xfs: remove unused bip arg from xfs_buf_item_log_segment()
[deliverable/linux.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_sb.h"
a844f451 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
57062787
DC
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
c24b5dfa 33#include "xfs_bmap_util.h"
1da177e4 34#include "xfs_error.h"
2b9ab5ab 35#include "xfs_dir2.h"
c24b5dfa 36#include "xfs_dir2_priv.h"
ddcd856d 37#include "xfs_ioctl.h"
dda35b8f 38#include "xfs_trace.h"
239880ef 39#include "xfs_log.h"
a4fbe6ab 40#include "xfs_dinode.h"
1da177e4 41
a27bb332 42#include <linux/aio.h>
1da177e4 43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
1da177e4 46
f0f37e2f 47static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 48
487f84f3
DC
49/*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53static inline void
54xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57{
58 if (type & XFS_IOLOCK_EXCL)
59 mutex_lock(&VFS_I(ip)->i_mutex);
60 xfs_ilock(ip, type);
61}
62
63static inline void
64xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67{
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 mutex_unlock(&VFS_I(ip)->i_mutex);
71}
72
73static inline void
74xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77{
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 mutex_unlock(&VFS_I(ip)->i_mutex);
81}
82
dda35b8f
CH
83/*
84 * xfs_iozero
85 *
86 * xfs_iozero clears the specified range of buffer supplied,
87 * and marks all the affected blocks as valid and modified. If
88 * an affected block is not allocated, it will be allocated. If
89 * an affected block is not completely overwritten, and is not
90 * valid before the operation, it will be read from disk before
91 * being partially zeroed.
92 */
ef9d8733 93int
dda35b8f
CH
94xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98{
99 struct page *page;
100 struct address_space *mapping;
101 int status;
102
103 mapping = VFS_I(ip)->i_mapping;
104 do {
105 unsigned offset, bytes;
106 void *fsdata;
107
108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 bytes = PAGE_CACHE_SIZE - offset;
110 if (bytes > count)
111 bytes = count;
112
113 status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 AOP_FLAG_UNINTERRUPTIBLE,
115 &page, &fsdata);
116 if (status)
117 break;
118
119 zero_user(page, offset, bytes);
120
121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 page, fsdata);
123 WARN_ON(status <= 0); /* can't return less than zero! */
124 pos += bytes;
125 count -= bytes;
126 status = 0;
127 } while (count);
128
129 return (-status);
130}
131
1da2f2db
CH
132/*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138STATIC int
139xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144{
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159}
160
fd3200be
CH
161STATIC int
162xfs_file_fsync(
163 struct file *file,
02c24a82
JB
164 loff_t start,
165 loff_t end,
fd3200be
CH
166 int datasync)
167{
7ea80859
CH
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
a27a263b 170 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
171 int error = 0;
172 int log_flushed = 0;
b1037058 173 xfs_lsn_t lsn = 0;
fd3200be 174
cca28fb8 175 trace_xfs_file_fsync(ip);
fd3200be 176
02c24a82
JB
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
a27a263b 181 if (XFS_FORCED_SHUTDOWN(mp))
fd3200be
CH
182 return -XFS_ERROR(EIO);
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
a27a263b
CH
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
fd3200be 200 /*
8a9c9980
CH
201 * All metadata updates are logged, which means that we just have
202 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
203 */
204 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
205 if (xfs_ipincount(ip)) {
206 if (!datasync ||
207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 lsn = ip->i_itemp->ili_last_lsn;
209 }
8a9c9980 210 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 211
8a9c9980 212 if (lsn)
b1037058
CH
213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214
a27a263b
CH
215 /*
216 * If we only have a single device, and the log force about was
217 * a no-op we might have to flush the data device cache here.
218 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 * an already allocated file and thus do not have any metadata to
220 * commit.
221 */
222 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 mp->m_logdev_targp == mp->m_ddev_targp &&
224 !XFS_IS_REALTIME_INODE(ip) &&
225 !log_flushed)
226 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be
CH
227
228 return -error;
229}
230
00258e36
CH
231STATIC ssize_t
232xfs_file_aio_read(
dda35b8f
CH
233 struct kiocb *iocb,
234 const struct iovec *iovp,
00258e36
CH
235 unsigned long nr_segs,
236 loff_t pos)
dda35b8f
CH
237{
238 struct file *file = iocb->ki_filp;
239 struct inode *inode = file->f_mapping->host;
00258e36
CH
240 struct xfs_inode *ip = XFS_I(inode);
241 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
242 size_t size = 0;
243 ssize_t ret = 0;
00258e36 244 int ioflags = 0;
dda35b8f 245 xfs_fsize_t n;
dda35b8f 246
dda35b8f
CH
247 XFS_STATS_INC(xs_read_calls);
248
00258e36
CH
249 BUG_ON(iocb->ki_pos != pos);
250
251 if (unlikely(file->f_flags & O_DIRECT))
252 ioflags |= IO_ISDIRECT;
253 if (file->f_mode & FMODE_NOCMTIME)
254 ioflags |= IO_INVIS;
255
52764329
DC
256 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
257 if (ret < 0)
258 return ret;
dda35b8f
CH
259
260 if (unlikely(ioflags & IO_ISDIRECT)) {
261 xfs_buftarg_t *target =
262 XFS_IS_REALTIME_INODE(ip) ?
263 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
264 /* DIO must be aligned to device logical sector size */
265 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 266 if (pos == i_size_read(inode))
00258e36 267 return 0;
dda35b8f
CH
268 return -XFS_ERROR(EINVAL);
269 }
270 }
271
fb595814 272 n = mp->m_super->s_maxbytes - pos;
00258e36 273 if (n <= 0 || size == 0)
dda35b8f
CH
274 return 0;
275
276 if (n < size)
277 size = n;
278
279 if (XFS_FORCED_SHUTDOWN(mp))
280 return -EIO;
281
0c38a251
DC
282 /*
283 * Locking is a bit tricky here. If we take an exclusive lock
284 * for direct IO, we effectively serialise all new concurrent
285 * read IO to this file and block it behind IO that is currently in
286 * progress because IO in progress holds the IO lock shared. We only
287 * need to hold the lock exclusive to blow away the page cache, so
288 * only take lock exclusively if the page cache needs invalidation.
289 * This allows the normal direct IO case of no page cache pages to
290 * proceeed concurrently without serialisation.
291 */
292 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
293 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
294 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
295 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
296
00258e36 297 if (inode->i_mapping->nrpages) {
fb595814
DC
298 ret = -filemap_write_and_wait_range(
299 VFS_I(ip)->i_mapping,
300 pos, -1);
487f84f3
DC
301 if (ret) {
302 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
303 return ret;
304 }
fb595814 305 truncate_pagecache_range(VFS_I(ip), pos, -1);
00258e36 306 }
487f84f3 307 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 308 }
dda35b8f 309
fb595814 310 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 311
fb595814 312 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
dda35b8f
CH
313 if (ret > 0)
314 XFS_STATS_ADD(xs_read_bytes, ret);
315
487f84f3 316 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
317 return ret;
318}
319
00258e36
CH
320STATIC ssize_t
321xfs_file_splice_read(
dda35b8f
CH
322 struct file *infilp,
323 loff_t *ppos,
324 struct pipe_inode_info *pipe,
325 size_t count,
00258e36 326 unsigned int flags)
dda35b8f 327{
00258e36 328 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 329 int ioflags = 0;
dda35b8f
CH
330 ssize_t ret;
331
332 XFS_STATS_INC(xs_read_calls);
00258e36
CH
333
334 if (infilp->f_mode & FMODE_NOCMTIME)
335 ioflags |= IO_INVIS;
336
dda35b8f
CH
337 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
338 return -EIO;
339
487f84f3 340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 341
dda35b8f
CH
342 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
343
344 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
345 if (ret > 0)
346 XFS_STATS_ADD(xs_read_bytes, ret);
347
487f84f3 348 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
349 return ret;
350}
351
487f84f3
DC
352/*
353 * xfs_file_splice_write() does not use xfs_rw_ilock() because
354 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
355 * couuld cause lock inversions between the aio_write path and the splice path
356 * if someone is doing concurrent splice(2) based writes and write(2) based
357 * writes to the same inode. The only real way to fix this is to re-implement
358 * the generic code here with correct locking orders.
359 */
00258e36
CH
360STATIC ssize_t
361xfs_file_splice_write(
dda35b8f
CH
362 struct pipe_inode_info *pipe,
363 struct file *outfilp,
364 loff_t *ppos,
365 size_t count,
00258e36 366 unsigned int flags)
dda35b8f 367{
dda35b8f 368 struct inode *inode = outfilp->f_mapping->host;
00258e36 369 struct xfs_inode *ip = XFS_I(inode);
00258e36
CH
370 int ioflags = 0;
371 ssize_t ret;
dda35b8f
CH
372
373 XFS_STATS_INC(xs_write_calls);
00258e36
CH
374
375 if (outfilp->f_mode & FMODE_NOCMTIME)
376 ioflags |= IO_INVIS;
377
dda35b8f
CH
378 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
379 return -EIO;
380
381 xfs_ilock(ip, XFS_IOLOCK_EXCL);
382
dda35b8f
CH
383 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
384
385 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
ce7ae151
CH
386 if (ret > 0)
387 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 388
dda35b8f
CH
389 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
390 return ret;
391}
392
393/*
193aec10
CH
394 * This routine is called to handle zeroing any space in the last block of the
395 * file that is beyond the EOF. We do this since the size is being increased
396 * without writing anything to that block and we don't want to read the
397 * garbage on the disk.
dda35b8f
CH
398 */
399STATIC int /* error (positive) */
400xfs_zero_last_block(
193aec10
CH
401 struct xfs_inode *ip,
402 xfs_fsize_t offset,
403 xfs_fsize_t isize)
dda35b8f 404{
193aec10
CH
405 struct xfs_mount *mp = ip->i_mount;
406 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
407 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
408 int zero_len;
409 int nimaps = 1;
410 int error = 0;
411 struct xfs_bmbt_irec imap;
dda35b8f 412
193aec10 413 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 414 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 415 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 416 if (error)
dda35b8f 417 return error;
193aec10 418
dda35b8f 419 ASSERT(nimaps > 0);
193aec10 420
dda35b8f
CH
421 /*
422 * If the block underlying isize is just a hole, then there
423 * is nothing to zero.
424 */
193aec10 425 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 426 return 0;
dda35b8f
CH
427
428 zero_len = mp->m_sb.sb_blocksize - zero_offset;
429 if (isize + zero_len > offset)
430 zero_len = offset - isize;
193aec10 431 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
432}
433
434/*
193aec10
CH
435 * Zero any on disk space between the current EOF and the new, larger EOF.
436 *
437 * This handles the normal case of zeroing the remainder of the last block in
438 * the file and the unusual case of zeroing blocks out beyond the size of the
439 * file. This second case only happens with fixed size extents and when the
440 * system crashes before the inode size was updated but after blocks were
441 * allocated.
442 *
443 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 444 */
dda35b8f
CH
445int /* error (positive) */
446xfs_zero_eof(
193aec10
CH
447 struct xfs_inode *ip,
448 xfs_off_t offset, /* starting I/O offset */
449 xfs_fsize_t isize) /* current inode size */
dda35b8f 450{
193aec10
CH
451 struct xfs_mount *mp = ip->i_mount;
452 xfs_fileoff_t start_zero_fsb;
453 xfs_fileoff_t end_zero_fsb;
454 xfs_fileoff_t zero_count_fsb;
455 xfs_fileoff_t last_fsb;
456 xfs_fileoff_t zero_off;
457 xfs_fsize_t zero_len;
458 int nimaps;
459 int error = 0;
460 struct xfs_bmbt_irec imap;
461
462 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
463 ASSERT(offset > isize);
464
465 /*
466 * First handle zeroing the block on which isize resides.
193aec10 467 *
dda35b8f
CH
468 * We only zero a part of that block so it is handled specially.
469 */
193aec10
CH
470 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
471 error = xfs_zero_last_block(ip, offset, isize);
472 if (error)
473 return error;
dda35b8f
CH
474 }
475
476 /*
193aec10
CH
477 * Calculate the range between the new size and the old where blocks
478 * needing to be zeroed may exist.
479 *
480 * To get the block where the last byte in the file currently resides,
481 * we need to subtract one from the size and truncate back to a block
482 * boundary. We subtract 1 in case the size is exactly on a block
483 * boundary.
dda35b8f
CH
484 */
485 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
486 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
487 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
488 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
489 if (last_fsb == end_zero_fsb) {
490 /*
491 * The size was only incremented on its last block.
492 * We took care of that above, so just return.
493 */
494 return 0;
495 }
496
497 ASSERT(start_zero_fsb <= end_zero_fsb);
498 while (start_zero_fsb <= end_zero_fsb) {
499 nimaps = 1;
500 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
501
502 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
503 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
504 &imap, &nimaps, 0);
193aec10
CH
505 xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 if (error)
dda35b8f 507 return error;
193aec10 508
dda35b8f
CH
509 ASSERT(nimaps > 0);
510
511 if (imap.br_state == XFS_EXT_UNWRITTEN ||
512 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
513 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
514 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
515 continue;
516 }
517
518 /*
519 * There are blocks we need to zero.
dda35b8f 520 */
dda35b8f
CH
521 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
522 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
523
524 if ((zero_off + zero_len) > offset)
525 zero_len = offset - zero_off;
526
527 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
528 if (error)
529 return error;
dda35b8f
CH
530
531 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
533 }
534
535 return 0;
dda35b8f
CH
536}
537
4d8d1581
DC
538/*
539 * Common pre-write limit and setup checks.
540 *
5bf1f262
CH
541 * Called with the iolocked held either shared and exclusive according to
542 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
543 * if called for a direct write beyond i_size.
4d8d1581
DC
544 */
545STATIC ssize_t
546xfs_file_aio_write_checks(
547 struct file *file,
548 loff_t *pos,
549 size_t *count,
550 int *iolock)
551{
552 struct inode *inode = file->f_mapping->host;
553 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
554 int error = 0;
555
7271d243 556restart:
4d8d1581 557 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 558 if (error)
4d8d1581 559 return error;
4d8d1581 560
4d8d1581
DC
561 /*
562 * If the offset is beyond the size of the file, we need to zero any
563 * blocks that fall between the existing EOF and the start of this
2813d682 564 * write. If zeroing is needed and we are currently holding the
467f7899
CH
565 * iolock shared, we need to update it to exclusive which implies
566 * having to redo all checks before.
4d8d1581 567 */
2813d682 568 if (*pos > i_size_read(inode)) {
7271d243 569 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 570 xfs_rw_iunlock(ip, *iolock);
7271d243 571 *iolock = XFS_IOLOCK_EXCL;
467f7899 572 xfs_rw_ilock(ip, *iolock);
7271d243
DC
573 goto restart;
574 }
ce7ae151 575 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
576 if (error)
577 return error;
7271d243 578 }
4d8d1581 579
8a9c9980
CH
580 /*
581 * Updating the timestamps will grab the ilock again from
582 * xfs_fs_dirty_inode, so we have to call it after dropping the
583 * lock above. Eventually we should look into a way to avoid
584 * the pointless lock roundtrip.
585 */
c3b2da31
JB
586 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
587 error = file_update_time(file);
588 if (error)
589 return error;
590 }
8a9c9980 591
4d8d1581
DC
592 /*
593 * If we're writing the file then make sure to clear the setuid and
594 * setgid bits if the process is not being run by root. This keeps
595 * people from modifying setuid and setgid binaries.
596 */
597 return file_remove_suid(file);
4d8d1581
DC
598}
599
f0d26e86
DC
600/*
601 * xfs_file_dio_aio_write - handle direct IO writes
602 *
603 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 604 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
605 * follow locking changes and looping.
606 *
eda77982
DC
607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
609 * pages are flushed out.
610 *
611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
612 * allowing them to be done in parallel with reads and other direct IO writes.
613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
614 * needs to do sub-block zeroing and that requires serialisation against other
615 * direct IOs to the same block. In this case we need to serialise the
616 * submission of the unaligned IOs so that we don't get racing block zeroing in
617 * the dio layer. To avoid the problem with aio, we also need to wait for
618 * outstanding IOs to complete so that unwritten extent conversion is completed
619 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 620 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 621 *
f0d26e86
DC
622 * Returns with locks held indicated by @iolock and errors indicated by
623 * negative return values.
624 */
625STATIC ssize_t
626xfs_file_dio_aio_write(
627 struct kiocb *iocb,
628 const struct iovec *iovp,
629 unsigned long nr_segs,
630 loff_t pos,
d0606464 631 size_t ocount)
f0d26e86
DC
632{
633 struct file *file = iocb->ki_filp;
634 struct address_space *mapping = file->f_mapping;
635 struct inode *inode = mapping->host;
636 struct xfs_inode *ip = XFS_I(inode);
637 struct xfs_mount *mp = ip->i_mount;
638 ssize_t ret = 0;
f0d26e86 639 size_t count = ocount;
eda77982 640 int unaligned_io = 0;
d0606464 641 int iolock;
f0d26e86
DC
642 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
643 mp->m_rtdev_targp : mp->m_ddev_targp;
644
7c71ee78
ES
645 /* DIO must be aligned to device logical sector size */
646 if ((pos | count) & target->bt_logical_sectormask)
f0d26e86
DC
647 return -XFS_ERROR(EINVAL);
648
7c71ee78 649 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
650 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
651 unaligned_io = 1;
652
7271d243
DC
653 /*
654 * We don't need to take an exclusive lock unless there page cache needs
655 * to be invalidated or unaligned IO is being executed. We don't need to
656 * consider the EOF extension case here because
657 * xfs_file_aio_write_checks() will relock the inode as necessary for
658 * EOF zeroing cases and fill out the new inode size as appropriate.
659 */
660 if (unaligned_io || mapping->nrpages)
d0606464 661 iolock = XFS_IOLOCK_EXCL;
f0d26e86 662 else
d0606464
CH
663 iolock = XFS_IOLOCK_SHARED;
664 xfs_rw_ilock(ip, iolock);
c58cb165
CH
665
666 /*
667 * Recheck if there are cached pages that need invalidate after we got
668 * the iolock to protect against other threads adding new pages while
669 * we were waiting for the iolock.
670 */
d0606464
CH
671 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
672 xfs_rw_iunlock(ip, iolock);
673 iolock = XFS_IOLOCK_EXCL;
674 xfs_rw_ilock(ip, iolock);
c58cb165 675 }
f0d26e86 676
d0606464 677 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 678 if (ret)
d0606464 679 goto out;
f0d26e86
DC
680
681 if (mapping->nrpages) {
fb595814
DC
682 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
683 pos, -1);
f0d26e86 684 if (ret)
d0606464 685 goto out;
fb595814 686 truncate_pagecache_range(VFS_I(ip), pos, -1);
f0d26e86
DC
687 }
688
eda77982
DC
689 /*
690 * If we are doing unaligned IO, wait for all other IO to drain,
691 * otherwise demote the lock if we had to flush cached pages
692 */
693 if (unaligned_io)
4a06fd26 694 inode_dio_wait(inode);
d0606464 695 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 696 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 697 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
698 }
699
700 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
701 ret = generic_file_direct_write(iocb, iovp,
5cb6c6c7 702 &nr_segs, pos, count, ocount);
f0d26e86 703
d0606464
CH
704out:
705 xfs_rw_iunlock(ip, iolock);
706
f0d26e86
DC
707 /* No fallback to buffered IO on errors for XFS. */
708 ASSERT(ret < 0 || ret == count);
709 return ret;
710}
711
00258e36 712STATIC ssize_t
637bbc75 713xfs_file_buffered_aio_write(
dda35b8f
CH
714 struct kiocb *iocb,
715 const struct iovec *iovp,
00258e36 716 unsigned long nr_segs,
637bbc75 717 loff_t pos,
0a64bc2c 718 size_t count)
dda35b8f
CH
719{
720 struct file *file = iocb->ki_filp;
721 struct address_space *mapping = file->f_mapping;
722 struct inode *inode = mapping->host;
00258e36 723 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
724 ssize_t ret;
725 int enospc = 0;
d0606464 726 int iolock = XFS_IOLOCK_EXCL;
0a64bc2c 727 struct iov_iter from;
dda35b8f 728
d0606464 729 xfs_rw_ilock(ip, iolock);
dda35b8f 730
d0606464 731 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 732 if (ret)
d0606464 733 goto out;
dda35b8f 734
0a64bc2c 735 iov_iter_init(&from, iovp, nr_segs, count, 0);
dda35b8f
CH
736 /* We can write back this queue in page reclaim */
737 current->backing_dev_info = mapping->backing_dev_info;
738
dda35b8f 739write_retry:
637bbc75 740 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
0a64bc2c
AV
741 ret = generic_perform_write(file, &from, pos);
742 if (likely(ret >= 0))
743 iocb->ki_pos = pos + ret;
637bbc75 744 /*
9aa05000
DC
745 * If we just got an ENOSPC, try to write back all dirty inodes to
746 * convert delalloc space to free up some of the excess reserved
747 * metadata space.
637bbc75
DC
748 */
749 if (ret == -ENOSPC && !enospc) {
637bbc75 750 enospc = 1;
9aa05000
DC
751 xfs_flush_inodes(ip->i_mount);
752 goto write_retry;
dda35b8f 753 }
d0606464 754
dda35b8f 755 current->backing_dev_info = NULL;
d0606464
CH
756out:
757 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
758 return ret;
759}
760
761STATIC ssize_t
762xfs_file_aio_write(
763 struct kiocb *iocb,
764 const struct iovec *iovp,
765 unsigned long nr_segs,
766 loff_t pos)
767{
768 struct file *file = iocb->ki_filp;
769 struct address_space *mapping = file->f_mapping;
770 struct inode *inode = mapping->host;
771 struct xfs_inode *ip = XFS_I(inode);
772 ssize_t ret;
637bbc75
DC
773 size_t ocount = 0;
774
775 XFS_STATS_INC(xs_write_calls);
776
777 BUG_ON(iocb->ki_pos != pos);
778
779 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
780 if (ret)
781 return ret;
782
783 if (ocount == 0)
784 return 0;
785
d9457dc0
JK
786 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
787 ret = -EIO;
788 goto out;
789 }
637bbc75
DC
790
791 if (unlikely(file->f_flags & O_DIRECT))
d0606464 792 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
637bbc75
DC
793 else
794 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
d0606464 795 ocount);
dda35b8f 796
d0606464
CH
797 if (ret > 0) {
798 ssize_t err;
dda35b8f 799
d0606464 800 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 801
d0606464 802 /* Handle various SYNC-type writes */
d311d79d 803 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
804 if (err < 0)
805 ret = err;
dda35b8f
CH
806 }
807
d9457dc0 808out:
a363f0c2 809 return ret;
dda35b8f
CH
810}
811
2fe17c10
CH
812STATIC long
813xfs_file_fallocate(
83aee9e4
CH
814 struct file *file,
815 int mode,
816 loff_t offset,
817 loff_t len)
2fe17c10 818{
83aee9e4
CH
819 struct inode *inode = file_inode(file);
820 struct xfs_inode *ip = XFS_I(inode);
821 struct xfs_trans *tp;
822 long error;
823 loff_t new_size = 0;
2fe17c10 824
83aee9e4
CH
825 if (!S_ISREG(inode->i_mode))
826 return -EINVAL;
e1d8fb88 827 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
376ba313 828 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
829 return -EOPNOTSUPP;
830
2fe17c10 831 xfs_ilock(ip, XFS_IOLOCK_EXCL);
83aee9e4
CH
832 if (mode & FALLOC_FL_PUNCH_HOLE) {
833 error = xfs_free_file_space(ip, offset, len);
834 if (error)
835 goto out_unlock;
e1d8fb88
NJ
836 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
837 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
838
839 if (offset & blksize_mask || len & blksize_mask) {
840 error = -EINVAL;
841 goto out_unlock;
842 }
843
844 ASSERT(offset + len < i_size_read(inode));
845 new_size = i_size_read(inode) - len;
846
847 error = xfs_collapse_file_space(ip, offset, len);
848 if (error)
849 goto out_unlock;
83aee9e4
CH
850 } else {
851 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
852 offset + len > i_size_read(inode)) {
853 new_size = offset + len;
854 error = -inode_newsize_ok(inode, new_size);
855 if (error)
856 goto out_unlock;
857 }
2fe17c10 858
376ba313
LC
859 if (mode & FALLOC_FL_ZERO_RANGE)
860 error = xfs_zero_file_space(ip, offset, len);
861 else
862 error = xfs_alloc_file_space(ip, offset, len,
863 XFS_BMAPI_PREALLOC);
2fe17c10
CH
864 if (error)
865 goto out_unlock;
866 }
867
83aee9e4
CH
868 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
869 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
870 if (error) {
871 xfs_trans_cancel(tp, 0);
872 goto out_unlock;
873 }
874
875 xfs_ilock(ip, XFS_ILOCK_EXCL);
876 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
877 ip->i_d.di_mode &= ~S_ISUID;
878 if (ip->i_d.di_mode & S_IXGRP)
879 ip->i_d.di_mode &= ~S_ISGID;
82878897 880
e1d8fb88 881 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
83aee9e4
CH
882 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
883
884 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
885 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
886
887 if (file->f_flags & O_DSYNC)
888 xfs_trans_set_sync(tp);
889 error = xfs_trans_commit(tp, 0);
2fe17c10
CH
890 if (error)
891 goto out_unlock;
892
893 /* Change file size if needed */
894 if (new_size) {
895 struct iattr iattr;
896
897 iattr.ia_valid = ATTR_SIZE;
898 iattr.ia_size = new_size;
83aee9e4 899 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
900 }
901
902out_unlock:
903 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
83aee9e4 904 return -error;
2fe17c10
CH
905}
906
907
1da177e4 908STATIC int
3562fd45 909xfs_file_open(
1da177e4 910 struct inode *inode,
f999a5bf 911 struct file *file)
1da177e4 912{
f999a5bf 913 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 914 return -EFBIG;
f999a5bf
CH
915 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
916 return -EIO;
917 return 0;
918}
919
920STATIC int
921xfs_dir_open(
922 struct inode *inode,
923 struct file *file)
924{
925 struct xfs_inode *ip = XFS_I(inode);
926 int mode;
927 int error;
928
929 error = xfs_file_open(inode, file);
930 if (error)
931 return error;
932
933 /*
934 * If there are any blocks, read-ahead block 0 as we're almost
935 * certain to have the next operation be a read there.
936 */
309ecac8 937 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 938 if (ip->i_d.di_nextents > 0)
33363fee 939 xfs_dir3_data_readahead(NULL, ip, 0, -1);
f999a5bf
CH
940 xfs_iunlock(ip, mode);
941 return 0;
1da177e4
LT
942}
943
1da177e4 944STATIC int
3562fd45 945xfs_file_release(
1da177e4
LT
946 struct inode *inode,
947 struct file *filp)
948{
739bfb2a 949 return -xfs_release(XFS_I(inode));
1da177e4
LT
950}
951
1da177e4 952STATIC int
3562fd45 953xfs_file_readdir(
b8227554
AV
954 struct file *file,
955 struct dir_context *ctx)
1da177e4 956{
b8227554 957 struct inode *inode = file_inode(file);
739bfb2a 958 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
959 int error;
960 size_t bufsize;
961
962 /*
963 * The Linux API doesn't pass down the total size of the buffer
964 * we read into down to the filesystem. With the filldir concept
965 * it's not needed for correct information, but the XFS dir2 leaf
966 * code wants an estimate of the buffer size to calculate it's
967 * readahead window and size the buffers used for mapping to
968 * physical blocks.
969 *
970 * Try to give it an estimate that's good enough, maybe at some
971 * point we can change the ->readdir prototype to include the
a9cc799e 972 * buffer size. For now we use the current glibc buffer size.
051e7cd4 973 */
a9cc799e 974 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 975
b8227554 976 error = xfs_readdir(ip, ctx, bufsize);
051e7cd4
CH
977 if (error)
978 return -error;
979 return 0;
1da177e4
LT
980}
981
1da177e4 982STATIC int
3562fd45 983xfs_file_mmap(
1da177e4
LT
984 struct file *filp,
985 struct vm_area_struct *vma)
986{
3562fd45 987 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 988
fbc1462b 989 file_accessed(filp);
1da177e4
LT
990 return 0;
991}
992
4f57dbc6
DC
993/*
994 * mmap()d file has taken write protection fault and is being made
995 * writable. We can set the page state up correctly for a writable
996 * page, which means we can do correct delalloc accounting (ENOSPC
997 * checking!) and unwritten extent mapping.
998 */
999STATIC int
1000xfs_vm_page_mkwrite(
1001 struct vm_area_struct *vma,
c2ec175c 1002 struct vm_fault *vmf)
4f57dbc6 1003{
c2ec175c 1004 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
1005}
1006
d126d43f
JL
1007/*
1008 * This type is designed to indicate the type of offset we would like
1009 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1010 */
1011enum {
1012 HOLE_OFF = 0,
1013 DATA_OFF,
1014};
1015
1016/*
1017 * Lookup the desired type of offset from the given page.
1018 *
1019 * On success, return true and the offset argument will point to the
1020 * start of the region that was found. Otherwise this function will
1021 * return false and keep the offset argument unchanged.
1022 */
1023STATIC bool
1024xfs_lookup_buffer_offset(
1025 struct page *page,
1026 loff_t *offset,
1027 unsigned int type)
1028{
1029 loff_t lastoff = page_offset(page);
1030 bool found = false;
1031 struct buffer_head *bh, *head;
1032
1033 bh = head = page_buffers(page);
1034 do {
1035 /*
1036 * Unwritten extents that have data in the page
1037 * cache covering them can be identified by the
1038 * BH_Unwritten state flag. Pages with multiple
1039 * buffers might have a mix of holes, data and
1040 * unwritten extents - any buffer with valid
1041 * data in it should have BH_Uptodate flag set
1042 * on it.
1043 */
1044 if (buffer_unwritten(bh) ||
1045 buffer_uptodate(bh)) {
1046 if (type == DATA_OFF)
1047 found = true;
1048 } else {
1049 if (type == HOLE_OFF)
1050 found = true;
1051 }
1052
1053 if (found) {
1054 *offset = lastoff;
1055 break;
1056 }
1057 lastoff += bh->b_size;
1058 } while ((bh = bh->b_this_page) != head);
1059
1060 return found;
1061}
1062
1063/*
1064 * This routine is called to find out and return a data or hole offset
1065 * from the page cache for unwritten extents according to the desired
1066 * type for xfs_seek_data() or xfs_seek_hole().
1067 *
1068 * The argument offset is used to tell where we start to search from the
1069 * page cache. Map is used to figure out the end points of the range to
1070 * lookup pages.
1071 *
1072 * Return true if the desired type of offset was found, and the argument
1073 * offset is filled with that address. Otherwise, return false and keep
1074 * offset unchanged.
1075 */
1076STATIC bool
1077xfs_find_get_desired_pgoff(
1078 struct inode *inode,
1079 struct xfs_bmbt_irec *map,
1080 unsigned int type,
1081 loff_t *offset)
1082{
1083 struct xfs_inode *ip = XFS_I(inode);
1084 struct xfs_mount *mp = ip->i_mount;
1085 struct pagevec pvec;
1086 pgoff_t index;
1087 pgoff_t end;
1088 loff_t endoff;
1089 loff_t startoff = *offset;
1090 loff_t lastoff = startoff;
1091 bool found = false;
1092
1093 pagevec_init(&pvec, 0);
1094
1095 index = startoff >> PAGE_CACHE_SHIFT;
1096 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1097 end = endoff >> PAGE_CACHE_SHIFT;
1098 do {
1099 int want;
1100 unsigned nr_pages;
1101 unsigned int i;
1102
1103 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1104 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1105 want);
1106 /*
1107 * No page mapped into given range. If we are searching holes
1108 * and if this is the first time we got into the loop, it means
1109 * that the given offset is landed in a hole, return it.
1110 *
1111 * If we have already stepped through some block buffers to find
1112 * holes but they all contains data. In this case, the last
1113 * offset is already updated and pointed to the end of the last
1114 * mapped page, if it does not reach the endpoint to search,
1115 * that means there should be a hole between them.
1116 */
1117 if (nr_pages == 0) {
1118 /* Data search found nothing */
1119 if (type == DATA_OFF)
1120 break;
1121
1122 ASSERT(type == HOLE_OFF);
1123 if (lastoff == startoff || lastoff < endoff) {
1124 found = true;
1125 *offset = lastoff;
1126 }
1127 break;
1128 }
1129
1130 /*
1131 * At lease we found one page. If this is the first time we
1132 * step into the loop, and if the first page index offset is
1133 * greater than the given search offset, a hole was found.
1134 */
1135 if (type == HOLE_OFF && lastoff == startoff &&
1136 lastoff < page_offset(pvec.pages[0])) {
1137 found = true;
1138 break;
1139 }
1140
1141 for (i = 0; i < nr_pages; i++) {
1142 struct page *page = pvec.pages[i];
1143 loff_t b_offset;
1144
1145 /*
1146 * At this point, the page may be truncated or
1147 * invalidated (changing page->mapping to NULL),
1148 * or even swizzled back from swapper_space to tmpfs
1149 * file mapping. However, page->index will not change
1150 * because we have a reference on the page.
1151 *
1152 * Searching done if the page index is out of range.
1153 * If the current offset is not reaches the end of
1154 * the specified search range, there should be a hole
1155 * between them.
1156 */
1157 if (page->index > end) {
1158 if (type == HOLE_OFF && lastoff < endoff) {
1159 *offset = lastoff;
1160 found = true;
1161 }
1162 goto out;
1163 }
1164
1165 lock_page(page);
1166 /*
1167 * Page truncated or invalidated(page->mapping == NULL).
1168 * We can freely skip it and proceed to check the next
1169 * page.
1170 */
1171 if (unlikely(page->mapping != inode->i_mapping)) {
1172 unlock_page(page);
1173 continue;
1174 }
1175
1176 if (!page_has_buffers(page)) {
1177 unlock_page(page);
1178 continue;
1179 }
1180
1181 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1182 if (found) {
1183 /*
1184 * The found offset may be less than the start
1185 * point to search if this is the first time to
1186 * come here.
1187 */
1188 *offset = max_t(loff_t, startoff, b_offset);
1189 unlock_page(page);
1190 goto out;
1191 }
1192
1193 /*
1194 * We either searching data but nothing was found, or
1195 * searching hole but found a data buffer. In either
1196 * case, probably the next page contains the desired
1197 * things, update the last offset to it so.
1198 */
1199 lastoff = page_offset(page) + PAGE_SIZE;
1200 unlock_page(page);
1201 }
1202
1203 /*
1204 * The number of returned pages less than our desired, search
1205 * done. In this case, nothing was found for searching data,
1206 * but we found a hole behind the last offset.
1207 */
1208 if (nr_pages < want) {
1209 if (type == HOLE_OFF) {
1210 *offset = lastoff;
1211 found = true;
1212 }
1213 break;
1214 }
1215
1216 index = pvec.pages[i - 1]->index + 1;
1217 pagevec_release(&pvec);
1218 } while (index <= end);
1219
1220out:
1221 pagevec_release(&pvec);
1222 return found;
1223}
1224
3fe3e6b1
JL
1225STATIC loff_t
1226xfs_seek_data(
1227 struct file *file,
834ab122 1228 loff_t start)
3fe3e6b1
JL
1229{
1230 struct inode *inode = file->f_mapping->host;
1231 struct xfs_inode *ip = XFS_I(inode);
1232 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1233 loff_t uninitialized_var(offset);
1234 xfs_fsize_t isize;
1235 xfs_fileoff_t fsbno;
1236 xfs_filblks_t end;
1237 uint lock;
1238 int error;
1239
309ecac8 1240 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1241
1242 isize = i_size_read(inode);
1243 if (start >= isize) {
1244 error = ENXIO;
1245 goto out_unlock;
1246 }
1247
3fe3e6b1
JL
1248 /*
1249 * Try to read extents from the first block indicated
1250 * by fsbno to the end block of the file.
1251 */
52f1acc8 1252 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1253 end = XFS_B_TO_FSB(mp, isize);
52f1acc8
JL
1254 for (;;) {
1255 struct xfs_bmbt_irec map[2];
1256 int nmap = 2;
1257 unsigned int i;
3fe3e6b1 1258
52f1acc8
JL
1259 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1260 XFS_BMAPI_ENTIRE);
1261 if (error)
1262 goto out_unlock;
3fe3e6b1 1263
52f1acc8
JL
1264 /* No extents at given offset, must be beyond EOF */
1265 if (nmap == 0) {
1266 error = ENXIO;
1267 goto out_unlock;
1268 }
1269
1270 for (i = 0; i < nmap; i++) {
1271 offset = max_t(loff_t, start,
1272 XFS_FSB_TO_B(mp, map[i].br_startoff));
1273
1274 /* Landed in a data extent */
1275 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1276 (map[i].br_state == XFS_EXT_NORM &&
1277 !isnullstartblock(map[i].br_startblock)))
1278 goto out;
1279
1280 /*
1281 * Landed in an unwritten extent, try to search data
1282 * from page cache.
1283 */
1284 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1285 if (xfs_find_get_desired_pgoff(inode, &map[i],
1286 DATA_OFF, &offset))
1287 goto out;
1288 }
1289 }
1290
1291 /*
1292 * map[0] is hole or its an unwritten extent but
1293 * without data in page cache. Probably means that
1294 * we are reading after EOF if nothing in map[1].
1295 */
3fe3e6b1
JL
1296 if (nmap == 1) {
1297 error = ENXIO;
1298 goto out_unlock;
1299 }
1300
52f1acc8
JL
1301 ASSERT(i > 1);
1302
1303 /*
1304 * Nothing was found, proceed to the next round of search
1305 * if reading offset not beyond or hit EOF.
1306 */
1307 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1308 start = XFS_FSB_TO_B(mp, fsbno);
1309 if (start >= isize) {
1310 error = ENXIO;
1311 goto out_unlock;
1312 }
3fe3e6b1
JL
1313 }
1314
52f1acc8 1315out:
46a1c2c7 1316 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1317
1318out_unlock:
01f4f327 1319 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1320
1321 if (error)
1322 return -error;
1323 return offset;
1324}
1325
1326STATIC loff_t
1327xfs_seek_hole(
1328 struct file *file,
834ab122 1329 loff_t start)
3fe3e6b1
JL
1330{
1331 struct inode *inode = file->f_mapping->host;
1332 struct xfs_inode *ip = XFS_I(inode);
1333 struct xfs_mount *mp = ip->i_mount;
1334 loff_t uninitialized_var(offset);
3fe3e6b1
JL
1335 xfs_fsize_t isize;
1336 xfs_fileoff_t fsbno;
b686d1f7 1337 xfs_filblks_t end;
3fe3e6b1
JL
1338 uint lock;
1339 int error;
1340
1341 if (XFS_FORCED_SHUTDOWN(mp))
1342 return -XFS_ERROR(EIO);
1343
309ecac8 1344 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1345
1346 isize = i_size_read(inode);
1347 if (start >= isize) {
1348 error = ENXIO;
1349 goto out_unlock;
1350 }
1351
1352 fsbno = XFS_B_TO_FSBT(mp, start);
b686d1f7
JL
1353 end = XFS_B_TO_FSB(mp, isize);
1354
1355 for (;;) {
1356 struct xfs_bmbt_irec map[2];
1357 int nmap = 2;
1358 unsigned int i;
1359
1360 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1361 XFS_BMAPI_ENTIRE);
1362 if (error)
1363 goto out_unlock;
1364
1365 /* No extents at given offset, must be beyond EOF */
1366 if (nmap == 0) {
1367 error = ENXIO;
1368 goto out_unlock;
1369 }
1370
1371 for (i = 0; i < nmap; i++) {
1372 offset = max_t(loff_t, start,
1373 XFS_FSB_TO_B(mp, map[i].br_startoff));
1374
1375 /* Landed in a hole */
1376 if (map[i].br_startblock == HOLESTARTBLOCK)
1377 goto out;
1378
1379 /*
1380 * Landed in an unwritten extent, try to search hole
1381 * from page cache.
1382 */
1383 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1384 if (xfs_find_get_desired_pgoff(inode, &map[i],
1385 HOLE_OFF, &offset))
1386 goto out;
1387 }
1388 }
3fe3e6b1 1389
3fe3e6b1 1390 /*
b686d1f7
JL
1391 * map[0] contains data or its unwritten but contains
1392 * data in page cache, probably means that we are
1393 * reading after EOF. We should fix offset to point
1394 * to the end of the file(i.e., there is an implicit
1395 * hole at the end of any file).
3fe3e6b1 1396 */
b686d1f7
JL
1397 if (nmap == 1) {
1398 offset = isize;
1399 break;
1400 }
1401
1402 ASSERT(i > 1);
1403
1404 /*
1405 * Both mappings contains data, proceed to the next round of
1406 * search if the current reading offset not beyond or hit EOF.
1407 */
1408 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1409 start = XFS_FSB_TO_B(mp, fsbno);
1410 if (start >= isize) {
1411 offset = isize;
1412 break;
1413 }
3fe3e6b1
JL
1414 }
1415
b686d1f7
JL
1416out:
1417 /*
1418 * At this point, we must have found a hole. However, the returned
1419 * offset may be bigger than the file size as it may be aligned to
1420 * page boundary for unwritten extents, we need to deal with this
1421 * situation in particular.
1422 */
1423 offset = min_t(loff_t, offset, isize);
46a1c2c7 1424 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1425
1426out_unlock:
01f4f327 1427 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1428
1429 if (error)
1430 return -error;
1431 return offset;
1432}
1433
1434STATIC loff_t
1435xfs_file_llseek(
1436 struct file *file,
1437 loff_t offset,
1438 int origin)
1439{
1440 switch (origin) {
1441 case SEEK_END:
1442 case SEEK_CUR:
1443 case SEEK_SET:
1444 return generic_file_llseek(file, offset, origin);
1445 case SEEK_DATA:
834ab122 1446 return xfs_seek_data(file, offset);
3fe3e6b1 1447 case SEEK_HOLE:
834ab122 1448 return xfs_seek_hole(file, offset);
3fe3e6b1
JL
1449 default:
1450 return -EINVAL;
1451 }
1452}
1453
4b6f5d20 1454const struct file_operations xfs_file_operations = {
3fe3e6b1 1455 .llseek = xfs_file_llseek,
1da177e4 1456 .read = do_sync_read,
bb3f724e 1457 .write = do_sync_write,
3562fd45
NS
1458 .aio_read = xfs_file_aio_read,
1459 .aio_write = xfs_file_aio_write,
1b895840
NS
1460 .splice_read = xfs_file_splice_read,
1461 .splice_write = xfs_file_splice_write,
3562fd45 1462 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1463#ifdef CONFIG_COMPAT
3562fd45 1464 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1465#endif
3562fd45
NS
1466 .mmap = xfs_file_mmap,
1467 .open = xfs_file_open,
1468 .release = xfs_file_release,
1469 .fsync = xfs_file_fsync,
2fe17c10 1470 .fallocate = xfs_file_fallocate,
1da177e4
LT
1471};
1472
4b6f5d20 1473const struct file_operations xfs_dir_file_operations = {
f999a5bf 1474 .open = xfs_dir_open,
1da177e4 1475 .read = generic_read_dir,
b8227554 1476 .iterate = xfs_file_readdir,
59af1584 1477 .llseek = generic_file_llseek,
3562fd45 1478 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1479#ifdef CONFIG_COMPAT
3562fd45 1480 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1481#endif
1da2f2db 1482 .fsync = xfs_dir_fsync,
1da177e4
LT
1483};
1484
f0f37e2f 1485static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1486 .fault = filemap_fault,
f1820361 1487 .map_pages = filemap_map_pages,
4f57dbc6 1488 .page_mkwrite = xfs_vm_page_mkwrite,
0b173bc4 1489 .remap_pages = generic_file_remap_pages,
6fac0cb4 1490};
This page took 0.639673 seconds and 5 git commands to generate.