UBIFS: make debugfs files non-seekable
[deliverable/linux.git] / fs / ubifs / io.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
21 * Adrian Hunter
22 * Zoltan Sogor
23 */
24
25/*
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
6f7ab6d4 32 * similar to the mechanism is used by JFFS2.
1e51764a 33 *
6c7f74f7
AB
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
43 *
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
53 *
1e51764a
AB
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
59 *
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
65 *
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
68 *
6c7f74f7
AB
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
1e51764a
AB
71 */
72
73#include <linux/crc32.h>
5a0e3ad6 74#include <linux/slab.h>
1e51764a
AB
75#include "ubifs.h"
76
ff46d7b3
AH
77/**
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
81 */
82void ubifs_ro_mode(struct ubifs_info *c, int err)
83{
2680d722
AB
84 if (!c->ro_error) {
85 c->ro_error = 1;
ccb3eba7 86 c->no_chk_data_crc = 0;
2fde99cb 87 c->vfs_sb->s_flags |= MS_RDONLY;
ff46d7b3
AH
88 ubifs_warn("switched to read-only mode, error %d", err);
89 dbg_dump_stack();
90 }
91}
92
1e51764a
AB
93/**
94 * ubifs_check_node - check node.
95 * @c: UBIFS file-system description object
96 * @buf: node to check
97 * @lnum: logical eraseblock number
98 * @offs: offset within the logical eraseblock
99 * @quiet: print no messages
6f7ab6d4 100 * @must_chk_crc: indicates whether to always check the CRC
1e51764a
AB
101 *
102 * This function checks node magic number and CRC checksum. This function also
103 * validates node length to prevent UBIFS from becoming crazy when an attacker
104 * feeds it a file-system image with incorrect nodes. For example, too large
105 * node length in the common header could cause UBIFS to read memory outside of
106 * allocated buffer when checking the CRC checksum.
107 *
6f7ab6d4
AB
108 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
109 * true, which is controlled by corresponding UBIFS mount option. However, if
110 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
18d1d7fb
AB
111 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
112 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
113 * is checked. This is because during mounting or re-mounting from R/O mode to
114 * R/W mode we may read journal nodes (when replying the journal or doing the
115 * recovery) and the journal nodes may potentially be corrupted, so checking is
116 * required.
6f7ab6d4
AB
117 *
118 * This function returns zero in case of success and %-EUCLEAN in case of bad
119 * CRC or magic.
1e51764a
AB
120 */
121int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
6f7ab6d4 122 int offs, int quiet, int must_chk_crc)
1e51764a
AB
123{
124 int err = -EINVAL, type, node_len;
125 uint32_t crc, node_crc, magic;
126 const struct ubifs_ch *ch = buf;
127
128 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
129 ubifs_assert(!(offs & 7) && offs < c->leb_size);
130
131 magic = le32_to_cpu(ch->magic);
132 if (magic != UBIFS_NODE_MAGIC) {
133 if (!quiet)
134 ubifs_err("bad magic %#08x, expected %#08x",
135 magic, UBIFS_NODE_MAGIC);
136 err = -EUCLEAN;
137 goto out;
138 }
139
140 type = ch->node_type;
141 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
142 if (!quiet)
143 ubifs_err("bad node type %d", type);
144 goto out;
145 }
146
147 node_len = le32_to_cpu(ch->len);
148 if (node_len + offs > c->leb_size)
149 goto out_len;
150
151 if (c->ranges[type].max_len == 0) {
152 if (node_len != c->ranges[type].len)
153 goto out_len;
154 } else if (node_len < c->ranges[type].min_len ||
155 node_len > c->ranges[type].max_len)
156 goto out_len;
157
18d1d7fb
AB
158 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
159 !c->remounting_rw && c->no_chk_data_crc)
6f7ab6d4 160 return 0;
2953e73f 161
1e51764a
AB
162 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
163 node_crc = le32_to_cpu(ch->crc);
164 if (crc != node_crc) {
165 if (!quiet)
166 ubifs_err("bad CRC: calculated %#08x, read %#08x",
167 crc, node_crc);
168 err = -EUCLEAN;
169 goto out;
170 }
171
172 return 0;
173
174out_len:
175 if (!quiet)
176 ubifs_err("bad node length %d", node_len);
177out:
178 if (!quiet) {
179 ubifs_err("bad node at LEB %d:%d", lnum, offs);
180 dbg_dump_node(c, buf);
181 dbg_dump_stack();
182 }
183 return err;
184}
185
186/**
187 * ubifs_pad - pad flash space.
188 * @c: UBIFS file-system description object
189 * @buf: buffer to put padding to
190 * @pad: how many bytes to pad
191 *
192 * The flash media obliges us to write only in chunks of %c->min_io_size and
193 * when we have to write less data we add padding node to the write-buffer and
194 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
195 * media is being scanned. If the amount of wasted space is not enough to fit a
196 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
197 * pattern (%UBIFS_PADDING_BYTE).
198 *
199 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
200 * used.
201 */
202void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
203{
204 uint32_t crc;
205
206 ubifs_assert(pad >= 0 && !(pad & 7));
207
208 if (pad >= UBIFS_PAD_NODE_SZ) {
209 struct ubifs_ch *ch = buf;
210 struct ubifs_pad_node *pad_node = buf;
211
212 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
213 ch->node_type = UBIFS_PAD_NODE;
214 ch->group_type = UBIFS_NO_NODE_GROUP;
215 ch->padding[0] = ch->padding[1] = 0;
216 ch->sqnum = 0;
217 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
218 pad -= UBIFS_PAD_NODE_SZ;
219 pad_node->pad_len = cpu_to_le32(pad);
220 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
221 ch->crc = cpu_to_le32(crc);
222 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
223 } else if (pad > 0)
224 /* Too little space, padding node won't fit */
225 memset(buf, UBIFS_PADDING_BYTE, pad);
226}
227
228/**
229 * next_sqnum - get next sequence number.
230 * @c: UBIFS file-system description object
231 */
232static unsigned long long next_sqnum(struct ubifs_info *c)
233{
234 unsigned long long sqnum;
235
236 spin_lock(&c->cnt_lock);
237 sqnum = ++c->max_sqnum;
238 spin_unlock(&c->cnt_lock);
239
240 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
241 if (sqnum >= SQNUM_WATERMARK) {
242 ubifs_err("sequence number overflow %llu, end of life",
243 sqnum);
244 ubifs_ro_mode(c, -EINVAL);
245 }
246 ubifs_warn("running out of sequence numbers, end of life soon");
247 }
248
249 return sqnum;
250}
251
252/**
253 * ubifs_prepare_node - prepare node to be written to flash.
254 * @c: UBIFS file-system description object
255 * @node: the node to pad
256 * @len: node length
257 * @pad: if the buffer has to be padded
258 *
259 * This function prepares node at @node to be written to the media - it
260 * calculates node CRC, fills the common header, and adds proper padding up to
261 * the next minimum I/O unit if @pad is not zero.
262 */
263void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
264{
265 uint32_t crc;
266 struct ubifs_ch *ch = node;
267 unsigned long long sqnum = next_sqnum(c);
268
269 ubifs_assert(len >= UBIFS_CH_SZ);
270
271 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
272 ch->len = cpu_to_le32(len);
273 ch->group_type = UBIFS_NO_NODE_GROUP;
274 ch->sqnum = cpu_to_le64(sqnum);
275 ch->padding[0] = ch->padding[1] = 0;
276 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
277 ch->crc = cpu_to_le32(crc);
278
279 if (pad) {
280 len = ALIGN(len, 8);
281 pad = ALIGN(len, c->min_io_size) - len;
282 ubifs_pad(c, node + len, pad);
283 }
284}
285
286/**
287 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
288 * @c: UBIFS file-system description object
289 * @node: the node to pad
290 * @len: node length
291 * @last: indicates the last node of the group
292 *
293 * This function prepares node at @node to be written to the media - it
294 * calculates node CRC and fills the common header.
295 */
296void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
297{
298 uint32_t crc;
299 struct ubifs_ch *ch = node;
300 unsigned long long sqnum = next_sqnum(c);
301
302 ubifs_assert(len >= UBIFS_CH_SZ);
303
304 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
305 ch->len = cpu_to_le32(len);
306 if (last)
307 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
308 else
309 ch->group_type = UBIFS_IN_NODE_GROUP;
310 ch->sqnum = cpu_to_le64(sqnum);
311 ch->padding[0] = ch->padding[1] = 0;
312 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
313 ch->crc = cpu_to_le32(crc);
314}
315
316/**
317 * wbuf_timer_callback - write-buffer timer callback function.
318 * @data: timer data (write-buffer descriptor)
319 *
320 * This function is called when the write-buffer timer expires.
321 */
f2c5dbd7 322static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
1e51764a 323{
f2c5dbd7 324 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
1e51764a 325
77a7ae58 326 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
1e51764a
AB
327 wbuf->need_sync = 1;
328 wbuf->c->need_wbuf_sync = 1;
329 ubifs_wake_up_bgt(wbuf->c);
f2c5dbd7 330 return HRTIMER_NORESTART;
1e51764a
AB
331}
332
333/**
334 * new_wbuf_timer - start new write-buffer timer.
335 * @wbuf: write-buffer descriptor
336 */
337static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
338{
f2c5dbd7 339 ubifs_assert(!hrtimer_active(&wbuf->timer));
1e51764a 340
0b335b9d 341 if (wbuf->no_timer)
1e51764a 342 return;
77a7ae58
AB
343 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
344 dbg_jhead(wbuf->jhead),
44737589
AH
345 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
346 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
347 USEC_PER_SEC));
f2c5dbd7
AB
348 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
349 HRTIMER_MODE_REL);
1e51764a
AB
350}
351
352/**
353 * cancel_wbuf_timer - cancel write-buffer timer.
354 * @wbuf: write-buffer descriptor
355 */
356static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
357{
0b335b9d
AB
358 if (wbuf->no_timer)
359 return;
1e51764a 360 wbuf->need_sync = 0;
f2c5dbd7 361 hrtimer_cancel(&wbuf->timer);
1e51764a
AB
362}
363
364/**
365 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
366 * @wbuf: write-buffer to synchronize
367 *
368 * This function synchronizes write-buffer @buf and returns zero in case of
369 * success or a negative error code in case of failure.
6c7f74f7
AB
370 *
371 * Note, although write-buffers are of @c->max_write_size, this function does
372 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
373 * if the write-buffer is only partially filled with data, only the used part
374 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
375 * This way we waste less space.
1e51764a
AB
376 */
377int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
378{
379 struct ubifs_info *c = wbuf->c;
6c7f74f7 380 int err, dirt, sync_len;
1e51764a
AB
381
382 cancel_wbuf_timer_nolock(wbuf);
383 if (!wbuf->used || wbuf->lnum == -1)
384 /* Write-buffer is empty or not seeked */
385 return 0;
386
77a7ae58
AB
387 dbg_io("LEB %d:%d, %d bytes, jhead %s",
388 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
1e51764a 389 ubifs_assert(!(wbuf->avail & 7));
3c89f396
AB
390 ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
391 ubifs_assert(wbuf->size >= c->min_io_size);
392 ubifs_assert(wbuf->size <= c->max_write_size);
393 ubifs_assert(wbuf->size % c->min_io_size == 0);
2ef13294 394 ubifs_assert(!c->ro_media && !c->ro_mount);
6c7f74f7
AB
395 if (c->leb_size - wbuf->offs >= c->max_write_size)
396 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size ));
1e51764a 397
2680d722 398 if (c->ro_error)
1e51764a
AB
399 return -EROFS;
400
6c7f74f7
AB
401 /*
402 * Do not write whole write buffer but write only the minimum necessary
403 * amount of min. I/O units.
404 */
405 sync_len = ALIGN(wbuf->used, c->min_io_size);
406 dirt = sync_len - wbuf->used;
407 if (dirt)
408 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
1e51764a 409 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
6c7f74f7 410 sync_len, wbuf->dtype);
1e51764a
AB
411 if (err) {
412 ubifs_err("cannot write %d bytes to LEB %d:%d",
6c7f74f7 413 sync_len, wbuf->lnum, wbuf->offs);
1e51764a
AB
414 dbg_dump_stack();
415 return err;
416 }
417
1e51764a 418 spin_lock(&wbuf->lock);
6c7f74f7
AB
419 wbuf->offs += sync_len;
420 /*
421 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
422 * But our goal is to optimize writes and make sure we write in
423 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
424 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
425 * sure that @wbuf->offs + @wbuf->size is aligned to
426 * @c->max_write_size. This way we make sure that after next
427 * write-buffer flush we are again at the optimal offset (aligned to
428 * @c->max_write_size).
429 */
430 if (c->leb_size - wbuf->offs < c->max_write_size)
431 wbuf->size = c->leb_size - wbuf->offs;
432 else if (wbuf->offs & (c->max_write_size - 1))
433 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
434 else
435 wbuf->size = c->max_write_size;
436 wbuf->avail = wbuf->size;
1e51764a
AB
437 wbuf->used = 0;
438 wbuf->next_ino = 0;
439 spin_unlock(&wbuf->lock);
440
441 if (wbuf->sync_callback)
442 err = wbuf->sync_callback(c, wbuf->lnum,
443 c->leb_size - wbuf->offs, dirt);
444 return err;
445}
446
447/**
448 * ubifs_wbuf_seek_nolock - seek write-buffer.
449 * @wbuf: write-buffer
450 * @lnum: logical eraseblock number to seek to
451 * @offs: logical eraseblock offset to seek to
452 * @dtype: data type
453 *
cb54ef8b 454 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
1e51764a
AB
455 * The write-buffer is synchronized if it is not empty. Returns zero in case of
456 * success and a negative error code in case of failure.
457 */
458int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
459 int dtype)
460{
461 const struct ubifs_info *c = wbuf->c;
462
77a7ae58 463 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
1e51764a
AB
464 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
465 ubifs_assert(offs >= 0 && offs <= c->leb_size);
466 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
467 ubifs_assert(lnum != wbuf->lnum);
468
469 if (wbuf->used > 0) {
470 int err = ubifs_wbuf_sync_nolock(wbuf);
471
472 if (err)
473 return err;
474 }
475
476 spin_lock(&wbuf->lock);
477 wbuf->lnum = lnum;
478 wbuf->offs = offs;
6c7f74f7
AB
479 if (c->leb_size - wbuf->offs < c->max_write_size)
480 wbuf->size = c->leb_size - wbuf->offs;
481 else if (wbuf->offs & (c->max_write_size - 1))
482 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
483 else
484 wbuf->size = c->max_write_size;
485 wbuf->avail = wbuf->size;
1e51764a
AB
486 wbuf->used = 0;
487 spin_unlock(&wbuf->lock);
488 wbuf->dtype = dtype;
489
490 return 0;
491}
492
493/**
494 * ubifs_bg_wbufs_sync - synchronize write-buffers.
495 * @c: UBIFS file-system description object
496 *
497 * This function is called by background thread to synchronize write-buffers.
498 * Returns zero in case of success and a negative error code in case of
499 * failure.
500 */
501int ubifs_bg_wbufs_sync(struct ubifs_info *c)
502{
503 int err, i;
504
2ef13294 505 ubifs_assert(!c->ro_media && !c->ro_mount);
1e51764a
AB
506 if (!c->need_wbuf_sync)
507 return 0;
508 c->need_wbuf_sync = 0;
509
2680d722 510 if (c->ro_error) {
1e51764a
AB
511 err = -EROFS;
512 goto out_timers;
513 }
514
515 dbg_io("synchronize");
516 for (i = 0; i < c->jhead_cnt; i++) {
517 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
518
519 cond_resched();
520
521 /*
522 * If the mutex is locked then wbuf is being changed, so
523 * synchronization is not necessary.
524 */
525 if (mutex_is_locked(&wbuf->io_mutex))
526 continue;
527
528 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
529 if (!wbuf->need_sync) {
530 mutex_unlock(&wbuf->io_mutex);
531 continue;
532 }
533
534 err = ubifs_wbuf_sync_nolock(wbuf);
535 mutex_unlock(&wbuf->io_mutex);
536 if (err) {
537 ubifs_err("cannot sync write-buffer, error %d", err);
538 ubifs_ro_mode(c, err);
539 goto out_timers;
540 }
541 }
542
543 return 0;
544
545out_timers:
546 /* Cancel all timers to prevent repeated errors */
547 for (i = 0; i < c->jhead_cnt; i++) {
548 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
549
550 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
551 cancel_wbuf_timer_nolock(wbuf);
552 mutex_unlock(&wbuf->io_mutex);
553 }
554 return err;
555}
556
557/**
558 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
559 * @wbuf: write-buffer
560 * @buf: node to write
561 * @len: node length
562 *
563 * This function writes data to flash via write-buffer @wbuf. This means that
564 * the last piece of the node won't reach the flash media immediately if it
6c7f74f7
AB
565 * does not take whole max. write unit (@c->max_write_size). Instead, the node
566 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
567 * because more data are appended to the write-buffer).
1e51764a
AB
568 *
569 * This function returns zero in case of success and a negative error code in
570 * case of failure. If the node cannot be written because there is no more
571 * space in this logical eraseblock, %-ENOSPC is returned.
572 */
573int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
574{
575 struct ubifs_info *c = wbuf->c;
576 int err, written, n, aligned_len = ALIGN(len, 8), offs;
577
77a7ae58
AB
578 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
579 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
580 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
1e51764a
AB
581 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
582 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
583 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
3c89f396
AB
584 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
585 ubifs_assert(wbuf->size >= c->min_io_size);
586 ubifs_assert(wbuf->size <= c->max_write_size);
587 ubifs_assert(wbuf->size % c->min_io_size == 0);
1e51764a 588 ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
2ef13294 589 ubifs_assert(!c->ro_media && !c->ro_mount);
6c7f74f7
AB
590 if (c->leb_size - wbuf->offs >= c->max_write_size)
591 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size ));
1e51764a
AB
592
593 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
594 err = -ENOSPC;
595 goto out;
596 }
597
598 cancel_wbuf_timer_nolock(wbuf);
599
2680d722 600 if (c->ro_error)
1e51764a
AB
601 return -EROFS;
602
603 if (aligned_len <= wbuf->avail) {
604 /*
605 * The node is not very large and fits entirely within
606 * write-buffer.
607 */
608 memcpy(wbuf->buf + wbuf->used, buf, len);
609
610 if (aligned_len == wbuf->avail) {
77a7ae58
AB
611 dbg_io("flush jhead %s wbuf to LEB %d:%d",
612 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
1e51764a 613 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
3c89f396 614 wbuf->offs, wbuf->size,
1e51764a
AB
615 wbuf->dtype);
616 if (err)
617 goto out;
618
619 spin_lock(&wbuf->lock);
6c7f74f7
AB
620 wbuf->offs += wbuf->size;
621 if (c->leb_size - wbuf->offs >= c->max_write_size)
622 wbuf->size = c->max_write_size;
623 else
624 wbuf->size = c->leb_size - wbuf->offs;
625 wbuf->avail = wbuf->size;
1e51764a
AB
626 wbuf->used = 0;
627 wbuf->next_ino = 0;
628 spin_unlock(&wbuf->lock);
629 } else {
630 spin_lock(&wbuf->lock);
631 wbuf->avail -= aligned_len;
632 wbuf->used += aligned_len;
633 spin_unlock(&wbuf->lock);
634 }
635
636 goto exit;
637 }
638
6c7f74f7
AB
639 offs = wbuf->offs;
640 written = 0;
1e51764a 641
6c7f74f7
AB
642 if (wbuf->used) {
643 /*
644 * The node is large enough and does not fit entirely within
645 * current available space. We have to fill and flush
646 * write-buffer and switch to the next max. write unit.
647 */
648 dbg_io("flush jhead %s wbuf to LEB %d:%d",
649 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
650 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
651 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
652 wbuf->size, wbuf->dtype);
653 if (err)
654 goto out;
655
656 offs += wbuf->size;
657 len -= wbuf->avail;
658 aligned_len -= wbuf->avail;
659 written += wbuf->avail;
660 } else if (wbuf->offs & (c->max_write_size - 1)) {
661 /*
662 * The write-buffer offset is not aligned to
663 * @c->max_write_size and @wbuf->size is less than
664 * @c->max_write_size. Write @wbuf->size bytes to make sure the
665 * following writes are done in optimal @c->max_write_size
666 * chunks.
667 */
668 dbg_io("write %d bytes to LEB %d:%d",
669 wbuf->size, wbuf->lnum, wbuf->offs);
670 err = ubi_leb_write(c->ubi, wbuf->lnum, buf, wbuf->offs,
671 wbuf->size, wbuf->dtype);
672 if (err)
673 goto out;
674
675 offs += wbuf->size;
676 len -= wbuf->size;
677 aligned_len -= wbuf->size;
678 written += wbuf->size;
679 }
1e51764a
AB
680
681 /*
6c7f74f7
AB
682 * The remaining data may take more whole max. write units, so write the
683 * remains multiple to max. write unit size directly to the flash media.
1e51764a
AB
684 * We align node length to 8-byte boundary because we anyway flash wbuf
685 * if the remaining space is less than 8 bytes.
686 */
6c7f74f7 687 n = aligned_len >> c->max_write_shift;
1e51764a 688 if (n) {
6c7f74f7 689 n <<= c->max_write_shift;
1e51764a
AB
690 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
691 err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
692 wbuf->dtype);
693 if (err)
694 goto out;
695 offs += n;
696 aligned_len -= n;
697 len -= n;
698 written += n;
699 }
700
701 spin_lock(&wbuf->lock);
702 if (aligned_len)
703 /*
704 * And now we have what's left and what does not take whole
6c7f74f7 705 * max. write unit, so write it to the write-buffer and we are
1e51764a
AB
706 * done.
707 */
708 memcpy(wbuf->buf, buf + written, len);
709
710 wbuf->offs = offs;
6c7f74f7
AB
711 if (c->leb_size - wbuf->offs >= c->max_write_size)
712 wbuf->size = c->max_write_size;
713 else
714 wbuf->size = c->leb_size - wbuf->offs;
715 wbuf->avail = wbuf->size - aligned_len;
1e51764a 716 wbuf->used = aligned_len;
1e51764a
AB
717 wbuf->next_ino = 0;
718 spin_unlock(&wbuf->lock);
719
720exit:
721 if (wbuf->sync_callback) {
722 int free = c->leb_size - wbuf->offs - wbuf->used;
723
724 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
725 if (err)
726 goto out;
727 }
728
729 if (wbuf->used)
730 new_wbuf_timer_nolock(wbuf);
731
732 return 0;
733
734out:
735 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
736 len, wbuf->lnum, wbuf->offs, err);
737 dbg_dump_node(c, buf);
738 dbg_dump_stack();
739 dbg_dump_leb(c, wbuf->lnum);
740 return err;
741}
742
743/**
744 * ubifs_write_node - write node to the media.
745 * @c: UBIFS file-system description object
746 * @buf: the node to write
747 * @len: node length
748 * @lnum: logical eraseblock number
749 * @offs: offset within the logical eraseblock
750 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
751 *
752 * This function automatically fills node magic number, assigns sequence
753 * number, and calculates node CRC checksum. The length of the @buf buffer has
754 * to be aligned to the minimal I/O unit size. This function automatically
755 * appends padding node and padding bytes if needed. Returns zero in case of
756 * success and a negative error code in case of failure.
757 */
758int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
759 int offs, int dtype)
760{
761 int err, buf_len = ALIGN(len, c->min_io_size);
762
763 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
764 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
765 buf_len);
766 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
767 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
2ef13294 768 ubifs_assert(!c->ro_media && !c->ro_mount);
1e51764a 769
2680d722 770 if (c->ro_error)
1e51764a
AB
771 return -EROFS;
772
773 ubifs_prepare_node(c, buf, len, 1);
774 err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
775 if (err) {
776 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
777 buf_len, lnum, offs, err);
778 dbg_dump_node(c, buf);
779 dbg_dump_stack();
780 }
781
782 return err;
783}
784
785/**
786 * ubifs_read_node_wbuf - read node from the media or write-buffer.
787 * @wbuf: wbuf to check for un-written data
788 * @buf: buffer to read to
789 * @type: node type
790 * @len: node length
791 * @lnum: logical eraseblock number
792 * @offs: offset within the logical eraseblock
793 *
794 * This function reads a node of known type and length, checks it and stores
795 * in @buf. If the node partially or fully sits in the write-buffer, this
796 * function takes data from the buffer, otherwise it reads the flash media.
797 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
798 * error code in case of failure.
799 */
800int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
801 int lnum, int offs)
802{
803 const struct ubifs_info *c = wbuf->c;
804 int err, rlen, overlap;
805 struct ubifs_ch *ch = buf;
806
77a7ae58
AB
807 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
808 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
1e51764a
AB
809 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
810 ubifs_assert(!(offs & 7) && offs < c->leb_size);
811 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
812
813 spin_lock(&wbuf->lock);
814 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
815 if (!overlap) {
816 /* We may safely unlock the write-buffer and read the data */
817 spin_unlock(&wbuf->lock);
818 return ubifs_read_node(c, buf, type, len, lnum, offs);
819 }
820
821 /* Don't read under wbuf */
822 rlen = wbuf->offs - offs;
823 if (rlen < 0)
824 rlen = 0;
825
826 /* Copy the rest from the write-buffer */
827 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
828 spin_unlock(&wbuf->lock);
829
830 if (rlen > 0) {
831 /* Read everything that goes before write-buffer */
832 err = ubi_read(c->ubi, lnum, buf, offs, rlen);
833 if (err && err != -EBADMSG) {
834 ubifs_err("failed to read node %d from LEB %d:%d, "
835 "error %d", type, lnum, offs, err);
836 dbg_dump_stack();
837 return err;
838 }
839 }
840
841 if (type != ch->node_type) {
842 ubifs_err("bad node type (%d but expected %d)",
843 ch->node_type, type);
844 goto out;
845 }
846
2953e73f 847 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1e51764a
AB
848 if (err) {
849 ubifs_err("expected node type %d", type);
850 return err;
851 }
852
853 rlen = le32_to_cpu(ch->len);
854 if (rlen != len) {
855 ubifs_err("bad node length %d, expected %d", rlen, len);
856 goto out;
857 }
858
859 return 0;
860
861out:
862 ubifs_err("bad node at LEB %d:%d", lnum, offs);
863 dbg_dump_node(c, buf);
864 dbg_dump_stack();
865 return -EINVAL;
866}
867
868/**
869 * ubifs_read_node - read node.
870 * @c: UBIFS file-system description object
871 * @buf: buffer to read to
872 * @type: node type
873 * @len: node length (not aligned)
874 * @lnum: logical eraseblock number
875 * @offs: offset within the logical eraseblock
876 *
877 * This function reads a node of known type and and length, checks it and
878 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
879 * and a negative error code in case of failure.
880 */
881int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
882 int lnum, int offs)
883{
884 int err, l;
885 struct ubifs_ch *ch = buf;
886
887 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
888 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
889 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
890 ubifs_assert(!(offs & 7) && offs < c->leb_size);
891 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
892
893 err = ubi_read(c->ubi, lnum, buf, offs, len);
894 if (err && err != -EBADMSG) {
895 ubifs_err("cannot read node %d from LEB %d:%d, error %d",
896 type, lnum, offs, err);
897 return err;
898 }
899
900 if (type != ch->node_type) {
901 ubifs_err("bad node type (%d but expected %d)",
902 ch->node_type, type);
903 goto out;
904 }
905
2953e73f 906 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1e51764a
AB
907 if (err) {
908 ubifs_err("expected node type %d", type);
909 return err;
910 }
911
912 l = le32_to_cpu(ch->len);
913 if (l != len) {
914 ubifs_err("bad node length %d, expected %d", l, len);
915 goto out;
916 }
917
918 return 0;
919
920out:
3a8fa0ed
AB
921 ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
922 ubi_is_mapped(c->ubi, lnum));
1e51764a
AB
923 dbg_dump_node(c, buf);
924 dbg_dump_stack();
925 return -EINVAL;
926}
927
928/**
929 * ubifs_wbuf_init - initialize write-buffer.
930 * @c: UBIFS file-system description object
931 * @wbuf: write-buffer to initialize
932 *
cb54ef8b 933 * This function initializes write-buffer. Returns zero in case of success
1e51764a
AB
934 * %-ENOMEM in case of failure.
935 */
936int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
937{
938 size_t size;
939
6c7f74f7 940 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1e51764a
AB
941 if (!wbuf->buf)
942 return -ENOMEM;
943
6c7f74f7 944 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1e51764a
AB
945 wbuf->inodes = kmalloc(size, GFP_KERNEL);
946 if (!wbuf->inodes) {
947 kfree(wbuf->buf);
948 wbuf->buf = NULL;
949 return -ENOMEM;
950 }
951
952 wbuf->used = 0;
953 wbuf->lnum = wbuf->offs = -1;
6c7f74f7
AB
954 /*
955 * If the LEB starts at the max. write size aligned address, then
956 * write-buffer size has to be set to @c->max_write_size. Otherwise,
957 * set it to something smaller so that it ends at the closest max.
958 * write size boundary.
959 */
960 size = c->max_write_size - (c->leb_start % c->max_write_size);
961 wbuf->avail = wbuf->size = size;
1e51764a
AB
962 wbuf->dtype = UBI_UNKNOWN;
963 wbuf->sync_callback = NULL;
964 mutex_init(&wbuf->io_mutex);
965 spin_lock_init(&wbuf->lock);
1e51764a 966 wbuf->c = c;
1e51764a
AB
967 wbuf->next_ino = 0;
968
f2c5dbd7
AB
969 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
970 wbuf->timer.function = wbuf_timer_callback_nolock;
2a35a3a8
AB
971 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
972 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
973 wbuf->delta *= 1000000000ULL;
974 ubifs_assert(wbuf->delta <= ULONG_MAX);
1e51764a
AB
975 return 0;
976}
977
978/**
979 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
cb54ef8b 980 * @wbuf: the write-buffer where to add
1e51764a
AB
981 * @inum: the inode number
982 *
983 * This function adds an inode number to the inode array of the write-buffer.
984 */
985void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
986{
987 if (!wbuf->buf)
988 /* NOR flash or something similar */
989 return;
990
991 spin_lock(&wbuf->lock);
992 if (wbuf->used)
993 wbuf->inodes[wbuf->next_ino++] = inum;
994 spin_unlock(&wbuf->lock);
995}
996
997/**
998 * wbuf_has_ino - returns if the wbuf contains data from the inode.
999 * @wbuf: the write-buffer
1000 * @inum: the inode number
1001 *
1002 * This function returns with %1 if the write-buffer contains some data from the
1003 * given inode otherwise it returns with %0.
1004 */
1005static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1006{
1007 int i, ret = 0;
1008
1009 spin_lock(&wbuf->lock);
1010 for (i = 0; i < wbuf->next_ino; i++)
1011 if (inum == wbuf->inodes[i]) {
1012 ret = 1;
1013 break;
1014 }
1015 spin_unlock(&wbuf->lock);
1016
1017 return ret;
1018}
1019
1020/**
1021 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1022 * @c: UBIFS file-system description object
1023 * @inode: inode to synchronize
1024 *
1025 * This function synchronizes write-buffers which contain nodes belonging to
1026 * @inode. Returns zero in case of success and a negative error code in case of
1027 * failure.
1028 */
1029int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1030{
1031 int i, err = 0;
1032
1033 for (i = 0; i < c->jhead_cnt; i++) {
1034 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1035
1036 if (i == GCHD)
1037 /*
1038 * GC head is special, do not look at it. Even if the
1039 * head contains something related to this inode, it is
1040 * a _copy_ of corresponding on-flash node which sits
1041 * somewhere else.
1042 */
1043 continue;
1044
1045 if (!wbuf_has_ino(wbuf, inode->i_ino))
1046 continue;
1047
1048 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1049 if (wbuf_has_ino(wbuf, inode->i_ino))
1050 err = ubifs_wbuf_sync_nolock(wbuf);
1051 mutex_unlock(&wbuf->io_mutex);
1052
1053 if (err) {
1054 ubifs_ro_mode(c, err);
1055 return err;
1056 }
1057 }
1058 return 0;
1059}
This page took 0.238571 seconds and 5 git commands to generate.