Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* atof_generic.c - turn a string of digits into a Flonum |
2da5c037 | 2 | Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000, |
ebd1c875 | 3 | 2001, 2003, 2005, 2006 Free Software Foundation, Inc. |
252b5132 RH |
4 | |
5 | This file is part of GAS, the GNU Assembler. | |
6 | ||
7 | GAS is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2, or (at your option) | |
10 | any later version. | |
11 | ||
12 | GAS is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
e49bc11e | 18 | along with GAS; see the file COPYING. If not, write to the Free |
4b4da160 NC |
19 | Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA |
20 | 02110-1301, USA. */ | |
252b5132 | 21 | |
252b5132 | 22 | #include "as.h" |
3882b010 | 23 | #include "safe-ctype.h" |
252b5132 RH |
24 | |
25 | #ifndef FALSE | |
26 | #define FALSE (0) | |
27 | #endif | |
28 | #ifndef TRUE | |
29 | #define TRUE (1) | |
30 | #endif | |
31 | ||
32 | #ifdef TRACE | |
73ee5e4c | 33 | static void flonum_print (const FLONUM_TYPE *); |
252b5132 RH |
34 | #endif |
35 | ||
36 | #define ASSUME_DECIMAL_MARK_IS_DOT | |
37 | ||
38 | /***********************************************************************\ | |
39 | * * | |
40 | * Given a string of decimal digits , with optional decimal * | |
41 | * mark and optional decimal exponent (place value) of the * | |
42 | * lowest_order decimal digit: produce a floating point * | |
43 | * number. The number is 'generic' floating point: our * | |
44 | * caller will encode it for a specific machine architecture. * | |
45 | * * | |
46 | * Assumptions * | |
47 | * uses base (radix) 2 * | |
48 | * this machine uses 2's complement binary integers * | |
49 | * target flonums use " " " " * | |
50 | * target flonums exponents fit in a long * | |
51 | * * | |
52 | \***********************************************************************/ | |
53 | ||
54 | /* | |
55 | ||
56 | Syntax: | |
57 | ||
58 | <flonum> ::= <optional-sign> <decimal-number> <optional-exponent> | |
59 | <optional-sign> ::= '+' | '-' | {empty} | |
60 | <decimal-number> ::= <integer> | |
61 | | <integer> <radix-character> | |
62 | | <integer> <radix-character> <integer> | |
63 | | <radix-character> <integer> | |
64 | ||
65 | <optional-exponent> ::= {empty} | |
66 | | <exponent-character> <optional-sign> <integer> | |
67 | ||
68 | <integer> ::= <digit> | <digit> <integer> | |
69 | <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | |
70 | <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"} | |
71 | <radix-character> ::= {one character from "string_of_decimal_marks"} | |
72 | ||
73 | */ | |
74 | ||
75 | int | |
73ee5e4c KH |
76 | atof_generic (/* return pointer to just AFTER number we read. */ |
77 | char **address_of_string_pointer, | |
78 | /* At most one per number. */ | |
79 | const char *string_of_decimal_marks, | |
80 | const char *string_of_decimal_exponent_marks, | |
81 | FLONUM_TYPE *address_of_generic_floating_point_number) | |
252b5132 | 82 | { |
e49bc11e | 83 | int return_value; /* 0 means OK. */ |
252b5132 RH |
84 | char *first_digit; |
85 | unsigned int number_of_digits_before_decimal; | |
86 | unsigned int number_of_digits_after_decimal; | |
87 | long decimal_exponent; | |
88 | unsigned int number_of_digits_available; | |
89 | char digits_sign_char; | |
90 | ||
91 | /* | |
92 | * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent. | |
93 | * It would be simpler to modify the string, but we don't; just to be nice | |
94 | * to caller. | |
95 | * We need to know how many digits we have, so we can allocate space for | |
96 | * the digits' value. | |
97 | */ | |
98 | ||
99 | char *p; | |
100 | char c; | |
101 | int seen_significant_digit; | |
102 | ||
103 | #ifdef ASSUME_DECIMAL_MARK_IS_DOT | |
104 | assert (string_of_decimal_marks[0] == '.' | |
105 | && string_of_decimal_marks[1] == 0); | |
106 | #define IS_DECIMAL_MARK(c) ((c) == '.') | |
107 | #else | |
108 | #define IS_DECIMAL_MARK(c) (0 != strchr (string_of_decimal_marks, (c))) | |
109 | #endif | |
110 | ||
111 | first_digit = *address_of_string_pointer; | |
112 | c = *first_digit; | |
113 | ||
114 | if (c == '-' || c == '+') | |
115 | { | |
116 | digits_sign_char = c; | |
117 | first_digit++; | |
118 | } | |
119 | else | |
120 | digits_sign_char = '+'; | |
121 | ||
122 | switch (first_digit[0]) | |
123 | { | |
124 | case 'n': | |
125 | case 'N': | |
126 | if (!strncasecmp ("nan", first_digit, 3)) | |
127 | { | |
128 | address_of_generic_floating_point_number->sign = 0; | |
129 | address_of_generic_floating_point_number->exponent = 0; | |
130 | address_of_generic_floating_point_number->leader = | |
131 | address_of_generic_floating_point_number->low; | |
132 | *address_of_string_pointer = first_digit + 3; | |
133 | return 0; | |
134 | } | |
135 | break; | |
136 | ||
137 | case 'i': | |
138 | case 'I': | |
139 | if (!strncasecmp ("inf", first_digit, 3)) | |
140 | { | |
141 | address_of_generic_floating_point_number->sign = | |
142 | digits_sign_char == '+' ? 'P' : 'N'; | |
143 | address_of_generic_floating_point_number->exponent = 0; | |
144 | address_of_generic_floating_point_number->leader = | |
145 | address_of_generic_floating_point_number->low; | |
146 | ||
147 | first_digit += 3; | |
148 | if (!strncasecmp ("inity", first_digit, 5)) | |
149 | first_digit += 5; | |
150 | ||
151 | *address_of_string_pointer = first_digit; | |
152 | ||
153 | return 0; | |
154 | } | |
155 | break; | |
156 | } | |
157 | ||
158 | number_of_digits_before_decimal = 0; | |
159 | number_of_digits_after_decimal = 0; | |
160 | decimal_exponent = 0; | |
161 | seen_significant_digit = 0; | |
162 | for (p = first_digit; | |
163 | (((c = *p) != '\0') | |
164 | && (!c || !IS_DECIMAL_MARK (c)) | |
165 | && (!c || !strchr (string_of_decimal_exponent_marks, c))); | |
166 | p++) | |
167 | { | |
3882b010 | 168 | if (ISDIGIT (c)) |
252b5132 RH |
169 | { |
170 | if (seen_significant_digit || c > '0') | |
171 | { | |
172 | ++number_of_digits_before_decimal; | |
173 | seen_significant_digit = 1; | |
174 | } | |
175 | else | |
176 | { | |
177 | first_digit++; | |
178 | } | |
179 | } | |
180 | else | |
181 | { | |
e49bc11e | 182 | break; /* p -> char after pre-decimal digits. */ |
252b5132 | 183 | } |
e49bc11e | 184 | } /* For each digit before decimal mark. */ |
252b5132 RH |
185 | |
186 | #ifndef OLD_FLOAT_READS | |
187 | /* Ignore trailing 0's after the decimal point. The original code here | |
188 | * (ifdef'd out) does not do this, and numbers like | |
189 | * 4.29496729600000000000e+09 (2**31) | |
190 | * come out inexact for some reason related to length of the digit | |
191 | * string. | |
192 | */ | |
193 | if (c && IS_DECIMAL_MARK (c)) | |
194 | { | |
195 | unsigned int zeros = 0; /* Length of current string of zeros */ | |
196 | ||
3882b010 | 197 | for (p++; (c = *p) && ISDIGIT (c); p++) |
252b5132 RH |
198 | { |
199 | if (c == '0') | |
200 | { | |
201 | zeros++; | |
202 | } | |
203 | else | |
204 | { | |
205 | number_of_digits_after_decimal += 1 + zeros; | |
206 | zeros = 0; | |
207 | } | |
208 | } | |
209 | } | |
210 | #else | |
211 | if (c && IS_DECIMAL_MARK (c)) | |
212 | { | |
213 | for (p++; | |
214 | (((c = *p) != '\0') | |
215 | && (!c || !strchr (string_of_decimal_exponent_marks, c))); | |
216 | p++) | |
217 | { | |
3882b010 | 218 | if (ISDIGIT (c)) |
252b5132 | 219 | { |
e49bc11e | 220 | /* This may be retracted below. */ |
252b5132 RH |
221 | number_of_digits_after_decimal++; |
222 | ||
223 | if ( /* seen_significant_digit || */ c > '0') | |
224 | { | |
225 | seen_significant_digit = TRUE; | |
226 | } | |
227 | } | |
228 | else | |
229 | { | |
230 | if (!seen_significant_digit) | |
231 | { | |
232 | number_of_digits_after_decimal = 0; | |
233 | } | |
234 | break; | |
235 | } | |
e49bc11e | 236 | } /* For each digit after decimal mark. */ |
252b5132 RH |
237 | } |
238 | ||
239 | while (number_of_digits_after_decimal | |
240 | && first_digit[number_of_digits_before_decimal | |
241 | + number_of_digits_after_decimal] == '0') | |
242 | --number_of_digits_after_decimal; | |
243 | #endif | |
244 | ||
245 | if (flag_m68k_mri) | |
246 | { | |
247 | while (c == '_') | |
248 | c = *++p; | |
249 | } | |
250 | if (c && strchr (string_of_decimal_exponent_marks, c)) | |
251 | { | |
252 | char digits_exponent_sign_char; | |
253 | ||
254 | c = *++p; | |
255 | if (flag_m68k_mri) | |
256 | { | |
257 | while (c == '_') | |
258 | c = *++p; | |
259 | } | |
260 | if (c && strchr ("+-", c)) | |
261 | { | |
262 | digits_exponent_sign_char = c; | |
263 | c = *++p; | |
264 | } | |
265 | else | |
266 | { | |
267 | digits_exponent_sign_char = '+'; | |
268 | } | |
269 | ||
270 | for (; (c); c = *++p) | |
271 | { | |
3882b010 | 272 | if (ISDIGIT (c)) |
252b5132 RH |
273 | { |
274 | decimal_exponent = decimal_exponent * 10 + c - '0'; | |
275 | /* | |
276 | * BUG! If we overflow here, we lose! | |
277 | */ | |
278 | } | |
279 | else | |
280 | { | |
281 | break; | |
282 | } | |
283 | } | |
284 | ||
285 | if (digits_exponent_sign_char == '-') | |
286 | { | |
287 | decimal_exponent = -decimal_exponent; | |
288 | } | |
289 | } | |
290 | ||
291 | *address_of_string_pointer = p; | |
292 | ||
252b5132 RH |
293 | number_of_digits_available = |
294 | number_of_digits_before_decimal + number_of_digits_after_decimal; | |
295 | return_value = 0; | |
296 | if (number_of_digits_available == 0) | |
297 | { | |
298 | address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */ | |
299 | address_of_generic_floating_point_number->leader | |
300 | = -1 + address_of_generic_floating_point_number->low; | |
301 | address_of_generic_floating_point_number->sign = digits_sign_char; | |
302 | /* We have just concocted (+/-)0.0E0 */ | |
303 | ||
304 | } | |
305 | else | |
306 | { | |
e49bc11e | 307 | int count; /* Number of useful digits left to scan. */ |
252b5132 RH |
308 | |
309 | LITTLENUM_TYPE *digits_binary_low; | |
310 | unsigned int precision; | |
311 | unsigned int maximum_useful_digits; | |
312 | unsigned int number_of_digits_to_use; | |
313 | unsigned int more_than_enough_bits_for_digits; | |
314 | unsigned int more_than_enough_littlenums_for_digits; | |
315 | unsigned int size_of_digits_in_littlenums; | |
316 | unsigned int size_of_digits_in_chars; | |
317 | FLONUM_TYPE power_of_10_flonum; | |
318 | FLONUM_TYPE digits_flonum; | |
319 | ||
320 | precision = (address_of_generic_floating_point_number->high | |
321 | - address_of_generic_floating_point_number->low | |
e49bc11e | 322 | + 1); /* Number of destination littlenums. */ |
252b5132 RH |
323 | |
324 | /* Includes guard bits (two littlenums worth) */ | |
252b5132 RH |
325 | maximum_useful_digits = (((precision - 2)) |
326 | * ( (LITTLENUM_NUMBER_OF_BITS)) | |
327 | * 1000000 / 3321928) | |
e49bc11e | 328 | + 2; /* 2 :: guard digits. */ |
252b5132 RH |
329 | |
330 | if (number_of_digits_available > maximum_useful_digits) | |
331 | { | |
332 | number_of_digits_to_use = maximum_useful_digits; | |
333 | } | |
334 | else | |
335 | { | |
336 | number_of_digits_to_use = number_of_digits_available; | |
337 | } | |
338 | ||
339 | /* Cast these to SIGNED LONG first, otherwise, on systems with | |
340 | LONG wider than INT (such as Alpha OSF/1), unsignedness may | |
341 | cause unexpected results. */ | |
342 | decimal_exponent += ((long) number_of_digits_before_decimal | |
343 | - (long) number_of_digits_to_use); | |
344 | ||
252b5132 RH |
345 | more_than_enough_bits_for_digits |
346 | = (number_of_digits_to_use * 3321928 / 1000000 + 1); | |
252b5132 RH |
347 | |
348 | more_than_enough_littlenums_for_digits | |
349 | = (more_than_enough_bits_for_digits | |
350 | / LITTLENUM_NUMBER_OF_BITS) | |
351 | + 2; | |
352 | ||
353 | /* Compute (digits) part. In "12.34E56" this is the "1234" part. | |
354 | Arithmetic is exact here. If no digits are supplied then this | |
355 | part is a 0 valued binary integer. Allocate room to build up | |
356 | the binary number as littlenums. We want this memory to | |
357 | disappear when we leave this function. Assume no alignment | |
358 | problems => (room for n objects) == n * (room for 1 | |
359 | object). */ | |
360 | ||
361 | size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits; | |
362 | size_of_digits_in_chars = size_of_digits_in_littlenums | |
363 | * sizeof (LITTLENUM_TYPE); | |
364 | ||
365 | digits_binary_low = (LITTLENUM_TYPE *) | |
366 | alloca (size_of_digits_in_chars); | |
367 | ||
368 | memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars); | |
369 | ||
e49bc11e | 370 | /* Digits_binary_low[] is allocated and zeroed. */ |
252b5132 RH |
371 | |
372 | /* | |
373 | * Parse the decimal digits as if * digits_low was in the units position. | |
374 | * Emit a binary number into digits_binary_low[]. | |
375 | * | |
376 | * Use a large-precision version of: | |
377 | * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit | |
378 | */ | |
379 | ||
380 | for (p = first_digit, count = number_of_digits_to_use; count; p++, --count) | |
381 | { | |
382 | c = *p; | |
3882b010 | 383 | if (ISDIGIT (c)) |
252b5132 RH |
384 | { |
385 | /* | |
386 | * Multiply by 10. Assume can never overflow. | |
387 | * Add this digit to digits_binary_low[]. | |
388 | */ | |
389 | ||
390 | long carry; | |
391 | LITTLENUM_TYPE *littlenum_pointer; | |
392 | LITTLENUM_TYPE *littlenum_limit; | |
393 | ||
394 | littlenum_limit = digits_binary_low | |
395 | + more_than_enough_littlenums_for_digits | |
396 | - 1; | |
397 | ||
398 | carry = c - '0'; /* char -> binary */ | |
399 | ||
400 | for (littlenum_pointer = digits_binary_low; | |
401 | littlenum_pointer <= littlenum_limit; | |
402 | littlenum_pointer++) | |
403 | { | |
404 | long work; | |
405 | ||
406 | work = carry + 10 * (long) (*littlenum_pointer); | |
407 | *littlenum_pointer = work & LITTLENUM_MASK; | |
408 | carry = work >> LITTLENUM_NUMBER_OF_BITS; | |
409 | } | |
410 | ||
411 | if (carry != 0) | |
412 | { | |
413 | /* | |
414 | * We have a GROSS internal error. | |
415 | * This should never happen. | |
416 | */ | |
0e389e77 | 417 | as_fatal (_("failed sanity check")); |
252b5132 RH |
418 | } |
419 | } | |
420 | else | |
421 | { | |
e49bc11e | 422 | ++count; /* '.' doesn't alter digits used count. */ |
252b5132 RH |
423 | } |
424 | } | |
425 | ||
252b5132 RH |
426 | /* |
427 | * Digits_binary_low[] properly encodes the value of the digits. | |
428 | * Forget about any high-order littlenums that are 0. | |
429 | */ | |
430 | while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0 | |
431 | && size_of_digits_in_littlenums >= 2) | |
432 | size_of_digits_in_littlenums--; | |
433 | ||
434 | digits_flonum.low = digits_binary_low; | |
435 | digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1; | |
436 | digits_flonum.leader = digits_flonum.high; | |
437 | digits_flonum.exponent = 0; | |
438 | /* | |
439 | * The value of digits_flonum . sign should not be important. | |
440 | * We have already decided the output's sign. | |
441 | * We trust that the sign won't influence the other parts of the number! | |
442 | * So we give it a value for these reasons: | |
443 | * (1) courtesy to humans reading/debugging | |
444 | * these numbers so they don't get excited about strange values | |
445 | * (2) in future there may be more meaning attached to sign, | |
446 | * and what was | |
447 | * harmless noise may become disruptive, ill-conditioned (or worse) | |
448 | * input. | |
449 | */ | |
450 | digits_flonum.sign = '+'; | |
451 | ||
452 | { | |
453 | /* | |
454 | * Compute the mantssa (& exponent) of the power of 10. | |
47eebc20 | 455 | * If successful, then multiply the power of 10 by the digits |
252b5132 RH |
456 | * giving return_binary_mantissa and return_binary_exponent. |
457 | */ | |
458 | ||
459 | LITTLENUM_TYPE *power_binary_low; | |
460 | int decimal_exponent_is_negative; | |
e49bc11e | 461 | /* This refers to the "-56" in "12.34E-56". */ |
252b5132 RH |
462 | /* FALSE: decimal_exponent is positive (or 0) */ |
463 | /* TRUE: decimal_exponent is negative */ | |
464 | FLONUM_TYPE temporary_flonum; | |
465 | LITTLENUM_TYPE *temporary_binary_low; | |
466 | unsigned int size_of_power_in_littlenums; | |
467 | unsigned int size_of_power_in_chars; | |
468 | ||
469 | size_of_power_in_littlenums = precision; | |
e49bc11e | 470 | /* Precision has a built-in fudge factor so we get a few guard bits. */ |
252b5132 RH |
471 | |
472 | decimal_exponent_is_negative = decimal_exponent < 0; | |
473 | if (decimal_exponent_is_negative) | |
474 | { | |
475 | decimal_exponent = -decimal_exponent; | |
476 | } | |
477 | ||
e49bc11e | 478 | /* From now on: the decimal exponent is > 0. Its sign is separate. */ |
252b5132 RH |
479 | |
480 | size_of_power_in_chars = size_of_power_in_littlenums | |
481 | * sizeof (LITTLENUM_TYPE) + 2; | |
482 | ||
483 | power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars); | |
484 | temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars); | |
485 | memset ((char *) power_binary_low, '\0', size_of_power_in_chars); | |
486 | *power_binary_low = 1; | |
487 | power_of_10_flonum.exponent = 0; | |
488 | power_of_10_flonum.low = power_binary_low; | |
489 | power_of_10_flonum.leader = power_binary_low; | |
490 | power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1; | |
491 | power_of_10_flonum.sign = '+'; | |
492 | temporary_flonum.low = temporary_binary_low; | |
493 | temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1; | |
494 | /* | |
495 | * (power) == 1. | |
496 | * Space for temporary_flonum allocated. | |
497 | */ | |
498 | ||
499 | /* | |
500 | * ... | |
501 | * | |
502 | * WHILE more bits | |
503 | * DO find next bit (with place value) | |
504 | * multiply into power mantissa | |
505 | * OD | |
506 | */ | |
507 | { | |
508 | int place_number_limit; | |
509 | /* Any 10^(2^n) whose "n" exceeds this */ | |
510 | /* value will fall off the end of */ | |
e49bc11e | 511 | /* flonum_XXXX_powers_of_ten[]. */ |
252b5132 RH |
512 | int place_number; |
513 | const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */ | |
514 | ||
515 | place_number_limit = table_size_of_flonum_powers_of_ten; | |
516 | ||
517 | multiplicand = (decimal_exponent_is_negative | |
518 | ? flonum_negative_powers_of_ten | |
519 | : flonum_positive_powers_of_ten); | |
520 | ||
e49bc11e KH |
521 | for (place_number = 1;/* Place value of this bit of exponent. */ |
522 | decimal_exponent;/* Quit when no more 1 bits in exponent. */ | |
252b5132 RH |
523 | decimal_exponent >>= 1, place_number++) |
524 | { | |
525 | if (decimal_exponent & 1) | |
526 | { | |
527 | if (place_number > place_number_limit) | |
528 | { | |
529 | /* The decimal exponent has a magnitude so great | |
530 | that our tables can't help us fragment it. | |
531 | Although this routine is in error because it | |
532 | can't imagine a number that big, signal an | |
533 | error as if it is the user's fault for | |
534 | presenting such a big number. */ | |
535 | return_value = ERROR_EXPONENT_OVERFLOW; | |
536 | /* quit out of loop gracefully */ | |
537 | decimal_exponent = 0; | |
538 | } | |
539 | else | |
540 | { | |
541 | #ifdef TRACE | |
542 | printf ("before multiply, place_number = %d., power_of_10_flonum:\n", | |
543 | place_number); | |
544 | ||
545 | flonum_print (&power_of_10_flonum); | |
546 | (void) putchar ('\n'); | |
547 | #endif | |
548 | #ifdef TRACE | |
549 | printf ("multiplier:\n"); | |
550 | flonum_print (multiplicand + place_number); | |
551 | (void) putchar ('\n'); | |
552 | #endif | |
553 | flonum_multip (multiplicand + place_number, | |
554 | &power_of_10_flonum, &temporary_flonum); | |
555 | #ifdef TRACE | |
556 | printf ("after multiply:\n"); | |
557 | flonum_print (&temporary_flonum); | |
558 | (void) putchar ('\n'); | |
559 | #endif | |
560 | flonum_copy (&temporary_flonum, &power_of_10_flonum); | |
561 | #ifdef TRACE | |
562 | printf ("after copy:\n"); | |
563 | flonum_print (&power_of_10_flonum); | |
564 | (void) putchar ('\n'); | |
565 | #endif | |
566 | } /* If this bit of decimal_exponent was computable.*/ | |
e49bc11e | 567 | } /* If this bit of decimal_exponent was set. */ |
252b5132 RH |
568 | } /* For each bit of binary representation of exponent */ |
569 | #ifdef TRACE | |
570 | printf ("after computing power_of_10_flonum:\n"); | |
571 | flonum_print (&power_of_10_flonum); | |
572 | (void) putchar ('\n'); | |
573 | #endif | |
574 | } | |
575 | ||
576 | } | |
577 | ||
578 | /* | |
579 | * power_of_10_flonum is power of ten in binary (mantissa) , (exponent). | |
580 | * It may be the number 1, in which case we don't NEED to multiply. | |
581 | * | |
582 | * Multiply (decimal digits) by power_of_10_flonum. | |
583 | */ | |
584 | ||
585 | flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number); | |
e49bc11e | 586 | /* Assert sign of the number we made is '+'. */ |
252b5132 RH |
587 | address_of_generic_floating_point_number->sign = digits_sign_char; |
588 | ||
589 | } | |
590 | return return_value; | |
591 | } | |
592 | ||
593 | #ifdef TRACE | |
594 | static void | |
595 | flonum_print (f) | |
596 | const FLONUM_TYPE *f; | |
597 | { | |
598 | LITTLENUM_TYPE *lp; | |
599 | char littlenum_format[10]; | |
600 | sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2); | |
601 | #define print_littlenum(LP) (printf (littlenum_format, LP)) | |
602 | printf ("flonum @%p %c e%ld", f, f->sign, f->exponent); | |
603 | if (f->low < f->high) | |
604 | for (lp = f->high; lp >= f->low; lp--) | |
605 | print_littlenum (*lp); | |
606 | else | |
607 | for (lp = f->low; lp <= f->high; lp++) | |
608 | print_littlenum (*lp); | |
609 | printf ("\n"); | |
610 | fflush (stdout); | |
611 | } | |
612 | #endif | |
613 | ||
614 | /* end of atof_generic.c */ |