xfs: kill struct xfs_iomap
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
3ed3a434 42#include "xfs_bmap.h"
5a0e3ad6 43#include <linux/gfp.h>
1da177e4 44#include <linux/mpage.h>
10ce4444 45#include <linux/pagevec.h>
1da177e4
LT
46#include <linux/writeback.h>
47
25e41b3d
CH
48
49/*
50 * Prime number of hash buckets since address is used as the key.
51 */
52#define NVSYNC 37
53#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
54static wait_queue_head_t xfs_ioend_wq[NVSYNC];
55
56void __init
57xfs_ioend_init(void)
58{
59 int i;
60
61 for (i = 0; i < NVSYNC; i++)
62 init_waitqueue_head(&xfs_ioend_wq[i]);
63}
64
65void
66xfs_ioend_wait(
67 xfs_inode_t *ip)
68{
69 wait_queue_head_t *wq = to_ioend_wq(ip);
70
71 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
72}
73
74STATIC void
75xfs_ioend_wake(
76 xfs_inode_t *ip)
77{
78 if (atomic_dec_and_test(&ip->i_iocount))
79 wake_up(to_ioend_wq(ip));
80}
81
0b1b213f 82void
f51623b2
NS
83xfs_count_page_state(
84 struct page *page,
85 int *delalloc,
86 int *unmapped,
87 int *unwritten)
88{
89 struct buffer_head *bh, *head;
90
91 *delalloc = *unmapped = *unwritten = 0;
92
93 bh = head = page_buffers(page);
94 do {
95 if (buffer_uptodate(bh) && !buffer_mapped(bh))
96 (*unmapped) = 1;
f51623b2
NS
97 else if (buffer_unwritten(bh))
98 (*unwritten) = 1;
99 else if (buffer_delay(bh))
100 (*delalloc) = 1;
101 } while ((bh = bh->b_this_page) != head);
102}
103
6214ed44
CH
104STATIC struct block_device *
105xfs_find_bdev_for_inode(
046f1685 106 struct inode *inode)
6214ed44 107{
046f1685 108 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
109 struct xfs_mount *mp = ip->i_mount;
110
71ddabb9 111 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
112 return mp->m_rtdev_targp->bt_bdev;
113 else
114 return mp->m_ddev_targp->bt_bdev;
115}
116
f6d6d4fc
CH
117/*
118 * We're now finished for good with this ioend structure.
119 * Update the page state via the associated buffer_heads,
120 * release holds on the inode and bio, and finally free
121 * up memory. Do not use the ioend after this.
122 */
0829c360
CH
123STATIC void
124xfs_destroy_ioend(
125 xfs_ioend_t *ioend)
126{
f6d6d4fc 127 struct buffer_head *bh, *next;
583fa586 128 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
129
130 for (bh = ioend->io_buffer_head; bh; bh = next) {
131 next = bh->b_private;
7d04a335 132 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 133 }
583fa586
CH
134
135 /*
136 * Volume managers supporting multiple paths can send back ENODEV
137 * when the final path disappears. In this case continuing to fill
138 * the page cache with dirty data which cannot be written out is
139 * evil, so prevent that.
140 */
141 if (unlikely(ioend->io_error == -ENODEV)) {
142 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
143 __FILE__, __LINE__);
b677c210 144 }
583fa586 145
25e41b3d 146 xfs_ioend_wake(ip);
0829c360
CH
147 mempool_free(ioend, xfs_ioend_pool);
148}
149
932640e8
DC
150/*
151 * If the end of the current ioend is beyond the current EOF,
152 * return the new EOF value, otherwise zero.
153 */
154STATIC xfs_fsize_t
155xfs_ioend_new_eof(
156 xfs_ioend_t *ioend)
157{
158 xfs_inode_t *ip = XFS_I(ioend->io_inode);
159 xfs_fsize_t isize;
160 xfs_fsize_t bsize;
161
162 bsize = ioend->io_offset + ioend->io_size;
163 isize = MAX(ip->i_size, ip->i_new_size);
164 isize = MIN(isize, bsize);
165 return isize > ip->i_d.di_size ? isize : 0;
166}
167
ba87ea69 168/*
77d7a0c2
DC
169 * Update on-disk file size now that data has been written to disk. The
170 * current in-memory file size is i_size. If a write is beyond eof i_new_size
171 * will be the intended file size until i_size is updated. If this write does
172 * not extend all the way to the valid file size then restrict this update to
173 * the end of the write.
174 *
175 * This function does not block as blocking on the inode lock in IO completion
176 * can lead to IO completion order dependency deadlocks.. If it can't get the
177 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 178 */
77d7a0c2 179STATIC int
ba87ea69
LM
180xfs_setfilesize(
181 xfs_ioend_t *ioend)
182{
b677c210 183 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 184 xfs_fsize_t isize;
ba87ea69 185
ba87ea69
LM
186 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
187 ASSERT(ioend->io_type != IOMAP_READ);
188
189 if (unlikely(ioend->io_error))
77d7a0c2
DC
190 return 0;
191
192 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
193 return EAGAIN;
ba87ea69 194
932640e8
DC
195 isize = xfs_ioend_new_eof(ioend);
196 if (isize) {
ba87ea69 197 ip->i_d.di_size = isize;
66d834ea 198 xfs_mark_inode_dirty(ip);
ba87ea69
LM
199 }
200
201 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
202 return 0;
203}
204
205/*
206 * Schedule IO completion handling on a xfsdatad if this was
207 * the final hold on this ioend. If we are asked to wait,
208 * flush the workqueue.
209 */
210STATIC void
211xfs_finish_ioend(
212 xfs_ioend_t *ioend,
213 int wait)
214{
215 if (atomic_dec_and_test(&ioend->io_remaining)) {
216 struct workqueue_struct *wq;
217
218 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
219 xfsconvertd_workqueue : xfsdatad_workqueue;
220 queue_work(wq, &ioend->io_work);
221 if (wait)
222 flush_workqueue(wq);
223 }
ba87ea69
LM
224}
225
0829c360 226/*
5ec4fabb 227 * IO write completion.
f6d6d4fc
CH
228 */
229STATIC void
5ec4fabb 230xfs_end_io(
77d7a0c2 231 struct work_struct *work)
0829c360 232{
77d7a0c2
DC
233 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
234 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 235 int error = 0;
ba87ea69 236
5ec4fabb
CH
237 /*
238 * For unwritten extents we need to issue transactions to convert a
239 * range to normal written extens after the data I/O has finished.
240 */
241 if (ioend->io_type == IOMAP_UNWRITTEN &&
242 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
243
244 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
245 ioend->io_size);
246 if (error)
247 ioend->io_error = error;
248 }
ba87ea69 249
5ec4fabb
CH
250 /*
251 * We might have to update the on-disk file size after extending
252 * writes.
253 */
77d7a0c2
DC
254 if (ioend->io_type != IOMAP_READ) {
255 error = xfs_setfilesize(ioend);
256 ASSERT(!error || error == EAGAIN);
c626d174 257 }
77d7a0c2
DC
258
259 /*
260 * If we didn't complete processing of the ioend, requeue it to the
261 * tail of the workqueue for another attempt later. Otherwise destroy
262 * it.
263 */
264 if (error == EAGAIN) {
265 atomic_inc(&ioend->io_remaining);
266 xfs_finish_ioend(ioend, 0);
267 /* ensure we don't spin on blocked ioends */
268 delay(1);
269 } else
270 xfs_destroy_ioend(ioend);
c626d174
DC
271}
272
0829c360
CH
273/*
274 * Allocate and initialise an IO completion structure.
275 * We need to track unwritten extent write completion here initially.
276 * We'll need to extend this for updating the ondisk inode size later
277 * (vs. incore size).
278 */
279STATIC xfs_ioend_t *
280xfs_alloc_ioend(
f6d6d4fc
CH
281 struct inode *inode,
282 unsigned int type)
0829c360
CH
283{
284 xfs_ioend_t *ioend;
285
286 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
287
288 /*
289 * Set the count to 1 initially, which will prevent an I/O
290 * completion callback from happening before we have started
291 * all the I/O from calling the completion routine too early.
292 */
293 atomic_set(&ioend->io_remaining, 1);
7d04a335 294 ioend->io_error = 0;
f6d6d4fc
CH
295 ioend->io_list = NULL;
296 ioend->io_type = type;
b677c210 297 ioend->io_inode = inode;
c1a073bd 298 ioend->io_buffer_head = NULL;
f6d6d4fc 299 ioend->io_buffer_tail = NULL;
b677c210 300 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
301 ioend->io_offset = 0;
302 ioend->io_size = 0;
303
5ec4fabb 304 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
305 return ioend;
306}
307
1da177e4
LT
308STATIC int
309xfs_map_blocks(
310 struct inode *inode,
311 loff_t offset,
312 ssize_t count,
207d0416 313 struct xfs_bmbt_irec *imap,
1da177e4
LT
314 int flags)
315{
6bd16ff2 316 int nmaps = 1;
207d0416 317 int new = 0;
6bd16ff2 318
207d0416 319 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
1da177e4
LT
320}
321
b8f82a4a 322STATIC int
1defeac9 323xfs_iomap_valid(
8699bb0a 324 struct inode *inode,
207d0416 325 struct xfs_bmbt_irec *imap,
1defeac9 326 loff_t offset)
1da177e4 327{
8699bb0a 328 struct xfs_mount *mp = XFS_I(inode)->i_mount;
207d0416
CH
329 xfs_off_t iomap_offset = XFS_FSB_TO_B(mp, imap->br_startoff);
330 xfs_off_t iomap_bsize = XFS_FSB_TO_B(mp, imap->br_blockcount);
8699bb0a
CH
331
332 return offset >= iomap_offset &&
333 offset < iomap_offset + iomap_bsize;
1da177e4
LT
334}
335
f6d6d4fc
CH
336/*
337 * BIO completion handler for buffered IO.
338 */
782e3b3b 339STATIC void
f6d6d4fc
CH
340xfs_end_bio(
341 struct bio *bio,
f6d6d4fc
CH
342 int error)
343{
344 xfs_ioend_t *ioend = bio->bi_private;
345
f6d6d4fc 346 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 347 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
348
349 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
350 bio->bi_private = NULL;
351 bio->bi_end_io = NULL;
f6d6d4fc 352 bio_put(bio);
7d04a335 353
e927af90 354 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
355}
356
357STATIC void
358xfs_submit_ioend_bio(
06342cf8
CH
359 struct writeback_control *wbc,
360 xfs_ioend_t *ioend,
361 struct bio *bio)
f6d6d4fc
CH
362{
363 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
364 bio->bi_private = ioend;
365 bio->bi_end_io = xfs_end_bio;
366
932640e8
DC
367 /*
368 * If the I/O is beyond EOF we mark the inode dirty immediately
369 * but don't update the inode size until I/O completion.
370 */
371 if (xfs_ioend_new_eof(ioend))
66d834ea 372 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 373
06342cf8
CH
374 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
375 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
376 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
377 bio_put(bio);
378}
379
380STATIC struct bio *
381xfs_alloc_ioend_bio(
382 struct buffer_head *bh)
383{
384 struct bio *bio;
385 int nvecs = bio_get_nr_vecs(bh->b_bdev);
386
387 do {
388 bio = bio_alloc(GFP_NOIO, nvecs);
389 nvecs >>= 1;
390 } while (!bio);
391
392 ASSERT(bio->bi_private == NULL);
393 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
394 bio->bi_bdev = bh->b_bdev;
395 bio_get(bio);
396 return bio;
397}
398
399STATIC void
400xfs_start_buffer_writeback(
401 struct buffer_head *bh)
402{
403 ASSERT(buffer_mapped(bh));
404 ASSERT(buffer_locked(bh));
405 ASSERT(!buffer_delay(bh));
406 ASSERT(!buffer_unwritten(bh));
407
408 mark_buffer_async_write(bh);
409 set_buffer_uptodate(bh);
410 clear_buffer_dirty(bh);
411}
412
413STATIC void
414xfs_start_page_writeback(
415 struct page *page,
f6d6d4fc
CH
416 int clear_dirty,
417 int buffers)
418{
419 ASSERT(PageLocked(page));
420 ASSERT(!PageWriteback(page));
f6d6d4fc 421 if (clear_dirty)
92132021
DC
422 clear_page_dirty_for_io(page);
423 set_page_writeback(page);
f6d6d4fc 424 unlock_page(page);
1f7decf6
FW
425 /* If no buffers on the page are to be written, finish it here */
426 if (!buffers)
f6d6d4fc 427 end_page_writeback(page);
f6d6d4fc
CH
428}
429
430static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
431{
432 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
433}
434
435/*
d88992f6
DC
436 * Submit all of the bios for all of the ioends we have saved up, covering the
437 * initial writepage page and also any probed pages.
438 *
439 * Because we may have multiple ioends spanning a page, we need to start
440 * writeback on all the buffers before we submit them for I/O. If we mark the
441 * buffers as we got, then we can end up with a page that only has buffers
442 * marked async write and I/O complete on can occur before we mark the other
443 * buffers async write.
444 *
445 * The end result of this is that we trip a bug in end_page_writeback() because
446 * we call it twice for the one page as the code in end_buffer_async_write()
447 * assumes that all buffers on the page are started at the same time.
448 *
449 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 450 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
451 */
452STATIC void
453xfs_submit_ioend(
06342cf8 454 struct writeback_control *wbc,
f6d6d4fc
CH
455 xfs_ioend_t *ioend)
456{
d88992f6 457 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
458 xfs_ioend_t *next;
459 struct buffer_head *bh;
460 struct bio *bio;
461 sector_t lastblock = 0;
462
d88992f6
DC
463 /* Pass 1 - start writeback */
464 do {
465 next = ioend->io_list;
466 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
467 xfs_start_buffer_writeback(bh);
468 }
469 } while ((ioend = next) != NULL);
470
471 /* Pass 2 - submit I/O */
472 ioend = head;
f6d6d4fc
CH
473 do {
474 next = ioend->io_list;
475 bio = NULL;
476
477 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
478
479 if (!bio) {
480 retry:
481 bio = xfs_alloc_ioend_bio(bh);
482 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 483 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
484 goto retry;
485 }
486
487 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 488 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
489 goto retry;
490 }
491
492 lastblock = bh->b_blocknr;
493 }
494 if (bio)
06342cf8 495 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 496 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
497 } while ((ioend = next) != NULL);
498}
499
500/*
501 * Cancel submission of all buffer_heads so far in this endio.
502 * Toss the endio too. Only ever called for the initial page
503 * in a writepage request, so only ever one page.
504 */
505STATIC void
506xfs_cancel_ioend(
507 xfs_ioend_t *ioend)
508{
509 xfs_ioend_t *next;
510 struct buffer_head *bh, *next_bh;
511
512 do {
513 next = ioend->io_list;
514 bh = ioend->io_buffer_head;
515 do {
516 next_bh = bh->b_private;
517 clear_buffer_async_write(bh);
518 unlock_buffer(bh);
519 } while ((bh = next_bh) != NULL);
520
25e41b3d 521 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
522 mempool_free(ioend, xfs_ioend_pool);
523 } while ((ioend = next) != NULL);
524}
525
526/*
527 * Test to see if we've been building up a completion structure for
528 * earlier buffers -- if so, we try to append to this ioend if we
529 * can, otherwise we finish off any current ioend and start another.
530 * Return true if we've finished the given ioend.
531 */
532STATIC void
533xfs_add_to_ioend(
534 struct inode *inode,
535 struct buffer_head *bh,
7336cea8 536 xfs_off_t offset,
f6d6d4fc
CH
537 unsigned int type,
538 xfs_ioend_t **result,
539 int need_ioend)
540{
541 xfs_ioend_t *ioend = *result;
542
543 if (!ioend || need_ioend || type != ioend->io_type) {
544 xfs_ioend_t *previous = *result;
f6d6d4fc 545
f6d6d4fc
CH
546 ioend = xfs_alloc_ioend(inode, type);
547 ioend->io_offset = offset;
548 ioend->io_buffer_head = bh;
549 ioend->io_buffer_tail = bh;
550 if (previous)
551 previous->io_list = ioend;
552 *result = ioend;
553 } else {
554 ioend->io_buffer_tail->b_private = bh;
555 ioend->io_buffer_tail = bh;
556 }
557
558 bh->b_private = NULL;
559 ioend->io_size += bh->b_size;
560}
561
87cbc49c
NS
562STATIC void
563xfs_map_buffer(
046f1685 564 struct inode *inode,
87cbc49c 565 struct buffer_head *bh,
207d0416 566 struct xfs_bmbt_irec *imap,
046f1685 567 xfs_off_t offset)
87cbc49c
NS
568{
569 sector_t bn;
8699bb0a 570 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
571 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
572 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 573
207d0416
CH
574 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
575 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 576
e513182d 577 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 578 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 579
046f1685 580 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
581
582 bh->b_blocknr = bn;
583 set_buffer_mapped(bh);
584}
585
1da177e4
LT
586STATIC void
587xfs_map_at_offset(
046f1685 588 struct inode *inode,
1da177e4 589 struct buffer_head *bh,
207d0416 590 struct xfs_bmbt_irec *imap,
046f1685 591 xfs_off_t offset)
1da177e4 592{
207d0416
CH
593 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
594 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4
LT
595
596 lock_buffer(bh);
207d0416 597 xfs_map_buffer(inode, bh, imap, offset);
046f1685 598 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
599 set_buffer_mapped(bh);
600 clear_buffer_delay(bh);
f6d6d4fc 601 clear_buffer_unwritten(bh);
1da177e4
LT
602}
603
604/*
6c4fe19f 605 * Look for a page at index that is suitable for clustering.
1da177e4
LT
606 */
607STATIC unsigned int
6c4fe19f 608xfs_probe_page(
10ce4444 609 struct page *page,
6c4fe19f
CH
610 unsigned int pg_offset,
611 int mapped)
1da177e4 612{
1da177e4
LT
613 int ret = 0;
614
1da177e4 615 if (PageWriteback(page))
10ce4444 616 return 0;
1da177e4
LT
617
618 if (page->mapping && PageDirty(page)) {
619 if (page_has_buffers(page)) {
620 struct buffer_head *bh, *head;
621
622 bh = head = page_buffers(page);
623 do {
6c4fe19f
CH
624 if (!buffer_uptodate(bh))
625 break;
626 if (mapped != buffer_mapped(bh))
1da177e4
LT
627 break;
628 ret += bh->b_size;
629 if (ret >= pg_offset)
630 break;
631 } while ((bh = bh->b_this_page) != head);
632 } else
6c4fe19f 633 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
634 }
635
1da177e4
LT
636 return ret;
637}
638
f6d6d4fc 639STATIC size_t
6c4fe19f 640xfs_probe_cluster(
1da177e4
LT
641 struct inode *inode,
642 struct page *startpage,
643 struct buffer_head *bh,
6c4fe19f
CH
644 struct buffer_head *head,
645 int mapped)
1da177e4 646{
10ce4444 647 struct pagevec pvec;
1da177e4 648 pgoff_t tindex, tlast, tloff;
10ce4444
CH
649 size_t total = 0;
650 int done = 0, i;
1da177e4
LT
651
652 /* First sum forwards in this page */
653 do {
2353e8e9 654 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 655 return total;
1da177e4
LT
656 total += bh->b_size;
657 } while ((bh = bh->b_this_page) != head);
658
10ce4444
CH
659 /* if we reached the end of the page, sum forwards in following pages */
660 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
661 tindex = startpage->index + 1;
662
663 /* Prune this back to avoid pathological behavior */
664 tloff = min(tlast, startpage->index + 64);
665
666 pagevec_init(&pvec, 0);
667 while (!done && tindex <= tloff) {
668 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
669
670 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
671 break;
672
673 for (i = 0; i < pagevec_count(&pvec); i++) {
674 struct page *page = pvec.pages[i];
265c1fac 675 size_t pg_offset, pg_len = 0;
10ce4444
CH
676
677 if (tindex == tlast) {
678 pg_offset =
679 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
680 if (!pg_offset) {
681 done = 1;
10ce4444 682 break;
1defeac9 683 }
10ce4444
CH
684 } else
685 pg_offset = PAGE_CACHE_SIZE;
686
529ae9aa 687 if (page->index == tindex && trylock_page(page)) {
265c1fac 688 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
689 unlock_page(page);
690 }
691
265c1fac 692 if (!pg_len) {
10ce4444
CH
693 done = 1;
694 break;
695 }
696
265c1fac 697 total += pg_len;
1defeac9 698 tindex++;
1da177e4 699 }
10ce4444
CH
700
701 pagevec_release(&pvec);
702 cond_resched();
1da177e4 703 }
10ce4444 704
1da177e4
LT
705 return total;
706}
707
708/*
10ce4444
CH
709 * Test if a given page is suitable for writing as part of an unwritten
710 * or delayed allocate extent.
1da177e4 711 */
10ce4444
CH
712STATIC int
713xfs_is_delayed_page(
714 struct page *page,
f6d6d4fc 715 unsigned int type)
1da177e4 716{
1da177e4 717 if (PageWriteback(page))
10ce4444 718 return 0;
1da177e4
LT
719
720 if (page->mapping && page_has_buffers(page)) {
721 struct buffer_head *bh, *head;
722 int acceptable = 0;
723
724 bh = head = page_buffers(page);
725 do {
f6d6d4fc
CH
726 if (buffer_unwritten(bh))
727 acceptable = (type == IOMAP_UNWRITTEN);
728 else if (buffer_delay(bh))
729 acceptable = (type == IOMAP_DELAY);
2ddee844 730 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 731 acceptable = (type == IOMAP_NEW);
f6d6d4fc 732 else
1da177e4 733 break;
1da177e4
LT
734 } while ((bh = bh->b_this_page) != head);
735
736 if (acceptable)
10ce4444 737 return 1;
1da177e4
LT
738 }
739
10ce4444 740 return 0;
1da177e4
LT
741}
742
1da177e4
LT
743/*
744 * Allocate & map buffers for page given the extent map. Write it out.
745 * except for the original page of a writepage, this is called on
746 * delalloc/unwritten pages only, for the original page it is possible
747 * that the page has no mapping at all.
748 */
f6d6d4fc 749STATIC int
1da177e4
LT
750xfs_convert_page(
751 struct inode *inode,
752 struct page *page,
10ce4444 753 loff_t tindex,
207d0416 754 struct xfs_bmbt_irec *imap,
f6d6d4fc 755 xfs_ioend_t **ioendp,
1da177e4 756 struct writeback_control *wbc,
1da177e4
LT
757 int startio,
758 int all_bh)
759{
f6d6d4fc 760 struct buffer_head *bh, *head;
9260dc6b
CH
761 xfs_off_t end_offset;
762 unsigned long p_offset;
f6d6d4fc 763 unsigned int type;
24e17b5f 764 int len, page_dirty;
f6d6d4fc 765 int count = 0, done = 0, uptodate = 1;
9260dc6b 766 xfs_off_t offset = page_offset(page);
1da177e4 767
10ce4444
CH
768 if (page->index != tindex)
769 goto fail;
529ae9aa 770 if (!trylock_page(page))
10ce4444
CH
771 goto fail;
772 if (PageWriteback(page))
773 goto fail_unlock_page;
774 if (page->mapping != inode->i_mapping)
775 goto fail_unlock_page;
776 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
777 goto fail_unlock_page;
778
24e17b5f
NS
779 /*
780 * page_dirty is initially a count of buffers on the page before
c41564b5 781 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
782 *
783 * Derivation:
784 *
785 * End offset is the highest offset that this page should represent.
786 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
787 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
788 * hence give us the correct page_dirty count. On any other page,
789 * it will be zero and in that case we need page_dirty to be the
790 * count of buffers on the page.
24e17b5f 791 */
9260dc6b
CH
792 end_offset = min_t(unsigned long long,
793 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
794 i_size_read(inode));
795
24e17b5f 796 len = 1 << inode->i_blkbits;
9260dc6b
CH
797 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
798 PAGE_CACHE_SIZE);
799 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
800 page_dirty = p_offset / len;
24e17b5f 801
1da177e4
LT
802 bh = head = page_buffers(page);
803 do {
9260dc6b 804 if (offset >= end_offset)
1da177e4 805 break;
f6d6d4fc
CH
806 if (!buffer_uptodate(bh))
807 uptodate = 0;
808 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
809 done = 1;
1da177e4 810 continue;
f6d6d4fc
CH
811 }
812
9260dc6b
CH
813 if (buffer_unwritten(bh) || buffer_delay(bh)) {
814 if (buffer_unwritten(bh))
815 type = IOMAP_UNWRITTEN;
816 else
817 type = IOMAP_DELAY;
818
207d0416 819 if (!xfs_iomap_valid(inode, imap, offset)) {
f6d6d4fc 820 done = 1;
9260dc6b
CH
821 continue;
822 }
823
207d0416
CH
824 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
825 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
9260dc6b 826
207d0416 827 xfs_map_at_offset(inode, bh, imap, offset);
9260dc6b 828 if (startio) {
7336cea8 829 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
830 type, ioendp, done);
831 } else {
832 set_buffer_dirty(bh);
833 unlock_buffer(bh);
834 mark_buffer_dirty(bh);
835 }
836 page_dirty--;
837 count++;
838 } else {
df3c7244 839 type = IOMAP_NEW;
9260dc6b 840 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 841 lock_buffer(bh);
7336cea8 842 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
843 type, ioendp, done);
844 count++;
24e17b5f 845 page_dirty--;
9260dc6b
CH
846 } else {
847 done = 1;
1da177e4 848 }
1da177e4 849 }
7336cea8 850 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 851
f6d6d4fc
CH
852 if (uptodate && bh == head)
853 SetPageUptodate(page);
854
855 if (startio) {
f5e596bb 856 if (count) {
9fddaca2 857 wbc->nr_to_write--;
0d99519e 858 if (wbc->nr_to_write <= 0)
f5e596bb 859 done = 1;
f5e596bb 860 }
b41759cf 861 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 862 }
f6d6d4fc
CH
863
864 return done;
10ce4444
CH
865 fail_unlock_page:
866 unlock_page(page);
867 fail:
868 return 1;
1da177e4
LT
869}
870
871/*
872 * Convert & write out a cluster of pages in the same extent as defined
873 * by mp and following the start page.
874 */
875STATIC void
876xfs_cluster_write(
877 struct inode *inode,
878 pgoff_t tindex,
207d0416 879 struct xfs_bmbt_irec *imap,
f6d6d4fc 880 xfs_ioend_t **ioendp,
1da177e4
LT
881 struct writeback_control *wbc,
882 int startio,
883 int all_bh,
884 pgoff_t tlast)
885{
10ce4444
CH
886 struct pagevec pvec;
887 int done = 0, i;
1da177e4 888
10ce4444
CH
889 pagevec_init(&pvec, 0);
890 while (!done && tindex <= tlast) {
891 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
892
893 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 894 break;
10ce4444
CH
895
896 for (i = 0; i < pagevec_count(&pvec); i++) {
897 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
207d0416 898 imap, ioendp, wbc, startio, all_bh);
10ce4444
CH
899 if (done)
900 break;
901 }
902
903 pagevec_release(&pvec);
904 cond_resched();
1da177e4
LT
905 }
906}
907
3ed3a434
DC
908STATIC void
909xfs_vm_invalidatepage(
910 struct page *page,
911 unsigned long offset)
912{
913 trace_xfs_invalidatepage(page->mapping->host, page, offset);
914 block_invalidatepage(page, offset);
915}
916
917/*
918 * If the page has delalloc buffers on it, we need to punch them out before we
919 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
920 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
921 * is done on that same region - the delalloc extent is returned when none is
922 * supposed to be there.
923 *
924 * We prevent this by truncating away the delalloc regions on the page before
925 * invalidating it. Because they are delalloc, we can do this without needing a
926 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
927 * truncation without a transaction as there is no space left for block
928 * reservation (typically why we see a ENOSPC in writeback).
929 *
930 * This is not a performance critical path, so for now just do the punching a
931 * buffer head at a time.
932 */
933STATIC void
934xfs_aops_discard_page(
935 struct page *page)
936{
937 struct inode *inode = page->mapping->host;
938 struct xfs_inode *ip = XFS_I(inode);
939 struct buffer_head *bh, *head;
940 loff_t offset = page_offset(page);
941 ssize_t len = 1 << inode->i_blkbits;
942
943 if (!xfs_is_delayed_page(page, IOMAP_DELAY))
944 goto out_invalidate;
945
e8c3753c
DC
946 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
947 goto out_invalidate;
948
3ed3a434
DC
949 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
950 "page discard on page %p, inode 0x%llx, offset %llu.",
951 page, ip->i_ino, offset);
952
953 xfs_ilock(ip, XFS_ILOCK_EXCL);
954 bh = head = page_buffers(page);
955 do {
956 int done;
957 xfs_fileoff_t offset_fsb;
958 xfs_bmbt_irec_t imap;
959 int nimaps = 1;
960 int error;
961 xfs_fsblock_t firstblock;
962 xfs_bmap_free_t flist;
963
964 if (!buffer_delay(bh))
965 goto next_buffer;
966
967 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
968
969 /*
970 * Map the range first and check that it is a delalloc extent
971 * before trying to unmap the range. Otherwise we will be
972 * trying to remove a real extent (which requires a
973 * transaction) or a hole, which is probably a bad idea...
974 */
975 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
976 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
977 &nimaps, NULL, NULL);
978
979 if (error) {
980 /* something screwed, just bail */
e8c3753c
DC
981 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
982 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
983 "page discard failed delalloc mapping lookup.");
984 }
3ed3a434
DC
985 break;
986 }
987 if (!nimaps) {
988 /* nothing there */
989 goto next_buffer;
990 }
991 if (imap.br_startblock != DELAYSTARTBLOCK) {
992 /* been converted, ignore */
993 goto next_buffer;
994 }
995 WARN_ON(imap.br_blockcount == 0);
996
997 /*
998 * Note: while we initialise the firstblock/flist pair, they
999 * should never be used because blocks should never be
1000 * allocated or freed for a delalloc extent and hence we need
1001 * don't cancel or finish them after the xfs_bunmapi() call.
1002 */
1003 xfs_bmap_init(&flist, &firstblock);
1004 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
1005 &flist, NULL, &done);
1006
1007 ASSERT(!flist.xbf_count && !flist.xbf_first);
1008 if (error) {
1009 /* something screwed, just bail */
e8c3753c
DC
1010 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1011 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1012 "page discard unable to remove delalloc mapping.");
e8c3753c 1013 }
3ed3a434
DC
1014 break;
1015 }
1016next_buffer:
1017 offset += len;
1018
1019 } while ((bh = bh->b_this_page) != head);
1020
1021 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1022out_invalidate:
1023 xfs_vm_invalidatepage(page, 0);
1024 return;
1025}
1026
1da177e4
LT
1027/*
1028 * Calling this without startio set means we are being asked to make a dirty
1029 * page ready for freeing it's buffers. When called with startio set then
1030 * we are coming from writepage.
1031 *
1032 * When called with startio set it is important that we write the WHOLE
1033 * page if possible.
1034 * The bh->b_state's cannot know if any of the blocks or which block for
1035 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 1036 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
1037 * may clear the page dirty flag prior to calling write page, under the
1038 * assumption the entire page will be written out; by not writing out the
1039 * whole page the page can be reused before all valid dirty data is
1040 * written out. Note: in the case of a page that has been dirty'd by
1041 * mapwrite and but partially setup by block_prepare_write the
1042 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1043 * valid state, thus the whole page must be written out thing.
1044 */
1045
1046STATIC int
1047xfs_page_state_convert(
1048 struct inode *inode,
1049 struct page *page,
1050 struct writeback_control *wbc,
1051 int startio,
1052 int unmapped) /* also implies page uptodate */
1053{
f6d6d4fc 1054 struct buffer_head *bh, *head;
207d0416 1055 struct xfs_bmbt_irec imap;
f6d6d4fc 1056 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
1057 loff_t offset;
1058 unsigned long p_offset = 0;
f6d6d4fc 1059 unsigned int type;
1da177e4
LT
1060 __uint64_t end_offset;
1061 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
1062 ssize_t size, len;
1063 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
1064 int page_dirty, count = 0;
1065 int trylock = 0;
6c4fe19f 1066 int all_bh = unmapped;
1da177e4 1067
8272145c
NS
1068 if (startio) {
1069 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1070 trylock |= BMAPI_TRYLOCK;
1071 }
3ba0815a 1072
1da177e4
LT
1073 /* Is this page beyond the end of the file? */
1074 offset = i_size_read(inode);
1075 end_index = offset >> PAGE_CACHE_SHIFT;
1076 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1077 if (page->index >= end_index) {
1078 if ((page->index >= end_index + 1) ||
1079 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1080 if (startio)
1081 unlock_page(page);
1082 return 0;
1da177e4
LT
1083 }
1084 }
1085
1da177e4 1086 /*
24e17b5f 1087 * page_dirty is initially a count of buffers on the page before
c41564b5 1088 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1089 *
1090 * Derivation:
1091 *
1092 * End offset is the highest offset that this page should represent.
1093 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1094 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1095 * hence give us the correct page_dirty count. On any other page,
1096 * it will be zero and in that case we need page_dirty to be the
1097 * count of buffers on the page.
1098 */
1099 end_offset = min_t(unsigned long long,
1100 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1101 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1102 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1103 PAGE_CACHE_SIZE);
1104 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1105 page_dirty = p_offset / len;
1106
24e17b5f 1107 bh = head = page_buffers(page);
f6d6d4fc 1108 offset = page_offset(page);
df3c7244
DC
1109 flags = BMAPI_READ;
1110 type = IOMAP_NEW;
f6d6d4fc 1111
f6d6d4fc 1112 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1113
1114 do {
1115 if (offset >= end_offset)
1116 break;
1117 if (!buffer_uptodate(bh))
1118 uptodate = 0;
f6d6d4fc 1119 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1120 /*
1121 * the iomap is actually still valid, but the ioend
1122 * isn't. shouldn't happen too often.
1123 */
1124 iomap_valid = 0;
1da177e4 1125 continue;
f6d6d4fc 1126 }
1da177e4 1127
1defeac9 1128 if (iomap_valid)
207d0416 1129 iomap_valid = xfs_iomap_valid(inode, &imap, offset);
1da177e4
LT
1130
1131 /*
1132 * First case, map an unwritten extent and prepare for
1133 * extent state conversion transaction on completion.
f6d6d4fc 1134 *
1da177e4
LT
1135 * Second case, allocate space for a delalloc buffer.
1136 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1137 *
1138 * Third case, an unmapped buffer was found, and we are
1139 * in a path where we need to write the whole page out.
df3c7244 1140 */
d5cb48aa
CH
1141 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1142 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1143 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1144 int new_ioend = 0;
1145
df3c7244 1146 /*
6c4fe19f
CH
1147 * Make sure we don't use a read-only iomap
1148 */
df3c7244 1149 if (flags == BMAPI_READ)
6c4fe19f
CH
1150 iomap_valid = 0;
1151
f6d6d4fc
CH
1152 if (buffer_unwritten(bh)) {
1153 type = IOMAP_UNWRITTEN;
8272145c 1154 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1155 } else if (buffer_delay(bh)) {
f6d6d4fc 1156 type = IOMAP_DELAY;
8272145c 1157 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1158 } else {
6c4fe19f 1159 type = IOMAP_NEW;
8272145c 1160 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1161 }
1162
1defeac9 1163 if (!iomap_valid) {
effd120e
DC
1164 /*
1165 * if we didn't have a valid mapping then we
1166 * need to ensure that we put the new mapping
1167 * in a new ioend structure. This needs to be
1168 * done to ensure that the ioends correctly
1169 * reflect the block mappings at io completion
1170 * for unwritten extent conversion.
1171 */
1172 new_ioend = 1;
6c4fe19f
CH
1173 if (type == IOMAP_NEW) {
1174 size = xfs_probe_cluster(inode,
1175 page, bh, head, 0);
d5cb48aa
CH
1176 } else {
1177 size = len;
1178 }
1179
1180 err = xfs_map_blocks(inode, offset, size,
207d0416 1181 &imap, flags);
f6d6d4fc 1182 if (err)
1da177e4 1183 goto error;
207d0416 1184 iomap_valid = xfs_iomap_valid(inode, &imap, offset);
1da177e4 1185 }
1defeac9 1186 if (iomap_valid) {
207d0416 1187 xfs_map_at_offset(inode, bh, &imap, offset);
1da177e4 1188 if (startio) {
7336cea8 1189 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1190 type, &ioend,
effd120e 1191 new_ioend);
1da177e4
LT
1192 } else {
1193 set_buffer_dirty(bh);
1194 unlock_buffer(bh);
1195 mark_buffer_dirty(bh);
1196 }
1197 page_dirty--;
f6d6d4fc 1198 count++;
1da177e4 1199 }
d5cb48aa 1200 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1201 /*
1202 * we got here because the buffer is already mapped.
1203 * That means it must already have extents allocated
1204 * underneath it. Map the extent by reading it.
1205 */
df3c7244 1206 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1207 flags = BMAPI_READ;
1208 size = xfs_probe_cluster(inode, page, bh,
1209 head, 1);
1210 err = xfs_map_blocks(inode, offset, size,
207d0416 1211 &imap, flags);
6c4fe19f
CH
1212 if (err)
1213 goto error;
207d0416 1214 iomap_valid = xfs_iomap_valid(inode, &imap, offset);
6c4fe19f 1215 }
d5cb48aa 1216
df3c7244
DC
1217 /*
1218 * We set the type to IOMAP_NEW in case we are doing a
1219 * small write at EOF that is extending the file but
1220 * without needing an allocation. We need to update the
1221 * file size on I/O completion in this case so it is
1222 * the same case as having just allocated a new extent
1223 * that we are writing into for the first time.
1224 */
1225 type = IOMAP_NEW;
ca5de404 1226 if (trylock_buffer(bh)) {
d5cb48aa 1227 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1228 if (iomap_valid)
1229 all_bh = 1;
7336cea8 1230 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1231 &ioend, !iomap_valid);
1232 page_dirty--;
1233 count++;
f6d6d4fc 1234 } else {
1defeac9 1235 iomap_valid = 0;
1da177e4 1236 }
d5cb48aa
CH
1237 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1238 (unmapped || startio)) {
1239 iomap_valid = 0;
1da177e4 1240 }
f6d6d4fc
CH
1241
1242 if (!iohead)
1243 iohead = ioend;
1244
1245 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1246
1247 if (uptodate && bh == head)
1248 SetPageUptodate(page);
1249
f6d6d4fc 1250 if (startio)
b41759cf 1251 xfs_start_page_writeback(page, 1, count);
1da177e4 1252
1defeac9 1253 if (ioend && iomap_valid) {
8699bb0a 1254 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
1255 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap.br_startoff);
1256 xfs_off_t iomap_bsize = XFS_FSB_TO_B(m, imap.br_blockcount);
8699bb0a
CH
1257
1258 offset = (iomap_offset + iomap_bsize - 1) >>
1da177e4 1259 PAGE_CACHE_SHIFT;
775bf6c9 1260 tlast = min_t(pgoff_t, offset, last_index);
207d0416 1261 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
6c4fe19f 1262 wbc, startio, all_bh, tlast);
1da177e4
LT
1263 }
1264
f6d6d4fc 1265 if (iohead)
06342cf8 1266 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1267
1da177e4
LT
1268 return page_dirty;
1269
1270error:
f6d6d4fc
CH
1271 if (iohead)
1272 xfs_cancel_ioend(iohead);
1da177e4
LT
1273
1274 /*
1275 * If it's delalloc and we have nowhere to put it,
1276 * throw it away, unless the lower layers told
1277 * us to try again.
1278 */
1279 if (err != -EAGAIN) {
f6d6d4fc 1280 if (!unmapped)
3ed3a434 1281 xfs_aops_discard_page(page);
1da177e4
LT
1282 ClearPageUptodate(page);
1283 }
1284 return err;
1285}
1286
f51623b2
NS
1287/*
1288 * writepage: Called from one of two places:
1289 *
1290 * 1. we are flushing a delalloc buffer head.
1291 *
1292 * 2. we are writing out a dirty page. Typically the page dirty
1293 * state is cleared before we get here. In this case is it
1294 * conceivable we have no buffer heads.
1295 *
1296 * For delalloc space on the page we need to allocate space and
1297 * flush it. For unmapped buffer heads on the page we should
1298 * allocate space if the page is uptodate. For any other dirty
1299 * buffer heads on the page we should flush them.
1300 *
1301 * If we detect that a transaction would be required to flush
1302 * the page, we have to check the process flags first, if we
1303 * are already in a transaction or disk I/O during allocations
1304 * is off, we need to fail the writepage and redirty the page.
1305 */
1306
1307STATIC int
e4c573bb 1308xfs_vm_writepage(
f51623b2
NS
1309 struct page *page,
1310 struct writeback_control *wbc)
1311{
1312 int error;
1313 int need_trans;
1314 int delalloc, unmapped, unwritten;
1315 struct inode *inode = page->mapping->host;
1316
0b1b213f 1317 trace_xfs_writepage(inode, page, 0);
f51623b2
NS
1318
1319 /*
1320 * We need a transaction if:
1321 * 1. There are delalloc buffers on the page
1322 * 2. The page is uptodate and we have unmapped buffers
1323 * 3. The page is uptodate and we have no buffers
1324 * 4. There are unwritten buffers on the page
1325 */
1326
1327 if (!page_has_buffers(page)) {
1328 unmapped = 1;
1329 need_trans = 1;
1330 } else {
1331 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1332 if (!PageUptodate(page))
1333 unmapped = 0;
1334 need_trans = delalloc + unmapped + unwritten;
1335 }
1336
1337 /*
1338 * If we need a transaction and the process flags say
1339 * we are already in a transaction, or no IO is allowed
1340 * then mark the page dirty again and leave the page
1341 * as is.
1342 */
59c1b082 1343 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1344 goto out_fail;
1345
1346 /*
1347 * Delay hooking up buffer heads until we have
1348 * made our go/no-go decision.
1349 */
1350 if (!page_has_buffers(page))
1351 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1352
c8a4051c
ES
1353
1354 /*
1355 * VM calculation for nr_to_write seems off. Bump it way
1356 * up, this gets simple streaming writes zippy again.
1357 * To be reviewed again after Jens' writeback changes.
1358 */
1359 wbc->nr_to_write *= 4;
1360
f51623b2
NS
1361 /*
1362 * Convert delayed allocate, unwritten or unmapped space
1363 * to real space and flush out to disk.
1364 */
1365 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1366 if (error == -EAGAIN)
1367 goto out_fail;
1368 if (unlikely(error < 0))
1369 goto out_unlock;
1370
1371 return 0;
1372
1373out_fail:
1374 redirty_page_for_writepage(wbc, page);
1375 unlock_page(page);
1376 return 0;
1377out_unlock:
1378 unlock_page(page);
1379 return error;
1380}
1381
7d4fb40a
NS
1382STATIC int
1383xfs_vm_writepages(
1384 struct address_space *mapping,
1385 struct writeback_control *wbc)
1386{
b3aea4ed 1387 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1388 return generic_writepages(mapping, wbc);
1389}
1390
f51623b2
NS
1391/*
1392 * Called to move a page into cleanable state - and from there
1393 * to be released. Possibly the page is already clean. We always
1394 * have buffer heads in this call.
1395 *
1396 * Returns 0 if the page is ok to release, 1 otherwise.
1397 *
1398 * Possible scenarios are:
1399 *
1400 * 1. We are being called to release a page which has been written
1401 * to via regular I/O. buffer heads will be dirty and possibly
1402 * delalloc. If no delalloc buffer heads in this case then we
1403 * can just return zero.
1404 *
1405 * 2. We are called to release a page which has been written via
1406 * mmap, all we need to do is ensure there is no delalloc
1407 * state in the buffer heads, if not we can let the caller
1408 * free them and we should come back later via writepage.
1409 */
1410STATIC int
238f4c54 1411xfs_vm_releasepage(
f51623b2
NS
1412 struct page *page,
1413 gfp_t gfp_mask)
1414{
1415 struct inode *inode = page->mapping->host;
1416 int dirty, delalloc, unmapped, unwritten;
1417 struct writeback_control wbc = {
1418 .sync_mode = WB_SYNC_ALL,
1419 .nr_to_write = 1,
1420 };
1421
0b1b213f 1422 trace_xfs_releasepage(inode, page, 0);
f51623b2 1423
238f4c54
NS
1424 if (!page_has_buffers(page))
1425 return 0;
1426
f51623b2
NS
1427 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1428 if (!delalloc && !unwritten)
1429 goto free_buffers;
1430
1431 if (!(gfp_mask & __GFP_FS))
1432 return 0;
1433
1434 /* If we are already inside a transaction or the thread cannot
1435 * do I/O, we cannot release this page.
1436 */
59c1b082 1437 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1438 return 0;
1439
1440 /*
1441 * Convert delalloc space to real space, do not flush the
1442 * data out to disk, that will be done by the caller.
1443 * Never need to allocate space here - we will always
1444 * come back to writepage in that case.
1445 */
1446 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1447 if (dirty == 0 && !unwritten)
1448 goto free_buffers;
1449 return 0;
1450
1451free_buffers:
1452 return try_to_free_buffers(page);
1453}
1454
1da177e4 1455STATIC int
c2536668 1456__xfs_get_blocks(
1da177e4
LT
1457 struct inode *inode,
1458 sector_t iblock,
1da177e4
LT
1459 struct buffer_head *bh_result,
1460 int create,
1461 int direct,
1462 bmapi_flags_t flags)
1463{
207d0416 1464 struct xfs_bmbt_irec imap;
fdc7ed75
NS
1465 xfs_off_t offset;
1466 ssize_t size;
207d0416
CH
1467 int nimap = 1;
1468 int new = 0;
1da177e4 1469 int error;
1da177e4 1470
fdc7ed75 1471 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1472 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1473 size = bh_result->b_size;
364f358a
LM
1474
1475 if (!create && direct && offset >= i_size_read(inode))
1476 return 0;
1477
541d7d3c 1478 error = xfs_iomap(XFS_I(inode), offset, size,
207d0416 1479 create ? flags : BMAPI_READ, &imap, &nimap, &new);
1da177e4
LT
1480 if (error)
1481 return -error;
207d0416 1482 if (nimap == 0)
1da177e4
LT
1483 return 0;
1484
207d0416
CH
1485 if (imap.br_startblock != HOLESTARTBLOCK &&
1486 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1487 /*
1488 * For unwritten extents do not report a disk address on
1da177e4
LT
1489 * the read case (treat as if we're reading into a hole).
1490 */
207d0416
CH
1491 if (create || !ISUNWRITTEN(&imap))
1492 xfs_map_buffer(inode, bh_result, &imap, offset);
1493 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1494 if (direct)
1495 bh_result->b_private = inode;
1496 set_buffer_unwritten(bh_result);
1da177e4
LT
1497 }
1498 }
1499
c2536668
NS
1500 /*
1501 * If this is a realtime file, data may be on a different device.
1502 * to that pointed to from the buffer_head b_bdev currently.
1503 */
046f1685 1504 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1505
c2536668 1506 /*
549054af
DC
1507 * If we previously allocated a block out beyond eof and we are now
1508 * coming back to use it then we will need to flag it as new even if it
1509 * has a disk address.
1510 *
1511 * With sub-block writes into unwritten extents we also need to mark
1512 * the buffer as new so that the unwritten parts of the buffer gets
1513 * correctly zeroed.
1da177e4
LT
1514 */
1515 if (create &&
1516 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1517 (offset >= i_size_read(inode)) ||
207d0416 1518 (new || ISUNWRITTEN(&imap))))
1da177e4 1519 set_buffer_new(bh_result);
1da177e4 1520
207d0416 1521 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1522 BUG_ON(direct);
1523 if (create) {
1524 set_buffer_uptodate(bh_result);
1525 set_buffer_mapped(bh_result);
1526 set_buffer_delay(bh_result);
1527 }
1528 }
1529
c2536668 1530 if (direct || size > (1 << inode->i_blkbits)) {
8699bb0a 1531 struct xfs_mount *mp = XFS_I(inode)->i_mount;
207d0416 1532 xfs_off_t iomap_offset = XFS_FSB_TO_B(mp, imap.br_startoff);
8699bb0a 1533 xfs_off_t iomap_delta = offset - iomap_offset;
207d0416 1534 xfs_off_t iomap_bsize = XFS_FSB_TO_B(mp, imap.br_blockcount);
9563b3d8 1535
8699bb0a 1536 ASSERT(iomap_bsize - iomap_delta > 0);
fdc7ed75 1537 offset = min_t(xfs_off_t,
8699bb0a 1538 iomap_bsize - iomap_delta, size);
c2536668 1539 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1540 }
1541
1542 return 0;
1543}
1544
1545int
c2536668 1546xfs_get_blocks(
1da177e4
LT
1547 struct inode *inode,
1548 sector_t iblock,
1549 struct buffer_head *bh_result,
1550 int create)
1551{
c2536668 1552 return __xfs_get_blocks(inode, iblock,
fa30bd05 1553 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1554}
1555
1556STATIC int
e4c573bb 1557xfs_get_blocks_direct(
1da177e4
LT
1558 struct inode *inode,
1559 sector_t iblock,
1da177e4
LT
1560 struct buffer_head *bh_result,
1561 int create)
1562{
c2536668 1563 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1564 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1565}
1566
f0973863 1567STATIC void
e4c573bb 1568xfs_end_io_direct(
f0973863
CH
1569 struct kiocb *iocb,
1570 loff_t offset,
1571 ssize_t size,
1572 void *private)
1573{
1574 xfs_ioend_t *ioend = iocb->private;
1575
1576 /*
1577 * Non-NULL private data means we need to issue a transaction to
1578 * convert a range from unwritten to written extents. This needs
c41564b5 1579 * to happen from process context but aio+dio I/O completion
f0973863 1580 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1581 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1582 * it anyway to keep the code uniform and simpler.
1583 *
e927af90
DC
1584 * Well, if only it were that simple. Because synchronous direct I/O
1585 * requires extent conversion to occur *before* we return to userspace,
1586 * we have to wait for extent conversion to complete. Look at the
1587 * iocb that has been passed to us to determine if this is AIO or
1588 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1589 * workqueue and wait for it to complete.
1590 *
f0973863
CH
1591 * The core direct I/O code might be changed to always call the
1592 * completion handler in the future, in which case all this can
1593 * go away.
1594 */
ba87ea69
LM
1595 ioend->io_offset = offset;
1596 ioend->io_size = size;
1597 if (ioend->io_type == IOMAP_READ) {
e927af90 1598 xfs_finish_ioend(ioend, 0);
ba87ea69 1599 } else if (private && size > 0) {
e927af90 1600 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1601 } else {
ba87ea69
LM
1602 /*
1603 * A direct I/O write ioend starts it's life in unwritten
1604 * state in case they map an unwritten extent. This write
1605 * didn't map an unwritten extent so switch it's completion
1606 * handler.
1607 */
5ec4fabb 1608 ioend->io_type = IOMAP_NEW;
e927af90 1609 xfs_finish_ioend(ioend, 0);
f0973863
CH
1610 }
1611
1612 /*
c41564b5 1613 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1614 * completion handler was called. Thus we need to protect
1615 * against double-freeing.
1616 */
1617 iocb->private = NULL;
1618}
1619
1da177e4 1620STATIC ssize_t
e4c573bb 1621xfs_vm_direct_IO(
1da177e4
LT
1622 int rw,
1623 struct kiocb *iocb,
1624 const struct iovec *iov,
1625 loff_t offset,
1626 unsigned long nr_segs)
1627{
1628 struct file *file = iocb->ki_filp;
1629 struct inode *inode = file->f_mapping->host;
6214ed44 1630 struct block_device *bdev;
f0973863 1631 ssize_t ret;
1da177e4 1632
046f1685 1633 bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1634
5fe878ae
CH
1635 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
1636 IOMAP_UNWRITTEN : IOMAP_READ);
1637
1638 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1639 offset, nr_segs,
1640 xfs_get_blocks_direct,
1641 xfs_end_io_direct);
f0973863 1642
8459d86a 1643 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1644 xfs_destroy_ioend(iocb->private);
1645 return ret;
1da177e4
LT
1646}
1647
f51623b2 1648STATIC int
d79689c7 1649xfs_vm_write_begin(
f51623b2 1650 struct file *file,
d79689c7
NP
1651 struct address_space *mapping,
1652 loff_t pos,
1653 unsigned len,
1654 unsigned flags,
1655 struct page **pagep,
1656 void **fsdata)
f51623b2 1657{
d79689c7
NP
1658 *pagep = NULL;
1659 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1660 xfs_get_blocks);
f51623b2 1661}
1da177e4
LT
1662
1663STATIC sector_t
e4c573bb 1664xfs_vm_bmap(
1da177e4
LT
1665 struct address_space *mapping,
1666 sector_t block)
1667{
1668 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1669 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1670
cf441eeb 1671 xfs_itrace_entry(XFS_I(inode));
126468b1 1672 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1673 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1674 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1675 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1676}
1677
1678STATIC int
e4c573bb 1679xfs_vm_readpage(
1da177e4
LT
1680 struct file *unused,
1681 struct page *page)
1682{
c2536668 1683 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1684}
1685
1686STATIC int
e4c573bb 1687xfs_vm_readpages(
1da177e4
LT
1688 struct file *unused,
1689 struct address_space *mapping,
1690 struct list_head *pages,
1691 unsigned nr_pages)
1692{
c2536668 1693 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1694}
1695
f5e54d6e 1696const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1697 .readpage = xfs_vm_readpage,
1698 .readpages = xfs_vm_readpages,
1699 .writepage = xfs_vm_writepage,
7d4fb40a 1700 .writepages = xfs_vm_writepages,
1da177e4 1701 .sync_page = block_sync_page,
238f4c54
NS
1702 .releasepage = xfs_vm_releasepage,
1703 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1704 .write_begin = xfs_vm_write_begin,
1705 .write_end = generic_write_end,
e4c573bb
NS
1706 .bmap = xfs_vm_bmap,
1707 .direct_IO = xfs_vm_direct_IO,
e965f963 1708 .migratepage = buffer_migrate_page,
bddaafa1 1709 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1710 .error_remove_page = generic_error_remove_page,
1da177e4 1711};
This page took 0.523558 seconds and 5 git commands to generate.