xfs: sync work is now only periodic log work
[deliverable/linux.git] / fs / xfs / xfs_log.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
1da177e4
LT
21#include "xfs_log.h"
22#include "xfs_trans.h"
a844f451
NS
23#include "xfs_sb.h"
24#include "xfs_ag.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_error.h"
27#include "xfs_log_priv.h"
28#include "xfs_buf_item.h"
a844f451 29#include "xfs_bmap_btree.h"
1da177e4 30#include "xfs_alloc_btree.h"
a844f451 31#include "xfs_ialloc_btree.h"
1da177e4 32#include "xfs_log_recover.h"
1da177e4 33#include "xfs_trans_priv.h"
a844f451
NS
34#include "xfs_dinode.h"
35#include "xfs_inode.h"
0b1b213f 36#include "xfs_trace.h"
f661f1e0 37#include "xfs_fsops.h"
1da177e4 38
eb01c9cd 39kmem_zone_t *xfs_log_ticket_zone;
1da177e4 40
1da177e4 41/* Local miscellaneous function prototypes */
ad223e60
MT
42STATIC int
43xlog_commit_record(
44 struct xlog *log,
45 struct xlog_ticket *ticket,
46 struct xlog_in_core **iclog,
47 xfs_lsn_t *commitlsnp);
48
9a8d2fdb
MT
49STATIC struct xlog *
50xlog_alloc_log(
51 struct xfs_mount *mp,
52 struct xfs_buftarg *log_target,
53 xfs_daddr_t blk_offset,
54 int num_bblks);
ad223e60
MT
55STATIC int
56xlog_space_left(
57 struct xlog *log,
58 atomic64_t *head);
9a8d2fdb
MT
59STATIC int
60xlog_sync(
61 struct xlog *log,
62 struct xlog_in_core *iclog);
63STATIC void
64xlog_dealloc_log(
65 struct xlog *log);
1da177e4
LT
66
67/* local state machine functions */
68STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
9a8d2fdb
MT
69STATIC void
70xlog_state_do_callback(
71 struct xlog *log,
72 int aborted,
73 struct xlog_in_core *iclog);
74STATIC int
75xlog_state_get_iclog_space(
76 struct xlog *log,
77 int len,
78 struct xlog_in_core **iclog,
79 struct xlog_ticket *ticket,
80 int *continued_write,
81 int *logoffsetp);
82STATIC int
83xlog_state_release_iclog(
84 struct xlog *log,
85 struct xlog_in_core *iclog);
86STATIC void
87xlog_state_switch_iclogs(
88 struct xlog *log,
89 struct xlog_in_core *iclog,
90 int eventual_size);
91STATIC void
92xlog_state_want_sync(
93 struct xlog *log,
94 struct xlog_in_core *iclog);
1da177e4 95
ad223e60
MT
96STATIC void
97xlog_grant_push_ail(
9a8d2fdb
MT
98 struct xlog *log,
99 int need_bytes);
100STATIC void
101xlog_regrant_reserve_log_space(
102 struct xlog *log,
103 struct xlog_ticket *ticket);
104STATIC void
105xlog_ungrant_log_space(
106 struct xlog *log,
107 struct xlog_ticket *ticket);
1da177e4 108
cfcbbbd0 109#if defined(DEBUG)
9a8d2fdb
MT
110STATIC void
111xlog_verify_dest_ptr(
112 struct xlog *log,
113 char *ptr);
ad223e60
MT
114STATIC void
115xlog_verify_grant_tail(
9a8d2fdb
MT
116 struct xlog *log);
117STATIC void
118xlog_verify_iclog(
119 struct xlog *log,
120 struct xlog_in_core *iclog,
121 int count,
122 boolean_t syncing);
123STATIC void
124xlog_verify_tail_lsn(
125 struct xlog *log,
126 struct xlog_in_core *iclog,
127 xfs_lsn_t tail_lsn);
1da177e4
LT
128#else
129#define xlog_verify_dest_ptr(a,b)
3f336c6f 130#define xlog_verify_grant_tail(a)
1da177e4
LT
131#define xlog_verify_iclog(a,b,c,d)
132#define xlog_verify_tail_lsn(a,b,c)
133#endif
134
9a8d2fdb
MT
135STATIC int
136xlog_iclogs_empty(
137 struct xlog *log);
1da177e4 138
dd954c69 139static void
663e496a 140xlog_grant_sub_space(
ad223e60
MT
141 struct xlog *log,
142 atomic64_t *head,
143 int bytes)
dd954c69 144{
d0eb2f38
DC
145 int64_t head_val = atomic64_read(head);
146 int64_t new, old;
a69ed03c 147
d0eb2f38
DC
148 do {
149 int cycle, space;
a69ed03c 150
d0eb2f38 151 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 152
d0eb2f38
DC
153 space -= bytes;
154 if (space < 0) {
155 space += log->l_logsize;
156 cycle--;
157 }
158
159 old = head_val;
160 new = xlog_assign_grant_head_val(cycle, space);
161 head_val = atomic64_cmpxchg(head, old, new);
162 } while (head_val != old);
dd954c69
CH
163}
164
165static void
663e496a 166xlog_grant_add_space(
ad223e60
MT
167 struct xlog *log,
168 atomic64_t *head,
169 int bytes)
dd954c69 170{
d0eb2f38
DC
171 int64_t head_val = atomic64_read(head);
172 int64_t new, old;
a69ed03c 173
d0eb2f38
DC
174 do {
175 int tmp;
176 int cycle, space;
a69ed03c 177
d0eb2f38 178 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 179
d0eb2f38
DC
180 tmp = log->l_logsize - space;
181 if (tmp > bytes)
182 space += bytes;
183 else {
184 space = bytes - tmp;
185 cycle++;
186 }
187
188 old = head_val;
189 new = xlog_assign_grant_head_val(cycle, space);
190 head_val = atomic64_cmpxchg(head, old, new);
191 } while (head_val != old);
dd954c69 192}
a69ed03c 193
c303c5b8
CH
194STATIC void
195xlog_grant_head_init(
196 struct xlog_grant_head *head)
197{
198 xlog_assign_grant_head(&head->grant, 1, 0);
199 INIT_LIST_HEAD(&head->waiters);
200 spin_lock_init(&head->lock);
201}
202
a79bf2d7
CH
203STATIC void
204xlog_grant_head_wake_all(
205 struct xlog_grant_head *head)
206{
207 struct xlog_ticket *tic;
208
209 spin_lock(&head->lock);
210 list_for_each_entry(tic, &head->waiters, t_queue)
211 wake_up_process(tic->t_task);
212 spin_unlock(&head->lock);
213}
214
e179840d
CH
215static inline int
216xlog_ticket_reservation(
ad223e60 217 struct xlog *log,
e179840d
CH
218 struct xlog_grant_head *head,
219 struct xlog_ticket *tic)
9f9c19ec 220{
e179840d
CH
221 if (head == &log->l_write_head) {
222 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 return tic->t_unit_res;
224 } else {
9f9c19ec 225 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 226 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 227 else
e179840d 228 return tic->t_unit_res;
9f9c19ec 229 }
9f9c19ec
CH
230}
231
232STATIC bool
e179840d 233xlog_grant_head_wake(
ad223e60 234 struct xlog *log,
e179840d 235 struct xlog_grant_head *head,
9f9c19ec
CH
236 int *free_bytes)
237{
238 struct xlog_ticket *tic;
239 int need_bytes;
240
e179840d
CH
241 list_for_each_entry(tic, &head->waiters, t_queue) {
242 need_bytes = xlog_ticket_reservation(log, head, tic);
9f9c19ec
CH
243 if (*free_bytes < need_bytes)
244 return false;
9f9c19ec 245
e179840d
CH
246 *free_bytes -= need_bytes;
247 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 248 wake_up_process(tic->t_task);
9f9c19ec
CH
249 }
250
251 return true;
252}
253
254STATIC int
23ee3df3 255xlog_grant_head_wait(
ad223e60 256 struct xlog *log,
23ee3df3 257 struct xlog_grant_head *head,
9f9c19ec
CH
258 struct xlog_ticket *tic,
259 int need_bytes)
260{
23ee3df3 261 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
14a7235f 268 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 269 spin_unlock(&head->lock);
14a7235f 270
9f9c19ec 271 XFS_STATS_INC(xs_sleep_logspace);
9f9c19ec 272
14a7235f
CH
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
9f9c19ec
CH
275 trace_xfs_log_grant_wake(log, tic);
276
23ee3df3 277 spin_lock(&head->lock);
9f9c19ec
CH
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
23ee3df3 280 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
281
282 list_del_init(&tic->t_queue);
283 return 0;
284shutdown:
285 list_del_init(&tic->t_queue);
286 return XFS_ERROR(EIO);
287}
288
42ceedb3
CH
289/*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306STATIC int
307xlog_grant_head_check(
ad223e60 308 struct xlog *log,
42ceedb3
CH
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312{
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341}
342
0adba536
CH
343static void
344xlog_tic_reset_res(xlog_ticket_t *tic)
345{
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349}
350
351static void
352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353{
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365}
dd954c69 366
9006fb91
CH
367/*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370int
371xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374{
ad223e60 375 struct xlog *log = mp->m_log;
9006fb91
CH
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return XFS_ERROR(EIO);
381
382 XFS_STATS_INC(xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421}
422
423/*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431int
432xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
440{
ad223e60 441 struct xlog *log = mp->m_log;
9006fb91
CH
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
445
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return XFS_ERROR(EIO);
450
451 XFS_STATS_INC(xs_try_logspace);
452
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return XFS_ERROR(ENOMEM);
458
459 tic->t_trans_type = t_type;
460 *ticp = tic;
461
462 xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486}
487
488
1da177e4
LT
489/*
490 * NOTES:
491 *
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
494 */
495
496/*
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
509 */
510xfs_lsn_t
35a8a72f
CH
511xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
515 uint flags)
1da177e4 516{
ad223e60 517 struct xlog *log = mp->m_log;
35a8a72f 518 xfs_lsn_t lsn = 0;
1da177e4 519
1da177e4
LT
520 if (XLOG_FORCED_SHUTDOWN(log) ||
521 /*
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
524 */
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
55b66332 526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
1da177e4
LT
527 lsn = (xfs_lsn_t) -1;
528 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
529 flags |= XFS_LOG_REL_PERM_RESERV;
530 }
531 }
532
533
534 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
535 (flags & XFS_LOG_REL_PERM_RESERV)) {
0b1b213f
CH
536 trace_xfs_log_done_nonperm(log, ticket);
537
1da177e4 538 /*
c41564b5 539 * Release ticket if not permanent reservation or a specific
1da177e4
LT
540 * request has been made to release a permanent reservation.
541 */
542 xlog_ungrant_log_space(log, ticket);
cc09c0dc 543 xfs_log_ticket_put(ticket);
1da177e4 544 } else {
0b1b213f
CH
545 trace_xfs_log_done_perm(log, ticket);
546
1da177e4 547 xlog_regrant_reserve_log_space(log, ticket);
c6a7b0f8
LM
548 /* If this ticket was a permanent reservation and we aren't
549 * trying to release it, reset the inited flags; so next time
550 * we write, a start record will be written out.
551 */
1da177e4 552 ticket->t_flags |= XLOG_TIC_INITED;
c6a7b0f8 553 }
1da177e4
LT
554
555 return lsn;
35a8a72f 556}
1da177e4 557
1da177e4
LT
558/*
559 * Attaches a new iclog I/O completion callback routine during
560 * transaction commit. If the log is in error state, a non-zero
561 * return code is handed back and the caller is responsible for
562 * executing the callback at an appropriate time.
563 */
564int
35a8a72f
CH
565xfs_log_notify(
566 struct xfs_mount *mp,
567 struct xlog_in_core *iclog,
568 xfs_log_callback_t *cb)
1da177e4 569{
b22cd72c 570 int abortflg;
1da177e4 571
114d23aa 572 spin_lock(&iclog->ic_callback_lock);
1da177e4
LT
573 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
574 if (!abortflg) {
575 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
576 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
577 cb->cb_next = NULL;
578 *(iclog->ic_callback_tail) = cb;
579 iclog->ic_callback_tail = &(cb->cb_next);
580 }
114d23aa 581 spin_unlock(&iclog->ic_callback_lock);
1da177e4 582 return abortflg;
35a8a72f 583}
1da177e4
LT
584
585int
35a8a72f
CH
586xfs_log_release_iclog(
587 struct xfs_mount *mp,
588 struct xlog_in_core *iclog)
1da177e4 589{
35a8a72f 590 if (xlog_state_release_iclog(mp->m_log, iclog)) {
7d04a335 591 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 592 return EIO;
1da177e4
LT
593 }
594
595 return 0;
596}
597
1da177e4
LT
598/*
599 * Mount a log filesystem
600 *
601 * mp - ubiquitous xfs mount point structure
602 * log_target - buftarg of on-disk log device
603 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
604 * num_bblocks - Number of BBSIZE blocks in on-disk log
605 *
606 * Return error or zero.
607 */
608int
249a8c11
DC
609xfs_log_mount(
610 xfs_mount_t *mp,
611 xfs_buftarg_t *log_target,
612 xfs_daddr_t blk_offset,
613 int num_bblks)
1da177e4 614{
249a8c11
DC
615 int error;
616
1da177e4 617 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
a0fa2b67 618 xfs_notice(mp, "Mounting Filesystem");
1da177e4 619 else {
a0fa2b67
DC
620 xfs_notice(mp,
621"Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
bd186aa9 622 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
623 }
624
625 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e
DC
626 if (IS_ERR(mp->m_log)) {
627 error = -PTR_ERR(mp->m_log);
644c3567
DC
628 goto out;
629 }
1da177e4 630
249a8c11
DC
631 /*
632 * Initialize the AIL now we have a log.
633 */
249a8c11
DC
634 error = xfs_trans_ail_init(mp);
635 if (error) {
a0fa2b67 636 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 637 goto out_free_log;
249a8c11 638 }
a9c21c1b 639 mp->m_log->l_ailp = mp->m_ail;
249a8c11 640
1da177e4
LT
641 /*
642 * skip log recovery on a norecovery mount. pretend it all
643 * just worked.
644 */
645 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 646 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
647
648 if (readonly)
bd186aa9 649 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 650
65be6054 651 error = xlog_recover(mp->m_log);
1da177e4
LT
652
653 if (readonly)
bd186aa9 654 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 655 if (error) {
a0fa2b67
DC
656 xfs_warn(mp, "log mount/recovery failed: error %d",
657 error);
26430752 658 goto out_destroy_ail;
1da177e4
LT
659 }
660 }
661
662 /* Normal transactions can now occur */
663 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
664
71e330b5
DC
665 /*
666 * Now the log has been fully initialised and we know were our
667 * space grant counters are, we can initialise the permanent ticket
668 * needed for delayed logging to work.
669 */
670 xlog_cil_init_post_recovery(mp->m_log);
671
1da177e4 672 return 0;
26430752
CH
673
674out_destroy_ail:
675 xfs_trans_ail_destroy(mp);
676out_free_log:
677 xlog_dealloc_log(mp->m_log);
644c3567 678out:
249a8c11 679 return error;
26430752 680}
1da177e4
LT
681
682/*
f661f1e0
DC
683 * Finish the recovery of the file system. This is separate from the
684 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
685 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
686 * here.
1da177e4 687 *
f661f1e0
DC
688 * If we finish recovery successfully, start the background log work. If we are
689 * not doing recovery, then we have a RO filesystem and we don't need to start
690 * it.
1da177e4
LT
691 */
692int
4249023a 693xfs_log_mount_finish(xfs_mount_t *mp)
1da177e4 694{
f661f1e0 695 int error = 0;
1da177e4 696
f661f1e0 697 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
4249023a 698 error = xlog_recover_finish(mp->m_log);
f661f1e0
DC
699 if (!error)
700 xfs_log_work_queue(mp);
701 } else {
bd186aa9 702 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
703 }
704
f661f1e0 705
1da177e4
LT
706 return error;
707}
708
1da177e4
LT
709/*
710 * Final log writes as part of unmount.
711 *
712 * Mark the filesystem clean as unmount happens. Note that during relocation
713 * this routine needs to be executed as part of source-bag while the
714 * deallocation must not be done until source-end.
715 */
716
717/*
718 * Unmount record used to have a string "Unmount filesystem--" in the
719 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
720 * We just write the magic number now since that particular field isn't
721 * currently architecture converted and "nUmount" is a bit foo.
722 * As far as I know, there weren't any dependencies on the old behaviour.
723 */
724
725int
726xfs_log_unmount_write(xfs_mount_t *mp)
727{
9a8d2fdb 728 struct xlog *log = mp->m_log;
1da177e4
LT
729 xlog_in_core_t *iclog;
730#ifdef DEBUG
731 xlog_in_core_t *first_iclog;
732#endif
35a8a72f 733 xlog_ticket_t *tic = NULL;
1da177e4
LT
734 xfs_lsn_t lsn;
735 int error;
1da177e4 736
1da177e4
LT
737 /*
738 * Don't write out unmount record on read-only mounts.
739 * Or, if we are doing a forced umount (typically because of IO errors).
740 */
bd186aa9 741 if (mp->m_flags & XFS_MOUNT_RDONLY)
1da177e4
LT
742 return 0;
743
a14a348b 744 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
b911ca04 745 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
1da177e4
LT
746
747#ifdef DEBUG
748 first_iclog = iclog = log->l_iclog;
749 do {
750 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
751 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
752 ASSERT(iclog->ic_offset == 0);
753 }
754 iclog = iclog->ic_next;
755 } while (iclog != first_iclog);
756#endif
757 if (! (XLOG_FORCED_SHUTDOWN(log))) {
955e47ad
TS
758 error = xfs_log_reserve(mp, 600, 1, &tic,
759 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
1da177e4 760 if (!error) {
55b66332
DC
761 /* the data section must be 32 bit size aligned */
762 struct {
763 __uint16_t magic;
764 __uint16_t pad1;
765 __uint32_t pad2; /* may as well make it 64 bits */
766 } magic = {
767 .magic = XLOG_UNMOUNT_TYPE,
768 };
769 struct xfs_log_iovec reg = {
4e0d5f92 770 .i_addr = &magic,
55b66332
DC
771 .i_len = sizeof(magic),
772 .i_type = XLOG_REG_TYPE_UNMOUNT,
773 };
774 struct xfs_log_vec vec = {
775 .lv_niovecs = 1,
776 .lv_iovecp = &reg,
777 };
778
3948659e 779 /* remove inited flag, and account for space used */
55b66332 780 tic->t_flags = 0;
3948659e 781 tic->t_curr_res -= sizeof(magic);
55b66332 782 error = xlog_write(log, &vec, tic, &lsn,
1da177e4
LT
783 NULL, XLOG_UNMOUNT_TRANS);
784 /*
785 * At this point, we're umounting anyway,
786 * so there's no point in transitioning log state
787 * to IOERROR. Just continue...
788 */
789 }
790
a0fa2b67
DC
791 if (error)
792 xfs_alert(mp, "%s: unmount record failed", __func__);
1da177e4
LT
793
794
b22cd72c 795 spin_lock(&log->l_icloglock);
1da177e4 796 iclog = log->l_iclog;
155cc6b7 797 atomic_inc(&iclog->ic_refcnt);
1da177e4 798 xlog_state_want_sync(log, iclog);
39e2defe 799 spin_unlock(&log->l_icloglock);
1bb7d6b5 800 error = xlog_state_release_iclog(log, iclog);
1da177e4 801
b22cd72c 802 spin_lock(&log->l_icloglock);
1da177e4
LT
803 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
804 iclog->ic_state == XLOG_STATE_DIRTY)) {
805 if (!XLOG_FORCED_SHUTDOWN(log)) {
eb40a875
DC
806 xlog_wait(&iclog->ic_force_wait,
807 &log->l_icloglock);
1da177e4 808 } else {
b22cd72c 809 spin_unlock(&log->l_icloglock);
1da177e4
LT
810 }
811 } else {
b22cd72c 812 spin_unlock(&log->l_icloglock);
1da177e4 813 }
955e47ad 814 if (tic) {
0b1b213f 815 trace_xfs_log_umount_write(log, tic);
955e47ad 816 xlog_ungrant_log_space(log, tic);
cc09c0dc 817 xfs_log_ticket_put(tic);
955e47ad 818 }
1da177e4
LT
819 } else {
820 /*
821 * We're already in forced_shutdown mode, couldn't
822 * even attempt to write out the unmount transaction.
823 *
824 * Go through the motions of sync'ing and releasing
825 * the iclog, even though no I/O will actually happen,
c41564b5 826 * we need to wait for other log I/Os that may already
1da177e4
LT
827 * be in progress. Do this as a separate section of
828 * code so we'll know if we ever get stuck here that
829 * we're in this odd situation of trying to unmount
830 * a file system that went into forced_shutdown as
831 * the result of an unmount..
832 */
b22cd72c 833 spin_lock(&log->l_icloglock);
1da177e4 834 iclog = log->l_iclog;
155cc6b7 835 atomic_inc(&iclog->ic_refcnt);
1da177e4
LT
836
837 xlog_state_want_sync(log, iclog);
39e2defe 838 spin_unlock(&log->l_icloglock);
1bb7d6b5 839 error = xlog_state_release_iclog(log, iclog);
1da177e4 840
b22cd72c 841 spin_lock(&log->l_icloglock);
1da177e4
LT
842
843 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
844 || iclog->ic_state == XLOG_STATE_DIRTY
845 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
846
eb40a875
DC
847 xlog_wait(&iclog->ic_force_wait,
848 &log->l_icloglock);
1da177e4 849 } else {
b22cd72c 850 spin_unlock(&log->l_icloglock);
1da177e4
LT
851 }
852 }
853
1bb7d6b5 854 return error;
1da177e4
LT
855} /* xfs_log_unmount_write */
856
857/*
858 * Deallocate log structures for unmount/relocation.
249a8c11
DC
859 *
860 * We need to stop the aild from running before we destroy
861 * and deallocate the log as the aild references the log.
1da177e4
LT
862 */
863void
21b699c8 864xfs_log_unmount(xfs_mount_t *mp)
1da177e4 865{
f661f1e0 866 cancel_delayed_work_sync(&mp->m_log->l_work);
249a8c11 867 xfs_trans_ail_destroy(mp);
c41564b5 868 xlog_dealloc_log(mp->m_log);
1da177e4
LT
869}
870
43f5efc5
DC
871void
872xfs_log_item_init(
873 struct xfs_mount *mp,
874 struct xfs_log_item *item,
875 int type,
272e42b2 876 const struct xfs_item_ops *ops)
43f5efc5
DC
877{
878 item->li_mountp = mp;
879 item->li_ailp = mp->m_ail;
880 item->li_type = type;
881 item->li_ops = ops;
71e330b5
DC
882 item->li_lv = NULL;
883
884 INIT_LIST_HEAD(&item->li_ail);
885 INIT_LIST_HEAD(&item->li_cil);
43f5efc5
DC
886}
887
09a423a3
CH
888/*
889 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 890 */
1da177e4 891void
09a423a3 892xfs_log_space_wake(
cfb7cdca 893 struct xfs_mount *mp)
1da177e4 894{
ad223e60 895 struct xlog *log = mp->m_log;
cfb7cdca 896 int free_bytes;
1da177e4 897
1da177e4
LT
898 if (XLOG_FORCED_SHUTDOWN(log))
899 return;
1da177e4 900
28496968 901 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
902 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
903
28496968
CH
904 spin_lock(&log->l_write_head.lock);
905 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 906 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 907 spin_unlock(&log->l_write_head.lock);
1da177e4 908 }
10547941 909
28496968 910 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
911 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
912
28496968
CH
913 spin_lock(&log->l_reserve_head.lock);
914 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 915 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 916 spin_unlock(&log->l_reserve_head.lock);
1da177e4 917 }
3f16b985 918}
1da177e4
LT
919
920/*
921 * Determine if we have a transaction that has gone to disk
b6f8dd49
DC
922 * that needs to be covered. To begin the transition to the idle state
923 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
924 * If we are then in a state where covering is needed, the caller is informed
925 * that dummy transactions are required to move the log into the idle state.
926 *
927 * Because this is called as part of the sync process, we should also indicate
928 * that dummy transactions should be issued in anything but the covered or
929 * idle states. This ensures that the log tail is accurately reflected in
930 * the log at the end of the sync, hence if a crash occurrs avoids replay
931 * of transactions where the metadata is already on disk.
1da177e4
LT
932 */
933int
934xfs_log_need_covered(xfs_mount_t *mp)
935{
27d8d5fe 936 int needed = 0;
9a8d2fdb 937 struct xlog *log = mp->m_log;
1da177e4 938
92821e2b 939 if (!xfs_fs_writable(mp))
1da177e4
LT
940 return 0;
941
b22cd72c 942 spin_lock(&log->l_icloglock);
b6f8dd49
DC
943 switch (log->l_covered_state) {
944 case XLOG_STATE_COVER_DONE:
945 case XLOG_STATE_COVER_DONE2:
946 case XLOG_STATE_COVER_IDLE:
947 break;
948 case XLOG_STATE_COVER_NEED:
949 case XLOG_STATE_COVER_NEED2:
fd074841 950 if (!xfs_ail_min_lsn(log->l_ailp) &&
b6f8dd49
DC
951 xlog_iclogs_empty(log)) {
952 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
953 log->l_covered_state = XLOG_STATE_COVER_DONE;
954 else
955 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1da177e4 956 }
b6f8dd49
DC
957 /* FALLTHRU */
958 default:
1da177e4 959 needed = 1;
b6f8dd49 960 break;
1da177e4 961 }
b22cd72c 962 spin_unlock(&log->l_icloglock);
014c2544 963 return needed;
1da177e4
LT
964}
965
09a423a3 966/*
1da177e4
LT
967 * We may be holding the log iclog lock upon entering this routine.
968 */
969xfs_lsn_t
1c304625 970xlog_assign_tail_lsn_locked(
1c3cb9ec 971 struct xfs_mount *mp)
1da177e4 972{
ad223e60 973 struct xlog *log = mp->m_log;
1c304625
CH
974 struct xfs_log_item *lip;
975 xfs_lsn_t tail_lsn;
976
977 assert_spin_locked(&mp->m_ail->xa_lock);
1da177e4 978
09a423a3
CH
979 /*
980 * To make sure we always have a valid LSN for the log tail we keep
981 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 982 * and use that when the AIL was empty.
09a423a3 983 */
1c304625
CH
984 lip = xfs_ail_min(mp->m_ail);
985 if (lip)
986 tail_lsn = lip->li_lsn;
987 else
84f3c683 988 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1c3cb9ec 989 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 990 return tail_lsn;
1c3cb9ec 991}
1da177e4 992
1c304625
CH
993xfs_lsn_t
994xlog_assign_tail_lsn(
995 struct xfs_mount *mp)
996{
997 xfs_lsn_t tail_lsn;
998
999 spin_lock(&mp->m_ail->xa_lock);
1000 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1001 spin_unlock(&mp->m_ail->xa_lock);
1002
1003 return tail_lsn;
1004}
1005
1da177e4
LT
1006/*
1007 * Return the space in the log between the tail and the head. The head
1008 * is passed in the cycle/bytes formal parms. In the special case where
1009 * the reserve head has wrapped passed the tail, this calculation is no
1010 * longer valid. In this case, just return 0 which means there is no space
1011 * in the log. This works for all places where this function is called
1012 * with the reserve head. Of course, if the write head were to ever
1013 * wrap the tail, we should blow up. Rather than catch this case here,
1014 * we depend on other ASSERTions in other parts of the code. XXXmiken
1015 *
1016 * This code also handles the case where the reservation head is behind
1017 * the tail. The details of this case are described below, but the end
1018 * result is that we return the size of the log as the amount of space left.
1019 */
a8272ce0 1020STATIC int
a69ed03c 1021xlog_space_left(
ad223e60 1022 struct xlog *log,
c8a09ff8 1023 atomic64_t *head)
1da177e4 1024{
a69ed03c
DC
1025 int free_bytes;
1026 int tail_bytes;
1027 int tail_cycle;
1028 int head_cycle;
1029 int head_bytes;
1da177e4 1030
a69ed03c 1031 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1032 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1033 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1034 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1035 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1036 else if (tail_cycle + 1 < head_cycle)
1da177e4 1037 return 0;
a69ed03c
DC
1038 else if (tail_cycle < head_cycle) {
1039 ASSERT(tail_cycle == (head_cycle - 1));
1040 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1041 } else {
1042 /*
1043 * The reservation head is behind the tail.
1044 * In this case we just want to return the size of the
1045 * log as the amount of space left.
1046 */
a0fa2b67 1047 xfs_alert(log->l_mp,
1da177e4
LT
1048 "xlog_space_left: head behind tail\n"
1049 " tail_cycle = %d, tail_bytes = %d\n"
1050 " GH cycle = %d, GH bytes = %d",
a69ed03c 1051 tail_cycle, tail_bytes, head_cycle, head_bytes);
1da177e4
LT
1052 ASSERT(0);
1053 free_bytes = log->l_logsize;
1054 }
1055 return free_bytes;
a69ed03c 1056}
1da177e4
LT
1057
1058
1059/*
1060 * Log function which is called when an io completes.
1061 *
1062 * The log manager needs its own routine, in order to control what
1063 * happens with the buffer after the write completes.
1064 */
1065void
1066xlog_iodone(xfs_buf_t *bp)
1067{
9a8d2fdb
MT
1068 struct xlog_in_core *iclog = bp->b_fspriv;
1069 struct xlog *l = iclog->ic_log;
1070 int aborted = 0;
1da177e4
LT
1071
1072 /*
1073 * Race to shutdown the filesystem if we see an error.
1074 */
5a52c2a5 1075 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1da177e4 1076 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
901796af 1077 xfs_buf_ioerror_alert(bp, __func__);
c867cb61 1078 xfs_buf_stale(bp);
7d04a335 1079 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4
LT
1080 /*
1081 * This flag will be propagated to the trans-committed
1082 * callback routines to let them know that the log-commit
1083 * didn't succeed.
1084 */
1085 aborted = XFS_LI_ABORTED;
1086 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1087 aborted = XFS_LI_ABORTED;
1088 }
3db296f3
DC
1089
1090 /* log I/O is always issued ASYNC */
1091 ASSERT(XFS_BUF_ISASYNC(bp));
1da177e4 1092 xlog_state_done_syncing(iclog, aborted);
3db296f3
DC
1093 /*
1094 * do not reference the buffer (bp) here as we could race
1095 * with it being freed after writing the unmount record to the
1096 * log.
1097 */
1098
1da177e4
LT
1099} /* xlog_iodone */
1100
1da177e4
LT
1101/*
1102 * Return size of each in-core log record buffer.
1103 *
9da096fd 1104 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1105 *
1106 * If the filesystem blocksize is too large, we may need to choose a
1107 * larger size since the directory code currently logs entire blocks.
1108 */
1109
1110STATIC void
9a8d2fdb
MT
1111xlog_get_iclog_buffer_size(
1112 struct xfs_mount *mp,
1113 struct xlog *log)
1da177e4
LT
1114{
1115 int size;
1116 int xhdrs;
1117
1cb51258
ES
1118 if (mp->m_logbufs <= 0)
1119 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1120 else
cfcbbbd0 1121 log->l_iclog_bufs = mp->m_logbufs;
1da177e4
LT
1122
1123 /*
1124 * Buffer size passed in from mount system call.
1125 */
cfcbbbd0 1126 if (mp->m_logbsize > 0) {
1da177e4
LT
1127 size = log->l_iclog_size = mp->m_logbsize;
1128 log->l_iclog_size_log = 0;
1129 while (size != 1) {
1130 log->l_iclog_size_log++;
1131 size >>= 1;
1132 }
1133
62118709 1134 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
9da096fd
MP
1135 /* # headers = size / 32k
1136 * one header holds cycles from 32k of data
1da177e4
LT
1137 */
1138
1139 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1140 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1141 xhdrs++;
1142 log->l_iclog_hsize = xhdrs << BBSHIFT;
1143 log->l_iclog_heads = xhdrs;
1144 } else {
1145 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1146 log->l_iclog_hsize = BBSIZE;
1147 log->l_iclog_heads = 1;
1148 }
cfcbbbd0 1149 goto done;
1da177e4
LT
1150 }
1151
9da096fd 1152 /* All machines use 32kB buffers by default. */
1cb51258
ES
1153 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1154 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1da177e4
LT
1155
1156 /* the default log size is 16k or 32k which is one header sector */
1157 log->l_iclog_hsize = BBSIZE;
1158 log->l_iclog_heads = 1;
1159
7153f8ba
CH
1160done:
1161 /* are we being asked to make the sizes selected above visible? */
cfcbbbd0
NS
1162 if (mp->m_logbufs == 0)
1163 mp->m_logbufs = log->l_iclog_bufs;
1164 if (mp->m_logbsize == 0)
1165 mp->m_logbsize = log->l_iclog_size;
1da177e4
LT
1166} /* xlog_get_iclog_buffer_size */
1167
1168
f661f1e0
DC
1169void
1170xfs_log_work_queue(
1171 struct xfs_mount *mp)
1172{
1173 queue_delayed_work(xfs_syncd_wq, &mp->m_log->l_work,
1174 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1175}
1176
1177/*
1178 * Every sync period we need to unpin all items in the AIL and push them to
1179 * disk. If there is nothing dirty, then we might need to cover the log to
1180 * indicate that the filesystem is idle.
1181 */
1182void
1183xfs_log_worker(
1184 struct work_struct *work)
1185{
1186 struct xlog *log = container_of(to_delayed_work(work),
1187 struct xlog, l_work);
1188 struct xfs_mount *mp = log->l_mp;
1189
1190 /* dgc: errors ignored - not fatal and nowhere to report them */
1191 if (xfs_log_need_covered(mp))
1192 xfs_fs_log_dummy(mp);
1193 else
1194 xfs_log_force(mp, 0);
1195
1196 /* start pushing all the metadata that is currently dirty */
1197 xfs_ail_push_all(mp->m_ail);
1198
1199 /* queue us up again */
1200 xfs_log_work_queue(mp);
1201}
1202
1da177e4
LT
1203/*
1204 * This routine initializes some of the log structure for a given mount point.
1205 * Its primary purpose is to fill in enough, so recovery can occur. However,
1206 * some other stuff may be filled in too.
1207 */
9a8d2fdb
MT
1208STATIC struct xlog *
1209xlog_alloc_log(
1210 struct xfs_mount *mp,
1211 struct xfs_buftarg *log_target,
1212 xfs_daddr_t blk_offset,
1213 int num_bblks)
1da177e4 1214{
9a8d2fdb 1215 struct xlog *log;
1da177e4
LT
1216 xlog_rec_header_t *head;
1217 xlog_in_core_t **iclogp;
1218 xlog_in_core_t *iclog, *prev_iclog=NULL;
1219 xfs_buf_t *bp;
1220 int i;
a6cb767e 1221 int error = ENOMEM;
69ce58f0 1222 uint log2_size = 0;
1da177e4 1223
9a8d2fdb 1224 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1225 if (!log) {
a0fa2b67 1226 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1227 goto out;
1228 }
1da177e4
LT
1229
1230 log->l_mp = mp;
1231 log->l_targ = log_target;
1232 log->l_logsize = BBTOB(num_bblks);
1233 log->l_logBBstart = blk_offset;
1234 log->l_logBBsize = num_bblks;
1235 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1236 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1237 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1238
1239 log->l_prev_block = -1;
1da177e4 1240 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1241 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1242 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1243 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8
CH
1244
1245 xlog_grant_head_init(&log->l_reserve_head);
1246 xlog_grant_head_init(&log->l_write_head);
1da177e4 1247
a6cb767e 1248 error = EFSCORRUPTED;
62118709 1249 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1250 log2_size = mp->m_sb.sb_logsectlog;
1251 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1252 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1253 log2_size, BBSHIFT);
a6cb767e
DC
1254 goto out_free_log;
1255 }
1256
69ce58f0
AE
1257 log2_size -= BBSHIFT;
1258 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1259 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1260 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1261 goto out_free_log;
1262 }
69ce58f0
AE
1263
1264 /* for larger sector sizes, must have v2 or external log */
1265 if (log2_size && log->l_logBBstart > 0 &&
1266 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1267 xfs_warn(mp,
1268 "log sector size (0x%x) invalid for configuration.",
1269 log2_size);
a6cb767e
DC
1270 goto out_free_log;
1271 }
1da177e4 1272 }
69ce58f0 1273 log->l_sectBBsize = 1 << log2_size;
1da177e4
LT
1274
1275 xlog_get_iclog_buffer_size(mp, log);
1276
a6cb767e 1277 error = ENOMEM;
e70b73f8 1278 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
644c3567
DC
1279 if (!bp)
1280 goto out_free_log;
cb669ca5 1281 bp->b_iodone = xlog_iodone;
0c842ad4 1282 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
1283 log->l_xbuf = bp;
1284
007c61c6 1285 spin_lock_init(&log->l_icloglock);
eb40a875 1286 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1287
1da177e4
LT
1288 iclogp = &log->l_iclog;
1289 /*
1290 * The amount of memory to allocate for the iclog structure is
1291 * rather funky due to the way the structure is defined. It is
1292 * done this way so that we can use different sizes for machines
1293 * with different amounts of memory. See the definition of
1294 * xlog_in_core_t in xfs_log_priv.h for details.
1295 */
1da177e4
LT
1296 ASSERT(log->l_iclog_size >= 4096);
1297 for (i=0; i < log->l_iclog_bufs; i++) {
644c3567
DC
1298 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1299 if (!*iclogp)
1300 goto out_free_iclog;
1301
1da177e4 1302 iclog = *iclogp;
1da177e4
LT
1303 iclog->ic_prev = prev_iclog;
1304 prev_iclog = iclog;
1fa40b01 1305
686865f7 1306 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
e70b73f8 1307 BTOBB(log->l_iclog_size), 0);
644c3567
DC
1308 if (!bp)
1309 goto out_free_iclog;
c8da0faf 1310
cb669ca5 1311 bp->b_iodone = xlog_iodone;
1fa40b01 1312 iclog->ic_bp = bp;
b28708d6 1313 iclog->ic_data = bp->b_addr;
4679b2d3 1314#ifdef DEBUG
1da177e4 1315 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
4679b2d3 1316#endif
1da177e4
LT
1317 head = &iclog->ic_header;
1318 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1319 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1320 head->h_version = cpu_to_be32(
62118709 1321 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1322 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1323 /* new fields */
b53e675d 1324 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1325 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1326
4e94b71b 1327 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1da177e4
LT
1328 iclog->ic_state = XLOG_STATE_ACTIVE;
1329 iclog->ic_log = log;
114d23aa
DC
1330 atomic_set(&iclog->ic_refcnt, 0);
1331 spin_lock_init(&iclog->ic_callback_lock);
1da177e4 1332 iclog->ic_callback_tail = &(iclog->ic_callback);
b28708d6 1333 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1334
0c842ad4 1335 ASSERT(xfs_buf_islocked(iclog->ic_bp));
eb40a875
DC
1336 init_waitqueue_head(&iclog->ic_force_wait);
1337 init_waitqueue_head(&iclog->ic_write_wait);
1da177e4
LT
1338
1339 iclogp = &iclog->ic_next;
1340 }
1341 *iclogp = log->l_iclog; /* complete ring */
1342 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1343
71e330b5
DC
1344 error = xlog_cil_init(log);
1345 if (error)
1346 goto out_free_iclog;
1da177e4 1347 return log;
644c3567
DC
1348
1349out_free_iclog:
1350 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1351 prev_iclog = iclog->ic_next;
eb40a875 1352 if (iclog->ic_bp)
644c3567 1353 xfs_buf_free(iclog->ic_bp);
644c3567
DC
1354 kmem_free(iclog);
1355 }
1356 spinlock_destroy(&log->l_icloglock);
644c3567
DC
1357 xfs_buf_free(log->l_xbuf);
1358out_free_log:
1359 kmem_free(log);
a6cb767e
DC
1360out:
1361 return ERR_PTR(-error);
1da177e4
LT
1362} /* xlog_alloc_log */
1363
1364
1365/*
1366 * Write out the commit record of a transaction associated with the given
1367 * ticket. Return the lsn of the commit record.
1368 */
1369STATIC int
55b66332 1370xlog_commit_record(
ad223e60 1371 struct xlog *log,
55b66332
DC
1372 struct xlog_ticket *ticket,
1373 struct xlog_in_core **iclog,
1374 xfs_lsn_t *commitlsnp)
1da177e4 1375{
55b66332
DC
1376 struct xfs_mount *mp = log->l_mp;
1377 int error;
1378 struct xfs_log_iovec reg = {
1379 .i_addr = NULL,
1380 .i_len = 0,
1381 .i_type = XLOG_REG_TYPE_COMMIT,
1382 };
1383 struct xfs_log_vec vec = {
1384 .lv_niovecs = 1,
1385 .lv_iovecp = &reg,
1386 };
1da177e4
LT
1387
1388 ASSERT_ALWAYS(iclog);
55b66332
DC
1389 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1390 XLOG_COMMIT_TRANS);
1391 if (error)
7d04a335 1392 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1393 return error;
55b66332 1394}
1da177e4
LT
1395
1396/*
1397 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1398 * log space. This code pushes on the lsn which would supposedly free up
1399 * the 25% which we want to leave free. We may need to adopt a policy which
1400 * pushes on an lsn which is further along in the log once we reach the high
1401 * water mark. In this manner, we would be creating a low water mark.
1402 */
a8272ce0 1403STATIC void
2ced19cb 1404xlog_grant_push_ail(
ad223e60 1405 struct xlog *log,
2ced19cb 1406 int need_bytes)
1da177e4 1407{
2ced19cb 1408 xfs_lsn_t threshold_lsn = 0;
84f3c683 1409 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1410 int free_blocks;
1411 int free_bytes;
1412 int threshold_block;
1413 int threshold_cycle;
1414 int free_threshold;
1415
1416 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1417
28496968 1418 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1419 free_blocks = BTOBBT(free_bytes);
1420
1421 /*
1422 * Set the threshold for the minimum number of free blocks in the
1423 * log to the maximum of what the caller needs, one quarter of the
1424 * log, and 256 blocks.
1425 */
1426 free_threshold = BTOBB(need_bytes);
1427 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1428 free_threshold = MAX(free_threshold, 256);
1429 if (free_blocks >= free_threshold)
1430 return;
1431
1c3cb9ec
DC
1432 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1433 &threshold_block);
1434 threshold_block += free_threshold;
1da177e4 1435 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1436 threshold_block -= log->l_logBBsize;
1437 threshold_cycle += 1;
1da177e4 1438 }
2ced19cb
DC
1439 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1440 threshold_block);
1441 /*
1442 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1443 * log record known to be on disk. Use a snapshot of the last sync lsn
1444 * so that it doesn't change between the compare and the set.
1da177e4 1445 */
84f3c683
DC
1446 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1447 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1448 threshold_lsn = last_sync_lsn;
2ced19cb
DC
1449
1450 /*
1451 * Get the transaction layer to kick the dirty buffers out to
1452 * disk asynchronously. No point in trying to do this if
1453 * the filesystem is shutting down.
1454 */
1455 if (!XLOG_FORCED_SHUTDOWN(log))
fd074841 1456 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1457}
1da177e4 1458
873ff550
CH
1459/*
1460 * The bdstrat callback function for log bufs. This gives us a central
1461 * place to trap bufs in case we get hit by a log I/O error and need to
1462 * shutdown. Actually, in practice, even when we didn't get a log error,
1463 * we transition the iclogs to IOERROR state *after* flushing all existing
1464 * iclogs to disk. This is because we don't want anymore new transactions to be
1465 * started or completed afterwards.
1466 */
1467STATIC int
1468xlog_bdstrat(
1469 struct xfs_buf *bp)
1470{
adadbeef 1471 struct xlog_in_core *iclog = bp->b_fspriv;
873ff550 1472
873ff550 1473 if (iclog->ic_state & XLOG_STATE_IOERROR) {
5a52c2a5 1474 xfs_buf_ioerror(bp, EIO);
c867cb61 1475 xfs_buf_stale(bp);
1a1a3e97 1476 xfs_buf_ioend(bp, 0);
873ff550
CH
1477 /*
1478 * It would seem logical to return EIO here, but we rely on
1479 * the log state machine to propagate I/O errors instead of
1480 * doing it here.
1481 */
1482 return 0;
1483 }
1484
873ff550
CH
1485 xfs_buf_iorequest(bp);
1486 return 0;
1487}
1da177e4
LT
1488
1489/*
1490 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1491 * fashion. Previously, we should have moved the current iclog
1492 * ptr in the log to point to the next available iclog. This allows further
1493 * write to continue while this code syncs out an iclog ready to go.
1494 * Before an in-core log can be written out, the data section must be scanned
1495 * to save away the 1st word of each BBSIZE block into the header. We replace
1496 * it with the current cycle count. Each BBSIZE block is tagged with the
1497 * cycle count because there in an implicit assumption that drives will
1498 * guarantee that entire 512 byte blocks get written at once. In other words,
1499 * we can't have part of a 512 byte block written and part not written. By
1500 * tagging each block, we will know which blocks are valid when recovering
1501 * after an unclean shutdown.
1502 *
1503 * This routine is single threaded on the iclog. No other thread can be in
1504 * this routine with the same iclog. Changing contents of iclog can there-
1505 * fore be done without grabbing the state machine lock. Updating the global
1506 * log will require grabbing the lock though.
1507 *
1508 * The entire log manager uses a logical block numbering scheme. Only
1509 * log_sync (and then only bwrite()) know about the fact that the log may
1510 * not start with block zero on a given device. The log block start offset
1511 * is added immediately before calling bwrite().
1512 */
1513
a8272ce0 1514STATIC int
9a8d2fdb
MT
1515xlog_sync(
1516 struct xlog *log,
1517 struct xlog_in_core *iclog)
1da177e4
LT
1518{
1519 xfs_caddr_t dptr; /* pointer to byte sized element */
1520 xfs_buf_t *bp;
b53e675d 1521 int i;
1da177e4
LT
1522 uint count; /* byte count of bwrite */
1523 uint count_init; /* initial count before roundup */
1524 int roundoff; /* roundoff to BB or stripe */
1525 int split = 0; /* split write into two regions */
1526 int error;
62118709 1527 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1da177e4
LT
1528
1529 XFS_STATS_INC(xs_log_writes);
155cc6b7 1530 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
1531
1532 /* Add for LR header */
1533 count_init = log->l_iclog_hsize + iclog->ic_offset;
1534
1535 /* Round out the log write size */
1536 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1537 /* we have a v2 stripe unit to use */
1538 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1539 } else {
1540 count = BBTOB(BTOBB(count_init));
1541 }
1542 roundoff = count - count_init;
1543 ASSERT(roundoff >= 0);
1544 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1545 roundoff < log->l_mp->m_sb.sb_logsunit)
1546 ||
1547 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1548 roundoff < BBTOB(1)));
1549
1550 /* move grant heads by roundoff in sync */
28496968
CH
1551 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1552 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1553
1554 /* put cycle number in every block */
1555 xlog_pack_data(log, iclog, roundoff);
1556
1557 /* real byte length */
1558 if (v2) {
b53e675d
CH
1559 iclog->ic_header.h_len =
1560 cpu_to_be32(iclog->ic_offset + roundoff);
1da177e4 1561 } else {
b53e675d
CH
1562 iclog->ic_header.h_len =
1563 cpu_to_be32(iclog->ic_offset);
1da177e4
LT
1564 }
1565
f5faad79 1566 bp = iclog->ic_bp;
b53e675d 1567 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1da177e4
LT
1568
1569 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1570
1571 /* Do we need to split this write into 2 parts? */
1572 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1573 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1574 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1575 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1576 } else {
1577 iclog->ic_bwritecnt = 1;
1578 }
aa0e8833 1579 bp->b_io_length = BTOBB(count);
adadbeef 1580 bp->b_fspriv = iclog;
f5faad79 1581 XFS_BUF_ZEROFLAGS(bp);
1da177e4 1582 XFS_BUF_ASYNC(bp);
1d5ae5df 1583 bp->b_flags |= XBF_SYNCIO;
651701d7 1584
a27a263b 1585 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
e163cbde
CH
1586 bp->b_flags |= XBF_FUA;
1587
a27a263b 1588 /*
e163cbde
CH
1589 * Flush the data device before flushing the log to make
1590 * sure all meta data written back from the AIL actually made
1591 * it to disk before stamping the new log tail LSN into the
1592 * log buffer. For an external log we need to issue the
1593 * flush explicitly, and unfortunately synchronously here;
1594 * for an internal log we can simply use the block layer
1595 * state machine for preflushes.
a27a263b
CH
1596 */
1597 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1598 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
e163cbde
CH
1599 else
1600 bp->b_flags |= XBF_FLUSH;
a27a263b 1601 }
1da177e4
LT
1602
1603 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1604 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1605
1606 xlog_verify_iclog(log, iclog, count, B_TRUE);
1607
1608 /* account for log which doesn't start at block #0 */
1609 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1610 /*
1611 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1612 * is shutting down.
1613 */
1614 XFS_BUF_WRITE(bp);
1615
901796af
CH
1616 error = xlog_bdstrat(bp);
1617 if (error) {
1618 xfs_buf_ioerror_alert(bp, "xlog_sync");
014c2544 1619 return error;
1da177e4
LT
1620 }
1621 if (split) {
f5faad79 1622 bp = iclog->ic_log->l_xbuf;
1da177e4 1623 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
02fe03d9
CS
1624 xfs_buf_associate_memory(bp,
1625 (char *)&iclog->ic_header + count, split);
adadbeef 1626 bp->b_fspriv = iclog;
f5faad79 1627 XFS_BUF_ZEROFLAGS(bp);
1da177e4 1628 XFS_BUF_ASYNC(bp);
1d5ae5df 1629 bp->b_flags |= XBF_SYNCIO;
f538d4da 1630 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
e163cbde 1631 bp->b_flags |= XBF_FUA;
62926044 1632 dptr = bp->b_addr;
1da177e4
LT
1633 /*
1634 * Bump the cycle numbers at the start of each block
1635 * since this part of the buffer is at the start of
1636 * a new cycle. Watch out for the header magic number
1637 * case, though.
1638 */
b53e675d 1639 for (i = 0; i < split; i += BBSIZE) {
413d57c9 1640 be32_add_cpu((__be32 *)dptr, 1);
b53e675d 1641 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
413d57c9 1642 be32_add_cpu((__be32 *)dptr, 1);
1da177e4
LT
1643 dptr += BBSIZE;
1644 }
1645
1646 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1647 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1648
c41564b5 1649 /* account for internal log which doesn't start at block #0 */
1da177e4
LT
1650 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1651 XFS_BUF_WRITE(bp);
901796af
CH
1652 error = xlog_bdstrat(bp);
1653 if (error) {
1654 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
014c2544 1655 return error;
1da177e4
LT
1656 }
1657 }
014c2544 1658 return 0;
1da177e4
LT
1659} /* xlog_sync */
1660
1661
1662/*
c41564b5 1663 * Deallocate a log structure
1da177e4 1664 */
a8272ce0 1665STATIC void
9a8d2fdb
MT
1666xlog_dealloc_log(
1667 struct xlog *log)
1da177e4
LT
1668{
1669 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
1670 int i;
1671
71e330b5
DC
1672 xlog_cil_destroy(log);
1673
44396476
DC
1674 /*
1675 * always need to ensure that the extra buffer does not point to memory
1676 * owned by another log buffer before we free it.
1677 */
e70b73f8 1678 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
44396476
DC
1679 xfs_buf_free(log->l_xbuf);
1680
1da177e4
LT
1681 iclog = log->l_iclog;
1682 for (i=0; i<log->l_iclog_bufs; i++) {
1da177e4 1683 xfs_buf_free(iclog->ic_bp);
1da177e4 1684 next_iclog = iclog->ic_next;
f0e2d93c 1685 kmem_free(iclog);
1da177e4
LT
1686 iclog = next_iclog;
1687 }
1da177e4 1688 spinlock_destroy(&log->l_icloglock);
1da177e4 1689
1da177e4 1690 log->l_mp->m_log = NULL;
f0e2d93c 1691 kmem_free(log);
c41564b5 1692} /* xlog_dealloc_log */
1da177e4
LT
1693
1694/*
1695 * Update counters atomically now that memcpy is done.
1696 */
1697/* ARGSUSED */
1698static inline void
9a8d2fdb
MT
1699xlog_state_finish_copy(
1700 struct xlog *log,
1701 struct xlog_in_core *iclog,
1702 int record_cnt,
1703 int copy_bytes)
1da177e4 1704{
b22cd72c 1705 spin_lock(&log->l_icloglock);
1da177e4 1706
413d57c9 1707 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4
LT
1708 iclog->ic_offset += copy_bytes;
1709
b22cd72c 1710 spin_unlock(&log->l_icloglock);
1da177e4
LT
1711} /* xlog_state_finish_copy */
1712
1713
1714
1715
7e9c6396
TS
1716/*
1717 * print out info relating to regions written which consume
1718 * the reservation
1719 */
71e330b5
DC
1720void
1721xlog_print_tic_res(
1722 struct xfs_mount *mp,
1723 struct xlog_ticket *ticket)
7e9c6396
TS
1724{
1725 uint i;
1726 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1727
1728 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1729 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1730 "bformat",
1731 "bchunk",
1732 "efi_format",
1733 "efd_format",
1734 "iformat",
1735 "icore",
1736 "iext",
1737 "ibroot",
1738 "ilocal",
1739 "iattr_ext",
1740 "iattr_broot",
1741 "iattr_local",
1742 "qformat",
1743 "dquot",
1744 "quotaoff",
1745 "LR header",
1746 "unmount",
1747 "commit",
1748 "trans header"
1749 };
1750 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1751 "SETATTR_NOT_SIZE",
1752 "SETATTR_SIZE",
1753 "INACTIVE",
1754 "CREATE",
1755 "CREATE_TRUNC",
1756 "TRUNCATE_FILE",
1757 "REMOVE",
1758 "LINK",
1759 "RENAME",
1760 "MKDIR",
1761 "RMDIR",
1762 "SYMLINK",
1763 "SET_DMATTRS",
1764 "GROWFS",
1765 "STRAT_WRITE",
1766 "DIOSTRAT",
1767 "WRITE_SYNC",
1768 "WRITEID",
1769 "ADDAFORK",
1770 "ATTRINVAL",
1771 "ATRUNCATE",
1772 "ATTR_SET",
1773 "ATTR_RM",
1774 "ATTR_FLAG",
1775 "CLEAR_AGI_BUCKET",
1776 "QM_SBCHANGE",
1777 "DUMMY1",
1778 "DUMMY2",
1779 "QM_QUOTAOFF",
1780 "QM_DQALLOC",
1781 "QM_SETQLIM",
1782 "QM_DQCLUSTER",
1783 "QM_QINOCREATE",
1784 "QM_QUOTAOFF_END",
1785 "SB_UNIT",
1786 "FSYNC_TS",
1787 "GROWFSRT_ALLOC",
1788 "GROWFSRT_ZERO",
1789 "GROWFSRT_FREE",
1790 "SWAPEXT"
1791 };
1792
a0fa2b67 1793 xfs_warn(mp,
93b8a585 1794 "xlog_write: reservation summary:\n"
a0fa2b67
DC
1795 " trans type = %s (%u)\n"
1796 " unit res = %d bytes\n"
1797 " current res = %d bytes\n"
1798 " total reg = %u bytes (o/flow = %u bytes)\n"
1799 " ophdrs = %u (ophdr space = %u bytes)\n"
1800 " ophdr + reg = %u bytes\n"
1801 " num regions = %u\n",
1802 ((ticket->t_trans_type <= 0 ||
1803 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1804 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1805 ticket->t_trans_type,
1806 ticket->t_unit_res,
1807 ticket->t_curr_res,
1808 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1809 ticket->t_res_num_ophdrs, ophdr_spc,
1810 ticket->t_res_arr_sum +
1811 ticket->t_res_o_flow + ophdr_spc,
1812 ticket->t_res_num);
7e9c6396
TS
1813
1814 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67
DC
1815 uint r_type = ticket->t_res_arr[i].r_type;
1816 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
7e9c6396
TS
1817 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1818 "bad-rtype" : res_type_str[r_type-1]),
1819 ticket->t_res_arr[i].r_len);
1820 }
169a7b07 1821
a0fa2b67 1822 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
93b8a585 1823 "xlog_write: reservation ran out. Need to up reservation");
169a7b07 1824 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
7e9c6396 1825}
7e9c6396 1826
b5203cd0
DC
1827/*
1828 * Calculate the potential space needed by the log vector. Each region gets
1829 * its own xlog_op_header_t and may need to be double word aligned.
1830 */
1831static int
1832xlog_write_calc_vec_length(
1833 struct xlog_ticket *ticket,
55b66332 1834 struct xfs_log_vec *log_vector)
b5203cd0 1835{
55b66332 1836 struct xfs_log_vec *lv;
b5203cd0
DC
1837 int headers = 0;
1838 int len = 0;
1839 int i;
1840
1841 /* acct for start rec of xact */
1842 if (ticket->t_flags & XLOG_TIC_INITED)
1843 headers++;
1844
55b66332
DC
1845 for (lv = log_vector; lv; lv = lv->lv_next) {
1846 headers += lv->lv_niovecs;
1847
1848 for (i = 0; i < lv->lv_niovecs; i++) {
1849 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 1850
55b66332
DC
1851 len += vecp->i_len;
1852 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1853 }
b5203cd0
DC
1854 }
1855
1856 ticket->t_res_num_ophdrs += headers;
1857 len += headers * sizeof(struct xlog_op_header);
1858
1859 return len;
1860}
1861
1862/*
1863 * If first write for transaction, insert start record We can't be trying to
1864 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1865 */
1866static int
1867xlog_write_start_rec(
e6b1f273 1868 struct xlog_op_header *ophdr,
b5203cd0
DC
1869 struct xlog_ticket *ticket)
1870{
b5203cd0
DC
1871 if (!(ticket->t_flags & XLOG_TIC_INITED))
1872 return 0;
1873
1874 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1875 ophdr->oh_clientid = ticket->t_clientid;
1876 ophdr->oh_len = 0;
1877 ophdr->oh_flags = XLOG_START_TRANS;
1878 ophdr->oh_res2 = 0;
1879
1880 ticket->t_flags &= ~XLOG_TIC_INITED;
1881
1882 return sizeof(struct xlog_op_header);
1883}
1884
1885static xlog_op_header_t *
1886xlog_write_setup_ophdr(
ad223e60 1887 struct xlog *log,
e6b1f273 1888 struct xlog_op_header *ophdr,
b5203cd0
DC
1889 struct xlog_ticket *ticket,
1890 uint flags)
1891{
b5203cd0
DC
1892 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1893 ophdr->oh_clientid = ticket->t_clientid;
1894 ophdr->oh_res2 = 0;
1895
1896 /* are we copying a commit or unmount record? */
1897 ophdr->oh_flags = flags;
1898
1899 /*
1900 * We've seen logs corrupted with bad transaction client ids. This
1901 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1902 * and shut down the filesystem.
1903 */
1904 switch (ophdr->oh_clientid) {
1905 case XFS_TRANSACTION:
1906 case XFS_VOLUME:
1907 case XFS_LOG:
1908 break;
1909 default:
a0fa2b67 1910 xfs_warn(log->l_mp,
b5203cd0
DC
1911 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1912 ophdr->oh_clientid, ticket);
1913 return NULL;
1914 }
1915
1916 return ophdr;
1917}
1918
1919/*
1920 * Set up the parameters of the region copy into the log. This has
1921 * to handle region write split across multiple log buffers - this
1922 * state is kept external to this function so that this code can
1923 * can be written in an obvious, self documenting manner.
1924 */
1925static int
1926xlog_write_setup_copy(
1927 struct xlog_ticket *ticket,
1928 struct xlog_op_header *ophdr,
1929 int space_available,
1930 int space_required,
1931 int *copy_off,
1932 int *copy_len,
1933 int *last_was_partial_copy,
1934 int *bytes_consumed)
1935{
1936 int still_to_copy;
1937
1938 still_to_copy = space_required - *bytes_consumed;
1939 *copy_off = *bytes_consumed;
1940
1941 if (still_to_copy <= space_available) {
1942 /* write of region completes here */
1943 *copy_len = still_to_copy;
1944 ophdr->oh_len = cpu_to_be32(*copy_len);
1945 if (*last_was_partial_copy)
1946 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1947 *last_was_partial_copy = 0;
1948 *bytes_consumed = 0;
1949 return 0;
1950 }
1951
1952 /* partial write of region, needs extra log op header reservation */
1953 *copy_len = space_available;
1954 ophdr->oh_len = cpu_to_be32(*copy_len);
1955 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1956 if (*last_was_partial_copy)
1957 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1958 *bytes_consumed += *copy_len;
1959 (*last_was_partial_copy)++;
1960
1961 /* account for new log op header */
1962 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1963 ticket->t_res_num_ophdrs++;
1964
1965 return sizeof(struct xlog_op_header);
1966}
1967
1968static int
1969xlog_write_copy_finish(
ad223e60 1970 struct xlog *log,
b5203cd0
DC
1971 struct xlog_in_core *iclog,
1972 uint flags,
1973 int *record_cnt,
1974 int *data_cnt,
1975 int *partial_copy,
1976 int *partial_copy_len,
1977 int log_offset,
1978 struct xlog_in_core **commit_iclog)
1979{
1980 if (*partial_copy) {
1981 /*
1982 * This iclog has already been marked WANT_SYNC by
1983 * xlog_state_get_iclog_space.
1984 */
1985 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1986 *record_cnt = 0;
1987 *data_cnt = 0;
1988 return xlog_state_release_iclog(log, iclog);
1989 }
1990
1991 *partial_copy = 0;
1992 *partial_copy_len = 0;
1993
1994 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1995 /* no more space in this iclog - push it. */
1996 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1997 *record_cnt = 0;
1998 *data_cnt = 0;
1999
2000 spin_lock(&log->l_icloglock);
2001 xlog_state_want_sync(log, iclog);
2002 spin_unlock(&log->l_icloglock);
2003
2004 if (!commit_iclog)
2005 return xlog_state_release_iclog(log, iclog);
2006 ASSERT(flags & XLOG_COMMIT_TRANS);
2007 *commit_iclog = iclog;
2008 }
2009
2010 return 0;
2011}
2012
1da177e4
LT
2013/*
2014 * Write some region out to in-core log
2015 *
2016 * This will be called when writing externally provided regions or when
2017 * writing out a commit record for a given transaction.
2018 *
2019 * General algorithm:
2020 * 1. Find total length of this write. This may include adding to the
2021 * lengths passed in.
2022 * 2. Check whether we violate the tickets reservation.
2023 * 3. While writing to this iclog
2024 * A. Reserve as much space in this iclog as can get
2025 * B. If this is first write, save away start lsn
2026 * C. While writing this region:
2027 * 1. If first write of transaction, write start record
2028 * 2. Write log operation header (header per region)
2029 * 3. Find out if we can fit entire region into this iclog
2030 * 4. Potentially, verify destination memcpy ptr
2031 * 5. Memcpy (partial) region
2032 * 6. If partial copy, release iclog; otherwise, continue
2033 * copying more regions into current iclog
2034 * 4. Mark want sync bit (in simulation mode)
2035 * 5. Release iclog for potential flush to on-disk log.
2036 *
2037 * ERRORS:
2038 * 1. Panic if reservation is overrun. This should never happen since
2039 * reservation amounts are generated internal to the filesystem.
2040 * NOTES:
2041 * 1. Tickets are single threaded data structures.
2042 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2043 * syncing routine. When a single log_write region needs to span
2044 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2045 * on all log operation writes which don't contain the end of the
2046 * region. The XLOG_END_TRANS bit is used for the in-core log
2047 * operation which contains the end of the continued log_write region.
2048 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2049 * we don't really know exactly how much space will be used. As a result,
2050 * we don't update ic_offset until the end when we know exactly how many
2051 * bytes have been written out.
2052 */
71e330b5 2053int
35a8a72f 2054xlog_write(
ad223e60 2055 struct xlog *log,
55b66332 2056 struct xfs_log_vec *log_vector,
35a8a72f
CH
2057 struct xlog_ticket *ticket,
2058 xfs_lsn_t *start_lsn,
2059 struct xlog_in_core **commit_iclog,
2060 uint flags)
1da177e4 2061{
99428ad0 2062 struct xlog_in_core *iclog = NULL;
55b66332
DC
2063 struct xfs_log_iovec *vecp;
2064 struct xfs_log_vec *lv;
99428ad0
CH
2065 int len;
2066 int index;
2067 int partial_copy = 0;
2068 int partial_copy_len = 0;
2069 int contwr = 0;
2070 int record_cnt = 0;
2071 int data_cnt = 0;
2072 int error;
2073
2074 *start_lsn = 0;
2075
55b66332 2076 len = xlog_write_calc_vec_length(ticket, log_vector);
71e330b5 2077
93b8a585
CH
2078 /*
2079 * Region headers and bytes are already accounted for.
2080 * We only need to take into account start records and
2081 * split regions in this function.
2082 */
2083 if (ticket->t_flags & XLOG_TIC_INITED)
2084 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2085
2086 /*
2087 * Commit record headers need to be accounted for. These
2088 * come in as separate writes so are easy to detect.
2089 */
2090 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2091 ticket->t_curr_res -= sizeof(xlog_op_header_t);
71e330b5
DC
2092
2093 if (ticket->t_curr_res < 0)
55b66332 2094 xlog_print_tic_res(log->l_mp, ticket);
1da177e4 2095
55b66332
DC
2096 index = 0;
2097 lv = log_vector;
2098 vecp = lv->lv_iovecp;
2099 while (lv && index < lv->lv_niovecs) {
e6b1f273 2100 void *ptr;
99428ad0 2101 int log_offset;
1da177e4 2102
99428ad0
CH
2103 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2104 &contwr, &log_offset);
2105 if (error)
2106 return error;
1da177e4 2107
99428ad0 2108 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2109 ptr = iclog->ic_datap + log_offset;
1da177e4 2110
99428ad0
CH
2111 /* start_lsn is the first lsn written to. That's all we need. */
2112 if (!*start_lsn)
2113 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2114
99428ad0
CH
2115 /*
2116 * This loop writes out as many regions as can fit in the amount
2117 * of space which was allocated by xlog_state_get_iclog_space().
2118 */
55b66332
DC
2119 while (lv && index < lv->lv_niovecs) {
2120 struct xfs_log_iovec *reg = &vecp[index];
99428ad0
CH
2121 struct xlog_op_header *ophdr;
2122 int start_rec_copy;
2123 int copy_len;
2124 int copy_off;
2125
55b66332 2126 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
e6b1f273 2127 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
99428ad0
CH
2128
2129 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2130 if (start_rec_copy) {
2131 record_cnt++;
e6b1f273 2132 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2133 start_rec_copy);
2134 }
b5203cd0 2135
99428ad0
CH
2136 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2137 if (!ophdr)
2138 return XFS_ERROR(EIO);
2139
e6b1f273 2140 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2141 sizeof(struct xlog_op_header));
2142
2143 len += xlog_write_setup_copy(ticket, ophdr,
2144 iclog->ic_size-log_offset,
55b66332 2145 reg->i_len,
99428ad0
CH
2146 &copy_off, &copy_len,
2147 &partial_copy,
2148 &partial_copy_len);
2149 xlog_verify_dest_ptr(log, ptr);
2150
2151 /* copy region */
2152 ASSERT(copy_len >= 0);
e6b1f273
CH
2153 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2154 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
99428ad0
CH
2155
2156 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2157 record_cnt++;
2158 data_cnt += contwr ? copy_len : 0;
2159
2160 error = xlog_write_copy_finish(log, iclog, flags,
2161 &record_cnt, &data_cnt,
2162 &partial_copy,
2163 &partial_copy_len,
2164 log_offset,
2165 commit_iclog);
2166 if (error)
2167 return error;
2168
2169 /*
2170 * if we had a partial copy, we need to get more iclog
2171 * space but we don't want to increment the region
2172 * index because there is still more is this region to
2173 * write.
2174 *
2175 * If we completed writing this region, and we flushed
2176 * the iclog (indicated by resetting of the record
2177 * count), then we also need to get more log space. If
2178 * this was the last record, though, we are done and
2179 * can just return.
2180 */
2181 if (partial_copy)
2182 break;
2183
55b66332
DC
2184 if (++index == lv->lv_niovecs) {
2185 lv = lv->lv_next;
2186 index = 0;
2187 if (lv)
2188 vecp = lv->lv_iovecp;
2189 }
99428ad0 2190 if (record_cnt == 0) {
55b66332 2191 if (!lv)
99428ad0
CH
2192 return 0;
2193 break;
2194 }
2195 }
2196 }
2197
2198 ASSERT(len == 0);
2199
2200 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2201 if (!commit_iclog)
2202 return xlog_state_release_iclog(log, iclog);
1da177e4 2203
1da177e4
LT
2204 ASSERT(flags & XLOG_COMMIT_TRANS);
2205 *commit_iclog = iclog;
2206 return 0;
99428ad0 2207}
1da177e4
LT
2208
2209
2210/*****************************************************************************
2211 *
2212 * State Machine functions
2213 *
2214 *****************************************************************************
2215 */
2216
2217/* Clean iclogs starting from the head. This ordering must be
2218 * maintained, so an iclog doesn't become ACTIVE beyond one that
2219 * is SYNCING. This is also required to maintain the notion that we use
12017faf 2220 * a ordered wait queue to hold off would be writers to the log when every
1da177e4
LT
2221 * iclog is trying to sync to disk.
2222 *
2223 * State Change: DIRTY -> ACTIVE
2224 */
ba0f32d4 2225STATIC void
9a8d2fdb
MT
2226xlog_state_clean_log(
2227 struct xlog *log)
1da177e4
LT
2228{
2229 xlog_in_core_t *iclog;
2230 int changed = 0;
2231
2232 iclog = log->l_iclog;
2233 do {
2234 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2235 iclog->ic_state = XLOG_STATE_ACTIVE;
2236 iclog->ic_offset = 0;
114d23aa 2237 ASSERT(iclog->ic_callback == NULL);
1da177e4
LT
2238 /*
2239 * If the number of ops in this iclog indicate it just
2240 * contains the dummy transaction, we can
2241 * change state into IDLE (the second time around).
2242 * Otherwise we should change the state into
2243 * NEED a dummy.
2244 * We don't need to cover the dummy.
2245 */
2246 if (!changed &&
b53e675d
CH
2247 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2248 XLOG_COVER_OPS)) {
1da177e4
LT
2249 changed = 1;
2250 } else {
2251 /*
2252 * We have two dirty iclogs so start over
2253 * This could also be num of ops indicates
2254 * this is not the dummy going out.
2255 */
2256 changed = 2;
2257 }
2258 iclog->ic_header.h_num_logops = 0;
2259 memset(iclog->ic_header.h_cycle_data, 0,
2260 sizeof(iclog->ic_header.h_cycle_data));
2261 iclog->ic_header.h_lsn = 0;
2262 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2263 /* do nothing */;
2264 else
2265 break; /* stop cleaning */
2266 iclog = iclog->ic_next;
2267 } while (iclog != log->l_iclog);
2268
2269 /* log is locked when we are called */
2270 /*
2271 * Change state for the dummy log recording.
2272 * We usually go to NEED. But we go to NEED2 if the changed indicates
2273 * we are done writing the dummy record.
2274 * If we are done with the second dummy recored (DONE2), then
2275 * we go to IDLE.
2276 */
2277 if (changed) {
2278 switch (log->l_covered_state) {
2279 case XLOG_STATE_COVER_IDLE:
2280 case XLOG_STATE_COVER_NEED:
2281 case XLOG_STATE_COVER_NEED2:
2282 log->l_covered_state = XLOG_STATE_COVER_NEED;
2283 break;
2284
2285 case XLOG_STATE_COVER_DONE:
2286 if (changed == 1)
2287 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2288 else
2289 log->l_covered_state = XLOG_STATE_COVER_NEED;
2290 break;
2291
2292 case XLOG_STATE_COVER_DONE2:
2293 if (changed == 1)
2294 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2295 else
2296 log->l_covered_state = XLOG_STATE_COVER_NEED;
2297 break;
2298
2299 default:
2300 ASSERT(0);
2301 }
2302 }
2303} /* xlog_state_clean_log */
2304
2305STATIC xfs_lsn_t
2306xlog_get_lowest_lsn(
9a8d2fdb 2307 struct xlog *log)
1da177e4
LT
2308{
2309 xlog_in_core_t *lsn_log;
2310 xfs_lsn_t lowest_lsn, lsn;
2311
2312 lsn_log = log->l_iclog;
2313 lowest_lsn = 0;
2314 do {
2315 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
b53e675d 2316 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
1da177e4
LT
2317 if ((lsn && !lowest_lsn) ||
2318 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2319 lowest_lsn = lsn;
2320 }
2321 }
2322 lsn_log = lsn_log->ic_next;
2323 } while (lsn_log != log->l_iclog);
014c2544 2324 return lowest_lsn;
1da177e4
LT
2325}
2326
2327
2328STATIC void
2329xlog_state_do_callback(
9a8d2fdb
MT
2330 struct xlog *log,
2331 int aborted,
2332 struct xlog_in_core *ciclog)
1da177e4
LT
2333{
2334 xlog_in_core_t *iclog;
2335 xlog_in_core_t *first_iclog; /* used to know when we've
2336 * processed all iclogs once */
2337 xfs_log_callback_t *cb, *cb_next;
2338 int flushcnt = 0;
2339 xfs_lsn_t lowest_lsn;
2340 int ioerrors; /* counter: iclogs with errors */
2341 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2342 int funcdidcallbacks; /* flag: function did callbacks */
2343 int repeats; /* for issuing console warnings if
2344 * looping too many times */
d748c623 2345 int wake = 0;
1da177e4 2346
b22cd72c 2347 spin_lock(&log->l_icloglock);
1da177e4
LT
2348 first_iclog = iclog = log->l_iclog;
2349 ioerrors = 0;
2350 funcdidcallbacks = 0;
2351 repeats = 0;
2352
2353 do {
2354 /*
2355 * Scan all iclogs starting with the one pointed to by the
2356 * log. Reset this starting point each time the log is
2357 * unlocked (during callbacks).
2358 *
2359 * Keep looping through iclogs until one full pass is made
2360 * without running any callbacks.
2361 */
2362 first_iclog = log->l_iclog;
2363 iclog = log->l_iclog;
2364 loopdidcallbacks = 0;
2365 repeats++;
2366
2367 do {
2368
2369 /* skip all iclogs in the ACTIVE & DIRTY states */
2370 if (iclog->ic_state &
2371 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2372 iclog = iclog->ic_next;
2373 continue;
2374 }
2375
2376 /*
2377 * Between marking a filesystem SHUTDOWN and stopping
2378 * the log, we do flush all iclogs to disk (if there
2379 * wasn't a log I/O error). So, we do want things to
2380 * go smoothly in case of just a SHUTDOWN w/o a
2381 * LOG_IO_ERROR.
2382 */
2383 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2384 /*
2385 * Can only perform callbacks in order. Since
2386 * this iclog is not in the DONE_SYNC/
2387 * DO_CALLBACK state, we skip the rest and
2388 * just try to clean up. If we set our iclog
2389 * to DO_CALLBACK, we will not process it when
2390 * we retry since a previous iclog is in the
2391 * CALLBACK and the state cannot change since
b22cd72c 2392 * we are holding the l_icloglock.
1da177e4
LT
2393 */
2394 if (!(iclog->ic_state &
2395 (XLOG_STATE_DONE_SYNC |
2396 XLOG_STATE_DO_CALLBACK))) {
2397 if (ciclog && (ciclog->ic_state ==
2398 XLOG_STATE_DONE_SYNC)) {
2399 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2400 }
2401 break;
2402 }
2403 /*
2404 * We now have an iclog that is in either the
2405 * DO_CALLBACK or DONE_SYNC states. The other
2406 * states (WANT_SYNC, SYNCING, or CALLBACK were
2407 * caught by the above if and are going to
2408 * clean (i.e. we aren't doing their callbacks)
2409 * see the above if.
2410 */
2411
2412 /*
2413 * We will do one more check here to see if we
2414 * have chased our tail around.
2415 */
2416
2417 lowest_lsn = xlog_get_lowest_lsn(log);
b53e675d
CH
2418 if (lowest_lsn &&
2419 XFS_LSN_CMP(lowest_lsn,
84f3c683 2420 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
1da177e4
LT
2421 iclog = iclog->ic_next;
2422 continue; /* Leave this iclog for
2423 * another thread */
2424 }
2425
2426 iclog->ic_state = XLOG_STATE_CALLBACK;
2427
1da177e4 2428
84f3c683
DC
2429 /*
2430 * update the last_sync_lsn before we drop the
2431 * icloglock to ensure we are the only one that
2432 * can update it.
1da177e4 2433 */
84f3c683
DC
2434 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2435 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2436 atomic64_set(&log->l_last_sync_lsn,
2437 be64_to_cpu(iclog->ic_header.h_lsn));
1da177e4 2438
84f3c683 2439 } else
1da177e4 2440 ioerrors++;
84f3c683
DC
2441
2442 spin_unlock(&log->l_icloglock);
1da177e4 2443
114d23aa
DC
2444 /*
2445 * Keep processing entries in the callback list until
2446 * we come around and it is empty. We need to
2447 * atomically see that the list is empty and change the
2448 * state to DIRTY so that we don't miss any more
2449 * callbacks being added.
2450 */
2451 spin_lock(&iclog->ic_callback_lock);
2452 cb = iclog->ic_callback;
4b80916b 2453 while (cb) {
1da177e4
LT
2454 iclog->ic_callback_tail = &(iclog->ic_callback);
2455 iclog->ic_callback = NULL;
114d23aa 2456 spin_unlock(&iclog->ic_callback_lock);
1da177e4
LT
2457
2458 /* perform callbacks in the order given */
4b80916b 2459 for (; cb; cb = cb_next) {
1da177e4
LT
2460 cb_next = cb->cb_next;
2461 cb->cb_func(cb->cb_arg, aborted);
2462 }
114d23aa 2463 spin_lock(&iclog->ic_callback_lock);
1da177e4
LT
2464 cb = iclog->ic_callback;
2465 }
2466
2467 loopdidcallbacks++;
2468 funcdidcallbacks++;
2469
114d23aa 2470 spin_lock(&log->l_icloglock);
4b80916b 2471 ASSERT(iclog->ic_callback == NULL);
114d23aa 2472 spin_unlock(&iclog->ic_callback_lock);
1da177e4
LT
2473 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2474 iclog->ic_state = XLOG_STATE_DIRTY;
2475
2476 /*
2477 * Transition from DIRTY to ACTIVE if applicable.
2478 * NOP if STATE_IOERROR.
2479 */
2480 xlog_state_clean_log(log);
2481
2482 /* wake up threads waiting in xfs_log_force() */
eb40a875 2483 wake_up_all(&iclog->ic_force_wait);
1da177e4
LT
2484
2485 iclog = iclog->ic_next;
2486 } while (first_iclog != iclog);
a3c6685e
NS
2487
2488 if (repeats > 5000) {
2489 flushcnt += repeats;
2490 repeats = 0;
a0fa2b67 2491 xfs_warn(log->l_mp,
a3c6685e 2492 "%s: possible infinite loop (%d iterations)",
34a622b2 2493 __func__, flushcnt);
1da177e4
LT
2494 }
2495 } while (!ioerrors && loopdidcallbacks);
2496
2497 /*
2498 * make one last gasp attempt to see if iclogs are being left in
2499 * limbo..
2500 */
2501#ifdef DEBUG
2502 if (funcdidcallbacks) {
2503 first_iclog = iclog = log->l_iclog;
2504 do {
2505 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2506 /*
2507 * Terminate the loop if iclogs are found in states
2508 * which will cause other threads to clean up iclogs.
2509 *
2510 * SYNCING - i/o completion will go through logs
2511 * DONE_SYNC - interrupt thread should be waiting for
b22cd72c 2512 * l_icloglock
1da177e4
LT
2513 * IOERROR - give up hope all ye who enter here
2514 */
2515 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2516 iclog->ic_state == XLOG_STATE_SYNCING ||
2517 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2518 iclog->ic_state == XLOG_STATE_IOERROR )
2519 break;
2520 iclog = iclog->ic_next;
2521 } while (first_iclog != iclog);
2522 }
2523#endif
2524
d748c623
MW
2525 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2526 wake = 1;
b22cd72c 2527 spin_unlock(&log->l_icloglock);
d748c623
MW
2528
2529 if (wake)
eb40a875 2530 wake_up_all(&log->l_flush_wait);
d748c623 2531}
1da177e4
LT
2532
2533
2534/*
2535 * Finish transitioning this iclog to the dirty state.
2536 *
2537 * Make sure that we completely execute this routine only when this is
2538 * the last call to the iclog. There is a good chance that iclog flushes,
2539 * when we reach the end of the physical log, get turned into 2 separate
2540 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2541 * routine. By using the reference count bwritecnt, we guarantee that only
2542 * the second completion goes through.
2543 *
2544 * Callbacks could take time, so they are done outside the scope of the
12017faf 2545 * global state machine log lock.
1da177e4 2546 */
a8272ce0 2547STATIC void
1da177e4
LT
2548xlog_state_done_syncing(
2549 xlog_in_core_t *iclog,
2550 int aborted)
2551{
9a8d2fdb 2552 struct xlog *log = iclog->ic_log;
1da177e4 2553
b22cd72c 2554 spin_lock(&log->l_icloglock);
1da177e4
LT
2555
2556 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2557 iclog->ic_state == XLOG_STATE_IOERROR);
155cc6b7 2558 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
2559 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2560
2561
2562 /*
2563 * If we got an error, either on the first buffer, or in the case of
2564 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2565 * and none should ever be attempted to be written to disk
2566 * again.
2567 */
2568 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2569 if (--iclog->ic_bwritecnt == 1) {
b22cd72c 2570 spin_unlock(&log->l_icloglock);
1da177e4
LT
2571 return;
2572 }
2573 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2574 }
2575
2576 /*
2577 * Someone could be sleeping prior to writing out the next
2578 * iclog buffer, we wake them all, one will get to do the
2579 * I/O, the others get to wait for the result.
2580 */
eb40a875 2581 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2582 spin_unlock(&log->l_icloglock);
1da177e4
LT
2583 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2584} /* xlog_state_done_syncing */
2585
2586
2587/*
2588 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2589 * sleep. We wait on the flush queue on the head iclog as that should be
2590 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2591 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2592 *
2593 * The in-core logs are used in a circular fashion. They are not used
2594 * out-of-order even when an iclog past the head is free.
2595 *
2596 * return:
2597 * * log_offset where xlog_write() can start writing into the in-core
2598 * log's data space.
2599 * * in-core log pointer to which xlog_write() should write.
2600 * * boolean indicating this is a continued write to an in-core log.
2601 * If this is the last write, then the in-core log's offset field
2602 * needs to be incremented, depending on the amount of data which
2603 * is copied.
2604 */
a8272ce0 2605STATIC int
9a8d2fdb
MT
2606xlog_state_get_iclog_space(
2607 struct xlog *log,
2608 int len,
2609 struct xlog_in_core **iclogp,
2610 struct xlog_ticket *ticket,
2611 int *continued_write,
2612 int *logoffsetp)
1da177e4 2613{
1da177e4
LT
2614 int log_offset;
2615 xlog_rec_header_t *head;
2616 xlog_in_core_t *iclog;
2617 int error;
2618
2619restart:
b22cd72c 2620 spin_lock(&log->l_icloglock);
1da177e4 2621 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 2622 spin_unlock(&log->l_icloglock);
1da177e4
LT
2623 return XFS_ERROR(EIO);
2624 }
2625
2626 iclog = log->l_iclog;
d748c623 2627 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
1da177e4 2628 XFS_STATS_INC(xs_log_noiclogs);
d748c623
MW
2629
2630 /* Wait for log writes to have flushed */
eb40a875 2631 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
2632 goto restart;
2633 }
d748c623 2634
1da177e4
LT
2635 head = &iclog->ic_header;
2636
155cc6b7 2637 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
2638 log_offset = iclog->ic_offset;
2639
2640 /* On the 1st write to an iclog, figure out lsn. This works
2641 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2642 * committing to. If the offset is set, that's how many blocks
2643 * must be written.
2644 */
2645 if (log_offset == 0) {
2646 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 2647 xlog_tic_add_region(ticket,
7e9c6396
TS
2648 log->l_iclog_hsize,
2649 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
2650 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2651 head->h_lsn = cpu_to_be64(
03bea6fe 2652 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
2653 ASSERT(log->l_curr_block >= 0);
2654 }
2655
2656 /* If there is enough room to write everything, then do it. Otherwise,
2657 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2658 * bit is on, so this will get flushed out. Don't update ic_offset
2659 * until you know exactly how many bytes get copied. Therefore, wait
2660 * until later to update ic_offset.
2661 *
2662 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2663 * can fit into remaining data section.
2664 */
2665 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2666 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2667
49641f1a
DC
2668 /*
2669 * If I'm the only one writing to this iclog, sync it to disk.
2670 * We need to do an atomic compare and decrement here to avoid
2671 * racing with concurrent atomic_dec_and_lock() calls in
2672 * xlog_state_release_iclog() when there is more than one
2673 * reference to the iclog.
2674 */
2675 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2676 /* we are the only one */
b22cd72c 2677 spin_unlock(&log->l_icloglock);
49641f1a
DC
2678 error = xlog_state_release_iclog(log, iclog);
2679 if (error)
014c2544 2680 return error;
1da177e4 2681 } else {
b22cd72c 2682 spin_unlock(&log->l_icloglock);
1da177e4
LT
2683 }
2684 goto restart;
2685 }
2686
2687 /* Do we have enough room to write the full amount in the remainder
2688 * of this iclog? Or must we continue a write on the next iclog and
2689 * mark this iclog as completely taken? In the case where we switch
2690 * iclogs (to mark it taken), this particular iclog will release/sync
2691 * to disk in xlog_write().
2692 */
2693 if (len <= iclog->ic_size - iclog->ic_offset) {
2694 *continued_write = 0;
2695 iclog->ic_offset += len;
2696 } else {
2697 *continued_write = 1;
2698 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2699 }
2700 *iclogp = iclog;
2701
2702 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 2703 spin_unlock(&log->l_icloglock);
1da177e4
LT
2704
2705 *logoffsetp = log_offset;
2706 return 0;
2707} /* xlog_state_get_iclog_space */
2708
1da177e4
LT
2709/* The first cnt-1 times through here we don't need to
2710 * move the grant write head because the permanent
2711 * reservation has reserved cnt times the unit amount.
2712 * Release part of current permanent unit reservation and
2713 * reset current reservation to be one units worth. Also
2714 * move grant reservation head forward.
2715 */
2716STATIC void
9a8d2fdb
MT
2717xlog_regrant_reserve_log_space(
2718 struct xlog *log,
2719 struct xlog_ticket *ticket)
1da177e4 2720{
0b1b213f
CH
2721 trace_xfs_log_regrant_reserve_enter(log, ticket);
2722
1da177e4
LT
2723 if (ticket->t_cnt > 0)
2724 ticket->t_cnt--;
2725
28496968 2726 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 2727 ticket->t_curr_res);
28496968 2728 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 2729 ticket->t_curr_res);
1da177e4 2730 ticket->t_curr_res = ticket->t_unit_res;
0adba536 2731 xlog_tic_reset_res(ticket);
0b1b213f
CH
2732
2733 trace_xfs_log_regrant_reserve_sub(log, ticket);
2734
1da177e4 2735 /* just return if we still have some of the pre-reserved space */
d0eb2f38 2736 if (ticket->t_cnt > 0)
1da177e4 2737 return;
1da177e4 2738
28496968 2739 xlog_grant_add_space(log, &log->l_reserve_head.grant,
a69ed03c 2740 ticket->t_unit_res);
0b1b213f
CH
2741
2742 trace_xfs_log_regrant_reserve_exit(log, ticket);
2743
1da177e4 2744 ticket->t_curr_res = ticket->t_unit_res;
0adba536 2745 xlog_tic_reset_res(ticket);
1da177e4
LT
2746} /* xlog_regrant_reserve_log_space */
2747
2748
2749/*
2750 * Give back the space left from a reservation.
2751 *
2752 * All the information we need to make a correct determination of space left
2753 * is present. For non-permanent reservations, things are quite easy. The
2754 * count should have been decremented to zero. We only need to deal with the
2755 * space remaining in the current reservation part of the ticket. If the
2756 * ticket contains a permanent reservation, there may be left over space which
2757 * needs to be released. A count of N means that N-1 refills of the current
2758 * reservation can be done before we need to ask for more space. The first
2759 * one goes to fill up the first current reservation. Once we run out of
2760 * space, the count will stay at zero and the only space remaining will be
2761 * in the current reservation field.
2762 */
2763STATIC void
9a8d2fdb
MT
2764xlog_ungrant_log_space(
2765 struct xlog *log,
2766 struct xlog_ticket *ticket)
1da177e4 2767{
663e496a
DC
2768 int bytes;
2769
1da177e4
LT
2770 if (ticket->t_cnt > 0)
2771 ticket->t_cnt--;
2772
0b1b213f 2773 trace_xfs_log_ungrant_enter(log, ticket);
0b1b213f 2774 trace_xfs_log_ungrant_sub(log, ticket);
1da177e4 2775
663e496a
DC
2776 /*
2777 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
2778 * up more space based on the remaining count.
2779 */
663e496a 2780 bytes = ticket->t_curr_res;
1da177e4
LT
2781 if (ticket->t_cnt > 0) {
2782 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 2783 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
2784 }
2785
28496968
CH
2786 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2787 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 2788
0b1b213f
CH
2789 trace_xfs_log_ungrant_exit(log, ticket);
2790
cfb7cdca 2791 xfs_log_space_wake(log->l_mp);
09a423a3 2792}
1da177e4 2793
1da177e4
LT
2794/*
2795 * Flush iclog to disk if this is the last reference to the given iclog and
2796 * the WANT_SYNC bit is set.
2797 *
2798 * When this function is entered, the iclog is not necessarily in the
2799 * WANT_SYNC state. It may be sitting around waiting to get filled.
2800 *
2801 *
2802 */
a8272ce0 2803STATIC int
b589334c 2804xlog_state_release_iclog(
9a8d2fdb
MT
2805 struct xlog *log,
2806 struct xlog_in_core *iclog)
1da177e4 2807{
1da177e4
LT
2808 int sync = 0; /* do we sync? */
2809
155cc6b7
DC
2810 if (iclog->ic_state & XLOG_STATE_IOERROR)
2811 return XFS_ERROR(EIO);
2812
2813 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2814 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2815 return 0;
2816
1da177e4 2817 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 2818 spin_unlock(&log->l_icloglock);
1da177e4
LT
2819 return XFS_ERROR(EIO);
2820 }
1da177e4
LT
2821 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2822 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2823
155cc6b7 2824 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
b589334c 2825 /* update tail before writing to iclog */
1c3cb9ec 2826 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
1da177e4
LT
2827 sync++;
2828 iclog->ic_state = XLOG_STATE_SYNCING;
1c3cb9ec
DC
2829 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2830 xlog_verify_tail_lsn(log, iclog, tail_lsn);
1da177e4
LT
2831 /* cycle incremented when incrementing curr_block */
2832 }
b22cd72c 2833 spin_unlock(&log->l_icloglock);
1da177e4
LT
2834
2835 /*
2836 * We let the log lock go, so it's possible that we hit a log I/O
c41564b5 2837 * error or some other SHUTDOWN condition that marks the iclog
1da177e4
LT
2838 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2839 * this iclog has consistent data, so we ignore IOERROR
2840 * flags after this point.
2841 */
b589334c 2842 if (sync)
1da177e4 2843 return xlog_sync(log, iclog);
014c2544 2844 return 0;
1da177e4
LT
2845} /* xlog_state_release_iclog */
2846
2847
2848/*
2849 * This routine will mark the current iclog in the ring as WANT_SYNC
2850 * and move the current iclog pointer to the next iclog in the ring.
2851 * When this routine is called from xlog_state_get_iclog_space(), the
2852 * exact size of the iclog has not yet been determined. All we know is
2853 * that every data block. We have run out of space in this log record.
2854 */
2855STATIC void
9a8d2fdb
MT
2856xlog_state_switch_iclogs(
2857 struct xlog *log,
2858 struct xlog_in_core *iclog,
2859 int eventual_size)
1da177e4
LT
2860{
2861 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2862 if (!eventual_size)
2863 eventual_size = iclog->ic_offset;
2864 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 2865 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
2866 log->l_prev_block = log->l_curr_block;
2867 log->l_prev_cycle = log->l_curr_cycle;
2868
2869 /* roll log?: ic_offset changed later */
2870 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2871
2872 /* Round up to next log-sunit */
62118709 2873 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1da177e4
LT
2874 log->l_mp->m_sb.sb_logsunit > 1) {
2875 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2876 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2877 }
2878
2879 if (log->l_curr_block >= log->l_logBBsize) {
2880 log->l_curr_cycle++;
2881 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2882 log->l_curr_cycle++;
2883 log->l_curr_block -= log->l_logBBsize;
2884 ASSERT(log->l_curr_block >= 0);
2885 }
2886 ASSERT(iclog == log->l_iclog);
2887 log->l_iclog = iclog->ic_next;
2888} /* xlog_state_switch_iclogs */
2889
1da177e4
LT
2890/*
2891 * Write out all data in the in-core log as of this exact moment in time.
2892 *
2893 * Data may be written to the in-core log during this call. However,
2894 * we don't guarantee this data will be written out. A change from past
2895 * implementation means this routine will *not* write out zero length LRs.
2896 *
2897 * Basically, we try and perform an intelligent scan of the in-core logs.
2898 * If we determine there is no flushable data, we just return. There is no
2899 * flushable data if:
2900 *
2901 * 1. the current iclog is active and has no data; the previous iclog
2902 * is in the active or dirty state.
2903 * 2. the current iclog is drity, and the previous iclog is in the
2904 * active or dirty state.
2905 *
12017faf 2906 * We may sleep if:
1da177e4
LT
2907 *
2908 * 1. the current iclog is not in the active nor dirty state.
2909 * 2. the current iclog dirty, and the previous iclog is not in the
2910 * active nor dirty state.
2911 * 3. the current iclog is active, and there is another thread writing
2912 * to this particular iclog.
2913 * 4. a) the current iclog is active and has no other writers
2914 * b) when we return from flushing out this iclog, it is still
2915 * not in the active nor dirty state.
2916 */
a14a348b
CH
2917int
2918_xfs_log_force(
2919 struct xfs_mount *mp,
2920 uint flags,
2921 int *log_flushed)
1da177e4 2922{
ad223e60 2923 struct xlog *log = mp->m_log;
a14a348b
CH
2924 struct xlog_in_core *iclog;
2925 xfs_lsn_t lsn;
2926
2927 XFS_STATS_INC(xs_log_force);
1da177e4 2928
93b8a585 2929 xlog_cil_force(log);
71e330b5 2930
b22cd72c 2931 spin_lock(&log->l_icloglock);
1da177e4
LT
2932
2933 iclog = log->l_iclog;
2934 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 2935 spin_unlock(&log->l_icloglock);
1da177e4
LT
2936 return XFS_ERROR(EIO);
2937 }
2938
2939 /* If the head iclog is not active nor dirty, we just attach
2940 * ourselves to the head and go to sleep.
2941 */
2942 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2943 iclog->ic_state == XLOG_STATE_DIRTY) {
2944 /*
2945 * If the head is dirty or (active and empty), then
2946 * we need to look at the previous iclog. If the previous
2947 * iclog is active or dirty we are done. There is nothing
2948 * to sync out. Otherwise, we attach ourselves to the
2949 * previous iclog and go to sleep.
2950 */
2951 if (iclog->ic_state == XLOG_STATE_DIRTY ||
155cc6b7
DC
2952 (atomic_read(&iclog->ic_refcnt) == 0
2953 && iclog->ic_offset == 0)) {
1da177e4
LT
2954 iclog = iclog->ic_prev;
2955 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2956 iclog->ic_state == XLOG_STATE_DIRTY)
2957 goto no_sleep;
2958 else
2959 goto maybe_sleep;
2960 } else {
155cc6b7 2961 if (atomic_read(&iclog->ic_refcnt) == 0) {
1da177e4
LT
2962 /* We are the only one with access to this
2963 * iclog. Flush it out now. There should
2964 * be a roundoff of zero to show that someone
2965 * has already taken care of the roundoff from
2966 * the previous sync.
2967 */
155cc6b7 2968 atomic_inc(&iclog->ic_refcnt);
b53e675d 2969 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1da177e4 2970 xlog_state_switch_iclogs(log, iclog, 0);
b22cd72c 2971 spin_unlock(&log->l_icloglock);
1da177e4
LT
2972
2973 if (xlog_state_release_iclog(log, iclog))
2974 return XFS_ERROR(EIO);
a14a348b
CH
2975
2976 if (log_flushed)
2977 *log_flushed = 1;
b22cd72c 2978 spin_lock(&log->l_icloglock);
b53e675d 2979 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
1da177e4
LT
2980 iclog->ic_state != XLOG_STATE_DIRTY)
2981 goto maybe_sleep;
2982 else
2983 goto no_sleep;
2984 } else {
2985 /* Someone else is writing to this iclog.
2986 * Use its call to flush out the data. However,
2987 * the other thread may not force out this LR,
2988 * so we mark it WANT_SYNC.
2989 */
2990 xlog_state_switch_iclogs(log, iclog, 0);
2991 goto maybe_sleep;
2992 }
2993 }
2994 }
2995
2996 /* By the time we come around again, the iclog could've been filled
2997 * which would give it another lsn. If we have a new lsn, just
2998 * return because the relevant data has been flushed.
2999 */
3000maybe_sleep:
3001 if (flags & XFS_LOG_SYNC) {
3002 /*
3003 * We must check if we're shutting down here, before
b22cd72c 3004 * we wait, while we're holding the l_icloglock.
1da177e4
LT
3005 * Then we check again after waking up, in case our
3006 * sleep was disturbed by a bad news.
3007 */
3008 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3009 spin_unlock(&log->l_icloglock);
1da177e4
LT
3010 return XFS_ERROR(EIO);
3011 }
3012 XFS_STATS_INC(xs_log_force_sleep);
eb40a875 3013 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
1da177e4
LT
3014 /*
3015 * No need to grab the log lock here since we're
3016 * only deciding whether or not to return EIO
3017 * and the memory read should be atomic.
3018 */
3019 if (iclog->ic_state & XLOG_STATE_IOERROR)
3020 return XFS_ERROR(EIO);
a14a348b
CH
3021 if (log_flushed)
3022 *log_flushed = 1;
1da177e4
LT
3023 } else {
3024
3025no_sleep:
b22cd72c 3026 spin_unlock(&log->l_icloglock);
1da177e4
LT
3027 }
3028 return 0;
a14a348b 3029}
1da177e4 3030
a14a348b
CH
3031/*
3032 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3033 * about errors or whether the log was flushed or not. This is the normal
3034 * interface to use when trying to unpin items or move the log forward.
3035 */
3036void
3037xfs_log_force(
3038 xfs_mount_t *mp,
3039 uint flags)
3040{
3041 int error;
3042
14c26c6a 3043 trace_xfs_log_force(mp, 0);
a14a348b 3044 error = _xfs_log_force(mp, flags, NULL);
a0fa2b67
DC
3045 if (error)
3046 xfs_warn(mp, "%s: error %d returned.", __func__, error);
a14a348b 3047}
1da177e4
LT
3048
3049/*
a14a348b 3050 * Force the in-core log to disk for a specific LSN.
1da177e4
LT
3051 *
3052 * Find in-core log with lsn.
3053 * If it is in the DIRTY state, just return.
3054 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3055 * state and go to sleep or return.
3056 * If it is in any other state, go to sleep or return.
3057 *
a14a348b
CH
3058 * Synchronous forces are implemented with a signal variable. All callers
3059 * to force a given lsn to disk will wait on a the sv attached to the
3060 * specific in-core log. When given in-core log finally completes its
3061 * write to disk, that thread will wake up all threads waiting on the
3062 * sv.
1da177e4 3063 */
a14a348b
CH
3064int
3065_xfs_log_force_lsn(
3066 struct xfs_mount *mp,
3067 xfs_lsn_t lsn,
3068 uint flags,
3069 int *log_flushed)
1da177e4 3070{
ad223e60 3071 struct xlog *log = mp->m_log;
a14a348b
CH
3072 struct xlog_in_core *iclog;
3073 int already_slept = 0;
1da177e4 3074
a14a348b 3075 ASSERT(lsn != 0);
1da177e4 3076
a14a348b 3077 XFS_STATS_INC(xs_log_force);
1da177e4 3078
93b8a585
CH
3079 lsn = xlog_cil_force_lsn(log, lsn);
3080 if (lsn == NULLCOMMITLSN)
3081 return 0;
71e330b5 3082
a14a348b
CH
3083try_again:
3084 spin_lock(&log->l_icloglock);
3085 iclog = log->l_iclog;
3086 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3087 spin_unlock(&log->l_icloglock);
a14a348b 3088 return XFS_ERROR(EIO);
1da177e4
LT
3089 }
3090
a14a348b
CH
3091 do {
3092 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3093 iclog = iclog->ic_next;
3094 continue;
3095 }
3096
3097 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3098 spin_unlock(&log->l_icloglock);
3099 return 0;
3100 }
3101
3102 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3103 /*
3104 * We sleep here if we haven't already slept (e.g.
3105 * this is the first time we've looked at the correct
3106 * iclog buf) and the buffer before us is going to
3107 * be sync'ed. The reason for this is that if we
3108 * are doing sync transactions here, by waiting for
3109 * the previous I/O to complete, we can allow a few
3110 * more transactions into this iclog before we close
3111 * it down.
3112 *
3113 * Otherwise, we mark the buffer WANT_SYNC, and bump
3114 * up the refcnt so we can release the log (which
3115 * drops the ref count). The state switch keeps new
3116 * transaction commits from using this buffer. When
3117 * the current commits finish writing into the buffer,
3118 * the refcount will drop to zero and the buffer will
3119 * go out then.
3120 */
3121 if (!already_slept &&
3122 (iclog->ic_prev->ic_state &
3123 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3124 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3125
3126 XFS_STATS_INC(xs_log_force_sleep);
3127
eb40a875
DC
3128 xlog_wait(&iclog->ic_prev->ic_write_wait,
3129 &log->l_icloglock);
a14a348b
CH
3130 if (log_flushed)
3131 *log_flushed = 1;
3132 already_slept = 1;
3133 goto try_again;
3134 }
155cc6b7 3135 atomic_inc(&iclog->ic_refcnt);
1da177e4 3136 xlog_state_switch_iclogs(log, iclog, 0);
b22cd72c 3137 spin_unlock(&log->l_icloglock);
1da177e4
LT
3138 if (xlog_state_release_iclog(log, iclog))
3139 return XFS_ERROR(EIO);
a14a348b
CH
3140 if (log_flushed)
3141 *log_flushed = 1;
b22cd72c 3142 spin_lock(&log->l_icloglock);
1da177e4 3143 }
1da177e4 3144
a14a348b
CH
3145 if ((flags & XFS_LOG_SYNC) && /* sleep */
3146 !(iclog->ic_state &
3147 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3148 /*
3149 * Don't wait on completion if we know that we've
3150 * gotten a log write error.
3151 */
3152 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3153 spin_unlock(&log->l_icloglock);
3154 return XFS_ERROR(EIO);
3155 }
3156 XFS_STATS_INC(xs_log_force_sleep);
eb40a875 3157 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
a14a348b
CH
3158 /*
3159 * No need to grab the log lock here since we're
3160 * only deciding whether or not to return EIO
3161 * and the memory read should be atomic.
3162 */
3163 if (iclog->ic_state & XLOG_STATE_IOERROR)
3164 return XFS_ERROR(EIO);
1da177e4 3165
a14a348b
CH
3166 if (log_flushed)
3167 *log_flushed = 1;
3168 } else { /* just return */
b22cd72c 3169 spin_unlock(&log->l_icloglock);
1da177e4 3170 }
1da177e4 3171
a14a348b
CH
3172 return 0;
3173 } while (iclog != log->l_iclog);
1da177e4 3174
a14a348b
CH
3175 spin_unlock(&log->l_icloglock);
3176 return 0;
3177}
3178
3179/*
3180 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3181 * about errors or whether the log was flushed or not. This is the normal
3182 * interface to use when trying to unpin items or move the log forward.
3183 */
3184void
3185xfs_log_force_lsn(
3186 xfs_mount_t *mp,
3187 xfs_lsn_t lsn,
3188 uint flags)
3189{
3190 int error;
1da177e4 3191
14c26c6a 3192 trace_xfs_log_force(mp, lsn);
a14a348b 3193 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
a0fa2b67
DC
3194 if (error)
3195 xfs_warn(mp, "%s: error %d returned.", __func__, error);
a14a348b 3196}
1da177e4
LT
3197
3198/*
3199 * Called when we want to mark the current iclog as being ready to sync to
3200 * disk.
3201 */
a8272ce0 3202STATIC void
9a8d2fdb
MT
3203xlog_state_want_sync(
3204 struct xlog *log,
3205 struct xlog_in_core *iclog)
1da177e4 3206{
a8914f3a 3207 assert_spin_locked(&log->l_icloglock);
1da177e4
LT
3208
3209 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3210 xlog_state_switch_iclogs(log, iclog, 0);
3211 } else {
3212 ASSERT(iclog->ic_state &
3213 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3214 }
39e2defe 3215}
1da177e4
LT
3216
3217
3218/*****************************************************************************
3219 *
3220 * TICKET functions
3221 *
3222 *****************************************************************************
3223 */
3224
3225/*
9da096fd 3226 * Free a used ticket when its refcount falls to zero.
1da177e4 3227 */
cc09c0dc
DC
3228void
3229xfs_log_ticket_put(
3230 xlog_ticket_t *ticket)
1da177e4 3231{
cc09c0dc 3232 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3233 if (atomic_dec_and_test(&ticket->t_ref))
cc09c0dc 3234 kmem_zone_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3235}
1da177e4 3236
cc09c0dc
DC
3237xlog_ticket_t *
3238xfs_log_ticket_get(
3239 xlog_ticket_t *ticket)
3240{
3241 ASSERT(atomic_read(&ticket->t_ref) > 0);
3242 atomic_inc(&ticket->t_ref);
3243 return ticket;
3244}
1da177e4
LT
3245
3246/*
eb01c9cd 3247 * Allocate and initialise a new log ticket.
1da177e4 3248 */
9a8d2fdb 3249struct xlog_ticket *
9b9fc2b7 3250xlog_ticket_alloc(
ad223e60 3251 struct xlog *log,
9b9fc2b7
DC
3252 int unit_bytes,
3253 int cnt,
3254 char client,
9006fb91 3255 bool permanent,
77ba7877 3256 xfs_km_flags_t alloc_flags)
1da177e4 3257{
9b9fc2b7 3258 struct xlog_ticket *tic;
1da177e4 3259 uint num_headers;
9b9fc2b7 3260 int iclog_space;
1da177e4 3261
3383ca57 3262 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
eb01c9cd
DC
3263 if (!tic)
3264 return NULL;
1da177e4
LT
3265
3266 /*
3267 * Permanent reservations have up to 'cnt'-1 active log operations
3268 * in the log. A unit in this case is the amount of space for one
3269 * of these log operations. Normal reservations have a cnt of 1
3270 * and their unit amount is the total amount of space required.
3271 *
3272 * The following lines of code account for non-transaction data
32fb9b57
TS
3273 * which occupy space in the on-disk log.
3274 *
3275 * Normal form of a transaction is:
3276 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3277 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3278 *
3279 * We need to account for all the leadup data and trailer data
3280 * around the transaction data.
3281 * And then we need to account for the worst case in terms of using
3282 * more space.
3283 * The worst case will happen if:
3284 * - the placement of the transaction happens to be such that the
3285 * roundoff is at its maximum
3286 * - the transaction data is synced before the commit record is synced
3287 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3288 * Therefore the commit record is in its own Log Record.
3289 * This can happen as the commit record is called with its
3290 * own region to xlog_write().
3291 * This then means that in the worst case, roundoff can happen for
3292 * the commit-rec as well.
3293 * The commit-rec is smaller than padding in this scenario and so it is
3294 * not added separately.
1da177e4
LT
3295 */
3296
32fb9b57
TS
3297 /* for trans header */
3298 unit_bytes += sizeof(xlog_op_header_t);
3299 unit_bytes += sizeof(xfs_trans_header_t);
3300
1da177e4 3301 /* for start-rec */
32fb9b57
TS
3302 unit_bytes += sizeof(xlog_op_header_t);
3303
9b9fc2b7
DC
3304 /*
3305 * for LR headers - the space for data in an iclog is the size minus
3306 * the space used for the headers. If we use the iclog size, then we
3307 * undercalculate the number of headers required.
3308 *
3309 * Furthermore - the addition of op headers for split-recs might
3310 * increase the space required enough to require more log and op
3311 * headers, so take that into account too.
3312 *
3313 * IMPORTANT: This reservation makes the assumption that if this
3314 * transaction is the first in an iclog and hence has the LR headers
3315 * accounted to it, then the remaining space in the iclog is
3316 * exclusively for this transaction. i.e. if the transaction is larger
3317 * than the iclog, it will be the only thing in that iclog.
3318 * Fundamentally, this means we must pass the entire log vector to
3319 * xlog_write to guarantee this.
3320 */
3321 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3322 num_headers = howmany(unit_bytes, iclog_space);
3323
3324 /* for split-recs - ophdrs added when data split over LRs */
3325 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3326
3327 /* add extra header reservations if we overrun */
3328 while (!num_headers ||
3329 howmany(unit_bytes, iclog_space) > num_headers) {
3330 unit_bytes += sizeof(xlog_op_header_t);
3331 num_headers++;
3332 }
32fb9b57 3333 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3334
32fb9b57
TS
3335 /* for commit-rec LR header - note: padding will subsume the ophdr */
3336 unit_bytes += log->l_iclog_hsize;
3337
32fb9b57 3338 /* for roundoff padding for transaction data and one for commit record */
62118709 3339 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
32fb9b57 3340 log->l_mp->m_sb.sb_logsunit > 1) {
1da177e4 3341 /* log su roundoff */
32fb9b57 3342 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
1da177e4
LT
3343 } else {
3344 /* BB roundoff */
32fb9b57 3345 unit_bytes += 2*BBSIZE;
1da177e4
LT
3346 }
3347
cc09c0dc 3348 atomic_set(&tic->t_ref, 1);
14a7235f 3349 tic->t_task = current;
10547941 3350 INIT_LIST_HEAD(&tic->t_queue);
1da177e4
LT
3351 tic->t_unit_res = unit_bytes;
3352 tic->t_curr_res = unit_bytes;
3353 tic->t_cnt = cnt;
3354 tic->t_ocnt = cnt;
f9837107 3355 tic->t_tid = random32();
1da177e4
LT
3356 tic->t_clientid = client;
3357 tic->t_flags = XLOG_TIC_INITED;
7e9c6396 3358 tic->t_trans_type = 0;
9006fb91 3359 if (permanent)
1da177e4 3360 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3361
0adba536 3362 xlog_tic_reset_res(tic);
7e9c6396 3363
1da177e4 3364 return tic;
cc09c0dc 3365}
1da177e4
LT
3366
3367
3368/******************************************************************************
3369 *
3370 * Log debug routines
3371 *
3372 ******************************************************************************
3373 */
cfcbbbd0 3374#if defined(DEBUG)
1da177e4
LT
3375/*
3376 * Make sure that the destination ptr is within the valid data region of
3377 * one of the iclogs. This uses backup pointers stored in a different
3378 * part of the log in case we trash the log structure.
3379 */
3380void
e6b1f273 3381xlog_verify_dest_ptr(
ad223e60 3382 struct xlog *log,
e6b1f273 3383 char *ptr)
1da177e4
LT
3384{
3385 int i;
3386 int good_ptr = 0;
3387
e6b1f273
CH
3388 for (i = 0; i < log->l_iclog_bufs; i++) {
3389 if (ptr >= log->l_iclog_bak[i] &&
3390 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3391 good_ptr++;
3392 }
e6b1f273
CH
3393
3394 if (!good_ptr)
a0fa2b67 3395 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3396}
1da177e4 3397
da8a1a4a
DC
3398/*
3399 * Check to make sure the grant write head didn't just over lap the tail. If
3400 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3401 * the cycles differ by exactly one and check the byte count.
3402 *
3403 * This check is run unlocked, so can give false positives. Rather than assert
3404 * on failures, use a warn-once flag and a panic tag to allow the admin to
3405 * determine if they want to panic the machine when such an error occurs. For
3406 * debug kernels this will have the same effect as using an assert but, unlinke
3407 * an assert, it can be turned off at runtime.
3408 */
3f336c6f
DC
3409STATIC void
3410xlog_verify_grant_tail(
ad223e60 3411 struct xlog *log)
3f336c6f 3412{
1c3cb9ec 3413 int tail_cycle, tail_blocks;
a69ed03c 3414 int cycle, space;
3f336c6f 3415
28496968 3416 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3417 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3418 if (tail_cycle != cycle) {
da8a1a4a
DC
3419 if (cycle - 1 != tail_cycle &&
3420 !(log->l_flags & XLOG_TAIL_WARN)) {
3421 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3422 "%s: cycle - 1 != tail_cycle", __func__);
3423 log->l_flags |= XLOG_TAIL_WARN;
3424 }
3425
3426 if (space > BBTOB(tail_blocks) &&
3427 !(log->l_flags & XLOG_TAIL_WARN)) {
3428 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3429 "%s: space > BBTOB(tail_blocks)", __func__);
3430 log->l_flags |= XLOG_TAIL_WARN;
3431 }
3f336c6f
DC
3432 }
3433}
3434
1da177e4
LT
3435/* check if it will fit */
3436STATIC void
9a8d2fdb
MT
3437xlog_verify_tail_lsn(
3438 struct xlog *log,
3439 struct xlog_in_core *iclog,
3440 xfs_lsn_t tail_lsn)
1da177e4
LT
3441{
3442 int blocks;
3443
3444 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3445 blocks =
3446 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3447 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3448 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3449 } else {
3450 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3451
3452 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3453 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3454
3455 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3456 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3457 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3458 }
3459} /* xlog_verify_tail_lsn */
3460
3461/*
3462 * Perform a number of checks on the iclog before writing to disk.
3463 *
3464 * 1. Make sure the iclogs are still circular
3465 * 2. Make sure we have a good magic number
3466 * 3. Make sure we don't have magic numbers in the data
3467 * 4. Check fields of each log operation header for:
3468 * A. Valid client identifier
3469 * B. tid ptr value falls in valid ptr space (user space code)
3470 * C. Length in log record header is correct according to the
3471 * individual operation headers within record.
3472 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3473 * log, check the preceding blocks of the physical log to make sure all
3474 * the cycle numbers agree with the current cycle number.
3475 */
3476STATIC void
9a8d2fdb
MT
3477xlog_verify_iclog(
3478 struct xlog *log,
3479 struct xlog_in_core *iclog,
3480 int count,
3481 boolean_t syncing)
1da177e4
LT
3482{
3483 xlog_op_header_t *ophead;
3484 xlog_in_core_t *icptr;
3485 xlog_in_core_2_t *xhdr;
3486 xfs_caddr_t ptr;
3487 xfs_caddr_t base_ptr;
3488 __psint_t field_offset;
3489 __uint8_t clientid;
3490 int len, i, j, k, op_len;
3491 int idx;
1da177e4
LT
3492
3493 /* check validity of iclog pointers */
b22cd72c 3494 spin_lock(&log->l_icloglock);
1da177e4
LT
3495 icptr = log->l_iclog;
3496 for (i=0; i < log->l_iclog_bufs; i++) {
4b80916b 3497 if (icptr == NULL)
a0fa2b67 3498 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
1da177e4
LT
3499 icptr = icptr->ic_next;
3500 }
3501 if (icptr != log->l_iclog)
a0fa2b67 3502 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3503 spin_unlock(&log->l_icloglock);
1da177e4
LT
3504
3505 /* check log magic numbers */
69ef921b 3506 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3507 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3508
b53e675d
CH
3509 ptr = (xfs_caddr_t) &iclog->ic_header;
3510 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
1da177e4 3511 ptr += BBSIZE) {
69ef921b 3512 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3513 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3514 __func__);
1da177e4
LT
3515 }
3516
3517 /* check fields */
b53e675d 3518 len = be32_to_cpu(iclog->ic_header.h_num_logops);
1da177e4
LT
3519 ptr = iclog->ic_datap;
3520 base_ptr = ptr;
3521 ophead = (xlog_op_header_t *)ptr;
b28708d6 3522 xhdr = iclog->ic_data;
1da177e4
LT
3523 for (i = 0; i < len; i++) {
3524 ophead = (xlog_op_header_t *)ptr;
3525
3526 /* clientid is only 1 byte */
3527 field_offset = (__psint_t)
3528 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3529 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3530 clientid = ophead->oh_clientid;
3531 } else {
3532 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3533 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3534 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3535 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3536 clientid = xlog_get_client_id(
3537 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3538 } else {
03bea6fe
CH
3539 clientid = xlog_get_client_id(
3540 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3541 }
3542 }
3543 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67
DC
3544 xfs_warn(log->l_mp,
3545 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3546 __func__, clientid, ophead,
3547 (unsigned long)field_offset);
1da177e4
LT
3548
3549 /* check length */
3550 field_offset = (__psint_t)
3551 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3552 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
67fcb7bf 3553 op_len = be32_to_cpu(ophead->oh_len);
1da177e4
LT
3554 } else {
3555 idx = BTOBBT((__psint_t)&ophead->oh_len -
3556 (__psint_t)iclog->ic_datap);
3557 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3558 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3559 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3560 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3561 } else {
b53e675d 3562 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3563 }
3564 }
3565 ptr += sizeof(xlog_op_header_t) + op_len;
3566 }
3567} /* xlog_verify_iclog */
cfcbbbd0 3568#endif
1da177e4
LT
3569
3570/*
b22cd72c 3571 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3572 */
3573STATIC int
3574xlog_state_ioerror(
9a8d2fdb 3575 struct xlog *log)
1da177e4
LT
3576{
3577 xlog_in_core_t *iclog, *ic;
3578
3579 iclog = log->l_iclog;
3580 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3581 /*
3582 * Mark all the incore logs IOERROR.
3583 * From now on, no log flushes will result.
3584 */
3585 ic = iclog;
3586 do {
3587 ic->ic_state = XLOG_STATE_IOERROR;
3588 ic = ic->ic_next;
3589 } while (ic != iclog);
014c2544 3590 return 0;
1da177e4
LT
3591 }
3592 /*
3593 * Return non-zero, if state transition has already happened.
3594 */
014c2544 3595 return 1;
1da177e4
LT
3596}
3597
3598/*
3599 * This is called from xfs_force_shutdown, when we're forcibly
3600 * shutting down the filesystem, typically because of an IO error.
3601 * Our main objectives here are to make sure that:
3602 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3603 * parties to find out, 'atomically'.
3604 * b. those who're sleeping on log reservations, pinned objects and
3605 * other resources get woken up, and be told the bad news.
3606 * c. nothing new gets queued up after (a) and (b) are done.
3607 * d. if !logerror, flush the iclogs to disk, then seal them off
3608 * for business.
9da1ab18
DC
3609 *
3610 * Note: for delayed logging the !logerror case needs to flush the regions
3611 * held in memory out to the iclogs before flushing them to disk. This needs
3612 * to be done before the log is marked as shutdown, otherwise the flush to the
3613 * iclogs will fail.
1da177e4
LT
3614 */
3615int
3616xfs_log_force_umount(
3617 struct xfs_mount *mp,
3618 int logerror)
3619{
9a8d2fdb 3620 struct xlog *log;
1da177e4 3621 int retval;
1da177e4
LT
3622
3623 log = mp->m_log;
3624
3625 /*
3626 * If this happens during log recovery, don't worry about
3627 * locking; the log isn't open for business yet.
3628 */
3629 if (!log ||
3630 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3631 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9
CH
3632 if (mp->m_sb_bp)
3633 XFS_BUF_DONE(mp->m_sb_bp);
014c2544 3634 return 0;
1da177e4
LT
3635 }
3636
3637 /*
3638 * Somebody could've already done the hard work for us.
3639 * No need to get locks for this.
3640 */
3641 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3642 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3643 return 1;
1da177e4
LT
3644 }
3645 retval = 0;
9da1ab18
DC
3646
3647 /*
3648 * Flush the in memory commit item list before marking the log as
3649 * being shut down. We need to do it in this order to ensure all the
3650 * completed transactions are flushed to disk with the xfs_log_force()
3651 * call below.
3652 */
93b8a585 3653 if (!logerror)
a44f13ed 3654 xlog_cil_force(log);
9da1ab18 3655
1da177e4 3656 /*
3f16b985
DC
3657 * mark the filesystem and the as in a shutdown state and wake
3658 * everybody up to tell them the bad news.
1da177e4 3659 */
b22cd72c 3660 spin_lock(&log->l_icloglock);
1da177e4 3661 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9
CH
3662 if (mp->m_sb_bp)
3663 XFS_BUF_DONE(mp->m_sb_bp);
3664
1da177e4
LT
3665 /*
3666 * This flag is sort of redundant because of the mount flag, but
3667 * it's good to maintain the separation between the log and the rest
3668 * of XFS.
3669 */
3670 log->l_flags |= XLOG_IO_ERROR;
3671
3672 /*
3673 * If we hit a log error, we want to mark all the iclogs IOERROR
3674 * while we're still holding the loglock.
3675 */
3676 if (logerror)
3677 retval = xlog_state_ioerror(log);
b22cd72c 3678 spin_unlock(&log->l_icloglock);
1da177e4
LT
3679
3680 /*
10547941
DC
3681 * We don't want anybody waiting for log reservations after this. That
3682 * means we have to wake up everybody queued up on reserveq as well as
3683 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3684 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3685 * action is protected by the grant locks.
1da177e4 3686 */
a79bf2d7
CH
3687 xlog_grant_head_wake_all(&log->l_reserve_head);
3688 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3689
a14a348b 3690 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
1da177e4
LT
3691 ASSERT(!logerror);
3692 /*
3693 * Force the incore logs to disk before shutting the
3694 * log down completely.
3695 */
a14a348b
CH
3696 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3697
b22cd72c 3698 spin_lock(&log->l_icloglock);
1da177e4 3699 retval = xlog_state_ioerror(log);
b22cd72c 3700 spin_unlock(&log->l_icloglock);
1da177e4
LT
3701 }
3702 /*
3703 * Wake up everybody waiting on xfs_log_force.
3704 * Callback all log item committed functions as if the
3705 * log writes were completed.
3706 */
3707 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3708
3709#ifdef XFSERRORDEBUG
3710 {
3711 xlog_in_core_t *iclog;
3712
b22cd72c 3713 spin_lock(&log->l_icloglock);
1da177e4
LT
3714 iclog = log->l_iclog;
3715 do {
3716 ASSERT(iclog->ic_callback == 0);
3717 iclog = iclog->ic_next;
3718 } while (iclog != log->l_iclog);
b22cd72c 3719 spin_unlock(&log->l_icloglock);
1da177e4
LT
3720 }
3721#endif
3722 /* return non-zero if log IOERROR transition had already happened */
014c2544 3723 return retval;
1da177e4
LT
3724}
3725
ba0f32d4 3726STATIC int
9a8d2fdb
MT
3727xlog_iclogs_empty(
3728 struct xlog *log)
1da177e4
LT
3729{
3730 xlog_in_core_t *iclog;
3731
3732 iclog = log->l_iclog;
3733 do {
3734 /* endianness does not matter here, zero is zero in
3735 * any language.
3736 */
3737 if (iclog->ic_header.h_num_logops)
014c2544 3738 return 0;
1da177e4
LT
3739 iclog = iclog->ic_next;
3740 } while (iclog != log->l_iclog);
014c2544 3741 return 1;
1da177e4 3742}
f661f1e0 3743
This page took 1.058376 seconds and 5 git commands to generate.