Merge tag 'iwlwifi-next-for-kalle-2015-01-22' of https://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / fs / xfs / xfs_log.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4
LT
24#include "xfs_mount.h"
25#include "xfs_error.h"
239880ef
DC
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_log.h"
1da177e4 29#include "xfs_log_priv.h"
1da177e4 30#include "xfs_log_recover.h"
a844f451 31#include "xfs_inode.h"
0b1b213f 32#include "xfs_trace.h"
f661f1e0 33#include "xfs_fsops.h"
0e446be4 34#include "xfs_cksum.h"
baff4e44 35#include "xfs_sysfs.h"
1da177e4 36
eb01c9cd 37kmem_zone_t *xfs_log_ticket_zone;
1da177e4 38
1da177e4 39/* Local miscellaneous function prototypes */
ad223e60
MT
40STATIC int
41xlog_commit_record(
42 struct xlog *log,
43 struct xlog_ticket *ticket,
44 struct xlog_in_core **iclog,
45 xfs_lsn_t *commitlsnp);
46
9a8d2fdb
MT
47STATIC struct xlog *
48xlog_alloc_log(
49 struct xfs_mount *mp,
50 struct xfs_buftarg *log_target,
51 xfs_daddr_t blk_offset,
52 int num_bblks);
ad223e60
MT
53STATIC int
54xlog_space_left(
55 struct xlog *log,
56 atomic64_t *head);
9a8d2fdb
MT
57STATIC int
58xlog_sync(
59 struct xlog *log,
60 struct xlog_in_core *iclog);
61STATIC void
62xlog_dealloc_log(
63 struct xlog *log);
1da177e4
LT
64
65/* local state machine functions */
66STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
9a8d2fdb
MT
67STATIC void
68xlog_state_do_callback(
69 struct xlog *log,
70 int aborted,
71 struct xlog_in_core *iclog);
72STATIC int
73xlog_state_get_iclog_space(
74 struct xlog *log,
75 int len,
76 struct xlog_in_core **iclog,
77 struct xlog_ticket *ticket,
78 int *continued_write,
79 int *logoffsetp);
80STATIC int
81xlog_state_release_iclog(
82 struct xlog *log,
83 struct xlog_in_core *iclog);
84STATIC void
85xlog_state_switch_iclogs(
86 struct xlog *log,
87 struct xlog_in_core *iclog,
88 int eventual_size);
89STATIC void
90xlog_state_want_sync(
91 struct xlog *log,
92 struct xlog_in_core *iclog);
1da177e4 93
ad223e60
MT
94STATIC void
95xlog_grant_push_ail(
9a8d2fdb
MT
96 struct xlog *log,
97 int need_bytes);
98STATIC void
99xlog_regrant_reserve_log_space(
100 struct xlog *log,
101 struct xlog_ticket *ticket);
102STATIC void
103xlog_ungrant_log_space(
104 struct xlog *log,
105 struct xlog_ticket *ticket);
1da177e4 106
cfcbbbd0 107#if defined(DEBUG)
9a8d2fdb
MT
108STATIC void
109xlog_verify_dest_ptr(
110 struct xlog *log,
111 char *ptr);
ad223e60
MT
112STATIC void
113xlog_verify_grant_tail(
9a8d2fdb
MT
114 struct xlog *log);
115STATIC void
116xlog_verify_iclog(
117 struct xlog *log,
118 struct xlog_in_core *iclog,
119 int count,
667a9291 120 bool syncing);
9a8d2fdb
MT
121STATIC void
122xlog_verify_tail_lsn(
123 struct xlog *log,
124 struct xlog_in_core *iclog,
125 xfs_lsn_t tail_lsn);
1da177e4
LT
126#else
127#define xlog_verify_dest_ptr(a,b)
3f336c6f 128#define xlog_verify_grant_tail(a)
1da177e4
LT
129#define xlog_verify_iclog(a,b,c,d)
130#define xlog_verify_tail_lsn(a,b,c)
131#endif
132
9a8d2fdb
MT
133STATIC int
134xlog_iclogs_empty(
135 struct xlog *log);
1da177e4 136
dd954c69 137static void
663e496a 138xlog_grant_sub_space(
ad223e60
MT
139 struct xlog *log,
140 atomic64_t *head,
141 int bytes)
dd954c69 142{
d0eb2f38
DC
143 int64_t head_val = atomic64_read(head);
144 int64_t new, old;
a69ed03c 145
d0eb2f38
DC
146 do {
147 int cycle, space;
a69ed03c 148
d0eb2f38 149 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 150
d0eb2f38
DC
151 space -= bytes;
152 if (space < 0) {
153 space += log->l_logsize;
154 cycle--;
155 }
156
157 old = head_val;
158 new = xlog_assign_grant_head_val(cycle, space);
159 head_val = atomic64_cmpxchg(head, old, new);
160 } while (head_val != old);
dd954c69
CH
161}
162
163static void
663e496a 164xlog_grant_add_space(
ad223e60
MT
165 struct xlog *log,
166 atomic64_t *head,
167 int bytes)
dd954c69 168{
d0eb2f38
DC
169 int64_t head_val = atomic64_read(head);
170 int64_t new, old;
a69ed03c 171
d0eb2f38
DC
172 do {
173 int tmp;
174 int cycle, space;
a69ed03c 175
d0eb2f38 176 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 177
d0eb2f38
DC
178 tmp = log->l_logsize - space;
179 if (tmp > bytes)
180 space += bytes;
181 else {
182 space = bytes - tmp;
183 cycle++;
184 }
185
186 old = head_val;
187 new = xlog_assign_grant_head_val(cycle, space);
188 head_val = atomic64_cmpxchg(head, old, new);
189 } while (head_val != old);
dd954c69 190}
a69ed03c 191
c303c5b8
CH
192STATIC void
193xlog_grant_head_init(
194 struct xlog_grant_head *head)
195{
196 xlog_assign_grant_head(&head->grant, 1, 0);
197 INIT_LIST_HEAD(&head->waiters);
198 spin_lock_init(&head->lock);
199}
200
a79bf2d7
CH
201STATIC void
202xlog_grant_head_wake_all(
203 struct xlog_grant_head *head)
204{
205 struct xlog_ticket *tic;
206
207 spin_lock(&head->lock);
208 list_for_each_entry(tic, &head->waiters, t_queue)
209 wake_up_process(tic->t_task);
210 spin_unlock(&head->lock);
211}
212
e179840d
CH
213static inline int
214xlog_ticket_reservation(
ad223e60 215 struct xlog *log,
e179840d
CH
216 struct xlog_grant_head *head,
217 struct xlog_ticket *tic)
9f9c19ec 218{
e179840d
CH
219 if (head == &log->l_write_head) {
220 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
221 return tic->t_unit_res;
222 } else {
9f9c19ec 223 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 224 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 225 else
e179840d 226 return tic->t_unit_res;
9f9c19ec 227 }
9f9c19ec
CH
228}
229
230STATIC bool
e179840d 231xlog_grant_head_wake(
ad223e60 232 struct xlog *log,
e179840d 233 struct xlog_grant_head *head,
9f9c19ec
CH
234 int *free_bytes)
235{
236 struct xlog_ticket *tic;
237 int need_bytes;
238
e179840d
CH
239 list_for_each_entry(tic, &head->waiters, t_queue) {
240 need_bytes = xlog_ticket_reservation(log, head, tic);
9f9c19ec
CH
241 if (*free_bytes < need_bytes)
242 return false;
9f9c19ec 243
e179840d
CH
244 *free_bytes -= need_bytes;
245 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 246 wake_up_process(tic->t_task);
9f9c19ec
CH
247 }
248
249 return true;
250}
251
252STATIC int
23ee3df3 253xlog_grant_head_wait(
ad223e60 254 struct xlog *log,
23ee3df3 255 struct xlog_grant_head *head,
9f9c19ec 256 struct xlog_ticket *tic,
a30b0367
DC
257 int need_bytes) __releases(&head->lock)
258 __acquires(&head->lock)
9f9c19ec 259{
23ee3df3 260 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
261
262 do {
263 if (XLOG_FORCED_SHUTDOWN(log))
264 goto shutdown;
265 xlog_grant_push_ail(log, need_bytes);
266
14a7235f 267 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 268 spin_unlock(&head->lock);
14a7235f 269
9f9c19ec 270 XFS_STATS_INC(xs_sleep_logspace);
9f9c19ec 271
14a7235f
CH
272 trace_xfs_log_grant_sleep(log, tic);
273 schedule();
9f9c19ec
CH
274 trace_xfs_log_grant_wake(log, tic);
275
23ee3df3 276 spin_lock(&head->lock);
9f9c19ec
CH
277 if (XLOG_FORCED_SHUTDOWN(log))
278 goto shutdown;
23ee3df3 279 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
280
281 list_del_init(&tic->t_queue);
282 return 0;
283shutdown:
284 list_del_init(&tic->t_queue);
2451337d 285 return -EIO;
9f9c19ec
CH
286}
287
42ceedb3
CH
288/*
289 * Atomically get the log space required for a log ticket.
290 *
291 * Once a ticket gets put onto head->waiters, it will only return after the
292 * needed reservation is satisfied.
293 *
294 * This function is structured so that it has a lock free fast path. This is
295 * necessary because every new transaction reservation will come through this
296 * path. Hence any lock will be globally hot if we take it unconditionally on
297 * every pass.
298 *
299 * As tickets are only ever moved on and off head->waiters under head->lock, we
300 * only need to take that lock if we are going to add the ticket to the queue
301 * and sleep. We can avoid taking the lock if the ticket was never added to
302 * head->waiters because the t_queue list head will be empty and we hold the
303 * only reference to it so it can safely be checked unlocked.
304 */
305STATIC int
306xlog_grant_head_check(
ad223e60 307 struct xlog *log,
42ceedb3
CH
308 struct xlog_grant_head *head,
309 struct xlog_ticket *tic,
310 int *need_bytes)
311{
312 int free_bytes;
313 int error = 0;
314
315 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
316
317 /*
318 * If there are other waiters on the queue then give them a chance at
319 * logspace before us. Wake up the first waiters, if we do not wake
320 * up all the waiters then go to sleep waiting for more free space,
321 * otherwise try to get some space for this transaction.
322 */
323 *need_bytes = xlog_ticket_reservation(log, head, tic);
324 free_bytes = xlog_space_left(log, &head->grant);
325 if (!list_empty_careful(&head->waiters)) {
326 spin_lock(&head->lock);
327 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
328 free_bytes < *need_bytes) {
329 error = xlog_grant_head_wait(log, head, tic,
330 *need_bytes);
331 }
332 spin_unlock(&head->lock);
333 } else if (free_bytes < *need_bytes) {
334 spin_lock(&head->lock);
335 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
336 spin_unlock(&head->lock);
337 }
338
339 return error;
340}
341
0adba536
CH
342static void
343xlog_tic_reset_res(xlog_ticket_t *tic)
344{
345 tic->t_res_num = 0;
346 tic->t_res_arr_sum = 0;
347 tic->t_res_num_ophdrs = 0;
348}
349
350static void
351xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
352{
353 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
354 /* add to overflow and start again */
355 tic->t_res_o_flow += tic->t_res_arr_sum;
356 tic->t_res_num = 0;
357 tic->t_res_arr_sum = 0;
358 }
359
360 tic->t_res_arr[tic->t_res_num].r_len = len;
361 tic->t_res_arr[tic->t_res_num].r_type = type;
362 tic->t_res_arr_sum += len;
363 tic->t_res_num++;
364}
dd954c69 365
9006fb91
CH
366/*
367 * Replenish the byte reservation required by moving the grant write head.
368 */
369int
370xfs_log_regrant(
371 struct xfs_mount *mp,
372 struct xlog_ticket *tic)
373{
ad223e60 374 struct xlog *log = mp->m_log;
9006fb91
CH
375 int need_bytes;
376 int error = 0;
377
378 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 379 return -EIO;
9006fb91
CH
380
381 XFS_STATS_INC(xs_try_logspace);
382
383 /*
384 * This is a new transaction on the ticket, so we need to change the
385 * transaction ID so that the next transaction has a different TID in
386 * the log. Just add one to the existing tid so that we can see chains
387 * of rolling transactions in the log easily.
388 */
389 tic->t_tid++;
390
391 xlog_grant_push_ail(log, tic->t_unit_res);
392
393 tic->t_curr_res = tic->t_unit_res;
394 xlog_tic_reset_res(tic);
395
396 if (tic->t_cnt > 0)
397 return 0;
398
399 trace_xfs_log_regrant(log, tic);
400
401 error = xlog_grant_head_check(log, &log->l_write_head, tic,
402 &need_bytes);
403 if (error)
404 goto out_error;
405
406 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
407 trace_xfs_log_regrant_exit(log, tic);
408 xlog_verify_grant_tail(log);
409 return 0;
410
411out_error:
412 /*
413 * If we are failing, make sure the ticket doesn't have any current
414 * reservations. We don't want to add this back when the ticket/
415 * transaction gets cancelled.
416 */
417 tic->t_curr_res = 0;
418 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
419 return error;
420}
421
422/*
423 * Reserve log space and return a ticket corresponding the reservation.
424 *
425 * Each reservation is going to reserve extra space for a log record header.
426 * When writes happen to the on-disk log, we don't subtract the length of the
427 * log record header from any reservation. By wasting space in each
428 * reservation, we prevent over allocation problems.
429 */
430int
431xfs_log_reserve(
432 struct xfs_mount *mp,
433 int unit_bytes,
434 int cnt,
435 struct xlog_ticket **ticp,
436 __uint8_t client,
437 bool permanent,
438 uint t_type)
439{
ad223e60 440 struct xlog *log = mp->m_log;
9006fb91
CH
441 struct xlog_ticket *tic;
442 int need_bytes;
443 int error = 0;
444
445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 448 return -EIO;
9006fb91
CH
449
450 XFS_STATS_INC(xs_try_logspace);
451
452 ASSERT(*ticp == NULL);
453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 KM_SLEEP | KM_MAYFAIL);
455 if (!tic)
2451337d 456 return -ENOMEM;
9006fb91
CH
457
458 tic->t_trans_type = t_type;
459 *ticp = tic;
460
437a255a
DC
461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 : tic->t_unit_res);
9006fb91
CH
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486}
487
488
1da177e4
LT
489/*
490 * NOTES:
491 *
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
494 */
495
496/*
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
509 */
510xfs_lsn_t
35a8a72f
CH
511xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
515 uint flags)
1da177e4 516{
ad223e60 517 struct xlog *log = mp->m_log;
35a8a72f 518 xfs_lsn_t lsn = 0;
1da177e4 519
1da177e4
LT
520 if (XLOG_FORCED_SHUTDOWN(log) ||
521 /*
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
524 */
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
55b66332 526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
1da177e4
LT
527 lsn = (xfs_lsn_t) -1;
528 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
529 flags |= XFS_LOG_REL_PERM_RESERV;
530 }
531 }
532
533
534 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
535 (flags & XFS_LOG_REL_PERM_RESERV)) {
0b1b213f
CH
536 trace_xfs_log_done_nonperm(log, ticket);
537
1da177e4 538 /*
c41564b5 539 * Release ticket if not permanent reservation or a specific
1da177e4
LT
540 * request has been made to release a permanent reservation.
541 */
542 xlog_ungrant_log_space(log, ticket);
cc09c0dc 543 xfs_log_ticket_put(ticket);
1da177e4 544 } else {
0b1b213f
CH
545 trace_xfs_log_done_perm(log, ticket);
546
1da177e4 547 xlog_regrant_reserve_log_space(log, ticket);
c6a7b0f8
LM
548 /* If this ticket was a permanent reservation and we aren't
549 * trying to release it, reset the inited flags; so next time
550 * we write, a start record will be written out.
551 */
1da177e4 552 ticket->t_flags |= XLOG_TIC_INITED;
c6a7b0f8 553 }
1da177e4
LT
554
555 return lsn;
35a8a72f 556}
1da177e4 557
1da177e4
LT
558/*
559 * Attaches a new iclog I/O completion callback routine during
560 * transaction commit. If the log is in error state, a non-zero
561 * return code is handed back and the caller is responsible for
562 * executing the callback at an appropriate time.
563 */
564int
35a8a72f
CH
565xfs_log_notify(
566 struct xfs_mount *mp,
567 struct xlog_in_core *iclog,
568 xfs_log_callback_t *cb)
1da177e4 569{
b22cd72c 570 int abortflg;
1da177e4 571
114d23aa 572 spin_lock(&iclog->ic_callback_lock);
1da177e4
LT
573 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
574 if (!abortflg) {
575 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
576 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
577 cb->cb_next = NULL;
578 *(iclog->ic_callback_tail) = cb;
579 iclog->ic_callback_tail = &(cb->cb_next);
580 }
114d23aa 581 spin_unlock(&iclog->ic_callback_lock);
1da177e4 582 return abortflg;
35a8a72f 583}
1da177e4
LT
584
585int
35a8a72f
CH
586xfs_log_release_iclog(
587 struct xfs_mount *mp,
588 struct xlog_in_core *iclog)
1da177e4 589{
35a8a72f 590 if (xlog_state_release_iclog(mp->m_log, iclog)) {
7d04a335 591 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2451337d 592 return -EIO;
1da177e4
LT
593 }
594
595 return 0;
596}
597
1da177e4
LT
598/*
599 * Mount a log filesystem
600 *
601 * mp - ubiquitous xfs mount point structure
602 * log_target - buftarg of on-disk log device
603 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
604 * num_bblocks - Number of BBSIZE blocks in on-disk log
605 *
606 * Return error or zero.
607 */
608int
249a8c11
DC
609xfs_log_mount(
610 xfs_mount_t *mp,
611 xfs_buftarg_t *log_target,
612 xfs_daddr_t blk_offset,
613 int num_bblks)
1da177e4 614{
3e7b91cf
JL
615 int error = 0;
616 int min_logfsbs;
249a8c11 617
c99d609a
DC
618 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
619 xfs_notice(mp, "Mounting V%d Filesystem",
620 XFS_SB_VERSION_NUM(&mp->m_sb));
621 } else {
a0fa2b67 622 xfs_notice(mp,
c99d609a
DC
623"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
624 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 625 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
626 }
627
628 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e 629 if (IS_ERR(mp->m_log)) {
2451337d 630 error = PTR_ERR(mp->m_log);
644c3567
DC
631 goto out;
632 }
1da177e4 633
3e7b91cf
JL
634 /*
635 * Validate the given log space and drop a critical message via syslog
636 * if the log size is too small that would lead to some unexpected
637 * situations in transaction log space reservation stage.
638 *
639 * Note: we can't just reject the mount if the validation fails. This
640 * would mean that people would have to downgrade their kernel just to
641 * remedy the situation as there is no way to grow the log (short of
642 * black magic surgery with xfs_db).
643 *
644 * We can, however, reject mounts for CRC format filesystems, as the
645 * mkfs binary being used to make the filesystem should never create a
646 * filesystem with a log that is too small.
647 */
648 min_logfsbs = xfs_log_calc_minimum_size(mp);
649
650 if (mp->m_sb.sb_logblocks < min_logfsbs) {
651 xfs_warn(mp,
652 "Log size %d blocks too small, minimum size is %d blocks",
653 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 654 error = -EINVAL;
3e7b91cf
JL
655 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
656 xfs_warn(mp,
657 "Log size %d blocks too large, maximum size is %lld blocks",
658 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 659 error = -EINVAL;
3e7b91cf
JL
660 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
661 xfs_warn(mp,
662 "log size %lld bytes too large, maximum size is %lld bytes",
663 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
664 XFS_MAX_LOG_BYTES);
2451337d 665 error = -EINVAL;
3e7b91cf
JL
666 }
667 if (error) {
668 if (xfs_sb_version_hascrc(&mp->m_sb)) {
669 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
670 ASSERT(0);
671 goto out_free_log;
672 }
673 xfs_crit(mp,
674"Log size out of supported range. Continuing onwards, but if log hangs are\n"
675"experienced then please report this message in the bug report.");
676 }
677
249a8c11
DC
678 /*
679 * Initialize the AIL now we have a log.
680 */
249a8c11
DC
681 error = xfs_trans_ail_init(mp);
682 if (error) {
a0fa2b67 683 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 684 goto out_free_log;
249a8c11 685 }
a9c21c1b 686 mp->m_log->l_ailp = mp->m_ail;
249a8c11 687
1da177e4
LT
688 /*
689 * skip log recovery on a norecovery mount. pretend it all
690 * just worked.
691 */
692 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 693 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
694
695 if (readonly)
bd186aa9 696 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 697
65be6054 698 error = xlog_recover(mp->m_log);
1da177e4
LT
699
700 if (readonly)
bd186aa9 701 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 702 if (error) {
a0fa2b67
DC
703 xfs_warn(mp, "log mount/recovery failed: error %d",
704 error);
26430752 705 goto out_destroy_ail;
1da177e4
LT
706 }
707 }
708
baff4e44
BF
709 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
710 "log");
711 if (error)
712 goto out_destroy_ail;
713
1da177e4
LT
714 /* Normal transactions can now occur */
715 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
716
71e330b5
DC
717 /*
718 * Now the log has been fully initialised and we know were our
719 * space grant counters are, we can initialise the permanent ticket
720 * needed for delayed logging to work.
721 */
722 xlog_cil_init_post_recovery(mp->m_log);
723
1da177e4 724 return 0;
26430752
CH
725
726out_destroy_ail:
727 xfs_trans_ail_destroy(mp);
728out_free_log:
729 xlog_dealloc_log(mp->m_log);
644c3567 730out:
249a8c11 731 return error;
26430752 732}
1da177e4
LT
733
734/*
f661f1e0
DC
735 * Finish the recovery of the file system. This is separate from the
736 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
737 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
738 * here.
1da177e4 739 *
f661f1e0
DC
740 * If we finish recovery successfully, start the background log work. If we are
741 * not doing recovery, then we have a RO filesystem and we don't need to start
742 * it.
1da177e4
LT
743 */
744int
4249023a 745xfs_log_mount_finish(xfs_mount_t *mp)
1da177e4 746{
f661f1e0 747 int error = 0;
1da177e4 748
f661f1e0 749 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
4249023a 750 error = xlog_recover_finish(mp->m_log);
f661f1e0
DC
751 if (!error)
752 xfs_log_work_queue(mp);
753 } else {
bd186aa9 754 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
755 }
756
f661f1e0 757
1da177e4
LT
758 return error;
759}
760
1da177e4
LT
761/*
762 * Final log writes as part of unmount.
763 *
764 * Mark the filesystem clean as unmount happens. Note that during relocation
765 * this routine needs to be executed as part of source-bag while the
766 * deallocation must not be done until source-end.
767 */
768
769/*
770 * Unmount record used to have a string "Unmount filesystem--" in the
771 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
772 * We just write the magic number now since that particular field isn't
8e159e72 773 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
774 * As far as I know, there weren't any dependencies on the old behaviour.
775 */
776
777int
778xfs_log_unmount_write(xfs_mount_t *mp)
779{
9a8d2fdb 780 struct xlog *log = mp->m_log;
1da177e4
LT
781 xlog_in_core_t *iclog;
782#ifdef DEBUG
783 xlog_in_core_t *first_iclog;
784#endif
35a8a72f 785 xlog_ticket_t *tic = NULL;
1da177e4
LT
786 xfs_lsn_t lsn;
787 int error;
1da177e4 788
1da177e4
LT
789 /*
790 * Don't write out unmount record on read-only mounts.
791 * Or, if we are doing a forced umount (typically because of IO errors).
792 */
bd186aa9 793 if (mp->m_flags & XFS_MOUNT_RDONLY)
1da177e4
LT
794 return 0;
795
a14a348b 796 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
b911ca04 797 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
1da177e4
LT
798
799#ifdef DEBUG
800 first_iclog = iclog = log->l_iclog;
801 do {
802 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
803 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
804 ASSERT(iclog->ic_offset == 0);
805 }
806 iclog = iclog->ic_next;
807 } while (iclog != first_iclog);
808#endif
809 if (! (XLOG_FORCED_SHUTDOWN(log))) {
955e47ad
TS
810 error = xfs_log_reserve(mp, 600, 1, &tic,
811 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
1da177e4 812 if (!error) {
55b66332
DC
813 /* the data section must be 32 bit size aligned */
814 struct {
815 __uint16_t magic;
816 __uint16_t pad1;
817 __uint32_t pad2; /* may as well make it 64 bits */
818 } magic = {
819 .magic = XLOG_UNMOUNT_TYPE,
820 };
821 struct xfs_log_iovec reg = {
4e0d5f92 822 .i_addr = &magic,
55b66332
DC
823 .i_len = sizeof(magic),
824 .i_type = XLOG_REG_TYPE_UNMOUNT,
825 };
826 struct xfs_log_vec vec = {
827 .lv_niovecs = 1,
828 .lv_iovecp = &reg,
829 };
830
3948659e 831 /* remove inited flag, and account for space used */
55b66332 832 tic->t_flags = 0;
3948659e 833 tic->t_curr_res -= sizeof(magic);
55b66332 834 error = xlog_write(log, &vec, tic, &lsn,
1da177e4
LT
835 NULL, XLOG_UNMOUNT_TRANS);
836 /*
837 * At this point, we're umounting anyway,
838 * so there's no point in transitioning log state
839 * to IOERROR. Just continue...
840 */
841 }
842
a0fa2b67
DC
843 if (error)
844 xfs_alert(mp, "%s: unmount record failed", __func__);
1da177e4
LT
845
846
b22cd72c 847 spin_lock(&log->l_icloglock);
1da177e4 848 iclog = log->l_iclog;
155cc6b7 849 atomic_inc(&iclog->ic_refcnt);
1da177e4 850 xlog_state_want_sync(log, iclog);
39e2defe 851 spin_unlock(&log->l_icloglock);
1bb7d6b5 852 error = xlog_state_release_iclog(log, iclog);
1da177e4 853
b22cd72c 854 spin_lock(&log->l_icloglock);
1da177e4
LT
855 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
856 iclog->ic_state == XLOG_STATE_DIRTY)) {
857 if (!XLOG_FORCED_SHUTDOWN(log)) {
eb40a875
DC
858 xlog_wait(&iclog->ic_force_wait,
859 &log->l_icloglock);
1da177e4 860 } else {
b22cd72c 861 spin_unlock(&log->l_icloglock);
1da177e4
LT
862 }
863 } else {
b22cd72c 864 spin_unlock(&log->l_icloglock);
1da177e4 865 }
955e47ad 866 if (tic) {
0b1b213f 867 trace_xfs_log_umount_write(log, tic);
955e47ad 868 xlog_ungrant_log_space(log, tic);
cc09c0dc 869 xfs_log_ticket_put(tic);
955e47ad 870 }
1da177e4
LT
871 } else {
872 /*
873 * We're already in forced_shutdown mode, couldn't
874 * even attempt to write out the unmount transaction.
875 *
876 * Go through the motions of sync'ing and releasing
877 * the iclog, even though no I/O will actually happen,
c41564b5 878 * we need to wait for other log I/Os that may already
1da177e4
LT
879 * be in progress. Do this as a separate section of
880 * code so we'll know if we ever get stuck here that
881 * we're in this odd situation of trying to unmount
882 * a file system that went into forced_shutdown as
883 * the result of an unmount..
884 */
b22cd72c 885 spin_lock(&log->l_icloglock);
1da177e4 886 iclog = log->l_iclog;
155cc6b7 887 atomic_inc(&iclog->ic_refcnt);
1da177e4
LT
888
889 xlog_state_want_sync(log, iclog);
39e2defe 890 spin_unlock(&log->l_icloglock);
1bb7d6b5 891 error = xlog_state_release_iclog(log, iclog);
1da177e4 892
b22cd72c 893 spin_lock(&log->l_icloglock);
1da177e4
LT
894
895 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
896 || iclog->ic_state == XLOG_STATE_DIRTY
897 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
898
eb40a875
DC
899 xlog_wait(&iclog->ic_force_wait,
900 &log->l_icloglock);
1da177e4 901 } else {
b22cd72c 902 spin_unlock(&log->l_icloglock);
1da177e4
LT
903 }
904 }
905
1bb7d6b5 906 return error;
1da177e4
LT
907} /* xfs_log_unmount_write */
908
909/*
c75921a7 910 * Empty the log for unmount/freeze.
cf2931db
DC
911 *
912 * To do this, we first need to shut down the background log work so it is not
913 * trying to cover the log as we clean up. We then need to unpin all objects in
914 * the log so we can then flush them out. Once they have completed their IO and
915 * run the callbacks removing themselves from the AIL, we can write the unmount
c75921a7 916 * record.
1da177e4
LT
917 */
918void
c75921a7
DC
919xfs_log_quiesce(
920 struct xfs_mount *mp)
1da177e4 921{
f661f1e0 922 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
923 xfs_log_force(mp, XFS_LOG_SYNC);
924
925 /*
926 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
927 * will push it, xfs_wait_buftarg() will not wait for it. Further,
928 * xfs_buf_iowait() cannot be used because it was pushed with the
929 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
930 * the IO to complete.
931 */
932 xfs_ail_push_all_sync(mp->m_ail);
933 xfs_wait_buftarg(mp->m_ddev_targp);
934 xfs_buf_lock(mp->m_sb_bp);
935 xfs_buf_unlock(mp->m_sb_bp);
936
937 xfs_log_unmount_write(mp);
c75921a7
DC
938}
939
940/*
941 * Shut down and release the AIL and Log.
942 *
943 * During unmount, we need to ensure we flush all the dirty metadata objects
944 * from the AIL so that the log is empty before we write the unmount record to
945 * the log. Once this is done, we can tear down the AIL and the log.
946 */
947void
948xfs_log_unmount(
949 struct xfs_mount *mp)
950{
951 xfs_log_quiesce(mp);
cf2931db 952
249a8c11 953 xfs_trans_ail_destroy(mp);
baff4e44
BF
954
955 xfs_sysfs_del(&mp->m_log->l_kobj);
956
c41564b5 957 xlog_dealloc_log(mp->m_log);
1da177e4
LT
958}
959
43f5efc5
DC
960void
961xfs_log_item_init(
962 struct xfs_mount *mp,
963 struct xfs_log_item *item,
964 int type,
272e42b2 965 const struct xfs_item_ops *ops)
43f5efc5
DC
966{
967 item->li_mountp = mp;
968 item->li_ailp = mp->m_ail;
969 item->li_type = type;
970 item->li_ops = ops;
71e330b5
DC
971 item->li_lv = NULL;
972
973 INIT_LIST_HEAD(&item->li_ail);
974 INIT_LIST_HEAD(&item->li_cil);
43f5efc5
DC
975}
976
09a423a3
CH
977/*
978 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 979 */
1da177e4 980void
09a423a3 981xfs_log_space_wake(
cfb7cdca 982 struct xfs_mount *mp)
1da177e4 983{
ad223e60 984 struct xlog *log = mp->m_log;
cfb7cdca 985 int free_bytes;
1da177e4 986
1da177e4
LT
987 if (XLOG_FORCED_SHUTDOWN(log))
988 return;
1da177e4 989
28496968 990 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
991 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
992
28496968
CH
993 spin_lock(&log->l_write_head.lock);
994 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 995 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 996 spin_unlock(&log->l_write_head.lock);
1da177e4 997 }
10547941 998
28496968 999 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
1000 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1001
28496968
CH
1002 spin_lock(&log->l_reserve_head.lock);
1003 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1004 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1005 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1006 }
3f16b985 1007}
1da177e4
LT
1008
1009/*
2c6e24ce
DC
1010 * Determine if we have a transaction that has gone to disk that needs to be
1011 * covered. To begin the transition to the idle state firstly the log needs to
1012 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1013 * we start attempting to cover the log.
b6f8dd49 1014 *
2c6e24ce
DC
1015 * Only if we are then in a state where covering is needed, the caller is
1016 * informed that dummy transactions are required to move the log into the idle
1017 * state.
1018 *
1019 * If there are any items in the AIl or CIL, then we do not want to attempt to
1020 * cover the log as we may be in a situation where there isn't log space
1021 * available to run a dummy transaction and this can lead to deadlocks when the
1022 * tail of the log is pinned by an item that is modified in the CIL. Hence
1023 * there's no point in running a dummy transaction at this point because we
1024 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4
LT
1025 */
1026int
1027xfs_log_need_covered(xfs_mount_t *mp)
1028{
9a8d2fdb 1029 struct xlog *log = mp->m_log;
2c6e24ce 1030 int needed = 0;
1da177e4 1031
91ee575f 1032 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1da177e4
LT
1033 return 0;
1034
2c6e24ce
DC
1035 if (!xlog_cil_empty(log))
1036 return 0;
1037
b22cd72c 1038 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1039 switch (log->l_covered_state) {
1040 case XLOG_STATE_COVER_DONE:
1041 case XLOG_STATE_COVER_DONE2:
1042 case XLOG_STATE_COVER_IDLE:
1043 break;
1044 case XLOG_STATE_COVER_NEED:
1045 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1046 if (xfs_ail_min_lsn(log->l_ailp))
1047 break;
1048 if (!xlog_iclogs_empty(log))
1049 break;
1050
1051 needed = 1;
1052 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1053 log->l_covered_state = XLOG_STATE_COVER_DONE;
1054 else
1055 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1056 break;
b6f8dd49 1057 default:
1da177e4 1058 needed = 1;
b6f8dd49 1059 break;
1da177e4 1060 }
b22cd72c 1061 spin_unlock(&log->l_icloglock);
014c2544 1062 return needed;
1da177e4
LT
1063}
1064
09a423a3 1065/*
1da177e4
LT
1066 * We may be holding the log iclog lock upon entering this routine.
1067 */
1068xfs_lsn_t
1c304625 1069xlog_assign_tail_lsn_locked(
1c3cb9ec 1070 struct xfs_mount *mp)
1da177e4 1071{
ad223e60 1072 struct xlog *log = mp->m_log;
1c304625
CH
1073 struct xfs_log_item *lip;
1074 xfs_lsn_t tail_lsn;
1075
1076 assert_spin_locked(&mp->m_ail->xa_lock);
1da177e4 1077
09a423a3
CH
1078 /*
1079 * To make sure we always have a valid LSN for the log tail we keep
1080 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1081 * and use that when the AIL was empty.
09a423a3 1082 */
1c304625
CH
1083 lip = xfs_ail_min(mp->m_ail);
1084 if (lip)
1085 tail_lsn = lip->li_lsn;
1086 else
84f3c683 1087 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1088 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1089 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1090 return tail_lsn;
1c3cb9ec 1091}
1da177e4 1092
1c304625
CH
1093xfs_lsn_t
1094xlog_assign_tail_lsn(
1095 struct xfs_mount *mp)
1096{
1097 xfs_lsn_t tail_lsn;
1098
1099 spin_lock(&mp->m_ail->xa_lock);
1100 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1101 spin_unlock(&mp->m_ail->xa_lock);
1102
1103 return tail_lsn;
1104}
1105
1da177e4
LT
1106/*
1107 * Return the space in the log between the tail and the head. The head
1108 * is passed in the cycle/bytes formal parms. In the special case where
1109 * the reserve head has wrapped passed the tail, this calculation is no
1110 * longer valid. In this case, just return 0 which means there is no space
1111 * in the log. This works for all places where this function is called
1112 * with the reserve head. Of course, if the write head were to ever
1113 * wrap the tail, we should blow up. Rather than catch this case here,
1114 * we depend on other ASSERTions in other parts of the code. XXXmiken
1115 *
1116 * This code also handles the case where the reservation head is behind
1117 * the tail. The details of this case are described below, but the end
1118 * result is that we return the size of the log as the amount of space left.
1119 */
a8272ce0 1120STATIC int
a69ed03c 1121xlog_space_left(
ad223e60 1122 struct xlog *log,
c8a09ff8 1123 atomic64_t *head)
1da177e4 1124{
a69ed03c
DC
1125 int free_bytes;
1126 int tail_bytes;
1127 int tail_cycle;
1128 int head_cycle;
1129 int head_bytes;
1da177e4 1130
a69ed03c 1131 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1132 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1133 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1134 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1135 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1136 else if (tail_cycle + 1 < head_cycle)
1da177e4 1137 return 0;
a69ed03c
DC
1138 else if (tail_cycle < head_cycle) {
1139 ASSERT(tail_cycle == (head_cycle - 1));
1140 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1141 } else {
1142 /*
1143 * The reservation head is behind the tail.
1144 * In this case we just want to return the size of the
1145 * log as the amount of space left.
1146 */
a0fa2b67 1147 xfs_alert(log->l_mp,
1da177e4
LT
1148 "xlog_space_left: head behind tail\n"
1149 " tail_cycle = %d, tail_bytes = %d\n"
1150 " GH cycle = %d, GH bytes = %d",
a69ed03c 1151 tail_cycle, tail_bytes, head_cycle, head_bytes);
1da177e4
LT
1152 ASSERT(0);
1153 free_bytes = log->l_logsize;
1154 }
1155 return free_bytes;
a69ed03c 1156}
1da177e4
LT
1157
1158
1159/*
1160 * Log function which is called when an io completes.
1161 *
1162 * The log manager needs its own routine, in order to control what
1163 * happens with the buffer after the write completes.
1164 */
1165void
1166xlog_iodone(xfs_buf_t *bp)
1167{
9a8d2fdb
MT
1168 struct xlog_in_core *iclog = bp->b_fspriv;
1169 struct xlog *l = iclog->ic_log;
1170 int aborted = 0;
1da177e4
LT
1171
1172 /*
1173 * Race to shutdown the filesystem if we see an error.
1174 */
36de9556 1175 if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1da177e4 1176 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
901796af 1177 xfs_buf_ioerror_alert(bp, __func__);
c867cb61 1178 xfs_buf_stale(bp);
7d04a335 1179 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4
LT
1180 /*
1181 * This flag will be propagated to the trans-committed
1182 * callback routines to let them know that the log-commit
1183 * didn't succeed.
1184 */
1185 aborted = XFS_LI_ABORTED;
1186 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1187 aborted = XFS_LI_ABORTED;
1188 }
3db296f3
DC
1189
1190 /* log I/O is always issued ASYNC */
1191 ASSERT(XFS_BUF_ISASYNC(bp));
1da177e4 1192 xlog_state_done_syncing(iclog, aborted);
9c23eccc 1193
3db296f3 1194 /*
9c23eccc
DC
1195 * drop the buffer lock now that we are done. Nothing references
1196 * the buffer after this, so an unmount waiting on this lock can now
1197 * tear it down safely. As such, it is unsafe to reference the buffer
1198 * (bp) after the unlock as we could race with it being freed.
3db296f3 1199 */
9c23eccc 1200 xfs_buf_unlock(bp);
c3f8fc73 1201}
1da177e4 1202
1da177e4
LT
1203/*
1204 * Return size of each in-core log record buffer.
1205 *
9da096fd 1206 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1207 *
1208 * If the filesystem blocksize is too large, we may need to choose a
1209 * larger size since the directory code currently logs entire blocks.
1210 */
1211
1212STATIC void
9a8d2fdb
MT
1213xlog_get_iclog_buffer_size(
1214 struct xfs_mount *mp,
1215 struct xlog *log)
1da177e4
LT
1216{
1217 int size;
1218 int xhdrs;
1219
1cb51258
ES
1220 if (mp->m_logbufs <= 0)
1221 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1222 else
cfcbbbd0 1223 log->l_iclog_bufs = mp->m_logbufs;
1da177e4
LT
1224
1225 /*
1226 * Buffer size passed in from mount system call.
1227 */
cfcbbbd0 1228 if (mp->m_logbsize > 0) {
1da177e4
LT
1229 size = log->l_iclog_size = mp->m_logbsize;
1230 log->l_iclog_size_log = 0;
1231 while (size != 1) {
1232 log->l_iclog_size_log++;
1233 size >>= 1;
1234 }
1235
62118709 1236 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
9da096fd
MP
1237 /* # headers = size / 32k
1238 * one header holds cycles from 32k of data
1da177e4
LT
1239 */
1240
1241 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1242 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1243 xhdrs++;
1244 log->l_iclog_hsize = xhdrs << BBSHIFT;
1245 log->l_iclog_heads = xhdrs;
1246 } else {
1247 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1248 log->l_iclog_hsize = BBSIZE;
1249 log->l_iclog_heads = 1;
1250 }
cfcbbbd0 1251 goto done;
1da177e4
LT
1252 }
1253
9da096fd 1254 /* All machines use 32kB buffers by default. */
1cb51258
ES
1255 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1256 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1da177e4
LT
1257
1258 /* the default log size is 16k or 32k which is one header sector */
1259 log->l_iclog_hsize = BBSIZE;
1260 log->l_iclog_heads = 1;
1261
7153f8ba
CH
1262done:
1263 /* are we being asked to make the sizes selected above visible? */
cfcbbbd0
NS
1264 if (mp->m_logbufs == 0)
1265 mp->m_logbufs = log->l_iclog_bufs;
1266 if (mp->m_logbsize == 0)
1267 mp->m_logbsize = log->l_iclog_size;
1da177e4
LT
1268} /* xlog_get_iclog_buffer_size */
1269
1270
f661f1e0
DC
1271void
1272xfs_log_work_queue(
1273 struct xfs_mount *mp)
1274{
5889608d 1275 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1276 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1277}
1278
1279/*
1280 * Every sync period we need to unpin all items in the AIL and push them to
1281 * disk. If there is nothing dirty, then we might need to cover the log to
1282 * indicate that the filesystem is idle.
1283 */
1284void
1285xfs_log_worker(
1286 struct work_struct *work)
1287{
1288 struct xlog *log = container_of(to_delayed_work(work),
1289 struct xlog, l_work);
1290 struct xfs_mount *mp = log->l_mp;
1291
1292 /* dgc: errors ignored - not fatal and nowhere to report them */
1293 if (xfs_log_need_covered(mp))
1294 xfs_fs_log_dummy(mp);
1295 else
1296 xfs_log_force(mp, 0);
1297
1298 /* start pushing all the metadata that is currently dirty */
1299 xfs_ail_push_all(mp->m_ail);
1300
1301 /* queue us up again */
1302 xfs_log_work_queue(mp);
1303}
1304
1da177e4
LT
1305/*
1306 * This routine initializes some of the log structure for a given mount point.
1307 * Its primary purpose is to fill in enough, so recovery can occur. However,
1308 * some other stuff may be filled in too.
1309 */
9a8d2fdb
MT
1310STATIC struct xlog *
1311xlog_alloc_log(
1312 struct xfs_mount *mp,
1313 struct xfs_buftarg *log_target,
1314 xfs_daddr_t blk_offset,
1315 int num_bblks)
1da177e4 1316{
9a8d2fdb 1317 struct xlog *log;
1da177e4
LT
1318 xlog_rec_header_t *head;
1319 xlog_in_core_t **iclogp;
1320 xlog_in_core_t *iclog, *prev_iclog=NULL;
1321 xfs_buf_t *bp;
1322 int i;
2451337d 1323 int error = -ENOMEM;
69ce58f0 1324 uint log2_size = 0;
1da177e4 1325
9a8d2fdb 1326 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1327 if (!log) {
a0fa2b67 1328 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1329 goto out;
1330 }
1da177e4
LT
1331
1332 log->l_mp = mp;
1333 log->l_targ = log_target;
1334 log->l_logsize = BBTOB(num_bblks);
1335 log->l_logBBstart = blk_offset;
1336 log->l_logBBsize = num_bblks;
1337 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1338 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1339 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1340
1341 log->l_prev_block = -1;
1da177e4 1342 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1343 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1344 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1345 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8
CH
1346
1347 xlog_grant_head_init(&log->l_reserve_head);
1348 xlog_grant_head_init(&log->l_write_head);
1da177e4 1349
2451337d 1350 error = -EFSCORRUPTED;
62118709 1351 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1352 log2_size = mp->m_sb.sb_logsectlog;
1353 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1354 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1355 log2_size, BBSHIFT);
a6cb767e
DC
1356 goto out_free_log;
1357 }
1358
69ce58f0
AE
1359 log2_size -= BBSHIFT;
1360 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1361 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1362 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1363 goto out_free_log;
1364 }
69ce58f0
AE
1365
1366 /* for larger sector sizes, must have v2 or external log */
1367 if (log2_size && log->l_logBBstart > 0 &&
1368 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1369 xfs_warn(mp,
1370 "log sector size (0x%x) invalid for configuration.",
1371 log2_size);
a6cb767e
DC
1372 goto out_free_log;
1373 }
1da177e4 1374 }
69ce58f0 1375 log->l_sectBBsize = 1 << log2_size;
1da177e4
LT
1376
1377 xlog_get_iclog_buffer_size(mp, log);
1378
400b9d88
DC
1379 /*
1380 * Use a NULL block for the extra log buffer used during splits so that
1381 * it will trigger errors if we ever try to do IO on it without first
1382 * having set it up properly.
1383 */
2451337d 1384 error = -ENOMEM;
400b9d88
DC
1385 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1386 BTOBB(log->l_iclog_size), 0);
644c3567
DC
1387 if (!bp)
1388 goto out_free_log;
9c23eccc
DC
1389
1390 /*
1391 * The iclogbuf buffer locks are held over IO but we are not going to do
1392 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1393 * when appropriately.
1394 */
0c842ad4 1395 ASSERT(xfs_buf_islocked(bp));
9c23eccc
DC
1396 xfs_buf_unlock(bp);
1397
1398 bp->b_iodone = xlog_iodone;
1da177e4
LT
1399 log->l_xbuf = bp;
1400
007c61c6 1401 spin_lock_init(&log->l_icloglock);
eb40a875 1402 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1403
1da177e4
LT
1404 iclogp = &log->l_iclog;
1405 /*
1406 * The amount of memory to allocate for the iclog structure is
1407 * rather funky due to the way the structure is defined. It is
1408 * done this way so that we can use different sizes for machines
1409 * with different amounts of memory. See the definition of
1410 * xlog_in_core_t in xfs_log_priv.h for details.
1411 */
1da177e4
LT
1412 ASSERT(log->l_iclog_size >= 4096);
1413 for (i=0; i < log->l_iclog_bufs; i++) {
644c3567
DC
1414 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1415 if (!*iclogp)
1416 goto out_free_iclog;
1417
1da177e4 1418 iclog = *iclogp;
1da177e4
LT
1419 iclog->ic_prev = prev_iclog;
1420 prev_iclog = iclog;
1fa40b01 1421
686865f7 1422 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
e70b73f8 1423 BTOBB(log->l_iclog_size), 0);
644c3567
DC
1424 if (!bp)
1425 goto out_free_iclog;
c8da0faf 1426
9c23eccc
DC
1427 ASSERT(xfs_buf_islocked(bp));
1428 xfs_buf_unlock(bp);
1429
cb669ca5 1430 bp->b_iodone = xlog_iodone;
1fa40b01 1431 iclog->ic_bp = bp;
b28708d6 1432 iclog->ic_data = bp->b_addr;
4679b2d3 1433#ifdef DEBUG
1da177e4 1434 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
4679b2d3 1435#endif
1da177e4
LT
1436 head = &iclog->ic_header;
1437 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1438 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1439 head->h_version = cpu_to_be32(
62118709 1440 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1441 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1442 /* new fields */
b53e675d 1443 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1444 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1445
4e94b71b 1446 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1da177e4
LT
1447 iclog->ic_state = XLOG_STATE_ACTIVE;
1448 iclog->ic_log = log;
114d23aa
DC
1449 atomic_set(&iclog->ic_refcnt, 0);
1450 spin_lock_init(&iclog->ic_callback_lock);
1da177e4 1451 iclog->ic_callback_tail = &(iclog->ic_callback);
b28708d6 1452 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1453
eb40a875
DC
1454 init_waitqueue_head(&iclog->ic_force_wait);
1455 init_waitqueue_head(&iclog->ic_write_wait);
1da177e4
LT
1456
1457 iclogp = &iclog->ic_next;
1458 }
1459 *iclogp = log->l_iclog; /* complete ring */
1460 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1461
71e330b5
DC
1462 error = xlog_cil_init(log);
1463 if (error)
1464 goto out_free_iclog;
1da177e4 1465 return log;
644c3567
DC
1466
1467out_free_iclog:
1468 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1469 prev_iclog = iclog->ic_next;
eb40a875 1470 if (iclog->ic_bp)
644c3567 1471 xfs_buf_free(iclog->ic_bp);
644c3567
DC
1472 kmem_free(iclog);
1473 }
1474 spinlock_destroy(&log->l_icloglock);
644c3567
DC
1475 xfs_buf_free(log->l_xbuf);
1476out_free_log:
1477 kmem_free(log);
a6cb767e 1478out:
2451337d 1479 return ERR_PTR(error);
1da177e4
LT
1480} /* xlog_alloc_log */
1481
1482
1483/*
1484 * Write out the commit record of a transaction associated with the given
1485 * ticket. Return the lsn of the commit record.
1486 */
1487STATIC int
55b66332 1488xlog_commit_record(
ad223e60 1489 struct xlog *log,
55b66332
DC
1490 struct xlog_ticket *ticket,
1491 struct xlog_in_core **iclog,
1492 xfs_lsn_t *commitlsnp)
1da177e4 1493{
55b66332
DC
1494 struct xfs_mount *mp = log->l_mp;
1495 int error;
1496 struct xfs_log_iovec reg = {
1497 .i_addr = NULL,
1498 .i_len = 0,
1499 .i_type = XLOG_REG_TYPE_COMMIT,
1500 };
1501 struct xfs_log_vec vec = {
1502 .lv_niovecs = 1,
1503 .lv_iovecp = &reg,
1504 };
1da177e4
LT
1505
1506 ASSERT_ALWAYS(iclog);
55b66332
DC
1507 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1508 XLOG_COMMIT_TRANS);
1509 if (error)
7d04a335 1510 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1511 return error;
55b66332 1512}
1da177e4
LT
1513
1514/*
1515 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1516 * log space. This code pushes on the lsn which would supposedly free up
1517 * the 25% which we want to leave free. We may need to adopt a policy which
1518 * pushes on an lsn which is further along in the log once we reach the high
1519 * water mark. In this manner, we would be creating a low water mark.
1520 */
a8272ce0 1521STATIC void
2ced19cb 1522xlog_grant_push_ail(
ad223e60 1523 struct xlog *log,
2ced19cb 1524 int need_bytes)
1da177e4 1525{
2ced19cb 1526 xfs_lsn_t threshold_lsn = 0;
84f3c683 1527 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1528 int free_blocks;
1529 int free_bytes;
1530 int threshold_block;
1531 int threshold_cycle;
1532 int free_threshold;
1533
1534 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1535
28496968 1536 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1537 free_blocks = BTOBBT(free_bytes);
1538
1539 /*
1540 * Set the threshold for the minimum number of free blocks in the
1541 * log to the maximum of what the caller needs, one quarter of the
1542 * log, and 256 blocks.
1543 */
1544 free_threshold = BTOBB(need_bytes);
1545 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1546 free_threshold = MAX(free_threshold, 256);
1547 if (free_blocks >= free_threshold)
1548 return;
1549
1c3cb9ec
DC
1550 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1551 &threshold_block);
1552 threshold_block += free_threshold;
1da177e4 1553 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1554 threshold_block -= log->l_logBBsize;
1555 threshold_cycle += 1;
1da177e4 1556 }
2ced19cb
DC
1557 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1558 threshold_block);
1559 /*
1560 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1561 * log record known to be on disk. Use a snapshot of the last sync lsn
1562 * so that it doesn't change between the compare and the set.
1da177e4 1563 */
84f3c683
DC
1564 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1565 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1566 threshold_lsn = last_sync_lsn;
2ced19cb
DC
1567
1568 /*
1569 * Get the transaction layer to kick the dirty buffers out to
1570 * disk asynchronously. No point in trying to do this if
1571 * the filesystem is shutting down.
1572 */
1573 if (!XLOG_FORCED_SHUTDOWN(log))
fd074841 1574 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1575}
1da177e4 1576
0e446be4
CH
1577/*
1578 * Stamp cycle number in every block
1579 */
1580STATIC void
1581xlog_pack_data(
1582 struct xlog *log,
1583 struct xlog_in_core *iclog,
1584 int roundoff)
1585{
1586 int i, j, k;
1587 int size = iclog->ic_offset + roundoff;
1588 __be32 cycle_lsn;
1589 xfs_caddr_t dp;
1590
1591 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1592
1593 dp = iclog->ic_datap;
1594 for (i = 0; i < BTOBB(size); i++) {
1595 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1596 break;
1597 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1598 *(__be32 *)dp = cycle_lsn;
1599 dp += BBSIZE;
1600 }
1601
1602 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1603 xlog_in_core_2_t *xhdr = iclog->ic_data;
1604
1605 for ( ; i < BTOBB(size); i++) {
1606 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1607 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1608 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1609 *(__be32 *)dp = cycle_lsn;
1610 dp += BBSIZE;
1611 }
1612
1613 for (i = 1; i < log->l_iclog_heads; i++)
1614 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1615 }
1616}
1617
1618/*
1619 * Calculate the checksum for a log buffer.
1620 *
1621 * This is a little more complicated than it should be because the various
1622 * headers and the actual data are non-contiguous.
1623 */
f9668a09 1624__le32
0e446be4
CH
1625xlog_cksum(
1626 struct xlog *log,
1627 struct xlog_rec_header *rhead,
1628 char *dp,
1629 int size)
1630{
1631 __uint32_t crc;
1632
1633 /* first generate the crc for the record header ... */
1634 crc = xfs_start_cksum((char *)rhead,
1635 sizeof(struct xlog_rec_header),
1636 offsetof(struct xlog_rec_header, h_crc));
1637
1638 /* ... then for additional cycle data for v2 logs ... */
1639 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1640 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1641 int i;
1642
1643 for (i = 1; i < log->l_iclog_heads; i++) {
1644 crc = crc32c(crc, &xhdr[i].hic_xheader,
1645 sizeof(struct xlog_rec_ext_header));
1646 }
1647 }
1648
1649 /* ... and finally for the payload */
1650 crc = crc32c(crc, dp, size);
1651
1652 return xfs_end_cksum(crc);
1653}
1654
873ff550
CH
1655/*
1656 * The bdstrat callback function for log bufs. This gives us a central
1657 * place to trap bufs in case we get hit by a log I/O error and need to
1658 * shutdown. Actually, in practice, even when we didn't get a log error,
1659 * we transition the iclogs to IOERROR state *after* flushing all existing
1660 * iclogs to disk. This is because we don't want anymore new transactions to be
1661 * started or completed afterwards.
9c23eccc
DC
1662 *
1663 * We lock the iclogbufs here so that we can serialise against IO completion
1664 * during unmount. We might be processing a shutdown triggered during unmount,
1665 * and that can occur asynchronously to the unmount thread, and hence we need to
1666 * ensure that completes before tearing down the iclogbufs. Hence we need to
1667 * hold the buffer lock across the log IO to acheive that.
873ff550
CH
1668 */
1669STATIC int
1670xlog_bdstrat(
1671 struct xfs_buf *bp)
1672{
adadbeef 1673 struct xlog_in_core *iclog = bp->b_fspriv;
873ff550 1674
9c23eccc 1675 xfs_buf_lock(bp);
873ff550 1676 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2451337d 1677 xfs_buf_ioerror(bp, -EIO);
c867cb61 1678 xfs_buf_stale(bp);
e8aaba9a 1679 xfs_buf_ioend(bp);
873ff550
CH
1680 /*
1681 * It would seem logical to return EIO here, but we rely on
1682 * the log state machine to propagate I/O errors instead of
9c23eccc
DC
1683 * doing it here. Similarly, IO completion will unlock the
1684 * buffer, so we don't do it here.
873ff550
CH
1685 */
1686 return 0;
1687 }
1688
595bff75 1689 xfs_buf_submit(bp);
873ff550
CH
1690 return 0;
1691}
1da177e4
LT
1692
1693/*
1694 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1695 * fashion. Previously, we should have moved the current iclog
1696 * ptr in the log to point to the next available iclog. This allows further
1697 * write to continue while this code syncs out an iclog ready to go.
1698 * Before an in-core log can be written out, the data section must be scanned
1699 * to save away the 1st word of each BBSIZE block into the header. We replace
1700 * it with the current cycle count. Each BBSIZE block is tagged with the
1701 * cycle count because there in an implicit assumption that drives will
1702 * guarantee that entire 512 byte blocks get written at once. In other words,
1703 * we can't have part of a 512 byte block written and part not written. By
1704 * tagging each block, we will know which blocks are valid when recovering
1705 * after an unclean shutdown.
1706 *
1707 * This routine is single threaded on the iclog. No other thread can be in
1708 * this routine with the same iclog. Changing contents of iclog can there-
1709 * fore be done without grabbing the state machine lock. Updating the global
1710 * log will require grabbing the lock though.
1711 *
1712 * The entire log manager uses a logical block numbering scheme. Only
1713 * log_sync (and then only bwrite()) know about the fact that the log may
1714 * not start with block zero on a given device. The log block start offset
1715 * is added immediately before calling bwrite().
1716 */
1717
a8272ce0 1718STATIC int
9a8d2fdb
MT
1719xlog_sync(
1720 struct xlog *log,
1721 struct xlog_in_core *iclog)
1da177e4 1722{
1da177e4 1723 xfs_buf_t *bp;
b53e675d 1724 int i;
1da177e4
LT
1725 uint count; /* byte count of bwrite */
1726 uint count_init; /* initial count before roundup */
1727 int roundoff; /* roundoff to BB or stripe */
1728 int split = 0; /* split write into two regions */
1729 int error;
62118709 1730 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
0e446be4 1731 int size;
1da177e4
LT
1732
1733 XFS_STATS_INC(xs_log_writes);
155cc6b7 1734 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
1735
1736 /* Add for LR header */
1737 count_init = log->l_iclog_hsize + iclog->ic_offset;
1738
1739 /* Round out the log write size */
1740 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1741 /* we have a v2 stripe unit to use */
1742 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1743 } else {
1744 count = BBTOB(BTOBB(count_init));
1745 }
1746 roundoff = count - count_init;
1747 ASSERT(roundoff >= 0);
1748 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1749 roundoff < log->l_mp->m_sb.sb_logsunit)
1750 ||
1751 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1752 roundoff < BBTOB(1)));
1753
1754 /* move grant heads by roundoff in sync */
28496968
CH
1755 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1756 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1757
1758 /* put cycle number in every block */
1759 xlog_pack_data(log, iclog, roundoff);
1760
1761 /* real byte length */
0e446be4
CH
1762 size = iclog->ic_offset;
1763 if (v2)
1764 size += roundoff;
1765 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 1766
f5faad79 1767 bp = iclog->ic_bp;
b53e675d 1768 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1da177e4
LT
1769
1770 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1771
1772 /* Do we need to split this write into 2 parts? */
1773 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
0e446be4
CH
1774 char *dptr;
1775
1da177e4
LT
1776 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1777 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
0e446be4
CH
1778 iclog->ic_bwritecnt = 2;
1779
1780 /*
1781 * Bump the cycle numbers at the start of each block in the
1782 * part of the iclog that ends up in the buffer that gets
1783 * written to the start of the log.
1784 *
1785 * Watch out for the header magic number case, though.
1786 */
1787 dptr = (char *)&iclog->ic_header + count;
1788 for (i = 0; i < split; i += BBSIZE) {
1789 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1790 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1791 cycle++;
1792 *(__be32 *)dptr = cpu_to_be32(cycle);
1793
1794 dptr += BBSIZE;
1795 }
1da177e4
LT
1796 } else {
1797 iclog->ic_bwritecnt = 1;
1798 }
0e446be4
CH
1799
1800 /* calculcate the checksum */
1801 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1802 iclog->ic_datap, size);
1803
aa0e8833 1804 bp->b_io_length = BTOBB(count);
adadbeef 1805 bp->b_fspriv = iclog;
f5faad79 1806 XFS_BUF_ZEROFLAGS(bp);
1da177e4 1807 XFS_BUF_ASYNC(bp);
1d5ae5df 1808 bp->b_flags |= XBF_SYNCIO;
b29c70f5
BF
1809 /* use high priority completion wq */
1810 bp->b_ioend_wq = log->l_mp->m_log_workqueue;
651701d7 1811
a27a263b 1812 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
e163cbde
CH
1813 bp->b_flags |= XBF_FUA;
1814
a27a263b 1815 /*
e163cbde
CH
1816 * Flush the data device before flushing the log to make
1817 * sure all meta data written back from the AIL actually made
1818 * it to disk before stamping the new log tail LSN into the
1819 * log buffer. For an external log we need to issue the
1820 * flush explicitly, and unfortunately synchronously here;
1821 * for an internal log we can simply use the block layer
1822 * state machine for preflushes.
a27a263b
CH
1823 */
1824 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1825 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
e163cbde
CH
1826 else
1827 bp->b_flags |= XBF_FLUSH;
a27a263b 1828 }
1da177e4
LT
1829
1830 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1831 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1832
003fd6c8 1833 xlog_verify_iclog(log, iclog, count, true);
1da177e4
LT
1834
1835 /* account for log which doesn't start at block #0 */
1836 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1837 /*
1838 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1839 * is shutting down.
1840 */
1841 XFS_BUF_WRITE(bp);
1842
901796af
CH
1843 error = xlog_bdstrat(bp);
1844 if (error) {
1845 xfs_buf_ioerror_alert(bp, "xlog_sync");
014c2544 1846 return error;
1da177e4
LT
1847 }
1848 if (split) {
f5faad79 1849 bp = iclog->ic_log->l_xbuf;
1da177e4 1850 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
02fe03d9
CS
1851 xfs_buf_associate_memory(bp,
1852 (char *)&iclog->ic_header + count, split);
adadbeef 1853 bp->b_fspriv = iclog;
f5faad79 1854 XFS_BUF_ZEROFLAGS(bp);
1da177e4 1855 XFS_BUF_ASYNC(bp);
1d5ae5df 1856 bp->b_flags |= XBF_SYNCIO;
f538d4da 1857 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
e163cbde 1858 bp->b_flags |= XBF_FUA;
b29c70f5
BF
1859 /* use high priority completion wq */
1860 bp->b_ioend_wq = log->l_mp->m_log_workqueue;
1da177e4
LT
1861
1862 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1863 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1864
c41564b5 1865 /* account for internal log which doesn't start at block #0 */
1da177e4
LT
1866 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1867 XFS_BUF_WRITE(bp);
901796af
CH
1868 error = xlog_bdstrat(bp);
1869 if (error) {
1870 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
014c2544 1871 return error;
1da177e4
LT
1872 }
1873 }
014c2544 1874 return 0;
1da177e4
LT
1875} /* xlog_sync */
1876
1da177e4 1877/*
c41564b5 1878 * Deallocate a log structure
1da177e4 1879 */
a8272ce0 1880STATIC void
9a8d2fdb
MT
1881xlog_dealloc_log(
1882 struct xlog *log)
1da177e4
LT
1883{
1884 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
1885 int i;
1886
71e330b5
DC
1887 xlog_cil_destroy(log);
1888
44396476 1889 /*
9c23eccc
DC
1890 * Cycle all the iclogbuf locks to make sure all log IO completion
1891 * is done before we tear down these buffers.
1892 */
1893 iclog = log->l_iclog;
1894 for (i = 0; i < log->l_iclog_bufs; i++) {
1895 xfs_buf_lock(iclog->ic_bp);
1896 xfs_buf_unlock(iclog->ic_bp);
1897 iclog = iclog->ic_next;
1898 }
1899
1900 /*
1901 * Always need to ensure that the extra buffer does not point to memory
1902 * owned by another log buffer before we free it. Also, cycle the lock
1903 * first to ensure we've completed IO on it.
44396476 1904 */
9c23eccc
DC
1905 xfs_buf_lock(log->l_xbuf);
1906 xfs_buf_unlock(log->l_xbuf);
e70b73f8 1907 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
44396476
DC
1908 xfs_buf_free(log->l_xbuf);
1909
1da177e4 1910 iclog = log->l_iclog;
9c23eccc 1911 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 1912 xfs_buf_free(iclog->ic_bp);
1da177e4 1913 next_iclog = iclog->ic_next;
f0e2d93c 1914 kmem_free(iclog);
1da177e4
LT
1915 iclog = next_iclog;
1916 }
1da177e4 1917 spinlock_destroy(&log->l_icloglock);
1da177e4 1918
1da177e4 1919 log->l_mp->m_log = NULL;
f0e2d93c 1920 kmem_free(log);
c41564b5 1921} /* xlog_dealloc_log */
1da177e4
LT
1922
1923/*
1924 * Update counters atomically now that memcpy is done.
1925 */
1926/* ARGSUSED */
1927static inline void
9a8d2fdb
MT
1928xlog_state_finish_copy(
1929 struct xlog *log,
1930 struct xlog_in_core *iclog,
1931 int record_cnt,
1932 int copy_bytes)
1da177e4 1933{
b22cd72c 1934 spin_lock(&log->l_icloglock);
1da177e4 1935
413d57c9 1936 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4
LT
1937 iclog->ic_offset += copy_bytes;
1938
b22cd72c 1939 spin_unlock(&log->l_icloglock);
1da177e4
LT
1940} /* xlog_state_finish_copy */
1941
1942
1943
1944
7e9c6396
TS
1945/*
1946 * print out info relating to regions written which consume
1947 * the reservation
1948 */
71e330b5
DC
1949void
1950xlog_print_tic_res(
1951 struct xfs_mount *mp,
1952 struct xlog_ticket *ticket)
7e9c6396
TS
1953{
1954 uint i;
1955 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1956
1957 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1958 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1959 "bformat",
1960 "bchunk",
1961 "efi_format",
1962 "efd_format",
1963 "iformat",
1964 "icore",
1965 "iext",
1966 "ibroot",
1967 "ilocal",
1968 "iattr_ext",
1969 "iattr_broot",
1970 "iattr_local",
1971 "qformat",
1972 "dquot",
1973 "quotaoff",
1974 "LR header",
1975 "unmount",
1976 "commit",
1977 "trans header"
1978 };
1979 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1980 "SETATTR_NOT_SIZE",
1981 "SETATTR_SIZE",
1982 "INACTIVE",
1983 "CREATE",
1984 "CREATE_TRUNC",
1985 "TRUNCATE_FILE",
1986 "REMOVE",
1987 "LINK",
1988 "RENAME",
1989 "MKDIR",
1990 "RMDIR",
1991 "SYMLINK",
1992 "SET_DMATTRS",
1993 "GROWFS",
1994 "STRAT_WRITE",
1995 "DIOSTRAT",
1996 "WRITE_SYNC",
1997 "WRITEID",
1998 "ADDAFORK",
1999 "ATTRINVAL",
2000 "ATRUNCATE",
2001 "ATTR_SET",
2002 "ATTR_RM",
2003 "ATTR_FLAG",
2004 "CLEAR_AGI_BUCKET",
2005 "QM_SBCHANGE",
2006 "DUMMY1",
2007 "DUMMY2",
2008 "QM_QUOTAOFF",
2009 "QM_DQALLOC",
2010 "QM_SETQLIM",
2011 "QM_DQCLUSTER",
2012 "QM_QINOCREATE",
2013 "QM_QUOTAOFF_END",
2014 "SB_UNIT",
2015 "FSYNC_TS",
2016 "GROWFSRT_ALLOC",
2017 "GROWFSRT_ZERO",
2018 "GROWFSRT_FREE",
2019 "SWAPEXT"
2020 };
2021
a0fa2b67 2022 xfs_warn(mp,
93b8a585 2023 "xlog_write: reservation summary:\n"
a0fa2b67
DC
2024 " trans type = %s (%u)\n"
2025 " unit res = %d bytes\n"
2026 " current res = %d bytes\n"
2027 " total reg = %u bytes (o/flow = %u bytes)\n"
2028 " ophdrs = %u (ophdr space = %u bytes)\n"
2029 " ophdr + reg = %u bytes\n"
2030 " num regions = %u\n",
2031 ((ticket->t_trans_type <= 0 ||
2032 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2033 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2034 ticket->t_trans_type,
2035 ticket->t_unit_res,
2036 ticket->t_curr_res,
2037 ticket->t_res_arr_sum, ticket->t_res_o_flow,
2038 ticket->t_res_num_ophdrs, ophdr_spc,
2039 ticket->t_res_arr_sum +
2040 ticket->t_res_o_flow + ophdr_spc,
2041 ticket->t_res_num);
7e9c6396
TS
2042
2043 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2044 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2045 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396
TS
2046 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2047 "bad-rtype" : res_type_str[r_type-1]),
2048 ticket->t_res_arr[i].r_len);
2049 }
169a7b07 2050
a0fa2b67 2051 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
93b8a585 2052 "xlog_write: reservation ran out. Need to up reservation");
297aa637 2053 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
7e9c6396 2054}
7e9c6396 2055
b5203cd0
DC
2056/*
2057 * Calculate the potential space needed by the log vector. Each region gets
2058 * its own xlog_op_header_t and may need to be double word aligned.
2059 */
2060static int
2061xlog_write_calc_vec_length(
2062 struct xlog_ticket *ticket,
55b66332 2063 struct xfs_log_vec *log_vector)
b5203cd0 2064{
55b66332 2065 struct xfs_log_vec *lv;
b5203cd0
DC
2066 int headers = 0;
2067 int len = 0;
2068 int i;
2069
2070 /* acct for start rec of xact */
2071 if (ticket->t_flags & XLOG_TIC_INITED)
2072 headers++;
2073
55b66332 2074 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2075 /* we don't write ordered log vectors */
2076 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2077 continue;
2078
55b66332
DC
2079 headers += lv->lv_niovecs;
2080
2081 for (i = 0; i < lv->lv_niovecs; i++) {
2082 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2083
55b66332
DC
2084 len += vecp->i_len;
2085 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2086 }
b5203cd0
DC
2087 }
2088
2089 ticket->t_res_num_ophdrs += headers;
2090 len += headers * sizeof(struct xlog_op_header);
2091
2092 return len;
2093}
2094
2095/*
2096 * If first write for transaction, insert start record We can't be trying to
2097 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2098 */
2099static int
2100xlog_write_start_rec(
e6b1f273 2101 struct xlog_op_header *ophdr,
b5203cd0
DC
2102 struct xlog_ticket *ticket)
2103{
b5203cd0
DC
2104 if (!(ticket->t_flags & XLOG_TIC_INITED))
2105 return 0;
2106
2107 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2108 ophdr->oh_clientid = ticket->t_clientid;
2109 ophdr->oh_len = 0;
2110 ophdr->oh_flags = XLOG_START_TRANS;
2111 ophdr->oh_res2 = 0;
2112
2113 ticket->t_flags &= ~XLOG_TIC_INITED;
2114
2115 return sizeof(struct xlog_op_header);
2116}
2117
2118static xlog_op_header_t *
2119xlog_write_setup_ophdr(
ad223e60 2120 struct xlog *log,
e6b1f273 2121 struct xlog_op_header *ophdr,
b5203cd0
DC
2122 struct xlog_ticket *ticket,
2123 uint flags)
2124{
b5203cd0
DC
2125 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2126 ophdr->oh_clientid = ticket->t_clientid;
2127 ophdr->oh_res2 = 0;
2128
2129 /* are we copying a commit or unmount record? */
2130 ophdr->oh_flags = flags;
2131
2132 /*
2133 * We've seen logs corrupted with bad transaction client ids. This
2134 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2135 * and shut down the filesystem.
2136 */
2137 switch (ophdr->oh_clientid) {
2138 case XFS_TRANSACTION:
2139 case XFS_VOLUME:
2140 case XFS_LOG:
2141 break;
2142 default:
a0fa2b67 2143 xfs_warn(log->l_mp,
b5203cd0
DC
2144 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2145 ophdr->oh_clientid, ticket);
2146 return NULL;
2147 }
2148
2149 return ophdr;
2150}
2151
2152/*
2153 * Set up the parameters of the region copy into the log. This has
2154 * to handle region write split across multiple log buffers - this
2155 * state is kept external to this function so that this code can
ac0e300f 2156 * be written in an obvious, self documenting manner.
b5203cd0
DC
2157 */
2158static int
2159xlog_write_setup_copy(
2160 struct xlog_ticket *ticket,
2161 struct xlog_op_header *ophdr,
2162 int space_available,
2163 int space_required,
2164 int *copy_off,
2165 int *copy_len,
2166 int *last_was_partial_copy,
2167 int *bytes_consumed)
2168{
2169 int still_to_copy;
2170
2171 still_to_copy = space_required - *bytes_consumed;
2172 *copy_off = *bytes_consumed;
2173
2174 if (still_to_copy <= space_available) {
2175 /* write of region completes here */
2176 *copy_len = still_to_copy;
2177 ophdr->oh_len = cpu_to_be32(*copy_len);
2178 if (*last_was_partial_copy)
2179 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2180 *last_was_partial_copy = 0;
2181 *bytes_consumed = 0;
2182 return 0;
2183 }
2184
2185 /* partial write of region, needs extra log op header reservation */
2186 *copy_len = space_available;
2187 ophdr->oh_len = cpu_to_be32(*copy_len);
2188 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2189 if (*last_was_partial_copy)
2190 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2191 *bytes_consumed += *copy_len;
2192 (*last_was_partial_copy)++;
2193
2194 /* account for new log op header */
2195 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2196 ticket->t_res_num_ophdrs++;
2197
2198 return sizeof(struct xlog_op_header);
2199}
2200
2201static int
2202xlog_write_copy_finish(
ad223e60 2203 struct xlog *log,
b5203cd0
DC
2204 struct xlog_in_core *iclog,
2205 uint flags,
2206 int *record_cnt,
2207 int *data_cnt,
2208 int *partial_copy,
2209 int *partial_copy_len,
2210 int log_offset,
2211 struct xlog_in_core **commit_iclog)
2212{
2213 if (*partial_copy) {
2214 /*
2215 * This iclog has already been marked WANT_SYNC by
2216 * xlog_state_get_iclog_space.
2217 */
2218 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2219 *record_cnt = 0;
2220 *data_cnt = 0;
2221 return xlog_state_release_iclog(log, iclog);
2222 }
2223
2224 *partial_copy = 0;
2225 *partial_copy_len = 0;
2226
2227 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2228 /* no more space in this iclog - push it. */
2229 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2230 *record_cnt = 0;
2231 *data_cnt = 0;
2232
2233 spin_lock(&log->l_icloglock);
2234 xlog_state_want_sync(log, iclog);
2235 spin_unlock(&log->l_icloglock);
2236
2237 if (!commit_iclog)
2238 return xlog_state_release_iclog(log, iclog);
2239 ASSERT(flags & XLOG_COMMIT_TRANS);
2240 *commit_iclog = iclog;
2241 }
2242
2243 return 0;
2244}
2245
1da177e4
LT
2246/*
2247 * Write some region out to in-core log
2248 *
2249 * This will be called when writing externally provided regions or when
2250 * writing out a commit record for a given transaction.
2251 *
2252 * General algorithm:
2253 * 1. Find total length of this write. This may include adding to the
2254 * lengths passed in.
2255 * 2. Check whether we violate the tickets reservation.
2256 * 3. While writing to this iclog
2257 * A. Reserve as much space in this iclog as can get
2258 * B. If this is first write, save away start lsn
2259 * C. While writing this region:
2260 * 1. If first write of transaction, write start record
2261 * 2. Write log operation header (header per region)
2262 * 3. Find out if we can fit entire region into this iclog
2263 * 4. Potentially, verify destination memcpy ptr
2264 * 5. Memcpy (partial) region
2265 * 6. If partial copy, release iclog; otherwise, continue
2266 * copying more regions into current iclog
2267 * 4. Mark want sync bit (in simulation mode)
2268 * 5. Release iclog for potential flush to on-disk log.
2269 *
2270 * ERRORS:
2271 * 1. Panic if reservation is overrun. This should never happen since
2272 * reservation amounts are generated internal to the filesystem.
2273 * NOTES:
2274 * 1. Tickets are single threaded data structures.
2275 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2276 * syncing routine. When a single log_write region needs to span
2277 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2278 * on all log operation writes which don't contain the end of the
2279 * region. The XLOG_END_TRANS bit is used for the in-core log
2280 * operation which contains the end of the continued log_write region.
2281 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2282 * we don't really know exactly how much space will be used. As a result,
2283 * we don't update ic_offset until the end when we know exactly how many
2284 * bytes have been written out.
2285 */
71e330b5 2286int
35a8a72f 2287xlog_write(
ad223e60 2288 struct xlog *log,
55b66332 2289 struct xfs_log_vec *log_vector,
35a8a72f
CH
2290 struct xlog_ticket *ticket,
2291 xfs_lsn_t *start_lsn,
2292 struct xlog_in_core **commit_iclog,
2293 uint flags)
1da177e4 2294{
99428ad0 2295 struct xlog_in_core *iclog = NULL;
55b66332
DC
2296 struct xfs_log_iovec *vecp;
2297 struct xfs_log_vec *lv;
99428ad0
CH
2298 int len;
2299 int index;
2300 int partial_copy = 0;
2301 int partial_copy_len = 0;
2302 int contwr = 0;
2303 int record_cnt = 0;
2304 int data_cnt = 0;
2305 int error;
2306
2307 *start_lsn = 0;
2308
55b66332 2309 len = xlog_write_calc_vec_length(ticket, log_vector);
71e330b5 2310
93b8a585
CH
2311 /*
2312 * Region headers and bytes are already accounted for.
2313 * We only need to take into account start records and
2314 * split regions in this function.
2315 */
2316 if (ticket->t_flags & XLOG_TIC_INITED)
2317 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2318
2319 /*
2320 * Commit record headers need to be accounted for. These
2321 * come in as separate writes so are easy to detect.
2322 */
2323 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2324 ticket->t_curr_res -= sizeof(xlog_op_header_t);
71e330b5
DC
2325
2326 if (ticket->t_curr_res < 0)
55b66332 2327 xlog_print_tic_res(log->l_mp, ticket);
1da177e4 2328
55b66332
DC
2329 index = 0;
2330 lv = log_vector;
2331 vecp = lv->lv_iovecp;
fd63875c 2332 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2333 void *ptr;
99428ad0 2334 int log_offset;
1da177e4 2335
99428ad0
CH
2336 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2337 &contwr, &log_offset);
2338 if (error)
2339 return error;
1da177e4 2340
99428ad0 2341 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2342 ptr = iclog->ic_datap + log_offset;
1da177e4 2343
99428ad0
CH
2344 /* start_lsn is the first lsn written to. That's all we need. */
2345 if (!*start_lsn)
2346 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2347
99428ad0
CH
2348 /*
2349 * This loop writes out as many regions as can fit in the amount
2350 * of space which was allocated by xlog_state_get_iclog_space().
2351 */
fd63875c
DC
2352 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2353 struct xfs_log_iovec *reg;
99428ad0
CH
2354 struct xlog_op_header *ophdr;
2355 int start_rec_copy;
2356 int copy_len;
2357 int copy_off;
fd63875c
DC
2358 bool ordered = false;
2359
2360 /* ordered log vectors have no regions to write */
2361 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2362 ASSERT(lv->lv_niovecs == 0);
2363 ordered = true;
2364 goto next_lv;
2365 }
99428ad0 2366
fd63875c 2367 reg = &vecp[index];
55b66332 2368 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
e6b1f273 2369 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
99428ad0
CH
2370
2371 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2372 if (start_rec_copy) {
2373 record_cnt++;
e6b1f273 2374 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2375 start_rec_copy);
2376 }
b5203cd0 2377
99428ad0
CH
2378 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2379 if (!ophdr)
2451337d 2380 return -EIO;
99428ad0 2381
e6b1f273 2382 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2383 sizeof(struct xlog_op_header));
2384
2385 len += xlog_write_setup_copy(ticket, ophdr,
2386 iclog->ic_size-log_offset,
55b66332 2387 reg->i_len,
99428ad0
CH
2388 &copy_off, &copy_len,
2389 &partial_copy,
2390 &partial_copy_len);
2391 xlog_verify_dest_ptr(log, ptr);
2392
2393 /* copy region */
2394 ASSERT(copy_len >= 0);
e6b1f273
CH
2395 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2396 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
99428ad0
CH
2397
2398 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2399 record_cnt++;
2400 data_cnt += contwr ? copy_len : 0;
2401
2402 error = xlog_write_copy_finish(log, iclog, flags,
2403 &record_cnt, &data_cnt,
2404 &partial_copy,
2405 &partial_copy_len,
2406 log_offset,
2407 commit_iclog);
2408 if (error)
2409 return error;
2410
2411 /*
2412 * if we had a partial copy, we need to get more iclog
2413 * space but we don't want to increment the region
2414 * index because there is still more is this region to
2415 * write.
2416 *
2417 * If we completed writing this region, and we flushed
2418 * the iclog (indicated by resetting of the record
2419 * count), then we also need to get more log space. If
2420 * this was the last record, though, we are done and
2421 * can just return.
2422 */
2423 if (partial_copy)
2424 break;
2425
55b66332 2426 if (++index == lv->lv_niovecs) {
fd63875c 2427next_lv:
55b66332
DC
2428 lv = lv->lv_next;
2429 index = 0;
2430 if (lv)
2431 vecp = lv->lv_iovecp;
2432 }
fd63875c 2433 if (record_cnt == 0 && ordered == false) {
55b66332 2434 if (!lv)
99428ad0
CH
2435 return 0;
2436 break;
2437 }
2438 }
2439 }
2440
2441 ASSERT(len == 0);
2442
2443 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2444 if (!commit_iclog)
2445 return xlog_state_release_iclog(log, iclog);
1da177e4 2446
1da177e4
LT
2447 ASSERT(flags & XLOG_COMMIT_TRANS);
2448 *commit_iclog = iclog;
2449 return 0;
99428ad0 2450}
1da177e4
LT
2451
2452
2453/*****************************************************************************
2454 *
2455 * State Machine functions
2456 *
2457 *****************************************************************************
2458 */
2459
2460/* Clean iclogs starting from the head. This ordering must be
2461 * maintained, so an iclog doesn't become ACTIVE beyond one that
2462 * is SYNCING. This is also required to maintain the notion that we use
12017faf 2463 * a ordered wait queue to hold off would be writers to the log when every
1da177e4
LT
2464 * iclog is trying to sync to disk.
2465 *
2466 * State Change: DIRTY -> ACTIVE
2467 */
ba0f32d4 2468STATIC void
9a8d2fdb
MT
2469xlog_state_clean_log(
2470 struct xlog *log)
1da177e4
LT
2471{
2472 xlog_in_core_t *iclog;
2473 int changed = 0;
2474
2475 iclog = log->l_iclog;
2476 do {
2477 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2478 iclog->ic_state = XLOG_STATE_ACTIVE;
2479 iclog->ic_offset = 0;
114d23aa 2480 ASSERT(iclog->ic_callback == NULL);
1da177e4
LT
2481 /*
2482 * If the number of ops in this iclog indicate it just
2483 * contains the dummy transaction, we can
2484 * change state into IDLE (the second time around).
2485 * Otherwise we should change the state into
2486 * NEED a dummy.
2487 * We don't need to cover the dummy.
2488 */
2489 if (!changed &&
b53e675d
CH
2490 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2491 XLOG_COVER_OPS)) {
1da177e4
LT
2492 changed = 1;
2493 } else {
2494 /*
2495 * We have two dirty iclogs so start over
2496 * This could also be num of ops indicates
2497 * this is not the dummy going out.
2498 */
2499 changed = 2;
2500 }
2501 iclog->ic_header.h_num_logops = 0;
2502 memset(iclog->ic_header.h_cycle_data, 0,
2503 sizeof(iclog->ic_header.h_cycle_data));
2504 iclog->ic_header.h_lsn = 0;
2505 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2506 /* do nothing */;
2507 else
2508 break; /* stop cleaning */
2509 iclog = iclog->ic_next;
2510 } while (iclog != log->l_iclog);
2511
2512 /* log is locked when we are called */
2513 /*
2514 * Change state for the dummy log recording.
2515 * We usually go to NEED. But we go to NEED2 if the changed indicates
2516 * we are done writing the dummy record.
2517 * If we are done with the second dummy recored (DONE2), then
2518 * we go to IDLE.
2519 */
2520 if (changed) {
2521 switch (log->l_covered_state) {
2522 case XLOG_STATE_COVER_IDLE:
2523 case XLOG_STATE_COVER_NEED:
2524 case XLOG_STATE_COVER_NEED2:
2525 log->l_covered_state = XLOG_STATE_COVER_NEED;
2526 break;
2527
2528 case XLOG_STATE_COVER_DONE:
2529 if (changed == 1)
2530 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2531 else
2532 log->l_covered_state = XLOG_STATE_COVER_NEED;
2533 break;
2534
2535 case XLOG_STATE_COVER_DONE2:
2536 if (changed == 1)
2537 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2538 else
2539 log->l_covered_state = XLOG_STATE_COVER_NEED;
2540 break;
2541
2542 default:
2543 ASSERT(0);
2544 }
2545 }
2546} /* xlog_state_clean_log */
2547
2548STATIC xfs_lsn_t
2549xlog_get_lowest_lsn(
9a8d2fdb 2550 struct xlog *log)
1da177e4
LT
2551{
2552 xlog_in_core_t *lsn_log;
2553 xfs_lsn_t lowest_lsn, lsn;
2554
2555 lsn_log = log->l_iclog;
2556 lowest_lsn = 0;
2557 do {
2558 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
b53e675d 2559 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
1da177e4
LT
2560 if ((lsn && !lowest_lsn) ||
2561 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2562 lowest_lsn = lsn;
2563 }
2564 }
2565 lsn_log = lsn_log->ic_next;
2566 } while (lsn_log != log->l_iclog);
014c2544 2567 return lowest_lsn;
1da177e4
LT
2568}
2569
2570
2571STATIC void
2572xlog_state_do_callback(
9a8d2fdb
MT
2573 struct xlog *log,
2574 int aborted,
2575 struct xlog_in_core *ciclog)
1da177e4
LT
2576{
2577 xlog_in_core_t *iclog;
2578 xlog_in_core_t *first_iclog; /* used to know when we've
2579 * processed all iclogs once */
2580 xfs_log_callback_t *cb, *cb_next;
2581 int flushcnt = 0;
2582 xfs_lsn_t lowest_lsn;
2583 int ioerrors; /* counter: iclogs with errors */
2584 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2585 int funcdidcallbacks; /* flag: function did callbacks */
2586 int repeats; /* for issuing console warnings if
2587 * looping too many times */
d748c623 2588 int wake = 0;
1da177e4 2589
b22cd72c 2590 spin_lock(&log->l_icloglock);
1da177e4
LT
2591 first_iclog = iclog = log->l_iclog;
2592 ioerrors = 0;
2593 funcdidcallbacks = 0;
2594 repeats = 0;
2595
2596 do {
2597 /*
2598 * Scan all iclogs starting with the one pointed to by the
2599 * log. Reset this starting point each time the log is
2600 * unlocked (during callbacks).
2601 *
2602 * Keep looping through iclogs until one full pass is made
2603 * without running any callbacks.
2604 */
2605 first_iclog = log->l_iclog;
2606 iclog = log->l_iclog;
2607 loopdidcallbacks = 0;
2608 repeats++;
2609
2610 do {
2611
2612 /* skip all iclogs in the ACTIVE & DIRTY states */
2613 if (iclog->ic_state &
2614 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2615 iclog = iclog->ic_next;
2616 continue;
2617 }
2618
2619 /*
2620 * Between marking a filesystem SHUTDOWN and stopping
2621 * the log, we do flush all iclogs to disk (if there
2622 * wasn't a log I/O error). So, we do want things to
2623 * go smoothly in case of just a SHUTDOWN w/o a
2624 * LOG_IO_ERROR.
2625 */
2626 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2627 /*
2628 * Can only perform callbacks in order. Since
2629 * this iclog is not in the DONE_SYNC/
2630 * DO_CALLBACK state, we skip the rest and
2631 * just try to clean up. If we set our iclog
2632 * to DO_CALLBACK, we will not process it when
2633 * we retry since a previous iclog is in the
2634 * CALLBACK and the state cannot change since
b22cd72c 2635 * we are holding the l_icloglock.
1da177e4
LT
2636 */
2637 if (!(iclog->ic_state &
2638 (XLOG_STATE_DONE_SYNC |
2639 XLOG_STATE_DO_CALLBACK))) {
2640 if (ciclog && (ciclog->ic_state ==
2641 XLOG_STATE_DONE_SYNC)) {
2642 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2643 }
2644 break;
2645 }
2646 /*
2647 * We now have an iclog that is in either the
2648 * DO_CALLBACK or DONE_SYNC states. The other
2649 * states (WANT_SYNC, SYNCING, or CALLBACK were
2650 * caught by the above if and are going to
2651 * clean (i.e. we aren't doing their callbacks)
2652 * see the above if.
2653 */
2654
2655 /*
2656 * We will do one more check here to see if we
2657 * have chased our tail around.
2658 */
2659
2660 lowest_lsn = xlog_get_lowest_lsn(log);
b53e675d
CH
2661 if (lowest_lsn &&
2662 XFS_LSN_CMP(lowest_lsn,
84f3c683 2663 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
1da177e4
LT
2664 iclog = iclog->ic_next;
2665 continue; /* Leave this iclog for
2666 * another thread */
2667 }
2668
2669 iclog->ic_state = XLOG_STATE_CALLBACK;
2670
1da177e4 2671
84f3c683 2672 /*
d35e88fa
DC
2673 * Completion of a iclog IO does not imply that
2674 * a transaction has completed, as transactions
2675 * can be large enough to span many iclogs. We
2676 * cannot change the tail of the log half way
2677 * through a transaction as this may be the only
2678 * transaction in the log and moving th etail to
2679 * point to the middle of it will prevent
2680 * recovery from finding the start of the
2681 * transaction. Hence we should only update the
2682 * last_sync_lsn if this iclog contains
2683 * transaction completion callbacks on it.
2684 *
2685 * We have to do this before we drop the
84f3c683
DC
2686 * icloglock to ensure we are the only one that
2687 * can update it.
1da177e4 2688 */
84f3c683
DC
2689 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2690 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
d35e88fa
DC
2691 if (iclog->ic_callback)
2692 atomic64_set(&log->l_last_sync_lsn,
2693 be64_to_cpu(iclog->ic_header.h_lsn));
1da177e4 2694
84f3c683 2695 } else
1da177e4 2696 ioerrors++;
84f3c683
DC
2697
2698 spin_unlock(&log->l_icloglock);
1da177e4 2699
114d23aa
DC
2700 /*
2701 * Keep processing entries in the callback list until
2702 * we come around and it is empty. We need to
2703 * atomically see that the list is empty and change the
2704 * state to DIRTY so that we don't miss any more
2705 * callbacks being added.
2706 */
2707 spin_lock(&iclog->ic_callback_lock);
2708 cb = iclog->ic_callback;
4b80916b 2709 while (cb) {
1da177e4
LT
2710 iclog->ic_callback_tail = &(iclog->ic_callback);
2711 iclog->ic_callback = NULL;
114d23aa 2712 spin_unlock(&iclog->ic_callback_lock);
1da177e4
LT
2713
2714 /* perform callbacks in the order given */
4b80916b 2715 for (; cb; cb = cb_next) {
1da177e4
LT
2716 cb_next = cb->cb_next;
2717 cb->cb_func(cb->cb_arg, aborted);
2718 }
114d23aa 2719 spin_lock(&iclog->ic_callback_lock);
1da177e4
LT
2720 cb = iclog->ic_callback;
2721 }
2722
2723 loopdidcallbacks++;
2724 funcdidcallbacks++;
2725
114d23aa 2726 spin_lock(&log->l_icloglock);
4b80916b 2727 ASSERT(iclog->ic_callback == NULL);
114d23aa 2728 spin_unlock(&iclog->ic_callback_lock);
1da177e4
LT
2729 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2730 iclog->ic_state = XLOG_STATE_DIRTY;
2731
2732 /*
2733 * Transition from DIRTY to ACTIVE if applicable.
2734 * NOP if STATE_IOERROR.
2735 */
2736 xlog_state_clean_log(log);
2737
2738 /* wake up threads waiting in xfs_log_force() */
eb40a875 2739 wake_up_all(&iclog->ic_force_wait);
1da177e4
LT
2740
2741 iclog = iclog->ic_next;
2742 } while (first_iclog != iclog);
a3c6685e
NS
2743
2744 if (repeats > 5000) {
2745 flushcnt += repeats;
2746 repeats = 0;
a0fa2b67 2747 xfs_warn(log->l_mp,
a3c6685e 2748 "%s: possible infinite loop (%d iterations)",
34a622b2 2749 __func__, flushcnt);
1da177e4
LT
2750 }
2751 } while (!ioerrors && loopdidcallbacks);
2752
2753 /*
2754 * make one last gasp attempt to see if iclogs are being left in
2755 * limbo..
2756 */
2757#ifdef DEBUG
2758 if (funcdidcallbacks) {
2759 first_iclog = iclog = log->l_iclog;
2760 do {
2761 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2762 /*
2763 * Terminate the loop if iclogs are found in states
2764 * which will cause other threads to clean up iclogs.
2765 *
2766 * SYNCING - i/o completion will go through logs
2767 * DONE_SYNC - interrupt thread should be waiting for
b22cd72c 2768 * l_icloglock
1da177e4
LT
2769 * IOERROR - give up hope all ye who enter here
2770 */
2771 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2772 iclog->ic_state == XLOG_STATE_SYNCING ||
2773 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2774 iclog->ic_state == XLOG_STATE_IOERROR )
2775 break;
2776 iclog = iclog->ic_next;
2777 } while (first_iclog != iclog);
2778 }
2779#endif
2780
d748c623
MW
2781 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2782 wake = 1;
b22cd72c 2783 spin_unlock(&log->l_icloglock);
d748c623
MW
2784
2785 if (wake)
eb40a875 2786 wake_up_all(&log->l_flush_wait);
d748c623 2787}
1da177e4
LT
2788
2789
2790/*
2791 * Finish transitioning this iclog to the dirty state.
2792 *
2793 * Make sure that we completely execute this routine only when this is
2794 * the last call to the iclog. There is a good chance that iclog flushes,
2795 * when we reach the end of the physical log, get turned into 2 separate
2796 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2797 * routine. By using the reference count bwritecnt, we guarantee that only
2798 * the second completion goes through.
2799 *
2800 * Callbacks could take time, so they are done outside the scope of the
12017faf 2801 * global state machine log lock.
1da177e4 2802 */
a8272ce0 2803STATIC void
1da177e4
LT
2804xlog_state_done_syncing(
2805 xlog_in_core_t *iclog,
2806 int aborted)
2807{
9a8d2fdb 2808 struct xlog *log = iclog->ic_log;
1da177e4 2809
b22cd72c 2810 spin_lock(&log->l_icloglock);
1da177e4
LT
2811
2812 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2813 iclog->ic_state == XLOG_STATE_IOERROR);
155cc6b7 2814 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
2815 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2816
2817
2818 /*
2819 * If we got an error, either on the first buffer, or in the case of
2820 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2821 * and none should ever be attempted to be written to disk
2822 * again.
2823 */
2824 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2825 if (--iclog->ic_bwritecnt == 1) {
b22cd72c 2826 spin_unlock(&log->l_icloglock);
1da177e4
LT
2827 return;
2828 }
2829 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2830 }
2831
2832 /*
2833 * Someone could be sleeping prior to writing out the next
2834 * iclog buffer, we wake them all, one will get to do the
2835 * I/O, the others get to wait for the result.
2836 */
eb40a875 2837 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2838 spin_unlock(&log->l_icloglock);
1da177e4
LT
2839 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2840} /* xlog_state_done_syncing */
2841
2842
2843/*
2844 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2845 * sleep. We wait on the flush queue on the head iclog as that should be
2846 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2847 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2848 *
2849 * The in-core logs are used in a circular fashion. They are not used
2850 * out-of-order even when an iclog past the head is free.
2851 *
2852 * return:
2853 * * log_offset where xlog_write() can start writing into the in-core
2854 * log's data space.
2855 * * in-core log pointer to which xlog_write() should write.
2856 * * boolean indicating this is a continued write to an in-core log.
2857 * If this is the last write, then the in-core log's offset field
2858 * needs to be incremented, depending on the amount of data which
2859 * is copied.
2860 */
a8272ce0 2861STATIC int
9a8d2fdb
MT
2862xlog_state_get_iclog_space(
2863 struct xlog *log,
2864 int len,
2865 struct xlog_in_core **iclogp,
2866 struct xlog_ticket *ticket,
2867 int *continued_write,
2868 int *logoffsetp)
1da177e4 2869{
1da177e4
LT
2870 int log_offset;
2871 xlog_rec_header_t *head;
2872 xlog_in_core_t *iclog;
2873 int error;
2874
2875restart:
b22cd72c 2876 spin_lock(&log->l_icloglock);
1da177e4 2877 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 2878 spin_unlock(&log->l_icloglock);
2451337d 2879 return -EIO;
1da177e4
LT
2880 }
2881
2882 iclog = log->l_iclog;
d748c623 2883 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
1da177e4 2884 XFS_STATS_INC(xs_log_noiclogs);
d748c623
MW
2885
2886 /* Wait for log writes to have flushed */
eb40a875 2887 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
2888 goto restart;
2889 }
d748c623 2890
1da177e4
LT
2891 head = &iclog->ic_header;
2892
155cc6b7 2893 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
2894 log_offset = iclog->ic_offset;
2895
2896 /* On the 1st write to an iclog, figure out lsn. This works
2897 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2898 * committing to. If the offset is set, that's how many blocks
2899 * must be written.
2900 */
2901 if (log_offset == 0) {
2902 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 2903 xlog_tic_add_region(ticket,
7e9c6396
TS
2904 log->l_iclog_hsize,
2905 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
2906 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2907 head->h_lsn = cpu_to_be64(
03bea6fe 2908 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
2909 ASSERT(log->l_curr_block >= 0);
2910 }
2911
2912 /* If there is enough room to write everything, then do it. Otherwise,
2913 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2914 * bit is on, so this will get flushed out. Don't update ic_offset
2915 * until you know exactly how many bytes get copied. Therefore, wait
2916 * until later to update ic_offset.
2917 *
2918 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2919 * can fit into remaining data section.
2920 */
2921 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2922 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2923
49641f1a
DC
2924 /*
2925 * If I'm the only one writing to this iclog, sync it to disk.
2926 * We need to do an atomic compare and decrement here to avoid
2927 * racing with concurrent atomic_dec_and_lock() calls in
2928 * xlog_state_release_iclog() when there is more than one
2929 * reference to the iclog.
2930 */
2931 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2932 /* we are the only one */
b22cd72c 2933 spin_unlock(&log->l_icloglock);
49641f1a
DC
2934 error = xlog_state_release_iclog(log, iclog);
2935 if (error)
014c2544 2936 return error;
1da177e4 2937 } else {
b22cd72c 2938 spin_unlock(&log->l_icloglock);
1da177e4
LT
2939 }
2940 goto restart;
2941 }
2942
2943 /* Do we have enough room to write the full amount in the remainder
2944 * of this iclog? Or must we continue a write on the next iclog and
2945 * mark this iclog as completely taken? In the case where we switch
2946 * iclogs (to mark it taken), this particular iclog will release/sync
2947 * to disk in xlog_write().
2948 */
2949 if (len <= iclog->ic_size - iclog->ic_offset) {
2950 *continued_write = 0;
2951 iclog->ic_offset += len;
2952 } else {
2953 *continued_write = 1;
2954 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2955 }
2956 *iclogp = iclog;
2957
2958 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 2959 spin_unlock(&log->l_icloglock);
1da177e4
LT
2960
2961 *logoffsetp = log_offset;
2962 return 0;
2963} /* xlog_state_get_iclog_space */
2964
1da177e4
LT
2965/* The first cnt-1 times through here we don't need to
2966 * move the grant write head because the permanent
2967 * reservation has reserved cnt times the unit amount.
2968 * Release part of current permanent unit reservation and
2969 * reset current reservation to be one units worth. Also
2970 * move grant reservation head forward.
2971 */
2972STATIC void
9a8d2fdb
MT
2973xlog_regrant_reserve_log_space(
2974 struct xlog *log,
2975 struct xlog_ticket *ticket)
1da177e4 2976{
0b1b213f
CH
2977 trace_xfs_log_regrant_reserve_enter(log, ticket);
2978
1da177e4
LT
2979 if (ticket->t_cnt > 0)
2980 ticket->t_cnt--;
2981
28496968 2982 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 2983 ticket->t_curr_res);
28496968 2984 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 2985 ticket->t_curr_res);
1da177e4 2986 ticket->t_curr_res = ticket->t_unit_res;
0adba536 2987 xlog_tic_reset_res(ticket);
0b1b213f
CH
2988
2989 trace_xfs_log_regrant_reserve_sub(log, ticket);
2990
1da177e4 2991 /* just return if we still have some of the pre-reserved space */
d0eb2f38 2992 if (ticket->t_cnt > 0)
1da177e4 2993 return;
1da177e4 2994
28496968 2995 xlog_grant_add_space(log, &log->l_reserve_head.grant,
a69ed03c 2996 ticket->t_unit_res);
0b1b213f
CH
2997
2998 trace_xfs_log_regrant_reserve_exit(log, ticket);
2999
1da177e4 3000 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3001 xlog_tic_reset_res(ticket);
1da177e4
LT
3002} /* xlog_regrant_reserve_log_space */
3003
3004
3005/*
3006 * Give back the space left from a reservation.
3007 *
3008 * All the information we need to make a correct determination of space left
3009 * is present. For non-permanent reservations, things are quite easy. The
3010 * count should have been decremented to zero. We only need to deal with the
3011 * space remaining in the current reservation part of the ticket. If the
3012 * ticket contains a permanent reservation, there may be left over space which
3013 * needs to be released. A count of N means that N-1 refills of the current
3014 * reservation can be done before we need to ask for more space. The first
3015 * one goes to fill up the first current reservation. Once we run out of
3016 * space, the count will stay at zero and the only space remaining will be
3017 * in the current reservation field.
3018 */
3019STATIC void
9a8d2fdb
MT
3020xlog_ungrant_log_space(
3021 struct xlog *log,
3022 struct xlog_ticket *ticket)
1da177e4 3023{
663e496a
DC
3024 int bytes;
3025
1da177e4
LT
3026 if (ticket->t_cnt > 0)
3027 ticket->t_cnt--;
3028
0b1b213f 3029 trace_xfs_log_ungrant_enter(log, ticket);
0b1b213f 3030 trace_xfs_log_ungrant_sub(log, ticket);
1da177e4 3031
663e496a
DC
3032 /*
3033 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3034 * up more space based on the remaining count.
3035 */
663e496a 3036 bytes = ticket->t_curr_res;
1da177e4
LT
3037 if (ticket->t_cnt > 0) {
3038 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3039 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3040 }
3041
28496968
CH
3042 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3043 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3044
0b1b213f
CH
3045 trace_xfs_log_ungrant_exit(log, ticket);
3046
cfb7cdca 3047 xfs_log_space_wake(log->l_mp);
09a423a3 3048}
1da177e4 3049
1da177e4
LT
3050/*
3051 * Flush iclog to disk if this is the last reference to the given iclog and
3052 * the WANT_SYNC bit is set.
3053 *
3054 * When this function is entered, the iclog is not necessarily in the
3055 * WANT_SYNC state. It may be sitting around waiting to get filled.
3056 *
3057 *
3058 */
a8272ce0 3059STATIC int
b589334c 3060xlog_state_release_iclog(
9a8d2fdb
MT
3061 struct xlog *log,
3062 struct xlog_in_core *iclog)
1da177e4 3063{
1da177e4
LT
3064 int sync = 0; /* do we sync? */
3065
155cc6b7 3066 if (iclog->ic_state & XLOG_STATE_IOERROR)
2451337d 3067 return -EIO;
155cc6b7
DC
3068
3069 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3070 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3071 return 0;
3072
1da177e4 3073 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3074 spin_unlock(&log->l_icloglock);
2451337d 3075 return -EIO;
1da177e4 3076 }
1da177e4
LT
3077 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3078 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3079
155cc6b7 3080 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
b589334c 3081 /* update tail before writing to iclog */
1c3cb9ec 3082 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
1da177e4
LT
3083 sync++;
3084 iclog->ic_state = XLOG_STATE_SYNCING;
1c3cb9ec
DC
3085 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3086 xlog_verify_tail_lsn(log, iclog, tail_lsn);
1da177e4
LT
3087 /* cycle incremented when incrementing curr_block */
3088 }
b22cd72c 3089 spin_unlock(&log->l_icloglock);
1da177e4
LT
3090
3091 /*
3092 * We let the log lock go, so it's possible that we hit a log I/O
c41564b5 3093 * error or some other SHUTDOWN condition that marks the iclog
1da177e4
LT
3094 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3095 * this iclog has consistent data, so we ignore IOERROR
3096 * flags after this point.
3097 */
b589334c 3098 if (sync)
1da177e4 3099 return xlog_sync(log, iclog);
014c2544 3100 return 0;
1da177e4
LT
3101} /* xlog_state_release_iclog */
3102
3103
3104/*
3105 * This routine will mark the current iclog in the ring as WANT_SYNC
3106 * and move the current iclog pointer to the next iclog in the ring.
3107 * When this routine is called from xlog_state_get_iclog_space(), the
3108 * exact size of the iclog has not yet been determined. All we know is
3109 * that every data block. We have run out of space in this log record.
3110 */
3111STATIC void
9a8d2fdb
MT
3112xlog_state_switch_iclogs(
3113 struct xlog *log,
3114 struct xlog_in_core *iclog,
3115 int eventual_size)
1da177e4
LT
3116{
3117 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3118 if (!eventual_size)
3119 eventual_size = iclog->ic_offset;
3120 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3121 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3122 log->l_prev_block = log->l_curr_block;
3123 log->l_prev_cycle = log->l_curr_cycle;
3124
3125 /* roll log?: ic_offset changed later */
3126 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3127
3128 /* Round up to next log-sunit */
62118709 3129 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1da177e4
LT
3130 log->l_mp->m_sb.sb_logsunit > 1) {
3131 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3132 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3133 }
3134
3135 if (log->l_curr_block >= log->l_logBBsize) {
3136 log->l_curr_cycle++;
3137 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3138 log->l_curr_cycle++;
3139 log->l_curr_block -= log->l_logBBsize;
3140 ASSERT(log->l_curr_block >= 0);
3141 }
3142 ASSERT(iclog == log->l_iclog);
3143 log->l_iclog = iclog->ic_next;
3144} /* xlog_state_switch_iclogs */
3145
1da177e4
LT
3146/*
3147 * Write out all data in the in-core log as of this exact moment in time.
3148 *
3149 * Data may be written to the in-core log during this call. However,
3150 * we don't guarantee this data will be written out. A change from past
3151 * implementation means this routine will *not* write out zero length LRs.
3152 *
3153 * Basically, we try and perform an intelligent scan of the in-core logs.
3154 * If we determine there is no flushable data, we just return. There is no
3155 * flushable data if:
3156 *
3157 * 1. the current iclog is active and has no data; the previous iclog
3158 * is in the active or dirty state.
3159 * 2. the current iclog is drity, and the previous iclog is in the
3160 * active or dirty state.
3161 *
12017faf 3162 * We may sleep if:
1da177e4
LT
3163 *
3164 * 1. the current iclog is not in the active nor dirty state.
3165 * 2. the current iclog dirty, and the previous iclog is not in the
3166 * active nor dirty state.
3167 * 3. the current iclog is active, and there is another thread writing
3168 * to this particular iclog.
3169 * 4. a) the current iclog is active and has no other writers
3170 * b) when we return from flushing out this iclog, it is still
3171 * not in the active nor dirty state.
3172 */
a14a348b
CH
3173int
3174_xfs_log_force(
3175 struct xfs_mount *mp,
3176 uint flags,
3177 int *log_flushed)
1da177e4 3178{
ad223e60 3179 struct xlog *log = mp->m_log;
a14a348b
CH
3180 struct xlog_in_core *iclog;
3181 xfs_lsn_t lsn;
3182
3183 XFS_STATS_INC(xs_log_force);
1da177e4 3184
93b8a585 3185 xlog_cil_force(log);
71e330b5 3186
b22cd72c 3187 spin_lock(&log->l_icloglock);
1da177e4
LT
3188
3189 iclog = log->l_iclog;
3190 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3191 spin_unlock(&log->l_icloglock);
2451337d 3192 return -EIO;
1da177e4
LT
3193 }
3194
3195 /* If the head iclog is not active nor dirty, we just attach
3196 * ourselves to the head and go to sleep.
3197 */
3198 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3199 iclog->ic_state == XLOG_STATE_DIRTY) {
3200 /*
3201 * If the head is dirty or (active and empty), then
3202 * we need to look at the previous iclog. If the previous
3203 * iclog is active or dirty we are done. There is nothing
3204 * to sync out. Otherwise, we attach ourselves to the
3205 * previous iclog and go to sleep.
3206 */
3207 if (iclog->ic_state == XLOG_STATE_DIRTY ||
155cc6b7
DC
3208 (atomic_read(&iclog->ic_refcnt) == 0
3209 && iclog->ic_offset == 0)) {
1da177e4
LT
3210 iclog = iclog->ic_prev;
3211 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3212 iclog->ic_state == XLOG_STATE_DIRTY)
3213 goto no_sleep;
3214 else
3215 goto maybe_sleep;
3216 } else {
155cc6b7 3217 if (atomic_read(&iclog->ic_refcnt) == 0) {
1da177e4
LT
3218 /* We are the only one with access to this
3219 * iclog. Flush it out now. There should
3220 * be a roundoff of zero to show that someone
3221 * has already taken care of the roundoff from
3222 * the previous sync.
3223 */
155cc6b7 3224 atomic_inc(&iclog->ic_refcnt);
b53e675d 3225 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1da177e4 3226 xlog_state_switch_iclogs(log, iclog, 0);
b22cd72c 3227 spin_unlock(&log->l_icloglock);
1da177e4
LT
3228
3229 if (xlog_state_release_iclog(log, iclog))
2451337d 3230 return -EIO;
a14a348b
CH
3231
3232 if (log_flushed)
3233 *log_flushed = 1;
b22cd72c 3234 spin_lock(&log->l_icloglock);
b53e675d 3235 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
1da177e4
LT
3236 iclog->ic_state != XLOG_STATE_DIRTY)
3237 goto maybe_sleep;
3238 else
3239 goto no_sleep;
3240 } else {
3241 /* Someone else is writing to this iclog.
3242 * Use its call to flush out the data. However,
3243 * the other thread may not force out this LR,
3244 * so we mark it WANT_SYNC.
3245 */
3246 xlog_state_switch_iclogs(log, iclog, 0);
3247 goto maybe_sleep;
3248 }
3249 }
3250 }
3251
3252 /* By the time we come around again, the iclog could've been filled
3253 * which would give it another lsn. If we have a new lsn, just
3254 * return because the relevant data has been flushed.
3255 */
3256maybe_sleep:
3257 if (flags & XFS_LOG_SYNC) {
3258 /*
3259 * We must check if we're shutting down here, before
b22cd72c 3260 * we wait, while we're holding the l_icloglock.
1da177e4
LT
3261 * Then we check again after waking up, in case our
3262 * sleep was disturbed by a bad news.
3263 */
3264 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3265 spin_unlock(&log->l_icloglock);
2451337d 3266 return -EIO;
1da177e4
LT
3267 }
3268 XFS_STATS_INC(xs_log_force_sleep);
eb40a875 3269 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
1da177e4
LT
3270 /*
3271 * No need to grab the log lock here since we're
3272 * only deciding whether or not to return EIO
3273 * and the memory read should be atomic.
3274 */
3275 if (iclog->ic_state & XLOG_STATE_IOERROR)
2451337d 3276 return -EIO;
a14a348b
CH
3277 if (log_flushed)
3278 *log_flushed = 1;
1da177e4
LT
3279 } else {
3280
3281no_sleep:
b22cd72c 3282 spin_unlock(&log->l_icloglock);
1da177e4
LT
3283 }
3284 return 0;
a14a348b 3285}
1da177e4 3286
a14a348b
CH
3287/*
3288 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3289 * about errors or whether the log was flushed or not. This is the normal
3290 * interface to use when trying to unpin items or move the log forward.
3291 */
3292void
3293xfs_log_force(
3294 xfs_mount_t *mp,
3295 uint flags)
3296{
3297 int error;
3298
14c26c6a 3299 trace_xfs_log_force(mp, 0);
a14a348b 3300 error = _xfs_log_force(mp, flags, NULL);
a0fa2b67
DC
3301 if (error)
3302 xfs_warn(mp, "%s: error %d returned.", __func__, error);
a14a348b 3303}
1da177e4
LT
3304
3305/*
a14a348b 3306 * Force the in-core log to disk for a specific LSN.
1da177e4
LT
3307 *
3308 * Find in-core log with lsn.
3309 * If it is in the DIRTY state, just return.
3310 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3311 * state and go to sleep or return.
3312 * If it is in any other state, go to sleep or return.
3313 *
a14a348b
CH
3314 * Synchronous forces are implemented with a signal variable. All callers
3315 * to force a given lsn to disk will wait on a the sv attached to the
3316 * specific in-core log. When given in-core log finally completes its
3317 * write to disk, that thread will wake up all threads waiting on the
3318 * sv.
1da177e4 3319 */
a14a348b
CH
3320int
3321_xfs_log_force_lsn(
3322 struct xfs_mount *mp,
3323 xfs_lsn_t lsn,
3324 uint flags,
3325 int *log_flushed)
1da177e4 3326{
ad223e60 3327 struct xlog *log = mp->m_log;
a14a348b
CH
3328 struct xlog_in_core *iclog;
3329 int already_slept = 0;
1da177e4 3330
a14a348b 3331 ASSERT(lsn != 0);
1da177e4 3332
a14a348b 3333 XFS_STATS_INC(xs_log_force);
1da177e4 3334
93b8a585
CH
3335 lsn = xlog_cil_force_lsn(log, lsn);
3336 if (lsn == NULLCOMMITLSN)
3337 return 0;
71e330b5 3338
a14a348b
CH
3339try_again:
3340 spin_lock(&log->l_icloglock);
3341 iclog = log->l_iclog;
3342 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3343 spin_unlock(&log->l_icloglock);
2451337d 3344 return -EIO;
1da177e4
LT
3345 }
3346
a14a348b
CH
3347 do {
3348 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3349 iclog = iclog->ic_next;
3350 continue;
3351 }
3352
3353 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3354 spin_unlock(&log->l_icloglock);
3355 return 0;
3356 }
3357
3358 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3359 /*
3360 * We sleep here if we haven't already slept (e.g.
3361 * this is the first time we've looked at the correct
3362 * iclog buf) and the buffer before us is going to
3363 * be sync'ed. The reason for this is that if we
3364 * are doing sync transactions here, by waiting for
3365 * the previous I/O to complete, we can allow a few
3366 * more transactions into this iclog before we close
3367 * it down.
3368 *
3369 * Otherwise, we mark the buffer WANT_SYNC, and bump
3370 * up the refcnt so we can release the log (which
3371 * drops the ref count). The state switch keeps new
3372 * transaction commits from using this buffer. When
3373 * the current commits finish writing into the buffer,
3374 * the refcount will drop to zero and the buffer will
3375 * go out then.
3376 */
3377 if (!already_slept &&
3378 (iclog->ic_prev->ic_state &
3379 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3380 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3381
3382 XFS_STATS_INC(xs_log_force_sleep);
3383
eb40a875
DC
3384 xlog_wait(&iclog->ic_prev->ic_write_wait,
3385 &log->l_icloglock);
a14a348b
CH
3386 if (log_flushed)
3387 *log_flushed = 1;
3388 already_slept = 1;
3389 goto try_again;
3390 }
155cc6b7 3391 atomic_inc(&iclog->ic_refcnt);
1da177e4 3392 xlog_state_switch_iclogs(log, iclog, 0);
b22cd72c 3393 spin_unlock(&log->l_icloglock);
1da177e4 3394 if (xlog_state_release_iclog(log, iclog))
2451337d 3395 return -EIO;
a14a348b
CH
3396 if (log_flushed)
3397 *log_flushed = 1;
b22cd72c 3398 spin_lock(&log->l_icloglock);
1da177e4 3399 }
1da177e4 3400
a14a348b
CH
3401 if ((flags & XFS_LOG_SYNC) && /* sleep */
3402 !(iclog->ic_state &
3403 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3404 /*
3405 * Don't wait on completion if we know that we've
3406 * gotten a log write error.
3407 */
3408 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3409 spin_unlock(&log->l_icloglock);
2451337d 3410 return -EIO;
a14a348b
CH
3411 }
3412 XFS_STATS_INC(xs_log_force_sleep);
eb40a875 3413 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
a14a348b
CH
3414 /*
3415 * No need to grab the log lock here since we're
3416 * only deciding whether or not to return EIO
3417 * and the memory read should be atomic.
3418 */
3419 if (iclog->ic_state & XLOG_STATE_IOERROR)
2451337d 3420 return -EIO;
1da177e4 3421
a14a348b
CH
3422 if (log_flushed)
3423 *log_flushed = 1;
3424 } else { /* just return */
b22cd72c 3425 spin_unlock(&log->l_icloglock);
1da177e4 3426 }
1da177e4 3427
a14a348b
CH
3428 return 0;
3429 } while (iclog != log->l_iclog);
1da177e4 3430
a14a348b
CH
3431 spin_unlock(&log->l_icloglock);
3432 return 0;
3433}
3434
3435/*
3436 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3437 * about errors or whether the log was flushed or not. This is the normal
3438 * interface to use when trying to unpin items or move the log forward.
3439 */
3440void
3441xfs_log_force_lsn(
3442 xfs_mount_t *mp,
3443 xfs_lsn_t lsn,
3444 uint flags)
3445{
3446 int error;
1da177e4 3447
14c26c6a 3448 trace_xfs_log_force(mp, lsn);
a14a348b 3449 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
a0fa2b67
DC
3450 if (error)
3451 xfs_warn(mp, "%s: error %d returned.", __func__, error);
a14a348b 3452}
1da177e4
LT
3453
3454/*
3455 * Called when we want to mark the current iclog as being ready to sync to
3456 * disk.
3457 */
a8272ce0 3458STATIC void
9a8d2fdb
MT
3459xlog_state_want_sync(
3460 struct xlog *log,
3461 struct xlog_in_core *iclog)
1da177e4 3462{
a8914f3a 3463 assert_spin_locked(&log->l_icloglock);
1da177e4
LT
3464
3465 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3466 xlog_state_switch_iclogs(log, iclog, 0);
3467 } else {
3468 ASSERT(iclog->ic_state &
3469 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3470 }
39e2defe 3471}
1da177e4
LT
3472
3473
3474/*****************************************************************************
3475 *
3476 * TICKET functions
3477 *
3478 *****************************************************************************
3479 */
3480
3481/*
9da096fd 3482 * Free a used ticket when its refcount falls to zero.
1da177e4 3483 */
cc09c0dc
DC
3484void
3485xfs_log_ticket_put(
3486 xlog_ticket_t *ticket)
1da177e4 3487{
cc09c0dc 3488 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3489 if (atomic_dec_and_test(&ticket->t_ref))
cc09c0dc 3490 kmem_zone_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3491}
1da177e4 3492
cc09c0dc
DC
3493xlog_ticket_t *
3494xfs_log_ticket_get(
3495 xlog_ticket_t *ticket)
3496{
3497 ASSERT(atomic_read(&ticket->t_ref) > 0);
3498 atomic_inc(&ticket->t_ref);
3499 return ticket;
3500}
1da177e4
LT
3501
3502/*
e773fc93
JL
3503 * Figure out the total log space unit (in bytes) that would be
3504 * required for a log ticket.
1da177e4 3505 */
e773fc93
JL
3506int
3507xfs_log_calc_unit_res(
3508 struct xfs_mount *mp,
3509 int unit_bytes)
1da177e4 3510{
e773fc93
JL
3511 struct xlog *log = mp->m_log;
3512 int iclog_space;
3513 uint num_headers;
1da177e4
LT
3514
3515 /*
3516 * Permanent reservations have up to 'cnt'-1 active log operations
3517 * in the log. A unit in this case is the amount of space for one
3518 * of these log operations. Normal reservations have a cnt of 1
3519 * and their unit amount is the total amount of space required.
3520 *
3521 * The following lines of code account for non-transaction data
32fb9b57
TS
3522 * which occupy space in the on-disk log.
3523 *
3524 * Normal form of a transaction is:
3525 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3526 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3527 *
3528 * We need to account for all the leadup data and trailer data
3529 * around the transaction data.
3530 * And then we need to account for the worst case in terms of using
3531 * more space.
3532 * The worst case will happen if:
3533 * - the placement of the transaction happens to be such that the
3534 * roundoff is at its maximum
3535 * - the transaction data is synced before the commit record is synced
3536 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3537 * Therefore the commit record is in its own Log Record.
3538 * This can happen as the commit record is called with its
3539 * own region to xlog_write().
3540 * This then means that in the worst case, roundoff can happen for
3541 * the commit-rec as well.
3542 * The commit-rec is smaller than padding in this scenario and so it is
3543 * not added separately.
1da177e4
LT
3544 */
3545
32fb9b57
TS
3546 /* for trans header */
3547 unit_bytes += sizeof(xlog_op_header_t);
3548 unit_bytes += sizeof(xfs_trans_header_t);
3549
1da177e4 3550 /* for start-rec */
32fb9b57
TS
3551 unit_bytes += sizeof(xlog_op_header_t);
3552
9b9fc2b7
DC
3553 /*
3554 * for LR headers - the space for data in an iclog is the size minus
3555 * the space used for the headers. If we use the iclog size, then we
3556 * undercalculate the number of headers required.
3557 *
3558 * Furthermore - the addition of op headers for split-recs might
3559 * increase the space required enough to require more log and op
3560 * headers, so take that into account too.
3561 *
3562 * IMPORTANT: This reservation makes the assumption that if this
3563 * transaction is the first in an iclog and hence has the LR headers
3564 * accounted to it, then the remaining space in the iclog is
3565 * exclusively for this transaction. i.e. if the transaction is larger
3566 * than the iclog, it will be the only thing in that iclog.
3567 * Fundamentally, this means we must pass the entire log vector to
3568 * xlog_write to guarantee this.
3569 */
3570 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3571 num_headers = howmany(unit_bytes, iclog_space);
3572
3573 /* for split-recs - ophdrs added when data split over LRs */
3574 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3575
3576 /* add extra header reservations if we overrun */
3577 while (!num_headers ||
3578 howmany(unit_bytes, iclog_space) > num_headers) {
3579 unit_bytes += sizeof(xlog_op_header_t);
3580 num_headers++;
3581 }
32fb9b57 3582 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3583
32fb9b57
TS
3584 /* for commit-rec LR header - note: padding will subsume the ophdr */
3585 unit_bytes += log->l_iclog_hsize;
3586
32fb9b57 3587 /* for roundoff padding for transaction data and one for commit record */
e773fc93 3588 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
1da177e4 3589 /* log su roundoff */
e773fc93 3590 unit_bytes += 2 * mp->m_sb.sb_logsunit;
1da177e4
LT
3591 } else {
3592 /* BB roundoff */
e773fc93 3593 unit_bytes += 2 * BBSIZE;
1da177e4
LT
3594 }
3595
e773fc93
JL
3596 return unit_bytes;
3597}
3598
3599/*
3600 * Allocate and initialise a new log ticket.
3601 */
3602struct xlog_ticket *
3603xlog_ticket_alloc(
3604 struct xlog *log,
3605 int unit_bytes,
3606 int cnt,
3607 char client,
3608 bool permanent,
3609 xfs_km_flags_t alloc_flags)
3610{
3611 struct xlog_ticket *tic;
3612 int unit_res;
3613
3614 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3615 if (!tic)
3616 return NULL;
3617
3618 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3619
cc09c0dc 3620 atomic_set(&tic->t_ref, 1);
14a7235f 3621 tic->t_task = current;
10547941 3622 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3623 tic->t_unit_res = unit_res;
3624 tic->t_curr_res = unit_res;
1da177e4
LT
3625 tic->t_cnt = cnt;
3626 tic->t_ocnt = cnt;
ecb3403d 3627 tic->t_tid = prandom_u32();
1da177e4
LT
3628 tic->t_clientid = client;
3629 tic->t_flags = XLOG_TIC_INITED;
7e9c6396 3630 tic->t_trans_type = 0;
9006fb91 3631 if (permanent)
1da177e4 3632 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3633
0adba536 3634 xlog_tic_reset_res(tic);
7e9c6396 3635
1da177e4 3636 return tic;
cc09c0dc 3637}
1da177e4
LT
3638
3639
3640/******************************************************************************
3641 *
3642 * Log debug routines
3643 *
3644 ******************************************************************************
3645 */
cfcbbbd0 3646#if defined(DEBUG)
1da177e4
LT
3647/*
3648 * Make sure that the destination ptr is within the valid data region of
3649 * one of the iclogs. This uses backup pointers stored in a different
3650 * part of the log in case we trash the log structure.
3651 */
3652void
e6b1f273 3653xlog_verify_dest_ptr(
ad223e60 3654 struct xlog *log,
e6b1f273 3655 char *ptr)
1da177e4
LT
3656{
3657 int i;
3658 int good_ptr = 0;
3659
e6b1f273
CH
3660 for (i = 0; i < log->l_iclog_bufs; i++) {
3661 if (ptr >= log->l_iclog_bak[i] &&
3662 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3663 good_ptr++;
3664 }
e6b1f273
CH
3665
3666 if (!good_ptr)
a0fa2b67 3667 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3668}
1da177e4 3669
da8a1a4a
DC
3670/*
3671 * Check to make sure the grant write head didn't just over lap the tail. If
3672 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3673 * the cycles differ by exactly one and check the byte count.
3674 *
3675 * This check is run unlocked, so can give false positives. Rather than assert
3676 * on failures, use a warn-once flag and a panic tag to allow the admin to
3677 * determine if they want to panic the machine when such an error occurs. For
3678 * debug kernels this will have the same effect as using an assert but, unlinke
3679 * an assert, it can be turned off at runtime.
3680 */
3f336c6f
DC
3681STATIC void
3682xlog_verify_grant_tail(
ad223e60 3683 struct xlog *log)
3f336c6f 3684{
1c3cb9ec 3685 int tail_cycle, tail_blocks;
a69ed03c 3686 int cycle, space;
3f336c6f 3687
28496968 3688 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3689 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3690 if (tail_cycle != cycle) {
da8a1a4a
DC
3691 if (cycle - 1 != tail_cycle &&
3692 !(log->l_flags & XLOG_TAIL_WARN)) {
3693 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3694 "%s: cycle - 1 != tail_cycle", __func__);
3695 log->l_flags |= XLOG_TAIL_WARN;
3696 }
3697
3698 if (space > BBTOB(tail_blocks) &&
3699 !(log->l_flags & XLOG_TAIL_WARN)) {
3700 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3701 "%s: space > BBTOB(tail_blocks)", __func__);
3702 log->l_flags |= XLOG_TAIL_WARN;
3703 }
3f336c6f
DC
3704 }
3705}
3706
1da177e4
LT
3707/* check if it will fit */
3708STATIC void
9a8d2fdb
MT
3709xlog_verify_tail_lsn(
3710 struct xlog *log,
3711 struct xlog_in_core *iclog,
3712 xfs_lsn_t tail_lsn)
1da177e4
LT
3713{
3714 int blocks;
3715
3716 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3717 blocks =
3718 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3719 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3720 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3721 } else {
3722 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3723
3724 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3725 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3726
3727 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3728 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3729 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3730 }
3731} /* xlog_verify_tail_lsn */
3732
3733/*
3734 * Perform a number of checks on the iclog before writing to disk.
3735 *
3736 * 1. Make sure the iclogs are still circular
3737 * 2. Make sure we have a good magic number
3738 * 3. Make sure we don't have magic numbers in the data
3739 * 4. Check fields of each log operation header for:
3740 * A. Valid client identifier
3741 * B. tid ptr value falls in valid ptr space (user space code)
3742 * C. Length in log record header is correct according to the
3743 * individual operation headers within record.
3744 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3745 * log, check the preceding blocks of the physical log to make sure all
3746 * the cycle numbers agree with the current cycle number.
3747 */
3748STATIC void
9a8d2fdb
MT
3749xlog_verify_iclog(
3750 struct xlog *log,
3751 struct xlog_in_core *iclog,
3752 int count,
667a9291 3753 bool syncing)
1da177e4
LT
3754{
3755 xlog_op_header_t *ophead;
3756 xlog_in_core_t *icptr;
3757 xlog_in_core_2_t *xhdr;
3758 xfs_caddr_t ptr;
3759 xfs_caddr_t base_ptr;
3760 __psint_t field_offset;
3761 __uint8_t clientid;
3762 int len, i, j, k, op_len;
3763 int idx;
1da177e4
LT
3764
3765 /* check validity of iclog pointers */
b22cd72c 3766 spin_lock(&log->l_icloglock);
1da177e4 3767 icptr = log->l_iclog;
643f7c4e
GB
3768 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3769 ASSERT(icptr);
3770
1da177e4 3771 if (icptr != log->l_iclog)
a0fa2b67 3772 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3773 spin_unlock(&log->l_icloglock);
1da177e4
LT
3774
3775 /* check log magic numbers */
69ef921b 3776 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3777 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3778
b53e675d
CH
3779 ptr = (xfs_caddr_t) &iclog->ic_header;
3780 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
1da177e4 3781 ptr += BBSIZE) {
69ef921b 3782 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3783 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3784 __func__);
1da177e4
LT
3785 }
3786
3787 /* check fields */
b53e675d 3788 len = be32_to_cpu(iclog->ic_header.h_num_logops);
1da177e4
LT
3789 ptr = iclog->ic_datap;
3790 base_ptr = ptr;
3791 ophead = (xlog_op_header_t *)ptr;
b28708d6 3792 xhdr = iclog->ic_data;
1da177e4
LT
3793 for (i = 0; i < len; i++) {
3794 ophead = (xlog_op_header_t *)ptr;
3795
3796 /* clientid is only 1 byte */
3797 field_offset = (__psint_t)
3798 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
667a9291 3799 if (!syncing || (field_offset & 0x1ff)) {
1da177e4
LT
3800 clientid = ophead->oh_clientid;
3801 } else {
3802 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3803 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3804 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3805 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3806 clientid = xlog_get_client_id(
3807 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3808 } else {
03bea6fe
CH
3809 clientid = xlog_get_client_id(
3810 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3811 }
3812 }
3813 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67
DC
3814 xfs_warn(log->l_mp,
3815 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3816 __func__, clientid, ophead,
3817 (unsigned long)field_offset);
1da177e4
LT
3818
3819 /* check length */
3820 field_offset = (__psint_t)
3821 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
667a9291 3822 if (!syncing || (field_offset & 0x1ff)) {
67fcb7bf 3823 op_len = be32_to_cpu(ophead->oh_len);
1da177e4
LT
3824 } else {
3825 idx = BTOBBT((__psint_t)&ophead->oh_len -
3826 (__psint_t)iclog->ic_datap);
3827 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3828 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3829 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3830 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3831 } else {
b53e675d 3832 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3833 }
3834 }
3835 ptr += sizeof(xlog_op_header_t) + op_len;
3836 }
3837} /* xlog_verify_iclog */
cfcbbbd0 3838#endif
1da177e4
LT
3839
3840/*
b22cd72c 3841 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3842 */
3843STATIC int
3844xlog_state_ioerror(
9a8d2fdb 3845 struct xlog *log)
1da177e4
LT
3846{
3847 xlog_in_core_t *iclog, *ic;
3848
3849 iclog = log->l_iclog;
3850 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3851 /*
3852 * Mark all the incore logs IOERROR.
3853 * From now on, no log flushes will result.
3854 */
3855 ic = iclog;
3856 do {
3857 ic->ic_state = XLOG_STATE_IOERROR;
3858 ic = ic->ic_next;
3859 } while (ic != iclog);
014c2544 3860 return 0;
1da177e4
LT
3861 }
3862 /*
3863 * Return non-zero, if state transition has already happened.
3864 */
014c2544 3865 return 1;
1da177e4
LT
3866}
3867
3868/*
3869 * This is called from xfs_force_shutdown, when we're forcibly
3870 * shutting down the filesystem, typically because of an IO error.
3871 * Our main objectives here are to make sure that:
a870fe6d
DC
3872 * a. if !logerror, flush the logs to disk. Anything modified
3873 * after this is ignored.
3874 * b. the filesystem gets marked 'SHUTDOWN' for all interested
1da177e4 3875 * parties to find out, 'atomically'.
a870fe6d 3876 * c. those who're sleeping on log reservations, pinned objects and
1da177e4 3877 * other resources get woken up, and be told the bad news.
a870fe6d 3878 * d. nothing new gets queued up after (b) and (c) are done.
9da1ab18 3879 *
a870fe6d
DC
3880 * Note: for the !logerror case we need to flush the regions held in memory out
3881 * to disk first. This needs to be done before the log is marked as shutdown,
3882 * otherwise the iclog writes will fail.
1da177e4
LT
3883 */
3884int
3885xfs_log_force_umount(
3886 struct xfs_mount *mp,
3887 int logerror)
3888{
9a8d2fdb 3889 struct xlog *log;
1da177e4 3890 int retval;
1da177e4
LT
3891
3892 log = mp->m_log;
3893
3894 /*
3895 * If this happens during log recovery, don't worry about
3896 * locking; the log isn't open for business yet.
3897 */
3898 if (!log ||
3899 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3900 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9
CH
3901 if (mp->m_sb_bp)
3902 XFS_BUF_DONE(mp->m_sb_bp);
014c2544 3903 return 0;
1da177e4
LT
3904 }
3905
3906 /*
3907 * Somebody could've already done the hard work for us.
3908 * No need to get locks for this.
3909 */
3910 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3911 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3912 return 1;
1da177e4 3913 }
9da1ab18
DC
3914
3915 /*
a870fe6d
DC
3916 * Flush all the completed transactions to disk before marking the log
3917 * being shut down. We need to do it in this order to ensure that
3918 * completed operations are safely on disk before we shut down, and that
3919 * we don't have to issue any buffer IO after the shutdown flags are set
3920 * to guarantee this.
9da1ab18 3921 */
93b8a585 3922 if (!logerror)
a870fe6d 3923 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
9da1ab18 3924
1da177e4 3925 /*
3f16b985
DC
3926 * mark the filesystem and the as in a shutdown state and wake
3927 * everybody up to tell them the bad news.
1da177e4 3928 */
b22cd72c 3929 spin_lock(&log->l_icloglock);
1da177e4 3930 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9
CH
3931 if (mp->m_sb_bp)
3932 XFS_BUF_DONE(mp->m_sb_bp);
3933
1da177e4 3934 /*
a870fe6d
DC
3935 * Mark the log and the iclogs with IO error flags to prevent any
3936 * further log IO from being issued or completed.
1da177e4
LT
3937 */
3938 log->l_flags |= XLOG_IO_ERROR;
a870fe6d 3939 retval = xlog_state_ioerror(log);
b22cd72c 3940 spin_unlock(&log->l_icloglock);
1da177e4
LT
3941
3942 /*
10547941
DC
3943 * We don't want anybody waiting for log reservations after this. That
3944 * means we have to wake up everybody queued up on reserveq as well as
3945 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3946 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3947 * action is protected by the grant locks.
1da177e4 3948 */
a79bf2d7
CH
3949 xlog_grant_head_wake_all(&log->l_reserve_head);
3950 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3951
1da177e4 3952 /*
ac983517
DC
3953 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3954 * as if the log writes were completed. The abort handling in the log
3955 * item committed callback functions will do this again under lock to
3956 * avoid races.
1da177e4 3957 */
ac983517 3958 wake_up_all(&log->l_cilp->xc_commit_wait);
1da177e4
LT
3959 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3960
3961#ifdef XFSERRORDEBUG
3962 {
3963 xlog_in_core_t *iclog;
3964
b22cd72c 3965 spin_lock(&log->l_icloglock);
1da177e4
LT
3966 iclog = log->l_iclog;
3967 do {
3968 ASSERT(iclog->ic_callback == 0);
3969 iclog = iclog->ic_next;
3970 } while (iclog != log->l_iclog);
b22cd72c 3971 spin_unlock(&log->l_icloglock);
1da177e4
LT
3972 }
3973#endif
3974 /* return non-zero if log IOERROR transition had already happened */
014c2544 3975 return retval;
1da177e4
LT
3976}
3977
ba0f32d4 3978STATIC int
9a8d2fdb
MT
3979xlog_iclogs_empty(
3980 struct xlog *log)
1da177e4
LT
3981{
3982 xlog_in_core_t *iclog;
3983
3984 iclog = log->l_iclog;
3985 do {
3986 /* endianness does not matter here, zero is zero in
3987 * any language.
3988 */
3989 if (iclog->ic_header.h_num_logops)
014c2544 3990 return 0;
1da177e4
LT
3991 iclog = iclog->ic_next;
3992 } while (iclog != log->l_iclog);
014c2544 3993 return 1;
1da177e4 3994}
f661f1e0 3995
This page took 0.893124 seconds and 5 git commands to generate.