xfs: xfs_quiesce_attr() should quiesce the log like unmount
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4 32#include "xfs_dinode.h"
1da177e4 33#include "xfs_inode.h"
a844f451 34#include "xfs_inode_item.h"
a844f451 35#include "xfs_alloc.h"
1da177e4
LT
36#include "xfs_ialloc.h"
37#include "xfs_log_priv.h"
38#include "xfs_buf_item.h"
1da177e4
LT
39#include "xfs_log_recover.h"
40#include "xfs_extfree_item.h"
41#include "xfs_trans_priv.h"
1da177e4 42#include "xfs_quota.h"
43355099 43#include "xfs_utils.h"
0b1b213f 44#include "xfs_trace.h"
1da177e4 45
9a8d2fdb
MT
46STATIC int
47xlog_find_zeroed(
48 struct xlog *,
49 xfs_daddr_t *);
50STATIC int
51xlog_clear_stale_blocks(
52 struct xlog *,
53 xfs_lsn_t);
1da177e4 54#if defined(DEBUG)
9a8d2fdb
MT
55STATIC void
56xlog_recover_check_summary(
57 struct xlog *);
1da177e4
LT
58#else
59#define xlog_recover_check_summary(log)
1da177e4
LT
60#endif
61
d5689eaa
CH
62/*
63 * This structure is used during recovery to record the buf log items which
64 * have been canceled and should not be replayed.
65 */
66struct xfs_buf_cancel {
67 xfs_daddr_t bc_blkno;
68 uint bc_len;
69 int bc_refcount;
70 struct list_head bc_list;
71};
72
1da177e4
LT
73/*
74 * Sector aligned buffer routines for buffer create/read/write/access
75 */
76
ff30a622
AE
77/*
78 * Verify the given count of basic blocks is valid number of blocks
79 * to specify for an operation involving the given XFS log buffer.
80 * Returns nonzero if the count is valid, 0 otherwise.
81 */
82
83static inline int
84xlog_buf_bbcount_valid(
9a8d2fdb 85 struct xlog *log,
ff30a622
AE
86 int bbcount)
87{
88 return bbcount > 0 && bbcount <= log->l_logBBsize;
89}
90
36adecff
AE
91/*
92 * Allocate a buffer to hold log data. The buffer needs to be able
93 * to map to a range of nbblks basic blocks at any valid (basic
94 * block) offset within the log.
95 */
5d77c0dc 96STATIC xfs_buf_t *
1da177e4 97xlog_get_bp(
9a8d2fdb 98 struct xlog *log,
3228149c 99 int nbblks)
1da177e4 100{
c8da0faf
CH
101 struct xfs_buf *bp;
102
ff30a622 103 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 104 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
105 nbblks);
106 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
107 return NULL;
108 }
1da177e4 109
36adecff
AE
110 /*
111 * We do log I/O in units of log sectors (a power-of-2
112 * multiple of the basic block size), so we round up the
25985edc 113 * requested size to accommodate the basic blocks required
36adecff
AE
114 * for complete log sectors.
115 *
116 * In addition, the buffer may be used for a non-sector-
117 * aligned block offset, in which case an I/O of the
118 * requested size could extend beyond the end of the
119 * buffer. If the requested size is only 1 basic block it
120 * will never straddle a sector boundary, so this won't be
121 * an issue. Nor will this be a problem if the log I/O is
122 * done in basic blocks (sector size 1). But otherwise we
123 * extend the buffer by one extra log sector to ensure
25985edc 124 * there's space to accommodate this possibility.
36adecff 125 */
69ce58f0
AE
126 if (nbblks > 1 && log->l_sectBBsize > 1)
127 nbblks += log->l_sectBBsize;
128 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 129
e70b73f8 130 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
131 if (bp)
132 xfs_buf_unlock(bp);
133 return bp;
1da177e4
LT
134}
135
5d77c0dc 136STATIC void
1da177e4
LT
137xlog_put_bp(
138 xfs_buf_t *bp)
139{
140 xfs_buf_free(bp);
141}
142
48389ef1
AE
143/*
144 * Return the address of the start of the given block number's data
145 * in a log buffer. The buffer covers a log sector-aligned region.
146 */
076e6acb
CH
147STATIC xfs_caddr_t
148xlog_align(
9a8d2fdb 149 struct xlog *log,
076e6acb
CH
150 xfs_daddr_t blk_no,
151 int nbblks,
9a8d2fdb 152 struct xfs_buf *bp)
076e6acb 153{
fdc07f44 154 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 155
4e94b71b 156 ASSERT(offset + nbblks <= bp->b_length);
62926044 157 return bp->b_addr + BBTOB(offset);
076e6acb
CH
158}
159
1da177e4
LT
160
161/*
162 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
163 */
076e6acb
CH
164STATIC int
165xlog_bread_noalign(
9a8d2fdb 166 struct xlog *log,
1da177e4
LT
167 xfs_daddr_t blk_no,
168 int nbblks,
9a8d2fdb 169 struct xfs_buf *bp)
1da177e4
LT
170{
171 int error;
172
ff30a622 173 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 174 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
175 nbblks);
176 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
177 return EFSCORRUPTED;
178 }
179
69ce58f0
AE
180 blk_no = round_down(blk_no, log->l_sectBBsize);
181 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
182
183 ASSERT(nbblks > 0);
4e94b71b 184 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
185
186 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
187 XFS_BUF_READ(bp);
aa0e8833 188 bp->b_io_length = nbblks;
0e95f19a 189 bp->b_error = 0;
1da177e4
LT
190
191 xfsbdstrat(log->l_mp, bp);
1a1a3e97 192 error = xfs_buf_iowait(bp);
d64e31a2 193 if (error)
901796af 194 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
195 return error;
196}
197
076e6acb
CH
198STATIC int
199xlog_bread(
9a8d2fdb 200 struct xlog *log,
076e6acb
CH
201 xfs_daddr_t blk_no,
202 int nbblks,
9a8d2fdb 203 struct xfs_buf *bp,
076e6acb
CH
204 xfs_caddr_t *offset)
205{
206 int error;
207
208 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
209 if (error)
210 return error;
211
212 *offset = xlog_align(log, blk_no, nbblks, bp);
213 return 0;
214}
215
44396476
DC
216/*
217 * Read at an offset into the buffer. Returns with the buffer in it's original
218 * state regardless of the result of the read.
219 */
220STATIC int
221xlog_bread_offset(
9a8d2fdb 222 struct xlog *log,
44396476
DC
223 xfs_daddr_t blk_no, /* block to read from */
224 int nbblks, /* blocks to read */
9a8d2fdb 225 struct xfs_buf *bp,
44396476
DC
226 xfs_caddr_t offset)
227{
62926044 228 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 229 int orig_len = BBTOB(bp->b_length);
44396476
DC
230 int error, error2;
231
02fe03d9 232 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
233 if (error)
234 return error;
235
236 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
237
238 /* must reset buffer pointer even on error */
02fe03d9 239 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
240 if (error)
241 return error;
242 return error2;
243}
244
1da177e4
LT
245/*
246 * Write out the buffer at the given block for the given number of blocks.
247 * The buffer is kept locked across the write and is returned locked.
248 * This can only be used for synchronous log writes.
249 */
ba0f32d4 250STATIC int
1da177e4 251xlog_bwrite(
9a8d2fdb 252 struct xlog *log,
1da177e4
LT
253 xfs_daddr_t blk_no,
254 int nbblks,
9a8d2fdb 255 struct xfs_buf *bp)
1da177e4
LT
256{
257 int error;
258
ff30a622 259 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 260 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
261 nbblks);
262 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
263 return EFSCORRUPTED;
264 }
265
69ce58f0
AE
266 blk_no = round_down(blk_no, log->l_sectBBsize);
267 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
268
269 ASSERT(nbblks > 0);
4e94b71b 270 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
271
272 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
273 XFS_BUF_ZEROFLAGS(bp);
72790aa1 274 xfs_buf_hold(bp);
0c842ad4 275 xfs_buf_lock(bp);
aa0e8833 276 bp->b_io_length = nbblks;
0e95f19a 277 bp->b_error = 0;
1da177e4 278
c2b006c1 279 error = xfs_bwrite(bp);
901796af
CH
280 if (error)
281 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 282 xfs_buf_relse(bp);
1da177e4
LT
283 return error;
284}
285
1da177e4
LT
286#ifdef DEBUG
287/*
288 * dump debug superblock and log record information
289 */
290STATIC void
291xlog_header_check_dump(
292 xfs_mount_t *mp,
293 xlog_rec_header_t *head)
294{
a0fa2b67 295 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 296 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 297 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 298 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
299}
300#else
301#define xlog_header_check_dump(mp, head)
302#endif
303
304/*
305 * check log record header for recovery
306 */
307STATIC int
308xlog_header_check_recover(
309 xfs_mount_t *mp,
310 xlog_rec_header_t *head)
311{
69ef921b 312 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
313
314 /*
315 * IRIX doesn't write the h_fmt field and leaves it zeroed
316 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
317 * a dirty log created in IRIX.
318 */
69ef921b 319 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
320 xfs_warn(mp,
321 "dirty log written in incompatible format - can't recover");
1da177e4
LT
322 xlog_header_check_dump(mp, head);
323 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
324 XFS_ERRLEVEL_HIGH, mp);
325 return XFS_ERROR(EFSCORRUPTED);
326 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
327 xfs_warn(mp,
328 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
329 xlog_header_check_dump(mp, head);
330 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
331 XFS_ERRLEVEL_HIGH, mp);
332 return XFS_ERROR(EFSCORRUPTED);
333 }
334 return 0;
335}
336
337/*
338 * read the head block of the log and check the header
339 */
340STATIC int
341xlog_header_check_mount(
342 xfs_mount_t *mp,
343 xlog_rec_header_t *head)
344{
69ef921b 345 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
346
347 if (uuid_is_nil(&head->h_fs_uuid)) {
348 /*
349 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
350 * h_fs_uuid is nil, we assume this log was last mounted
351 * by IRIX and continue.
352 */
a0fa2b67 353 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 354 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 355 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
356 xlog_header_check_dump(mp, head);
357 XFS_ERROR_REPORT("xlog_header_check_mount",
358 XFS_ERRLEVEL_HIGH, mp);
359 return XFS_ERROR(EFSCORRUPTED);
360 }
361 return 0;
362}
363
364STATIC void
365xlog_recover_iodone(
366 struct xfs_buf *bp)
367{
5a52c2a5 368 if (bp->b_error) {
1da177e4
LT
369 /*
370 * We're not going to bother about retrying
371 * this during recovery. One strike!
372 */
901796af 373 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
374 xfs_force_shutdown(bp->b_target->bt_mount,
375 SHUTDOWN_META_IO_ERROR);
1da177e4 376 }
cb669ca5 377 bp->b_iodone = NULL;
1a1a3e97 378 xfs_buf_ioend(bp, 0);
1da177e4
LT
379}
380
381/*
382 * This routine finds (to an approximation) the first block in the physical
383 * log which contains the given cycle. It uses a binary search algorithm.
384 * Note that the algorithm can not be perfect because the disk will not
385 * necessarily be perfect.
386 */
a8272ce0 387STATIC int
1da177e4 388xlog_find_cycle_start(
9a8d2fdb
MT
389 struct xlog *log,
390 struct xfs_buf *bp,
1da177e4
LT
391 xfs_daddr_t first_blk,
392 xfs_daddr_t *last_blk,
393 uint cycle)
394{
395 xfs_caddr_t offset;
396 xfs_daddr_t mid_blk;
e3bb2e30 397 xfs_daddr_t end_blk;
1da177e4
LT
398 uint mid_cycle;
399 int error;
400
e3bb2e30
AE
401 end_blk = *last_blk;
402 mid_blk = BLK_AVG(first_blk, end_blk);
403 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
404 error = xlog_bread(log, mid_blk, 1, bp, &offset);
405 if (error)
1da177e4 406 return error;
03bea6fe 407 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
408 if (mid_cycle == cycle)
409 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
410 else
411 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
412 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 413 }
e3bb2e30
AE
414 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
415 (mid_blk == end_blk && mid_blk-1 == first_blk));
416
417 *last_blk = end_blk;
1da177e4
LT
418
419 return 0;
420}
421
422/*
3f943d85
AE
423 * Check that a range of blocks does not contain stop_on_cycle_no.
424 * Fill in *new_blk with the block offset where such a block is
425 * found, or with -1 (an invalid block number) if there is no such
426 * block in the range. The scan needs to occur from front to back
427 * and the pointer into the region must be updated since a later
428 * routine will need to perform another test.
1da177e4
LT
429 */
430STATIC int
431xlog_find_verify_cycle(
9a8d2fdb 432 struct xlog *log,
1da177e4
LT
433 xfs_daddr_t start_blk,
434 int nbblks,
435 uint stop_on_cycle_no,
436 xfs_daddr_t *new_blk)
437{
438 xfs_daddr_t i, j;
439 uint cycle;
440 xfs_buf_t *bp;
441 xfs_daddr_t bufblks;
442 xfs_caddr_t buf = NULL;
443 int error = 0;
444
6881a229
AE
445 /*
446 * Greedily allocate a buffer big enough to handle the full
447 * range of basic blocks we'll be examining. If that fails,
448 * try a smaller size. We need to be able to read at least
449 * a log sector, or we're out of luck.
450 */
1da177e4 451 bufblks = 1 << ffs(nbblks);
81158e0c
DC
452 while (bufblks > log->l_logBBsize)
453 bufblks >>= 1;
1da177e4 454 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 455 bufblks >>= 1;
69ce58f0 456 if (bufblks < log->l_sectBBsize)
1da177e4
LT
457 return ENOMEM;
458 }
459
460 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
461 int bcount;
462
463 bcount = min(bufblks, (start_blk + nbblks - i));
464
076e6acb
CH
465 error = xlog_bread(log, i, bcount, bp, &buf);
466 if (error)
1da177e4
LT
467 goto out;
468
1da177e4 469 for (j = 0; j < bcount; j++) {
03bea6fe 470 cycle = xlog_get_cycle(buf);
1da177e4
LT
471 if (cycle == stop_on_cycle_no) {
472 *new_blk = i+j;
473 goto out;
474 }
475
476 buf += BBSIZE;
477 }
478 }
479
480 *new_blk = -1;
481
482out:
483 xlog_put_bp(bp);
484 return error;
485}
486
487/*
488 * Potentially backup over partial log record write.
489 *
490 * In the typical case, last_blk is the number of the block directly after
491 * a good log record. Therefore, we subtract one to get the block number
492 * of the last block in the given buffer. extra_bblks contains the number
493 * of blocks we would have read on a previous read. This happens when the
494 * last log record is split over the end of the physical log.
495 *
496 * extra_bblks is the number of blocks potentially verified on a previous
497 * call to this routine.
498 */
499STATIC int
500xlog_find_verify_log_record(
9a8d2fdb 501 struct xlog *log,
1da177e4
LT
502 xfs_daddr_t start_blk,
503 xfs_daddr_t *last_blk,
504 int extra_bblks)
505{
506 xfs_daddr_t i;
507 xfs_buf_t *bp;
508 xfs_caddr_t offset = NULL;
509 xlog_rec_header_t *head = NULL;
510 int error = 0;
511 int smallmem = 0;
512 int num_blks = *last_blk - start_blk;
513 int xhdrs;
514
515 ASSERT(start_blk != 0 || *last_blk != start_blk);
516
517 if (!(bp = xlog_get_bp(log, num_blks))) {
518 if (!(bp = xlog_get_bp(log, 1)))
519 return ENOMEM;
520 smallmem = 1;
521 } else {
076e6acb
CH
522 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
523 if (error)
1da177e4 524 goto out;
1da177e4
LT
525 offset += ((num_blks - 1) << BBSHIFT);
526 }
527
528 for (i = (*last_blk) - 1; i >= 0; i--) {
529 if (i < start_blk) {
530 /* valid log record not found */
a0fa2b67
DC
531 xfs_warn(log->l_mp,
532 "Log inconsistent (didn't find previous header)");
1da177e4
LT
533 ASSERT(0);
534 error = XFS_ERROR(EIO);
535 goto out;
536 }
537
538 if (smallmem) {
076e6acb
CH
539 error = xlog_bread(log, i, 1, bp, &offset);
540 if (error)
1da177e4 541 goto out;
1da177e4
LT
542 }
543
544 head = (xlog_rec_header_t *)offset;
545
69ef921b 546 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
547 break;
548
549 if (!smallmem)
550 offset -= BBSIZE;
551 }
552
553 /*
554 * We hit the beginning of the physical log & still no header. Return
555 * to caller. If caller can handle a return of -1, then this routine
556 * will be called again for the end of the physical log.
557 */
558 if (i == -1) {
559 error = -1;
560 goto out;
561 }
562
563 /*
564 * We have the final block of the good log (the first block
565 * of the log record _before_ the head. So we check the uuid.
566 */
567 if ((error = xlog_header_check_mount(log->l_mp, head)))
568 goto out;
569
570 /*
571 * We may have found a log record header before we expected one.
572 * last_blk will be the 1st block # with a given cycle #. We may end
573 * up reading an entire log record. In this case, we don't want to
574 * reset last_blk. Only when last_blk points in the middle of a log
575 * record do we update last_blk.
576 */
62118709 577 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 578 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
579
580 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
581 if (h_size % XLOG_HEADER_CYCLE_SIZE)
582 xhdrs++;
583 } else {
584 xhdrs = 1;
585 }
586
b53e675d
CH
587 if (*last_blk - i + extra_bblks !=
588 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
589 *last_blk = i;
590
591out:
592 xlog_put_bp(bp);
593 return error;
594}
595
596/*
597 * Head is defined to be the point of the log where the next log write
598 * write could go. This means that incomplete LR writes at the end are
599 * eliminated when calculating the head. We aren't guaranteed that previous
600 * LR have complete transactions. We only know that a cycle number of
601 * current cycle number -1 won't be present in the log if we start writing
602 * from our current block number.
603 *
604 * last_blk contains the block number of the first block with a given
605 * cycle number.
606 *
607 * Return: zero if normal, non-zero if error.
608 */
ba0f32d4 609STATIC int
1da177e4 610xlog_find_head(
9a8d2fdb 611 struct xlog *log,
1da177e4
LT
612 xfs_daddr_t *return_head_blk)
613{
614 xfs_buf_t *bp;
615 xfs_caddr_t offset;
616 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
617 int num_scan_bblks;
618 uint first_half_cycle, last_half_cycle;
619 uint stop_on_cycle;
620 int error, log_bbnum = log->l_logBBsize;
621
622 /* Is the end of the log device zeroed? */
623 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
624 *return_head_blk = first_blk;
625
626 /* Is the whole lot zeroed? */
627 if (!first_blk) {
628 /* Linux XFS shouldn't generate totally zeroed logs -
629 * mkfs etc write a dummy unmount record to a fresh
630 * log so we can store the uuid in there
631 */
a0fa2b67 632 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
633 }
634
635 return 0;
636 } else if (error) {
a0fa2b67 637 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
638 return error;
639 }
640
641 first_blk = 0; /* get cycle # of 1st block */
642 bp = xlog_get_bp(log, 1);
643 if (!bp)
644 return ENOMEM;
076e6acb
CH
645
646 error = xlog_bread(log, 0, 1, bp, &offset);
647 if (error)
1da177e4 648 goto bp_err;
076e6acb 649
03bea6fe 650 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
651
652 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
653 error = xlog_bread(log, last_blk, 1, bp, &offset);
654 if (error)
1da177e4 655 goto bp_err;
076e6acb 656
03bea6fe 657 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
658 ASSERT(last_half_cycle != 0);
659
660 /*
661 * If the 1st half cycle number is equal to the last half cycle number,
662 * then the entire log is stamped with the same cycle number. In this
663 * case, head_blk can't be set to zero (which makes sense). The below
664 * math doesn't work out properly with head_blk equal to zero. Instead,
665 * we set it to log_bbnum which is an invalid block number, but this
666 * value makes the math correct. If head_blk doesn't changed through
667 * all the tests below, *head_blk is set to zero at the very end rather
668 * than log_bbnum. In a sense, log_bbnum and zero are the same block
669 * in a circular file.
670 */
671 if (first_half_cycle == last_half_cycle) {
672 /*
673 * In this case we believe that the entire log should have
674 * cycle number last_half_cycle. We need to scan backwards
675 * from the end verifying that there are no holes still
676 * containing last_half_cycle - 1. If we find such a hole,
677 * then the start of that hole will be the new head. The
678 * simple case looks like
679 * x | x ... | x - 1 | x
680 * Another case that fits this picture would be
681 * x | x + 1 | x ... | x
c41564b5 682 * In this case the head really is somewhere at the end of the
1da177e4
LT
683 * log, as one of the latest writes at the beginning was
684 * incomplete.
685 * One more case is
686 * x | x + 1 | x ... | x - 1 | x
687 * This is really the combination of the above two cases, and
688 * the head has to end up at the start of the x-1 hole at the
689 * end of the log.
690 *
691 * In the 256k log case, we will read from the beginning to the
692 * end of the log and search for cycle numbers equal to x-1.
693 * We don't worry about the x+1 blocks that we encounter,
694 * because we know that they cannot be the head since the log
695 * started with x.
696 */
697 head_blk = log_bbnum;
698 stop_on_cycle = last_half_cycle - 1;
699 } else {
700 /*
701 * In this case we want to find the first block with cycle
702 * number matching last_half_cycle. We expect the log to be
703 * some variation on
3f943d85 704 * x + 1 ... | x ... | x
1da177e4
LT
705 * The first block with cycle number x (last_half_cycle) will
706 * be where the new head belongs. First we do a binary search
707 * for the first occurrence of last_half_cycle. The binary
708 * search may not be totally accurate, so then we scan back
709 * from there looking for occurrences of last_half_cycle before
710 * us. If that backwards scan wraps around the beginning of
711 * the log, then we look for occurrences of last_half_cycle - 1
712 * at the end of the log. The cases we're looking for look
713 * like
3f943d85
AE
714 * v binary search stopped here
715 * x + 1 ... | x | x + 1 | x ... | x
716 * ^ but we want to locate this spot
1da177e4 717 * or
1da177e4 718 * <---------> less than scan distance
3f943d85
AE
719 * x + 1 ... | x ... | x - 1 | x
720 * ^ we want to locate this spot
1da177e4
LT
721 */
722 stop_on_cycle = last_half_cycle;
723 if ((error = xlog_find_cycle_start(log, bp, first_blk,
724 &head_blk, last_half_cycle)))
725 goto bp_err;
726 }
727
728 /*
729 * Now validate the answer. Scan back some number of maximum possible
730 * blocks and make sure each one has the expected cycle number. The
731 * maximum is determined by the total possible amount of buffering
732 * in the in-core log. The following number can be made tighter if
733 * we actually look at the block size of the filesystem.
734 */
735 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
736 if (head_blk >= num_scan_bblks) {
737 /*
738 * We are guaranteed that the entire check can be performed
739 * in one buffer.
740 */
741 start_blk = head_blk - num_scan_bblks;
742 if ((error = xlog_find_verify_cycle(log,
743 start_blk, num_scan_bblks,
744 stop_on_cycle, &new_blk)))
745 goto bp_err;
746 if (new_blk != -1)
747 head_blk = new_blk;
748 } else { /* need to read 2 parts of log */
749 /*
750 * We are going to scan backwards in the log in two parts.
751 * First we scan the physical end of the log. In this part
752 * of the log, we are looking for blocks with cycle number
753 * last_half_cycle - 1.
754 * If we find one, then we know that the log starts there, as
755 * we've found a hole that didn't get written in going around
756 * the end of the physical log. The simple case for this is
757 * x + 1 ... | x ... | x - 1 | x
758 * <---------> less than scan distance
759 * If all of the blocks at the end of the log have cycle number
760 * last_half_cycle, then we check the blocks at the start of
761 * the log looking for occurrences of last_half_cycle. If we
762 * find one, then our current estimate for the location of the
763 * first occurrence of last_half_cycle is wrong and we move
764 * back to the hole we've found. This case looks like
765 * x + 1 ... | x | x + 1 | x ...
766 * ^ binary search stopped here
767 * Another case we need to handle that only occurs in 256k
768 * logs is
769 * x + 1 ... | x ... | x+1 | x ...
770 * ^ binary search stops here
771 * In a 256k log, the scan at the end of the log will see the
772 * x + 1 blocks. We need to skip past those since that is
773 * certainly not the head of the log. By searching for
774 * last_half_cycle-1 we accomplish that.
775 */
1da177e4 776 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
777 (xfs_daddr_t) num_scan_bblks >= head_blk);
778 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
779 if ((error = xlog_find_verify_cycle(log, start_blk,
780 num_scan_bblks - (int)head_blk,
781 (stop_on_cycle - 1), &new_blk)))
782 goto bp_err;
783 if (new_blk != -1) {
784 head_blk = new_blk;
9db127ed 785 goto validate_head;
1da177e4
LT
786 }
787
788 /*
789 * Scan beginning of log now. The last part of the physical
790 * log is good. This scan needs to verify that it doesn't find
791 * the last_half_cycle.
792 */
793 start_blk = 0;
794 ASSERT(head_blk <= INT_MAX);
795 if ((error = xlog_find_verify_cycle(log,
796 start_blk, (int)head_blk,
797 stop_on_cycle, &new_blk)))
798 goto bp_err;
799 if (new_blk != -1)
800 head_blk = new_blk;
801 }
802
9db127ed 803validate_head:
1da177e4
LT
804 /*
805 * Now we need to make sure head_blk is not pointing to a block in
806 * the middle of a log record.
807 */
808 num_scan_bblks = XLOG_REC_SHIFT(log);
809 if (head_blk >= num_scan_bblks) {
810 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
811
812 /* start ptr at last block ptr before head_blk */
813 if ((error = xlog_find_verify_log_record(log, start_blk,
814 &head_blk, 0)) == -1) {
815 error = XFS_ERROR(EIO);
816 goto bp_err;
817 } else if (error)
818 goto bp_err;
819 } else {
820 start_blk = 0;
821 ASSERT(head_blk <= INT_MAX);
822 if ((error = xlog_find_verify_log_record(log, start_blk,
823 &head_blk, 0)) == -1) {
824 /* We hit the beginning of the log during our search */
3f943d85 825 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
826 new_blk = log_bbnum;
827 ASSERT(start_blk <= INT_MAX &&
828 (xfs_daddr_t) log_bbnum-start_blk >= 0);
829 ASSERT(head_blk <= INT_MAX);
830 if ((error = xlog_find_verify_log_record(log,
831 start_blk, &new_blk,
832 (int)head_blk)) == -1) {
833 error = XFS_ERROR(EIO);
834 goto bp_err;
835 } else if (error)
836 goto bp_err;
837 if (new_blk != log_bbnum)
838 head_blk = new_blk;
839 } else if (error)
840 goto bp_err;
841 }
842
843 xlog_put_bp(bp);
844 if (head_blk == log_bbnum)
845 *return_head_blk = 0;
846 else
847 *return_head_blk = head_blk;
848 /*
849 * When returning here, we have a good block number. Bad block
850 * means that during a previous crash, we didn't have a clean break
851 * from cycle number N to cycle number N-1. In this case, we need
852 * to find the first block with cycle number N-1.
853 */
854 return 0;
855
856 bp_err:
857 xlog_put_bp(bp);
858
859 if (error)
a0fa2b67 860 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
861 return error;
862}
863
864/*
865 * Find the sync block number or the tail of the log.
866 *
867 * This will be the block number of the last record to have its
868 * associated buffers synced to disk. Every log record header has
869 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
870 * to get a sync block number. The only concern is to figure out which
871 * log record header to believe.
872 *
873 * The following algorithm uses the log record header with the largest
874 * lsn. The entire log record does not need to be valid. We only care
875 * that the header is valid.
876 *
877 * We could speed up search by using current head_blk buffer, but it is not
878 * available.
879 */
5d77c0dc 880STATIC int
1da177e4 881xlog_find_tail(
9a8d2fdb 882 struct xlog *log,
1da177e4 883 xfs_daddr_t *head_blk,
65be6054 884 xfs_daddr_t *tail_blk)
1da177e4
LT
885{
886 xlog_rec_header_t *rhead;
887 xlog_op_header_t *op_head;
888 xfs_caddr_t offset = NULL;
889 xfs_buf_t *bp;
890 int error, i, found;
891 xfs_daddr_t umount_data_blk;
892 xfs_daddr_t after_umount_blk;
893 xfs_lsn_t tail_lsn;
894 int hblks;
895
896 found = 0;
897
898 /*
899 * Find previous log record
900 */
901 if ((error = xlog_find_head(log, head_blk)))
902 return error;
903
904 bp = xlog_get_bp(log, 1);
905 if (!bp)
906 return ENOMEM;
907 if (*head_blk == 0) { /* special case */
076e6acb
CH
908 error = xlog_bread(log, 0, 1, bp, &offset);
909 if (error)
9db127ed 910 goto done;
076e6acb 911
03bea6fe 912 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
913 *tail_blk = 0;
914 /* leave all other log inited values alone */
9db127ed 915 goto done;
1da177e4
LT
916 }
917 }
918
919 /*
920 * Search backwards looking for log record header block
921 */
922 ASSERT(*head_blk < INT_MAX);
923 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
924 error = xlog_bread(log, i, 1, bp, &offset);
925 if (error)
9db127ed 926 goto done;
076e6acb 927
69ef921b 928 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
929 found = 1;
930 break;
931 }
932 }
933 /*
934 * If we haven't found the log record header block, start looking
935 * again from the end of the physical log. XXXmiken: There should be
936 * a check here to make sure we didn't search more than N blocks in
937 * the previous code.
938 */
939 if (!found) {
940 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
941 error = xlog_bread(log, i, 1, bp, &offset);
942 if (error)
9db127ed 943 goto done;
076e6acb 944
69ef921b
CH
945 if (*(__be32 *)offset ==
946 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
947 found = 2;
948 break;
949 }
950 }
951 }
952 if (!found) {
a0fa2b67 953 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1da177e4
LT
954 ASSERT(0);
955 return XFS_ERROR(EIO);
956 }
957
958 /* find blk_no of tail of log */
959 rhead = (xlog_rec_header_t *)offset;
b53e675d 960 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
961
962 /*
963 * Reset log values according to the state of the log when we
964 * crashed. In the case where head_blk == 0, we bump curr_cycle
965 * one because the next write starts a new cycle rather than
966 * continuing the cycle of the last good log record. At this
967 * point we have guaranteed that all partial log records have been
968 * accounted for. Therefore, we know that the last good log record
969 * written was complete and ended exactly on the end boundary
970 * of the physical log.
971 */
972 log->l_prev_block = i;
973 log->l_curr_block = (int)*head_blk;
b53e675d 974 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
975 if (found == 2)
976 log->l_curr_cycle++;
1c3cb9ec 977 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 978 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 979 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 980 BBTOB(log->l_curr_block));
28496968 981 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 982 BBTOB(log->l_curr_block));
1da177e4
LT
983
984 /*
985 * Look for unmount record. If we find it, then we know there
986 * was a clean unmount. Since 'i' could be the last block in
987 * the physical log, we convert to a log block before comparing
988 * to the head_blk.
989 *
990 * Save the current tail lsn to use to pass to
991 * xlog_clear_stale_blocks() below. We won't want to clear the
992 * unmount record if there is one, so we pass the lsn of the
993 * unmount record rather than the block after it.
994 */
62118709 995 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
996 int h_size = be32_to_cpu(rhead->h_size);
997 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
998
999 if ((h_version & XLOG_VERSION_2) &&
1000 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1001 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1002 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1003 hblks++;
1004 } else {
1005 hblks = 1;
1006 }
1007 } else {
1008 hblks = 1;
1009 }
1010 after_umount_blk = (i + hblks + (int)
b53e675d 1011 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1012 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1013 if (*head_blk == after_umount_blk &&
b53e675d 1014 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1015 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1016 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1017 if (error)
9db127ed 1018 goto done;
076e6acb 1019
1da177e4
LT
1020 op_head = (xlog_op_header_t *)offset;
1021 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1022 /*
1023 * Set tail and last sync so that newly written
1024 * log records will point recovery to after the
1025 * current unmount record.
1026 */
1c3cb9ec
DC
1027 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1028 log->l_curr_cycle, after_umount_blk);
1029 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1030 log->l_curr_cycle, after_umount_blk);
1da177e4 1031 *tail_blk = after_umount_blk;
92821e2b
DC
1032
1033 /*
1034 * Note that the unmount was clean. If the unmount
1035 * was not clean, we need to know this to rebuild the
1036 * superblock counters from the perag headers if we
1037 * have a filesystem using non-persistent counters.
1038 */
1039 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1040 }
1041 }
1042
1043 /*
1044 * Make sure that there are no blocks in front of the head
1045 * with the same cycle number as the head. This can happen
1046 * because we allow multiple outstanding log writes concurrently,
1047 * and the later writes might make it out before earlier ones.
1048 *
1049 * We use the lsn from before modifying it so that we'll never
1050 * overwrite the unmount record after a clean unmount.
1051 *
1052 * Do this only if we are going to recover the filesystem
1053 *
1054 * NOTE: This used to say "if (!readonly)"
1055 * However on Linux, we can & do recover a read-only filesystem.
1056 * We only skip recovery if NORECOVERY is specified on mount,
1057 * in which case we would not be here.
1058 *
1059 * But... if the -device- itself is readonly, just skip this.
1060 * We can't recover this device anyway, so it won't matter.
1061 */
9db127ed 1062 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1063 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1064
9db127ed 1065done:
1da177e4
LT
1066 xlog_put_bp(bp);
1067
1068 if (error)
a0fa2b67 1069 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1070 return error;
1071}
1072
1073/*
1074 * Is the log zeroed at all?
1075 *
1076 * The last binary search should be changed to perform an X block read
1077 * once X becomes small enough. You can then search linearly through
1078 * the X blocks. This will cut down on the number of reads we need to do.
1079 *
1080 * If the log is partially zeroed, this routine will pass back the blkno
1081 * of the first block with cycle number 0. It won't have a complete LR
1082 * preceding it.
1083 *
1084 * Return:
1085 * 0 => the log is completely written to
1086 * -1 => use *blk_no as the first block of the log
1087 * >0 => error has occurred
1088 */
a8272ce0 1089STATIC int
1da177e4 1090xlog_find_zeroed(
9a8d2fdb 1091 struct xlog *log,
1da177e4
LT
1092 xfs_daddr_t *blk_no)
1093{
1094 xfs_buf_t *bp;
1095 xfs_caddr_t offset;
1096 uint first_cycle, last_cycle;
1097 xfs_daddr_t new_blk, last_blk, start_blk;
1098 xfs_daddr_t num_scan_bblks;
1099 int error, log_bbnum = log->l_logBBsize;
1100
6fdf8ccc
NS
1101 *blk_no = 0;
1102
1da177e4
LT
1103 /* check totally zeroed log */
1104 bp = xlog_get_bp(log, 1);
1105 if (!bp)
1106 return ENOMEM;
076e6acb
CH
1107 error = xlog_bread(log, 0, 1, bp, &offset);
1108 if (error)
1da177e4 1109 goto bp_err;
076e6acb 1110
03bea6fe 1111 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1112 if (first_cycle == 0) { /* completely zeroed log */
1113 *blk_no = 0;
1114 xlog_put_bp(bp);
1115 return -1;
1116 }
1117
1118 /* check partially zeroed log */
076e6acb
CH
1119 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1120 if (error)
1da177e4 1121 goto bp_err;
076e6acb 1122
03bea6fe 1123 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1124 if (last_cycle != 0) { /* log completely written to */
1125 xlog_put_bp(bp);
1126 return 0;
1127 } else if (first_cycle != 1) {
1128 /*
1129 * If the cycle of the last block is zero, the cycle of
1130 * the first block must be 1. If it's not, maybe we're
1131 * not looking at a log... Bail out.
1132 */
a0fa2b67
DC
1133 xfs_warn(log->l_mp,
1134 "Log inconsistent or not a log (last==0, first!=1)");
1da177e4
LT
1135 return XFS_ERROR(EINVAL);
1136 }
1137
1138 /* we have a partially zeroed log */
1139 last_blk = log_bbnum-1;
1140 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1141 goto bp_err;
1142
1143 /*
1144 * Validate the answer. Because there is no way to guarantee that
1145 * the entire log is made up of log records which are the same size,
1146 * we scan over the defined maximum blocks. At this point, the maximum
1147 * is not chosen to mean anything special. XXXmiken
1148 */
1149 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1150 ASSERT(num_scan_bblks <= INT_MAX);
1151
1152 if (last_blk < num_scan_bblks)
1153 num_scan_bblks = last_blk;
1154 start_blk = last_blk - num_scan_bblks;
1155
1156 /*
1157 * We search for any instances of cycle number 0 that occur before
1158 * our current estimate of the head. What we're trying to detect is
1159 * 1 ... | 0 | 1 | 0...
1160 * ^ binary search ends here
1161 */
1162 if ((error = xlog_find_verify_cycle(log, start_blk,
1163 (int)num_scan_bblks, 0, &new_blk)))
1164 goto bp_err;
1165 if (new_blk != -1)
1166 last_blk = new_blk;
1167
1168 /*
1169 * Potentially backup over partial log record write. We don't need
1170 * to search the end of the log because we know it is zero.
1171 */
1172 if ((error = xlog_find_verify_log_record(log, start_blk,
1173 &last_blk, 0)) == -1) {
1174 error = XFS_ERROR(EIO);
1175 goto bp_err;
1176 } else if (error)
1177 goto bp_err;
1178
1179 *blk_no = last_blk;
1180bp_err:
1181 xlog_put_bp(bp);
1182 if (error)
1183 return error;
1184 return -1;
1185}
1186
1187/*
1188 * These are simple subroutines used by xlog_clear_stale_blocks() below
1189 * to initialize a buffer full of empty log record headers and write
1190 * them into the log.
1191 */
1192STATIC void
1193xlog_add_record(
9a8d2fdb 1194 struct xlog *log,
1da177e4
LT
1195 xfs_caddr_t buf,
1196 int cycle,
1197 int block,
1198 int tail_cycle,
1199 int tail_block)
1200{
1201 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1202
1203 memset(buf, 0, BBSIZE);
b53e675d
CH
1204 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1205 recp->h_cycle = cpu_to_be32(cycle);
1206 recp->h_version = cpu_to_be32(
62118709 1207 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1208 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1209 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1210 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1211 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1212}
1213
1214STATIC int
1215xlog_write_log_records(
9a8d2fdb 1216 struct xlog *log,
1da177e4
LT
1217 int cycle,
1218 int start_block,
1219 int blocks,
1220 int tail_cycle,
1221 int tail_block)
1222{
1223 xfs_caddr_t offset;
1224 xfs_buf_t *bp;
1225 int balign, ealign;
69ce58f0 1226 int sectbb = log->l_sectBBsize;
1da177e4
LT
1227 int end_block = start_block + blocks;
1228 int bufblks;
1229 int error = 0;
1230 int i, j = 0;
1231
6881a229
AE
1232 /*
1233 * Greedily allocate a buffer big enough to handle the full
1234 * range of basic blocks to be written. If that fails, try
1235 * a smaller size. We need to be able to write at least a
1236 * log sector, or we're out of luck.
1237 */
1da177e4 1238 bufblks = 1 << ffs(blocks);
81158e0c
DC
1239 while (bufblks > log->l_logBBsize)
1240 bufblks >>= 1;
1da177e4
LT
1241 while (!(bp = xlog_get_bp(log, bufblks))) {
1242 bufblks >>= 1;
69ce58f0 1243 if (bufblks < sectbb)
1da177e4
LT
1244 return ENOMEM;
1245 }
1246
1247 /* We may need to do a read at the start to fill in part of
1248 * the buffer in the starting sector not covered by the first
1249 * write below.
1250 */
5c17f533 1251 balign = round_down(start_block, sectbb);
1da177e4 1252 if (balign != start_block) {
076e6acb
CH
1253 error = xlog_bread_noalign(log, start_block, 1, bp);
1254 if (error)
1255 goto out_put_bp;
1256
1da177e4
LT
1257 j = start_block - balign;
1258 }
1259
1260 for (i = start_block; i < end_block; i += bufblks) {
1261 int bcount, endcount;
1262
1263 bcount = min(bufblks, end_block - start_block);
1264 endcount = bcount - j;
1265
1266 /* We may need to do a read at the end to fill in part of
1267 * the buffer in the final sector not covered by the write.
1268 * If this is the same sector as the above read, skip it.
1269 */
5c17f533 1270 ealign = round_down(end_block, sectbb);
1da177e4 1271 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1272 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1273 error = xlog_bread_offset(log, ealign, sectbb,
1274 bp, offset);
076e6acb
CH
1275 if (error)
1276 break;
1277
1da177e4
LT
1278 }
1279
1280 offset = xlog_align(log, start_block, endcount, bp);
1281 for (; j < endcount; j++) {
1282 xlog_add_record(log, offset, cycle, i+j,
1283 tail_cycle, tail_block);
1284 offset += BBSIZE;
1285 }
1286 error = xlog_bwrite(log, start_block, endcount, bp);
1287 if (error)
1288 break;
1289 start_block += endcount;
1290 j = 0;
1291 }
076e6acb
CH
1292
1293 out_put_bp:
1da177e4
LT
1294 xlog_put_bp(bp);
1295 return error;
1296}
1297
1298/*
1299 * This routine is called to blow away any incomplete log writes out
1300 * in front of the log head. We do this so that we won't become confused
1301 * if we come up, write only a little bit more, and then crash again.
1302 * If we leave the partial log records out there, this situation could
1303 * cause us to think those partial writes are valid blocks since they
1304 * have the current cycle number. We get rid of them by overwriting them
1305 * with empty log records with the old cycle number rather than the
1306 * current one.
1307 *
1308 * The tail lsn is passed in rather than taken from
1309 * the log so that we will not write over the unmount record after a
1310 * clean unmount in a 512 block log. Doing so would leave the log without
1311 * any valid log records in it until a new one was written. If we crashed
1312 * during that time we would not be able to recover.
1313 */
1314STATIC int
1315xlog_clear_stale_blocks(
9a8d2fdb 1316 struct xlog *log,
1da177e4
LT
1317 xfs_lsn_t tail_lsn)
1318{
1319 int tail_cycle, head_cycle;
1320 int tail_block, head_block;
1321 int tail_distance, max_distance;
1322 int distance;
1323 int error;
1324
1325 tail_cycle = CYCLE_LSN(tail_lsn);
1326 tail_block = BLOCK_LSN(tail_lsn);
1327 head_cycle = log->l_curr_cycle;
1328 head_block = log->l_curr_block;
1329
1330 /*
1331 * Figure out the distance between the new head of the log
1332 * and the tail. We want to write over any blocks beyond the
1333 * head that we may have written just before the crash, but
1334 * we don't want to overwrite the tail of the log.
1335 */
1336 if (head_cycle == tail_cycle) {
1337 /*
1338 * The tail is behind the head in the physical log,
1339 * so the distance from the head to the tail is the
1340 * distance from the head to the end of the log plus
1341 * the distance from the beginning of the log to the
1342 * tail.
1343 */
1344 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1345 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1346 XFS_ERRLEVEL_LOW, log->l_mp);
1347 return XFS_ERROR(EFSCORRUPTED);
1348 }
1349 tail_distance = tail_block + (log->l_logBBsize - head_block);
1350 } else {
1351 /*
1352 * The head is behind the tail in the physical log,
1353 * so the distance from the head to the tail is just
1354 * the tail block minus the head block.
1355 */
1356 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1357 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1358 XFS_ERRLEVEL_LOW, log->l_mp);
1359 return XFS_ERROR(EFSCORRUPTED);
1360 }
1361 tail_distance = tail_block - head_block;
1362 }
1363
1364 /*
1365 * If the head is right up against the tail, we can't clear
1366 * anything.
1367 */
1368 if (tail_distance <= 0) {
1369 ASSERT(tail_distance == 0);
1370 return 0;
1371 }
1372
1373 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1374 /*
1375 * Take the smaller of the maximum amount of outstanding I/O
1376 * we could have and the distance to the tail to clear out.
1377 * We take the smaller so that we don't overwrite the tail and
1378 * we don't waste all day writing from the head to the tail
1379 * for no reason.
1380 */
1381 max_distance = MIN(max_distance, tail_distance);
1382
1383 if ((head_block + max_distance) <= log->l_logBBsize) {
1384 /*
1385 * We can stomp all the blocks we need to without
1386 * wrapping around the end of the log. Just do it
1387 * in a single write. Use the cycle number of the
1388 * current cycle minus one so that the log will look like:
1389 * n ... | n - 1 ...
1390 */
1391 error = xlog_write_log_records(log, (head_cycle - 1),
1392 head_block, max_distance, tail_cycle,
1393 tail_block);
1394 if (error)
1395 return error;
1396 } else {
1397 /*
1398 * We need to wrap around the end of the physical log in
1399 * order to clear all the blocks. Do it in two separate
1400 * I/Os. The first write should be from the head to the
1401 * end of the physical log, and it should use the current
1402 * cycle number minus one just like above.
1403 */
1404 distance = log->l_logBBsize - head_block;
1405 error = xlog_write_log_records(log, (head_cycle - 1),
1406 head_block, distance, tail_cycle,
1407 tail_block);
1408
1409 if (error)
1410 return error;
1411
1412 /*
1413 * Now write the blocks at the start of the physical log.
1414 * This writes the remainder of the blocks we want to clear.
1415 * It uses the current cycle number since we're now on the
1416 * same cycle as the head so that we get:
1417 * n ... n ... | n - 1 ...
1418 * ^^^^^ blocks we're writing
1419 */
1420 distance = max_distance - (log->l_logBBsize - head_block);
1421 error = xlog_write_log_records(log, head_cycle, 0, distance,
1422 tail_cycle, tail_block);
1423 if (error)
1424 return error;
1425 }
1426
1427 return 0;
1428}
1429
1430/******************************************************************************
1431 *
1432 * Log recover routines
1433 *
1434 ******************************************************************************
1435 */
1436
1437STATIC xlog_recover_t *
1438xlog_recover_find_tid(
f0a76953 1439 struct hlist_head *head,
1da177e4
LT
1440 xlog_tid_t tid)
1441{
f0a76953
DC
1442 xlog_recover_t *trans;
1443 struct hlist_node *n;
1da177e4 1444
f0a76953
DC
1445 hlist_for_each_entry(trans, n, head, r_list) {
1446 if (trans->r_log_tid == tid)
1447 return trans;
1da177e4 1448 }
f0a76953 1449 return NULL;
1da177e4
LT
1450}
1451
1452STATIC void
f0a76953
DC
1453xlog_recover_new_tid(
1454 struct hlist_head *head,
1455 xlog_tid_t tid,
1456 xfs_lsn_t lsn)
1da177e4 1457{
f0a76953
DC
1458 xlog_recover_t *trans;
1459
1460 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1461 trans->r_log_tid = tid;
1462 trans->r_lsn = lsn;
1463 INIT_LIST_HEAD(&trans->r_itemq);
1464
1465 INIT_HLIST_NODE(&trans->r_list);
1466 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1467}
1468
1469STATIC void
1470xlog_recover_add_item(
f0a76953 1471 struct list_head *head)
1da177e4
LT
1472{
1473 xlog_recover_item_t *item;
1474
1475 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1476 INIT_LIST_HEAD(&item->ri_list);
1477 list_add_tail(&item->ri_list, head);
1da177e4
LT
1478}
1479
1480STATIC int
1481xlog_recover_add_to_cont_trans(
ad223e60
MT
1482 struct xlog *log,
1483 struct xlog_recover *trans,
1da177e4
LT
1484 xfs_caddr_t dp,
1485 int len)
1486{
1487 xlog_recover_item_t *item;
1488 xfs_caddr_t ptr, old_ptr;
1489 int old_len;
1490
f0a76953 1491 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1492 /* finish copying rest of trans header */
1493 xlog_recover_add_item(&trans->r_itemq);
1494 ptr = (xfs_caddr_t) &trans->r_theader +
1495 sizeof(xfs_trans_header_t) - len;
1496 memcpy(ptr, dp, len); /* d, s, l */
1497 return 0;
1498 }
f0a76953
DC
1499 /* take the tail entry */
1500 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1501
1502 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1503 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1504
45053603 1505 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1506 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1507 item->ri_buf[item->ri_cnt-1].i_len += len;
1508 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1509 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1510 return 0;
1511}
1512
1513/*
1514 * The next region to add is the start of a new region. It could be
1515 * a whole region or it could be the first part of a new region. Because
1516 * of this, the assumption here is that the type and size fields of all
1517 * format structures fit into the first 32 bits of the structure.
1518 *
1519 * This works because all regions must be 32 bit aligned. Therefore, we
1520 * either have both fields or we have neither field. In the case we have
1521 * neither field, the data part of the region is zero length. We only have
1522 * a log_op_header and can throw away the header since a new one will appear
1523 * later. If we have at least 4 bytes, then we can determine how many regions
1524 * will appear in the current log item.
1525 */
1526STATIC int
1527xlog_recover_add_to_trans(
ad223e60
MT
1528 struct xlog *log,
1529 struct xlog_recover *trans,
1da177e4
LT
1530 xfs_caddr_t dp,
1531 int len)
1532{
1533 xfs_inode_log_format_t *in_f; /* any will do */
1534 xlog_recover_item_t *item;
1535 xfs_caddr_t ptr;
1536
1537 if (!len)
1538 return 0;
f0a76953 1539 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1540 /* we need to catch log corruptions here */
1541 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1542 xfs_warn(log->l_mp, "%s: bad header magic number",
1543 __func__);
5a792c45
DC
1544 ASSERT(0);
1545 return XFS_ERROR(EIO);
1546 }
1da177e4
LT
1547 if (len == sizeof(xfs_trans_header_t))
1548 xlog_recover_add_item(&trans->r_itemq);
1549 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1550 return 0;
1551 }
1552
1553 ptr = kmem_alloc(len, KM_SLEEP);
1554 memcpy(ptr, dp, len);
1555 in_f = (xfs_inode_log_format_t *)ptr;
1556
f0a76953
DC
1557 /* take the tail entry */
1558 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1559 if (item->ri_total != 0 &&
1560 item->ri_total == item->ri_cnt) {
1561 /* tail item is in use, get a new one */
1da177e4 1562 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1563 item = list_entry(trans->r_itemq.prev,
1564 xlog_recover_item_t, ri_list);
1da177e4 1565 }
1da177e4
LT
1566
1567 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1568 if (in_f->ilf_size == 0 ||
1569 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1570 xfs_warn(log->l_mp,
1571 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1572 in_f->ilf_size);
1573 ASSERT(0);
1574 return XFS_ERROR(EIO);
1575 }
1576
1577 item->ri_total = in_f->ilf_size;
1578 item->ri_buf =
1579 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1580 KM_SLEEP);
1da177e4
LT
1581 }
1582 ASSERT(item->ri_total > item->ri_cnt);
1583 /* Description region is ri_buf[0] */
1584 item->ri_buf[item->ri_cnt].i_addr = ptr;
1585 item->ri_buf[item->ri_cnt].i_len = len;
1586 item->ri_cnt++;
9abbc539 1587 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1588 return 0;
1589}
1590
f0a76953
DC
1591/*
1592 * Sort the log items in the transaction. Cancelled buffers need
1593 * to be put first so they are processed before any items that might
1594 * modify the buffers. If they are cancelled, then the modifications
1595 * don't need to be replayed.
1596 */
1da177e4
LT
1597STATIC int
1598xlog_recover_reorder_trans(
ad223e60
MT
1599 struct xlog *log,
1600 struct xlog_recover *trans,
9abbc539 1601 int pass)
1da177e4 1602{
f0a76953
DC
1603 xlog_recover_item_t *item, *n;
1604 LIST_HEAD(sort_list);
1605
1606 list_splice_init(&trans->r_itemq, &sort_list);
1607 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1608 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1609
f0a76953 1610 switch (ITEM_TYPE(item)) {
1da177e4 1611 case XFS_LI_BUF:
c1155410 1612 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539
DC
1613 trace_xfs_log_recover_item_reorder_head(log,
1614 trans, item, pass);
f0a76953 1615 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1616 break;
1617 }
1618 case XFS_LI_INODE:
1da177e4
LT
1619 case XFS_LI_DQUOT:
1620 case XFS_LI_QUOTAOFF:
1621 case XFS_LI_EFD:
1622 case XFS_LI_EFI:
9abbc539
DC
1623 trace_xfs_log_recover_item_reorder_tail(log,
1624 trans, item, pass);
f0a76953 1625 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1626 break;
1627 default:
a0fa2b67
DC
1628 xfs_warn(log->l_mp,
1629 "%s: unrecognized type of log operation",
1630 __func__);
1da177e4
LT
1631 ASSERT(0);
1632 return XFS_ERROR(EIO);
1633 }
f0a76953
DC
1634 }
1635 ASSERT(list_empty(&sort_list));
1da177e4
LT
1636 return 0;
1637}
1638
1639/*
1640 * Build up the table of buf cancel records so that we don't replay
1641 * cancelled data in the second pass. For buffer records that are
1642 * not cancel records, there is nothing to do here so we just return.
1643 *
1644 * If we get a cancel record which is already in the table, this indicates
1645 * that the buffer was cancelled multiple times. In order to ensure
1646 * that during pass 2 we keep the record in the table until we reach its
1647 * last occurrence in the log, we keep a reference count in the cancel
1648 * record in the table to tell us how many times we expect to see this
1649 * record during the second pass.
1650 */
c9f71f5f
CH
1651STATIC int
1652xlog_recover_buffer_pass1(
ad223e60
MT
1653 struct xlog *log,
1654 struct xlog_recover_item *item)
1da177e4 1655{
c9f71f5f 1656 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1657 struct list_head *bucket;
1658 struct xfs_buf_cancel *bcp;
1da177e4
LT
1659
1660 /*
1661 * If this isn't a cancel buffer item, then just return.
1662 */
e2714bf8 1663 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1664 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1665 return 0;
9abbc539 1666 }
1da177e4
LT
1667
1668 /*
d5689eaa
CH
1669 * Insert an xfs_buf_cancel record into the hash table of them.
1670 * If there is already an identical record, bump its reference count.
1da177e4 1671 */
d5689eaa
CH
1672 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1673 list_for_each_entry(bcp, bucket, bc_list) {
1674 if (bcp->bc_blkno == buf_f->blf_blkno &&
1675 bcp->bc_len == buf_f->blf_len) {
1676 bcp->bc_refcount++;
9abbc539 1677 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1678 return 0;
1da177e4 1679 }
d5689eaa
CH
1680 }
1681
1682 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1683 bcp->bc_blkno = buf_f->blf_blkno;
1684 bcp->bc_len = buf_f->blf_len;
1da177e4 1685 bcp->bc_refcount = 1;
d5689eaa
CH
1686 list_add_tail(&bcp->bc_list, bucket);
1687
9abbc539 1688 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1689 return 0;
1da177e4
LT
1690}
1691
1692/*
1693 * Check to see whether the buffer being recovered has a corresponding
1694 * entry in the buffer cancel record table. If it does then return 1
1695 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1696 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1697 * the refcount on the entry in the table and remove it from the table
1698 * if this is the last reference.
1699 *
1700 * We remove the cancel record from the table when we encounter its
1701 * last occurrence in the log so that if the same buffer is re-used
1702 * again after its last cancellation we actually replay the changes
1703 * made at that point.
1704 */
1705STATIC int
1706xlog_check_buffer_cancelled(
ad223e60 1707 struct xlog *log,
1da177e4
LT
1708 xfs_daddr_t blkno,
1709 uint len,
1710 ushort flags)
1711{
d5689eaa
CH
1712 struct list_head *bucket;
1713 struct xfs_buf_cancel *bcp;
1da177e4
LT
1714
1715 if (log->l_buf_cancel_table == NULL) {
1716 /*
1717 * There is nothing in the table built in pass one,
1718 * so this buffer must not be cancelled.
1719 */
c1155410 1720 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1721 return 0;
1722 }
1723
1da177e4 1724 /*
d5689eaa 1725 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1726 */
d5689eaa
CH
1727 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1728 list_for_each_entry(bcp, bucket, bc_list) {
1729 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1730 goto found;
1da177e4 1731 }
d5689eaa 1732
1da177e4 1733 /*
d5689eaa
CH
1734 * We didn't find a corresponding entry in the table, so return 0 so
1735 * that the buffer is NOT cancelled.
1da177e4 1736 */
c1155410 1737 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1738 return 0;
d5689eaa
CH
1739
1740found:
1741 /*
1742 * We've go a match, so return 1 so that the recovery of this buffer
1743 * is cancelled. If this buffer is actually a buffer cancel log
1744 * item, then decrement the refcount on the one in the table and
1745 * remove it if this is the last reference.
1746 */
1747 if (flags & XFS_BLF_CANCEL) {
1748 if (--bcp->bc_refcount == 0) {
1749 list_del(&bcp->bc_list);
1750 kmem_free(bcp);
1751 }
1752 }
1753 return 1;
1da177e4
LT
1754}
1755
1da177e4 1756/*
e2714bf8
CH
1757 * Perform recovery for a buffer full of inodes. In these buffers, the only
1758 * data which should be recovered is that which corresponds to the
1759 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1760 * data for the inodes is always logged through the inodes themselves rather
1761 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1762 *
e2714bf8
CH
1763 * The only time when buffers full of inodes are fully recovered is when the
1764 * buffer is full of newly allocated inodes. In this case the buffer will
1765 * not be marked as an inode buffer and so will be sent to
1766 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1767 */
1768STATIC int
1769xlog_recover_do_inode_buffer(
e2714bf8 1770 struct xfs_mount *mp,
1da177e4 1771 xlog_recover_item_t *item,
e2714bf8 1772 struct xfs_buf *bp,
1da177e4
LT
1773 xfs_buf_log_format_t *buf_f)
1774{
1775 int i;
e2714bf8
CH
1776 int item_index = 0;
1777 int bit = 0;
1778 int nbits = 0;
1779 int reg_buf_offset = 0;
1780 int reg_buf_bytes = 0;
1da177e4
LT
1781 int next_unlinked_offset;
1782 int inodes_per_buf;
1783 xfs_agino_t *logged_nextp;
1784 xfs_agino_t *buffer_nextp;
1da177e4 1785
9abbc539
DC
1786 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1787
aa0e8833 1788 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1789 for (i = 0; i < inodes_per_buf; i++) {
1790 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1791 offsetof(xfs_dinode_t, di_next_unlinked);
1792
1793 while (next_unlinked_offset >=
1794 (reg_buf_offset + reg_buf_bytes)) {
1795 /*
1796 * The next di_next_unlinked field is beyond
1797 * the current logged region. Find the next
1798 * logged region that contains or is beyond
1799 * the current di_next_unlinked field.
1800 */
1801 bit += nbits;
e2714bf8
CH
1802 bit = xfs_next_bit(buf_f->blf_data_map,
1803 buf_f->blf_map_size, bit);
1da177e4
LT
1804
1805 /*
1806 * If there are no more logged regions in the
1807 * buffer, then we're done.
1808 */
e2714bf8 1809 if (bit == -1)
1da177e4 1810 return 0;
1da177e4 1811
e2714bf8
CH
1812 nbits = xfs_contig_bits(buf_f->blf_data_map,
1813 buf_f->blf_map_size, bit);
1da177e4 1814 ASSERT(nbits > 0);
c1155410
DC
1815 reg_buf_offset = bit << XFS_BLF_SHIFT;
1816 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1817 item_index++;
1818 }
1819
1820 /*
1821 * If the current logged region starts after the current
1822 * di_next_unlinked field, then move on to the next
1823 * di_next_unlinked field.
1824 */
e2714bf8 1825 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1826 continue;
1da177e4
LT
1827
1828 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1829 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1830 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1831 BBTOB(bp->b_io_length));
1da177e4
LT
1832
1833 /*
1834 * The current logged region contains a copy of the
1835 * current di_next_unlinked field. Extract its value
1836 * and copy it to the buffer copy.
1837 */
4e0d5f92
CH
1838 logged_nextp = item->ri_buf[item_index].i_addr +
1839 next_unlinked_offset - reg_buf_offset;
1da177e4 1840 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1841 xfs_alert(mp,
1842 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1843 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1844 item, bp);
1845 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1846 XFS_ERRLEVEL_LOW, mp);
1847 return XFS_ERROR(EFSCORRUPTED);
1848 }
1849
1850 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1851 next_unlinked_offset);
87c199c2 1852 *buffer_nextp = *logged_nextp;
1da177e4
LT
1853 }
1854
1855 return 0;
1856}
1857
1858/*
1859 * Perform a 'normal' buffer recovery. Each logged region of the
1860 * buffer should be copied over the corresponding region in the
1861 * given buffer. The bitmap in the buf log format structure indicates
1862 * where to place the logged data.
1863 */
1da177e4
LT
1864STATIC void
1865xlog_recover_do_reg_buffer(
9abbc539 1866 struct xfs_mount *mp,
1da177e4 1867 xlog_recover_item_t *item,
e2714bf8 1868 struct xfs_buf *bp,
1da177e4
LT
1869 xfs_buf_log_format_t *buf_f)
1870{
1871 int i;
1872 int bit;
1873 int nbits;
1da177e4
LT
1874 int error;
1875
9abbc539
DC
1876 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1877
1da177e4
LT
1878 bit = 0;
1879 i = 1; /* 0 is the buf format structure */
1880 while (1) {
e2714bf8
CH
1881 bit = xfs_next_bit(buf_f->blf_data_map,
1882 buf_f->blf_map_size, bit);
1da177e4
LT
1883 if (bit == -1)
1884 break;
e2714bf8
CH
1885 nbits = xfs_contig_bits(buf_f->blf_data_map,
1886 buf_f->blf_map_size, bit);
1da177e4 1887 ASSERT(nbits > 0);
4b80916b 1888 ASSERT(item->ri_buf[i].i_addr != NULL);
c1155410 1889 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
aa0e8833
DC
1890 ASSERT(BBTOB(bp->b_io_length) >=
1891 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1da177e4
LT
1892
1893 /*
1894 * Do a sanity check if this is a dquot buffer. Just checking
1895 * the first dquot in the buffer should do. XXXThis is
1896 * probably a good thing to do for other buf types also.
1897 */
1898 error = 0;
c8ad20ff 1899 if (buf_f->blf_flags &
c1155410 1900 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
0c5e1ce8 1901 if (item->ri_buf[i].i_addr == NULL) {
a0fa2b67 1902 xfs_alert(mp,
0c5e1ce8
CH
1903 "XFS: NULL dquot in %s.", __func__);
1904 goto next;
1905 }
8ec6dba2 1906 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 1907 xfs_alert(mp,
0c5e1ce8
CH
1908 "XFS: dquot too small (%d) in %s.",
1909 item->ri_buf[i].i_len, __func__);
1910 goto next;
1911 }
a0fa2b67 1912 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1da177e4
LT
1913 -1, 0, XFS_QMOPT_DOWARN,
1914 "dquot_buf_recover");
0c5e1ce8
CH
1915 if (error)
1916 goto next;
1da177e4 1917 }
0c5e1ce8
CH
1918
1919 memcpy(xfs_buf_offset(bp,
c1155410 1920 (uint)bit << XFS_BLF_SHIFT), /* dest */
0c5e1ce8 1921 item->ri_buf[i].i_addr, /* source */
c1155410 1922 nbits<<XFS_BLF_SHIFT); /* length */
0c5e1ce8 1923 next:
1da177e4
LT
1924 i++;
1925 bit += nbits;
1926 }
1927
1928 /* Shouldn't be any more regions */
1929 ASSERT(i == item->ri_total);
1930}
1931
1932/*
1933 * Do some primitive error checking on ondisk dquot data structures.
1934 */
1935int
1936xfs_qm_dqcheck(
a0fa2b67 1937 struct xfs_mount *mp,
1da177e4
LT
1938 xfs_disk_dquot_t *ddq,
1939 xfs_dqid_t id,
1940 uint type, /* used only when IO_dorepair is true */
1941 uint flags,
1942 char *str)
1943{
1944 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1945 int errs = 0;
1946
1947 /*
1948 * We can encounter an uninitialized dquot buffer for 2 reasons:
1949 * 1. If we crash while deleting the quotainode(s), and those blks got
1950 * used for user data. This is because we take the path of regular
1951 * file deletion; however, the size field of quotainodes is never
1952 * updated, so all the tricks that we play in itruncate_finish
1953 * don't quite matter.
1954 *
1955 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1956 * But the allocation will be replayed so we'll end up with an
1957 * uninitialized quota block.
1958 *
1959 * This is all fine; things are still consistent, and we haven't lost
1960 * any quota information. Just don't complain about bad dquot blks.
1961 */
69ef921b 1962 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 1963 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1964 xfs_alert(mp,
1da177e4 1965 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1966 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
1967 errs++;
1968 }
1149d96a 1969 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 1970 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1971 xfs_alert(mp,
1da177e4 1972 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 1973 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
1974 errs++;
1975 }
1976
1149d96a
CH
1977 if (ddq->d_flags != XFS_DQ_USER &&
1978 ddq->d_flags != XFS_DQ_PROJ &&
1979 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 1980 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1981 xfs_alert(mp,
1da177e4 1982 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 1983 str, id, ddq->d_flags);
1da177e4
LT
1984 errs++;
1985 }
1986
1149d96a 1987 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 1988 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1989 xfs_alert(mp,
1da177e4
LT
1990 "%s : ondisk-dquot 0x%p, ID mismatch: "
1991 "0x%x expected, found id 0x%x",
1149d96a 1992 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
1993 errs++;
1994 }
1995
1996 if (!errs && ddq->d_id) {
1149d96a 1997 if (ddq->d_blk_softlimit &&
d0a3fe67 1998 be64_to_cpu(ddq->d_bcount) >
1149d96a 1999 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2000 if (!ddq->d_btimer) {
2001 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2002 xfs_alert(mp,
2003 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 2004 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2005 errs++;
2006 }
2007 }
1149d96a 2008 if (ddq->d_ino_softlimit &&
d0a3fe67 2009 be64_to_cpu(ddq->d_icount) >
1149d96a 2010 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2011 if (!ddq->d_itimer) {
2012 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2013 xfs_alert(mp,
2014 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2015 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2016 errs++;
2017 }
2018 }
1149d96a 2019 if (ddq->d_rtb_softlimit &&
d0a3fe67 2020 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2021 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2022 if (!ddq->d_rtbtimer) {
2023 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2024 xfs_alert(mp,
2025 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2026 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2027 errs++;
2028 }
2029 }
2030 }
2031
2032 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2033 return errs;
2034
2035 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2036 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2037
2038 /*
2039 * Typically, a repair is only requested by quotacheck.
2040 */
2041 ASSERT(id != -1);
2042 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2043 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2044
2045 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2046 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2047 d->dd_diskdq.d_flags = type;
2048 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2049
2050 return errs;
2051}
2052
2053/*
2054 * Perform a dquot buffer recovery.
2055 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2056 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2057 * Else, treat it as a regular buffer and do recovery.
2058 */
2059STATIC void
2060xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2061 struct xfs_mount *mp,
2062 struct xlog *log,
2063 struct xlog_recover_item *item,
2064 struct xfs_buf *bp,
2065 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2066{
2067 uint type;
2068
9abbc539
DC
2069 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2070
1da177e4
LT
2071 /*
2072 * Filesystems are required to send in quota flags at mount time.
2073 */
2074 if (mp->m_qflags == 0) {
2075 return;
2076 }
2077
2078 type = 0;
c1155410 2079 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2080 type |= XFS_DQ_USER;
c1155410 2081 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2082 type |= XFS_DQ_PROJ;
c1155410 2083 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2084 type |= XFS_DQ_GROUP;
2085 /*
2086 * This type of quotas was turned off, so ignore this buffer
2087 */
2088 if (log->l_quotaoffs_flag & type)
2089 return;
2090
9abbc539 2091 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2092}
2093
2094/*
2095 * This routine replays a modification made to a buffer at runtime.
2096 * There are actually two types of buffer, regular and inode, which
2097 * are handled differently. Inode buffers are handled differently
2098 * in that we only recover a specific set of data from them, namely
2099 * the inode di_next_unlinked fields. This is because all other inode
2100 * data is actually logged via inode records and any data we replay
2101 * here which overlaps that may be stale.
2102 *
2103 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2104 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2105 * of the buffer in the log should not be replayed at recovery time.
2106 * This is so that if the blocks covered by the buffer are reused for
2107 * file data before we crash we don't end up replaying old, freed
2108 * meta-data into a user's file.
2109 *
2110 * To handle the cancellation of buffer log items, we make two passes
2111 * over the log during recovery. During the first we build a table of
2112 * those buffers which have been cancelled, and during the second we
2113 * only replay those buffers which do not have corresponding cancel
2114 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2115 * for more details on the implementation of the table of cancel records.
2116 */
2117STATIC int
c9f71f5f 2118xlog_recover_buffer_pass2(
9a8d2fdb
MT
2119 struct xlog *log,
2120 struct list_head *buffer_list,
2121 struct xlog_recover_item *item)
1da177e4 2122{
4e0d5f92 2123 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2124 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2125 xfs_buf_t *bp;
2126 int error;
6ad112bf 2127 uint buf_flags;
1da177e4 2128
c9f71f5f
CH
2129 /*
2130 * In this pass we only want to recover all the buffers which have
2131 * not been cancelled and are not cancellation buffers themselves.
2132 */
2133 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2134 buf_f->blf_len, buf_f->blf_flags)) {
2135 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2136 return 0;
1da177e4 2137 }
c9f71f5f 2138
9abbc539 2139 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2140
a8acad70 2141 buf_flags = 0;
611c9946
DC
2142 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2143 buf_flags |= XBF_UNMAPPED;
6ad112bf 2144
e2714bf8
CH
2145 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2146 buf_flags);
ac4d6888
CS
2147 if (!bp)
2148 return XFS_ERROR(ENOMEM);
e5702805 2149 error = bp->b_error;
5a52c2a5 2150 if (error) {
901796af 2151 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
1da177e4
LT
2152 xfs_buf_relse(bp);
2153 return error;
2154 }
2155
e2714bf8 2156 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2157 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2158 } else if (buf_f->blf_flags &
c1155410 2159 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2160 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2161 } else {
9abbc539 2162 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2163 }
2164 if (error)
2165 return XFS_ERROR(error);
2166
2167 /*
2168 * Perform delayed write on the buffer. Asynchronous writes will be
2169 * slower when taking into account all the buffers to be flushed.
2170 *
2171 * Also make sure that only inode buffers with good sizes stay in
2172 * the buffer cache. The kernel moves inodes in buffers of 1 block
2173 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2174 * buffers in the log can be a different size if the log was generated
2175 * by an older kernel using unclustered inode buffers or a newer kernel
2176 * running with a different inode cluster size. Regardless, if the
2177 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2178 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2179 * the buffer out of the buffer cache so that the buffer won't
2180 * overlap with future reads of those inodes.
2181 */
2182 if (XFS_DINODE_MAGIC ==
b53e675d 2183 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2184 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2185 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2186 xfs_buf_stale(bp);
c2b006c1 2187 error = xfs_bwrite(bp);
1da177e4 2188 } else {
ebad861b 2189 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2190 bp->b_iodone = xlog_recover_iodone;
43ff2122 2191 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2192 }
2193
c2b006c1
CH
2194 xfs_buf_relse(bp);
2195 return error;
1da177e4
LT
2196}
2197
2198STATIC int
c9f71f5f 2199xlog_recover_inode_pass2(
9a8d2fdb
MT
2200 struct xlog *log,
2201 struct list_head *buffer_list,
2202 struct xlog_recover_item *item)
1da177e4
LT
2203{
2204 xfs_inode_log_format_t *in_f;
c9f71f5f 2205 xfs_mount_t *mp = log->l_mp;
1da177e4 2206 xfs_buf_t *bp;
1da177e4 2207 xfs_dinode_t *dip;
1da177e4
LT
2208 int len;
2209 xfs_caddr_t src;
2210 xfs_caddr_t dest;
2211 int error;
2212 int attr_index;
2213 uint fields;
347d1c01 2214 xfs_icdinode_t *dicp;
6d192a9b 2215 int need_free = 0;
1da177e4 2216
6d192a9b 2217 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2218 in_f = item->ri_buf[0].i_addr;
6d192a9b 2219 } else {
4e0d5f92 2220 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2221 need_free = 1;
2222 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2223 if (error)
2224 goto error;
2225 }
1da177e4
LT
2226
2227 /*
2228 * Inode buffers can be freed, look out for it,
2229 * and do not replay the inode.
2230 */
a1941895
CH
2231 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2232 in_f->ilf_len, 0)) {
6d192a9b 2233 error = 0;
9abbc539 2234 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2235 goto error;
2236 }
9abbc539 2237 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2238
a8acad70 2239 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
ac4d6888
CS
2240 if (!bp) {
2241 error = ENOMEM;
2242 goto error;
2243 }
e5702805 2244 error = bp->b_error;
5a52c2a5 2245 if (error) {
901796af 2246 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
1da177e4 2247 xfs_buf_relse(bp);
6d192a9b 2248 goto error;
1da177e4 2249 }
1da177e4 2250 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2251 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2252
2253 /*
2254 * Make sure the place we're flushing out to really looks
2255 * like an inode!
2256 */
69ef921b 2257 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2258 xfs_buf_relse(bp);
a0fa2b67
DC
2259 xfs_alert(mp,
2260 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2261 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2262 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2263 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2264 error = EFSCORRUPTED;
2265 goto error;
1da177e4 2266 }
4e0d5f92 2267 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2268 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2269 xfs_buf_relse(bp);
a0fa2b67
DC
2270 xfs_alert(mp,
2271 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2272 __func__, item, in_f->ilf_ino);
c9f71f5f 2273 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2274 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2275 error = EFSCORRUPTED;
2276 goto error;
1da177e4
LT
2277 }
2278
2279 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2280 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2281 /*
2282 * Deal with the wrap case, DI_MAX_FLUSH is less
2283 * than smaller numbers
2284 */
81591fe2 2285 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2286 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2287 /* do nothing */
2288 } else {
2289 xfs_buf_relse(bp);
9abbc539 2290 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2291 error = 0;
2292 goto error;
1da177e4
LT
2293 }
2294 }
2295 /* Take the opportunity to reset the flush iteration count */
2296 dicp->di_flushiter = 0;
2297
abbede1b 2298 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2299 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2300 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2301 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2302 XFS_ERRLEVEL_LOW, mp, dicp);
2303 xfs_buf_relse(bp);
a0fa2b67
DC
2304 xfs_alert(mp,
2305 "%s: Bad regular inode log record, rec ptr 0x%p, "
2306 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2307 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2308 error = EFSCORRUPTED;
2309 goto error;
1da177e4 2310 }
abbede1b 2311 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2312 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2313 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2314 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2315 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2316 XFS_ERRLEVEL_LOW, mp, dicp);
2317 xfs_buf_relse(bp);
a0fa2b67
DC
2318 xfs_alert(mp,
2319 "%s: Bad dir inode log record, rec ptr 0x%p, "
2320 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2321 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2322 error = EFSCORRUPTED;
2323 goto error;
1da177e4
LT
2324 }
2325 }
2326 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2327 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2328 XFS_ERRLEVEL_LOW, mp, dicp);
2329 xfs_buf_relse(bp);
a0fa2b67
DC
2330 xfs_alert(mp,
2331 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2332 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2333 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2334 dicp->di_nextents + dicp->di_anextents,
2335 dicp->di_nblocks);
6d192a9b
TS
2336 error = EFSCORRUPTED;
2337 goto error;
1da177e4
LT
2338 }
2339 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2340 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2341 XFS_ERRLEVEL_LOW, mp, dicp);
2342 xfs_buf_relse(bp);
a0fa2b67
DC
2343 xfs_alert(mp,
2344 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2345 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2346 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2347 error = EFSCORRUPTED;
2348 goto error;
1da177e4 2349 }
81591fe2 2350 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
c9f71f5f 2351 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2352 XFS_ERRLEVEL_LOW, mp, dicp);
2353 xfs_buf_relse(bp);
a0fa2b67
DC
2354 xfs_alert(mp,
2355 "%s: Bad inode log record length %d, rec ptr 0x%p",
2356 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2357 error = EFSCORRUPTED;
2358 goto error;
1da177e4
LT
2359 }
2360
2361 /* The core is in in-core format */
4e0d5f92 2362 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
1da177e4
LT
2363
2364 /* the rest is in on-disk format */
81591fe2
CH
2365 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2366 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2367 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2368 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2369 }
2370
2371 fields = in_f->ilf_fields;
2372 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2373 case XFS_ILOG_DEV:
81591fe2 2374 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2375 break;
2376 case XFS_ILOG_UUID:
81591fe2
CH
2377 memcpy(XFS_DFORK_DPTR(dip),
2378 &in_f->ilf_u.ilfu_uuid,
2379 sizeof(uuid_t));
1da177e4
LT
2380 break;
2381 }
2382
2383 if (in_f->ilf_size == 2)
2384 goto write_inode_buffer;
2385 len = item->ri_buf[2].i_len;
2386 src = item->ri_buf[2].i_addr;
2387 ASSERT(in_f->ilf_size <= 4);
2388 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2389 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2390 (len == in_f->ilf_dsize));
2391
2392 switch (fields & XFS_ILOG_DFORK) {
2393 case XFS_ILOG_DDATA:
2394 case XFS_ILOG_DEXT:
81591fe2 2395 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2396 break;
2397
2398 case XFS_ILOG_DBROOT:
7cc95a82 2399 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2400 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2401 XFS_DFORK_DSIZE(dip, mp));
2402 break;
2403
2404 default:
2405 /*
2406 * There are no data fork flags set.
2407 */
2408 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2409 break;
2410 }
2411
2412 /*
2413 * If we logged any attribute data, recover it. There may or
2414 * may not have been any other non-core data logged in this
2415 * transaction.
2416 */
2417 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2418 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2419 attr_index = 3;
2420 } else {
2421 attr_index = 2;
2422 }
2423 len = item->ri_buf[attr_index].i_len;
2424 src = item->ri_buf[attr_index].i_addr;
2425 ASSERT(len == in_f->ilf_asize);
2426
2427 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2428 case XFS_ILOG_ADATA:
2429 case XFS_ILOG_AEXT:
2430 dest = XFS_DFORK_APTR(dip);
2431 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2432 memcpy(dest, src, len);
2433 break;
2434
2435 case XFS_ILOG_ABROOT:
2436 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2437 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2438 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2439 XFS_DFORK_ASIZE(dip, mp));
2440 break;
2441
2442 default:
a0fa2b67 2443 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2444 ASSERT(0);
2445 xfs_buf_relse(bp);
6d192a9b
TS
2446 error = EIO;
2447 goto error;
1da177e4
LT
2448 }
2449 }
2450
2451write_inode_buffer:
ebad861b 2452 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2453 bp->b_iodone = xlog_recover_iodone;
43ff2122 2454 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2455 xfs_buf_relse(bp);
6d192a9b
TS
2456error:
2457 if (need_free)
f0e2d93c 2458 kmem_free(in_f);
6d192a9b 2459 return XFS_ERROR(error);
1da177e4
LT
2460}
2461
2462/*
9a8d2fdb 2463 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2464 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2465 * of that type.
2466 */
2467STATIC int
c9f71f5f 2468xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2469 struct xlog *log,
2470 struct xlog_recover_item *item)
1da177e4 2471{
c9f71f5f 2472 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2473 ASSERT(qoff_f);
2474
2475 /*
2476 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2477 * group/project quotaoff or both.
1da177e4
LT
2478 */
2479 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2480 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2481 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2482 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2483 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2484 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2485
2486 return (0);
2487}
2488
2489/*
2490 * Recover a dquot record
2491 */
2492STATIC int
c9f71f5f 2493xlog_recover_dquot_pass2(
9a8d2fdb
MT
2494 struct xlog *log,
2495 struct list_head *buffer_list,
2496 struct xlog_recover_item *item)
1da177e4 2497{
c9f71f5f 2498 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2499 xfs_buf_t *bp;
2500 struct xfs_disk_dquot *ddq, *recddq;
2501 int error;
2502 xfs_dq_logformat_t *dq_f;
2503 uint type;
2504
1da177e4
LT
2505
2506 /*
2507 * Filesystems are required to send in quota flags at mount time.
2508 */
2509 if (mp->m_qflags == 0)
2510 return (0);
2511
4e0d5f92
CH
2512 recddq = item->ri_buf[1].i_addr;
2513 if (recddq == NULL) {
a0fa2b67 2514 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2515 return XFS_ERROR(EIO);
2516 }
8ec6dba2 2517 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2518 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2519 item->ri_buf[1].i_len, __func__);
2520 return XFS_ERROR(EIO);
2521 }
2522
1da177e4
LT
2523 /*
2524 * This type of quotas was turned off, so ignore this record.
2525 */
b53e675d 2526 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2527 ASSERT(type);
2528 if (log->l_quotaoffs_flag & type)
2529 return (0);
2530
2531 /*
2532 * At this point we know that quota was _not_ turned off.
2533 * Since the mount flags are not indicating to us otherwise, this
2534 * must mean that quota is on, and the dquot needs to be replayed.
2535 * Remember that we may not have fully recovered the superblock yet,
2536 * so we can't do the usual trick of looking at the SB quota bits.
2537 *
2538 * The other possibility, of course, is that the quota subsystem was
2539 * removed since the last mount - ENOSYS.
2540 */
4e0d5f92 2541 dq_f = item->ri_buf[0].i_addr;
1da177e4 2542 ASSERT(dq_f);
a0fa2b67
DC
2543 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2544 "xlog_recover_dquot_pass2 (log copy)");
2545 if (error)
1da177e4 2546 return XFS_ERROR(EIO);
1da177e4
LT
2547 ASSERT(dq_f->qlf_len == 1);
2548
7ca790a5
DC
2549 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2550 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
2551 if (error)
1da177e4 2552 return error;
7ca790a5 2553
1da177e4
LT
2554 ASSERT(bp);
2555 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2556
2557 /*
2558 * At least the magic num portion should be on disk because this
2559 * was among a chunk of dquots created earlier, and we did some
2560 * minimal initialization then.
2561 */
a0fa2b67
DC
2562 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2563 "xlog_recover_dquot_pass2");
2564 if (error) {
1da177e4
LT
2565 xfs_buf_relse(bp);
2566 return XFS_ERROR(EIO);
2567 }
2568
2569 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2570
2571 ASSERT(dq_f->qlf_size == 2);
ebad861b 2572 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2573 bp->b_iodone = xlog_recover_iodone;
43ff2122 2574 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2575 xfs_buf_relse(bp);
1da177e4
LT
2576
2577 return (0);
2578}
2579
2580/*
2581 * This routine is called to create an in-core extent free intent
2582 * item from the efi format structure which was logged on disk.
2583 * It allocates an in-core efi, copies the extents from the format
2584 * structure into it, and adds the efi to the AIL with the given
2585 * LSN.
2586 */
6d192a9b 2587STATIC int
c9f71f5f 2588xlog_recover_efi_pass2(
9a8d2fdb
MT
2589 struct xlog *log,
2590 struct xlog_recover_item *item,
2591 xfs_lsn_t lsn)
1da177e4 2592{
6d192a9b 2593 int error;
c9f71f5f 2594 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2595 xfs_efi_log_item_t *efip;
2596 xfs_efi_log_format_t *efi_formatp;
1da177e4 2597
4e0d5f92 2598 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2599
1da177e4 2600 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2601 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2602 &(efip->efi_format)))) {
2603 xfs_efi_item_free(efip);
2604 return error;
2605 }
b199c8a4 2606 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2607
a9c21c1b 2608 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2609 /*
783a2f65 2610 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2611 */
e6059949 2612 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2613 return 0;
1da177e4
LT
2614}
2615
2616
2617/*
2618 * This routine is called when an efd format structure is found in
2619 * a committed transaction in the log. It's purpose is to cancel
2620 * the corresponding efi if it was still in the log. To do this
2621 * it searches the AIL for the efi with an id equal to that in the
2622 * efd format structure. If we find it, we remove the efi from the
2623 * AIL and free it.
2624 */
c9f71f5f
CH
2625STATIC int
2626xlog_recover_efd_pass2(
9a8d2fdb
MT
2627 struct xlog *log,
2628 struct xlog_recover_item *item)
1da177e4 2629{
1da177e4
LT
2630 xfs_efd_log_format_t *efd_formatp;
2631 xfs_efi_log_item_t *efip = NULL;
2632 xfs_log_item_t *lip;
1da177e4 2633 __uint64_t efi_id;
27d8d5fe 2634 struct xfs_ail_cursor cur;
783a2f65 2635 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2636
4e0d5f92 2637 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2638 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2639 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2640 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2641 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2642 efi_id = efd_formatp->efd_efi_id;
2643
2644 /*
2645 * Search for the efi with the id in the efd format structure
2646 * in the AIL.
2647 */
a9c21c1b
DC
2648 spin_lock(&ailp->xa_lock);
2649 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2650 while (lip != NULL) {
2651 if (lip->li_type == XFS_LI_EFI) {
2652 efip = (xfs_efi_log_item_t *)lip;
2653 if (efip->efi_format.efi_id == efi_id) {
2654 /*
783a2f65 2655 * xfs_trans_ail_delete() drops the
1da177e4
LT
2656 * AIL lock.
2657 */
04913fdd
DC
2658 xfs_trans_ail_delete(ailp, lip,
2659 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 2660 xfs_efi_item_free(efip);
a9c21c1b 2661 spin_lock(&ailp->xa_lock);
27d8d5fe 2662 break;
1da177e4
LT
2663 }
2664 }
a9c21c1b 2665 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2666 }
a9c21c1b
DC
2667 xfs_trans_ail_cursor_done(ailp, &cur);
2668 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
2669
2670 return 0;
1da177e4
LT
2671}
2672
1da177e4
LT
2673/*
2674 * Free up any resources allocated by the transaction
2675 *
2676 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2677 */
2678STATIC void
2679xlog_recover_free_trans(
d0450948 2680 struct xlog_recover *trans)
1da177e4 2681{
f0a76953 2682 xlog_recover_item_t *item, *n;
1da177e4
LT
2683 int i;
2684
f0a76953
DC
2685 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2686 /* Free the regions in the item. */
2687 list_del(&item->ri_list);
2688 for (i = 0; i < item->ri_cnt; i++)
2689 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2690 /* Free the item itself */
f0a76953
DC
2691 kmem_free(item->ri_buf);
2692 kmem_free(item);
2693 }
1da177e4 2694 /* Free the transaction recover structure */
f0e2d93c 2695 kmem_free(trans);
1da177e4
LT
2696}
2697
d0450948 2698STATIC int
c9f71f5f 2699xlog_recover_commit_pass1(
ad223e60
MT
2700 struct xlog *log,
2701 struct xlog_recover *trans,
2702 struct xlog_recover_item *item)
d0450948 2703{
c9f71f5f 2704 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
2705
2706 switch (ITEM_TYPE(item)) {
2707 case XFS_LI_BUF:
c9f71f5f
CH
2708 return xlog_recover_buffer_pass1(log, item);
2709 case XFS_LI_QUOTAOFF:
2710 return xlog_recover_quotaoff_pass1(log, item);
d0450948 2711 case XFS_LI_INODE:
d0450948 2712 case XFS_LI_EFI:
d0450948 2713 case XFS_LI_EFD:
c9f71f5f
CH
2714 case XFS_LI_DQUOT:
2715 /* nothing to do in pass 1 */
d0450948 2716 return 0;
c9f71f5f 2717 default:
a0fa2b67
DC
2718 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2719 __func__, ITEM_TYPE(item));
c9f71f5f
CH
2720 ASSERT(0);
2721 return XFS_ERROR(EIO);
2722 }
2723}
2724
2725STATIC int
2726xlog_recover_commit_pass2(
ad223e60
MT
2727 struct xlog *log,
2728 struct xlog_recover *trans,
2729 struct list_head *buffer_list,
2730 struct xlog_recover_item *item)
c9f71f5f
CH
2731{
2732 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2733
2734 switch (ITEM_TYPE(item)) {
2735 case XFS_LI_BUF:
43ff2122 2736 return xlog_recover_buffer_pass2(log, buffer_list, item);
c9f71f5f 2737 case XFS_LI_INODE:
43ff2122 2738 return xlog_recover_inode_pass2(log, buffer_list, item);
c9f71f5f
CH
2739 case XFS_LI_EFI:
2740 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2741 case XFS_LI_EFD:
2742 return xlog_recover_efd_pass2(log, item);
d0450948 2743 case XFS_LI_DQUOT:
43ff2122 2744 return xlog_recover_dquot_pass2(log, buffer_list, item);
d0450948 2745 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
2746 /* nothing to do in pass2 */
2747 return 0;
d0450948 2748 default:
a0fa2b67
DC
2749 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2750 __func__, ITEM_TYPE(item));
d0450948
CH
2751 ASSERT(0);
2752 return XFS_ERROR(EIO);
2753 }
2754}
2755
2756/*
2757 * Perform the transaction.
2758 *
2759 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2760 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2761 */
1da177e4
LT
2762STATIC int
2763xlog_recover_commit_trans(
ad223e60 2764 struct xlog *log,
d0450948 2765 struct xlog_recover *trans,
1da177e4
LT
2766 int pass)
2767{
43ff2122 2768 int error = 0, error2;
d0450948 2769 xlog_recover_item_t *item;
43ff2122 2770 LIST_HEAD (buffer_list);
1da177e4 2771
f0a76953 2772 hlist_del(&trans->r_list);
d0450948
CH
2773
2774 error = xlog_recover_reorder_trans(log, trans, pass);
2775 if (error)
1da177e4 2776 return error;
d0450948
CH
2777
2778 list_for_each_entry(item, &trans->r_itemq, ri_list) {
43ff2122
CH
2779 switch (pass) {
2780 case XLOG_RECOVER_PASS1:
c9f71f5f 2781 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
2782 break;
2783 case XLOG_RECOVER_PASS2:
2784 error = xlog_recover_commit_pass2(log, trans,
2785 &buffer_list, item);
2786 break;
2787 default:
2788 ASSERT(0);
2789 }
2790
d0450948 2791 if (error)
43ff2122 2792 goto out;
d0450948
CH
2793 }
2794
2795 xlog_recover_free_trans(trans);
43ff2122
CH
2796
2797out:
2798 error2 = xfs_buf_delwri_submit(&buffer_list);
2799 return error ? error : error2;
1da177e4
LT
2800}
2801
2802STATIC int
2803xlog_recover_unmount_trans(
ad223e60
MT
2804 struct xlog *log,
2805 struct xlog_recover *trans)
1da177e4
LT
2806{
2807 /* Do nothing now */
a0fa2b67 2808 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
2809 return 0;
2810}
2811
2812/*
2813 * There are two valid states of the r_state field. 0 indicates that the
2814 * transaction structure is in a normal state. We have either seen the
2815 * start of the transaction or the last operation we added was not a partial
2816 * operation. If the last operation we added to the transaction was a
2817 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2818 *
2819 * NOTE: skip LRs with 0 data length.
2820 */
2821STATIC int
2822xlog_recover_process_data(
9a8d2fdb 2823 struct xlog *log,
f0a76953 2824 struct hlist_head rhash[],
9a8d2fdb 2825 struct xlog_rec_header *rhead,
1da177e4
LT
2826 xfs_caddr_t dp,
2827 int pass)
2828{
2829 xfs_caddr_t lp;
2830 int num_logops;
2831 xlog_op_header_t *ohead;
2832 xlog_recover_t *trans;
2833 xlog_tid_t tid;
2834 int error;
2835 unsigned long hash;
2836 uint flags;
2837
b53e675d
CH
2838 lp = dp + be32_to_cpu(rhead->h_len);
2839 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2840
2841 /* check the log format matches our own - else we can't recover */
2842 if (xlog_header_check_recover(log->l_mp, rhead))
2843 return (XFS_ERROR(EIO));
2844
2845 while ((dp < lp) && num_logops) {
2846 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2847 ohead = (xlog_op_header_t *)dp;
2848 dp += sizeof(xlog_op_header_t);
2849 if (ohead->oh_clientid != XFS_TRANSACTION &&
2850 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
2851 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2852 __func__, ohead->oh_clientid);
1da177e4
LT
2853 ASSERT(0);
2854 return (XFS_ERROR(EIO));
2855 }
67fcb7bf 2856 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2857 hash = XLOG_RHASH(tid);
f0a76953 2858 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2859 if (trans == NULL) { /* not found; add new tid */
2860 if (ohead->oh_flags & XLOG_START_TRANS)
2861 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2862 be64_to_cpu(rhead->h_lsn));
1da177e4 2863 } else {
9742bb93 2864 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
2865 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2866 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
2867 WARN_ON(1);
2868 return (XFS_ERROR(EIO));
2869 }
1da177e4
LT
2870 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2871 if (flags & XLOG_WAS_CONT_TRANS)
2872 flags &= ~XLOG_CONTINUE_TRANS;
2873 switch (flags) {
2874 case XLOG_COMMIT_TRANS:
2875 error = xlog_recover_commit_trans(log,
f0a76953 2876 trans, pass);
1da177e4
LT
2877 break;
2878 case XLOG_UNMOUNT_TRANS:
a0fa2b67 2879 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
2880 break;
2881 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2882 error = xlog_recover_add_to_cont_trans(log,
2883 trans, dp,
2884 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2885 break;
2886 case XLOG_START_TRANS:
a0fa2b67
DC
2887 xfs_warn(log->l_mp, "%s: bad transaction",
2888 __func__);
1da177e4
LT
2889 ASSERT(0);
2890 error = XFS_ERROR(EIO);
2891 break;
2892 case 0:
2893 case XLOG_CONTINUE_TRANS:
9abbc539 2894 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2895 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2896 break;
2897 default:
a0fa2b67
DC
2898 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2899 __func__, flags);
1da177e4
LT
2900 ASSERT(0);
2901 error = XFS_ERROR(EIO);
2902 break;
2903 }
2904 if (error)
2905 return error;
2906 }
67fcb7bf 2907 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2908 num_logops--;
2909 }
2910 return 0;
2911}
2912
2913/*
2914 * Process an extent free intent item that was recovered from
2915 * the log. We need to free the extents that it describes.
2916 */
3c1e2bbe 2917STATIC int
1da177e4
LT
2918xlog_recover_process_efi(
2919 xfs_mount_t *mp,
2920 xfs_efi_log_item_t *efip)
2921{
2922 xfs_efd_log_item_t *efdp;
2923 xfs_trans_t *tp;
2924 int i;
3c1e2bbe 2925 int error = 0;
1da177e4
LT
2926 xfs_extent_t *extp;
2927 xfs_fsblock_t startblock_fsb;
2928
b199c8a4 2929 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
2930
2931 /*
2932 * First check the validity of the extents described by the
2933 * EFI. If any are bad, then assume that all are bad and
2934 * just toss the EFI.
2935 */
2936 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2937 extp = &(efip->efi_format.efi_extents[i]);
2938 startblock_fsb = XFS_BB_TO_FSB(mp,
2939 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2940 if ((startblock_fsb == 0) ||
2941 (extp->ext_len == 0) ||
2942 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2943 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2944 /*
2945 * This will pull the EFI from the AIL and
2946 * free the memory associated with it.
2947 */
2948 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 2949 return XFS_ERROR(EIO);
1da177e4
LT
2950 }
2951 }
2952
2953 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 2954 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
2955 if (error)
2956 goto abort_error;
1da177e4
LT
2957 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2958
2959 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2960 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
2961 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2962 if (error)
2963 goto abort_error;
1da177e4
LT
2964 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2965 extp->ext_len);
2966 }
2967
b199c8a4 2968 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 2969 error = xfs_trans_commit(tp, 0);
3c1e2bbe 2970 return error;
fc6149d8
DC
2971
2972abort_error:
2973 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2974 return error;
1da177e4
LT
2975}
2976
1da177e4
LT
2977/*
2978 * When this is called, all of the EFIs which did not have
2979 * corresponding EFDs should be in the AIL. What we do now
2980 * is free the extents associated with each one.
2981 *
2982 * Since we process the EFIs in normal transactions, they
2983 * will be removed at some point after the commit. This prevents
2984 * us from just walking down the list processing each one.
2985 * We'll use a flag in the EFI to skip those that we've already
2986 * processed and use the AIL iteration mechanism's generation
2987 * count to try to speed this up at least a bit.
2988 *
2989 * When we start, we know that the EFIs are the only things in
2990 * the AIL. As we process them, however, other items are added
2991 * to the AIL. Since everything added to the AIL must come after
2992 * everything already in the AIL, we stop processing as soon as
2993 * we see something other than an EFI in the AIL.
2994 */
3c1e2bbe 2995STATIC int
1da177e4 2996xlog_recover_process_efis(
9a8d2fdb 2997 struct xlog *log)
1da177e4
LT
2998{
2999 xfs_log_item_t *lip;
3000 xfs_efi_log_item_t *efip;
3c1e2bbe 3001 int error = 0;
27d8d5fe 3002 struct xfs_ail_cursor cur;
a9c21c1b 3003 struct xfs_ail *ailp;
1da177e4 3004
a9c21c1b
DC
3005 ailp = log->l_ailp;
3006 spin_lock(&ailp->xa_lock);
3007 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3008 while (lip != NULL) {
3009 /*
3010 * We're done when we see something other than an EFI.
27d8d5fe 3011 * There should be no EFIs left in the AIL now.
1da177e4
LT
3012 */
3013 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3014#ifdef DEBUG
a9c21c1b 3015 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3016 ASSERT(lip->li_type != XFS_LI_EFI);
3017#endif
1da177e4
LT
3018 break;
3019 }
3020
3021 /*
3022 * Skip EFIs that we've already processed.
3023 */
3024 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3025 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3026 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3027 continue;
3028 }
3029
a9c21c1b
DC
3030 spin_unlock(&ailp->xa_lock);
3031 error = xlog_recover_process_efi(log->l_mp, efip);
3032 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3033 if (error)
3034 goto out;
a9c21c1b 3035 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3036 }
27d8d5fe 3037out:
a9c21c1b
DC
3038 xfs_trans_ail_cursor_done(ailp, &cur);
3039 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3040 return error;
1da177e4
LT
3041}
3042
3043/*
3044 * This routine performs a transaction to null out a bad inode pointer
3045 * in an agi unlinked inode hash bucket.
3046 */
3047STATIC void
3048xlog_recover_clear_agi_bucket(
3049 xfs_mount_t *mp,
3050 xfs_agnumber_t agno,
3051 int bucket)
3052{
3053 xfs_trans_t *tp;
3054 xfs_agi_t *agi;
3055 xfs_buf_t *agibp;
3056 int offset;
3057 int error;
3058
3059 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3060 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3061 0, 0, 0);
e5720eec
DC
3062 if (error)
3063 goto out_abort;
1da177e4 3064
5e1be0fb
CH
3065 error = xfs_read_agi(mp, tp, agno, &agibp);
3066 if (error)
e5720eec 3067 goto out_abort;
1da177e4 3068
5e1be0fb 3069 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3070 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3071 offset = offsetof(xfs_agi_t, agi_unlinked) +
3072 (sizeof(xfs_agino_t) * bucket);
3073 xfs_trans_log_buf(tp, agibp, offset,
3074 (offset + sizeof(xfs_agino_t) - 1));
3075
e5720eec
DC
3076 error = xfs_trans_commit(tp, 0);
3077 if (error)
3078 goto out_error;
3079 return;
3080
3081out_abort:
3082 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3083out_error:
a0fa2b67 3084 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3085 return;
1da177e4
LT
3086}
3087
23fac50f
CH
3088STATIC xfs_agino_t
3089xlog_recover_process_one_iunlink(
3090 struct xfs_mount *mp,
3091 xfs_agnumber_t agno,
3092 xfs_agino_t agino,
3093 int bucket)
3094{
3095 struct xfs_buf *ibp;
3096 struct xfs_dinode *dip;
3097 struct xfs_inode *ip;
3098 xfs_ino_t ino;
3099 int error;
3100
3101 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3102 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3103 if (error)
3104 goto fail;
3105
3106 /*
3107 * Get the on disk inode to find the next inode in the bucket.
3108 */
475ee413 3109 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3110 if (error)
0e446673 3111 goto fail_iput;
23fac50f 3112
23fac50f 3113 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3114 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3115
3116 /* setup for the next pass */
3117 agino = be32_to_cpu(dip->di_next_unlinked);
3118 xfs_buf_relse(ibp);
3119
3120 /*
3121 * Prevent any DMAPI event from being sent when the reference on
3122 * the inode is dropped.
3123 */
3124 ip->i_d.di_dmevmask = 0;
3125
0e446673 3126 IRELE(ip);
23fac50f
CH
3127 return agino;
3128
0e446673
CH
3129 fail_iput:
3130 IRELE(ip);
23fac50f
CH
3131 fail:
3132 /*
3133 * We can't read in the inode this bucket points to, or this inode
3134 * is messed up. Just ditch this bucket of inodes. We will lose
3135 * some inodes and space, but at least we won't hang.
3136 *
3137 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3138 * clear the inode pointer in the bucket.
3139 */
3140 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3141 return NULLAGINO;
3142}
3143
1da177e4
LT
3144/*
3145 * xlog_iunlink_recover
3146 *
3147 * This is called during recovery to process any inodes which
3148 * we unlinked but not freed when the system crashed. These
3149 * inodes will be on the lists in the AGI blocks. What we do
3150 * here is scan all the AGIs and fully truncate and free any
3151 * inodes found on the lists. Each inode is removed from the
3152 * lists when it has been fully truncated and is freed. The
3153 * freeing of the inode and its removal from the list must be
3154 * atomic.
3155 */
d96f8f89 3156STATIC void
1da177e4 3157xlog_recover_process_iunlinks(
9a8d2fdb 3158 struct xlog *log)
1da177e4
LT
3159{
3160 xfs_mount_t *mp;
3161 xfs_agnumber_t agno;
3162 xfs_agi_t *agi;
3163 xfs_buf_t *agibp;
1da177e4 3164 xfs_agino_t agino;
1da177e4
LT
3165 int bucket;
3166 int error;
3167 uint mp_dmevmask;
3168
3169 mp = log->l_mp;
3170
3171 /*
3172 * Prevent any DMAPI event from being sent while in this function.
3173 */
3174 mp_dmevmask = mp->m_dmevmask;
3175 mp->m_dmevmask = 0;
3176
3177 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3178 /*
3179 * Find the agi for this ag.
3180 */
5e1be0fb
CH
3181 error = xfs_read_agi(mp, NULL, agno, &agibp);
3182 if (error) {
3183 /*
3184 * AGI is b0rked. Don't process it.
3185 *
3186 * We should probably mark the filesystem as corrupt
3187 * after we've recovered all the ag's we can....
3188 */
3189 continue;
1da177e4 3190 }
d97d32ed
JK
3191 /*
3192 * Unlock the buffer so that it can be acquired in the normal
3193 * course of the transaction to truncate and free each inode.
3194 * Because we are not racing with anyone else here for the AGI
3195 * buffer, we don't even need to hold it locked to read the
3196 * initial unlinked bucket entries out of the buffer. We keep
3197 * buffer reference though, so that it stays pinned in memory
3198 * while we need the buffer.
3199 */
1da177e4 3200 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3201 xfs_buf_unlock(agibp);
1da177e4
LT
3202
3203 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3204 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3205 while (agino != NULLAGINO) {
23fac50f
CH
3206 agino = xlog_recover_process_one_iunlink(mp,
3207 agno, agino, bucket);
1da177e4
LT
3208 }
3209 }
d97d32ed 3210 xfs_buf_rele(agibp);
1da177e4
LT
3211 }
3212
3213 mp->m_dmevmask = mp_dmevmask;
3214}
3215
3216
3217#ifdef DEBUG
3218STATIC void
3219xlog_pack_data_checksum(
9a8d2fdb
MT
3220 struct xlog *log,
3221 struct xlog_in_core *iclog,
3222 int size)
1da177e4
LT
3223{
3224 int i;
b53e675d 3225 __be32 *up;
1da177e4
LT
3226 uint chksum = 0;
3227
b53e675d 3228 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3229 /* divide length by 4 to get # words */
3230 for (i = 0; i < (size >> 2); i++) {
b53e675d 3231 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3232 up++;
3233 }
b53e675d 3234 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3235}
3236#else
3237#define xlog_pack_data_checksum(log, iclog, size)
3238#endif
3239
3240/*
3241 * Stamp cycle number in every block
3242 */
3243void
3244xlog_pack_data(
9a8d2fdb
MT
3245 struct xlog *log,
3246 struct xlog_in_core *iclog,
1da177e4
LT
3247 int roundoff)
3248{
3249 int i, j, k;
3250 int size = iclog->ic_offset + roundoff;
b53e675d 3251 __be32 cycle_lsn;
1da177e4 3252 xfs_caddr_t dp;
1da177e4
LT
3253
3254 xlog_pack_data_checksum(log, iclog, size);
3255
3256 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3257
3258 dp = iclog->ic_datap;
3259 for (i = 0; i < BTOBB(size) &&
3260 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3261 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3262 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3263 dp += BBSIZE;
3264 }
3265
62118709 3266 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3267 xlog_in_core_2_t *xhdr = iclog->ic_data;
3268
1da177e4
LT
3269 for ( ; i < BTOBB(size); i++) {
3270 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3271 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3272 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3273 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3274 dp += BBSIZE;
3275 }
3276
3277 for (i = 1; i < log->l_iclog_heads; i++) {
3278 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3279 }
3280 }
3281}
3282
1da177e4
LT
3283STATIC void
3284xlog_unpack_data(
9a8d2fdb 3285 struct xlog_rec_header *rhead,
1da177e4 3286 xfs_caddr_t dp,
9a8d2fdb 3287 struct xlog *log)
1da177e4
LT
3288{
3289 int i, j, k;
1da177e4 3290
b53e675d 3291 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3292 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3293 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3294 dp += BBSIZE;
3295 }
3296
62118709 3297 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3298 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3299 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3300 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3301 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3302 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3303 dp += BBSIZE;
3304 }
3305 }
1da177e4
LT
3306}
3307
3308STATIC int
3309xlog_valid_rec_header(
9a8d2fdb
MT
3310 struct xlog *log,
3311 struct xlog_rec_header *rhead,
1da177e4
LT
3312 xfs_daddr_t blkno)
3313{
3314 int hlen;
3315
69ef921b 3316 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3317 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3318 XFS_ERRLEVEL_LOW, log->l_mp);
3319 return XFS_ERROR(EFSCORRUPTED);
3320 }
3321 if (unlikely(
3322 (!rhead->h_version ||
b53e675d 3323 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3324 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3325 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3326 return XFS_ERROR(EIO);
3327 }
3328
3329 /* LR body must have data or it wouldn't have been written */
b53e675d 3330 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3331 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3332 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3333 XFS_ERRLEVEL_LOW, log->l_mp);
3334 return XFS_ERROR(EFSCORRUPTED);
3335 }
3336 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3337 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3338 XFS_ERRLEVEL_LOW, log->l_mp);
3339 return XFS_ERROR(EFSCORRUPTED);
3340 }
3341 return 0;
3342}
3343
3344/*
3345 * Read the log from tail to head and process the log records found.
3346 * Handle the two cases where the tail and head are in the same cycle
3347 * and where the active portion of the log wraps around the end of
3348 * the physical log separately. The pass parameter is passed through
3349 * to the routines called to process the data and is not looked at
3350 * here.
3351 */
3352STATIC int
3353xlog_do_recovery_pass(
9a8d2fdb 3354 struct xlog *log,
1da177e4
LT
3355 xfs_daddr_t head_blk,
3356 xfs_daddr_t tail_blk,
3357 int pass)
3358{
3359 xlog_rec_header_t *rhead;
3360 xfs_daddr_t blk_no;
fc5bc4c8 3361 xfs_caddr_t offset;
1da177e4
LT
3362 xfs_buf_t *hbp, *dbp;
3363 int error = 0, h_size;
3364 int bblks, split_bblks;
3365 int hblks, split_hblks, wrapped_hblks;
f0a76953 3366 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3367
3368 ASSERT(head_blk != tail_blk);
3369
3370 /*
3371 * Read the header of the tail block and get the iclog buffer size from
3372 * h_size. Use this to tell how many sectors make up the log header.
3373 */
62118709 3374 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3375 /*
3376 * When using variable length iclogs, read first sector of
3377 * iclog header and extract the header size from it. Get a
3378 * new hbp that is the correct size.
3379 */
3380 hbp = xlog_get_bp(log, 1);
3381 if (!hbp)
3382 return ENOMEM;
076e6acb
CH
3383
3384 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3385 if (error)
1da177e4 3386 goto bread_err1;
076e6acb 3387
1da177e4
LT
3388 rhead = (xlog_rec_header_t *)offset;
3389 error = xlog_valid_rec_header(log, rhead, tail_blk);
3390 if (error)
3391 goto bread_err1;
b53e675d
CH
3392 h_size = be32_to_cpu(rhead->h_size);
3393 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3394 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3395 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3396 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3397 hblks++;
3398 xlog_put_bp(hbp);
3399 hbp = xlog_get_bp(log, hblks);
3400 } else {
3401 hblks = 1;
3402 }
3403 } else {
69ce58f0 3404 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3405 hblks = 1;
3406 hbp = xlog_get_bp(log, 1);
3407 h_size = XLOG_BIG_RECORD_BSIZE;
3408 }
3409
3410 if (!hbp)
3411 return ENOMEM;
3412 dbp = xlog_get_bp(log, BTOBB(h_size));
3413 if (!dbp) {
3414 xlog_put_bp(hbp);
3415 return ENOMEM;
3416 }
3417
3418 memset(rhash, 0, sizeof(rhash));
3419 if (tail_blk <= head_blk) {
3420 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3421 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3422 if (error)
1da177e4 3423 goto bread_err2;
076e6acb 3424
1da177e4
LT
3425 rhead = (xlog_rec_header_t *)offset;
3426 error = xlog_valid_rec_header(log, rhead, blk_no);
3427 if (error)
3428 goto bread_err2;
3429
3430 /* blocks in data section */
b53e675d 3431 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3432 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3433 &offset);
1da177e4
LT
3434 if (error)
3435 goto bread_err2;
076e6acb 3436
1da177e4
LT
3437 xlog_unpack_data(rhead, offset, log);
3438 if ((error = xlog_recover_process_data(log,
3439 rhash, rhead, offset, pass)))
3440 goto bread_err2;
3441 blk_no += bblks + hblks;
3442 }
3443 } else {
3444 /*
3445 * Perform recovery around the end of the physical log.
3446 * When the head is not on the same cycle number as the tail,
3447 * we can't do a sequential recovery as above.
3448 */
3449 blk_no = tail_blk;
3450 while (blk_no < log->l_logBBsize) {
3451 /*
3452 * Check for header wrapping around physical end-of-log
3453 */
62926044 3454 offset = hbp->b_addr;
1da177e4
LT
3455 split_hblks = 0;
3456 wrapped_hblks = 0;
3457 if (blk_no + hblks <= log->l_logBBsize) {
3458 /* Read header in one read */
076e6acb
CH
3459 error = xlog_bread(log, blk_no, hblks, hbp,
3460 &offset);
1da177e4
LT
3461 if (error)
3462 goto bread_err2;
1da177e4
LT
3463 } else {
3464 /* This LR is split across physical log end */
3465 if (blk_no != log->l_logBBsize) {
3466 /* some data before physical log end */
3467 ASSERT(blk_no <= INT_MAX);
3468 split_hblks = log->l_logBBsize - (int)blk_no;
3469 ASSERT(split_hblks > 0);
076e6acb
CH
3470 error = xlog_bread(log, blk_no,
3471 split_hblks, hbp,
3472 &offset);
3473 if (error)
1da177e4 3474 goto bread_err2;
1da177e4 3475 }
076e6acb 3476
1da177e4
LT
3477 /*
3478 * Note: this black magic still works with
3479 * large sector sizes (non-512) only because:
3480 * - we increased the buffer size originally
3481 * by 1 sector giving us enough extra space
3482 * for the second read;
3483 * - the log start is guaranteed to be sector
3484 * aligned;
3485 * - we read the log end (LR header start)
3486 * _first_, then the log start (LR header end)
3487 * - order is important.
3488 */
234f56ac 3489 wrapped_hblks = hblks - split_hblks;
44396476
DC
3490 error = xlog_bread_offset(log, 0,
3491 wrapped_hblks, hbp,
3492 offset + BBTOB(split_hblks));
1da177e4
LT
3493 if (error)
3494 goto bread_err2;
1da177e4
LT
3495 }
3496 rhead = (xlog_rec_header_t *)offset;
3497 error = xlog_valid_rec_header(log, rhead,
3498 split_hblks ? blk_no : 0);
3499 if (error)
3500 goto bread_err2;
3501
b53e675d 3502 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3503 blk_no += hblks;
3504
3505 /* Read in data for log record */
3506 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3507 error = xlog_bread(log, blk_no, bblks, dbp,
3508 &offset);
1da177e4
LT
3509 if (error)
3510 goto bread_err2;
1da177e4
LT
3511 } else {
3512 /* This log record is split across the
3513 * physical end of log */
62926044 3514 offset = dbp->b_addr;
1da177e4
LT
3515 split_bblks = 0;
3516 if (blk_no != log->l_logBBsize) {
3517 /* some data is before the physical
3518 * end of log */
3519 ASSERT(!wrapped_hblks);
3520 ASSERT(blk_no <= INT_MAX);
3521 split_bblks =
3522 log->l_logBBsize - (int)blk_no;
3523 ASSERT(split_bblks > 0);
076e6acb
CH
3524 error = xlog_bread(log, blk_no,
3525 split_bblks, dbp,
3526 &offset);
3527 if (error)
1da177e4 3528 goto bread_err2;
1da177e4 3529 }
076e6acb 3530
1da177e4
LT
3531 /*
3532 * Note: this black magic still works with
3533 * large sector sizes (non-512) only because:
3534 * - we increased the buffer size originally
3535 * by 1 sector giving us enough extra space
3536 * for the second read;
3537 * - the log start is guaranteed to be sector
3538 * aligned;
3539 * - we read the log end (LR header start)
3540 * _first_, then the log start (LR header end)
3541 * - order is important.
3542 */
44396476
DC
3543 error = xlog_bread_offset(log, 0,
3544 bblks - split_bblks, hbp,
3545 offset + BBTOB(split_bblks));
076e6acb
CH
3546 if (error)
3547 goto bread_err2;
1da177e4
LT
3548 }
3549 xlog_unpack_data(rhead, offset, log);
3550 if ((error = xlog_recover_process_data(log, rhash,
3551 rhead, offset, pass)))
3552 goto bread_err2;
3553 blk_no += bblks;
3554 }
3555
3556 ASSERT(blk_no >= log->l_logBBsize);
3557 blk_no -= log->l_logBBsize;
3558
3559 /* read first part of physical log */
3560 while (blk_no < head_blk) {
076e6acb
CH
3561 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3562 if (error)
1da177e4 3563 goto bread_err2;
076e6acb 3564
1da177e4
LT
3565 rhead = (xlog_rec_header_t *)offset;
3566 error = xlog_valid_rec_header(log, rhead, blk_no);
3567 if (error)
3568 goto bread_err2;
076e6acb 3569
b53e675d 3570 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3571 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3572 &offset);
3573 if (error)
1da177e4 3574 goto bread_err2;
076e6acb 3575
1da177e4
LT
3576 xlog_unpack_data(rhead, offset, log);
3577 if ((error = xlog_recover_process_data(log, rhash,
3578 rhead, offset, pass)))
3579 goto bread_err2;
3580 blk_no += bblks + hblks;
3581 }
3582 }
3583
3584 bread_err2:
3585 xlog_put_bp(dbp);
3586 bread_err1:
3587 xlog_put_bp(hbp);
3588 return error;
3589}
3590
3591/*
3592 * Do the recovery of the log. We actually do this in two phases.
3593 * The two passes are necessary in order to implement the function
3594 * of cancelling a record written into the log. The first pass
3595 * determines those things which have been cancelled, and the
3596 * second pass replays log items normally except for those which
3597 * have been cancelled. The handling of the replay and cancellations
3598 * takes place in the log item type specific routines.
3599 *
3600 * The table of items which have cancel records in the log is allocated
3601 * and freed at this level, since only here do we know when all of
3602 * the log recovery has been completed.
3603 */
3604STATIC int
3605xlog_do_log_recovery(
9a8d2fdb 3606 struct xlog *log,
1da177e4
LT
3607 xfs_daddr_t head_blk,
3608 xfs_daddr_t tail_blk)
3609{
d5689eaa 3610 int error, i;
1da177e4
LT
3611
3612 ASSERT(head_blk != tail_blk);
3613
3614 /*
3615 * First do a pass to find all of the cancelled buf log items.
3616 * Store them in the buf_cancel_table for use in the second pass.
3617 */
d5689eaa
CH
3618 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3619 sizeof(struct list_head),
1da177e4 3620 KM_SLEEP);
d5689eaa
CH
3621 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3622 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3623
1da177e4
LT
3624 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3625 XLOG_RECOVER_PASS1);
3626 if (error != 0) {
f0e2d93c 3627 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3628 log->l_buf_cancel_table = NULL;
3629 return error;
3630 }
3631 /*
3632 * Then do a second pass to actually recover the items in the log.
3633 * When it is complete free the table of buf cancel items.
3634 */
3635 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3636 XLOG_RECOVER_PASS2);
3637#ifdef DEBUG
6d192a9b 3638 if (!error) {
1da177e4
LT
3639 int i;
3640
3641 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 3642 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
3643 }
3644#endif /* DEBUG */
3645
f0e2d93c 3646 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3647 log->l_buf_cancel_table = NULL;
3648
3649 return error;
3650}
3651
3652/*
3653 * Do the actual recovery
3654 */
3655STATIC int
3656xlog_do_recover(
9a8d2fdb 3657 struct xlog *log,
1da177e4
LT
3658 xfs_daddr_t head_blk,
3659 xfs_daddr_t tail_blk)
3660{
3661 int error;
3662 xfs_buf_t *bp;
3663 xfs_sb_t *sbp;
3664
3665 /*
3666 * First replay the images in the log.
3667 */
3668 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 3669 if (error)
1da177e4 3670 return error;
1da177e4
LT
3671
3672 /*
3673 * If IO errors happened during recovery, bail out.
3674 */
3675 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3676 return (EIO);
3677 }
3678
3679 /*
3680 * We now update the tail_lsn since much of the recovery has completed
3681 * and there may be space available to use. If there were no extent
3682 * or iunlinks, we can free up the entire log and set the tail_lsn to
3683 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3684 * lsn of the last known good LR on disk. If there are extent frees
3685 * or iunlinks they will have some entries in the AIL; so we look at
3686 * the AIL to determine how to set the tail_lsn.
3687 */
3688 xlog_assign_tail_lsn(log->l_mp);
3689
3690 /*
3691 * Now that we've finished replaying all buffer and inode
3692 * updates, re-read in the superblock.
3693 */
3694 bp = xfs_getsb(log->l_mp, 0);
3695 XFS_BUF_UNDONE(bp);
bebf963f 3696 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 3697 XFS_BUF_READ(bp);
bebf963f 3698 XFS_BUF_UNASYNC(bp);
1da177e4 3699 xfsbdstrat(log->l_mp, bp);
1a1a3e97 3700 error = xfs_buf_iowait(bp);
d64e31a2 3701 if (error) {
901796af 3702 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
3703 ASSERT(0);
3704 xfs_buf_relse(bp);
3705 return error;
3706 }
3707
3708 /* Convert superblock from on-disk format */
3709 sbp = &log->l_mp->m_sb;
6bd92a23 3710 xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
1da177e4 3711 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3712 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3713 xfs_buf_relse(bp);
3714
5478eead
LM
3715 /* We've re-read the superblock so re-initialize per-cpu counters */
3716 xfs_icsb_reinit_counters(log->l_mp);
3717
1da177e4
LT
3718 xlog_recover_check_summary(log);
3719
3720 /* Normal transactions can now occur */
3721 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3722 return 0;
3723}
3724
3725/*
3726 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3727 *
3728 * Return error or zero.
3729 */
3730int
3731xlog_recover(
9a8d2fdb 3732 struct xlog *log)
1da177e4
LT
3733{
3734 xfs_daddr_t head_blk, tail_blk;
3735 int error;
3736
3737 /* find the tail of the log */
65be6054 3738 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3739 return error;
3740
3741 if (tail_blk != head_blk) {
3742 /* There used to be a comment here:
3743 *
3744 * disallow recovery on read-only mounts. note -- mount
3745 * checks for ENOSPC and turns it into an intelligent
3746 * error message.
3747 * ...but this is no longer true. Now, unless you specify
3748 * NORECOVERY (in which case this function would never be
3749 * called), we just go ahead and recover. We do this all
3750 * under the vfs layer, so we can get away with it unless
3751 * the device itself is read-only, in which case we fail.
3752 */
3a02ee18 3753 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3754 return error;
3755 }
3756
a0fa2b67
DC
3757 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3758 log->l_mp->m_logname ? log->l_mp->m_logname
3759 : "internal");
1da177e4
LT
3760
3761 error = xlog_do_recover(log, head_blk, tail_blk);
3762 log->l_flags |= XLOG_RECOVERY_NEEDED;
3763 }
3764 return error;
3765}
3766
3767/*
3768 * In the first part of recovery we replay inodes and buffers and build
3769 * up the list of extent free items which need to be processed. Here
3770 * we process the extent free items and clean up the on disk unlinked
3771 * inode lists. This is separated from the first part of recovery so
3772 * that the root and real-time bitmap inodes can be read in from disk in
3773 * between the two stages. This is necessary so that we can free space
3774 * in the real-time portion of the file system.
3775 */
3776int
3777xlog_recover_finish(
9a8d2fdb 3778 struct xlog *log)
1da177e4
LT
3779{
3780 /*
3781 * Now we're ready to do the transactions needed for the
3782 * rest of recovery. Start with completing all the extent
3783 * free intent records and then process the unlinked inode
3784 * lists. At this point, we essentially run in normal mode
3785 * except that we're still performing recovery actions
3786 * rather than accepting new requests.
3787 */
3788 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3789 int error;
3790 error = xlog_recover_process_efis(log);
3791 if (error) {
a0fa2b67 3792 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
3793 return error;
3794 }
1da177e4
LT
3795 /*
3796 * Sync the log to get all the EFIs out of the AIL.
3797 * This isn't absolutely necessary, but it helps in
3798 * case the unlink transactions would have problems
3799 * pushing the EFIs out of the way.
3800 */
a14a348b 3801 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3802
4249023a 3803 xlog_recover_process_iunlinks(log);
1da177e4
LT
3804
3805 xlog_recover_check_summary(log);
3806
a0fa2b67
DC
3807 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3808 log->l_mp->m_logname ? log->l_mp->m_logname
3809 : "internal");
1da177e4
LT
3810 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3811 } else {
a0fa2b67 3812 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
3813 }
3814 return 0;
3815}
3816
3817
3818#if defined(DEBUG)
3819/*
3820 * Read all of the agf and agi counters and check that they
3821 * are consistent with the superblock counters.
3822 */
3823void
3824xlog_recover_check_summary(
9a8d2fdb 3825 struct xlog *log)
1da177e4
LT
3826{
3827 xfs_mount_t *mp;
3828 xfs_agf_t *agfp;
1da177e4
LT
3829 xfs_buf_t *agfbp;
3830 xfs_buf_t *agibp;
1da177e4
LT
3831 xfs_agnumber_t agno;
3832 __uint64_t freeblks;
3833 __uint64_t itotal;
3834 __uint64_t ifree;
5e1be0fb 3835 int error;
1da177e4
LT
3836
3837 mp = log->l_mp;
3838
3839 freeblks = 0LL;
3840 itotal = 0LL;
3841 ifree = 0LL;
3842 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
3843 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3844 if (error) {
a0fa2b67
DC
3845 xfs_alert(mp, "%s agf read failed agno %d error %d",
3846 __func__, agno, error);
4805621a
FCH
3847 } else {
3848 agfp = XFS_BUF_TO_AGF(agfbp);
3849 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3850 be32_to_cpu(agfp->agf_flcount);
3851 xfs_buf_relse(agfbp);
1da177e4 3852 }
1da177e4 3853
5e1be0fb 3854 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
3855 if (error) {
3856 xfs_alert(mp, "%s agi read failed agno %d error %d",
3857 __func__, agno, error);
3858 } else {
5e1be0fb 3859 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3860
5e1be0fb
CH
3861 itotal += be32_to_cpu(agi->agi_count);
3862 ifree += be32_to_cpu(agi->agi_freecount);
3863 xfs_buf_relse(agibp);
3864 }
1da177e4 3865 }
1da177e4
LT
3866}
3867#endif /* DEBUG */
This page took 0.822939 seconds and 5 git commands to generate.