Merge tag 'mac80211-for-davem-2015-12-15' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
4fb6e8ad 37#include "xfs_format.h"
239880ef 38#include "xfs_log_format.h"
7fd36c44 39#include "xfs_trans_resv.h"
239880ef 40#include "xfs_sb.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
239880ef 43#include "xfs_log.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
23ea4032 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
430cbeb8
DC
82/*
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
87 *
88 * This prevents build-up of stale buffers on the LRU.
89 */
90void
91xfs_buf_stale(
92 struct xfs_buf *bp)
93{
43ff2122
CH
94 ASSERT(xfs_buf_islocked(bp));
95
430cbeb8 96 bp->b_flags |= XBF_STALE;
43ff2122
CH
97
98 /*
99 * Clear the delwri status so that a delwri queue walker will not
100 * flush this buffer to disk now that it is stale. The delwri queue has
101 * a reference to the buffer, so this is safe to do.
102 */
103 bp->b_flags &= ~_XBF_DELWRI_Q;
104
a4082357
DC
105 spin_lock(&bp->b_lock);
106 atomic_set(&bp->b_lru_ref, 0);
107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 atomic_dec(&bp->b_hold);
110
430cbeb8 111 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 112 spin_unlock(&bp->b_lock);
430cbeb8 113}
1da177e4 114
3e85c868
DC
115static int
116xfs_buf_get_maps(
117 struct xfs_buf *bp,
118 int map_count)
119{
120 ASSERT(bp->b_maps == NULL);
121 bp->b_map_count = map_count;
122
123 if (map_count == 1) {
f4b42421 124 bp->b_maps = &bp->__b_map;
3e85c868
DC
125 return 0;
126 }
127
128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129 KM_NOFS);
130 if (!bp->b_maps)
2451337d 131 return -ENOMEM;
3e85c868
DC
132 return 0;
133}
134
135/*
136 * Frees b_pages if it was allocated.
137 */
138static void
139xfs_buf_free_maps(
140 struct xfs_buf *bp)
141{
f4b42421 142 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
143 kmem_free(bp->b_maps);
144 bp->b_maps = NULL;
145 }
146}
147
4347b9d7 148struct xfs_buf *
3e85c868 149_xfs_buf_alloc(
4347b9d7 150 struct xfs_buftarg *target,
3e85c868
DC
151 struct xfs_buf_map *map,
152 int nmaps,
ce8e922c 153 xfs_buf_flags_t flags)
1da177e4 154{
4347b9d7 155 struct xfs_buf *bp;
3e85c868
DC
156 int error;
157 int i;
4347b9d7 158
aa5c158e 159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
160 if (unlikely(!bp))
161 return NULL;
162
1da177e4 163 /*
12bcb3f7
DC
164 * We don't want certain flags to appear in b_flags unless they are
165 * specifically set by later operations on the buffer.
1da177e4 166 */
611c9946 167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 168
ce8e922c 169 atomic_set(&bp->b_hold, 1);
430cbeb8 170 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 171 init_completion(&bp->b_iowait);
430cbeb8 172 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 173 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 174 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 175 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 176 spin_lock_init(&bp->b_lock);
ce8e922c
NS
177 XB_SET_OWNER(bp);
178 bp->b_target = target;
3e85c868 179 bp->b_flags = flags;
de1cbee4 180
1da177e4 181 /*
aa0e8833
DC
182 * Set length and io_length to the same value initially.
183 * I/O routines should use io_length, which will be the same in
1da177e4
LT
184 * most cases but may be reset (e.g. XFS recovery).
185 */
3e85c868
DC
186 error = xfs_buf_get_maps(bp, nmaps);
187 if (error) {
188 kmem_zone_free(xfs_buf_zone, bp);
189 return NULL;
190 }
191
192 bp->b_bn = map[0].bm_bn;
193 bp->b_length = 0;
194 for (i = 0; i < nmaps; i++) {
195 bp->b_maps[i].bm_bn = map[i].bm_bn;
196 bp->b_maps[i].bm_len = map[i].bm_len;
197 bp->b_length += map[i].bm_len;
198 }
199 bp->b_io_length = bp->b_length;
200
ce8e922c
NS
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
203
ff6d6af2 204 XFS_STATS_INC(target->bt_mount, xb_create);
0b1b213f 205 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
206
207 return bp;
1da177e4
LT
208}
209
210/*
ce8e922c
NS
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
1da177e4
LT
213 */
214STATIC int
ce8e922c
NS
215_xfs_buf_get_pages(
216 xfs_buf_t *bp,
87937bf8 217 int page_count)
1da177e4
LT
218{
219 /* Make sure that we have a page list */
ce8e922c 220 if (bp->b_pages == NULL) {
ce8e922c
NS
221 bp->b_page_count = page_count;
222 if (page_count <= XB_PAGES) {
223 bp->b_pages = bp->b_page_array;
1da177e4 224 } else {
ce8e922c 225 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 226 page_count, KM_NOFS);
ce8e922c 227 if (bp->b_pages == NULL)
1da177e4
LT
228 return -ENOMEM;
229 }
ce8e922c 230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
231 }
232 return 0;
233}
234
235/*
ce8e922c 236 * Frees b_pages if it was allocated.
1da177e4
LT
237 */
238STATIC void
ce8e922c 239_xfs_buf_free_pages(
1da177e4
LT
240 xfs_buf_t *bp)
241{
ce8e922c 242 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 243 kmem_free(bp->b_pages);
3fc98b1a 244 bp->b_pages = NULL;
1da177e4
LT
245 }
246}
247
248/*
249 * Releases the specified buffer.
250 *
251 * The modification state of any associated pages is left unchanged.
b46fe825 252 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
253 * hashed and refcounted buffers
254 */
255void
ce8e922c 256xfs_buf_free(
1da177e4
LT
257 xfs_buf_t *bp)
258{
0b1b213f 259 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 260
430cbeb8
DC
261 ASSERT(list_empty(&bp->b_lru));
262
0e6e847f 263 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
264 uint i;
265
73c77e2c 266 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
267 vm_unmap_ram(bp->b_addr - bp->b_offset,
268 bp->b_page_count);
1da177e4 269
948ecdb4
NS
270 for (i = 0; i < bp->b_page_count; i++) {
271 struct page *page = bp->b_pages[i];
272
0e6e847f 273 __free_page(page);
948ecdb4 274 }
0e6e847f
DC
275 } else if (bp->b_flags & _XBF_KMEM)
276 kmem_free(bp->b_addr);
3fc98b1a 277 _xfs_buf_free_pages(bp);
3e85c868 278 xfs_buf_free_maps(bp);
4347b9d7 279 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
280}
281
282/*
0e6e847f 283 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
284 */
285STATIC int
0e6e847f 286xfs_buf_allocate_memory(
1da177e4
LT
287 xfs_buf_t *bp,
288 uint flags)
289{
aa0e8833 290 size_t size;
1da177e4 291 size_t nbytes, offset;
ce8e922c 292 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 293 unsigned short page_count, i;
795cac72 294 xfs_off_t start, end;
1da177e4
LT
295 int error;
296
0e6e847f
DC
297 /*
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
301 */
795cac72
DC
302 size = BBTOB(bp->b_length);
303 if (size < PAGE_SIZE) {
aa5c158e 304 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
795cac72 310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
311 ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp->b_addr);
314 bp->b_addr = NULL;
315 goto use_alloc_page;
316 }
317 bp->b_offset = offset_in_page(bp->b_addr);
318 bp->b_pages = bp->b_page_array;
319 bp->b_pages[0] = virt_to_page(bp->b_addr);
320 bp->b_page_count = 1;
611c9946 321 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
322 return 0;
323 }
324
325use_alloc_page:
f4b42421
MT
326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 328 >> PAGE_SHIFT;
795cac72 329 page_count = end - start;
87937bf8 330 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
331 if (unlikely(error))
332 return error;
1da177e4 333
ce8e922c 334 offset = bp->b_offset;
0e6e847f 335 bp->b_flags |= _XBF_PAGES;
1da177e4 336
ce8e922c 337 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
338 struct page *page;
339 uint retries = 0;
0e6e847f
DC
340retry:
341 page = alloc_page(gfp_mask);
1da177e4 342 if (unlikely(page == NULL)) {
ce8e922c
NS
343 if (flags & XBF_READ_AHEAD) {
344 bp->b_page_count = i;
2451337d 345 error = -ENOMEM;
0e6e847f 346 goto out_free_pages;
1da177e4
LT
347 }
348
349 /*
350 * This could deadlock.
351 *
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
354 */
355 if (!(++retries % 100))
4f10700a 356 xfs_err(NULL,
5bf97b1c
TH
357 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
358 current->comm, current->pid,
34a622b2 359 __func__, gfp_mask);
1da177e4 360
ff6d6af2 361 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
8aa7e847 362 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
363 goto retry;
364 }
365
ff6d6af2 366 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
1da177e4 367
0e6e847f 368 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 369 size -= nbytes;
ce8e922c 370 bp->b_pages[i] = page;
1da177e4
LT
371 offset = 0;
372 }
0e6e847f 373 return 0;
1da177e4 374
0e6e847f
DC
375out_free_pages:
376 for (i = 0; i < bp->b_page_count; i++)
377 __free_page(bp->b_pages[i]);
1da177e4
LT
378 return error;
379}
380
381/*
25985edc 382 * Map buffer into kernel address-space if necessary.
1da177e4
LT
383 */
384STATIC int
ce8e922c 385_xfs_buf_map_pages(
1da177e4
LT
386 xfs_buf_t *bp,
387 uint flags)
388{
0e6e847f 389 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 390 if (bp->b_page_count == 1) {
0e6e847f 391 /* A single page buffer is always mappable */
ce8e922c 392 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
393 } else if (flags & XBF_UNMAPPED) {
394 bp->b_addr = NULL;
395 } else {
a19fb380 396 int retried = 0;
ae687e58
DC
397 unsigned noio_flag;
398
399 /*
400 * vm_map_ram() will allocate auxillary structures (e.g.
401 * pagetables) with GFP_KERNEL, yet we are likely to be under
402 * GFP_NOFS context here. Hence we need to tell memory reclaim
403 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
404 * memory reclaim re-entering the filesystem here and
405 * potentially deadlocking.
406 */
407 noio_flag = memalloc_noio_save();
a19fb380
DC
408 do {
409 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
410 -1, PAGE_KERNEL);
411 if (bp->b_addr)
412 break;
413 vm_unmap_aliases();
414 } while (retried++ <= 1);
ae687e58 415 memalloc_noio_restore(noio_flag);
a19fb380
DC
416
417 if (!bp->b_addr)
1da177e4 418 return -ENOMEM;
ce8e922c 419 bp->b_addr += bp->b_offset;
1da177e4
LT
420 }
421
422 return 0;
423}
424
425/*
426 * Finding and Reading Buffers
427 */
428
429/*
ce8e922c 430 * Look up, and creates if absent, a lockable buffer for
1da177e4 431 * a given range of an inode. The buffer is returned
eabbaf11 432 * locked. No I/O is implied by this call.
1da177e4
LT
433 */
434xfs_buf_t *
ce8e922c 435_xfs_buf_find(
e70b73f8 436 struct xfs_buftarg *btp,
3e85c868
DC
437 struct xfs_buf_map *map,
438 int nmaps,
ce8e922c
NS
439 xfs_buf_flags_t flags,
440 xfs_buf_t *new_bp)
1da177e4 441{
74f75a0c
DC
442 struct xfs_perag *pag;
443 struct rb_node **rbp;
444 struct rb_node *parent;
445 xfs_buf_t *bp;
3e85c868 446 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 447 xfs_daddr_t eofs;
3e85c868
DC
448 int numblks = 0;
449 int i;
1da177e4 450
3e85c868
DC
451 for (i = 0; i < nmaps; i++)
452 numblks += map[i].bm_len;
1da177e4
LT
453
454 /* Check for IOs smaller than the sector size / not sector aligned */
f79af0b9 455 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
6da54179 456 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 457
10616b80
DC
458 /*
459 * Corrupted block numbers can get through to here, unfortunately, so we
460 * have to check that the buffer falls within the filesystem bounds.
461 */
462 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
db52d09e 463 if (blkno < 0 || blkno >= eofs) {
10616b80 464 /*
2451337d 465 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
10616b80
DC
466 * but none of the higher level infrastructure supports
467 * returning a specific error on buffer lookup failures.
468 */
469 xfs_alert(btp->bt_mount,
470 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
471 __func__, blkno, eofs);
7bc0dc27 472 WARN_ON(1);
10616b80
DC
473 return NULL;
474 }
475
74f75a0c
DC
476 /* get tree root */
477 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 478 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
479
480 /* walk tree */
481 spin_lock(&pag->pag_buf_lock);
482 rbp = &pag->pag_buf_tree.rb_node;
483 parent = NULL;
484 bp = NULL;
485 while (*rbp) {
486 parent = *rbp;
487 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
488
de1cbee4 489 if (blkno < bp->b_bn)
74f75a0c 490 rbp = &(*rbp)->rb_left;
de1cbee4 491 else if (blkno > bp->b_bn)
74f75a0c
DC
492 rbp = &(*rbp)->rb_right;
493 else {
494 /*
de1cbee4 495 * found a block number match. If the range doesn't
74f75a0c
DC
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching to the right for an exact match.
501 */
4e94b71b 502 if (bp->b_length != numblks) {
74f75a0c
DC
503 ASSERT(bp->b_flags & XBF_STALE);
504 rbp = &(*rbp)->rb_right;
505 continue;
506 }
ce8e922c 507 atomic_inc(&bp->b_hold);
1da177e4
LT
508 goto found;
509 }
510 }
511
512 /* No match found */
ce8e922c 513 if (new_bp) {
74f75a0c
DC
514 rb_link_node(&new_bp->b_rbnode, parent, rbp);
515 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
516 /* the buffer keeps the perag reference until it is freed */
517 new_bp->b_pag = pag;
518 spin_unlock(&pag->pag_buf_lock);
1da177e4 519 } else {
ff6d6af2 520 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
521 spin_unlock(&pag->pag_buf_lock);
522 xfs_perag_put(pag);
1da177e4 523 }
ce8e922c 524 return new_bp;
1da177e4
LT
525
526found:
74f75a0c
DC
527 spin_unlock(&pag->pag_buf_lock);
528 xfs_perag_put(pag);
1da177e4 529
0c842ad4
CH
530 if (!xfs_buf_trylock(bp)) {
531 if (flags & XBF_TRYLOCK) {
ce8e922c 532 xfs_buf_rele(bp);
ff6d6af2 533 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
ce8e922c 534 return NULL;
1da177e4 535 }
0c842ad4 536 xfs_buf_lock(bp);
ff6d6af2 537 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
538 }
539
0e6e847f
DC
540 /*
541 * if the buffer is stale, clear all the external state associated with
542 * it. We need to keep flags such as how we allocated the buffer memory
543 * intact here.
544 */
ce8e922c
NS
545 if (bp->b_flags & XBF_STALE) {
546 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 547 ASSERT(bp->b_iodone == NULL);
611c9946 548 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 549 bp->b_ops = NULL;
2f926587 550 }
0b1b213f
CH
551
552 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 553 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
ce8e922c 554 return bp;
1da177e4
LT
555}
556
557/*
3815832a
DC
558 * Assembles a buffer covering the specified range. The code is optimised for
559 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
560 * more hits than misses.
1da177e4 561 */
3815832a 562struct xfs_buf *
6dde2707
DC
563xfs_buf_get_map(
564 struct xfs_buftarg *target,
565 struct xfs_buf_map *map,
566 int nmaps,
ce8e922c 567 xfs_buf_flags_t flags)
1da177e4 568{
3815832a
DC
569 struct xfs_buf *bp;
570 struct xfs_buf *new_bp;
0e6e847f 571 int error = 0;
1da177e4 572
6dde2707 573 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
574 if (likely(bp))
575 goto found;
576
6dde2707 577 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 578 if (unlikely(!new_bp))
1da177e4
LT
579 return NULL;
580
fe2429b0
DC
581 error = xfs_buf_allocate_memory(new_bp, flags);
582 if (error) {
3e85c868 583 xfs_buf_free(new_bp);
fe2429b0
DC
584 return NULL;
585 }
586
6dde2707 587 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 588 if (!bp) {
fe2429b0 589 xfs_buf_free(new_bp);
3815832a
DC
590 return NULL;
591 }
592
fe2429b0
DC
593 if (bp != new_bp)
594 xfs_buf_free(new_bp);
1da177e4 595
3815832a 596found:
611c9946 597 if (!bp->b_addr) {
ce8e922c 598 error = _xfs_buf_map_pages(bp, flags);
1da177e4 599 if (unlikely(error)) {
4f10700a 600 xfs_warn(target->bt_mount,
08e96e1a 601 "%s: failed to map pagesn", __func__);
a8acad70
DC
602 xfs_buf_relse(bp);
603 return NULL;
1da177e4
LT
604 }
605 }
606
ff6d6af2 607 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 608 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 609 return bp;
1da177e4
LT
610}
611
5d765b97
CH
612STATIC int
613_xfs_buf_read(
614 xfs_buf_t *bp,
615 xfs_buf_flags_t flags)
616{
43ff2122 617 ASSERT(!(flags & XBF_WRITE));
f4b42421 618 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 619
43ff2122 620 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 621 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 622
595bff75
DC
623 if (flags & XBF_ASYNC) {
624 xfs_buf_submit(bp);
0e95f19a 625 return 0;
595bff75
DC
626 }
627 return xfs_buf_submit_wait(bp);
5d765b97
CH
628}
629
1da177e4 630xfs_buf_t *
6dde2707
DC
631xfs_buf_read_map(
632 struct xfs_buftarg *target,
633 struct xfs_buf_map *map,
634 int nmaps,
c3f8fc73 635 xfs_buf_flags_t flags,
1813dd64 636 const struct xfs_buf_ops *ops)
1da177e4 637{
6dde2707 638 struct xfs_buf *bp;
ce8e922c
NS
639
640 flags |= XBF_READ;
641
6dde2707 642 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 643 if (bp) {
0b1b213f
CH
644 trace_xfs_buf_read(bp, flags, _RET_IP_);
645
ce8e922c 646 if (!XFS_BUF_ISDONE(bp)) {
ff6d6af2 647 XFS_STATS_INC(target->bt_mount, xb_get_read);
1813dd64 648 bp->b_ops = ops;
5d765b97 649 _xfs_buf_read(bp, flags);
ce8e922c 650 } else if (flags & XBF_ASYNC) {
1da177e4
LT
651 /*
652 * Read ahead call which is already satisfied,
653 * drop the buffer
654 */
a8acad70
DC
655 xfs_buf_relse(bp);
656 return NULL;
1da177e4 657 } else {
1da177e4 658 /* We do not want read in the flags */
ce8e922c 659 bp->b_flags &= ~XBF_READ;
1da177e4
LT
660 }
661 }
662
ce8e922c 663 return bp;
1da177e4
LT
664}
665
1da177e4 666/*
ce8e922c
NS
667 * If we are not low on memory then do the readahead in a deadlock
668 * safe manner.
1da177e4
LT
669 */
670void
6dde2707
DC
671xfs_buf_readahead_map(
672 struct xfs_buftarg *target,
673 struct xfs_buf_map *map,
c3f8fc73 674 int nmaps,
1813dd64 675 const struct xfs_buf_ops *ops)
1da177e4 676{
0e6e847f 677 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
678 return;
679
6dde2707 680 xfs_buf_read_map(target, map, nmaps,
1813dd64 681 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
682}
683
5adc94c2
DC
684/*
685 * Read an uncached buffer from disk. Allocates and returns a locked
686 * buffer containing the disk contents or nothing.
687 */
ba372674 688int
5adc94c2 689xfs_buf_read_uncached(
5adc94c2
DC
690 struct xfs_buftarg *target,
691 xfs_daddr_t daddr,
e70b73f8 692 size_t numblks,
c3f8fc73 693 int flags,
ba372674 694 struct xfs_buf **bpp,
1813dd64 695 const struct xfs_buf_ops *ops)
5adc94c2 696{
eab4e633 697 struct xfs_buf *bp;
5adc94c2 698
ba372674
DC
699 *bpp = NULL;
700
e70b73f8 701 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 702 if (!bp)
ba372674 703 return -ENOMEM;
5adc94c2
DC
704
705 /* set up the buffer for a read IO */
3e85c868 706 ASSERT(bp->b_map_count == 1);
ba372674 707 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 708 bp->b_maps[0].bm_bn = daddr;
cbb7baab 709 bp->b_flags |= XBF_READ;
1813dd64 710 bp->b_ops = ops;
5adc94c2 711
595bff75 712 xfs_buf_submit_wait(bp);
ba372674
DC
713 if (bp->b_error) {
714 int error = bp->b_error;
83a0adc3 715 xfs_buf_relse(bp);
ba372674 716 return error;
83a0adc3 717 }
ba372674
DC
718
719 *bpp = bp;
720 return 0;
1da177e4
LT
721}
722
44396476
DC
723/*
724 * Return a buffer allocated as an empty buffer and associated to external
725 * memory via xfs_buf_associate_memory() back to it's empty state.
726 */
727void
728xfs_buf_set_empty(
729 struct xfs_buf *bp,
e70b73f8 730 size_t numblks)
44396476
DC
731{
732 if (bp->b_pages)
733 _xfs_buf_free_pages(bp);
734
735 bp->b_pages = NULL;
736 bp->b_page_count = 0;
737 bp->b_addr = NULL;
4e94b71b 738 bp->b_length = numblks;
aa0e8833 739 bp->b_io_length = numblks;
3e85c868
DC
740
741 ASSERT(bp->b_map_count == 1);
44396476 742 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
743 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
744 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
745}
746
1da177e4
LT
747static inline struct page *
748mem_to_page(
749 void *addr)
750{
9e2779fa 751 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
752 return virt_to_page(addr);
753 } else {
754 return vmalloc_to_page(addr);
755 }
756}
757
758int
ce8e922c
NS
759xfs_buf_associate_memory(
760 xfs_buf_t *bp,
1da177e4
LT
761 void *mem,
762 size_t len)
763{
764 int rval;
765 int i = 0;
d1afb678
LM
766 unsigned long pageaddr;
767 unsigned long offset;
768 size_t buflen;
1da177e4
LT
769 int page_count;
770
0e6e847f 771 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 772 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
773 buflen = PAGE_ALIGN(len + offset);
774 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
775
776 /* Free any previous set of page pointers */
ce8e922c
NS
777 if (bp->b_pages)
778 _xfs_buf_free_pages(bp);
1da177e4 779
ce8e922c
NS
780 bp->b_pages = NULL;
781 bp->b_addr = mem;
1da177e4 782
87937bf8 783 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
784 if (rval)
785 return rval;
786
ce8e922c 787 bp->b_offset = offset;
d1afb678
LM
788
789 for (i = 0; i < bp->b_page_count; i++) {
790 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 791 pageaddr += PAGE_SIZE;
1da177e4 792 }
1da177e4 793
aa0e8833 794 bp->b_io_length = BTOBB(len);
4e94b71b 795 bp->b_length = BTOBB(buflen);
1da177e4
LT
796
797 return 0;
798}
799
800xfs_buf_t *
686865f7
DC
801xfs_buf_get_uncached(
802 struct xfs_buftarg *target,
e70b73f8 803 size_t numblks,
686865f7 804 int flags)
1da177e4 805{
e70b73f8 806 unsigned long page_count;
1fa40b01 807 int error, i;
3e85c868
DC
808 struct xfs_buf *bp;
809 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 810
3e85c868 811 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
812 if (unlikely(bp == NULL))
813 goto fail;
1da177e4 814
e70b73f8 815 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 816 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 817 if (error)
1da177e4
LT
818 goto fail_free_buf;
819
1fa40b01 820 for (i = 0; i < page_count; i++) {
686865f7 821 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
822 if (!bp->b_pages[i])
823 goto fail_free_mem;
1da177e4 824 }
1fa40b01 825 bp->b_flags |= _XBF_PAGES;
1da177e4 826
611c9946 827 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 828 if (unlikely(error)) {
4f10700a 829 xfs_warn(target->bt_mount,
08e96e1a 830 "%s: failed to map pages", __func__);
1da177e4 831 goto fail_free_mem;
1fa40b01 832 }
1da177e4 833
686865f7 834 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 835 return bp;
1fa40b01 836
1da177e4 837 fail_free_mem:
1fa40b01
CH
838 while (--i >= 0)
839 __free_page(bp->b_pages[i]);
ca165b88 840 _xfs_buf_free_pages(bp);
1da177e4 841 fail_free_buf:
3e85c868 842 xfs_buf_free_maps(bp);
4347b9d7 843 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
844 fail:
845 return NULL;
846}
847
848/*
1da177e4
LT
849 * Increment reference count on buffer, to hold the buffer concurrently
850 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
851 * Must hold the buffer already to call this function.
852 */
853void
ce8e922c
NS
854xfs_buf_hold(
855 xfs_buf_t *bp)
1da177e4 856{
0b1b213f 857 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 858 atomic_inc(&bp->b_hold);
1da177e4
LT
859}
860
861/*
ce8e922c
NS
862 * Releases a hold on the specified buffer. If the
863 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
864 */
865void
ce8e922c
NS
866xfs_buf_rele(
867 xfs_buf_t *bp)
1da177e4 868{
74f75a0c 869 struct xfs_perag *pag = bp->b_pag;
1da177e4 870
0b1b213f 871 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 872
74f75a0c 873 if (!pag) {
430cbeb8 874 ASSERT(list_empty(&bp->b_lru));
74f75a0c 875 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
876 if (atomic_dec_and_test(&bp->b_hold))
877 xfs_buf_free(bp);
878 return;
879 }
880
74f75a0c 881 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 882
3790689f 883 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 884 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
a4082357
DC
885 spin_lock(&bp->b_lock);
886 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
887 /*
888 * If the buffer is added to the LRU take a new
889 * reference to the buffer for the LRU and clear the
890 * (now stale) dispose list state flag
891 */
892 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
893 bp->b_state &= ~XFS_BSTATE_DISPOSE;
894 atomic_inc(&bp->b_hold);
895 }
896 spin_unlock(&bp->b_lock);
430cbeb8 897 spin_unlock(&pag->pag_buf_lock);
1da177e4 898 } else {
a4082357
DC
899 /*
900 * most of the time buffers will already be removed from
901 * the LRU, so optimise that case by checking for the
902 * XFS_BSTATE_DISPOSE flag indicating the last list the
903 * buffer was on was the disposal list
904 */
905 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
906 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
907 } else {
908 ASSERT(list_empty(&bp->b_lru));
909 }
910 spin_unlock(&bp->b_lock);
911
43ff2122 912 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
913 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
914 spin_unlock(&pag->pag_buf_lock);
915 xfs_perag_put(pag);
ce8e922c 916 xfs_buf_free(bp);
1da177e4
LT
917 }
918 }
919}
920
921
922/*
0e6e847f 923 * Lock a buffer object, if it is not already locked.
90810b9e
DC
924 *
925 * If we come across a stale, pinned, locked buffer, we know that we are
926 * being asked to lock a buffer that has been reallocated. Because it is
927 * pinned, we know that the log has not been pushed to disk and hence it
928 * will still be locked. Rather than continuing to have trylock attempts
929 * fail until someone else pushes the log, push it ourselves before
930 * returning. This means that the xfsaild will not get stuck trying
931 * to push on stale inode buffers.
1da177e4
LT
932 */
933int
0c842ad4
CH
934xfs_buf_trylock(
935 struct xfs_buf *bp)
1da177e4
LT
936{
937 int locked;
938
ce8e922c 939 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 940 if (locked)
ce8e922c 941 XB_SET_OWNER(bp);
0b1b213f 942
0c842ad4
CH
943 trace_xfs_buf_trylock(bp, _RET_IP_);
944 return locked;
1da177e4 945}
1da177e4
LT
946
947/*
0e6e847f 948 * Lock a buffer object.
ed3b4d6c
DC
949 *
950 * If we come across a stale, pinned, locked buffer, we know that we
951 * are being asked to lock a buffer that has been reallocated. Because
952 * it is pinned, we know that the log has not been pushed to disk and
953 * hence it will still be locked. Rather than sleeping until someone
954 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 955 */
ce8e922c
NS
956void
957xfs_buf_lock(
0c842ad4 958 struct xfs_buf *bp)
1da177e4 959{
0b1b213f
CH
960 trace_xfs_buf_lock(bp, _RET_IP_);
961
ed3b4d6c 962 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 963 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
964 down(&bp->b_sema);
965 XB_SET_OWNER(bp);
0b1b213f
CH
966
967 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
968}
969
1da177e4 970void
ce8e922c 971xfs_buf_unlock(
0c842ad4 972 struct xfs_buf *bp)
1da177e4 973{
ce8e922c
NS
974 XB_CLEAR_OWNER(bp);
975 up(&bp->b_sema);
0b1b213f
CH
976
977 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
978}
979
ce8e922c
NS
980STATIC void
981xfs_buf_wait_unpin(
982 xfs_buf_t *bp)
1da177e4
LT
983{
984 DECLARE_WAITQUEUE (wait, current);
985
ce8e922c 986 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
987 return;
988
ce8e922c 989 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
990 for (;;) {
991 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 992 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 993 break;
7eaceacc 994 io_schedule();
1da177e4 995 }
ce8e922c 996 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
997 set_current_state(TASK_RUNNING);
998}
999
1000/*
1001 * Buffer Utility Routines
1002 */
1003
e8aaba9a
DC
1004void
1005xfs_buf_ioend(
1006 struct xfs_buf *bp)
1da177e4 1007{
e8aaba9a
DC
1008 bool read = bp->b_flags & XBF_READ;
1009
1010 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1011
1012 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1013
61be9c52
DC
1014 /*
1015 * Pull in IO completion errors now. We are guaranteed to be running
1016 * single threaded, so we don't need the lock to read b_io_error.
1017 */
1018 if (!bp->b_error && bp->b_io_error)
1019 xfs_buf_ioerror(bp, bp->b_io_error);
1020
e8aaba9a
DC
1021 /* Only validate buffers that were read without errors */
1022 if (read && !bp->b_error && bp->b_ops) {
1023 ASSERT(!bp->b_iodone);
1813dd64 1024 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1025 }
1026
1027 if (!bp->b_error)
1028 bp->b_flags |= XBF_DONE;
1da177e4 1029
80f6c29d 1030 if (bp->b_iodone)
ce8e922c
NS
1031 (*(bp->b_iodone))(bp);
1032 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1033 xfs_buf_relse(bp);
595bff75 1034 else
1813dd64 1035 complete(&bp->b_iowait);
1da177e4
LT
1036}
1037
e8aaba9a
DC
1038static void
1039xfs_buf_ioend_work(
1040 struct work_struct *work)
1da177e4 1041{
e8aaba9a 1042 struct xfs_buf *bp =
b29c70f5 1043 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1044
e8aaba9a
DC
1045 xfs_buf_ioend(bp);
1046}
1da177e4 1047
e8aaba9a
DC
1048void
1049xfs_buf_ioend_async(
1050 struct xfs_buf *bp)
1051{
b29c70f5
BF
1052 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1053 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1da177e4
LT
1054}
1055
1da177e4 1056void
ce8e922c
NS
1057xfs_buf_ioerror(
1058 xfs_buf_t *bp,
1059 int error)
1da177e4 1060{
2451337d
DC
1061 ASSERT(error <= 0 && error >= -1000);
1062 bp->b_error = error;
0b1b213f 1063 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1064}
1065
901796af
CH
1066void
1067xfs_buf_ioerror_alert(
1068 struct xfs_buf *bp,
1069 const char *func)
1070{
1071 xfs_alert(bp->b_target->bt_mount,
aa0e8833 1072"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
2451337d 1073 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
901796af
CH
1074}
1075
a2dcf5df
CH
1076int
1077xfs_bwrite(
1078 struct xfs_buf *bp)
1079{
1080 int error;
1081
1082 ASSERT(xfs_buf_islocked(bp));
1083
1084 bp->b_flags |= XBF_WRITE;
27187754
DC
1085 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1086 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1087
595bff75 1088 error = xfs_buf_submit_wait(bp);
a2dcf5df
CH
1089 if (error) {
1090 xfs_force_shutdown(bp->b_target->bt_mount,
1091 SHUTDOWN_META_IO_ERROR);
1092 }
1093 return error;
1094}
1095
782e3b3b 1096STATIC void
ce8e922c 1097xfs_buf_bio_end_io(
4246a0b6 1098 struct bio *bio)
1da177e4 1099{
ce8e922c 1100 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1101
37eb17e6
DC
1102 /*
1103 * don't overwrite existing errors - otherwise we can lose errors on
1104 * buffers that require multiple bios to complete.
1105 */
4246a0b6 1106 if (bio->bi_error) {
61be9c52
DC
1107 spin_lock(&bp->b_lock);
1108 if (!bp->b_io_error)
4246a0b6 1109 bp->b_io_error = bio->bi_error;
61be9c52
DC
1110 spin_unlock(&bp->b_lock);
1111 }
1da177e4 1112
37eb17e6 1113 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1114 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1115
e8aaba9a
DC
1116 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1117 xfs_buf_ioend_async(bp);
1da177e4 1118 bio_put(bio);
1da177e4
LT
1119}
1120
3e85c868
DC
1121static void
1122xfs_buf_ioapply_map(
1123 struct xfs_buf *bp,
1124 int map,
1125 int *buf_offset,
1126 int *count,
1127 int rw)
1da177e4 1128{
3e85c868
DC
1129 int page_index;
1130 int total_nr_pages = bp->b_page_count;
1131 int nr_pages;
1132 struct bio *bio;
1133 sector_t sector = bp->b_maps[map].bm_bn;
1134 int size;
1135 int offset;
1da177e4 1136
ce8e922c 1137 total_nr_pages = bp->b_page_count;
1da177e4 1138
3e85c868
DC
1139 /* skip the pages in the buffer before the start offset */
1140 page_index = 0;
1141 offset = *buf_offset;
1142 while (offset >= PAGE_SIZE) {
1143 page_index++;
1144 offset -= PAGE_SIZE;
f538d4da
CH
1145 }
1146
3e85c868
DC
1147 /*
1148 * Limit the IO size to the length of the current vector, and update the
1149 * remaining IO count for the next time around.
1150 */
1151 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1152 *count -= size;
1153 *buf_offset += size;
34951f5c 1154
1da177e4 1155next_chunk:
ce8e922c 1156 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1157 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1158 if (nr_pages > total_nr_pages)
1159 nr_pages = total_nr_pages;
1160
1161 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1162 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1163 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1164 bio->bi_end_io = xfs_buf_bio_end_io;
1165 bio->bi_private = bp;
1da177e4 1166
0e6e847f 1167
3e85c868 1168 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1169 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1170
1171 if (nbytes > size)
1172 nbytes = size;
1173
3e85c868
DC
1174 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1175 offset);
ce8e922c 1176 if (rbytes < nbytes)
1da177e4
LT
1177 break;
1178
1179 offset = 0;
aa0e8833 1180 sector += BTOBB(nbytes);
1da177e4
LT
1181 size -= nbytes;
1182 total_nr_pages--;
1183 }
1184
4f024f37 1185 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1186 if (xfs_buf_is_vmapped(bp)) {
1187 flush_kernel_vmap_range(bp->b_addr,
1188 xfs_buf_vmap_len(bp));
1189 }
1da177e4
LT
1190 submit_bio(rw, bio);
1191 if (size)
1192 goto next_chunk;
1193 } else {
37eb17e6
DC
1194 /*
1195 * This is guaranteed not to be the last io reference count
595bff75 1196 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1197 */
1198 atomic_dec(&bp->b_io_remaining);
2451337d 1199 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1200 bio_put(bio);
1da177e4 1201 }
3e85c868
DC
1202
1203}
1204
1205STATIC void
1206_xfs_buf_ioapply(
1207 struct xfs_buf *bp)
1208{
1209 struct blk_plug plug;
1210 int rw;
1211 int offset;
1212 int size;
1213 int i;
1214
c163f9a1
DC
1215 /*
1216 * Make sure we capture only current IO errors rather than stale errors
1217 * left over from previous use of the buffer (e.g. failed readahead).
1218 */
1219 bp->b_error = 0;
1220
b29c70f5
BF
1221 /*
1222 * Initialize the I/O completion workqueue if we haven't yet or the
1223 * submitter has not opted to specify a custom one.
1224 */
1225 if (!bp->b_ioend_wq)
1226 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1227
3e85c868
DC
1228 if (bp->b_flags & XBF_WRITE) {
1229 if (bp->b_flags & XBF_SYNCIO)
1230 rw = WRITE_SYNC;
1231 else
1232 rw = WRITE;
1233 if (bp->b_flags & XBF_FUA)
1234 rw |= REQ_FUA;
1235 if (bp->b_flags & XBF_FLUSH)
1236 rw |= REQ_FLUSH;
1813dd64
DC
1237
1238 /*
1239 * Run the write verifier callback function if it exists. If
1240 * this function fails it will mark the buffer with an error and
1241 * the IO should not be dispatched.
1242 */
1243 if (bp->b_ops) {
1244 bp->b_ops->verify_write(bp);
1245 if (bp->b_error) {
1246 xfs_force_shutdown(bp->b_target->bt_mount,
1247 SHUTDOWN_CORRUPT_INCORE);
1248 return;
1249 }
400b9d88
DC
1250 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1251 struct xfs_mount *mp = bp->b_target->bt_mount;
1252
1253 /*
1254 * non-crc filesystems don't attach verifiers during
1255 * log recovery, so don't warn for such filesystems.
1256 */
1257 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1258 xfs_warn(mp,
1259 "%s: no ops on block 0x%llx/0x%x",
1260 __func__, bp->b_bn, bp->b_length);
1261 xfs_hex_dump(bp->b_addr, 64);
1262 dump_stack();
1263 }
1813dd64 1264 }
3e85c868
DC
1265 } else if (bp->b_flags & XBF_READ_AHEAD) {
1266 rw = READA;
1267 } else {
1268 rw = READ;
1269 }
1270
1271 /* we only use the buffer cache for meta-data */
1272 rw |= REQ_META;
1273
1274 /*
1275 * Walk all the vectors issuing IO on them. Set up the initial offset
1276 * into the buffer and the desired IO size before we start -
1277 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1278 * subsequent call.
1279 */
1280 offset = bp->b_offset;
1281 size = BBTOB(bp->b_io_length);
1282 blk_start_plug(&plug);
1283 for (i = 0; i < bp->b_map_count; i++) {
1284 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1285 if (bp->b_error)
1286 break;
1287 if (size <= 0)
1288 break; /* all done */
1289 }
1290 blk_finish_plug(&plug);
1da177e4
LT
1291}
1292
595bff75
DC
1293/*
1294 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1295 * the current reference to the IO. It is not safe to reference the buffer after
1296 * a call to this function unless the caller holds an additional reference
1297 * itself.
1298 */
0e95f19a 1299void
595bff75
DC
1300xfs_buf_submit(
1301 struct xfs_buf *bp)
1da177e4 1302{
595bff75 1303 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1304
43ff2122 1305 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1306 ASSERT(bp->b_flags & XBF_ASYNC);
1307
1308 /* on shutdown we stale and complete the buffer immediately */
1309 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1310 xfs_buf_ioerror(bp, -EIO);
1311 bp->b_flags &= ~XBF_DONE;
1312 xfs_buf_stale(bp);
1313 xfs_buf_ioend(bp);
1314 return;
1315 }
1da177e4 1316
375ec69d 1317 if (bp->b_flags & XBF_WRITE)
ce8e922c 1318 xfs_buf_wait_unpin(bp);
e11bb805 1319
61be9c52
DC
1320 /* clear the internal error state to avoid spurious errors */
1321 bp->b_io_error = 0;
1322
e11bb805 1323 /*
595bff75
DC
1324 * The caller's reference is released during I/O completion.
1325 * This occurs some time after the last b_io_remaining reference is
1326 * released, so after we drop our Io reference we have to have some
1327 * other reference to ensure the buffer doesn't go away from underneath
1328 * us. Take a direct reference to ensure we have safe access to the
1329 * buffer until we are finished with it.
e11bb805 1330 */
ce8e922c 1331 xfs_buf_hold(bp);
1da177e4 1332
8d6c1210 1333 /*
e11bb805
DC
1334 * Set the count to 1 initially, this will stop an I/O completion
1335 * callout which happens before we have started all the I/O from calling
1336 * xfs_buf_ioend too early.
1da177e4 1337 */
ce8e922c
NS
1338 atomic_set(&bp->b_io_remaining, 1);
1339 _xfs_buf_ioapply(bp);
e11bb805 1340
8d6c1210 1341 /*
595bff75
DC
1342 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1343 * reference we took above. If we drop it to zero, run completion so
1344 * that we don't return to the caller with completion still pending.
8d6c1210 1345 */
e8aaba9a 1346 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
595bff75 1347 if (bp->b_error)
e8aaba9a
DC
1348 xfs_buf_ioend(bp);
1349 else
1350 xfs_buf_ioend_async(bp);
1351 }
1da177e4 1352
ce8e922c 1353 xfs_buf_rele(bp);
595bff75 1354 /* Note: it is not safe to reference bp now we've dropped our ref */
1da177e4
LT
1355}
1356
1357/*
595bff75 1358 * Synchronous buffer IO submission path, read or write.
1da177e4
LT
1359 */
1360int
595bff75
DC
1361xfs_buf_submit_wait(
1362 struct xfs_buf *bp)
1da177e4 1363{
595bff75 1364 int error;
0b1b213f 1365
595bff75
DC
1366 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1367
1368 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
0b1b213f 1369
595bff75
DC
1370 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1371 xfs_buf_ioerror(bp, -EIO);
1372 xfs_buf_stale(bp);
1373 bp->b_flags &= ~XBF_DONE;
1374 return -EIO;
1375 }
1376
1377 if (bp->b_flags & XBF_WRITE)
1378 xfs_buf_wait_unpin(bp);
1379
1380 /* clear the internal error state to avoid spurious errors */
1381 bp->b_io_error = 0;
1382
1383 /*
1384 * For synchronous IO, the IO does not inherit the submitters reference
1385 * count, nor the buffer lock. Hence we cannot release the reference we
1386 * are about to take until we've waited for all IO completion to occur,
1387 * including any xfs_buf_ioend_async() work that may be pending.
1388 */
1389 xfs_buf_hold(bp);
1390
1391 /*
1392 * Set the count to 1 initially, this will stop an I/O completion
1393 * callout which happens before we have started all the I/O from calling
1394 * xfs_buf_ioend too early.
1395 */
1396 atomic_set(&bp->b_io_remaining, 1);
1397 _xfs_buf_ioapply(bp);
1398
1399 /*
1400 * make sure we run completion synchronously if it raced with us and is
1401 * already complete.
1402 */
1403 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1404 xfs_buf_ioend(bp);
0b1b213f 1405
595bff75
DC
1406 /* wait for completion before gathering the error from the buffer */
1407 trace_xfs_buf_iowait(bp, _RET_IP_);
1408 wait_for_completion(&bp->b_iowait);
0b1b213f 1409 trace_xfs_buf_iowait_done(bp, _RET_IP_);
595bff75
DC
1410 error = bp->b_error;
1411
1412 /*
1413 * all done now, we can release the hold that keeps the buffer
1414 * referenced for the entire IO.
1415 */
1416 xfs_buf_rele(bp);
1417 return error;
1da177e4
LT
1418}
1419
88ee2df7 1420void *
ce8e922c 1421xfs_buf_offset(
88ee2df7 1422 struct xfs_buf *bp,
1da177e4
LT
1423 size_t offset)
1424{
1425 struct page *page;
1426
611c9946 1427 if (bp->b_addr)
62926044 1428 return bp->b_addr + offset;
1da177e4 1429
ce8e922c 1430 offset += bp->b_offset;
0e6e847f 1431 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1432 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1433}
1434
1435/*
1da177e4
LT
1436 * Move data into or out of a buffer.
1437 */
1438void
ce8e922c
NS
1439xfs_buf_iomove(
1440 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1441 size_t boff, /* starting buffer offset */
1442 size_t bsize, /* length to copy */
b9c48649 1443 void *data, /* data address */
ce8e922c 1444 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1445{
795cac72 1446 size_t bend;
1da177e4
LT
1447
1448 bend = boff + bsize;
1449 while (boff < bend) {
795cac72
DC
1450 struct page *page;
1451 int page_index, page_offset, csize;
1452
1453 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1454 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1455 page = bp->b_pages[page_index];
1456 csize = min_t(size_t, PAGE_SIZE - page_offset,
1457 BBTOB(bp->b_io_length) - boff);
1da177e4 1458
795cac72 1459 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1460
1461 switch (mode) {
ce8e922c 1462 case XBRW_ZERO:
795cac72 1463 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1464 break;
ce8e922c 1465 case XBRW_READ:
795cac72 1466 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1467 break;
ce8e922c 1468 case XBRW_WRITE:
795cac72 1469 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1470 }
1471
1472 boff += csize;
1473 data += csize;
1474 }
1475}
1476
1477/*
ce8e922c 1478 * Handling of buffer targets (buftargs).
1da177e4
LT
1479 */
1480
1481/*
430cbeb8
DC
1482 * Wait for any bufs with callbacks that have been submitted but have not yet
1483 * returned. These buffers will have an elevated hold count, so wait on those
1484 * while freeing all the buffers only held by the LRU.
1da177e4 1485 */
e80dfa19
DC
1486static enum lru_status
1487xfs_buftarg_wait_rele(
1488 struct list_head *item,
3f97b163 1489 struct list_lru_one *lru,
e80dfa19
DC
1490 spinlock_t *lru_lock,
1491 void *arg)
1492
1da177e4 1493{
e80dfa19 1494 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1495 struct list_head *dispose = arg;
430cbeb8 1496
e80dfa19 1497 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1498 /* need to wait, so skip it this pass */
e80dfa19 1499 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1500 return LRU_SKIP;
1da177e4 1501 }
a4082357
DC
1502 if (!spin_trylock(&bp->b_lock))
1503 return LRU_SKIP;
e80dfa19 1504
a4082357
DC
1505 /*
1506 * clear the LRU reference count so the buffer doesn't get
1507 * ignored in xfs_buf_rele().
1508 */
1509 atomic_set(&bp->b_lru_ref, 0);
1510 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1511 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1512 spin_unlock(&bp->b_lock);
1513 return LRU_REMOVED;
1da177e4
LT
1514}
1515
e80dfa19
DC
1516void
1517xfs_wait_buftarg(
1518 struct xfs_buftarg *btp)
1519{
a4082357
DC
1520 LIST_HEAD(dispose);
1521 int loop = 0;
1522
1523 /* loop until there is nothing left on the lru list. */
1524 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1525 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1526 &dispose, LONG_MAX);
1527
1528 while (!list_empty(&dispose)) {
1529 struct xfs_buf *bp;
1530 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1531 list_del_init(&bp->b_lru);
ac8809f9
DC
1532 if (bp->b_flags & XBF_WRITE_FAIL) {
1533 xfs_alert(btp->bt_mount,
f41febd2 1534"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
ac8809f9 1535 (long long)bp->b_bn);
f41febd2
JP
1536 xfs_alert(btp->bt_mount,
1537"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1538 }
a4082357
DC
1539 xfs_buf_rele(bp);
1540 }
1541 if (loop++ != 0)
1542 delay(100);
1543 }
e80dfa19
DC
1544}
1545
1546static enum lru_status
1547xfs_buftarg_isolate(
1548 struct list_head *item,
3f97b163 1549 struct list_lru_one *lru,
e80dfa19
DC
1550 spinlock_t *lru_lock,
1551 void *arg)
1552{
1553 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1554 struct list_head *dispose = arg;
1555
a4082357
DC
1556 /*
1557 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1558 * If we fail to get the lock, just skip it.
1559 */
1560 if (!spin_trylock(&bp->b_lock))
1561 return LRU_SKIP;
e80dfa19
DC
1562 /*
1563 * Decrement the b_lru_ref count unless the value is already
1564 * zero. If the value is already zero, we need to reclaim the
1565 * buffer, otherwise it gets another trip through the LRU.
1566 */
a4082357
DC
1567 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1568 spin_unlock(&bp->b_lock);
e80dfa19 1569 return LRU_ROTATE;
a4082357 1570 }
e80dfa19 1571
a4082357 1572 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1573 list_lru_isolate_move(lru, item, dispose);
a4082357 1574 spin_unlock(&bp->b_lock);
e80dfa19
DC
1575 return LRU_REMOVED;
1576}
1577
addbda40 1578static unsigned long
e80dfa19 1579xfs_buftarg_shrink_scan(
ff57ab21 1580 struct shrinker *shrink,
1495f230 1581 struct shrink_control *sc)
a6867a68 1582{
ff57ab21
DC
1583 struct xfs_buftarg *btp = container_of(shrink,
1584 struct xfs_buftarg, bt_shrinker);
430cbeb8 1585 LIST_HEAD(dispose);
addbda40 1586 unsigned long freed;
430cbeb8 1587
503c358c
VD
1588 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1589 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1590
1591 while (!list_empty(&dispose)) {
e80dfa19 1592 struct xfs_buf *bp;
430cbeb8
DC
1593 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1594 list_del_init(&bp->b_lru);
1595 xfs_buf_rele(bp);
1596 }
1597
e80dfa19
DC
1598 return freed;
1599}
1600
addbda40 1601static unsigned long
e80dfa19
DC
1602xfs_buftarg_shrink_count(
1603 struct shrinker *shrink,
1604 struct shrink_control *sc)
1605{
1606 struct xfs_buftarg *btp = container_of(shrink,
1607 struct xfs_buftarg, bt_shrinker);
503c358c 1608 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1609}
1610
1da177e4
LT
1611void
1612xfs_free_buftarg(
b7963133
CH
1613 struct xfs_mount *mp,
1614 struct xfs_buftarg *btp)
1da177e4 1615{
ff57ab21 1616 unregister_shrinker(&btp->bt_shrinker);
f5e1dd34 1617 list_lru_destroy(&btp->bt_lru);
ff57ab21 1618
b7963133
CH
1619 if (mp->m_flags & XFS_MOUNT_BARRIER)
1620 xfs_blkdev_issue_flush(btp);
a6867a68 1621
f0e2d93c 1622 kmem_free(btp);
1da177e4
LT
1623}
1624
3fefdeee
ES
1625int
1626xfs_setsize_buftarg(
1da177e4 1627 xfs_buftarg_t *btp,
3fefdeee 1628 unsigned int sectorsize)
1da177e4 1629{
7c71ee78 1630 /* Set up metadata sector size info */
6da54179
ES
1631 btp->bt_meta_sectorsize = sectorsize;
1632 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1633
ce8e922c 1634 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1635 char name[BDEVNAME_SIZE];
1636
1637 bdevname(btp->bt_bdev, name);
1638
4f10700a 1639 xfs_warn(btp->bt_mount,
08e96e1a 1640 "Cannot set_blocksize to %u on device %s",
02b102df 1641 sectorsize, name);
2451337d 1642 return -EINVAL;
1da177e4
LT
1643 }
1644
7c71ee78
ES
1645 /* Set up device logical sector size mask */
1646 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1647 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1648
1da177e4
LT
1649 return 0;
1650}
1651
1652/*
3fefdeee
ES
1653 * When allocating the initial buffer target we have not yet
1654 * read in the superblock, so don't know what sized sectors
1655 * are being used at this early stage. Play safe.
ce8e922c 1656 */
1da177e4
LT
1657STATIC int
1658xfs_setsize_buftarg_early(
1659 xfs_buftarg_t *btp,
1660 struct block_device *bdev)
1661{
a96c4151 1662 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1663}
1664
1da177e4
LT
1665xfs_buftarg_t *
1666xfs_alloc_buftarg(
ebad861b 1667 struct xfs_mount *mp,
34dcefd7 1668 struct block_device *bdev)
1da177e4
LT
1669{
1670 xfs_buftarg_t *btp;
1671
b17cb364 1672 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1673
ebad861b 1674 btp->bt_mount = mp;
ce8e922c
NS
1675 btp->bt_dev = bdev->bd_dev;
1676 btp->bt_bdev = bdev;
0e6e847f 1677 btp->bt_bdi = blk_get_backing_dev_info(bdev);
0e6e847f 1678
1da177e4
LT
1679 if (xfs_setsize_buftarg_early(btp, bdev))
1680 goto error;
5ca302c8
GC
1681
1682 if (list_lru_init(&btp->bt_lru))
1683 goto error;
1684
e80dfa19
DC
1685 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1686 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1687 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1688 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1689 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1690 return btp;
1691
1692error:
f0e2d93c 1693 kmem_free(btp);
1da177e4
LT
1694 return NULL;
1695}
1696
1da177e4 1697/*
43ff2122
CH
1698 * Add a buffer to the delayed write list.
1699 *
1700 * This queues a buffer for writeout if it hasn't already been. Note that
1701 * neither this routine nor the buffer list submission functions perform
1702 * any internal synchronization. It is expected that the lists are thread-local
1703 * to the callers.
1704 *
1705 * Returns true if we queued up the buffer, or false if it already had
1706 * been on the buffer list.
1da177e4 1707 */
43ff2122 1708bool
ce8e922c 1709xfs_buf_delwri_queue(
43ff2122
CH
1710 struct xfs_buf *bp,
1711 struct list_head *list)
1da177e4 1712{
43ff2122 1713 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1714 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1715
43ff2122
CH
1716 /*
1717 * If the buffer is already marked delwri it already is queued up
1718 * by someone else for imediate writeout. Just ignore it in that
1719 * case.
1720 */
1721 if (bp->b_flags & _XBF_DELWRI_Q) {
1722 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1723 return false;
1da177e4 1724 }
1da177e4 1725
43ff2122 1726 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1727
1728 /*
43ff2122
CH
1729 * If a buffer gets written out synchronously or marked stale while it
1730 * is on a delwri list we lazily remove it. To do this, the other party
1731 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1732 * It remains referenced and on the list. In a rare corner case it
1733 * might get readded to a delwri list after the synchronous writeout, in
1734 * which case we need just need to re-add the flag here.
d808f617 1735 */
43ff2122
CH
1736 bp->b_flags |= _XBF_DELWRI_Q;
1737 if (list_empty(&bp->b_list)) {
1738 atomic_inc(&bp->b_hold);
1739 list_add_tail(&bp->b_list, list);
585e6d88 1740 }
585e6d88 1741
43ff2122 1742 return true;
585e6d88
DC
1743}
1744
089716aa
DC
1745/*
1746 * Compare function is more complex than it needs to be because
1747 * the return value is only 32 bits and we are doing comparisons
1748 * on 64 bit values
1749 */
1750static int
1751xfs_buf_cmp(
1752 void *priv,
1753 struct list_head *a,
1754 struct list_head *b)
1755{
1756 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1757 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1758 xfs_daddr_t diff;
1759
f4b42421 1760 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1761 if (diff < 0)
1762 return -1;
1763 if (diff > 0)
1764 return 1;
1765 return 0;
1766}
1767
43ff2122
CH
1768static int
1769__xfs_buf_delwri_submit(
1770 struct list_head *buffer_list,
1771 struct list_head *io_list,
1772 bool wait)
1da177e4 1773{
43ff2122
CH
1774 struct blk_plug plug;
1775 struct xfs_buf *bp, *n;
1776 int pinned = 0;
1777
1778 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1779 if (!wait) {
1780 if (xfs_buf_ispinned(bp)) {
1781 pinned++;
1782 continue;
1783 }
1784 if (!xfs_buf_trylock(bp))
1785 continue;
1786 } else {
1787 xfs_buf_lock(bp);
1788 }
978c7b2f 1789
43ff2122
CH
1790 /*
1791 * Someone else might have written the buffer synchronously or
1792 * marked it stale in the meantime. In that case only the
1793 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1794 * reference and remove it from the list here.
1795 */
1796 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1797 list_del_init(&bp->b_list);
1798 xfs_buf_relse(bp);
1799 continue;
1800 }
c9c12971 1801
43ff2122
CH
1802 list_move_tail(&bp->b_list, io_list);
1803 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1804 }
1da177e4 1805
43ff2122 1806 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1807
43ff2122
CH
1808 blk_start_plug(&plug);
1809 list_for_each_entry_safe(bp, n, io_list, b_list) {
ac8809f9 1810 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
cf53e99d 1811 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
a1b7ea5d 1812
cf53e99d
DC
1813 /*
1814 * we do all Io submission async. This means if we need to wait
1815 * for IO completion we need to take an extra reference so the
1816 * buffer is still valid on the other side.
1817 */
1818 if (wait)
1819 xfs_buf_hold(bp);
1820 else
ce8e922c 1821 list_del_init(&bp->b_list);
8dac3921 1822
595bff75 1823 xfs_buf_submit(bp);
43ff2122
CH
1824 }
1825 blk_finish_plug(&plug);
1da177e4 1826
43ff2122 1827 return pinned;
1da177e4
LT
1828}
1829
1830/*
43ff2122
CH
1831 * Write out a buffer list asynchronously.
1832 *
1833 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1834 * out and not wait for I/O completion on any of the buffers. This interface
1835 * is only safely useable for callers that can track I/O completion by higher
1836 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1837 * function.
1da177e4
LT
1838 */
1839int
43ff2122
CH
1840xfs_buf_delwri_submit_nowait(
1841 struct list_head *buffer_list)
1da177e4 1842{
43ff2122
CH
1843 LIST_HEAD (io_list);
1844 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1845}
1da177e4 1846
43ff2122
CH
1847/*
1848 * Write out a buffer list synchronously.
1849 *
1850 * This will take the @buffer_list, write all buffers out and wait for I/O
1851 * completion on all of the buffers. @buffer_list is consumed by the function,
1852 * so callers must have some other way of tracking buffers if they require such
1853 * functionality.
1854 */
1855int
1856xfs_buf_delwri_submit(
1857 struct list_head *buffer_list)
1858{
1859 LIST_HEAD (io_list);
1860 int error = 0, error2;
1861 struct xfs_buf *bp;
1da177e4 1862
43ff2122 1863 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1864
43ff2122
CH
1865 /* Wait for IO to complete. */
1866 while (!list_empty(&io_list)) {
1867 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1868
089716aa 1869 list_del_init(&bp->b_list);
cf53e99d
DC
1870
1871 /* locking the buffer will wait for async IO completion. */
1872 xfs_buf_lock(bp);
1873 error2 = bp->b_error;
43ff2122
CH
1874 xfs_buf_relse(bp);
1875 if (!error)
1876 error = error2;
1da177e4
LT
1877 }
1878
43ff2122 1879 return error;
1da177e4
LT
1880}
1881
04d8b284 1882int __init
ce8e922c 1883xfs_buf_init(void)
1da177e4 1884{
8758280f
NS
1885 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1886 KM_ZONE_HWALIGN, NULL);
ce8e922c 1887 if (!xfs_buf_zone)
0b1b213f 1888 goto out;
04d8b284 1889
23ea4032 1890 return 0;
1da177e4 1891
0b1b213f 1892 out:
8758280f 1893 return -ENOMEM;
1da177e4
LT
1894}
1895
1da177e4 1896void
ce8e922c 1897xfs_buf_terminate(void)
1da177e4 1898{
ce8e922c 1899 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1900}
This page took 0.778988 seconds and 5 git commands to generate.