UBIFS: switch to ubifs_leb_read
[deliverable/linux.git] / fs / ubifs / io.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
21 * Adrian Hunter
22 * Zoltan Sogor
23 */
24
25/*
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
6f7ab6d4 32 * similar to the mechanism is used by JFFS2.
1e51764a 33 *
6c7f74f7
AB
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
43 *
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
53 *
1e51764a
AB
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
59 *
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
65 *
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
68 *
6c7f74f7
AB
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
1e51764a
AB
71 */
72
73#include <linux/crc32.h>
5a0e3ad6 74#include <linux/slab.h>
1e51764a
AB
75#include "ubifs.h"
76
ff46d7b3
AH
77/**
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
81 */
82void ubifs_ro_mode(struct ubifs_info *c, int err)
83{
2680d722
AB
84 if (!c->ro_error) {
85 c->ro_error = 1;
ccb3eba7 86 c->no_chk_data_crc = 0;
2fde99cb 87 c->vfs_sb->s_flags |= MS_RDONLY;
ff46d7b3 88 ubifs_warn("switched to read-only mode, error %d", err);
d033c98b 89 dump_stack();
ff46d7b3
AH
90 }
91}
92
83cef708
AB
93/*
94 * Below are simple wrappers over UBI I/O functions which include some
95 * additional checks and UBIFS debugging stuff. See corresponding UBI function
96 * for more information.
97 */
98
99int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
100 int len, int even_ebadmsg)
101{
102 int err;
103
104 err = ubi_read(c->ubi, lnum, buf, offs, len);
105 /*
106 * In case of %-EBADMSG print the error message only if the
107 * @even_ebadmsg is true.
108 */
109 if (err && (err != -EBADMSG || even_ebadmsg)) {
110 ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
111 len, lnum, offs, err);
112 dbg_dump_stack();
113 }
114 return err;
115}
116
117int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
118 int len, int dtype)
119{
120 int err;
121
122 ubifs_assert(!c->ro_media && !c->ro_mount);
123 if (c->ro_error)
124 return -EROFS;
125 if (!dbg_is_tst_rcvry(c))
126 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
127 else
128 err = dbg_leb_write(c->ubi, lnum, buf, offs, len, dtype);
129 if (err) {
130 ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
131 len, lnum, offs, err);
132 ubifs_ro_mode(c, err);
133 dbg_dump_stack();
134 }
135 return err;
136}
137
138int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len,
139 int dtype)
140{
141 int err;
142
143 ubifs_assert(!c->ro_media && !c->ro_mount);
144 if (c->ro_error)
145 return -EROFS;
146 if (!dbg_is_tst_rcvry(c))
147 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
148 else
149 err = dbg_leb_change(c->ubi, lnum, buf, len, dtype);
150 if (err) {
151 ubifs_err("changing %d bytes in LEB %d failed, error %d",
152 len, lnum, err);
153 ubifs_ro_mode(c, err);
154 dbg_dump_stack();
155 }
156 return err;
157}
158
159int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
160{
161 int err;
162
163 ubifs_assert(!c->ro_media && !c->ro_mount);
164 if (c->ro_error)
165 return -EROFS;
166 if (!dbg_is_tst_rcvry(c))
167 err = ubi_leb_unmap(c->ubi, lnum);
168 else
169 err = dbg_leb_unmap(c->ubi, lnum);
170 if (err) {
171 ubifs_err("unmap LEB %d failed, error %d", lnum, err);
172 ubifs_ro_mode(c, err);
173 dbg_dump_stack();
174 }
175 return err;
176}
177
178int ubifs_leb_map(struct ubifs_info *c, int lnum, int dtype)
179{
180 int err;
181
182 ubifs_assert(!c->ro_media && !c->ro_mount);
183 if (c->ro_error)
184 return -EROFS;
185 if (!dbg_is_tst_rcvry(c))
186 err = ubi_leb_map(c->ubi, lnum, dtype);
187 else
188 err = dbg_leb_map(c->ubi, lnum, dtype);
189 if (err) {
190 ubifs_err("mapping LEB %d failed, error %d", lnum, err);
191 ubifs_ro_mode(c, err);
192 dbg_dump_stack();
193 }
194 return err;
195}
196
197int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
198{
199 int err;
200
201 err = ubi_is_mapped(c->ubi, lnum);
202 if (err < 0) {
203 ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
204 lnum, err);
205 dbg_dump_stack();
206 }
207 return err;
208}
209
1e51764a
AB
210/**
211 * ubifs_check_node - check node.
212 * @c: UBIFS file-system description object
213 * @buf: node to check
214 * @lnum: logical eraseblock number
215 * @offs: offset within the logical eraseblock
216 * @quiet: print no messages
6f7ab6d4 217 * @must_chk_crc: indicates whether to always check the CRC
1e51764a
AB
218 *
219 * This function checks node magic number and CRC checksum. This function also
220 * validates node length to prevent UBIFS from becoming crazy when an attacker
221 * feeds it a file-system image with incorrect nodes. For example, too large
222 * node length in the common header could cause UBIFS to read memory outside of
223 * allocated buffer when checking the CRC checksum.
224 *
6f7ab6d4
AB
225 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
226 * true, which is controlled by corresponding UBIFS mount option. However, if
227 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
18d1d7fb
AB
228 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
229 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
230 * is checked. This is because during mounting or re-mounting from R/O mode to
231 * R/W mode we may read journal nodes (when replying the journal or doing the
232 * recovery) and the journal nodes may potentially be corrupted, so checking is
233 * required.
6f7ab6d4
AB
234 *
235 * This function returns zero in case of success and %-EUCLEAN in case of bad
236 * CRC or magic.
1e51764a
AB
237 */
238int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
6f7ab6d4 239 int offs, int quiet, int must_chk_crc)
1e51764a
AB
240{
241 int err = -EINVAL, type, node_len;
242 uint32_t crc, node_crc, magic;
243 const struct ubifs_ch *ch = buf;
244
245 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
246 ubifs_assert(!(offs & 7) && offs < c->leb_size);
247
248 magic = le32_to_cpu(ch->magic);
249 if (magic != UBIFS_NODE_MAGIC) {
250 if (!quiet)
251 ubifs_err("bad magic %#08x, expected %#08x",
252 magic, UBIFS_NODE_MAGIC);
253 err = -EUCLEAN;
254 goto out;
255 }
256
257 type = ch->node_type;
258 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
259 if (!quiet)
260 ubifs_err("bad node type %d", type);
261 goto out;
262 }
263
264 node_len = le32_to_cpu(ch->len);
265 if (node_len + offs > c->leb_size)
266 goto out_len;
267
268 if (c->ranges[type].max_len == 0) {
269 if (node_len != c->ranges[type].len)
270 goto out_len;
271 } else if (node_len < c->ranges[type].min_len ||
272 node_len > c->ranges[type].max_len)
273 goto out_len;
274
18d1d7fb
AB
275 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
276 !c->remounting_rw && c->no_chk_data_crc)
6f7ab6d4 277 return 0;
2953e73f 278
1e51764a
AB
279 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
280 node_crc = le32_to_cpu(ch->crc);
281 if (crc != node_crc) {
282 if (!quiet)
283 ubifs_err("bad CRC: calculated %#08x, read %#08x",
284 crc, node_crc);
285 err = -EUCLEAN;
286 goto out;
287 }
288
289 return 0;
290
291out_len:
292 if (!quiet)
293 ubifs_err("bad node length %d", node_len);
294out:
295 if (!quiet) {
296 ubifs_err("bad node at LEB %d:%d", lnum, offs);
297 dbg_dump_node(c, buf);
298 dbg_dump_stack();
299 }
300 return err;
301}
302
303/**
304 * ubifs_pad - pad flash space.
305 * @c: UBIFS file-system description object
306 * @buf: buffer to put padding to
307 * @pad: how many bytes to pad
308 *
309 * The flash media obliges us to write only in chunks of %c->min_io_size and
310 * when we have to write less data we add padding node to the write-buffer and
311 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
312 * media is being scanned. If the amount of wasted space is not enough to fit a
313 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
314 * pattern (%UBIFS_PADDING_BYTE).
315 *
316 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
317 * used.
318 */
319void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
320{
321 uint32_t crc;
322
323 ubifs_assert(pad >= 0 && !(pad & 7));
324
325 if (pad >= UBIFS_PAD_NODE_SZ) {
326 struct ubifs_ch *ch = buf;
327 struct ubifs_pad_node *pad_node = buf;
328
329 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
330 ch->node_type = UBIFS_PAD_NODE;
331 ch->group_type = UBIFS_NO_NODE_GROUP;
332 ch->padding[0] = ch->padding[1] = 0;
333 ch->sqnum = 0;
334 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
335 pad -= UBIFS_PAD_NODE_SZ;
336 pad_node->pad_len = cpu_to_le32(pad);
337 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
338 ch->crc = cpu_to_le32(crc);
339 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
340 } else if (pad > 0)
341 /* Too little space, padding node won't fit */
342 memset(buf, UBIFS_PADDING_BYTE, pad);
343}
344
345/**
346 * next_sqnum - get next sequence number.
347 * @c: UBIFS file-system description object
348 */
349static unsigned long long next_sqnum(struct ubifs_info *c)
350{
351 unsigned long long sqnum;
352
353 spin_lock(&c->cnt_lock);
354 sqnum = ++c->max_sqnum;
355 spin_unlock(&c->cnt_lock);
356
357 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
358 if (sqnum >= SQNUM_WATERMARK) {
359 ubifs_err("sequence number overflow %llu, end of life",
360 sqnum);
361 ubifs_ro_mode(c, -EINVAL);
362 }
363 ubifs_warn("running out of sequence numbers, end of life soon");
364 }
365
366 return sqnum;
367}
368
369/**
370 * ubifs_prepare_node - prepare node to be written to flash.
371 * @c: UBIFS file-system description object
372 * @node: the node to pad
373 * @len: node length
374 * @pad: if the buffer has to be padded
375 *
376 * This function prepares node at @node to be written to the media - it
377 * calculates node CRC, fills the common header, and adds proper padding up to
378 * the next minimum I/O unit if @pad is not zero.
379 */
380void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
381{
382 uint32_t crc;
383 struct ubifs_ch *ch = node;
384 unsigned long long sqnum = next_sqnum(c);
385
386 ubifs_assert(len >= UBIFS_CH_SZ);
387
388 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
389 ch->len = cpu_to_le32(len);
390 ch->group_type = UBIFS_NO_NODE_GROUP;
391 ch->sqnum = cpu_to_le64(sqnum);
392 ch->padding[0] = ch->padding[1] = 0;
393 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
394 ch->crc = cpu_to_le32(crc);
395
396 if (pad) {
397 len = ALIGN(len, 8);
398 pad = ALIGN(len, c->min_io_size) - len;
399 ubifs_pad(c, node + len, pad);
400 }
401}
402
403/**
404 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
405 * @c: UBIFS file-system description object
406 * @node: the node to pad
407 * @len: node length
408 * @last: indicates the last node of the group
409 *
410 * This function prepares node at @node to be written to the media - it
411 * calculates node CRC and fills the common header.
412 */
413void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
414{
415 uint32_t crc;
416 struct ubifs_ch *ch = node;
417 unsigned long long sqnum = next_sqnum(c);
418
419 ubifs_assert(len >= UBIFS_CH_SZ);
420
421 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
422 ch->len = cpu_to_le32(len);
423 if (last)
424 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
425 else
426 ch->group_type = UBIFS_IN_NODE_GROUP;
427 ch->sqnum = cpu_to_le64(sqnum);
428 ch->padding[0] = ch->padding[1] = 0;
429 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
430 ch->crc = cpu_to_le32(crc);
431}
432
433/**
434 * wbuf_timer_callback - write-buffer timer callback function.
435 * @data: timer data (write-buffer descriptor)
436 *
437 * This function is called when the write-buffer timer expires.
438 */
f2c5dbd7 439static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
1e51764a 440{
f2c5dbd7 441 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
1e51764a 442
77a7ae58 443 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
1e51764a
AB
444 wbuf->need_sync = 1;
445 wbuf->c->need_wbuf_sync = 1;
446 ubifs_wake_up_bgt(wbuf->c);
f2c5dbd7 447 return HRTIMER_NORESTART;
1e51764a
AB
448}
449
450/**
451 * new_wbuf_timer - start new write-buffer timer.
452 * @wbuf: write-buffer descriptor
453 */
454static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
455{
f2c5dbd7 456 ubifs_assert(!hrtimer_active(&wbuf->timer));
1e51764a 457
0b335b9d 458 if (wbuf->no_timer)
1e51764a 459 return;
77a7ae58
AB
460 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
461 dbg_jhead(wbuf->jhead),
44737589
AH
462 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
463 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
464 USEC_PER_SEC));
f2c5dbd7
AB
465 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
466 HRTIMER_MODE_REL);
1e51764a
AB
467}
468
469/**
470 * cancel_wbuf_timer - cancel write-buffer timer.
471 * @wbuf: write-buffer descriptor
472 */
473static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
474{
0b335b9d
AB
475 if (wbuf->no_timer)
476 return;
1e51764a 477 wbuf->need_sync = 0;
f2c5dbd7 478 hrtimer_cancel(&wbuf->timer);
1e51764a
AB
479}
480
481/**
482 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
483 * @wbuf: write-buffer to synchronize
484 *
485 * This function synchronizes write-buffer @buf and returns zero in case of
486 * success or a negative error code in case of failure.
6c7f74f7
AB
487 *
488 * Note, although write-buffers are of @c->max_write_size, this function does
489 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
490 * if the write-buffer is only partially filled with data, only the used part
491 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
492 * This way we waste less space.
1e51764a
AB
493 */
494int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
495{
496 struct ubifs_info *c = wbuf->c;
6c7f74f7 497 int err, dirt, sync_len;
1e51764a
AB
498
499 cancel_wbuf_timer_nolock(wbuf);
500 if (!wbuf->used || wbuf->lnum == -1)
501 /* Write-buffer is empty or not seeked */
502 return 0;
503
77a7ae58
AB
504 dbg_io("LEB %d:%d, %d bytes, jhead %s",
505 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
1e51764a 506 ubifs_assert(!(wbuf->avail & 7));
3c89f396
AB
507 ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
508 ubifs_assert(wbuf->size >= c->min_io_size);
509 ubifs_assert(wbuf->size <= c->max_write_size);
510 ubifs_assert(wbuf->size % c->min_io_size == 0);
2ef13294 511 ubifs_assert(!c->ro_media && !c->ro_mount);
6c7f74f7 512 if (c->leb_size - wbuf->offs >= c->max_write_size)
c4361570 513 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
1e51764a 514
2680d722 515 if (c->ro_error)
1e51764a
AB
516 return -EROFS;
517
6c7f74f7
AB
518 /*
519 * Do not write whole write buffer but write only the minimum necessary
520 * amount of min. I/O units.
521 */
522 sync_len = ALIGN(wbuf->used, c->min_io_size);
523 dirt = sync_len - wbuf->used;
524 if (dirt)
525 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
1e51764a 526 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
6c7f74f7 527 sync_len, wbuf->dtype);
1e51764a
AB
528 if (err) {
529 ubifs_err("cannot write %d bytes to LEB %d:%d",
6c7f74f7 530 sync_len, wbuf->lnum, wbuf->offs);
1e51764a
AB
531 dbg_dump_stack();
532 return err;
533 }
534
1e51764a 535 spin_lock(&wbuf->lock);
6c7f74f7
AB
536 wbuf->offs += sync_len;
537 /*
538 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
539 * But our goal is to optimize writes and make sure we write in
540 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
541 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
542 * sure that @wbuf->offs + @wbuf->size is aligned to
543 * @c->max_write_size. This way we make sure that after next
544 * write-buffer flush we are again at the optimal offset (aligned to
545 * @c->max_write_size).
546 */
547 if (c->leb_size - wbuf->offs < c->max_write_size)
548 wbuf->size = c->leb_size - wbuf->offs;
549 else if (wbuf->offs & (c->max_write_size - 1))
550 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
551 else
552 wbuf->size = c->max_write_size;
553 wbuf->avail = wbuf->size;
1e51764a
AB
554 wbuf->used = 0;
555 wbuf->next_ino = 0;
556 spin_unlock(&wbuf->lock);
557
558 if (wbuf->sync_callback)
559 err = wbuf->sync_callback(c, wbuf->lnum,
560 c->leb_size - wbuf->offs, dirt);
561 return err;
562}
563
564/**
565 * ubifs_wbuf_seek_nolock - seek write-buffer.
566 * @wbuf: write-buffer
567 * @lnum: logical eraseblock number to seek to
568 * @offs: logical eraseblock offset to seek to
569 * @dtype: data type
570 *
cb54ef8b 571 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
cb14a184
AB
572 * The write-buffer has to be empty. Returns zero in case of success and a
573 * negative error code in case of failure.
1e51764a
AB
574 */
575int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
576 int dtype)
577{
578 const struct ubifs_info *c = wbuf->c;
579
77a7ae58 580 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
1e51764a
AB
581 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
582 ubifs_assert(offs >= 0 && offs <= c->leb_size);
583 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
584 ubifs_assert(lnum != wbuf->lnum);
cb14a184 585 ubifs_assert(wbuf->used == 0);
1e51764a
AB
586
587 spin_lock(&wbuf->lock);
588 wbuf->lnum = lnum;
589 wbuf->offs = offs;
6c7f74f7
AB
590 if (c->leb_size - wbuf->offs < c->max_write_size)
591 wbuf->size = c->leb_size - wbuf->offs;
592 else if (wbuf->offs & (c->max_write_size - 1))
593 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
594 else
595 wbuf->size = c->max_write_size;
596 wbuf->avail = wbuf->size;
1e51764a
AB
597 wbuf->used = 0;
598 spin_unlock(&wbuf->lock);
599 wbuf->dtype = dtype;
600
601 return 0;
602}
603
604/**
605 * ubifs_bg_wbufs_sync - synchronize write-buffers.
606 * @c: UBIFS file-system description object
607 *
608 * This function is called by background thread to synchronize write-buffers.
609 * Returns zero in case of success and a negative error code in case of
610 * failure.
611 */
612int ubifs_bg_wbufs_sync(struct ubifs_info *c)
613{
614 int err, i;
615
2ef13294 616 ubifs_assert(!c->ro_media && !c->ro_mount);
1e51764a
AB
617 if (!c->need_wbuf_sync)
618 return 0;
619 c->need_wbuf_sync = 0;
620
2680d722 621 if (c->ro_error) {
1e51764a
AB
622 err = -EROFS;
623 goto out_timers;
624 }
625
626 dbg_io("synchronize");
627 for (i = 0; i < c->jhead_cnt; i++) {
628 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
629
630 cond_resched();
631
632 /*
633 * If the mutex is locked then wbuf is being changed, so
634 * synchronization is not necessary.
635 */
636 if (mutex_is_locked(&wbuf->io_mutex))
637 continue;
638
639 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
640 if (!wbuf->need_sync) {
641 mutex_unlock(&wbuf->io_mutex);
642 continue;
643 }
644
645 err = ubifs_wbuf_sync_nolock(wbuf);
646 mutex_unlock(&wbuf->io_mutex);
647 if (err) {
648 ubifs_err("cannot sync write-buffer, error %d", err);
649 ubifs_ro_mode(c, err);
650 goto out_timers;
651 }
652 }
653
654 return 0;
655
656out_timers:
657 /* Cancel all timers to prevent repeated errors */
658 for (i = 0; i < c->jhead_cnt; i++) {
659 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
660
661 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
662 cancel_wbuf_timer_nolock(wbuf);
663 mutex_unlock(&wbuf->io_mutex);
664 }
665 return err;
666}
667
668/**
669 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
670 * @wbuf: write-buffer
671 * @buf: node to write
672 * @len: node length
673 *
674 * This function writes data to flash via write-buffer @wbuf. This means that
675 * the last piece of the node won't reach the flash media immediately if it
6c7f74f7
AB
676 * does not take whole max. write unit (@c->max_write_size). Instead, the node
677 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
678 * because more data are appended to the write-buffer).
1e51764a
AB
679 *
680 * This function returns zero in case of success and a negative error code in
681 * case of failure. If the node cannot be written because there is no more
682 * space in this logical eraseblock, %-ENOSPC is returned.
683 */
684int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
685{
686 struct ubifs_info *c = wbuf->c;
12f33891 687 int err, written, n, aligned_len = ALIGN(len, 8);
1e51764a 688
77a7ae58
AB
689 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
690 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
691 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
1e51764a
AB
692 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
693 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
694 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
3c89f396
AB
695 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
696 ubifs_assert(wbuf->size >= c->min_io_size);
697 ubifs_assert(wbuf->size <= c->max_write_size);
698 ubifs_assert(wbuf->size % c->min_io_size == 0);
1e51764a 699 ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
2ef13294 700 ubifs_assert(!c->ro_media && !c->ro_mount);
4f1ab9b0 701 ubifs_assert(!c->space_fixup);
6c7f74f7 702 if (c->leb_size - wbuf->offs >= c->max_write_size)
c4361570 703 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
1e51764a
AB
704
705 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
706 err = -ENOSPC;
707 goto out;
708 }
709
710 cancel_wbuf_timer_nolock(wbuf);
711
2680d722 712 if (c->ro_error)
1e51764a
AB
713 return -EROFS;
714
715 if (aligned_len <= wbuf->avail) {
716 /*
717 * The node is not very large and fits entirely within
718 * write-buffer.
719 */
720 memcpy(wbuf->buf + wbuf->used, buf, len);
721
722 if (aligned_len == wbuf->avail) {
77a7ae58
AB
723 dbg_io("flush jhead %s wbuf to LEB %d:%d",
724 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
1e51764a 725 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
3c89f396 726 wbuf->offs, wbuf->size,
1e51764a
AB
727 wbuf->dtype);
728 if (err)
729 goto out;
730
731 spin_lock(&wbuf->lock);
6c7f74f7
AB
732 wbuf->offs += wbuf->size;
733 if (c->leb_size - wbuf->offs >= c->max_write_size)
734 wbuf->size = c->max_write_size;
735 else
736 wbuf->size = c->leb_size - wbuf->offs;
737 wbuf->avail = wbuf->size;
1e51764a
AB
738 wbuf->used = 0;
739 wbuf->next_ino = 0;
740 spin_unlock(&wbuf->lock);
741 } else {
742 spin_lock(&wbuf->lock);
743 wbuf->avail -= aligned_len;
744 wbuf->used += aligned_len;
745 spin_unlock(&wbuf->lock);
746 }
747
748 goto exit;
749 }
750
6c7f74f7 751 written = 0;
1e51764a 752
6c7f74f7
AB
753 if (wbuf->used) {
754 /*
755 * The node is large enough and does not fit entirely within
756 * current available space. We have to fill and flush
757 * write-buffer and switch to the next max. write unit.
758 */
759 dbg_io("flush jhead %s wbuf to LEB %d:%d",
760 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
761 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
762 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
763 wbuf->size, wbuf->dtype);
764 if (err)
765 goto out;
766
12f33891 767 wbuf->offs += wbuf->size;
6c7f74f7
AB
768 len -= wbuf->avail;
769 aligned_len -= wbuf->avail;
770 written += wbuf->avail;
771 } else if (wbuf->offs & (c->max_write_size - 1)) {
772 /*
773 * The write-buffer offset is not aligned to
774 * @c->max_write_size and @wbuf->size is less than
775 * @c->max_write_size. Write @wbuf->size bytes to make sure the
776 * following writes are done in optimal @c->max_write_size
777 * chunks.
778 */
779 dbg_io("write %d bytes to LEB %d:%d",
780 wbuf->size, wbuf->lnum, wbuf->offs);
781 err = ubi_leb_write(c->ubi, wbuf->lnum, buf, wbuf->offs,
782 wbuf->size, wbuf->dtype);
783 if (err)
784 goto out;
785
12f33891 786 wbuf->offs += wbuf->size;
6c7f74f7
AB
787 len -= wbuf->size;
788 aligned_len -= wbuf->size;
789 written += wbuf->size;
790 }
1e51764a
AB
791
792 /*
6c7f74f7
AB
793 * The remaining data may take more whole max. write units, so write the
794 * remains multiple to max. write unit size directly to the flash media.
1e51764a
AB
795 * We align node length to 8-byte boundary because we anyway flash wbuf
796 * if the remaining space is less than 8 bytes.
797 */
6c7f74f7 798 n = aligned_len >> c->max_write_shift;
1e51764a 799 if (n) {
6c7f74f7 800 n <<= c->max_write_shift;
12f33891
AB
801 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
802 wbuf->offs);
803 err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written,
804 wbuf->offs, n, wbuf->dtype);
1e51764a
AB
805 if (err)
806 goto out;
12f33891 807 wbuf->offs += n;
1e51764a
AB
808 aligned_len -= n;
809 len -= n;
810 written += n;
811 }
812
813 spin_lock(&wbuf->lock);
814 if (aligned_len)
815 /*
816 * And now we have what's left and what does not take whole
6c7f74f7 817 * max. write unit, so write it to the write-buffer and we are
1e51764a
AB
818 * done.
819 */
820 memcpy(wbuf->buf, buf + written, len);
821
6c7f74f7
AB
822 if (c->leb_size - wbuf->offs >= c->max_write_size)
823 wbuf->size = c->max_write_size;
824 else
825 wbuf->size = c->leb_size - wbuf->offs;
826 wbuf->avail = wbuf->size - aligned_len;
1e51764a 827 wbuf->used = aligned_len;
1e51764a
AB
828 wbuf->next_ino = 0;
829 spin_unlock(&wbuf->lock);
830
831exit:
832 if (wbuf->sync_callback) {
833 int free = c->leb_size - wbuf->offs - wbuf->used;
834
835 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
836 if (err)
837 goto out;
838 }
839
840 if (wbuf->used)
841 new_wbuf_timer_nolock(wbuf);
842
843 return 0;
844
845out:
846 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
847 len, wbuf->lnum, wbuf->offs, err);
848 dbg_dump_node(c, buf);
849 dbg_dump_stack();
850 dbg_dump_leb(c, wbuf->lnum);
851 return err;
852}
853
854/**
855 * ubifs_write_node - write node to the media.
856 * @c: UBIFS file-system description object
857 * @buf: the node to write
858 * @len: node length
859 * @lnum: logical eraseblock number
860 * @offs: offset within the logical eraseblock
861 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
862 *
863 * This function automatically fills node magic number, assigns sequence
864 * number, and calculates node CRC checksum. The length of the @buf buffer has
865 * to be aligned to the minimal I/O unit size. This function automatically
866 * appends padding node and padding bytes if needed. Returns zero in case of
867 * success and a negative error code in case of failure.
868 */
869int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
870 int offs, int dtype)
871{
872 int err, buf_len = ALIGN(len, c->min_io_size);
873
874 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
875 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
876 buf_len);
877 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
878 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
2ef13294 879 ubifs_assert(!c->ro_media && !c->ro_mount);
4f1ab9b0 880 ubifs_assert(!c->space_fixup);
1e51764a 881
2680d722 882 if (c->ro_error)
1e51764a
AB
883 return -EROFS;
884
885 ubifs_prepare_node(c, buf, len, 1);
886 err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
887 if (err) {
888 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
889 buf_len, lnum, offs, err);
890 dbg_dump_node(c, buf);
891 dbg_dump_stack();
892 }
893
894 return err;
895}
896
897/**
898 * ubifs_read_node_wbuf - read node from the media or write-buffer.
899 * @wbuf: wbuf to check for un-written data
900 * @buf: buffer to read to
901 * @type: node type
902 * @len: node length
903 * @lnum: logical eraseblock number
904 * @offs: offset within the logical eraseblock
905 *
906 * This function reads a node of known type and length, checks it and stores
907 * in @buf. If the node partially or fully sits in the write-buffer, this
908 * function takes data from the buffer, otherwise it reads the flash media.
909 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
910 * error code in case of failure.
911 */
912int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
913 int lnum, int offs)
914{
915 const struct ubifs_info *c = wbuf->c;
916 int err, rlen, overlap;
917 struct ubifs_ch *ch = buf;
918
77a7ae58
AB
919 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
920 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
1e51764a
AB
921 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
922 ubifs_assert(!(offs & 7) && offs < c->leb_size);
923 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
924
925 spin_lock(&wbuf->lock);
926 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
927 if (!overlap) {
928 /* We may safely unlock the write-buffer and read the data */
929 spin_unlock(&wbuf->lock);
930 return ubifs_read_node(c, buf, type, len, lnum, offs);
931 }
932
933 /* Don't read under wbuf */
934 rlen = wbuf->offs - offs;
935 if (rlen < 0)
936 rlen = 0;
937
938 /* Copy the rest from the write-buffer */
939 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
940 spin_unlock(&wbuf->lock);
941
942 if (rlen > 0) {
943 /* Read everything that goes before write-buffer */
d304820a
AB
944 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
945 if (err && err != -EBADMSG)
1e51764a 946 return err;
1e51764a
AB
947 }
948
949 if (type != ch->node_type) {
950 ubifs_err("bad node type (%d but expected %d)",
951 ch->node_type, type);
952 goto out;
953 }
954
2953e73f 955 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1e51764a
AB
956 if (err) {
957 ubifs_err("expected node type %d", type);
958 return err;
959 }
960
961 rlen = le32_to_cpu(ch->len);
962 if (rlen != len) {
963 ubifs_err("bad node length %d, expected %d", rlen, len);
964 goto out;
965 }
966
967 return 0;
968
969out:
970 ubifs_err("bad node at LEB %d:%d", lnum, offs);
971 dbg_dump_node(c, buf);
972 dbg_dump_stack();
973 return -EINVAL;
974}
975
976/**
977 * ubifs_read_node - read node.
978 * @c: UBIFS file-system description object
979 * @buf: buffer to read to
980 * @type: node type
981 * @len: node length (not aligned)
982 * @lnum: logical eraseblock number
983 * @offs: offset within the logical eraseblock
984 *
985 * This function reads a node of known type and and length, checks it and
986 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
987 * and a negative error code in case of failure.
988 */
989int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
990 int lnum, int offs)
991{
992 int err, l;
993 struct ubifs_ch *ch = buf;
994
995 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
996 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
997 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
998 ubifs_assert(!(offs & 7) && offs < c->leb_size);
999 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1000
d304820a
AB
1001 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1002 if (err && err != -EBADMSG)
1e51764a 1003 return err;
1e51764a
AB
1004
1005 if (type != ch->node_type) {
1006 ubifs_err("bad node type (%d but expected %d)",
1007 ch->node_type, type);
1008 goto out;
1009 }
1010
2953e73f 1011 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1e51764a
AB
1012 if (err) {
1013 ubifs_err("expected node type %d", type);
1014 return err;
1015 }
1016
1017 l = le32_to_cpu(ch->len);
1018 if (l != len) {
1019 ubifs_err("bad node length %d, expected %d", l, len);
1020 goto out;
1021 }
1022
1023 return 0;
1024
1025out:
3a8fa0ed
AB
1026 ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
1027 ubi_is_mapped(c->ubi, lnum));
1e51764a
AB
1028 dbg_dump_node(c, buf);
1029 dbg_dump_stack();
1030 return -EINVAL;
1031}
1032
1033/**
1034 * ubifs_wbuf_init - initialize write-buffer.
1035 * @c: UBIFS file-system description object
1036 * @wbuf: write-buffer to initialize
1037 *
cb54ef8b 1038 * This function initializes write-buffer. Returns zero in case of success
1e51764a
AB
1039 * %-ENOMEM in case of failure.
1040 */
1041int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1042{
1043 size_t size;
1044
6c7f74f7 1045 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1e51764a
AB
1046 if (!wbuf->buf)
1047 return -ENOMEM;
1048
6c7f74f7 1049 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1e51764a
AB
1050 wbuf->inodes = kmalloc(size, GFP_KERNEL);
1051 if (!wbuf->inodes) {
1052 kfree(wbuf->buf);
1053 wbuf->buf = NULL;
1054 return -ENOMEM;
1055 }
1056
1057 wbuf->used = 0;
1058 wbuf->lnum = wbuf->offs = -1;
6c7f74f7
AB
1059 /*
1060 * If the LEB starts at the max. write size aligned address, then
1061 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1062 * set it to something smaller so that it ends at the closest max.
1063 * write size boundary.
1064 */
1065 size = c->max_write_size - (c->leb_start % c->max_write_size);
1066 wbuf->avail = wbuf->size = size;
1e51764a
AB
1067 wbuf->dtype = UBI_UNKNOWN;
1068 wbuf->sync_callback = NULL;
1069 mutex_init(&wbuf->io_mutex);
1070 spin_lock_init(&wbuf->lock);
1e51764a 1071 wbuf->c = c;
1e51764a
AB
1072 wbuf->next_ino = 0;
1073
f2c5dbd7
AB
1074 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1075 wbuf->timer.function = wbuf_timer_callback_nolock;
2a35a3a8
AB
1076 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1077 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1078 wbuf->delta *= 1000000000ULL;
1079 ubifs_assert(wbuf->delta <= ULONG_MAX);
1e51764a
AB
1080 return 0;
1081}
1082
1083/**
1084 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
cb54ef8b 1085 * @wbuf: the write-buffer where to add
1e51764a
AB
1086 * @inum: the inode number
1087 *
1088 * This function adds an inode number to the inode array of the write-buffer.
1089 */
1090void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1091{
1092 if (!wbuf->buf)
1093 /* NOR flash or something similar */
1094 return;
1095
1096 spin_lock(&wbuf->lock);
1097 if (wbuf->used)
1098 wbuf->inodes[wbuf->next_ino++] = inum;
1099 spin_unlock(&wbuf->lock);
1100}
1101
1102/**
1103 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1104 * @wbuf: the write-buffer
1105 * @inum: the inode number
1106 *
1107 * This function returns with %1 if the write-buffer contains some data from the
1108 * given inode otherwise it returns with %0.
1109 */
1110static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1111{
1112 int i, ret = 0;
1113
1114 spin_lock(&wbuf->lock);
1115 for (i = 0; i < wbuf->next_ino; i++)
1116 if (inum == wbuf->inodes[i]) {
1117 ret = 1;
1118 break;
1119 }
1120 spin_unlock(&wbuf->lock);
1121
1122 return ret;
1123}
1124
1125/**
1126 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1127 * @c: UBIFS file-system description object
1128 * @inode: inode to synchronize
1129 *
1130 * This function synchronizes write-buffers which contain nodes belonging to
1131 * @inode. Returns zero in case of success and a negative error code in case of
1132 * failure.
1133 */
1134int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1135{
1136 int i, err = 0;
1137
1138 for (i = 0; i < c->jhead_cnt; i++) {
1139 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1140
1141 if (i == GCHD)
1142 /*
1143 * GC head is special, do not look at it. Even if the
1144 * head contains something related to this inode, it is
1145 * a _copy_ of corresponding on-flash node which sits
1146 * somewhere else.
1147 */
1148 continue;
1149
1150 if (!wbuf_has_ino(wbuf, inode->i_ino))
1151 continue;
1152
1153 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1154 if (wbuf_has_ino(wbuf, inode->i_ino))
1155 err = ubifs_wbuf_sync_nolock(wbuf);
1156 mutex_unlock(&wbuf->io_mutex);
1157
1158 if (err) {
1159 ubifs_ro_mode(c, err);
1160 return err;
1161 }
1162 }
1163 return 0;
1164}
This page took 0.260404 seconds and 5 git commands to generate.