xfs: remove unused transaction callback variables
[deliverable/linux.git] / fs / xfs / xfs_icache.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
6ca1c906 20#include "xfs_format.h"
fe4fa4b8 21#include "xfs_types.h"
fe4fa4b8 22#include "xfs_log.h"
f661f1e0 23#include "xfs_log_priv.h"
fe4fa4b8
DC
24#include "xfs_inum.h"
25#include "xfs_trans.h"
fd074841 26#include "xfs_trans_priv.h"
fe4fa4b8
DC
27#include "xfs_sb.h"
28#include "xfs_ag.h"
fe4fa4b8
DC
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
fe4fa4b8
DC
31#include "xfs_inode.h"
32#include "xfs_dinode.h"
33#include "xfs_error.h"
fe4fa4b8 34#include "xfs_filestream.h"
fe4fa4b8 35#include "xfs_inode_item.h"
7d095257 36#include "xfs_quota.h"
0b1b213f 37#include "xfs_trace.h"
1a387d3b 38#include "xfs_fsops.h"
6d8b79cf 39#include "xfs_icache.h"
c24b5dfa 40#include "xfs_bmap_util.h"
fe4fa4b8 41
a167b17e
DC
42#include <linux/kthread.h>
43#include <linux/freezer.h>
44
33479e05
DC
45STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
46 struct xfs_perag *pag, struct xfs_inode *ip);
47
48/*
49 * Allocate and initialise an xfs_inode.
50 */
638f4416 51struct xfs_inode *
33479e05
DC
52xfs_inode_alloc(
53 struct xfs_mount *mp,
54 xfs_ino_t ino)
55{
56 struct xfs_inode *ip;
57
58 /*
59 * if this didn't occur in transactions, we could use
60 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
61 * code up to do this anyway.
62 */
63 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
64 if (!ip)
65 return NULL;
66 if (inode_init_always(mp->m_super, VFS_I(ip))) {
67 kmem_zone_free(xfs_inode_zone, ip);
68 return NULL;
69 }
70
71 ASSERT(atomic_read(&ip->i_pincount) == 0);
72 ASSERT(!spin_is_locked(&ip->i_flags_lock));
73 ASSERT(!xfs_isiflocked(ip));
74 ASSERT(ip->i_ino == 0);
75
76 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
77
78 /* initialise the xfs inode */
79 ip->i_ino = ino;
80 ip->i_mount = mp;
81 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
82 ip->i_afp = NULL;
83 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
84 ip->i_flags = 0;
85 ip->i_delayed_blks = 0;
86 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
87
88 return ip;
89}
90
91STATIC void
92xfs_inode_free_callback(
93 struct rcu_head *head)
94{
95 struct inode *inode = container_of(head, struct inode, i_rcu);
96 struct xfs_inode *ip = XFS_I(inode);
97
98 kmem_zone_free(xfs_inode_zone, ip);
99}
100
638f4416 101void
33479e05
DC
102xfs_inode_free(
103 struct xfs_inode *ip)
104{
105 switch (ip->i_d.di_mode & S_IFMT) {
106 case S_IFREG:
107 case S_IFDIR:
108 case S_IFLNK:
109 xfs_idestroy_fork(ip, XFS_DATA_FORK);
110 break;
111 }
112
113 if (ip->i_afp)
114 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
115
116 if (ip->i_itemp) {
117 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
118 xfs_inode_item_destroy(ip);
119 ip->i_itemp = NULL;
120 }
121
33479e05
DC
122 /*
123 * Because we use RCU freeing we need to ensure the inode always
124 * appears to be reclaimed with an invalid inode number when in the
125 * free state. The ip->i_flags_lock provides the barrier against lookup
126 * races.
127 */
128 spin_lock(&ip->i_flags_lock);
129 ip->i_flags = XFS_IRECLAIM;
130 ip->i_ino = 0;
131 spin_unlock(&ip->i_flags_lock);
132
b313a5f1
DC
133 /* asserts to verify all state is correct here */
134 ASSERT(atomic_read(&ip->i_pincount) == 0);
135 ASSERT(!xfs_isiflocked(ip));
136
33479e05
DC
137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
138}
139
140/*
141 * Check the validity of the inode we just found it the cache
142 */
143static int
144xfs_iget_cache_hit(
145 struct xfs_perag *pag,
146 struct xfs_inode *ip,
147 xfs_ino_t ino,
148 int flags,
149 int lock_flags) __releases(RCU)
150{
151 struct inode *inode = VFS_I(ip);
152 struct xfs_mount *mp = ip->i_mount;
153 int error;
154
155 /*
156 * check for re-use of an inode within an RCU grace period due to the
157 * radix tree nodes not being updated yet. We monitor for this by
158 * setting the inode number to zero before freeing the inode structure.
159 * If the inode has been reallocated and set up, then the inode number
160 * will not match, so check for that, too.
161 */
162 spin_lock(&ip->i_flags_lock);
163 if (ip->i_ino != ino) {
164 trace_xfs_iget_skip(ip);
165 XFS_STATS_INC(xs_ig_frecycle);
166 error = EAGAIN;
167 goto out_error;
168 }
169
170
171 /*
172 * If we are racing with another cache hit that is currently
173 * instantiating this inode or currently recycling it out of
174 * reclaimabe state, wait for the initialisation to complete
175 * before continuing.
176 *
177 * XXX(hch): eventually we should do something equivalent to
178 * wait_on_inode to wait for these flags to be cleared
179 * instead of polling for it.
180 */
181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
182 trace_xfs_iget_skip(ip);
183 XFS_STATS_INC(xs_ig_frecycle);
184 error = EAGAIN;
185 goto out_error;
186 }
187
188 /*
189 * If lookup is racing with unlink return an error immediately.
190 */
191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
192 error = ENOENT;
193 goto out_error;
194 }
195
196 /*
197 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
198 * Need to carefully get it back into useable state.
199 */
200 if (ip->i_flags & XFS_IRECLAIMABLE) {
201 trace_xfs_iget_reclaim(ip);
202
203 /*
204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
205 * from stomping over us while we recycle the inode. We can't
206 * clear the radix tree reclaimable tag yet as it requires
207 * pag_ici_lock to be held exclusive.
208 */
209 ip->i_flags |= XFS_IRECLAIM;
210
211 spin_unlock(&ip->i_flags_lock);
212 rcu_read_unlock();
213
214 error = -inode_init_always(mp->m_super, inode);
215 if (error) {
216 /*
217 * Re-initializing the inode failed, and we are in deep
218 * trouble. Try to re-add it to the reclaim list.
219 */
220 rcu_read_lock();
221 spin_lock(&ip->i_flags_lock);
222
223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
225 trace_xfs_iget_reclaim_fail(ip);
226 goto out_error;
227 }
228
229 spin_lock(&pag->pag_ici_lock);
230 spin_lock(&ip->i_flags_lock);
231
232 /*
233 * Clear the per-lifetime state in the inode as we are now
234 * effectively a new inode and need to return to the initial
235 * state before reuse occurs.
236 */
237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
238 ip->i_flags |= XFS_INEW;
239 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
240 inode->i_state = I_NEW;
241
242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
244
245 spin_unlock(&ip->i_flags_lock);
246 spin_unlock(&pag->pag_ici_lock);
247 } else {
248 /* If the VFS inode is being torn down, pause and try again. */
249 if (!igrab(inode)) {
250 trace_xfs_iget_skip(ip);
251 error = EAGAIN;
252 goto out_error;
253 }
254
255 /* We've got a live one. */
256 spin_unlock(&ip->i_flags_lock);
257 rcu_read_unlock();
258 trace_xfs_iget_hit(ip);
259 }
260
261 if (lock_flags != 0)
262 xfs_ilock(ip, lock_flags);
263
264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
265 XFS_STATS_INC(xs_ig_found);
266
267 return 0;
268
269out_error:
270 spin_unlock(&ip->i_flags_lock);
271 rcu_read_unlock();
272 return error;
273}
274
275
276static int
277xfs_iget_cache_miss(
278 struct xfs_mount *mp,
279 struct xfs_perag *pag,
280 xfs_trans_t *tp,
281 xfs_ino_t ino,
282 struct xfs_inode **ipp,
283 int flags,
284 int lock_flags)
285{
286 struct xfs_inode *ip;
287 int error;
288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
289 int iflags;
290
291 ip = xfs_inode_alloc(mp, ino);
292 if (!ip)
293 return ENOMEM;
294
295 error = xfs_iread(mp, tp, ip, flags);
296 if (error)
297 goto out_destroy;
298
299 trace_xfs_iget_miss(ip);
300
301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
302 error = ENOENT;
303 goto out_destroy;
304 }
305
306 /*
307 * Preload the radix tree so we can insert safely under the
308 * write spinlock. Note that we cannot sleep inside the preload
309 * region. Since we can be called from transaction context, don't
310 * recurse into the file system.
311 */
312 if (radix_tree_preload(GFP_NOFS)) {
313 error = EAGAIN;
314 goto out_destroy;
315 }
316
317 /*
318 * Because the inode hasn't been added to the radix-tree yet it can't
319 * be found by another thread, so we can do the non-sleeping lock here.
320 */
321 if (lock_flags) {
322 if (!xfs_ilock_nowait(ip, lock_flags))
323 BUG();
324 }
325
326 /*
327 * These values must be set before inserting the inode into the radix
328 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 * RCU locking mechanism) can find it and that lookup must see that this
330 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 * memory barrier that ensures this detection works correctly at lookup
333 * time.
334 */
335 iflags = XFS_INEW;
336 if (flags & XFS_IGET_DONTCACHE)
337 iflags |= XFS_IDONTCACHE;
113a5683
CS
338 ip->i_udquot = NULL;
339 ip->i_gdquot = NULL;
92f8ff73 340 ip->i_pdquot = NULL;
33479e05
DC
341 xfs_iflags_set(ip, iflags);
342
343 /* insert the new inode */
344 spin_lock(&pag->pag_ici_lock);
345 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
346 if (unlikely(error)) {
347 WARN_ON(error != -EEXIST);
348 XFS_STATS_INC(xs_ig_dup);
349 error = EAGAIN;
350 goto out_preload_end;
351 }
352 spin_unlock(&pag->pag_ici_lock);
353 radix_tree_preload_end();
354
355 *ipp = ip;
356 return 0;
357
358out_preload_end:
359 spin_unlock(&pag->pag_ici_lock);
360 radix_tree_preload_end();
361 if (lock_flags)
362 xfs_iunlock(ip, lock_flags);
363out_destroy:
364 __destroy_inode(VFS_I(ip));
365 xfs_inode_free(ip);
366 return error;
367}
368
369/*
370 * Look up an inode by number in the given file system.
371 * The inode is looked up in the cache held in each AG.
372 * If the inode is found in the cache, initialise the vfs inode
373 * if necessary.
374 *
375 * If it is not in core, read it in from the file system's device,
376 * add it to the cache and initialise the vfs inode.
377 *
378 * The inode is locked according to the value of the lock_flags parameter.
379 * This flag parameter indicates how and if the inode's IO lock and inode lock
380 * should be taken.
381 *
382 * mp -- the mount point structure for the current file system. It points
383 * to the inode hash table.
384 * tp -- a pointer to the current transaction if there is one. This is
385 * simply passed through to the xfs_iread() call.
386 * ino -- the number of the inode desired. This is the unique identifier
387 * within the file system for the inode being requested.
388 * lock_flags -- flags indicating how to lock the inode. See the comment
389 * for xfs_ilock() for a list of valid values.
390 */
391int
392xfs_iget(
393 xfs_mount_t *mp,
394 xfs_trans_t *tp,
395 xfs_ino_t ino,
396 uint flags,
397 uint lock_flags,
398 xfs_inode_t **ipp)
399{
400 xfs_inode_t *ip;
401 int error;
402 xfs_perag_t *pag;
403 xfs_agino_t agino;
404
405 /*
406 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
407 * doesn't get freed while it's being referenced during a
408 * radix tree traversal here. It assumes this function
409 * aqcuires only the ILOCK (and therefore it has no need to
410 * involve the IOLOCK in this synchronization).
411 */
412 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
413
414 /* reject inode numbers outside existing AGs */
415 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
416 return EINVAL;
417
418 /* get the perag structure and ensure that it's inode capable */
419 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
420 agino = XFS_INO_TO_AGINO(mp, ino);
421
422again:
423 error = 0;
424 rcu_read_lock();
425 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
426
427 if (ip) {
428 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
429 if (error)
430 goto out_error_or_again;
431 } else {
432 rcu_read_unlock();
433 XFS_STATS_INC(xs_ig_missed);
434
435 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
436 flags, lock_flags);
437 if (error)
438 goto out_error_or_again;
439 }
440 xfs_perag_put(pag);
441
442 *ipp = ip;
443
444 /*
445 * If we have a real type for an on-disk inode, we can set ops(&unlock)
446 * now. If it's a new inode being created, xfs_ialloc will handle it.
447 */
448 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
449 xfs_setup_inode(ip);
450 return 0;
451
452out_error_or_again:
453 if (error == EAGAIN) {
454 delay(1);
455 goto again;
456 }
457 xfs_perag_put(pag);
458 return error;
459}
460
78ae5256
DC
461/*
462 * The inode lookup is done in batches to keep the amount of lock traffic and
463 * radix tree lookups to a minimum. The batch size is a trade off between
464 * lookup reduction and stack usage. This is in the reclaim path, so we can't
465 * be too greedy.
466 */
467#define XFS_LOOKUP_BATCH 32
468
e13de955
DC
469STATIC int
470xfs_inode_ag_walk_grab(
471 struct xfs_inode *ip)
472{
473 struct inode *inode = VFS_I(ip);
474
1a3e8f3d
DC
475 ASSERT(rcu_read_lock_held());
476
477 /*
478 * check for stale RCU freed inode
479 *
480 * If the inode has been reallocated, it doesn't matter if it's not in
481 * the AG we are walking - we are walking for writeback, so if it
482 * passes all the "valid inode" checks and is dirty, then we'll write
483 * it back anyway. If it has been reallocated and still being
484 * initialised, the XFS_INEW check below will catch it.
485 */
486 spin_lock(&ip->i_flags_lock);
487 if (!ip->i_ino)
488 goto out_unlock_noent;
489
490 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
491 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
492 goto out_unlock_noent;
493 spin_unlock(&ip->i_flags_lock);
494
e13de955
DC
495 /* nothing to sync during shutdown */
496 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
497 return EFSCORRUPTED;
498
e13de955
DC
499 /* If we can't grab the inode, it must on it's way to reclaim. */
500 if (!igrab(inode))
501 return ENOENT;
502
e13de955
DC
503 /* inode is valid */
504 return 0;
1a3e8f3d
DC
505
506out_unlock_noent:
507 spin_unlock(&ip->i_flags_lock);
508 return ENOENT;
e13de955
DC
509}
510
75f3cb13
DC
511STATIC int
512xfs_inode_ag_walk(
513 struct xfs_mount *mp,
5017e97d 514 struct xfs_perag *pag,
75f3cb13 515 int (*execute)(struct xfs_inode *ip,
a454f742
BF
516 struct xfs_perag *pag, int flags,
517 void *args),
518 int flags,
519 void *args,
520 int tag)
75f3cb13 521{
75f3cb13
DC
522 uint32_t first_index;
523 int last_error = 0;
524 int skipped;
65d0f205 525 int done;
78ae5256 526 int nr_found;
75f3cb13
DC
527
528restart:
65d0f205 529 done = 0;
75f3cb13
DC
530 skipped = 0;
531 first_index = 0;
78ae5256 532 nr_found = 0;
75f3cb13 533 do {
78ae5256 534 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 535 int error = 0;
78ae5256 536 int i;
75f3cb13 537
1a3e8f3d 538 rcu_read_lock();
a454f742
BF
539
540 if (tag == -1)
541 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
542 (void **)batch, first_index,
543 XFS_LOOKUP_BATCH);
a454f742
BF
544 else
545 nr_found = radix_tree_gang_lookup_tag(
546 &pag->pag_ici_root,
547 (void **) batch, first_index,
548 XFS_LOOKUP_BATCH, tag);
549
65d0f205 550 if (!nr_found) {
1a3e8f3d 551 rcu_read_unlock();
75f3cb13 552 break;
c8e20be0 553 }
75f3cb13 554
65d0f205 555 /*
78ae5256
DC
556 * Grab the inodes before we drop the lock. if we found
557 * nothing, nr == 0 and the loop will be skipped.
65d0f205 558 */
78ae5256
DC
559 for (i = 0; i < nr_found; i++) {
560 struct xfs_inode *ip = batch[i];
561
562 if (done || xfs_inode_ag_walk_grab(ip))
563 batch[i] = NULL;
564
565 /*
1a3e8f3d
DC
566 * Update the index for the next lookup. Catch
567 * overflows into the next AG range which can occur if
568 * we have inodes in the last block of the AG and we
569 * are currently pointing to the last inode.
570 *
571 * Because we may see inodes that are from the wrong AG
572 * due to RCU freeing and reallocation, only update the
573 * index if it lies in this AG. It was a race that lead
574 * us to see this inode, so another lookup from the
575 * same index will not find it again.
78ae5256 576 */
1a3e8f3d
DC
577 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
578 continue;
78ae5256
DC
579 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
580 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
581 done = 1;
e13de955 582 }
78ae5256
DC
583
584 /* unlock now we've grabbed the inodes. */
1a3e8f3d 585 rcu_read_unlock();
e13de955 586
78ae5256
DC
587 for (i = 0; i < nr_found; i++) {
588 if (!batch[i])
589 continue;
a454f742 590 error = execute(batch[i], pag, flags, args);
78ae5256
DC
591 IRELE(batch[i]);
592 if (error == EAGAIN) {
593 skipped++;
594 continue;
595 }
596 if (error && last_error != EFSCORRUPTED)
597 last_error = error;
75f3cb13 598 }
c8e20be0
DC
599
600 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
601 if (error == EFSCORRUPTED)
602 break;
603
8daaa831
DC
604 cond_resched();
605
78ae5256 606 } while (nr_found && !done);
75f3cb13
DC
607
608 if (skipped) {
609 delay(1);
610 goto restart;
611 }
75f3cb13
DC
612 return last_error;
613}
614
579b62fa
BF
615/*
616 * Background scanning to trim post-EOF preallocated space. This is queued
b9fe5052 617 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
579b62fa
BF
618 */
619STATIC void
620xfs_queue_eofblocks(
621 struct xfs_mount *mp)
622{
623 rcu_read_lock();
624 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
625 queue_delayed_work(mp->m_eofblocks_workqueue,
626 &mp->m_eofblocks_work,
627 msecs_to_jiffies(xfs_eofb_secs * 1000));
628 rcu_read_unlock();
629}
630
631void
632xfs_eofblocks_worker(
633 struct work_struct *work)
634{
635 struct xfs_mount *mp = container_of(to_delayed_work(work),
636 struct xfs_mount, m_eofblocks_work);
637 xfs_icache_free_eofblocks(mp, NULL);
638 xfs_queue_eofblocks(mp);
639}
640
fe588ed3 641int
75f3cb13
DC
642xfs_inode_ag_iterator(
643 struct xfs_mount *mp,
644 int (*execute)(struct xfs_inode *ip,
a454f742
BF
645 struct xfs_perag *pag, int flags,
646 void *args),
647 int flags,
648 void *args)
75f3cb13 649{
16fd5367 650 struct xfs_perag *pag;
75f3cb13
DC
651 int error = 0;
652 int last_error = 0;
653 xfs_agnumber_t ag;
654
16fd5367 655 ag = 0;
65d0f205
DC
656 while ((pag = xfs_perag_get(mp, ag))) {
657 ag = pag->pag_agno + 1;
a454f742
BF
658 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
659 xfs_perag_put(pag);
660 if (error) {
661 last_error = error;
662 if (error == EFSCORRUPTED)
663 break;
664 }
665 }
666 return XFS_ERROR(last_error);
667}
668
669int
670xfs_inode_ag_iterator_tag(
671 struct xfs_mount *mp,
672 int (*execute)(struct xfs_inode *ip,
673 struct xfs_perag *pag, int flags,
674 void *args),
675 int flags,
676 void *args,
677 int tag)
678{
679 struct xfs_perag *pag;
680 int error = 0;
681 int last_error = 0;
682 xfs_agnumber_t ag;
683
684 ag = 0;
685 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
686 ag = pag->pag_agno + 1;
687 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
5017e97d 688 xfs_perag_put(pag);
75f3cb13
DC
689 if (error) {
690 last_error = error;
691 if (error == EFSCORRUPTED)
692 break;
693 }
694 }
695 return XFS_ERROR(last_error);
696}
697
a7b339f1
DC
698/*
699 * Queue a new inode reclaim pass if there are reclaimable inodes and there
700 * isn't a reclaim pass already in progress. By default it runs every 5s based
5889608d 701 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
a7b339f1
DC
702 * tunable, but that can be done if this method proves to be ineffective or too
703 * aggressive.
704 */
705static void
5889608d 706xfs_reclaim_work_queue(
a7b339f1 707 struct xfs_mount *mp)
a167b17e 708{
a167b17e 709
a7b339f1
DC
710 rcu_read_lock();
711 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
5889608d 712 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
a7b339f1 713 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 714 }
a7b339f1
DC
715 rcu_read_unlock();
716}
a167b17e 717
a7b339f1
DC
718/*
719 * This is a fast pass over the inode cache to try to get reclaim moving on as
720 * many inodes as possible in a short period of time. It kicks itself every few
721 * seconds, as well as being kicked by the inode cache shrinker when memory
722 * goes low. It scans as quickly as possible avoiding locked inodes or those
723 * already being flushed, and once done schedules a future pass.
724 */
33c7a2bc 725void
a7b339f1
DC
726xfs_reclaim_worker(
727 struct work_struct *work)
728{
729 struct xfs_mount *mp = container_of(to_delayed_work(work),
730 struct xfs_mount, m_reclaim_work);
731
732 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
5889608d 733 xfs_reclaim_work_queue(mp);
a7b339f1
DC
734}
735
33479e05 736static void
bc990f5c
CH
737__xfs_inode_set_reclaim_tag(
738 struct xfs_perag *pag,
739 struct xfs_inode *ip)
740{
741 radix_tree_tag_set(&pag->pag_ici_root,
742 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
743 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
744
745 if (!pag->pag_ici_reclaimable) {
746 /* propagate the reclaim tag up into the perag radix tree */
747 spin_lock(&ip->i_mount->m_perag_lock);
748 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
749 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
750 XFS_ICI_RECLAIM_TAG);
751 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
752
753 /* schedule periodic background inode reclaim */
5889608d 754 xfs_reclaim_work_queue(ip->i_mount);
a7b339f1 755
16fd5367
DC
756 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
757 -1, _RET_IP_);
758 }
9bf729c0 759 pag->pag_ici_reclaimable++;
bc990f5c
CH
760}
761
11654513
DC
762/*
763 * We set the inode flag atomically with the radix tree tag.
764 * Once we get tag lookups on the radix tree, this inode flag
765 * can go away.
766 */
396beb85
DC
767void
768xfs_inode_set_reclaim_tag(
769 xfs_inode_t *ip)
770{
5017e97d
DC
771 struct xfs_mount *mp = ip->i_mount;
772 struct xfs_perag *pag;
396beb85 773
5017e97d 774 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 775 spin_lock(&pag->pag_ici_lock);
396beb85 776 spin_lock(&ip->i_flags_lock);
bc990f5c 777 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 778 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 779 spin_unlock(&ip->i_flags_lock);
1a427ab0 780 spin_unlock(&pag->pag_ici_lock);
5017e97d 781 xfs_perag_put(pag);
396beb85
DC
782}
783
081003ff
JW
784STATIC void
785__xfs_inode_clear_reclaim(
396beb85
DC
786 xfs_perag_t *pag,
787 xfs_inode_t *ip)
788{
9bf729c0 789 pag->pag_ici_reclaimable--;
16fd5367
DC
790 if (!pag->pag_ici_reclaimable) {
791 /* clear the reclaim tag from the perag radix tree */
792 spin_lock(&ip->i_mount->m_perag_lock);
793 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
794 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
795 XFS_ICI_RECLAIM_TAG);
796 spin_unlock(&ip->i_mount->m_perag_lock);
797 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
798 -1, _RET_IP_);
799 }
396beb85
DC
800}
801
33479e05 802STATIC void
081003ff
JW
803__xfs_inode_clear_reclaim_tag(
804 xfs_mount_t *mp,
805 xfs_perag_t *pag,
806 xfs_inode_t *ip)
807{
808 radix_tree_tag_clear(&pag->pag_ici_root,
809 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
810 __xfs_inode_clear_reclaim(pag, ip);
811}
812
e3a20c0b
DC
813/*
814 * Grab the inode for reclaim exclusively.
815 * Return 0 if we grabbed it, non-zero otherwise.
816 */
817STATIC int
818xfs_reclaim_inode_grab(
819 struct xfs_inode *ip,
820 int flags)
821{
1a3e8f3d
DC
822 ASSERT(rcu_read_lock_held());
823
824 /* quick check for stale RCU freed inode */
825 if (!ip->i_ino)
826 return 1;
e3a20c0b
DC
827
828 /*
474fce06
CH
829 * If we are asked for non-blocking operation, do unlocked checks to
830 * see if the inode already is being flushed or in reclaim to avoid
831 * lock traffic.
e3a20c0b
DC
832 */
833 if ((flags & SYNC_TRYLOCK) &&
474fce06 834 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 835 return 1;
e3a20c0b
DC
836
837 /*
838 * The radix tree lock here protects a thread in xfs_iget from racing
839 * with us starting reclaim on the inode. Once we have the
840 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
841 *
842 * Due to RCU lookup, we may find inodes that have been freed and only
843 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
844 * aren't candidates for reclaim at all, so we must check the
845 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
846 */
847 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
848 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
849 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
850 /* not a reclaim candidate. */
e3a20c0b
DC
851 spin_unlock(&ip->i_flags_lock);
852 return 1;
853 }
854 __xfs_iflags_set(ip, XFS_IRECLAIM);
855 spin_unlock(&ip->i_flags_lock);
856 return 0;
857}
858
777df5af 859/*
8a48088f
CH
860 * Inodes in different states need to be treated differently. The following
861 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
862 *
863 * inode state iflush ret required action
864 * --------------- ---------- ---------------
865 * bad - reclaim
866 * shutdown EIO unpin and reclaim
867 * clean, unpinned 0 reclaim
868 * stale, unpinned 0 reclaim
c854363e
DC
869 * clean, pinned(*) 0 requeue
870 * stale, pinned EAGAIN requeue
8a48088f
CH
871 * dirty, async - requeue
872 * dirty, sync 0 reclaim
777df5af
DC
873 *
874 * (*) dgc: I don't think the clean, pinned state is possible but it gets
875 * handled anyway given the order of checks implemented.
876 *
c854363e
DC
877 * Also, because we get the flush lock first, we know that any inode that has
878 * been flushed delwri has had the flush completed by the time we check that
8a48088f 879 * the inode is clean.
c854363e 880 *
8a48088f
CH
881 * Note that because the inode is flushed delayed write by AIL pushing, the
882 * flush lock may already be held here and waiting on it can result in very
883 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
884 * the caller should push the AIL first before trying to reclaim inodes to
885 * minimise the amount of time spent waiting. For background relaim, we only
886 * bother to reclaim clean inodes anyway.
c854363e 887 *
777df5af
DC
888 * Hence the order of actions after gaining the locks should be:
889 * bad => reclaim
890 * shutdown => unpin and reclaim
8a48088f 891 * pinned, async => requeue
c854363e 892 * pinned, sync => unpin
777df5af
DC
893 * stale => reclaim
894 * clean => reclaim
8a48088f 895 * dirty, async => requeue
c854363e 896 * dirty, sync => flush, wait and reclaim
777df5af 897 */
75f3cb13 898STATIC int
c8e20be0 899xfs_reclaim_inode(
75f3cb13
DC
900 struct xfs_inode *ip,
901 struct xfs_perag *pag,
c8e20be0 902 int sync_mode)
fce08f2f 903{
4c46819a
CH
904 struct xfs_buf *bp = NULL;
905 int error;
777df5af 906
1bfd8d04
DC
907restart:
908 error = 0;
c8e20be0 909 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
910 if (!xfs_iflock_nowait(ip)) {
911 if (!(sync_mode & SYNC_WAIT))
912 goto out;
913 xfs_iflock(ip);
914 }
7a3be02b 915
777df5af
DC
916 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
917 xfs_iunpin_wait(ip);
04913fdd 918 xfs_iflush_abort(ip, false);
777df5af
DC
919 goto reclaim;
920 }
c854363e 921 if (xfs_ipincount(ip)) {
8a48088f
CH
922 if (!(sync_mode & SYNC_WAIT))
923 goto out_ifunlock;
777df5af 924 xfs_iunpin_wait(ip);
c854363e 925 }
777df5af
DC
926 if (xfs_iflags_test(ip, XFS_ISTALE))
927 goto reclaim;
928 if (xfs_inode_clean(ip))
929 goto reclaim;
930
8a48088f
CH
931 /*
932 * Never flush out dirty data during non-blocking reclaim, as it would
933 * just contend with AIL pushing trying to do the same job.
934 */
935 if (!(sync_mode & SYNC_WAIT))
936 goto out_ifunlock;
937
1bfd8d04
DC
938 /*
939 * Now we have an inode that needs flushing.
940 *
4c46819a 941 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 942 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 943 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
944 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
945 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
946 *
947 * As xfs_ifree_cluser() must gather all inodes that are active in the
948 * cache to mark them stale, if we hit this case we don't actually want
949 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
950 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
951 * inode, back off and try again. Hopefully the next pass through will
952 * see the stale flag set on the inode.
1bfd8d04 953 */
4c46819a 954 error = xfs_iflush(ip, &bp);
8a48088f
CH
955 if (error == EAGAIN) {
956 xfs_iunlock(ip, XFS_ILOCK_EXCL);
957 /* backoff longer than in xfs_ifree_cluster */
958 delay(2);
959 goto restart;
c854363e 960 }
c854363e 961
4c46819a
CH
962 if (!error) {
963 error = xfs_bwrite(bp);
964 xfs_buf_relse(bp);
965 }
966
967 xfs_iflock(ip);
777df5af
DC
968reclaim:
969 xfs_ifunlock(ip);
c8e20be0 970 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
971
972 XFS_STATS_INC(xs_ig_reclaims);
973 /*
974 * Remove the inode from the per-AG radix tree.
975 *
976 * Because radix_tree_delete won't complain even if the item was never
977 * added to the tree assert that it's been there before to catch
978 * problems with the inode life time early on.
979 */
1a427ab0 980 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
981 if (!radix_tree_delete(&pag->pag_ici_root,
982 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
983 ASSERT(0);
081003ff 984 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 985 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
986
987 /*
988 * Here we do an (almost) spurious inode lock in order to coordinate
989 * with inode cache radix tree lookups. This is because the lookup
990 * can reference the inodes in the cache without taking references.
991 *
992 * We make that OK here by ensuring that we wait until the inode is
ad637a10 993 * unlocked after the lookup before we go ahead and free it.
2f11feab 994 */
ad637a10 995 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 996 xfs_qm_dqdetach(ip);
ad637a10 997 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
998
999 xfs_inode_free(ip);
ad637a10 1000 return error;
8a48088f
CH
1001
1002out_ifunlock:
1003 xfs_ifunlock(ip);
1004out:
1005 xfs_iflags_clear(ip, XFS_IRECLAIM);
1006 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1007 /*
1008 * We could return EAGAIN here to make reclaim rescan the inode tree in
1009 * a short while. However, this just burns CPU time scanning the tree
5889608d
DC
1010 * waiting for IO to complete and the reclaim work never goes back to
1011 * the idle state. Instead, return 0 to let the next scheduled
1012 * background reclaim attempt to reclaim the inode again.
8a48088f
CH
1013 */
1014 return 0;
7a3be02b
DC
1015}
1016
65d0f205
DC
1017/*
1018 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1019 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1020 * then a shut down during filesystem unmount reclaim walk leak all the
1021 * unreclaimed inodes.
1022 */
33479e05 1023STATIC int
65d0f205
DC
1024xfs_reclaim_inodes_ag(
1025 struct xfs_mount *mp,
1026 int flags,
1027 int *nr_to_scan)
1028{
1029 struct xfs_perag *pag;
1030 int error = 0;
1031 int last_error = 0;
1032 xfs_agnumber_t ag;
69b491c2
DC
1033 int trylock = flags & SYNC_TRYLOCK;
1034 int skipped;
65d0f205 1035
69b491c2 1036restart:
65d0f205 1037 ag = 0;
69b491c2 1038 skipped = 0;
65d0f205
DC
1039 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1040 unsigned long first_index = 0;
1041 int done = 0;
e3a20c0b 1042 int nr_found = 0;
65d0f205
DC
1043
1044 ag = pag->pag_agno + 1;
1045
69b491c2
DC
1046 if (trylock) {
1047 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1048 skipped++;
f83282a8 1049 xfs_perag_put(pag);
69b491c2
DC
1050 continue;
1051 }
1052 first_index = pag->pag_ici_reclaim_cursor;
1053 } else
1054 mutex_lock(&pag->pag_ici_reclaim_lock);
1055
65d0f205 1056 do {
e3a20c0b
DC
1057 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1058 int i;
65d0f205 1059
1a3e8f3d 1060 rcu_read_lock();
e3a20c0b
DC
1061 nr_found = radix_tree_gang_lookup_tag(
1062 &pag->pag_ici_root,
1063 (void **)batch, first_index,
1064 XFS_LOOKUP_BATCH,
65d0f205
DC
1065 XFS_ICI_RECLAIM_TAG);
1066 if (!nr_found) {
b2232219 1067 done = 1;
1a3e8f3d 1068 rcu_read_unlock();
65d0f205
DC
1069 break;
1070 }
1071
1072 /*
e3a20c0b
DC
1073 * Grab the inodes before we drop the lock. if we found
1074 * nothing, nr == 0 and the loop will be skipped.
65d0f205 1075 */
e3a20c0b
DC
1076 for (i = 0; i < nr_found; i++) {
1077 struct xfs_inode *ip = batch[i];
1078
1079 if (done || xfs_reclaim_inode_grab(ip, flags))
1080 batch[i] = NULL;
1081
1082 /*
1083 * Update the index for the next lookup. Catch
1084 * overflows into the next AG range which can
1085 * occur if we have inodes in the last block of
1086 * the AG and we are currently pointing to the
1087 * last inode.
1a3e8f3d
DC
1088 *
1089 * Because we may see inodes that are from the
1090 * wrong AG due to RCU freeing and
1091 * reallocation, only update the index if it
1092 * lies in this AG. It was a race that lead us
1093 * to see this inode, so another lookup from
1094 * the same index will not find it again.
e3a20c0b 1095 */
1a3e8f3d
DC
1096 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1097 pag->pag_agno)
1098 continue;
e3a20c0b
DC
1099 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1100 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1101 done = 1;
1102 }
65d0f205 1103
e3a20c0b 1104 /* unlock now we've grabbed the inodes. */
1a3e8f3d 1105 rcu_read_unlock();
e3a20c0b
DC
1106
1107 for (i = 0; i < nr_found; i++) {
1108 if (!batch[i])
1109 continue;
1110 error = xfs_reclaim_inode(batch[i], pag, flags);
1111 if (error && last_error != EFSCORRUPTED)
1112 last_error = error;
1113 }
1114
1115 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 1116
8daaa831
DC
1117 cond_resched();
1118
e3a20c0b 1119 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 1120
69b491c2
DC
1121 if (trylock && !done)
1122 pag->pag_ici_reclaim_cursor = first_index;
1123 else
1124 pag->pag_ici_reclaim_cursor = 0;
1125 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
1126 xfs_perag_put(pag);
1127 }
69b491c2
DC
1128
1129 /*
1130 * if we skipped any AG, and we still have scan count remaining, do
1131 * another pass this time using blocking reclaim semantics (i.e
1132 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1133 * ensure that when we get more reclaimers than AGs we block rather
1134 * than spin trying to execute reclaim.
1135 */
8daaa831 1136 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
1137 trylock = 0;
1138 goto restart;
1139 }
65d0f205
DC
1140 return XFS_ERROR(last_error);
1141}
1142
7a3be02b
DC
1143int
1144xfs_reclaim_inodes(
1145 xfs_mount_t *mp,
7a3be02b
DC
1146 int mode)
1147{
65d0f205
DC
1148 int nr_to_scan = INT_MAX;
1149
1150 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
1151}
1152
1153/*
8daaa831 1154 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
1155 *
1156 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 1157 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
1158 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1159 * them to be cleaned, which we hope will not be very long due to the
1160 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 1161 */
0a234c6d 1162long
8daaa831
DC
1163xfs_reclaim_inodes_nr(
1164 struct xfs_mount *mp,
1165 int nr_to_scan)
9bf729c0 1166{
8daaa831 1167 /* kick background reclaimer and push the AIL */
5889608d 1168 xfs_reclaim_work_queue(mp);
8daaa831 1169 xfs_ail_push_all(mp->m_ail);
a7b339f1 1170
0a234c6d 1171 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
8daaa831 1172}
9bf729c0 1173
8daaa831
DC
1174/*
1175 * Return the number of reclaimable inodes in the filesystem for
1176 * the shrinker to determine how much to reclaim.
1177 */
1178int
1179xfs_reclaim_inodes_count(
1180 struct xfs_mount *mp)
1181{
1182 struct xfs_perag *pag;
1183 xfs_agnumber_t ag = 0;
1184 int reclaimable = 0;
9bf729c0 1185
65d0f205
DC
1186 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1187 ag = pag->pag_agno + 1;
70e60ce7
DC
1188 reclaimable += pag->pag_ici_reclaimable;
1189 xfs_perag_put(pag);
9bf729c0 1190 }
9bf729c0
DC
1191 return reclaimable;
1192}
1193
3e3f9f58
BF
1194STATIC int
1195xfs_inode_match_id(
1196 struct xfs_inode *ip,
1197 struct xfs_eofblocks *eofb)
1198{
b9fe5052
DE
1199 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1200 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1b556048 1201 return 0;
3e3f9f58 1202
b9fe5052
DE
1203 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1204 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1b556048
BF
1205 return 0;
1206
b9fe5052 1207 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1b556048
BF
1208 xfs_get_projid(ip) != eofb->eof_prid)
1209 return 0;
1210
1211 return 1;
3e3f9f58
BF
1212}
1213
41176a68
BF
1214STATIC int
1215xfs_inode_free_eofblocks(
1216 struct xfs_inode *ip,
1217 struct xfs_perag *pag,
1218 int flags,
1219 void *args)
1220{
1221 int ret;
3e3f9f58 1222 struct xfs_eofblocks *eofb = args;
41176a68
BF
1223
1224 if (!xfs_can_free_eofblocks(ip, false)) {
1225 /* inode could be preallocated or append-only */
1226 trace_xfs_inode_free_eofblocks_invalid(ip);
1227 xfs_inode_clear_eofblocks_tag(ip);
1228 return 0;
1229 }
1230
1231 /*
1232 * If the mapping is dirty the operation can block and wait for some
1233 * time. Unless we are waiting, skip it.
1234 */
1235 if (!(flags & SYNC_WAIT) &&
1236 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1237 return 0;
1238
00ca79a0
BF
1239 if (eofb) {
1240 if (!xfs_inode_match_id(ip, eofb))
1241 return 0;
1242
1243 /* skip the inode if the file size is too small */
1244 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1245 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1246 return 0;
1247 }
3e3f9f58 1248
41176a68
BF
1249 ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1250
1251 /* don't revisit the inode if we're not waiting */
1252 if (ret == EAGAIN && !(flags & SYNC_WAIT))
1253 ret = 0;
1254
1255 return ret;
1256}
1257
1258int
1259xfs_icache_free_eofblocks(
1260 struct xfs_mount *mp,
8ca149de 1261 struct xfs_eofblocks *eofb)
41176a68 1262{
8ca149de
BF
1263 int flags = SYNC_TRYLOCK;
1264
1265 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1266 flags = SYNC_WAIT;
1267
41176a68 1268 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
8ca149de 1269 eofb, XFS_ICI_EOFBLOCKS_TAG);
41176a68
BF
1270}
1271
27b52867
BF
1272void
1273xfs_inode_set_eofblocks_tag(
1274 xfs_inode_t *ip)
1275{
1276 struct xfs_mount *mp = ip->i_mount;
1277 struct xfs_perag *pag;
1278 int tagged;
1279
1280 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1281 spin_lock(&pag->pag_ici_lock);
1282 trace_xfs_inode_set_eofblocks_tag(ip);
1283
1284 tagged = radix_tree_tagged(&pag->pag_ici_root,
1285 XFS_ICI_EOFBLOCKS_TAG);
1286 radix_tree_tag_set(&pag->pag_ici_root,
1287 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1288 XFS_ICI_EOFBLOCKS_TAG);
1289 if (!tagged) {
1290 /* propagate the eofblocks tag up into the perag radix tree */
1291 spin_lock(&ip->i_mount->m_perag_lock);
1292 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1293 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1294 XFS_ICI_EOFBLOCKS_TAG);
1295 spin_unlock(&ip->i_mount->m_perag_lock);
579b62fa
BF
1296
1297 /* kick off background trimming */
1298 xfs_queue_eofblocks(ip->i_mount);
27b52867
BF
1299
1300 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1301 -1, _RET_IP_);
1302 }
1303
1304 spin_unlock(&pag->pag_ici_lock);
1305 xfs_perag_put(pag);
1306}
1307
1308void
1309xfs_inode_clear_eofblocks_tag(
1310 xfs_inode_t *ip)
1311{
1312 struct xfs_mount *mp = ip->i_mount;
1313 struct xfs_perag *pag;
1314
1315 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1316 spin_lock(&pag->pag_ici_lock);
1317 trace_xfs_inode_clear_eofblocks_tag(ip);
1318
1319 radix_tree_tag_clear(&pag->pag_ici_root,
1320 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1321 XFS_ICI_EOFBLOCKS_TAG);
1322 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1323 /* clear the eofblocks tag from the perag radix tree */
1324 spin_lock(&ip->i_mount->m_perag_lock);
1325 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1326 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1327 XFS_ICI_EOFBLOCKS_TAG);
1328 spin_unlock(&ip->i_mount->m_perag_lock);
1329 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1330 -1, _RET_IP_);
1331 }
1332
1333 spin_unlock(&pag->pag_ici_lock);
1334 xfs_perag_put(pag);
1335}
1336
This page took 0.328964 seconds and 5 git commands to generate.