xfs: wrong error sign conversion during failed DIO writes
[deliverable/linux.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
239880ef 37#include "xfs_log_format.h"
7fd36c44 38#include "xfs_trans_resv.h"
239880ef 39#include "xfs_sb.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
239880ef 43#include "xfs_log.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
23ea4032 46
7989cb8e 47static struct workqueue_struct *xfslogd_workqueue;
1da177e4 48
ce8e922c
NS
49#ifdef XFS_BUF_LOCK_TRACKING
50# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 53#else
ce8e922c
NS
54# define XB_SET_OWNER(bp) do { } while (0)
55# define XB_CLEAR_OWNER(bp) do { } while (0)
56# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
57#endif
58
ce8e922c 59#define xb_to_gfp(flags) \
aa5c158e 60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 61
1da177e4 62
73c77e2c
JB
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
611c9946
DC
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 73 */
611c9946 74 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82}
83
430cbeb8
DC
84/*
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
89 *
90 * This prevents build-up of stale buffers on the LRU.
91 */
92void
93xfs_buf_stale(
94 struct xfs_buf *bp)
95{
43ff2122
CH
96 ASSERT(xfs_buf_islocked(bp));
97
430cbeb8 98 bp->b_flags |= XBF_STALE;
43ff2122
CH
99
100 /*
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
104 */
105 bp->b_flags &= ~_XBF_DELWRI_Q;
106
a4082357
DC
107 spin_lock(&bp->b_lock);
108 atomic_set(&bp->b_lru_ref, 0);
109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 atomic_dec(&bp->b_hold);
112
430cbeb8 113 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 114 spin_unlock(&bp->b_lock);
430cbeb8 115}
1da177e4 116
3e85c868
DC
117static int
118xfs_buf_get_maps(
119 struct xfs_buf *bp,
120 int map_count)
121{
122 ASSERT(bp->b_maps == NULL);
123 bp->b_map_count = map_count;
124
125 if (map_count == 1) {
f4b42421 126 bp->b_maps = &bp->__b_map;
3e85c868
DC
127 return 0;
128 }
129
130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 KM_NOFS);
132 if (!bp->b_maps)
133 return ENOMEM;
134 return 0;
135}
136
137/*
138 * Frees b_pages if it was allocated.
139 */
140static void
141xfs_buf_free_maps(
142 struct xfs_buf *bp)
143{
f4b42421 144 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
145 kmem_free(bp->b_maps);
146 bp->b_maps = NULL;
147 }
148}
149
4347b9d7 150struct xfs_buf *
3e85c868 151_xfs_buf_alloc(
4347b9d7 152 struct xfs_buftarg *target,
3e85c868
DC
153 struct xfs_buf_map *map,
154 int nmaps,
ce8e922c 155 xfs_buf_flags_t flags)
1da177e4 156{
4347b9d7 157 struct xfs_buf *bp;
3e85c868
DC
158 int error;
159 int i;
4347b9d7 160
aa5c158e 161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
162 if (unlikely(!bp))
163 return NULL;
164
1da177e4 165 /*
12bcb3f7
DC
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
1da177e4 168 */
611c9946 169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 170
ce8e922c 171 atomic_set(&bp->b_hold, 1);
430cbeb8 172 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 173 init_completion(&bp->b_iowait);
430cbeb8 174 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 175 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 176 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 177 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 178 spin_lock_init(&bp->b_lock);
ce8e922c
NS
179 XB_SET_OWNER(bp);
180 bp->b_target = target;
3e85c868 181 bp->b_flags = flags;
de1cbee4 182
1da177e4 183 /*
aa0e8833
DC
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
1da177e4
LT
186 * most cases but may be reset (e.g. XFS recovery).
187 */
3e85c868
DC
188 error = xfs_buf_get_maps(bp, nmaps);
189 if (error) {
190 kmem_zone_free(xfs_buf_zone, bp);
191 return NULL;
192 }
193
194 bp->b_bn = map[0].bm_bn;
195 bp->b_length = 0;
196 for (i = 0; i < nmaps; i++) {
197 bp->b_maps[i].bm_bn = map[i].bm_bn;
198 bp->b_maps[i].bm_len = map[i].bm_len;
199 bp->b_length += map[i].bm_len;
200 }
201 bp->b_io_length = bp->b_length;
202
ce8e922c
NS
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
0b1b213f 207 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
208
209 return bp;
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c 223 if (bp->b_pages == NULL) {
ce8e922c
NS
224 bp->b_page_count = page_count;
225 if (page_count <= XB_PAGES) {
226 bp->b_pages = bp->b_page_array;
1da177e4 227 } else {
ce8e922c 228 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 229 page_count, KM_NOFS);
ce8e922c 230 if (bp->b_pages == NULL)
1da177e4
LT
231 return -ENOMEM;
232 }
ce8e922c 233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
234 }
235 return 0;
236}
237
238/*
ce8e922c 239 * Frees b_pages if it was allocated.
1da177e4
LT
240 */
241STATIC void
ce8e922c 242_xfs_buf_free_pages(
1da177e4
LT
243 xfs_buf_t *bp)
244{
ce8e922c 245 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 246 kmem_free(bp->b_pages);
3fc98b1a 247 bp->b_pages = NULL;
1da177e4
LT
248 }
249}
250
251/*
252 * Releases the specified buffer.
253 *
254 * The modification state of any associated pages is left unchanged.
b46fe825 255 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
256 * hashed and refcounted buffers
257 */
258void
ce8e922c 259xfs_buf_free(
1da177e4
LT
260 xfs_buf_t *bp)
261{
0b1b213f 262 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 263
430cbeb8
DC
264 ASSERT(list_empty(&bp->b_lru));
265
0e6e847f 266 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
267 uint i;
268
73c77e2c 269 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
270 vm_unmap_ram(bp->b_addr - bp->b_offset,
271 bp->b_page_count);
1da177e4 272
948ecdb4
NS
273 for (i = 0; i < bp->b_page_count; i++) {
274 struct page *page = bp->b_pages[i];
275
0e6e847f 276 __free_page(page);
948ecdb4 277 }
0e6e847f
DC
278 } else if (bp->b_flags & _XBF_KMEM)
279 kmem_free(bp->b_addr);
3fc98b1a 280 _xfs_buf_free_pages(bp);
3e85c868 281 xfs_buf_free_maps(bp);
4347b9d7 282 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
283}
284
285/*
0e6e847f 286 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
287 */
288STATIC int
0e6e847f 289xfs_buf_allocate_memory(
1da177e4
LT
290 xfs_buf_t *bp,
291 uint flags)
292{
aa0e8833 293 size_t size;
1da177e4 294 size_t nbytes, offset;
ce8e922c 295 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 296 unsigned short page_count, i;
795cac72 297 xfs_off_t start, end;
1da177e4
LT
298 int error;
299
0e6e847f
DC
300 /*
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
304 */
795cac72
DC
305 size = BBTOB(bp->b_length);
306 if (size < PAGE_SIZE) {
aa5c158e 307 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
308 if (!bp->b_addr) {
309 /* low memory - use alloc_page loop instead */
310 goto use_alloc_page;
311 }
312
795cac72 313 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
314 ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp->b_addr);
317 bp->b_addr = NULL;
318 goto use_alloc_page;
319 }
320 bp->b_offset = offset_in_page(bp->b_addr);
321 bp->b_pages = bp->b_page_array;
322 bp->b_pages[0] = virt_to_page(bp->b_addr);
323 bp->b_page_count = 1;
611c9946 324 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
325 return 0;
326 }
327
328use_alloc_page:
f4b42421
MT
329 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
330 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 331 >> PAGE_SHIFT;
795cac72 332 page_count = end - start;
ce8e922c 333 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
334 if (unlikely(error))
335 return error;
1da177e4 336
ce8e922c 337 offset = bp->b_offset;
0e6e847f 338 bp->b_flags |= _XBF_PAGES;
1da177e4 339
ce8e922c 340 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
341 struct page *page;
342 uint retries = 0;
0e6e847f
DC
343retry:
344 page = alloc_page(gfp_mask);
1da177e4 345 if (unlikely(page == NULL)) {
ce8e922c
NS
346 if (flags & XBF_READ_AHEAD) {
347 bp->b_page_count = i;
0e6e847f
DC
348 error = ENOMEM;
349 goto out_free_pages;
1da177e4
LT
350 }
351
352 /*
353 * This could deadlock.
354 *
355 * But until all the XFS lowlevel code is revamped to
356 * handle buffer allocation failures we can't do much.
357 */
358 if (!(++retries % 100))
4f10700a
DC
359 xfs_err(NULL,
360 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 361 __func__, gfp_mask);
1da177e4 362
ce8e922c 363 XFS_STATS_INC(xb_page_retries);
8aa7e847 364 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
365 goto retry;
366 }
367
ce8e922c 368 XFS_STATS_INC(xb_page_found);
1da177e4 369
0e6e847f 370 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 371 size -= nbytes;
ce8e922c 372 bp->b_pages[i] = page;
1da177e4
LT
373 offset = 0;
374 }
0e6e847f 375 return 0;
1da177e4 376
0e6e847f
DC
377out_free_pages:
378 for (i = 0; i < bp->b_page_count; i++)
379 __free_page(bp->b_pages[i]);
1da177e4
LT
380 return error;
381}
382
383/*
25985edc 384 * Map buffer into kernel address-space if necessary.
1da177e4
LT
385 */
386STATIC int
ce8e922c 387_xfs_buf_map_pages(
1da177e4
LT
388 xfs_buf_t *bp,
389 uint flags)
390{
0e6e847f 391 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 392 if (bp->b_page_count == 1) {
0e6e847f 393 /* A single page buffer is always mappable */
ce8e922c 394 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
395 } else if (flags & XBF_UNMAPPED) {
396 bp->b_addr = NULL;
397 } else {
a19fb380 398 int retried = 0;
ae687e58
DC
399 unsigned noio_flag;
400
401 /*
402 * vm_map_ram() will allocate auxillary structures (e.g.
403 * pagetables) with GFP_KERNEL, yet we are likely to be under
404 * GFP_NOFS context here. Hence we need to tell memory reclaim
405 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
406 * memory reclaim re-entering the filesystem here and
407 * potentially deadlocking.
408 */
409 noio_flag = memalloc_noio_save();
a19fb380
DC
410 do {
411 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
412 -1, PAGE_KERNEL);
413 if (bp->b_addr)
414 break;
415 vm_unmap_aliases();
416 } while (retried++ <= 1);
ae687e58 417 memalloc_noio_restore(noio_flag);
a19fb380
DC
418
419 if (!bp->b_addr)
1da177e4 420 return -ENOMEM;
ce8e922c 421 bp->b_addr += bp->b_offset;
1da177e4
LT
422 }
423
424 return 0;
425}
426
427/*
428 * Finding and Reading Buffers
429 */
430
431/*
ce8e922c 432 * Look up, and creates if absent, a lockable buffer for
1da177e4 433 * a given range of an inode. The buffer is returned
eabbaf11 434 * locked. No I/O is implied by this call.
1da177e4
LT
435 */
436xfs_buf_t *
ce8e922c 437_xfs_buf_find(
e70b73f8 438 struct xfs_buftarg *btp,
3e85c868
DC
439 struct xfs_buf_map *map,
440 int nmaps,
ce8e922c
NS
441 xfs_buf_flags_t flags,
442 xfs_buf_t *new_bp)
1da177e4 443{
e70b73f8 444 size_t numbytes;
74f75a0c
DC
445 struct xfs_perag *pag;
446 struct rb_node **rbp;
447 struct rb_node *parent;
448 xfs_buf_t *bp;
3e85c868 449 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 450 xfs_daddr_t eofs;
3e85c868
DC
451 int numblks = 0;
452 int i;
1da177e4 453
3e85c868
DC
454 for (i = 0; i < nmaps; i++)
455 numblks += map[i].bm_len;
e70b73f8 456 numbytes = BBTOB(numblks);
1da177e4
LT
457
458 /* Check for IOs smaller than the sector size / not sector aligned */
6da54179
ES
459 ASSERT(!(numbytes < btp->bt_meta_sectorsize));
460 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 461
10616b80
DC
462 /*
463 * Corrupted block numbers can get through to here, unfortunately, so we
464 * have to check that the buffer falls within the filesystem bounds.
465 */
466 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
467 if (blkno >= eofs) {
468 /*
469 * XXX (dgc): we should really be returning EFSCORRUPTED here,
470 * but none of the higher level infrastructure supports
471 * returning a specific error on buffer lookup failures.
472 */
473 xfs_alert(btp->bt_mount,
474 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
475 __func__, blkno, eofs);
7bc0dc27 476 WARN_ON(1);
10616b80
DC
477 return NULL;
478 }
479
74f75a0c
DC
480 /* get tree root */
481 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 482 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
483
484 /* walk tree */
485 spin_lock(&pag->pag_buf_lock);
486 rbp = &pag->pag_buf_tree.rb_node;
487 parent = NULL;
488 bp = NULL;
489 while (*rbp) {
490 parent = *rbp;
491 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
492
de1cbee4 493 if (blkno < bp->b_bn)
74f75a0c 494 rbp = &(*rbp)->rb_left;
de1cbee4 495 else if (blkno > bp->b_bn)
74f75a0c
DC
496 rbp = &(*rbp)->rb_right;
497 else {
498 /*
de1cbee4 499 * found a block number match. If the range doesn't
74f75a0c
DC
500 * match, the only way this is allowed is if the buffer
501 * in the cache is stale and the transaction that made
502 * it stale has not yet committed. i.e. we are
503 * reallocating a busy extent. Skip this buffer and
504 * continue searching to the right for an exact match.
505 */
4e94b71b 506 if (bp->b_length != numblks) {
74f75a0c
DC
507 ASSERT(bp->b_flags & XBF_STALE);
508 rbp = &(*rbp)->rb_right;
509 continue;
510 }
ce8e922c 511 atomic_inc(&bp->b_hold);
1da177e4
LT
512 goto found;
513 }
514 }
515
516 /* No match found */
ce8e922c 517 if (new_bp) {
74f75a0c
DC
518 rb_link_node(&new_bp->b_rbnode, parent, rbp);
519 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
520 /* the buffer keeps the perag reference until it is freed */
521 new_bp->b_pag = pag;
522 spin_unlock(&pag->pag_buf_lock);
1da177e4 523 } else {
ce8e922c 524 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
525 spin_unlock(&pag->pag_buf_lock);
526 xfs_perag_put(pag);
1da177e4 527 }
ce8e922c 528 return new_bp;
1da177e4
LT
529
530found:
74f75a0c
DC
531 spin_unlock(&pag->pag_buf_lock);
532 xfs_perag_put(pag);
1da177e4 533
0c842ad4
CH
534 if (!xfs_buf_trylock(bp)) {
535 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
536 xfs_buf_rele(bp);
537 XFS_STATS_INC(xb_busy_locked);
538 return NULL;
1da177e4 539 }
0c842ad4
CH
540 xfs_buf_lock(bp);
541 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
542 }
543
0e6e847f
DC
544 /*
545 * if the buffer is stale, clear all the external state associated with
546 * it. We need to keep flags such as how we allocated the buffer memory
547 * intact here.
548 */
ce8e922c
NS
549 if (bp->b_flags & XBF_STALE) {
550 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 551 ASSERT(bp->b_iodone == NULL);
611c9946 552 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 553 bp->b_ops = NULL;
2f926587 554 }
0b1b213f
CH
555
556 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
557 XFS_STATS_INC(xb_get_locked);
558 return bp;
1da177e4
LT
559}
560
561/*
3815832a
DC
562 * Assembles a buffer covering the specified range. The code is optimised for
563 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
564 * more hits than misses.
1da177e4 565 */
3815832a 566struct xfs_buf *
6dde2707
DC
567xfs_buf_get_map(
568 struct xfs_buftarg *target,
569 struct xfs_buf_map *map,
570 int nmaps,
ce8e922c 571 xfs_buf_flags_t flags)
1da177e4 572{
3815832a
DC
573 struct xfs_buf *bp;
574 struct xfs_buf *new_bp;
0e6e847f 575 int error = 0;
1da177e4 576
6dde2707 577 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
578 if (likely(bp))
579 goto found;
580
6dde2707 581 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 582 if (unlikely(!new_bp))
1da177e4
LT
583 return NULL;
584
fe2429b0
DC
585 error = xfs_buf_allocate_memory(new_bp, flags);
586 if (error) {
3e85c868 587 xfs_buf_free(new_bp);
fe2429b0
DC
588 return NULL;
589 }
590
6dde2707 591 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 592 if (!bp) {
fe2429b0 593 xfs_buf_free(new_bp);
3815832a
DC
594 return NULL;
595 }
596
fe2429b0
DC
597 if (bp != new_bp)
598 xfs_buf_free(new_bp);
1da177e4 599
3815832a 600found:
611c9946 601 if (!bp->b_addr) {
ce8e922c 602 error = _xfs_buf_map_pages(bp, flags);
1da177e4 603 if (unlikely(error)) {
4f10700a 604 xfs_warn(target->bt_mount,
08e96e1a 605 "%s: failed to map pagesn", __func__);
a8acad70
DC
606 xfs_buf_relse(bp);
607 return NULL;
1da177e4
LT
608 }
609 }
610
ce8e922c 611 XFS_STATS_INC(xb_get);
0b1b213f 612 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 613 return bp;
1da177e4
LT
614}
615
5d765b97
CH
616STATIC int
617_xfs_buf_read(
618 xfs_buf_t *bp,
619 xfs_buf_flags_t flags)
620{
43ff2122 621 ASSERT(!(flags & XBF_WRITE));
f4b42421 622 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 623
43ff2122 624 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 625 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 626
0e95f19a
DC
627 xfs_buf_iorequest(bp);
628 if (flags & XBF_ASYNC)
629 return 0;
ec53d1db 630 return xfs_buf_iowait(bp);
5d765b97
CH
631}
632
1da177e4 633xfs_buf_t *
6dde2707
DC
634xfs_buf_read_map(
635 struct xfs_buftarg *target,
636 struct xfs_buf_map *map,
637 int nmaps,
c3f8fc73 638 xfs_buf_flags_t flags,
1813dd64 639 const struct xfs_buf_ops *ops)
1da177e4 640{
6dde2707 641 struct xfs_buf *bp;
ce8e922c
NS
642
643 flags |= XBF_READ;
644
6dde2707 645 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 646 if (bp) {
0b1b213f
CH
647 trace_xfs_buf_read(bp, flags, _RET_IP_);
648
ce8e922c 649 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 650 XFS_STATS_INC(xb_get_read);
1813dd64 651 bp->b_ops = ops;
5d765b97 652 _xfs_buf_read(bp, flags);
ce8e922c 653 } else if (flags & XBF_ASYNC) {
1da177e4
LT
654 /*
655 * Read ahead call which is already satisfied,
656 * drop the buffer
657 */
a8acad70
DC
658 xfs_buf_relse(bp);
659 return NULL;
1da177e4 660 } else {
1da177e4 661 /* We do not want read in the flags */
ce8e922c 662 bp->b_flags &= ~XBF_READ;
1da177e4
LT
663 }
664 }
665
ce8e922c 666 return bp;
1da177e4
LT
667}
668
1da177e4 669/*
ce8e922c
NS
670 * If we are not low on memory then do the readahead in a deadlock
671 * safe manner.
1da177e4
LT
672 */
673void
6dde2707
DC
674xfs_buf_readahead_map(
675 struct xfs_buftarg *target,
676 struct xfs_buf_map *map,
c3f8fc73 677 int nmaps,
1813dd64 678 const struct xfs_buf_ops *ops)
1da177e4 679{
0e6e847f 680 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
681 return;
682
6dde2707 683 xfs_buf_read_map(target, map, nmaps,
1813dd64 684 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
685}
686
5adc94c2
DC
687/*
688 * Read an uncached buffer from disk. Allocates and returns a locked
689 * buffer containing the disk contents or nothing.
690 */
691struct xfs_buf *
692xfs_buf_read_uncached(
5adc94c2
DC
693 struct xfs_buftarg *target,
694 xfs_daddr_t daddr,
e70b73f8 695 size_t numblks,
c3f8fc73 696 int flags,
1813dd64 697 const struct xfs_buf_ops *ops)
5adc94c2 698{
eab4e633 699 struct xfs_buf *bp;
5adc94c2 700
e70b73f8 701 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
702 if (!bp)
703 return NULL;
704
705 /* set up the buffer for a read IO */
3e85c868
DC
706 ASSERT(bp->b_map_count == 1);
707 bp->b_bn = daddr;
708 bp->b_maps[0].bm_bn = daddr;
cbb7baab 709 bp->b_flags |= XBF_READ;
1813dd64 710 bp->b_ops = ops;
5adc94c2 711
83a0adc3
CH
712 if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
713 xfs_buf_relse(bp);
714 return NULL;
715 }
716 xfs_buf_iorequest(bp);
eab4e633 717 xfs_buf_iowait(bp);
5adc94c2 718 return bp;
1da177e4
LT
719}
720
44396476
DC
721/*
722 * Return a buffer allocated as an empty buffer and associated to external
723 * memory via xfs_buf_associate_memory() back to it's empty state.
724 */
725void
726xfs_buf_set_empty(
727 struct xfs_buf *bp,
e70b73f8 728 size_t numblks)
44396476
DC
729{
730 if (bp->b_pages)
731 _xfs_buf_free_pages(bp);
732
733 bp->b_pages = NULL;
734 bp->b_page_count = 0;
735 bp->b_addr = NULL;
4e94b71b 736 bp->b_length = numblks;
aa0e8833 737 bp->b_io_length = numblks;
3e85c868
DC
738
739 ASSERT(bp->b_map_count == 1);
44396476 740 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
741 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
742 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
743}
744
1da177e4
LT
745static inline struct page *
746mem_to_page(
747 void *addr)
748{
9e2779fa 749 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
750 return virt_to_page(addr);
751 } else {
752 return vmalloc_to_page(addr);
753 }
754}
755
756int
ce8e922c
NS
757xfs_buf_associate_memory(
758 xfs_buf_t *bp,
1da177e4
LT
759 void *mem,
760 size_t len)
761{
762 int rval;
763 int i = 0;
d1afb678
LM
764 unsigned long pageaddr;
765 unsigned long offset;
766 size_t buflen;
1da177e4
LT
767 int page_count;
768
0e6e847f 769 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 770 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
771 buflen = PAGE_ALIGN(len + offset);
772 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
773
774 /* Free any previous set of page pointers */
ce8e922c
NS
775 if (bp->b_pages)
776 _xfs_buf_free_pages(bp);
1da177e4 777
ce8e922c
NS
778 bp->b_pages = NULL;
779 bp->b_addr = mem;
1da177e4 780
aa5c158e 781 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
782 if (rval)
783 return rval;
784
ce8e922c 785 bp->b_offset = offset;
d1afb678
LM
786
787 for (i = 0; i < bp->b_page_count; i++) {
788 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 789 pageaddr += PAGE_SIZE;
1da177e4 790 }
1da177e4 791
aa0e8833 792 bp->b_io_length = BTOBB(len);
4e94b71b 793 bp->b_length = BTOBB(buflen);
1da177e4
LT
794
795 return 0;
796}
797
798xfs_buf_t *
686865f7
DC
799xfs_buf_get_uncached(
800 struct xfs_buftarg *target,
e70b73f8 801 size_t numblks,
686865f7 802 int flags)
1da177e4 803{
e70b73f8 804 unsigned long page_count;
1fa40b01 805 int error, i;
3e85c868
DC
806 struct xfs_buf *bp;
807 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 808
3e85c868 809 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
810 if (unlikely(bp == NULL))
811 goto fail;
1da177e4 812
e70b73f8 813 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
814 error = _xfs_buf_get_pages(bp, page_count, 0);
815 if (error)
1da177e4
LT
816 goto fail_free_buf;
817
1fa40b01 818 for (i = 0; i < page_count; i++) {
686865f7 819 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
820 if (!bp->b_pages[i])
821 goto fail_free_mem;
1da177e4 822 }
1fa40b01 823 bp->b_flags |= _XBF_PAGES;
1da177e4 824
611c9946 825 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 826 if (unlikely(error)) {
4f10700a 827 xfs_warn(target->bt_mount,
08e96e1a 828 "%s: failed to map pages", __func__);
1da177e4 829 goto fail_free_mem;
1fa40b01 830 }
1da177e4 831
686865f7 832 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 833 return bp;
1fa40b01 834
1da177e4 835 fail_free_mem:
1fa40b01
CH
836 while (--i >= 0)
837 __free_page(bp->b_pages[i]);
ca165b88 838 _xfs_buf_free_pages(bp);
1da177e4 839 fail_free_buf:
3e85c868 840 xfs_buf_free_maps(bp);
4347b9d7 841 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
842 fail:
843 return NULL;
844}
845
846/*
1da177e4
LT
847 * Increment reference count on buffer, to hold the buffer concurrently
848 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
849 * Must hold the buffer already to call this function.
850 */
851void
ce8e922c
NS
852xfs_buf_hold(
853 xfs_buf_t *bp)
1da177e4 854{
0b1b213f 855 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 856 atomic_inc(&bp->b_hold);
1da177e4
LT
857}
858
859/*
ce8e922c
NS
860 * Releases a hold on the specified buffer. If the
861 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
862 */
863void
ce8e922c
NS
864xfs_buf_rele(
865 xfs_buf_t *bp)
1da177e4 866{
74f75a0c 867 struct xfs_perag *pag = bp->b_pag;
1da177e4 868
0b1b213f 869 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 870
74f75a0c 871 if (!pag) {
430cbeb8 872 ASSERT(list_empty(&bp->b_lru));
74f75a0c 873 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
874 if (atomic_dec_and_test(&bp->b_hold))
875 xfs_buf_free(bp);
876 return;
877 }
878
74f75a0c 879 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 880
3790689f 881 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 882 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
a4082357
DC
883 spin_lock(&bp->b_lock);
884 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
885 /*
886 * If the buffer is added to the LRU take a new
887 * reference to the buffer for the LRU and clear the
888 * (now stale) dispose list state flag
889 */
890 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
891 bp->b_state &= ~XFS_BSTATE_DISPOSE;
892 atomic_inc(&bp->b_hold);
893 }
894 spin_unlock(&bp->b_lock);
430cbeb8 895 spin_unlock(&pag->pag_buf_lock);
1da177e4 896 } else {
a4082357
DC
897 /*
898 * most of the time buffers will already be removed from
899 * the LRU, so optimise that case by checking for the
900 * XFS_BSTATE_DISPOSE flag indicating the last list the
901 * buffer was on was the disposal list
902 */
903 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
904 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
905 } else {
906 ASSERT(list_empty(&bp->b_lru));
907 }
908 spin_unlock(&bp->b_lock);
909
43ff2122 910 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
911 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
912 spin_unlock(&pag->pag_buf_lock);
913 xfs_perag_put(pag);
ce8e922c 914 xfs_buf_free(bp);
1da177e4
LT
915 }
916 }
917}
918
919
920/*
0e6e847f 921 * Lock a buffer object, if it is not already locked.
90810b9e
DC
922 *
923 * If we come across a stale, pinned, locked buffer, we know that we are
924 * being asked to lock a buffer that has been reallocated. Because it is
925 * pinned, we know that the log has not been pushed to disk and hence it
926 * will still be locked. Rather than continuing to have trylock attempts
927 * fail until someone else pushes the log, push it ourselves before
928 * returning. This means that the xfsaild will not get stuck trying
929 * to push on stale inode buffers.
1da177e4
LT
930 */
931int
0c842ad4
CH
932xfs_buf_trylock(
933 struct xfs_buf *bp)
1da177e4
LT
934{
935 int locked;
936
ce8e922c 937 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 938 if (locked)
ce8e922c 939 XB_SET_OWNER(bp);
0b1b213f 940
0c842ad4
CH
941 trace_xfs_buf_trylock(bp, _RET_IP_);
942 return locked;
1da177e4 943}
1da177e4
LT
944
945/*
0e6e847f 946 * Lock a buffer object.
ed3b4d6c
DC
947 *
948 * If we come across a stale, pinned, locked buffer, we know that we
949 * are being asked to lock a buffer that has been reallocated. Because
950 * it is pinned, we know that the log has not been pushed to disk and
951 * hence it will still be locked. Rather than sleeping until someone
952 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 953 */
ce8e922c
NS
954void
955xfs_buf_lock(
0c842ad4 956 struct xfs_buf *bp)
1da177e4 957{
0b1b213f
CH
958 trace_xfs_buf_lock(bp, _RET_IP_);
959
ed3b4d6c 960 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 961 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
962 down(&bp->b_sema);
963 XB_SET_OWNER(bp);
0b1b213f
CH
964
965 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
966}
967
1da177e4 968void
ce8e922c 969xfs_buf_unlock(
0c842ad4 970 struct xfs_buf *bp)
1da177e4 971{
ce8e922c
NS
972 XB_CLEAR_OWNER(bp);
973 up(&bp->b_sema);
0b1b213f
CH
974
975 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
976}
977
ce8e922c
NS
978STATIC void
979xfs_buf_wait_unpin(
980 xfs_buf_t *bp)
1da177e4
LT
981{
982 DECLARE_WAITQUEUE (wait, current);
983
ce8e922c 984 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
985 return;
986
ce8e922c 987 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
988 for (;;) {
989 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 990 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 991 break;
7eaceacc 992 io_schedule();
1da177e4 993 }
ce8e922c 994 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
995 set_current_state(TASK_RUNNING);
996}
997
998/*
999 * Buffer Utility Routines
1000 */
1001
1da177e4 1002STATIC void
ce8e922c 1003xfs_buf_iodone_work(
c4028958 1004 struct work_struct *work)
1da177e4 1005{
1813dd64 1006 struct xfs_buf *bp =
c4028958 1007 container_of(work, xfs_buf_t, b_iodone_work);
1813dd64
DC
1008 bool read = !!(bp->b_flags & XBF_READ);
1009
1010 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8
DC
1011
1012 /* only validate buffers that were read without errors */
1013 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1813dd64 1014 bp->b_ops->verify_read(bp);
1da177e4 1015
80f6c29d 1016 if (bp->b_iodone)
ce8e922c
NS
1017 (*(bp->b_iodone))(bp);
1018 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1019 xfs_buf_relse(bp);
1813dd64
DC
1020 else {
1021 ASSERT(read && bp->b_ops);
1022 complete(&bp->b_iowait);
1023 }
1da177e4
LT
1024}
1025
1026void
ce8e922c 1027xfs_buf_ioend(
1813dd64
DC
1028 struct xfs_buf *bp,
1029 int schedule)
1da177e4 1030{
1813dd64
DC
1031 bool read = !!(bp->b_flags & XBF_READ);
1032
0b1b213f
CH
1033 trace_xfs_buf_iodone(bp, _RET_IP_);
1034
ce8e922c
NS
1035 if (bp->b_error == 0)
1036 bp->b_flags |= XBF_DONE;
1da177e4 1037
1813dd64 1038 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1039 if (schedule) {
c4028958 1040 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1041 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1042 } else {
c4028958 1043 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1044 }
1045 } else {
1813dd64 1046 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
b4dd330b 1047 complete(&bp->b_iowait);
1da177e4
LT
1048 }
1049}
1050
1da177e4 1051void
ce8e922c
NS
1052xfs_buf_ioerror(
1053 xfs_buf_t *bp,
1054 int error)
1da177e4
LT
1055{
1056 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1057 bp->b_error = (unsigned short)error;
0b1b213f 1058 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1059}
1060
901796af
CH
1061void
1062xfs_buf_ioerror_alert(
1063 struct xfs_buf *bp,
1064 const char *func)
1065{
1066 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1067"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1068 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1069}
1070
4e23471a
CH
1071/*
1072 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1073 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1074 * so that the proper iodone callbacks get called.
1075 */
1076STATIC int
1077xfs_bioerror(
1078 xfs_buf_t *bp)
1079{
1080#ifdef XFSERRORDEBUG
1081 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1082#endif
1083
1084 /*
1085 * No need to wait until the buffer is unpinned, we aren't flushing it.
1086 */
5a52c2a5 1087 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1088
1089 /*
1a1a3e97 1090 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1091 */
1092 XFS_BUF_UNREAD(bp);
4e23471a 1093 XFS_BUF_UNDONE(bp);
c867cb61 1094 xfs_buf_stale(bp);
4e23471a 1095
1a1a3e97 1096 xfs_buf_ioend(bp, 0);
4e23471a
CH
1097
1098 return EIO;
1099}
1100
1101/*
1102 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1103 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1104 * This is meant for userdata errors; metadata bufs come with
1105 * iodone functions attached, so that we can track down errors.
1106 */
83a0adc3 1107int
4e23471a
CH
1108xfs_bioerror_relse(
1109 struct xfs_buf *bp)
1110{
ed43233b 1111 int64_t fl = bp->b_flags;
4e23471a
CH
1112 /*
1113 * No need to wait until the buffer is unpinned.
1114 * We aren't flushing it.
1115 *
1116 * chunkhold expects B_DONE to be set, whether
1117 * we actually finish the I/O or not. We don't want to
1118 * change that interface.
1119 */
1120 XFS_BUF_UNREAD(bp);
4e23471a 1121 XFS_BUF_DONE(bp);
c867cb61 1122 xfs_buf_stale(bp);
cb669ca5 1123 bp->b_iodone = NULL;
0cadda1c 1124 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1125 /*
1126 * Mark b_error and B_ERROR _both_.
1127 * Lot's of chunkcache code assumes that.
1128 * There's no reason to mark error for
1129 * ASYNC buffers.
1130 */
5a52c2a5 1131 xfs_buf_ioerror(bp, EIO);
5fde0326 1132 complete(&bp->b_iowait);
4e23471a
CH
1133 } else {
1134 xfs_buf_relse(bp);
1135 }
1136
1137 return EIO;
1138}
1139
a2dcf5df 1140STATIC int
4e23471a
CH
1141xfs_bdstrat_cb(
1142 struct xfs_buf *bp)
1143{
ebad861b 1144 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1145 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1146 /*
1147 * Metadata write that didn't get logged but
1148 * written delayed anyway. These aren't associated
1149 * with a transaction, and can be ignored.
1150 */
1151 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1152 return xfs_bioerror_relse(bp);
1153 else
1154 return xfs_bioerror(bp);
1155 }
1156
1157 xfs_buf_iorequest(bp);
1158 return 0;
1159}
1160
a2dcf5df
CH
1161int
1162xfs_bwrite(
1163 struct xfs_buf *bp)
1164{
1165 int error;
1166
1167 ASSERT(xfs_buf_islocked(bp));
1168
1169 bp->b_flags |= XBF_WRITE;
ac8809f9 1170 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
a2dcf5df
CH
1171
1172 xfs_bdstrat_cb(bp);
1173
1174 error = xfs_buf_iowait(bp);
1175 if (error) {
1176 xfs_force_shutdown(bp->b_target->bt_mount,
1177 SHUTDOWN_META_IO_ERROR);
1178 }
1179 return error;
1180}
1181
b8f82a4a 1182STATIC void
ce8e922c
NS
1183_xfs_buf_ioend(
1184 xfs_buf_t *bp,
1da177e4
LT
1185 int schedule)
1186{
0e6e847f 1187 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1188 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1189}
1190
782e3b3b 1191STATIC void
ce8e922c 1192xfs_buf_bio_end_io(
1da177e4 1193 struct bio *bio,
1da177e4
LT
1194 int error)
1195{
ce8e922c 1196 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1197
37eb17e6
DC
1198 /*
1199 * don't overwrite existing errors - otherwise we can lose errors on
1200 * buffers that require multiple bios to complete.
1201 */
1202 if (!bp->b_error)
1203 xfs_buf_ioerror(bp, -error);
1da177e4 1204
37eb17e6 1205 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1206 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1207
ce8e922c 1208 _xfs_buf_ioend(bp, 1);
1da177e4 1209 bio_put(bio);
1da177e4
LT
1210}
1211
3e85c868
DC
1212static void
1213xfs_buf_ioapply_map(
1214 struct xfs_buf *bp,
1215 int map,
1216 int *buf_offset,
1217 int *count,
1218 int rw)
1da177e4 1219{
3e85c868
DC
1220 int page_index;
1221 int total_nr_pages = bp->b_page_count;
1222 int nr_pages;
1223 struct bio *bio;
1224 sector_t sector = bp->b_maps[map].bm_bn;
1225 int size;
1226 int offset;
1da177e4 1227
ce8e922c 1228 total_nr_pages = bp->b_page_count;
1da177e4 1229
3e85c868
DC
1230 /* skip the pages in the buffer before the start offset */
1231 page_index = 0;
1232 offset = *buf_offset;
1233 while (offset >= PAGE_SIZE) {
1234 page_index++;
1235 offset -= PAGE_SIZE;
f538d4da
CH
1236 }
1237
3e85c868
DC
1238 /*
1239 * Limit the IO size to the length of the current vector, and update the
1240 * remaining IO count for the next time around.
1241 */
1242 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1243 *count -= size;
1244 *buf_offset += size;
34951f5c 1245
1da177e4 1246next_chunk:
ce8e922c 1247 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1248 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1249 if (nr_pages > total_nr_pages)
1250 nr_pages = total_nr_pages;
1251
1252 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1253 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1254 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1255 bio->bi_end_io = xfs_buf_bio_end_io;
1256 bio->bi_private = bp;
1da177e4 1257
0e6e847f 1258
3e85c868 1259 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1260 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1261
1262 if (nbytes > size)
1263 nbytes = size;
1264
3e85c868
DC
1265 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1266 offset);
ce8e922c 1267 if (rbytes < nbytes)
1da177e4
LT
1268 break;
1269
1270 offset = 0;
aa0e8833 1271 sector += BTOBB(nbytes);
1da177e4
LT
1272 size -= nbytes;
1273 total_nr_pages--;
1274 }
1275
4f024f37 1276 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1277 if (xfs_buf_is_vmapped(bp)) {
1278 flush_kernel_vmap_range(bp->b_addr,
1279 xfs_buf_vmap_len(bp));
1280 }
1da177e4
LT
1281 submit_bio(rw, bio);
1282 if (size)
1283 goto next_chunk;
1284 } else {
37eb17e6
DC
1285 /*
1286 * This is guaranteed not to be the last io reference count
1287 * because the caller (xfs_buf_iorequest) holds a count itself.
1288 */
1289 atomic_dec(&bp->b_io_remaining);
ce8e922c 1290 xfs_buf_ioerror(bp, EIO);
ec53d1db 1291 bio_put(bio);
1da177e4 1292 }
3e85c868
DC
1293
1294}
1295
1296STATIC void
1297_xfs_buf_ioapply(
1298 struct xfs_buf *bp)
1299{
1300 struct blk_plug plug;
1301 int rw;
1302 int offset;
1303 int size;
1304 int i;
1305
c163f9a1
DC
1306 /*
1307 * Make sure we capture only current IO errors rather than stale errors
1308 * left over from previous use of the buffer (e.g. failed readahead).
1309 */
1310 bp->b_error = 0;
1311
3e85c868
DC
1312 if (bp->b_flags & XBF_WRITE) {
1313 if (bp->b_flags & XBF_SYNCIO)
1314 rw = WRITE_SYNC;
1315 else
1316 rw = WRITE;
1317 if (bp->b_flags & XBF_FUA)
1318 rw |= REQ_FUA;
1319 if (bp->b_flags & XBF_FLUSH)
1320 rw |= REQ_FLUSH;
1813dd64
DC
1321
1322 /*
1323 * Run the write verifier callback function if it exists. If
1324 * this function fails it will mark the buffer with an error and
1325 * the IO should not be dispatched.
1326 */
1327 if (bp->b_ops) {
1328 bp->b_ops->verify_write(bp);
1329 if (bp->b_error) {
1330 xfs_force_shutdown(bp->b_target->bt_mount,
1331 SHUTDOWN_CORRUPT_INCORE);
1332 return;
1333 }
1334 }
3e85c868
DC
1335 } else if (bp->b_flags & XBF_READ_AHEAD) {
1336 rw = READA;
1337 } else {
1338 rw = READ;
1339 }
1340
1341 /* we only use the buffer cache for meta-data */
1342 rw |= REQ_META;
1343
1344 /*
1345 * Walk all the vectors issuing IO on them. Set up the initial offset
1346 * into the buffer and the desired IO size before we start -
1347 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1348 * subsequent call.
1349 */
1350 offset = bp->b_offset;
1351 size = BBTOB(bp->b_io_length);
1352 blk_start_plug(&plug);
1353 for (i = 0; i < bp->b_map_count; i++) {
1354 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1355 if (bp->b_error)
1356 break;
1357 if (size <= 0)
1358 break; /* all done */
1359 }
1360 blk_finish_plug(&plug);
1da177e4
LT
1361}
1362
0e95f19a 1363void
ce8e922c
NS
1364xfs_buf_iorequest(
1365 xfs_buf_t *bp)
1da177e4 1366{
0b1b213f 1367 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1368
43ff2122 1369 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1370
375ec69d 1371 if (bp->b_flags & XBF_WRITE)
ce8e922c 1372 xfs_buf_wait_unpin(bp);
ce8e922c 1373 xfs_buf_hold(bp);
1da177e4
LT
1374
1375 /* Set the count to 1 initially, this will stop an I/O
1376 * completion callout which happens before we have started
ce8e922c 1377 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1378 */
ce8e922c
NS
1379 atomic_set(&bp->b_io_remaining, 1);
1380 _xfs_buf_ioapply(bp);
08023d6d 1381 _xfs_buf_ioend(bp, 1);
1da177e4 1382
ce8e922c 1383 xfs_buf_rele(bp);
1da177e4
LT
1384}
1385
1386/*
0e95f19a
DC
1387 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1388 * no I/O is pending or there is already a pending error on the buffer. It
1389 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1390 */
1391int
ce8e922c
NS
1392xfs_buf_iowait(
1393 xfs_buf_t *bp)
1da177e4 1394{
0b1b213f
CH
1395 trace_xfs_buf_iowait(bp, _RET_IP_);
1396
0e95f19a
DC
1397 if (!bp->b_error)
1398 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1399
1400 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1401 return bp->b_error;
1da177e4
LT
1402}
1403
ce8e922c
NS
1404xfs_caddr_t
1405xfs_buf_offset(
1406 xfs_buf_t *bp,
1da177e4
LT
1407 size_t offset)
1408{
1409 struct page *page;
1410
611c9946 1411 if (bp->b_addr)
62926044 1412 return bp->b_addr + offset;
1da177e4 1413
ce8e922c 1414 offset += bp->b_offset;
0e6e847f
DC
1415 page = bp->b_pages[offset >> PAGE_SHIFT];
1416 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1417}
1418
1419/*
1da177e4
LT
1420 * Move data into or out of a buffer.
1421 */
1422void
ce8e922c
NS
1423xfs_buf_iomove(
1424 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1425 size_t boff, /* starting buffer offset */
1426 size_t bsize, /* length to copy */
b9c48649 1427 void *data, /* data address */
ce8e922c 1428 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1429{
795cac72 1430 size_t bend;
1da177e4
LT
1431
1432 bend = boff + bsize;
1433 while (boff < bend) {
795cac72
DC
1434 struct page *page;
1435 int page_index, page_offset, csize;
1436
1437 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1438 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1439 page = bp->b_pages[page_index];
1440 csize = min_t(size_t, PAGE_SIZE - page_offset,
1441 BBTOB(bp->b_io_length) - boff);
1da177e4 1442
795cac72 1443 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1444
1445 switch (mode) {
ce8e922c 1446 case XBRW_ZERO:
795cac72 1447 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1448 break;
ce8e922c 1449 case XBRW_READ:
795cac72 1450 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1451 break;
ce8e922c 1452 case XBRW_WRITE:
795cac72 1453 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1454 }
1455
1456 boff += csize;
1457 data += csize;
1458 }
1459}
1460
1461/*
ce8e922c 1462 * Handling of buffer targets (buftargs).
1da177e4
LT
1463 */
1464
1465/*
430cbeb8
DC
1466 * Wait for any bufs with callbacks that have been submitted but have not yet
1467 * returned. These buffers will have an elevated hold count, so wait on those
1468 * while freeing all the buffers only held by the LRU.
1da177e4 1469 */
e80dfa19
DC
1470static enum lru_status
1471xfs_buftarg_wait_rele(
1472 struct list_head *item,
1473 spinlock_t *lru_lock,
1474 void *arg)
1475
1da177e4 1476{
e80dfa19 1477 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1478 struct list_head *dispose = arg;
430cbeb8 1479
e80dfa19 1480 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1481 /* need to wait, so skip it this pass */
e80dfa19 1482 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1483 return LRU_SKIP;
1da177e4 1484 }
a4082357
DC
1485 if (!spin_trylock(&bp->b_lock))
1486 return LRU_SKIP;
e80dfa19 1487
a4082357
DC
1488 /*
1489 * clear the LRU reference count so the buffer doesn't get
1490 * ignored in xfs_buf_rele().
1491 */
1492 atomic_set(&bp->b_lru_ref, 0);
1493 bp->b_state |= XFS_BSTATE_DISPOSE;
1494 list_move(item, dispose);
1495 spin_unlock(&bp->b_lock);
1496 return LRU_REMOVED;
1da177e4
LT
1497}
1498
e80dfa19
DC
1499void
1500xfs_wait_buftarg(
1501 struct xfs_buftarg *btp)
1502{
a4082357
DC
1503 LIST_HEAD(dispose);
1504 int loop = 0;
1505
1506 /* loop until there is nothing left on the lru list. */
1507 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1508 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1509 &dispose, LONG_MAX);
1510
1511 while (!list_empty(&dispose)) {
1512 struct xfs_buf *bp;
1513 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1514 list_del_init(&bp->b_lru);
ac8809f9
DC
1515 if (bp->b_flags & XBF_WRITE_FAIL) {
1516 xfs_alert(btp->bt_mount,
1517"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1518"Please run xfs_repair to determine the extent of the problem.",
1519 (long long)bp->b_bn);
1520 }
a4082357
DC
1521 xfs_buf_rele(bp);
1522 }
1523 if (loop++ != 0)
1524 delay(100);
1525 }
e80dfa19
DC
1526}
1527
1528static enum lru_status
1529xfs_buftarg_isolate(
1530 struct list_head *item,
1531 spinlock_t *lru_lock,
1532 void *arg)
1533{
1534 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1535 struct list_head *dispose = arg;
1536
a4082357
DC
1537 /*
1538 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1539 * If we fail to get the lock, just skip it.
1540 */
1541 if (!spin_trylock(&bp->b_lock))
1542 return LRU_SKIP;
e80dfa19
DC
1543 /*
1544 * Decrement the b_lru_ref count unless the value is already
1545 * zero. If the value is already zero, we need to reclaim the
1546 * buffer, otherwise it gets another trip through the LRU.
1547 */
a4082357
DC
1548 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1549 spin_unlock(&bp->b_lock);
e80dfa19 1550 return LRU_ROTATE;
a4082357 1551 }
e80dfa19 1552
a4082357 1553 bp->b_state |= XFS_BSTATE_DISPOSE;
e80dfa19 1554 list_move(item, dispose);
a4082357 1555 spin_unlock(&bp->b_lock);
e80dfa19
DC
1556 return LRU_REMOVED;
1557}
1558
addbda40 1559static unsigned long
e80dfa19 1560xfs_buftarg_shrink_scan(
ff57ab21 1561 struct shrinker *shrink,
1495f230 1562 struct shrink_control *sc)
a6867a68 1563{
ff57ab21
DC
1564 struct xfs_buftarg *btp = container_of(shrink,
1565 struct xfs_buftarg, bt_shrinker);
430cbeb8 1566 LIST_HEAD(dispose);
addbda40 1567 unsigned long freed;
e80dfa19 1568 unsigned long nr_to_scan = sc->nr_to_scan;
430cbeb8 1569
e80dfa19
DC
1570 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1571 &dispose, &nr_to_scan);
430cbeb8
DC
1572
1573 while (!list_empty(&dispose)) {
e80dfa19 1574 struct xfs_buf *bp;
430cbeb8
DC
1575 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1576 list_del_init(&bp->b_lru);
1577 xfs_buf_rele(bp);
1578 }
1579
e80dfa19
DC
1580 return freed;
1581}
1582
addbda40 1583static unsigned long
e80dfa19
DC
1584xfs_buftarg_shrink_count(
1585 struct shrinker *shrink,
1586 struct shrink_control *sc)
1587{
1588 struct xfs_buftarg *btp = container_of(shrink,
1589 struct xfs_buftarg, bt_shrinker);
1590 return list_lru_count_node(&btp->bt_lru, sc->nid);
a6867a68
DC
1591}
1592
1da177e4
LT
1593void
1594xfs_free_buftarg(
b7963133
CH
1595 struct xfs_mount *mp,
1596 struct xfs_buftarg *btp)
1da177e4 1597{
ff57ab21 1598 unregister_shrinker(&btp->bt_shrinker);
f5e1dd34 1599 list_lru_destroy(&btp->bt_lru);
ff57ab21 1600
b7963133
CH
1601 if (mp->m_flags & XFS_MOUNT_BARRIER)
1602 xfs_blkdev_issue_flush(btp);
a6867a68 1603
f0e2d93c 1604 kmem_free(btp);
1da177e4
LT
1605}
1606
3fefdeee
ES
1607int
1608xfs_setsize_buftarg(
1da177e4
LT
1609 xfs_buftarg_t *btp,
1610 unsigned int blocksize,
3fefdeee 1611 unsigned int sectorsize)
1da177e4 1612{
7c71ee78 1613 /* Set up metadata sector size info */
6da54179
ES
1614 btp->bt_meta_sectorsize = sectorsize;
1615 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1616
ce8e922c 1617 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1618 char name[BDEVNAME_SIZE];
1619
1620 bdevname(btp->bt_bdev, name);
1621
4f10700a 1622 xfs_warn(btp->bt_mount,
08e96e1a 1623 "Cannot set_blocksize to %u on device %s",
02b102df 1624 sectorsize, name);
1da177e4
LT
1625 return EINVAL;
1626 }
1627
7c71ee78
ES
1628 /* Set up device logical sector size mask */
1629 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1630 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1631
1da177e4
LT
1632 return 0;
1633}
1634
1635/*
3fefdeee
ES
1636 * When allocating the initial buffer target we have not yet
1637 * read in the superblock, so don't know what sized sectors
1638 * are being used at this early stage. Play safe.
ce8e922c 1639 */
1da177e4
LT
1640STATIC int
1641xfs_setsize_buftarg_early(
1642 xfs_buftarg_t *btp,
1643 struct block_device *bdev)
1644{
3fefdeee
ES
1645 return xfs_setsize_buftarg(btp, PAGE_SIZE,
1646 bdev_logical_block_size(bdev));
1da177e4
LT
1647}
1648
1da177e4
LT
1649xfs_buftarg_t *
1650xfs_alloc_buftarg(
ebad861b 1651 struct xfs_mount *mp,
1da177e4 1652 struct block_device *bdev,
e2a07812
JE
1653 int external,
1654 const char *fsname)
1da177e4
LT
1655{
1656 xfs_buftarg_t *btp;
1657
b17cb364 1658 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1659
ebad861b 1660 btp->bt_mount = mp;
ce8e922c
NS
1661 btp->bt_dev = bdev->bd_dev;
1662 btp->bt_bdev = bdev;
0e6e847f
DC
1663 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1664 if (!btp->bt_bdi)
1665 goto error;
1666
1da177e4
LT
1667 if (xfs_setsize_buftarg_early(btp, bdev))
1668 goto error;
5ca302c8
GC
1669
1670 if (list_lru_init(&btp->bt_lru))
1671 goto error;
1672
e80dfa19
DC
1673 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1674 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1675 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1676 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1677 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1678 return btp;
1679
1680error:
f0e2d93c 1681 kmem_free(btp);
1da177e4
LT
1682 return NULL;
1683}
1684
1da177e4 1685/*
43ff2122
CH
1686 * Add a buffer to the delayed write list.
1687 *
1688 * This queues a buffer for writeout if it hasn't already been. Note that
1689 * neither this routine nor the buffer list submission functions perform
1690 * any internal synchronization. It is expected that the lists are thread-local
1691 * to the callers.
1692 *
1693 * Returns true if we queued up the buffer, or false if it already had
1694 * been on the buffer list.
1da177e4 1695 */
43ff2122 1696bool
ce8e922c 1697xfs_buf_delwri_queue(
43ff2122
CH
1698 struct xfs_buf *bp,
1699 struct list_head *list)
1da177e4 1700{
43ff2122 1701 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1702 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1703
43ff2122
CH
1704 /*
1705 * If the buffer is already marked delwri it already is queued up
1706 * by someone else for imediate writeout. Just ignore it in that
1707 * case.
1708 */
1709 if (bp->b_flags & _XBF_DELWRI_Q) {
1710 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1711 return false;
1da177e4 1712 }
1da177e4 1713
43ff2122 1714 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1715
1716 /*
43ff2122
CH
1717 * If a buffer gets written out synchronously or marked stale while it
1718 * is on a delwri list we lazily remove it. To do this, the other party
1719 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1720 * It remains referenced and on the list. In a rare corner case it
1721 * might get readded to a delwri list after the synchronous writeout, in
1722 * which case we need just need to re-add the flag here.
d808f617 1723 */
43ff2122
CH
1724 bp->b_flags |= _XBF_DELWRI_Q;
1725 if (list_empty(&bp->b_list)) {
1726 atomic_inc(&bp->b_hold);
1727 list_add_tail(&bp->b_list, list);
585e6d88 1728 }
585e6d88 1729
43ff2122 1730 return true;
585e6d88
DC
1731}
1732
089716aa
DC
1733/*
1734 * Compare function is more complex than it needs to be because
1735 * the return value is only 32 bits and we are doing comparisons
1736 * on 64 bit values
1737 */
1738static int
1739xfs_buf_cmp(
1740 void *priv,
1741 struct list_head *a,
1742 struct list_head *b)
1743{
1744 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1745 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1746 xfs_daddr_t diff;
1747
f4b42421 1748 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1749 if (diff < 0)
1750 return -1;
1751 if (diff > 0)
1752 return 1;
1753 return 0;
1754}
1755
43ff2122
CH
1756static int
1757__xfs_buf_delwri_submit(
1758 struct list_head *buffer_list,
1759 struct list_head *io_list,
1760 bool wait)
1da177e4 1761{
43ff2122
CH
1762 struct blk_plug plug;
1763 struct xfs_buf *bp, *n;
1764 int pinned = 0;
1765
1766 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1767 if (!wait) {
1768 if (xfs_buf_ispinned(bp)) {
1769 pinned++;
1770 continue;
1771 }
1772 if (!xfs_buf_trylock(bp))
1773 continue;
1774 } else {
1775 xfs_buf_lock(bp);
1776 }
978c7b2f 1777
43ff2122
CH
1778 /*
1779 * Someone else might have written the buffer synchronously or
1780 * marked it stale in the meantime. In that case only the
1781 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1782 * reference and remove it from the list here.
1783 */
1784 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1785 list_del_init(&bp->b_list);
1786 xfs_buf_relse(bp);
1787 continue;
1788 }
c9c12971 1789
43ff2122
CH
1790 list_move_tail(&bp->b_list, io_list);
1791 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1792 }
1da177e4 1793
43ff2122 1794 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1795
43ff2122
CH
1796 blk_start_plug(&plug);
1797 list_for_each_entry_safe(bp, n, io_list, b_list) {
ac8809f9 1798 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
43ff2122 1799 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1800
43ff2122
CH
1801 if (!wait) {
1802 bp->b_flags |= XBF_ASYNC;
ce8e922c 1803 list_del_init(&bp->b_list);
1da177e4 1804 }
43ff2122
CH
1805 xfs_bdstrat_cb(bp);
1806 }
1807 blk_finish_plug(&plug);
1da177e4 1808
43ff2122 1809 return pinned;
1da177e4
LT
1810}
1811
1812/*
43ff2122
CH
1813 * Write out a buffer list asynchronously.
1814 *
1815 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1816 * out and not wait for I/O completion on any of the buffers. This interface
1817 * is only safely useable for callers that can track I/O completion by higher
1818 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1819 * function.
1da177e4
LT
1820 */
1821int
43ff2122
CH
1822xfs_buf_delwri_submit_nowait(
1823 struct list_head *buffer_list)
1da177e4 1824{
43ff2122
CH
1825 LIST_HEAD (io_list);
1826 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1827}
1da177e4 1828
43ff2122
CH
1829/*
1830 * Write out a buffer list synchronously.
1831 *
1832 * This will take the @buffer_list, write all buffers out and wait for I/O
1833 * completion on all of the buffers. @buffer_list is consumed by the function,
1834 * so callers must have some other way of tracking buffers if they require such
1835 * functionality.
1836 */
1837int
1838xfs_buf_delwri_submit(
1839 struct list_head *buffer_list)
1840{
1841 LIST_HEAD (io_list);
1842 int error = 0, error2;
1843 struct xfs_buf *bp;
1da177e4 1844
43ff2122 1845 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1846
43ff2122
CH
1847 /* Wait for IO to complete. */
1848 while (!list_empty(&io_list)) {
1849 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1850
089716aa 1851 list_del_init(&bp->b_list);
43ff2122
CH
1852 error2 = xfs_buf_iowait(bp);
1853 xfs_buf_relse(bp);
1854 if (!error)
1855 error = error2;
1da177e4
LT
1856 }
1857
43ff2122 1858 return error;
1da177e4
LT
1859}
1860
04d8b284 1861int __init
ce8e922c 1862xfs_buf_init(void)
1da177e4 1863{
8758280f
NS
1864 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1865 KM_ZONE_HWALIGN, NULL);
ce8e922c 1866 if (!xfs_buf_zone)
0b1b213f 1867 goto out;
04d8b284 1868
51749e47 1869 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1870 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1871 if (!xfslogd_workqueue)
04d8b284 1872 goto out_free_buf_zone;
1da177e4 1873
23ea4032 1874 return 0;
1da177e4 1875
23ea4032 1876 out_free_buf_zone:
ce8e922c 1877 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1878 out:
8758280f 1879 return -ENOMEM;
1da177e4
LT
1880}
1881
1da177e4 1882void
ce8e922c 1883xfs_buf_terminate(void)
1da177e4 1884{
04d8b284 1885 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1886 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1887}
This page took 0.804195 seconds and 5 git commands to generate.