xfs: remove the if_ext_max field in struct xfs_ifork
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451 25#include "xfs_inum.h"
1da177e4
LT
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
1da177e4 30#include "xfs_mount.h"
1da177e4 31#include "xfs_bmap_btree.h"
a844f451 32#include "xfs_alloc_btree.h"
1da177e4 33#include "xfs_ialloc_btree.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4 35#include "xfs_dinode.h"
1da177e4 36#include "xfs_inode.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_btree.h"
40#include "xfs_alloc.h"
41#include "xfs_ialloc.h"
42#include "xfs_bmap.h"
1da177e4 43#include "xfs_error.h"
1da177e4 44#include "xfs_utils.h"
1da177e4 45#include "xfs_quota.h"
2a82b8be 46#include "xfs_filestream.h"
739bfb2a 47#include "xfs_vnodeops.h"
0b1b213f 48#include "xfs_trace.h"
1da177e4 49
1da177e4
LT
50kmem_zone_t *xfs_ifork_zone;
51kmem_zone_t *xfs_inode_zone;
1da177e4
LT
52
53/*
8f04c47a 54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
55 * freed from a file in a single transaction.
56 */
57#define XFS_ITRUNC_MAX_EXTENTS 2
58
59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63
1da177e4
LT
64#ifdef DEBUG
65/*
66 * Make sure that the extents in the given memory buffer
67 * are valid.
68 */
69STATIC void
70xfs_validate_extents(
4eea22f0 71 xfs_ifork_t *ifp,
1da177e4 72 int nrecs,
1da177e4
LT
73 xfs_exntfmt_t fmt)
74{
75 xfs_bmbt_irec_t irec;
a6f64d4a 76 xfs_bmbt_rec_host_t rec;
1da177e4
LT
77 int i;
78
79 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
80 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
81 rec.l0 = get_unaligned(&ep->l0);
82 rec.l1 = get_unaligned(&ep->l1);
83 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
84 if (fmt == XFS_EXTFMT_NOSTATE)
85 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
86 }
87}
88#else /* DEBUG */
a6f64d4a 89#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
90#endif /* DEBUG */
91
92/*
93 * Check that none of the inode's in the buffer have a next
94 * unlinked field of 0.
95 */
96#if defined(DEBUG)
97void
98xfs_inobp_check(
99 xfs_mount_t *mp,
100 xfs_buf_t *bp)
101{
102 int i;
103 int j;
104 xfs_dinode_t *dip;
105
106 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
107
108 for (i = 0; i < j; i++) {
109 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
110 i * mp->m_sb.sb_inodesize);
111 if (!dip->di_next_unlinked) {
53487786
DC
112 xfs_alert(mp,
113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
1da177e4
LT
114 bp);
115 ASSERT(dip->di_next_unlinked);
116 }
117 }
118}
119#endif
120
4ae29b43
DC
121/*
122 * Find the buffer associated with the given inode map
123 * We do basic validation checks on the buffer once it has been
124 * retrieved from disk.
125 */
126STATIC int
127xfs_imap_to_bp(
128 xfs_mount_t *mp,
129 xfs_trans_t *tp,
92bfc6e7 130 struct xfs_imap *imap,
4ae29b43
DC
131 xfs_buf_t **bpp,
132 uint buf_flags,
b48d8d64 133 uint iget_flags)
4ae29b43
DC
134{
135 int error;
136 int i;
137 int ni;
138 xfs_buf_t *bp;
139
140 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 141 (int)imap->im_len, buf_flags, &bp);
4ae29b43 142 if (error) {
a3f74ffb 143 if (error != EAGAIN) {
0b932ccc
DC
144 xfs_warn(mp,
145 "%s: xfs_trans_read_buf() returned error %d.",
146 __func__, error);
a3f74ffb 147 } else {
0cadda1c 148 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb 149 }
4ae29b43
DC
150 return error;
151 }
152
153 /*
154 * Validate the magic number and version of every inode in the buffer
155 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
156 */
157#ifdef DEBUG
158 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
159#else /* usual case */
160 ni = 1;
161#endif
162
163 for (i = 0; i < ni; i++) {
164 int di_ok;
165 xfs_dinode_t *dip;
166
167 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
168 (i << mp->m_sb.sb_inodelog));
69ef921b 169 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
81591fe2 170 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
171 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
172 XFS_ERRTAG_ITOBP_INOTOBP,
173 XFS_RANDOM_ITOBP_INOTOBP))) {
1920779e 174 if (iget_flags & XFS_IGET_UNTRUSTED) {
4ae29b43
DC
175 xfs_trans_brelse(tp, bp);
176 return XFS_ERROR(EINVAL);
177 }
178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 XFS_ERRLEVEL_HIGH, mp, dip);
180#ifdef DEBUG
0b932ccc
DC
181 xfs_emerg(mp,
182 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
4ae29b43 183 (unsigned long long)imap->im_blkno, i,
81591fe2 184 be16_to_cpu(dip->di_magic));
0b932ccc 185 ASSERT(0);
4ae29b43
DC
186#endif
187 xfs_trans_brelse(tp, bp);
188 return XFS_ERROR(EFSCORRUPTED);
189 }
190 }
191
192 xfs_inobp_check(mp, bp);
4ae29b43
DC
193 *bpp = bp;
194 return 0;
195}
196
1da177e4
LT
197/*
198 * This routine is called to map an inode number within a file
199 * system to the buffer containing the on-disk version of the
200 * inode. It returns a pointer to the buffer containing the
201 * on-disk inode in the bpp parameter, and in the dip parameter
202 * it returns a pointer to the on-disk inode within that buffer.
203 *
204 * If a non-zero error is returned, then the contents of bpp and
205 * dipp are undefined.
206 *
207 * Use xfs_imap() to determine the size and location of the
208 * buffer to read from disk.
209 */
c679eef0 210int
1da177e4
LT
211xfs_inotobp(
212 xfs_mount_t *mp,
213 xfs_trans_t *tp,
214 xfs_ino_t ino,
215 xfs_dinode_t **dipp,
216 xfs_buf_t **bpp,
c679eef0
CH
217 int *offset,
218 uint imap_flags)
1da177e4 219{
92bfc6e7 220 struct xfs_imap imap;
1da177e4
LT
221 xfs_buf_t *bp;
222 int error;
1da177e4 223
1da177e4 224 imap.im_blkno = 0;
a1941895 225 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
4ae29b43 226 if (error)
1da177e4 227 return error;
1da177e4 228
0cadda1c 229 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
4ae29b43 230 if (error)
1da177e4 231 return error;
1da177e4 232
1da177e4
LT
233 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
234 *bpp = bp;
235 *offset = imap.im_boffset;
236 return 0;
237}
238
239
240/*
241 * This routine is called to map an inode to the buffer containing
242 * the on-disk version of the inode. It returns a pointer to the
243 * buffer containing the on-disk inode in the bpp parameter, and in
244 * the dip parameter it returns a pointer to the on-disk inode within
245 * that buffer.
246 *
247 * If a non-zero error is returned, then the contents of bpp and
248 * dipp are undefined.
249 *
76d8b277
CH
250 * The inode is expected to already been mapped to its buffer and read
251 * in once, thus we can use the mapping information stored in the inode
252 * rather than calling xfs_imap(). This allows us to avoid the overhead
253 * of looking at the inode btree for small block file systems
94e1b69d 254 * (see xfs_imap()).
1da177e4
LT
255 */
256int
257xfs_itobp(
258 xfs_mount_t *mp,
259 xfs_trans_t *tp,
260 xfs_inode_t *ip,
261 xfs_dinode_t **dipp,
262 xfs_buf_t **bpp,
a3f74ffb 263 uint buf_flags)
1da177e4
LT
264{
265 xfs_buf_t *bp;
266 int error;
1da177e4 267
92bfc6e7 268 ASSERT(ip->i_imap.im_blkno != 0);
1da177e4 269
92bfc6e7 270 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
4ae29b43 271 if (error)
1da177e4 272 return error;
1da177e4 273
a3f74ffb 274 if (!bp) {
0cadda1c 275 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb
DC
276 ASSERT(tp == NULL);
277 *bpp = NULL;
278 return EAGAIN;
279 }
280
92bfc6e7 281 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
282 *bpp = bp;
283 return 0;
284}
285
286/*
287 * Move inode type and inode format specific information from the
288 * on-disk inode to the in-core inode. For fifos, devs, and sockets
289 * this means set if_rdev to the proper value. For files, directories,
290 * and symlinks this means to bring in the in-line data or extent
291 * pointers. For a file in B-tree format, only the root is immediately
292 * brought in-core. The rest will be in-lined in if_extents when it
293 * is first referenced (see xfs_iread_extents()).
294 */
295STATIC int
296xfs_iformat(
297 xfs_inode_t *ip,
298 xfs_dinode_t *dip)
299{
300 xfs_attr_shortform_t *atp;
301 int size;
8096b1eb 302 int error = 0;
1da177e4 303 xfs_fsize_t di_size;
1da177e4 304
81591fe2
CH
305 if (unlikely(be32_to_cpu(dip->di_nextents) +
306 be16_to_cpu(dip->di_anextents) >
307 be64_to_cpu(dip->di_nblocks))) {
65333b4c 308 xfs_warn(ip->i_mount,
3762ec6b 309 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 310 (unsigned long long)ip->i_ino,
81591fe2
CH
311 (int)(be32_to_cpu(dip->di_nextents) +
312 be16_to_cpu(dip->di_anextents)),
1da177e4 313 (unsigned long long)
81591fe2 314 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
315 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
316 ip->i_mount, dip);
317 return XFS_ERROR(EFSCORRUPTED);
318 }
319
81591fe2 320 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
65333b4c 321 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 322 (unsigned long long)ip->i_ino,
81591fe2 323 dip->di_forkoff);
1da177e4
LT
324 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
325 ip->i_mount, dip);
326 return XFS_ERROR(EFSCORRUPTED);
327 }
328
b89d4208
CH
329 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
330 !ip->i_mount->m_rtdev_targp)) {
65333b4c 331 xfs_warn(ip->i_mount,
b89d4208
CH
332 "corrupt dinode %Lu, has realtime flag set.",
333 ip->i_ino);
334 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
335 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
336 return XFS_ERROR(EFSCORRUPTED);
337 }
338
1da177e4
LT
339 switch (ip->i_d.di_mode & S_IFMT) {
340 case S_IFIFO:
341 case S_IFCHR:
342 case S_IFBLK:
343 case S_IFSOCK:
81591fe2 344 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
345 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
346 ip->i_mount, dip);
347 return XFS_ERROR(EFSCORRUPTED);
348 }
349 ip->i_d.di_size = 0;
ba87ea69 350 ip->i_size = 0;
81591fe2 351 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
352 break;
353
354 case S_IFREG:
355 case S_IFLNK:
356 case S_IFDIR:
81591fe2 357 switch (dip->di_format) {
1da177e4
LT
358 case XFS_DINODE_FMT_LOCAL:
359 /*
360 * no local regular files yet
361 */
abbede1b 362 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
65333b4c
DC
363 xfs_warn(ip->i_mount,
364 "corrupt inode %Lu (local format for regular file).",
1da177e4
LT
365 (unsigned long long) ip->i_ino);
366 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
367 XFS_ERRLEVEL_LOW,
368 ip->i_mount, dip);
369 return XFS_ERROR(EFSCORRUPTED);
370 }
371
81591fe2 372 di_size = be64_to_cpu(dip->di_size);
1da177e4 373 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
65333b4c
DC
374 xfs_warn(ip->i_mount,
375 "corrupt inode %Lu (bad size %Ld for local inode).",
1da177e4
LT
376 (unsigned long long) ip->i_ino,
377 (long long) di_size);
378 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
379 XFS_ERRLEVEL_LOW,
380 ip->i_mount, dip);
381 return XFS_ERROR(EFSCORRUPTED);
382 }
383
384 size = (int)di_size;
385 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
386 break;
387 case XFS_DINODE_FMT_EXTENTS:
388 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
389 break;
390 case XFS_DINODE_FMT_BTREE:
391 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
392 break;
393 default:
394 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
395 ip->i_mount);
396 return XFS_ERROR(EFSCORRUPTED);
397 }
398 break;
399
400 default:
401 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
402 return XFS_ERROR(EFSCORRUPTED);
403 }
404 if (error) {
405 return error;
406 }
407 if (!XFS_DFORK_Q(dip))
408 return 0;
8096b1eb 409
1da177e4 410 ASSERT(ip->i_afp == NULL);
4a7edddc 411 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
8096b1eb 412
81591fe2 413 switch (dip->di_aformat) {
1da177e4
LT
414 case XFS_DINODE_FMT_LOCAL:
415 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 416 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
417
418 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
65333b4c
DC
419 xfs_warn(ip->i_mount,
420 "corrupt inode %Lu (bad attr fork size %Ld).",
2809f76a
CH
421 (unsigned long long) ip->i_ino,
422 (long long) size);
423 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
424 XFS_ERRLEVEL_LOW,
425 ip->i_mount, dip);
426 return XFS_ERROR(EFSCORRUPTED);
427 }
428
1da177e4
LT
429 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
430 break;
431 case XFS_DINODE_FMT_EXTENTS:
432 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
433 break;
434 case XFS_DINODE_FMT_BTREE:
435 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
436 break;
437 default:
438 error = XFS_ERROR(EFSCORRUPTED);
439 break;
440 }
441 if (error) {
442 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
443 ip->i_afp = NULL;
444 xfs_idestroy_fork(ip, XFS_DATA_FORK);
445 }
446 return error;
447}
448
449/*
450 * The file is in-lined in the on-disk inode.
451 * If it fits into if_inline_data, then copy
452 * it there, otherwise allocate a buffer for it
453 * and copy the data there. Either way, set
454 * if_data to point at the data.
455 * If we allocate a buffer for the data, make
456 * sure that its size is a multiple of 4 and
457 * record the real size in i_real_bytes.
458 */
459STATIC int
460xfs_iformat_local(
461 xfs_inode_t *ip,
462 xfs_dinode_t *dip,
463 int whichfork,
464 int size)
465{
466 xfs_ifork_t *ifp;
467 int real_size;
468
469 /*
470 * If the size is unreasonable, then something
471 * is wrong and we just bail out rather than crash in
472 * kmem_alloc() or memcpy() below.
473 */
474 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c
DC
475 xfs_warn(ip->i_mount,
476 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
1da177e4
LT
477 (unsigned long long) ip->i_ino, size,
478 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
479 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
480 ip->i_mount, dip);
481 return XFS_ERROR(EFSCORRUPTED);
482 }
483 ifp = XFS_IFORK_PTR(ip, whichfork);
484 real_size = 0;
485 if (size == 0)
486 ifp->if_u1.if_data = NULL;
487 else if (size <= sizeof(ifp->if_u2.if_inline_data))
488 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
489 else {
490 real_size = roundup(size, 4);
4a7edddc 491 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
492 }
493 ifp->if_bytes = size;
494 ifp->if_real_bytes = real_size;
495 if (size)
496 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
497 ifp->if_flags &= ~XFS_IFEXTENTS;
498 ifp->if_flags |= XFS_IFINLINE;
499 return 0;
500}
501
502/*
503 * The file consists of a set of extents all
504 * of which fit into the on-disk inode.
505 * If there are few enough extents to fit into
506 * the if_inline_ext, then copy them there.
507 * Otherwise allocate a buffer for them and copy
508 * them into it. Either way, set if_extents
509 * to point at the extents.
510 */
511STATIC int
512xfs_iformat_extents(
513 xfs_inode_t *ip,
514 xfs_dinode_t *dip,
515 int whichfork)
516{
a6f64d4a 517 xfs_bmbt_rec_t *dp;
1da177e4
LT
518 xfs_ifork_t *ifp;
519 int nex;
1da177e4
LT
520 int size;
521 int i;
522
523 ifp = XFS_IFORK_PTR(ip, whichfork);
524 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
525 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
526
527 /*
528 * If the number of extents is unreasonable, then something
529 * is wrong and we just bail out rather than crash in
530 * kmem_alloc() or memcpy() below.
531 */
532 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c 533 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
534 (unsigned long long) ip->i_ino, nex);
535 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
536 ip->i_mount, dip);
537 return XFS_ERROR(EFSCORRUPTED);
538 }
539
4eea22f0 540 ifp->if_real_bytes = 0;
1da177e4
LT
541 if (nex == 0)
542 ifp->if_u1.if_extents = NULL;
543 else if (nex <= XFS_INLINE_EXTS)
544 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
545 else
546 xfs_iext_add(ifp, 0, nex);
547
1da177e4 548 ifp->if_bytes = size;
1da177e4
LT
549 if (size) {
550 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 551 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 552 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 553 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
554 ep->l0 = get_unaligned_be64(&dp->l0);
555 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 556 }
3a59c94c 557 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
558 if (whichfork != XFS_DATA_FORK ||
559 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
560 if (unlikely(xfs_check_nostate_extents(
4eea22f0 561 ifp, 0, nex))) {
1da177e4
LT
562 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
563 XFS_ERRLEVEL_LOW,
564 ip->i_mount);
565 return XFS_ERROR(EFSCORRUPTED);
566 }
567 }
568 ifp->if_flags |= XFS_IFEXTENTS;
569 return 0;
570}
571
572/*
573 * The file has too many extents to fit into
574 * the inode, so they are in B-tree format.
575 * Allocate a buffer for the root of the B-tree
576 * and copy the root into it. The i_extents
577 * field will remain NULL until all of the
578 * extents are read in (when they are needed).
579 */
580STATIC int
581xfs_iformat_btree(
582 xfs_inode_t *ip,
583 xfs_dinode_t *dip,
584 int whichfork)
585{
586 xfs_bmdr_block_t *dfp;
587 xfs_ifork_t *ifp;
588 /* REFERENCED */
589 int nrecs;
590 int size;
591
592 ifp = XFS_IFORK_PTR(ip, whichfork);
593 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
594 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 595 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
596
597 /*
598 * blow out if -- fork has less extents than can fit in
599 * fork (fork shouldn't be a btree format), root btree
600 * block has more records than can fit into the fork,
601 * or the number of extents is greater than the number of
602 * blocks.
603 */
8096b1eb
CH
604 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
605 XFS_IFORK_MAXEXT(ip, whichfork) ||
606 XFS_BMDR_SPACE_CALC(nrecs) >
607 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
608 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
65333b4c 609 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
1da177e4 610 (unsigned long long) ip->i_ino);
65333b4c
DC
611 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
612 ip->i_mount, dip);
1da177e4
LT
613 return XFS_ERROR(EFSCORRUPTED);
614 }
615
616 ifp->if_broot_bytes = size;
4a7edddc 617 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
618 ASSERT(ifp->if_broot != NULL);
619 /*
620 * Copy and convert from the on-disk structure
621 * to the in-memory structure.
622 */
60197e8d
CH
623 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
625 ifp->if_broot, size);
1da177e4
LT
626 ifp->if_flags &= ~XFS_IFEXTENTS;
627 ifp->if_flags |= XFS_IFBROOT;
628
629 return 0;
630}
631
d96f8f89 632STATIC void
347d1c01
CH
633xfs_dinode_from_disk(
634 xfs_icdinode_t *to,
81591fe2 635 xfs_dinode_t *from)
1da177e4 636{
347d1c01
CH
637 to->di_magic = be16_to_cpu(from->di_magic);
638 to->di_mode = be16_to_cpu(from->di_mode);
639 to->di_version = from ->di_version;
640 to->di_format = from->di_format;
641 to->di_onlink = be16_to_cpu(from->di_onlink);
642 to->di_uid = be32_to_cpu(from->di_uid);
643 to->di_gid = be32_to_cpu(from->di_gid);
644 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
645 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
646 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
647 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
648 to->di_flushiter = be16_to_cpu(from->di_flushiter);
649 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
650 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
651 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
652 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
653 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
654 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
655 to->di_size = be64_to_cpu(from->di_size);
656 to->di_nblocks = be64_to_cpu(from->di_nblocks);
657 to->di_extsize = be32_to_cpu(from->di_extsize);
658 to->di_nextents = be32_to_cpu(from->di_nextents);
659 to->di_anextents = be16_to_cpu(from->di_anextents);
660 to->di_forkoff = from->di_forkoff;
661 to->di_aformat = from->di_aformat;
662 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
663 to->di_dmstate = be16_to_cpu(from->di_dmstate);
664 to->di_flags = be16_to_cpu(from->di_flags);
665 to->di_gen = be32_to_cpu(from->di_gen);
666}
667
668void
669xfs_dinode_to_disk(
81591fe2 670 xfs_dinode_t *to,
347d1c01
CH
671 xfs_icdinode_t *from)
672{
673 to->di_magic = cpu_to_be16(from->di_magic);
674 to->di_mode = cpu_to_be16(from->di_mode);
675 to->di_version = from ->di_version;
676 to->di_format = from->di_format;
677 to->di_onlink = cpu_to_be16(from->di_onlink);
678 to->di_uid = cpu_to_be32(from->di_uid);
679 to->di_gid = cpu_to_be32(from->di_gid);
680 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
681 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
682 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
683 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
684 to->di_flushiter = cpu_to_be16(from->di_flushiter);
685 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
686 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
687 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
688 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
689 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
690 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
691 to->di_size = cpu_to_be64(from->di_size);
692 to->di_nblocks = cpu_to_be64(from->di_nblocks);
693 to->di_extsize = cpu_to_be32(from->di_extsize);
694 to->di_nextents = cpu_to_be32(from->di_nextents);
695 to->di_anextents = cpu_to_be16(from->di_anextents);
696 to->di_forkoff = from->di_forkoff;
697 to->di_aformat = from->di_aformat;
698 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
699 to->di_dmstate = cpu_to_be16(from->di_dmstate);
700 to->di_flags = cpu_to_be16(from->di_flags);
701 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
702}
703
704STATIC uint
705_xfs_dic2xflags(
1da177e4
LT
706 __uint16_t di_flags)
707{
708 uint flags = 0;
709
710 if (di_flags & XFS_DIFLAG_ANY) {
711 if (di_flags & XFS_DIFLAG_REALTIME)
712 flags |= XFS_XFLAG_REALTIME;
713 if (di_flags & XFS_DIFLAG_PREALLOC)
714 flags |= XFS_XFLAG_PREALLOC;
715 if (di_flags & XFS_DIFLAG_IMMUTABLE)
716 flags |= XFS_XFLAG_IMMUTABLE;
717 if (di_flags & XFS_DIFLAG_APPEND)
718 flags |= XFS_XFLAG_APPEND;
719 if (di_flags & XFS_DIFLAG_SYNC)
720 flags |= XFS_XFLAG_SYNC;
721 if (di_flags & XFS_DIFLAG_NOATIME)
722 flags |= XFS_XFLAG_NOATIME;
723 if (di_flags & XFS_DIFLAG_NODUMP)
724 flags |= XFS_XFLAG_NODUMP;
725 if (di_flags & XFS_DIFLAG_RTINHERIT)
726 flags |= XFS_XFLAG_RTINHERIT;
727 if (di_flags & XFS_DIFLAG_PROJINHERIT)
728 flags |= XFS_XFLAG_PROJINHERIT;
729 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
730 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
731 if (di_flags & XFS_DIFLAG_EXTSIZE)
732 flags |= XFS_XFLAG_EXTSIZE;
733 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
734 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
735 if (di_flags & XFS_DIFLAG_NODEFRAG)
736 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
737 if (di_flags & XFS_DIFLAG_FILESTREAM)
738 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
739 }
740
741 return flags;
742}
743
744uint
745xfs_ip2xflags(
746 xfs_inode_t *ip)
747{
347d1c01 748 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 749
a916e2bd 750 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 751 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
752}
753
754uint
755xfs_dic2xflags(
45ba598e 756 xfs_dinode_t *dip)
1da177e4 757{
81591fe2 758 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 759 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
760}
761
07c8f675 762/*
24f211ba 763 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
764 */
765int
766xfs_iread(
767 xfs_mount_t *mp,
768 xfs_trans_t *tp,
24f211ba 769 xfs_inode_t *ip,
24f211ba 770 uint iget_flags)
1da177e4
LT
771{
772 xfs_buf_t *bp;
773 xfs_dinode_t *dip;
1da177e4
LT
774 int error;
775
1da177e4 776 /*
92bfc6e7 777 * Fill in the location information in the in-core inode.
1da177e4 778 */
24f211ba 779 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 780 if (error)
24f211ba 781 return error;
76d8b277
CH
782
783 /*
92bfc6e7 784 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 785 */
92bfc6e7 786 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
0cadda1c 787 XBF_LOCK, iget_flags);
9ed0451e 788 if (error)
24f211ba 789 return error;
92bfc6e7 790 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 791
1da177e4
LT
792 /*
793 * If we got something that isn't an inode it means someone
794 * (nfs or dmi) has a stale handle.
795 */
69ef921b 796 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
1da177e4 797#ifdef DEBUG
53487786
DC
798 xfs_alert(mp,
799 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
800 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1da177e4 801#endif /* DEBUG */
9ed0451e
CH
802 error = XFS_ERROR(EINVAL);
803 goto out_brelse;
1da177e4
LT
804 }
805
806 /*
807 * If the on-disk inode is already linked to a directory
808 * entry, copy all of the inode into the in-core inode.
809 * xfs_iformat() handles copying in the inode format
810 * specific information.
811 * Otherwise, just get the truly permanent information.
812 */
81591fe2
CH
813 if (dip->di_mode) {
814 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
815 error = xfs_iformat(ip, dip);
816 if (error) {
1da177e4 817#ifdef DEBUG
53487786
DC
818 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
819 __func__, error);
1da177e4 820#endif /* DEBUG */
9ed0451e 821 goto out_brelse;
1da177e4
LT
822 }
823 } else {
81591fe2
CH
824 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
825 ip->i_d.di_version = dip->di_version;
826 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
827 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
828 /*
829 * Make sure to pull in the mode here as well in
830 * case the inode is released without being used.
831 * This ensures that xfs_inactive() will see that
832 * the inode is already free and not try to mess
833 * with the uninitialized part of it.
834 */
835 ip->i_d.di_mode = 0;
1da177e4
LT
836 }
837
1da177e4
LT
838 /*
839 * The inode format changed when we moved the link count and
840 * made it 32 bits long. If this is an old format inode,
841 * convert it in memory to look like a new one. If it gets
842 * flushed to disk we will convert back before flushing or
843 * logging it. We zero out the new projid field and the old link
844 * count field. We'll handle clearing the pad field (the remains
845 * of the old uuid field) when we actually convert the inode to
846 * the new format. We don't change the version number so that we
847 * can distinguish this from a real new format inode.
848 */
51ce16d5 849 if (ip->i_d.di_version == 1) {
1da177e4
LT
850 ip->i_d.di_nlink = ip->i_d.di_onlink;
851 ip->i_d.di_onlink = 0;
6743099c 852 xfs_set_projid(ip, 0);
1da177e4
LT
853 }
854
855 ip->i_delayed_blks = 0;
ba87ea69 856 ip->i_size = ip->i_d.di_size;
1da177e4
LT
857
858 /*
859 * Mark the buffer containing the inode as something to keep
860 * around for a while. This helps to keep recently accessed
861 * meta-data in-core longer.
862 */
821eb21d 863 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
864
865 /*
866 * Use xfs_trans_brelse() to release the buffer containing the
867 * on-disk inode, because it was acquired with xfs_trans_read_buf()
868 * in xfs_itobp() above. If tp is NULL, this is just a normal
869 * brelse(). If we're within a transaction, then xfs_trans_brelse()
870 * will only release the buffer if it is not dirty within the
871 * transaction. It will be OK to release the buffer in this case,
872 * because inodes on disk are never destroyed and we will be
873 * locking the new in-core inode before putting it in the hash
874 * table where other processes can find it. Thus we don't have
875 * to worry about the inode being changed just because we released
876 * the buffer.
877 */
9ed0451e
CH
878 out_brelse:
879 xfs_trans_brelse(tp, bp);
9ed0451e 880 return error;
1da177e4
LT
881}
882
883/*
884 * Read in extents from a btree-format inode.
885 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
886 */
887int
888xfs_iread_extents(
889 xfs_trans_t *tp,
890 xfs_inode_t *ip,
891 int whichfork)
892{
893 int error;
894 xfs_ifork_t *ifp;
4eea22f0 895 xfs_extnum_t nextents;
1da177e4
LT
896
897 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
898 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
899 ip->i_mount);
900 return XFS_ERROR(EFSCORRUPTED);
901 }
4eea22f0 902 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 903 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 904
1da177e4
LT
905 /*
906 * We know that the size is valid (it's checked in iformat_btree)
907 */
4eea22f0 908 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 909 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 910 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
911 error = xfs_bmap_read_extents(tp, ip, whichfork);
912 if (error) {
4eea22f0 913 xfs_iext_destroy(ifp);
1da177e4
LT
914 ifp->if_flags &= ~XFS_IFEXTENTS;
915 return error;
916 }
a6f64d4a 917 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
918 return 0;
919}
920
921/*
922 * Allocate an inode on disk and return a copy of its in-core version.
923 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
924 * appropriately within the inode. The uid and gid for the inode are
925 * set according to the contents of the given cred structure.
926 *
927 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
928 * has a free inode available, call xfs_iget()
929 * to obtain the in-core version of the allocated inode. Finally,
930 * fill in the inode and log its initial contents. In this case,
931 * ialloc_context would be set to NULL and call_again set to false.
932 *
933 * If xfs_dialloc() does not have an available inode,
934 * it will replenish its supply by doing an allocation. Since we can
935 * only do one allocation within a transaction without deadlocks, we
936 * must commit the current transaction before returning the inode itself.
937 * In this case, therefore, we will set call_again to true and return.
938 * The caller should then commit the current transaction, start a new
939 * transaction, and call xfs_ialloc() again to actually get the inode.
940 *
941 * To ensure that some other process does not grab the inode that
942 * was allocated during the first call to xfs_ialloc(), this routine
943 * also returns the [locked] bp pointing to the head of the freelist
944 * as ialloc_context. The caller should hold this buffer across
945 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
946 *
947 * If we are allocating quota inodes, we do not have a parent inode
948 * to attach to or associate with (i.e. pip == NULL) because they
949 * are not linked into the directory structure - they are attached
950 * directly to the superblock - and so have no parent.
1da177e4
LT
951 */
952int
953xfs_ialloc(
954 xfs_trans_t *tp,
955 xfs_inode_t *pip,
576b1d67 956 umode_t mode,
31b084ae 957 xfs_nlink_t nlink,
1da177e4 958 xfs_dev_t rdev,
6743099c 959 prid_t prid,
1da177e4
LT
960 int okalloc,
961 xfs_buf_t **ialloc_context,
962 boolean_t *call_again,
963 xfs_inode_t **ipp)
964{
965 xfs_ino_t ino;
966 xfs_inode_t *ip;
1da177e4
LT
967 uint flags;
968 int error;
dff35fd4 969 timespec_t tv;
bf904248 970 int filestreams = 0;
1da177e4
LT
971
972 /*
973 * Call the space management code to pick
974 * the on-disk inode to be allocated.
975 */
b11f94d5 976 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 977 ialloc_context, call_again, &ino);
bf904248 978 if (error)
1da177e4 979 return error;
1da177e4
LT
980 if (*call_again || ino == NULLFSINO) {
981 *ipp = NULL;
982 return 0;
983 }
984 ASSERT(*ialloc_context == NULL);
985
986 /*
987 * Get the in-core inode with the lock held exclusively.
988 * This is because we're setting fields here we need
989 * to prevent others from looking at until we're done.
990 */
ec3ba85f
CH
991 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
992 XFS_ILOCK_EXCL, &ip);
bf904248 993 if (error)
1da177e4 994 return error;
1da177e4
LT
995 ASSERT(ip != NULL);
996
576b1d67 997 ip->i_d.di_mode = mode;
1da177e4
LT
998 ip->i_d.di_onlink = 0;
999 ip->i_d.di_nlink = nlink;
1000 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1001 ip->i_d.di_uid = current_fsuid();
1002 ip->i_d.di_gid = current_fsgid();
6743099c 1003 xfs_set_projid(ip, prid);
1da177e4
LT
1004 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1005
1006 /*
1007 * If the superblock version is up to where we support new format
1008 * inodes and this is currently an old format inode, then change
1009 * the inode version number now. This way we only do the conversion
1010 * here rather than here and in the flush/logging code.
1011 */
62118709 1012 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1013 ip->i_d.di_version == 1) {
1014 ip->i_d.di_version = 2;
1da177e4
LT
1015 /*
1016 * We've already zeroed the old link count, the projid field,
1017 * and the pad field.
1018 */
1019 }
1020
1021 /*
1022 * Project ids won't be stored on disk if we are using a version 1 inode.
1023 */
51ce16d5 1024 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1025 xfs_bump_ino_vers2(tp, ip);
1026
bd186aa9 1027 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 1028 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 1029 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
1030 ip->i_d.di_mode |= S_ISGID;
1031 }
1032 }
1033
1034 /*
1035 * If the group ID of the new file does not match the effective group
1036 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1037 * (and only if the irix_sgid_inherit compatibility variable is set).
1038 */
1039 if ((irix_sgid_inherit) &&
1040 (ip->i_d.di_mode & S_ISGID) &&
1041 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1042 ip->i_d.di_mode &= ~S_ISGID;
1043 }
1044
1045 ip->i_d.di_size = 0;
ba87ea69 1046 ip->i_size = 0;
1da177e4
LT
1047 ip->i_d.di_nextents = 0;
1048 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1049
1050 nanotime(&tv);
1051 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1052 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1053 ip->i_d.di_atime = ip->i_d.di_mtime;
1054 ip->i_d.di_ctime = ip->i_d.di_mtime;
1055
1da177e4
LT
1056 /*
1057 * di_gen will have been taken care of in xfs_iread.
1058 */
1059 ip->i_d.di_extsize = 0;
1060 ip->i_d.di_dmevmask = 0;
1061 ip->i_d.di_dmstate = 0;
1062 ip->i_d.di_flags = 0;
1063 flags = XFS_ILOG_CORE;
1064 switch (mode & S_IFMT) {
1065 case S_IFIFO:
1066 case S_IFCHR:
1067 case S_IFBLK:
1068 case S_IFSOCK:
1069 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1070 ip->i_df.if_u2.if_rdev = rdev;
1071 ip->i_df.if_flags = 0;
1072 flags |= XFS_ILOG_DEV;
1073 break;
1074 case S_IFREG:
bf904248
DC
1075 /*
1076 * we can't set up filestreams until after the VFS inode
1077 * is set up properly.
1078 */
1079 if (pip && xfs_inode_is_filestream(pip))
1080 filestreams = 1;
2a82b8be 1081 /* fall through */
1da177e4 1082 case S_IFDIR:
b11f94d5 1083 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1084 uint di_flags = 0;
1085
abbede1b 1086 if (S_ISDIR(mode)) {
365ca83d
NS
1087 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1088 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1089 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1090 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1091 ip->i_d.di_extsize = pip->i_d.di_extsize;
1092 }
abbede1b 1093 } else if (S_ISREG(mode)) {
613d7043 1094 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1095 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1096 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1097 di_flags |= XFS_DIFLAG_EXTSIZE;
1098 ip->i_d.di_extsize = pip->i_d.di_extsize;
1099 }
1da177e4
LT
1100 }
1101 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1102 xfs_inherit_noatime)
365ca83d 1103 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1104 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1105 xfs_inherit_nodump)
365ca83d 1106 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1107 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1108 xfs_inherit_sync)
365ca83d 1109 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1110 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1111 xfs_inherit_nosymlinks)
365ca83d
NS
1112 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1113 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1114 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1115 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1116 xfs_inherit_nodefrag)
1117 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1118 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1119 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1120 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1121 }
1122 /* FALLTHROUGH */
1123 case S_IFLNK:
1124 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1125 ip->i_df.if_flags = XFS_IFEXTENTS;
1126 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1127 ip->i_df.if_u1.if_extents = NULL;
1128 break;
1129 default:
1130 ASSERT(0);
1131 }
1132 /*
1133 * Attribute fork settings for new inode.
1134 */
1135 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1136 ip->i_d.di_anextents = 0;
1137
1138 /*
1139 * Log the new values stuffed into the inode.
1140 */
ddc3415a 1141 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1142 xfs_trans_log_inode(tp, ip, flags);
1143
b83bd138 1144 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1145 xfs_setup_inode(ip);
1da177e4 1146
bf904248
DC
1147 /* now we have set up the vfs inode we can associate the filestream */
1148 if (filestreams) {
1149 error = xfs_filestream_associate(pip, ip);
1150 if (error < 0)
1151 return -error;
1152 if (!error)
1153 xfs_iflags_set(ip, XFS_IFILESTREAM);
1154 }
1155
1da177e4
LT
1156 *ipp = ip;
1157 return 0;
1158}
1159
1da177e4 1160/*
8f04c47a
CH
1161 * Free up the underlying blocks past new_size. The new size must be smaller
1162 * than the current size. This routine can be used both for the attribute and
1163 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1164 *
f6485057
DC
1165 * The transaction passed to this routine must have made a permanent log
1166 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1167 * given transaction and start new ones, so make sure everything involved in
1168 * the transaction is tidy before calling here. Some transaction will be
1169 * returned to the caller to be committed. The incoming transaction must
1170 * already include the inode, and both inode locks must be held exclusively.
1171 * The inode must also be "held" within the transaction. On return the inode
1172 * will be "held" within the returned transaction. This routine does NOT
1173 * require any disk space to be reserved for it within the transaction.
1da177e4 1174 *
f6485057
DC
1175 * If we get an error, we must return with the inode locked and linked into the
1176 * current transaction. This keeps things simple for the higher level code,
1177 * because it always knows that the inode is locked and held in the transaction
1178 * that returns to it whether errors occur or not. We don't mark the inode
1179 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1180 */
1181int
8f04c47a
CH
1182xfs_itruncate_extents(
1183 struct xfs_trans **tpp,
1184 struct xfs_inode *ip,
1185 int whichfork,
1186 xfs_fsize_t new_size)
1da177e4 1187{
8f04c47a
CH
1188 struct xfs_mount *mp = ip->i_mount;
1189 struct xfs_trans *tp = *tpp;
1190 struct xfs_trans *ntp;
1191 xfs_bmap_free_t free_list;
1192 xfs_fsblock_t first_block;
1193 xfs_fileoff_t first_unmap_block;
1194 xfs_fileoff_t last_block;
1195 xfs_filblks_t unmap_len;
1196 int committed;
1197 int error = 0;
1198 int done = 0;
1da177e4 1199
579aa9ca 1200 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
8f04c47a
CH
1201 ASSERT(new_size <= ip->i_size);
1202 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1203 ASSERT(ip->i_itemp != NULL);
898621d5 1204 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1205 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1206
673e8e59
CH
1207 trace_xfs_itruncate_extents_start(ip, new_size);
1208
1da177e4
LT
1209 /*
1210 * Since it is possible for space to become allocated beyond
1211 * the end of the file (in a crash where the space is allocated
1212 * but the inode size is not yet updated), simply remove any
1213 * blocks which show up between the new EOF and the maximum
1214 * possible file size. If the first block to be removed is
1215 * beyond the maximum file size (ie it is the same as last_block),
1216 * then there is nothing to do.
1217 */
8f04c47a 1218 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1da177e4 1219 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
8f04c47a
CH
1220 if (first_unmap_block == last_block)
1221 return 0;
1222
1223 ASSERT(first_unmap_block < last_block);
1224 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1225 while (!done) {
9d87c319 1226 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1227 error = xfs_bunmapi(tp, ip,
3e57ecf6 1228 first_unmap_block, unmap_len,
8f04c47a 1229 xfs_bmapi_aflag(whichfork),
1da177e4 1230 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1231 &first_block, &free_list,
b4e9181e 1232 &done);
8f04c47a
CH
1233 if (error)
1234 goto out_bmap_cancel;
1da177e4
LT
1235
1236 /*
1237 * Duplicate the transaction that has the permanent
1238 * reservation and commit the old transaction.
1239 */
8f04c47a 1240 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1241 if (committed)
ddc3415a 1242 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1243 if (error)
1244 goto out_bmap_cancel;
1da177e4
LT
1245
1246 if (committed) {
1247 /*
f6485057 1248 * Mark the inode dirty so it will be logged and
e5720eec 1249 * moved forward in the log as part of every commit.
1da177e4 1250 */
8f04c47a 1251 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1252 }
f6485057 1253
8f04c47a
CH
1254 ntp = xfs_trans_dup(tp);
1255 error = xfs_trans_commit(tp, 0);
1256 tp = ntp;
e5720eec 1257
ddc3415a 1258 xfs_trans_ijoin(tp, ip, 0);
f6485057 1259
cc09c0dc 1260 if (error)
8f04c47a
CH
1261 goto out;
1262
cc09c0dc 1263 /*
8f04c47a 1264 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1265 * reference that we gained in xfs_trans_dup()
1266 */
8f04c47a
CH
1267 xfs_log_ticket_put(tp->t_ticket);
1268 error = xfs_trans_reserve(tp, 0,
f6485057
DC
1269 XFS_ITRUNCATE_LOG_RES(mp), 0,
1270 XFS_TRANS_PERM_LOG_RES,
1271 XFS_ITRUNCATE_LOG_COUNT);
1272 if (error)
8f04c47a 1273 goto out;
1da177e4 1274 }
8f04c47a 1275
673e8e59
CH
1276 /*
1277 * Always re-log the inode so that our permanent transaction can keep
1278 * on rolling it forward in the log.
1279 */
1280 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1281
1282 trace_xfs_itruncate_extents_end(ip, new_size);
1283
8f04c47a
CH
1284out:
1285 *tpp = tp;
1286 return error;
1287out_bmap_cancel:
1da177e4 1288 /*
8f04c47a
CH
1289 * If the bunmapi call encounters an error, return to the caller where
1290 * the transaction can be properly aborted. We just need to make sure
1291 * we're not holding any resources that we were not when we came in.
1da177e4 1292 */
8f04c47a
CH
1293 xfs_bmap_cancel(&free_list);
1294 goto out;
1295}
1296
1da177e4
LT
1297/*
1298 * This is called when the inode's link count goes to 0.
1299 * We place the on-disk inode on a list in the AGI. It
1300 * will be pulled from this list when the inode is freed.
1301 */
1302int
1303xfs_iunlink(
1304 xfs_trans_t *tp,
1305 xfs_inode_t *ip)
1306{
1307 xfs_mount_t *mp;
1308 xfs_agi_t *agi;
1309 xfs_dinode_t *dip;
1310 xfs_buf_t *agibp;
1311 xfs_buf_t *ibp;
1da177e4
LT
1312 xfs_agino_t agino;
1313 short bucket_index;
1314 int offset;
1315 int error;
1da177e4
LT
1316
1317 ASSERT(ip->i_d.di_nlink == 0);
1318 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1319
1320 mp = tp->t_mountp;
1321
1da177e4
LT
1322 /*
1323 * Get the agi buffer first. It ensures lock ordering
1324 * on the list.
1325 */
5e1be0fb 1326 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1327 if (error)
1da177e4 1328 return error;
1da177e4 1329 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1330
1da177e4
LT
1331 /*
1332 * Get the index into the agi hash table for the
1333 * list this inode will go on.
1334 */
1335 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1336 ASSERT(agino != 0);
1337 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1338 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1339 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1340
69ef921b 1341 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1342 /*
1343 * There is already another inode in the bucket we need
1344 * to add ourselves to. Add us at the front of the list.
1345 * Here we put the head pointer into our next pointer,
1346 * and then we fall through to point the head at us.
1347 */
0cadda1c 1348 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
1349 if (error)
1350 return error;
1351
69ef921b 1352 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1353 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1354 offset = ip->i_imap.im_boffset +
1da177e4
LT
1355 offsetof(xfs_dinode_t, di_next_unlinked);
1356 xfs_trans_inode_buf(tp, ibp);
1357 xfs_trans_log_buf(tp, ibp, offset,
1358 (offset + sizeof(xfs_agino_t) - 1));
1359 xfs_inobp_check(mp, ibp);
1360 }
1361
1362 /*
1363 * Point the bucket head pointer at the inode being inserted.
1364 */
1365 ASSERT(agino != 0);
16259e7d 1366 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1367 offset = offsetof(xfs_agi_t, agi_unlinked) +
1368 (sizeof(xfs_agino_t) * bucket_index);
1369 xfs_trans_log_buf(tp, agibp, offset,
1370 (offset + sizeof(xfs_agino_t) - 1));
1371 return 0;
1372}
1373
1374/*
1375 * Pull the on-disk inode from the AGI unlinked list.
1376 */
1377STATIC int
1378xfs_iunlink_remove(
1379 xfs_trans_t *tp,
1380 xfs_inode_t *ip)
1381{
1382 xfs_ino_t next_ino;
1383 xfs_mount_t *mp;
1384 xfs_agi_t *agi;
1385 xfs_dinode_t *dip;
1386 xfs_buf_t *agibp;
1387 xfs_buf_t *ibp;
1388 xfs_agnumber_t agno;
1da177e4
LT
1389 xfs_agino_t agino;
1390 xfs_agino_t next_agino;
1391 xfs_buf_t *last_ibp;
6fdf8ccc 1392 xfs_dinode_t *last_dip = NULL;
1da177e4 1393 short bucket_index;
6fdf8ccc 1394 int offset, last_offset = 0;
1da177e4 1395 int error;
1da177e4 1396
1da177e4 1397 mp = tp->t_mountp;
1da177e4 1398 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1399
1400 /*
1401 * Get the agi buffer first. It ensures lock ordering
1402 * on the list.
1403 */
5e1be0fb
CH
1404 error = xfs_read_agi(mp, tp, agno, &agibp);
1405 if (error)
1da177e4 1406 return error;
5e1be0fb 1407
1da177e4 1408 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1409
1da177e4
LT
1410 /*
1411 * Get the index into the agi hash table for the
1412 * list this inode will go on.
1413 */
1414 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1415 ASSERT(agino != 0);
1416 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 1417 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
1418 ASSERT(agi->agi_unlinked[bucket_index]);
1419
16259e7d 1420 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1421 /*
1422 * We're at the head of the list. Get the inode's
1423 * on-disk buffer to see if there is anyone after us
1424 * on the list. Only modify our next pointer if it
1425 * is not already NULLAGINO. This saves us the overhead
1426 * of dealing with the buffer when there is no need to
1427 * change it.
1428 */
0cadda1c 1429 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4 1430 if (error) {
0b932ccc
DC
1431 xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1432 __func__, error);
1da177e4
LT
1433 return error;
1434 }
347d1c01 1435 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1436 ASSERT(next_agino != 0);
1437 if (next_agino != NULLAGINO) {
347d1c01 1438 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1439 offset = ip->i_imap.im_boffset +
1da177e4
LT
1440 offsetof(xfs_dinode_t, di_next_unlinked);
1441 xfs_trans_inode_buf(tp, ibp);
1442 xfs_trans_log_buf(tp, ibp, offset,
1443 (offset + sizeof(xfs_agino_t) - 1));
1444 xfs_inobp_check(mp, ibp);
1445 } else {
1446 xfs_trans_brelse(tp, ibp);
1447 }
1448 /*
1449 * Point the bucket head pointer at the next inode.
1450 */
1451 ASSERT(next_agino != 0);
1452 ASSERT(next_agino != agino);
16259e7d 1453 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1454 offset = offsetof(xfs_agi_t, agi_unlinked) +
1455 (sizeof(xfs_agino_t) * bucket_index);
1456 xfs_trans_log_buf(tp, agibp, offset,
1457 (offset + sizeof(xfs_agino_t) - 1));
1458 } else {
1459 /*
1460 * We need to search the list for the inode being freed.
1461 */
16259e7d 1462 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1463 last_ibp = NULL;
1464 while (next_agino != agino) {
1465 /*
1466 * If the last inode wasn't the one pointing to
1467 * us, then release its buffer since we're not
1468 * going to do anything with it.
1469 */
1470 if (last_ibp != NULL) {
1471 xfs_trans_brelse(tp, last_ibp);
1472 }
1473 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1474 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 1475 &last_ibp, &last_offset, 0);
1da177e4 1476 if (error) {
0b932ccc
DC
1477 xfs_warn(mp,
1478 "%s: xfs_inotobp() returned error %d.",
1479 __func__, error);
1da177e4
LT
1480 return error;
1481 }
347d1c01 1482 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1483 ASSERT(next_agino != NULLAGINO);
1484 ASSERT(next_agino != 0);
1485 }
1486 /*
1487 * Now last_ibp points to the buffer previous to us on
1488 * the unlinked list. Pull us from the list.
1489 */
0cadda1c 1490 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4 1491 if (error) {
0b932ccc
DC
1492 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1493 __func__, error);
1da177e4
LT
1494 return error;
1495 }
347d1c01 1496 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1497 ASSERT(next_agino != 0);
1498 ASSERT(next_agino != agino);
1499 if (next_agino != NULLAGINO) {
347d1c01 1500 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1501 offset = ip->i_imap.im_boffset +
1da177e4
LT
1502 offsetof(xfs_dinode_t, di_next_unlinked);
1503 xfs_trans_inode_buf(tp, ibp);
1504 xfs_trans_log_buf(tp, ibp, offset,
1505 (offset + sizeof(xfs_agino_t) - 1));
1506 xfs_inobp_check(mp, ibp);
1507 } else {
1508 xfs_trans_brelse(tp, ibp);
1509 }
1510 /*
1511 * Point the previous inode on the list to the next inode.
1512 */
347d1c01 1513 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1514 ASSERT(next_agino != 0);
1515 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1516 xfs_trans_inode_buf(tp, last_ibp);
1517 xfs_trans_log_buf(tp, last_ibp, offset,
1518 (offset + sizeof(xfs_agino_t) - 1));
1519 xfs_inobp_check(mp, last_ibp);
1520 }
1521 return 0;
1522}
1523
5b3eed75
DC
1524/*
1525 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1526 * inodes that are in memory - they all must be marked stale and attached to
1527 * the cluster buffer.
1528 */
2a30f36d 1529STATIC int
1da177e4
LT
1530xfs_ifree_cluster(
1531 xfs_inode_t *free_ip,
1532 xfs_trans_t *tp,
1533 xfs_ino_t inum)
1534{
1535 xfs_mount_t *mp = free_ip->i_mount;
1536 int blks_per_cluster;
1537 int nbufs;
1538 int ninodes;
5b257b4a 1539 int i, j;
1da177e4
LT
1540 xfs_daddr_t blkno;
1541 xfs_buf_t *bp;
5b257b4a 1542 xfs_inode_t *ip;
1da177e4
LT
1543 xfs_inode_log_item_t *iip;
1544 xfs_log_item_t *lip;
5017e97d 1545 struct xfs_perag *pag;
1da177e4 1546
5017e97d 1547 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1548 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1549 blks_per_cluster = 1;
1550 ninodes = mp->m_sb.sb_inopblock;
1551 nbufs = XFS_IALLOC_BLOCKS(mp);
1552 } else {
1553 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1554 mp->m_sb.sb_blocksize;
1555 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1556 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1557 }
1558
1da177e4
LT
1559 for (j = 0; j < nbufs; j++, inum += ninodes) {
1560 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1561 XFS_INO_TO_AGBNO(mp, inum));
1562
5b257b4a
DC
1563 /*
1564 * We obtain and lock the backing buffer first in the process
1565 * here, as we have to ensure that any dirty inode that we
1566 * can't get the flush lock on is attached to the buffer.
1567 * If we scan the in-memory inodes first, then buffer IO can
1568 * complete before we get a lock on it, and hence we may fail
1569 * to mark all the active inodes on the buffer stale.
1570 */
1571 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1572 mp->m_bsize * blks_per_cluster,
1573 XBF_LOCK);
1574
2a30f36d
CS
1575 if (!bp)
1576 return ENOMEM;
5b257b4a
DC
1577 /*
1578 * Walk the inodes already attached to the buffer and mark them
1579 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1580 * in-memory inode walk can't lock them. By marking them all
1581 * stale first, we will not attempt to lock them in the loop
1582 * below as the XFS_ISTALE flag will be set.
5b257b4a 1583 */
adadbeef 1584 lip = bp->b_fspriv;
5b257b4a
DC
1585 while (lip) {
1586 if (lip->li_type == XFS_LI_INODE) {
1587 iip = (xfs_inode_log_item_t *)lip;
1588 ASSERT(iip->ili_logged == 1);
ca30b2a7 1589 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1590 xfs_trans_ail_copy_lsn(mp->m_ail,
1591 &iip->ili_flush_lsn,
1592 &iip->ili_item.li_lsn);
1593 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1594 }
1595 lip = lip->li_bio_list;
1596 }
1da177e4 1597
5b3eed75 1598
1da177e4 1599 /*
5b257b4a
DC
1600 * For each inode in memory attempt to add it to the inode
1601 * buffer and set it up for being staled on buffer IO
1602 * completion. This is safe as we've locked out tail pushing
1603 * and flushing by locking the buffer.
1da177e4 1604 *
5b257b4a
DC
1605 * We have already marked every inode that was part of a
1606 * transaction stale above, which means there is no point in
1607 * even trying to lock them.
1da177e4 1608 */
1da177e4 1609 for (i = 0; i < ninodes; i++) {
5b3eed75 1610retry:
1a3e8f3d 1611 rcu_read_lock();
da353b0d
DC
1612 ip = radix_tree_lookup(&pag->pag_ici_root,
1613 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 1614
1a3e8f3d
DC
1615 /* Inode not in memory, nothing to do */
1616 if (!ip) {
1617 rcu_read_unlock();
1da177e4
LT
1618 continue;
1619 }
1620
1a3e8f3d
DC
1621 /*
1622 * because this is an RCU protected lookup, we could
1623 * find a recently freed or even reallocated inode
1624 * during the lookup. We need to check under the
1625 * i_flags_lock for a valid inode here. Skip it if it
1626 * is not valid, the wrong inode or stale.
1627 */
1628 spin_lock(&ip->i_flags_lock);
1629 if (ip->i_ino != inum + i ||
1630 __xfs_iflags_test(ip, XFS_ISTALE)) {
1631 spin_unlock(&ip->i_flags_lock);
1632 rcu_read_unlock();
1633 continue;
1634 }
1635 spin_unlock(&ip->i_flags_lock);
1636
5b3eed75
DC
1637 /*
1638 * Don't try to lock/unlock the current inode, but we
1639 * _cannot_ skip the other inodes that we did not find
1640 * in the list attached to the buffer and are not
1641 * already marked stale. If we can't lock it, back off
1642 * and retry.
1643 */
5b257b4a
DC
1644 if (ip != free_ip &&
1645 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 1646 rcu_read_unlock();
5b3eed75
DC
1647 delay(1);
1648 goto retry;
1da177e4 1649 }
1a3e8f3d 1650 rcu_read_unlock();
1da177e4 1651
5b3eed75 1652 xfs_iflock(ip);
5b257b4a 1653 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 1654
5b3eed75
DC
1655 /*
1656 * we don't need to attach clean inodes or those only
1657 * with unlogged changes (which we throw away, anyway).
1658 */
1da177e4 1659 iip = ip->i_itemp;
5b3eed75 1660 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 1661 ASSERT(ip != free_ip);
1da177e4
LT
1662 ip->i_update_core = 0;
1663 xfs_ifunlock(ip);
1664 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1665 continue;
1666 }
1667
1668 iip->ili_last_fields = iip->ili_format.ilf_fields;
1669 iip->ili_format.ilf_fields = 0;
1670 iip->ili_logged = 1;
7b2e2a31
DC
1671 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1672 &iip->ili_item.li_lsn);
1da177e4 1673
ca30b2a7
CH
1674 xfs_buf_attach_iodone(bp, xfs_istale_done,
1675 &iip->ili_item);
5b257b4a
DC
1676
1677 if (ip != free_ip)
1da177e4 1678 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
1679 }
1680
5b3eed75 1681 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
1682 xfs_trans_binval(tp, bp);
1683 }
1684
5017e97d 1685 xfs_perag_put(pag);
2a30f36d 1686 return 0;
1da177e4
LT
1687}
1688
1689/*
1690 * This is called to return an inode to the inode free list.
1691 * The inode should already be truncated to 0 length and have
1692 * no pages associated with it. This routine also assumes that
1693 * the inode is already a part of the transaction.
1694 *
1695 * The on-disk copy of the inode will have been added to the list
1696 * of unlinked inodes in the AGI. We need to remove the inode from
1697 * that list atomically with respect to freeing it here.
1698 */
1699int
1700xfs_ifree(
1701 xfs_trans_t *tp,
1702 xfs_inode_t *ip,
1703 xfs_bmap_free_t *flist)
1704{
1705 int error;
1706 int delete;
1707 xfs_ino_t first_ino;
c319b58b
VA
1708 xfs_dinode_t *dip;
1709 xfs_buf_t *ibp;
1da177e4 1710
579aa9ca 1711 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
1712 ASSERT(ip->i_d.di_nlink == 0);
1713 ASSERT(ip->i_d.di_nextents == 0);
1714 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 1715 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
abbede1b 1716 (!S_ISREG(ip->i_d.di_mode)));
1da177e4
LT
1717 ASSERT(ip->i_d.di_nblocks == 0);
1718
1719 /*
1720 * Pull the on-disk inode from the AGI unlinked list.
1721 */
1722 error = xfs_iunlink_remove(tp, ip);
1723 if (error != 0) {
1724 return error;
1725 }
1726
1727 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1728 if (error != 0) {
1729 return error;
1730 }
1731 ip->i_d.di_mode = 0; /* mark incore inode as free */
1732 ip->i_d.di_flags = 0;
1733 ip->i_d.di_dmevmask = 0;
1734 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
1735 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1736 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1737 /*
1738 * Bump the generation count so no one will be confused
1739 * by reincarnations of this inode.
1740 */
1741 ip->i_d.di_gen++;
c319b58b 1742
1da177e4
LT
1743 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1744
0cadda1c 1745 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
1746 if (error)
1747 return error;
1748
1749 /*
1750 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1751 * from picking up this inode when it is reclaimed (its incore state
1752 * initialzed but not flushed to disk yet). The in-core di_mode is
1753 * already cleared and a corresponding transaction logged.
1754 * The hack here just synchronizes the in-core to on-disk
1755 * di_mode value in advance before the actual inode sync to disk.
1756 * This is OK because the inode is already unlinked and would never
1757 * change its di_mode again for this inode generation.
1758 * This is a temporary hack that would require a proper fix
1759 * in the future.
1760 */
81591fe2 1761 dip->di_mode = 0;
c319b58b 1762
1da177e4 1763 if (delete) {
2a30f36d 1764 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4
LT
1765 }
1766
2a30f36d 1767 return error;
1da177e4
LT
1768}
1769
1770/*
1771 * Reallocate the space for if_broot based on the number of records
1772 * being added or deleted as indicated in rec_diff. Move the records
1773 * and pointers in if_broot to fit the new size. When shrinking this
1774 * will eliminate holes between the records and pointers created by
1775 * the caller. When growing this will create holes to be filled in
1776 * by the caller.
1777 *
1778 * The caller must not request to add more records than would fit in
1779 * the on-disk inode root. If the if_broot is currently NULL, then
1780 * if we adding records one will be allocated. The caller must also
1781 * not request that the number of records go below zero, although
1782 * it can go to zero.
1783 *
1784 * ip -- the inode whose if_broot area is changing
1785 * ext_diff -- the change in the number of records, positive or negative,
1786 * requested for the if_broot array.
1787 */
1788void
1789xfs_iroot_realloc(
1790 xfs_inode_t *ip,
1791 int rec_diff,
1792 int whichfork)
1793{
60197e8d 1794 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
1795 int cur_max;
1796 xfs_ifork_t *ifp;
7cc95a82 1797 struct xfs_btree_block *new_broot;
1da177e4
LT
1798 int new_max;
1799 size_t new_size;
1800 char *np;
1801 char *op;
1802
1803 /*
1804 * Handle the degenerate case quietly.
1805 */
1806 if (rec_diff == 0) {
1807 return;
1808 }
1809
1810 ifp = XFS_IFORK_PTR(ip, whichfork);
1811 if (rec_diff > 0) {
1812 /*
1813 * If there wasn't any memory allocated before, just
1814 * allocate it now and get out.
1815 */
1816 if (ifp->if_broot_bytes == 0) {
1817 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 1818 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
1819 ifp->if_broot_bytes = (int)new_size;
1820 return;
1821 }
1822
1823 /*
1824 * If there is already an existing if_broot, then we need
1825 * to realloc() it and shift the pointers to their new
1826 * location. The records don't change location because
1827 * they are kept butted up against the btree block header.
1828 */
60197e8d 1829 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
1830 new_max = cur_max + rec_diff;
1831 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 1832 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 1833 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 1834 KM_SLEEP | KM_NOFS);
60197e8d
CH
1835 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1836 ifp->if_broot_bytes);
1837 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1838 (int)new_size);
1da177e4
LT
1839 ifp->if_broot_bytes = (int)new_size;
1840 ASSERT(ifp->if_broot_bytes <=
1841 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1842 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1843 return;
1844 }
1845
1846 /*
1847 * rec_diff is less than 0. In this case, we are shrinking the
1848 * if_broot buffer. It must already exist. If we go to zero
1849 * records, just get rid of the root and clear the status bit.
1850 */
1851 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 1852 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
1853 new_max = cur_max + rec_diff;
1854 ASSERT(new_max >= 0);
1855 if (new_max > 0)
1856 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1857 else
1858 new_size = 0;
1859 if (new_size > 0) {
4a7edddc 1860 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
1861 /*
1862 * First copy over the btree block header.
1863 */
7cc95a82 1864 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
1865 } else {
1866 new_broot = NULL;
1867 ifp->if_flags &= ~XFS_IFBROOT;
1868 }
1869
1870 /*
1871 * Only copy the records and pointers if there are any.
1872 */
1873 if (new_max > 0) {
1874 /*
1875 * First copy the records.
1876 */
136341b4
CH
1877 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1878 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
1879 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1880
1881 /*
1882 * Then copy the pointers.
1883 */
60197e8d 1884 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 1885 ifp->if_broot_bytes);
60197e8d 1886 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
1887 (int)new_size);
1888 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1889 }
f0e2d93c 1890 kmem_free(ifp->if_broot);
1da177e4
LT
1891 ifp->if_broot = new_broot;
1892 ifp->if_broot_bytes = (int)new_size;
1893 ASSERT(ifp->if_broot_bytes <=
1894 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1895 return;
1896}
1897
1898
1da177e4
LT
1899/*
1900 * This is called when the amount of space needed for if_data
1901 * is increased or decreased. The change in size is indicated by
1902 * the number of bytes that need to be added or deleted in the
1903 * byte_diff parameter.
1904 *
1905 * If the amount of space needed has decreased below the size of the
1906 * inline buffer, then switch to using the inline buffer. Otherwise,
1907 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1908 * to what is needed.
1909 *
1910 * ip -- the inode whose if_data area is changing
1911 * byte_diff -- the change in the number of bytes, positive or negative,
1912 * requested for the if_data array.
1913 */
1914void
1915xfs_idata_realloc(
1916 xfs_inode_t *ip,
1917 int byte_diff,
1918 int whichfork)
1919{
1920 xfs_ifork_t *ifp;
1921 int new_size;
1922 int real_size;
1923
1924 if (byte_diff == 0) {
1925 return;
1926 }
1927
1928 ifp = XFS_IFORK_PTR(ip, whichfork);
1929 new_size = (int)ifp->if_bytes + byte_diff;
1930 ASSERT(new_size >= 0);
1931
1932 if (new_size == 0) {
1933 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 1934 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
1935 }
1936 ifp->if_u1.if_data = NULL;
1937 real_size = 0;
1938 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1939 /*
1940 * If the valid extents/data can fit in if_inline_ext/data,
1941 * copy them from the malloc'd vector and free it.
1942 */
1943 if (ifp->if_u1.if_data == NULL) {
1944 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1945 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1946 ASSERT(ifp->if_real_bytes != 0);
1947 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1948 new_size);
f0e2d93c 1949 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
1950 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1951 }
1952 real_size = 0;
1953 } else {
1954 /*
1955 * Stuck with malloc/realloc.
1956 * For inline data, the underlying buffer must be
1957 * a multiple of 4 bytes in size so that it can be
1958 * logged and stay on word boundaries. We enforce
1959 * that here.
1960 */
1961 real_size = roundup(new_size, 4);
1962 if (ifp->if_u1.if_data == NULL) {
1963 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
1964 ifp->if_u1.if_data = kmem_alloc(real_size,
1965 KM_SLEEP | KM_NOFS);
1da177e4
LT
1966 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1967 /*
1968 * Only do the realloc if the underlying size
1969 * is really changing.
1970 */
1971 if (ifp->if_real_bytes != real_size) {
1972 ifp->if_u1.if_data =
1973 kmem_realloc(ifp->if_u1.if_data,
1974 real_size,
1975 ifp->if_real_bytes,
4a7edddc 1976 KM_SLEEP | KM_NOFS);
1da177e4
LT
1977 }
1978 } else {
1979 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
1980 ifp->if_u1.if_data = kmem_alloc(real_size,
1981 KM_SLEEP | KM_NOFS);
1da177e4
LT
1982 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1983 ifp->if_bytes);
1984 }
1985 }
1986 ifp->if_real_bytes = real_size;
1987 ifp->if_bytes = new_size;
1988 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1989}
1990
1da177e4
LT
1991void
1992xfs_idestroy_fork(
1993 xfs_inode_t *ip,
1994 int whichfork)
1995{
1996 xfs_ifork_t *ifp;
1997
1998 ifp = XFS_IFORK_PTR(ip, whichfork);
1999 if (ifp->if_broot != NULL) {
f0e2d93c 2000 kmem_free(ifp->if_broot);
1da177e4
LT
2001 ifp->if_broot = NULL;
2002 }
2003
2004 /*
2005 * If the format is local, then we can't have an extents
2006 * array so just look for an inline data array. If we're
2007 * not local then we may or may not have an extents list,
2008 * so check and free it up if we do.
2009 */
2010 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2011 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2012 (ifp->if_u1.if_data != NULL)) {
2013 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2014 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2015 ifp->if_u1.if_data = NULL;
2016 ifp->if_real_bytes = 0;
2017 }
2018 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2019 ((ifp->if_flags & XFS_IFEXTIREC) ||
2020 ((ifp->if_u1.if_extents != NULL) &&
2021 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2022 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2023 xfs_iext_destroy(ifp);
1da177e4
LT
2024 }
2025 ASSERT(ifp->if_u1.if_extents == NULL ||
2026 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2027 ASSERT(ifp->if_real_bytes == 0);
2028 if (whichfork == XFS_ATTR_FORK) {
2029 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2030 ip->i_afp = NULL;
2031 }
2032}
2033
1da177e4 2034/*
60ec6783
CH
2035 * This is called to unpin an inode. The caller must have the inode locked
2036 * in at least shared mode so that the buffer cannot be subsequently pinned
2037 * once someone is waiting for it to be unpinned.
1da177e4 2038 */
60ec6783
CH
2039static void
2040xfs_iunpin_nowait(
2041 struct xfs_inode *ip)
1da177e4 2042{
579aa9ca 2043 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2044
4aaf15d1
DC
2045 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2046
a3f74ffb 2047 /* Give the log a push to start the unpinning I/O */
60ec6783 2048 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2049
a3f74ffb 2050}
1da177e4 2051
777df5af 2052void
a3f74ffb 2053xfs_iunpin_wait(
60ec6783 2054 struct xfs_inode *ip)
a3f74ffb 2055{
60ec6783
CH
2056 if (xfs_ipincount(ip)) {
2057 xfs_iunpin_nowait(ip);
2058 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2059 }
1da177e4
LT
2060}
2061
1da177e4
LT
2062/*
2063 * xfs_iextents_copy()
2064 *
2065 * This is called to copy the REAL extents (as opposed to the delayed
2066 * allocation extents) from the inode into the given buffer. It
2067 * returns the number of bytes copied into the buffer.
2068 *
2069 * If there are no delayed allocation extents, then we can just
2070 * memcpy() the extents into the buffer. Otherwise, we need to
2071 * examine each extent in turn and skip those which are delayed.
2072 */
2073int
2074xfs_iextents_copy(
2075 xfs_inode_t *ip,
a6f64d4a 2076 xfs_bmbt_rec_t *dp,
1da177e4
LT
2077 int whichfork)
2078{
2079 int copied;
1da177e4
LT
2080 int i;
2081 xfs_ifork_t *ifp;
2082 int nrecs;
2083 xfs_fsblock_t start_block;
2084
2085 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2086 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2087 ASSERT(ifp->if_bytes > 0);
2088
2089 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2090 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2091 ASSERT(nrecs > 0);
2092
2093 /*
2094 * There are some delayed allocation extents in the
2095 * inode, so copy the extents one at a time and skip
2096 * the delayed ones. There must be at least one
2097 * non-delayed extent.
2098 */
1da177e4
LT
2099 copied = 0;
2100 for (i = 0; i < nrecs; i++) {
a6f64d4a 2101 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2102 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2103 if (isnullstartblock(start_block)) {
1da177e4
LT
2104 /*
2105 * It's a delayed allocation extent, so skip it.
2106 */
1da177e4
LT
2107 continue;
2108 }
2109
2110 /* Translate to on disk format */
cd8b0a97
CH
2111 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2112 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2113 dp++;
1da177e4
LT
2114 copied++;
2115 }
2116 ASSERT(copied != 0);
a6f64d4a 2117 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2118
2119 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2120}
2121
2122/*
2123 * Each of the following cases stores data into the same region
2124 * of the on-disk inode, so only one of them can be valid at
2125 * any given time. While it is possible to have conflicting formats
2126 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2127 * in EXTENTS format, this can only happen when the fork has
2128 * changed formats after being modified but before being flushed.
2129 * In these cases, the format always takes precedence, because the
2130 * format indicates the current state of the fork.
2131 */
2132/*ARGSUSED*/
e4ac967b 2133STATIC void
1da177e4
LT
2134xfs_iflush_fork(
2135 xfs_inode_t *ip,
2136 xfs_dinode_t *dip,
2137 xfs_inode_log_item_t *iip,
2138 int whichfork,
2139 xfs_buf_t *bp)
2140{
2141 char *cp;
2142 xfs_ifork_t *ifp;
2143 xfs_mount_t *mp;
2144#ifdef XFS_TRANS_DEBUG
2145 int first;
2146#endif
2147 static const short brootflag[2] =
2148 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2149 static const short dataflag[2] =
2150 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2151 static const short extflag[2] =
2152 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2153
e4ac967b
DC
2154 if (!iip)
2155 return;
1da177e4
LT
2156 ifp = XFS_IFORK_PTR(ip, whichfork);
2157 /*
2158 * This can happen if we gave up in iformat in an error path,
2159 * for the attribute fork.
2160 */
e4ac967b 2161 if (!ifp) {
1da177e4 2162 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2163 return;
1da177e4
LT
2164 }
2165 cp = XFS_DFORK_PTR(dip, whichfork);
2166 mp = ip->i_mount;
2167 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2168 case XFS_DINODE_FMT_LOCAL:
2169 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2170 (ifp->if_bytes > 0)) {
2171 ASSERT(ifp->if_u1.if_data != NULL);
2172 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2173 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2174 }
1da177e4
LT
2175 break;
2176
2177 case XFS_DINODE_FMT_EXTENTS:
2178 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2179 !(iip->ili_format.ilf_fields & extflag[whichfork]));
1da177e4
LT
2180 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2181 (ifp->if_bytes > 0)) {
ab1908a5 2182 ASSERT(xfs_iext_get_ext(ifp, 0));
1da177e4
LT
2183 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2184 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2185 whichfork);
2186 }
2187 break;
2188
2189 case XFS_DINODE_FMT_BTREE:
2190 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2191 (ifp->if_broot_bytes > 0)) {
2192 ASSERT(ifp->if_broot != NULL);
2193 ASSERT(ifp->if_broot_bytes <=
2194 (XFS_IFORK_SIZE(ip, whichfork) +
2195 XFS_BROOT_SIZE_ADJ));
60197e8d 2196 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2197 (xfs_bmdr_block_t *)cp,
2198 XFS_DFORK_SIZE(dip, mp, whichfork));
2199 }
2200 break;
2201
2202 case XFS_DINODE_FMT_DEV:
2203 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2204 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2205 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2206 }
2207 break;
2208
2209 case XFS_DINODE_FMT_UUID:
2210 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2211 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2212 memcpy(XFS_DFORK_DPTR(dip),
2213 &ip->i_df.if_u2.if_uuid,
2214 sizeof(uuid_t));
1da177e4
LT
2215 }
2216 break;
2217
2218 default:
2219 ASSERT(0);
2220 break;
2221 }
1da177e4
LT
2222}
2223
bad55843
DC
2224STATIC int
2225xfs_iflush_cluster(
2226 xfs_inode_t *ip,
2227 xfs_buf_t *bp)
2228{
2229 xfs_mount_t *mp = ip->i_mount;
5017e97d 2230 struct xfs_perag *pag;
bad55843 2231 unsigned long first_index, mask;
c8f5f12e 2232 unsigned long inodes_per_cluster;
bad55843
DC
2233 int ilist_size;
2234 xfs_inode_t **ilist;
2235 xfs_inode_t *iq;
bad55843
DC
2236 int nr_found;
2237 int clcount = 0;
2238 int bufwasdelwri;
2239 int i;
2240
5017e97d 2241 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2242
c8f5f12e
DC
2243 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2244 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2245 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2246 if (!ilist)
44b56e0a 2247 goto out_put;
bad55843
DC
2248
2249 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2250 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2251 rcu_read_lock();
bad55843
DC
2252 /* really need a gang lookup range call here */
2253 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2254 first_index, inodes_per_cluster);
bad55843
DC
2255 if (nr_found == 0)
2256 goto out_free;
2257
2258 for (i = 0; i < nr_found; i++) {
2259 iq = ilist[i];
2260 if (iq == ip)
2261 continue;
1a3e8f3d
DC
2262
2263 /*
2264 * because this is an RCU protected lookup, we could find a
2265 * recently freed or even reallocated inode during the lookup.
2266 * We need to check under the i_flags_lock for a valid inode
2267 * here. Skip it if it is not valid or the wrong inode.
2268 */
2269 spin_lock(&ip->i_flags_lock);
2270 if (!ip->i_ino ||
2271 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2272 spin_unlock(&ip->i_flags_lock);
2273 continue;
2274 }
2275 spin_unlock(&ip->i_flags_lock);
2276
bad55843
DC
2277 /*
2278 * Do an un-protected check to see if the inode is dirty and
2279 * is a candidate for flushing. These checks will be repeated
2280 * later after the appropriate locks are acquired.
2281 */
33540408 2282 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2283 continue;
bad55843
DC
2284
2285 /*
2286 * Try to get locks. If any are unavailable or it is pinned,
2287 * then this inode cannot be flushed and is skipped.
2288 */
2289
2290 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2291 continue;
2292 if (!xfs_iflock_nowait(iq)) {
2293 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2294 continue;
2295 }
2296 if (xfs_ipincount(iq)) {
2297 xfs_ifunlock(iq);
2298 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2299 continue;
2300 }
2301
2302 /*
2303 * arriving here means that this inode can be flushed. First
2304 * re-check that it's dirty before flushing.
2305 */
33540408
DC
2306 if (!xfs_inode_clean(iq)) {
2307 int error;
bad55843
DC
2308 error = xfs_iflush_int(iq, bp);
2309 if (error) {
2310 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2311 goto cluster_corrupt_out;
2312 }
2313 clcount++;
2314 } else {
2315 xfs_ifunlock(iq);
2316 }
2317 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2318 }
2319
2320 if (clcount) {
2321 XFS_STATS_INC(xs_icluster_flushcnt);
2322 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2323 }
2324
2325out_free:
1a3e8f3d 2326 rcu_read_unlock();
f0e2d93c 2327 kmem_free(ilist);
44b56e0a
DC
2328out_put:
2329 xfs_perag_put(pag);
bad55843
DC
2330 return 0;
2331
2332
2333cluster_corrupt_out:
2334 /*
2335 * Corruption detected in the clustering loop. Invalidate the
2336 * inode buffer and shut down the filesystem.
2337 */
1a3e8f3d 2338 rcu_read_unlock();
bad55843
DC
2339 /*
2340 * Clean up the buffer. If it was B_DELWRI, just release it --
2341 * brelse can handle it with no problems. If not, shut down the
2342 * filesystem before releasing the buffer.
2343 */
2344 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2345 if (bufwasdelwri)
2346 xfs_buf_relse(bp);
2347
2348 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2349
2350 if (!bufwasdelwri) {
2351 /*
2352 * Just like incore_relse: if we have b_iodone functions,
2353 * mark the buffer as an error and call them. Otherwise
2354 * mark it as stale and brelse.
2355 */
cb669ca5 2356 if (bp->b_iodone) {
bad55843 2357 XFS_BUF_UNDONE(bp);
c867cb61 2358 xfs_buf_stale(bp);
5a52c2a5 2359 xfs_buf_ioerror(bp, EIO);
1a1a3e97 2360 xfs_buf_ioend(bp, 0);
bad55843 2361 } else {
c867cb61 2362 xfs_buf_stale(bp);
bad55843
DC
2363 xfs_buf_relse(bp);
2364 }
2365 }
2366
2367 /*
2368 * Unlocks the flush lock
2369 */
2370 xfs_iflush_abort(iq);
f0e2d93c 2371 kmem_free(ilist);
44b56e0a 2372 xfs_perag_put(pag);
bad55843
DC
2373 return XFS_ERROR(EFSCORRUPTED);
2374}
2375
1da177e4
LT
2376/*
2377 * xfs_iflush() will write a modified inode's changes out to the
2378 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
2379 * in at least shared mode and the inode flush completion must be
2380 * active as well. The inode lock will still be held upon return from
1da177e4 2381 * the call and the caller is free to unlock it.
c63942d3 2382 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
2383 * The flags indicate how the inode's buffer should be written out.
2384 */
2385int
2386xfs_iflush(
2387 xfs_inode_t *ip,
2388 uint flags)
2389{
2390 xfs_inode_log_item_t *iip;
2391 xfs_buf_t *bp;
2392 xfs_dinode_t *dip;
2393 xfs_mount_t *mp;
2394 int error;
1da177e4
LT
2395
2396 XFS_STATS_INC(xs_iflush_count);
2397
579aa9ca 2398 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2399 ASSERT(!completion_done(&ip->i_flush));
1da177e4 2400 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2401 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4
LT
2402
2403 iip = ip->i_itemp;
2404 mp = ip->i_mount;
2405
1da177e4 2406 /*
a3f74ffb 2407 * We can't flush the inode until it is unpinned, so wait for it if we
25985edc 2408 * are allowed to block. We know no one new can pin it, because we are
a3f74ffb
DC
2409 * holding the inode lock shared and you need to hold it exclusively to
2410 * pin the inode.
2411 *
2412 * If we are not allowed to block, force the log out asynchronously so
2413 * that when we come back the inode will be unpinned. If other inodes
2414 * in the same cluster are dirty, they will probably write the inode
2415 * out for us if they occur after the log force completes.
1da177e4 2416 */
c854363e 2417 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
a3f74ffb
DC
2418 xfs_iunpin_nowait(ip);
2419 xfs_ifunlock(ip);
2420 return EAGAIN;
2421 }
1da177e4
LT
2422 xfs_iunpin_wait(ip);
2423
4b6a4688
DC
2424 /*
2425 * For stale inodes we cannot rely on the backing buffer remaining
2426 * stale in cache for the remaining life of the stale inode and so
2427 * xfs_itobp() below may give us a buffer that no longer contains
2428 * inodes below. We have to check this after ensuring the inode is
2429 * unpinned so that it is safe to reclaim the stale inode after the
2430 * flush call.
2431 */
2432 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2433 xfs_ifunlock(ip);
2434 return 0;
2435 }
2436
1da177e4
LT
2437 /*
2438 * This may have been unpinned because the filesystem is shutting
2439 * down forcibly. If that's the case we must not write this inode
2440 * to disk, because the log record didn't make it to disk!
2441 */
2442 if (XFS_FORCED_SHUTDOWN(mp)) {
2443 ip->i_update_core = 0;
2444 if (iip)
2445 iip->ili_format.ilf_fields = 0;
2446 xfs_ifunlock(ip);
2447 return XFS_ERROR(EIO);
2448 }
2449
a3f74ffb
DC
2450 /*
2451 * Get the buffer containing the on-disk inode.
2452 */
76d8b277 2453 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
1bfd8d04 2454 (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
a3f74ffb
DC
2455 if (error || !bp) {
2456 xfs_ifunlock(ip);
2457 return error;
2458 }
2459
1da177e4
LT
2460 /*
2461 * First flush out the inode that xfs_iflush was called with.
2462 */
2463 error = xfs_iflush_int(ip, bp);
bad55843 2464 if (error)
1da177e4 2465 goto corrupt_out;
1da177e4 2466
a3f74ffb
DC
2467 /*
2468 * If the buffer is pinned then push on the log now so we won't
2469 * get stuck waiting in the write for too long.
2470 */
811e64c7 2471 if (xfs_buf_ispinned(bp))
a14a348b 2472 xfs_log_force(mp, 0);
a3f74ffb 2473
1da177e4
LT
2474 /*
2475 * inode clustering:
2476 * see if other inodes can be gathered into this write
2477 */
bad55843
DC
2478 error = xfs_iflush_cluster(ip, bp);
2479 if (error)
2480 goto cluster_corrupt_out;
1da177e4 2481
c854363e 2482 if (flags & SYNC_WAIT)
c2b006c1
CH
2483 error = xfs_bwrite(bp);
2484 else
61551f1e 2485 xfs_buf_delwri_queue(bp);
c2b006c1
CH
2486
2487 xfs_buf_relse(bp);
1da177e4
LT
2488 return error;
2489
2490corrupt_out:
2491 xfs_buf_relse(bp);
7d04a335 2492 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2493cluster_corrupt_out:
1da177e4
LT
2494 /*
2495 * Unlocks the flush lock
2496 */
bad55843 2497 xfs_iflush_abort(ip);
1da177e4
LT
2498 return XFS_ERROR(EFSCORRUPTED);
2499}
2500
2501
2502STATIC int
2503xfs_iflush_int(
2504 xfs_inode_t *ip,
2505 xfs_buf_t *bp)
2506{
2507 xfs_inode_log_item_t *iip;
2508 xfs_dinode_t *dip;
2509 xfs_mount_t *mp;
2510#ifdef XFS_TRANS_DEBUG
2511 int first;
2512#endif
1da177e4 2513
579aa9ca 2514 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2515 ASSERT(!completion_done(&ip->i_flush));
1da177e4 2516 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2517 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4
LT
2518
2519 iip = ip->i_itemp;
2520 mp = ip->i_mount;
2521
1da177e4 2522 /* set *dip = inode's place in the buffer */
92bfc6e7 2523 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
2524
2525 /*
2526 * Clear i_update_core before copying out the data.
2527 * This is for coordination with our timestamp updates
2528 * that don't hold the inode lock. They will always
2529 * update the timestamps BEFORE setting i_update_core,
2530 * so if we clear i_update_core after they set it we
2531 * are guaranteed to see their updates to the timestamps.
2532 * I believe that this depends on strongly ordered memory
2533 * semantics, but we have that. We use the SYNCHRONIZE
2534 * macro to make sure that the compiler does not reorder
2535 * the i_update_core access below the data copy below.
2536 */
2537 ip->i_update_core = 0;
2538 SYNCHRONIZE();
2539
42fe2b1f 2540 /*
f9581b14 2541 * Make sure to get the latest timestamps from the Linux inode.
42fe2b1f 2542 */
f9581b14 2543 xfs_synchronize_times(ip);
42fe2b1f 2544
69ef921b 2545 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 2546 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
2547 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2548 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2549 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2550 goto corrupt_out;
2551 }
2552 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2553 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
2554 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2555 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2556 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
2557 goto corrupt_out;
2558 }
abbede1b 2559 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
2560 if (XFS_TEST_ERROR(
2561 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2562 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2563 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
2564 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2565 "%s: Bad regular inode %Lu, ptr 0x%p",
2566 __func__, ip->i_ino, ip);
1da177e4
LT
2567 goto corrupt_out;
2568 }
abbede1b 2569 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
2570 if (XFS_TEST_ERROR(
2571 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2572 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2573 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2574 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
2575 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2576 "%s: Bad directory inode %Lu, ptr 0x%p",
2577 __func__, ip->i_ino, ip);
1da177e4
LT
2578 goto corrupt_out;
2579 }
2580 }
2581 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2582 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2583 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
2584 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2585 "%s: detected corrupt incore inode %Lu, "
2586 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2587 __func__, ip->i_ino,
1da177e4 2588 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 2589 ip->i_d.di_nblocks, ip);
1da177e4
LT
2590 goto corrupt_out;
2591 }
2592 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2593 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
2594 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2595 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2596 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
2597 goto corrupt_out;
2598 }
2599 /*
2600 * bump the flush iteration count, used to detect flushes which
2601 * postdate a log record during recovery.
2602 */
2603
2604 ip->i_d.di_flushiter++;
2605
2606 /*
2607 * Copy the dirty parts of the inode into the on-disk
2608 * inode. We always copy out the core of the inode,
2609 * because if the inode is dirty at all the core must
2610 * be.
2611 */
81591fe2 2612 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2613
2614 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2615 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2616 ip->i_d.di_flushiter = 0;
2617
2618 /*
2619 * If this is really an old format inode and the superblock version
2620 * has not been updated to support only new format inodes, then
2621 * convert back to the old inode format. If the superblock version
2622 * has been updated, then make the conversion permanent.
2623 */
51ce16d5
CH
2624 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2625 if (ip->i_d.di_version == 1) {
62118709 2626 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
2627 /*
2628 * Convert it back.
2629 */
2630 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 2631 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
2632 } else {
2633 /*
2634 * The superblock version has already been bumped,
2635 * so just make the conversion to the new inode
2636 * format permanent.
2637 */
51ce16d5
CH
2638 ip->i_d.di_version = 2;
2639 dip->di_version = 2;
1da177e4 2640 ip->i_d.di_onlink = 0;
81591fe2 2641 dip->di_onlink = 0;
1da177e4 2642 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
2643 memset(&(dip->di_pad[0]), 0,
2644 sizeof(dip->di_pad));
6743099c 2645 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
2646 }
2647 }
2648
e4ac967b
DC
2649 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2650 if (XFS_IFORK_Q(ip))
2651 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
2652 xfs_inobp_check(mp, bp);
2653
2654 /*
2655 * We've recorded everything logged in the inode, so we'd
2656 * like to clear the ilf_fields bits so we don't log and
2657 * flush things unnecessarily. However, we can't stop
2658 * logging all this information until the data we've copied
2659 * into the disk buffer is written to disk. If we did we might
2660 * overwrite the copy of the inode in the log with all the
2661 * data after re-logging only part of it, and in the face of
2662 * a crash we wouldn't have all the data we need to recover.
2663 *
2664 * What we do is move the bits to the ili_last_fields field.
2665 * When logging the inode, these bits are moved back to the
2666 * ilf_fields field. In the xfs_iflush_done() routine we
2667 * clear ili_last_fields, since we know that the information
2668 * those bits represent is permanently on disk. As long as
2669 * the flush completes before the inode is logged again, then
2670 * both ilf_fields and ili_last_fields will be cleared.
2671 *
2672 * We can play with the ilf_fields bits here, because the inode
2673 * lock must be held exclusively in order to set bits there
2674 * and the flush lock protects the ili_last_fields bits.
2675 * Set ili_logged so the flush done
2676 * routine can tell whether or not to look in the AIL.
2677 * Also, store the current LSN of the inode so that we can tell
2678 * whether the item has moved in the AIL from xfs_iflush_done().
2679 * In order to read the lsn we need the AIL lock, because
2680 * it is a 64 bit value that cannot be read atomically.
2681 */
2682 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2683 iip->ili_last_fields = iip->ili_format.ilf_fields;
2684 iip->ili_format.ilf_fields = 0;
2685 iip->ili_logged = 1;
2686
7b2e2a31
DC
2687 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2688 &iip->ili_item.li_lsn);
1da177e4
LT
2689
2690 /*
2691 * Attach the function xfs_iflush_done to the inode's
2692 * buffer. This will remove the inode from the AIL
2693 * and unlock the inode's flush lock when the inode is
2694 * completely written to disk.
2695 */
ca30b2a7 2696 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 2697
adadbeef 2698 ASSERT(bp->b_fspriv != NULL);
cb669ca5 2699 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
2700 } else {
2701 /*
2702 * We're flushing an inode which is not in the AIL and has
2703 * not been logged but has i_update_core set. For this
2704 * case we can use a B_DELWRI flush and immediately drop
2705 * the inode flush lock because we can avoid the whole
2706 * AIL state thing. It's OK to drop the flush lock now,
2707 * because we've already locked the buffer and to do anything
2708 * you really need both.
2709 */
2710 if (iip != NULL) {
2711 ASSERT(iip->ili_logged == 0);
2712 ASSERT(iip->ili_last_fields == 0);
2713 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2714 }
2715 xfs_ifunlock(ip);
2716 }
2717
2718 return 0;
2719
2720corrupt_out:
2721 return XFS_ERROR(EFSCORRUPTED);
2722}
2723
4dd2cb4a
CH
2724void
2725xfs_promote_inode(
2726 struct xfs_inode *ip)
2727{
2728 struct xfs_buf *bp;
2729
2730 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2731
2732 bp = xfs_incore(ip->i_mount->m_ddev_targp, ip->i_imap.im_blkno,
2733 ip->i_imap.im_len, XBF_TRYLOCK);
2734 if (!bp)
2735 return;
2736
2737 if (XFS_BUF_ISDELAYWRITE(bp)) {
2738 xfs_buf_delwri_promote(bp);
2739 wake_up_process(ip->i_mount->m_ddev_targp->bt_task);
2740 }
2741
2742 xfs_buf_relse(bp);
2743}
2744
4eea22f0
MK
2745/*
2746 * Return a pointer to the extent record at file index idx.
2747 */
a6f64d4a 2748xfs_bmbt_rec_host_t *
4eea22f0
MK
2749xfs_iext_get_ext(
2750 xfs_ifork_t *ifp, /* inode fork pointer */
2751 xfs_extnum_t idx) /* index of target extent */
2752{
2753 ASSERT(idx >= 0);
87bef181
CH
2754 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2755
0293ce3a
MK
2756 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2757 return ifp->if_u1.if_ext_irec->er_extbuf;
2758 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2759 xfs_ext_irec_t *erp; /* irec pointer */
2760 int erp_idx = 0; /* irec index */
2761 xfs_extnum_t page_idx = idx; /* ext index in target list */
2762
2763 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2764 return &erp->er_extbuf[page_idx];
2765 } else if (ifp->if_bytes) {
4eea22f0
MK
2766 return &ifp->if_u1.if_extents[idx];
2767 } else {
2768 return NULL;
2769 }
2770}
2771
2772/*
2773 * Insert new item(s) into the extent records for incore inode
2774 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2775 */
2776void
2777xfs_iext_insert(
6ef35544 2778 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
2779 xfs_extnum_t idx, /* starting index of new items */
2780 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
2781 xfs_bmbt_irec_t *new, /* items to insert */
2782 int state) /* type of extent conversion */
4eea22f0 2783{
6ef35544 2784 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2785 xfs_extnum_t i; /* extent record index */
2786
0b1b213f
CH
2787 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2788
4eea22f0
MK
2789 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2790 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
2791 for (i = idx; i < idx + count; i++, new++)
2792 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
2793}
2794
2795/*
2796 * This is called when the amount of space required for incore file
2797 * extents needs to be increased. The ext_diff parameter stores the
2798 * number of new extents being added and the idx parameter contains
2799 * the extent index where the new extents will be added. If the new
2800 * extents are being appended, then we just need to (re)allocate and
2801 * initialize the space. Otherwise, if the new extents are being
2802 * inserted into the middle of the existing entries, a bit more work
2803 * is required to make room for the new extents to be inserted. The
2804 * caller is responsible for filling in the new extent entries upon
2805 * return.
2806 */
2807void
2808xfs_iext_add(
2809 xfs_ifork_t *ifp, /* inode fork pointer */
2810 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 2811 int ext_diff) /* number of extents to add */
4eea22f0
MK
2812{
2813 int byte_diff; /* new bytes being added */
2814 int new_size; /* size of extents after adding */
2815 xfs_extnum_t nextents; /* number of extents in file */
2816
2817 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2818 ASSERT((idx >= 0) && (idx <= nextents));
2819 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2820 new_size = ifp->if_bytes + byte_diff;
2821 /*
2822 * If the new number of extents (nextents + ext_diff)
2823 * fits inside the inode, then continue to use the inline
2824 * extent buffer.
2825 */
2826 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2827 if (idx < nextents) {
2828 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2829 &ifp->if_u2.if_inline_ext[idx],
2830 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2831 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2832 }
2833 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2834 ifp->if_real_bytes = 0;
2835 }
2836 /*
2837 * Otherwise use a linear (direct) extent list.
2838 * If the extents are currently inside the inode,
2839 * xfs_iext_realloc_direct will switch us from
2840 * inline to direct extent allocation mode.
2841 */
0293ce3a 2842 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
2843 xfs_iext_realloc_direct(ifp, new_size);
2844 if (idx < nextents) {
2845 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2846 &ifp->if_u1.if_extents[idx],
2847 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2848 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2849 }
2850 }
0293ce3a
MK
2851 /* Indirection array */
2852 else {
2853 xfs_ext_irec_t *erp;
2854 int erp_idx = 0;
2855 int page_idx = idx;
2856
2857 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2858 if (ifp->if_flags & XFS_IFEXTIREC) {
2859 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2860 } else {
2861 xfs_iext_irec_init(ifp);
2862 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2863 erp = ifp->if_u1.if_ext_irec;
2864 }
2865 /* Extents fit in target extent page */
2866 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2867 if (page_idx < erp->er_extcount) {
2868 memmove(&erp->er_extbuf[page_idx + ext_diff],
2869 &erp->er_extbuf[page_idx],
2870 (erp->er_extcount - page_idx) *
2871 sizeof(xfs_bmbt_rec_t));
2872 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2873 }
2874 erp->er_extcount += ext_diff;
2875 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2876 }
2877 /* Insert a new extent page */
2878 else if (erp) {
2879 xfs_iext_add_indirect_multi(ifp,
2880 erp_idx, page_idx, ext_diff);
2881 }
2882 /*
2883 * If extent(s) are being appended to the last page in
2884 * the indirection array and the new extent(s) don't fit
2885 * in the page, then erp is NULL and erp_idx is set to
2886 * the next index needed in the indirection array.
2887 */
2888 else {
2889 int count = ext_diff;
2890
2891 while (count) {
2892 erp = xfs_iext_irec_new(ifp, erp_idx);
2893 erp->er_extcount = count;
2894 count -= MIN(count, (int)XFS_LINEAR_EXTS);
2895 if (count) {
2896 erp_idx++;
2897 }
2898 }
2899 }
2900 }
4eea22f0
MK
2901 ifp->if_bytes = new_size;
2902}
2903
0293ce3a
MK
2904/*
2905 * This is called when incore extents are being added to the indirection
2906 * array and the new extents do not fit in the target extent list. The
2907 * erp_idx parameter contains the irec index for the target extent list
2908 * in the indirection array, and the idx parameter contains the extent
2909 * index within the list. The number of extents being added is stored
2910 * in the count parameter.
2911 *
2912 * |-------| |-------|
2913 * | | | | idx - number of extents before idx
2914 * | idx | | count |
2915 * | | | | count - number of extents being inserted at idx
2916 * |-------| |-------|
2917 * | count | | nex2 | nex2 - number of extents after idx + count
2918 * |-------| |-------|
2919 */
2920void
2921xfs_iext_add_indirect_multi(
2922 xfs_ifork_t *ifp, /* inode fork pointer */
2923 int erp_idx, /* target extent irec index */
2924 xfs_extnum_t idx, /* index within target list */
2925 int count) /* new extents being added */
2926{
2927 int byte_diff; /* new bytes being added */
2928 xfs_ext_irec_t *erp; /* pointer to irec entry */
2929 xfs_extnum_t ext_diff; /* number of extents to add */
2930 xfs_extnum_t ext_cnt; /* new extents still needed */
2931 xfs_extnum_t nex2; /* extents after idx + count */
2932 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
2933 int nlists; /* number of irec's (lists) */
2934
2935 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2936 erp = &ifp->if_u1.if_ext_irec[erp_idx];
2937 nex2 = erp->er_extcount - idx;
2938 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2939
2940 /*
2941 * Save second part of target extent list
2942 * (all extents past */
2943 if (nex2) {
2944 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 2945 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
2946 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2947 erp->er_extcount -= nex2;
2948 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2949 memset(&erp->er_extbuf[idx], 0, byte_diff);
2950 }
2951
2952 /*
2953 * Add the new extents to the end of the target
2954 * list, then allocate new irec record(s) and
2955 * extent buffer(s) as needed to store the rest
2956 * of the new extents.
2957 */
2958 ext_cnt = count;
2959 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2960 if (ext_diff) {
2961 erp->er_extcount += ext_diff;
2962 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2963 ext_cnt -= ext_diff;
2964 }
2965 while (ext_cnt) {
2966 erp_idx++;
2967 erp = xfs_iext_irec_new(ifp, erp_idx);
2968 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2969 erp->er_extcount = ext_diff;
2970 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2971 ext_cnt -= ext_diff;
2972 }
2973
2974 /* Add nex2 extents back to indirection array */
2975 if (nex2) {
2976 xfs_extnum_t ext_avail;
2977 int i;
2978
2979 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2980 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2981 i = 0;
2982 /*
2983 * If nex2 extents fit in the current page, append
2984 * nex2_ep after the new extents.
2985 */
2986 if (nex2 <= ext_avail) {
2987 i = erp->er_extcount;
2988 }
2989 /*
2990 * Otherwise, check if space is available in the
2991 * next page.
2992 */
2993 else if ((erp_idx < nlists - 1) &&
2994 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2995 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2996 erp_idx++;
2997 erp++;
2998 /* Create a hole for nex2 extents */
2999 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3000 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3001 }
3002 /*
3003 * Final choice, create a new extent page for
3004 * nex2 extents.
3005 */
3006 else {
3007 erp_idx++;
3008 erp = xfs_iext_irec_new(ifp, erp_idx);
3009 }
3010 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3011 kmem_free(nex2_ep);
0293ce3a
MK
3012 erp->er_extcount += nex2;
3013 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3014 }
3015}
3016
4eea22f0
MK
3017/*
3018 * This is called when the amount of space required for incore file
3019 * extents needs to be decreased. The ext_diff parameter stores the
3020 * number of extents to be removed and the idx parameter contains
3021 * the extent index where the extents will be removed from.
0293ce3a
MK
3022 *
3023 * If the amount of space needed has decreased below the linear
3024 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3025 * extent array. Otherwise, use kmem_realloc() to adjust the
3026 * size to what is needed.
4eea22f0
MK
3027 */
3028void
3029xfs_iext_remove(
6ef35544 3030 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 3031 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
3032 int ext_diff, /* number of extents to remove */
3033 int state) /* type of extent conversion */
4eea22f0 3034{
6ef35544 3035 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3036 xfs_extnum_t nextents; /* number of extents in file */
3037 int new_size; /* size of extents after removal */
3038
0b1b213f
CH
3039 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3040
4eea22f0
MK
3041 ASSERT(ext_diff > 0);
3042 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3043 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3044
3045 if (new_size == 0) {
3046 xfs_iext_destroy(ifp);
0293ce3a
MK
3047 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3048 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3049 } else if (ifp->if_real_bytes) {
3050 xfs_iext_remove_direct(ifp, idx, ext_diff);
3051 } else {
3052 xfs_iext_remove_inline(ifp, idx, ext_diff);
3053 }
3054 ifp->if_bytes = new_size;
3055}
3056
3057/*
3058 * This removes ext_diff extents from the inline buffer, beginning
3059 * at extent index idx.
3060 */
3061void
3062xfs_iext_remove_inline(
3063 xfs_ifork_t *ifp, /* inode fork pointer */
3064 xfs_extnum_t idx, /* index to begin removing exts */
3065 int ext_diff) /* number of extents to remove */
3066{
3067 int nextents; /* number of extents in file */
3068
0293ce3a 3069 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3070 ASSERT(idx < XFS_INLINE_EXTS);
3071 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3072 ASSERT(((nextents - ext_diff) > 0) &&
3073 (nextents - ext_diff) < XFS_INLINE_EXTS);
3074
3075 if (idx + ext_diff < nextents) {
3076 memmove(&ifp->if_u2.if_inline_ext[idx],
3077 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3078 (nextents - (idx + ext_diff)) *
3079 sizeof(xfs_bmbt_rec_t));
3080 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3081 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3082 } else {
3083 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3084 ext_diff * sizeof(xfs_bmbt_rec_t));
3085 }
3086}
3087
3088/*
3089 * This removes ext_diff extents from a linear (direct) extent list,
3090 * beginning at extent index idx. If the extents are being removed
3091 * from the end of the list (ie. truncate) then we just need to re-
3092 * allocate the list to remove the extra space. Otherwise, if the
3093 * extents are being removed from the middle of the existing extent
3094 * entries, then we first need to move the extent records beginning
3095 * at idx + ext_diff up in the list to overwrite the records being
3096 * removed, then remove the extra space via kmem_realloc.
3097 */
3098void
3099xfs_iext_remove_direct(
3100 xfs_ifork_t *ifp, /* inode fork pointer */
3101 xfs_extnum_t idx, /* index to begin removing exts */
3102 int ext_diff) /* number of extents to remove */
3103{
3104 xfs_extnum_t nextents; /* number of extents in file */
3105 int new_size; /* size of extents after removal */
3106
0293ce3a 3107 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3108 new_size = ifp->if_bytes -
3109 (ext_diff * sizeof(xfs_bmbt_rec_t));
3110 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3111
3112 if (new_size == 0) {
3113 xfs_iext_destroy(ifp);
3114 return;
3115 }
3116 /* Move extents up in the list (if needed) */
3117 if (idx + ext_diff < nextents) {
3118 memmove(&ifp->if_u1.if_extents[idx],
3119 &ifp->if_u1.if_extents[idx + ext_diff],
3120 (nextents - (idx + ext_diff)) *
3121 sizeof(xfs_bmbt_rec_t));
3122 }
3123 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3124 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3125 /*
3126 * Reallocate the direct extent list. If the extents
3127 * will fit inside the inode then xfs_iext_realloc_direct
3128 * will switch from direct to inline extent allocation
3129 * mode for us.
3130 */
3131 xfs_iext_realloc_direct(ifp, new_size);
3132 ifp->if_bytes = new_size;
3133}
3134
0293ce3a
MK
3135/*
3136 * This is called when incore extents are being removed from the
3137 * indirection array and the extents being removed span multiple extent
3138 * buffers. The idx parameter contains the file extent index where we
3139 * want to begin removing extents, and the count parameter contains
3140 * how many extents need to be removed.
3141 *
3142 * |-------| |-------|
3143 * | nex1 | | | nex1 - number of extents before idx
3144 * |-------| | count |
3145 * | | | | count - number of extents being removed at idx
3146 * | count | |-------|
3147 * | | | nex2 | nex2 - number of extents after idx + count
3148 * |-------| |-------|
3149 */
3150void
3151xfs_iext_remove_indirect(
3152 xfs_ifork_t *ifp, /* inode fork pointer */
3153 xfs_extnum_t idx, /* index to begin removing extents */
3154 int count) /* number of extents to remove */
3155{
3156 xfs_ext_irec_t *erp; /* indirection array pointer */
3157 int erp_idx = 0; /* indirection array index */
3158 xfs_extnum_t ext_cnt; /* extents left to remove */
3159 xfs_extnum_t ext_diff; /* extents to remove in current list */
3160 xfs_extnum_t nex1; /* number of extents before idx */
3161 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3162 int page_idx = idx; /* index in target extent list */
3163
3164 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3165 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3166 ASSERT(erp != NULL);
0293ce3a
MK
3167 nex1 = page_idx;
3168 ext_cnt = count;
3169 while (ext_cnt) {
3170 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3171 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3172 /*
3173 * Check for deletion of entire list;
3174 * xfs_iext_irec_remove() updates extent offsets.
3175 */
3176 if (ext_diff == erp->er_extcount) {
3177 xfs_iext_irec_remove(ifp, erp_idx);
3178 ext_cnt -= ext_diff;
3179 nex1 = 0;
3180 if (ext_cnt) {
3181 ASSERT(erp_idx < ifp->if_real_bytes /
3182 XFS_IEXT_BUFSZ);
3183 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3184 nex1 = 0;
3185 continue;
3186 } else {
3187 break;
3188 }
3189 }
3190 /* Move extents up (if needed) */
3191 if (nex2) {
3192 memmove(&erp->er_extbuf[nex1],
3193 &erp->er_extbuf[nex1 + ext_diff],
3194 nex2 * sizeof(xfs_bmbt_rec_t));
3195 }
3196 /* Zero out rest of page */
3197 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3198 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3199 /* Update remaining counters */
3200 erp->er_extcount -= ext_diff;
3201 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3202 ext_cnt -= ext_diff;
3203 nex1 = 0;
3204 erp_idx++;
3205 erp++;
3206 }
3207 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3208 xfs_iext_irec_compact(ifp);
3209}
3210
4eea22f0
MK
3211/*
3212 * Create, destroy, or resize a linear (direct) block of extents.
3213 */
3214void
3215xfs_iext_realloc_direct(
3216 xfs_ifork_t *ifp, /* inode fork pointer */
3217 int new_size) /* new size of extents */
3218{
3219 int rnew_size; /* real new size of extents */
3220
3221 rnew_size = new_size;
3222
0293ce3a
MK
3223 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3224 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3225 (new_size != ifp->if_real_bytes)));
3226
4eea22f0
MK
3227 /* Free extent records */
3228 if (new_size == 0) {
3229 xfs_iext_destroy(ifp);
3230 }
3231 /* Resize direct extent list and zero any new bytes */
3232 else if (ifp->if_real_bytes) {
3233 /* Check if extents will fit inside the inode */
3234 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3235 xfs_iext_direct_to_inline(ifp, new_size /
3236 (uint)sizeof(xfs_bmbt_rec_t));
3237 ifp->if_bytes = new_size;
3238 return;
3239 }
16a087d8 3240 if (!is_power_of_2(new_size)){
40ebd81d 3241 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3242 }
3243 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3244 ifp->if_u1.if_extents =
4eea22f0
MK
3245 kmem_realloc(ifp->if_u1.if_extents,
3246 rnew_size,
6785073b 3247 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3248 }
3249 if (rnew_size > ifp->if_real_bytes) {
3250 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3251 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3252 rnew_size - ifp->if_real_bytes);
3253 }
3254 }
3255 /*
3256 * Switch from the inline extent buffer to a direct
3257 * extent list. Be sure to include the inline extent
3258 * bytes in new_size.
3259 */
3260 else {
3261 new_size += ifp->if_bytes;
16a087d8 3262 if (!is_power_of_2(new_size)) {
40ebd81d 3263 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3264 }
3265 xfs_iext_inline_to_direct(ifp, rnew_size);
3266 }
3267 ifp->if_real_bytes = rnew_size;
3268 ifp->if_bytes = new_size;
3269}
3270
3271/*
3272 * Switch from linear (direct) extent records to inline buffer.
3273 */
3274void
3275xfs_iext_direct_to_inline(
3276 xfs_ifork_t *ifp, /* inode fork pointer */
3277 xfs_extnum_t nextents) /* number of extents in file */
3278{
3279 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3280 ASSERT(nextents <= XFS_INLINE_EXTS);
3281 /*
3282 * The inline buffer was zeroed when we switched
3283 * from inline to direct extent allocation mode,
3284 * so we don't need to clear it here.
3285 */
3286 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3287 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3288 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3289 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3290 ifp->if_real_bytes = 0;
3291}
3292
3293/*
3294 * Switch from inline buffer to linear (direct) extent records.
3295 * new_size should already be rounded up to the next power of 2
3296 * by the caller (when appropriate), so use new_size as it is.
3297 * However, since new_size may be rounded up, we can't update
3298 * if_bytes here. It is the caller's responsibility to update
3299 * if_bytes upon return.
3300 */
3301void
3302xfs_iext_inline_to_direct(
3303 xfs_ifork_t *ifp, /* inode fork pointer */
3304 int new_size) /* number of extents in file */
3305{
6785073b 3306 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3307 memset(ifp->if_u1.if_extents, 0, new_size);
3308 if (ifp->if_bytes) {
3309 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3310 ifp->if_bytes);
3311 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3312 sizeof(xfs_bmbt_rec_t));
3313 }
3314 ifp->if_real_bytes = new_size;
3315}
3316
0293ce3a
MK
3317/*
3318 * Resize an extent indirection array to new_size bytes.
3319 */
d96f8f89 3320STATIC void
0293ce3a
MK
3321xfs_iext_realloc_indirect(
3322 xfs_ifork_t *ifp, /* inode fork pointer */
3323 int new_size) /* new indirection array size */
3324{
3325 int nlists; /* number of irec's (ex lists) */
3326 int size; /* current indirection array size */
3327
3328 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3329 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3330 size = nlists * sizeof(xfs_ext_irec_t);
3331 ASSERT(ifp->if_real_bytes);
3332 ASSERT((new_size >= 0) && (new_size != size));
3333 if (new_size == 0) {
3334 xfs_iext_destroy(ifp);
3335 } else {
3336 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3337 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3338 new_size, size, KM_NOFS);
0293ce3a
MK
3339 }
3340}
3341
3342/*
3343 * Switch from indirection array to linear (direct) extent allocations.
3344 */
d96f8f89 3345STATIC void
0293ce3a
MK
3346xfs_iext_indirect_to_direct(
3347 xfs_ifork_t *ifp) /* inode fork pointer */
3348{
a6f64d4a 3349 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3350 xfs_extnum_t nextents; /* number of extents in file */
3351 int size; /* size of file extents */
3352
3353 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3354 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3355 ASSERT(nextents <= XFS_LINEAR_EXTS);
3356 size = nextents * sizeof(xfs_bmbt_rec_t);
3357
71a8c87f 3358 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3359 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3360
3361 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3362 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3363 ifp->if_flags &= ~XFS_IFEXTIREC;
3364 ifp->if_u1.if_extents = ep;
3365 ifp->if_bytes = size;
3366 if (nextents < XFS_LINEAR_EXTS) {
3367 xfs_iext_realloc_direct(ifp, size);
3368 }
3369}
3370
4eea22f0
MK
3371/*
3372 * Free incore file extents.
3373 */
3374void
3375xfs_iext_destroy(
3376 xfs_ifork_t *ifp) /* inode fork pointer */
3377{
0293ce3a
MK
3378 if (ifp->if_flags & XFS_IFEXTIREC) {
3379 int erp_idx;
3380 int nlists;
3381
3382 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3383 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3384 xfs_iext_irec_remove(ifp, erp_idx);
3385 }
3386 ifp->if_flags &= ~XFS_IFEXTIREC;
3387 } else if (ifp->if_real_bytes) {
f0e2d93c 3388 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3389 } else if (ifp->if_bytes) {
3390 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3391 sizeof(xfs_bmbt_rec_t));
3392 }
3393 ifp->if_u1.if_extents = NULL;
3394 ifp->if_real_bytes = 0;
3395 ifp->if_bytes = 0;
3396}
0293ce3a 3397
8867bc9b
MK
3398/*
3399 * Return a pointer to the extent record for file system block bno.
3400 */
a6f64d4a 3401xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3402xfs_iext_bno_to_ext(
3403 xfs_ifork_t *ifp, /* inode fork pointer */
3404 xfs_fileoff_t bno, /* block number to search for */
3405 xfs_extnum_t *idxp) /* index of target extent */
3406{
a6f64d4a 3407 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3408 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3409 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3410 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3411 int high; /* upper boundary in search */
8867bc9b 3412 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3413 int low; /* lower boundary in search */
8867bc9b
MK
3414 xfs_extnum_t nextents; /* number of file extents */
3415 xfs_fileoff_t startoff = 0; /* start offset of extent */
3416
3417 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3418 if (nextents == 0) {
3419 *idxp = 0;
3420 return NULL;
3421 }
3422 low = 0;
3423 if (ifp->if_flags & XFS_IFEXTIREC) {
3424 /* Find target extent list */
3425 int erp_idx = 0;
3426 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3427 base = erp->er_extbuf;
3428 high = erp->er_extcount - 1;
3429 } else {
3430 base = ifp->if_u1.if_extents;
3431 high = nextents - 1;
3432 }
3433 /* Binary search extent records */
3434 while (low <= high) {
3435 idx = (low + high) >> 1;
3436 ep = base + idx;
3437 startoff = xfs_bmbt_get_startoff(ep);
3438 blockcount = xfs_bmbt_get_blockcount(ep);
3439 if (bno < startoff) {
3440 high = idx - 1;
3441 } else if (bno >= startoff + blockcount) {
3442 low = idx + 1;
3443 } else {
3444 /* Convert back to file-based extent index */
3445 if (ifp->if_flags & XFS_IFEXTIREC) {
3446 idx += erp->er_extoff;
3447 }
3448 *idxp = idx;
3449 return ep;
3450 }
3451 }
3452 /* Convert back to file-based extent index */
3453 if (ifp->if_flags & XFS_IFEXTIREC) {
3454 idx += erp->er_extoff;
3455 }
3456 if (bno >= startoff + blockcount) {
3457 if (++idx == nextents) {
3458 ep = NULL;
3459 } else {
3460 ep = xfs_iext_get_ext(ifp, idx);
3461 }
3462 }
3463 *idxp = idx;
3464 return ep;
3465}
3466
0293ce3a
MK
3467/*
3468 * Return a pointer to the indirection array entry containing the
3469 * extent record for filesystem block bno. Store the index of the
3470 * target irec in *erp_idxp.
3471 */
8867bc9b 3472xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3473xfs_iext_bno_to_irec(
3474 xfs_ifork_t *ifp, /* inode fork pointer */
3475 xfs_fileoff_t bno, /* block number to search for */
3476 int *erp_idxp) /* irec index of target ext list */
3477{
3478 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3479 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3480 int erp_idx; /* indirection array index */
0293ce3a
MK
3481 int nlists; /* number of extent irec's (lists) */
3482 int high; /* binary search upper limit */
3483 int low; /* binary search lower limit */
3484
3485 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3486 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3487 erp_idx = 0;
3488 low = 0;
3489 high = nlists - 1;
3490 while (low <= high) {
3491 erp_idx = (low + high) >> 1;
3492 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3493 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3494 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3495 high = erp_idx - 1;
3496 } else if (erp_next && bno >=
3497 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3498 low = erp_idx + 1;
3499 } else {
3500 break;
3501 }
3502 }
3503 *erp_idxp = erp_idx;
3504 return erp;
3505}
3506
3507/*
3508 * Return a pointer to the indirection array entry containing the
3509 * extent record at file extent index *idxp. Store the index of the
3510 * target irec in *erp_idxp and store the page index of the target
3511 * extent record in *idxp.
3512 */
3513xfs_ext_irec_t *
3514xfs_iext_idx_to_irec(
3515 xfs_ifork_t *ifp, /* inode fork pointer */
3516 xfs_extnum_t *idxp, /* extent index (file -> page) */
3517 int *erp_idxp, /* pointer to target irec */
3518 int realloc) /* new bytes were just added */
3519{
3520 xfs_ext_irec_t *prev; /* pointer to previous irec */
3521 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3522 int erp_idx; /* indirection array index */
3523 int nlists; /* number of irec's (ex lists) */
3524 int high; /* binary search upper limit */
3525 int low; /* binary search lower limit */
3526 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3527
3528 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
87bef181
CH
3529 ASSERT(page_idx >= 0);
3530 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3531 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3532
0293ce3a
MK
3533 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3534 erp_idx = 0;
3535 low = 0;
3536 high = nlists - 1;
3537
3538 /* Binary search extent irec's */
3539 while (low <= high) {
3540 erp_idx = (low + high) >> 1;
3541 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3542 prev = erp_idx > 0 ? erp - 1 : NULL;
3543 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3544 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3545 high = erp_idx - 1;
3546 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3547 (page_idx == erp->er_extoff + erp->er_extcount &&
3548 !realloc)) {
3549 low = erp_idx + 1;
3550 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3551 erp->er_extcount == XFS_LINEAR_EXTS) {
3552 ASSERT(realloc);
3553 page_idx = 0;
3554 erp_idx++;
3555 erp = erp_idx < nlists ? erp + 1 : NULL;
3556 break;
3557 } else {
3558 page_idx -= erp->er_extoff;
3559 break;
3560 }
3561 }
3562 *idxp = page_idx;
3563 *erp_idxp = erp_idx;
3564 return(erp);
3565}
3566
3567/*
3568 * Allocate and initialize an indirection array once the space needed
3569 * for incore extents increases above XFS_IEXT_BUFSZ.
3570 */
3571void
3572xfs_iext_irec_init(
3573 xfs_ifork_t *ifp) /* inode fork pointer */
3574{
3575 xfs_ext_irec_t *erp; /* indirection array pointer */
3576 xfs_extnum_t nextents; /* number of extents in file */
3577
3578 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3579 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3580 ASSERT(nextents <= XFS_LINEAR_EXTS);
3581
6785073b 3582 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3583
3584 if (nextents == 0) {
6785073b 3585 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3586 } else if (!ifp->if_real_bytes) {
3587 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3588 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3589 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3590 }
3591 erp->er_extbuf = ifp->if_u1.if_extents;
3592 erp->er_extcount = nextents;
3593 erp->er_extoff = 0;
3594
3595 ifp->if_flags |= XFS_IFEXTIREC;
3596 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3597 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3598 ifp->if_u1.if_ext_irec = erp;
3599
3600 return;
3601}
3602
3603/*
3604 * Allocate and initialize a new entry in the indirection array.
3605 */
3606xfs_ext_irec_t *
3607xfs_iext_irec_new(
3608 xfs_ifork_t *ifp, /* inode fork pointer */
3609 int erp_idx) /* index for new irec */
3610{
3611 xfs_ext_irec_t *erp; /* indirection array pointer */
3612 int i; /* loop counter */
3613 int nlists; /* number of irec's (ex lists) */
3614
3615 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3616 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3617
3618 /* Resize indirection array */
3619 xfs_iext_realloc_indirect(ifp, ++nlists *
3620 sizeof(xfs_ext_irec_t));
3621 /*
3622 * Move records down in the array so the
3623 * new page can use erp_idx.
3624 */
3625 erp = ifp->if_u1.if_ext_irec;
3626 for (i = nlists - 1; i > erp_idx; i--) {
3627 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3628 }
3629 ASSERT(i == erp_idx);
3630
3631 /* Initialize new extent record */
3632 erp = ifp->if_u1.if_ext_irec;
6785073b 3633 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3634 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3635 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3636 erp[erp_idx].er_extcount = 0;
3637 erp[erp_idx].er_extoff = erp_idx > 0 ?
3638 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3639 return (&erp[erp_idx]);
3640}
3641
3642/*
3643 * Remove a record from the indirection array.
3644 */
3645void
3646xfs_iext_irec_remove(
3647 xfs_ifork_t *ifp, /* inode fork pointer */
3648 int erp_idx) /* irec index to remove */
3649{
3650 xfs_ext_irec_t *erp; /* indirection array pointer */
3651 int i; /* loop counter */
3652 int nlists; /* number of irec's (ex lists) */
3653
3654 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3655 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3656 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3657 if (erp->er_extbuf) {
3658 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3659 -erp->er_extcount);
f0e2d93c 3660 kmem_free(erp->er_extbuf);
0293ce3a
MK
3661 }
3662 /* Compact extent records */
3663 erp = ifp->if_u1.if_ext_irec;
3664 for (i = erp_idx; i < nlists - 1; i++) {
3665 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3666 }
3667 /*
3668 * Manually free the last extent record from the indirection
3669 * array. A call to xfs_iext_realloc_indirect() with a size
3670 * of zero would result in a call to xfs_iext_destroy() which
3671 * would in turn call this function again, creating a nasty
3672 * infinite loop.
3673 */
3674 if (--nlists) {
3675 xfs_iext_realloc_indirect(ifp,
3676 nlists * sizeof(xfs_ext_irec_t));
3677 } else {
f0e2d93c 3678 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3679 }
3680 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3681}
3682
3683/*
3684 * This is called to clean up large amounts of unused memory allocated
3685 * by the indirection array. Before compacting anything though, verify
3686 * that the indirection array is still needed and switch back to the
3687 * linear extent list (or even the inline buffer) if possible. The
3688 * compaction policy is as follows:
3689 *
3690 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 3691 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
3692 * No Compaction: Extents occupy at least 50% of allocated space
3693 */
3694void
3695xfs_iext_irec_compact(
3696 xfs_ifork_t *ifp) /* inode fork pointer */
3697{
3698 xfs_extnum_t nextents; /* number of extents in file */
3699 int nlists; /* number of irec's (ex lists) */
3700
3701 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3702 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3703 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3704
3705 if (nextents == 0) {
3706 xfs_iext_destroy(ifp);
3707 } else if (nextents <= XFS_INLINE_EXTS) {
3708 xfs_iext_indirect_to_direct(ifp);
3709 xfs_iext_direct_to_inline(ifp, nextents);
3710 } else if (nextents <= XFS_LINEAR_EXTS) {
3711 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
3712 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3713 xfs_iext_irec_compact_pages(ifp);
3714 }
3715}
3716
3717/*
3718 * Combine extents from neighboring extent pages.
3719 */
3720void
3721xfs_iext_irec_compact_pages(
3722 xfs_ifork_t *ifp) /* inode fork pointer */
3723{
3724 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3725 int erp_idx = 0; /* indirection array index */
3726 int nlists; /* number of irec's (ex lists) */
3727
3728 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3729 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3730 while (erp_idx < nlists - 1) {
3731 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3732 erp_next = erp + 1;
3733 if (erp_next->er_extcount <=
3734 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 3735 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
3736 erp_next->er_extbuf, erp_next->er_extcount *
3737 sizeof(xfs_bmbt_rec_t));
3738 erp->er_extcount += erp_next->er_extcount;
3739 /*
3740 * Free page before removing extent record
3741 * so er_extoffs don't get modified in
3742 * xfs_iext_irec_remove.
3743 */
f0e2d93c 3744 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
3745 erp_next->er_extbuf = NULL;
3746 xfs_iext_irec_remove(ifp, erp_idx + 1);
3747 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3748 } else {
3749 erp_idx++;
3750 }
3751 }
3752}
3753
0293ce3a
MK
3754/*
3755 * This is called to update the er_extoff field in the indirection
3756 * array when extents have been added or removed from one of the
3757 * extent lists. erp_idx contains the irec index to begin updating
3758 * at and ext_diff contains the number of extents that were added
3759 * or removed.
3760 */
3761void
3762xfs_iext_irec_update_extoffs(
3763 xfs_ifork_t *ifp, /* inode fork pointer */
3764 int erp_idx, /* irec index to update */
3765 int ext_diff) /* number of new extents */
3766{
3767 int i; /* loop counter */
3768 int nlists; /* number of irec's (ex lists */
3769
3770 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3771 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3772 for (i = erp_idx; i < nlists; i++) {
3773 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3774 }
3775}
This page took 0.731586 seconds and 5 git commands to generate.