Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux...
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
ce8e922c 47STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
23ea4032 48
7989cb8e 49static struct workqueue_struct *xfslogd_workqueue;
0829c360 50struct workqueue_struct *xfsdatad_workqueue;
c626d174 51struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 52
ce8e922c
NS
53#ifdef XFS_BUF_LOCK_TRACKING
54# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 57#else
ce8e922c
NS
58# define XB_SET_OWNER(bp) do { } while (0)
59# define XB_CLEAR_OWNER(bp) do { } while (0)
60# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
61#endif
62
ce8e922c
NS
63#define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 66
ce8e922c
NS
67#define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 69
ce8e922c
NS
70#define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72#define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 74
73c77e2c
JB
75static inline int
76xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
78{
79 /*
80 * Return true if the buffer is vmapped.
81 *
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 */
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87}
88
89static inline int
90xfs_buf_vmap_len(
91 struct xfs_buf *bp)
92{
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94}
95
1da177e4 96/*
ce8e922c 97 * Page Region interfaces.
1da177e4 98 *
ce8e922c
NS
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
1da177e4 102 *
ce8e922c 103 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 104 *
ce8e922c
NS
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
108 */
109#if (BITS_PER_LONG == 32)
110#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111#elif (BITS_PER_LONG == 64)
112#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113#else
114#error BITS_PER_LONG must be 32 or 64
115#endif
116#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120STATIC unsigned long
121page_region_mask(
122 size_t offset,
123 size_t length)
124{
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140}
141
b8f82a4a 142STATIC void
1da177e4
LT
143set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147{
4c21e2f2
HD
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
1da177e4
LT
151 SetPageUptodate(page);
152}
153
b8f82a4a 154STATIC int
1da177e4
LT
155test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159{
160 unsigned long mask = page_region_mask(offset, length);
161
4c21e2f2 162 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
163}
164
1da177e4 165/*
430cbeb8
DC
166 * xfs_buf_lru_add - add a buffer to the LRU.
167 *
168 * The LRU takes a new reference to the buffer so that it will only be freed
169 * once the shrinker takes the buffer off the LRU.
170 */
171STATIC void
172xfs_buf_lru_add(
173 struct xfs_buf *bp)
174{
175 struct xfs_buftarg *btp = bp->b_target;
176
177 spin_lock(&btp->bt_lru_lock);
178 if (list_empty(&bp->b_lru)) {
179 atomic_inc(&bp->b_hold);
180 list_add_tail(&bp->b_lru, &btp->bt_lru);
181 btp->bt_lru_nr++;
182 }
183 spin_unlock(&btp->bt_lru_lock);
184}
185
186/*
187 * xfs_buf_lru_del - remove a buffer from the LRU
188 *
189 * The unlocked check is safe here because it only occurs when there are not
190 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
191 * to optimise the shrinker removing the buffer from the LRU and calling
192 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
193 * bt_lru_lock.
1da177e4 194 */
430cbeb8
DC
195STATIC void
196xfs_buf_lru_del(
197 struct xfs_buf *bp)
198{
199 struct xfs_buftarg *btp = bp->b_target;
200
201 if (list_empty(&bp->b_lru))
202 return;
203
204 spin_lock(&btp->bt_lru_lock);
205 if (!list_empty(&bp->b_lru)) {
206 list_del_init(&bp->b_lru);
207 btp->bt_lru_nr--;
208 }
209 spin_unlock(&btp->bt_lru_lock);
210}
211
212/*
213 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
214 * b_lru_ref count so that the buffer is freed immediately when the buffer
215 * reference count falls to zero. If the buffer is already on the LRU, we need
216 * to remove the reference that LRU holds on the buffer.
217 *
218 * This prevents build-up of stale buffers on the LRU.
219 */
220void
221xfs_buf_stale(
222 struct xfs_buf *bp)
223{
224 bp->b_flags |= XBF_STALE;
225 atomic_set(&(bp)->b_lru_ref, 0);
226 if (!list_empty(&bp->b_lru)) {
227 struct xfs_buftarg *btp = bp->b_target;
228
229 spin_lock(&btp->bt_lru_lock);
230 if (!list_empty(&bp->b_lru)) {
231 list_del_init(&bp->b_lru);
232 btp->bt_lru_nr--;
233 atomic_dec(&bp->b_hold);
234 }
235 spin_unlock(&btp->bt_lru_lock);
236 }
237 ASSERT(atomic_read(&bp->b_hold) >= 1);
238}
1da177e4
LT
239
240STATIC void
ce8e922c
NS
241_xfs_buf_initialize(
242 xfs_buf_t *bp,
1da177e4 243 xfs_buftarg_t *target,
204ab25f 244 xfs_off_t range_base,
1da177e4 245 size_t range_length,
ce8e922c 246 xfs_buf_flags_t flags)
1da177e4
LT
247{
248 /*
ce8e922c 249 * We don't want certain flags to appear in b_flags.
1da177e4 250 */
ce8e922c
NS
251 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
252
253 memset(bp, 0, sizeof(xfs_buf_t));
254 atomic_set(&bp->b_hold, 1);
430cbeb8 255 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 256 init_completion(&bp->b_iowait);
430cbeb8 257 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 258 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 259 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 260 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
261 XB_SET_OWNER(bp);
262 bp->b_target = target;
263 bp->b_file_offset = range_base;
1da177e4
LT
264 /*
265 * Set buffer_length and count_desired to the same value initially.
266 * I/O routines should use count_desired, which will be the same in
267 * most cases but may be reset (e.g. XFS recovery).
268 */
ce8e922c
NS
269 bp->b_buffer_length = bp->b_count_desired = range_length;
270 bp->b_flags = flags;
271 bp->b_bn = XFS_BUF_DADDR_NULL;
272 atomic_set(&bp->b_pin_count, 0);
273 init_waitqueue_head(&bp->b_waiters);
274
275 XFS_STATS_INC(xb_create);
0b1b213f
CH
276
277 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
278}
279
280/*
ce8e922c
NS
281 * Allocate a page array capable of holding a specified number
282 * of pages, and point the page buf at it.
1da177e4
LT
283 */
284STATIC int
ce8e922c
NS
285_xfs_buf_get_pages(
286 xfs_buf_t *bp,
1da177e4 287 int page_count,
ce8e922c 288 xfs_buf_flags_t flags)
1da177e4
LT
289{
290 /* Make sure that we have a page list */
ce8e922c
NS
291 if (bp->b_pages == NULL) {
292 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
293 bp->b_page_count = page_count;
294 if (page_count <= XB_PAGES) {
295 bp->b_pages = bp->b_page_array;
1da177e4 296 } else {
ce8e922c
NS
297 bp->b_pages = kmem_alloc(sizeof(struct page *) *
298 page_count, xb_to_km(flags));
299 if (bp->b_pages == NULL)
1da177e4
LT
300 return -ENOMEM;
301 }
ce8e922c 302 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
303 }
304 return 0;
305}
306
307/*
ce8e922c 308 * Frees b_pages if it was allocated.
1da177e4
LT
309 */
310STATIC void
ce8e922c 311_xfs_buf_free_pages(
1da177e4
LT
312 xfs_buf_t *bp)
313{
ce8e922c 314 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 315 kmem_free(bp->b_pages);
3fc98b1a 316 bp->b_pages = NULL;
1da177e4
LT
317 }
318}
319
320/*
321 * Releases the specified buffer.
322 *
323 * The modification state of any associated pages is left unchanged.
ce8e922c 324 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
325 * hashed and refcounted buffers
326 */
327void
ce8e922c 328xfs_buf_free(
1da177e4
LT
329 xfs_buf_t *bp)
330{
0b1b213f 331 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 332
430cbeb8
DC
333 ASSERT(list_empty(&bp->b_lru));
334
1fa40b01 335 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
336 uint i;
337
73c77e2c 338 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
339 vm_unmap_ram(bp->b_addr - bp->b_offset,
340 bp->b_page_count);
1da177e4 341
948ecdb4
NS
342 for (i = 0; i < bp->b_page_count; i++) {
343 struct page *page = bp->b_pages[i];
344
1fa40b01
CH
345 if (bp->b_flags & _XBF_PAGE_CACHE)
346 ASSERT(!PagePrivate(page));
948ecdb4
NS
347 page_cache_release(page);
348 }
1da177e4 349 }
3fc98b1a 350 _xfs_buf_free_pages(bp);
ce8e922c 351 xfs_buf_deallocate(bp);
1da177e4
LT
352}
353
354/*
355 * Finds all pages for buffer in question and builds it's page list.
356 */
357STATIC int
ce8e922c 358_xfs_buf_lookup_pages(
1da177e4
LT
359 xfs_buf_t *bp,
360 uint flags)
361{
ce8e922c
NS
362 struct address_space *mapping = bp->b_target->bt_mapping;
363 size_t blocksize = bp->b_target->bt_bsize;
364 size_t size = bp->b_count_desired;
1da177e4 365 size_t nbytes, offset;
ce8e922c 366 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
367 unsigned short page_count, i;
368 pgoff_t first;
204ab25f 369 xfs_off_t end;
1da177e4
LT
370 int error;
371
ce8e922c
NS
372 end = bp->b_file_offset + bp->b_buffer_length;
373 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 374
ce8e922c 375 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
376 if (unlikely(error))
377 return error;
ce8e922c 378 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 379
ce8e922c
NS
380 offset = bp->b_offset;
381 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 382
ce8e922c 383 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
384 struct page *page;
385 uint retries = 0;
386
387 retry:
388 page = find_or_create_page(mapping, first + i, gfp_mask);
389 if (unlikely(page == NULL)) {
ce8e922c
NS
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
6ab455ee
CH
392 for (i = 0; i < bp->b_page_count; i++)
393 unlock_page(bp->b_pages[i]);
1da177e4
LT
394 return -ENOMEM;
395 }
396
397 /*
398 * This could deadlock.
399 *
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
402 */
403 if (!(++retries % 100))
4f10700a
DC
404 xfs_err(NULL,
405 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 406 __func__, gfp_mask);
1da177e4 407
ce8e922c 408 XFS_STATS_INC(xb_page_retries);
8aa7e847 409 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
410 goto retry;
411 }
412
ce8e922c 413 XFS_STATS_INC(xb_page_found);
1da177e4
LT
414
415 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416 size -= nbytes;
417
948ecdb4 418 ASSERT(!PagePrivate(page));
1da177e4
LT
419 if (!PageUptodate(page)) {
420 page_count--;
6ab455ee
CH
421 if (blocksize >= PAGE_CACHE_SIZE) {
422 if (flags & XBF_READ)
423 bp->b_flags |= _XBF_PAGE_LOCKED;
424 } else if (!PagePrivate(page)) {
1da177e4
LT
425 if (test_page_region(page, offset, nbytes))
426 page_count++;
427 }
428 }
429
ce8e922c 430 bp->b_pages[i] = page;
1da177e4
LT
431 offset = 0;
432 }
433
6ab455ee
CH
434 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
435 for (i = 0; i < bp->b_page_count; i++)
436 unlock_page(bp->b_pages[i]);
437 }
438
ce8e922c
NS
439 if (page_count == bp->b_page_count)
440 bp->b_flags |= XBF_DONE;
1da177e4 441
1da177e4
LT
442 return error;
443}
444
445/*
446 * Map buffer into kernel address-space if nessecary.
447 */
448STATIC int
ce8e922c 449_xfs_buf_map_pages(
1da177e4
LT
450 xfs_buf_t *bp,
451 uint flags)
452{
453 /* A single page buffer is always mappable */
ce8e922c
NS
454 if (bp->b_page_count == 1) {
455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 bp->b_flags |= XBF_MAPPED;
457 } else if (flags & XBF_MAPPED) {
8a262e57
AE
458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 -1, PAGE_KERNEL);
ce8e922c 460 if (unlikely(bp->b_addr == NULL))
1da177e4 461 return -ENOMEM;
ce8e922c
NS
462 bp->b_addr += bp->b_offset;
463 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
464 }
465
466 return 0;
467}
468
469/*
470 * Finding and Reading Buffers
471 */
472
473/*
ce8e922c 474 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
475 * a given range of an inode. The buffer is returned
476 * locked. If other overlapping buffers exist, they are
477 * released before the new buffer is created and locked,
478 * which may imply that this call will block until those buffers
479 * are unlocked. No I/O is implied by this call.
480 */
481xfs_buf_t *
ce8e922c 482_xfs_buf_find(
1da177e4 483 xfs_buftarg_t *btp, /* block device target */
204ab25f 484 xfs_off_t ioff, /* starting offset of range */
1da177e4 485 size_t isize, /* length of range */
ce8e922c
NS
486 xfs_buf_flags_t flags,
487 xfs_buf_t *new_bp)
1da177e4 488{
204ab25f 489 xfs_off_t range_base;
1da177e4 490 size_t range_length;
74f75a0c
DC
491 struct xfs_perag *pag;
492 struct rb_node **rbp;
493 struct rb_node *parent;
494 xfs_buf_t *bp;
1da177e4
LT
495
496 range_base = (ioff << BBSHIFT);
497 range_length = (isize << BBSHIFT);
498
499 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 500 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 501 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 502
74f75a0c
DC
503 /* get tree root */
504 pag = xfs_perag_get(btp->bt_mount,
505 xfs_daddr_to_agno(btp->bt_mount, ioff));
506
507 /* walk tree */
508 spin_lock(&pag->pag_buf_lock);
509 rbp = &pag->pag_buf_tree.rb_node;
510 parent = NULL;
511 bp = NULL;
512 while (*rbp) {
513 parent = *rbp;
514 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
515
516 if (range_base < bp->b_file_offset)
517 rbp = &(*rbp)->rb_left;
518 else if (range_base > bp->b_file_offset)
519 rbp = &(*rbp)->rb_right;
520 else {
521 /*
522 * found a block offset match. If the range doesn't
523 * match, the only way this is allowed is if the buffer
524 * in the cache is stale and the transaction that made
525 * it stale has not yet committed. i.e. we are
526 * reallocating a busy extent. Skip this buffer and
527 * continue searching to the right for an exact match.
528 */
529 if (bp->b_buffer_length != range_length) {
530 ASSERT(bp->b_flags & XBF_STALE);
531 rbp = &(*rbp)->rb_right;
532 continue;
533 }
ce8e922c 534 atomic_inc(&bp->b_hold);
1da177e4
LT
535 goto found;
536 }
537 }
538
539 /* No match found */
ce8e922c
NS
540 if (new_bp) {
541 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 542 range_length, flags);
74f75a0c
DC
543 rb_link_node(&new_bp->b_rbnode, parent, rbp);
544 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
545 /* the buffer keeps the perag reference until it is freed */
546 new_bp->b_pag = pag;
547 spin_unlock(&pag->pag_buf_lock);
1da177e4 548 } else {
ce8e922c 549 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
550 spin_unlock(&pag->pag_buf_lock);
551 xfs_perag_put(pag);
1da177e4 552 }
ce8e922c 553 return new_bp;
1da177e4
LT
554
555found:
74f75a0c
DC
556 spin_unlock(&pag->pag_buf_lock);
557 xfs_perag_put(pag);
1da177e4 558
90810b9e
DC
559 if (xfs_buf_cond_lock(bp)) {
560 /* failed, so wait for the lock if requested. */
ce8e922c 561 if (!(flags & XBF_TRYLOCK)) {
ce8e922c
NS
562 xfs_buf_lock(bp);
563 XFS_STATS_INC(xb_get_locked_waited);
1da177e4 564 } else {
ce8e922c
NS
565 xfs_buf_rele(bp);
566 XFS_STATS_INC(xb_busy_locked);
567 return NULL;
1da177e4 568 }
1da177e4
LT
569 }
570
ce8e922c
NS
571 if (bp->b_flags & XBF_STALE) {
572 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
573 bp->b_flags &= XBF_MAPPED;
2f926587 574 }
0b1b213f
CH
575
576 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
577 XFS_STATS_INC(xb_get_locked);
578 return bp;
1da177e4
LT
579}
580
581/*
ce8e922c 582 * Assembles a buffer covering the specified range.
1da177e4
LT
583 * Storage in memory for all portions of the buffer will be allocated,
584 * although backing storage may not be.
585 */
586xfs_buf_t *
6ad112bf 587xfs_buf_get(
1da177e4 588 xfs_buftarg_t *target,/* target for buffer */
204ab25f 589 xfs_off_t ioff, /* starting offset of range */
1da177e4 590 size_t isize, /* length of range */
ce8e922c 591 xfs_buf_flags_t flags)
1da177e4 592{
ce8e922c 593 xfs_buf_t *bp, *new_bp;
1da177e4
LT
594 int error = 0, i;
595
ce8e922c
NS
596 new_bp = xfs_buf_allocate(flags);
597 if (unlikely(!new_bp))
1da177e4
LT
598 return NULL;
599
ce8e922c
NS
600 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
601 if (bp == new_bp) {
602 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
603 if (error)
604 goto no_buffer;
605 } else {
ce8e922c
NS
606 xfs_buf_deallocate(new_bp);
607 if (unlikely(bp == NULL))
1da177e4
LT
608 return NULL;
609 }
610
ce8e922c
NS
611 for (i = 0; i < bp->b_page_count; i++)
612 mark_page_accessed(bp->b_pages[i]);
1da177e4 613
ce8e922c
NS
614 if (!(bp->b_flags & XBF_MAPPED)) {
615 error = _xfs_buf_map_pages(bp, flags);
1da177e4 616 if (unlikely(error)) {
4f10700a
DC
617 xfs_warn(target->bt_mount,
618 "%s: failed to map pages\n", __func__);
1da177e4
LT
619 goto no_buffer;
620 }
621 }
622
ce8e922c 623 XFS_STATS_INC(xb_get);
1da177e4
LT
624
625 /*
626 * Always fill in the block number now, the mapped cases can do
627 * their own overlay of this later.
628 */
ce8e922c
NS
629 bp->b_bn = ioff;
630 bp->b_count_desired = bp->b_buffer_length;
1da177e4 631
0b1b213f 632 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 633 return bp;
1da177e4
LT
634
635 no_buffer:
ce8e922c
NS
636 if (flags & (XBF_LOCK | XBF_TRYLOCK))
637 xfs_buf_unlock(bp);
638 xfs_buf_rele(bp);
1da177e4
LT
639 return NULL;
640}
641
5d765b97
CH
642STATIC int
643_xfs_buf_read(
644 xfs_buf_t *bp,
645 xfs_buf_flags_t flags)
646{
647 int status;
648
5d765b97
CH
649 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
650 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
651
652 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
653 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
654 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
655 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
656
657 status = xfs_buf_iorequest(bp);
ec53d1db
DC
658 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
659 return status;
660 return xfs_buf_iowait(bp);
5d765b97
CH
661}
662
1da177e4 663xfs_buf_t *
6ad112bf 664xfs_buf_read(
1da177e4 665 xfs_buftarg_t *target,
204ab25f 666 xfs_off_t ioff,
1da177e4 667 size_t isize,
ce8e922c 668 xfs_buf_flags_t flags)
1da177e4 669{
ce8e922c
NS
670 xfs_buf_t *bp;
671
672 flags |= XBF_READ;
673
6ad112bf 674 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 675 if (bp) {
0b1b213f
CH
676 trace_xfs_buf_read(bp, flags, _RET_IP_);
677
ce8e922c 678 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 679 XFS_STATS_INC(xb_get_read);
5d765b97 680 _xfs_buf_read(bp, flags);
ce8e922c 681 } else if (flags & XBF_ASYNC) {
1da177e4
LT
682 /*
683 * Read ahead call which is already satisfied,
684 * drop the buffer
685 */
686 goto no_buffer;
687 } else {
1da177e4 688 /* We do not want read in the flags */
ce8e922c 689 bp->b_flags &= ~XBF_READ;
1da177e4
LT
690 }
691 }
692
ce8e922c 693 return bp;
1da177e4
LT
694
695 no_buffer:
ce8e922c
NS
696 if (flags & (XBF_LOCK | XBF_TRYLOCK))
697 xfs_buf_unlock(bp);
698 xfs_buf_rele(bp);
1da177e4
LT
699 return NULL;
700}
701
1da177e4 702/*
ce8e922c
NS
703 * If we are not low on memory then do the readahead in a deadlock
704 * safe manner.
1da177e4
LT
705 */
706void
ce8e922c 707xfs_buf_readahead(
1da177e4 708 xfs_buftarg_t *target,
204ab25f 709 xfs_off_t ioff,
1a1a3e97 710 size_t isize)
1da177e4
LT
711{
712 struct backing_dev_info *bdi;
713
ce8e922c 714 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
715 if (bdi_read_congested(bdi))
716 return;
717
1a1a3e97
CH
718 xfs_buf_read(target, ioff, isize,
719 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
720}
721
5adc94c2
DC
722/*
723 * Read an uncached buffer from disk. Allocates and returns a locked
724 * buffer containing the disk contents or nothing.
725 */
726struct xfs_buf *
727xfs_buf_read_uncached(
728 struct xfs_mount *mp,
729 struct xfs_buftarg *target,
730 xfs_daddr_t daddr,
731 size_t length,
732 int flags)
733{
734 xfs_buf_t *bp;
735 int error;
736
737 bp = xfs_buf_get_uncached(target, length, flags);
738 if (!bp)
739 return NULL;
740
741 /* set up the buffer for a read IO */
742 xfs_buf_lock(bp);
743 XFS_BUF_SET_ADDR(bp, daddr);
744 XFS_BUF_READ(bp);
745 XFS_BUF_BUSY(bp);
746
747 xfsbdstrat(mp, bp);
1a1a3e97 748 error = xfs_buf_iowait(bp);
5adc94c2
DC
749 if (error || bp->b_error) {
750 xfs_buf_relse(bp);
751 return NULL;
752 }
753 return bp;
1da177e4
LT
754}
755
756xfs_buf_t *
ce8e922c 757xfs_buf_get_empty(
1da177e4
LT
758 size_t len,
759 xfs_buftarg_t *target)
760{
ce8e922c 761 xfs_buf_t *bp;
1da177e4 762
ce8e922c
NS
763 bp = xfs_buf_allocate(0);
764 if (bp)
765 _xfs_buf_initialize(bp, target, 0, len, 0);
766 return bp;
1da177e4
LT
767}
768
769static inline struct page *
770mem_to_page(
771 void *addr)
772{
9e2779fa 773 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
774 return virt_to_page(addr);
775 } else {
776 return vmalloc_to_page(addr);
777 }
778}
779
780int
ce8e922c
NS
781xfs_buf_associate_memory(
782 xfs_buf_t *bp,
1da177e4
LT
783 void *mem,
784 size_t len)
785{
786 int rval;
787 int i = 0;
d1afb678
LM
788 unsigned long pageaddr;
789 unsigned long offset;
790 size_t buflen;
1da177e4
LT
791 int page_count;
792
d1afb678
LM
793 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
794 offset = (unsigned long)mem - pageaddr;
795 buflen = PAGE_CACHE_ALIGN(len + offset);
796 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
797
798 /* Free any previous set of page pointers */
ce8e922c
NS
799 if (bp->b_pages)
800 _xfs_buf_free_pages(bp);
1da177e4 801
ce8e922c
NS
802 bp->b_pages = NULL;
803 bp->b_addr = mem;
1da177e4 804
36fae17a 805 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
806 if (rval)
807 return rval;
808
ce8e922c 809 bp->b_offset = offset;
d1afb678
LM
810
811 for (i = 0; i < bp->b_page_count; i++) {
812 bp->b_pages[i] = mem_to_page((void *)pageaddr);
813 pageaddr += PAGE_CACHE_SIZE;
1da177e4 814 }
1da177e4 815
d1afb678
LM
816 bp->b_count_desired = len;
817 bp->b_buffer_length = buflen;
ce8e922c 818 bp->b_flags |= XBF_MAPPED;
6ab455ee 819 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
820
821 return 0;
822}
823
824xfs_buf_t *
686865f7
DC
825xfs_buf_get_uncached(
826 struct xfs_buftarg *target,
1da177e4 827 size_t len,
686865f7 828 int flags)
1da177e4 829{
1fa40b01
CH
830 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
831 int error, i;
1da177e4 832 xfs_buf_t *bp;
1da177e4 833
ce8e922c 834 bp = xfs_buf_allocate(0);
1da177e4
LT
835 if (unlikely(bp == NULL))
836 goto fail;
ce8e922c 837 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 838
1fa40b01
CH
839 error = _xfs_buf_get_pages(bp, page_count, 0);
840 if (error)
1da177e4
LT
841 goto fail_free_buf;
842
1fa40b01 843 for (i = 0; i < page_count; i++) {
686865f7 844 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
845 if (!bp->b_pages[i])
846 goto fail_free_mem;
1da177e4 847 }
1fa40b01 848 bp->b_flags |= _XBF_PAGES;
1da177e4 849
1fa40b01
CH
850 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
851 if (unlikely(error)) {
4f10700a
DC
852 xfs_warn(target->bt_mount,
853 "%s: failed to map pages\n", __func__);
1da177e4 854 goto fail_free_mem;
1fa40b01 855 }
1da177e4 856
ce8e922c 857 xfs_buf_unlock(bp);
1da177e4 858
686865f7 859 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 860 return bp;
1fa40b01 861
1da177e4 862 fail_free_mem:
1fa40b01
CH
863 while (--i >= 0)
864 __free_page(bp->b_pages[i]);
ca165b88 865 _xfs_buf_free_pages(bp);
1da177e4 866 fail_free_buf:
ca165b88 867 xfs_buf_deallocate(bp);
1da177e4
LT
868 fail:
869 return NULL;
870}
871
872/*
1da177e4
LT
873 * Increment reference count on buffer, to hold the buffer concurrently
874 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
875 * Must hold the buffer already to call this function.
876 */
877void
ce8e922c
NS
878xfs_buf_hold(
879 xfs_buf_t *bp)
1da177e4 880{
0b1b213f 881 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 882 atomic_inc(&bp->b_hold);
1da177e4
LT
883}
884
885/*
ce8e922c
NS
886 * Releases a hold on the specified buffer. If the
887 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
888 */
889void
ce8e922c
NS
890xfs_buf_rele(
891 xfs_buf_t *bp)
1da177e4 892{
74f75a0c 893 struct xfs_perag *pag = bp->b_pag;
1da177e4 894
0b1b213f 895 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 896
74f75a0c 897 if (!pag) {
430cbeb8 898 ASSERT(list_empty(&bp->b_lru));
74f75a0c 899 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
900 if (atomic_dec_and_test(&bp->b_hold))
901 xfs_buf_free(bp);
902 return;
903 }
904
74f75a0c 905 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 906
3790689f 907 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 908 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 909 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
910 atomic_read(&bp->b_lru_ref)) {
911 xfs_buf_lru_add(bp);
912 spin_unlock(&pag->pag_buf_lock);
1da177e4 913 } else {
430cbeb8 914 xfs_buf_lru_del(bp);
ce8e922c 915 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
916 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
917 spin_unlock(&pag->pag_buf_lock);
918 xfs_perag_put(pag);
ce8e922c 919 xfs_buf_free(bp);
1da177e4
LT
920 }
921 }
922}
923
924
925/*
926 * Mutual exclusion on buffers. Locking model:
927 *
928 * Buffers associated with inodes for which buffer locking
929 * is not enabled are not protected by semaphores, and are
930 * assumed to be exclusively owned by the caller. There is a
931 * spinlock in the buffer, used by the caller when concurrent
932 * access is possible.
933 */
934
935/*
90810b9e
DC
936 * Locks a buffer object, if it is not already locked. Note that this in
937 * no way locks the underlying pages, so it is only useful for
938 * synchronizing concurrent use of buffer objects, not for synchronizing
939 * independent access to the underlying pages.
940 *
941 * If we come across a stale, pinned, locked buffer, we know that we are
942 * being asked to lock a buffer that has been reallocated. Because it is
943 * pinned, we know that the log has not been pushed to disk and hence it
944 * will still be locked. Rather than continuing to have trylock attempts
945 * fail until someone else pushes the log, push it ourselves before
946 * returning. This means that the xfsaild will not get stuck trying
947 * to push on stale inode buffers.
1da177e4
LT
948 */
949int
ce8e922c
NS
950xfs_buf_cond_lock(
951 xfs_buf_t *bp)
1da177e4
LT
952{
953 int locked;
954
ce8e922c 955 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 956 if (locked)
ce8e922c 957 XB_SET_OWNER(bp);
90810b9e
DC
958 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
959 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f
CH
960
961 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 962 return locked ? 0 : -EBUSY;
1da177e4
LT
963}
964
1da177e4 965int
ce8e922c
NS
966xfs_buf_lock_value(
967 xfs_buf_t *bp)
1da177e4 968{
adaa693b 969 return bp->b_sema.count;
1da177e4 970}
1da177e4
LT
971
972/*
ce8e922c
NS
973 * Locks a buffer object.
974 * Note that this in no way locks the underlying pages, so it is only
975 * useful for synchronizing concurrent use of buffer objects, not for
976 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
977 *
978 * If we come across a stale, pinned, locked buffer, we know that we
979 * are being asked to lock a buffer that has been reallocated. Because
980 * it is pinned, we know that the log has not been pushed to disk and
981 * hence it will still be locked. Rather than sleeping until someone
982 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 983 */
ce8e922c
NS
984void
985xfs_buf_lock(
986 xfs_buf_t *bp)
1da177e4 987{
0b1b213f
CH
988 trace_xfs_buf_lock(bp, _RET_IP_);
989
ed3b4d6c 990 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 991 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
992 if (atomic_read(&bp->b_io_remaining))
993 blk_run_address_space(bp->b_target->bt_mapping);
994 down(&bp->b_sema);
995 XB_SET_OWNER(bp);
0b1b213f
CH
996
997 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
998}
999
1000/*
ce8e922c 1001 * Releases the lock on the buffer object.
2f926587 1002 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 1003 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
1004 * take a reference for the delwri queue because the unlocker is going to
1005 * drop their's and they don't know we just queued it.
1da177e4
LT
1006 */
1007void
ce8e922c
NS
1008xfs_buf_unlock(
1009 xfs_buf_t *bp)
1da177e4 1010{
ce8e922c
NS
1011 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
1012 atomic_inc(&bp->b_hold);
1013 bp->b_flags |= XBF_ASYNC;
1014 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
1015 }
1016
ce8e922c
NS
1017 XB_CLEAR_OWNER(bp);
1018 up(&bp->b_sema);
0b1b213f
CH
1019
1020 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1021}
1022
ce8e922c
NS
1023STATIC void
1024xfs_buf_wait_unpin(
1025 xfs_buf_t *bp)
1da177e4
LT
1026{
1027 DECLARE_WAITQUEUE (wait, current);
1028
ce8e922c 1029 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1030 return;
1031
ce8e922c 1032 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1033 for (;;) {
1034 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1035 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1036 break;
ce8e922c
NS
1037 if (atomic_read(&bp->b_io_remaining))
1038 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
1039 schedule();
1040 }
ce8e922c 1041 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1042 set_current_state(TASK_RUNNING);
1043}
1044
1045/*
1046 * Buffer Utility Routines
1047 */
1048
1da177e4 1049STATIC void
ce8e922c 1050xfs_buf_iodone_work(
c4028958 1051 struct work_struct *work)
1da177e4 1052{
c4028958
DH
1053 xfs_buf_t *bp =
1054 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 1055
80f6c29d 1056 if (bp->b_iodone)
ce8e922c
NS
1057 (*(bp->b_iodone))(bp);
1058 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1059 xfs_buf_relse(bp);
1060}
1061
1062void
ce8e922c
NS
1063xfs_buf_ioend(
1064 xfs_buf_t *bp,
1da177e4
LT
1065 int schedule)
1066{
0b1b213f
CH
1067 trace_xfs_buf_iodone(bp, _RET_IP_);
1068
77be55a5 1069 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1070 if (bp->b_error == 0)
1071 bp->b_flags |= XBF_DONE;
1da177e4 1072
ce8e922c 1073 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1074 if (schedule) {
c4028958 1075 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1076 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1077 } else {
c4028958 1078 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1079 }
1080 } else {
b4dd330b 1081 complete(&bp->b_iowait);
1da177e4
LT
1082 }
1083}
1084
1da177e4 1085void
ce8e922c
NS
1086xfs_buf_ioerror(
1087 xfs_buf_t *bp,
1088 int error)
1da177e4
LT
1089{
1090 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1091 bp->b_error = (unsigned short)error;
0b1b213f 1092 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1093}
1094
1da177e4 1095int
64e0bc7d
CH
1096xfs_bwrite(
1097 struct xfs_mount *mp,
5d765b97 1098 struct xfs_buf *bp)
1da177e4 1099{
8c38366f 1100 int error;
1da177e4 1101
64e0bc7d 1102 bp->b_flags |= XBF_WRITE;
8c38366f 1103 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1104
5d765b97 1105 xfs_buf_delwri_dequeue(bp);
939d723b 1106 xfs_bdstrat_cb(bp);
1da177e4 1107
8c38366f
CH
1108 error = xfs_buf_iowait(bp);
1109 if (error)
1110 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1111 xfs_buf_relse(bp);
64e0bc7d 1112 return error;
5d765b97 1113}
1da177e4 1114
5d765b97
CH
1115void
1116xfs_bdwrite(
1117 void *mp,
1118 struct xfs_buf *bp)
1119{
0b1b213f 1120 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1121
5d765b97
CH
1122 bp->b_flags &= ~XBF_READ;
1123 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1124
1125 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1126}
1127
4e23471a
CH
1128/*
1129 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1130 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1131 * so that the proper iodone callbacks get called.
1132 */
1133STATIC int
1134xfs_bioerror(
1135 xfs_buf_t *bp)
1136{
1137#ifdef XFSERRORDEBUG
1138 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1139#endif
1140
1141 /*
1142 * No need to wait until the buffer is unpinned, we aren't flushing it.
1143 */
1144 XFS_BUF_ERROR(bp, EIO);
1145
1146 /*
1a1a3e97 1147 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1148 */
1149 XFS_BUF_UNREAD(bp);
1150 XFS_BUF_UNDELAYWRITE(bp);
1151 XFS_BUF_UNDONE(bp);
1152 XFS_BUF_STALE(bp);
1153
1a1a3e97 1154 xfs_buf_ioend(bp, 0);
4e23471a
CH
1155
1156 return EIO;
1157}
1158
1159/*
1160 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1161 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1162 * This is meant for userdata errors; metadata bufs come with
1163 * iodone functions attached, so that we can track down errors.
1164 */
1165STATIC int
1166xfs_bioerror_relse(
1167 struct xfs_buf *bp)
1168{
1169 int64_t fl = XFS_BUF_BFLAGS(bp);
1170 /*
1171 * No need to wait until the buffer is unpinned.
1172 * We aren't flushing it.
1173 *
1174 * chunkhold expects B_DONE to be set, whether
1175 * we actually finish the I/O or not. We don't want to
1176 * change that interface.
1177 */
1178 XFS_BUF_UNREAD(bp);
1179 XFS_BUF_UNDELAYWRITE(bp);
1180 XFS_BUF_DONE(bp);
1181 XFS_BUF_STALE(bp);
1182 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1183 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1184 /*
1185 * Mark b_error and B_ERROR _both_.
1186 * Lot's of chunkcache code assumes that.
1187 * There's no reason to mark error for
1188 * ASYNC buffers.
1189 */
1190 XFS_BUF_ERROR(bp, EIO);
1191 XFS_BUF_FINISH_IOWAIT(bp);
1192 } else {
1193 xfs_buf_relse(bp);
1194 }
1195
1196 return EIO;
1197}
1198
1199
1200/*
1201 * All xfs metadata buffers except log state machine buffers
1202 * get this attached as their b_bdstrat callback function.
1203 * This is so that we can catch a buffer
1204 * after prematurely unpinning it to forcibly shutdown the filesystem.
1205 */
1206int
1207xfs_bdstrat_cb(
1208 struct xfs_buf *bp)
1209{
ebad861b 1210 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1211 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1212 /*
1213 * Metadata write that didn't get logged but
1214 * written delayed anyway. These aren't associated
1215 * with a transaction, and can be ignored.
1216 */
1217 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1218 return xfs_bioerror_relse(bp);
1219 else
1220 return xfs_bioerror(bp);
1221 }
1222
1223 xfs_buf_iorequest(bp);
1224 return 0;
1225}
1226
1227/*
1228 * Wrapper around bdstrat so that we can stop data from going to disk in case
1229 * we are shutting down the filesystem. Typically user data goes thru this
1230 * path; one of the exceptions is the superblock.
1231 */
1232void
1233xfsbdstrat(
1234 struct xfs_mount *mp,
1235 struct xfs_buf *bp)
1236{
1237 if (XFS_FORCED_SHUTDOWN(mp)) {
1238 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1239 xfs_bioerror_relse(bp);
1240 return;
1241 }
1242
1243 xfs_buf_iorequest(bp);
1244}
1245
b8f82a4a 1246STATIC void
ce8e922c
NS
1247_xfs_buf_ioend(
1248 xfs_buf_t *bp,
1da177e4
LT
1249 int schedule)
1250{
6ab455ee
CH
1251 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1252 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1253 xfs_buf_ioend(bp, schedule);
6ab455ee 1254 }
1da177e4
LT
1255}
1256
782e3b3b 1257STATIC void
ce8e922c 1258xfs_buf_bio_end_io(
1da177e4 1259 struct bio *bio,
1da177e4
LT
1260 int error)
1261{
ce8e922c
NS
1262 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1263 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1264 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1265
cfbe5267 1266 xfs_buf_ioerror(bp, -error);
1da177e4 1267
73c77e2c
JB
1268 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1269 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1270
eedb5530 1271 do {
1da177e4
LT
1272 struct page *page = bvec->bv_page;
1273
948ecdb4 1274 ASSERT(!PagePrivate(page));
ce8e922c
NS
1275 if (unlikely(bp->b_error)) {
1276 if (bp->b_flags & XBF_READ)
eedb5530 1277 ClearPageUptodate(page);
ce8e922c 1278 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1279 SetPageUptodate(page);
1280 } else if (!PagePrivate(page) &&
ce8e922c 1281 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1282 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1283 }
1284
eedb5530
NS
1285 if (--bvec >= bio->bi_io_vec)
1286 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1287
1288 if (bp->b_flags & _XBF_PAGE_LOCKED)
1289 unlock_page(page);
eedb5530 1290 } while (bvec >= bio->bi_io_vec);
1da177e4 1291
ce8e922c 1292 _xfs_buf_ioend(bp, 1);
1da177e4 1293 bio_put(bio);
1da177e4
LT
1294}
1295
1296STATIC void
ce8e922c
NS
1297_xfs_buf_ioapply(
1298 xfs_buf_t *bp)
1da177e4 1299{
a9759f2d 1300 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1301 struct bio *bio;
ce8e922c
NS
1302 int offset = bp->b_offset;
1303 int size = bp->b_count_desired;
1304 sector_t sector = bp->b_bn;
1305 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1306
ce8e922c 1307 total_nr_pages = bp->b_page_count;
1da177e4
LT
1308 map_i = 0;
1309
ce8e922c
NS
1310 if (bp->b_flags & XBF_ORDERED) {
1311 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1312 rw = WRITE_FLUSH_FUA;
2ee1abad 1313 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1314 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1315 bp->b_flags &= ~_XBF_RUN_QUEUES;
1316 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1317 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1318 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1319 bp->b_flags &= ~_XBF_RUN_QUEUES;
1320 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1321 } else {
1322 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1323 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1324 }
1325
ce8e922c 1326 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1327 * we populate up the whole page, and hence the other metadata
1328 * in the same page. This optimization is only valid when the
ce8e922c 1329 * filesystem block size is not smaller than the page size.
1da177e4 1330 */
ce8e922c 1331 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1332 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1333 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1334 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1335 bio = bio_alloc(GFP_NOIO, 1);
1336
ce8e922c 1337 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1338 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1339 bio->bi_end_io = xfs_buf_bio_end_io;
1340 bio->bi_private = bp;
1da177e4 1341
ce8e922c 1342 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1343 size = 0;
1344
ce8e922c 1345 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1346
1347 goto submit_io;
1348 }
1349
1da177e4 1350next_chunk:
ce8e922c 1351 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1352 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1353 if (nr_pages > total_nr_pages)
1354 nr_pages = total_nr_pages;
1355
1356 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1357 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1358 bio->bi_sector = sector;
ce8e922c
NS
1359 bio->bi_end_io = xfs_buf_bio_end_io;
1360 bio->bi_private = bp;
1da177e4
LT
1361
1362 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1363 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1364
1365 if (nbytes > size)
1366 nbytes = size;
1367
ce8e922c
NS
1368 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1369 if (rbytes < nbytes)
1da177e4
LT
1370 break;
1371
1372 offset = 0;
1373 sector += nbytes >> BBSHIFT;
1374 size -= nbytes;
1375 total_nr_pages--;
1376 }
1377
1378submit_io:
1379 if (likely(bio->bi_size)) {
73c77e2c
JB
1380 if (xfs_buf_is_vmapped(bp)) {
1381 flush_kernel_vmap_range(bp->b_addr,
1382 xfs_buf_vmap_len(bp));
1383 }
1da177e4
LT
1384 submit_bio(rw, bio);
1385 if (size)
1386 goto next_chunk;
1387 } else {
ec53d1db
DC
1388 /*
1389 * if we get here, no pages were added to the bio. However,
1390 * we can't just error out here - if the pages are locked then
1391 * we have to unlock them otherwise we can hang on a later
1392 * access to the page.
1393 */
ce8e922c 1394 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1395 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1396 int i;
1397 for (i = 0; i < bp->b_page_count; i++)
1398 unlock_page(bp->b_pages[i]);
1399 }
1400 bio_put(bio);
1da177e4
LT
1401 }
1402}
1403
1da177e4 1404int
ce8e922c
NS
1405xfs_buf_iorequest(
1406 xfs_buf_t *bp)
1da177e4 1407{
0b1b213f 1408 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1409
ce8e922c
NS
1410 if (bp->b_flags & XBF_DELWRI) {
1411 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1412 return 0;
1413 }
1414
ce8e922c
NS
1415 if (bp->b_flags & XBF_WRITE) {
1416 xfs_buf_wait_unpin(bp);
1da177e4
LT
1417 }
1418
ce8e922c 1419 xfs_buf_hold(bp);
1da177e4
LT
1420
1421 /* Set the count to 1 initially, this will stop an I/O
1422 * completion callout which happens before we have started
ce8e922c 1423 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1424 */
ce8e922c
NS
1425 atomic_set(&bp->b_io_remaining, 1);
1426 _xfs_buf_ioapply(bp);
1427 _xfs_buf_ioend(bp, 0);
1da177e4 1428
ce8e922c 1429 xfs_buf_rele(bp);
1da177e4
LT
1430 return 0;
1431}
1432
1433/*
ce8e922c
NS
1434 * Waits for I/O to complete on the buffer supplied.
1435 * It returns immediately if no I/O is pending.
1436 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1437 */
1438int
ce8e922c
NS
1439xfs_buf_iowait(
1440 xfs_buf_t *bp)
1da177e4 1441{
0b1b213f
CH
1442 trace_xfs_buf_iowait(bp, _RET_IP_);
1443
ce8e922c
NS
1444 if (atomic_read(&bp->b_io_remaining))
1445 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1446 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1447
1448 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1449 return bp->b_error;
1da177e4
LT
1450}
1451
ce8e922c
NS
1452xfs_caddr_t
1453xfs_buf_offset(
1454 xfs_buf_t *bp,
1da177e4
LT
1455 size_t offset)
1456{
1457 struct page *page;
1458
ce8e922c
NS
1459 if (bp->b_flags & XBF_MAPPED)
1460 return XFS_BUF_PTR(bp) + offset;
1da177e4 1461
ce8e922c
NS
1462 offset += bp->b_offset;
1463 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1464 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1465}
1466
1467/*
1da177e4
LT
1468 * Move data into or out of a buffer.
1469 */
1470void
ce8e922c
NS
1471xfs_buf_iomove(
1472 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1473 size_t boff, /* starting buffer offset */
1474 size_t bsize, /* length to copy */
b9c48649 1475 void *data, /* data address */
ce8e922c 1476 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1477{
1478 size_t bend, cpoff, csize;
1479 struct page *page;
1480
1481 bend = boff + bsize;
1482 while (boff < bend) {
ce8e922c
NS
1483 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1484 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1485 csize = min_t(size_t,
ce8e922c 1486 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1487
1488 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1489
1490 switch (mode) {
ce8e922c 1491 case XBRW_ZERO:
1da177e4
LT
1492 memset(page_address(page) + cpoff, 0, csize);
1493 break;
ce8e922c 1494 case XBRW_READ:
1da177e4
LT
1495 memcpy(data, page_address(page) + cpoff, csize);
1496 break;
ce8e922c 1497 case XBRW_WRITE:
1da177e4
LT
1498 memcpy(page_address(page) + cpoff, data, csize);
1499 }
1500
1501 boff += csize;
1502 data += csize;
1503 }
1504}
1505
1506/*
ce8e922c 1507 * Handling of buffer targets (buftargs).
1da177e4
LT
1508 */
1509
1510/*
430cbeb8
DC
1511 * Wait for any bufs with callbacks that have been submitted but have not yet
1512 * returned. These buffers will have an elevated hold count, so wait on those
1513 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1514 */
1515void
1516xfs_wait_buftarg(
74f75a0c 1517 struct xfs_buftarg *btp)
1da177e4 1518{
430cbeb8
DC
1519 struct xfs_buf *bp;
1520
1521restart:
1522 spin_lock(&btp->bt_lru_lock);
1523 while (!list_empty(&btp->bt_lru)) {
1524 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1525 if (atomic_read(&bp->b_hold) > 1) {
1526 spin_unlock(&btp->bt_lru_lock);
26af6552 1527 delay(100);
430cbeb8 1528 goto restart;
1da177e4 1529 }
430cbeb8
DC
1530 /*
1531 * clear the LRU reference count so the bufer doesn't get
1532 * ignored in xfs_buf_rele().
1533 */
1534 atomic_set(&bp->b_lru_ref, 0);
1535 spin_unlock(&btp->bt_lru_lock);
1536 xfs_buf_rele(bp);
1537 spin_lock(&btp->bt_lru_lock);
1da177e4 1538 }
430cbeb8 1539 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1540}
1541
ff57ab21
DC
1542int
1543xfs_buftarg_shrink(
1544 struct shrinker *shrink,
1545 int nr_to_scan,
1546 gfp_t mask)
a6867a68 1547{
ff57ab21
DC
1548 struct xfs_buftarg *btp = container_of(shrink,
1549 struct xfs_buftarg, bt_shrinker);
430cbeb8
DC
1550 struct xfs_buf *bp;
1551 LIST_HEAD(dispose);
1552
1553 if (!nr_to_scan)
1554 return btp->bt_lru_nr;
1555
1556 spin_lock(&btp->bt_lru_lock);
1557 while (!list_empty(&btp->bt_lru)) {
1558 if (nr_to_scan-- <= 0)
1559 break;
1560
1561 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1562
1563 /*
1564 * Decrement the b_lru_ref count unless the value is already
1565 * zero. If the value is already zero, we need to reclaim the
1566 * buffer, otherwise it gets another trip through the LRU.
1567 */
1568 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1569 list_move_tail(&bp->b_lru, &btp->bt_lru);
1570 continue;
1571 }
1572
1573 /*
1574 * remove the buffer from the LRU now to avoid needing another
1575 * lock round trip inside xfs_buf_rele().
1576 */
1577 list_move(&bp->b_lru, &dispose);
1578 btp->bt_lru_nr--;
ff57ab21 1579 }
430cbeb8
DC
1580 spin_unlock(&btp->bt_lru_lock);
1581
1582 while (!list_empty(&dispose)) {
1583 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1584 list_del_init(&bp->b_lru);
1585 xfs_buf_rele(bp);
1586 }
1587
1588 return btp->bt_lru_nr;
a6867a68
DC
1589}
1590
1da177e4
LT
1591void
1592xfs_free_buftarg(
b7963133
CH
1593 struct xfs_mount *mp,
1594 struct xfs_buftarg *btp)
1da177e4 1595{
ff57ab21
DC
1596 unregister_shrinker(&btp->bt_shrinker);
1597
1da177e4 1598 xfs_flush_buftarg(btp, 1);
b7963133
CH
1599 if (mp->m_flags & XFS_MOUNT_BARRIER)
1600 xfs_blkdev_issue_flush(btp);
ce8e922c 1601 iput(btp->bt_mapping->host);
a6867a68 1602
a6867a68 1603 kthread_stop(btp->bt_task);
f0e2d93c 1604 kmem_free(btp);
1da177e4
LT
1605}
1606
1da177e4
LT
1607STATIC int
1608xfs_setsize_buftarg_flags(
1609 xfs_buftarg_t *btp,
1610 unsigned int blocksize,
1611 unsigned int sectorsize,
1612 int verbose)
1613{
ce8e922c
NS
1614 btp->bt_bsize = blocksize;
1615 btp->bt_sshift = ffs(sectorsize) - 1;
1616 btp->bt_smask = sectorsize - 1;
1da177e4 1617
ce8e922c 1618 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a
DC
1619 xfs_warn(btp->bt_mount,
1620 "Cannot set_blocksize to %u on device %s\n",
1da177e4
LT
1621 sectorsize, XFS_BUFTARG_NAME(btp));
1622 return EINVAL;
1623 }
1624
1625 if (verbose &&
1626 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1627 printk(KERN_WARNING
1628 "XFS: %u byte sectors in use on device %s. "
1629 "This is suboptimal; %u or greater is ideal.\n",
1630 sectorsize, XFS_BUFTARG_NAME(btp),
1631 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1632 }
1633
1634 return 0;
1635}
1636
1637/*
ce8e922c
NS
1638 * When allocating the initial buffer target we have not yet
1639 * read in the superblock, so don't know what sized sectors
1640 * are being used is at this early stage. Play safe.
1641 */
1da177e4
LT
1642STATIC int
1643xfs_setsize_buftarg_early(
1644 xfs_buftarg_t *btp,
1645 struct block_device *bdev)
1646{
1647 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1648 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1649}
1650
1651int
1652xfs_setsize_buftarg(
1653 xfs_buftarg_t *btp,
1654 unsigned int blocksize,
1655 unsigned int sectorsize)
1656{
1657 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1658}
1659
1660STATIC int
1661xfs_mapping_buftarg(
1662 xfs_buftarg_t *btp,
1663 struct block_device *bdev)
1664{
1665 struct backing_dev_info *bdi;
1666 struct inode *inode;
1667 struct address_space *mapping;
f5e54d6e 1668 static const struct address_space_operations mapping_aops = {
1da177e4 1669 .sync_page = block_sync_page,
e965f963 1670 .migratepage = fail_migrate_page,
1da177e4
LT
1671 };
1672
1673 inode = new_inode(bdev->bd_inode->i_sb);
1674 if (!inode) {
1675 printk(KERN_WARNING
1676 "XFS: Cannot allocate mapping inode for device %s\n",
1677 XFS_BUFTARG_NAME(btp));
1678 return ENOMEM;
1679 }
85fe4025 1680 inode->i_ino = get_next_ino();
1da177e4
LT
1681 inode->i_mode = S_IFBLK;
1682 inode->i_bdev = bdev;
1683 inode->i_rdev = bdev->bd_dev;
1684 bdi = blk_get_backing_dev_info(bdev);
1685 if (!bdi)
1686 bdi = &default_backing_dev_info;
1687 mapping = &inode->i_data;
1688 mapping->a_ops = &mapping_aops;
1689 mapping->backing_dev_info = bdi;
1690 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1691 btp->bt_mapping = mapping;
1da177e4
LT
1692 return 0;
1693}
1694
a6867a68
DC
1695STATIC int
1696xfs_alloc_delwrite_queue(
e2a07812
JE
1697 xfs_buftarg_t *btp,
1698 const char *fsname)
a6867a68 1699{
a6867a68 1700 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1701 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1702 btp->bt_flags = 0;
e2a07812 1703 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
ff57ab21
DC
1704 if (IS_ERR(btp->bt_task))
1705 return PTR_ERR(btp->bt_task);
1706 return 0;
a6867a68
DC
1707}
1708
1da177e4
LT
1709xfs_buftarg_t *
1710xfs_alloc_buftarg(
ebad861b 1711 struct xfs_mount *mp,
1da177e4 1712 struct block_device *bdev,
e2a07812
JE
1713 int external,
1714 const char *fsname)
1da177e4
LT
1715{
1716 xfs_buftarg_t *btp;
1717
1718 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1719
ebad861b 1720 btp->bt_mount = mp;
ce8e922c
NS
1721 btp->bt_dev = bdev->bd_dev;
1722 btp->bt_bdev = bdev;
430cbeb8
DC
1723 INIT_LIST_HEAD(&btp->bt_lru);
1724 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1725 if (xfs_setsize_buftarg_early(btp, bdev))
1726 goto error;
1727 if (xfs_mapping_buftarg(btp, bdev))
1728 goto error;
e2a07812 1729 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1730 goto error;
ff57ab21
DC
1731 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1732 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1733 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1734 return btp;
1735
1736error:
f0e2d93c 1737 kmem_free(btp);
1da177e4
LT
1738 return NULL;
1739}
1740
1741
1742/*
ce8e922c 1743 * Delayed write buffer handling
1da177e4 1744 */
1da177e4 1745STATIC void
ce8e922c
NS
1746xfs_buf_delwri_queue(
1747 xfs_buf_t *bp,
1da177e4
LT
1748 int unlock)
1749{
ce8e922c
NS
1750 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1751 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1752
0b1b213f
CH
1753 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1754
ce8e922c 1755 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1756
a6867a68 1757 spin_lock(dwlk);
1da177e4 1758 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1759 if (!list_empty(&bp->b_list)) {
1760 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1761 if (unlock)
1762 atomic_dec(&bp->b_hold);
1763 list_del(&bp->b_list);
1da177e4
LT
1764 }
1765
c9c12971
DC
1766 if (list_empty(dwq)) {
1767 /* start xfsbufd as it is about to have something to do */
1768 wake_up_process(bp->b_target->bt_task);
1769 }
1770
ce8e922c
NS
1771 bp->b_flags |= _XBF_DELWRI_Q;
1772 list_add_tail(&bp->b_list, dwq);
1773 bp->b_queuetime = jiffies;
a6867a68 1774 spin_unlock(dwlk);
1da177e4
LT
1775
1776 if (unlock)
ce8e922c 1777 xfs_buf_unlock(bp);
1da177e4
LT
1778}
1779
1780void
ce8e922c
NS
1781xfs_buf_delwri_dequeue(
1782 xfs_buf_t *bp)
1da177e4 1783{
ce8e922c 1784 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1785 int dequeued = 0;
1786
a6867a68 1787 spin_lock(dwlk);
ce8e922c
NS
1788 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1789 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1790 list_del_init(&bp->b_list);
1da177e4
LT
1791 dequeued = 1;
1792 }
ce8e922c 1793 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1794 spin_unlock(dwlk);
1da177e4
LT
1795
1796 if (dequeued)
ce8e922c 1797 xfs_buf_rele(bp);
1da177e4 1798
0b1b213f 1799 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1800}
1801
d808f617
DC
1802/*
1803 * If a delwri buffer needs to be pushed before it has aged out, then promote
1804 * it to the head of the delwri queue so that it will be flushed on the next
1805 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1806 * than the age currently needed to flush the buffer. Hence the next time the
1807 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1808 */
1809void
1810xfs_buf_delwri_promote(
1811 struct xfs_buf *bp)
1812{
1813 struct xfs_buftarg *btp = bp->b_target;
1814 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1815
1816 ASSERT(bp->b_flags & XBF_DELWRI);
1817 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1818
1819 /*
1820 * Check the buffer age before locking the delayed write queue as we
1821 * don't need to promote buffers that are already past the flush age.
1822 */
1823 if (bp->b_queuetime < jiffies - age)
1824 return;
1825 bp->b_queuetime = jiffies - age;
1826 spin_lock(&btp->bt_delwrite_lock);
1827 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1828 spin_unlock(&btp->bt_delwrite_lock);
1829}
1830
1da177e4 1831STATIC void
ce8e922c 1832xfs_buf_runall_queues(
1da177e4
LT
1833 struct workqueue_struct *queue)
1834{
1835 flush_workqueue(queue);
1836}
1837
585e6d88
DC
1838/*
1839 * Move as many buffers as specified to the supplied list
1840 * idicating if we skipped any buffers to prevent deadlocks.
1841 */
1842STATIC int
1843xfs_buf_delwri_split(
1844 xfs_buftarg_t *target,
1845 struct list_head *list,
5e6a07df 1846 unsigned long age)
585e6d88
DC
1847{
1848 xfs_buf_t *bp, *n;
1849 struct list_head *dwq = &target->bt_delwrite_queue;
1850 spinlock_t *dwlk = &target->bt_delwrite_lock;
1851 int skipped = 0;
5e6a07df 1852 int force;
585e6d88 1853
5e6a07df 1854 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1855 INIT_LIST_HEAD(list);
1856 spin_lock(dwlk);
1857 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1858 ASSERT(bp->b_flags & XBF_DELWRI);
1859
4d16e924 1860 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1861 if (!force &&
585e6d88
DC
1862 time_before(jiffies, bp->b_queuetime + age)) {
1863 xfs_buf_unlock(bp);
1864 break;
1865 }
1866
1867 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1868 _XBF_RUN_QUEUES);
1869 bp->b_flags |= XBF_WRITE;
1870 list_move_tail(&bp->b_list, list);
bfe27419 1871 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1872 } else
1873 skipped++;
1874 }
1875 spin_unlock(dwlk);
1876
1877 return skipped;
1878
1879}
1880
089716aa
DC
1881/*
1882 * Compare function is more complex than it needs to be because
1883 * the return value is only 32 bits and we are doing comparisons
1884 * on 64 bit values
1885 */
1886static int
1887xfs_buf_cmp(
1888 void *priv,
1889 struct list_head *a,
1890 struct list_head *b)
1891{
1892 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1893 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1894 xfs_daddr_t diff;
1895
1896 diff = ap->b_bn - bp->b_bn;
1897 if (diff < 0)
1898 return -1;
1899 if (diff > 0)
1900 return 1;
1901 return 0;
1902}
1903
1904void
1905xfs_buf_delwri_sort(
1906 xfs_buftarg_t *target,
1907 struct list_head *list)
1908{
1909 list_sort(NULL, list, xfs_buf_cmp);
1910}
1911
1da177e4 1912STATIC int
23ea4032 1913xfsbufd(
585e6d88 1914 void *data)
1da177e4 1915{
089716aa 1916 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1917
1da177e4
LT
1918 current->flags |= PF_MEMALLOC;
1919
978c7b2f
RW
1920 set_freezable();
1921
1da177e4 1922 do {
c9c12971
DC
1923 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1924 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1925 int count = 0;
1926 struct list_head tmp;
c9c12971 1927
3e1d1d28 1928 if (unlikely(freezing(current))) {
ce8e922c 1929 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1930 refrigerator();
abd0cf7a 1931 } else {
ce8e922c 1932 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1933 }
1da177e4 1934
c9c12971
DC
1935 /* sleep for a long time if there is nothing to do. */
1936 if (list_empty(&target->bt_delwrite_queue))
1937 tout = MAX_SCHEDULE_TIMEOUT;
1938 schedule_timeout_interruptible(tout);
1da177e4 1939
c9c12971 1940 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1941 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1942 while (!list_empty(&tmp)) {
089716aa
DC
1943 struct xfs_buf *bp;
1944 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1945 list_del_init(&bp->b_list);
939d723b 1946 xfs_bdstrat_cb(bp);
585e6d88 1947 count++;
1da177e4 1948 }
f07c2250
NS
1949 if (count)
1950 blk_run_address_space(target->bt_mapping);
1da177e4 1951
4df08c52 1952 } while (!kthread_should_stop());
1da177e4 1953
4df08c52 1954 return 0;
1da177e4
LT
1955}
1956
1957/*
ce8e922c
NS
1958 * Go through all incore buffers, and release buffers if they belong to
1959 * the given device. This is used in filesystem error handling to
1960 * preserve the consistency of its metadata.
1da177e4
LT
1961 */
1962int
1963xfs_flush_buftarg(
585e6d88
DC
1964 xfs_buftarg_t *target,
1965 int wait)
1da177e4 1966{
089716aa 1967 xfs_buf_t *bp;
585e6d88 1968 int pincount = 0;
089716aa
DC
1969 LIST_HEAD(tmp_list);
1970 LIST_HEAD(wait_list);
1da177e4 1971
c626d174 1972 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1973 xfs_buf_runall_queues(xfsdatad_workqueue);
1974 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1975
5e6a07df 1976 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1977 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1978
1979 /*
089716aa
DC
1980 * Dropped the delayed write list lock, now walk the temporary list.
1981 * All I/O is issued async and then if we need to wait for completion
1982 * we do that after issuing all the IO.
1da177e4 1983 */
089716aa
DC
1984 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1985 while (!list_empty(&tmp_list)) {
1986 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1987 ASSERT(target == bp->b_target);
089716aa
DC
1988 list_del_init(&bp->b_list);
1989 if (wait) {
ce8e922c 1990 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1991 list_add(&bp->b_list, &wait_list);
1992 }
939d723b 1993 xfs_bdstrat_cb(bp);
1da177e4
LT
1994 }
1995
089716aa
DC
1996 if (wait) {
1997 /* Expedite and wait for IO to complete. */
f07c2250 1998 blk_run_address_space(target->bt_mapping);
089716aa
DC
1999 while (!list_empty(&wait_list)) {
2000 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 2001
089716aa 2002 list_del_init(&bp->b_list);
1a1a3e97 2003 xfs_buf_iowait(bp);
089716aa
DC
2004 xfs_buf_relse(bp);
2005 }
1da177e4
LT
2006 }
2007
1da177e4
LT
2008 return pincount;
2009}
2010
04d8b284 2011int __init
ce8e922c 2012xfs_buf_init(void)
1da177e4 2013{
8758280f
NS
2014 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2015 KM_ZONE_HWALIGN, NULL);
ce8e922c 2016 if (!xfs_buf_zone)
0b1b213f 2017 goto out;
04d8b284 2018
51749e47 2019 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 2020 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 2021 if (!xfslogd_workqueue)
04d8b284 2022 goto out_free_buf_zone;
1da177e4 2023
83e75904 2024 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
23ea4032
CH
2025 if (!xfsdatad_workqueue)
2026 goto out_destroy_xfslogd_workqueue;
1da177e4 2027
83e75904
TH
2028 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
2029 WQ_MEM_RECLAIM, 1);
c626d174
DC
2030 if (!xfsconvertd_workqueue)
2031 goto out_destroy_xfsdatad_workqueue;
2032
23ea4032 2033 return 0;
1da177e4 2034
c626d174
DC
2035 out_destroy_xfsdatad_workqueue:
2036 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
2037 out_destroy_xfslogd_workqueue:
2038 destroy_workqueue(xfslogd_workqueue);
23ea4032 2039 out_free_buf_zone:
ce8e922c 2040 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 2041 out:
8758280f 2042 return -ENOMEM;
1da177e4
LT
2043}
2044
1da177e4 2045void
ce8e922c 2046xfs_buf_terminate(void)
1da177e4 2047{
c626d174 2048 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
2049 destroy_workqueue(xfsdatad_workqueue);
2050 destroy_workqueue(xfslogd_workqueue);
ce8e922c 2051 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2052}
e6a0e9cd
TS
2053
2054#ifdef CONFIG_KDB_MODULES
2055struct list_head *
2056xfs_get_buftarg_list(void)
2057{
2058 return &xfs_buftarg_list;
2059}
2060#endif
This page took 0.933391 seconds and 5 git commands to generate.