Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / fs / xfs / xfs_inode_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
1da177e4 25#include "xfs_sb.h"
a844f451 26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_bmap_btree.h"
1da177e4 30#include "xfs_dinode.h"
1da177e4 31#include "xfs_inode.h"
a844f451 32#include "xfs_inode_item.h"
db7a19f2 33#include "xfs_error.h"
0b1b213f 34#include "xfs_trace.h"
1da177e4
LT
35
36
37kmem_zone_t *xfs_ili_zone; /* inode log item zone */
38
7bfa31d8
CH
39static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40{
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
42}
43
44
1da177e4
LT
45/*
46 * This returns the number of iovecs needed to log the given inode item.
47 *
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
51 */
52STATIC uint
53xfs_inode_item_size(
7bfa31d8 54 struct xfs_log_item *lip)
1da177e4 55{
7bfa31d8
CH
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
1da177e4
LT
59
60 /*
61 * Only log the data/extents/b-tree root if there is something
62 * left to log.
63 */
64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
65
66 switch (ip->i_d.di_format) {
67 case XFS_DINODE_FMT_EXTENTS:
68 iip->ili_format.ilf_fields &=
69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 XFS_ILOG_DEV | XFS_ILOG_UUID);
71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 (ip->i_d.di_nextents > 0) &&
73 (ip->i_df.if_bytes > 0)) {
74 ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 nvecs++;
76 } else {
77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
78 }
79 break;
80
81 case XFS_DINODE_FMT_BTREE:
82 ASSERT(ip->i_df.if_ext_max ==
83 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84 iip->ili_format.ilf_fields &=
85 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86 XFS_ILOG_DEV | XFS_ILOG_UUID);
87 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88 (ip->i_df.if_broot_bytes > 0)) {
89 ASSERT(ip->i_df.if_broot != NULL);
90 nvecs++;
91 } else {
92 ASSERT(!(iip->ili_format.ilf_fields &
93 XFS_ILOG_DBROOT));
94#ifdef XFS_TRANS_DEBUG
95 if (iip->ili_root_size > 0) {
96 ASSERT(iip->ili_root_size ==
97 ip->i_df.if_broot_bytes);
98 ASSERT(memcmp(iip->ili_orig_root,
99 ip->i_df.if_broot,
100 iip->ili_root_size) == 0);
101 } else {
102 ASSERT(ip->i_df.if_broot_bytes == 0);
103 }
104#endif
105 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
106 }
107 break;
108
109 case XFS_DINODE_FMT_LOCAL:
110 iip->ili_format.ilf_fields &=
111 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112 XFS_ILOG_DEV | XFS_ILOG_UUID);
113 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114 (ip->i_df.if_bytes > 0)) {
115 ASSERT(ip->i_df.if_u1.if_data != NULL);
116 ASSERT(ip->i_d.di_size > 0);
117 nvecs++;
118 } else {
119 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
120 }
121 break;
122
123 case XFS_DINODE_FMT_DEV:
124 iip->ili_format.ilf_fields &=
125 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126 XFS_ILOG_DEXT | XFS_ILOG_UUID);
127 break;
128
129 case XFS_DINODE_FMT_UUID:
130 iip->ili_format.ilf_fields &=
131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 XFS_ILOG_DEXT | XFS_ILOG_DEV);
133 break;
134
135 default:
136 ASSERT(0);
137 break;
138 }
139
140 /*
141 * If there are no attributes associated with this file,
142 * then there cannot be anything more to log.
143 * Clear all attribute-related log flags.
144 */
145 if (!XFS_IFORK_Q(ip)) {
146 iip->ili_format.ilf_fields &=
147 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148 return nvecs;
149 }
150
151 /*
152 * Log any necessary attribute data.
153 */
154 switch (ip->i_d.di_aformat) {
155 case XFS_DINODE_FMT_EXTENTS:
156 iip->ili_format.ilf_fields &=
157 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159 (ip->i_d.di_anextents > 0) &&
160 (ip->i_afp->if_bytes > 0)) {
161 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162 nvecs++;
163 } else {
164 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
165 }
166 break;
167
168 case XFS_DINODE_FMT_BTREE:
169 iip->ili_format.ilf_fields &=
170 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172 (ip->i_afp->if_broot_bytes > 0)) {
173 ASSERT(ip->i_afp->if_broot != NULL);
174 nvecs++;
175 } else {
176 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
177 }
178 break;
179
180 case XFS_DINODE_FMT_LOCAL:
181 iip->ili_format.ilf_fields &=
182 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184 (ip->i_afp->if_bytes > 0)) {
185 ASSERT(ip->i_afp->if_u1.if_data != NULL);
186 nvecs++;
187 } else {
188 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
189 }
190 break;
191
192 default:
193 ASSERT(0);
194 break;
195 }
196
197 return nvecs;
198}
199
e828776a
DC
200/*
201 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
202 *
203 * For either the data or attr fork in extent format, we need to endian convert
204 * the in-core extent as we place them into the on-disk inode. In this case, we
205 * need to do this conversion before we write the extents into the log. Because
206 * we don't have the disk inode to write into here, we allocate a buffer and
207 * format the extents into it via xfs_iextents_copy(). We free the buffer in
208 * the unlock routine after the copy for the log has been made.
209 *
210 * In the case of the data fork, the in-core and on-disk fork sizes can be
211 * different due to delayed allocation extents. We only log on-disk extents
212 * here, so always use the physical fork size to determine the size of the
213 * buffer we need to allocate.
214 */
215STATIC void
216xfs_inode_item_format_extents(
217 struct xfs_inode *ip,
218 struct xfs_log_iovec *vecp,
219 int whichfork,
220 int type)
221{
222 xfs_bmbt_rec_t *ext_buffer;
223
224 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
225 if (whichfork == XFS_DATA_FORK)
226 ip->i_itemp->ili_extents_buf = ext_buffer;
227 else
228 ip->i_itemp->ili_aextents_buf = ext_buffer;
229
230 vecp->i_addr = ext_buffer;
231 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
232 vecp->i_type = type;
233}
234
1da177e4
LT
235/*
236 * This is called to fill in the vector of log iovecs for the
237 * given inode log item. It fills the first item with an inode
238 * log format structure, the second with the on-disk inode structure,
239 * and a possible third and/or fourth with the inode data/extents/b-tree
240 * root and inode attributes data/extents/b-tree root.
241 */
242STATIC void
243xfs_inode_item_format(
7bfa31d8
CH
244 struct xfs_log_item *lip,
245 struct xfs_log_iovec *vecp)
1da177e4 246{
7bfa31d8
CH
247 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
248 struct xfs_inode *ip = iip->ili_inode;
1da177e4 249 uint nvecs;
1da177e4 250 size_t data_bytes;
1da177e4
LT
251 xfs_mount_t *mp;
252
4e0d5f92 253 vecp->i_addr = &iip->ili_format;
1da177e4 254 vecp->i_len = sizeof(xfs_inode_log_format_t);
4139b3b3 255 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
1da177e4
LT
256 vecp++;
257 nvecs = 1;
258
259 /*
260 * Clear i_update_core if the timestamps (or any other
261 * non-transactional modification) need flushing/logging
262 * and we're about to log them with the rest of the core.
263 *
264 * This is the same logic as xfs_iflush() but this code can't
265 * run at the same time as xfs_iflush because we're in commit
266 * processing here and so we have the inode lock held in
267 * exclusive mode. Although it doesn't really matter
268 * for the timestamps if both routines were to grab the
269 * timestamps or not. That would be ok.
270 *
271 * We clear i_update_core before copying out the data.
272 * This is for coordination with our timestamp updates
273 * that don't hold the inode lock. They will always
274 * update the timestamps BEFORE setting i_update_core,
275 * so if we clear i_update_core after they set it we
276 * are guaranteed to see their updates to the timestamps
277 * either here. Likewise, if they set it after we clear it
278 * here, we'll see it either on the next commit of this
279 * inode or the next time the inode gets flushed via
280 * xfs_iflush(). This depends on strongly ordered memory
281 * semantics, but we have that. We use the SYNCHRONIZE
282 * macro to make sure that the compiler does not reorder
283 * the i_update_core access below the data copy below.
284 */
285 if (ip->i_update_core) {
286 ip->i_update_core = 0;
287 SYNCHRONIZE();
288 }
289
42fe2b1f 290 /*
f9581b14 291 * Make sure to get the latest timestamps from the Linux inode.
42fe2b1f 292 */
f9581b14 293 xfs_synchronize_times(ip);
5d51eff4 294
4e0d5f92 295 vecp->i_addr = &ip->i_d;
81591fe2 296 vecp->i_len = sizeof(struct xfs_icdinode);
4139b3b3 297 vecp->i_type = XLOG_REG_TYPE_ICORE;
1da177e4
LT
298 vecp++;
299 nvecs++;
300 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
301
302 /*
303 * If this is really an old format inode, then we need to
304 * log it as such. This means that we have to copy the link
305 * count from the new field to the old. We don't have to worry
306 * about the new fields, because nothing trusts them as long as
307 * the old inode version number is there. If the superblock already
308 * has a new version number, then we don't bother converting back.
309 */
310 mp = ip->i_mount;
51ce16d5
CH
311 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
312 if (ip->i_d.di_version == 1) {
62118709 313 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
314 /*
315 * Convert it back.
316 */
317 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
318 ip->i_d.di_onlink = ip->i_d.di_nlink;
319 } else {
320 /*
321 * The superblock version has already been bumped,
322 * so just make the conversion to the new inode
323 * format permanent.
324 */
51ce16d5 325 ip->i_d.di_version = 2;
1da177e4
LT
326 ip->i_d.di_onlink = 0;
327 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
328 }
329 }
330
331 switch (ip->i_d.di_format) {
332 case XFS_DINODE_FMT_EXTENTS:
333 ASSERT(!(iip->ili_format.ilf_fields &
334 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
335 XFS_ILOG_DEV | XFS_ILOG_UUID)));
336 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
337 ASSERT(ip->i_df.if_bytes > 0);
338 ASSERT(ip->i_df.if_u1.if_extents != NULL);
339 ASSERT(ip->i_d.di_nextents > 0);
340 ASSERT(iip->ili_extents_buf == NULL);
73523a2e
CH
341 ASSERT((ip->i_df.if_bytes /
342 (uint)sizeof(xfs_bmbt_rec_t)) > 0);
f016bad6 343#ifdef XFS_NATIVE_HOST
696123fc
DC
344 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
345 (uint)sizeof(xfs_bmbt_rec_t)) {
1da177e4
LT
346 /*
347 * There are no delayed allocation
348 * extents, so just point to the
349 * real extents array.
350 */
4e0d5f92 351 vecp->i_addr = ip->i_df.if_u1.if_extents;
1da177e4 352 vecp->i_len = ip->i_df.if_bytes;
4139b3b3 353 vecp->i_type = XLOG_REG_TYPE_IEXT;
1da177e4
LT
354 } else
355#endif
356 {
e828776a
DC
357 xfs_inode_item_format_extents(ip, vecp,
358 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
1da177e4
LT
359 }
360 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
361 iip->ili_format.ilf_dsize = vecp->i_len;
362 vecp++;
363 nvecs++;
364 }
365 break;
366
367 case XFS_DINODE_FMT_BTREE:
368 ASSERT(!(iip->ili_format.ilf_fields &
369 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
370 XFS_ILOG_DEV | XFS_ILOG_UUID)));
371 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
372 ASSERT(ip->i_df.if_broot_bytes > 0);
373 ASSERT(ip->i_df.if_broot != NULL);
4e0d5f92 374 vecp->i_addr = ip->i_df.if_broot;
1da177e4 375 vecp->i_len = ip->i_df.if_broot_bytes;
4139b3b3 376 vecp->i_type = XLOG_REG_TYPE_IBROOT;
1da177e4
LT
377 vecp++;
378 nvecs++;
379 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
380 }
381 break;
382
383 case XFS_DINODE_FMT_LOCAL:
384 ASSERT(!(iip->ili_format.ilf_fields &
385 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
386 XFS_ILOG_DEV | XFS_ILOG_UUID)));
387 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
388 ASSERT(ip->i_df.if_bytes > 0);
389 ASSERT(ip->i_df.if_u1.if_data != NULL);
390 ASSERT(ip->i_d.di_size > 0);
391
4e0d5f92 392 vecp->i_addr = ip->i_df.if_u1.if_data;
1da177e4
LT
393 /*
394 * Round i_bytes up to a word boundary.
395 * The underlying memory is guaranteed to
396 * to be there by xfs_idata_realloc().
397 */
398 data_bytes = roundup(ip->i_df.if_bytes, 4);
399 ASSERT((ip->i_df.if_real_bytes == 0) ||
400 (ip->i_df.if_real_bytes == data_bytes));
401 vecp->i_len = (int)data_bytes;
4139b3b3 402 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
1da177e4
LT
403 vecp++;
404 nvecs++;
405 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
406 }
407 break;
408
409 case XFS_DINODE_FMT_DEV:
410 ASSERT(!(iip->ili_format.ilf_fields &
411 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
412 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
413 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
414 iip->ili_format.ilf_u.ilfu_rdev =
415 ip->i_df.if_u2.if_rdev;
416 }
417 break;
418
419 case XFS_DINODE_FMT_UUID:
420 ASSERT(!(iip->ili_format.ilf_fields &
421 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
422 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
423 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
424 iip->ili_format.ilf_u.ilfu_uuid =
425 ip->i_df.if_u2.if_uuid;
426 }
427 break;
428
429 default:
430 ASSERT(0);
431 break;
432 }
433
434 /*
435 * If there are no attributes associated with the file,
436 * then we're done.
437 * Assert that no attribute-related log flags are set.
438 */
439 if (!XFS_IFORK_Q(ip)) {
1da177e4
LT
440 iip->ili_format.ilf_size = nvecs;
441 ASSERT(!(iip->ili_format.ilf_fields &
442 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
443 return;
444 }
445
446 switch (ip->i_d.di_aformat) {
447 case XFS_DINODE_FMT_EXTENTS:
448 ASSERT(!(iip->ili_format.ilf_fields &
449 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
450 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
1da177e4 451#ifdef DEBUG
73523a2e 452 int nrecs = ip->i_afp->if_bytes /
1da177e4 453 (uint)sizeof(xfs_bmbt_rec_t);
1da177e4
LT
454 ASSERT(nrecs > 0);
455 ASSERT(nrecs == ip->i_d.di_anextents);
73523a2e
CH
456 ASSERT(ip->i_afp->if_bytes > 0);
457 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
458 ASSERT(ip->i_d.di_anextents > 0);
459#endif
f016bad6 460#ifdef XFS_NATIVE_HOST
1da177e4
LT
461 /*
462 * There are not delayed allocation extents
463 * for attributes, so just point at the array.
464 */
4e0d5f92 465 vecp->i_addr = ip->i_afp->if_u1.if_extents;
1da177e4 466 vecp->i_len = ip->i_afp->if_bytes;
e828776a 467 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
1da177e4
LT
468#else
469 ASSERT(iip->ili_aextents_buf == NULL);
e828776a
DC
470 xfs_inode_item_format_extents(ip, vecp,
471 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
1da177e4
LT
472#endif
473 iip->ili_format.ilf_asize = vecp->i_len;
474 vecp++;
475 nvecs++;
476 }
477 break;
478
479 case XFS_DINODE_FMT_BTREE:
480 ASSERT(!(iip->ili_format.ilf_fields &
481 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
482 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
483 ASSERT(ip->i_afp->if_broot_bytes > 0);
484 ASSERT(ip->i_afp->if_broot != NULL);
4e0d5f92 485 vecp->i_addr = ip->i_afp->if_broot;
1da177e4 486 vecp->i_len = ip->i_afp->if_broot_bytes;
4139b3b3 487 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
1da177e4
LT
488 vecp++;
489 nvecs++;
490 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
491 }
492 break;
493
494 case XFS_DINODE_FMT_LOCAL:
495 ASSERT(!(iip->ili_format.ilf_fields &
496 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
497 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
498 ASSERT(ip->i_afp->if_bytes > 0);
499 ASSERT(ip->i_afp->if_u1.if_data != NULL);
500
4e0d5f92 501 vecp->i_addr = ip->i_afp->if_u1.if_data;
1da177e4
LT
502 /*
503 * Round i_bytes up to a word boundary.
504 * The underlying memory is guaranteed to
505 * to be there by xfs_idata_realloc().
506 */
507 data_bytes = roundup(ip->i_afp->if_bytes, 4);
508 ASSERT((ip->i_afp->if_real_bytes == 0) ||
509 (ip->i_afp->if_real_bytes == data_bytes));
510 vecp->i_len = (int)data_bytes;
4139b3b3 511 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
1da177e4
LT
512 vecp++;
513 nvecs++;
514 iip->ili_format.ilf_asize = (unsigned)data_bytes;
515 }
516 break;
517
518 default:
519 ASSERT(0);
520 break;
521 }
522
1da177e4
LT
523 iip->ili_format.ilf_size = nvecs;
524}
525
526
527/*
528 * This is called to pin the inode associated with the inode log
a14a5ab5 529 * item in memory so it cannot be written out.
1da177e4
LT
530 */
531STATIC void
532xfs_inode_item_pin(
7bfa31d8 533 struct xfs_log_item *lip)
1da177e4 534{
7bfa31d8 535 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 536
7bfa31d8
CH
537 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
538
539 trace_xfs_inode_pin(ip, _RET_IP_);
540 atomic_inc(&ip->i_pincount);
1da177e4
LT
541}
542
543
544/*
545 * This is called to unpin the inode associated with the inode log
546 * item which was previously pinned with a call to xfs_inode_item_pin().
a14a5ab5
CH
547 *
548 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
1da177e4 549 */
1da177e4
LT
550STATIC void
551xfs_inode_item_unpin(
7bfa31d8 552 struct xfs_log_item *lip,
9412e318 553 int remove)
1da177e4 554{
7bfa31d8 555 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 556
4aaf15d1 557 trace_xfs_inode_unpin(ip, _RET_IP_);
a14a5ab5
CH
558 ASSERT(atomic_read(&ip->i_pincount) > 0);
559 if (atomic_dec_and_test(&ip->i_pincount))
560 wake_up(&ip->i_ipin_wait);
1da177e4
LT
561}
562
1da177e4
LT
563/*
564 * This is called to attempt to lock the inode associated with this
565 * inode log item, in preparation for the push routine which does the actual
566 * iflush. Don't sleep on the inode lock or the flush lock.
567 *
568 * If the flush lock is already held, indicating that the inode has
569 * been or is in the process of being flushed, then (ideally) we'd like to
570 * see if the inode's buffer is still incore, and if so give it a nudge.
571 * We delay doing so until the pushbuf routine, though, to avoid holding
c41564b5 572 * the AIL lock across a call to the blackhole which is the buffer cache.
1da177e4
LT
573 * Also we don't want to sleep in any device strategy routines, which can happen
574 * if we do the subsequent bawrite in here.
575 */
576STATIC uint
577xfs_inode_item_trylock(
7bfa31d8 578 struct xfs_log_item *lip)
1da177e4 579{
7bfa31d8
CH
580 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
581 struct xfs_inode *ip = iip->ili_inode;
1da177e4 582
7bfa31d8 583 if (xfs_ipincount(ip) > 0)
1da177e4 584 return XFS_ITEM_PINNED;
1da177e4 585
7bfa31d8 586 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
1da177e4 587 return XFS_ITEM_LOCKED;
1da177e4
LT
588
589 if (!xfs_iflock_nowait(ip)) {
590 /*
d808f617
DC
591 * inode has already been flushed to the backing buffer,
592 * leave it locked in shared mode, pushbuf routine will
593 * unlock it.
1da177e4 594 */
d808f617 595 return XFS_ITEM_PUSHBUF;
1da177e4
LT
596 }
597
598 /* Stale items should force out the iclog */
599 if (ip->i_flags & XFS_ISTALE) {
600 xfs_ifunlock(ip);
d808f617
DC
601 /*
602 * we hold the AIL lock - notify the unlock routine of this
603 * so it doesn't try to get the lock again.
604 */
1da177e4
LT
605 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
606 return XFS_ITEM_PINNED;
607 }
608
609#ifdef DEBUG
610 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
611 ASSERT(iip->ili_format.ilf_fields != 0);
612 ASSERT(iip->ili_logged == 0);
7bfa31d8 613 ASSERT(lip->li_flags & XFS_LI_IN_AIL);
1da177e4
LT
614 }
615#endif
616 return XFS_ITEM_SUCCESS;
617}
618
619/*
620 * Unlock the inode associated with the inode log item.
621 * Clear the fields of the inode and inode log item that
622 * are specific to the current transaction. If the
623 * hold flags is set, do not unlock the inode.
624 */
625STATIC void
626xfs_inode_item_unlock(
7bfa31d8 627 struct xfs_log_item *lip)
1da177e4 628{
7bfa31d8
CH
629 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
630 struct xfs_inode *ip = iip->ili_inode;
898621d5 631 unsigned short lock_flags;
1da177e4 632
f3ca8738
CH
633 ASSERT(ip->i_itemp != NULL);
634 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
635
636 /*
637 * If the inode needed a separate buffer with which to log
638 * its extents, then free it now.
639 */
640 if (iip->ili_extents_buf != NULL) {
641 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
642 ASSERT(ip->i_d.di_nextents > 0);
643 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
644 ASSERT(ip->i_df.if_bytes > 0);
f0e2d93c 645 kmem_free(iip->ili_extents_buf);
1da177e4
LT
646 iip->ili_extents_buf = NULL;
647 }
648 if (iip->ili_aextents_buf != NULL) {
649 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
650 ASSERT(ip->i_d.di_anextents > 0);
651 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
652 ASSERT(ip->i_afp->if_bytes > 0);
f0e2d93c 653 kmem_free(iip->ili_aextents_buf);
1da177e4
LT
654 iip->ili_aextents_buf = NULL;
655 }
656
898621d5
CH
657 lock_flags = iip->ili_lock_flags;
658 iip->ili_lock_flags = 0;
ddc3415a 659 if (lock_flags)
f3ca8738 660 xfs_iunlock(ip, lock_flags);
1da177e4
LT
661}
662
663/*
de25c181
DC
664 * This is called to find out where the oldest active copy of the inode log
665 * item in the on disk log resides now that the last log write of it completed
666 * at the given lsn. Since we always re-log all dirty data in an inode, the
667 * latest copy in the on disk log is the only one that matters. Therefore,
668 * simply return the given lsn.
669 *
670 * If the inode has been marked stale because the cluster is being freed, we
671 * don't want to (re-)insert this inode into the AIL. There is a race condition
672 * where the cluster buffer may be unpinned before the inode is inserted into
673 * the AIL during transaction committed processing. If the buffer is unpinned
674 * before the inode item has been committed and inserted, then it is possible
1316d4da 675 * for the buffer to be written and IO completes before the inode is inserted
de25c181
DC
676 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
677 * AIL which will never get removed. It will, however, get reclaimed which
678 * triggers an assert in xfs_inode_free() complaining about freein an inode
679 * still in the AIL.
680 *
1316d4da
DC
681 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
682 * transaction committed code knows that it does not need to do any further
683 * processing on the item.
1da177e4 684 */
1da177e4
LT
685STATIC xfs_lsn_t
686xfs_inode_item_committed(
7bfa31d8 687 struct xfs_log_item *lip,
1da177e4
LT
688 xfs_lsn_t lsn)
689{
de25c181
DC
690 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
691 struct xfs_inode *ip = iip->ili_inode;
692
1316d4da
DC
693 if (xfs_iflags_test(ip, XFS_ISTALE)) {
694 xfs_inode_item_unpin(lip, 0);
695 return -1;
696 }
7bfa31d8 697 return lsn;
1da177e4
LT
698}
699
1da177e4
LT
700/*
701 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
702 * failed to get the inode flush lock but did get the inode locked SHARED.
703 * Here we're trying to see if the inode buffer is incore, and if so whether it's
d808f617
DC
704 * marked delayed write. If that's the case, we'll promote it and that will
705 * allow the caller to write the buffer by triggering the xfsbufd to run.
1da177e4 706 */
17b38471 707STATIC bool
1da177e4 708xfs_inode_item_pushbuf(
7bfa31d8 709 struct xfs_log_item *lip)
1da177e4 710{
7bfa31d8
CH
711 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
712 struct xfs_inode *ip = iip->ili_inode;
713 struct xfs_buf *bp;
17b38471 714 bool ret = true;
1da177e4 715
579aa9ca 716 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
1da177e4 717
1da177e4 718 /*
c63942d3
DC
719 * If a flush is not in progress anymore, chances are that the
720 * inode was taken off the AIL. So, just get out.
1da177e4 721 */
c63942d3 722 if (completion_done(&ip->i_flush) ||
7bfa31d8 723 !(lip->li_flags & XFS_LI_IN_AIL)) {
1da177e4 724 xfs_iunlock(ip, XFS_ILOCK_SHARED);
17b38471 725 return true;
1da177e4
LT
726 }
727
7bfa31d8
CH
728 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
729 iip->ili_format.ilf_len, XBF_TRYLOCK);
1da177e4 730
1da177e4 731 xfs_iunlock(ip, XFS_ILOCK_SHARED);
d808f617 732 if (!bp)
17b38471 733 return true;
d808f617
DC
734 if (XFS_BUF_ISDELAYWRITE(bp))
735 xfs_buf_delwri_promote(bp);
17b38471
CH
736 if (xfs_buf_ispinned(bp))
737 ret = false;
d808f617 738 xfs_buf_relse(bp);
17b38471 739 return ret;
1da177e4
LT
740}
741
1da177e4
LT
742/*
743 * This is called to asynchronously write the inode associated with this
744 * inode log item out to disk. The inode will already have been locked by
745 * a successful call to xfs_inode_item_trylock().
746 */
747STATIC void
748xfs_inode_item_push(
7bfa31d8 749 struct xfs_log_item *lip)
1da177e4 750{
7bfa31d8
CH
751 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
752 struct xfs_inode *ip = iip->ili_inode;
1da177e4 753
579aa9ca 754 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
c63942d3 755 ASSERT(!completion_done(&ip->i_flush));
7bfa31d8 756
1da177e4
LT
757 /*
758 * Since we were able to lock the inode's flush lock and
759 * we found it on the AIL, the inode must be dirty. This
760 * is because the inode is removed from the AIL while still
761 * holding the flush lock in xfs_iflush_done(). Thus, if
762 * we found it in the AIL and were able to obtain the flush
763 * lock without sleeping, then there must not have been
764 * anyone in the process of flushing the inode.
765 */
766 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
767 iip->ili_format.ilf_fields != 0);
768
769 /*
c854363e
DC
770 * Push the inode to it's backing buffer. This will not remove the
771 * inode from the AIL - a further push will be required to trigger a
772 * buffer push. However, this allows all the dirty inodes to be pushed
1bfd8d04
DC
773 * to the buffer before it is pushed to disk. The buffer IO completion
774 * will pull the inode from the AIL, mark it clean and unlock the flush
c854363e 775 * lock.
1da177e4 776 */
1bfd8d04 777 (void) xfs_iflush(ip, SYNC_TRYLOCK);
1da177e4 778 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
779}
780
781/*
782 * XXX rcc - this one really has to do something. Probably needs
783 * to stamp in a new field in the incore inode.
784 */
1da177e4
LT
785STATIC void
786xfs_inode_item_committing(
7bfa31d8 787 struct xfs_log_item *lip,
1da177e4
LT
788 xfs_lsn_t lsn)
789{
7bfa31d8 790 INODE_ITEM(lip)->ili_last_lsn = lsn;
1da177e4
LT
791}
792
793/*
794 * This is the ops vector shared by all buf log items.
795 */
272e42b2 796static const struct xfs_item_ops xfs_inode_item_ops = {
7bfa31d8
CH
797 .iop_size = xfs_inode_item_size,
798 .iop_format = xfs_inode_item_format,
799 .iop_pin = xfs_inode_item_pin,
800 .iop_unpin = xfs_inode_item_unpin,
801 .iop_trylock = xfs_inode_item_trylock,
802 .iop_unlock = xfs_inode_item_unlock,
803 .iop_committed = xfs_inode_item_committed,
804 .iop_push = xfs_inode_item_push,
805 .iop_pushbuf = xfs_inode_item_pushbuf,
806 .iop_committing = xfs_inode_item_committing
1da177e4
LT
807};
808
809
810/*
811 * Initialize the inode log item for a newly allocated (in-core) inode.
812 */
813void
814xfs_inode_item_init(
7bfa31d8
CH
815 struct xfs_inode *ip,
816 struct xfs_mount *mp)
1da177e4 817{
7bfa31d8 818 struct xfs_inode_log_item *iip;
1da177e4
LT
819
820 ASSERT(ip->i_itemp == NULL);
821 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
822
1da177e4 823 iip->ili_inode = ip;
43f5efc5
DC
824 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
825 &xfs_inode_item_ops);
1da177e4
LT
826 iip->ili_format.ilf_type = XFS_LI_INODE;
827 iip->ili_format.ilf_ino = ip->i_ino;
92bfc6e7
CH
828 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
829 iip->ili_format.ilf_len = ip->i_imap.im_len;
830 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
1da177e4
LT
831}
832
833/*
834 * Free the inode log item and any memory hanging off of it.
835 */
836void
837xfs_inode_item_destroy(
838 xfs_inode_t *ip)
839{
840#ifdef XFS_TRANS_DEBUG
841 if (ip->i_itemp->ili_root_size != 0) {
f0e2d93c 842 kmem_free(ip->i_itemp->ili_orig_root);
1da177e4
LT
843 }
844#endif
845 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
846}
847
848
849/*
850 * This is the inode flushing I/O completion routine. It is called
851 * from interrupt level when the buffer containing the inode is
852 * flushed to disk. It is responsible for removing the inode item
853 * from the AIL if it has not been re-logged, and unlocking the inode's
854 * flush lock.
30136832
DC
855 *
856 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
857 * list for other inodes that will run this function. We remove them from the
858 * buffer list so we can process all the inode IO completions in one AIL lock
859 * traversal.
1da177e4 860 */
1da177e4
LT
861void
862xfs_iflush_done(
ca30b2a7
CH
863 struct xfs_buf *bp,
864 struct xfs_log_item *lip)
1da177e4 865{
30136832
DC
866 struct xfs_inode_log_item *iip;
867 struct xfs_log_item *blip;
868 struct xfs_log_item *next;
869 struct xfs_log_item *prev;
ca30b2a7 870 struct xfs_ail *ailp = lip->li_ailp;
30136832
DC
871 int need_ail = 0;
872
873 /*
874 * Scan the buffer IO completions for other inodes being completed and
875 * attach them to the current inode log item.
876 */
adadbeef 877 blip = bp->b_fspriv;
30136832
DC
878 prev = NULL;
879 while (blip != NULL) {
880 if (lip->li_cb != xfs_iflush_done) {
881 prev = blip;
882 blip = blip->li_bio_list;
883 continue;
884 }
885
886 /* remove from list */
887 next = blip->li_bio_list;
888 if (!prev) {
adadbeef 889 bp->b_fspriv = next;
30136832
DC
890 } else {
891 prev->li_bio_list = next;
892 }
893
894 /* add to current list */
895 blip->li_bio_list = lip->li_bio_list;
896 lip->li_bio_list = blip;
897
898 /*
899 * while we have the item, do the unlocked check for needing
900 * the AIL lock.
901 */
902 iip = INODE_ITEM(blip);
903 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
904 need_ail++;
905
906 blip = next;
907 }
908
909 /* make sure we capture the state of the initial inode. */
910 iip = INODE_ITEM(lip);
911 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
912 need_ail++;
1da177e4
LT
913
914 /*
915 * We only want to pull the item from the AIL if it is
916 * actually there and its location in the log has not
917 * changed since we started the flush. Thus, we only bother
918 * if the ili_logged flag is set and the inode's lsn has not
919 * changed. First we check the lsn outside
920 * the lock since it's cheaper, and then we recheck while
921 * holding the lock before removing the inode from the AIL.
922 */
30136832
DC
923 if (need_ail) {
924 struct xfs_log_item *log_items[need_ail];
925 int i = 0;
783a2f65 926 spin_lock(&ailp->xa_lock);
30136832
DC
927 for (blip = lip; blip; blip = blip->li_bio_list) {
928 iip = INODE_ITEM(blip);
929 if (iip->ili_logged &&
930 blip->li_lsn == iip->ili_flush_lsn) {
931 log_items[i++] = blip;
932 }
933 ASSERT(i <= need_ail);
1da177e4 934 }
30136832
DC
935 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
936 xfs_trans_ail_delete_bulk(ailp, log_items, i);
1da177e4
LT
937 }
938
1da177e4
LT
939
940 /*
30136832
DC
941 * clean up and unlock the flush lock now we are done. We can clear the
942 * ili_last_fields bits now that we know that the data corresponding to
943 * them is safely on disk.
1da177e4 944 */
30136832
DC
945 for (blip = lip; blip; blip = next) {
946 next = blip->li_bio_list;
947 blip->li_bio_list = NULL;
948
949 iip = INODE_ITEM(blip);
950 iip->ili_logged = 0;
951 iip->ili_last_fields = 0;
952 xfs_ifunlock(iip->ili_inode);
953 }
1da177e4
LT
954}
955
956/*
957 * This is the inode flushing abort routine. It is called
958 * from xfs_iflush when the filesystem is shutting down to clean
959 * up the inode state.
960 * It is responsible for removing the inode item
961 * from the AIL if it has not been re-logged, and unlocking the inode's
962 * flush lock.
963 */
964void
965xfs_iflush_abort(
966 xfs_inode_t *ip)
967{
783a2f65 968 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 969
1da177e4 970 if (iip) {
783a2f65 971 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4 972 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 973 spin_lock(&ailp->xa_lock);
1da177e4 974 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65
DC
975 /* xfs_trans_ail_delete() drops the AIL lock. */
976 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1da177e4 977 } else
783a2f65 978 spin_unlock(&ailp->xa_lock);
1da177e4
LT
979 }
980 iip->ili_logged = 0;
981 /*
982 * Clear the ili_last_fields bits now that we know that the
983 * data corresponding to them is safely on disk.
984 */
985 iip->ili_last_fields = 0;
986 /*
987 * Clear the inode logging fields so no more flushes are
988 * attempted.
989 */
990 iip->ili_format.ilf_fields = 0;
991 }
992 /*
993 * Release the inode's flush lock since we're done with it.
994 */
995 xfs_ifunlock(ip);
996}
997
998void
999xfs_istale_done(
ca30b2a7
CH
1000 struct xfs_buf *bp,
1001 struct xfs_log_item *lip)
1da177e4 1002{
ca30b2a7 1003 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1da177e4 1004}
6d192a9b
TS
1005
1006/*
1007 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1008 * (which can have different field alignments) to the native version
1009 */
1010int
1011xfs_inode_item_format_convert(
1012 xfs_log_iovec_t *buf,
1013 xfs_inode_log_format_t *in_f)
1014{
1015 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
4e0d5f92 1016 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
6d192a9b 1017
6d192a9b
TS
1018 in_f->ilf_type = in_f32->ilf_type;
1019 in_f->ilf_size = in_f32->ilf_size;
1020 in_f->ilf_fields = in_f32->ilf_fields;
1021 in_f->ilf_asize = in_f32->ilf_asize;
1022 in_f->ilf_dsize = in_f32->ilf_dsize;
1023 in_f->ilf_ino = in_f32->ilf_ino;
1024 /* copy biggest field of ilf_u */
1025 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1026 in_f32->ilf_u.ilfu_uuid.__u_bits,
1027 sizeof(uuid_t));
1028 in_f->ilf_blkno = in_f32->ilf_blkno;
1029 in_f->ilf_len = in_f32->ilf_len;
1030 in_f->ilf_boffset = in_f32->ilf_boffset;
1031 return 0;
1032 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
4e0d5f92 1033 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
6d192a9b 1034
6d192a9b
TS
1035 in_f->ilf_type = in_f64->ilf_type;
1036 in_f->ilf_size = in_f64->ilf_size;
1037 in_f->ilf_fields = in_f64->ilf_fields;
1038 in_f->ilf_asize = in_f64->ilf_asize;
1039 in_f->ilf_dsize = in_f64->ilf_dsize;
1040 in_f->ilf_ino = in_f64->ilf_ino;
1041 /* copy biggest field of ilf_u */
1042 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1043 in_f64->ilf_u.ilfu_uuid.__u_bits,
1044 sizeof(uuid_t));
1045 in_f->ilf_blkno = in_f64->ilf_blkno;
1046 in_f->ilf_len = in_f64->ilf_len;
1047 in_f->ilf_boffset = in_f64->ilf_boffset;
1048 return 0;
1049 }
1050 return EFSCORRUPTED;
1051}
This page took 0.605329 seconds and 5 git commands to generate.