 return 0;
2300 dbg_rcvry("failing in log LEB %d", lnum);
2301 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2302 if (write) {
2303 if (chance(7, 8))
2304 return 0;
2305 } else if (chance(19, 20))
2306 return 0;
2307 dbg_rcvry("failing in LPT LEB %d", lnum);
2308 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2309 if (write) {
2310 if (chance(1, 2))
2311 return 0;
2312 } else if (chance(9, 10))
2313 return 0;
2314 dbg_rcvry("failing in orphan LEB %d", lnum);
2315 } else if (lnum == c->ihead_lnum) {
2316 if (chance(99, 100))
2317 return 0;
2318 dbg_rcvry("failing in index head LEB %d", lnum);
2319 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2320 if (chance(9, 10))
2321 return 0;
2322 dbg_rcvry("failing in GC head LEB %d", lnum);
2323 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2324 !ubifs_search_bud(c, lnum)) {
2325 if (chance(19, 20))
2326 return 0;
2327 dbg_rcvry("failing in non-bud LEB %d", lnum);
2328 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2329 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2330 if (chance(999, 1000))
2331 return 0;
2332 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2333 } else {
2334 if (chance(9999, 10000))
2335 return 0;
2336 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2337 }
2338 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
17c2f9f8 2339 d->failure_mode = 1;
1e51764a
AB
2340 dump_stack();
2341 return 1;
2342}
2343
2344static void cut_data(const void *buf, int len)
2345{
2346 int flen, i;
2347 unsigned char *p = (void *)buf;
2348
2349 flen = (len * (long long)simple_rand()) >> 15;
2350 for (i = flen; i < len; i++)
2351 p[i] = 0xff;
2352}
2353
2354int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2355 int len, int check)
2356{
2357 if (in_failure_mode(desc))
2358 return -EIO;
2359 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2360}
2361
2362int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2363 int offset, int len, int dtype)
2364{
16dfd804 2365 int err, failing;
1e51764a
AB
2366
2367 if (in_failure_mode(desc))
2368 return -EIO;
16dfd804
AH
2369 failing = do_fail(desc, lnum, 1);
2370 if (failing)
1e51764a
AB
2371 cut_data(buf, len);
2372 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2373 if (err)
2374 return err;
16dfd804 2375 if (failing)
1e51764a
AB
2376 return -EIO;
2377 return 0;
2378}
2379
2380int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2381 int len, int dtype)
2382{
2383 int err;
2384
2385 if (do_fail(desc, lnum, 1))
2386 return -EIO;
2387 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2388 if (err)
2389 return err;
2390 if (do_fail(desc, lnum, 1))
2391 return -EIO;
2392 return 0;
2393}
2394
2395int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2396{
2397 int err;
2398
2399 if (do_fail(desc, lnum, 0))
2400 return -EIO;
2401 err = ubi_leb_erase(desc, lnum);
2402 if (err)
2403 return err;
2404 if (do_fail(desc, lnum, 0))
2405 return -EIO;
2406 return 0;
2407}
2408
2409int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2410{
2411 int err;
2412
2413 if (do_fail(desc, lnum, 0))
2414 return -EIO;
2415 err = ubi_leb_unmap(desc, lnum);
2416 if (err)
2417 return err;
2418 if (do_fail(desc, lnum, 0))
2419 return -EIO;
2420 return 0;
2421}
2422
2423int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2424{
2425 if (in_failure_mode(desc))
2426 return -EIO;
2427 return ubi_is_mapped(desc, lnum);
2428}
2429
2430int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2431{
2432 int err;
2433
2434 if (do_fail(desc, lnum, 0))
2435 return -EIO;
2436 err = ubi_leb_map(desc, lnum, dtype);
2437 if (err)
2438 return err;
2439 if (do_fail(desc, lnum, 0))
2440 return -EIO;
2441 return 0;
2442}
2443
17c2f9f8
AB
2444/**
2445 * ubifs_debugging_init - initialize UBIFS debugging.
2446 * @c: UBIFS file-system description object
2447 *
2448 * This function initializes debugging-related data for the file system.
2449 * Returns zero in case of success and a negative error code in case of
2450 * failure.
2451 */
2452int ubifs_debugging_init(struct ubifs_info *c)
2453{
2454 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2455 if (!c->dbg)
2456 return -ENOMEM;
2457
2458 c->dbg->buf = vmalloc(c->leb_size);
2459 if (!c->dbg->buf)
2460 goto out;
2461
2462 failure_mode_init(c);
2463 return 0;
2464
2465out:
2466 kfree(c->dbg);
2467 return -ENOMEM;
2468}
2469
2470/**
2471 * ubifs_debugging_exit - free debugging data.
2472 * @c: UBIFS file-system description object
2473 */
2474void ubifs_debugging_exit(struct ubifs_info *c)
2475{
2476 failure_mode_exit(c);
2477 vfree(c->dbg->buf);
2478 kfree(c->dbg);
2479}
2480
552ff317
AB
2481/*
2482 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2483 * contain the stuff specific to particular file-system mounts.
2484 */
84abf972 2485static struct dentry *dfs_rootdir;
552ff317
AB
2486
2487/**
2488 * dbg_debugfs_init - initialize debugfs file-system.
2489 *
2490 * UBIFS uses debugfs file-system to expose various debugging knobs to
2491 * user-space. This function creates "ubifs" directory in the debugfs
2492 * file-system. Returns zero in case of success and a negative error code in
2493 * case of failure.
2494 */
2495int dbg_debugfs_init(void)
2496{
84abf972
AB
2497 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2498 if (IS_ERR(dfs_rootdir)) {
2499 int err = PTR_ERR(dfs_rootdir);
552ff317
AB
2500 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2501 "error %d\n", err);
2502 return err;
2503 }
2504
2505 return 0;
2506}
2507
2508/**
2509 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2510 */
2511void dbg_debugfs_exit(void)
2512{
84abf972 2513 debugfs_remove(dfs_rootdir);
552ff317
AB
2514}
2515
2516static int open_debugfs_file(struct inode *inode, struct file *file)
2517{
2518 file->private_data = inode->i_private;
2519 return 0;
2520}
2521
2522static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2523 size_t count, loff_t *ppos)
2524{
2525 struct ubifs_info *c = file->private_data;
2526 struct ubifs_debug_info *d = c->dbg;
2527
84abf972 2528 if (file->f_path.dentry == d->dfs_dump_lprops)
552ff317 2529 dbg_dump_lprops(c);
84abf972 2530 else if (file->f_path.dentry == d->dfs_dump_budg) {
552ff317
AB
2531 spin_lock(&c->space_lock);
2532 dbg_dump_budg(c);
2533 spin_unlock(&c->space_lock);
84abf972 2534 } else if (file->f_path.dentry == d->dfs_dump_tnc) {
552ff317
AB
2535 mutex_lock(&c->tnc_mutex);
2536 dbg_dump_tnc(c);
2537 mutex_unlock(&c->tnc_mutex);
2538 } else
2539 return -EINVAL;
2540
2541 *ppos += count;
2542 return count;
2543}
2544
84abf972 2545static const struct file_operations dfs_fops = {
552ff317
AB
2546 .open = open_debugfs_file,
2547 .write = write_debugfs_file,
2548 .owner = THIS_MODULE,
2549};
2550
2551/**
2552 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2553 * @c: UBIFS file-system description object
2554 *
2555 * This function creates all debugfs files for this instance of UBIFS. Returns
2556 * zero in case of success and a negative error code in case of failure.
2557 *
2558 * Note, the only reason we have not merged this function with the
2559 * 'ubifs_debugging_init()' function is because it is better to initialize
2560 * debugfs interfaces at the very end of the mount process, and remove them at
2561 * the very beginning of the mount process.
2562 */
2563int dbg_debugfs_init_fs(struct ubifs_info *c)
2564{
2565 int err;
2566 const char *fname;
2567 struct dentry *dent;
2568 struct ubifs_debug_info *d = c->dbg;
2569
84abf972
AB
2570 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2571 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2572 if (IS_ERR(d->dfs_dir)) {
2573 err = PTR_ERR(d->dfs_dir);
552ff317 2574 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
84abf972 2575 d->dfs_dir_name, err);
552ff317
AB
2576 goto out;
2577 }
2578
2579 fname = "dump_lprops";
84abf972 2580 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2581 if (IS_ERR(dent))
2582 goto out_remove;
84abf972 2583 d->dfs_dump_lprops = dent;
552ff317
AB
2584
2585 fname = "dump_budg";
84abf972 2586 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2587 if (IS_ERR(dent))
2588 goto out_remove;
84abf972 2589 d->dfs_dump_budg = dent;
552ff317
AB
2590
2591 fname = "dump_tnc";
84abf972 2592 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2593 if (IS_ERR(dent))
2594 goto out_remove;
84abf972 2595 d->dfs_dump_tnc = dent;
552ff317
AB
2596
2597 return 0;
2598
2599out_remove:
2600 err = PTR_ERR(dent);
2601 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2602 fname, err);
84abf972 2603 debugfs_remove_recursive(d->dfs_dir);
552ff317
AB
2604out:
2605 return err;
2606}
2607
2608/**
2609 * dbg_debugfs_exit_fs - remove all debugfs files.
2610 * @c: UBIFS file-system description object
2611 */
2612void dbg_debugfs_exit_fs(struct ubifs_info *c)
2613{
84abf972 2614 debugfs_remove_recursive(c->dbg->dfs_dir);
552ff317
AB
2615}
2616
1e51764a 2617#endif /* CONFIG_UBIFS_FS_DEBUG */
This page took 0.376559 seconds and 5 git commands to generate.