[XFS] Fix transaction overrun during writeback.
[deliverable/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451
NS
23#include "xfs_inum.h"
24#include "xfs_imap.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4
LT
29#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
1da177e4 32#include "xfs_bmap_btree.h"
a844f451 33#include "xfs_alloc_btree.h"
1da177e4 34#include "xfs_ialloc_btree.h"
1da177e4 35#include "xfs_dir2_sf.h"
a844f451 36#include "xfs_attr_sf.h"
1da177e4 37#include "xfs_dinode.h"
1da177e4 38#include "xfs_inode.h"
1da177e4 39#include "xfs_buf_item.h"
a844f451
NS
40#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
1da177e4
LT
45#include "xfs_rw.h"
46#include "xfs_error.h"
1da177e4
LT
47#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
1da177e4 50#include "xfs_acl.h"
2a82b8be 51#include "xfs_filestream.h"
739bfb2a 52#include "xfs_vnodeops.h"
1da177e4 53
1da177e4
LT
54kmem_zone_t *xfs_ifork_zone;
55kmem_zone_t *xfs_inode_zone;
da353b0d 56kmem_zone_t *xfs_icluster_zone;
1da177e4
LT
57
58/*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
1da177e4
LT
69#ifdef DEBUG
70/*
71 * Make sure that the extents in the given memory buffer
72 * are valid.
73 */
74STATIC void
75xfs_validate_extents(
4eea22f0 76 xfs_ifork_t *ifp,
1da177e4 77 int nrecs,
1da177e4
LT
78 xfs_exntfmt_t fmt)
79{
80 xfs_bmbt_irec_t irec;
a6f64d4a 81 xfs_bmbt_rec_host_t rec;
1da177e4
LT
82 int i;
83
84 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
91 }
92}
93#else /* DEBUG */
a6f64d4a 94#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
95#endif /* DEBUG */
96
97/*
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
100 */
101#if defined(DEBUG)
102void
103xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
106{
107 int i;
108 int j;
109 xfs_dinode_t *dip;
110
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
121 }
122 }
123}
124#endif
125
1da177e4
LT
126/*
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
132 *
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
135 *
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
138 */
ba0f32d4 139STATIC int
1da177e4
LT
140xfs_inotobp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
143 xfs_ino_t ino,
144 xfs_dinode_t **dipp,
145 xfs_buf_t **bpp,
146 int *offset)
147{
148 int di_ok;
149 xfs_imap_t imap;
150 xfs_buf_t *bp;
151 int error;
152 xfs_dinode_t *dip;
153
154 /*
c41564b5 155 * Call the space management code to find the location of the
1da177e4
LT
156 * inode on disk.
157 */
158 imap.im_blkno = 0;
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 if (error != 0) {
161 cmn_err(CE_WARN,
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
164 return error;
165 }
166
167 /*
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
171 */
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 cmn_err(CE_WARN,
da1650a5 175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
1da177e4 176 "of the file system %s. Returning EINVAL.",
da1650a5
CH
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
1da177e4
LT
179 return XFS_ERROR(EINVAL);
180 }
181
182 /*
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
185 */
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
188
189 if (error) {
190 cmn_err(CE_WARN,
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
193 return error;
194 }
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 di_ok =
347d1c01
CH
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
1da177e4
LT
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
203 cmn_err(CE_WARN,
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
207 }
208
209 xfs_inobp_check(mp, bp);
210
211 /*
212 * Set *dipp to point to the on-disk inode in the buffer.
213 */
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 *bpp = bp;
216 *offset = imap.im_boffset;
217 return 0;
218}
219
220
221/*
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
226 * that buffer.
227 *
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
230 *
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
240 */
241int
242xfs_itobp(
243 xfs_mount_t *mp,
244 xfs_trans_t *tp,
245 xfs_inode_t *ip,
246 xfs_dinode_t **dipp,
247 xfs_buf_t **bpp,
b12dd342
NS
248 xfs_daddr_t bno,
249 uint imap_flags)
1da177e4 250{
4d1a2ed3 251 xfs_imap_t imap;
1da177e4
LT
252 xfs_buf_t *bp;
253 int error;
1da177e4
LT
254 int i;
255 int ni;
1da177e4
LT
256
257 if (ip->i_blkno == (xfs_daddr_t)0) {
258 /*
259 * Call the space management code to find the location of the
260 * inode on disk.
261 */
262 imap.im_blkno = bno;
b12dd342
NS
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
1da177e4 265 return error;
1da177e4
LT
266
267 /*
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
271 * driver.
272 */
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275#ifdef DEBUG
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284#endif /* DEBUG */
285 return XFS_ERROR(EINVAL);
286 }
287
288 /*
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
291 */
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
295 } else {
296 /*
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
299 */
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
303 }
304 ASSERT(bno == 0 || bno == imap.im_blkno);
305
306 /*
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
309 */
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
1da177e4
LT
312 if (error) {
313#ifdef DEBUG
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
319#endif /* DEBUG */
320 return error;
321 }
4d1a2ed3 322
1da177e4
LT
323 /*
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
4d1a2ed3 326 * No validation is done here in userspace (xfs_repair).
1da177e4 327 */
4d1a2ed3
NS
328#if !defined(__KERNEL__)
329 ni = 0;
330#elif defined(DEBUG)
41ff715a 331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
4d1a2ed3 332#else /* usual case */
41ff715a 333 ni = 1;
1da177e4 334#endif
4d1a2ed3 335
1da177e4
LT
336 for (i = 0; i < ni; i++) {
337 int di_ok;
338 xfs_dinode_t *dip;
339
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
347d1c01
CH
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
41ff715a
NS
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
350 }
1da177e4 351#ifdef DEBUG
41ff715a 352 cmn_err(CE_ALERT,
4d1a2ed3
NS
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
b6574520 355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1da177e4 356 (unsigned long long)imap.im_blkno, i,
347d1c01 357 be16_to_cpu(dip->di_core.di_magic));
1da177e4
LT
358#endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 }
1da177e4
LT
365
366 xfs_inobp_check(mp, bp);
367
368 /*
369 * Mark the buffer as an inode buffer now that it looks good
370 */
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372
373 /*
374 * Set *dipp to point to the on-disk inode in the buffer.
375 */
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
379}
380
381/*
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
389 */
390STATIC int
391xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
394{
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
402
347d1c01
CH
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 408 (unsigned long long)ip->i_ino,
347d1c01
CH
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 411 (unsigned long long)
347d1c01 412 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
416 }
417
347d1c01 418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 421 (unsigned long long)ip->i_ino,
347d1c01 422 dip->di_core.di_forkoff);
1da177e4
LT
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
426 }
427
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
347d1c01 433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
437 }
438 ip->i_d.di_size = 0;
ba87ea69 439 ip->i_size = 0;
347d1c01 440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
441 break;
442
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
347d1c01 446 switch (dip->di_core.di_format) {
1da177e4
LT
447 case XFS_DINODE_FMT_LOCAL:
448 /*
449 * no local regular files yet
450 */
347d1c01 451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
1da177e4
LT
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
460 }
461
347d1c01 462 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
1da177e4
LT
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
473 }
474
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
488 }
489 break;
490
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 if (error) {
496 return error;
497 }
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 504 switch (dip->di_core.di_aformat) {
1da177e4
LT
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 507 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
519 }
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 }
525 return error;
526}
527
528/*
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
537 */
538STATIC int
539xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
544{
545 xfs_ifork_t *ifp;
546 int real_size;
547
548 /*
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
552 */
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
1da177e4
LT
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
562 }
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 }
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
580}
581
582/*
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
590 */
591STATIC int
592xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
596{
a6f64d4a 597 xfs_bmbt_rec_t *dp;
1da177e4
LT
598 xfs_ifork_t *ifp;
599 int nex;
1da177e4
LT
600 int size;
601 int i;
602
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
606
607 /*
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
611 */
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
619 }
620
4eea22f0 621 ifp->if_real_bytes = 0;
1da177e4
LT
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
626 else
627 xfs_iext_add(ifp, 0, nex);
628
1da177e4 629 ifp->if_bytes = size;
1da177e4
LT
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 633 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
cd8b0a97
CH
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
1da177e4 637 }
3a59c94c 638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
4eea22f0 642 ifp, 0, nex))) {
1da177e4
LT
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
647 }
648 }
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
651}
652
653/*
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
660 */
661STATIC int
662xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
666{
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
672
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
677
678 /*
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
684 */
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
1da177e4
LT
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
695 }
696
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
700 /*
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
703 */
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
708
709 return 0;
710}
711
1da177e4 712void
347d1c01
CH
713xfs_dinode_from_disk(
714 xfs_icdinode_t *to,
715 xfs_dinode_core_t *from)
1da177e4 716{
347d1c01
CH
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
745}
746
747void
748xfs_dinode_to_disk(
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
751{
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
780}
781
782STATIC uint
783_xfs_dic2xflags(
1da177e4
LT
784 __uint16_t di_flags)
785{
786 uint flags = 0;
787
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
817 }
818
819 return flags;
820}
821
822uint
823xfs_ip2xflags(
824 xfs_inode_t *ip)
825{
347d1c01 826 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 827
a916e2bd
NS
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
830}
831
832uint
833xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
835{
347d1c01 836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
a916e2bd 837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
838}
839
840/*
841 * Given a mount structure and an inode number, return a pointer
c41564b5 842 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
843 * inode number.
844 *
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
847 */
848int
849xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
745b1f47
NS
854 xfs_daddr_t bno,
855 uint imap_flags)
1da177e4
LT
856{
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
861
862 ASSERT(xfs_inode_zone != NULL);
863
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
b677c210 867 atomic_set(&ip->i_iocount, 0);
f273ab84 868 spin_lock_init(&ip->i_flags_lock);
1da177e4
LT
869
870 /*
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
876 */
745b1f47 877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
b12dd342 878 if (error) {
1da177e4
LT
879 kmem_zone_free(xfs_inode_zone, ip);
880 return error;
881 }
882
883 /*
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
886 */
cf441eeb
LM
887#ifdef XFS_INODE_TRACE
888 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
1543d79c 889#endif
1da177e4
LT
890#ifdef XFS_BMAP_TRACE
891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_BMBT_TRACE
894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_RW_TRACE
897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898#endif
899#ifdef XFS_ILOCK_TRACE
900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901#endif
902#ifdef XFS_DIR2_TRACE
903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904#endif
905
906 /*
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
909 */
347d1c01 910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
911 kmem_zone_free(xfs_inode_zone, ip);
912 xfs_trans_brelse(tp, bp);
913#ifdef DEBUG
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 917 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
918 XFS_DINODE_MAGIC);
919#endif /* DEBUG */
920 return XFS_ERROR(EINVAL);
921 }
922
923 /*
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
929 */
930 if (dip->di_core.di_mode) {
347d1c01 931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936#ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940#endif /* DEBUG */
941 return error;
942 }
943 } else {
347d1c01
CH
944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 ip->i_d.di_version = dip->di_core.di_version;
946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
948 /*
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
954 */
955 ip->i_d.di_mode = 0;
956 /*
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
959 */
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 }
963
964 INIT_LIST_HEAD(&ip->i_reclaim);
965
966 /*
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
976 */
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
981 }
982
983 ip->i_delayed_blks = 0;
ba87ea69 984 ip->i_size = ip->i_d.di_size;
1da177e4
LT
985
986 /*
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
990 */
991 XFS_BUF_SET_REF(bp, XFS_INO_REF);
992
993 /*
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1004 * the buffer.
1005 */
1006 xfs_trans_brelse(tp, bp);
1007 *ipp = ip;
1008 return 0;
1009}
1010
1011/*
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1014 */
1015int
1016xfs_iread_extents(
1017 xfs_trans_t *tp,
1018 xfs_inode_t *ip,
1019 int whichfork)
1020{
1021 int error;
1022 xfs_ifork_t *ifp;
4eea22f0 1023 xfs_extnum_t nextents;
1da177e4
LT
1024 size_t size;
1025
1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 ip->i_mount);
1029 return XFS_ERROR(EFSCORRUPTED);
1030 }
4eea22f0
MK
1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1033 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1034
1da177e4
LT
1035 /*
1036 * We know that the size is valid (it's checked in iformat_btree)
1037 */
1da177e4 1038 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1040 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1041 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1042 error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 if (error) {
4eea22f0 1044 xfs_iext_destroy(ifp);
1da177e4
LT
1045 ifp->if_flags &= ~XFS_IFEXTENTS;
1046 return error;
1047 }
a6f64d4a 1048 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1049 return 0;
1050}
1051
1052/*
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1057 *
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1063 *
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1071 *
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1077 *
1078 * If we are allocating quota inodes, we do not have a parent inode
1079 * to attach to or associate with (i.e. pip == NULL) because they
1080 * are not linked into the directory structure - they are attached
1081 * directly to the superblock - and so have no parent.
1da177e4
LT
1082 */
1083int
1084xfs_ialloc(
1085 xfs_trans_t *tp,
1086 xfs_inode_t *pip,
1087 mode_t mode,
31b084ae 1088 xfs_nlink_t nlink,
1da177e4
LT
1089 xfs_dev_t rdev,
1090 cred_t *cr,
1091 xfs_prid_t prid,
1092 int okalloc,
1093 xfs_buf_t **ialloc_context,
1094 boolean_t *call_again,
1095 xfs_inode_t **ipp)
1096{
1097 xfs_ino_t ino;
1098 xfs_inode_t *ip;
67fcaa73 1099 bhv_vnode_t *vp;
1da177e4
LT
1100 uint flags;
1101 int error;
1102
1103 /*
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1106 */
b11f94d5 1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4
LT
1108 ialloc_context, call_again, &ino);
1109 if (error != 0) {
1110 return error;
1111 }
1112 if (*call_again || ino == NULLFSINO) {
1113 *ipp = NULL;
1114 return 0;
1115 }
1116 ASSERT(*ialloc_context == NULL);
1117
1118 /*
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1122 */
1123 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1124 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1125 if (error != 0) {
1126 return error;
1127 }
1128 ASSERT(ip != NULL);
1129
1130 vp = XFS_ITOV(ip);
1da177e4
LT
1131 ip->i_d.di_mode = (__uint16_t)mode;
1132 ip->i_d.di_onlink = 0;
1133 ip->i_d.di_nlink = nlink;
1134 ASSERT(ip->i_d.di_nlink == nlink);
1135 ip->i_d.di_uid = current_fsuid(cr);
1136 ip->i_d.di_gid = current_fsgid(cr);
1137 ip->i_d.di_projid = prid;
1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1139
1140 /*
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1145 */
1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1149 /*
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1152 */
1153 }
1154
1155 /*
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1157 */
2a82b8be 1158 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1159 xfs_bump_ino_vers2(tp, ip);
1160
bd186aa9 1161 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1162 ip->i_d.di_gid = pip->i_d.di_gid;
1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 ip->i_d.di_mode |= S_ISGID;
1165 }
1166 }
1167
1168 /*
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1172 */
1173 if ((irix_sgid_inherit) &&
1174 (ip->i_d.di_mode & S_ISGID) &&
1175 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 ip->i_d.di_mode &= ~S_ISGID;
1177 }
1178
1179 ip->i_d.di_size = 0;
ba87ea69 1180 ip->i_size = 0;
1da177e4
LT
1181 ip->i_d.di_nextents = 0;
1182 ASSERT(ip->i_d.di_nblocks == 0);
1183 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1184 /*
1185 * di_gen will have been taken care of in xfs_iread.
1186 */
1187 ip->i_d.di_extsize = 0;
1188 ip->i_d.di_dmevmask = 0;
1189 ip->i_d.di_dmstate = 0;
1190 ip->i_d.di_flags = 0;
1191 flags = XFS_ILOG_CORE;
1192 switch (mode & S_IFMT) {
1193 case S_IFIFO:
1194 case S_IFCHR:
1195 case S_IFBLK:
1196 case S_IFSOCK:
1197 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 ip->i_df.if_u2.if_rdev = rdev;
1199 ip->i_df.if_flags = 0;
1200 flags |= XFS_ILOG_DEV;
1201 break;
1202 case S_IFREG:
b11f94d5 1203 if (pip && xfs_inode_is_filestream(pip)) {
2a82b8be
DC
1204 error = xfs_filestream_associate(pip, ip);
1205 if (error < 0)
1206 return -error;
1207 if (!error)
1208 xfs_iflags_set(ip, XFS_IFILESTREAM);
1209 }
1210 /* fall through */
1da177e4 1211 case S_IFDIR:
b11f94d5 1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1213 uint di_flags = 0;
1214
1215 if ((mode & S_IFMT) == S_IFDIR) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 ip->i_d.di_extsize = pip->i_d.di_extsize;
1221 }
1222 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1224 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1225 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1226 di_flags |= XFS_DIFLAG_EXTSIZE;
1227 ip->i_d.di_extsize = pip->i_d.di_extsize;
1228 }
1da177e4
LT
1229 }
1230 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1231 xfs_inherit_noatime)
365ca83d 1232 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1233 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1234 xfs_inherit_nodump)
365ca83d 1235 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1236 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1237 xfs_inherit_sync)
365ca83d 1238 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1239 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1240 xfs_inherit_nosymlinks)
365ca83d
NS
1241 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1242 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1243 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1244 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1245 xfs_inherit_nodefrag)
1246 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1247 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1248 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1249 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1250 }
1251 /* FALLTHROUGH */
1252 case S_IFLNK:
1253 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1254 ip->i_df.if_flags = XFS_IFEXTENTS;
1255 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1256 ip->i_df.if_u1.if_extents = NULL;
1257 break;
1258 default:
1259 ASSERT(0);
1260 }
1261 /*
1262 * Attribute fork settings for new inode.
1263 */
1264 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1265 ip->i_d.di_anextents = 0;
1266
1267 /*
1268 * Log the new values stuffed into the inode.
1269 */
1270 xfs_trans_log_inode(tp, ip, flags);
1271
b83bd138 1272 /* now that we have an i_mode we can setup inode ops and unlock */
745f6919 1273 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1da177e4
LT
1274
1275 *ipp = ip;
1276 return 0;
1277}
1278
1279/*
1280 * Check to make sure that there are no blocks allocated to the
1281 * file beyond the size of the file. We don't check this for
1282 * files with fixed size extents or real time extents, but we
1283 * at least do it for regular files.
1284 */
1285#ifdef DEBUG
1286void
1287xfs_isize_check(
1288 xfs_mount_t *mp,
1289 xfs_inode_t *ip,
1290 xfs_fsize_t isize)
1291{
1292 xfs_fileoff_t map_first;
1293 int nimaps;
1294 xfs_bmbt_irec_t imaps[2];
1295
1296 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1297 return;
1298
dd9f438e 1299 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1da177e4
LT
1300 return;
1301
1302 nimaps = 2;
1303 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1304 /*
1305 * The filesystem could be shutting down, so bmapi may return
1306 * an error.
1307 */
1308 if (xfs_bmapi(NULL, ip, map_first,
1309 (XFS_B_TO_FSB(mp,
1310 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1311 map_first),
1312 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1313 NULL, NULL))
1da177e4
LT
1314 return;
1315 ASSERT(nimaps == 1);
1316 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1317}
1318#endif /* DEBUG */
1319
1320/*
1321 * Calculate the last possible buffered byte in a file. This must
1322 * include data that was buffered beyond the EOF by the write code.
1323 * This also needs to deal with overflowing the xfs_fsize_t type
1324 * which can happen for sizes near the limit.
1325 *
1326 * We also need to take into account any blocks beyond the EOF. It
1327 * may be the case that they were buffered by a write which failed.
1328 * In that case the pages will still be in memory, but the inode size
1329 * will never have been updated.
1330 */
1331xfs_fsize_t
1332xfs_file_last_byte(
1333 xfs_inode_t *ip)
1334{
1335 xfs_mount_t *mp;
1336 xfs_fsize_t last_byte;
1337 xfs_fileoff_t last_block;
1338 xfs_fileoff_t size_last_block;
1339 int error;
1340
1341 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1342
1343 mp = ip->i_mount;
1344 /*
1345 * Only check for blocks beyond the EOF if the extents have
1346 * been read in. This eliminates the need for the inode lock,
1347 * and it also saves us from looking when it really isn't
1348 * necessary.
1349 */
1350 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1351 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1352 XFS_DATA_FORK);
1353 if (error) {
1354 last_block = 0;
1355 }
1356 } else {
1357 last_block = 0;
1358 }
ba87ea69 1359 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1360 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1361
1362 last_byte = XFS_FSB_TO_B(mp, last_block);
1363 if (last_byte < 0) {
1364 return XFS_MAXIOFFSET(mp);
1365 }
1366 last_byte += (1 << mp->m_writeio_log);
1367 if (last_byte < 0) {
1368 return XFS_MAXIOFFSET(mp);
1369 }
1370 return last_byte;
1371}
1372
1373#if defined(XFS_RW_TRACE)
1374STATIC void
1375xfs_itrunc_trace(
1376 int tag,
1377 xfs_inode_t *ip,
1378 int flag,
1379 xfs_fsize_t new_size,
1380 xfs_off_t toss_start,
1381 xfs_off_t toss_finish)
1382{
1383 if (ip->i_rwtrace == NULL) {
1384 return;
1385 }
1386
1387 ktrace_enter(ip->i_rwtrace,
1388 (void*)((long)tag),
1389 (void*)ip,
1390 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1391 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1392 (void*)((long)flag),
1393 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1394 (void*)(unsigned long)(new_size & 0xffffffff),
1395 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1396 (void*)(unsigned long)(toss_start & 0xffffffff),
1397 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1398 (void*)(unsigned long)(toss_finish & 0xffffffff),
1399 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1400 (void*)(unsigned long)current_pid(),
1401 (void*)NULL,
1402 (void*)NULL,
1403 (void*)NULL);
1da177e4
LT
1404}
1405#else
1406#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1407#endif
1408
1409/*
1410 * Start the truncation of the file to new_size. The new size
1411 * must be smaller than the current size. This routine will
1412 * clear the buffer and page caches of file data in the removed
1413 * range, and xfs_itruncate_finish() will remove the underlying
1414 * disk blocks.
1415 *
1416 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1417 * must NOT have the inode lock held at all. This is because we're
1418 * calling into the buffer/page cache code and we can't hold the
1419 * inode lock when we do so.
1420 *
38e2299a
DC
1421 * We need to wait for any direct I/Os in flight to complete before we
1422 * proceed with the truncate. This is needed to prevent the extents
1423 * being read or written by the direct I/Os from being removed while the
1424 * I/O is in flight as there is no other method of synchronising
1425 * direct I/O with the truncate operation. Also, because we hold
1426 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1427 * started until the truncate completes and drops the lock. Essentially,
1428 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1429 * between direct I/Os and the truncate operation.
1430 *
1da177e4
LT
1431 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1432 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1433 * in the case that the caller is locking things out of order and
1434 * may not be able to call xfs_itruncate_finish() with the inode lock
1435 * held without dropping the I/O lock. If the caller must drop the
1436 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1437 * must be called again with all the same restrictions as the initial
1438 * call.
1439 */
d3cf2094 1440int
1da177e4
LT
1441xfs_itruncate_start(
1442 xfs_inode_t *ip,
1443 uint flags,
1444 xfs_fsize_t new_size)
1445{
1446 xfs_fsize_t last_byte;
1447 xfs_off_t toss_start;
1448 xfs_mount_t *mp;
67fcaa73 1449 bhv_vnode_t *vp;
d3cf2094 1450 int error = 0;
1da177e4
LT
1451
1452 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
ba87ea69 1453 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1454 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1455 (flags == XFS_ITRUNC_MAYBE));
1456
1457 mp = ip->i_mount;
1458 vp = XFS_ITOV(ip);
9fa8046f 1459
c734c79b
LM
1460 /* wait for the completion of any pending DIOs */
1461 if (new_size < ip->i_size)
1462 vn_iowait(ip);
1463
1da177e4 1464 /*
67fcaa73 1465 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1466 * overlapping the region being removed. We have to use
67fcaa73 1467 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1468 * caller may not be able to finish the truncate without
1469 * dropping the inode's I/O lock. Make sure
1470 * to catch any pages brought in by buffers overlapping
1471 * the EOF by searching out beyond the isize by our
1472 * block size. We round new_size up to a block boundary
1473 * so that we don't toss things on the same block as
1474 * new_size but before it.
1475 *
67fcaa73 1476 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1477 * call remapf() over the same region if the file is mapped.
1478 * This frees up mapped file references to the pages in the
67fcaa73 1479 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1480 * that we get the latest mapped changes flushed out.
1481 */
1482 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1483 toss_start = XFS_FSB_TO_B(mp, toss_start);
1484 if (toss_start < 0) {
1485 /*
1486 * The place to start tossing is beyond our maximum
1487 * file size, so there is no way that the data extended
1488 * out there.
1489 */
d3cf2094 1490 return 0;
1da177e4
LT
1491 }
1492 last_byte = xfs_file_last_byte(ip);
1493 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1494 last_byte);
1495 if (last_byte > toss_start) {
1496 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1497 xfs_tosspages(ip, toss_start,
1498 -1, FI_REMAPF_LOCKED);
1da177e4 1499 } else {
739bfb2a
CH
1500 error = xfs_flushinval_pages(ip, toss_start,
1501 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1502 }
1503 }
1504
1505#ifdef DEBUG
1506 if (new_size == 0) {
1507 ASSERT(VN_CACHED(vp) == 0);
1508 }
1509#endif
d3cf2094 1510 return error;
1da177e4
LT
1511}
1512
1513/*
1514 * Shrink the file to the given new_size. The new
1515 * size must be smaller than the current size.
1516 * This will free up the underlying blocks
1517 * in the removed range after a call to xfs_itruncate_start()
1518 * or xfs_atruncate_start().
1519 *
1520 * The transaction passed to this routine must have made
1521 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1522 * This routine may commit the given transaction and
1523 * start new ones, so make sure everything involved in
1524 * the transaction is tidy before calling here.
1525 * Some transaction will be returned to the caller to be
1526 * committed. The incoming transaction must already include
1527 * the inode, and both inode locks must be held exclusively.
1528 * The inode must also be "held" within the transaction. On
1529 * return the inode will be "held" within the returned transaction.
1530 * This routine does NOT require any disk space to be reserved
1531 * for it within the transaction.
1532 *
1533 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1534 * and it indicates the fork which is to be truncated. For the
1535 * attribute fork we only support truncation to size 0.
1536 *
1537 * We use the sync parameter to indicate whether or not the first
1538 * transaction we perform might have to be synchronous. For the attr fork,
1539 * it needs to be so if the unlink of the inode is not yet known to be
1540 * permanent in the log. This keeps us from freeing and reusing the
1541 * blocks of the attribute fork before the unlink of the inode becomes
1542 * permanent.
1543 *
1544 * For the data fork, we normally have to run synchronously if we're
1545 * being called out of the inactive path or we're being called
1546 * out of the create path where we're truncating an existing file.
1547 * Either way, the truncate needs to be sync so blocks don't reappear
1548 * in the file with altered data in case of a crash. wsync filesystems
1549 * can run the first case async because anything that shrinks the inode
1550 * has to run sync so by the time we're called here from inactive, the
1551 * inode size is permanently set to 0.
1552 *
1553 * Calls from the truncate path always need to be sync unless we're
1554 * in a wsync filesystem and the file has already been unlinked.
1555 *
1556 * The caller is responsible for correctly setting the sync parameter.
1557 * It gets too hard for us to guess here which path we're being called
1558 * out of just based on inode state.
1559 */
1560int
1561xfs_itruncate_finish(
1562 xfs_trans_t **tp,
1563 xfs_inode_t *ip,
1564 xfs_fsize_t new_size,
1565 int fork,
1566 int sync)
1567{
1568 xfs_fsblock_t first_block;
1569 xfs_fileoff_t first_unmap_block;
1570 xfs_fileoff_t last_block;
1571 xfs_filblks_t unmap_len=0;
1572 xfs_mount_t *mp;
1573 xfs_trans_t *ntp;
1574 int done;
1575 int committed;
1576 xfs_bmap_free_t free_list;
1577 int error;
1578
1579 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1580 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
ba87ea69 1581 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1582 ASSERT(*tp != NULL);
1583 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1584 ASSERT(ip->i_transp == *tp);
1585 ASSERT(ip->i_itemp != NULL);
1586 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1587
1588
1589 ntp = *tp;
1590 mp = (ntp)->t_mountp;
1591 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1592
1593 /*
1594 * We only support truncating the entire attribute fork.
1595 */
1596 if (fork == XFS_ATTR_FORK) {
1597 new_size = 0LL;
1598 }
1599 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1600 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1601 /*
1602 * The first thing we do is set the size to new_size permanently
1603 * on disk. This way we don't have to worry about anyone ever
1604 * being able to look at the data being freed even in the face
1605 * of a crash. What we're getting around here is the case where
1606 * we free a block, it is allocated to another file, it is written
1607 * to, and then we crash. If the new data gets written to the
1608 * file but the log buffers containing the free and reallocation
1609 * don't, then we'd end up with garbage in the blocks being freed.
1610 * As long as we make the new_size permanent before actually
1611 * freeing any blocks it doesn't matter if they get writtten to.
1612 *
1613 * The callers must signal into us whether or not the size
1614 * setting here must be synchronous. There are a few cases
1615 * where it doesn't have to be synchronous. Those cases
1616 * occur if the file is unlinked and we know the unlink is
1617 * permanent or if the blocks being truncated are guaranteed
1618 * to be beyond the inode eof (regardless of the link count)
1619 * and the eof value is permanent. Both of these cases occur
1620 * only on wsync-mounted filesystems. In those cases, we're
1621 * guaranteed that no user will ever see the data in the blocks
1622 * that are being truncated so the truncate can run async.
1623 * In the free beyond eof case, the file may wind up with
1624 * more blocks allocated to it than it needs if we crash
1625 * and that won't get fixed until the next time the file
1626 * is re-opened and closed but that's ok as that shouldn't
1627 * be too many blocks.
1628 *
1629 * However, we can't just make all wsync xactions run async
1630 * because there's one call out of the create path that needs
1631 * to run sync where it's truncating an existing file to size
1632 * 0 whose size is > 0.
1633 *
1634 * It's probably possible to come up with a test in this
1635 * routine that would correctly distinguish all the above
1636 * cases from the values of the function parameters and the
1637 * inode state but for sanity's sake, I've decided to let the
1638 * layers above just tell us. It's simpler to correctly figure
1639 * out in the layer above exactly under what conditions we
1640 * can run async and I think it's easier for others read and
1641 * follow the logic in case something has to be changed.
1642 * cscope is your friend -- rcc.
1643 *
1644 * The attribute fork is much simpler.
1645 *
1646 * For the attribute fork we allow the caller to tell us whether
1647 * the unlink of the inode that led to this call is yet permanent
1648 * in the on disk log. If it is not and we will be freeing extents
1649 * in this inode then we make the first transaction synchronous
1650 * to make sure that the unlink is permanent by the time we free
1651 * the blocks.
1652 */
1653 if (fork == XFS_DATA_FORK) {
1654 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1655 /*
1656 * If we are not changing the file size then do
1657 * not update the on-disk file size - we may be
1658 * called from xfs_inactive_free_eofblocks(). If we
1659 * update the on-disk file size and then the system
1660 * crashes before the contents of the file are
1661 * flushed to disk then the files may be full of
1662 * holes (ie NULL files bug).
1663 */
1664 if (ip->i_size != new_size) {
1665 ip->i_d.di_size = new_size;
1666 ip->i_size = new_size;
1667 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1668 }
1da177e4
LT
1669 }
1670 } else if (sync) {
1671 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1672 if (ip->i_d.di_anextents > 0)
1673 xfs_trans_set_sync(ntp);
1674 }
1675 ASSERT(fork == XFS_DATA_FORK ||
1676 (fork == XFS_ATTR_FORK &&
1677 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1678 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1679
1680 /*
1681 * Since it is possible for space to become allocated beyond
1682 * the end of the file (in a crash where the space is allocated
1683 * but the inode size is not yet updated), simply remove any
1684 * blocks which show up between the new EOF and the maximum
1685 * possible file size. If the first block to be removed is
1686 * beyond the maximum file size (ie it is the same as last_block),
1687 * then there is nothing to do.
1688 */
1689 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1690 ASSERT(first_unmap_block <= last_block);
1691 done = 0;
1692 if (last_block == first_unmap_block) {
1693 done = 1;
1694 } else {
1695 unmap_len = last_block - first_unmap_block + 1;
1696 }
1697 while (!done) {
1698 /*
1699 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1700 * will tell us whether it freed the entire range or
1701 * not. If this is a synchronous mount (wsync),
1702 * then we can tell bunmapi to keep all the
1703 * transactions asynchronous since the unlink
1704 * transaction that made this inode inactive has
1705 * already hit the disk. There's no danger of
1706 * the freed blocks being reused, there being a
1707 * crash, and the reused blocks suddenly reappearing
1708 * in this file with garbage in them once recovery
1709 * runs.
1710 */
1711 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1712 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1713 first_unmap_block, unmap_len,
1da177e4
LT
1714 XFS_BMAPI_AFLAG(fork) |
1715 (sync ? 0 : XFS_BMAPI_ASYNC),
1716 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1717 &first_block, &free_list,
1718 NULL, &done);
1da177e4
LT
1719 if (error) {
1720 /*
1721 * If the bunmapi call encounters an error,
1722 * return to the caller where the transaction
1723 * can be properly aborted. We just need to
1724 * make sure we're not holding any resources
1725 * that we were not when we came in.
1726 */
1727 xfs_bmap_cancel(&free_list);
1728 return error;
1729 }
1730
1731 /*
1732 * Duplicate the transaction that has the permanent
1733 * reservation and commit the old transaction.
1734 */
f7c99b6f 1735 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4
LT
1736 ntp = *tp;
1737 if (error) {
1738 /*
1739 * If the bmap finish call encounters an error,
1740 * return to the caller where the transaction
1741 * can be properly aborted. We just need to
1742 * make sure we're not holding any resources
1743 * that we were not when we came in.
1744 *
1745 * Aborting from this point might lose some
1746 * blocks in the file system, but oh well.
1747 */
1748 xfs_bmap_cancel(&free_list);
1749 if (committed) {
1750 /*
1751 * If the passed in transaction committed
1752 * in xfs_bmap_finish(), then we want to
1753 * add the inode to this one before returning.
1754 * This keeps things simple for the higher
1755 * level code, because it always knows that
1756 * the inode is locked and held in the
1757 * transaction that returns to it whether
1758 * errors occur or not. We don't mark the
1759 * inode dirty so that this transaction can
1760 * be easily aborted if possible.
1761 */
1762 xfs_trans_ijoin(ntp, ip,
1763 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1764 xfs_trans_ihold(ntp, ip);
1765 }
1766 return error;
1767 }
1768
1769 if (committed) {
1770 /*
1771 * The first xact was committed,
1772 * so add the inode to the new one.
1773 * Mark it dirty so it will be logged
1774 * and moved forward in the log as
1775 * part of every commit.
1776 */
1777 xfs_trans_ijoin(ntp, ip,
1778 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1779 xfs_trans_ihold(ntp, ip);
1780 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1781 }
1782 ntp = xfs_trans_dup(ntp);
1c72bf90 1783 (void) xfs_trans_commit(*tp, 0);
1da177e4
LT
1784 *tp = ntp;
1785 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1786 XFS_TRANS_PERM_LOG_RES,
1787 XFS_ITRUNCATE_LOG_COUNT);
1788 /*
1789 * Add the inode being truncated to the next chained
1790 * transaction.
1791 */
1792 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1793 xfs_trans_ihold(ntp, ip);
1794 if (error)
1795 return (error);
1796 }
1797 /*
1798 * Only update the size in the case of the data fork, but
1799 * always re-log the inode so that our permanent transaction
1800 * can keep on rolling it forward in the log.
1801 */
1802 if (fork == XFS_DATA_FORK) {
1803 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1804 /*
1805 * If we are not changing the file size then do
1806 * not update the on-disk file size - we may be
1807 * called from xfs_inactive_free_eofblocks(). If we
1808 * update the on-disk file size and then the system
1809 * crashes before the contents of the file are
1810 * flushed to disk then the files may be full of
1811 * holes (ie NULL files bug).
1812 */
1813 if (ip->i_size != new_size) {
1814 ip->i_d.di_size = new_size;
1815 ip->i_size = new_size;
1816 }
1da177e4
LT
1817 }
1818 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1819 ASSERT((new_size != 0) ||
1820 (fork == XFS_ATTR_FORK) ||
1821 (ip->i_delayed_blks == 0));
1822 ASSERT((new_size != 0) ||
1823 (fork == XFS_ATTR_FORK) ||
1824 (ip->i_d.di_nextents == 0));
1825 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1826 return 0;
1827}
1828
1829
1830/*
1831 * xfs_igrow_start
1832 *
1833 * Do the first part of growing a file: zero any data in the last
1834 * block that is beyond the old EOF. We need to do this before
1835 * the inode is joined to the transaction to modify the i_size.
1836 * That way we can drop the inode lock and call into the buffer
1837 * cache to get the buffer mapping the EOF.
1838 */
1839int
1840xfs_igrow_start(
1841 xfs_inode_t *ip,
1842 xfs_fsize_t new_size,
1843 cred_t *credp)
1844{
1da177e4
LT
1845 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1846 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
ba87ea69 1847 ASSERT(new_size > ip->i_size);
1da177e4 1848
1da177e4
LT
1849 /*
1850 * Zero any pages that may have been created by
1851 * xfs_write_file() beyond the end of the file
1852 * and any blocks between the old and new file sizes.
1853 */
541d7d3c 1854 return xfs_zero_eof(ip, new_size, ip->i_size);
1da177e4
LT
1855}
1856
1857/*
1858 * xfs_igrow_finish
1859 *
1860 * This routine is called to extend the size of a file.
1861 * The inode must have both the iolock and the ilock locked
1862 * for update and it must be a part of the current transaction.
1863 * The xfs_igrow_start() function must have been called previously.
1864 * If the change_flag is not zero, the inode change timestamp will
1865 * be updated.
1866 */
1867void
1868xfs_igrow_finish(
1869 xfs_trans_t *tp,
1870 xfs_inode_t *ip,
1871 xfs_fsize_t new_size,
1872 int change_flag)
1873{
1874 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1875 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1876 ASSERT(ip->i_transp == tp);
ba87ea69 1877 ASSERT(new_size > ip->i_size);
1da177e4
LT
1878
1879 /*
1880 * Update the file size. Update the inode change timestamp
1881 * if change_flag set.
1882 */
1883 ip->i_d.di_size = new_size;
ba87ea69 1884 ip->i_size = new_size;
1da177e4
LT
1885 if (change_flag)
1886 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1887 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1888
1889}
1890
1891
1892/*
1893 * This is called when the inode's link count goes to 0.
1894 * We place the on-disk inode on a list in the AGI. It
1895 * will be pulled from this list when the inode is freed.
1896 */
1897int
1898xfs_iunlink(
1899 xfs_trans_t *tp,
1900 xfs_inode_t *ip)
1901{
1902 xfs_mount_t *mp;
1903 xfs_agi_t *agi;
1904 xfs_dinode_t *dip;
1905 xfs_buf_t *agibp;
1906 xfs_buf_t *ibp;
1907 xfs_agnumber_t agno;
1908 xfs_daddr_t agdaddr;
1909 xfs_agino_t agino;
1910 short bucket_index;
1911 int offset;
1912 int error;
1913 int agi_ok;
1914
1915 ASSERT(ip->i_d.di_nlink == 0);
1916 ASSERT(ip->i_d.di_mode != 0);
1917 ASSERT(ip->i_transp == tp);
1918
1919 mp = tp->t_mountp;
1920
1921 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1922 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1923
1924 /*
1925 * Get the agi buffer first. It ensures lock ordering
1926 * on the list.
1927 */
1928 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1929 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
859d7182 1930 if (error)
1da177e4 1931 return error;
859d7182 1932
1da177e4
LT
1933 /*
1934 * Validate the magic number of the agi block.
1935 */
1936 agi = XFS_BUF_TO_AGI(agibp);
1937 agi_ok =
16259e7d
CH
1938 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1939 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1940 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1941 XFS_RANDOM_IUNLINK))) {
1942 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1943 xfs_trans_brelse(tp, agibp);
1944 return XFS_ERROR(EFSCORRUPTED);
1945 }
1946 /*
1947 * Get the index into the agi hash table for the
1948 * list this inode will go on.
1949 */
1950 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1951 ASSERT(agino != 0);
1952 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1953 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1954 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1955
16259e7d 1956 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1957 /*
1958 * There is already another inode in the bucket we need
1959 * to add ourselves to. Add us at the front of the list.
1960 * Here we put the head pointer into our next pointer,
1961 * and then we fall through to point the head at us.
1962 */
c319b58b
VA
1963 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1964 if (error)
1965 return error;
1966
347d1c01 1967 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1968 /* both on-disk, don't endian flip twice */
1969 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1970 offset = ip->i_boffset +
1971 offsetof(xfs_dinode_t, di_next_unlinked);
1972 xfs_trans_inode_buf(tp, ibp);
1973 xfs_trans_log_buf(tp, ibp, offset,
1974 (offset + sizeof(xfs_agino_t) - 1));
1975 xfs_inobp_check(mp, ibp);
1976 }
1977
1978 /*
1979 * Point the bucket head pointer at the inode being inserted.
1980 */
1981 ASSERT(agino != 0);
16259e7d 1982 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1983 offset = offsetof(xfs_agi_t, agi_unlinked) +
1984 (sizeof(xfs_agino_t) * bucket_index);
1985 xfs_trans_log_buf(tp, agibp, offset,
1986 (offset + sizeof(xfs_agino_t) - 1));
1987 return 0;
1988}
1989
1990/*
1991 * Pull the on-disk inode from the AGI unlinked list.
1992 */
1993STATIC int
1994xfs_iunlink_remove(
1995 xfs_trans_t *tp,
1996 xfs_inode_t *ip)
1997{
1998 xfs_ino_t next_ino;
1999 xfs_mount_t *mp;
2000 xfs_agi_t *agi;
2001 xfs_dinode_t *dip;
2002 xfs_buf_t *agibp;
2003 xfs_buf_t *ibp;
2004 xfs_agnumber_t agno;
2005 xfs_daddr_t agdaddr;
2006 xfs_agino_t agino;
2007 xfs_agino_t next_agino;
2008 xfs_buf_t *last_ibp;
6fdf8ccc 2009 xfs_dinode_t *last_dip = NULL;
1da177e4 2010 short bucket_index;
6fdf8ccc 2011 int offset, last_offset = 0;
1da177e4
LT
2012 int error;
2013 int agi_ok;
2014
2015 /*
2016 * First pull the on-disk inode from the AGI unlinked list.
2017 */
2018 mp = tp->t_mountp;
2019
2020 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2021 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2022
2023 /*
2024 * Get the agi buffer first. It ensures lock ordering
2025 * on the list.
2026 */
2027 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2028 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2029 if (error) {
2030 cmn_err(CE_WARN,
2031 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2032 error, mp->m_fsname);
2033 return error;
2034 }
2035 /*
2036 * Validate the magic number of the agi block.
2037 */
2038 agi = XFS_BUF_TO_AGI(agibp);
2039 agi_ok =
16259e7d
CH
2040 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2041 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
2042 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2043 XFS_RANDOM_IUNLINK_REMOVE))) {
2044 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2045 mp, agi);
2046 xfs_trans_brelse(tp, agibp);
2047 cmn_err(CE_WARN,
2048 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2049 mp->m_fsname);
2050 return XFS_ERROR(EFSCORRUPTED);
2051 }
2052 /*
2053 * Get the index into the agi hash table for the
2054 * list this inode will go on.
2055 */
2056 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2057 ASSERT(agino != 0);
2058 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 2059 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
2060 ASSERT(agi->agi_unlinked[bucket_index]);
2061
16259e7d 2062 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
2063 /*
2064 * We're at the head of the list. Get the inode's
2065 * on-disk buffer to see if there is anyone after us
2066 * on the list. Only modify our next pointer if it
2067 * is not already NULLAGINO. This saves us the overhead
2068 * of dealing with the buffer when there is no need to
2069 * change it.
2070 */
b12dd342 2071 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2072 if (error) {
2073 cmn_err(CE_WARN,
2074 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2075 error, mp->m_fsname);
2076 return error;
2077 }
347d1c01 2078 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2079 ASSERT(next_agino != 0);
2080 if (next_agino != NULLAGINO) {
347d1c01 2081 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2082 offset = ip->i_boffset +
2083 offsetof(xfs_dinode_t, di_next_unlinked);
2084 xfs_trans_inode_buf(tp, ibp);
2085 xfs_trans_log_buf(tp, ibp, offset,
2086 (offset + sizeof(xfs_agino_t) - 1));
2087 xfs_inobp_check(mp, ibp);
2088 } else {
2089 xfs_trans_brelse(tp, ibp);
2090 }
2091 /*
2092 * Point the bucket head pointer at the next inode.
2093 */
2094 ASSERT(next_agino != 0);
2095 ASSERT(next_agino != agino);
16259e7d 2096 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2097 offset = offsetof(xfs_agi_t, agi_unlinked) +
2098 (sizeof(xfs_agino_t) * bucket_index);
2099 xfs_trans_log_buf(tp, agibp, offset,
2100 (offset + sizeof(xfs_agino_t) - 1));
2101 } else {
2102 /*
2103 * We need to search the list for the inode being freed.
2104 */
16259e7d 2105 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2106 last_ibp = NULL;
2107 while (next_agino != agino) {
2108 /*
2109 * If the last inode wasn't the one pointing to
2110 * us, then release its buffer since we're not
2111 * going to do anything with it.
2112 */
2113 if (last_ibp != NULL) {
2114 xfs_trans_brelse(tp, last_ibp);
2115 }
2116 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2117 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2118 &last_ibp, &last_offset);
2119 if (error) {
2120 cmn_err(CE_WARN,
2121 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2122 error, mp->m_fsname);
2123 return error;
2124 }
347d1c01 2125 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2126 ASSERT(next_agino != NULLAGINO);
2127 ASSERT(next_agino != 0);
2128 }
2129 /*
2130 * Now last_ibp points to the buffer previous to us on
2131 * the unlinked list. Pull us from the list.
2132 */
b12dd342 2133 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2134 if (error) {
2135 cmn_err(CE_WARN,
2136 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2137 error, mp->m_fsname);
2138 return error;
2139 }
347d1c01 2140 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2141 ASSERT(next_agino != 0);
2142 ASSERT(next_agino != agino);
2143 if (next_agino != NULLAGINO) {
347d1c01 2144 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2145 offset = ip->i_boffset +
2146 offsetof(xfs_dinode_t, di_next_unlinked);
2147 xfs_trans_inode_buf(tp, ibp);
2148 xfs_trans_log_buf(tp, ibp, offset,
2149 (offset + sizeof(xfs_agino_t) - 1));
2150 xfs_inobp_check(mp, ibp);
2151 } else {
2152 xfs_trans_brelse(tp, ibp);
2153 }
2154 /*
2155 * Point the previous inode on the list to the next inode.
2156 */
347d1c01 2157 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2158 ASSERT(next_agino != 0);
2159 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2160 xfs_trans_inode_buf(tp, last_ibp);
2161 xfs_trans_log_buf(tp, last_ibp, offset,
2162 (offset + sizeof(xfs_agino_t) - 1));
2163 xfs_inobp_check(mp, last_ibp);
2164 }
2165 return 0;
2166}
2167
7989cb8e 2168STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
1da177e4
LT
2169{
2170 return (((ip->i_itemp == NULL) ||
2171 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2172 (ip->i_update_core == 0));
2173}
2174
ba0f32d4 2175STATIC void
1da177e4
LT
2176xfs_ifree_cluster(
2177 xfs_inode_t *free_ip,
2178 xfs_trans_t *tp,
2179 xfs_ino_t inum)
2180{
2181 xfs_mount_t *mp = free_ip->i_mount;
2182 int blks_per_cluster;
2183 int nbufs;
2184 int ninodes;
2185 int i, j, found, pre_flushed;
2186 xfs_daddr_t blkno;
2187 xfs_buf_t *bp;
1da177e4
LT
2188 xfs_inode_t *ip, **ip_found;
2189 xfs_inode_log_item_t *iip;
2190 xfs_log_item_t *lip;
da353b0d 2191 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2192
2193 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2194 blks_per_cluster = 1;
2195 ninodes = mp->m_sb.sb_inopblock;
2196 nbufs = XFS_IALLOC_BLOCKS(mp);
2197 } else {
2198 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2199 mp->m_sb.sb_blocksize;
2200 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2201 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2202 }
2203
2204 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2205
2206 for (j = 0; j < nbufs; j++, inum += ninodes) {
2207 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2208 XFS_INO_TO_AGBNO(mp, inum));
2209
2210
2211 /*
2212 * Look for each inode in memory and attempt to lock it,
2213 * we can be racing with flush and tail pushing here.
2214 * any inode we get the locks on, add to an array of
2215 * inode items to process later.
2216 *
2217 * The get the buffer lock, we could beat a flush
2218 * or tail pushing thread to the lock here, in which
2219 * case they will go looking for the inode buffer
2220 * and fail, we need some other form of interlock
2221 * here.
2222 */
2223 found = 0;
2224 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2225 read_lock(&pag->pag_ici_lock);
2226 ip = radix_tree_lookup(&pag->pag_ici_root,
2227 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2228
2229 /* Inode not in memory or we found it already,
2230 * nothing to do
2231 */
7a18c386 2232 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2233 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2234 continue;
2235 }
2236
2237 if (xfs_inode_clean(ip)) {
da353b0d 2238 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2239 continue;
2240 }
2241
2242 /* If we can get the locks then add it to the
2243 * list, otherwise by the time we get the bp lock
2244 * below it will already be attached to the
2245 * inode buffer.
2246 */
2247
2248 /* This inode will already be locked - by us, lets
2249 * keep it that way.
2250 */
2251
2252 if (ip == free_ip) {
2253 if (xfs_iflock_nowait(ip)) {
7a18c386 2254 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2255 if (xfs_inode_clean(ip)) {
2256 xfs_ifunlock(ip);
2257 } else {
2258 ip_found[found++] = ip;
2259 }
2260 }
da353b0d 2261 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2262 continue;
2263 }
2264
2265 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2266 if (xfs_iflock_nowait(ip)) {
7a18c386 2267 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2268
2269 if (xfs_inode_clean(ip)) {
2270 xfs_ifunlock(ip);
2271 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2272 } else {
2273 ip_found[found++] = ip;
2274 }
2275 } else {
2276 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2277 }
2278 }
da353b0d 2279 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2280 }
2281
2282 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2283 mp->m_bsize * blks_per_cluster,
2284 XFS_BUF_LOCK);
2285
2286 pre_flushed = 0;
2287 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2288 while (lip) {
2289 if (lip->li_type == XFS_LI_INODE) {
2290 iip = (xfs_inode_log_item_t *)lip;
2291 ASSERT(iip->ili_logged == 1);
2292 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
287f3dad 2293 spin_lock(&mp->m_ail_lock);
1da177e4 2294 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2295 spin_unlock(&mp->m_ail_lock);
e5ffd2bb 2296 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2297 pre_flushed++;
2298 }
2299 lip = lip->li_bio_list;
2300 }
2301
2302 for (i = 0; i < found; i++) {
2303 ip = ip_found[i];
2304 iip = ip->i_itemp;
2305
2306 if (!iip) {
2307 ip->i_update_core = 0;
2308 xfs_ifunlock(ip);
2309 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2310 continue;
2311 }
2312
2313 iip->ili_last_fields = iip->ili_format.ilf_fields;
2314 iip->ili_format.ilf_fields = 0;
2315 iip->ili_logged = 1;
287f3dad 2316 spin_lock(&mp->m_ail_lock);
1da177e4 2317 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2318 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
2319
2320 xfs_buf_attach_iodone(bp,
2321 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2322 xfs_istale_done, (xfs_log_item_t *)iip);
2323 if (ip != free_ip) {
2324 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2325 }
2326 }
2327
2328 if (found || pre_flushed)
2329 xfs_trans_stale_inode_buf(tp, bp);
2330 xfs_trans_binval(tp, bp);
2331 }
2332
2333 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
da353b0d 2334 xfs_put_perag(mp, pag);
1da177e4
LT
2335}
2336
2337/*
2338 * This is called to return an inode to the inode free list.
2339 * The inode should already be truncated to 0 length and have
2340 * no pages associated with it. This routine also assumes that
2341 * the inode is already a part of the transaction.
2342 *
2343 * The on-disk copy of the inode will have been added to the list
2344 * of unlinked inodes in the AGI. We need to remove the inode from
2345 * that list atomically with respect to freeing it here.
2346 */
2347int
2348xfs_ifree(
2349 xfs_trans_t *tp,
2350 xfs_inode_t *ip,
2351 xfs_bmap_free_t *flist)
2352{
2353 int error;
2354 int delete;
2355 xfs_ino_t first_ino;
c319b58b
VA
2356 xfs_dinode_t *dip;
2357 xfs_buf_t *ibp;
1da177e4
LT
2358
2359 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2360 ASSERT(ip->i_transp == tp);
2361 ASSERT(ip->i_d.di_nlink == 0);
2362 ASSERT(ip->i_d.di_nextents == 0);
2363 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2364 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2365 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2366 ASSERT(ip->i_d.di_nblocks == 0);
2367
2368 /*
2369 * Pull the on-disk inode from the AGI unlinked list.
2370 */
2371 error = xfs_iunlink_remove(tp, ip);
2372 if (error != 0) {
2373 return error;
2374 }
2375
2376 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2377 if (error != 0) {
2378 return error;
2379 }
2380 ip->i_d.di_mode = 0; /* mark incore inode as free */
2381 ip->i_d.di_flags = 0;
2382 ip->i_d.di_dmevmask = 0;
2383 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2384 ip->i_df.if_ext_max =
2385 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2386 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2387 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2388 /*
2389 * Bump the generation count so no one will be confused
2390 * by reincarnations of this inode.
2391 */
2392 ip->i_d.di_gen++;
c319b58b 2393
1da177e4
LT
2394 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2395
c319b58b
VA
2396 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0);
2397 if (error)
2398 return error;
2399
2400 /*
2401 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2402 * from picking up this inode when it is reclaimed (its incore state
2403 * initialzed but not flushed to disk yet). The in-core di_mode is
2404 * already cleared and a corresponding transaction logged.
2405 * The hack here just synchronizes the in-core to on-disk
2406 * di_mode value in advance before the actual inode sync to disk.
2407 * This is OK because the inode is already unlinked and would never
2408 * change its di_mode again for this inode generation.
2409 * This is a temporary hack that would require a proper fix
2410 * in the future.
2411 */
2412 dip->di_core.di_mode = 0;
2413
1da177e4
LT
2414 if (delete) {
2415 xfs_ifree_cluster(ip, tp, first_ino);
2416 }
2417
2418 return 0;
2419}
2420
2421/*
2422 * Reallocate the space for if_broot based on the number of records
2423 * being added or deleted as indicated in rec_diff. Move the records
2424 * and pointers in if_broot to fit the new size. When shrinking this
2425 * will eliminate holes between the records and pointers created by
2426 * the caller. When growing this will create holes to be filled in
2427 * by the caller.
2428 *
2429 * The caller must not request to add more records than would fit in
2430 * the on-disk inode root. If the if_broot is currently NULL, then
2431 * if we adding records one will be allocated. The caller must also
2432 * not request that the number of records go below zero, although
2433 * it can go to zero.
2434 *
2435 * ip -- the inode whose if_broot area is changing
2436 * ext_diff -- the change in the number of records, positive or negative,
2437 * requested for the if_broot array.
2438 */
2439void
2440xfs_iroot_realloc(
2441 xfs_inode_t *ip,
2442 int rec_diff,
2443 int whichfork)
2444{
2445 int cur_max;
2446 xfs_ifork_t *ifp;
2447 xfs_bmbt_block_t *new_broot;
2448 int new_max;
2449 size_t new_size;
2450 char *np;
2451 char *op;
2452
2453 /*
2454 * Handle the degenerate case quietly.
2455 */
2456 if (rec_diff == 0) {
2457 return;
2458 }
2459
2460 ifp = XFS_IFORK_PTR(ip, whichfork);
2461 if (rec_diff > 0) {
2462 /*
2463 * If there wasn't any memory allocated before, just
2464 * allocate it now and get out.
2465 */
2466 if (ifp->if_broot_bytes == 0) {
2467 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2468 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2469 KM_SLEEP);
2470 ifp->if_broot_bytes = (int)new_size;
2471 return;
2472 }
2473
2474 /*
2475 * If there is already an existing if_broot, then we need
2476 * to realloc() it and shift the pointers to their new
2477 * location. The records don't change location because
2478 * they are kept butted up against the btree block header.
2479 */
2480 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2481 new_max = cur_max + rec_diff;
2482 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2483 ifp->if_broot = (xfs_bmbt_block_t *)
2484 kmem_realloc(ifp->if_broot,
2485 new_size,
2486 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2487 KM_SLEEP);
2488 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2489 ifp->if_broot_bytes);
2490 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2491 (int)new_size);
2492 ifp->if_broot_bytes = (int)new_size;
2493 ASSERT(ifp->if_broot_bytes <=
2494 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2495 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2496 return;
2497 }
2498
2499 /*
2500 * rec_diff is less than 0. In this case, we are shrinking the
2501 * if_broot buffer. It must already exist. If we go to zero
2502 * records, just get rid of the root and clear the status bit.
2503 */
2504 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2505 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2506 new_max = cur_max + rec_diff;
2507 ASSERT(new_max >= 0);
2508 if (new_max > 0)
2509 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2510 else
2511 new_size = 0;
2512 if (new_size > 0) {
2513 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2514 /*
2515 * First copy over the btree block header.
2516 */
2517 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2518 } else {
2519 new_broot = NULL;
2520 ifp->if_flags &= ~XFS_IFBROOT;
2521 }
2522
2523 /*
2524 * Only copy the records and pointers if there are any.
2525 */
2526 if (new_max > 0) {
2527 /*
2528 * First copy the records.
2529 */
2530 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2531 ifp->if_broot_bytes);
2532 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2533 (int)new_size);
2534 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2535
2536 /*
2537 * Then copy the pointers.
2538 */
2539 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2540 ifp->if_broot_bytes);
2541 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2542 (int)new_size);
2543 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2544 }
2545 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2546 ifp->if_broot = new_broot;
2547 ifp->if_broot_bytes = (int)new_size;
2548 ASSERT(ifp->if_broot_bytes <=
2549 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2550 return;
2551}
2552
2553
1da177e4
LT
2554/*
2555 * This is called when the amount of space needed for if_data
2556 * is increased or decreased. The change in size is indicated by
2557 * the number of bytes that need to be added or deleted in the
2558 * byte_diff parameter.
2559 *
2560 * If the amount of space needed has decreased below the size of the
2561 * inline buffer, then switch to using the inline buffer. Otherwise,
2562 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2563 * to what is needed.
2564 *
2565 * ip -- the inode whose if_data area is changing
2566 * byte_diff -- the change in the number of bytes, positive or negative,
2567 * requested for the if_data array.
2568 */
2569void
2570xfs_idata_realloc(
2571 xfs_inode_t *ip,
2572 int byte_diff,
2573 int whichfork)
2574{
2575 xfs_ifork_t *ifp;
2576 int new_size;
2577 int real_size;
2578
2579 if (byte_diff == 0) {
2580 return;
2581 }
2582
2583 ifp = XFS_IFORK_PTR(ip, whichfork);
2584 new_size = (int)ifp->if_bytes + byte_diff;
2585 ASSERT(new_size >= 0);
2586
2587 if (new_size == 0) {
2588 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2589 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2590 }
2591 ifp->if_u1.if_data = NULL;
2592 real_size = 0;
2593 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2594 /*
2595 * If the valid extents/data can fit in if_inline_ext/data,
2596 * copy them from the malloc'd vector and free it.
2597 */
2598 if (ifp->if_u1.if_data == NULL) {
2599 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2600 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 ASSERT(ifp->if_real_bytes != 0);
2602 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2603 new_size);
2604 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2605 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2606 }
2607 real_size = 0;
2608 } else {
2609 /*
2610 * Stuck with malloc/realloc.
2611 * For inline data, the underlying buffer must be
2612 * a multiple of 4 bytes in size so that it can be
2613 * logged and stay on word boundaries. We enforce
2614 * that here.
2615 */
2616 real_size = roundup(new_size, 4);
2617 if (ifp->if_u1.if_data == NULL) {
2618 ASSERT(ifp->if_real_bytes == 0);
2619 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2620 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2621 /*
2622 * Only do the realloc if the underlying size
2623 * is really changing.
2624 */
2625 if (ifp->if_real_bytes != real_size) {
2626 ifp->if_u1.if_data =
2627 kmem_realloc(ifp->if_u1.if_data,
2628 real_size,
2629 ifp->if_real_bytes,
2630 KM_SLEEP);
2631 }
2632 } else {
2633 ASSERT(ifp->if_real_bytes == 0);
2634 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2635 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2636 ifp->if_bytes);
2637 }
2638 }
2639 ifp->if_real_bytes = real_size;
2640 ifp->if_bytes = new_size;
2641 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2642}
2643
2644
2645
2646
2647/*
2648 * Map inode to disk block and offset.
2649 *
2650 * mp -- the mount point structure for the current file system
2651 * tp -- the current transaction
2652 * ino -- the inode number of the inode to be located
2653 * imap -- this structure is filled in with the information necessary
2654 * to retrieve the given inode from disk
2655 * flags -- flags to pass to xfs_dilocate indicating whether or not
2656 * lookups in the inode btree were OK or not
2657 */
2658int
2659xfs_imap(
2660 xfs_mount_t *mp,
2661 xfs_trans_t *tp,
2662 xfs_ino_t ino,
2663 xfs_imap_t *imap,
2664 uint flags)
2665{
2666 xfs_fsblock_t fsbno;
2667 int len;
2668 int off;
2669 int error;
2670
2671 fsbno = imap->im_blkno ?
2672 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2673 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2674 if (error != 0) {
2675 return error;
2676 }
2677 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2678 imap->im_len = XFS_FSB_TO_BB(mp, len);
2679 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2680 imap->im_ioffset = (ushort)off;
2681 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2682 return 0;
2683}
2684
2685void
2686xfs_idestroy_fork(
2687 xfs_inode_t *ip,
2688 int whichfork)
2689{
2690 xfs_ifork_t *ifp;
2691
2692 ifp = XFS_IFORK_PTR(ip, whichfork);
2693 if (ifp->if_broot != NULL) {
2694 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2695 ifp->if_broot = NULL;
2696 }
2697
2698 /*
2699 * If the format is local, then we can't have an extents
2700 * array so just look for an inline data array. If we're
2701 * not local then we may or may not have an extents list,
2702 * so check and free it up if we do.
2703 */
2704 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2705 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2706 (ifp->if_u1.if_data != NULL)) {
2707 ASSERT(ifp->if_real_bytes != 0);
2708 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2709 ifp->if_u1.if_data = NULL;
2710 ifp->if_real_bytes = 0;
2711 }
2712 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2713 ((ifp->if_flags & XFS_IFEXTIREC) ||
2714 ((ifp->if_u1.if_extents != NULL) &&
2715 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2716 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2717 xfs_iext_destroy(ifp);
1da177e4
LT
2718 }
2719 ASSERT(ifp->if_u1.if_extents == NULL ||
2720 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2721 ASSERT(ifp->if_real_bytes == 0);
2722 if (whichfork == XFS_ATTR_FORK) {
2723 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2724 ip->i_afp = NULL;
2725 }
2726}
2727
2728/*
2729 * This is called free all the memory associated with an inode.
2730 * It must free the inode itself and any buffers allocated for
2731 * if_extents/if_data and if_broot. It must also free the lock
2732 * associated with the inode.
2733 */
2734void
2735xfs_idestroy(
2736 xfs_inode_t *ip)
2737{
1da177e4
LT
2738 switch (ip->i_d.di_mode & S_IFMT) {
2739 case S_IFREG:
2740 case S_IFDIR:
2741 case S_IFLNK:
2742 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2743 break;
2744 }
2745 if (ip->i_afp)
2746 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2747 mrfree(&ip->i_lock);
2748 mrfree(&ip->i_iolock);
2749 freesema(&ip->i_flock);
1543d79c 2750
cf441eeb 2751#ifdef XFS_INODE_TRACE
1543d79c
CH
2752 ktrace_free(ip->i_trace);
2753#endif
1da177e4
LT
2754#ifdef XFS_BMAP_TRACE
2755 ktrace_free(ip->i_xtrace);
2756#endif
2757#ifdef XFS_BMBT_TRACE
2758 ktrace_free(ip->i_btrace);
2759#endif
2760#ifdef XFS_RW_TRACE
2761 ktrace_free(ip->i_rwtrace);
2762#endif
2763#ifdef XFS_ILOCK_TRACE
2764 ktrace_free(ip->i_lock_trace);
2765#endif
2766#ifdef XFS_DIR2_TRACE
2767 ktrace_free(ip->i_dir_trace);
2768#endif
2769 if (ip->i_itemp) {
f74eaf59
DC
2770 /*
2771 * Only if we are shutting down the fs will we see an
2772 * inode still in the AIL. If it is there, we should remove
2773 * it to prevent a use-after-free from occurring.
2774 */
2775 xfs_mount_t *mp = ip->i_mount;
2776 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
f74eaf59
DC
2777
2778 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2779 XFS_FORCED_SHUTDOWN(ip->i_mount));
2780 if (lip->li_flags & XFS_LI_IN_AIL) {
287f3dad 2781 spin_lock(&mp->m_ail_lock);
f74eaf59 2782 if (lip->li_flags & XFS_LI_IN_AIL)
287f3dad 2783 xfs_trans_delete_ail(mp, lip);
f74eaf59 2784 else
287f3dad 2785 spin_unlock(&mp->m_ail_lock);
f74eaf59 2786 }
1da177e4
LT
2787 xfs_inode_item_destroy(ip);
2788 }
2789 kmem_zone_free(xfs_inode_zone, ip);
2790}
2791
2792
2793/*
2794 * Increment the pin count of the given buffer.
2795 * This value is protected by ipinlock spinlock in the mount structure.
2796 */
2797void
2798xfs_ipin(
2799 xfs_inode_t *ip)
2800{
2801 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2802
2803 atomic_inc(&ip->i_pincount);
2804}
2805
2806/*
2807 * Decrement the pin count of the given inode, and wake up
2808 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2809 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2810 */
2811void
2812xfs_iunpin(
2813 xfs_inode_t *ip)
2814{
2815 ASSERT(atomic_read(&ip->i_pincount) > 0);
2816
4c60658e
DC
2817 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2818
58829e49 2819 /*
4c60658e
DC
2820 * If the inode is currently being reclaimed, the link between
2821 * the bhv_vnode and the xfs_inode will be broken after the
2822 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2823 * set, then we can move forward and mark the linux inode dirty
2824 * knowing that it is still valid as it won't freed until after
2825 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2826 * i_flags_lock is used to synchronise the setting of the
2827 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2828 * can execute atomically w.r.t to reclaim by holding this lock
2829 * here.
58829e49 2830 *
4c60658e
DC
2831 * However, we still need to issue the unpin wakeup call as the
2832 * inode reclaim may be blocked waiting for the inode to become
2833 * unpinned.
58829e49 2834 */
f273ab84 2835
7a18c386 2836 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
67fcaa73 2837 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
4c60658e
DC
2838 struct inode *inode = NULL;
2839
2840 BUG_ON(vp == NULL);
2841 inode = vn_to_inode(vp);
2842 BUG_ON(inode->i_state & I_CLEAR);
1da177e4 2843
58829e49 2844 /* make sync come back and flush this inode */
4c60658e
DC
2845 if (!(inode->i_state & (I_NEW|I_FREEING)))
2846 mark_inode_dirty_sync(inode);
1da177e4 2847 }
f273ab84 2848 spin_unlock(&ip->i_flags_lock);
1da177e4
LT
2849 wake_up(&ip->i_ipin_wait);
2850 }
2851}
2852
2853/*
2854 * This is called to wait for the given inode to be unpinned.
2855 * It will sleep until this happens. The caller must have the
2856 * inode locked in at least shared mode so that the buffer cannot
2857 * be subsequently pinned once someone is waiting for it to be
2858 * unpinned.
2859 */
ba0f32d4 2860STATIC void
1da177e4
LT
2861xfs_iunpin_wait(
2862 xfs_inode_t *ip)
2863{
2864 xfs_inode_log_item_t *iip;
2865 xfs_lsn_t lsn;
2866
2867 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2868
2869 if (atomic_read(&ip->i_pincount) == 0) {
2870 return;
2871 }
2872
2873 iip = ip->i_itemp;
2874 if (iip && iip->ili_last_lsn) {
2875 lsn = iip->ili_last_lsn;
2876 } else {
2877 lsn = (xfs_lsn_t)0;
2878 }
2879
2880 /*
2881 * Give the log a push so we don't wait here too long.
2882 */
2883 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2884
2885 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2886}
2887
2888
2889/*
2890 * xfs_iextents_copy()
2891 *
2892 * This is called to copy the REAL extents (as opposed to the delayed
2893 * allocation extents) from the inode into the given buffer. It
2894 * returns the number of bytes copied into the buffer.
2895 *
2896 * If there are no delayed allocation extents, then we can just
2897 * memcpy() the extents into the buffer. Otherwise, we need to
2898 * examine each extent in turn and skip those which are delayed.
2899 */
2900int
2901xfs_iextents_copy(
2902 xfs_inode_t *ip,
a6f64d4a 2903 xfs_bmbt_rec_t *dp,
1da177e4
LT
2904 int whichfork)
2905{
2906 int copied;
1da177e4
LT
2907 int i;
2908 xfs_ifork_t *ifp;
2909 int nrecs;
2910 xfs_fsblock_t start_block;
2911
2912 ifp = XFS_IFORK_PTR(ip, whichfork);
2913 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2914 ASSERT(ifp->if_bytes > 0);
2915
2916 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2917 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2918 ASSERT(nrecs > 0);
2919
2920 /*
2921 * There are some delayed allocation extents in the
2922 * inode, so copy the extents one at a time and skip
2923 * the delayed ones. There must be at least one
2924 * non-delayed extent.
2925 */
1da177e4
LT
2926 copied = 0;
2927 for (i = 0; i < nrecs; i++) {
a6f64d4a 2928 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2929 start_block = xfs_bmbt_get_startblock(ep);
2930 if (ISNULLSTARTBLOCK(start_block)) {
2931 /*
2932 * It's a delayed allocation extent, so skip it.
2933 */
1da177e4
LT
2934 continue;
2935 }
2936
2937 /* Translate to on disk format */
cd8b0a97
CH
2938 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2939 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2940 dp++;
1da177e4
LT
2941 copied++;
2942 }
2943 ASSERT(copied != 0);
a6f64d4a 2944 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2945
2946 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2947}
2948
2949/*
2950 * Each of the following cases stores data into the same region
2951 * of the on-disk inode, so only one of them can be valid at
2952 * any given time. While it is possible to have conflicting formats
2953 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2954 * in EXTENTS format, this can only happen when the fork has
2955 * changed formats after being modified but before being flushed.
2956 * In these cases, the format always takes precedence, because the
2957 * format indicates the current state of the fork.
2958 */
2959/*ARGSUSED*/
2960STATIC int
2961xfs_iflush_fork(
2962 xfs_inode_t *ip,
2963 xfs_dinode_t *dip,
2964 xfs_inode_log_item_t *iip,
2965 int whichfork,
2966 xfs_buf_t *bp)
2967{
2968 char *cp;
2969 xfs_ifork_t *ifp;
2970 xfs_mount_t *mp;
2971#ifdef XFS_TRANS_DEBUG
2972 int first;
2973#endif
2974 static const short brootflag[2] =
2975 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2976 static const short dataflag[2] =
2977 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2978 static const short extflag[2] =
2979 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2980
2981 if (iip == NULL)
2982 return 0;
2983 ifp = XFS_IFORK_PTR(ip, whichfork);
2984 /*
2985 * This can happen if we gave up in iformat in an error path,
2986 * for the attribute fork.
2987 */
2988 if (ifp == NULL) {
2989 ASSERT(whichfork == XFS_ATTR_FORK);
2990 return 0;
2991 }
2992 cp = XFS_DFORK_PTR(dip, whichfork);
2993 mp = ip->i_mount;
2994 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2995 case XFS_DINODE_FMT_LOCAL:
2996 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2997 (ifp->if_bytes > 0)) {
2998 ASSERT(ifp->if_u1.if_data != NULL);
2999 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
3000 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
3001 }
1da177e4
LT
3002 break;
3003
3004 case XFS_DINODE_FMT_EXTENTS:
3005 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3006 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
3007 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
3008 (ifp->if_bytes == 0));
3009 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
3010 (ifp->if_bytes > 0));
1da177e4
LT
3011 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3012 (ifp->if_bytes > 0)) {
3013 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3014 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3015 whichfork);
3016 }
3017 break;
3018
3019 case XFS_DINODE_FMT_BTREE:
3020 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3021 (ifp->if_broot_bytes > 0)) {
3022 ASSERT(ifp->if_broot != NULL);
3023 ASSERT(ifp->if_broot_bytes <=
3024 (XFS_IFORK_SIZE(ip, whichfork) +
3025 XFS_BROOT_SIZE_ADJ));
3026 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3027 (xfs_bmdr_block_t *)cp,
3028 XFS_DFORK_SIZE(dip, mp, whichfork));
3029 }
3030 break;
3031
3032 case XFS_DINODE_FMT_DEV:
3033 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3034 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 3035 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
3036 }
3037 break;
3038
3039 case XFS_DINODE_FMT_UUID:
3040 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3041 ASSERT(whichfork == XFS_DATA_FORK);
3042 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3043 sizeof(uuid_t));
3044 }
3045 break;
3046
3047 default:
3048 ASSERT(0);
3049 break;
3050 }
3051
3052 return 0;
3053}
3054
3055/*
3056 * xfs_iflush() will write a modified inode's changes out to the
3057 * inode's on disk home. The caller must have the inode lock held
3058 * in at least shared mode and the inode flush semaphore must be
3059 * held as well. The inode lock will still be held upon return from
3060 * the call and the caller is free to unlock it.
3061 * The inode flush lock will be unlocked when the inode reaches the disk.
3062 * The flags indicate how the inode's buffer should be written out.
3063 */
3064int
3065xfs_iflush(
3066 xfs_inode_t *ip,
3067 uint flags)
3068{
3069 xfs_inode_log_item_t *iip;
3070 xfs_buf_t *bp;
3071 xfs_dinode_t *dip;
3072 xfs_mount_t *mp;
3073 int error;
3074 /* REFERENCED */
1da177e4
LT
3075 xfs_inode_t *iq;
3076 int clcount; /* count of inodes clustered */
3077 int bufwasdelwri;
da353b0d 3078 struct hlist_node *entry;
1da177e4 3079 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3080
3081 XFS_STATS_INC(xs_iflush_count);
3082
3083 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3084 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3085 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3086 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3087
3088 iip = ip->i_itemp;
3089 mp = ip->i_mount;
3090
3091 /*
3092 * If the inode isn't dirty, then just release the inode
3093 * flush lock and do nothing.
3094 */
3095 if ((ip->i_update_core == 0) &&
3096 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3097 ASSERT((iip != NULL) ?
3098 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3099 xfs_ifunlock(ip);
3100 return 0;
3101 }
3102
3103 /*
3104 * We can't flush the inode until it is unpinned, so
3105 * wait for it. We know noone new can pin it, because
3106 * we are holding the inode lock shared and you need
3107 * to hold it exclusively to pin the inode.
3108 */
3109 xfs_iunpin_wait(ip);
3110
3111 /*
3112 * This may have been unpinned because the filesystem is shutting
3113 * down forcibly. If that's the case we must not write this inode
3114 * to disk, because the log record didn't make it to disk!
3115 */
3116 if (XFS_FORCED_SHUTDOWN(mp)) {
3117 ip->i_update_core = 0;
3118 if (iip)
3119 iip->ili_format.ilf_fields = 0;
3120 xfs_ifunlock(ip);
3121 return XFS_ERROR(EIO);
3122 }
3123
3124 /*
3125 * Get the buffer containing the on-disk inode.
3126 */
b12dd342
NS
3127 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3128 if (error) {
1da177e4
LT
3129 xfs_ifunlock(ip);
3130 return error;
3131 }
3132
3133 /*
3134 * Decide how buffer will be flushed out. This is done before
3135 * the call to xfs_iflush_int because this field is zeroed by it.
3136 */
3137 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3138 /*
3139 * Flush out the inode buffer according to the directions
3140 * of the caller. In the cases where the caller has given
3141 * us a choice choose the non-delwri case. This is because
3142 * the inode is in the AIL and we need to get it out soon.
3143 */
3144 switch (flags) {
3145 case XFS_IFLUSH_SYNC:
3146 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3147 flags = 0;
3148 break;
3149 case XFS_IFLUSH_ASYNC:
3150 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3151 flags = INT_ASYNC;
3152 break;
3153 case XFS_IFLUSH_DELWRI:
3154 flags = INT_DELWRI;
3155 break;
3156 default:
3157 ASSERT(0);
3158 flags = 0;
3159 break;
3160 }
3161 } else {
3162 switch (flags) {
3163 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3164 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3165 case XFS_IFLUSH_DELWRI:
3166 flags = INT_DELWRI;
3167 break;
3168 case XFS_IFLUSH_ASYNC:
3169 flags = INT_ASYNC;
3170 break;
3171 case XFS_IFLUSH_SYNC:
3172 flags = 0;
3173 break;
3174 default:
3175 ASSERT(0);
3176 flags = 0;
3177 break;
3178 }
3179 }
3180
3181 /*
3182 * First flush out the inode that xfs_iflush was called with.
3183 */
3184 error = xfs_iflush_int(ip, bp);
3185 if (error) {
3186 goto corrupt_out;
3187 }
3188
3189 /*
3190 * inode clustering:
3191 * see if other inodes can be gathered into this write
3192 */
da353b0d
DC
3193 spin_lock(&ip->i_cluster->icl_lock);
3194 ip->i_cluster->icl_buf = bp;
1da177e4
LT
3195
3196 clcount = 0;
da353b0d
DC
3197 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3198 if (iq == ip)
3199 continue;
3200
1da177e4
LT
3201 /*
3202 * Do an un-protected check to see if the inode is dirty and
3203 * is a candidate for flushing. These checks will be repeated
3204 * later after the appropriate locks are acquired.
3205 */
3206 iip = iq->i_itemp;
3207 if ((iq->i_update_core == 0) &&
3208 ((iip == NULL) ||
3209 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3210 xfs_ipincount(iq) == 0) {
3211 continue;
3212 }
3213
3214 /*
3215 * Try to get locks. If any are unavailable,
3216 * then this inode cannot be flushed and is skipped.
3217 */
3218
3219 /* get inode locks (just i_lock) */
3220 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3221 /* get inode flush lock */
3222 if (xfs_iflock_nowait(iq)) {
3223 /* check if pinned */
3224 if (xfs_ipincount(iq) == 0) {
3225 /* arriving here means that
3226 * this inode can be flushed.
3227 * first re-check that it's
3228 * dirty
3229 */
3230 iip = iq->i_itemp;
3231 if ((iq->i_update_core != 0)||
3232 ((iip != NULL) &&
3233 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3234 clcount++;
3235 error = xfs_iflush_int(iq, bp);
3236 if (error) {
3237 xfs_iunlock(iq,
3238 XFS_ILOCK_SHARED);
3239 goto cluster_corrupt_out;
3240 }
3241 } else {
3242 xfs_ifunlock(iq);
3243 }
3244 } else {
3245 xfs_ifunlock(iq);
3246 }
3247 }
3248 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3249 }
3250 }
da353b0d 3251 spin_unlock(&ip->i_cluster->icl_lock);
1da177e4
LT
3252
3253 if (clcount) {
3254 XFS_STATS_INC(xs_icluster_flushcnt);
3255 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3256 }
3257
3258 /*
3259 * If the buffer is pinned then push on the log so we won't
3260 * get stuck waiting in the write for too long.
3261 */
3262 if (XFS_BUF_ISPINNED(bp)){
3263 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3264 }
3265
3266 if (flags & INT_DELWRI) {
3267 xfs_bdwrite(mp, bp);
3268 } else if (flags & INT_ASYNC) {
3269 xfs_bawrite(mp, bp);
3270 } else {
3271 error = xfs_bwrite(mp, bp);
3272 }
3273 return error;
3274
3275corrupt_out:
3276 xfs_buf_relse(bp);
7d04a335 3277 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3278 xfs_iflush_abort(ip);
3279 /*
3280 * Unlocks the flush lock
3281 */
3282 return XFS_ERROR(EFSCORRUPTED);
3283
3284cluster_corrupt_out:
3285 /* Corruption detected in the clustering loop. Invalidate the
3286 * inode buffer and shut down the filesystem.
3287 */
da353b0d 3288 spin_unlock(&ip->i_cluster->icl_lock);
1da177e4
LT
3289
3290 /*
3291 * Clean up the buffer. If it was B_DELWRI, just release it --
3292 * brelse can handle it with no problems. If not, shut down the
3293 * filesystem before releasing the buffer.
3294 */
3295 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3296 xfs_buf_relse(bp);
3297 }
3298
7d04a335 3299 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3300
3301 if(!bufwasdelwri) {
3302 /*
3303 * Just like incore_relse: if we have b_iodone functions,
3304 * mark the buffer as an error and call them. Otherwise
3305 * mark it as stale and brelse.
3306 */
3307 if (XFS_BUF_IODONE_FUNC(bp)) {
3308 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3309 XFS_BUF_UNDONE(bp);
3310 XFS_BUF_STALE(bp);
3311 XFS_BUF_SHUT(bp);
3312 XFS_BUF_ERROR(bp,EIO);
3313 xfs_biodone(bp);
3314 } else {
3315 XFS_BUF_STALE(bp);
3316 xfs_buf_relse(bp);
3317 }
3318 }
3319
3320 xfs_iflush_abort(iq);
3321 /*
3322 * Unlocks the flush lock
3323 */
3324 return XFS_ERROR(EFSCORRUPTED);
3325}
3326
3327
3328STATIC int
3329xfs_iflush_int(
3330 xfs_inode_t *ip,
3331 xfs_buf_t *bp)
3332{
3333 xfs_inode_log_item_t *iip;
3334 xfs_dinode_t *dip;
3335 xfs_mount_t *mp;
3336#ifdef XFS_TRANS_DEBUG
3337 int first;
3338#endif
1da177e4
LT
3339
3340 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3341 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3342 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3343 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3344
3345 iip = ip->i_itemp;
3346 mp = ip->i_mount;
3347
3348
3349 /*
3350 * If the inode isn't dirty, then just release the inode
3351 * flush lock and do nothing.
3352 */
3353 if ((ip->i_update_core == 0) &&
3354 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3355 xfs_ifunlock(ip);
3356 return 0;
3357 }
3358
3359 /* set *dip = inode's place in the buffer */
3360 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3361
3362 /*
3363 * Clear i_update_core before copying out the data.
3364 * This is for coordination with our timestamp updates
3365 * that don't hold the inode lock. They will always
3366 * update the timestamps BEFORE setting i_update_core,
3367 * so if we clear i_update_core after they set it we
3368 * are guaranteed to see their updates to the timestamps.
3369 * I believe that this depends on strongly ordered memory
3370 * semantics, but we have that. We use the SYNCHRONIZE
3371 * macro to make sure that the compiler does not reorder
3372 * the i_update_core access below the data copy below.
3373 */
3374 ip->i_update_core = 0;
3375 SYNCHRONIZE();
3376
42fe2b1f
CH
3377 /*
3378 * Make sure to get the latest atime from the Linux inode.
3379 */
3380 xfs_synchronize_atime(ip);
3381
347d1c01 3382 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3383 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3384 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3385 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3386 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3387 goto corrupt_out;
3388 }
3389 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3390 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3391 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3392 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3393 ip->i_ino, ip, ip->i_d.di_magic);
3394 goto corrupt_out;
3395 }
3396 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3397 if (XFS_TEST_ERROR(
3398 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3399 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3400 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3401 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3402 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3403 ip->i_ino, ip);
3404 goto corrupt_out;
3405 }
3406 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3407 if (XFS_TEST_ERROR(
3408 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3409 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3410 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3411 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3412 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3413 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3414 ip->i_ino, ip);
3415 goto corrupt_out;
3416 }
3417 }
3418 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3419 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3420 XFS_RANDOM_IFLUSH_5)) {
3421 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3422 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3423 ip->i_ino,
3424 ip->i_d.di_nextents + ip->i_d.di_anextents,
3425 ip->i_d.di_nblocks,
3426 ip);
3427 goto corrupt_out;
3428 }
3429 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3430 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3431 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3432 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3433 ip->i_ino, ip->i_d.di_forkoff, ip);
3434 goto corrupt_out;
3435 }
3436 /*
3437 * bump the flush iteration count, used to detect flushes which
3438 * postdate a log record during recovery.
3439 */
3440
3441 ip->i_d.di_flushiter++;
3442
3443 /*
3444 * Copy the dirty parts of the inode into the on-disk
3445 * inode. We always copy out the core of the inode,
3446 * because if the inode is dirty at all the core must
3447 * be.
3448 */
347d1c01 3449 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3450
3451 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3452 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3453 ip->i_d.di_flushiter = 0;
3454
3455 /*
3456 * If this is really an old format inode and the superblock version
3457 * has not been updated to support only new format inodes, then
3458 * convert back to the old inode format. If the superblock version
3459 * has been updated, then make the conversion permanent.
3460 */
3461 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3462 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3463 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3464 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3465 /*
3466 * Convert it back.
3467 */
3468 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3469 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3470 } else {
3471 /*
3472 * The superblock version has already been bumped,
3473 * so just make the conversion to the new inode
3474 * format permanent.
3475 */
3476 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3477 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3478 ip->i_d.di_onlink = 0;
3479 dip->di_core.di_onlink = 0;
3480 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3481 memset(&(dip->di_core.di_pad[0]), 0,
3482 sizeof(dip->di_core.di_pad));
3483 ASSERT(ip->i_d.di_projid == 0);
3484 }
3485 }
3486
3487 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3488 goto corrupt_out;
3489 }
3490
3491 if (XFS_IFORK_Q(ip)) {
3492 /*
3493 * The only error from xfs_iflush_fork is on the data fork.
3494 */
3495 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3496 }
3497 xfs_inobp_check(mp, bp);
3498
3499 /*
3500 * We've recorded everything logged in the inode, so we'd
3501 * like to clear the ilf_fields bits so we don't log and
3502 * flush things unnecessarily. However, we can't stop
3503 * logging all this information until the data we've copied
3504 * into the disk buffer is written to disk. If we did we might
3505 * overwrite the copy of the inode in the log with all the
3506 * data after re-logging only part of it, and in the face of
3507 * a crash we wouldn't have all the data we need to recover.
3508 *
3509 * What we do is move the bits to the ili_last_fields field.
3510 * When logging the inode, these bits are moved back to the
3511 * ilf_fields field. In the xfs_iflush_done() routine we
3512 * clear ili_last_fields, since we know that the information
3513 * those bits represent is permanently on disk. As long as
3514 * the flush completes before the inode is logged again, then
3515 * both ilf_fields and ili_last_fields will be cleared.
3516 *
3517 * We can play with the ilf_fields bits here, because the inode
3518 * lock must be held exclusively in order to set bits there
3519 * and the flush lock protects the ili_last_fields bits.
3520 * Set ili_logged so the flush done
3521 * routine can tell whether or not to look in the AIL.
3522 * Also, store the current LSN of the inode so that we can tell
3523 * whether the item has moved in the AIL from xfs_iflush_done().
3524 * In order to read the lsn we need the AIL lock, because
3525 * it is a 64 bit value that cannot be read atomically.
3526 */
3527 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3528 iip->ili_last_fields = iip->ili_format.ilf_fields;
3529 iip->ili_format.ilf_fields = 0;
3530 iip->ili_logged = 1;
3531
3532 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
287f3dad 3533 spin_lock(&mp->m_ail_lock);
1da177e4 3534 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 3535 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
3536
3537 /*
3538 * Attach the function xfs_iflush_done to the inode's
3539 * buffer. This will remove the inode from the AIL
3540 * and unlock the inode's flush lock when the inode is
3541 * completely written to disk.
3542 */
3543 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3544 xfs_iflush_done, (xfs_log_item_t *)iip);
3545
3546 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3547 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3548 } else {
3549 /*
3550 * We're flushing an inode which is not in the AIL and has
3551 * not been logged but has i_update_core set. For this
3552 * case we can use a B_DELWRI flush and immediately drop
3553 * the inode flush lock because we can avoid the whole
3554 * AIL state thing. It's OK to drop the flush lock now,
3555 * because we've already locked the buffer and to do anything
3556 * you really need both.
3557 */
3558 if (iip != NULL) {
3559 ASSERT(iip->ili_logged == 0);
3560 ASSERT(iip->ili_last_fields == 0);
3561 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3562 }
3563 xfs_ifunlock(ip);
3564 }
3565
3566 return 0;
3567
3568corrupt_out:
3569 return XFS_ERROR(EFSCORRUPTED);
3570}
3571
3572
3573/*
efa80278 3574 * Flush all inactive inodes in mp.
1da177e4 3575 */
efa80278 3576void
1da177e4 3577xfs_iflush_all(
efa80278 3578 xfs_mount_t *mp)
1da177e4 3579{
1da177e4 3580 xfs_inode_t *ip;
67fcaa73 3581 bhv_vnode_t *vp;
1da177e4 3582
efa80278
CH
3583 again:
3584 XFS_MOUNT_ILOCK(mp);
3585 ip = mp->m_inodes;
3586 if (ip == NULL)
3587 goto out;
1da177e4 3588
efa80278
CH
3589 do {
3590 /* Make sure we skip markers inserted by sync */
3591 if (ip->i_mount == NULL) {
3592 ip = ip->i_mnext;
3593 continue;
3594 }
1da177e4 3595
efa80278
CH
3596 vp = XFS_ITOV_NULL(ip);
3597 if (!vp) {
1da177e4 3598 XFS_MOUNT_IUNLOCK(mp);
efa80278
CH
3599 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3600 goto again;
3601 }
1da177e4 3602
efa80278 3603 ASSERT(vn_count(vp) == 0);
1da177e4 3604
efa80278
CH
3605 ip = ip->i_mnext;
3606 } while (ip != mp->m_inodes);
3607 out:
1da177e4 3608 XFS_MOUNT_IUNLOCK(mp);
1da177e4
LT
3609}
3610
1da177e4
LT
3611/*
3612 * xfs_iaccess: check accessibility of inode for mode.
3613 */
3614int
3615xfs_iaccess(
3616 xfs_inode_t *ip,
3617 mode_t mode,
3618 cred_t *cr)
3619{
3620 int error;
3621 mode_t orgmode = mode;
ec86dc02 3622 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
1da177e4
LT
3623
3624 if (mode & S_IWUSR) {
3625 umode_t imode = inode->i_mode;
3626
3627 if (IS_RDONLY(inode) &&
3628 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3629 return XFS_ERROR(EROFS);
3630
3631 if (IS_IMMUTABLE(inode))
3632 return XFS_ERROR(EACCES);
3633 }
3634
3635 /*
3636 * If there's an Access Control List it's used instead of
3637 * the mode bits.
3638 */
3639 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3640 return error ? XFS_ERROR(error) : 0;
3641
3642 if (current_fsuid(cr) != ip->i_d.di_uid) {
3643 mode >>= 3;
3644 if (!in_group_p((gid_t)ip->i_d.di_gid))
3645 mode >>= 3;
3646 }
3647
3648 /*
3649 * If the DACs are ok we don't need any capability check.
3650 */
3651 if ((ip->i_d.di_mode & mode) == mode)
3652 return 0;
3653 /*
3654 * Read/write DACs are always overridable.
3655 * Executable DACs are overridable if at least one exec bit is set.
3656 */
3657 if (!(orgmode & S_IXUSR) ||
3658 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3659 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3660 return 0;
3661
3662 if ((orgmode == S_IRUSR) ||
3663 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3664 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3665 return 0;
3666#ifdef NOISE
3667 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3668#endif /* NOISE */
3669 return XFS_ERROR(EACCES);
3670 }
3671 return XFS_ERROR(EACCES);
3672}
3673
3674/*
3675 * xfs_iroundup: round up argument to next power of two
3676 */
3677uint
3678xfs_iroundup(
3679 uint v)
3680{
3681 int i;
3682 uint m;
3683
3684 if ((v & (v - 1)) == 0)
3685 return v;
3686 ASSERT((v & 0x80000000) == 0);
3687 if ((v & (v + 1)) == 0)
3688 return v + 1;
3689 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3690 if (v & m)
3691 continue;
3692 v |= m;
3693 if ((v & (v + 1)) == 0)
3694 return v + 1;
3695 }
3696 ASSERT(0);
3697 return( 0 );
3698}
3699
1da177e4
LT
3700#ifdef XFS_ILOCK_TRACE
3701ktrace_t *xfs_ilock_trace_buf;
3702
3703void
3704xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3705{
3706 ktrace_enter(ip->i_lock_trace,
3707 (void *)ip,
3708 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3709 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3710 (void *)ra, /* caller of ilock */
3711 (void *)(unsigned long)current_cpu(),
3712 (void *)(unsigned long)current_pid(),
3713 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3714}
3715#endif
4eea22f0
MK
3716
3717/*
3718 * Return a pointer to the extent record at file index idx.
3719 */
a6f64d4a 3720xfs_bmbt_rec_host_t *
4eea22f0
MK
3721xfs_iext_get_ext(
3722 xfs_ifork_t *ifp, /* inode fork pointer */
3723 xfs_extnum_t idx) /* index of target extent */
3724{
3725 ASSERT(idx >= 0);
0293ce3a
MK
3726 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3727 return ifp->if_u1.if_ext_irec->er_extbuf;
3728 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3729 xfs_ext_irec_t *erp; /* irec pointer */
3730 int erp_idx = 0; /* irec index */
3731 xfs_extnum_t page_idx = idx; /* ext index in target list */
3732
3733 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3734 return &erp->er_extbuf[page_idx];
3735 } else if (ifp->if_bytes) {
4eea22f0
MK
3736 return &ifp->if_u1.if_extents[idx];
3737 } else {
3738 return NULL;
3739 }
3740}
3741
3742/*
3743 * Insert new item(s) into the extent records for incore inode
3744 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3745 */
3746void
3747xfs_iext_insert(
3748 xfs_ifork_t *ifp, /* inode fork pointer */
3749 xfs_extnum_t idx, /* starting index of new items */
3750 xfs_extnum_t count, /* number of inserted items */
3751 xfs_bmbt_irec_t *new) /* items to insert */
3752{
4eea22f0
MK
3753 xfs_extnum_t i; /* extent record index */
3754
3755 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3756 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3757 for (i = idx; i < idx + count; i++, new++)
3758 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3759}
3760
3761/*
3762 * This is called when the amount of space required for incore file
3763 * extents needs to be increased. The ext_diff parameter stores the
3764 * number of new extents being added and the idx parameter contains
3765 * the extent index where the new extents will be added. If the new
3766 * extents are being appended, then we just need to (re)allocate and
3767 * initialize the space. Otherwise, if the new extents are being
3768 * inserted into the middle of the existing entries, a bit more work
3769 * is required to make room for the new extents to be inserted. The
3770 * caller is responsible for filling in the new extent entries upon
3771 * return.
3772 */
3773void
3774xfs_iext_add(
3775 xfs_ifork_t *ifp, /* inode fork pointer */
3776 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3777 int ext_diff) /* number of extents to add */
4eea22f0
MK
3778{
3779 int byte_diff; /* new bytes being added */
3780 int new_size; /* size of extents after adding */
3781 xfs_extnum_t nextents; /* number of extents in file */
3782
3783 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3784 ASSERT((idx >= 0) && (idx <= nextents));
3785 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3786 new_size = ifp->if_bytes + byte_diff;
3787 /*
3788 * If the new number of extents (nextents + ext_diff)
3789 * fits inside the inode, then continue to use the inline
3790 * extent buffer.
3791 */
3792 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3793 if (idx < nextents) {
3794 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3795 &ifp->if_u2.if_inline_ext[idx],
3796 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3797 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3798 }
3799 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3800 ifp->if_real_bytes = 0;
0293ce3a 3801 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3802 }
3803 /*
3804 * Otherwise use a linear (direct) extent list.
3805 * If the extents are currently inside the inode,
3806 * xfs_iext_realloc_direct will switch us from
3807 * inline to direct extent allocation mode.
3808 */
0293ce3a 3809 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3810 xfs_iext_realloc_direct(ifp, new_size);
3811 if (idx < nextents) {
3812 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3813 &ifp->if_u1.if_extents[idx],
3814 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3815 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3816 }
3817 }
0293ce3a
MK
3818 /* Indirection array */
3819 else {
3820 xfs_ext_irec_t *erp;
3821 int erp_idx = 0;
3822 int page_idx = idx;
3823
3824 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3825 if (ifp->if_flags & XFS_IFEXTIREC) {
3826 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3827 } else {
3828 xfs_iext_irec_init(ifp);
3829 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3830 erp = ifp->if_u1.if_ext_irec;
3831 }
3832 /* Extents fit in target extent page */
3833 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3834 if (page_idx < erp->er_extcount) {
3835 memmove(&erp->er_extbuf[page_idx + ext_diff],
3836 &erp->er_extbuf[page_idx],
3837 (erp->er_extcount - page_idx) *
3838 sizeof(xfs_bmbt_rec_t));
3839 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3840 }
3841 erp->er_extcount += ext_diff;
3842 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3843 }
3844 /* Insert a new extent page */
3845 else if (erp) {
3846 xfs_iext_add_indirect_multi(ifp,
3847 erp_idx, page_idx, ext_diff);
3848 }
3849 /*
3850 * If extent(s) are being appended to the last page in
3851 * the indirection array and the new extent(s) don't fit
3852 * in the page, then erp is NULL and erp_idx is set to
3853 * the next index needed in the indirection array.
3854 */
3855 else {
3856 int count = ext_diff;
3857
3858 while (count) {
3859 erp = xfs_iext_irec_new(ifp, erp_idx);
3860 erp->er_extcount = count;
3861 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3862 if (count) {
3863 erp_idx++;
3864 }
3865 }
3866 }
3867 }
4eea22f0
MK
3868 ifp->if_bytes = new_size;
3869}
3870
0293ce3a
MK
3871/*
3872 * This is called when incore extents are being added to the indirection
3873 * array and the new extents do not fit in the target extent list. The
3874 * erp_idx parameter contains the irec index for the target extent list
3875 * in the indirection array, and the idx parameter contains the extent
3876 * index within the list. The number of extents being added is stored
3877 * in the count parameter.
3878 *
3879 * |-------| |-------|
3880 * | | | | idx - number of extents before idx
3881 * | idx | | count |
3882 * | | | | count - number of extents being inserted at idx
3883 * |-------| |-------|
3884 * | count | | nex2 | nex2 - number of extents after idx + count
3885 * |-------| |-------|
3886 */
3887void
3888xfs_iext_add_indirect_multi(
3889 xfs_ifork_t *ifp, /* inode fork pointer */
3890 int erp_idx, /* target extent irec index */
3891 xfs_extnum_t idx, /* index within target list */
3892 int count) /* new extents being added */
3893{
3894 int byte_diff; /* new bytes being added */
3895 xfs_ext_irec_t *erp; /* pointer to irec entry */
3896 xfs_extnum_t ext_diff; /* number of extents to add */
3897 xfs_extnum_t ext_cnt; /* new extents still needed */
3898 xfs_extnum_t nex2; /* extents after idx + count */
3899 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3900 int nlists; /* number of irec's (lists) */
3901
3902 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3903 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3904 nex2 = erp->er_extcount - idx;
3905 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3906
3907 /*
3908 * Save second part of target extent list
3909 * (all extents past */
3910 if (nex2) {
3911 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3912 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3913 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3914 erp->er_extcount -= nex2;
3915 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3916 memset(&erp->er_extbuf[idx], 0, byte_diff);
3917 }
3918
3919 /*
3920 * Add the new extents to the end of the target
3921 * list, then allocate new irec record(s) and
3922 * extent buffer(s) as needed to store the rest
3923 * of the new extents.
3924 */
3925 ext_cnt = count;
3926 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3927 if (ext_diff) {
3928 erp->er_extcount += ext_diff;
3929 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3930 ext_cnt -= ext_diff;
3931 }
3932 while (ext_cnt) {
3933 erp_idx++;
3934 erp = xfs_iext_irec_new(ifp, erp_idx);
3935 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3936 erp->er_extcount = ext_diff;
3937 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3938 ext_cnt -= ext_diff;
3939 }
3940
3941 /* Add nex2 extents back to indirection array */
3942 if (nex2) {
3943 xfs_extnum_t ext_avail;
3944 int i;
3945
3946 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3947 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3948 i = 0;
3949 /*
3950 * If nex2 extents fit in the current page, append
3951 * nex2_ep after the new extents.
3952 */
3953 if (nex2 <= ext_avail) {
3954 i = erp->er_extcount;
3955 }
3956 /*
3957 * Otherwise, check if space is available in the
3958 * next page.
3959 */
3960 else if ((erp_idx < nlists - 1) &&
3961 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3962 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3963 erp_idx++;
3964 erp++;
3965 /* Create a hole for nex2 extents */
3966 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3967 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3968 }
3969 /*
3970 * Final choice, create a new extent page for
3971 * nex2 extents.
3972 */
3973 else {
3974 erp_idx++;
3975 erp = xfs_iext_irec_new(ifp, erp_idx);
3976 }
3977 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3978 kmem_free(nex2_ep, byte_diff);
3979 erp->er_extcount += nex2;
3980 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3981 }
3982}
3983
4eea22f0
MK
3984/*
3985 * This is called when the amount of space required for incore file
3986 * extents needs to be decreased. The ext_diff parameter stores the
3987 * number of extents to be removed and the idx parameter contains
3988 * the extent index where the extents will be removed from.
0293ce3a
MK
3989 *
3990 * If the amount of space needed has decreased below the linear
3991 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3992 * extent array. Otherwise, use kmem_realloc() to adjust the
3993 * size to what is needed.
4eea22f0
MK
3994 */
3995void
3996xfs_iext_remove(
3997 xfs_ifork_t *ifp, /* inode fork pointer */
3998 xfs_extnum_t idx, /* index to begin removing exts */
3999 int ext_diff) /* number of extents to remove */
4000{
4001 xfs_extnum_t nextents; /* number of extents in file */
4002 int new_size; /* size of extents after removal */
4003
4004 ASSERT(ext_diff > 0);
4005 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4006 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
4007
4008 if (new_size == 0) {
4009 xfs_iext_destroy(ifp);
0293ce3a
MK
4010 } else if (ifp->if_flags & XFS_IFEXTIREC) {
4011 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
4012 } else if (ifp->if_real_bytes) {
4013 xfs_iext_remove_direct(ifp, idx, ext_diff);
4014 } else {
4015 xfs_iext_remove_inline(ifp, idx, ext_diff);
4016 }
4017 ifp->if_bytes = new_size;
4018}
4019
4020/*
4021 * This removes ext_diff extents from the inline buffer, beginning
4022 * at extent index idx.
4023 */
4024void
4025xfs_iext_remove_inline(
4026 xfs_ifork_t *ifp, /* inode fork pointer */
4027 xfs_extnum_t idx, /* index to begin removing exts */
4028 int ext_diff) /* number of extents to remove */
4029{
4030 int nextents; /* number of extents in file */
4031
0293ce3a 4032 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4033 ASSERT(idx < XFS_INLINE_EXTS);
4034 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4035 ASSERT(((nextents - ext_diff) > 0) &&
4036 (nextents - ext_diff) < XFS_INLINE_EXTS);
4037
4038 if (idx + ext_diff < nextents) {
4039 memmove(&ifp->if_u2.if_inline_ext[idx],
4040 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4041 (nextents - (idx + ext_diff)) *
4042 sizeof(xfs_bmbt_rec_t));
4043 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4044 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4045 } else {
4046 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4047 ext_diff * sizeof(xfs_bmbt_rec_t));
4048 }
4049}
4050
4051/*
4052 * This removes ext_diff extents from a linear (direct) extent list,
4053 * beginning at extent index idx. If the extents are being removed
4054 * from the end of the list (ie. truncate) then we just need to re-
4055 * allocate the list to remove the extra space. Otherwise, if the
4056 * extents are being removed from the middle of the existing extent
4057 * entries, then we first need to move the extent records beginning
4058 * at idx + ext_diff up in the list to overwrite the records being
4059 * removed, then remove the extra space via kmem_realloc.
4060 */
4061void
4062xfs_iext_remove_direct(
4063 xfs_ifork_t *ifp, /* inode fork pointer */
4064 xfs_extnum_t idx, /* index to begin removing exts */
4065 int ext_diff) /* number of extents to remove */
4066{
4067 xfs_extnum_t nextents; /* number of extents in file */
4068 int new_size; /* size of extents after removal */
4069
0293ce3a 4070 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4071 new_size = ifp->if_bytes -
4072 (ext_diff * sizeof(xfs_bmbt_rec_t));
4073 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4074
4075 if (new_size == 0) {
4076 xfs_iext_destroy(ifp);
4077 return;
4078 }
4079 /* Move extents up in the list (if needed) */
4080 if (idx + ext_diff < nextents) {
4081 memmove(&ifp->if_u1.if_extents[idx],
4082 &ifp->if_u1.if_extents[idx + ext_diff],
4083 (nextents - (idx + ext_diff)) *
4084 sizeof(xfs_bmbt_rec_t));
4085 }
4086 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4087 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4088 /*
4089 * Reallocate the direct extent list. If the extents
4090 * will fit inside the inode then xfs_iext_realloc_direct
4091 * will switch from direct to inline extent allocation
4092 * mode for us.
4093 */
4094 xfs_iext_realloc_direct(ifp, new_size);
4095 ifp->if_bytes = new_size;
4096}
4097
0293ce3a
MK
4098/*
4099 * This is called when incore extents are being removed from the
4100 * indirection array and the extents being removed span multiple extent
4101 * buffers. The idx parameter contains the file extent index where we
4102 * want to begin removing extents, and the count parameter contains
4103 * how many extents need to be removed.
4104 *
4105 * |-------| |-------|
4106 * | nex1 | | | nex1 - number of extents before idx
4107 * |-------| | count |
4108 * | | | | count - number of extents being removed at idx
4109 * | count | |-------|
4110 * | | | nex2 | nex2 - number of extents after idx + count
4111 * |-------| |-------|
4112 */
4113void
4114xfs_iext_remove_indirect(
4115 xfs_ifork_t *ifp, /* inode fork pointer */
4116 xfs_extnum_t idx, /* index to begin removing extents */
4117 int count) /* number of extents to remove */
4118{
4119 xfs_ext_irec_t *erp; /* indirection array pointer */
4120 int erp_idx = 0; /* indirection array index */
4121 xfs_extnum_t ext_cnt; /* extents left to remove */
4122 xfs_extnum_t ext_diff; /* extents to remove in current list */
4123 xfs_extnum_t nex1; /* number of extents before idx */
4124 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 4125 int nlists; /* entries in indirection array */
0293ce3a
MK
4126 int page_idx = idx; /* index in target extent list */
4127
4128 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4129 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4130 ASSERT(erp != NULL);
4131 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4132 nex1 = page_idx;
4133 ext_cnt = count;
4134 while (ext_cnt) {
4135 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4136 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4137 /*
4138 * Check for deletion of entire list;
4139 * xfs_iext_irec_remove() updates extent offsets.
4140 */
4141 if (ext_diff == erp->er_extcount) {
4142 xfs_iext_irec_remove(ifp, erp_idx);
4143 ext_cnt -= ext_diff;
4144 nex1 = 0;
4145 if (ext_cnt) {
4146 ASSERT(erp_idx < ifp->if_real_bytes /
4147 XFS_IEXT_BUFSZ);
4148 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4149 nex1 = 0;
4150 continue;
4151 } else {
4152 break;
4153 }
4154 }
4155 /* Move extents up (if needed) */
4156 if (nex2) {
4157 memmove(&erp->er_extbuf[nex1],
4158 &erp->er_extbuf[nex1 + ext_diff],
4159 nex2 * sizeof(xfs_bmbt_rec_t));
4160 }
4161 /* Zero out rest of page */
4162 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4163 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4164 /* Update remaining counters */
4165 erp->er_extcount -= ext_diff;
4166 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4167 ext_cnt -= ext_diff;
4168 nex1 = 0;
4169 erp_idx++;
4170 erp++;
4171 }
4172 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4173 xfs_iext_irec_compact(ifp);
4174}
4175
4eea22f0
MK
4176/*
4177 * Create, destroy, or resize a linear (direct) block of extents.
4178 */
4179void
4180xfs_iext_realloc_direct(
4181 xfs_ifork_t *ifp, /* inode fork pointer */
4182 int new_size) /* new size of extents */
4183{
4184 int rnew_size; /* real new size of extents */
4185
4186 rnew_size = new_size;
4187
0293ce3a
MK
4188 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4189 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4190 (new_size != ifp->if_real_bytes)));
4191
4eea22f0
MK
4192 /* Free extent records */
4193 if (new_size == 0) {
4194 xfs_iext_destroy(ifp);
4195 }
4196 /* Resize direct extent list and zero any new bytes */
4197 else if (ifp->if_real_bytes) {
4198 /* Check if extents will fit inside the inode */
4199 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4200 xfs_iext_direct_to_inline(ifp, new_size /
4201 (uint)sizeof(xfs_bmbt_rec_t));
4202 ifp->if_bytes = new_size;
4203 return;
4204 }
16a087d8 4205 if (!is_power_of_2(new_size)){
4eea22f0
MK
4206 rnew_size = xfs_iroundup(new_size);
4207 }
4208 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4209 ifp->if_u1.if_extents =
4eea22f0
MK
4210 kmem_realloc(ifp->if_u1.if_extents,
4211 rnew_size,
4212 ifp->if_real_bytes,
4213 KM_SLEEP);
4214 }
4215 if (rnew_size > ifp->if_real_bytes) {
4216 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4217 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4218 rnew_size - ifp->if_real_bytes);
4219 }
4220 }
4221 /*
4222 * Switch from the inline extent buffer to a direct
4223 * extent list. Be sure to include the inline extent
4224 * bytes in new_size.
4225 */
4226 else {
4227 new_size += ifp->if_bytes;
16a087d8 4228 if (!is_power_of_2(new_size)) {
4eea22f0
MK
4229 rnew_size = xfs_iroundup(new_size);
4230 }
4231 xfs_iext_inline_to_direct(ifp, rnew_size);
4232 }
4233 ifp->if_real_bytes = rnew_size;
4234 ifp->if_bytes = new_size;
4235}
4236
4237/*
4238 * Switch from linear (direct) extent records to inline buffer.
4239 */
4240void
4241xfs_iext_direct_to_inline(
4242 xfs_ifork_t *ifp, /* inode fork pointer */
4243 xfs_extnum_t nextents) /* number of extents in file */
4244{
4245 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4246 ASSERT(nextents <= XFS_INLINE_EXTS);
4247 /*
4248 * The inline buffer was zeroed when we switched
4249 * from inline to direct extent allocation mode,
4250 * so we don't need to clear it here.
4251 */
4252 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4253 nextents * sizeof(xfs_bmbt_rec_t));
fe6c1e72 4254 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4eea22f0
MK
4255 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4256 ifp->if_real_bytes = 0;
4257}
4258
4259/*
4260 * Switch from inline buffer to linear (direct) extent records.
4261 * new_size should already be rounded up to the next power of 2
4262 * by the caller (when appropriate), so use new_size as it is.
4263 * However, since new_size may be rounded up, we can't update
4264 * if_bytes here. It is the caller's responsibility to update
4265 * if_bytes upon return.
4266 */
4267void
4268xfs_iext_inline_to_direct(
4269 xfs_ifork_t *ifp, /* inode fork pointer */
4270 int new_size) /* number of extents in file */
4271{
a6f64d4a 4272 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4eea22f0
MK
4273 memset(ifp->if_u1.if_extents, 0, new_size);
4274 if (ifp->if_bytes) {
4275 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4276 ifp->if_bytes);
4277 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4278 sizeof(xfs_bmbt_rec_t));
4279 }
4280 ifp->if_real_bytes = new_size;
4281}
4282
0293ce3a
MK
4283/*
4284 * Resize an extent indirection array to new_size bytes.
4285 */
4286void
4287xfs_iext_realloc_indirect(
4288 xfs_ifork_t *ifp, /* inode fork pointer */
4289 int new_size) /* new indirection array size */
4290{
4291 int nlists; /* number of irec's (ex lists) */
4292 int size; /* current indirection array size */
4293
4294 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4295 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4296 size = nlists * sizeof(xfs_ext_irec_t);
4297 ASSERT(ifp->if_real_bytes);
4298 ASSERT((new_size >= 0) && (new_size != size));
4299 if (new_size == 0) {
4300 xfs_iext_destroy(ifp);
4301 } else {
4302 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4303 kmem_realloc(ifp->if_u1.if_ext_irec,
4304 new_size, size, KM_SLEEP);
4305 }
4306}
4307
4308/*
4309 * Switch from indirection array to linear (direct) extent allocations.
4310 */
4311void
4312xfs_iext_indirect_to_direct(
4313 xfs_ifork_t *ifp) /* inode fork pointer */
4314{
a6f64d4a 4315 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4316 xfs_extnum_t nextents; /* number of extents in file */
4317 int size; /* size of file extents */
4318
4319 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4320 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4321 ASSERT(nextents <= XFS_LINEAR_EXTS);
4322 size = nextents * sizeof(xfs_bmbt_rec_t);
4323
4324 xfs_iext_irec_compact_full(ifp);
4325 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4326
4327 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4328 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4329 ifp->if_flags &= ~XFS_IFEXTIREC;
4330 ifp->if_u1.if_extents = ep;
4331 ifp->if_bytes = size;
4332 if (nextents < XFS_LINEAR_EXTS) {
4333 xfs_iext_realloc_direct(ifp, size);
4334 }
4335}
4336
4eea22f0
MK
4337/*
4338 * Free incore file extents.
4339 */
4340void
4341xfs_iext_destroy(
4342 xfs_ifork_t *ifp) /* inode fork pointer */
4343{
0293ce3a
MK
4344 if (ifp->if_flags & XFS_IFEXTIREC) {
4345 int erp_idx;
4346 int nlists;
4347
4348 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4349 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4350 xfs_iext_irec_remove(ifp, erp_idx);
4351 }
4352 ifp->if_flags &= ~XFS_IFEXTIREC;
4353 } else if (ifp->if_real_bytes) {
4eea22f0
MK
4354 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4355 } else if (ifp->if_bytes) {
4356 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4357 sizeof(xfs_bmbt_rec_t));
4358 }
4359 ifp->if_u1.if_extents = NULL;
4360 ifp->if_real_bytes = 0;
4361 ifp->if_bytes = 0;
4362}
0293ce3a 4363
8867bc9b
MK
4364/*
4365 * Return a pointer to the extent record for file system block bno.
4366 */
a6f64d4a 4367xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4368xfs_iext_bno_to_ext(
4369 xfs_ifork_t *ifp, /* inode fork pointer */
4370 xfs_fileoff_t bno, /* block number to search for */
4371 xfs_extnum_t *idxp) /* index of target extent */
4372{
a6f64d4a 4373 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4374 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4375 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4376 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4377 int high; /* upper boundary in search */
8867bc9b 4378 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4379 int low; /* lower boundary in search */
8867bc9b
MK
4380 xfs_extnum_t nextents; /* number of file extents */
4381 xfs_fileoff_t startoff = 0; /* start offset of extent */
4382
4383 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4384 if (nextents == 0) {
4385 *idxp = 0;
4386 return NULL;
4387 }
4388 low = 0;
4389 if (ifp->if_flags & XFS_IFEXTIREC) {
4390 /* Find target extent list */
4391 int erp_idx = 0;
4392 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4393 base = erp->er_extbuf;
4394 high = erp->er_extcount - 1;
4395 } else {
4396 base = ifp->if_u1.if_extents;
4397 high = nextents - 1;
4398 }
4399 /* Binary search extent records */
4400 while (low <= high) {
4401 idx = (low + high) >> 1;
4402 ep = base + idx;
4403 startoff = xfs_bmbt_get_startoff(ep);
4404 blockcount = xfs_bmbt_get_blockcount(ep);
4405 if (bno < startoff) {
4406 high = idx - 1;
4407 } else if (bno >= startoff + blockcount) {
4408 low = idx + 1;
4409 } else {
4410 /* Convert back to file-based extent index */
4411 if (ifp->if_flags & XFS_IFEXTIREC) {
4412 idx += erp->er_extoff;
4413 }
4414 *idxp = idx;
4415 return ep;
4416 }
4417 }
4418 /* Convert back to file-based extent index */
4419 if (ifp->if_flags & XFS_IFEXTIREC) {
4420 idx += erp->er_extoff;
4421 }
4422 if (bno >= startoff + blockcount) {
4423 if (++idx == nextents) {
4424 ep = NULL;
4425 } else {
4426 ep = xfs_iext_get_ext(ifp, idx);
4427 }
4428 }
4429 *idxp = idx;
4430 return ep;
4431}
4432
0293ce3a
MK
4433/*
4434 * Return a pointer to the indirection array entry containing the
4435 * extent record for filesystem block bno. Store the index of the
4436 * target irec in *erp_idxp.
4437 */
8867bc9b 4438xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4439xfs_iext_bno_to_irec(
4440 xfs_ifork_t *ifp, /* inode fork pointer */
4441 xfs_fileoff_t bno, /* block number to search for */
4442 int *erp_idxp) /* irec index of target ext list */
4443{
4444 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4445 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4446 int erp_idx; /* indirection array index */
0293ce3a
MK
4447 int nlists; /* number of extent irec's (lists) */
4448 int high; /* binary search upper limit */
4449 int low; /* binary search lower limit */
4450
4451 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4452 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4453 erp_idx = 0;
4454 low = 0;
4455 high = nlists - 1;
4456 while (low <= high) {
4457 erp_idx = (low + high) >> 1;
4458 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4459 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4460 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4461 high = erp_idx - 1;
4462 } else if (erp_next && bno >=
4463 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4464 low = erp_idx + 1;
4465 } else {
4466 break;
4467 }
4468 }
4469 *erp_idxp = erp_idx;
4470 return erp;
4471}
4472
4473/*
4474 * Return a pointer to the indirection array entry containing the
4475 * extent record at file extent index *idxp. Store the index of the
4476 * target irec in *erp_idxp and store the page index of the target
4477 * extent record in *idxp.
4478 */
4479xfs_ext_irec_t *
4480xfs_iext_idx_to_irec(
4481 xfs_ifork_t *ifp, /* inode fork pointer */
4482 xfs_extnum_t *idxp, /* extent index (file -> page) */
4483 int *erp_idxp, /* pointer to target irec */
4484 int realloc) /* new bytes were just added */
4485{
4486 xfs_ext_irec_t *prev; /* pointer to previous irec */
4487 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4488 int erp_idx; /* indirection array index */
4489 int nlists; /* number of irec's (ex lists) */
4490 int high; /* binary search upper limit */
4491 int low; /* binary search lower limit */
4492 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4493
4494 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4495 ASSERT(page_idx >= 0 && page_idx <=
4496 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4497 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4498 erp_idx = 0;
4499 low = 0;
4500 high = nlists - 1;
4501
4502 /* Binary search extent irec's */
4503 while (low <= high) {
4504 erp_idx = (low + high) >> 1;
4505 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4506 prev = erp_idx > 0 ? erp - 1 : NULL;
4507 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4508 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4509 high = erp_idx - 1;
4510 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4511 (page_idx == erp->er_extoff + erp->er_extcount &&
4512 !realloc)) {
4513 low = erp_idx + 1;
4514 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4515 erp->er_extcount == XFS_LINEAR_EXTS) {
4516 ASSERT(realloc);
4517 page_idx = 0;
4518 erp_idx++;
4519 erp = erp_idx < nlists ? erp + 1 : NULL;
4520 break;
4521 } else {
4522 page_idx -= erp->er_extoff;
4523 break;
4524 }
4525 }
4526 *idxp = page_idx;
4527 *erp_idxp = erp_idx;
4528 return(erp);
4529}
4530
4531/*
4532 * Allocate and initialize an indirection array once the space needed
4533 * for incore extents increases above XFS_IEXT_BUFSZ.
4534 */
4535void
4536xfs_iext_irec_init(
4537 xfs_ifork_t *ifp) /* inode fork pointer */
4538{
4539 xfs_ext_irec_t *erp; /* indirection array pointer */
4540 xfs_extnum_t nextents; /* number of extents in file */
4541
4542 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4543 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4544 ASSERT(nextents <= XFS_LINEAR_EXTS);
4545
4546 erp = (xfs_ext_irec_t *)
4547 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4548
4549 if (nextents == 0) {
a6f64d4a 4550 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4551 } else if (!ifp->if_real_bytes) {
4552 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4553 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4554 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4555 }
4556 erp->er_extbuf = ifp->if_u1.if_extents;
4557 erp->er_extcount = nextents;
4558 erp->er_extoff = 0;
4559
4560 ifp->if_flags |= XFS_IFEXTIREC;
4561 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4562 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4563 ifp->if_u1.if_ext_irec = erp;
4564
4565 return;
4566}
4567
4568/*
4569 * Allocate and initialize a new entry in the indirection array.
4570 */
4571xfs_ext_irec_t *
4572xfs_iext_irec_new(
4573 xfs_ifork_t *ifp, /* inode fork pointer */
4574 int erp_idx) /* index for new irec */
4575{
4576 xfs_ext_irec_t *erp; /* indirection array pointer */
4577 int i; /* loop counter */
4578 int nlists; /* number of irec's (ex lists) */
4579
4580 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4581 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4582
4583 /* Resize indirection array */
4584 xfs_iext_realloc_indirect(ifp, ++nlists *
4585 sizeof(xfs_ext_irec_t));
4586 /*
4587 * Move records down in the array so the
4588 * new page can use erp_idx.
4589 */
4590 erp = ifp->if_u1.if_ext_irec;
4591 for (i = nlists - 1; i > erp_idx; i--) {
4592 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4593 }
4594 ASSERT(i == erp_idx);
4595
4596 /* Initialize new extent record */
4597 erp = ifp->if_u1.if_ext_irec;
a6f64d4a 4598 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4599 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4600 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4601 erp[erp_idx].er_extcount = 0;
4602 erp[erp_idx].er_extoff = erp_idx > 0 ?
4603 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4604 return (&erp[erp_idx]);
4605}
4606
4607/*
4608 * Remove a record from the indirection array.
4609 */
4610void
4611xfs_iext_irec_remove(
4612 xfs_ifork_t *ifp, /* inode fork pointer */
4613 int erp_idx) /* irec index to remove */
4614{
4615 xfs_ext_irec_t *erp; /* indirection array pointer */
4616 int i; /* loop counter */
4617 int nlists; /* number of irec's (ex lists) */
4618
4619 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4620 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4621 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4622 if (erp->er_extbuf) {
4623 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4624 -erp->er_extcount);
4625 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4626 }
4627 /* Compact extent records */
4628 erp = ifp->if_u1.if_ext_irec;
4629 for (i = erp_idx; i < nlists - 1; i++) {
4630 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4631 }
4632 /*
4633 * Manually free the last extent record from the indirection
4634 * array. A call to xfs_iext_realloc_indirect() with a size
4635 * of zero would result in a call to xfs_iext_destroy() which
4636 * would in turn call this function again, creating a nasty
4637 * infinite loop.
4638 */
4639 if (--nlists) {
4640 xfs_iext_realloc_indirect(ifp,
4641 nlists * sizeof(xfs_ext_irec_t));
4642 } else {
4643 kmem_free(ifp->if_u1.if_ext_irec,
4644 sizeof(xfs_ext_irec_t));
4645 }
4646 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4647}
4648
4649/*
4650 * This is called to clean up large amounts of unused memory allocated
4651 * by the indirection array. Before compacting anything though, verify
4652 * that the indirection array is still needed and switch back to the
4653 * linear extent list (or even the inline buffer) if possible. The
4654 * compaction policy is as follows:
4655 *
4656 * Full Compaction: Extents fit into a single page (or inline buffer)
4657 * Full Compaction: Extents occupy less than 10% of allocated space
4658 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4659 * No Compaction: Extents occupy at least 50% of allocated space
4660 */
4661void
4662xfs_iext_irec_compact(
4663 xfs_ifork_t *ifp) /* inode fork pointer */
4664{
4665 xfs_extnum_t nextents; /* number of extents in file */
4666 int nlists; /* number of irec's (ex lists) */
4667
4668 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4669 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4670 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4671
4672 if (nextents == 0) {
4673 xfs_iext_destroy(ifp);
4674 } else if (nextents <= XFS_INLINE_EXTS) {
4675 xfs_iext_indirect_to_direct(ifp);
4676 xfs_iext_direct_to_inline(ifp, nextents);
4677 } else if (nextents <= XFS_LINEAR_EXTS) {
4678 xfs_iext_indirect_to_direct(ifp);
4679 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4680 xfs_iext_irec_compact_full(ifp);
4681 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4682 xfs_iext_irec_compact_pages(ifp);
4683 }
4684}
4685
4686/*
4687 * Combine extents from neighboring extent pages.
4688 */
4689void
4690xfs_iext_irec_compact_pages(
4691 xfs_ifork_t *ifp) /* inode fork pointer */
4692{
4693 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4694 int erp_idx = 0; /* indirection array index */
4695 int nlists; /* number of irec's (ex lists) */
4696
4697 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4698 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4699 while (erp_idx < nlists - 1) {
4700 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4701 erp_next = erp + 1;
4702 if (erp_next->er_extcount <=
4703 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4704 memmove(&erp->er_extbuf[erp->er_extcount],
4705 erp_next->er_extbuf, erp_next->er_extcount *
4706 sizeof(xfs_bmbt_rec_t));
4707 erp->er_extcount += erp_next->er_extcount;
4708 /*
4709 * Free page before removing extent record
4710 * so er_extoffs don't get modified in
4711 * xfs_iext_irec_remove.
4712 */
4713 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4714 erp_next->er_extbuf = NULL;
4715 xfs_iext_irec_remove(ifp, erp_idx + 1);
4716 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4717 } else {
4718 erp_idx++;
4719 }
4720 }
4721}
4722
4723/*
4724 * Fully compact the extent records managed by the indirection array.
4725 */
4726void
4727xfs_iext_irec_compact_full(
4728 xfs_ifork_t *ifp) /* inode fork pointer */
4729{
a6f64d4a 4730 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
0293ce3a
MK
4731 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4732 int erp_idx = 0; /* extent irec index */
4733 int ext_avail; /* empty entries in ex list */
4734 int ext_diff; /* number of exts to add */
4735 int nlists; /* number of irec's (ex lists) */
4736
4737 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4738 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4739 erp = ifp->if_u1.if_ext_irec;
4740 ep = &erp->er_extbuf[erp->er_extcount];
4741 erp_next = erp + 1;
4742 ep_next = erp_next->er_extbuf;
4743 while (erp_idx < nlists - 1) {
4744 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4745 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4746 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4747 erp->er_extcount += ext_diff;
4748 erp_next->er_extcount -= ext_diff;
4749 /* Remove next page */
4750 if (erp_next->er_extcount == 0) {
4751 /*
4752 * Free page before removing extent record
4753 * so er_extoffs don't get modified in
4754 * xfs_iext_irec_remove.
4755 */
4756 kmem_free(erp_next->er_extbuf,
4757 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4758 erp_next->er_extbuf = NULL;
4759 xfs_iext_irec_remove(ifp, erp_idx + 1);
4760 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4761 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4762 /* Update next page */
4763 } else {
4764 /* Move rest of page up to become next new page */
4765 memmove(erp_next->er_extbuf, ep_next,
4766 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4767 ep_next = erp_next->er_extbuf;
4768 memset(&ep_next[erp_next->er_extcount], 0,
4769 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4770 sizeof(xfs_bmbt_rec_t));
4771 }
4772 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4773 erp_idx++;
4774 if (erp_idx < nlists)
4775 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4776 else
4777 break;
4778 }
4779 ep = &erp->er_extbuf[erp->er_extcount];
4780 erp_next = erp + 1;
4781 ep_next = erp_next->er_extbuf;
4782 }
4783}
4784
4785/*
4786 * This is called to update the er_extoff field in the indirection
4787 * array when extents have been added or removed from one of the
4788 * extent lists. erp_idx contains the irec index to begin updating
4789 * at and ext_diff contains the number of extents that were added
4790 * or removed.
4791 */
4792void
4793xfs_iext_irec_update_extoffs(
4794 xfs_ifork_t *ifp, /* inode fork pointer */
4795 int erp_idx, /* irec index to update */
4796 int ext_diff) /* number of new extents */
4797{
4798 int i; /* loop counter */
4799 int nlists; /* number of irec's (ex lists */
4800
4801 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4802 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4803 for (i = erp_idx; i < nlists; i++) {
4804 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4805 }
4806}
This page took 0.833236 seconds and 5 git commands to generate.