xfs: convert xfsbud shrinker to a per-buftarg shrinker.
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
ce8e922c 47STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
23ea4032 48
7989cb8e 49static struct workqueue_struct *xfslogd_workqueue;
0829c360 50struct workqueue_struct *xfsdatad_workqueue;
c626d174 51struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 52
ce8e922c
NS
53#ifdef XFS_BUF_LOCK_TRACKING
54# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 57#else
ce8e922c
NS
58# define XB_SET_OWNER(bp) do { } while (0)
59# define XB_CLEAR_OWNER(bp) do { } while (0)
60# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
61#endif
62
ce8e922c
NS
63#define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 66
ce8e922c
NS
67#define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 69
ce8e922c
NS
70#define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72#define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 74
73c77e2c
JB
75static inline int
76xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
78{
79 /*
80 * Return true if the buffer is vmapped.
81 *
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 */
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87}
88
89static inline int
90xfs_buf_vmap_len(
91 struct xfs_buf *bp)
92{
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94}
95
1da177e4 96/*
ce8e922c 97 * Page Region interfaces.
1da177e4 98 *
ce8e922c
NS
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
1da177e4 102 *
ce8e922c 103 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 104 *
ce8e922c
NS
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
108 */
109#if (BITS_PER_LONG == 32)
110#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111#elif (BITS_PER_LONG == 64)
112#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113#else
114#error BITS_PER_LONG must be 32 or 64
115#endif
116#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120STATIC unsigned long
121page_region_mask(
122 size_t offset,
123 size_t length)
124{
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140}
141
b8f82a4a 142STATIC void
1da177e4
LT
143set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147{
4c21e2f2
HD
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
1da177e4
LT
151 SetPageUptodate(page);
152}
153
b8f82a4a 154STATIC int
1da177e4
LT
155test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159{
160 unsigned long mask = page_region_mask(offset, length);
161
4c21e2f2 162 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
163}
164
1da177e4 165/*
ce8e922c 166 * Internal xfs_buf_t object manipulation
1da177e4
LT
167 */
168
169STATIC void
ce8e922c
NS
170_xfs_buf_initialize(
171 xfs_buf_t *bp,
1da177e4 172 xfs_buftarg_t *target,
204ab25f 173 xfs_off_t range_base,
1da177e4 174 size_t range_length,
ce8e922c 175 xfs_buf_flags_t flags)
1da177e4
LT
176{
177 /*
ce8e922c 178 * We don't want certain flags to appear in b_flags.
1da177e4 179 */
ce8e922c
NS
180 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
181
182 memset(bp, 0, sizeof(xfs_buf_t));
183 atomic_set(&bp->b_hold, 1);
b4dd330b 184 init_completion(&bp->b_iowait);
ce8e922c 185 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 186 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 187 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
188 XB_SET_OWNER(bp);
189 bp->b_target = target;
190 bp->b_file_offset = range_base;
1da177e4
LT
191 /*
192 * Set buffer_length and count_desired to the same value initially.
193 * I/O routines should use count_desired, which will be the same in
194 * most cases but may be reset (e.g. XFS recovery).
195 */
ce8e922c
NS
196 bp->b_buffer_length = bp->b_count_desired = range_length;
197 bp->b_flags = flags;
198 bp->b_bn = XFS_BUF_DADDR_NULL;
199 atomic_set(&bp->b_pin_count, 0);
200 init_waitqueue_head(&bp->b_waiters);
201
202 XFS_STATS_INC(xb_create);
0b1b213f
CH
203
204 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
205}
206
207/*
ce8e922c
NS
208 * Allocate a page array capable of holding a specified number
209 * of pages, and point the page buf at it.
1da177e4
LT
210 */
211STATIC int
ce8e922c
NS
212_xfs_buf_get_pages(
213 xfs_buf_t *bp,
1da177e4 214 int page_count,
ce8e922c 215 xfs_buf_flags_t flags)
1da177e4
LT
216{
217 /* Make sure that we have a page list */
ce8e922c
NS
218 if (bp->b_pages == NULL) {
219 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
220 bp->b_page_count = page_count;
221 if (page_count <= XB_PAGES) {
222 bp->b_pages = bp->b_page_array;
1da177e4 223 } else {
ce8e922c
NS
224 bp->b_pages = kmem_alloc(sizeof(struct page *) *
225 page_count, xb_to_km(flags));
226 if (bp->b_pages == NULL)
1da177e4
LT
227 return -ENOMEM;
228 }
ce8e922c 229 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
230 }
231 return 0;
232}
233
234/*
ce8e922c 235 * Frees b_pages if it was allocated.
1da177e4
LT
236 */
237STATIC void
ce8e922c 238_xfs_buf_free_pages(
1da177e4
LT
239 xfs_buf_t *bp)
240{
ce8e922c 241 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 242 kmem_free(bp->b_pages);
3fc98b1a 243 bp->b_pages = NULL;
1da177e4
LT
244 }
245}
246
247/*
248 * Releases the specified buffer.
249 *
250 * The modification state of any associated pages is left unchanged.
ce8e922c 251 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
252 * hashed and refcounted buffers
253 */
254void
ce8e922c 255xfs_buf_free(
1da177e4
LT
256 xfs_buf_t *bp)
257{
0b1b213f 258 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 259
1fa40b01 260 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
261 uint i;
262
73c77e2c 263 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
264 vm_unmap_ram(bp->b_addr - bp->b_offset,
265 bp->b_page_count);
1da177e4 266
948ecdb4
NS
267 for (i = 0; i < bp->b_page_count; i++) {
268 struct page *page = bp->b_pages[i];
269
1fa40b01
CH
270 if (bp->b_flags & _XBF_PAGE_CACHE)
271 ASSERT(!PagePrivate(page));
948ecdb4
NS
272 page_cache_release(page);
273 }
1da177e4 274 }
3fc98b1a 275 _xfs_buf_free_pages(bp);
ce8e922c 276 xfs_buf_deallocate(bp);
1da177e4
LT
277}
278
279/*
280 * Finds all pages for buffer in question and builds it's page list.
281 */
282STATIC int
ce8e922c 283_xfs_buf_lookup_pages(
1da177e4
LT
284 xfs_buf_t *bp,
285 uint flags)
286{
ce8e922c
NS
287 struct address_space *mapping = bp->b_target->bt_mapping;
288 size_t blocksize = bp->b_target->bt_bsize;
289 size_t size = bp->b_count_desired;
1da177e4 290 size_t nbytes, offset;
ce8e922c 291 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
292 unsigned short page_count, i;
293 pgoff_t first;
204ab25f 294 xfs_off_t end;
1da177e4
LT
295 int error;
296
ce8e922c
NS
297 end = bp->b_file_offset + bp->b_buffer_length;
298 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 299
ce8e922c 300 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
301 if (unlikely(error))
302 return error;
ce8e922c 303 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 304
ce8e922c
NS
305 offset = bp->b_offset;
306 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 307
ce8e922c 308 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
309 struct page *page;
310 uint retries = 0;
311
312 retry:
313 page = find_or_create_page(mapping, first + i, gfp_mask);
314 if (unlikely(page == NULL)) {
ce8e922c
NS
315 if (flags & XBF_READ_AHEAD) {
316 bp->b_page_count = i;
6ab455ee
CH
317 for (i = 0; i < bp->b_page_count; i++)
318 unlock_page(bp->b_pages[i]);
1da177e4
LT
319 return -ENOMEM;
320 }
321
322 /*
323 * This could deadlock.
324 *
325 * But until all the XFS lowlevel code is revamped to
326 * handle buffer allocation failures we can't do much.
327 */
328 if (!(++retries % 100))
329 printk(KERN_ERR
330 "XFS: possible memory allocation "
331 "deadlock in %s (mode:0x%x)\n",
34a622b2 332 __func__, gfp_mask);
1da177e4 333
ce8e922c 334 XFS_STATS_INC(xb_page_retries);
8aa7e847 335 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
336 goto retry;
337 }
338
ce8e922c 339 XFS_STATS_INC(xb_page_found);
1da177e4
LT
340
341 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
342 size -= nbytes;
343
948ecdb4 344 ASSERT(!PagePrivate(page));
1da177e4
LT
345 if (!PageUptodate(page)) {
346 page_count--;
6ab455ee
CH
347 if (blocksize >= PAGE_CACHE_SIZE) {
348 if (flags & XBF_READ)
349 bp->b_flags |= _XBF_PAGE_LOCKED;
350 } else if (!PagePrivate(page)) {
1da177e4
LT
351 if (test_page_region(page, offset, nbytes))
352 page_count++;
353 }
354 }
355
ce8e922c 356 bp->b_pages[i] = page;
1da177e4
LT
357 offset = 0;
358 }
359
6ab455ee
CH
360 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
361 for (i = 0; i < bp->b_page_count; i++)
362 unlock_page(bp->b_pages[i]);
363 }
364
ce8e922c
NS
365 if (page_count == bp->b_page_count)
366 bp->b_flags |= XBF_DONE;
1da177e4 367
1da177e4
LT
368 return error;
369}
370
371/*
372 * Map buffer into kernel address-space if nessecary.
373 */
374STATIC int
ce8e922c 375_xfs_buf_map_pages(
1da177e4
LT
376 xfs_buf_t *bp,
377 uint flags)
378{
379 /* A single page buffer is always mappable */
ce8e922c
NS
380 if (bp->b_page_count == 1) {
381 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
382 bp->b_flags |= XBF_MAPPED;
383 } else if (flags & XBF_MAPPED) {
8a262e57
AE
384 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
385 -1, PAGE_KERNEL);
ce8e922c 386 if (unlikely(bp->b_addr == NULL))
1da177e4 387 return -ENOMEM;
ce8e922c
NS
388 bp->b_addr += bp->b_offset;
389 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
390 }
391
392 return 0;
393}
394
395/*
396 * Finding and Reading Buffers
397 */
398
399/*
ce8e922c 400 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
401 * a given range of an inode. The buffer is returned
402 * locked. If other overlapping buffers exist, they are
403 * released before the new buffer is created and locked,
404 * which may imply that this call will block until those buffers
405 * are unlocked. No I/O is implied by this call.
406 */
407xfs_buf_t *
ce8e922c 408_xfs_buf_find(
1da177e4 409 xfs_buftarg_t *btp, /* block device target */
204ab25f 410 xfs_off_t ioff, /* starting offset of range */
1da177e4 411 size_t isize, /* length of range */
ce8e922c
NS
412 xfs_buf_flags_t flags,
413 xfs_buf_t *new_bp)
1da177e4 414{
204ab25f 415 xfs_off_t range_base;
1da177e4 416 size_t range_length;
74f75a0c
DC
417 struct xfs_perag *pag;
418 struct rb_node **rbp;
419 struct rb_node *parent;
420 xfs_buf_t *bp;
1da177e4
LT
421
422 range_base = (ioff << BBSHIFT);
423 range_length = (isize << BBSHIFT);
424
425 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 426 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 427 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 428
74f75a0c
DC
429 /* get tree root */
430 pag = xfs_perag_get(btp->bt_mount,
431 xfs_daddr_to_agno(btp->bt_mount, ioff));
432
433 /* walk tree */
434 spin_lock(&pag->pag_buf_lock);
435 rbp = &pag->pag_buf_tree.rb_node;
436 parent = NULL;
437 bp = NULL;
438 while (*rbp) {
439 parent = *rbp;
440 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
441
442 if (range_base < bp->b_file_offset)
443 rbp = &(*rbp)->rb_left;
444 else if (range_base > bp->b_file_offset)
445 rbp = &(*rbp)->rb_right;
446 else {
447 /*
448 * found a block offset match. If the range doesn't
449 * match, the only way this is allowed is if the buffer
450 * in the cache is stale and the transaction that made
451 * it stale has not yet committed. i.e. we are
452 * reallocating a busy extent. Skip this buffer and
453 * continue searching to the right for an exact match.
454 */
455 if (bp->b_buffer_length != range_length) {
456 ASSERT(bp->b_flags & XBF_STALE);
457 rbp = &(*rbp)->rb_right;
458 continue;
459 }
ce8e922c 460 atomic_inc(&bp->b_hold);
1da177e4
LT
461 goto found;
462 }
463 }
464
465 /* No match found */
ce8e922c
NS
466 if (new_bp) {
467 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 468 range_length, flags);
74f75a0c
DC
469 rb_link_node(&new_bp->b_rbnode, parent, rbp);
470 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
471 /* the buffer keeps the perag reference until it is freed */
472 new_bp->b_pag = pag;
473 spin_unlock(&pag->pag_buf_lock);
1da177e4 474 } else {
ce8e922c 475 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
476 spin_unlock(&pag->pag_buf_lock);
477 xfs_perag_put(pag);
1da177e4 478 }
ce8e922c 479 return new_bp;
1da177e4
LT
480
481found:
74f75a0c
DC
482 spin_unlock(&pag->pag_buf_lock);
483 xfs_perag_put(pag);
1da177e4 484
90810b9e
DC
485 if (xfs_buf_cond_lock(bp)) {
486 /* failed, so wait for the lock if requested. */
ce8e922c 487 if (!(flags & XBF_TRYLOCK)) {
ce8e922c
NS
488 xfs_buf_lock(bp);
489 XFS_STATS_INC(xb_get_locked_waited);
1da177e4 490 } else {
ce8e922c
NS
491 xfs_buf_rele(bp);
492 XFS_STATS_INC(xb_busy_locked);
493 return NULL;
1da177e4 494 }
1da177e4
LT
495 }
496
ce8e922c
NS
497 if (bp->b_flags & XBF_STALE) {
498 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
499 bp->b_flags &= XBF_MAPPED;
2f926587 500 }
0b1b213f
CH
501
502 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
503 XFS_STATS_INC(xb_get_locked);
504 return bp;
1da177e4
LT
505}
506
507/*
ce8e922c 508 * Assembles a buffer covering the specified range.
1da177e4
LT
509 * Storage in memory for all portions of the buffer will be allocated,
510 * although backing storage may not be.
511 */
512xfs_buf_t *
6ad112bf 513xfs_buf_get(
1da177e4 514 xfs_buftarg_t *target,/* target for buffer */
204ab25f 515 xfs_off_t ioff, /* starting offset of range */
1da177e4 516 size_t isize, /* length of range */
ce8e922c 517 xfs_buf_flags_t flags)
1da177e4 518{
ce8e922c 519 xfs_buf_t *bp, *new_bp;
1da177e4
LT
520 int error = 0, i;
521
ce8e922c
NS
522 new_bp = xfs_buf_allocate(flags);
523 if (unlikely(!new_bp))
1da177e4
LT
524 return NULL;
525
ce8e922c
NS
526 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
527 if (bp == new_bp) {
528 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
529 if (error)
530 goto no_buffer;
531 } else {
ce8e922c
NS
532 xfs_buf_deallocate(new_bp);
533 if (unlikely(bp == NULL))
1da177e4
LT
534 return NULL;
535 }
536
ce8e922c
NS
537 for (i = 0; i < bp->b_page_count; i++)
538 mark_page_accessed(bp->b_pages[i]);
1da177e4 539
ce8e922c
NS
540 if (!(bp->b_flags & XBF_MAPPED)) {
541 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
542 if (unlikely(error)) {
543 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 544 __func__);
1da177e4
LT
545 goto no_buffer;
546 }
547 }
548
ce8e922c 549 XFS_STATS_INC(xb_get);
1da177e4
LT
550
551 /*
552 * Always fill in the block number now, the mapped cases can do
553 * their own overlay of this later.
554 */
ce8e922c
NS
555 bp->b_bn = ioff;
556 bp->b_count_desired = bp->b_buffer_length;
1da177e4 557
0b1b213f 558 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 559 return bp;
1da177e4
LT
560
561 no_buffer:
ce8e922c
NS
562 if (flags & (XBF_LOCK | XBF_TRYLOCK))
563 xfs_buf_unlock(bp);
564 xfs_buf_rele(bp);
1da177e4
LT
565 return NULL;
566}
567
5d765b97
CH
568STATIC int
569_xfs_buf_read(
570 xfs_buf_t *bp,
571 xfs_buf_flags_t flags)
572{
573 int status;
574
5d765b97
CH
575 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
576 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
577
578 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
579 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
580 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
581 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
582
583 status = xfs_buf_iorequest(bp);
ec53d1db
DC
584 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
585 return status;
586 return xfs_buf_iowait(bp);
5d765b97
CH
587}
588
1da177e4 589xfs_buf_t *
6ad112bf 590xfs_buf_read(
1da177e4 591 xfs_buftarg_t *target,
204ab25f 592 xfs_off_t ioff,
1da177e4 593 size_t isize,
ce8e922c 594 xfs_buf_flags_t flags)
1da177e4 595{
ce8e922c
NS
596 xfs_buf_t *bp;
597
598 flags |= XBF_READ;
599
6ad112bf 600 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 601 if (bp) {
0b1b213f
CH
602 trace_xfs_buf_read(bp, flags, _RET_IP_);
603
ce8e922c 604 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 605 XFS_STATS_INC(xb_get_read);
5d765b97 606 _xfs_buf_read(bp, flags);
ce8e922c 607 } else if (flags & XBF_ASYNC) {
1da177e4
LT
608 /*
609 * Read ahead call which is already satisfied,
610 * drop the buffer
611 */
612 goto no_buffer;
613 } else {
1da177e4 614 /* We do not want read in the flags */
ce8e922c 615 bp->b_flags &= ~XBF_READ;
1da177e4
LT
616 }
617 }
618
ce8e922c 619 return bp;
1da177e4
LT
620
621 no_buffer:
ce8e922c
NS
622 if (flags & (XBF_LOCK | XBF_TRYLOCK))
623 xfs_buf_unlock(bp);
624 xfs_buf_rele(bp);
1da177e4
LT
625 return NULL;
626}
627
1da177e4 628/*
ce8e922c
NS
629 * If we are not low on memory then do the readahead in a deadlock
630 * safe manner.
1da177e4
LT
631 */
632void
ce8e922c 633xfs_buf_readahead(
1da177e4 634 xfs_buftarg_t *target,
204ab25f 635 xfs_off_t ioff,
1a1a3e97 636 size_t isize)
1da177e4
LT
637{
638 struct backing_dev_info *bdi;
639
ce8e922c 640 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
641 if (bdi_read_congested(bdi))
642 return;
643
1a1a3e97
CH
644 xfs_buf_read(target, ioff, isize,
645 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
646}
647
5adc94c2
DC
648/*
649 * Read an uncached buffer from disk. Allocates and returns a locked
650 * buffer containing the disk contents or nothing.
651 */
652struct xfs_buf *
653xfs_buf_read_uncached(
654 struct xfs_mount *mp,
655 struct xfs_buftarg *target,
656 xfs_daddr_t daddr,
657 size_t length,
658 int flags)
659{
660 xfs_buf_t *bp;
661 int error;
662
663 bp = xfs_buf_get_uncached(target, length, flags);
664 if (!bp)
665 return NULL;
666
667 /* set up the buffer for a read IO */
668 xfs_buf_lock(bp);
669 XFS_BUF_SET_ADDR(bp, daddr);
670 XFS_BUF_READ(bp);
671 XFS_BUF_BUSY(bp);
672
673 xfsbdstrat(mp, bp);
1a1a3e97 674 error = xfs_buf_iowait(bp);
5adc94c2
DC
675 if (error || bp->b_error) {
676 xfs_buf_relse(bp);
677 return NULL;
678 }
679 return bp;
1da177e4
LT
680}
681
682xfs_buf_t *
ce8e922c 683xfs_buf_get_empty(
1da177e4
LT
684 size_t len,
685 xfs_buftarg_t *target)
686{
ce8e922c 687 xfs_buf_t *bp;
1da177e4 688
ce8e922c
NS
689 bp = xfs_buf_allocate(0);
690 if (bp)
691 _xfs_buf_initialize(bp, target, 0, len, 0);
692 return bp;
1da177e4
LT
693}
694
695static inline struct page *
696mem_to_page(
697 void *addr)
698{
9e2779fa 699 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
700 return virt_to_page(addr);
701 } else {
702 return vmalloc_to_page(addr);
703 }
704}
705
706int
ce8e922c
NS
707xfs_buf_associate_memory(
708 xfs_buf_t *bp,
1da177e4
LT
709 void *mem,
710 size_t len)
711{
712 int rval;
713 int i = 0;
d1afb678
LM
714 unsigned long pageaddr;
715 unsigned long offset;
716 size_t buflen;
1da177e4
LT
717 int page_count;
718
d1afb678
LM
719 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
720 offset = (unsigned long)mem - pageaddr;
721 buflen = PAGE_CACHE_ALIGN(len + offset);
722 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
723
724 /* Free any previous set of page pointers */
ce8e922c
NS
725 if (bp->b_pages)
726 _xfs_buf_free_pages(bp);
1da177e4 727
ce8e922c
NS
728 bp->b_pages = NULL;
729 bp->b_addr = mem;
1da177e4 730
36fae17a 731 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
732 if (rval)
733 return rval;
734
ce8e922c 735 bp->b_offset = offset;
d1afb678
LM
736
737 for (i = 0; i < bp->b_page_count; i++) {
738 bp->b_pages[i] = mem_to_page((void *)pageaddr);
739 pageaddr += PAGE_CACHE_SIZE;
1da177e4 740 }
1da177e4 741
d1afb678
LM
742 bp->b_count_desired = len;
743 bp->b_buffer_length = buflen;
ce8e922c 744 bp->b_flags |= XBF_MAPPED;
6ab455ee 745 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
746
747 return 0;
748}
749
750xfs_buf_t *
686865f7
DC
751xfs_buf_get_uncached(
752 struct xfs_buftarg *target,
1da177e4 753 size_t len,
686865f7 754 int flags)
1da177e4 755{
1fa40b01
CH
756 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
757 int error, i;
1da177e4 758 xfs_buf_t *bp;
1da177e4 759
ce8e922c 760 bp = xfs_buf_allocate(0);
1da177e4
LT
761 if (unlikely(bp == NULL))
762 goto fail;
ce8e922c 763 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 764
1fa40b01
CH
765 error = _xfs_buf_get_pages(bp, page_count, 0);
766 if (error)
1da177e4
LT
767 goto fail_free_buf;
768
1fa40b01 769 for (i = 0; i < page_count; i++) {
686865f7 770 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
771 if (!bp->b_pages[i])
772 goto fail_free_mem;
1da177e4 773 }
1fa40b01 774 bp->b_flags |= _XBF_PAGES;
1da177e4 775
1fa40b01
CH
776 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
777 if (unlikely(error)) {
778 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 779 __func__);
1da177e4 780 goto fail_free_mem;
1fa40b01 781 }
1da177e4 782
ce8e922c 783 xfs_buf_unlock(bp);
1da177e4 784
686865f7 785 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 786 return bp;
1fa40b01 787
1da177e4 788 fail_free_mem:
1fa40b01
CH
789 while (--i >= 0)
790 __free_page(bp->b_pages[i]);
ca165b88 791 _xfs_buf_free_pages(bp);
1da177e4 792 fail_free_buf:
ca165b88 793 xfs_buf_deallocate(bp);
1da177e4
LT
794 fail:
795 return NULL;
796}
797
798/*
1da177e4
LT
799 * Increment reference count on buffer, to hold the buffer concurrently
800 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
801 * Must hold the buffer already to call this function.
802 */
803void
ce8e922c
NS
804xfs_buf_hold(
805 xfs_buf_t *bp)
1da177e4 806{
0b1b213f 807 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 808 atomic_inc(&bp->b_hold);
1da177e4
LT
809}
810
811/*
ce8e922c
NS
812 * Releases a hold on the specified buffer. If the
813 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
814 */
815void
ce8e922c
NS
816xfs_buf_rele(
817 xfs_buf_t *bp)
1da177e4 818{
74f75a0c 819 struct xfs_perag *pag = bp->b_pag;
1da177e4 820
0b1b213f 821 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 822
74f75a0c 823 if (!pag) {
fad3aa1e 824 ASSERT(!bp->b_relse);
74f75a0c 825 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
826 if (atomic_dec_and_test(&bp->b_hold))
827 xfs_buf_free(bp);
828 return;
829 }
830
74f75a0c 831 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
3790689f 832 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 833 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
ce8e922c
NS
834 if (bp->b_relse) {
835 atomic_inc(&bp->b_hold);
74f75a0c
DC
836 spin_unlock(&pag->pag_buf_lock);
837 bp->b_relse(bp);
1da177e4 838 } else {
ce8e922c 839 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
840 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
841 spin_unlock(&pag->pag_buf_lock);
842 xfs_perag_put(pag);
ce8e922c 843 xfs_buf_free(bp);
1da177e4
LT
844 }
845 }
846}
847
848
849/*
850 * Mutual exclusion on buffers. Locking model:
851 *
852 * Buffers associated with inodes for which buffer locking
853 * is not enabled are not protected by semaphores, and are
854 * assumed to be exclusively owned by the caller. There is a
855 * spinlock in the buffer, used by the caller when concurrent
856 * access is possible.
857 */
858
859/*
90810b9e
DC
860 * Locks a buffer object, if it is not already locked. Note that this in
861 * no way locks the underlying pages, so it is only useful for
862 * synchronizing concurrent use of buffer objects, not for synchronizing
863 * independent access to the underlying pages.
864 *
865 * If we come across a stale, pinned, locked buffer, we know that we are
866 * being asked to lock a buffer that has been reallocated. Because it is
867 * pinned, we know that the log has not been pushed to disk and hence it
868 * will still be locked. Rather than continuing to have trylock attempts
869 * fail until someone else pushes the log, push it ourselves before
870 * returning. This means that the xfsaild will not get stuck trying
871 * to push on stale inode buffers.
1da177e4
LT
872 */
873int
ce8e922c
NS
874xfs_buf_cond_lock(
875 xfs_buf_t *bp)
1da177e4
LT
876{
877 int locked;
878
ce8e922c 879 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 880 if (locked)
ce8e922c 881 XB_SET_OWNER(bp);
90810b9e
DC
882 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
883 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f
CH
884
885 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 886 return locked ? 0 : -EBUSY;
1da177e4
LT
887}
888
1da177e4 889int
ce8e922c
NS
890xfs_buf_lock_value(
891 xfs_buf_t *bp)
1da177e4 892{
adaa693b 893 return bp->b_sema.count;
1da177e4 894}
1da177e4
LT
895
896/*
ce8e922c
NS
897 * Locks a buffer object.
898 * Note that this in no way locks the underlying pages, so it is only
899 * useful for synchronizing concurrent use of buffer objects, not for
900 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
901 *
902 * If we come across a stale, pinned, locked buffer, we know that we
903 * are being asked to lock a buffer that has been reallocated. Because
904 * it is pinned, we know that the log has not been pushed to disk and
905 * hence it will still be locked. Rather than sleeping until someone
906 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 907 */
ce8e922c
NS
908void
909xfs_buf_lock(
910 xfs_buf_t *bp)
1da177e4 911{
0b1b213f
CH
912 trace_xfs_buf_lock(bp, _RET_IP_);
913
ed3b4d6c 914 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 915 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
916 if (atomic_read(&bp->b_io_remaining))
917 blk_run_address_space(bp->b_target->bt_mapping);
918 down(&bp->b_sema);
919 XB_SET_OWNER(bp);
0b1b213f
CH
920
921 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
922}
923
924/*
ce8e922c 925 * Releases the lock on the buffer object.
2f926587 926 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 927 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
928 * take a reference for the delwri queue because the unlocker is going to
929 * drop their's and they don't know we just queued it.
1da177e4
LT
930 */
931void
ce8e922c
NS
932xfs_buf_unlock(
933 xfs_buf_t *bp)
1da177e4 934{
ce8e922c
NS
935 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
936 atomic_inc(&bp->b_hold);
937 bp->b_flags |= XBF_ASYNC;
938 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
939 }
940
ce8e922c
NS
941 XB_CLEAR_OWNER(bp);
942 up(&bp->b_sema);
0b1b213f
CH
943
944 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
945}
946
ce8e922c
NS
947STATIC void
948xfs_buf_wait_unpin(
949 xfs_buf_t *bp)
1da177e4
LT
950{
951 DECLARE_WAITQUEUE (wait, current);
952
ce8e922c 953 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
954 return;
955
ce8e922c 956 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
957 for (;;) {
958 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 959 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 960 break;
ce8e922c
NS
961 if (atomic_read(&bp->b_io_remaining))
962 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
963 schedule();
964 }
ce8e922c 965 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
966 set_current_state(TASK_RUNNING);
967}
968
969/*
970 * Buffer Utility Routines
971 */
972
1da177e4 973STATIC void
ce8e922c 974xfs_buf_iodone_work(
c4028958 975 struct work_struct *work)
1da177e4 976{
c4028958
DH
977 xfs_buf_t *bp =
978 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 979
80f6c29d 980 if (bp->b_iodone)
ce8e922c
NS
981 (*(bp->b_iodone))(bp);
982 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
983 xfs_buf_relse(bp);
984}
985
986void
ce8e922c
NS
987xfs_buf_ioend(
988 xfs_buf_t *bp,
1da177e4
LT
989 int schedule)
990{
0b1b213f
CH
991 trace_xfs_buf_iodone(bp, _RET_IP_);
992
77be55a5 993 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
994 if (bp->b_error == 0)
995 bp->b_flags |= XBF_DONE;
1da177e4 996
ce8e922c 997 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 998 if (schedule) {
c4028958 999 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1000 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1001 } else {
c4028958 1002 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1003 }
1004 } else {
b4dd330b 1005 complete(&bp->b_iowait);
1da177e4
LT
1006 }
1007}
1008
1da177e4 1009void
ce8e922c
NS
1010xfs_buf_ioerror(
1011 xfs_buf_t *bp,
1012 int error)
1da177e4
LT
1013{
1014 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1015 bp->b_error = (unsigned short)error;
0b1b213f 1016 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1017}
1018
1da177e4 1019int
64e0bc7d
CH
1020xfs_bwrite(
1021 struct xfs_mount *mp,
5d765b97 1022 struct xfs_buf *bp)
1da177e4 1023{
8c38366f 1024 int error;
1da177e4 1025
64e0bc7d 1026 bp->b_flags |= XBF_WRITE;
8c38366f 1027 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1028
5d765b97 1029 xfs_buf_delwri_dequeue(bp);
939d723b 1030 xfs_bdstrat_cb(bp);
1da177e4 1031
8c38366f
CH
1032 error = xfs_buf_iowait(bp);
1033 if (error)
1034 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1035 xfs_buf_relse(bp);
64e0bc7d 1036 return error;
5d765b97 1037}
1da177e4 1038
5d765b97
CH
1039void
1040xfs_bdwrite(
1041 void *mp,
1042 struct xfs_buf *bp)
1043{
0b1b213f 1044 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1045
5d765b97
CH
1046 bp->b_flags &= ~XBF_READ;
1047 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1048
1049 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1050}
1051
4e23471a
CH
1052/*
1053 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1054 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1055 * so that the proper iodone callbacks get called.
1056 */
1057STATIC int
1058xfs_bioerror(
1059 xfs_buf_t *bp)
1060{
1061#ifdef XFSERRORDEBUG
1062 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1063#endif
1064
1065 /*
1066 * No need to wait until the buffer is unpinned, we aren't flushing it.
1067 */
1068 XFS_BUF_ERROR(bp, EIO);
1069
1070 /*
1a1a3e97 1071 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1072 */
1073 XFS_BUF_UNREAD(bp);
1074 XFS_BUF_UNDELAYWRITE(bp);
1075 XFS_BUF_UNDONE(bp);
1076 XFS_BUF_STALE(bp);
1077
1a1a3e97 1078 xfs_buf_ioend(bp, 0);
4e23471a
CH
1079
1080 return EIO;
1081}
1082
1083/*
1084 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1085 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1086 * This is meant for userdata errors; metadata bufs come with
1087 * iodone functions attached, so that we can track down errors.
1088 */
1089STATIC int
1090xfs_bioerror_relse(
1091 struct xfs_buf *bp)
1092{
1093 int64_t fl = XFS_BUF_BFLAGS(bp);
1094 /*
1095 * No need to wait until the buffer is unpinned.
1096 * We aren't flushing it.
1097 *
1098 * chunkhold expects B_DONE to be set, whether
1099 * we actually finish the I/O or not. We don't want to
1100 * change that interface.
1101 */
1102 XFS_BUF_UNREAD(bp);
1103 XFS_BUF_UNDELAYWRITE(bp);
1104 XFS_BUF_DONE(bp);
1105 XFS_BUF_STALE(bp);
1106 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1107 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1108 /*
1109 * Mark b_error and B_ERROR _both_.
1110 * Lot's of chunkcache code assumes that.
1111 * There's no reason to mark error for
1112 * ASYNC buffers.
1113 */
1114 XFS_BUF_ERROR(bp, EIO);
1115 XFS_BUF_FINISH_IOWAIT(bp);
1116 } else {
1117 xfs_buf_relse(bp);
1118 }
1119
1120 return EIO;
1121}
1122
1123
1124/*
1125 * All xfs metadata buffers except log state machine buffers
1126 * get this attached as their b_bdstrat callback function.
1127 * This is so that we can catch a buffer
1128 * after prematurely unpinning it to forcibly shutdown the filesystem.
1129 */
1130int
1131xfs_bdstrat_cb(
1132 struct xfs_buf *bp)
1133{
ebad861b 1134 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1135 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1136 /*
1137 * Metadata write that didn't get logged but
1138 * written delayed anyway. These aren't associated
1139 * with a transaction, and can be ignored.
1140 */
1141 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1142 return xfs_bioerror_relse(bp);
1143 else
1144 return xfs_bioerror(bp);
1145 }
1146
1147 xfs_buf_iorequest(bp);
1148 return 0;
1149}
1150
1151/*
1152 * Wrapper around bdstrat so that we can stop data from going to disk in case
1153 * we are shutting down the filesystem. Typically user data goes thru this
1154 * path; one of the exceptions is the superblock.
1155 */
1156void
1157xfsbdstrat(
1158 struct xfs_mount *mp,
1159 struct xfs_buf *bp)
1160{
1161 if (XFS_FORCED_SHUTDOWN(mp)) {
1162 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1163 xfs_bioerror_relse(bp);
1164 return;
1165 }
1166
1167 xfs_buf_iorequest(bp);
1168}
1169
b8f82a4a 1170STATIC void
ce8e922c
NS
1171_xfs_buf_ioend(
1172 xfs_buf_t *bp,
1da177e4
LT
1173 int schedule)
1174{
6ab455ee
CH
1175 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1176 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1177 xfs_buf_ioend(bp, schedule);
6ab455ee 1178 }
1da177e4
LT
1179}
1180
782e3b3b 1181STATIC void
ce8e922c 1182xfs_buf_bio_end_io(
1da177e4 1183 struct bio *bio,
1da177e4
LT
1184 int error)
1185{
ce8e922c
NS
1186 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1187 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1188 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1189
cfbe5267 1190 xfs_buf_ioerror(bp, -error);
1da177e4 1191
73c77e2c
JB
1192 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1193 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1194
eedb5530 1195 do {
1da177e4
LT
1196 struct page *page = bvec->bv_page;
1197
948ecdb4 1198 ASSERT(!PagePrivate(page));
ce8e922c
NS
1199 if (unlikely(bp->b_error)) {
1200 if (bp->b_flags & XBF_READ)
eedb5530 1201 ClearPageUptodate(page);
ce8e922c 1202 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1203 SetPageUptodate(page);
1204 } else if (!PagePrivate(page) &&
ce8e922c 1205 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1206 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1207 }
1208
eedb5530
NS
1209 if (--bvec >= bio->bi_io_vec)
1210 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1211
1212 if (bp->b_flags & _XBF_PAGE_LOCKED)
1213 unlock_page(page);
eedb5530 1214 } while (bvec >= bio->bi_io_vec);
1da177e4 1215
ce8e922c 1216 _xfs_buf_ioend(bp, 1);
1da177e4 1217 bio_put(bio);
1da177e4
LT
1218}
1219
1220STATIC void
ce8e922c
NS
1221_xfs_buf_ioapply(
1222 xfs_buf_t *bp)
1da177e4 1223{
a9759f2d 1224 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1225 struct bio *bio;
ce8e922c
NS
1226 int offset = bp->b_offset;
1227 int size = bp->b_count_desired;
1228 sector_t sector = bp->b_bn;
1229 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1230
ce8e922c 1231 total_nr_pages = bp->b_page_count;
1da177e4
LT
1232 map_i = 0;
1233
ce8e922c
NS
1234 if (bp->b_flags & XBF_ORDERED) {
1235 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1236 rw = WRITE_FLUSH_FUA;
2ee1abad 1237 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1238 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1239 bp->b_flags &= ~_XBF_RUN_QUEUES;
1240 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1241 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1242 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1243 bp->b_flags &= ~_XBF_RUN_QUEUES;
1244 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1245 } else {
1246 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1247 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1248 }
1249
ce8e922c 1250 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1251 * we populate up the whole page, and hence the other metadata
1252 * in the same page. This optimization is only valid when the
ce8e922c 1253 * filesystem block size is not smaller than the page size.
1da177e4 1254 */
ce8e922c 1255 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1256 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1257 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1258 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1259 bio = bio_alloc(GFP_NOIO, 1);
1260
ce8e922c 1261 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1262 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1263 bio->bi_end_io = xfs_buf_bio_end_io;
1264 bio->bi_private = bp;
1da177e4 1265
ce8e922c 1266 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1267 size = 0;
1268
ce8e922c 1269 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1270
1271 goto submit_io;
1272 }
1273
1da177e4 1274next_chunk:
ce8e922c 1275 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1276 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1277 if (nr_pages > total_nr_pages)
1278 nr_pages = total_nr_pages;
1279
1280 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1281 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1282 bio->bi_sector = sector;
ce8e922c
NS
1283 bio->bi_end_io = xfs_buf_bio_end_io;
1284 bio->bi_private = bp;
1da177e4
LT
1285
1286 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1287 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1288
1289 if (nbytes > size)
1290 nbytes = size;
1291
ce8e922c
NS
1292 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1293 if (rbytes < nbytes)
1da177e4
LT
1294 break;
1295
1296 offset = 0;
1297 sector += nbytes >> BBSHIFT;
1298 size -= nbytes;
1299 total_nr_pages--;
1300 }
1301
1302submit_io:
1303 if (likely(bio->bi_size)) {
73c77e2c
JB
1304 if (xfs_buf_is_vmapped(bp)) {
1305 flush_kernel_vmap_range(bp->b_addr,
1306 xfs_buf_vmap_len(bp));
1307 }
1da177e4
LT
1308 submit_bio(rw, bio);
1309 if (size)
1310 goto next_chunk;
1311 } else {
ec53d1db
DC
1312 /*
1313 * if we get here, no pages were added to the bio. However,
1314 * we can't just error out here - if the pages are locked then
1315 * we have to unlock them otherwise we can hang on a later
1316 * access to the page.
1317 */
ce8e922c 1318 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1319 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1320 int i;
1321 for (i = 0; i < bp->b_page_count; i++)
1322 unlock_page(bp->b_pages[i]);
1323 }
1324 bio_put(bio);
1da177e4
LT
1325 }
1326}
1327
1da177e4 1328int
ce8e922c
NS
1329xfs_buf_iorequest(
1330 xfs_buf_t *bp)
1da177e4 1331{
0b1b213f 1332 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1333
ce8e922c
NS
1334 if (bp->b_flags & XBF_DELWRI) {
1335 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1336 return 0;
1337 }
1338
ce8e922c
NS
1339 if (bp->b_flags & XBF_WRITE) {
1340 xfs_buf_wait_unpin(bp);
1da177e4
LT
1341 }
1342
ce8e922c 1343 xfs_buf_hold(bp);
1da177e4
LT
1344
1345 /* Set the count to 1 initially, this will stop an I/O
1346 * completion callout which happens before we have started
ce8e922c 1347 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1348 */
ce8e922c
NS
1349 atomic_set(&bp->b_io_remaining, 1);
1350 _xfs_buf_ioapply(bp);
1351 _xfs_buf_ioend(bp, 0);
1da177e4 1352
ce8e922c 1353 xfs_buf_rele(bp);
1da177e4
LT
1354 return 0;
1355}
1356
1357/*
ce8e922c
NS
1358 * Waits for I/O to complete on the buffer supplied.
1359 * It returns immediately if no I/O is pending.
1360 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1361 */
1362int
ce8e922c
NS
1363xfs_buf_iowait(
1364 xfs_buf_t *bp)
1da177e4 1365{
0b1b213f
CH
1366 trace_xfs_buf_iowait(bp, _RET_IP_);
1367
ce8e922c
NS
1368 if (atomic_read(&bp->b_io_remaining))
1369 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1370 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1371
1372 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1373 return bp->b_error;
1da177e4
LT
1374}
1375
ce8e922c
NS
1376xfs_caddr_t
1377xfs_buf_offset(
1378 xfs_buf_t *bp,
1da177e4
LT
1379 size_t offset)
1380{
1381 struct page *page;
1382
ce8e922c
NS
1383 if (bp->b_flags & XBF_MAPPED)
1384 return XFS_BUF_PTR(bp) + offset;
1da177e4 1385
ce8e922c
NS
1386 offset += bp->b_offset;
1387 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1388 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1389}
1390
1391/*
1da177e4
LT
1392 * Move data into or out of a buffer.
1393 */
1394void
ce8e922c
NS
1395xfs_buf_iomove(
1396 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1397 size_t boff, /* starting buffer offset */
1398 size_t bsize, /* length to copy */
b9c48649 1399 void *data, /* data address */
ce8e922c 1400 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1401{
1402 size_t bend, cpoff, csize;
1403 struct page *page;
1404
1405 bend = boff + bsize;
1406 while (boff < bend) {
ce8e922c
NS
1407 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1408 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1409 csize = min_t(size_t,
ce8e922c 1410 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1411
1412 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1413
1414 switch (mode) {
ce8e922c 1415 case XBRW_ZERO:
1da177e4
LT
1416 memset(page_address(page) + cpoff, 0, csize);
1417 break;
ce8e922c 1418 case XBRW_READ:
1da177e4
LT
1419 memcpy(data, page_address(page) + cpoff, csize);
1420 break;
ce8e922c 1421 case XBRW_WRITE:
1da177e4
LT
1422 memcpy(page_address(page) + cpoff, data, csize);
1423 }
1424
1425 boff += csize;
1426 data += csize;
1427 }
1428}
1429
1430/*
ce8e922c 1431 * Handling of buffer targets (buftargs).
1da177e4
LT
1432 */
1433
1434/*
ce8e922c
NS
1435 * Wait for any bufs with callbacks that have been submitted but
1436 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1437 */
1438void
1439xfs_wait_buftarg(
74f75a0c 1440 struct xfs_buftarg *btp)
1da177e4 1441{
74f75a0c
DC
1442 struct xfs_perag *pag;
1443 uint i;
1da177e4 1444
74f75a0c
DC
1445 for (i = 0; i < btp->bt_mount->m_sb.sb_agcount; i++) {
1446 pag = xfs_perag_get(btp->bt_mount, i);
1447 spin_lock(&pag->pag_buf_lock);
1448 while (rb_first(&pag->pag_buf_tree)) {
1449 spin_unlock(&pag->pag_buf_lock);
26af6552 1450 delay(100);
74f75a0c 1451 spin_lock(&pag->pag_buf_lock);
1da177e4 1452 }
74f75a0c
DC
1453 spin_unlock(&pag->pag_buf_lock);
1454 xfs_perag_put(pag);
1da177e4
LT
1455 }
1456}
1457
ff57ab21
DC
1458int
1459xfs_buftarg_shrink(
1460 struct shrinker *shrink,
1461 int nr_to_scan,
1462 gfp_t mask)
a6867a68 1463{
ff57ab21
DC
1464 struct xfs_buftarg *btp = container_of(shrink,
1465 struct xfs_buftarg, bt_shrinker);
1466 if (nr_to_scan) {
1467 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1468 return -1;
1469 if (list_empty(&btp->bt_delwrite_queue))
1470 return -1;
1471 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1472 wake_up_process(btp->bt_task);
1473 }
1474 return list_empty(&btp->bt_delwrite_queue) ? -1 : 1;
a6867a68
DC
1475}
1476
1da177e4
LT
1477void
1478xfs_free_buftarg(
b7963133
CH
1479 struct xfs_mount *mp,
1480 struct xfs_buftarg *btp)
1da177e4 1481{
ff57ab21
DC
1482 unregister_shrinker(&btp->bt_shrinker);
1483
1da177e4 1484 xfs_flush_buftarg(btp, 1);
b7963133
CH
1485 if (mp->m_flags & XFS_MOUNT_BARRIER)
1486 xfs_blkdev_issue_flush(btp);
ce8e922c 1487 iput(btp->bt_mapping->host);
a6867a68 1488
a6867a68 1489 kthread_stop(btp->bt_task);
f0e2d93c 1490 kmem_free(btp);
1da177e4
LT
1491}
1492
1da177e4
LT
1493STATIC int
1494xfs_setsize_buftarg_flags(
1495 xfs_buftarg_t *btp,
1496 unsigned int blocksize,
1497 unsigned int sectorsize,
1498 int verbose)
1499{
ce8e922c
NS
1500 btp->bt_bsize = blocksize;
1501 btp->bt_sshift = ffs(sectorsize) - 1;
1502 btp->bt_smask = sectorsize - 1;
1da177e4 1503
ce8e922c 1504 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1505 printk(KERN_WARNING
1506 "XFS: Cannot set_blocksize to %u on device %s\n",
1507 sectorsize, XFS_BUFTARG_NAME(btp));
1508 return EINVAL;
1509 }
1510
1511 if (verbose &&
1512 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1513 printk(KERN_WARNING
1514 "XFS: %u byte sectors in use on device %s. "
1515 "This is suboptimal; %u or greater is ideal.\n",
1516 sectorsize, XFS_BUFTARG_NAME(btp),
1517 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1518 }
1519
1520 return 0;
1521}
1522
1523/*
ce8e922c
NS
1524 * When allocating the initial buffer target we have not yet
1525 * read in the superblock, so don't know what sized sectors
1526 * are being used is at this early stage. Play safe.
1527 */
1da177e4
LT
1528STATIC int
1529xfs_setsize_buftarg_early(
1530 xfs_buftarg_t *btp,
1531 struct block_device *bdev)
1532{
1533 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1534 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1535}
1536
1537int
1538xfs_setsize_buftarg(
1539 xfs_buftarg_t *btp,
1540 unsigned int blocksize,
1541 unsigned int sectorsize)
1542{
1543 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1544}
1545
1546STATIC int
1547xfs_mapping_buftarg(
1548 xfs_buftarg_t *btp,
1549 struct block_device *bdev)
1550{
1551 struct backing_dev_info *bdi;
1552 struct inode *inode;
1553 struct address_space *mapping;
f5e54d6e 1554 static const struct address_space_operations mapping_aops = {
1da177e4 1555 .sync_page = block_sync_page,
e965f963 1556 .migratepage = fail_migrate_page,
1da177e4
LT
1557 };
1558
1559 inode = new_inode(bdev->bd_inode->i_sb);
1560 if (!inode) {
1561 printk(KERN_WARNING
1562 "XFS: Cannot allocate mapping inode for device %s\n",
1563 XFS_BUFTARG_NAME(btp));
1564 return ENOMEM;
1565 }
85fe4025 1566 inode->i_ino = get_next_ino();
1da177e4
LT
1567 inode->i_mode = S_IFBLK;
1568 inode->i_bdev = bdev;
1569 inode->i_rdev = bdev->bd_dev;
1570 bdi = blk_get_backing_dev_info(bdev);
1571 if (!bdi)
1572 bdi = &default_backing_dev_info;
1573 mapping = &inode->i_data;
1574 mapping->a_ops = &mapping_aops;
1575 mapping->backing_dev_info = bdi;
1576 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1577 btp->bt_mapping = mapping;
1da177e4
LT
1578 return 0;
1579}
1580
a6867a68
DC
1581STATIC int
1582xfs_alloc_delwrite_queue(
e2a07812
JE
1583 xfs_buftarg_t *btp,
1584 const char *fsname)
a6867a68 1585{
a6867a68 1586 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1587 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1588 btp->bt_flags = 0;
e2a07812 1589 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
ff57ab21
DC
1590 if (IS_ERR(btp->bt_task))
1591 return PTR_ERR(btp->bt_task);
1592 return 0;
a6867a68
DC
1593}
1594
1da177e4
LT
1595xfs_buftarg_t *
1596xfs_alloc_buftarg(
ebad861b 1597 struct xfs_mount *mp,
1da177e4 1598 struct block_device *bdev,
e2a07812
JE
1599 int external,
1600 const char *fsname)
1da177e4
LT
1601{
1602 xfs_buftarg_t *btp;
1603
1604 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1605
ebad861b 1606 btp->bt_mount = mp;
ce8e922c
NS
1607 btp->bt_dev = bdev->bd_dev;
1608 btp->bt_bdev = bdev;
1da177e4
LT
1609 if (xfs_setsize_buftarg_early(btp, bdev))
1610 goto error;
1611 if (xfs_mapping_buftarg(btp, bdev))
1612 goto error;
e2a07812 1613 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1614 goto error;
ff57ab21
DC
1615 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1616 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1617 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1618 return btp;
1619
1620error:
f0e2d93c 1621 kmem_free(btp);
1da177e4
LT
1622 return NULL;
1623}
1624
1625
1626/*
ce8e922c 1627 * Delayed write buffer handling
1da177e4 1628 */
1da177e4 1629STATIC void
ce8e922c
NS
1630xfs_buf_delwri_queue(
1631 xfs_buf_t *bp,
1da177e4
LT
1632 int unlock)
1633{
ce8e922c
NS
1634 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1635 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1636
0b1b213f
CH
1637 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1638
ce8e922c 1639 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1640
a6867a68 1641 spin_lock(dwlk);
1da177e4 1642 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1643 if (!list_empty(&bp->b_list)) {
1644 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1645 if (unlock)
1646 atomic_dec(&bp->b_hold);
1647 list_del(&bp->b_list);
1da177e4
LT
1648 }
1649
c9c12971
DC
1650 if (list_empty(dwq)) {
1651 /* start xfsbufd as it is about to have something to do */
1652 wake_up_process(bp->b_target->bt_task);
1653 }
1654
ce8e922c
NS
1655 bp->b_flags |= _XBF_DELWRI_Q;
1656 list_add_tail(&bp->b_list, dwq);
1657 bp->b_queuetime = jiffies;
a6867a68 1658 spin_unlock(dwlk);
1da177e4
LT
1659
1660 if (unlock)
ce8e922c 1661 xfs_buf_unlock(bp);
1da177e4
LT
1662}
1663
1664void
ce8e922c
NS
1665xfs_buf_delwri_dequeue(
1666 xfs_buf_t *bp)
1da177e4 1667{
ce8e922c 1668 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1669 int dequeued = 0;
1670
a6867a68 1671 spin_lock(dwlk);
ce8e922c
NS
1672 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1673 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1674 list_del_init(&bp->b_list);
1da177e4
LT
1675 dequeued = 1;
1676 }
ce8e922c 1677 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1678 spin_unlock(dwlk);
1da177e4
LT
1679
1680 if (dequeued)
ce8e922c 1681 xfs_buf_rele(bp);
1da177e4 1682
0b1b213f 1683 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1684}
1685
d808f617
DC
1686/*
1687 * If a delwri buffer needs to be pushed before it has aged out, then promote
1688 * it to the head of the delwri queue so that it will be flushed on the next
1689 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1690 * than the age currently needed to flush the buffer. Hence the next time the
1691 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1692 */
1693void
1694xfs_buf_delwri_promote(
1695 struct xfs_buf *bp)
1696{
1697 struct xfs_buftarg *btp = bp->b_target;
1698 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1699
1700 ASSERT(bp->b_flags & XBF_DELWRI);
1701 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1702
1703 /*
1704 * Check the buffer age before locking the delayed write queue as we
1705 * don't need to promote buffers that are already past the flush age.
1706 */
1707 if (bp->b_queuetime < jiffies - age)
1708 return;
1709 bp->b_queuetime = jiffies - age;
1710 spin_lock(&btp->bt_delwrite_lock);
1711 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1712 spin_unlock(&btp->bt_delwrite_lock);
1713}
1714
1da177e4 1715STATIC void
ce8e922c 1716xfs_buf_runall_queues(
1da177e4
LT
1717 struct workqueue_struct *queue)
1718{
1719 flush_workqueue(queue);
1720}
1721
585e6d88
DC
1722/*
1723 * Move as many buffers as specified to the supplied list
1724 * idicating if we skipped any buffers to prevent deadlocks.
1725 */
1726STATIC int
1727xfs_buf_delwri_split(
1728 xfs_buftarg_t *target,
1729 struct list_head *list,
5e6a07df 1730 unsigned long age)
585e6d88
DC
1731{
1732 xfs_buf_t *bp, *n;
1733 struct list_head *dwq = &target->bt_delwrite_queue;
1734 spinlock_t *dwlk = &target->bt_delwrite_lock;
1735 int skipped = 0;
5e6a07df 1736 int force;
585e6d88 1737
5e6a07df 1738 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1739 INIT_LIST_HEAD(list);
1740 spin_lock(dwlk);
1741 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1742 ASSERT(bp->b_flags & XBF_DELWRI);
1743
4d16e924 1744 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1745 if (!force &&
585e6d88
DC
1746 time_before(jiffies, bp->b_queuetime + age)) {
1747 xfs_buf_unlock(bp);
1748 break;
1749 }
1750
1751 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1752 _XBF_RUN_QUEUES);
1753 bp->b_flags |= XBF_WRITE;
1754 list_move_tail(&bp->b_list, list);
bfe27419 1755 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1756 } else
1757 skipped++;
1758 }
1759 spin_unlock(dwlk);
1760
1761 return skipped;
1762
1763}
1764
089716aa
DC
1765/*
1766 * Compare function is more complex than it needs to be because
1767 * the return value is only 32 bits and we are doing comparisons
1768 * on 64 bit values
1769 */
1770static int
1771xfs_buf_cmp(
1772 void *priv,
1773 struct list_head *a,
1774 struct list_head *b)
1775{
1776 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1777 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1778 xfs_daddr_t diff;
1779
1780 diff = ap->b_bn - bp->b_bn;
1781 if (diff < 0)
1782 return -1;
1783 if (diff > 0)
1784 return 1;
1785 return 0;
1786}
1787
1788void
1789xfs_buf_delwri_sort(
1790 xfs_buftarg_t *target,
1791 struct list_head *list)
1792{
1793 list_sort(NULL, list, xfs_buf_cmp);
1794}
1795
1da177e4 1796STATIC int
23ea4032 1797xfsbufd(
585e6d88 1798 void *data)
1da177e4 1799{
089716aa 1800 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1801
1da177e4
LT
1802 current->flags |= PF_MEMALLOC;
1803
978c7b2f
RW
1804 set_freezable();
1805
1da177e4 1806 do {
c9c12971
DC
1807 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1808 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1809 int count = 0;
1810 struct list_head tmp;
c9c12971 1811
3e1d1d28 1812 if (unlikely(freezing(current))) {
ce8e922c 1813 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1814 refrigerator();
abd0cf7a 1815 } else {
ce8e922c 1816 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1817 }
1da177e4 1818
c9c12971
DC
1819 /* sleep for a long time if there is nothing to do. */
1820 if (list_empty(&target->bt_delwrite_queue))
1821 tout = MAX_SCHEDULE_TIMEOUT;
1822 schedule_timeout_interruptible(tout);
1da177e4 1823
c9c12971 1824 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1825 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1826 while (!list_empty(&tmp)) {
089716aa
DC
1827 struct xfs_buf *bp;
1828 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1829 list_del_init(&bp->b_list);
939d723b 1830 xfs_bdstrat_cb(bp);
585e6d88 1831 count++;
1da177e4 1832 }
f07c2250
NS
1833 if (count)
1834 blk_run_address_space(target->bt_mapping);
1da177e4 1835
4df08c52 1836 } while (!kthread_should_stop());
1da177e4 1837
4df08c52 1838 return 0;
1da177e4
LT
1839}
1840
1841/*
ce8e922c
NS
1842 * Go through all incore buffers, and release buffers if they belong to
1843 * the given device. This is used in filesystem error handling to
1844 * preserve the consistency of its metadata.
1da177e4
LT
1845 */
1846int
1847xfs_flush_buftarg(
585e6d88
DC
1848 xfs_buftarg_t *target,
1849 int wait)
1da177e4 1850{
089716aa 1851 xfs_buf_t *bp;
585e6d88 1852 int pincount = 0;
089716aa
DC
1853 LIST_HEAD(tmp_list);
1854 LIST_HEAD(wait_list);
1da177e4 1855
c626d174 1856 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1857 xfs_buf_runall_queues(xfsdatad_workqueue);
1858 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1859
5e6a07df 1860 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1861 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1862
1863 /*
089716aa
DC
1864 * Dropped the delayed write list lock, now walk the temporary list.
1865 * All I/O is issued async and then if we need to wait for completion
1866 * we do that after issuing all the IO.
1da177e4 1867 */
089716aa
DC
1868 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1869 while (!list_empty(&tmp_list)) {
1870 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1871 ASSERT(target == bp->b_target);
089716aa
DC
1872 list_del_init(&bp->b_list);
1873 if (wait) {
ce8e922c 1874 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1875 list_add(&bp->b_list, &wait_list);
1876 }
939d723b 1877 xfs_bdstrat_cb(bp);
1da177e4
LT
1878 }
1879
089716aa
DC
1880 if (wait) {
1881 /* Expedite and wait for IO to complete. */
f07c2250 1882 blk_run_address_space(target->bt_mapping);
089716aa
DC
1883 while (!list_empty(&wait_list)) {
1884 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1885
089716aa 1886 list_del_init(&bp->b_list);
1a1a3e97 1887 xfs_buf_iowait(bp);
089716aa
DC
1888 xfs_buf_relse(bp);
1889 }
1da177e4
LT
1890 }
1891
1da177e4
LT
1892 return pincount;
1893}
1894
04d8b284 1895int __init
ce8e922c 1896xfs_buf_init(void)
1da177e4 1897{
8758280f
NS
1898 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1899 KM_ZONE_HWALIGN, NULL);
ce8e922c 1900 if (!xfs_buf_zone)
0b1b213f 1901 goto out;
04d8b284 1902
51749e47 1903 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1904 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1905 if (!xfslogd_workqueue)
04d8b284 1906 goto out_free_buf_zone;
1da177e4 1907
b4337692 1908 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1909 if (!xfsdatad_workqueue)
1910 goto out_destroy_xfslogd_workqueue;
1da177e4 1911
c626d174
DC
1912 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1913 if (!xfsconvertd_workqueue)
1914 goto out_destroy_xfsdatad_workqueue;
1915
23ea4032 1916 return 0;
1da177e4 1917
c626d174
DC
1918 out_destroy_xfsdatad_workqueue:
1919 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1920 out_destroy_xfslogd_workqueue:
1921 destroy_workqueue(xfslogd_workqueue);
23ea4032 1922 out_free_buf_zone:
ce8e922c 1923 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1924 out:
8758280f 1925 return -ENOMEM;
1da177e4
LT
1926}
1927
1da177e4 1928void
ce8e922c 1929xfs_buf_terminate(void)
1da177e4 1930{
c626d174 1931 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1932 destroy_workqueue(xfsdatad_workqueue);
1933 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1934 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1935}
e6a0e9cd
TS
1936
1937#ifdef CONFIG_KDB_MODULES
1938struct list_head *
1939xfs_get_buftarg_list(void)
1940{
1941 return &xfs_buftarg_list;
1942}
1943#endif
This page took 0.63937 seconds and 5 git commands to generate.