net: call rcu_read_lock early in process_backlog
[deliverable/linux.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
1da177e4
LT
40
41#include <linux/dcache.h>
2fe17c10 42#include <linux/falloc.h>
d126d43f 43#include <linux/pagevec.h>
66114cad 44#include <linux/backing-dev.h>
1da177e4 45
f0f37e2f 46static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 47
487f84f3
DC
48/*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52static inline void
53xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56{
57 if (type & XFS_IOLOCK_EXCL)
58 mutex_lock(&VFS_I(ip)->i_mutex);
59 xfs_ilock(ip, type);
60}
61
62static inline void
63xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66{
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 mutex_unlock(&VFS_I(ip)->i_mutex);
70}
71
72static inline void
73xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76{
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 mutex_unlock(&VFS_I(ip)->i_mutex);
80}
81
dda35b8f 82/*
4f69f578
DC
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
87 * zeroed.
dda35b8f 88 *
4f69f578
DC
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
dda35b8f 92 */
ef9d8733 93int
dda35b8f
CH
94xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98{
99 struct page *page;
100 struct address_space *mapping;
4f69f578
DC
101 int status = 0;
102
dda35b8f
CH
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 bytes = PAGE_CACHE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
113
4f69f578
DC
114 if (IS_DAX(VFS_I(ip))) {
115 status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 xfs_get_blocks_direct);
117 if (status)
118 break;
119 } else {
120 status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 AOP_FLAG_UNINTERRUPTIBLE,
122 &page, &fsdata);
123 if (status)
124 break;
dda35b8f 125
4f69f578 126 zero_user(page, offset, bytes);
dda35b8f 127
4f69f578
DC
128 status = pagecache_write_end(NULL, mapping, pos, bytes,
129 bytes, page, fsdata);
130 WARN_ON(status <= 0); /* can't return less than zero! */
131 status = 0;
132 }
dda35b8f
CH
133 pos += bytes;
134 count -= bytes;
dda35b8f
CH
135 } while (count);
136
cddc1162 137 return status;
dda35b8f
CH
138}
139
8add71ca
CH
140int
141xfs_update_prealloc_flags(
142 struct xfs_inode *ip,
143 enum xfs_prealloc_flags flags)
144{
145 struct xfs_trans *tp;
146 int error;
147
148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 if (error) {
4906e215 151 xfs_trans_cancel(tp);
8add71ca
CH
152 return error;
153 }
154
155 xfs_ilock(ip, XFS_ILOCK_EXCL);
156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157
158 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 ip->i_d.di_mode &= ~S_ISUID;
160 if (ip->i_d.di_mode & S_IXGRP)
161 ip->i_d.di_mode &= ~S_ISGID;
162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 }
164
165 if (flags & XFS_PREALLOC_SET)
166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 if (flags & XFS_PREALLOC_CLEAR)
168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
169
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 if (flags & XFS_PREALLOC_SYNC)
172 xfs_trans_set_sync(tp);
70393313 173 return xfs_trans_commit(tp);
8add71ca
CH
174}
175
1da2f2db
CH
176/*
177 * Fsync operations on directories are much simpler than on regular files,
178 * as there is no file data to flush, and thus also no need for explicit
179 * cache flush operations, and there are no non-transaction metadata updates
180 * on directories either.
181 */
182STATIC int
183xfs_dir_fsync(
184 struct file *file,
185 loff_t start,
186 loff_t end,
187 int datasync)
188{
189 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
190 struct xfs_mount *mp = ip->i_mount;
191 xfs_lsn_t lsn = 0;
192
193 trace_xfs_dir_fsync(ip);
194
195 xfs_ilock(ip, XFS_ILOCK_SHARED);
196 if (xfs_ipincount(ip))
197 lsn = ip->i_itemp->ili_last_lsn;
198 xfs_iunlock(ip, XFS_ILOCK_SHARED);
199
200 if (!lsn)
201 return 0;
2451337d 202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
203}
204
fd3200be
CH
205STATIC int
206xfs_file_fsync(
207 struct file *file,
02c24a82
JB
208 loff_t start,
209 loff_t end,
fd3200be
CH
210 int datasync)
211{
7ea80859
CH
212 struct inode *inode = file->f_mapping->host;
213 struct xfs_inode *ip = XFS_I(inode);
a27a263b 214 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
215 int error = 0;
216 int log_flushed = 0;
b1037058 217 xfs_lsn_t lsn = 0;
fd3200be 218
cca28fb8 219 trace_xfs_file_fsync(ip);
fd3200be 220
02c24a82
JB
221 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 if (error)
223 return error;
224
a27a263b 225 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 226 return -EIO;
fd3200be
CH
227
228 xfs_iflags_clear(ip, XFS_ITRUNCATED);
229
a27a263b
CH
230 if (mp->m_flags & XFS_MOUNT_BARRIER) {
231 /*
232 * If we have an RT and/or log subvolume we need to make sure
233 * to flush the write cache the device used for file data
234 * first. This is to ensure newly written file data make
235 * it to disk before logging the new inode size in case of
236 * an extending write.
237 */
238 if (XFS_IS_REALTIME_INODE(ip))
239 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 }
243
fd3200be 244 /*
8a9c9980
CH
245 * All metadata updates are logged, which means that we just have
246 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
247 */
248 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
249 if (xfs_ipincount(ip)) {
250 if (!datasync ||
251 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
252 lsn = ip->i_itemp->ili_last_lsn;
253 }
8a9c9980 254 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 255
8a9c9980 256 if (lsn)
b1037058
CH
257 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
258
a27a263b
CH
259 /*
260 * If we only have a single device, and the log force about was
261 * a no-op we might have to flush the data device cache here.
262 * This can only happen for fdatasync/O_DSYNC if we were overwriting
263 * an already allocated file and thus do not have any metadata to
264 * commit.
265 */
266 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
267 mp->m_logdev_targp == mp->m_ddev_targp &&
268 !XFS_IS_REALTIME_INODE(ip) &&
269 !log_flushed)
270 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 271
2451337d 272 return error;
fd3200be
CH
273}
274
00258e36 275STATIC ssize_t
b4f5d2c6 276xfs_file_read_iter(
dda35b8f 277 struct kiocb *iocb,
b4f5d2c6 278 struct iov_iter *to)
dda35b8f
CH
279{
280 struct file *file = iocb->ki_filp;
281 struct inode *inode = file->f_mapping->host;
00258e36
CH
282 struct xfs_inode *ip = XFS_I(inode);
283 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 284 size_t size = iov_iter_count(to);
dda35b8f 285 ssize_t ret = 0;
00258e36 286 int ioflags = 0;
dda35b8f 287 xfs_fsize_t n;
b4f5d2c6 288 loff_t pos = iocb->ki_pos;
dda35b8f 289
dda35b8f
CH
290 XFS_STATS_INC(xs_read_calls);
291
2ba48ce5 292 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
b92cc59f 293 ioflags |= XFS_IO_ISDIRECT;
00258e36 294 if (file->f_mode & FMODE_NOCMTIME)
b92cc59f 295 ioflags |= XFS_IO_INVIS;
00258e36 296
6b698ede 297 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
dda35b8f
CH
298 xfs_buftarg_t *target =
299 XFS_IS_REALTIME_INODE(ip) ?
300 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
301 /* DIO must be aligned to device logical sector size */
302 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 303 if (pos == i_size_read(inode))
00258e36 304 return 0;
b474c7ae 305 return -EINVAL;
dda35b8f
CH
306 }
307 }
308
fb595814 309 n = mp->m_super->s_maxbytes - pos;
00258e36 310 if (n <= 0 || size == 0)
dda35b8f
CH
311 return 0;
312
313 if (n < size)
314 size = n;
315
316 if (XFS_FORCED_SHUTDOWN(mp))
317 return -EIO;
318
0c38a251
DC
319 /*
320 * Locking is a bit tricky here. If we take an exclusive lock
321 * for direct IO, we effectively serialise all new concurrent
322 * read IO to this file and block it behind IO that is currently in
323 * progress because IO in progress holds the IO lock shared. We only
324 * need to hold the lock exclusive to blow away the page cache, so
325 * only take lock exclusively if the page cache needs invalidation.
326 * This allows the normal direct IO case of no page cache pages to
327 * proceeed concurrently without serialisation.
328 */
329 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b92cc59f 330 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
0c38a251 331 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
332 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
333
00258e36 334 if (inode->i_mapping->nrpages) {
8ff1e670 335 ret = filemap_write_and_wait_range(
fb595814 336 VFS_I(ip)->i_mapping,
7d4ea3ce 337 pos, pos + size - 1);
487f84f3
DC
338 if (ret) {
339 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
340 return ret;
341 }
85e584da
CM
342
343 /*
344 * Invalidate whole pages. This can return an error if
345 * we fail to invalidate a page, but this should never
346 * happen on XFS. Warn if it does fail.
347 */
348 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
349 pos >> PAGE_CACHE_SHIFT,
350 (pos + size - 1) >> PAGE_CACHE_SHIFT);
85e584da
CM
351 WARN_ON_ONCE(ret);
352 ret = 0;
00258e36 353 }
487f84f3 354 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 355 }
dda35b8f 356
fb595814 357 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 358
b4f5d2c6 359 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
360 if (ret > 0)
361 XFS_STATS_ADD(xs_read_bytes, ret);
362
487f84f3 363 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
364 return ret;
365}
366
00258e36
CH
367STATIC ssize_t
368xfs_file_splice_read(
dda35b8f
CH
369 struct file *infilp,
370 loff_t *ppos,
371 struct pipe_inode_info *pipe,
372 size_t count,
00258e36 373 unsigned int flags)
dda35b8f 374{
00258e36 375 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 376 int ioflags = 0;
dda35b8f
CH
377 ssize_t ret;
378
379 XFS_STATS_INC(xs_read_calls);
00258e36
CH
380
381 if (infilp->f_mode & FMODE_NOCMTIME)
b92cc59f 382 ioflags |= XFS_IO_INVIS;
00258e36 383
dda35b8f
CH
384 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
385 return -EIO;
386
487f84f3 387 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 388
dda35b8f
CH
389 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
390
6b698ede
DC
391 /* for dax, we need to avoid the page cache */
392 if (IS_DAX(VFS_I(ip)))
393 ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
394 else
395 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
dda35b8f
CH
396 if (ret > 0)
397 XFS_STATS_ADD(xs_read_bytes, ret);
398
487f84f3 399 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
400 return ret;
401}
402
dda35b8f 403/*
193aec10
CH
404 * This routine is called to handle zeroing any space in the last block of the
405 * file that is beyond the EOF. We do this since the size is being increased
406 * without writing anything to that block and we don't want to read the
407 * garbage on the disk.
dda35b8f
CH
408 */
409STATIC int /* error (positive) */
410xfs_zero_last_block(
193aec10
CH
411 struct xfs_inode *ip,
412 xfs_fsize_t offset,
5885ebda
DC
413 xfs_fsize_t isize,
414 bool *did_zeroing)
dda35b8f 415{
193aec10
CH
416 struct xfs_mount *mp = ip->i_mount;
417 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
418 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
419 int zero_len;
420 int nimaps = 1;
421 int error = 0;
422 struct xfs_bmbt_irec imap;
dda35b8f 423
193aec10 424 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 425 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 426 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 427 if (error)
dda35b8f 428 return error;
193aec10 429
dda35b8f 430 ASSERT(nimaps > 0);
193aec10 431
dda35b8f
CH
432 /*
433 * If the block underlying isize is just a hole, then there
434 * is nothing to zero.
435 */
193aec10 436 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 437 return 0;
dda35b8f
CH
438
439 zero_len = mp->m_sb.sb_blocksize - zero_offset;
440 if (isize + zero_len > offset)
441 zero_len = offset - isize;
5885ebda 442 *did_zeroing = true;
193aec10 443 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
444}
445
446/*
193aec10
CH
447 * Zero any on disk space between the current EOF and the new, larger EOF.
448 *
449 * This handles the normal case of zeroing the remainder of the last block in
450 * the file and the unusual case of zeroing blocks out beyond the size of the
451 * file. This second case only happens with fixed size extents and when the
452 * system crashes before the inode size was updated but after blocks were
453 * allocated.
454 *
455 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 456 */
dda35b8f
CH
457int /* error (positive) */
458xfs_zero_eof(
193aec10
CH
459 struct xfs_inode *ip,
460 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
461 xfs_fsize_t isize, /* current inode size */
462 bool *did_zeroing)
dda35b8f 463{
193aec10
CH
464 struct xfs_mount *mp = ip->i_mount;
465 xfs_fileoff_t start_zero_fsb;
466 xfs_fileoff_t end_zero_fsb;
467 xfs_fileoff_t zero_count_fsb;
468 xfs_fileoff_t last_fsb;
469 xfs_fileoff_t zero_off;
470 xfs_fsize_t zero_len;
471 int nimaps;
472 int error = 0;
473 struct xfs_bmbt_irec imap;
474
475 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
476 ASSERT(offset > isize);
477
478 /*
479 * First handle zeroing the block on which isize resides.
193aec10 480 *
dda35b8f
CH
481 * We only zero a part of that block so it is handled specially.
482 */
193aec10 483 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
5885ebda 484 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
193aec10
CH
485 if (error)
486 return error;
dda35b8f
CH
487 }
488
489 /*
193aec10
CH
490 * Calculate the range between the new size and the old where blocks
491 * needing to be zeroed may exist.
492 *
493 * To get the block where the last byte in the file currently resides,
494 * we need to subtract one from the size and truncate back to a block
495 * boundary. We subtract 1 in case the size is exactly on a block
496 * boundary.
dda35b8f
CH
497 */
498 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
499 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
500 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
501 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
502 if (last_fsb == end_zero_fsb) {
503 /*
504 * The size was only incremented on its last block.
505 * We took care of that above, so just return.
506 */
507 return 0;
508 }
509
510 ASSERT(start_zero_fsb <= end_zero_fsb);
511 while (start_zero_fsb <= end_zero_fsb) {
512 nimaps = 1;
513 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
514
515 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
516 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
517 &imap, &nimaps, 0);
193aec10
CH
518 xfs_iunlock(ip, XFS_ILOCK_EXCL);
519 if (error)
dda35b8f 520 return error;
193aec10 521
dda35b8f
CH
522 ASSERT(nimaps > 0);
523
524 if (imap.br_state == XFS_EXT_UNWRITTEN ||
525 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
526 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
527 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
528 continue;
529 }
530
531 /*
532 * There are blocks we need to zero.
dda35b8f 533 */
dda35b8f
CH
534 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
535 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
536
537 if ((zero_off + zero_len) > offset)
538 zero_len = offset - zero_off;
539
540 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
541 if (error)
542 return error;
dda35b8f 543
5885ebda 544 *did_zeroing = true;
dda35b8f
CH
545 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
546 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
547 }
548
549 return 0;
dda35b8f
CH
550}
551
4d8d1581
DC
552/*
553 * Common pre-write limit and setup checks.
554 *
5bf1f262
CH
555 * Called with the iolocked held either shared and exclusive according to
556 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
557 * if called for a direct write beyond i_size.
4d8d1581
DC
558 */
559STATIC ssize_t
560xfs_file_aio_write_checks(
99733fa3
AV
561 struct kiocb *iocb,
562 struct iov_iter *from,
4d8d1581
DC
563 int *iolock)
564{
99733fa3 565 struct file *file = iocb->ki_filp;
4d8d1581
DC
566 struct inode *inode = file->f_mapping->host;
567 struct xfs_inode *ip = XFS_I(inode);
3309dd04 568 ssize_t error = 0;
99733fa3 569 size_t count = iov_iter_count(from);
4d8d1581 570
7271d243 571restart:
3309dd04
AV
572 error = generic_write_checks(iocb, from);
573 if (error <= 0)
4d8d1581 574 return error;
4d8d1581 575
21c3ea18 576 error = xfs_break_layouts(inode, iolock, true);
781355c6
CH
577 if (error)
578 return error;
579
4d8d1581
DC
580 /*
581 * If the offset is beyond the size of the file, we need to zero any
582 * blocks that fall between the existing EOF and the start of this
2813d682 583 * write. If zeroing is needed and we are currently holding the
467f7899
CH
584 * iolock shared, we need to update it to exclusive which implies
585 * having to redo all checks before.
b9d59846
DC
586 *
587 * We need to serialise against EOF updates that occur in IO
588 * completions here. We want to make sure that nobody is changing the
589 * size while we do this check until we have placed an IO barrier (i.e.
590 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
591 * The spinlock effectively forms a memory barrier once we have the
592 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
593 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 594 */
b9d59846 595 spin_lock(&ip->i_flags_lock);
99733fa3 596 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
597 bool zero = false;
598
b9d59846 599 spin_unlock(&ip->i_flags_lock);
7271d243 600 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 601 xfs_rw_iunlock(ip, *iolock);
7271d243 602 *iolock = XFS_IOLOCK_EXCL;
467f7899 603 xfs_rw_ilock(ip, *iolock);
3309dd04 604 iov_iter_reexpand(from, count);
40c63fbc
DC
605
606 /*
607 * We now have an IO submission barrier in place, but
608 * AIO can do EOF updates during IO completion and hence
609 * we now need to wait for all of them to drain. Non-AIO
610 * DIO will have drained before we are given the
611 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
612 * no-op.
613 */
614 inode_dio_wait(inode);
7271d243
DC
615 goto restart;
616 }
99733fa3 617 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
618 if (error)
619 return error;
b9d59846
DC
620 } else
621 spin_unlock(&ip->i_flags_lock);
4d8d1581 622
8a9c9980
CH
623 /*
624 * Updating the timestamps will grab the ilock again from
625 * xfs_fs_dirty_inode, so we have to call it after dropping the
626 * lock above. Eventually we should look into a way to avoid
627 * the pointless lock roundtrip.
628 */
c3b2da31
JB
629 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
630 error = file_update_time(file);
631 if (error)
632 return error;
633 }
8a9c9980 634
4d8d1581
DC
635 /*
636 * If we're writing the file then make sure to clear the setuid and
637 * setgid bits if the process is not being run by root. This keeps
638 * people from modifying setuid and setgid binaries.
639 */
640 return file_remove_suid(file);
4d8d1581
DC
641}
642
f0d26e86
DC
643/*
644 * xfs_file_dio_aio_write - handle direct IO writes
645 *
646 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 647 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
648 * follow locking changes and looping.
649 *
eda77982
DC
650 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
651 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
652 * pages are flushed out.
653 *
654 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
655 * allowing them to be done in parallel with reads and other direct IO writes.
656 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
657 * needs to do sub-block zeroing and that requires serialisation against other
658 * direct IOs to the same block. In this case we need to serialise the
659 * submission of the unaligned IOs so that we don't get racing block zeroing in
660 * the dio layer. To avoid the problem with aio, we also need to wait for
661 * outstanding IOs to complete so that unwritten extent conversion is completed
662 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 663 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 664 *
f0d26e86
DC
665 * Returns with locks held indicated by @iolock and errors indicated by
666 * negative return values.
667 */
668STATIC ssize_t
669xfs_file_dio_aio_write(
670 struct kiocb *iocb,
b3188919 671 struct iov_iter *from)
f0d26e86
DC
672{
673 struct file *file = iocb->ki_filp;
674 struct address_space *mapping = file->f_mapping;
675 struct inode *inode = mapping->host;
676 struct xfs_inode *ip = XFS_I(inode);
677 struct xfs_mount *mp = ip->i_mount;
678 ssize_t ret = 0;
eda77982 679 int unaligned_io = 0;
d0606464 680 int iolock;
b3188919
AV
681 size_t count = iov_iter_count(from);
682 loff_t pos = iocb->ki_pos;
0cefb29e
DC
683 loff_t end;
684 struct iov_iter data;
f0d26e86
DC
685 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
686 mp->m_rtdev_targp : mp->m_ddev_targp;
687
7c71ee78 688 /* DIO must be aligned to device logical sector size */
6b698ede 689 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
b474c7ae 690 return -EINVAL;
f0d26e86 691
7c71ee78 692 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
693 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
694 unaligned_io = 1;
695
7271d243
DC
696 /*
697 * We don't need to take an exclusive lock unless there page cache needs
698 * to be invalidated or unaligned IO is being executed. We don't need to
699 * consider the EOF extension case here because
700 * xfs_file_aio_write_checks() will relock the inode as necessary for
701 * EOF zeroing cases and fill out the new inode size as appropriate.
702 */
703 if (unaligned_io || mapping->nrpages)
d0606464 704 iolock = XFS_IOLOCK_EXCL;
f0d26e86 705 else
d0606464
CH
706 iolock = XFS_IOLOCK_SHARED;
707 xfs_rw_ilock(ip, iolock);
c58cb165
CH
708
709 /*
710 * Recheck if there are cached pages that need invalidate after we got
711 * the iolock to protect against other threads adding new pages while
712 * we were waiting for the iolock.
713 */
d0606464
CH
714 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
715 xfs_rw_iunlock(ip, iolock);
716 iolock = XFS_IOLOCK_EXCL;
717 xfs_rw_ilock(ip, iolock);
c58cb165 718 }
f0d26e86 719
99733fa3 720 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 721 if (ret)
d0606464 722 goto out;
99733fa3
AV
723 count = iov_iter_count(from);
724 pos = iocb->ki_pos;
0cefb29e 725 end = pos + count - 1;
f0d26e86
DC
726
727 if (mapping->nrpages) {
07d5035a 728 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
0cefb29e 729 pos, end);
f0d26e86 730 if (ret)
d0606464 731 goto out;
834ffca6
DC
732 /*
733 * Invalidate whole pages. This can return an error if
734 * we fail to invalidate a page, but this should never
735 * happen on XFS. Warn if it does fail.
736 */
737 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce 738 pos >> PAGE_CACHE_SHIFT,
0cefb29e 739 end >> PAGE_CACHE_SHIFT);
834ffca6
DC
740 WARN_ON_ONCE(ret);
741 ret = 0;
f0d26e86
DC
742 }
743
eda77982
DC
744 /*
745 * If we are doing unaligned IO, wait for all other IO to drain,
746 * otherwise demote the lock if we had to flush cached pages
747 */
748 if (unaligned_io)
4a06fd26 749 inode_dio_wait(inode);
d0606464 750 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 751 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 752 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
753 }
754
755 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
f0d26e86 756
0cefb29e 757 data = *from;
1aef882f 758 ret = mapping->a_ops->direct_IO(iocb, &data, pos);
0cefb29e
DC
759
760 /* see generic_file_direct_write() for why this is necessary */
761 if (mapping->nrpages) {
762 invalidate_inode_pages2_range(mapping,
763 pos >> PAGE_CACHE_SHIFT,
764 end >> PAGE_CACHE_SHIFT);
765 }
766
767 if (ret > 0) {
768 pos += ret;
769 iov_iter_advance(from, ret);
770 iocb->ki_pos = pos;
771 }
d0606464
CH
772out:
773 xfs_rw_iunlock(ip, iolock);
774
6b698ede
DC
775 /*
776 * No fallback to buffered IO on errors for XFS. DAX can result in
777 * partial writes, but direct IO will either complete fully or fail.
778 */
779 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
f0d26e86
DC
780 return ret;
781}
782
00258e36 783STATIC ssize_t
637bbc75 784xfs_file_buffered_aio_write(
dda35b8f 785 struct kiocb *iocb,
b3188919 786 struct iov_iter *from)
dda35b8f
CH
787{
788 struct file *file = iocb->ki_filp;
789 struct address_space *mapping = file->f_mapping;
790 struct inode *inode = mapping->host;
00258e36 791 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
792 ssize_t ret;
793 int enospc = 0;
d0606464 794 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 795
d0606464 796 xfs_rw_ilock(ip, iolock);
dda35b8f 797
99733fa3 798 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 799 if (ret)
d0606464 800 goto out;
dda35b8f
CH
801
802 /* We can write back this queue in page reclaim */
de1414a6 803 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 804
dda35b8f 805write_retry:
99733fa3
AV
806 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
807 iocb->ki_pos, 0);
808 ret = generic_perform_write(file, from, iocb->ki_pos);
0a64bc2c 809 if (likely(ret >= 0))
99733fa3 810 iocb->ki_pos += ret;
dc06f398 811
637bbc75 812 /*
dc06f398
BF
813 * If we hit a space limit, try to free up some lingering preallocated
814 * space before returning an error. In the case of ENOSPC, first try to
815 * write back all dirty inodes to free up some of the excess reserved
816 * metadata space. This reduces the chances that the eofblocks scan
817 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
818 * also behaves as a filter to prevent too many eofblocks scans from
819 * running at the same time.
637bbc75 820 */
dc06f398
BF
821 if (ret == -EDQUOT && !enospc) {
822 enospc = xfs_inode_free_quota_eofblocks(ip);
823 if (enospc)
824 goto write_retry;
825 } else if (ret == -ENOSPC && !enospc) {
826 struct xfs_eofblocks eofb = {0};
827
637bbc75 828 enospc = 1;
9aa05000 829 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
830 eofb.eof_scan_owner = ip->i_ino; /* for locking */
831 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
832 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 833 goto write_retry;
dda35b8f 834 }
d0606464 835
dda35b8f 836 current->backing_dev_info = NULL;
d0606464
CH
837out:
838 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
839 return ret;
840}
841
842STATIC ssize_t
bf97f3bc 843xfs_file_write_iter(
637bbc75 844 struct kiocb *iocb,
bf97f3bc 845 struct iov_iter *from)
637bbc75
DC
846{
847 struct file *file = iocb->ki_filp;
848 struct address_space *mapping = file->f_mapping;
849 struct inode *inode = mapping->host;
850 struct xfs_inode *ip = XFS_I(inode);
851 ssize_t ret;
bf97f3bc 852 size_t ocount = iov_iter_count(from);
637bbc75
DC
853
854 XFS_STATS_INC(xs_write_calls);
855
637bbc75
DC
856 if (ocount == 0)
857 return 0;
858
bf97f3bc
AV
859 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
860 return -EIO;
637bbc75 861
6b698ede 862 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
bf97f3bc 863 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 864 else
bf97f3bc 865 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 866
d0606464
CH
867 if (ret > 0) {
868 ssize_t err;
dda35b8f 869
d0606464 870 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 871
d0606464 872 /* Handle various SYNC-type writes */
d311d79d 873 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
874 if (err < 0)
875 ret = err;
dda35b8f 876 }
a363f0c2 877 return ret;
dda35b8f
CH
878}
879
a904b1ca
NJ
880#define XFS_FALLOC_FL_SUPPORTED \
881 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
882 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
883 FALLOC_FL_INSERT_RANGE)
884
2fe17c10
CH
885STATIC long
886xfs_file_fallocate(
83aee9e4
CH
887 struct file *file,
888 int mode,
889 loff_t offset,
890 loff_t len)
2fe17c10 891{
83aee9e4
CH
892 struct inode *inode = file_inode(file);
893 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 894 long error;
8add71ca 895 enum xfs_prealloc_flags flags = 0;
781355c6 896 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 897 loff_t new_size = 0;
a904b1ca 898 bool do_file_insert = 0;
2fe17c10 899
83aee9e4
CH
900 if (!S_ISREG(inode->i_mode))
901 return -EINVAL;
a904b1ca 902 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
903 return -EOPNOTSUPP;
904
781355c6 905 xfs_ilock(ip, iolock);
21c3ea18 906 error = xfs_break_layouts(inode, &iolock, false);
781355c6
CH
907 if (error)
908 goto out_unlock;
909
e8e9ad42
DC
910 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
911 iolock |= XFS_MMAPLOCK_EXCL;
912
83aee9e4
CH
913 if (mode & FALLOC_FL_PUNCH_HOLE) {
914 error = xfs_free_file_space(ip, offset, len);
915 if (error)
916 goto out_unlock;
e1d8fb88
NJ
917 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
918 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
919
920 if (offset & blksize_mask || len & blksize_mask) {
2451337d 921 error = -EINVAL;
e1d8fb88
NJ
922 goto out_unlock;
923 }
924
23fffa92
LC
925 /*
926 * There is no need to overlap collapse range with EOF,
927 * in which case it is effectively a truncate operation
928 */
929 if (offset + len >= i_size_read(inode)) {
2451337d 930 error = -EINVAL;
23fffa92
LC
931 goto out_unlock;
932 }
933
e1d8fb88
NJ
934 new_size = i_size_read(inode) - len;
935
936 error = xfs_collapse_file_space(ip, offset, len);
937 if (error)
938 goto out_unlock;
a904b1ca
NJ
939 } else if (mode & FALLOC_FL_INSERT_RANGE) {
940 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
941
942 new_size = i_size_read(inode) + len;
943 if (offset & blksize_mask || len & blksize_mask) {
944 error = -EINVAL;
945 goto out_unlock;
946 }
947
948 /* check the new inode size does not wrap through zero */
949 if (new_size > inode->i_sb->s_maxbytes) {
950 error = -EFBIG;
951 goto out_unlock;
952 }
953
954 /* Offset should be less than i_size */
955 if (offset >= i_size_read(inode)) {
956 error = -EINVAL;
957 goto out_unlock;
958 }
959 do_file_insert = 1;
83aee9e4 960 } else {
8add71ca
CH
961 flags |= XFS_PREALLOC_SET;
962
83aee9e4
CH
963 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
964 offset + len > i_size_read(inode)) {
965 new_size = offset + len;
2451337d 966 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
967 if (error)
968 goto out_unlock;
969 }
2fe17c10 970
376ba313
LC
971 if (mode & FALLOC_FL_ZERO_RANGE)
972 error = xfs_zero_file_space(ip, offset, len);
973 else
974 error = xfs_alloc_file_space(ip, offset, len,
975 XFS_BMAPI_PREALLOC);
2fe17c10
CH
976 if (error)
977 goto out_unlock;
978 }
979
83aee9e4 980 if (file->f_flags & O_DSYNC)
8add71ca
CH
981 flags |= XFS_PREALLOC_SYNC;
982
983 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
984 if (error)
985 goto out_unlock;
986
987 /* Change file size if needed */
988 if (new_size) {
989 struct iattr iattr;
990
991 iattr.ia_valid = ATTR_SIZE;
992 iattr.ia_size = new_size;
83aee9e4 993 error = xfs_setattr_size(ip, &iattr);
a904b1ca
NJ
994 if (error)
995 goto out_unlock;
2fe17c10
CH
996 }
997
a904b1ca
NJ
998 /*
999 * Perform hole insertion now that the file size has been
1000 * updated so that if we crash during the operation we don't
1001 * leave shifted extents past EOF and hence losing access to
1002 * the data that is contained within them.
1003 */
1004 if (do_file_insert)
1005 error = xfs_insert_file_space(ip, offset, len);
1006
2fe17c10 1007out_unlock:
781355c6 1008 xfs_iunlock(ip, iolock);
2451337d 1009 return error;
2fe17c10
CH
1010}
1011
1012
1da177e4 1013STATIC int
3562fd45 1014xfs_file_open(
1da177e4 1015 struct inode *inode,
f999a5bf 1016 struct file *file)
1da177e4 1017{
f999a5bf 1018 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1019 return -EFBIG;
f999a5bf
CH
1020 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1021 return -EIO;
1022 return 0;
1023}
1024
1025STATIC int
1026xfs_dir_open(
1027 struct inode *inode,
1028 struct file *file)
1029{
1030 struct xfs_inode *ip = XFS_I(inode);
1031 int mode;
1032 int error;
1033
1034 error = xfs_file_open(inode, file);
1035 if (error)
1036 return error;
1037
1038 /*
1039 * If there are any blocks, read-ahead block 0 as we're almost
1040 * certain to have the next operation be a read there.
1041 */
309ecac8 1042 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 1043 if (ip->i_d.di_nextents > 0)
9df2dd0b 1044 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
1045 xfs_iunlock(ip, mode);
1046 return 0;
1da177e4
LT
1047}
1048
1da177e4 1049STATIC int
3562fd45 1050xfs_file_release(
1da177e4
LT
1051 struct inode *inode,
1052 struct file *filp)
1053{
2451337d 1054 return xfs_release(XFS_I(inode));
1da177e4
LT
1055}
1056
1da177e4 1057STATIC int
3562fd45 1058xfs_file_readdir(
b8227554
AV
1059 struct file *file,
1060 struct dir_context *ctx)
1da177e4 1061{
b8227554 1062 struct inode *inode = file_inode(file);
739bfb2a 1063 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1064 size_t bufsize;
1065
1066 /*
1067 * The Linux API doesn't pass down the total size of the buffer
1068 * we read into down to the filesystem. With the filldir concept
1069 * it's not needed for correct information, but the XFS dir2 leaf
1070 * code wants an estimate of the buffer size to calculate it's
1071 * readahead window and size the buffers used for mapping to
1072 * physical blocks.
1073 *
1074 * Try to give it an estimate that's good enough, maybe at some
1075 * point we can change the ->readdir prototype to include the
a9cc799e 1076 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1077 */
a9cc799e 1078 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1079
8300475e 1080 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1081}
1082
d126d43f
JL
1083/*
1084 * This type is designed to indicate the type of offset we would like
49c69591 1085 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1086 */
1087enum {
1088 HOLE_OFF = 0,
1089 DATA_OFF,
1090};
1091
1092/*
1093 * Lookup the desired type of offset from the given page.
1094 *
1095 * On success, return true and the offset argument will point to the
1096 * start of the region that was found. Otherwise this function will
1097 * return false and keep the offset argument unchanged.
1098 */
1099STATIC bool
1100xfs_lookup_buffer_offset(
1101 struct page *page,
1102 loff_t *offset,
1103 unsigned int type)
1104{
1105 loff_t lastoff = page_offset(page);
1106 bool found = false;
1107 struct buffer_head *bh, *head;
1108
1109 bh = head = page_buffers(page);
1110 do {
1111 /*
1112 * Unwritten extents that have data in the page
1113 * cache covering them can be identified by the
1114 * BH_Unwritten state flag. Pages with multiple
1115 * buffers might have a mix of holes, data and
1116 * unwritten extents - any buffer with valid
1117 * data in it should have BH_Uptodate flag set
1118 * on it.
1119 */
1120 if (buffer_unwritten(bh) ||
1121 buffer_uptodate(bh)) {
1122 if (type == DATA_OFF)
1123 found = true;
1124 } else {
1125 if (type == HOLE_OFF)
1126 found = true;
1127 }
1128
1129 if (found) {
1130 *offset = lastoff;
1131 break;
1132 }
1133 lastoff += bh->b_size;
1134 } while ((bh = bh->b_this_page) != head);
1135
1136 return found;
1137}
1138
1139/*
1140 * This routine is called to find out and return a data or hole offset
1141 * from the page cache for unwritten extents according to the desired
49c69591 1142 * type for xfs_seek_hole_data().
d126d43f
JL
1143 *
1144 * The argument offset is used to tell where we start to search from the
1145 * page cache. Map is used to figure out the end points of the range to
1146 * lookup pages.
1147 *
1148 * Return true if the desired type of offset was found, and the argument
1149 * offset is filled with that address. Otherwise, return false and keep
1150 * offset unchanged.
1151 */
1152STATIC bool
1153xfs_find_get_desired_pgoff(
1154 struct inode *inode,
1155 struct xfs_bmbt_irec *map,
1156 unsigned int type,
1157 loff_t *offset)
1158{
1159 struct xfs_inode *ip = XFS_I(inode);
1160 struct xfs_mount *mp = ip->i_mount;
1161 struct pagevec pvec;
1162 pgoff_t index;
1163 pgoff_t end;
1164 loff_t endoff;
1165 loff_t startoff = *offset;
1166 loff_t lastoff = startoff;
1167 bool found = false;
1168
1169 pagevec_init(&pvec, 0);
1170
1171 index = startoff >> PAGE_CACHE_SHIFT;
1172 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1173 end = endoff >> PAGE_CACHE_SHIFT;
1174 do {
1175 int want;
1176 unsigned nr_pages;
1177 unsigned int i;
1178
1179 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1180 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1181 want);
1182 /*
1183 * No page mapped into given range. If we are searching holes
1184 * and if this is the first time we got into the loop, it means
1185 * that the given offset is landed in a hole, return it.
1186 *
1187 * If we have already stepped through some block buffers to find
1188 * holes but they all contains data. In this case, the last
1189 * offset is already updated and pointed to the end of the last
1190 * mapped page, if it does not reach the endpoint to search,
1191 * that means there should be a hole between them.
1192 */
1193 if (nr_pages == 0) {
1194 /* Data search found nothing */
1195 if (type == DATA_OFF)
1196 break;
1197
1198 ASSERT(type == HOLE_OFF);
1199 if (lastoff == startoff || lastoff < endoff) {
1200 found = true;
1201 *offset = lastoff;
1202 }
1203 break;
1204 }
1205
1206 /*
1207 * At lease we found one page. If this is the first time we
1208 * step into the loop, and if the first page index offset is
1209 * greater than the given search offset, a hole was found.
1210 */
1211 if (type == HOLE_OFF && lastoff == startoff &&
1212 lastoff < page_offset(pvec.pages[0])) {
1213 found = true;
1214 break;
1215 }
1216
1217 for (i = 0; i < nr_pages; i++) {
1218 struct page *page = pvec.pages[i];
1219 loff_t b_offset;
1220
1221 /*
1222 * At this point, the page may be truncated or
1223 * invalidated (changing page->mapping to NULL),
1224 * or even swizzled back from swapper_space to tmpfs
1225 * file mapping. However, page->index will not change
1226 * because we have a reference on the page.
1227 *
1228 * Searching done if the page index is out of range.
1229 * If the current offset is not reaches the end of
1230 * the specified search range, there should be a hole
1231 * between them.
1232 */
1233 if (page->index > end) {
1234 if (type == HOLE_OFF && lastoff < endoff) {
1235 *offset = lastoff;
1236 found = true;
1237 }
1238 goto out;
1239 }
1240
1241 lock_page(page);
1242 /*
1243 * Page truncated or invalidated(page->mapping == NULL).
1244 * We can freely skip it and proceed to check the next
1245 * page.
1246 */
1247 if (unlikely(page->mapping != inode->i_mapping)) {
1248 unlock_page(page);
1249 continue;
1250 }
1251
1252 if (!page_has_buffers(page)) {
1253 unlock_page(page);
1254 continue;
1255 }
1256
1257 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1258 if (found) {
1259 /*
1260 * The found offset may be less than the start
1261 * point to search if this is the first time to
1262 * come here.
1263 */
1264 *offset = max_t(loff_t, startoff, b_offset);
1265 unlock_page(page);
1266 goto out;
1267 }
1268
1269 /*
1270 * We either searching data but nothing was found, or
1271 * searching hole but found a data buffer. In either
1272 * case, probably the next page contains the desired
1273 * things, update the last offset to it so.
1274 */
1275 lastoff = page_offset(page) + PAGE_SIZE;
1276 unlock_page(page);
1277 }
1278
1279 /*
1280 * The number of returned pages less than our desired, search
1281 * done. In this case, nothing was found for searching data,
1282 * but we found a hole behind the last offset.
1283 */
1284 if (nr_pages < want) {
1285 if (type == HOLE_OFF) {
1286 *offset = lastoff;
1287 found = true;
1288 }
1289 break;
1290 }
1291
1292 index = pvec.pages[i - 1]->index + 1;
1293 pagevec_release(&pvec);
1294 } while (index <= end);
1295
1296out:
1297 pagevec_release(&pvec);
1298 return found;
1299}
1300
3fe3e6b1 1301STATIC loff_t
49c69591 1302xfs_seek_hole_data(
3fe3e6b1 1303 struct file *file,
49c69591
ES
1304 loff_t start,
1305 int whence)
3fe3e6b1
JL
1306{
1307 struct inode *inode = file->f_mapping->host;
1308 struct xfs_inode *ip = XFS_I(inode);
1309 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1310 loff_t uninitialized_var(offset);
1311 xfs_fsize_t isize;
1312 xfs_fileoff_t fsbno;
1313 xfs_filblks_t end;
1314 uint lock;
1315 int error;
1316
49c69591
ES
1317 if (XFS_FORCED_SHUTDOWN(mp))
1318 return -EIO;
1319
309ecac8 1320 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1321
1322 isize = i_size_read(inode);
1323 if (start >= isize) {
2451337d 1324 error = -ENXIO;
3fe3e6b1
JL
1325 goto out_unlock;
1326 }
1327
3fe3e6b1
JL
1328 /*
1329 * Try to read extents from the first block indicated
1330 * by fsbno to the end block of the file.
1331 */
52f1acc8 1332 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1333 end = XFS_B_TO_FSB(mp, isize);
49c69591 1334
52f1acc8
JL
1335 for (;;) {
1336 struct xfs_bmbt_irec map[2];
1337 int nmap = 2;
1338 unsigned int i;
3fe3e6b1 1339
52f1acc8
JL
1340 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1341 XFS_BMAPI_ENTIRE);
1342 if (error)
1343 goto out_unlock;
3fe3e6b1 1344
52f1acc8
JL
1345 /* No extents at given offset, must be beyond EOF */
1346 if (nmap == 0) {
2451337d 1347 error = -ENXIO;
52f1acc8
JL
1348 goto out_unlock;
1349 }
1350
1351 for (i = 0; i < nmap; i++) {
1352 offset = max_t(loff_t, start,
1353 XFS_FSB_TO_B(mp, map[i].br_startoff));
1354
49c69591
ES
1355 /* Landed in the hole we wanted? */
1356 if (whence == SEEK_HOLE &&
1357 map[i].br_startblock == HOLESTARTBLOCK)
1358 goto out;
1359
1360 /* Landed in the data extent we wanted? */
1361 if (whence == SEEK_DATA &&
1362 (map[i].br_startblock == DELAYSTARTBLOCK ||
1363 (map[i].br_state == XFS_EXT_NORM &&
1364 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1365 goto out;
1366
1367 /*
49c69591
ES
1368 * Landed in an unwritten extent, try to search
1369 * for hole or data from page cache.
52f1acc8
JL
1370 */
1371 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1372 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1373 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1374 &offset))
52f1acc8
JL
1375 goto out;
1376 }
1377 }
1378
1379 /*
49c69591
ES
1380 * We only received one extent out of the two requested. This
1381 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1382 */
3fe3e6b1 1383 if (nmap == 1) {
49c69591
ES
1384 /*
1385 * If we were looking for a hole, set offset to
1386 * the end of the file (i.e., there is an implicit
1387 * hole at the end of any file).
1388 */
1389 if (whence == SEEK_HOLE) {
1390 offset = isize;
1391 break;
1392 }
1393 /*
1394 * If we were looking for data, it's nowhere to be found
1395 */
1396 ASSERT(whence == SEEK_DATA);
2451337d 1397 error = -ENXIO;
3fe3e6b1
JL
1398 goto out_unlock;
1399 }
1400
52f1acc8
JL
1401 ASSERT(i > 1);
1402
1403 /*
1404 * Nothing was found, proceed to the next round of search
49c69591 1405 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1406 */
1407 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1408 start = XFS_FSB_TO_B(mp, fsbno);
1409 if (start >= isize) {
49c69591
ES
1410 if (whence == SEEK_HOLE) {
1411 offset = isize;
1412 break;
1413 }
1414 ASSERT(whence == SEEK_DATA);
2451337d 1415 error = -ENXIO;
52f1acc8
JL
1416 goto out_unlock;
1417 }
3fe3e6b1
JL
1418 }
1419
b686d1f7
JL
1420out:
1421 /*
49c69591 1422 * If at this point we have found the hole we wanted, the returned
b686d1f7 1423 * offset may be bigger than the file size as it may be aligned to
49c69591 1424 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1425 * situation in particular.
1426 */
49c69591
ES
1427 if (whence == SEEK_HOLE)
1428 offset = min_t(loff_t, offset, isize);
46a1c2c7 1429 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1430
1431out_unlock:
01f4f327 1432 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1433
1434 if (error)
2451337d 1435 return error;
3fe3e6b1
JL
1436 return offset;
1437}
1438
1439STATIC loff_t
1440xfs_file_llseek(
1441 struct file *file,
1442 loff_t offset,
59f9c004 1443 int whence)
3fe3e6b1 1444{
59f9c004 1445 switch (whence) {
3fe3e6b1
JL
1446 case SEEK_END:
1447 case SEEK_CUR:
1448 case SEEK_SET:
59f9c004 1449 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1450 case SEEK_HOLE:
49c69591 1451 case SEEK_DATA:
59f9c004 1452 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1453 default:
1454 return -EINVAL;
1455 }
1456}
1457
de0e8c20
DC
1458/*
1459 * Locking for serialisation of IO during page faults. This results in a lock
1460 * ordering of:
1461 *
1462 * mmap_sem (MM)
6b698ede
DC
1463 * sb_start_pagefault(vfs, freeze)
1464 * i_mmap_lock (XFS - truncate serialisation)
1465 * page_lock (MM)
1466 * i_lock (XFS - extent map serialisation)
de0e8c20 1467 */
de0e8c20 1468
075a924d
DC
1469/*
1470 * mmap()d file has taken write protection fault and is being made writable. We
1471 * can set the page state up correctly for a writable page, which means we can
1472 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1473 * mapping.
de0e8c20
DC
1474 */
1475STATIC int
075a924d 1476xfs_filemap_page_mkwrite(
de0e8c20
DC
1477 struct vm_area_struct *vma,
1478 struct vm_fault *vmf)
1479{
6b698ede 1480 struct inode *inode = file_inode(vma->vm_file);
ec56b1f1 1481 int ret;
de0e8c20 1482
6b698ede 1483 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1484
6b698ede 1485 sb_start_pagefault(inode->i_sb);
ec56b1f1 1486 file_update_time(vma->vm_file);
6b698ede 1487 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1488
6b698ede
DC
1489 if (IS_DAX(inode)) {
1490 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
1491 xfs_end_io_dax_write);
1492 } else {
1493 ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
1494 ret = block_page_mkwrite_return(ret);
1495 }
1496
1497 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1498 sb_end_pagefault(inode->i_sb);
1499
1500 return ret;
de0e8c20
DC
1501}
1502
075a924d 1503STATIC int
6b698ede 1504xfs_filemap_fault(
075a924d
DC
1505 struct vm_area_struct *vma,
1506 struct vm_fault *vmf)
1507{
6b698ede
DC
1508 struct xfs_inode *ip = XFS_I(file_inode(vma->vm_file));
1509 int ret;
ec56b1f1 1510
6b698ede 1511 trace_xfs_filemap_fault(ip);
075a924d 1512
6b698ede
DC
1513 /* DAX can shortcut the normal fault path on write faults! */
1514 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(VFS_I(ip)))
1515 return xfs_filemap_page_mkwrite(vma, vmf);
075a924d
DC
1516
1517 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
6b698ede 1518 ret = filemap_fault(vma, vmf);
075a924d
DC
1519 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1520
6b698ede
DC
1521 return ret;
1522}
1523
1524static const struct vm_operations_struct xfs_file_vm_ops = {
1525 .fault = xfs_filemap_fault,
1526 .map_pages = filemap_map_pages,
1527 .page_mkwrite = xfs_filemap_page_mkwrite,
1528};
1529
1530STATIC int
1531xfs_file_mmap(
1532 struct file *filp,
1533 struct vm_area_struct *vma)
1534{
1535 file_accessed(filp);
1536 vma->vm_ops = &xfs_file_vm_ops;
1537 if (IS_DAX(file_inode(filp)))
1538 vma->vm_flags |= VM_MIXEDMAP;
1539 return 0;
075a924d
DC
1540}
1541
4b6f5d20 1542const struct file_operations xfs_file_operations = {
3fe3e6b1 1543 .llseek = xfs_file_llseek,
b4f5d2c6 1544 .read_iter = xfs_file_read_iter,
bf97f3bc 1545 .write_iter = xfs_file_write_iter,
1b895840 1546 .splice_read = xfs_file_splice_read,
8d020765 1547 .splice_write = iter_file_splice_write,
3562fd45 1548 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1549#ifdef CONFIG_COMPAT
3562fd45 1550 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1551#endif
3562fd45
NS
1552 .mmap = xfs_file_mmap,
1553 .open = xfs_file_open,
1554 .release = xfs_file_release,
1555 .fsync = xfs_file_fsync,
2fe17c10 1556 .fallocate = xfs_file_fallocate,
1da177e4
LT
1557};
1558
4b6f5d20 1559const struct file_operations xfs_dir_file_operations = {
f999a5bf 1560 .open = xfs_dir_open,
1da177e4 1561 .read = generic_read_dir,
b8227554 1562 .iterate = xfs_file_readdir,
59af1584 1563 .llseek = generic_file_llseek,
3562fd45 1564 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1565#ifdef CONFIG_COMPAT
3562fd45 1566 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1567#endif
1da2f2db 1568 .fsync = xfs_dir_fsync,
1da177e4 1569};
This page took 0.91658 seconds and 5 git commands to generate.