xfs: convert ENOSPC inode flushing to use new syncd workqueue
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
fe4fa4b8
DC
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
fe4fa4b8
DC
29#include "xfs_inode.h"
30#include "xfs_dinode.h"
31#include "xfs_error.h"
fe4fa4b8
DC
32#include "xfs_filestream.h"
33#include "xfs_vnodeops.h"
fe4fa4b8 34#include "xfs_inode_item.h"
7d095257 35#include "xfs_quota.h"
0b1b213f 36#include "xfs_trace.h"
1a387d3b 37#include "xfs_fsops.h"
fe4fa4b8 38
a167b17e
DC
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41
c6d09b66
DC
42struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
43
78ae5256
DC
44/*
45 * The inode lookup is done in batches to keep the amount of lock traffic and
46 * radix tree lookups to a minimum. The batch size is a trade off between
47 * lookup reduction and stack usage. This is in the reclaim path, so we can't
48 * be too greedy.
49 */
50#define XFS_LOOKUP_BATCH 32
51
e13de955
DC
52STATIC int
53xfs_inode_ag_walk_grab(
54 struct xfs_inode *ip)
55{
56 struct inode *inode = VFS_I(ip);
57
1a3e8f3d
DC
58 ASSERT(rcu_read_lock_held());
59
60 /*
61 * check for stale RCU freed inode
62 *
63 * If the inode has been reallocated, it doesn't matter if it's not in
64 * the AG we are walking - we are walking for writeback, so if it
65 * passes all the "valid inode" checks and is dirty, then we'll write
66 * it back anyway. If it has been reallocated and still being
67 * initialised, the XFS_INEW check below will catch it.
68 */
69 spin_lock(&ip->i_flags_lock);
70 if (!ip->i_ino)
71 goto out_unlock_noent;
72
73 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
74 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
75 goto out_unlock_noent;
76 spin_unlock(&ip->i_flags_lock);
77
e13de955
DC
78 /* nothing to sync during shutdown */
79 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
80 return EFSCORRUPTED;
81
e13de955
DC
82 /* If we can't grab the inode, it must on it's way to reclaim. */
83 if (!igrab(inode))
84 return ENOENT;
85
86 if (is_bad_inode(inode)) {
87 IRELE(ip);
88 return ENOENT;
89 }
90
91 /* inode is valid */
92 return 0;
1a3e8f3d
DC
93
94out_unlock_noent:
95 spin_unlock(&ip->i_flags_lock);
96 return ENOENT;
e13de955
DC
97}
98
75f3cb13
DC
99STATIC int
100xfs_inode_ag_walk(
101 struct xfs_mount *mp,
5017e97d 102 struct xfs_perag *pag,
75f3cb13
DC
103 int (*execute)(struct xfs_inode *ip,
104 struct xfs_perag *pag, int flags),
65d0f205 105 int flags)
75f3cb13 106{
75f3cb13
DC
107 uint32_t first_index;
108 int last_error = 0;
109 int skipped;
65d0f205 110 int done;
78ae5256 111 int nr_found;
75f3cb13
DC
112
113restart:
65d0f205 114 done = 0;
75f3cb13
DC
115 skipped = 0;
116 first_index = 0;
78ae5256 117 nr_found = 0;
75f3cb13 118 do {
78ae5256 119 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 120 int error = 0;
78ae5256 121 int i;
75f3cb13 122
1a3e8f3d 123 rcu_read_lock();
65d0f205 124 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
125 (void **)batch, first_index,
126 XFS_LOOKUP_BATCH);
65d0f205 127 if (!nr_found) {
1a3e8f3d 128 rcu_read_unlock();
75f3cb13 129 break;
c8e20be0 130 }
75f3cb13 131
65d0f205 132 /*
78ae5256
DC
133 * Grab the inodes before we drop the lock. if we found
134 * nothing, nr == 0 and the loop will be skipped.
65d0f205 135 */
78ae5256
DC
136 for (i = 0; i < nr_found; i++) {
137 struct xfs_inode *ip = batch[i];
138
139 if (done || xfs_inode_ag_walk_grab(ip))
140 batch[i] = NULL;
141
142 /*
1a3e8f3d
DC
143 * Update the index for the next lookup. Catch
144 * overflows into the next AG range which can occur if
145 * we have inodes in the last block of the AG and we
146 * are currently pointing to the last inode.
147 *
148 * Because we may see inodes that are from the wrong AG
149 * due to RCU freeing and reallocation, only update the
150 * index if it lies in this AG. It was a race that lead
151 * us to see this inode, so another lookup from the
152 * same index will not find it again.
78ae5256 153 */
1a3e8f3d
DC
154 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
155 continue;
78ae5256
DC
156 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
157 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
158 done = 1;
e13de955 159 }
78ae5256
DC
160
161 /* unlock now we've grabbed the inodes. */
1a3e8f3d 162 rcu_read_unlock();
e13de955 163
78ae5256
DC
164 for (i = 0; i < nr_found; i++) {
165 if (!batch[i])
166 continue;
167 error = execute(batch[i], pag, flags);
168 IRELE(batch[i]);
169 if (error == EAGAIN) {
170 skipped++;
171 continue;
172 }
173 if (error && last_error != EFSCORRUPTED)
174 last_error = error;
75f3cb13 175 }
c8e20be0
DC
176
177 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
178 if (error == EFSCORRUPTED)
179 break;
180
78ae5256 181 } while (nr_found && !done);
75f3cb13
DC
182
183 if (skipped) {
184 delay(1);
185 goto restart;
186 }
75f3cb13
DC
187 return last_error;
188}
189
fe588ed3 190int
75f3cb13
DC
191xfs_inode_ag_iterator(
192 struct xfs_mount *mp,
193 int (*execute)(struct xfs_inode *ip,
194 struct xfs_perag *pag, int flags),
65d0f205 195 int flags)
75f3cb13 196{
16fd5367 197 struct xfs_perag *pag;
75f3cb13
DC
198 int error = 0;
199 int last_error = 0;
200 xfs_agnumber_t ag;
201
16fd5367 202 ag = 0;
65d0f205
DC
203 while ((pag = xfs_perag_get(mp, ag))) {
204 ag = pag->pag_agno + 1;
205 error = xfs_inode_ag_walk(mp, pag, execute, flags);
5017e97d 206 xfs_perag_put(pag);
75f3cb13
DC
207 if (error) {
208 last_error = error;
209 if (error == EFSCORRUPTED)
210 break;
211 }
212 }
213 return XFS_ERROR(last_error);
214}
215
5a34d5cd
DC
216STATIC int
217xfs_sync_inode_data(
218 struct xfs_inode *ip,
75f3cb13 219 struct xfs_perag *pag,
5a34d5cd
DC
220 int flags)
221{
222 struct inode *inode = VFS_I(ip);
223 struct address_space *mapping = inode->i_mapping;
224 int error = 0;
225
226 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
227 goto out_wait;
228
229 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
230 if (flags & SYNC_TRYLOCK)
231 goto out_wait;
232 xfs_ilock(ip, XFS_IOLOCK_SHARED);
233 }
234
235 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0cadda1c 236 0 : XBF_ASYNC, FI_NONE);
5a34d5cd
DC
237 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
238
239 out_wait:
b0710ccc 240 if (flags & SYNC_WAIT)
5a34d5cd
DC
241 xfs_ioend_wait(ip);
242 return error;
243}
244
845b6d0c
CH
245STATIC int
246xfs_sync_inode_attr(
247 struct xfs_inode *ip,
75f3cb13 248 struct xfs_perag *pag,
845b6d0c
CH
249 int flags)
250{
251 int error = 0;
252
253 xfs_ilock(ip, XFS_ILOCK_SHARED);
254 if (xfs_inode_clean(ip))
255 goto out_unlock;
256 if (!xfs_iflock_nowait(ip)) {
257 if (!(flags & SYNC_WAIT))
258 goto out_unlock;
259 xfs_iflock(ip);
260 }
261
262 if (xfs_inode_clean(ip)) {
263 xfs_ifunlock(ip);
264 goto out_unlock;
265 }
266
c854363e 267 error = xfs_iflush(ip, flags);
845b6d0c
CH
268
269 out_unlock:
270 xfs_iunlock(ip, XFS_ILOCK_SHARED);
271 return error;
272}
273
075fe102
CH
274/*
275 * Write out pagecache data for the whole filesystem.
276 */
64c86149 277STATIC int
075fe102
CH
278xfs_sync_data(
279 struct xfs_mount *mp,
280 int flags)
683a8970 281{
075fe102 282 int error;
fe4fa4b8 283
b0710ccc 284 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 285
65d0f205 286 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
075fe102
CH
287 if (error)
288 return XFS_ERROR(error);
e9f1c6ee 289
a14a348b 290 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
075fe102
CH
291 return 0;
292}
e9f1c6ee 293
075fe102
CH
294/*
295 * Write out inode metadata (attributes) for the whole filesystem.
296 */
64c86149 297STATIC int
075fe102
CH
298xfs_sync_attr(
299 struct xfs_mount *mp,
300 int flags)
301{
302 ASSERT((flags & ~SYNC_WAIT) == 0);
75f3cb13 303
65d0f205 304 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
fe4fa4b8
DC
305}
306
5d77c0dc 307STATIC int
2af75df7 308xfs_sync_fsdata(
df308bcf 309 struct xfs_mount *mp)
2af75df7
CH
310{
311 struct xfs_buf *bp;
2af75df7
CH
312
313 /*
df308bcf
CH
314 * If the buffer is pinned then push on the log so we won't get stuck
315 * waiting in the write for someone, maybe ourselves, to flush the log.
316 *
317 * Even though we just pushed the log above, we did not have the
318 * superblock buffer locked at that point so it can become pinned in
319 * between there and here.
2af75df7 320 */
df308bcf
CH
321 bp = xfs_getsb(mp, 0);
322 if (XFS_BUF_ISPINNED(bp))
323 xfs_log_force(mp, 0);
2af75df7 324
df308bcf 325 return xfs_bwrite(mp, bp);
e9f1c6ee
DC
326}
327
328/*
a4e4c4f4
DC
329 * When remounting a filesystem read-only or freezing the filesystem, we have
330 * two phases to execute. This first phase is syncing the data before we
331 * quiesce the filesystem, and the second is flushing all the inodes out after
332 * we've waited for all the transactions created by the first phase to
333 * complete. The second phase ensures that the inodes are written to their
334 * location on disk rather than just existing in transactions in the log. This
335 * means after a quiesce there is no log replay required to write the inodes to
336 * disk (this is the main difference between a sync and a quiesce).
337 */
338/*
339 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
340 * so we flush delwri and delalloc buffers here, then wait for all I/O to
341 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
342 * transactions can still occur here so don't bother flushing the buftarg
343 * because it'll just get dirty again.
e9f1c6ee
DC
344 */
345int
346xfs_quiesce_data(
347 struct xfs_mount *mp)
348{
df308bcf 349 int error, error2 = 0;
e9f1c6ee
DC
350
351 /* push non-blocking */
075fe102 352 xfs_sync_data(mp, 0);
8b5403a6 353 xfs_qm_sync(mp, SYNC_TRYLOCK);
e9f1c6ee 354
c90b07e8 355 /* push and block till complete */
b0710ccc 356 xfs_sync_data(mp, SYNC_WAIT);
7d095257 357 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 358
a4e4c4f4 359 /* write superblock and hoover up shutdown errors */
df308bcf
CH
360 error = xfs_sync_fsdata(mp);
361
362 /* make sure all delwri buffers are written out */
363 xfs_flush_buftarg(mp->m_ddev_targp, 1);
364
365 /* mark the log as covered if needed */
366 if (xfs_log_need_covered(mp))
c58efdb4 367 error2 = xfs_fs_log_dummy(mp);
e9f1c6ee 368
a4e4c4f4 369 /* flush data-only devices */
e9f1c6ee
DC
370 if (mp->m_rtdev_targp)
371 XFS_bflush(mp->m_rtdev_targp);
372
df308bcf 373 return error ? error : error2;
2af75df7
CH
374}
375
76bf105c
DC
376STATIC void
377xfs_quiesce_fs(
378 struct xfs_mount *mp)
379{
380 int count = 0, pincount;
381
c854363e 382 xfs_reclaim_inodes(mp, 0);
76bf105c 383 xfs_flush_buftarg(mp->m_ddev_targp, 0);
76bf105c
DC
384
385 /*
386 * This loop must run at least twice. The first instance of the loop
387 * will flush most meta data but that will generate more meta data
388 * (typically directory updates). Which then must be flushed and
c854363e
DC
389 * logged before we can write the unmount record. We also so sync
390 * reclaim of inodes to catch any that the above delwri flush skipped.
76bf105c
DC
391 */
392 do {
c854363e 393 xfs_reclaim_inodes(mp, SYNC_WAIT);
075fe102 394 xfs_sync_attr(mp, SYNC_WAIT);
76bf105c
DC
395 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
396 if (!pincount) {
397 delay(50);
398 count++;
399 }
400 } while (count < 2);
401}
402
403/*
404 * Second stage of a quiesce. The data is already synced, now we have to take
405 * care of the metadata. New transactions are already blocked, so we need to
406 * wait for any remaining transactions to drain out before proceding.
407 */
408void
409xfs_quiesce_attr(
410 struct xfs_mount *mp)
411{
412 int error = 0;
413
414 /* wait for all modifications to complete */
415 while (atomic_read(&mp->m_active_trans) > 0)
416 delay(100);
417
418 /* flush inodes and push all remaining buffers out to disk */
419 xfs_quiesce_fs(mp);
420
5e106572
FB
421 /*
422 * Just warn here till VFS can correctly support
423 * read-only remount without racing.
424 */
425 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
426
427 /* Push the superblock and write an unmount record */
428 error = xfs_log_sbcount(mp, 1);
429 if (error)
4f10700a 430 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
76bf105c
DC
431 "Frozen image may not be consistent.");
432 xfs_log_unmount_write(mp);
433 xfs_unmountfs_writesb(mp);
434}
435
c6d09b66
DC
436static void
437xfs_syncd_queue_sync(
438 struct xfs_mount *mp)
439{
440 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
441 msecs_to_jiffies(xfs_syncd_centisecs * 10));
442}
443
444/*
445 * Every sync period we need to unpin all items, reclaim inodes and sync
446 * disk quotas. We might need to cover the log to indicate that the
447 * filesystem is idle and not frozen.
448 */
449STATIC void
450xfs_sync_worker(
451 struct work_struct *work)
452{
453 struct xfs_mount *mp = container_of(to_delayed_work(work),
454 struct xfs_mount, m_sync_work);
455 int error;
456
457 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
458 /* dgc: errors ignored here */
459 if (mp->m_super->s_frozen == SB_UNFROZEN &&
460 xfs_log_need_covered(mp))
461 error = xfs_fs_log_dummy(mp);
462 else
463 xfs_log_force(mp, 0);
464 xfs_reclaim_inodes(mp, 0);
465 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
466 }
467
468 /* queue us up again */
469 xfs_syncd_queue_sync(mp);
470}
471
89e4cb55
DC
472/*
473 * Flush delayed allocate data, attempting to free up reserved space
474 * from existing allocations. At this point a new allocation attempt
475 * has failed with ENOSPC and we are in the process of scratching our
476 * heads, looking about for more room.
477 *
478 * Queue a new data flush if there isn't one already in progress and
479 * wait for completion of the flush. This means that we only ever have one
480 * inode flush in progress no matter how many ENOSPC events are occurring and
481 * so will prevent the system from bogging down due to every concurrent
482 * ENOSPC event scanning all the active inodes in the system for writeback.
483 */
484void
485xfs_flush_inodes(
486 struct xfs_inode *ip)
487{
488 struct xfs_mount *mp = ip->i_mount;
489
490 queue_work(xfs_syncd_wq, &mp->m_flush_work);
491 flush_work_sync(&mp->m_flush_work);
492}
493
494STATIC void
495xfs_flush_worker(
496 struct work_struct *work)
497{
498 struct xfs_mount *mp = container_of(work,
499 struct xfs_mount, m_flush_work);
500
501 xfs_sync_data(mp, SYNC_TRYLOCK);
502 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
503}
504
a167b17e
DC
505int
506xfs_syncd_init(
507 struct xfs_mount *mp)
508{
89e4cb55 509 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
c6d09b66
DC
510 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
511 xfs_syncd_queue_sync(mp);
512
a167b17e
DC
513 return 0;
514}
515
516void
517xfs_syncd_stop(
518 struct xfs_mount *mp)
519{
c6d09b66 520 cancel_delayed_work_sync(&mp->m_sync_work);
89e4cb55 521 cancel_work_sync(&mp->m_flush_work);
a167b17e
DC
522}
523
bc990f5c
CH
524void
525__xfs_inode_set_reclaim_tag(
526 struct xfs_perag *pag,
527 struct xfs_inode *ip)
528{
529 radix_tree_tag_set(&pag->pag_ici_root,
530 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
531 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
532
533 if (!pag->pag_ici_reclaimable) {
534 /* propagate the reclaim tag up into the perag radix tree */
535 spin_lock(&ip->i_mount->m_perag_lock);
536 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
537 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
538 XFS_ICI_RECLAIM_TAG);
539 spin_unlock(&ip->i_mount->m_perag_lock);
540 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
541 -1, _RET_IP_);
542 }
9bf729c0 543 pag->pag_ici_reclaimable++;
bc990f5c
CH
544}
545
11654513
DC
546/*
547 * We set the inode flag atomically with the radix tree tag.
548 * Once we get tag lookups on the radix tree, this inode flag
549 * can go away.
550 */
396beb85
DC
551void
552xfs_inode_set_reclaim_tag(
553 xfs_inode_t *ip)
554{
5017e97d
DC
555 struct xfs_mount *mp = ip->i_mount;
556 struct xfs_perag *pag;
396beb85 557
5017e97d 558 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 559 spin_lock(&pag->pag_ici_lock);
396beb85 560 spin_lock(&ip->i_flags_lock);
bc990f5c 561 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 562 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 563 spin_unlock(&ip->i_flags_lock);
1a427ab0 564 spin_unlock(&pag->pag_ici_lock);
5017e97d 565 xfs_perag_put(pag);
396beb85
DC
566}
567
081003ff
JW
568STATIC void
569__xfs_inode_clear_reclaim(
396beb85
DC
570 xfs_perag_t *pag,
571 xfs_inode_t *ip)
572{
9bf729c0 573 pag->pag_ici_reclaimable--;
16fd5367
DC
574 if (!pag->pag_ici_reclaimable) {
575 /* clear the reclaim tag from the perag radix tree */
576 spin_lock(&ip->i_mount->m_perag_lock);
577 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
578 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
579 XFS_ICI_RECLAIM_TAG);
580 spin_unlock(&ip->i_mount->m_perag_lock);
581 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
582 -1, _RET_IP_);
583 }
396beb85
DC
584}
585
081003ff
JW
586void
587__xfs_inode_clear_reclaim_tag(
588 xfs_mount_t *mp,
589 xfs_perag_t *pag,
590 xfs_inode_t *ip)
591{
592 radix_tree_tag_clear(&pag->pag_ici_root,
593 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
594 __xfs_inode_clear_reclaim(pag, ip);
595}
596
e3a20c0b
DC
597/*
598 * Grab the inode for reclaim exclusively.
599 * Return 0 if we grabbed it, non-zero otherwise.
600 */
601STATIC int
602xfs_reclaim_inode_grab(
603 struct xfs_inode *ip,
604 int flags)
605{
1a3e8f3d
DC
606 ASSERT(rcu_read_lock_held());
607
608 /* quick check for stale RCU freed inode */
609 if (!ip->i_ino)
610 return 1;
e3a20c0b
DC
611
612 /*
1a3e8f3d 613 * do some unlocked checks first to avoid unnecessary lock traffic.
e3a20c0b
DC
614 * The first is a flush lock check, the second is a already in reclaim
615 * check. Only do these checks if we are not going to block on locks.
616 */
617 if ((flags & SYNC_TRYLOCK) &&
618 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
619 return 1;
620 }
621
622 /*
623 * The radix tree lock here protects a thread in xfs_iget from racing
624 * with us starting reclaim on the inode. Once we have the
625 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
626 *
627 * Due to RCU lookup, we may find inodes that have been freed and only
628 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
629 * aren't candidates for reclaim at all, so we must check the
630 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
631 */
632 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
633 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
634 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
635 /* not a reclaim candidate. */
e3a20c0b
DC
636 spin_unlock(&ip->i_flags_lock);
637 return 1;
638 }
639 __xfs_iflags_set(ip, XFS_IRECLAIM);
640 spin_unlock(&ip->i_flags_lock);
641 return 0;
642}
643
777df5af
DC
644/*
645 * Inodes in different states need to be treated differently, and the return
646 * value of xfs_iflush is not sufficient to get this right. The following table
647 * lists the inode states and the reclaim actions necessary for non-blocking
648 * reclaim:
649 *
650 *
651 * inode state iflush ret required action
652 * --------------- ---------- ---------------
653 * bad - reclaim
654 * shutdown EIO unpin and reclaim
655 * clean, unpinned 0 reclaim
656 * stale, unpinned 0 reclaim
c854363e
DC
657 * clean, pinned(*) 0 requeue
658 * stale, pinned EAGAIN requeue
659 * dirty, delwri ok 0 requeue
660 * dirty, delwri blocked EAGAIN requeue
661 * dirty, sync flush 0 reclaim
777df5af
DC
662 *
663 * (*) dgc: I don't think the clean, pinned state is possible but it gets
664 * handled anyway given the order of checks implemented.
665 *
c854363e
DC
666 * As can be seen from the table, the return value of xfs_iflush() is not
667 * sufficient to correctly decide the reclaim action here. The checks in
668 * xfs_iflush() might look like duplicates, but they are not.
669 *
670 * Also, because we get the flush lock first, we know that any inode that has
671 * been flushed delwri has had the flush completed by the time we check that
672 * the inode is clean. The clean inode check needs to be done before flushing
673 * the inode delwri otherwise we would loop forever requeuing clean inodes as
674 * we cannot tell apart a successful delwri flush and a clean inode from the
675 * return value of xfs_iflush().
676 *
677 * Note that because the inode is flushed delayed write by background
678 * writeback, the flush lock may already be held here and waiting on it can
679 * result in very long latencies. Hence for sync reclaims, where we wait on the
680 * flush lock, the caller should push out delayed write inodes first before
681 * trying to reclaim them to minimise the amount of time spent waiting. For
682 * background relaim, we just requeue the inode for the next pass.
683 *
777df5af
DC
684 * Hence the order of actions after gaining the locks should be:
685 * bad => reclaim
686 * shutdown => unpin and reclaim
c854363e
DC
687 * pinned, delwri => requeue
688 * pinned, sync => unpin
777df5af
DC
689 * stale => reclaim
690 * clean => reclaim
c854363e
DC
691 * dirty, delwri => flush and requeue
692 * dirty, sync => flush, wait and reclaim
777df5af 693 */
75f3cb13 694STATIC int
c8e20be0 695xfs_reclaim_inode(
75f3cb13
DC
696 struct xfs_inode *ip,
697 struct xfs_perag *pag,
c8e20be0 698 int sync_mode)
fce08f2f 699{
1bfd8d04 700 int error;
777df5af 701
1bfd8d04
DC
702restart:
703 error = 0;
c8e20be0 704 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
705 if (!xfs_iflock_nowait(ip)) {
706 if (!(sync_mode & SYNC_WAIT))
707 goto out;
708 xfs_iflock(ip);
709 }
7a3be02b 710
777df5af
DC
711 if (is_bad_inode(VFS_I(ip)))
712 goto reclaim;
713 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
714 xfs_iunpin_wait(ip);
715 goto reclaim;
716 }
c854363e
DC
717 if (xfs_ipincount(ip)) {
718 if (!(sync_mode & SYNC_WAIT)) {
719 xfs_ifunlock(ip);
720 goto out;
721 }
777df5af 722 xfs_iunpin_wait(ip);
c854363e 723 }
777df5af
DC
724 if (xfs_iflags_test(ip, XFS_ISTALE))
725 goto reclaim;
726 if (xfs_inode_clean(ip))
727 goto reclaim;
728
1bfd8d04
DC
729 /*
730 * Now we have an inode that needs flushing.
731 *
732 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
733 * reclaim as we can deadlock with inode cluster removal.
734 * xfs_ifree_cluster() can lock the inode buffer before it locks the
735 * ip->i_lock, and we are doing the exact opposite here. As a result,
736 * doing a blocking xfs_itobp() to get the cluster buffer will result
737 * in an ABBA deadlock with xfs_ifree_cluster().
738 *
739 * As xfs_ifree_cluser() must gather all inodes that are active in the
740 * cache to mark them stale, if we hit this case we don't actually want
741 * to do IO here - we want the inode marked stale so we can simply
742 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
743 * just unlock the inode, back off and try again. Hopefully the next
744 * pass through will see the stale flag set on the inode.
745 */
746 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
c854363e 747 if (sync_mode & SYNC_WAIT) {
1bfd8d04
DC
748 if (error == EAGAIN) {
749 xfs_iunlock(ip, XFS_ILOCK_EXCL);
750 /* backoff longer than in xfs_ifree_cluster */
751 delay(2);
752 goto restart;
753 }
c854363e
DC
754 xfs_iflock(ip);
755 goto reclaim;
c8e20be0
DC
756 }
757
c854363e
DC
758 /*
759 * When we have to flush an inode but don't have SYNC_WAIT set, we
760 * flush the inode out using a delwri buffer and wait for the next
761 * call into reclaim to find it in a clean state instead of waiting for
762 * it now. We also don't return errors here - if the error is transient
763 * then the next reclaim pass will flush the inode, and if the error
f1d486a3 764 * is permanent then the next sync reclaim will reclaim the inode and
c854363e
DC
765 * pass on the error.
766 */
f1d486a3 767 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 768 xfs_warn(ip->i_mount,
c854363e
DC
769 "inode 0x%llx background reclaim flush failed with %d",
770 (long long)ip->i_ino, error);
771 }
772out:
773 xfs_iflags_clear(ip, XFS_IRECLAIM);
774 xfs_iunlock(ip, XFS_ILOCK_EXCL);
775 /*
776 * We could return EAGAIN here to make reclaim rescan the inode tree in
777 * a short while. However, this just burns CPU time scanning the tree
778 * waiting for IO to complete and xfssyncd never goes back to the idle
779 * state. Instead, return 0 to let the next scheduled background reclaim
780 * attempt to reclaim the inode again.
781 */
782 return 0;
783
777df5af
DC
784reclaim:
785 xfs_ifunlock(ip);
c8e20be0 786 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
787
788 XFS_STATS_INC(xs_ig_reclaims);
789 /*
790 * Remove the inode from the per-AG radix tree.
791 *
792 * Because radix_tree_delete won't complain even if the item was never
793 * added to the tree assert that it's been there before to catch
794 * problems with the inode life time early on.
795 */
1a427ab0 796 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
797 if (!radix_tree_delete(&pag->pag_ici_root,
798 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
799 ASSERT(0);
081003ff 800 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 801 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
802
803 /*
804 * Here we do an (almost) spurious inode lock in order to coordinate
805 * with inode cache radix tree lookups. This is because the lookup
806 * can reference the inodes in the cache without taking references.
807 *
808 * We make that OK here by ensuring that we wait until the inode is
809 * unlocked after the lookup before we go ahead and free it. We get
810 * both the ilock and the iolock because the code may need to drop the
811 * ilock one but will still hold the iolock.
812 */
813 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
814 xfs_qm_dqdetach(ip);
815 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
816
817 xfs_inode_free(ip);
c854363e
DC
818 return error;
819
7a3be02b
DC
820}
821
65d0f205
DC
822/*
823 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
824 * corrupted, we still want to try to reclaim all the inodes. If we don't,
825 * then a shut down during filesystem unmount reclaim walk leak all the
826 * unreclaimed inodes.
827 */
828int
829xfs_reclaim_inodes_ag(
830 struct xfs_mount *mp,
831 int flags,
832 int *nr_to_scan)
833{
834 struct xfs_perag *pag;
835 int error = 0;
836 int last_error = 0;
837 xfs_agnumber_t ag;
69b491c2
DC
838 int trylock = flags & SYNC_TRYLOCK;
839 int skipped;
65d0f205 840
69b491c2 841restart:
65d0f205 842 ag = 0;
69b491c2 843 skipped = 0;
65d0f205
DC
844 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
845 unsigned long first_index = 0;
846 int done = 0;
e3a20c0b 847 int nr_found = 0;
65d0f205
DC
848
849 ag = pag->pag_agno + 1;
850
69b491c2
DC
851 if (trylock) {
852 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
853 skipped++;
f83282a8 854 xfs_perag_put(pag);
69b491c2
DC
855 continue;
856 }
857 first_index = pag->pag_ici_reclaim_cursor;
858 } else
859 mutex_lock(&pag->pag_ici_reclaim_lock);
860
65d0f205 861 do {
e3a20c0b
DC
862 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
863 int i;
65d0f205 864
1a3e8f3d 865 rcu_read_lock();
e3a20c0b
DC
866 nr_found = radix_tree_gang_lookup_tag(
867 &pag->pag_ici_root,
868 (void **)batch, first_index,
869 XFS_LOOKUP_BATCH,
65d0f205
DC
870 XFS_ICI_RECLAIM_TAG);
871 if (!nr_found) {
1a3e8f3d 872 rcu_read_unlock();
65d0f205
DC
873 break;
874 }
875
876 /*
e3a20c0b
DC
877 * Grab the inodes before we drop the lock. if we found
878 * nothing, nr == 0 and the loop will be skipped.
65d0f205 879 */
e3a20c0b
DC
880 for (i = 0; i < nr_found; i++) {
881 struct xfs_inode *ip = batch[i];
882
883 if (done || xfs_reclaim_inode_grab(ip, flags))
884 batch[i] = NULL;
885
886 /*
887 * Update the index for the next lookup. Catch
888 * overflows into the next AG range which can
889 * occur if we have inodes in the last block of
890 * the AG and we are currently pointing to the
891 * last inode.
1a3e8f3d
DC
892 *
893 * Because we may see inodes that are from the
894 * wrong AG due to RCU freeing and
895 * reallocation, only update the index if it
896 * lies in this AG. It was a race that lead us
897 * to see this inode, so another lookup from
898 * the same index will not find it again.
e3a20c0b 899 */
1a3e8f3d
DC
900 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
901 pag->pag_agno)
902 continue;
e3a20c0b
DC
903 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
904 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
905 done = 1;
906 }
65d0f205 907
e3a20c0b 908 /* unlock now we've grabbed the inodes. */
1a3e8f3d 909 rcu_read_unlock();
e3a20c0b
DC
910
911 for (i = 0; i < nr_found; i++) {
912 if (!batch[i])
913 continue;
914 error = xfs_reclaim_inode(batch[i], pag, flags);
915 if (error && last_error != EFSCORRUPTED)
916 last_error = error;
917 }
918
919 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 920
e3a20c0b 921 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 922
69b491c2
DC
923 if (trylock && !done)
924 pag->pag_ici_reclaim_cursor = first_index;
925 else
926 pag->pag_ici_reclaim_cursor = 0;
927 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
928 xfs_perag_put(pag);
929 }
69b491c2
DC
930
931 /*
932 * if we skipped any AG, and we still have scan count remaining, do
933 * another pass this time using blocking reclaim semantics (i.e
934 * waiting on the reclaim locks and ignoring the reclaim cursors). This
935 * ensure that when we get more reclaimers than AGs we block rather
936 * than spin trying to execute reclaim.
937 */
938 if (trylock && skipped && *nr_to_scan > 0) {
939 trylock = 0;
940 goto restart;
941 }
65d0f205
DC
942 return XFS_ERROR(last_error);
943}
944
7a3be02b
DC
945int
946xfs_reclaim_inodes(
947 xfs_mount_t *mp,
7a3be02b
DC
948 int mode)
949{
65d0f205
DC
950 int nr_to_scan = INT_MAX;
951
952 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
953}
954
955/*
956 * Shrinker infrastructure.
9bf729c0 957 */
9bf729c0
DC
958static int
959xfs_reclaim_inode_shrink(
7f8275d0 960 struct shrinker *shrink,
9bf729c0
DC
961 int nr_to_scan,
962 gfp_t gfp_mask)
963{
964 struct xfs_mount *mp;
965 struct xfs_perag *pag;
966 xfs_agnumber_t ag;
16fd5367 967 int reclaimable;
9bf729c0 968
70e60ce7 969 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
9bf729c0
DC
970 if (nr_to_scan) {
971 if (!(gfp_mask & __GFP_FS))
972 return -1;
973
e3a20c0b 974 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK, &nr_to_scan);
65d0f205 975 /* terminate if we don't exhaust the scan */
70e60ce7
DC
976 if (nr_to_scan > 0)
977 return -1;
978 }
9bf729c0 979
16fd5367
DC
980 reclaimable = 0;
981 ag = 0;
65d0f205
DC
982 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
983 ag = pag->pag_agno + 1;
70e60ce7
DC
984 reclaimable += pag->pag_ici_reclaimable;
985 xfs_perag_put(pag);
9bf729c0 986 }
9bf729c0
DC
987 return reclaimable;
988}
989
9bf729c0
DC
990void
991xfs_inode_shrinker_register(
992 struct xfs_mount *mp)
993{
70e60ce7
DC
994 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
995 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
996 register_shrinker(&mp->m_inode_shrink);
9bf729c0
DC
997}
998
999void
1000xfs_inode_shrinker_unregister(
1001 struct xfs_mount *mp)
1002{
70e60ce7 1003 unregister_shrinker(&mp->m_inode_shrink);
fce08f2f 1004}
This page took 0.158902 seconds and 5 git commands to generate.