xfs: xfs_buf_ioend and xfs_buf_iodone_work duplicate functionality
[deliverable/linux.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
239880ef 37#include "xfs_log_format.h"
7fd36c44 38#include "xfs_trans_resv.h"
239880ef 39#include "xfs_sb.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
239880ef 43#include "xfs_log.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
23ea4032 46
7989cb8e 47static struct workqueue_struct *xfslogd_workqueue;
1da177e4 48
ce8e922c
NS
49#ifdef XFS_BUF_LOCK_TRACKING
50# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 53#else
ce8e922c
NS
54# define XB_SET_OWNER(bp) do { } while (0)
55# define XB_CLEAR_OWNER(bp) do { } while (0)
56# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
57#endif
58
ce8e922c 59#define xb_to_gfp(flags) \
aa5c158e 60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 61
1da177e4 62
73c77e2c
JB
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
611c9946
DC
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 73 */
611c9946 74 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82}
83
430cbeb8
DC
84/*
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
89 *
90 * This prevents build-up of stale buffers on the LRU.
91 */
92void
93xfs_buf_stale(
94 struct xfs_buf *bp)
95{
43ff2122
CH
96 ASSERT(xfs_buf_islocked(bp));
97
430cbeb8 98 bp->b_flags |= XBF_STALE;
43ff2122
CH
99
100 /*
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
104 */
105 bp->b_flags &= ~_XBF_DELWRI_Q;
106
a4082357
DC
107 spin_lock(&bp->b_lock);
108 atomic_set(&bp->b_lru_ref, 0);
109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 atomic_dec(&bp->b_hold);
112
430cbeb8 113 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 114 spin_unlock(&bp->b_lock);
430cbeb8 115}
1da177e4 116
3e85c868
DC
117static int
118xfs_buf_get_maps(
119 struct xfs_buf *bp,
120 int map_count)
121{
122 ASSERT(bp->b_maps == NULL);
123 bp->b_map_count = map_count;
124
125 if (map_count == 1) {
f4b42421 126 bp->b_maps = &bp->__b_map;
3e85c868
DC
127 return 0;
128 }
129
130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 KM_NOFS);
132 if (!bp->b_maps)
2451337d 133 return -ENOMEM;
3e85c868
DC
134 return 0;
135}
136
137/*
138 * Frees b_pages if it was allocated.
139 */
140static void
141xfs_buf_free_maps(
142 struct xfs_buf *bp)
143{
f4b42421 144 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
145 kmem_free(bp->b_maps);
146 bp->b_maps = NULL;
147 }
148}
149
4347b9d7 150struct xfs_buf *
3e85c868 151_xfs_buf_alloc(
4347b9d7 152 struct xfs_buftarg *target,
3e85c868
DC
153 struct xfs_buf_map *map,
154 int nmaps,
ce8e922c 155 xfs_buf_flags_t flags)
1da177e4 156{
4347b9d7 157 struct xfs_buf *bp;
3e85c868
DC
158 int error;
159 int i;
4347b9d7 160
aa5c158e 161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
162 if (unlikely(!bp))
163 return NULL;
164
1da177e4 165 /*
12bcb3f7
DC
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
1da177e4 168 */
611c9946 169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 170
ce8e922c 171 atomic_set(&bp->b_hold, 1);
430cbeb8 172 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 173 init_completion(&bp->b_iowait);
430cbeb8 174 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 175 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 176 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 177 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 178 spin_lock_init(&bp->b_lock);
ce8e922c
NS
179 XB_SET_OWNER(bp);
180 bp->b_target = target;
3e85c868 181 bp->b_flags = flags;
de1cbee4 182
1da177e4 183 /*
aa0e8833
DC
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
1da177e4
LT
186 * most cases but may be reset (e.g. XFS recovery).
187 */
3e85c868
DC
188 error = xfs_buf_get_maps(bp, nmaps);
189 if (error) {
190 kmem_zone_free(xfs_buf_zone, bp);
191 return NULL;
192 }
193
194 bp->b_bn = map[0].bm_bn;
195 bp->b_length = 0;
196 for (i = 0; i < nmaps; i++) {
197 bp->b_maps[i].bm_bn = map[i].bm_bn;
198 bp->b_maps[i].bm_len = map[i].bm_len;
199 bp->b_length += map[i].bm_len;
200 }
201 bp->b_io_length = bp->b_length;
202
ce8e922c
NS
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
0b1b213f 207 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
208
209 return bp;
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
87937bf8 219 int page_count)
1da177e4
LT
220{
221 /* Make sure that we have a page list */
ce8e922c 222 if (bp->b_pages == NULL) {
ce8e922c
NS
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
1da177e4 226 } else {
ce8e922c 227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 228 page_count, KM_NOFS);
ce8e922c 229 if (bp->b_pages == NULL)
1da177e4
LT
230 return -ENOMEM;
231 }
ce8e922c 232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
233 }
234 return 0;
235}
236
237/*
ce8e922c 238 * Frees b_pages if it was allocated.
1da177e4
LT
239 */
240STATIC void
ce8e922c 241_xfs_buf_free_pages(
1da177e4
LT
242 xfs_buf_t *bp)
243{
ce8e922c 244 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 245 kmem_free(bp->b_pages);
3fc98b1a 246 bp->b_pages = NULL;
1da177e4
LT
247 }
248}
249
250/*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
b46fe825 254 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
255 * hashed and refcounted buffers
256 */
257void
ce8e922c 258xfs_buf_free(
1da177e4
LT
259 xfs_buf_t *bp)
260{
0b1b213f 261 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 262
430cbeb8
DC
263 ASSERT(list_empty(&bp->b_lru));
264
0e6e847f 265 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
266 uint i;
267
73c77e2c 268 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
1da177e4 271
948ecdb4
NS
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
0e6e847f 275 __free_page(page);
948ecdb4 276 }
0e6e847f
DC
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
3fc98b1a 279 _xfs_buf_free_pages(bp);
3e85c868 280 xfs_buf_free_maps(bp);
4347b9d7 281 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
282}
283
284/*
0e6e847f 285 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
286 */
287STATIC int
0e6e847f 288xfs_buf_allocate_memory(
1da177e4
LT
289 xfs_buf_t *bp,
290 uint flags)
291{
aa0e8833 292 size_t size;
1da177e4 293 size_t nbytes, offset;
ce8e922c 294 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 295 unsigned short page_count, i;
795cac72 296 xfs_off_t start, end;
1da177e4
LT
297 int error;
298
0e6e847f
DC
299 /*
300 * for buffers that are contained within a single page, just allocate
301 * the memory from the heap - there's no need for the complexity of
302 * page arrays to keep allocation down to order 0.
303 */
795cac72
DC
304 size = BBTOB(bp->b_length);
305 if (size < PAGE_SIZE) {
aa5c158e 306 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
307 if (!bp->b_addr) {
308 /* low memory - use alloc_page loop instead */
309 goto use_alloc_page;
310 }
311
795cac72 312 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
313 ((unsigned long)bp->b_addr & PAGE_MASK)) {
314 /* b_addr spans two pages - use alloc_page instead */
315 kmem_free(bp->b_addr);
316 bp->b_addr = NULL;
317 goto use_alloc_page;
318 }
319 bp->b_offset = offset_in_page(bp->b_addr);
320 bp->b_pages = bp->b_page_array;
321 bp->b_pages[0] = virt_to_page(bp->b_addr);
322 bp->b_page_count = 1;
611c9946 323 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
324 return 0;
325 }
326
327use_alloc_page:
f4b42421
MT
328 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
329 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 330 >> PAGE_SHIFT;
795cac72 331 page_count = end - start;
87937bf8 332 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
333 if (unlikely(error))
334 return error;
1da177e4 335
ce8e922c 336 offset = bp->b_offset;
0e6e847f 337 bp->b_flags |= _XBF_PAGES;
1da177e4 338
ce8e922c 339 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
340 struct page *page;
341 uint retries = 0;
0e6e847f
DC
342retry:
343 page = alloc_page(gfp_mask);
1da177e4 344 if (unlikely(page == NULL)) {
ce8e922c
NS
345 if (flags & XBF_READ_AHEAD) {
346 bp->b_page_count = i;
2451337d 347 error = -ENOMEM;
0e6e847f 348 goto out_free_pages;
1da177e4
LT
349 }
350
351 /*
352 * This could deadlock.
353 *
354 * But until all the XFS lowlevel code is revamped to
355 * handle buffer allocation failures we can't do much.
356 */
357 if (!(++retries % 100))
4f10700a
DC
358 xfs_err(NULL,
359 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 360 __func__, gfp_mask);
1da177e4 361
ce8e922c 362 XFS_STATS_INC(xb_page_retries);
8aa7e847 363 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
364 goto retry;
365 }
366
ce8e922c 367 XFS_STATS_INC(xb_page_found);
1da177e4 368
0e6e847f 369 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 370 size -= nbytes;
ce8e922c 371 bp->b_pages[i] = page;
1da177e4
LT
372 offset = 0;
373 }
0e6e847f 374 return 0;
1da177e4 375
0e6e847f
DC
376out_free_pages:
377 for (i = 0; i < bp->b_page_count; i++)
378 __free_page(bp->b_pages[i]);
1da177e4
LT
379 return error;
380}
381
382/*
25985edc 383 * Map buffer into kernel address-space if necessary.
1da177e4
LT
384 */
385STATIC int
ce8e922c 386_xfs_buf_map_pages(
1da177e4
LT
387 xfs_buf_t *bp,
388 uint flags)
389{
0e6e847f 390 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 391 if (bp->b_page_count == 1) {
0e6e847f 392 /* A single page buffer is always mappable */
ce8e922c 393 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
394 } else if (flags & XBF_UNMAPPED) {
395 bp->b_addr = NULL;
396 } else {
a19fb380 397 int retried = 0;
ae687e58
DC
398 unsigned noio_flag;
399
400 /*
401 * vm_map_ram() will allocate auxillary structures (e.g.
402 * pagetables) with GFP_KERNEL, yet we are likely to be under
403 * GFP_NOFS context here. Hence we need to tell memory reclaim
404 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
405 * memory reclaim re-entering the filesystem here and
406 * potentially deadlocking.
407 */
408 noio_flag = memalloc_noio_save();
a19fb380
DC
409 do {
410 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
411 -1, PAGE_KERNEL);
412 if (bp->b_addr)
413 break;
414 vm_unmap_aliases();
415 } while (retried++ <= 1);
ae687e58 416 memalloc_noio_restore(noio_flag);
a19fb380
DC
417
418 if (!bp->b_addr)
1da177e4 419 return -ENOMEM;
ce8e922c 420 bp->b_addr += bp->b_offset;
1da177e4
LT
421 }
422
423 return 0;
424}
425
426/*
427 * Finding and Reading Buffers
428 */
429
430/*
ce8e922c 431 * Look up, and creates if absent, a lockable buffer for
1da177e4 432 * a given range of an inode. The buffer is returned
eabbaf11 433 * locked. No I/O is implied by this call.
1da177e4
LT
434 */
435xfs_buf_t *
ce8e922c 436_xfs_buf_find(
e70b73f8 437 struct xfs_buftarg *btp,
3e85c868
DC
438 struct xfs_buf_map *map,
439 int nmaps,
ce8e922c
NS
440 xfs_buf_flags_t flags,
441 xfs_buf_t *new_bp)
1da177e4 442{
e70b73f8 443 size_t numbytes;
74f75a0c
DC
444 struct xfs_perag *pag;
445 struct rb_node **rbp;
446 struct rb_node *parent;
447 xfs_buf_t *bp;
3e85c868 448 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 449 xfs_daddr_t eofs;
3e85c868
DC
450 int numblks = 0;
451 int i;
1da177e4 452
3e85c868
DC
453 for (i = 0; i < nmaps; i++)
454 numblks += map[i].bm_len;
e70b73f8 455 numbytes = BBTOB(numblks);
1da177e4
LT
456
457 /* Check for IOs smaller than the sector size / not sector aligned */
6da54179
ES
458 ASSERT(!(numbytes < btp->bt_meta_sectorsize));
459 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 460
10616b80
DC
461 /*
462 * Corrupted block numbers can get through to here, unfortunately, so we
463 * have to check that the buffer falls within the filesystem bounds.
464 */
465 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
466 if (blkno >= eofs) {
467 /*
2451337d 468 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
10616b80
DC
469 * but none of the higher level infrastructure supports
470 * returning a specific error on buffer lookup failures.
471 */
472 xfs_alert(btp->bt_mount,
473 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
474 __func__, blkno, eofs);
7bc0dc27 475 WARN_ON(1);
10616b80
DC
476 return NULL;
477 }
478
74f75a0c
DC
479 /* get tree root */
480 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 481 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
482
483 /* walk tree */
484 spin_lock(&pag->pag_buf_lock);
485 rbp = &pag->pag_buf_tree.rb_node;
486 parent = NULL;
487 bp = NULL;
488 while (*rbp) {
489 parent = *rbp;
490 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
491
de1cbee4 492 if (blkno < bp->b_bn)
74f75a0c 493 rbp = &(*rbp)->rb_left;
de1cbee4 494 else if (blkno > bp->b_bn)
74f75a0c
DC
495 rbp = &(*rbp)->rb_right;
496 else {
497 /*
de1cbee4 498 * found a block number match. If the range doesn't
74f75a0c
DC
499 * match, the only way this is allowed is if the buffer
500 * in the cache is stale and the transaction that made
501 * it stale has not yet committed. i.e. we are
502 * reallocating a busy extent. Skip this buffer and
503 * continue searching to the right for an exact match.
504 */
4e94b71b 505 if (bp->b_length != numblks) {
74f75a0c
DC
506 ASSERT(bp->b_flags & XBF_STALE);
507 rbp = &(*rbp)->rb_right;
508 continue;
509 }
ce8e922c 510 atomic_inc(&bp->b_hold);
1da177e4
LT
511 goto found;
512 }
513 }
514
515 /* No match found */
ce8e922c 516 if (new_bp) {
74f75a0c
DC
517 rb_link_node(&new_bp->b_rbnode, parent, rbp);
518 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
519 /* the buffer keeps the perag reference until it is freed */
520 new_bp->b_pag = pag;
521 spin_unlock(&pag->pag_buf_lock);
1da177e4 522 } else {
ce8e922c 523 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
524 spin_unlock(&pag->pag_buf_lock);
525 xfs_perag_put(pag);
1da177e4 526 }
ce8e922c 527 return new_bp;
1da177e4
LT
528
529found:
74f75a0c
DC
530 spin_unlock(&pag->pag_buf_lock);
531 xfs_perag_put(pag);
1da177e4 532
0c842ad4
CH
533 if (!xfs_buf_trylock(bp)) {
534 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
535 xfs_buf_rele(bp);
536 XFS_STATS_INC(xb_busy_locked);
537 return NULL;
1da177e4 538 }
0c842ad4
CH
539 xfs_buf_lock(bp);
540 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
541 }
542
0e6e847f
DC
543 /*
544 * if the buffer is stale, clear all the external state associated with
545 * it. We need to keep flags such as how we allocated the buffer memory
546 * intact here.
547 */
ce8e922c
NS
548 if (bp->b_flags & XBF_STALE) {
549 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 550 ASSERT(bp->b_iodone == NULL);
611c9946 551 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 552 bp->b_ops = NULL;
2f926587 553 }
0b1b213f
CH
554
555 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
556 XFS_STATS_INC(xb_get_locked);
557 return bp;
1da177e4
LT
558}
559
560/*
3815832a
DC
561 * Assembles a buffer covering the specified range. The code is optimised for
562 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
563 * more hits than misses.
1da177e4 564 */
3815832a 565struct xfs_buf *
6dde2707
DC
566xfs_buf_get_map(
567 struct xfs_buftarg *target,
568 struct xfs_buf_map *map,
569 int nmaps,
ce8e922c 570 xfs_buf_flags_t flags)
1da177e4 571{
3815832a
DC
572 struct xfs_buf *bp;
573 struct xfs_buf *new_bp;
0e6e847f 574 int error = 0;
1da177e4 575
6dde2707 576 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
577 if (likely(bp))
578 goto found;
579
6dde2707 580 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 581 if (unlikely(!new_bp))
1da177e4
LT
582 return NULL;
583
fe2429b0
DC
584 error = xfs_buf_allocate_memory(new_bp, flags);
585 if (error) {
3e85c868 586 xfs_buf_free(new_bp);
fe2429b0
DC
587 return NULL;
588 }
589
6dde2707 590 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 591 if (!bp) {
fe2429b0 592 xfs_buf_free(new_bp);
3815832a
DC
593 return NULL;
594 }
595
fe2429b0
DC
596 if (bp != new_bp)
597 xfs_buf_free(new_bp);
1da177e4 598
3815832a 599found:
611c9946 600 if (!bp->b_addr) {
ce8e922c 601 error = _xfs_buf_map_pages(bp, flags);
1da177e4 602 if (unlikely(error)) {
4f10700a 603 xfs_warn(target->bt_mount,
08e96e1a 604 "%s: failed to map pagesn", __func__);
a8acad70
DC
605 xfs_buf_relse(bp);
606 return NULL;
1da177e4
LT
607 }
608 }
609
ce8e922c 610 XFS_STATS_INC(xb_get);
0b1b213f 611 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 612 return bp;
1da177e4
LT
613}
614
5d765b97
CH
615STATIC int
616_xfs_buf_read(
617 xfs_buf_t *bp,
618 xfs_buf_flags_t flags)
619{
43ff2122 620 ASSERT(!(flags & XBF_WRITE));
f4b42421 621 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 622
43ff2122 623 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 624 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 625
0e95f19a
DC
626 xfs_buf_iorequest(bp);
627 if (flags & XBF_ASYNC)
628 return 0;
ec53d1db 629 return xfs_buf_iowait(bp);
5d765b97
CH
630}
631
1da177e4 632xfs_buf_t *
6dde2707
DC
633xfs_buf_read_map(
634 struct xfs_buftarg *target,
635 struct xfs_buf_map *map,
636 int nmaps,
c3f8fc73 637 xfs_buf_flags_t flags,
1813dd64 638 const struct xfs_buf_ops *ops)
1da177e4 639{
6dde2707 640 struct xfs_buf *bp;
ce8e922c
NS
641
642 flags |= XBF_READ;
643
6dde2707 644 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 645 if (bp) {
0b1b213f
CH
646 trace_xfs_buf_read(bp, flags, _RET_IP_);
647
ce8e922c 648 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 649 XFS_STATS_INC(xb_get_read);
1813dd64 650 bp->b_ops = ops;
5d765b97 651 _xfs_buf_read(bp, flags);
ce8e922c 652 } else if (flags & XBF_ASYNC) {
1da177e4
LT
653 /*
654 * Read ahead call which is already satisfied,
655 * drop the buffer
656 */
a8acad70
DC
657 xfs_buf_relse(bp);
658 return NULL;
1da177e4 659 } else {
1da177e4 660 /* We do not want read in the flags */
ce8e922c 661 bp->b_flags &= ~XBF_READ;
1da177e4
LT
662 }
663 }
664
ce8e922c 665 return bp;
1da177e4
LT
666}
667
1da177e4 668/*
ce8e922c
NS
669 * If we are not low on memory then do the readahead in a deadlock
670 * safe manner.
1da177e4
LT
671 */
672void
6dde2707
DC
673xfs_buf_readahead_map(
674 struct xfs_buftarg *target,
675 struct xfs_buf_map *map,
c3f8fc73 676 int nmaps,
1813dd64 677 const struct xfs_buf_ops *ops)
1da177e4 678{
0e6e847f 679 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
680 return;
681
6dde2707 682 xfs_buf_read_map(target, map, nmaps,
1813dd64 683 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
684}
685
5adc94c2
DC
686/*
687 * Read an uncached buffer from disk. Allocates and returns a locked
688 * buffer containing the disk contents or nothing.
689 */
690struct xfs_buf *
691xfs_buf_read_uncached(
5adc94c2
DC
692 struct xfs_buftarg *target,
693 xfs_daddr_t daddr,
e70b73f8 694 size_t numblks,
c3f8fc73 695 int flags,
1813dd64 696 const struct xfs_buf_ops *ops)
5adc94c2 697{
eab4e633 698 struct xfs_buf *bp;
5adc94c2 699
e70b73f8 700 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
701 if (!bp)
702 return NULL;
703
704 /* set up the buffer for a read IO */
3e85c868
DC
705 ASSERT(bp->b_map_count == 1);
706 bp->b_bn = daddr;
707 bp->b_maps[0].bm_bn = daddr;
cbb7baab 708 bp->b_flags |= XBF_READ;
1813dd64 709 bp->b_ops = ops;
5adc94c2 710
83a0adc3
CH
711 if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
712 xfs_buf_relse(bp);
713 return NULL;
714 }
715 xfs_buf_iorequest(bp);
eab4e633 716 xfs_buf_iowait(bp);
5adc94c2 717 return bp;
1da177e4
LT
718}
719
44396476
DC
720/*
721 * Return a buffer allocated as an empty buffer and associated to external
722 * memory via xfs_buf_associate_memory() back to it's empty state.
723 */
724void
725xfs_buf_set_empty(
726 struct xfs_buf *bp,
e70b73f8 727 size_t numblks)
44396476
DC
728{
729 if (bp->b_pages)
730 _xfs_buf_free_pages(bp);
731
732 bp->b_pages = NULL;
733 bp->b_page_count = 0;
734 bp->b_addr = NULL;
4e94b71b 735 bp->b_length = numblks;
aa0e8833 736 bp->b_io_length = numblks;
3e85c868
DC
737
738 ASSERT(bp->b_map_count == 1);
44396476 739 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
740 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
741 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
742}
743
1da177e4
LT
744static inline struct page *
745mem_to_page(
746 void *addr)
747{
9e2779fa 748 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
749 return virt_to_page(addr);
750 } else {
751 return vmalloc_to_page(addr);
752 }
753}
754
755int
ce8e922c
NS
756xfs_buf_associate_memory(
757 xfs_buf_t *bp,
1da177e4
LT
758 void *mem,
759 size_t len)
760{
761 int rval;
762 int i = 0;
d1afb678
LM
763 unsigned long pageaddr;
764 unsigned long offset;
765 size_t buflen;
1da177e4
LT
766 int page_count;
767
0e6e847f 768 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 769 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
770 buflen = PAGE_ALIGN(len + offset);
771 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
772
773 /* Free any previous set of page pointers */
ce8e922c
NS
774 if (bp->b_pages)
775 _xfs_buf_free_pages(bp);
1da177e4 776
ce8e922c
NS
777 bp->b_pages = NULL;
778 bp->b_addr = mem;
1da177e4 779
87937bf8 780 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
781 if (rval)
782 return rval;
783
ce8e922c 784 bp->b_offset = offset;
d1afb678
LM
785
786 for (i = 0; i < bp->b_page_count; i++) {
787 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 788 pageaddr += PAGE_SIZE;
1da177e4 789 }
1da177e4 790
aa0e8833 791 bp->b_io_length = BTOBB(len);
4e94b71b 792 bp->b_length = BTOBB(buflen);
1da177e4
LT
793
794 return 0;
795}
796
797xfs_buf_t *
686865f7
DC
798xfs_buf_get_uncached(
799 struct xfs_buftarg *target,
e70b73f8 800 size_t numblks,
686865f7 801 int flags)
1da177e4 802{
e70b73f8 803 unsigned long page_count;
1fa40b01 804 int error, i;
3e85c868
DC
805 struct xfs_buf *bp;
806 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 807
3e85c868 808 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
809 if (unlikely(bp == NULL))
810 goto fail;
1da177e4 811
e70b73f8 812 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 813 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 814 if (error)
1da177e4
LT
815 goto fail_free_buf;
816
1fa40b01 817 for (i = 0; i < page_count; i++) {
686865f7 818 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
819 if (!bp->b_pages[i])
820 goto fail_free_mem;
1da177e4 821 }
1fa40b01 822 bp->b_flags |= _XBF_PAGES;
1da177e4 823
611c9946 824 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 825 if (unlikely(error)) {
4f10700a 826 xfs_warn(target->bt_mount,
08e96e1a 827 "%s: failed to map pages", __func__);
1da177e4 828 goto fail_free_mem;
1fa40b01 829 }
1da177e4 830
686865f7 831 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 832 return bp;
1fa40b01 833
1da177e4 834 fail_free_mem:
1fa40b01
CH
835 while (--i >= 0)
836 __free_page(bp->b_pages[i]);
ca165b88 837 _xfs_buf_free_pages(bp);
1da177e4 838 fail_free_buf:
3e85c868 839 xfs_buf_free_maps(bp);
4347b9d7 840 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
841 fail:
842 return NULL;
843}
844
845/*
1da177e4
LT
846 * Increment reference count on buffer, to hold the buffer concurrently
847 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
848 * Must hold the buffer already to call this function.
849 */
850void
ce8e922c
NS
851xfs_buf_hold(
852 xfs_buf_t *bp)
1da177e4 853{
0b1b213f 854 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 855 atomic_inc(&bp->b_hold);
1da177e4
LT
856}
857
858/*
ce8e922c
NS
859 * Releases a hold on the specified buffer. If the
860 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
861 */
862void
ce8e922c
NS
863xfs_buf_rele(
864 xfs_buf_t *bp)
1da177e4 865{
74f75a0c 866 struct xfs_perag *pag = bp->b_pag;
1da177e4 867
0b1b213f 868 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 869
74f75a0c 870 if (!pag) {
430cbeb8 871 ASSERT(list_empty(&bp->b_lru));
74f75a0c 872 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
873 if (atomic_dec_and_test(&bp->b_hold))
874 xfs_buf_free(bp);
875 return;
876 }
877
74f75a0c 878 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 879
3790689f 880 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 881 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
a4082357
DC
882 spin_lock(&bp->b_lock);
883 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
884 /*
885 * If the buffer is added to the LRU take a new
886 * reference to the buffer for the LRU and clear the
887 * (now stale) dispose list state flag
888 */
889 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
890 bp->b_state &= ~XFS_BSTATE_DISPOSE;
891 atomic_inc(&bp->b_hold);
892 }
893 spin_unlock(&bp->b_lock);
430cbeb8 894 spin_unlock(&pag->pag_buf_lock);
1da177e4 895 } else {
a4082357
DC
896 /*
897 * most of the time buffers will already be removed from
898 * the LRU, so optimise that case by checking for the
899 * XFS_BSTATE_DISPOSE flag indicating the last list the
900 * buffer was on was the disposal list
901 */
902 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
903 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
904 } else {
905 ASSERT(list_empty(&bp->b_lru));
906 }
907 spin_unlock(&bp->b_lock);
908
43ff2122 909 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
910 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
911 spin_unlock(&pag->pag_buf_lock);
912 xfs_perag_put(pag);
ce8e922c 913 xfs_buf_free(bp);
1da177e4
LT
914 }
915 }
916}
917
918
919/*
0e6e847f 920 * Lock a buffer object, if it is not already locked.
90810b9e
DC
921 *
922 * If we come across a stale, pinned, locked buffer, we know that we are
923 * being asked to lock a buffer that has been reallocated. Because it is
924 * pinned, we know that the log has not been pushed to disk and hence it
925 * will still be locked. Rather than continuing to have trylock attempts
926 * fail until someone else pushes the log, push it ourselves before
927 * returning. This means that the xfsaild will not get stuck trying
928 * to push on stale inode buffers.
1da177e4
LT
929 */
930int
0c842ad4
CH
931xfs_buf_trylock(
932 struct xfs_buf *bp)
1da177e4
LT
933{
934 int locked;
935
ce8e922c 936 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 937 if (locked)
ce8e922c 938 XB_SET_OWNER(bp);
0b1b213f 939
0c842ad4
CH
940 trace_xfs_buf_trylock(bp, _RET_IP_);
941 return locked;
1da177e4 942}
1da177e4
LT
943
944/*
0e6e847f 945 * Lock a buffer object.
ed3b4d6c
DC
946 *
947 * If we come across a stale, pinned, locked buffer, we know that we
948 * are being asked to lock a buffer that has been reallocated. Because
949 * it is pinned, we know that the log has not been pushed to disk and
950 * hence it will still be locked. Rather than sleeping until someone
951 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 952 */
ce8e922c
NS
953void
954xfs_buf_lock(
0c842ad4 955 struct xfs_buf *bp)
1da177e4 956{
0b1b213f
CH
957 trace_xfs_buf_lock(bp, _RET_IP_);
958
ed3b4d6c 959 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 960 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
961 down(&bp->b_sema);
962 XB_SET_OWNER(bp);
0b1b213f
CH
963
964 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
965}
966
1da177e4 967void
ce8e922c 968xfs_buf_unlock(
0c842ad4 969 struct xfs_buf *bp)
1da177e4 970{
ce8e922c
NS
971 XB_CLEAR_OWNER(bp);
972 up(&bp->b_sema);
0b1b213f
CH
973
974 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
975}
976
ce8e922c
NS
977STATIC void
978xfs_buf_wait_unpin(
979 xfs_buf_t *bp)
1da177e4
LT
980{
981 DECLARE_WAITQUEUE (wait, current);
982
ce8e922c 983 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
984 return;
985
ce8e922c 986 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
987 for (;;) {
988 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 989 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 990 break;
7eaceacc 991 io_schedule();
1da177e4 992 }
ce8e922c 993 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
994 set_current_state(TASK_RUNNING);
995}
996
997/*
998 * Buffer Utility Routines
999 */
1000
e8aaba9a
DC
1001void
1002xfs_buf_ioend(
1003 struct xfs_buf *bp)
1da177e4 1004{
e8aaba9a
DC
1005 bool read = bp->b_flags & XBF_READ;
1006
1007 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1008
1009 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1010
e8aaba9a
DC
1011 /* Only validate buffers that were read without errors */
1012 if (read && !bp->b_error && bp->b_ops) {
1013 ASSERT(!bp->b_iodone);
1813dd64 1014 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1015 }
1016
1017 if (!bp->b_error)
1018 bp->b_flags |= XBF_DONE;
1da177e4 1019
80f6c29d 1020 if (bp->b_iodone)
ce8e922c
NS
1021 (*(bp->b_iodone))(bp);
1022 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1023 xfs_buf_relse(bp);
1813dd64 1024 else {
1813dd64 1025 complete(&bp->b_iowait);
e11bb805
DC
1026
1027 /* release the !XBF_ASYNC ref now we are done. */
1028 xfs_buf_rele(bp);
1813dd64 1029 }
1da177e4
LT
1030}
1031
e8aaba9a
DC
1032static void
1033xfs_buf_ioend_work(
1034 struct work_struct *work)
1da177e4 1035{
e8aaba9a
DC
1036 struct xfs_buf *bp =
1037 container_of(work, xfs_buf_t, b_iodone_work);
0b1b213f 1038
e8aaba9a
DC
1039 xfs_buf_ioend(bp);
1040}
1da177e4 1041
e8aaba9a
DC
1042void
1043xfs_buf_ioend_async(
1044 struct xfs_buf *bp)
1045{
1046 INIT_WORK(&bp->b_iodone_work, xfs_buf_ioend_work);
1047 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4
LT
1048}
1049
1da177e4 1050void
ce8e922c
NS
1051xfs_buf_ioerror(
1052 xfs_buf_t *bp,
1053 int error)
1da177e4 1054{
2451337d
DC
1055 ASSERT(error <= 0 && error >= -1000);
1056 bp->b_error = error;
0b1b213f 1057 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1058}
1059
901796af
CH
1060void
1061xfs_buf_ioerror_alert(
1062 struct xfs_buf *bp,
1063 const char *func)
1064{
1065 xfs_alert(bp->b_target->bt_mount,
aa0e8833 1066"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
2451337d 1067 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
901796af
CH
1068}
1069
4e23471a
CH
1070/*
1071 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1072 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1073 * so that the proper iodone callbacks get called.
1074 */
1075STATIC int
1076xfs_bioerror(
1077 xfs_buf_t *bp)
1078{
1079#ifdef XFSERRORDEBUG
1080 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1081#endif
1082
1083 /*
1084 * No need to wait until the buffer is unpinned, we aren't flushing it.
1085 */
2451337d 1086 xfs_buf_ioerror(bp, -EIO);
4e23471a
CH
1087
1088 /*
e11bb805
DC
1089 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. For
1090 * sync IO, xfs_buf_ioend is going to remove a ref here.
4e23471a 1091 */
e11bb805
DC
1092 if (!(bp->b_flags & XBF_ASYNC))
1093 xfs_buf_hold(bp);
4e23471a 1094 XFS_BUF_UNREAD(bp);
4e23471a 1095 XFS_BUF_UNDONE(bp);
c867cb61 1096 xfs_buf_stale(bp);
4e23471a 1097
e8aaba9a 1098 xfs_buf_ioend(bp);
4e23471a 1099
2451337d 1100 return -EIO;
4e23471a
CH
1101}
1102
1103/*
1104 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1105 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1106 * This is meant for userdata errors; metadata bufs come with
1107 * iodone functions attached, so that we can track down errors.
1108 */
83a0adc3 1109int
4e23471a
CH
1110xfs_bioerror_relse(
1111 struct xfs_buf *bp)
1112{
ed43233b 1113 int64_t fl = bp->b_flags;
4e23471a
CH
1114 /*
1115 * No need to wait until the buffer is unpinned.
1116 * We aren't flushing it.
1117 *
1118 * chunkhold expects B_DONE to be set, whether
1119 * we actually finish the I/O or not. We don't want to
1120 * change that interface.
1121 */
1122 XFS_BUF_UNREAD(bp);
4e23471a 1123 XFS_BUF_DONE(bp);
c867cb61 1124 xfs_buf_stale(bp);
cb669ca5 1125 bp->b_iodone = NULL;
0cadda1c 1126 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1127 /*
1128 * Mark b_error and B_ERROR _both_.
1129 * Lot's of chunkcache code assumes that.
1130 * There's no reason to mark error for
1131 * ASYNC buffers.
1132 */
2451337d 1133 xfs_buf_ioerror(bp, -EIO);
5fde0326 1134 complete(&bp->b_iowait);
4e23471a
CH
1135 } else {
1136 xfs_buf_relse(bp);
1137 }
1138
2451337d 1139 return -EIO;
4e23471a
CH
1140}
1141
a2dcf5df 1142STATIC int
4e23471a
CH
1143xfs_bdstrat_cb(
1144 struct xfs_buf *bp)
1145{
ebad861b 1146 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1147 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1148 /*
1149 * Metadata write that didn't get logged but
1150 * written delayed anyway. These aren't associated
1151 * with a transaction, and can be ignored.
1152 */
1153 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1154 return xfs_bioerror_relse(bp);
1155 else
1156 return xfs_bioerror(bp);
1157 }
1158
1159 xfs_buf_iorequest(bp);
1160 return 0;
1161}
1162
a2dcf5df
CH
1163int
1164xfs_bwrite(
1165 struct xfs_buf *bp)
1166{
1167 int error;
1168
1169 ASSERT(xfs_buf_islocked(bp));
1170
1171 bp->b_flags |= XBF_WRITE;
ac8809f9 1172 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
a2dcf5df
CH
1173
1174 xfs_bdstrat_cb(bp);
1175
1176 error = xfs_buf_iowait(bp);
1177 if (error) {
1178 xfs_force_shutdown(bp->b_target->bt_mount,
1179 SHUTDOWN_META_IO_ERROR);
1180 }
1181 return error;
1182}
1183
782e3b3b 1184STATIC void
ce8e922c 1185xfs_buf_bio_end_io(
1da177e4 1186 struct bio *bio,
1da177e4
LT
1187 int error)
1188{
ce8e922c 1189 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1190
37eb17e6
DC
1191 /*
1192 * don't overwrite existing errors - otherwise we can lose errors on
1193 * buffers that require multiple bios to complete.
1194 */
1195 if (!bp->b_error)
2451337d 1196 xfs_buf_ioerror(bp, error);
1da177e4 1197
37eb17e6 1198 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1199 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1200
e8aaba9a
DC
1201 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1202 xfs_buf_ioend_async(bp);
1da177e4 1203 bio_put(bio);
1da177e4
LT
1204}
1205
3e85c868
DC
1206static void
1207xfs_buf_ioapply_map(
1208 struct xfs_buf *bp,
1209 int map,
1210 int *buf_offset,
1211 int *count,
1212 int rw)
1da177e4 1213{
3e85c868
DC
1214 int page_index;
1215 int total_nr_pages = bp->b_page_count;
1216 int nr_pages;
1217 struct bio *bio;
1218 sector_t sector = bp->b_maps[map].bm_bn;
1219 int size;
1220 int offset;
1da177e4 1221
ce8e922c 1222 total_nr_pages = bp->b_page_count;
1da177e4 1223
3e85c868
DC
1224 /* skip the pages in the buffer before the start offset */
1225 page_index = 0;
1226 offset = *buf_offset;
1227 while (offset >= PAGE_SIZE) {
1228 page_index++;
1229 offset -= PAGE_SIZE;
f538d4da
CH
1230 }
1231
3e85c868
DC
1232 /*
1233 * Limit the IO size to the length of the current vector, and update the
1234 * remaining IO count for the next time around.
1235 */
1236 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1237 *count -= size;
1238 *buf_offset += size;
34951f5c 1239
1da177e4 1240next_chunk:
ce8e922c 1241 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1242 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1243 if (nr_pages > total_nr_pages)
1244 nr_pages = total_nr_pages;
1245
1246 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1247 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1248 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1249 bio->bi_end_io = xfs_buf_bio_end_io;
1250 bio->bi_private = bp;
1da177e4 1251
0e6e847f 1252
3e85c868 1253 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1254 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1255
1256 if (nbytes > size)
1257 nbytes = size;
1258
3e85c868
DC
1259 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1260 offset);
ce8e922c 1261 if (rbytes < nbytes)
1da177e4
LT
1262 break;
1263
1264 offset = 0;
aa0e8833 1265 sector += BTOBB(nbytes);
1da177e4
LT
1266 size -= nbytes;
1267 total_nr_pages--;
1268 }
1269
4f024f37 1270 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1271 if (xfs_buf_is_vmapped(bp)) {
1272 flush_kernel_vmap_range(bp->b_addr,
1273 xfs_buf_vmap_len(bp));
1274 }
1da177e4
LT
1275 submit_bio(rw, bio);
1276 if (size)
1277 goto next_chunk;
1278 } else {
37eb17e6
DC
1279 /*
1280 * This is guaranteed not to be the last io reference count
1281 * because the caller (xfs_buf_iorequest) holds a count itself.
1282 */
1283 atomic_dec(&bp->b_io_remaining);
2451337d 1284 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1285 bio_put(bio);
1da177e4 1286 }
3e85c868
DC
1287
1288}
1289
1290STATIC void
1291_xfs_buf_ioapply(
1292 struct xfs_buf *bp)
1293{
1294 struct blk_plug plug;
1295 int rw;
1296 int offset;
1297 int size;
1298 int i;
1299
c163f9a1
DC
1300 /*
1301 * Make sure we capture only current IO errors rather than stale errors
1302 * left over from previous use of the buffer (e.g. failed readahead).
1303 */
1304 bp->b_error = 0;
1305
3e85c868
DC
1306 if (bp->b_flags & XBF_WRITE) {
1307 if (bp->b_flags & XBF_SYNCIO)
1308 rw = WRITE_SYNC;
1309 else
1310 rw = WRITE;
1311 if (bp->b_flags & XBF_FUA)
1312 rw |= REQ_FUA;
1313 if (bp->b_flags & XBF_FLUSH)
1314 rw |= REQ_FLUSH;
1813dd64
DC
1315
1316 /*
1317 * Run the write verifier callback function if it exists. If
1318 * this function fails it will mark the buffer with an error and
1319 * the IO should not be dispatched.
1320 */
1321 if (bp->b_ops) {
1322 bp->b_ops->verify_write(bp);
1323 if (bp->b_error) {
1324 xfs_force_shutdown(bp->b_target->bt_mount,
1325 SHUTDOWN_CORRUPT_INCORE);
1326 return;
1327 }
400b9d88
DC
1328 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1329 struct xfs_mount *mp = bp->b_target->bt_mount;
1330
1331 /*
1332 * non-crc filesystems don't attach verifiers during
1333 * log recovery, so don't warn for such filesystems.
1334 */
1335 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1336 xfs_warn(mp,
1337 "%s: no ops on block 0x%llx/0x%x",
1338 __func__, bp->b_bn, bp->b_length);
1339 xfs_hex_dump(bp->b_addr, 64);
1340 dump_stack();
1341 }
1813dd64 1342 }
3e85c868
DC
1343 } else if (bp->b_flags & XBF_READ_AHEAD) {
1344 rw = READA;
1345 } else {
1346 rw = READ;
1347 }
1348
1349 /* we only use the buffer cache for meta-data */
1350 rw |= REQ_META;
1351
1352 /*
1353 * Walk all the vectors issuing IO on them. Set up the initial offset
1354 * into the buffer and the desired IO size before we start -
1355 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1356 * subsequent call.
1357 */
1358 offset = bp->b_offset;
1359 size = BBTOB(bp->b_io_length);
1360 blk_start_plug(&plug);
1361 for (i = 0; i < bp->b_map_count; i++) {
1362 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1363 if (bp->b_error)
1364 break;
1365 if (size <= 0)
1366 break; /* all done */
1367 }
1368 blk_finish_plug(&plug);
1da177e4
LT
1369}
1370
0e95f19a 1371void
ce8e922c
NS
1372xfs_buf_iorequest(
1373 xfs_buf_t *bp)
1da177e4 1374{
0b1b213f 1375 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1376
43ff2122 1377 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1378
375ec69d 1379 if (bp->b_flags & XBF_WRITE)
ce8e922c 1380 xfs_buf_wait_unpin(bp);
e11bb805
DC
1381
1382 /*
1383 * Take references to the buffer. For XBF_ASYNC buffers, holding a
1384 * reference for as long as submission takes is all that is necessary
1385 * here. The IO inherits the lock and hold count from the submitter,
1386 * and these are release during IO completion processing. Taking a hold
1387 * over submission ensures that the buffer is not freed until we have
1388 * completed all processing, regardless of when IO errors occur or are
1389 * reported.
1390 *
1391 * However, for synchronous IO, the IO does not inherit the submitters
1392 * reference count, nor the buffer lock. Hence we need to take an extra
1393 * reference to the buffer for the for the IO context so that we can
1394 * guarantee the buffer is not freed until all IO completion processing
1395 * is done. Otherwise the caller can drop their reference while the IO
1396 * is still in progress and hence trigger a use-after-free situation.
1397 */
ce8e922c 1398 xfs_buf_hold(bp);
e11bb805
DC
1399 if (!(bp->b_flags & XBF_ASYNC))
1400 xfs_buf_hold(bp);
1401
1da177e4 1402
8d6c1210 1403 /*
e11bb805
DC
1404 * Set the count to 1 initially, this will stop an I/O completion
1405 * callout which happens before we have started all the I/O from calling
1406 * xfs_buf_ioend too early.
1da177e4 1407 */
ce8e922c
NS
1408 atomic_set(&bp->b_io_remaining, 1);
1409 _xfs_buf_ioapply(bp);
e11bb805 1410
8d6c1210 1411 /*
e11bb805
DC
1412 * If _xfs_buf_ioapply failed or we are doing synchronous IO that
1413 * completes extremely quickly, we can get back here with only the IO
e8aaba9a
DC
1414 * reference we took above. If we drop it to zero, run completion
1415 * processing synchronously so that we don't return to the caller with
1416 * completion still pending. This avoids unnecessary context switches
1417 * associated with the end_io workqueue.
8d6c1210 1418 */
e8aaba9a
DC
1419 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1420 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1421 xfs_buf_ioend(bp);
1422 else
1423 xfs_buf_ioend_async(bp);
1424 }
1da177e4 1425
ce8e922c 1426 xfs_buf_rele(bp);
1da177e4
LT
1427}
1428
1429/*
0e95f19a 1430 * Waits for I/O to complete on the buffer supplied. It returns immediately if
8d6c1210
ES
1431 * no I/O is pending or there is already a pending error on the buffer, in which
1432 * case nothing will ever complete. It returns the I/O error code, if any, or
1433 * 0 if there was no error.
1da177e4
LT
1434 */
1435int
ce8e922c
NS
1436xfs_buf_iowait(
1437 xfs_buf_t *bp)
1da177e4 1438{
0b1b213f
CH
1439 trace_xfs_buf_iowait(bp, _RET_IP_);
1440
0e95f19a
DC
1441 if (!bp->b_error)
1442 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1443
1444 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1445 return bp->b_error;
1da177e4
LT
1446}
1447
ce8e922c
NS
1448xfs_caddr_t
1449xfs_buf_offset(
1450 xfs_buf_t *bp,
1da177e4
LT
1451 size_t offset)
1452{
1453 struct page *page;
1454
611c9946 1455 if (bp->b_addr)
62926044 1456 return bp->b_addr + offset;
1da177e4 1457
ce8e922c 1458 offset += bp->b_offset;
0e6e847f
DC
1459 page = bp->b_pages[offset >> PAGE_SHIFT];
1460 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1461}
1462
1463/*
1da177e4
LT
1464 * Move data into or out of a buffer.
1465 */
1466void
ce8e922c
NS
1467xfs_buf_iomove(
1468 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1469 size_t boff, /* starting buffer offset */
1470 size_t bsize, /* length to copy */
b9c48649 1471 void *data, /* data address */
ce8e922c 1472 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1473{
795cac72 1474 size_t bend;
1da177e4
LT
1475
1476 bend = boff + bsize;
1477 while (boff < bend) {
795cac72
DC
1478 struct page *page;
1479 int page_index, page_offset, csize;
1480
1481 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1482 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1483 page = bp->b_pages[page_index];
1484 csize = min_t(size_t, PAGE_SIZE - page_offset,
1485 BBTOB(bp->b_io_length) - boff);
1da177e4 1486
795cac72 1487 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1488
1489 switch (mode) {
ce8e922c 1490 case XBRW_ZERO:
795cac72 1491 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1492 break;
ce8e922c 1493 case XBRW_READ:
795cac72 1494 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1495 break;
ce8e922c 1496 case XBRW_WRITE:
795cac72 1497 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1498 }
1499
1500 boff += csize;
1501 data += csize;
1502 }
1503}
1504
1505/*
ce8e922c 1506 * Handling of buffer targets (buftargs).
1da177e4
LT
1507 */
1508
1509/*
430cbeb8
DC
1510 * Wait for any bufs with callbacks that have been submitted but have not yet
1511 * returned. These buffers will have an elevated hold count, so wait on those
1512 * while freeing all the buffers only held by the LRU.
1da177e4 1513 */
e80dfa19
DC
1514static enum lru_status
1515xfs_buftarg_wait_rele(
1516 struct list_head *item,
1517 spinlock_t *lru_lock,
1518 void *arg)
1519
1da177e4 1520{
e80dfa19 1521 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1522 struct list_head *dispose = arg;
430cbeb8 1523
e80dfa19 1524 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1525 /* need to wait, so skip it this pass */
e80dfa19 1526 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1527 return LRU_SKIP;
1da177e4 1528 }
a4082357
DC
1529 if (!spin_trylock(&bp->b_lock))
1530 return LRU_SKIP;
e80dfa19 1531
a4082357
DC
1532 /*
1533 * clear the LRU reference count so the buffer doesn't get
1534 * ignored in xfs_buf_rele().
1535 */
1536 atomic_set(&bp->b_lru_ref, 0);
1537 bp->b_state |= XFS_BSTATE_DISPOSE;
1538 list_move(item, dispose);
1539 spin_unlock(&bp->b_lock);
1540 return LRU_REMOVED;
1da177e4
LT
1541}
1542
e80dfa19
DC
1543void
1544xfs_wait_buftarg(
1545 struct xfs_buftarg *btp)
1546{
a4082357
DC
1547 LIST_HEAD(dispose);
1548 int loop = 0;
1549
1550 /* loop until there is nothing left on the lru list. */
1551 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1552 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1553 &dispose, LONG_MAX);
1554
1555 while (!list_empty(&dispose)) {
1556 struct xfs_buf *bp;
1557 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1558 list_del_init(&bp->b_lru);
ac8809f9
DC
1559 if (bp->b_flags & XBF_WRITE_FAIL) {
1560 xfs_alert(btp->bt_mount,
1561"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1562"Please run xfs_repair to determine the extent of the problem.",
1563 (long long)bp->b_bn);
1564 }
a4082357
DC
1565 xfs_buf_rele(bp);
1566 }
1567 if (loop++ != 0)
1568 delay(100);
1569 }
e80dfa19
DC
1570}
1571
1572static enum lru_status
1573xfs_buftarg_isolate(
1574 struct list_head *item,
1575 spinlock_t *lru_lock,
1576 void *arg)
1577{
1578 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1579 struct list_head *dispose = arg;
1580
a4082357
DC
1581 /*
1582 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1583 * If we fail to get the lock, just skip it.
1584 */
1585 if (!spin_trylock(&bp->b_lock))
1586 return LRU_SKIP;
e80dfa19
DC
1587 /*
1588 * Decrement the b_lru_ref count unless the value is already
1589 * zero. If the value is already zero, we need to reclaim the
1590 * buffer, otherwise it gets another trip through the LRU.
1591 */
a4082357
DC
1592 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1593 spin_unlock(&bp->b_lock);
e80dfa19 1594 return LRU_ROTATE;
a4082357 1595 }
e80dfa19 1596
a4082357 1597 bp->b_state |= XFS_BSTATE_DISPOSE;
e80dfa19 1598 list_move(item, dispose);
a4082357 1599 spin_unlock(&bp->b_lock);
e80dfa19
DC
1600 return LRU_REMOVED;
1601}
1602
addbda40 1603static unsigned long
e80dfa19 1604xfs_buftarg_shrink_scan(
ff57ab21 1605 struct shrinker *shrink,
1495f230 1606 struct shrink_control *sc)
a6867a68 1607{
ff57ab21
DC
1608 struct xfs_buftarg *btp = container_of(shrink,
1609 struct xfs_buftarg, bt_shrinker);
430cbeb8 1610 LIST_HEAD(dispose);
addbda40 1611 unsigned long freed;
e80dfa19 1612 unsigned long nr_to_scan = sc->nr_to_scan;
430cbeb8 1613
e80dfa19
DC
1614 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1615 &dispose, &nr_to_scan);
430cbeb8
DC
1616
1617 while (!list_empty(&dispose)) {
e80dfa19 1618 struct xfs_buf *bp;
430cbeb8
DC
1619 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1620 list_del_init(&bp->b_lru);
1621 xfs_buf_rele(bp);
1622 }
1623
e80dfa19
DC
1624 return freed;
1625}
1626
addbda40 1627static unsigned long
e80dfa19
DC
1628xfs_buftarg_shrink_count(
1629 struct shrinker *shrink,
1630 struct shrink_control *sc)
1631{
1632 struct xfs_buftarg *btp = container_of(shrink,
1633 struct xfs_buftarg, bt_shrinker);
1634 return list_lru_count_node(&btp->bt_lru, sc->nid);
a6867a68
DC
1635}
1636
1da177e4
LT
1637void
1638xfs_free_buftarg(
b7963133
CH
1639 struct xfs_mount *mp,
1640 struct xfs_buftarg *btp)
1da177e4 1641{
ff57ab21 1642 unregister_shrinker(&btp->bt_shrinker);
f5e1dd34 1643 list_lru_destroy(&btp->bt_lru);
ff57ab21 1644
b7963133
CH
1645 if (mp->m_flags & XFS_MOUNT_BARRIER)
1646 xfs_blkdev_issue_flush(btp);
a6867a68 1647
f0e2d93c 1648 kmem_free(btp);
1da177e4
LT
1649}
1650
3fefdeee
ES
1651int
1652xfs_setsize_buftarg(
1da177e4 1653 xfs_buftarg_t *btp,
3fefdeee 1654 unsigned int sectorsize)
1da177e4 1655{
7c71ee78 1656 /* Set up metadata sector size info */
6da54179
ES
1657 btp->bt_meta_sectorsize = sectorsize;
1658 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1659
ce8e922c 1660 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1661 char name[BDEVNAME_SIZE];
1662
1663 bdevname(btp->bt_bdev, name);
1664
4f10700a 1665 xfs_warn(btp->bt_mount,
08e96e1a 1666 "Cannot set_blocksize to %u on device %s",
02b102df 1667 sectorsize, name);
2451337d 1668 return -EINVAL;
1da177e4
LT
1669 }
1670
7c71ee78
ES
1671 /* Set up device logical sector size mask */
1672 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1673 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1674
1da177e4
LT
1675 return 0;
1676}
1677
1678/*
3fefdeee
ES
1679 * When allocating the initial buffer target we have not yet
1680 * read in the superblock, so don't know what sized sectors
1681 * are being used at this early stage. Play safe.
ce8e922c 1682 */
1da177e4
LT
1683STATIC int
1684xfs_setsize_buftarg_early(
1685 xfs_buftarg_t *btp,
1686 struct block_device *bdev)
1687{
a96c4151 1688 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1689}
1690
1da177e4
LT
1691xfs_buftarg_t *
1692xfs_alloc_buftarg(
ebad861b 1693 struct xfs_mount *mp,
34dcefd7 1694 struct block_device *bdev)
1da177e4
LT
1695{
1696 xfs_buftarg_t *btp;
1697
b17cb364 1698 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1699
ebad861b 1700 btp->bt_mount = mp;
ce8e922c
NS
1701 btp->bt_dev = bdev->bd_dev;
1702 btp->bt_bdev = bdev;
0e6e847f
DC
1703 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1704 if (!btp->bt_bdi)
1705 goto error;
1706
1da177e4
LT
1707 if (xfs_setsize_buftarg_early(btp, bdev))
1708 goto error;
5ca302c8
GC
1709
1710 if (list_lru_init(&btp->bt_lru))
1711 goto error;
1712
e80dfa19
DC
1713 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1714 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1715 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1716 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1717 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1718 return btp;
1719
1720error:
f0e2d93c 1721 kmem_free(btp);
1da177e4
LT
1722 return NULL;
1723}
1724
1da177e4 1725/*
43ff2122
CH
1726 * Add a buffer to the delayed write list.
1727 *
1728 * This queues a buffer for writeout if it hasn't already been. Note that
1729 * neither this routine nor the buffer list submission functions perform
1730 * any internal synchronization. It is expected that the lists are thread-local
1731 * to the callers.
1732 *
1733 * Returns true if we queued up the buffer, or false if it already had
1734 * been on the buffer list.
1da177e4 1735 */
43ff2122 1736bool
ce8e922c 1737xfs_buf_delwri_queue(
43ff2122
CH
1738 struct xfs_buf *bp,
1739 struct list_head *list)
1da177e4 1740{
43ff2122 1741 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1742 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1743
43ff2122
CH
1744 /*
1745 * If the buffer is already marked delwri it already is queued up
1746 * by someone else for imediate writeout. Just ignore it in that
1747 * case.
1748 */
1749 if (bp->b_flags & _XBF_DELWRI_Q) {
1750 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1751 return false;
1da177e4 1752 }
1da177e4 1753
43ff2122 1754 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1755
1756 /*
43ff2122
CH
1757 * If a buffer gets written out synchronously or marked stale while it
1758 * is on a delwri list we lazily remove it. To do this, the other party
1759 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1760 * It remains referenced and on the list. In a rare corner case it
1761 * might get readded to a delwri list after the synchronous writeout, in
1762 * which case we need just need to re-add the flag here.
d808f617 1763 */
43ff2122
CH
1764 bp->b_flags |= _XBF_DELWRI_Q;
1765 if (list_empty(&bp->b_list)) {
1766 atomic_inc(&bp->b_hold);
1767 list_add_tail(&bp->b_list, list);
585e6d88 1768 }
585e6d88 1769
43ff2122 1770 return true;
585e6d88
DC
1771}
1772
089716aa
DC
1773/*
1774 * Compare function is more complex than it needs to be because
1775 * the return value is only 32 bits and we are doing comparisons
1776 * on 64 bit values
1777 */
1778static int
1779xfs_buf_cmp(
1780 void *priv,
1781 struct list_head *a,
1782 struct list_head *b)
1783{
1784 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1785 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1786 xfs_daddr_t diff;
1787
f4b42421 1788 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1789 if (diff < 0)
1790 return -1;
1791 if (diff > 0)
1792 return 1;
1793 return 0;
1794}
1795
43ff2122
CH
1796static int
1797__xfs_buf_delwri_submit(
1798 struct list_head *buffer_list,
1799 struct list_head *io_list,
1800 bool wait)
1da177e4 1801{
43ff2122
CH
1802 struct blk_plug plug;
1803 struct xfs_buf *bp, *n;
1804 int pinned = 0;
1805
1806 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1807 if (!wait) {
1808 if (xfs_buf_ispinned(bp)) {
1809 pinned++;
1810 continue;
1811 }
1812 if (!xfs_buf_trylock(bp))
1813 continue;
1814 } else {
1815 xfs_buf_lock(bp);
1816 }
978c7b2f 1817
43ff2122
CH
1818 /*
1819 * Someone else might have written the buffer synchronously or
1820 * marked it stale in the meantime. In that case only the
1821 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1822 * reference and remove it from the list here.
1823 */
1824 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1825 list_del_init(&bp->b_list);
1826 xfs_buf_relse(bp);
1827 continue;
1828 }
c9c12971 1829
43ff2122
CH
1830 list_move_tail(&bp->b_list, io_list);
1831 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1832 }
1da177e4 1833
43ff2122 1834 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1835
43ff2122
CH
1836 blk_start_plug(&plug);
1837 list_for_each_entry_safe(bp, n, io_list, b_list) {
ac8809f9 1838 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
cf53e99d 1839 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
a1b7ea5d 1840
cf53e99d
DC
1841 /*
1842 * we do all Io submission async. This means if we need to wait
1843 * for IO completion we need to take an extra reference so the
1844 * buffer is still valid on the other side.
1845 */
1846 if (wait)
1847 xfs_buf_hold(bp);
1848 else
ce8e922c 1849 list_del_init(&bp->b_list);
43ff2122
CH
1850 xfs_bdstrat_cb(bp);
1851 }
1852 blk_finish_plug(&plug);
1da177e4 1853
43ff2122 1854 return pinned;
1da177e4
LT
1855}
1856
1857/*
43ff2122
CH
1858 * Write out a buffer list asynchronously.
1859 *
1860 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1861 * out and not wait for I/O completion on any of the buffers. This interface
1862 * is only safely useable for callers that can track I/O completion by higher
1863 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1864 * function.
1da177e4
LT
1865 */
1866int
43ff2122
CH
1867xfs_buf_delwri_submit_nowait(
1868 struct list_head *buffer_list)
1da177e4 1869{
43ff2122
CH
1870 LIST_HEAD (io_list);
1871 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1872}
1da177e4 1873
43ff2122
CH
1874/*
1875 * Write out a buffer list synchronously.
1876 *
1877 * This will take the @buffer_list, write all buffers out and wait for I/O
1878 * completion on all of the buffers. @buffer_list is consumed by the function,
1879 * so callers must have some other way of tracking buffers if they require such
1880 * functionality.
1881 */
1882int
1883xfs_buf_delwri_submit(
1884 struct list_head *buffer_list)
1885{
1886 LIST_HEAD (io_list);
1887 int error = 0, error2;
1888 struct xfs_buf *bp;
1da177e4 1889
43ff2122 1890 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1891
43ff2122
CH
1892 /* Wait for IO to complete. */
1893 while (!list_empty(&io_list)) {
1894 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1895
089716aa 1896 list_del_init(&bp->b_list);
cf53e99d
DC
1897
1898 /* locking the buffer will wait for async IO completion. */
1899 xfs_buf_lock(bp);
1900 error2 = bp->b_error;
43ff2122
CH
1901 xfs_buf_relse(bp);
1902 if (!error)
1903 error = error2;
1da177e4
LT
1904 }
1905
43ff2122 1906 return error;
1da177e4
LT
1907}
1908
04d8b284 1909int __init
ce8e922c 1910xfs_buf_init(void)
1da177e4 1911{
8758280f
NS
1912 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1913 KM_ZONE_HWALIGN, NULL);
ce8e922c 1914 if (!xfs_buf_zone)
0b1b213f 1915 goto out;
04d8b284 1916
51749e47 1917 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1918 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1919 if (!xfslogd_workqueue)
04d8b284 1920 goto out_free_buf_zone;
1da177e4 1921
23ea4032 1922 return 0;
1da177e4 1923
23ea4032 1924 out_free_buf_zone:
ce8e922c 1925 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1926 out:
8758280f 1927 return -ENOMEM;
1da177e4
LT
1928}
1929
1da177e4 1930void
ce8e922c 1931xfs_buf_terminate(void)
1da177e4 1932{
04d8b284 1933 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1934 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1935}
This page took 0.986327 seconds and 5 git commands to generate.