[XFS] clean up the xfs_offset_to_map interface Currently we pass a struct
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir.h"
25#include "xfs_dir2.h"
26#include "xfs_trans.h"
27#include "xfs_dmapi.h"
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4
LT
32#include "xfs_dir_sf.h"
33#include "xfs_dir2_sf.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4
LT
35#include "xfs_dinode.h"
36#include "xfs_inode.h"
a844f451
NS
37#include "xfs_alloc.h"
38#include "xfs_btree.h"
1da177e4
LT
39#include "xfs_error.h"
40#include "xfs_rw.h"
41#include "xfs_iomap.h"
42#include <linux/mpage.h>
10ce4444 43#include <linux/pagevec.h>
1da177e4
LT
44#include <linux/writeback.h>
45
46STATIC void xfs_count_page_state(struct page *, int *, int *, int *);
1da177e4
LT
47
48#if defined(XFS_RW_TRACE)
49void
50xfs_page_trace(
51 int tag,
52 struct inode *inode,
53 struct page *page,
54 int mask)
55{
56 xfs_inode_t *ip;
57 bhv_desc_t *bdp;
58 vnode_t *vp = LINVFS_GET_VP(inode);
59 loff_t isize = i_size_read(inode);
f6d6d4fc 60 loff_t offset = page_offset(page);
1da177e4
LT
61 int delalloc = -1, unmapped = -1, unwritten = -1;
62
63 if (page_has_buffers(page))
64 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
65
66 bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
67 ip = XFS_BHVTOI(bdp);
68 if (!ip->i_rwtrace)
69 return;
70
71 ktrace_enter(ip->i_rwtrace,
72 (void *)((unsigned long)tag),
73 (void *)ip,
74 (void *)inode,
75 (void *)page,
76 (void *)((unsigned long)mask),
77 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
78 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
79 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
80 (void *)((unsigned long)(isize & 0xffffffff)),
81 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
82 (void *)((unsigned long)(offset & 0xffffffff)),
83 (void *)((unsigned long)delalloc),
84 (void *)((unsigned long)unmapped),
85 (void *)((unsigned long)unwritten),
86 (void *)NULL,
87 (void *)NULL);
88}
89#else
90#define xfs_page_trace(tag, inode, page, mask)
91#endif
92
0829c360
CH
93/*
94 * Schedule IO completion handling on a xfsdatad if this was
95 * the final hold on this ioend.
96 */
97STATIC void
98xfs_finish_ioend(
99 xfs_ioend_t *ioend)
100{
101 if (atomic_dec_and_test(&ioend->io_remaining))
102 queue_work(xfsdatad_workqueue, &ioend->io_work);
103}
104
f6d6d4fc
CH
105/*
106 * We're now finished for good with this ioend structure.
107 * Update the page state via the associated buffer_heads,
108 * release holds on the inode and bio, and finally free
109 * up memory. Do not use the ioend after this.
110 */
0829c360
CH
111STATIC void
112xfs_destroy_ioend(
113 xfs_ioend_t *ioend)
114{
f6d6d4fc
CH
115 struct buffer_head *bh, *next;
116
117 for (bh = ioend->io_buffer_head; bh; bh = next) {
118 next = bh->b_private;
119 bh->b_end_io(bh, ioend->io_uptodate);
120 }
121
0829c360
CH
122 vn_iowake(ioend->io_vnode);
123 mempool_free(ioend, xfs_ioend_pool);
124}
125
126/*
f6d6d4fc
CH
127 * Buffered IO write completion for delayed allocate extents.
128 * TODO: Update ondisk isize now that we know the file data
129 * has been flushed (i.e. the notorious "NULL file" problem).
130 */
131STATIC void
132xfs_end_bio_delalloc(
133 void *data)
134{
135 xfs_ioend_t *ioend = data;
136
137 xfs_destroy_ioend(ioend);
138}
139
140/*
141 * Buffered IO write completion for regular, written extents.
142 */
143STATIC void
144xfs_end_bio_written(
145 void *data)
146{
147 xfs_ioend_t *ioend = data;
148
149 xfs_destroy_ioend(ioend);
150}
151
152/*
153 * IO write completion for unwritten extents.
154 *
0829c360 155 * Issue transactions to convert a buffer range from unwritten
f0973863 156 * to written extents.
0829c360
CH
157 */
158STATIC void
159xfs_end_bio_unwritten(
160 void *data)
161{
162 xfs_ioend_t *ioend = data;
163 vnode_t *vp = ioend->io_vnode;
164 xfs_off_t offset = ioend->io_offset;
165 size_t size = ioend->io_size;
166 int error;
167
168 if (ioend->io_uptodate)
169 VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error);
170 xfs_destroy_ioend(ioend);
171}
172
173/*
174 * Allocate and initialise an IO completion structure.
175 * We need to track unwritten extent write completion here initially.
176 * We'll need to extend this for updating the ondisk inode size later
177 * (vs. incore size).
178 */
179STATIC xfs_ioend_t *
180xfs_alloc_ioend(
f6d6d4fc
CH
181 struct inode *inode,
182 unsigned int type)
0829c360
CH
183{
184 xfs_ioend_t *ioend;
185
186 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
187
188 /*
189 * Set the count to 1 initially, which will prevent an I/O
190 * completion callback from happening before we have started
191 * all the I/O from calling the completion routine too early.
192 */
193 atomic_set(&ioend->io_remaining, 1);
194 ioend->io_uptodate = 1; /* cleared if any I/O fails */
f6d6d4fc
CH
195 ioend->io_list = NULL;
196 ioend->io_type = type;
0829c360 197 ioend->io_vnode = LINVFS_GET_VP(inode);
c1a073bd 198 ioend->io_buffer_head = NULL;
f6d6d4fc 199 ioend->io_buffer_tail = NULL;
0829c360
CH
200 atomic_inc(&ioend->io_vnode->v_iocount);
201 ioend->io_offset = 0;
202 ioend->io_size = 0;
203
f6d6d4fc
CH
204 if (type == IOMAP_UNWRITTEN)
205 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend);
206 else if (type == IOMAP_DELAY)
207 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc, ioend);
208 else
209 INIT_WORK(&ioend->io_work, xfs_end_bio_written, ioend);
0829c360
CH
210
211 return ioend;
212}
213
1da177e4
LT
214STATIC int
215xfs_map_blocks(
216 struct inode *inode,
217 loff_t offset,
218 ssize_t count,
219 xfs_iomap_t *mapp,
220 int flags)
221{
222 vnode_t *vp = LINVFS_GET_VP(inode);
223 int error, nmaps = 1;
224
225 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
226 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
227 VMODIFY(vp);
228 return -error;
229}
230
1defeac9
CH
231STATIC inline int
232xfs_iomap_valid(
1da177e4 233 xfs_iomap_t *iomapp,
1defeac9 234 loff_t offset)
1da177e4 235{
1defeac9
CH
236 return offset >= iomapp->iomap_offset &&
237 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
238}
239
f6d6d4fc
CH
240/*
241 * BIO completion handler for buffered IO.
242 */
243STATIC int
244xfs_end_bio(
245 struct bio *bio,
246 unsigned int bytes_done,
247 int error)
248{
249 xfs_ioend_t *ioend = bio->bi_private;
250
251 if (bio->bi_size)
252 return 1;
253
254 ASSERT(ioend);
255 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
256
257 /* Toss bio and pass work off to an xfsdatad thread */
258 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
259 ioend->io_uptodate = 0;
260 bio->bi_private = NULL;
261 bio->bi_end_io = NULL;
262
263 bio_put(bio);
264 xfs_finish_ioend(ioend);
265 return 0;
266}
267
268STATIC void
269xfs_submit_ioend_bio(
270 xfs_ioend_t *ioend,
271 struct bio *bio)
272{
273 atomic_inc(&ioend->io_remaining);
274
275 bio->bi_private = ioend;
276 bio->bi_end_io = xfs_end_bio;
277
278 submit_bio(WRITE, bio);
279 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
280 bio_put(bio);
281}
282
283STATIC struct bio *
284xfs_alloc_ioend_bio(
285 struct buffer_head *bh)
286{
287 struct bio *bio;
288 int nvecs = bio_get_nr_vecs(bh->b_bdev);
289
290 do {
291 bio = bio_alloc(GFP_NOIO, nvecs);
292 nvecs >>= 1;
293 } while (!bio);
294
295 ASSERT(bio->bi_private == NULL);
296 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
297 bio->bi_bdev = bh->b_bdev;
298 bio_get(bio);
299 return bio;
300}
301
302STATIC void
303xfs_start_buffer_writeback(
304 struct buffer_head *bh)
305{
306 ASSERT(buffer_mapped(bh));
307 ASSERT(buffer_locked(bh));
308 ASSERT(!buffer_delay(bh));
309 ASSERT(!buffer_unwritten(bh));
310
311 mark_buffer_async_write(bh);
312 set_buffer_uptodate(bh);
313 clear_buffer_dirty(bh);
314}
315
316STATIC void
317xfs_start_page_writeback(
318 struct page *page,
319 struct writeback_control *wbc,
320 int clear_dirty,
321 int buffers)
322{
323 ASSERT(PageLocked(page));
324 ASSERT(!PageWriteback(page));
325 set_page_writeback(page);
326 if (clear_dirty)
327 clear_page_dirty(page);
328 unlock_page(page);
329 if (!buffers) {
330 end_page_writeback(page);
331 wbc->pages_skipped++; /* We didn't write this page */
332 }
333}
334
335static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
336{
337 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
338}
339
340/*
341 * Submit all of the bios for all of the ioends we have saved up,
342 * covering the initial writepage page and also any probed pages.
343 */
344STATIC void
345xfs_submit_ioend(
346 xfs_ioend_t *ioend)
347{
348 xfs_ioend_t *next;
349 struct buffer_head *bh;
350 struct bio *bio;
351 sector_t lastblock = 0;
352
353 do {
354 next = ioend->io_list;
355 bio = NULL;
356
357 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
358 xfs_start_buffer_writeback(bh);
359
360 if (!bio) {
361 retry:
362 bio = xfs_alloc_ioend_bio(bh);
363 } else if (bh->b_blocknr != lastblock + 1) {
364 xfs_submit_ioend_bio(ioend, bio);
365 goto retry;
366 }
367
368 if (bio_add_buffer(bio, bh) != bh->b_size) {
369 xfs_submit_ioend_bio(ioend, bio);
370 goto retry;
371 }
372
373 lastblock = bh->b_blocknr;
374 }
375 if (bio)
376 xfs_submit_ioend_bio(ioend, bio);
377 xfs_finish_ioend(ioend);
378 } while ((ioend = next) != NULL);
379}
380
381/*
382 * Cancel submission of all buffer_heads so far in this endio.
383 * Toss the endio too. Only ever called for the initial page
384 * in a writepage request, so only ever one page.
385 */
386STATIC void
387xfs_cancel_ioend(
388 xfs_ioend_t *ioend)
389{
390 xfs_ioend_t *next;
391 struct buffer_head *bh, *next_bh;
392
393 do {
394 next = ioend->io_list;
395 bh = ioend->io_buffer_head;
396 do {
397 next_bh = bh->b_private;
398 clear_buffer_async_write(bh);
399 unlock_buffer(bh);
400 } while ((bh = next_bh) != NULL);
401
402 vn_iowake(ioend->io_vnode);
403 mempool_free(ioend, xfs_ioend_pool);
404 } while ((ioend = next) != NULL);
405}
406
407/*
408 * Test to see if we've been building up a completion structure for
409 * earlier buffers -- if so, we try to append to this ioend if we
410 * can, otherwise we finish off any current ioend and start another.
411 * Return true if we've finished the given ioend.
412 */
413STATIC void
414xfs_add_to_ioend(
415 struct inode *inode,
416 struct buffer_head *bh,
417 unsigned int p_offset,
418 unsigned int type,
419 xfs_ioend_t **result,
420 int need_ioend)
421{
422 xfs_ioend_t *ioend = *result;
423
424 if (!ioend || need_ioend || type != ioend->io_type) {
425 xfs_ioend_t *previous = *result;
426 xfs_off_t offset;
427
428 offset = (xfs_off_t)bh->b_page->index << PAGE_CACHE_SHIFT;
429 offset += p_offset;
430 ioend = xfs_alloc_ioend(inode, type);
431 ioend->io_offset = offset;
432 ioend->io_buffer_head = bh;
433 ioend->io_buffer_tail = bh;
434 if (previous)
435 previous->io_list = ioend;
436 *result = ioend;
437 } else {
438 ioend->io_buffer_tail->b_private = bh;
439 ioend->io_buffer_tail = bh;
440 }
441
442 bh->b_private = NULL;
443 ioend->io_size += bh->b_size;
444}
445
1da177e4
LT
446STATIC void
447xfs_map_at_offset(
1da177e4 448 struct buffer_head *bh,
1defeac9 449 loff_t offset,
1da177e4 450 int block_bits,
1defeac9 451 xfs_iomap_t *iomapp)
1da177e4
LT
452{
453 xfs_daddr_t bn;
1da177e4
LT
454 int sector_shift;
455
456 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
457 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
458 ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL);
459
1da177e4 460 sector_shift = block_bits - BBSHIFT;
1defeac9
CH
461 bn = (iomapp->iomap_bn >> sector_shift) +
462 ((offset - iomapp->iomap_offset) >> block_bits);
463
464 ASSERT(bn || (iomapp->iomap_flags & IOMAP_REALTIME));
1da177e4
LT
465 ASSERT((bn << sector_shift) >= iomapp->iomap_bn);
466
467 lock_buffer(bh);
468 bh->b_blocknr = bn;
ce8e922c 469 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
470 set_buffer_mapped(bh);
471 clear_buffer_delay(bh);
f6d6d4fc 472 clear_buffer_unwritten(bh);
1da177e4
LT
473}
474
475/*
476 * Look for a page at index which is unlocked and not mapped
477 * yet - clustering for mmap write case.
478 */
479STATIC unsigned int
480xfs_probe_unmapped_page(
10ce4444 481 struct page *page,
1da177e4
LT
482 unsigned int pg_offset)
483{
1da177e4
LT
484 int ret = 0;
485
1da177e4 486 if (PageWriteback(page))
10ce4444 487 return 0;
1da177e4
LT
488
489 if (page->mapping && PageDirty(page)) {
490 if (page_has_buffers(page)) {
491 struct buffer_head *bh, *head;
492
493 bh = head = page_buffers(page);
494 do {
495 if (buffer_mapped(bh) || !buffer_uptodate(bh))
496 break;
497 ret += bh->b_size;
498 if (ret >= pg_offset)
499 break;
500 } while ((bh = bh->b_this_page) != head);
501 } else
502 ret = PAGE_CACHE_SIZE;
503 }
504
1da177e4
LT
505 return ret;
506}
507
f6d6d4fc 508STATIC size_t
1da177e4
LT
509xfs_probe_unmapped_cluster(
510 struct inode *inode,
511 struct page *startpage,
512 struct buffer_head *bh,
513 struct buffer_head *head)
514{
10ce4444 515 struct pagevec pvec;
1da177e4 516 pgoff_t tindex, tlast, tloff;
10ce4444
CH
517 size_t total = 0;
518 int done = 0, i;
1da177e4
LT
519
520 /* First sum forwards in this page */
521 do {
522 if (buffer_mapped(bh))
10ce4444 523 return total;
1da177e4
LT
524 total += bh->b_size;
525 } while ((bh = bh->b_this_page) != head);
526
10ce4444
CH
527 /* if we reached the end of the page, sum forwards in following pages */
528 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
529 tindex = startpage->index + 1;
530
531 /* Prune this back to avoid pathological behavior */
532 tloff = min(tlast, startpage->index + 64);
533
534 pagevec_init(&pvec, 0);
535 while (!done && tindex <= tloff) {
536 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
537
538 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
539 break;
540
541 for (i = 0; i < pagevec_count(&pvec); i++) {
542 struct page *page = pvec.pages[i];
543 size_t pg_offset, len = 0;
544
545 if (tindex == tlast) {
546 pg_offset =
547 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
548 if (!pg_offset) {
549 done = 1;
10ce4444 550 break;
1defeac9 551 }
10ce4444
CH
552 } else
553 pg_offset = PAGE_CACHE_SIZE;
554
555 if (page->index == tindex && !TestSetPageLocked(page)) {
556 len = xfs_probe_unmapped_page(page, pg_offset);
557 unlock_page(page);
558 }
559
560 if (!len) {
561 done = 1;
562 break;
563 }
564
1da177e4 565 total += len;
1defeac9 566 tindex++;
1da177e4 567 }
10ce4444
CH
568
569 pagevec_release(&pvec);
570 cond_resched();
1da177e4 571 }
10ce4444 572
1da177e4
LT
573 return total;
574}
575
576/*
10ce4444
CH
577 * Test if a given page is suitable for writing as part of an unwritten
578 * or delayed allocate extent.
1da177e4 579 */
10ce4444
CH
580STATIC int
581xfs_is_delayed_page(
582 struct page *page,
f6d6d4fc 583 unsigned int type)
1da177e4 584{
1da177e4 585 if (PageWriteback(page))
10ce4444 586 return 0;
1da177e4
LT
587
588 if (page->mapping && page_has_buffers(page)) {
589 struct buffer_head *bh, *head;
590 int acceptable = 0;
591
592 bh = head = page_buffers(page);
593 do {
f6d6d4fc
CH
594 if (buffer_unwritten(bh))
595 acceptable = (type == IOMAP_UNWRITTEN);
596 else if (buffer_delay(bh))
597 acceptable = (type == IOMAP_DELAY);
598 else
1da177e4 599 break;
1da177e4
LT
600 } while ((bh = bh->b_this_page) != head);
601
602 if (acceptable)
10ce4444 603 return 1;
1da177e4
LT
604 }
605
10ce4444 606 return 0;
1da177e4
LT
607}
608
1da177e4
LT
609/*
610 * Allocate & map buffers for page given the extent map. Write it out.
611 * except for the original page of a writepage, this is called on
612 * delalloc/unwritten pages only, for the original page it is possible
613 * that the page has no mapping at all.
614 */
f6d6d4fc 615STATIC int
1da177e4
LT
616xfs_convert_page(
617 struct inode *inode,
618 struct page *page,
10ce4444 619 loff_t tindex,
1defeac9 620 xfs_iomap_t *mp,
f6d6d4fc 621 xfs_ioend_t **ioendp,
1da177e4 622 struct writeback_control *wbc,
1da177e4
LT
623 int startio,
624 int all_bh)
625{
f6d6d4fc 626 struct buffer_head *bh, *head;
f6d6d4fc
CH
627 unsigned long p_offset, end_offset;
628 unsigned int type;
1da177e4 629 int bbits = inode->i_blkbits;
24e17b5f 630 int len, page_dirty;
f6d6d4fc 631 int count = 0, done = 0, uptodate = 1;
1defeac9 632 xfs_off_t f_offset = page_offset(page);
1da177e4 633
10ce4444
CH
634 if (page->index != tindex)
635 goto fail;
636 if (TestSetPageLocked(page))
637 goto fail;
638 if (PageWriteback(page))
639 goto fail_unlock_page;
640 if (page->mapping != inode->i_mapping)
641 goto fail_unlock_page;
642 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
643 goto fail_unlock_page;
644
24e17b5f
NS
645 end_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1));
646
647 /*
648 * page_dirty is initially a count of buffers on the page before
649 * EOF and is decrememted as we move each into a cleanable state.
650 */
651 len = 1 << inode->i_blkbits;
652 end_offset = max(end_offset, PAGE_CACHE_SIZE);
653 end_offset = roundup(end_offset, len);
654 page_dirty = end_offset / len;
655
f6d6d4fc 656 p_offset = 0;
1da177e4
LT
657 bh = head = page_buffers(page);
658 do {
f6d6d4fc 659 if (p_offset >= end_offset)
1da177e4 660 break;
f6d6d4fc
CH
661 if (!buffer_uptodate(bh))
662 uptodate = 0;
663 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
664 done = 1;
1da177e4 665 continue;
f6d6d4fc
CH
666 }
667
668 if (buffer_unwritten(bh))
669 type = IOMAP_UNWRITTEN;
670 else if (buffer_delay(bh))
671 type = IOMAP_DELAY;
672 else {
673 type = 0;
674 if (!(buffer_mapped(bh) && all_bh && startio)) {
675 done = 1;
676 } else if (startio) {
1da177e4 677 lock_buffer(bh);
f6d6d4fc
CH
678 xfs_add_to_ioend(inode, bh, p_offset,
679 type, ioendp, done);
680 count++;
24e17b5f 681 page_dirty--;
1da177e4
LT
682 }
683 continue;
684 }
1defeac9
CH
685
686 if (!xfs_iomap_valid(mp, f_offset + p_offset)) {
f6d6d4fc 687 done = 1;
1da177e4 688 continue;
f6d6d4fc 689 }
1defeac9
CH
690 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
691 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
1da177e4 692
1defeac9 693 xfs_map_at_offset(bh, f_offset + p_offset, bbits, mp);
1da177e4 694 if (startio) {
f6d6d4fc
CH
695 xfs_add_to_ioend(inode, bh, p_offset,
696 type, ioendp, done);
697 count++;
1da177e4
LT
698 } else {
699 set_buffer_dirty(bh);
700 unlock_buffer(bh);
701 mark_buffer_dirty(bh);
702 }
24e17b5f 703 page_dirty--;
f6d6d4fc 704 } while (p_offset += len, (bh = bh->b_this_page) != head);
1da177e4 705
f6d6d4fc
CH
706 if (uptodate && bh == head)
707 SetPageUptodate(page);
708
709 if (startio) {
710 if (count)
711 wbc->nr_to_write--;
712 xfs_start_page_writeback(page, wbc, !page_dirty, count);
1da177e4 713 }
f6d6d4fc
CH
714
715 return done;
10ce4444
CH
716 fail_unlock_page:
717 unlock_page(page);
718 fail:
719 return 1;
1da177e4
LT
720}
721
722/*
723 * Convert & write out a cluster of pages in the same extent as defined
724 * by mp and following the start page.
725 */
726STATIC void
727xfs_cluster_write(
728 struct inode *inode,
729 pgoff_t tindex,
730 xfs_iomap_t *iomapp,
f6d6d4fc 731 xfs_ioend_t **ioendp,
1da177e4
LT
732 struct writeback_control *wbc,
733 int startio,
734 int all_bh,
735 pgoff_t tlast)
736{
10ce4444
CH
737 struct pagevec pvec;
738 int done = 0, i;
1da177e4 739
10ce4444
CH
740 pagevec_init(&pvec, 0);
741 while (!done && tindex <= tlast) {
742 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
743
744 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 745 break;
10ce4444
CH
746
747 for (i = 0; i < pagevec_count(&pvec); i++) {
748 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
749 iomapp, ioendp, wbc, startio, all_bh);
750 if (done)
751 break;
752 }
753
754 pagevec_release(&pvec);
755 cond_resched();
1da177e4
LT
756 }
757}
758
759/*
760 * Calling this without startio set means we are being asked to make a dirty
761 * page ready for freeing it's buffers. When called with startio set then
762 * we are coming from writepage.
763 *
764 * When called with startio set it is important that we write the WHOLE
765 * page if possible.
766 * The bh->b_state's cannot know if any of the blocks or which block for
767 * that matter are dirty due to mmap writes, and therefore bh uptodate is
768 * only vaild if the page itself isn't completely uptodate. Some layers
769 * may clear the page dirty flag prior to calling write page, under the
770 * assumption the entire page will be written out; by not writing out the
771 * whole page the page can be reused before all valid dirty data is
772 * written out. Note: in the case of a page that has been dirty'd by
773 * mapwrite and but partially setup by block_prepare_write the
774 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
775 * valid state, thus the whole page must be written out thing.
776 */
777
778STATIC int
779xfs_page_state_convert(
780 struct inode *inode,
781 struct page *page,
782 struct writeback_control *wbc,
783 int startio,
784 int unmapped) /* also implies page uptodate */
785{
f6d6d4fc 786 struct buffer_head *bh, *head;
1defeac9 787 xfs_iomap_t iomap;
f6d6d4fc 788 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
789 loff_t offset;
790 unsigned long p_offset = 0;
f6d6d4fc 791 unsigned int type;
1da177e4
LT
792 __uint64_t end_offset;
793 pgoff_t end_index, last_index, tlast;
1defeac9 794 int flags, len, err, iomap_valid = 0, uptodate = 1;
f6d6d4fc 795 int page_dirty, count = 0, trylock_flag = 0;
1da177e4 796
3ba0815a 797 /* wait for other IO threads? */
f6d6d4fc
CH
798 if (startio && wbc->sync_mode != WB_SYNC_NONE)
799 trylock_flag |= BMAPI_TRYLOCK;
3ba0815a 800
1da177e4
LT
801 /* Is this page beyond the end of the file? */
802 offset = i_size_read(inode);
803 end_index = offset >> PAGE_CACHE_SHIFT;
804 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
805 if (page->index >= end_index) {
806 if ((page->index >= end_index + 1) ||
807 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
808 if (startio)
809 unlock_page(page);
810 return 0;
1da177e4
LT
811 }
812 }
813
1da177e4 814 /*
24e17b5f
NS
815 * page_dirty is initially a count of buffers on the page before
816 * EOF and is decrememted as we move each into a cleanable state.
f6d6d4fc
CH
817 *
818 * Derivation:
819 *
820 * End offset is the highest offset that this page should represent.
821 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
822 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
823 * hence give us the correct page_dirty count. On any other page,
824 * it will be zero and in that case we need page_dirty to be the
825 * count of buffers on the page.
826 */
827 end_offset = min_t(unsigned long long,
828 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 829 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
830 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
831 PAGE_CACHE_SIZE);
832 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
833 page_dirty = p_offset / len;
834
24e17b5f 835 bh = head = page_buffers(page);
f6d6d4fc
CH
836 offset = page_offset(page);
837
f6d6d4fc 838 /* TODO: cleanup count and page_dirty */
1da177e4
LT
839
840 do {
841 if (offset >= end_offset)
842 break;
843 if (!buffer_uptodate(bh))
844 uptodate = 0;
f6d6d4fc 845 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
846 /*
847 * the iomap is actually still valid, but the ioend
848 * isn't. shouldn't happen too often.
849 */
850 iomap_valid = 0;
1da177e4 851 continue;
f6d6d4fc 852 }
1da177e4 853
1defeac9
CH
854 if (iomap_valid)
855 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
856
857 /*
858 * First case, map an unwritten extent and prepare for
859 * extent state conversion transaction on completion.
f6d6d4fc 860 *
1da177e4
LT
861 * Second case, allocate space for a delalloc buffer.
862 * We can return EAGAIN here in the release page case.
863 */
f6d6d4fc
CH
864 if (buffer_unwritten(bh) || buffer_delay(bh)) {
865 if (buffer_unwritten(bh)) {
866 type = IOMAP_UNWRITTEN;
867 flags = BMAPI_WRITE|BMAPI_IGNSTATE;
868 } else {
869 type = IOMAP_DELAY;
870 flags = BMAPI_ALLOCATE;
871 if (!startio)
872 flags |= trylock_flag;
873 }
874
1defeac9 875 if (!iomap_valid) {
1da177e4 876 err = xfs_map_blocks(inode, offset, len, &iomap,
f6d6d4fc
CH
877 flags);
878 if (err)
1da177e4 879 goto error;
1defeac9 880 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 881 }
1defeac9
CH
882 if (iomap_valid) {
883 xfs_map_at_offset(bh, offset,
884 inode->i_blkbits, &iomap);
1da177e4 885 if (startio) {
f6d6d4fc 886 xfs_add_to_ioend(inode, bh, p_offset,
1defeac9
CH
887 type, &ioend,
888 !iomap_valid);
1da177e4
LT
889 } else {
890 set_buffer_dirty(bh);
891 unlock_buffer(bh);
892 mark_buffer_dirty(bh);
893 }
894 page_dirty--;
f6d6d4fc 895 count++;
1da177e4
LT
896 }
897 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
898 (unmapped || startio)) {
899
f6d6d4fc 900 type = 0;
1da177e4 901 if (!buffer_mapped(bh)) {
1da177e4
LT
902
903 /*
904 * Getting here implies an unmapped buffer
905 * was found, and we are in a path where we
906 * need to write the whole page out.
907 */
1defeac9 908 if (!iomap_valid) {
f6d6d4fc
CH
909 int size;
910
1da177e4
LT
911 size = xfs_probe_unmapped_cluster(
912 inode, page, bh, head);
913 err = xfs_map_blocks(inode, offset,
914 size, &iomap,
915 BMAPI_WRITE|BMAPI_MMAP);
1defeac9 916 if (err)
1da177e4 917 goto error;
1defeac9
CH
918 iomap_valid = xfs_iomap_valid(&iomap,
919 offset);
1da177e4 920 }
1defeac9
CH
921 if (iomap_valid) {
922 xfs_map_at_offset(bh, offset,
923 inode->i_blkbits,
924 &iomap);
1da177e4 925 if (startio) {
f6d6d4fc
CH
926 xfs_add_to_ioend(inode,
927 bh, p_offset, type,
1defeac9 928 &ioend, !iomap_valid);
1da177e4
LT
929 } else {
930 set_buffer_dirty(bh);
931 unlock_buffer(bh);
932 mark_buffer_dirty(bh);
933 }
934 page_dirty--;
f6d6d4fc 935 count++;
1da177e4
LT
936 }
937 } else if (startio) {
938 if (buffer_uptodate(bh) &&
939 !test_and_set_bit(BH_Lock, &bh->b_state)) {
f6d6d4fc
CH
940 ASSERT(buffer_mapped(bh));
941 xfs_add_to_ioend(inode,
942 bh, p_offset, type,
1defeac9 943 &ioend, !iomap_valid);
1da177e4 944 page_dirty--;
f6d6d4fc
CH
945 count++;
946 } else {
1defeac9 947 iomap_valid = 0;
1da177e4 948 }
f6d6d4fc 949 } else {
1defeac9 950 iomap_valid = 0;
1da177e4
LT
951 }
952 }
f6d6d4fc
CH
953
954 if (!iohead)
955 iohead = ioend;
956
957 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
958
959 if (uptodate && bh == head)
960 SetPageUptodate(page);
961
f6d6d4fc
CH
962 if (startio)
963 xfs_start_page_writeback(page, wbc, 1, count);
1da177e4 964
1defeac9
CH
965 if (ioend && iomap_valid) {
966 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 967 PAGE_CACHE_SHIFT;
775bf6c9 968 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 969 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
f6d6d4fc 970 wbc, startio, unmapped, tlast);
1da177e4
LT
971 }
972
f6d6d4fc
CH
973 if (iohead)
974 xfs_submit_ioend(iohead);
975
1da177e4
LT
976 return page_dirty;
977
978error:
f6d6d4fc
CH
979 if (iohead)
980 xfs_cancel_ioend(iohead);
1da177e4
LT
981
982 /*
983 * If it's delalloc and we have nowhere to put it,
984 * throw it away, unless the lower layers told
985 * us to try again.
986 */
987 if (err != -EAGAIN) {
f6d6d4fc 988 if (!unmapped)
1da177e4 989 block_invalidatepage(page, 0);
1da177e4
LT
990 ClearPageUptodate(page);
991 }
992 return err;
993}
994
995STATIC int
996__linvfs_get_block(
997 struct inode *inode,
998 sector_t iblock,
999 unsigned long blocks,
1000 struct buffer_head *bh_result,
1001 int create,
1002 int direct,
1003 bmapi_flags_t flags)
1004{
1005 vnode_t *vp = LINVFS_GET_VP(inode);
1006 xfs_iomap_t iomap;
fdc7ed75
NS
1007 xfs_off_t offset;
1008 ssize_t size;
1da177e4
LT
1009 int retpbbm = 1;
1010 int error;
1da177e4 1011
fdc7ed75 1012 offset = (xfs_off_t)iblock << inode->i_blkbits;
a4656391
NS
1013 if (blocks)
1014 size = (ssize_t) min_t(xfs_off_t, LONG_MAX,
1015 (xfs_off_t)blocks << inode->i_blkbits);
1016 else
1017 size = 1 << inode->i_blkbits;
1da177e4
LT
1018
1019 VOP_BMAP(vp, offset, size,
1020 create ? flags : BMAPI_READ, &iomap, &retpbbm, error);
1021 if (error)
1022 return -error;
1023
1024 if (retpbbm == 0)
1025 return 0;
1026
1027 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
fdc7ed75
NS
1028 xfs_daddr_t bn;
1029 xfs_off_t delta;
1da177e4
LT
1030
1031 /* For unwritten extents do not report a disk address on
1032 * the read case (treat as if we're reading into a hole).
1033 */
1034 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1035 delta = offset - iomap.iomap_offset;
1036 delta >>= inode->i_blkbits;
1037
1038 bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT);
1039 bn += delta;
1040 BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME));
1041 bh_result->b_blocknr = bn;
1042 set_buffer_mapped(bh_result);
1043 }
1044 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1045 if (direct)
1046 bh_result->b_private = inode;
1047 set_buffer_unwritten(bh_result);
1048 set_buffer_delay(bh_result);
1049 }
1050 }
1051
1052 /* If this is a realtime file, data might be on a new device */
ce8e922c 1053 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4
LT
1054
1055 /* If we previously allocated a block out beyond eof and
1056 * we are now coming back to use it then we will need to
1057 * flag it as new even if it has a disk address.
1058 */
1059 if (create &&
1060 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
fdc7ed75 1061 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW)))
1da177e4 1062 set_buffer_new(bh_result);
1da177e4
LT
1063
1064 if (iomap.iomap_flags & IOMAP_DELAY) {
1065 BUG_ON(direct);
1066 if (create) {
1067 set_buffer_uptodate(bh_result);
1068 set_buffer_mapped(bh_result);
1069 set_buffer_delay(bh_result);
1070 }
1071 }
1072
1073 if (blocks) {
fdc7ed75
NS
1074 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1075 offset = min_t(xfs_off_t,
1076 iomap.iomap_bsize - iomap.iomap_delta,
a4656391 1077 (xfs_off_t)blocks << inode->i_blkbits);
fdc7ed75 1078 bh_result->b_size = (u32) min_t(xfs_off_t, UINT_MAX, offset);
1da177e4
LT
1079 }
1080
1081 return 0;
1082}
1083
1084int
1085linvfs_get_block(
1086 struct inode *inode,
1087 sector_t iblock,
1088 struct buffer_head *bh_result,
1089 int create)
1090{
1091 return __linvfs_get_block(inode, iblock, 0, bh_result,
1092 create, 0, BMAPI_WRITE);
1093}
1094
1095STATIC int
1096linvfs_get_blocks_direct(
1097 struct inode *inode,
1098 sector_t iblock,
1099 unsigned long max_blocks,
1100 struct buffer_head *bh_result,
1101 int create)
1102{
1103 return __linvfs_get_block(inode, iblock, max_blocks, bh_result,
1104 create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1105}
1106
f0973863
CH
1107STATIC void
1108linvfs_end_io_direct(
1109 struct kiocb *iocb,
1110 loff_t offset,
1111 ssize_t size,
1112 void *private)
1113{
1114 xfs_ioend_t *ioend = iocb->private;
1115
1116 /*
1117 * Non-NULL private data means we need to issue a transaction to
1118 * convert a range from unwritten to written extents. This needs
1119 * to happen from process contect but aio+dio I/O completion
1120 * happens from irq context so we need to defer it to a workqueue.
1121 * This is not nessecary for synchronous direct I/O, but we do
1122 * it anyway to keep the code uniform and simpler.
1123 *
1124 * The core direct I/O code might be changed to always call the
1125 * completion handler in the future, in which case all this can
1126 * go away.
1127 */
1128 if (private && size > 0) {
1129 ioend->io_offset = offset;
1130 ioend->io_size = size;
1131 xfs_finish_ioend(ioend);
1132 } else {
1133 ASSERT(size >= 0);
1134 xfs_destroy_ioend(ioend);
1135 }
1136
1137 /*
1138 * blockdev_direct_IO can return an error even afer the I/O
1139 * completion handler was called. Thus we need to protect
1140 * against double-freeing.
1141 */
1142 iocb->private = NULL;
1143}
1144
1da177e4
LT
1145STATIC ssize_t
1146linvfs_direct_IO(
1147 int rw,
1148 struct kiocb *iocb,
1149 const struct iovec *iov,
1150 loff_t offset,
1151 unsigned long nr_segs)
1152{
1153 struct file *file = iocb->ki_filp;
1154 struct inode *inode = file->f_mapping->host;
1155 vnode_t *vp = LINVFS_GET_VP(inode);
1156 xfs_iomap_t iomap;
1157 int maps = 1;
1158 int error;
f0973863 1159 ssize_t ret;
1da177e4
LT
1160
1161 VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error);
1162 if (error)
1163 return -error;
1164
f6d6d4fc 1165 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
f0973863
CH
1166
1167 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
ce8e922c 1168 iomap.iomap_target->bt_bdev,
1da177e4
LT
1169 iov, offset, nr_segs,
1170 linvfs_get_blocks_direct,
f0973863
CH
1171 linvfs_end_io_direct);
1172
1173 if (unlikely(ret <= 0 && iocb->private))
1174 xfs_destroy_ioend(iocb->private);
1175 return ret;
1da177e4
LT
1176}
1177
1178
1179STATIC sector_t
1180linvfs_bmap(
1181 struct address_space *mapping,
1182 sector_t block)
1183{
1184 struct inode *inode = (struct inode *)mapping->host;
1185 vnode_t *vp = LINVFS_GET_VP(inode);
1186 int error;
1187
1188 vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address);
1189
1190 VOP_RWLOCK(vp, VRWLOCK_READ);
1191 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1192 VOP_RWUNLOCK(vp, VRWLOCK_READ);
1193 return generic_block_bmap(mapping, block, linvfs_get_block);
1194}
1195
1196STATIC int
1197linvfs_readpage(
1198 struct file *unused,
1199 struct page *page)
1200{
1201 return mpage_readpage(page, linvfs_get_block);
1202}
1203
1204STATIC int
1205linvfs_readpages(
1206 struct file *unused,
1207 struct address_space *mapping,
1208 struct list_head *pages,
1209 unsigned nr_pages)
1210{
1211 return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block);
1212}
1213
1214STATIC void
1215xfs_count_page_state(
1216 struct page *page,
1217 int *delalloc,
1218 int *unmapped,
1219 int *unwritten)
1220{
1221 struct buffer_head *bh, *head;
1222
1223 *delalloc = *unmapped = *unwritten = 0;
1224
1225 bh = head = page_buffers(page);
1226 do {
1227 if (buffer_uptodate(bh) && !buffer_mapped(bh))
1228 (*unmapped) = 1;
1229 else if (buffer_unwritten(bh) && !buffer_delay(bh))
1230 clear_buffer_unwritten(bh);
1231 else if (buffer_unwritten(bh))
1232 (*unwritten) = 1;
1233 else if (buffer_delay(bh))
1234 (*delalloc) = 1;
1235 } while ((bh = bh->b_this_page) != head);
1236}
1237
1238
1239/*
1240 * writepage: Called from one of two places:
1241 *
1242 * 1. we are flushing a delalloc buffer head.
1243 *
1244 * 2. we are writing out a dirty page. Typically the page dirty
1245 * state is cleared before we get here. In this case is it
1246 * conceivable we have no buffer heads.
1247 *
1248 * For delalloc space on the page we need to allocate space and
1249 * flush it. For unmapped buffer heads on the page we should
1250 * allocate space if the page is uptodate. For any other dirty
1251 * buffer heads on the page we should flush them.
1252 *
1253 * If we detect that a transaction would be required to flush
1254 * the page, we have to check the process flags first, if we
1255 * are already in a transaction or disk I/O during allocations
1256 * is off, we need to fail the writepage and redirty the page.
1257 */
1258
1259STATIC int
1260linvfs_writepage(
1261 struct page *page,
1262 struct writeback_control *wbc)
1263{
1264 int error;
1265 int need_trans;
1266 int delalloc, unmapped, unwritten;
1267 struct inode *inode = page->mapping->host;
1268
1269 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1270
1271 /*
1272 * We need a transaction if:
1273 * 1. There are delalloc buffers on the page
1274 * 2. The page is uptodate and we have unmapped buffers
1275 * 3. The page is uptodate and we have no buffers
1276 * 4. There are unwritten buffers on the page
1277 */
1278
1279 if (!page_has_buffers(page)) {
1280 unmapped = 1;
1281 need_trans = 1;
1282 } else {
1283 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1284 if (!PageUptodate(page))
1285 unmapped = 0;
1286 need_trans = delalloc + unmapped + unwritten;
1287 }
1288
1289 /*
1290 * If we need a transaction and the process flags say
1291 * we are already in a transaction, or no IO is allowed
1292 * then mark the page dirty again and leave the page
1293 * as is.
1294 */
1295 if (PFLAGS_TEST_FSTRANS() && need_trans)
1296 goto out_fail;
1297
1298 /*
1299 * Delay hooking up buffer heads until we have
1300 * made our go/no-go decision.
1301 */
1302 if (!page_has_buffers(page))
1303 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1304
1305 /*
1306 * Convert delayed allocate, unwritten or unmapped space
1307 * to real space and flush out to disk.
1308 */
1309 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1310 if (error == -EAGAIN)
1311 goto out_fail;
1312 if (unlikely(error < 0))
1313 goto out_unlock;
1314
1315 return 0;
1316
1317out_fail:
1318 redirty_page_for_writepage(wbc, page);
1319 unlock_page(page);
1320 return 0;
1321out_unlock:
1322 unlock_page(page);
1323 return error;
1324}
1325
bcec2b7f
NS
1326STATIC int
1327linvfs_invalidate_page(
1328 struct page *page,
1329 unsigned long offset)
1330{
1331 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1332 page->mapping->host, page, offset);
1333 return block_invalidatepage(page, offset);
1334}
1335
1da177e4
LT
1336/*
1337 * Called to move a page into cleanable state - and from there
1338 * to be released. Possibly the page is already clean. We always
1339 * have buffer heads in this call.
1340 *
1341 * Returns 0 if the page is ok to release, 1 otherwise.
1342 *
1343 * Possible scenarios are:
1344 *
1345 * 1. We are being called to release a page which has been written
1346 * to via regular I/O. buffer heads will be dirty and possibly
1347 * delalloc. If no delalloc buffer heads in this case then we
1348 * can just return zero.
1349 *
1350 * 2. We are called to release a page which has been written via
1351 * mmap, all we need to do is ensure there is no delalloc
1352 * state in the buffer heads, if not we can let the caller
1353 * free them and we should come back later via writepage.
1354 */
1355STATIC int
1356linvfs_release_page(
1357 struct page *page,
27496a8c 1358 gfp_t gfp_mask)
1da177e4
LT
1359{
1360 struct inode *inode = page->mapping->host;
1361 int dirty, delalloc, unmapped, unwritten;
1362 struct writeback_control wbc = {
1363 .sync_mode = WB_SYNC_ALL,
1364 .nr_to_write = 1,
1365 };
1366
1367 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1368
1369 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1370 if (!delalloc && !unwritten)
1371 goto free_buffers;
1372
1373 if (!(gfp_mask & __GFP_FS))
1374 return 0;
1375
1376 /* If we are already inside a transaction or the thread cannot
1377 * do I/O, we cannot release this page.
1378 */
1379 if (PFLAGS_TEST_FSTRANS())
1380 return 0;
1381
1382 /*
1383 * Convert delalloc space to real space, do not flush the
1384 * data out to disk, that will be done by the caller.
1385 * Never need to allocate space here - we will always
1386 * come back to writepage in that case.
1387 */
1388 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1389 if (dirty == 0 && !unwritten)
1390 goto free_buffers;
1391 return 0;
1392
1393free_buffers:
1394 return try_to_free_buffers(page);
1395}
1396
1397STATIC int
1398linvfs_prepare_write(
1399 struct file *file,
1400 struct page *page,
1401 unsigned int from,
1402 unsigned int to)
1403{
1404 return block_prepare_write(page, from, to, linvfs_get_block);
1405}
1406
1407struct address_space_operations linvfs_aops = {
1408 .readpage = linvfs_readpage,
1409 .readpages = linvfs_readpages,
1410 .writepage = linvfs_writepage,
1411 .sync_page = block_sync_page,
1412 .releasepage = linvfs_release_page,
bcec2b7f 1413 .invalidatepage = linvfs_invalidate_page,
1da177e4
LT
1414 .prepare_write = linvfs_prepare_write,
1415 .commit_write = generic_commit_write,
1416 .bmap = linvfs_bmap,
1417 .direct_IO = linvfs_direct_IO,
1418};
This page took 0.155589 seconds and 5 git commands to generate.