Merge branch 'omap-for-v4.8/legacy' into for-next
[deliverable/linux.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
1da177e4
LT
41
42#include <linux/dcache.h>
2fe17c10 43#include <linux/falloc.h>
d126d43f 44#include <linux/pagevec.h>
66114cad 45#include <linux/backing-dev.h>
1da177e4 46
f0f37e2f 47static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 48
487f84f3
DC
49/*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53static inline void
54xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57{
58 if (type & XFS_IOLOCK_EXCL)
5955102c 59 inode_lock(VFS_I(ip));
487f84f3
DC
60 xfs_ilock(ip, type);
61}
62
63static inline void
64xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67{
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
5955102c 70 inode_unlock(VFS_I(ip));
487f84f3
DC
71}
72
73static inline void
74xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77{
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
5955102c 80 inode_unlock(VFS_I(ip));
487f84f3
DC
81}
82
dda35b8f 83/*
68a9f5e7
CH
84 * Clear the specified ranges to zero through either the pagecache or DAX.
85 * Holes and unwritten extents will be left as-is as they already are zeroed.
dda35b8f 86 */
ef9d8733 87int
7bb41db3 88xfs_zero_range(
68a9f5e7 89 struct xfs_inode *ip,
7bb41db3
CH
90 xfs_off_t pos,
91 xfs_off_t count,
92 bool *did_zero)
dda35b8f 93{
459f0fbc 94 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
dda35b8f
CH
95}
96
8add71ca
CH
97int
98xfs_update_prealloc_flags(
99 struct xfs_inode *ip,
100 enum xfs_prealloc_flags flags)
101{
102 struct xfs_trans *tp;
103 int error;
104
253f4911
CH
105 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
106 0, 0, 0, &tp);
107 if (error)
8add71ca 108 return error;
8add71ca
CH
109
110 xfs_ilock(ip, XFS_ILOCK_EXCL);
111 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
112
113 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
114 VFS_I(ip)->i_mode &= ~S_ISUID;
115 if (VFS_I(ip)->i_mode & S_IXGRP)
116 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
118 }
119
120 if (flags & XFS_PREALLOC_SET)
121 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
122 if (flags & XFS_PREALLOC_CLEAR)
123 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
124
125 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
126 if (flags & XFS_PREALLOC_SYNC)
127 xfs_trans_set_sync(tp);
70393313 128 return xfs_trans_commit(tp);
8add71ca
CH
129}
130
1da2f2db
CH
131/*
132 * Fsync operations on directories are much simpler than on regular files,
133 * as there is no file data to flush, and thus also no need for explicit
134 * cache flush operations, and there are no non-transaction metadata updates
135 * on directories either.
136 */
137STATIC int
138xfs_dir_fsync(
139 struct file *file,
140 loff_t start,
141 loff_t end,
142 int datasync)
143{
144 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
145 struct xfs_mount *mp = ip->i_mount;
146 xfs_lsn_t lsn = 0;
147
148 trace_xfs_dir_fsync(ip);
149
150 xfs_ilock(ip, XFS_ILOCK_SHARED);
151 if (xfs_ipincount(ip))
152 lsn = ip->i_itemp->ili_last_lsn;
153 xfs_iunlock(ip, XFS_ILOCK_SHARED);
154
155 if (!lsn)
156 return 0;
2451337d 157 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
158}
159
fd3200be
CH
160STATIC int
161xfs_file_fsync(
162 struct file *file,
02c24a82
JB
163 loff_t start,
164 loff_t end,
fd3200be
CH
165 int datasync)
166{
7ea80859
CH
167 struct inode *inode = file->f_mapping->host;
168 struct xfs_inode *ip = XFS_I(inode);
a27a263b 169 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
170 int error = 0;
171 int log_flushed = 0;
b1037058 172 xfs_lsn_t lsn = 0;
fd3200be 173
cca28fb8 174 trace_xfs_file_fsync(ip);
fd3200be 175
02c24a82
JB
176 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
177 if (error)
178 return error;
179
a27a263b 180 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 181 return -EIO;
fd3200be
CH
182
183 xfs_iflags_clear(ip, XFS_ITRUNCATED);
184
a27a263b
CH
185 if (mp->m_flags & XFS_MOUNT_BARRIER) {
186 /*
187 * If we have an RT and/or log subvolume we need to make sure
188 * to flush the write cache the device used for file data
189 * first. This is to ensure newly written file data make
190 * it to disk before logging the new inode size in case of
191 * an extending write.
192 */
193 if (XFS_IS_REALTIME_INODE(ip))
194 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
195 else if (mp->m_logdev_targp != mp->m_ddev_targp)
196 xfs_blkdev_issue_flush(mp->m_ddev_targp);
197 }
198
fd3200be 199 /*
fc0561ce
DC
200 * All metadata updates are logged, which means that we just have to
201 * flush the log up to the latest LSN that touched the inode. If we have
202 * concurrent fsync/fdatasync() calls, we need them to all block on the
203 * log force before we clear the ili_fsync_fields field. This ensures
204 * that we don't get a racing sync operation that does not wait for the
205 * metadata to hit the journal before returning. If we race with
206 * clearing the ili_fsync_fields, then all that will happen is the log
207 * force will do nothing as the lsn will already be on disk. We can't
208 * race with setting ili_fsync_fields because that is done under
209 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
210 * until after the ili_fsync_fields is cleared.
fd3200be
CH
211 */
212 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
213 if (xfs_ipincount(ip)) {
214 if (!datasync ||
fc0561ce 215 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
216 lsn = ip->i_itemp->ili_last_lsn;
217 }
fd3200be 218
fc0561ce 219 if (lsn) {
b1037058 220 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
221 ip->i_itemp->ili_fsync_fields = 0;
222 }
223 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 224
a27a263b
CH
225 /*
226 * If we only have a single device, and the log force about was
227 * a no-op we might have to flush the data device cache here.
228 * This can only happen for fdatasync/O_DSYNC if we were overwriting
229 * an already allocated file and thus do not have any metadata to
230 * commit.
231 */
232 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
233 mp->m_logdev_targp == mp->m_ddev_targp &&
234 !XFS_IS_REALTIME_INODE(ip) &&
235 !log_flushed)
236 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 237
2451337d 238 return error;
fd3200be
CH
239}
240
00258e36 241STATIC ssize_t
bbc5a740 242xfs_file_dio_aio_read(
dda35b8f 243 struct kiocb *iocb,
b4f5d2c6 244 struct iov_iter *to)
dda35b8f 245{
bbc5a740
CH
246 struct address_space *mapping = iocb->ki_filp->f_mapping;
247 struct inode *inode = mapping->host;
00258e36 248 struct xfs_inode *ip = XFS_I(inode);
f1285ff0 249 loff_t isize = i_size_read(inode);
bbc5a740 250 size_t count = iov_iter_count(to);
f1285ff0 251 struct iov_iter data;
bbc5a740 252 struct xfs_buftarg *target;
dda35b8f 253 ssize_t ret = 0;
dda35b8f 254
bbc5a740 255 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 256
f1285ff0
CH
257 if (!count)
258 return 0; /* skip atime */
dda35b8f 259
bbc5a740
CH
260 if (XFS_IS_REALTIME_INODE(ip))
261 target = ip->i_mount->m_rtdev_targp;
262 else
263 target = ip->i_mount->m_ddev_targp;
dda35b8f 264
16d4d435
CH
265 /* DIO must be aligned to device logical sector size */
266 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
267 if (iocb->ki_pos == isize)
268 return 0;
269 return -EINVAL;
dda35b8f 270 }
dda35b8f 271
0c38a251 272 /*
3d751af2
BF
273 * Locking is a bit tricky here. If we take an exclusive lock for direct
274 * IO, we effectively serialise all new concurrent read IO to this file
275 * and block it behind IO that is currently in progress because IO in
276 * progress holds the IO lock shared. We only need to hold the lock
277 * exclusive to blow away the page cache, so only take lock exclusively
278 * if the page cache needs invalidation. This allows the normal direct
279 * IO case of no page cache pages to proceeed concurrently without
280 * serialisation.
0c38a251
DC
281 */
282 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
bbc5a740 283 if (mapping->nrpages) {
0c38a251 284 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
285 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
286
3d751af2
BF
287 /*
288 * The generic dio code only flushes the range of the particular
289 * I/O. Because we take an exclusive lock here, this whole
290 * sequence is considerably more expensive for us. This has a
291 * noticeable performance impact for any file with cached pages,
292 * even when outside of the range of the particular I/O.
293 *
294 * Hence, amortize the cost of the lock against a full file
295 * flush and reduce the chances of repeated iolock cycles going
296 * forward.
297 */
bbc5a740
CH
298 if (mapping->nrpages) {
299 ret = filemap_write_and_wait(mapping);
487f84f3
DC
300 if (ret) {
301 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
302 return ret;
303 }
85e584da
CM
304
305 /*
306 * Invalidate whole pages. This can return an error if
307 * we fail to invalidate a page, but this should never
308 * happen on XFS. Warn if it does fail.
309 */
bbc5a740 310 ret = invalidate_inode_pages2(mapping);
85e584da
CM
311 WARN_ON_ONCE(ret);
312 ret = 0;
00258e36 313 }
487f84f3 314 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 315 }
dda35b8f 316
f1285ff0 317 data = *to;
16d4d435
CH
318 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
319 xfs_get_blocks_direct, NULL, NULL, 0);
320 if (ret > 0) {
321 iocb->ki_pos += ret;
322 iov_iter_advance(to, ret);
fa8d972d 323 }
16d4d435 324 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f 325
16d4d435
CH
326 file_accessed(iocb->ki_filp);
327 return ret;
328}
329
f021bd07 330static noinline ssize_t
16d4d435
CH
331xfs_file_dax_read(
332 struct kiocb *iocb,
333 struct iov_iter *to)
334{
335 struct address_space *mapping = iocb->ki_filp->f_mapping;
336 struct inode *inode = mapping->host;
337 struct xfs_inode *ip = XFS_I(inode);
338 struct iov_iter data = *to;
339 size_t count = iov_iter_count(to);
340 ssize_t ret = 0;
341
342 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
343
344 if (!count)
345 return 0; /* skip atime */
346
347 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
348 ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct, NULL, 0);
f1285ff0
CH
349 if (ret > 0) {
350 iocb->ki_pos += ret;
351 iov_iter_advance(to, ret);
352 }
bbc5a740
CH
353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354
f1285ff0 355 file_accessed(iocb->ki_filp);
bbc5a740
CH
356 return ret;
357}
358
359STATIC ssize_t
360xfs_file_buffered_aio_read(
361 struct kiocb *iocb,
362 struct iov_iter *to)
363{
364 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
365 ssize_t ret;
366
367 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 368
bbc5a740 369 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b4f5d2c6 370 ret = generic_file_read_iter(iocb, to);
bbc5a740
CH
371 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
372
373 return ret;
374}
375
376STATIC ssize_t
377xfs_file_read_iter(
378 struct kiocb *iocb,
379 struct iov_iter *to)
380{
16d4d435
CH
381 struct inode *inode = file_inode(iocb->ki_filp);
382 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
383 ssize_t ret = 0;
384
385 XFS_STATS_INC(mp, xs_read_calls);
386
387 if (XFS_FORCED_SHUTDOWN(mp))
388 return -EIO;
389
16d4d435
CH
390 if (IS_DAX(inode))
391 ret = xfs_file_dax_read(iocb, to);
392 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 393 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 394 else
bbc5a740 395 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 396
dda35b8f 397 if (ret > 0)
ff6d6af2 398 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
399 return ret;
400}
401
00258e36
CH
402STATIC ssize_t
403xfs_file_splice_read(
dda35b8f
CH
404 struct file *infilp,
405 loff_t *ppos,
406 struct pipe_inode_info *pipe,
407 size_t count,
00258e36 408 unsigned int flags)
dda35b8f 409{
00258e36 410 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
dda35b8f
CH
411 ssize_t ret;
412
ff6d6af2 413 XFS_STATS_INC(ip->i_mount, xs_read_calls);
00258e36 414
dda35b8f
CH
415 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
416 return -EIO;
417
3176c3e0 418 trace_xfs_file_splice_read(ip, count, *ppos);
dda35b8f 419
a6d7636e
DC
420 /*
421 * DAX inodes cannot ues the page cache for splice, so we have to push
422 * them through the VFS IO path. This means it goes through
423 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
424 * cannot lock the splice operation at this level for DAX inodes.
425 */
426 if (IS_DAX(VFS_I(ip))) {
427 ret = default_file_splice_read(infilp, ppos, pipe, count,
428 flags);
429 goto out;
430 }
dda35b8f 431
a6d7636e
DC
432 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
433 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
487f84f3 434 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
a6d7636e
DC
435out:
436 if (ret > 0)
437 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
dda35b8f
CH
438 return ret;
439}
440
dda35b8f 441/*
193aec10
CH
442 * Zero any on disk space between the current EOF and the new, larger EOF.
443 *
444 * This handles the normal case of zeroing the remainder of the last block in
445 * the file and the unusual case of zeroing blocks out beyond the size of the
446 * file. This second case only happens with fixed size extents and when the
447 * system crashes before the inode size was updated but after blocks were
448 * allocated.
449 *
450 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 451 */
dda35b8f
CH
452int /* error (positive) */
453xfs_zero_eof(
193aec10
CH
454 struct xfs_inode *ip,
455 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
456 xfs_fsize_t isize, /* current inode size */
457 bool *did_zeroing)
dda35b8f 458{
193aec10 459 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
460 ASSERT(offset > isize);
461
0a50f162 462 trace_xfs_zero_eof(ip, isize, offset - isize);
570b6211 463 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
dda35b8f
CH
464}
465
4d8d1581
DC
466/*
467 * Common pre-write limit and setup checks.
468 *
5bf1f262
CH
469 * Called with the iolocked held either shared and exclusive according to
470 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
471 * if called for a direct write beyond i_size.
4d8d1581
DC
472 */
473STATIC ssize_t
474xfs_file_aio_write_checks(
99733fa3
AV
475 struct kiocb *iocb,
476 struct iov_iter *from,
4d8d1581
DC
477 int *iolock)
478{
99733fa3 479 struct file *file = iocb->ki_filp;
4d8d1581
DC
480 struct inode *inode = file->f_mapping->host;
481 struct xfs_inode *ip = XFS_I(inode);
3309dd04 482 ssize_t error = 0;
99733fa3 483 size_t count = iov_iter_count(from);
3136e8bb 484 bool drained_dio = false;
4d8d1581 485
7271d243 486restart:
3309dd04
AV
487 error = generic_write_checks(iocb, from);
488 if (error <= 0)
4d8d1581 489 return error;
4d8d1581 490
21c3ea18 491 error = xfs_break_layouts(inode, iolock, true);
781355c6
CH
492 if (error)
493 return error;
494
a6de82ca
JK
495 /* For changing security info in file_remove_privs() we need i_mutex */
496 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
497 xfs_rw_iunlock(ip, *iolock);
498 *iolock = XFS_IOLOCK_EXCL;
499 xfs_rw_ilock(ip, *iolock);
500 goto restart;
501 }
4d8d1581
DC
502 /*
503 * If the offset is beyond the size of the file, we need to zero any
504 * blocks that fall between the existing EOF and the start of this
2813d682 505 * write. If zeroing is needed and we are currently holding the
467f7899
CH
506 * iolock shared, we need to update it to exclusive which implies
507 * having to redo all checks before.
b9d59846
DC
508 *
509 * We need to serialise against EOF updates that occur in IO
510 * completions here. We want to make sure that nobody is changing the
511 * size while we do this check until we have placed an IO barrier (i.e.
512 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
513 * The spinlock effectively forms a memory barrier once we have the
514 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
515 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 516 */
b9d59846 517 spin_lock(&ip->i_flags_lock);
99733fa3 518 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
519 bool zero = false;
520
b9d59846 521 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
522 if (!drained_dio) {
523 if (*iolock == XFS_IOLOCK_SHARED) {
524 xfs_rw_iunlock(ip, *iolock);
525 *iolock = XFS_IOLOCK_EXCL;
526 xfs_rw_ilock(ip, *iolock);
527 iov_iter_reexpand(from, count);
528 }
40c63fbc
DC
529 /*
530 * We now have an IO submission barrier in place, but
531 * AIO can do EOF updates during IO completion and hence
532 * we now need to wait for all of them to drain. Non-AIO
533 * DIO will have drained before we are given the
534 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
535 * no-op.
536 */
537 inode_dio_wait(inode);
3136e8bb 538 drained_dio = true;
7271d243
DC
539 goto restart;
540 }
99733fa3 541 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
542 if (error)
543 return error;
b9d59846
DC
544 } else
545 spin_unlock(&ip->i_flags_lock);
4d8d1581 546
8a9c9980
CH
547 /*
548 * Updating the timestamps will grab the ilock again from
549 * xfs_fs_dirty_inode, so we have to call it after dropping the
550 * lock above. Eventually we should look into a way to avoid
551 * the pointless lock roundtrip.
552 */
c3b2da31
JB
553 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
554 error = file_update_time(file);
555 if (error)
556 return error;
557 }
8a9c9980 558
4d8d1581
DC
559 /*
560 * If we're writing the file then make sure to clear the setuid and
561 * setgid bits if the process is not being run by root. This keeps
562 * people from modifying setuid and setgid binaries.
563 */
a6de82ca
JK
564 if (!IS_NOSEC(inode))
565 return file_remove_privs(file);
566 return 0;
4d8d1581
DC
567}
568
f0d26e86
DC
569/*
570 * xfs_file_dio_aio_write - handle direct IO writes
571 *
572 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 573 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
574 * follow locking changes and looping.
575 *
eda77982
DC
576 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
577 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
578 * pages are flushed out.
579 *
580 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
581 * allowing them to be done in parallel with reads and other direct IO writes.
582 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
583 * needs to do sub-block zeroing and that requires serialisation against other
584 * direct IOs to the same block. In this case we need to serialise the
585 * submission of the unaligned IOs so that we don't get racing block zeroing in
586 * the dio layer. To avoid the problem with aio, we also need to wait for
587 * outstanding IOs to complete so that unwritten extent conversion is completed
588 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 589 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 590 *
f0d26e86
DC
591 * Returns with locks held indicated by @iolock and errors indicated by
592 * negative return values.
593 */
594STATIC ssize_t
595xfs_file_dio_aio_write(
596 struct kiocb *iocb,
b3188919 597 struct iov_iter *from)
f0d26e86
DC
598{
599 struct file *file = iocb->ki_filp;
600 struct address_space *mapping = file->f_mapping;
601 struct inode *inode = mapping->host;
602 struct xfs_inode *ip = XFS_I(inode);
603 struct xfs_mount *mp = ip->i_mount;
604 ssize_t ret = 0;
eda77982 605 int unaligned_io = 0;
d0606464 606 int iolock;
b3188919 607 size_t count = iov_iter_count(from);
0cefb29e
DC
608 loff_t end;
609 struct iov_iter data;
f0d26e86
DC
610 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
611 mp->m_rtdev_targp : mp->m_ddev_targp;
612
7c71ee78 613 /* DIO must be aligned to device logical sector size */
16d4d435 614 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 615 return -EINVAL;
f0d26e86 616
7c71ee78 617 /* "unaligned" here means not aligned to a filesystem block */
13712713
CH
618 if ((iocb->ki_pos & mp->m_blockmask) ||
619 ((iocb->ki_pos + count) & mp->m_blockmask))
eda77982
DC
620 unaligned_io = 1;
621
7271d243
DC
622 /*
623 * We don't need to take an exclusive lock unless there page cache needs
624 * to be invalidated or unaligned IO is being executed. We don't need to
625 * consider the EOF extension case here because
626 * xfs_file_aio_write_checks() will relock the inode as necessary for
627 * EOF zeroing cases and fill out the new inode size as appropriate.
628 */
629 if (unaligned_io || mapping->nrpages)
d0606464 630 iolock = XFS_IOLOCK_EXCL;
f0d26e86 631 else
d0606464
CH
632 iolock = XFS_IOLOCK_SHARED;
633 xfs_rw_ilock(ip, iolock);
c58cb165
CH
634
635 /*
636 * Recheck if there are cached pages that need invalidate after we got
637 * the iolock to protect against other threads adding new pages while
638 * we were waiting for the iolock.
639 */
d0606464
CH
640 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
641 xfs_rw_iunlock(ip, iolock);
642 iolock = XFS_IOLOCK_EXCL;
643 xfs_rw_ilock(ip, iolock);
c58cb165 644 }
f0d26e86 645
99733fa3 646 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 647 if (ret)
d0606464 648 goto out;
99733fa3 649 count = iov_iter_count(from);
13712713 650 end = iocb->ki_pos + count - 1;
f0d26e86 651
3d751af2 652 /*
bbc5a740 653 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
3d751af2 654 */
f0d26e86 655 if (mapping->nrpages) {
3d751af2 656 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
f0d26e86 657 if (ret)
d0606464 658 goto out;
834ffca6 659 /*
3d751af2
BF
660 * Invalidate whole pages. This can return an error if we fail
661 * to invalidate a page, but this should never happen on XFS.
662 * Warn if it does fail.
834ffca6 663 */
3d751af2 664 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
834ffca6
DC
665 WARN_ON_ONCE(ret);
666 ret = 0;
f0d26e86
DC
667 }
668
eda77982
DC
669 /*
670 * If we are doing unaligned IO, wait for all other IO to drain,
671 * otherwise demote the lock if we had to flush cached pages
672 */
673 if (unaligned_io)
4a06fd26 674 inode_dio_wait(inode);
d0606464 675 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 676 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 677 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
678 }
679
3176c3e0 680 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
f0d26e86 681
0cefb29e 682 data = *from;
16d4d435
CH
683 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
684 xfs_get_blocks_direct, xfs_end_io_direct_write,
685 NULL, DIO_ASYNC_EXTEND);
0cefb29e
DC
686
687 /* see generic_file_direct_write() for why this is necessary */
688 if (mapping->nrpages) {
689 invalidate_inode_pages2_range(mapping,
13712713 690 iocb->ki_pos >> PAGE_SHIFT,
09cbfeaf 691 end >> PAGE_SHIFT);
0cefb29e
DC
692 }
693
694 if (ret > 0) {
13712713 695 iocb->ki_pos += ret;
0cefb29e 696 iov_iter_advance(from, ret);
0cefb29e 697 }
d0606464
CH
698out:
699 xfs_rw_iunlock(ip, iolock);
700
6b698ede 701 /*
16d4d435
CH
702 * No fallback to buffered IO on errors for XFS, direct IO will either
703 * complete fully or fail.
6b698ede 704 */
16d4d435
CH
705 ASSERT(ret < 0 || ret == count);
706 return ret;
707}
708
f021bd07 709static noinline ssize_t
16d4d435
CH
710xfs_file_dax_write(
711 struct kiocb *iocb,
712 struct iov_iter *from)
713{
714 struct address_space *mapping = iocb->ki_filp->f_mapping;
715 struct inode *inode = mapping->host;
716 struct xfs_inode *ip = XFS_I(inode);
717 struct xfs_mount *mp = ip->i_mount;
718 ssize_t ret = 0;
719 int unaligned_io = 0;
720 int iolock;
721 struct iov_iter data;
722
723 /* "unaligned" here means not aligned to a filesystem block */
724 if ((iocb->ki_pos & mp->m_blockmask) ||
725 ((iocb->ki_pos + iov_iter_count(from)) & mp->m_blockmask)) {
726 unaligned_io = 1;
727 iolock = XFS_IOLOCK_EXCL;
728 } else if (mapping->nrpages) {
729 iolock = XFS_IOLOCK_EXCL;
730 } else {
731 iolock = XFS_IOLOCK_SHARED;
732 }
733 xfs_rw_ilock(ip, iolock);
734
735 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
736 if (ret)
737 goto out;
738
739 /*
740 * Yes, even DAX files can have page cache attached to them: A zeroed
741 * page is inserted into the pagecache when we have to serve a write
742 * fault on a hole. It should never be dirtied and can simply be
743 * dropped from the pagecache once we get real data for the page.
6b698ede 744 */
16d4d435
CH
745 if (mapping->nrpages) {
746 ret = invalidate_inode_pages2(mapping);
747 WARN_ON_ONCE(ret);
748 }
749
750 if (iolock == XFS_IOLOCK_EXCL && !unaligned_io) {
751 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
752 iolock = XFS_IOLOCK_SHARED;
753 }
754
755 trace_xfs_file_dax_write(ip, iov_iter_count(from), iocb->ki_pos);
756
757 data = *from;
758 ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
759 xfs_end_io_direct_write, 0);
760 if (ret > 0) {
761 iocb->ki_pos += ret;
762 iov_iter_advance(from, ret);
763 }
764out:
765 xfs_rw_iunlock(ip, iolock);
f0d26e86
DC
766 return ret;
767}
768
00258e36 769STATIC ssize_t
637bbc75 770xfs_file_buffered_aio_write(
dda35b8f 771 struct kiocb *iocb,
b3188919 772 struct iov_iter *from)
dda35b8f
CH
773{
774 struct file *file = iocb->ki_filp;
775 struct address_space *mapping = file->f_mapping;
776 struct inode *inode = mapping->host;
00258e36 777 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
778 ssize_t ret;
779 int enospc = 0;
d0606464 780 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 781
d0606464 782 xfs_rw_ilock(ip, iolock);
dda35b8f 783
99733fa3 784 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 785 if (ret)
d0606464 786 goto out;
dda35b8f
CH
787
788 /* We can write back this queue in page reclaim */
de1414a6 789 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 790
dda35b8f 791write_retry:
3176c3e0 792 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 793 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 794 if (likely(ret >= 0))
99733fa3 795 iocb->ki_pos += ret;
dc06f398 796
637bbc75 797 /*
dc06f398
BF
798 * If we hit a space limit, try to free up some lingering preallocated
799 * space before returning an error. In the case of ENOSPC, first try to
800 * write back all dirty inodes to free up some of the excess reserved
801 * metadata space. This reduces the chances that the eofblocks scan
802 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
803 * also behaves as a filter to prevent too many eofblocks scans from
804 * running at the same time.
637bbc75 805 */
dc06f398
BF
806 if (ret == -EDQUOT && !enospc) {
807 enospc = xfs_inode_free_quota_eofblocks(ip);
808 if (enospc)
809 goto write_retry;
810 } else if (ret == -ENOSPC && !enospc) {
811 struct xfs_eofblocks eofb = {0};
812
637bbc75 813 enospc = 1;
9aa05000 814 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
815 eofb.eof_scan_owner = ip->i_ino; /* for locking */
816 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
817 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 818 goto write_retry;
dda35b8f 819 }
d0606464 820
dda35b8f 821 current->backing_dev_info = NULL;
d0606464
CH
822out:
823 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
824 return ret;
825}
826
827STATIC ssize_t
bf97f3bc 828xfs_file_write_iter(
637bbc75 829 struct kiocb *iocb,
bf97f3bc 830 struct iov_iter *from)
637bbc75
DC
831{
832 struct file *file = iocb->ki_filp;
833 struct address_space *mapping = file->f_mapping;
834 struct inode *inode = mapping->host;
835 struct xfs_inode *ip = XFS_I(inode);
836 ssize_t ret;
bf97f3bc 837 size_t ocount = iov_iter_count(from);
637bbc75 838
ff6d6af2 839 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 840
637bbc75
DC
841 if (ocount == 0)
842 return 0;
843
bf97f3bc
AV
844 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
845 return -EIO;
637bbc75 846
16d4d435
CH
847 if (IS_DAX(inode))
848 ret = xfs_file_dax_write(iocb, from);
849 else if (iocb->ki_flags & IOCB_DIRECT)
bf97f3bc 850 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 851 else
bf97f3bc 852 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 853
d0606464 854 if (ret > 0) {
ff6d6af2 855 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 856
d0606464 857 /* Handle various SYNC-type writes */
e2592217 858 ret = generic_write_sync(iocb, ret);
dda35b8f 859 }
a363f0c2 860 return ret;
dda35b8f
CH
861}
862
a904b1ca
NJ
863#define XFS_FALLOC_FL_SUPPORTED \
864 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
865 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
866 FALLOC_FL_INSERT_RANGE)
867
2fe17c10
CH
868STATIC long
869xfs_file_fallocate(
83aee9e4
CH
870 struct file *file,
871 int mode,
872 loff_t offset,
873 loff_t len)
2fe17c10 874{
83aee9e4
CH
875 struct inode *inode = file_inode(file);
876 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 877 long error;
8add71ca 878 enum xfs_prealloc_flags flags = 0;
781355c6 879 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 880 loff_t new_size = 0;
a904b1ca 881 bool do_file_insert = 0;
2fe17c10 882
83aee9e4
CH
883 if (!S_ISREG(inode->i_mode))
884 return -EINVAL;
a904b1ca 885 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
886 return -EOPNOTSUPP;
887
781355c6 888 xfs_ilock(ip, iolock);
21c3ea18 889 error = xfs_break_layouts(inode, &iolock, false);
781355c6
CH
890 if (error)
891 goto out_unlock;
892
e8e9ad42
DC
893 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
894 iolock |= XFS_MMAPLOCK_EXCL;
895
83aee9e4
CH
896 if (mode & FALLOC_FL_PUNCH_HOLE) {
897 error = xfs_free_file_space(ip, offset, len);
898 if (error)
899 goto out_unlock;
e1d8fb88
NJ
900 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
901 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
902
903 if (offset & blksize_mask || len & blksize_mask) {
2451337d 904 error = -EINVAL;
e1d8fb88
NJ
905 goto out_unlock;
906 }
907
23fffa92
LC
908 /*
909 * There is no need to overlap collapse range with EOF,
910 * in which case it is effectively a truncate operation
911 */
912 if (offset + len >= i_size_read(inode)) {
2451337d 913 error = -EINVAL;
23fffa92
LC
914 goto out_unlock;
915 }
916
e1d8fb88
NJ
917 new_size = i_size_read(inode) - len;
918
919 error = xfs_collapse_file_space(ip, offset, len);
920 if (error)
921 goto out_unlock;
a904b1ca
NJ
922 } else if (mode & FALLOC_FL_INSERT_RANGE) {
923 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
924
925 new_size = i_size_read(inode) + len;
926 if (offset & blksize_mask || len & blksize_mask) {
927 error = -EINVAL;
928 goto out_unlock;
929 }
930
931 /* check the new inode size does not wrap through zero */
932 if (new_size > inode->i_sb->s_maxbytes) {
933 error = -EFBIG;
934 goto out_unlock;
935 }
936
937 /* Offset should be less than i_size */
938 if (offset >= i_size_read(inode)) {
939 error = -EINVAL;
940 goto out_unlock;
941 }
942 do_file_insert = 1;
83aee9e4 943 } else {
8add71ca
CH
944 flags |= XFS_PREALLOC_SET;
945
83aee9e4
CH
946 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
947 offset + len > i_size_read(inode)) {
948 new_size = offset + len;
2451337d 949 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
950 if (error)
951 goto out_unlock;
952 }
2fe17c10 953
376ba313
LC
954 if (mode & FALLOC_FL_ZERO_RANGE)
955 error = xfs_zero_file_space(ip, offset, len);
956 else
957 error = xfs_alloc_file_space(ip, offset, len,
958 XFS_BMAPI_PREALLOC);
2fe17c10
CH
959 if (error)
960 goto out_unlock;
961 }
962
83aee9e4 963 if (file->f_flags & O_DSYNC)
8add71ca
CH
964 flags |= XFS_PREALLOC_SYNC;
965
966 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
967 if (error)
968 goto out_unlock;
969
970 /* Change file size if needed */
971 if (new_size) {
972 struct iattr iattr;
973
974 iattr.ia_valid = ATTR_SIZE;
975 iattr.ia_size = new_size;
83aee9e4 976 error = xfs_setattr_size(ip, &iattr);
a904b1ca
NJ
977 if (error)
978 goto out_unlock;
2fe17c10
CH
979 }
980
a904b1ca
NJ
981 /*
982 * Perform hole insertion now that the file size has been
983 * updated so that if we crash during the operation we don't
984 * leave shifted extents past EOF and hence losing access to
985 * the data that is contained within them.
986 */
987 if (do_file_insert)
988 error = xfs_insert_file_space(ip, offset, len);
989
2fe17c10 990out_unlock:
781355c6 991 xfs_iunlock(ip, iolock);
2451337d 992 return error;
2fe17c10
CH
993}
994
995
1da177e4 996STATIC int
3562fd45 997xfs_file_open(
1da177e4 998 struct inode *inode,
f999a5bf 999 struct file *file)
1da177e4 1000{
f999a5bf 1001 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1002 return -EFBIG;
f999a5bf
CH
1003 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1004 return -EIO;
1005 return 0;
1006}
1007
1008STATIC int
1009xfs_dir_open(
1010 struct inode *inode,
1011 struct file *file)
1012{
1013 struct xfs_inode *ip = XFS_I(inode);
1014 int mode;
1015 int error;
1016
1017 error = xfs_file_open(inode, file);
1018 if (error)
1019 return error;
1020
1021 /*
1022 * If there are any blocks, read-ahead block 0 as we're almost
1023 * certain to have the next operation be a read there.
1024 */
309ecac8 1025 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 1026 if (ip->i_d.di_nextents > 0)
9df2dd0b 1027 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
1028 xfs_iunlock(ip, mode);
1029 return 0;
1da177e4
LT
1030}
1031
1da177e4 1032STATIC int
3562fd45 1033xfs_file_release(
1da177e4
LT
1034 struct inode *inode,
1035 struct file *filp)
1036{
2451337d 1037 return xfs_release(XFS_I(inode));
1da177e4
LT
1038}
1039
1da177e4 1040STATIC int
3562fd45 1041xfs_file_readdir(
b8227554
AV
1042 struct file *file,
1043 struct dir_context *ctx)
1da177e4 1044{
b8227554 1045 struct inode *inode = file_inode(file);
739bfb2a 1046 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1047 size_t bufsize;
1048
1049 /*
1050 * The Linux API doesn't pass down the total size of the buffer
1051 * we read into down to the filesystem. With the filldir concept
1052 * it's not needed for correct information, but the XFS dir2 leaf
1053 * code wants an estimate of the buffer size to calculate it's
1054 * readahead window and size the buffers used for mapping to
1055 * physical blocks.
1056 *
1057 * Try to give it an estimate that's good enough, maybe at some
1058 * point we can change the ->readdir prototype to include the
a9cc799e 1059 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1060 */
a9cc799e 1061 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1062
8300475e 1063 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1064}
1065
d126d43f
JL
1066/*
1067 * This type is designed to indicate the type of offset we would like
49c69591 1068 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1069 */
1070enum {
1071 HOLE_OFF = 0,
1072 DATA_OFF,
1073};
1074
1075/*
1076 * Lookup the desired type of offset from the given page.
1077 *
1078 * On success, return true and the offset argument will point to the
1079 * start of the region that was found. Otherwise this function will
1080 * return false and keep the offset argument unchanged.
1081 */
1082STATIC bool
1083xfs_lookup_buffer_offset(
1084 struct page *page,
1085 loff_t *offset,
1086 unsigned int type)
1087{
1088 loff_t lastoff = page_offset(page);
1089 bool found = false;
1090 struct buffer_head *bh, *head;
1091
1092 bh = head = page_buffers(page);
1093 do {
1094 /*
1095 * Unwritten extents that have data in the page
1096 * cache covering them can be identified by the
1097 * BH_Unwritten state flag. Pages with multiple
1098 * buffers might have a mix of holes, data and
1099 * unwritten extents - any buffer with valid
1100 * data in it should have BH_Uptodate flag set
1101 * on it.
1102 */
1103 if (buffer_unwritten(bh) ||
1104 buffer_uptodate(bh)) {
1105 if (type == DATA_OFF)
1106 found = true;
1107 } else {
1108 if (type == HOLE_OFF)
1109 found = true;
1110 }
1111
1112 if (found) {
1113 *offset = lastoff;
1114 break;
1115 }
1116 lastoff += bh->b_size;
1117 } while ((bh = bh->b_this_page) != head);
1118
1119 return found;
1120}
1121
1122/*
1123 * This routine is called to find out and return a data or hole offset
1124 * from the page cache for unwritten extents according to the desired
49c69591 1125 * type for xfs_seek_hole_data().
d126d43f
JL
1126 *
1127 * The argument offset is used to tell where we start to search from the
1128 * page cache. Map is used to figure out the end points of the range to
1129 * lookup pages.
1130 *
1131 * Return true if the desired type of offset was found, and the argument
1132 * offset is filled with that address. Otherwise, return false and keep
1133 * offset unchanged.
1134 */
1135STATIC bool
1136xfs_find_get_desired_pgoff(
1137 struct inode *inode,
1138 struct xfs_bmbt_irec *map,
1139 unsigned int type,
1140 loff_t *offset)
1141{
1142 struct xfs_inode *ip = XFS_I(inode);
1143 struct xfs_mount *mp = ip->i_mount;
1144 struct pagevec pvec;
1145 pgoff_t index;
1146 pgoff_t end;
1147 loff_t endoff;
1148 loff_t startoff = *offset;
1149 loff_t lastoff = startoff;
1150 bool found = false;
1151
1152 pagevec_init(&pvec, 0);
1153
09cbfeaf 1154 index = startoff >> PAGE_SHIFT;
d126d43f 1155 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
09cbfeaf 1156 end = endoff >> PAGE_SHIFT;
d126d43f
JL
1157 do {
1158 int want;
1159 unsigned nr_pages;
1160 unsigned int i;
1161
1162 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1163 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1164 want);
1165 /*
1166 * No page mapped into given range. If we are searching holes
1167 * and if this is the first time we got into the loop, it means
1168 * that the given offset is landed in a hole, return it.
1169 *
1170 * If we have already stepped through some block buffers to find
1171 * holes but they all contains data. In this case, the last
1172 * offset is already updated and pointed to the end of the last
1173 * mapped page, if it does not reach the endpoint to search,
1174 * that means there should be a hole between them.
1175 */
1176 if (nr_pages == 0) {
1177 /* Data search found nothing */
1178 if (type == DATA_OFF)
1179 break;
1180
1181 ASSERT(type == HOLE_OFF);
1182 if (lastoff == startoff || lastoff < endoff) {
1183 found = true;
1184 *offset = lastoff;
1185 }
1186 break;
1187 }
1188
1189 /*
1190 * At lease we found one page. If this is the first time we
1191 * step into the loop, and if the first page index offset is
1192 * greater than the given search offset, a hole was found.
1193 */
1194 if (type == HOLE_OFF && lastoff == startoff &&
1195 lastoff < page_offset(pvec.pages[0])) {
1196 found = true;
1197 break;
1198 }
1199
1200 for (i = 0; i < nr_pages; i++) {
1201 struct page *page = pvec.pages[i];
1202 loff_t b_offset;
1203
1204 /*
1205 * At this point, the page may be truncated or
1206 * invalidated (changing page->mapping to NULL),
1207 * or even swizzled back from swapper_space to tmpfs
1208 * file mapping. However, page->index will not change
1209 * because we have a reference on the page.
1210 *
1211 * Searching done if the page index is out of range.
1212 * If the current offset is not reaches the end of
1213 * the specified search range, there should be a hole
1214 * between them.
1215 */
1216 if (page->index > end) {
1217 if (type == HOLE_OFF && lastoff < endoff) {
1218 *offset = lastoff;
1219 found = true;
1220 }
1221 goto out;
1222 }
1223
1224 lock_page(page);
1225 /*
1226 * Page truncated or invalidated(page->mapping == NULL).
1227 * We can freely skip it and proceed to check the next
1228 * page.
1229 */
1230 if (unlikely(page->mapping != inode->i_mapping)) {
1231 unlock_page(page);
1232 continue;
1233 }
1234
1235 if (!page_has_buffers(page)) {
1236 unlock_page(page);
1237 continue;
1238 }
1239
1240 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1241 if (found) {
1242 /*
1243 * The found offset may be less than the start
1244 * point to search if this is the first time to
1245 * come here.
1246 */
1247 *offset = max_t(loff_t, startoff, b_offset);
1248 unlock_page(page);
1249 goto out;
1250 }
1251
1252 /*
1253 * We either searching data but nothing was found, or
1254 * searching hole but found a data buffer. In either
1255 * case, probably the next page contains the desired
1256 * things, update the last offset to it so.
1257 */
1258 lastoff = page_offset(page) + PAGE_SIZE;
1259 unlock_page(page);
1260 }
1261
1262 /*
1263 * The number of returned pages less than our desired, search
1264 * done. In this case, nothing was found for searching data,
1265 * but we found a hole behind the last offset.
1266 */
1267 if (nr_pages < want) {
1268 if (type == HOLE_OFF) {
1269 *offset = lastoff;
1270 found = true;
1271 }
1272 break;
1273 }
1274
1275 index = pvec.pages[i - 1]->index + 1;
1276 pagevec_release(&pvec);
1277 } while (index <= end);
1278
1279out:
1280 pagevec_release(&pvec);
1281 return found;
1282}
1283
8aa7d37e
ES
1284/*
1285 * caller must lock inode with xfs_ilock_data_map_shared,
1286 * can we craft an appropriate ASSERT?
1287 *
1288 * end is because the VFS-level lseek interface is defined such that any
1289 * offset past i_size shall return -ENXIO, but we use this for quota code
1290 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1291 */
1292loff_t
1293__xfs_seek_hole_data(
1294 struct inode *inode,
49c69591 1295 loff_t start,
8aa7d37e 1296 loff_t end,
49c69591 1297 int whence)
3fe3e6b1 1298{
3fe3e6b1
JL
1299 struct xfs_inode *ip = XFS_I(inode);
1300 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1 1301 loff_t uninitialized_var(offset);
3fe3e6b1 1302 xfs_fileoff_t fsbno;
8aa7d37e 1303 xfs_filblks_t lastbno;
3fe3e6b1
JL
1304 int error;
1305
8aa7d37e 1306 if (start >= end) {
2451337d 1307 error = -ENXIO;
8aa7d37e 1308 goto out_error;
3fe3e6b1
JL
1309 }
1310
3fe3e6b1
JL
1311 /*
1312 * Try to read extents from the first block indicated
1313 * by fsbno to the end block of the file.
1314 */
52f1acc8 1315 fsbno = XFS_B_TO_FSBT(mp, start);
8aa7d37e 1316 lastbno = XFS_B_TO_FSB(mp, end);
49c69591 1317
52f1acc8
JL
1318 for (;;) {
1319 struct xfs_bmbt_irec map[2];
1320 int nmap = 2;
1321 unsigned int i;
3fe3e6b1 1322
8aa7d37e 1323 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
52f1acc8
JL
1324 XFS_BMAPI_ENTIRE);
1325 if (error)
8aa7d37e 1326 goto out_error;
3fe3e6b1 1327
52f1acc8
JL
1328 /* No extents at given offset, must be beyond EOF */
1329 if (nmap == 0) {
2451337d 1330 error = -ENXIO;
8aa7d37e 1331 goto out_error;
52f1acc8
JL
1332 }
1333
1334 for (i = 0; i < nmap; i++) {
1335 offset = max_t(loff_t, start,
1336 XFS_FSB_TO_B(mp, map[i].br_startoff));
1337
49c69591
ES
1338 /* Landed in the hole we wanted? */
1339 if (whence == SEEK_HOLE &&
1340 map[i].br_startblock == HOLESTARTBLOCK)
1341 goto out;
1342
1343 /* Landed in the data extent we wanted? */
1344 if (whence == SEEK_DATA &&
1345 (map[i].br_startblock == DELAYSTARTBLOCK ||
1346 (map[i].br_state == XFS_EXT_NORM &&
1347 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1348 goto out;
1349
1350 /*
49c69591
ES
1351 * Landed in an unwritten extent, try to search
1352 * for hole or data from page cache.
52f1acc8
JL
1353 */
1354 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1355 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1356 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1357 &offset))
52f1acc8
JL
1358 goto out;
1359 }
1360 }
1361
1362 /*
49c69591
ES
1363 * We only received one extent out of the two requested. This
1364 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1365 */
3fe3e6b1 1366 if (nmap == 1) {
49c69591
ES
1367 /*
1368 * If we were looking for a hole, set offset to
1369 * the end of the file (i.e., there is an implicit
1370 * hole at the end of any file).
1371 */
1372 if (whence == SEEK_HOLE) {
8aa7d37e 1373 offset = end;
49c69591
ES
1374 break;
1375 }
1376 /*
1377 * If we were looking for data, it's nowhere to be found
1378 */
1379 ASSERT(whence == SEEK_DATA);
2451337d 1380 error = -ENXIO;
8aa7d37e 1381 goto out_error;
3fe3e6b1
JL
1382 }
1383
52f1acc8
JL
1384 ASSERT(i > 1);
1385
1386 /*
1387 * Nothing was found, proceed to the next round of search
49c69591 1388 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1389 */
1390 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1391 start = XFS_FSB_TO_B(mp, fsbno);
8aa7d37e 1392 if (start >= end) {
49c69591 1393 if (whence == SEEK_HOLE) {
8aa7d37e 1394 offset = end;
49c69591
ES
1395 break;
1396 }
1397 ASSERT(whence == SEEK_DATA);
2451337d 1398 error = -ENXIO;
8aa7d37e 1399 goto out_error;
52f1acc8 1400 }
3fe3e6b1
JL
1401 }
1402
b686d1f7
JL
1403out:
1404 /*
49c69591 1405 * If at this point we have found the hole we wanted, the returned
b686d1f7 1406 * offset may be bigger than the file size as it may be aligned to
49c69591 1407 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1408 * situation in particular.
1409 */
49c69591 1410 if (whence == SEEK_HOLE)
8aa7d37e
ES
1411 offset = min_t(loff_t, offset, end);
1412
1413 return offset;
1414
1415out_error:
1416 return error;
1417}
1418
1419STATIC loff_t
1420xfs_seek_hole_data(
1421 struct file *file,
1422 loff_t start,
1423 int whence)
1424{
1425 struct inode *inode = file->f_mapping->host;
1426 struct xfs_inode *ip = XFS_I(inode);
1427 struct xfs_mount *mp = ip->i_mount;
1428 uint lock;
1429 loff_t offset, end;
1430 int error = 0;
1431
1432 if (XFS_FORCED_SHUTDOWN(mp))
1433 return -EIO;
1434
1435 lock = xfs_ilock_data_map_shared(ip);
1436
1437 end = i_size_read(inode);
1438 offset = __xfs_seek_hole_data(inode, start, end, whence);
1439 if (offset < 0) {
1440 error = offset;
1441 goto out_unlock;
1442 }
1443
46a1c2c7 1444 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1445
1446out_unlock:
01f4f327 1447 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1448
1449 if (error)
2451337d 1450 return error;
3fe3e6b1
JL
1451 return offset;
1452}
1453
1454STATIC loff_t
1455xfs_file_llseek(
1456 struct file *file,
1457 loff_t offset,
59f9c004 1458 int whence)
3fe3e6b1 1459{
59f9c004 1460 switch (whence) {
3fe3e6b1
JL
1461 case SEEK_END:
1462 case SEEK_CUR:
1463 case SEEK_SET:
59f9c004 1464 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1465 case SEEK_HOLE:
49c69591 1466 case SEEK_DATA:
59f9c004 1467 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1468 default:
1469 return -EINVAL;
1470 }
1471}
1472
de0e8c20
DC
1473/*
1474 * Locking for serialisation of IO during page faults. This results in a lock
1475 * ordering of:
1476 *
1477 * mmap_sem (MM)
6b698ede 1478 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1479 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1480 * page_lock (MM)
1481 * i_lock (XFS - extent map serialisation)
de0e8c20 1482 */
de0e8c20 1483
075a924d
DC
1484/*
1485 * mmap()d file has taken write protection fault and is being made writable. We
1486 * can set the page state up correctly for a writable page, which means we can
1487 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1488 * mapping.
de0e8c20
DC
1489 */
1490STATIC int
075a924d 1491xfs_filemap_page_mkwrite(
de0e8c20
DC
1492 struct vm_area_struct *vma,
1493 struct vm_fault *vmf)
1494{
6b698ede 1495 struct inode *inode = file_inode(vma->vm_file);
ec56b1f1 1496 int ret;
de0e8c20 1497
6b698ede 1498 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1499
6b698ede 1500 sb_start_pagefault(inode->i_sb);
ec56b1f1 1501 file_update_time(vma->vm_file);
6b698ede 1502 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1503
6b698ede 1504 if (IS_DAX(inode)) {
6b524995 1505 ret = dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
6b698ede 1506 } else {
68a9f5e7 1507 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
6b698ede
DC
1508 ret = block_page_mkwrite_return(ret);
1509 }
1510
1511 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1512 sb_end_pagefault(inode->i_sb);
1513
1514 return ret;
de0e8c20
DC
1515}
1516
075a924d 1517STATIC int
6b698ede 1518xfs_filemap_fault(
075a924d
DC
1519 struct vm_area_struct *vma,
1520 struct vm_fault *vmf)
1521{
b2442c5a 1522 struct inode *inode = file_inode(vma->vm_file);
6b698ede 1523 int ret;
ec56b1f1 1524
b2442c5a 1525 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1526
6b698ede 1527 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1528 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
6b698ede 1529 return xfs_filemap_page_mkwrite(vma, vmf);
075a924d 1530
b2442c5a
DC
1531 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1532 if (IS_DAX(inode)) {
1533 /*
1534 * we do not want to trigger unwritten extent conversion on read
1535 * faults - that is unnecessary overhead and would also require
1536 * changes to xfs_get_blocks_direct() to map unwritten extent
1537 * ioend for conversion on read-only mappings.
1538 */
6b524995 1539 ret = dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
b2442c5a
DC
1540 } else
1541 ret = filemap_fault(vma, vmf);
1542 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1543
6b698ede
DC
1544 return ret;
1545}
1546
13ad4fe3
DC
1547/*
1548 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1549 * both read and write faults. Hence we need to handle both cases. There is no
1550 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1551 * handle both cases here. @flags carries the information on the type of fault
1552 * occuring.
1553 */
acd76e74
MW
1554STATIC int
1555xfs_filemap_pmd_fault(
1556 struct vm_area_struct *vma,
1557 unsigned long addr,
1558 pmd_t *pmd,
1559 unsigned int flags)
1560{
1561 struct inode *inode = file_inode(vma->vm_file);
1562 struct xfs_inode *ip = XFS_I(inode);
1563 int ret;
1564
1565 if (!IS_DAX(inode))
1566 return VM_FAULT_FALLBACK;
1567
1568 trace_xfs_filemap_pmd_fault(ip);
1569
13ad4fe3
DC
1570 if (flags & FAULT_FLAG_WRITE) {
1571 sb_start_pagefault(inode->i_sb);
1572 file_update_time(vma->vm_file);
1573 }
1574
acd76e74 1575 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b524995 1576 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
acd76e74 1577 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acd76e74 1578
13ad4fe3
DC
1579 if (flags & FAULT_FLAG_WRITE)
1580 sb_end_pagefault(inode->i_sb);
acd76e74
MW
1581
1582 return ret;
1583}
1584
3af49285
DC
1585/*
1586 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1587 * updates on write faults. In reality, it's need to serialise against
5eb88dca
RZ
1588 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1589 * to ensure we serialise the fault barrier in place.
3af49285
DC
1590 */
1591static int
1592xfs_filemap_pfn_mkwrite(
1593 struct vm_area_struct *vma,
1594 struct vm_fault *vmf)
1595{
1596
1597 struct inode *inode = file_inode(vma->vm_file);
1598 struct xfs_inode *ip = XFS_I(inode);
1599 int ret = VM_FAULT_NOPAGE;
1600 loff_t size;
1601
1602 trace_xfs_filemap_pfn_mkwrite(ip);
1603
1604 sb_start_pagefault(inode->i_sb);
1605 file_update_time(vma->vm_file);
1606
1607 /* check if the faulting page hasn't raced with truncate */
1608 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1609 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1610 if (vmf->pgoff >= size)
1611 ret = VM_FAULT_SIGBUS;
5eb88dca
RZ
1612 else if (IS_DAX(inode))
1613 ret = dax_pfn_mkwrite(vma, vmf);
3af49285
DC
1614 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1615 sb_end_pagefault(inode->i_sb);
acd76e74 1616 return ret;
3af49285 1617
acd76e74
MW
1618}
1619
6b698ede
DC
1620static const struct vm_operations_struct xfs_file_vm_ops = {
1621 .fault = xfs_filemap_fault,
acd76e74 1622 .pmd_fault = xfs_filemap_pmd_fault,
6b698ede
DC
1623 .map_pages = filemap_map_pages,
1624 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1625 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1626};
1627
1628STATIC int
1629xfs_file_mmap(
1630 struct file *filp,
1631 struct vm_area_struct *vma)
1632{
1633 file_accessed(filp);
1634 vma->vm_ops = &xfs_file_vm_ops;
1635 if (IS_DAX(file_inode(filp)))
acd76e74 1636 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1637 return 0;
075a924d
DC
1638}
1639
4b6f5d20 1640const struct file_operations xfs_file_operations = {
3fe3e6b1 1641 .llseek = xfs_file_llseek,
b4f5d2c6 1642 .read_iter = xfs_file_read_iter,
bf97f3bc 1643 .write_iter = xfs_file_write_iter,
1b895840 1644 .splice_read = xfs_file_splice_read,
8d020765 1645 .splice_write = iter_file_splice_write,
3562fd45 1646 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1647#ifdef CONFIG_COMPAT
3562fd45 1648 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1649#endif
3562fd45
NS
1650 .mmap = xfs_file_mmap,
1651 .open = xfs_file_open,
1652 .release = xfs_file_release,
1653 .fsync = xfs_file_fsync,
2fe17c10 1654 .fallocate = xfs_file_fallocate,
1da177e4
LT
1655};
1656
4b6f5d20 1657const struct file_operations xfs_dir_file_operations = {
f999a5bf 1658 .open = xfs_dir_open,
1da177e4 1659 .read = generic_read_dir,
3b0a3c1a 1660 .iterate_shared = xfs_file_readdir,
59af1584 1661 .llseek = generic_file_llseek,
3562fd45 1662 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1663#ifdef CONFIG_COMPAT
3562fd45 1664 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1665#endif
1da2f2db 1666 .fsync = xfs_dir_fsync,
1da177e4 1667};
This page took 0.854498 seconds and 5 git commands to generate.