Add gcc-4.9 libgomp symbols requiring --plt-thread-safe for power7
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
4b95cf5c 3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
58static const aarch64_feature_set aarch64_arch_any = AARCH64_ANY;
59static const aarch64_feature_set aarch64_arch_none = AARCH64_ARCH_NONE;
60
61#ifdef OBJ_ELF
62/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
63static symbolS *GOT_symbol;
cec5225b 64
69091a2c
YZ
65/* Which ABI to use. */
66enum aarch64_abi_type
67{
68 AARCH64_ABI_LP64 = 0,
69 AARCH64_ABI_ILP32 = 1
70};
71
72/* AArch64 ABI for the output file. */
73static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
74
cec5225b
YZ
75/* When non-zero, program to a 32-bit model, in which the C data types
76 int, long and all pointer types are 32-bit objects (ILP32); or to a
77 64-bit model, in which the C int type is 32-bits but the C long type
78 and all pointer types are 64-bit objects (LP64). */
69091a2c 79#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
80#endif
81
82enum neon_el_type
83{
84 NT_invtype = -1,
85 NT_b,
86 NT_h,
87 NT_s,
88 NT_d,
89 NT_q
90};
91
92/* Bits for DEFINED field in neon_type_el. */
93#define NTA_HASTYPE 1
94#define NTA_HASINDEX 2
95
96struct neon_type_el
97{
98 enum neon_el_type type;
99 unsigned char defined;
100 unsigned width;
101 int64_t index;
102};
103
104#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
105
106struct reloc
107{
108 bfd_reloc_code_real_type type;
109 expressionS exp;
110 int pc_rel;
111 enum aarch64_opnd opnd;
112 uint32_t flags;
113 unsigned need_libopcodes_p : 1;
114};
115
116struct aarch64_instruction
117{
118 /* libopcodes structure for instruction intermediate representation. */
119 aarch64_inst base;
120 /* Record assembly errors found during the parsing. */
121 struct
122 {
123 enum aarch64_operand_error_kind kind;
124 const char *error;
125 } parsing_error;
126 /* The condition that appears in the assembly line. */
127 int cond;
128 /* Relocation information (including the GAS internal fixup). */
129 struct reloc reloc;
130 /* Need to generate an immediate in the literal pool. */
131 unsigned gen_lit_pool : 1;
132};
133
134typedef struct aarch64_instruction aarch64_instruction;
135
136static aarch64_instruction inst;
137
138static bfd_boolean parse_operands (char *, const aarch64_opcode *);
139static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
140
141/* Diagnostics inline function utilites.
142
143 These are lightweight utlities which should only be called by parse_operands
144 and other parsers. GAS processes each assembly line by parsing it against
145 instruction template(s), in the case of multiple templates (for the same
146 mnemonic name), those templates are tried one by one until one succeeds or
147 all fail. An assembly line may fail a few templates before being
148 successfully parsed; an error saved here in most cases is not a user error
149 but an error indicating the current template is not the right template.
150 Therefore it is very important that errors can be saved at a low cost during
151 the parsing; we don't want to slow down the whole parsing by recording
152 non-user errors in detail.
153
154 Remember that the objective is to help GAS pick up the most approapriate
155 error message in the case of multiple templates, e.g. FMOV which has 8
156 templates. */
157
158static inline void
159clear_error (void)
160{
161 inst.parsing_error.kind = AARCH64_OPDE_NIL;
162 inst.parsing_error.error = NULL;
163}
164
165static inline bfd_boolean
166error_p (void)
167{
168 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
169}
170
171static inline const char *
172get_error_message (void)
173{
174 return inst.parsing_error.error;
175}
176
177static inline void
178set_error_message (const char *error)
179{
180 inst.parsing_error.error = error;
181}
182
183static inline enum aarch64_operand_error_kind
184get_error_kind (void)
185{
186 return inst.parsing_error.kind;
187}
188
189static inline void
190set_error_kind (enum aarch64_operand_error_kind kind)
191{
192 inst.parsing_error.kind = kind;
193}
194
195static inline void
196set_error (enum aarch64_operand_error_kind kind, const char *error)
197{
198 inst.parsing_error.kind = kind;
199 inst.parsing_error.error = error;
200}
201
202static inline void
203set_recoverable_error (const char *error)
204{
205 set_error (AARCH64_OPDE_RECOVERABLE, error);
206}
207
208/* Use the DESC field of the corresponding aarch64_operand entry to compose
209 the error message. */
210static inline void
211set_default_error (void)
212{
213 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
214}
215
216static inline void
217set_syntax_error (const char *error)
218{
219 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
220}
221
222static inline void
223set_first_syntax_error (const char *error)
224{
225 if (! error_p ())
226 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
227}
228
229static inline void
230set_fatal_syntax_error (const char *error)
231{
232 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
233}
234\f
235/* Number of littlenums required to hold an extended precision number. */
236#define MAX_LITTLENUMS 6
237
238/* Return value for certain parsers when the parsing fails; those parsers
239 return the information of the parsed result, e.g. register number, on
240 success. */
241#define PARSE_FAIL -1
242
243/* This is an invalid condition code that means no conditional field is
244 present. */
245#define COND_ALWAYS 0x10
246
247typedef struct
248{
249 const char *template;
250 unsigned long value;
251} asm_barrier_opt;
252
253typedef struct
254{
255 const char *template;
256 uint32_t value;
257} asm_nzcv;
258
259struct reloc_entry
260{
261 char *name;
262 bfd_reloc_code_real_type reloc;
263};
264
265/* Structure for a hash table entry for a register. */
266typedef struct
267{
268 const char *name;
269 unsigned char number;
270 unsigned char type;
271 unsigned char builtin;
272} reg_entry;
273
274/* Macros to define the register types and masks for the purpose
275 of parsing. */
276
277#undef AARCH64_REG_TYPES
278#define AARCH64_REG_TYPES \
279 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
280 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
281 BASIC_REG_TYPE(SP_32) /* wsp */ \
282 BASIC_REG_TYPE(SP_64) /* sp */ \
283 BASIC_REG_TYPE(Z_32) /* wzr */ \
284 BASIC_REG_TYPE(Z_64) /* xzr */ \
285 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
286 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
287 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
288 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
289 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
290 BASIC_REG_TYPE(CN) /* c[0-7] */ \
291 BASIC_REG_TYPE(VN) /* v[0-31] */ \
292 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
293 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
294 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
295 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
296 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
298 /* Typecheck: any [BHSDQ]P FP. */ \
299 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
300 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
301 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
302 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
303 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
304 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
305 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
306 /* Any integer register; used for error messages only. */ \
307 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
308 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
309 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
310 /* Pseudo type to mark the end of the enumerator sequence. */ \
311 BASIC_REG_TYPE(MAX)
312
313#undef BASIC_REG_TYPE
314#define BASIC_REG_TYPE(T) REG_TYPE_##T,
315#undef MULTI_REG_TYPE
316#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
317
318/* Register type enumerators. */
319typedef enum
320{
321 /* A list of REG_TYPE_*. */
322 AARCH64_REG_TYPES
323} aarch64_reg_type;
324
325#undef BASIC_REG_TYPE
326#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
327#undef REG_TYPE
328#define REG_TYPE(T) (1 << REG_TYPE_##T)
329#undef MULTI_REG_TYPE
330#define MULTI_REG_TYPE(T,V) V,
331
332/* Values indexed by aarch64_reg_type to assist the type checking. */
333static const unsigned reg_type_masks[] =
334{
335 AARCH64_REG_TYPES
336};
337
338#undef BASIC_REG_TYPE
339#undef REG_TYPE
340#undef MULTI_REG_TYPE
341#undef AARCH64_REG_TYPES
342
343/* Diagnostics used when we don't get a register of the expected type.
344 Note: this has to synchronized with aarch64_reg_type definitions
345 above. */
346static const char *
347get_reg_expected_msg (aarch64_reg_type reg_type)
348{
349 const char *msg;
350
351 switch (reg_type)
352 {
353 case REG_TYPE_R_32:
354 msg = N_("integer 32-bit register expected");
355 break;
356 case REG_TYPE_R_64:
357 msg = N_("integer 64-bit register expected");
358 break;
359 case REG_TYPE_R_N:
360 msg = N_("integer register expected");
361 break;
362 case REG_TYPE_R_Z_SP:
363 msg = N_("integer, zero or SP register expected");
364 break;
365 case REG_TYPE_FP_B:
366 msg = N_("8-bit SIMD scalar register expected");
367 break;
368 case REG_TYPE_FP_H:
369 msg = N_("16-bit SIMD scalar or floating-point half precision "
370 "register expected");
371 break;
372 case REG_TYPE_FP_S:
373 msg = N_("32-bit SIMD scalar or floating-point single precision "
374 "register expected");
375 break;
376 case REG_TYPE_FP_D:
377 msg = N_("64-bit SIMD scalar or floating-point double precision "
378 "register expected");
379 break;
380 case REG_TYPE_FP_Q:
381 msg = N_("128-bit SIMD scalar or floating-point quad precision "
382 "register expected");
383 break;
384 case REG_TYPE_CN:
385 msg = N_("C0 - C15 expected");
386 break;
387 case REG_TYPE_R_Z_BHSDQ_V:
388 msg = N_("register expected");
389 break;
390 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
391 msg = N_("SIMD scalar or floating-point register expected");
392 break;
393 case REG_TYPE_VN: /* any V reg */
394 msg = N_("vector register expected");
395 break;
396 default:
397 as_fatal (_("invalid register type %d"), reg_type);
398 }
399 return msg;
400}
401
402/* Some well known registers that we refer to directly elsewhere. */
403#define REG_SP 31
404
405/* Instructions take 4 bytes in the object file. */
406#define INSN_SIZE 4
407
408/* Define some common error messages. */
409#define BAD_SP _("SP not allowed here")
410
411static struct hash_control *aarch64_ops_hsh;
412static struct hash_control *aarch64_cond_hsh;
413static struct hash_control *aarch64_shift_hsh;
414static struct hash_control *aarch64_sys_regs_hsh;
415static struct hash_control *aarch64_pstatefield_hsh;
416static struct hash_control *aarch64_sys_regs_ic_hsh;
417static struct hash_control *aarch64_sys_regs_dc_hsh;
418static struct hash_control *aarch64_sys_regs_at_hsh;
419static struct hash_control *aarch64_sys_regs_tlbi_hsh;
420static struct hash_control *aarch64_reg_hsh;
421static struct hash_control *aarch64_barrier_opt_hsh;
422static struct hash_control *aarch64_nzcv_hsh;
423static struct hash_control *aarch64_pldop_hsh;
424
425/* Stuff needed to resolve the label ambiguity
426 As:
427 ...
428 label: <insn>
429 may differ from:
430 ...
431 label:
432 <insn> */
433
434static symbolS *last_label_seen;
435
436/* Literal pool structure. Held on a per-section
437 and per-sub-section basis. */
438
439#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
440typedef struct literal_expression
441{
442 expressionS exp;
443 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
444 LITTLENUM_TYPE * bignum;
445} literal_expression;
446
a06ea964
NC
447typedef struct literal_pool
448{
55d9b4c1 449 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
450 unsigned int next_free_entry;
451 unsigned int id;
452 symbolS *symbol;
453 segT section;
454 subsegT sub_section;
455 int size;
456 struct literal_pool *next;
457} literal_pool;
458
459/* Pointer to a linked list of literal pools. */
460static literal_pool *list_of_pools = NULL;
461\f
462/* Pure syntax. */
463
464/* This array holds the chars that always start a comment. If the
465 pre-processor is disabled, these aren't very useful. */
466const char comment_chars[] = "";
467
468/* This array holds the chars that only start a comment at the beginning of
469 a line. If the line seems to have the form '# 123 filename'
470 .line and .file directives will appear in the pre-processed output. */
471/* Note that input_file.c hand checks for '#' at the beginning of the
472 first line of the input file. This is because the compiler outputs
473 #NO_APP at the beginning of its output. */
474/* Also note that comments like this one will always work. */
475const char line_comment_chars[] = "#";
476
477const char line_separator_chars[] = ";";
478
479/* Chars that can be used to separate mant
480 from exp in floating point numbers. */
481const char EXP_CHARS[] = "eE";
482
483/* Chars that mean this number is a floating point constant. */
484/* As in 0f12.456 */
485/* or 0d1.2345e12 */
486
487const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
488
489/* Prefix character that indicates the start of an immediate value. */
490#define is_immediate_prefix(C) ((C) == '#')
491
492/* Separator character handling. */
493
494#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
495
496static inline bfd_boolean
497skip_past_char (char **str, char c)
498{
499 if (**str == c)
500 {
501 (*str)++;
502 return TRUE;
503 }
504 else
505 return FALSE;
506}
507
508#define skip_past_comma(str) skip_past_char (str, ',')
509
510/* Arithmetic expressions (possibly involving symbols). */
511
a06ea964
NC
512static bfd_boolean in_my_get_expression_p = FALSE;
513
514/* Third argument to my_get_expression. */
515#define GE_NO_PREFIX 0
516#define GE_OPT_PREFIX 1
517
518/* Return TRUE if the string pointed by *STR is successfully parsed
519 as an valid expression; *EP will be filled with the information of
520 such an expression. Otherwise return FALSE. */
521
522static bfd_boolean
523my_get_expression (expressionS * ep, char **str, int prefix_mode,
524 int reject_absent)
525{
526 char *save_in;
527 segT seg;
528 int prefix_present_p = 0;
529
530 switch (prefix_mode)
531 {
532 case GE_NO_PREFIX:
533 break;
534 case GE_OPT_PREFIX:
535 if (is_immediate_prefix (**str))
536 {
537 (*str)++;
538 prefix_present_p = 1;
539 }
540 break;
541 default:
542 abort ();
543 }
544
545 memset (ep, 0, sizeof (expressionS));
546
547 save_in = input_line_pointer;
548 input_line_pointer = *str;
549 in_my_get_expression_p = TRUE;
550 seg = expression (ep);
551 in_my_get_expression_p = FALSE;
552
553 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
554 {
555 /* We found a bad expression in md_operand(). */
556 *str = input_line_pointer;
557 input_line_pointer = save_in;
558 if (prefix_present_p && ! error_p ())
559 set_fatal_syntax_error (_("bad expression"));
560 else
561 set_first_syntax_error (_("bad expression"));
562 return FALSE;
563 }
564
565#ifdef OBJ_AOUT
566 if (seg != absolute_section
567 && seg != text_section
568 && seg != data_section
569 && seg != bss_section && seg != undefined_section)
570 {
571 set_syntax_error (_("bad segment"));
572 *str = input_line_pointer;
573 input_line_pointer = save_in;
574 return FALSE;
575 }
576#else
577 (void) seg;
578#endif
579
a06ea964
NC
580 *str = input_line_pointer;
581 input_line_pointer = save_in;
582 return TRUE;
583}
584
585/* Turn a string in input_line_pointer into a floating point constant
586 of type TYPE, and store the appropriate bytes in *LITP. The number
587 of LITTLENUMS emitted is stored in *SIZEP. An error message is
588 returned, or NULL on OK. */
589
590char *
591md_atof (int type, char *litP, int *sizeP)
592{
593 return ieee_md_atof (type, litP, sizeP, target_big_endian);
594}
595
596/* We handle all bad expressions here, so that we can report the faulty
597 instruction in the error message. */
598void
599md_operand (expressionS * exp)
600{
601 if (in_my_get_expression_p)
602 exp->X_op = O_illegal;
603}
604
605/* Immediate values. */
606
607/* Errors may be set multiple times during parsing or bit encoding
608 (particularly in the Neon bits), but usually the earliest error which is set
609 will be the most meaningful. Avoid overwriting it with later (cascading)
610 errors by calling this function. */
611
612static void
613first_error (const char *error)
614{
615 if (! error_p ())
616 set_syntax_error (error);
617}
618
619/* Similiar to first_error, but this function accepts formatted error
620 message. */
621static void
622first_error_fmt (const char *format, ...)
623{
624 va_list args;
625 enum
626 { size = 100 };
627 /* N.B. this single buffer will not cause error messages for different
628 instructions to pollute each other; this is because at the end of
629 processing of each assembly line, error message if any will be
630 collected by as_bad. */
631 static char buffer[size];
632
633 if (! error_p ())
634 {
3e0baa28 635 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
636 va_start (args, format);
637 ret = vsnprintf (buffer, size, format, args);
638 know (ret <= size - 1 && ret >= 0);
639 va_end (args);
640 set_syntax_error (buffer);
641 }
642}
643
644/* Register parsing. */
645
646/* Generic register parser which is called by other specialized
647 register parsers.
648 CCP points to what should be the beginning of a register name.
649 If it is indeed a valid register name, advance CCP over it and
650 return the reg_entry structure; otherwise return NULL.
651 It does not issue diagnostics. */
652
653static reg_entry *
654parse_reg (char **ccp)
655{
656 char *start = *ccp;
657 char *p;
658 reg_entry *reg;
659
660#ifdef REGISTER_PREFIX
661 if (*start != REGISTER_PREFIX)
662 return NULL;
663 start++;
664#endif
665
666 p = start;
667 if (!ISALPHA (*p) || !is_name_beginner (*p))
668 return NULL;
669
670 do
671 p++;
672 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
673
674 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
675
676 if (!reg)
677 return NULL;
678
679 *ccp = p;
680 return reg;
681}
682
683/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
684 return FALSE. */
685static bfd_boolean
686aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
687{
688 if (reg->type == type)
689 return TRUE;
690
691 switch (type)
692 {
693 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
694 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
695 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
696 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
697 case REG_TYPE_VN: /* Vector register. */
698 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
699 return ((reg_type_masks[reg->type] & reg_type_masks[type])
700 == reg_type_masks[reg->type]);
701 default:
702 as_fatal ("unhandled type %d", type);
703 abort ();
704 }
705}
706
707/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
708 Return the register number otherwise. *ISREG32 is set to one if the
709 register is 32-bit wide; *ISREGZERO is set to one if the register is
710 of type Z_32 or Z_64.
711 Note that this function does not issue any diagnostics. */
712
713static int
714aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
715 int *isreg32, int *isregzero)
716{
717 char *str = *ccp;
718 const reg_entry *reg = parse_reg (&str);
719
720 if (reg == NULL)
721 return PARSE_FAIL;
722
723 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
724 return PARSE_FAIL;
725
726 switch (reg->type)
727 {
728 case REG_TYPE_SP_32:
729 case REG_TYPE_SP_64:
730 if (reject_sp)
731 return PARSE_FAIL;
732 *isreg32 = reg->type == REG_TYPE_SP_32;
733 *isregzero = 0;
734 break;
735 case REG_TYPE_R_32:
736 case REG_TYPE_R_64:
737 *isreg32 = reg->type == REG_TYPE_R_32;
738 *isregzero = 0;
739 break;
740 case REG_TYPE_Z_32:
741 case REG_TYPE_Z_64:
742 if (reject_rz)
743 return PARSE_FAIL;
744 *isreg32 = reg->type == REG_TYPE_Z_32;
745 *isregzero = 1;
746 break;
747 default:
748 return PARSE_FAIL;
749 }
750
751 *ccp = str;
752
753 return reg->number;
754}
755
756/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
757 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
758 otherwise return FALSE.
759
760 Accept only one occurrence of:
761 8b 16b 4h 8h 2s 4s 1d 2d
762 b h s d q */
763static bfd_boolean
764parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
765{
766 char *ptr = *str;
767 unsigned width;
768 unsigned element_size;
769 enum neon_el_type type;
770
771 /* skip '.' */
772 ptr++;
773
774 if (!ISDIGIT (*ptr))
775 {
776 width = 0;
777 goto elt_size;
778 }
779 width = strtoul (ptr, &ptr, 10);
780 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
781 {
782 first_error_fmt (_("bad size %d in vector width specifier"), width);
783 return FALSE;
784 }
785
786elt_size:
787 switch (TOLOWER (*ptr))
788 {
789 case 'b':
790 type = NT_b;
791 element_size = 8;
792 break;
793 case 'h':
794 type = NT_h;
795 element_size = 16;
796 break;
797 case 's':
798 type = NT_s;
799 element_size = 32;
800 break;
801 case 'd':
802 type = NT_d;
803 element_size = 64;
804 break;
805 case 'q':
806 if (width == 1)
807 {
808 type = NT_q;
809 element_size = 128;
810 break;
811 }
812 /* fall through. */
813 default:
814 if (*ptr != '\0')
815 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
816 else
817 first_error (_("missing element size"));
818 return FALSE;
819 }
820 if (width != 0 && width * element_size != 64 && width * element_size != 128)
821 {
822 first_error_fmt (_
823 ("invalid element size %d and vector size combination %c"),
824 width, *ptr);
825 return FALSE;
826 }
827 ptr++;
828
829 parsed_type->type = type;
830 parsed_type->width = width;
831
832 *str = ptr;
833
834 return TRUE;
835}
836
837/* Parse a single type, e.g. ".8b", leading period included.
838 Only applicable to Vn registers.
839
840 Return TRUE on success; otherwise return FALSE. */
841static bfd_boolean
842parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
843{
844 char *str = *ccp;
845
846 if (*str == '.')
847 {
848 if (! parse_neon_type_for_operand (vectype, &str))
849 {
850 first_error (_("vector type expected"));
851 return FALSE;
852 }
853 }
854 else
855 return FALSE;
856
857 *ccp = str;
858
859 return TRUE;
860}
861
862/* Parse a register of the type TYPE.
863
864 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
865 name or the parsed register is not of TYPE.
866
867 Otherwise return the register number, and optionally fill in the actual
868 type of the register in *RTYPE when multiple alternatives were given, and
869 return the register shape and element index information in *TYPEINFO.
870
871 IN_REG_LIST should be set with TRUE if the caller is parsing a register
872 list. */
873
874static int
875parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
876 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
877{
878 char *str = *ccp;
879 const reg_entry *reg = parse_reg (&str);
880 struct neon_type_el atype;
881 struct neon_type_el parsetype;
882 bfd_boolean is_typed_vecreg = FALSE;
883
884 atype.defined = 0;
885 atype.type = NT_invtype;
886 atype.width = -1;
887 atype.index = 0;
888
889 if (reg == NULL)
890 {
891 if (typeinfo)
892 *typeinfo = atype;
893 set_default_error ();
894 return PARSE_FAIL;
895 }
896
897 if (! aarch64_check_reg_type (reg, type))
898 {
899 DEBUG_TRACE ("reg type check failed");
900 set_default_error ();
901 return PARSE_FAIL;
902 }
903 type = reg->type;
904
905 if (type == REG_TYPE_VN
906 && parse_neon_operand_type (&parsetype, &str))
907 {
908 /* Register if of the form Vn.[bhsdq]. */
909 is_typed_vecreg = TRUE;
910
911 if (parsetype.width == 0)
912 /* Expect index. In the new scheme we cannot have
913 Vn.[bhsdq] represent a scalar. Therefore any
914 Vn.[bhsdq] should have an index following it.
915 Except in reglists ofcourse. */
916 atype.defined |= NTA_HASINDEX;
917 else
918 atype.defined |= NTA_HASTYPE;
919
920 atype.type = parsetype.type;
921 atype.width = parsetype.width;
922 }
923
924 if (skip_past_char (&str, '['))
925 {
926 expressionS exp;
927
928 /* Reject Sn[index] syntax. */
929 if (!is_typed_vecreg)
930 {
931 first_error (_("this type of register can't be indexed"));
932 return PARSE_FAIL;
933 }
934
935 if (in_reg_list == TRUE)
936 {
937 first_error (_("index not allowed inside register list"));
938 return PARSE_FAIL;
939 }
940
941 atype.defined |= NTA_HASINDEX;
942
943 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
944
945 if (exp.X_op != O_constant)
946 {
947 first_error (_("constant expression required"));
948 return PARSE_FAIL;
949 }
950
951 if (! skip_past_char (&str, ']'))
952 return PARSE_FAIL;
953
954 atype.index = exp.X_add_number;
955 }
956 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
957 {
958 /* Indexed vector register expected. */
959 first_error (_("indexed vector register expected"));
960 return PARSE_FAIL;
961 }
962
963 /* A vector reg Vn should be typed or indexed. */
964 if (type == REG_TYPE_VN && atype.defined == 0)
965 {
966 first_error (_("invalid use of vector register"));
967 }
968
969 if (typeinfo)
970 *typeinfo = atype;
971
972 if (rtype)
973 *rtype = type;
974
975 *ccp = str;
976
977 return reg->number;
978}
979
980/* Parse register.
981
982 Return the register number on success; return PARSE_FAIL otherwise.
983
984 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
985 the register (e.g. NEON double or quad reg when either has been requested).
986
987 If this is a NEON vector register with additional type information, fill
988 in the struct pointed to by VECTYPE (if non-NULL).
989
990 This parser does not handle register list. */
991
992static int
993aarch64_reg_parse (char **ccp, aarch64_reg_type type,
994 aarch64_reg_type *rtype, struct neon_type_el *vectype)
995{
996 struct neon_type_el atype;
997 char *str = *ccp;
998 int reg = parse_typed_reg (&str, type, rtype, &atype,
999 /*in_reg_list= */ FALSE);
1000
1001 if (reg == PARSE_FAIL)
1002 return PARSE_FAIL;
1003
1004 if (vectype)
1005 *vectype = atype;
1006
1007 *ccp = str;
1008
1009 return reg;
1010}
1011
1012static inline bfd_boolean
1013eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
1014{
1015 return
1016 e1.type == e2.type
1017 && e1.defined == e2.defined
1018 && e1.width == e2.width && e1.index == e2.index;
1019}
1020
1021/* This function parses the NEON register list. On success, it returns
1022 the parsed register list information in the following encoded format:
1023
1024 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1025 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1026
1027 The information of the register shape and/or index is returned in
1028 *VECTYPE.
1029
1030 It returns PARSE_FAIL if the register list is invalid.
1031
1032 The list contains one to four registers.
1033 Each register can be one of:
1034 <Vt>.<T>[<index>]
1035 <Vt>.<T>
1036 All <T> should be identical.
1037 All <index> should be identical.
1038 There are restrictions on <Vt> numbers which are checked later
1039 (by reg_list_valid_p). */
1040
1041static int
1042parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1043{
1044 char *str = *ccp;
1045 int nb_regs;
1046 struct neon_type_el typeinfo, typeinfo_first;
1047 int val, val_range;
1048 int in_range;
1049 int ret_val;
1050 int i;
1051 bfd_boolean error = FALSE;
1052 bfd_boolean expect_index = FALSE;
1053
1054 if (*str != '{')
1055 {
1056 set_syntax_error (_("expecting {"));
1057 return PARSE_FAIL;
1058 }
1059 str++;
1060
1061 nb_regs = 0;
1062 typeinfo_first.defined = 0;
1063 typeinfo_first.type = NT_invtype;
1064 typeinfo_first.width = -1;
1065 typeinfo_first.index = 0;
1066 ret_val = 0;
1067 val = -1;
1068 val_range = -1;
1069 in_range = 0;
1070 do
1071 {
1072 if (in_range)
1073 {
1074 str++; /* skip over '-' */
1075 val_range = val;
1076 }
1077 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1078 /*in_reg_list= */ TRUE);
1079 if (val == PARSE_FAIL)
1080 {
1081 set_first_syntax_error (_("invalid vector register in list"));
1082 error = TRUE;
1083 continue;
1084 }
1085 /* reject [bhsd]n */
1086 if (typeinfo.defined == 0)
1087 {
1088 set_first_syntax_error (_("invalid scalar register in list"));
1089 error = TRUE;
1090 continue;
1091 }
1092
1093 if (typeinfo.defined & NTA_HASINDEX)
1094 expect_index = TRUE;
1095
1096 if (in_range)
1097 {
1098 if (val < val_range)
1099 {
1100 set_first_syntax_error
1101 (_("invalid range in vector register list"));
1102 error = TRUE;
1103 }
1104 val_range++;
1105 }
1106 else
1107 {
1108 val_range = val;
1109 if (nb_regs == 0)
1110 typeinfo_first = typeinfo;
1111 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1112 {
1113 set_first_syntax_error
1114 (_("type mismatch in vector register list"));
1115 error = TRUE;
1116 }
1117 }
1118 if (! error)
1119 for (i = val_range; i <= val; i++)
1120 {
1121 ret_val |= i << (5 * nb_regs);
1122 nb_regs++;
1123 }
1124 in_range = 0;
1125 }
1126 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1127
1128 skip_whitespace (str);
1129 if (*str != '}')
1130 {
1131 set_first_syntax_error (_("end of vector register list not found"));
1132 error = TRUE;
1133 }
1134 str++;
1135
1136 skip_whitespace (str);
1137
1138 if (expect_index)
1139 {
1140 if (skip_past_char (&str, '['))
1141 {
1142 expressionS exp;
1143
1144 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1145 if (exp.X_op != O_constant)
1146 {
1147 set_first_syntax_error (_("constant expression required."));
1148 error = TRUE;
1149 }
1150 if (! skip_past_char (&str, ']'))
1151 error = TRUE;
1152 else
1153 typeinfo_first.index = exp.X_add_number;
1154 }
1155 else
1156 {
1157 set_first_syntax_error (_("expected index"));
1158 error = TRUE;
1159 }
1160 }
1161
1162 if (nb_regs > 4)
1163 {
1164 set_first_syntax_error (_("too many registers in vector register list"));
1165 error = TRUE;
1166 }
1167 else if (nb_regs == 0)
1168 {
1169 set_first_syntax_error (_("empty vector register list"));
1170 error = TRUE;
1171 }
1172
1173 *ccp = str;
1174 if (! error)
1175 *vectype = typeinfo_first;
1176
1177 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1178}
1179
1180/* Directives: register aliases. */
1181
1182static reg_entry *
1183insert_reg_alias (char *str, int number, aarch64_reg_type type)
1184{
1185 reg_entry *new;
1186 const char *name;
1187
1188 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1189 {
1190 if (new->builtin)
1191 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1192 str);
1193
1194 /* Only warn about a redefinition if it's not defined as the
1195 same register. */
1196 else if (new->number != number || new->type != type)
1197 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1198
1199 return NULL;
1200 }
1201
1202 name = xstrdup (str);
1203 new = xmalloc (sizeof (reg_entry));
1204
1205 new->name = name;
1206 new->number = number;
1207 new->type = type;
1208 new->builtin = FALSE;
1209
1210 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1211 abort ();
1212
1213 return new;
1214}
1215
1216/* Look for the .req directive. This is of the form:
1217
1218 new_register_name .req existing_register_name
1219
1220 If we find one, or if it looks sufficiently like one that we want to
1221 handle any error here, return TRUE. Otherwise return FALSE. */
1222
1223static bfd_boolean
1224create_register_alias (char *newname, char *p)
1225{
1226 const reg_entry *old;
1227 char *oldname, *nbuf;
1228 size_t nlen;
1229
1230 /* The input scrubber ensures that whitespace after the mnemonic is
1231 collapsed to single spaces. */
1232 oldname = p;
1233 if (strncmp (oldname, " .req ", 6) != 0)
1234 return FALSE;
1235
1236 oldname += 6;
1237 if (*oldname == '\0')
1238 return FALSE;
1239
1240 old = hash_find (aarch64_reg_hsh, oldname);
1241 if (!old)
1242 {
1243 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1244 return TRUE;
1245 }
1246
1247 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1248 the desired alias name, and p points to its end. If not, then
1249 the desired alias name is in the global original_case_string. */
1250#ifdef TC_CASE_SENSITIVE
1251 nlen = p - newname;
1252#else
1253 newname = original_case_string;
1254 nlen = strlen (newname);
1255#endif
1256
1257 nbuf = alloca (nlen + 1);
1258 memcpy (nbuf, newname, nlen);
1259 nbuf[nlen] = '\0';
1260
1261 /* Create aliases under the new name as stated; an all-lowercase
1262 version of the new name; and an all-uppercase version of the new
1263 name. */
1264 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1265 {
1266 for (p = nbuf; *p; p++)
1267 *p = TOUPPER (*p);
1268
1269 if (strncmp (nbuf, newname, nlen))
1270 {
1271 /* If this attempt to create an additional alias fails, do not bother
1272 trying to create the all-lower case alias. We will fail and issue
1273 a second, duplicate error message. This situation arises when the
1274 programmer does something like:
1275 foo .req r0
1276 Foo .req r1
1277 The second .req creates the "Foo" alias but then fails to create
1278 the artificial FOO alias because it has already been created by the
1279 first .req. */
1280 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1281 return TRUE;
1282 }
1283
1284 for (p = nbuf; *p; p++)
1285 *p = TOLOWER (*p);
1286
1287 if (strncmp (nbuf, newname, nlen))
1288 insert_reg_alias (nbuf, old->number, old->type);
1289 }
1290
1291 return TRUE;
1292}
1293
1294/* Should never be called, as .req goes between the alias and the
1295 register name, not at the beginning of the line. */
1296static void
1297s_req (int a ATTRIBUTE_UNUSED)
1298{
1299 as_bad (_("invalid syntax for .req directive"));
1300}
1301
1302/* The .unreq directive deletes an alias which was previously defined
1303 by .req. For example:
1304
1305 my_alias .req r11
1306 .unreq my_alias */
1307
1308static void
1309s_unreq (int a ATTRIBUTE_UNUSED)
1310{
1311 char *name;
1312 char saved_char;
1313
1314 name = input_line_pointer;
1315
1316 while (*input_line_pointer != 0
1317 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1318 ++input_line_pointer;
1319
1320 saved_char = *input_line_pointer;
1321 *input_line_pointer = 0;
1322
1323 if (!*name)
1324 as_bad (_("invalid syntax for .unreq directive"));
1325 else
1326 {
1327 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1328
1329 if (!reg)
1330 as_bad (_("unknown register alias '%s'"), name);
1331 else if (reg->builtin)
1332 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1333 name);
1334 else
1335 {
1336 char *p;
1337 char *nbuf;
1338
1339 hash_delete (aarch64_reg_hsh, name, FALSE);
1340 free ((char *) reg->name);
1341 free (reg);
1342
1343 /* Also locate the all upper case and all lower case versions.
1344 Do not complain if we cannot find one or the other as it
1345 was probably deleted above. */
1346
1347 nbuf = strdup (name);
1348 for (p = nbuf; *p; p++)
1349 *p = TOUPPER (*p);
1350 reg = hash_find (aarch64_reg_hsh, nbuf);
1351 if (reg)
1352 {
1353 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1354 free ((char *) reg->name);
1355 free (reg);
1356 }
1357
1358 for (p = nbuf; *p; p++)
1359 *p = TOLOWER (*p);
1360 reg = hash_find (aarch64_reg_hsh, nbuf);
1361 if (reg)
1362 {
1363 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1364 free ((char *) reg->name);
1365 free (reg);
1366 }
1367
1368 free (nbuf);
1369 }
1370 }
1371
1372 *input_line_pointer = saved_char;
1373 demand_empty_rest_of_line ();
1374}
1375
1376/* Directives: Instruction set selection. */
1377
1378#ifdef OBJ_ELF
1379/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1380 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1381 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1382 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1383
1384/* Create a new mapping symbol for the transition to STATE. */
1385
1386static void
1387make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1388{
1389 symbolS *symbolP;
1390 const char *symname;
1391 int type;
1392
1393 switch (state)
1394 {
1395 case MAP_DATA:
1396 symname = "$d";
1397 type = BSF_NO_FLAGS;
1398 break;
1399 case MAP_INSN:
1400 symname = "$x";
1401 type = BSF_NO_FLAGS;
1402 break;
1403 default:
1404 abort ();
1405 }
1406
1407 symbolP = symbol_new (symname, now_seg, value, frag);
1408 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1409
1410 /* Save the mapping symbols for future reference. Also check that
1411 we do not place two mapping symbols at the same offset within a
1412 frag. We'll handle overlap between frags in
1413 check_mapping_symbols.
1414
1415 If .fill or other data filling directive generates zero sized data,
1416 the mapping symbol for the following code will have the same value
1417 as the one generated for the data filling directive. In this case,
1418 we replace the old symbol with the new one at the same address. */
1419 if (value == 0)
1420 {
1421 if (frag->tc_frag_data.first_map != NULL)
1422 {
1423 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1424 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1425 &symbol_lastP);
1426 }
1427 frag->tc_frag_data.first_map = symbolP;
1428 }
1429 if (frag->tc_frag_data.last_map != NULL)
1430 {
1431 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1432 S_GET_VALUE (symbolP));
1433 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1434 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1435 &symbol_lastP);
1436 }
1437 frag->tc_frag_data.last_map = symbolP;
1438}
1439
1440/* We must sometimes convert a region marked as code to data during
1441 code alignment, if an odd number of bytes have to be padded. The
1442 code mapping symbol is pushed to an aligned address. */
1443
1444static void
1445insert_data_mapping_symbol (enum mstate state,
1446 valueT value, fragS * frag, offsetT bytes)
1447{
1448 /* If there was already a mapping symbol, remove it. */
1449 if (frag->tc_frag_data.last_map != NULL
1450 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1451 frag->fr_address + value)
1452 {
1453 symbolS *symp = frag->tc_frag_data.last_map;
1454
1455 if (value == 0)
1456 {
1457 know (frag->tc_frag_data.first_map == symp);
1458 frag->tc_frag_data.first_map = NULL;
1459 }
1460 frag->tc_frag_data.last_map = NULL;
1461 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1462 }
1463
1464 make_mapping_symbol (MAP_DATA, value, frag);
1465 make_mapping_symbol (state, value + bytes, frag);
1466}
1467
1468static void mapping_state_2 (enum mstate state, int max_chars);
1469
1470/* Set the mapping state to STATE. Only call this when about to
1471 emit some STATE bytes to the file. */
1472
1473void
1474mapping_state (enum mstate state)
1475{
1476 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1477
1478#define TRANSITION(from, to) (mapstate == (from) && state == (to))
1479
1480 if (mapstate == state)
1481 /* The mapping symbol has already been emitted.
1482 There is nothing else to do. */
1483 return;
1484 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
1485 /* This case will be evaluated later in the next else. */
1486 return;
1487 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1488 {
1489 /* Only add the symbol if the offset is > 0:
1490 if we're at the first frag, check it's size > 0;
1491 if we're not at the first frag, then for sure
1492 the offset is > 0. */
1493 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1494 const int add_symbol = (frag_now != frag_first)
1495 || (frag_now_fix () > 0);
1496
1497 if (add_symbol)
1498 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1499 }
1500
1501 mapping_state_2 (state, 0);
1502#undef TRANSITION
1503}
1504
1505/* Same as mapping_state, but MAX_CHARS bytes have already been
1506 allocated. Put the mapping symbol that far back. */
1507
1508static void
1509mapping_state_2 (enum mstate state, int max_chars)
1510{
1511 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1512
1513 if (!SEG_NORMAL (now_seg))
1514 return;
1515
1516 if (mapstate == state)
1517 /* The mapping symbol has already been emitted.
1518 There is nothing else to do. */
1519 return;
1520
1521 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1522 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1523}
1524#else
1525#define mapping_state(x) /* nothing */
1526#define mapping_state_2(x, y) /* nothing */
1527#endif
1528
1529/* Directives: sectioning and alignment. */
1530
1531static void
1532s_bss (int ignore ATTRIBUTE_UNUSED)
1533{
1534 /* We don't support putting frags in the BSS segment, we fake it by
1535 marking in_bss, then looking at s_skip for clues. */
1536 subseg_set (bss_section, 0);
1537 demand_empty_rest_of_line ();
1538 mapping_state (MAP_DATA);
1539}
1540
1541static void
1542s_even (int ignore ATTRIBUTE_UNUSED)
1543{
1544 /* Never make frag if expect extra pass. */
1545 if (!need_pass_2)
1546 frag_align (1, 0, 0);
1547
1548 record_alignment (now_seg, 1);
1549
1550 demand_empty_rest_of_line ();
1551}
1552
1553/* Directives: Literal pools. */
1554
1555static literal_pool *
1556find_literal_pool (int size)
1557{
1558 literal_pool *pool;
1559
1560 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1561 {
1562 if (pool->section == now_seg
1563 && pool->sub_section == now_subseg && pool->size == size)
1564 break;
1565 }
1566
1567 return pool;
1568}
1569
1570static literal_pool *
1571find_or_make_literal_pool (int size)
1572{
1573 /* Next literal pool ID number. */
1574 static unsigned int latest_pool_num = 1;
1575 literal_pool *pool;
1576
1577 pool = find_literal_pool (size);
1578
1579 if (pool == NULL)
1580 {
1581 /* Create a new pool. */
1582 pool = xmalloc (sizeof (*pool));
1583 if (!pool)
1584 return NULL;
1585
1586 /* Currently we always put the literal pool in the current text
1587 section. If we were generating "small" model code where we
1588 knew that all code and initialised data was within 1MB then
1589 we could output literals to mergeable, read-only data
1590 sections. */
1591
1592 pool->next_free_entry = 0;
1593 pool->section = now_seg;
1594 pool->sub_section = now_subseg;
1595 pool->size = size;
1596 pool->next = list_of_pools;
1597 pool->symbol = NULL;
1598
1599 /* Add it to the list. */
1600 list_of_pools = pool;
1601 }
1602
1603 /* New pools, and emptied pools, will have a NULL symbol. */
1604 if (pool->symbol == NULL)
1605 {
1606 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1607 (valueT) 0, &zero_address_frag);
1608 pool->id = latest_pool_num++;
1609 }
1610
1611 /* Done. */
1612 return pool;
1613}
1614
1615/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1616 Return TRUE on success, otherwise return FALSE. */
1617static bfd_boolean
1618add_to_lit_pool (expressionS *exp, int size)
1619{
1620 literal_pool *pool;
1621 unsigned int entry;
1622
1623 pool = find_or_make_literal_pool (size);
1624
1625 /* Check if this literal value is already in the pool. */
1626 for (entry = 0; entry < pool->next_free_entry; entry++)
1627 {
55d9b4c1
NC
1628 expressionS * litexp = & pool->literals[entry].exp;
1629
1630 if ((litexp->X_op == exp->X_op)
a06ea964 1631 && (exp->X_op == O_constant)
55d9b4c1
NC
1632 && (litexp->X_add_number == exp->X_add_number)
1633 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1634 break;
1635
55d9b4c1 1636 if ((litexp->X_op == exp->X_op)
a06ea964 1637 && (exp->X_op == O_symbol)
55d9b4c1
NC
1638 && (litexp->X_add_number == exp->X_add_number)
1639 && (litexp->X_add_symbol == exp->X_add_symbol)
1640 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1641 break;
1642 }
1643
1644 /* Do we need to create a new entry? */
1645 if (entry == pool->next_free_entry)
1646 {
1647 if (entry >= MAX_LITERAL_POOL_SIZE)
1648 {
1649 set_syntax_error (_("literal pool overflow"));
1650 return FALSE;
1651 }
1652
55d9b4c1 1653 pool->literals[entry].exp = *exp;
a06ea964 1654 pool->next_free_entry += 1;
55d9b4c1
NC
1655 if (exp->X_op == O_big)
1656 {
1657 /* PR 16688: Bignums are held in a single global array. We must
1658 copy and preserve that value now, before it is overwritten. */
1659 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1660 memcpy (pool->literals[entry].bignum, generic_bignum,
1661 CHARS_PER_LITTLENUM * exp->X_add_number);
1662 }
1663 else
1664 pool->literals[entry].bignum = NULL;
a06ea964
NC
1665 }
1666
1667 exp->X_op = O_symbol;
1668 exp->X_add_number = ((int) entry) * size;
1669 exp->X_add_symbol = pool->symbol;
1670
1671 return TRUE;
1672}
1673
1674/* Can't use symbol_new here, so have to create a symbol and then at
1675 a later date assign it a value. Thats what these functions do. */
1676
1677static void
1678symbol_locate (symbolS * symbolP,
1679 const char *name,/* It is copied, the caller can modify. */
1680 segT segment, /* Segment identifier (SEG_<something>). */
1681 valueT valu, /* Symbol value. */
1682 fragS * frag) /* Associated fragment. */
1683{
e57e6ddc 1684 size_t name_length;
a06ea964
NC
1685 char *preserved_copy_of_name;
1686
1687 name_length = strlen (name) + 1; /* +1 for \0. */
1688 obstack_grow (&notes, name, name_length);
1689 preserved_copy_of_name = obstack_finish (&notes);
1690
1691#ifdef tc_canonicalize_symbol_name
1692 preserved_copy_of_name =
1693 tc_canonicalize_symbol_name (preserved_copy_of_name);
1694#endif
1695
1696 S_SET_NAME (symbolP, preserved_copy_of_name);
1697
1698 S_SET_SEGMENT (symbolP, segment);
1699 S_SET_VALUE (symbolP, valu);
1700 symbol_clear_list_pointers (symbolP);
1701
1702 symbol_set_frag (symbolP, frag);
1703
1704 /* Link to end of symbol chain. */
1705 {
1706 extern int symbol_table_frozen;
1707
1708 if (symbol_table_frozen)
1709 abort ();
1710 }
1711
1712 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1713
1714 obj_symbol_new_hook (symbolP);
1715
1716#ifdef tc_symbol_new_hook
1717 tc_symbol_new_hook (symbolP);
1718#endif
1719
1720#ifdef DEBUG_SYMS
1721 verify_symbol_chain (symbol_rootP, symbol_lastP);
1722#endif /* DEBUG_SYMS */
1723}
1724
1725
1726static void
1727s_ltorg (int ignored ATTRIBUTE_UNUSED)
1728{
1729 unsigned int entry;
1730 literal_pool *pool;
1731 char sym_name[20];
1732 int align;
1733
67a32447 1734 for (align = 2; align <= 4; align++)
a06ea964
NC
1735 {
1736 int size = 1 << align;
1737
1738 pool = find_literal_pool (size);
1739 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1740 continue;
1741
1742 mapping_state (MAP_DATA);
1743
1744 /* Align pool as you have word accesses.
1745 Only make a frag if we have to. */
1746 if (!need_pass_2)
1747 frag_align (align, 0, 0);
1748
1749 record_alignment (now_seg, align);
1750
1751 sprintf (sym_name, "$$lit_\002%x", pool->id);
1752
1753 symbol_locate (pool->symbol, sym_name, now_seg,
1754 (valueT) frag_now_fix (), frag_now);
1755 symbol_table_insert (pool->symbol);
1756
1757 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1758 {
1759 expressionS * exp = & pool->literals[entry].exp;
1760
1761 if (exp->X_op == O_big)
1762 {
1763 /* PR 16688: Restore the global bignum value. */
1764 gas_assert (pool->literals[entry].bignum != NULL);
1765 memcpy (generic_bignum, pool->literals[entry].bignum,
1766 CHARS_PER_LITTLENUM * exp->X_add_number);
1767 }
1768
1769 /* First output the expression in the instruction to the pool. */
1770 emit_expr (exp, size); /* .word|.xword */
1771
1772 if (exp->X_op == O_big)
1773 {
1774 free (pool->literals[entry].bignum);
1775 pool->literals[entry].bignum = NULL;
1776 }
1777 }
a06ea964
NC
1778
1779 /* Mark the pool as empty. */
1780 pool->next_free_entry = 0;
1781 pool->symbol = NULL;
1782 }
1783}
1784
1785#ifdef OBJ_ELF
1786/* Forward declarations for functions below, in the MD interface
1787 section. */
1788static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1789static struct reloc_table_entry * find_reloc_table_entry (char **);
1790
1791/* Directives: Data. */
1792/* N.B. the support for relocation suffix in this directive needs to be
1793 implemented properly. */
1794
1795static void
1796s_aarch64_elf_cons (int nbytes)
1797{
1798 expressionS exp;
1799
1800#ifdef md_flush_pending_output
1801 md_flush_pending_output ();
1802#endif
1803
1804 if (is_it_end_of_statement ())
1805 {
1806 demand_empty_rest_of_line ();
1807 return;
1808 }
1809
1810#ifdef md_cons_align
1811 md_cons_align (nbytes);
1812#endif
1813
1814 mapping_state (MAP_DATA);
1815 do
1816 {
1817 struct reloc_table_entry *reloc;
1818
1819 expression (&exp);
1820
1821 if (exp.X_op != O_symbol)
1822 emit_expr (&exp, (unsigned int) nbytes);
1823 else
1824 {
1825 skip_past_char (&input_line_pointer, '#');
1826 if (skip_past_char (&input_line_pointer, ':'))
1827 {
1828 reloc = find_reloc_table_entry (&input_line_pointer);
1829 if (reloc == NULL)
1830 as_bad (_("unrecognized relocation suffix"));
1831 else
1832 as_bad (_("unimplemented relocation suffix"));
1833 ignore_rest_of_line ();
1834 return;
1835 }
1836 else
1837 emit_expr (&exp, (unsigned int) nbytes);
1838 }
1839 }
1840 while (*input_line_pointer++ == ',');
1841
1842 /* Put terminator back into stream. */
1843 input_line_pointer--;
1844 demand_empty_rest_of_line ();
1845}
1846
1847#endif /* OBJ_ELF */
1848
1849/* Output a 32-bit word, but mark as an instruction. */
1850
1851static void
1852s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1853{
1854 expressionS exp;
1855
1856#ifdef md_flush_pending_output
1857 md_flush_pending_output ();
1858#endif
1859
1860 if (is_it_end_of_statement ())
1861 {
1862 demand_empty_rest_of_line ();
1863 return;
1864 }
1865
1866 if (!need_pass_2)
1867 frag_align_code (2, 0);
1868#ifdef OBJ_ELF
1869 mapping_state (MAP_INSN);
1870#endif
1871
1872 do
1873 {
1874 expression (&exp);
1875 if (exp.X_op != O_constant)
1876 {
1877 as_bad (_("constant expression required"));
1878 ignore_rest_of_line ();
1879 return;
1880 }
1881
1882 if (target_big_endian)
1883 {
1884 unsigned int val = exp.X_add_number;
1885 exp.X_add_number = SWAP_32 (val);
1886 }
1887 emit_expr (&exp, 4);
1888 }
1889 while (*input_line_pointer++ == ',');
1890
1891 /* Put terminator back into stream. */
1892 input_line_pointer--;
1893 demand_empty_rest_of_line ();
1894}
1895
1896#ifdef OBJ_ELF
1897/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1898
1899static void
1900s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1901{
1902 expressionS exp;
1903
1904 /* Since we're just labelling the code, there's no need to define a
1905 mapping symbol. */
1906 expression (&exp);
1907 /* Make sure there is enough room in this frag for the following
1908 blr. This trick only works if the blr follows immediately after
1909 the .tlsdesc directive. */
1910 frag_grow (4);
1911 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1912 BFD_RELOC_AARCH64_TLSDESC_CALL);
1913
1914 demand_empty_rest_of_line ();
1915}
1916#endif /* OBJ_ELF */
1917
1918static void s_aarch64_arch (int);
1919static void s_aarch64_cpu (int);
1920
1921/* This table describes all the machine specific pseudo-ops the assembler
1922 has to support. The fields are:
1923 pseudo-op name without dot
1924 function to call to execute this pseudo-op
1925 Integer arg to pass to the function. */
1926
1927const pseudo_typeS md_pseudo_table[] = {
1928 /* Never called because '.req' does not start a line. */
1929 {"req", s_req, 0},
1930 {"unreq", s_unreq, 0},
1931 {"bss", s_bss, 0},
1932 {"even", s_even, 0},
1933 {"ltorg", s_ltorg, 0},
1934 {"pool", s_ltorg, 0},
1935 {"cpu", s_aarch64_cpu, 0},
1936 {"arch", s_aarch64_arch, 0},
1937 {"inst", s_aarch64_inst, 0},
1938#ifdef OBJ_ELF
1939 {"tlsdesccall", s_tlsdesccall, 0},
1940 {"word", s_aarch64_elf_cons, 4},
1941 {"long", s_aarch64_elf_cons, 4},
1942 {"xword", s_aarch64_elf_cons, 8},
1943 {"dword", s_aarch64_elf_cons, 8},
1944#endif
1945 {0, 0, 0}
1946};
1947\f
1948
1949/* Check whether STR points to a register name followed by a comma or the
1950 end of line; REG_TYPE indicates which register types are checked
1951 against. Return TRUE if STR is such a register name; otherwise return
1952 FALSE. The function does not intend to produce any diagnostics, but since
1953 the register parser aarch64_reg_parse, which is called by this function,
1954 does produce diagnostics, we call clear_error to clear any diagnostics
1955 that may be generated by aarch64_reg_parse.
1956 Also, the function returns FALSE directly if there is any user error
1957 present at the function entry. This prevents the existing diagnostics
1958 state from being spoiled.
1959 The function currently serves parse_constant_immediate and
1960 parse_big_immediate only. */
1961static bfd_boolean
1962reg_name_p (char *str, aarch64_reg_type reg_type)
1963{
1964 int reg;
1965
1966 /* Prevent the diagnostics state from being spoiled. */
1967 if (error_p ())
1968 return FALSE;
1969
1970 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1971
1972 /* Clear the parsing error that may be set by the reg parser. */
1973 clear_error ();
1974
1975 if (reg == PARSE_FAIL)
1976 return FALSE;
1977
1978 skip_whitespace (str);
1979 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1980 return TRUE;
1981
1982 return FALSE;
1983}
1984
1985/* Parser functions used exclusively in instruction operands. */
1986
1987/* Parse an immediate expression which may not be constant.
1988
1989 To prevent the expression parser from pushing a register name
1990 into the symbol table as an undefined symbol, firstly a check is
1991 done to find out whether STR is a valid register name followed
1992 by a comma or the end of line. Return FALSE if STR is such a
1993 string. */
1994
1995static bfd_boolean
1996parse_immediate_expression (char **str, expressionS *exp)
1997{
1998 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
1999 {
2000 set_recoverable_error (_("immediate operand required"));
2001 return FALSE;
2002 }
2003
2004 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2005
2006 if (exp->X_op == O_absent)
2007 {
2008 set_fatal_syntax_error (_("missing immediate expression"));
2009 return FALSE;
2010 }
2011
2012 return TRUE;
2013}
2014
2015/* Constant immediate-value read function for use in insn parsing.
2016 STR points to the beginning of the immediate (with the optional
2017 leading #); *VAL receives the value.
2018
2019 Return TRUE on success; otherwise return FALSE. */
2020
2021static bfd_boolean
2022parse_constant_immediate (char **str, int64_t * val)
2023{
2024 expressionS exp;
2025
2026 if (! parse_immediate_expression (str, &exp))
2027 return FALSE;
2028
2029 if (exp.X_op != O_constant)
2030 {
2031 set_syntax_error (_("constant expression required"));
2032 return FALSE;
2033 }
2034
2035 *val = exp.X_add_number;
2036 return TRUE;
2037}
2038
2039static uint32_t
2040encode_imm_float_bits (uint32_t imm)
2041{
2042 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2043 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2044}
2045
62b0d0d5
YZ
2046/* Return TRUE if the single-precision floating-point value encoded in IMM
2047 can be expressed in the AArch64 8-bit signed floating-point format with
2048 3-bit exponent and normalized 4 bits of precision; in other words, the
2049 floating-point value must be expressable as
2050 (+/-) n / 16 * power (2, r)
2051 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2052
a06ea964
NC
2053static bfd_boolean
2054aarch64_imm_float_p (uint32_t imm)
2055{
62b0d0d5
YZ
2056 /* If a single-precision floating-point value has the following bit
2057 pattern, it can be expressed in the AArch64 8-bit floating-point
2058 format:
2059
2060 3 32222222 2221111111111
a06ea964 2061 1 09876543 21098765432109876543210
62b0d0d5
YZ
2062 n Eeeeeexx xxxx0000000000000000000
2063
2064 where n, e and each x are either 0 or 1 independently, with
2065 E == ~ e. */
a06ea964 2066
62b0d0d5
YZ
2067 uint32_t pattern;
2068
2069 /* Prepare the pattern for 'Eeeeee'. */
2070 if (((imm >> 30) & 0x1) == 0)
2071 pattern = 0x3e000000;
a06ea964 2072 else
62b0d0d5
YZ
2073 pattern = 0x40000000;
2074
2075 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2076 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2077}
2078
62b0d0d5
YZ
2079/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2080
2081 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2082 8-bit signed floating-point format with 3-bit exponent and normalized 4
2083 bits of precision (i.e. can be used in an FMOV instruction); return the
2084 equivalent single-precision encoding in *FPWORD.
2085
2086 Otherwise return FALSE. */
2087
a06ea964 2088static bfd_boolean
62b0d0d5
YZ
2089aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2090{
2091 /* If a double-precision floating-point value has the following bit
2092 pattern, it can be expressed in the AArch64 8-bit floating-point
2093 format:
2094
2095 6 66655555555 554444444...21111111111
2096 3 21098765432 109876543...098765432109876543210
2097 n Eeeeeeeeexx xxxx00000...000000000000000000000
2098
2099 where n, e and each x are either 0 or 1 independently, with
2100 E == ~ e. */
2101
2102 uint32_t pattern;
2103 uint32_t high32 = imm >> 32;
2104
2105 /* Lower 32 bits need to be 0s. */
2106 if ((imm & 0xffffffff) != 0)
2107 return FALSE;
2108
2109 /* Prepare the pattern for 'Eeeeeeeee'. */
2110 if (((high32 >> 30) & 0x1) == 0)
2111 pattern = 0x3fc00000;
2112 else
2113 pattern = 0x40000000;
2114
2115 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2116 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2117 {
2118 /* Convert to the single-precision encoding.
2119 i.e. convert
2120 n Eeeeeeeeexx xxxx00000...000000000000000000000
2121 to
2122 n Eeeeeexx xxxx0000000000000000000. */
2123 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2124 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2125 return TRUE;
2126 }
2127 else
2128 return FALSE;
2129}
2130
2131/* Parse a floating-point immediate. Return TRUE on success and return the
2132 value in *IMMED in the format of IEEE754 single-precision encoding.
2133 *CCP points to the start of the string; DP_P is TRUE when the immediate
2134 is expected to be in double-precision (N.B. this only matters when
2135 hexadecimal representation is involved).
2136
2137 N.B. 0.0 is accepted by this function. */
2138
2139static bfd_boolean
2140parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2141{
2142 char *str = *ccp;
2143 char *fpnum;
2144 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2145 int found_fpchar = 0;
62b0d0d5
YZ
2146 int64_t val = 0;
2147 unsigned fpword = 0;
2148 bfd_boolean hex_p = FALSE;
a06ea964
NC
2149
2150 skip_past_char (&str, '#');
2151
a06ea964
NC
2152 fpnum = str;
2153 skip_whitespace (fpnum);
2154
2155 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2156 {
2157 /* Support the hexadecimal representation of the IEEE754 encoding.
2158 Double-precision is expected when DP_P is TRUE, otherwise the
2159 representation should be in single-precision. */
2160 if (! parse_constant_immediate (&str, &val))
2161 goto invalid_fp;
2162
2163 if (dp_p)
2164 {
2165 if (! aarch64_double_precision_fmovable (val, &fpword))
2166 goto invalid_fp;
2167 }
2168 else if ((uint64_t) val > 0xffffffff)
2169 goto invalid_fp;
2170 else
2171 fpword = val;
2172
2173 hex_p = TRUE;
2174 }
a06ea964
NC
2175 else
2176 {
62b0d0d5
YZ
2177 /* We must not accidentally parse an integer as a floating-point number.
2178 Make sure that the value we parse is not an integer by checking for
2179 special characters '.' or 'e'. */
a06ea964
NC
2180 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2181 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2182 {
2183 found_fpchar = 1;
2184 break;
2185 }
2186
2187 if (!found_fpchar)
2188 return FALSE;
2189 }
2190
62b0d0d5 2191 if (! hex_p)
a06ea964 2192 {
a06ea964
NC
2193 int i;
2194
62b0d0d5
YZ
2195 if ((str = atof_ieee (str, 's', words)) == NULL)
2196 goto invalid_fp;
2197
a06ea964
NC
2198 /* Our FP word must be 32 bits (single-precision FP). */
2199 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2200 {
2201 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2202 fpword |= words[i];
2203 }
62b0d0d5 2204 }
a06ea964 2205
62b0d0d5
YZ
2206 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2207 {
2208 *immed = fpword;
a06ea964 2209 *ccp = str;
a06ea964
NC
2210 return TRUE;
2211 }
2212
2213invalid_fp:
2214 set_fatal_syntax_error (_("invalid floating-point constant"));
2215 return FALSE;
2216}
2217
2218/* Less-generic immediate-value read function with the possibility of loading
2219 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2220 instructions.
2221
2222 To prevent the expression parser from pushing a register name into the
2223 symbol table as an undefined symbol, a check is firstly done to find
2224 out whether STR is a valid register name followed by a comma or the end
2225 of line. Return FALSE if STR is such a register. */
2226
2227static bfd_boolean
2228parse_big_immediate (char **str, int64_t *imm)
2229{
2230 char *ptr = *str;
2231
2232 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2233 {
2234 set_syntax_error (_("immediate operand required"));
2235 return FALSE;
2236 }
2237
2238 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2239
2240 if (inst.reloc.exp.X_op == O_constant)
2241 *imm = inst.reloc.exp.X_add_number;
2242
2243 *str = ptr;
2244
2245 return TRUE;
2246}
2247
2248/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2249 if NEED_LIBOPCODES is non-zero, the fixup will need
2250 assistance from the libopcodes. */
2251
2252static inline void
2253aarch64_set_gas_internal_fixup (struct reloc *reloc,
2254 const aarch64_opnd_info *operand,
2255 int need_libopcodes_p)
2256{
2257 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2258 reloc->opnd = operand->type;
2259 if (need_libopcodes_p)
2260 reloc->need_libopcodes_p = 1;
2261};
2262
2263/* Return TRUE if the instruction needs to be fixed up later internally by
2264 the GAS; otherwise return FALSE. */
2265
2266static inline bfd_boolean
2267aarch64_gas_internal_fixup_p (void)
2268{
2269 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2270}
2271
2272/* Assign the immediate value to the relavant field in *OPERAND if
2273 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2274 needs an internal fixup in a later stage.
2275 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2276 IMM.VALUE that may get assigned with the constant. */
2277static inline void
2278assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2279 aarch64_opnd_info *operand,
2280 int addr_off_p,
2281 int need_libopcodes_p,
2282 int skip_p)
2283{
2284 if (reloc->exp.X_op == O_constant)
2285 {
2286 if (addr_off_p)
2287 operand->addr.offset.imm = reloc->exp.X_add_number;
2288 else
2289 operand->imm.value = reloc->exp.X_add_number;
2290 reloc->type = BFD_RELOC_UNUSED;
2291 }
2292 else
2293 {
2294 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2295 /* Tell libopcodes to ignore this operand or not. This is helpful
2296 when one of the operands needs to be fixed up later but we need
2297 libopcodes to check the other operands. */
2298 operand->skip = skip_p;
2299 }
2300}
2301
2302/* Relocation modifiers. Each entry in the table contains the textual
2303 name for the relocation which may be placed before a symbol used as
2304 a load/store offset, or add immediate. It must be surrounded by a
2305 leading and trailing colon, for example:
2306
2307 ldr x0, [x1, #:rello:varsym]
2308 add x0, x1, #:rello:varsym */
2309
2310struct reloc_table_entry
2311{
2312 const char *name;
2313 int pc_rel;
2314 bfd_reloc_code_real_type adrp_type;
2315 bfd_reloc_code_real_type movw_type;
2316 bfd_reloc_code_real_type add_type;
2317 bfd_reloc_code_real_type ldst_type;
2318};
2319
2320static struct reloc_table_entry reloc_table[] = {
2321 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2322 {"lo12", 0,
2323 0,
2324 0,
2325 BFD_RELOC_AARCH64_ADD_LO12,
2326 BFD_RELOC_AARCH64_LDST_LO12},
2327
2328 /* Higher 21 bits of pc-relative page offset: ADRP */
2329 {"pg_hi21", 1,
2330 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2331 0,
2332 0,
2333 0},
2334
2335 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2336 {"pg_hi21_nc", 1,
2337 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2338 0,
2339 0,
2340 0},
2341
2342 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2343 {"abs_g0", 0,
2344 0,
2345 BFD_RELOC_AARCH64_MOVW_G0,
2346 0,
2347 0},
2348
2349 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2350 {"abs_g0_s", 0,
2351 0,
2352 BFD_RELOC_AARCH64_MOVW_G0_S,
2353 0,
2354 0},
2355
2356 /* Less significant bits 0-15 of address/value: MOVK, no check */
2357 {"abs_g0_nc", 0,
2358 0,
2359 BFD_RELOC_AARCH64_MOVW_G0_NC,
2360 0,
2361 0},
2362
2363 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2364 {"abs_g1", 0,
2365 0,
2366 BFD_RELOC_AARCH64_MOVW_G1,
2367 0,
2368 0},
2369
2370 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2371 {"abs_g1_s", 0,
2372 0,
2373 BFD_RELOC_AARCH64_MOVW_G1_S,
2374 0,
2375 0},
2376
2377 /* Less significant bits 16-31 of address/value: MOVK, no check */
2378 {"abs_g1_nc", 0,
2379 0,
2380 BFD_RELOC_AARCH64_MOVW_G1_NC,
2381 0,
2382 0},
2383
2384 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2385 {"abs_g2", 0,
2386 0,
2387 BFD_RELOC_AARCH64_MOVW_G2,
2388 0,
2389 0},
2390
2391 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2392 {"abs_g2_s", 0,
2393 0,
2394 BFD_RELOC_AARCH64_MOVW_G2_S,
2395 0,
2396 0},
2397
2398 /* Less significant bits 32-47 of address/value: MOVK, no check */
2399 {"abs_g2_nc", 0,
2400 0,
2401 BFD_RELOC_AARCH64_MOVW_G2_NC,
2402 0,
2403 0},
2404
2405 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2406 {"abs_g3", 0,
2407 0,
2408 BFD_RELOC_AARCH64_MOVW_G3,
2409 0,
2410 0},
4aa2c5e2 2411
a06ea964
NC
2412 /* Get to the page containing GOT entry for a symbol. */
2413 {"got", 1,
2414 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2415 0,
2416 0,
4aa2c5e2
MS
2417 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2418
a06ea964
NC
2419 /* 12 bit offset into the page containing GOT entry for that symbol. */
2420 {"got_lo12", 0,
2421 0,
2422 0,
2423 0,
a6bb11b2 2424 BFD_RELOC_AARCH64_LD_GOT_LO12_NC},
a06ea964
NC
2425
2426 /* Get to the page containing GOT TLS entry for a symbol */
2427 {"tlsgd", 0,
2428 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2429 0,
2430 0,
2431 0},
2432
2433 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2434 {"tlsgd_lo12", 0,
2435 0,
2436 0,
2437 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2438 0},
2439
2440 /* Get to the page containing GOT TLS entry for a symbol */
2441 {"tlsdesc", 0,
418009c2 2442 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2443 0,
2444 0,
2445 0},
2446
2447 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2448 {"tlsdesc_lo12", 0,
2449 0,
2450 0,
2451 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
a6bb11b2 2452 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC},
a06ea964
NC
2453
2454 /* Get to the page containing GOT TLS entry for a symbol */
2455 {"gottprel", 0,
2456 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2457 0,
2458 0,
2459 0},
2460
2461 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2462 {"gottprel_lo12", 0,
2463 0,
2464 0,
2465 0,
a6bb11b2 2466 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC},
a06ea964
NC
2467
2468 /* Get tp offset for a symbol. */
2469 {"tprel", 0,
2470 0,
2471 0,
2472 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2473 0},
2474
2475 /* Get tp offset for a symbol. */
2476 {"tprel_lo12", 0,
2477 0,
2478 0,
2479 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2480 0},
2481
2482 /* Get tp offset for a symbol. */
2483 {"tprel_hi12", 0,
2484 0,
2485 0,
2486 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2487 0},
2488
2489 /* Get tp offset for a symbol. */
2490 {"tprel_lo12_nc", 0,
2491 0,
2492 0,
2493 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2494 0},
2495
2496 /* Most significant bits 32-47 of address/value: MOVZ. */
2497 {"tprel_g2", 0,
2498 0,
2499 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2500 0,
2501 0},
2502
2503 /* Most significant bits 16-31 of address/value: MOVZ. */
2504 {"tprel_g1", 0,
2505 0,
2506 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2507 0,
2508 0},
2509
2510 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2511 {"tprel_g1_nc", 0,
2512 0,
2513 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2514 0,
2515 0},
2516
2517 /* Most significant bits 0-15 of address/value: MOVZ. */
2518 {"tprel_g0", 0,
2519 0,
2520 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2521 0,
2522 0},
2523
2524 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2525 {"tprel_g0_nc", 0,
2526 0,
2527 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2528 0,
2529 0},
2530};
2531
2532/* Given the address of a pointer pointing to the textual name of a
2533 relocation as may appear in assembler source, attempt to find its
2534 details in reloc_table. The pointer will be updated to the character
2535 after the trailing colon. On failure, NULL will be returned;
2536 otherwise return the reloc_table_entry. */
2537
2538static struct reloc_table_entry *
2539find_reloc_table_entry (char **str)
2540{
2541 unsigned int i;
2542 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2543 {
2544 int length = strlen (reloc_table[i].name);
2545
2546 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2547 && (*str)[length] == ':')
2548 {
2549 *str += (length + 1);
2550 return &reloc_table[i];
2551 }
2552 }
2553
2554 return NULL;
2555}
2556
2557/* Mode argument to parse_shift and parser_shifter_operand. */
2558enum parse_shift_mode
2559{
2560 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2561 "#imm{,lsl #n}" */
2562 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2563 "#imm" */
2564 SHIFTED_LSL, /* bare "lsl #n" */
2565 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2566 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2567};
2568
2569/* Parse a <shift> operator on an AArch64 data processing instruction.
2570 Return TRUE on success; otherwise return FALSE. */
2571static bfd_boolean
2572parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2573{
2574 const struct aarch64_name_value_pair *shift_op;
2575 enum aarch64_modifier_kind kind;
2576 expressionS exp;
2577 int exp_has_prefix;
2578 char *s = *str;
2579 char *p = s;
2580
2581 for (p = *str; ISALPHA (*p); p++)
2582 ;
2583
2584 if (p == *str)
2585 {
2586 set_syntax_error (_("shift expression expected"));
2587 return FALSE;
2588 }
2589
2590 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2591
2592 if (shift_op == NULL)
2593 {
2594 set_syntax_error (_("shift operator expected"));
2595 return FALSE;
2596 }
2597
2598 kind = aarch64_get_operand_modifier (shift_op);
2599
2600 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2601 {
2602 set_syntax_error (_("invalid use of 'MSL'"));
2603 return FALSE;
2604 }
2605
2606 switch (mode)
2607 {
2608 case SHIFTED_LOGIC_IMM:
2609 if (aarch64_extend_operator_p (kind) == TRUE)
2610 {
2611 set_syntax_error (_("extending shift is not permitted"));
2612 return FALSE;
2613 }
2614 break;
2615
2616 case SHIFTED_ARITH_IMM:
2617 if (kind == AARCH64_MOD_ROR)
2618 {
2619 set_syntax_error (_("'ROR' shift is not permitted"));
2620 return FALSE;
2621 }
2622 break;
2623
2624 case SHIFTED_LSL:
2625 if (kind != AARCH64_MOD_LSL)
2626 {
2627 set_syntax_error (_("only 'LSL' shift is permitted"));
2628 return FALSE;
2629 }
2630 break;
2631
2632 case SHIFTED_REG_OFFSET:
2633 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2634 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2635 {
2636 set_fatal_syntax_error
2637 (_("invalid shift for the register offset addressing mode"));
2638 return FALSE;
2639 }
2640 break;
2641
2642 case SHIFTED_LSL_MSL:
2643 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2644 {
2645 set_syntax_error (_("invalid shift operator"));
2646 return FALSE;
2647 }
2648 break;
2649
2650 default:
2651 abort ();
2652 }
2653
2654 /* Whitespace can appear here if the next thing is a bare digit. */
2655 skip_whitespace (p);
2656
2657 /* Parse shift amount. */
2658 exp_has_prefix = 0;
2659 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2660 exp.X_op = O_absent;
2661 else
2662 {
2663 if (is_immediate_prefix (*p))
2664 {
2665 p++;
2666 exp_has_prefix = 1;
2667 }
2668 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2669 }
2670 if (exp.X_op == O_absent)
2671 {
2672 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2673 {
2674 set_syntax_error (_("missing shift amount"));
2675 return FALSE;
2676 }
2677 operand->shifter.amount = 0;
2678 }
2679 else if (exp.X_op != O_constant)
2680 {
2681 set_syntax_error (_("constant shift amount required"));
2682 return FALSE;
2683 }
2684 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2685 {
2686 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2687 return FALSE;
2688 }
2689 else
2690 {
2691 operand->shifter.amount = exp.X_add_number;
2692 operand->shifter.amount_present = 1;
2693 }
2694
2695 operand->shifter.operator_present = 1;
2696 operand->shifter.kind = kind;
2697
2698 *str = p;
2699 return TRUE;
2700}
2701
2702/* Parse a <shifter_operand> for a data processing instruction:
2703
2704 #<immediate>
2705 #<immediate>, LSL #imm
2706
2707 Validation of immediate operands is deferred to md_apply_fix.
2708
2709 Return TRUE on success; otherwise return FALSE. */
2710
2711static bfd_boolean
2712parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2713 enum parse_shift_mode mode)
2714{
2715 char *p;
2716
2717 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2718 return FALSE;
2719
2720 p = *str;
2721
2722 /* Accept an immediate expression. */
2723 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2724 return FALSE;
2725
2726 /* Accept optional LSL for arithmetic immediate values. */
2727 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2728 if (! parse_shift (&p, operand, SHIFTED_LSL))
2729 return FALSE;
2730
2731 /* Not accept any shifter for logical immediate values. */
2732 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2733 && parse_shift (&p, operand, mode))
2734 {
2735 set_syntax_error (_("unexpected shift operator"));
2736 return FALSE;
2737 }
2738
2739 *str = p;
2740 return TRUE;
2741}
2742
2743/* Parse a <shifter_operand> for a data processing instruction:
2744
2745 <Rm>
2746 <Rm>, <shift>
2747 #<immediate>
2748 #<immediate>, LSL #imm
2749
2750 where <shift> is handled by parse_shift above, and the last two
2751 cases are handled by the function above.
2752
2753 Validation of immediate operands is deferred to md_apply_fix.
2754
2755 Return TRUE on success; otherwise return FALSE. */
2756
2757static bfd_boolean
2758parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2759 enum parse_shift_mode mode)
2760{
2761 int reg;
2762 int isreg32, isregzero;
2763 enum aarch64_operand_class opd_class
2764 = aarch64_get_operand_class (operand->type);
2765
2766 if ((reg =
2767 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2768 {
2769 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2770 {
2771 set_syntax_error (_("unexpected register in the immediate operand"));
2772 return FALSE;
2773 }
2774
2775 if (!isregzero && reg == REG_SP)
2776 {
2777 set_syntax_error (BAD_SP);
2778 return FALSE;
2779 }
2780
2781 operand->reg.regno = reg;
2782 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2783
2784 /* Accept optional shift operation on register. */
2785 if (! skip_past_comma (str))
2786 return TRUE;
2787
2788 if (! parse_shift (str, operand, mode))
2789 return FALSE;
2790
2791 return TRUE;
2792 }
2793 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2794 {
2795 set_syntax_error
2796 (_("integer register expected in the extended/shifted operand "
2797 "register"));
2798 return FALSE;
2799 }
2800
2801 /* We have a shifted immediate variable. */
2802 return parse_shifter_operand_imm (str, operand, mode);
2803}
2804
2805/* Return TRUE on success; return FALSE otherwise. */
2806
2807static bfd_boolean
2808parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
2809 enum parse_shift_mode mode)
2810{
2811 char *p = *str;
2812
2813 /* Determine if we have the sequence of characters #: or just :
2814 coming next. If we do, then we check for a :rello: relocation
2815 modifier. If we don't, punt the whole lot to
2816 parse_shifter_operand. */
2817
2818 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
2819 {
2820 struct reloc_table_entry *entry;
2821
2822 if (p[0] == '#')
2823 p += 2;
2824 else
2825 p++;
2826 *str = p;
2827
2828 /* Try to parse a relocation. Anything else is an error. */
2829 if (!(entry = find_reloc_table_entry (str)))
2830 {
2831 set_syntax_error (_("unknown relocation modifier"));
2832 return FALSE;
2833 }
2834
2835 if (entry->add_type == 0)
2836 {
2837 set_syntax_error
2838 (_("this relocation modifier is not allowed on this instruction"));
2839 return FALSE;
2840 }
2841
2842 /* Save str before we decompose it. */
2843 p = *str;
2844
2845 /* Next, we parse the expression. */
2846 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
2847 return FALSE;
2848
2849 /* Record the relocation type (use the ADD variant here). */
2850 inst.reloc.type = entry->add_type;
2851 inst.reloc.pc_rel = entry->pc_rel;
2852
2853 /* If str is empty, we've reached the end, stop here. */
2854 if (**str == '\0')
2855 return TRUE;
2856
55d9b4c1 2857 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
2858 recover the variable name and continue parsing for the shifter. */
2859 *str = p;
2860 return parse_shifter_operand_imm (str, operand, mode);
2861 }
2862
2863 return parse_shifter_operand (str, operand, mode);
2864}
2865
2866/* Parse all forms of an address expression. Information is written
2867 to *OPERAND and/or inst.reloc.
2868
2869 The A64 instruction set has the following addressing modes:
2870
2871 Offset
2872 [base] // in SIMD ld/st structure
2873 [base{,#0}] // in ld/st exclusive
2874 [base{,#imm}]
2875 [base,Xm{,LSL #imm}]
2876 [base,Xm,SXTX {#imm}]
2877 [base,Wm,(S|U)XTW {#imm}]
2878 Pre-indexed
2879 [base,#imm]!
2880 Post-indexed
2881 [base],#imm
2882 [base],Xm // in SIMD ld/st structure
2883 PC-relative (literal)
2884 label
2885 =immediate
2886
2887 (As a convenience, the notation "=immediate" is permitted in conjunction
2888 with the pc-relative literal load instructions to automatically place an
2889 immediate value or symbolic address in a nearby literal pool and generate
2890 a hidden label which references it.)
2891
2892 Upon a successful parsing, the address structure in *OPERAND will be
2893 filled in the following way:
2894
2895 .base_regno = <base>
2896 .offset.is_reg // 1 if the offset is a register
2897 .offset.imm = <imm>
2898 .offset.regno = <Rm>
2899
2900 For different addressing modes defined in the A64 ISA:
2901
2902 Offset
2903 .pcrel=0; .preind=1; .postind=0; .writeback=0
2904 Pre-indexed
2905 .pcrel=0; .preind=1; .postind=0; .writeback=1
2906 Post-indexed
2907 .pcrel=0; .preind=0; .postind=1; .writeback=1
2908 PC-relative (literal)
2909 .pcrel=1; .preind=1; .postind=0; .writeback=0
2910
2911 The shift/extension information, if any, will be stored in .shifter.
2912
2913 It is the caller's responsibility to check for addressing modes not
2914 supported by the instruction, and to set inst.reloc.type. */
2915
2916static bfd_boolean
2917parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
2918 int accept_reg_post_index)
2919{
2920 char *p = *str;
2921 int reg;
2922 int isreg32, isregzero;
2923 expressionS *exp = &inst.reloc.exp;
2924
2925 if (! skip_past_char (&p, '['))
2926 {
2927 /* =immediate or label. */
2928 operand->addr.pcrel = 1;
2929 operand->addr.preind = 1;
2930
f41aef5f
RE
2931 /* #:<reloc_op>:<symbol> */
2932 skip_past_char (&p, '#');
2933 if (reloc && skip_past_char (&p, ':'))
2934 {
2935 struct reloc_table_entry *entry;
2936
2937 /* Try to parse a relocation modifier. Anything else is
2938 an error. */
2939 entry = find_reloc_table_entry (&p);
2940 if (! entry)
2941 {
2942 set_syntax_error (_("unknown relocation modifier"));
2943 return FALSE;
2944 }
2945
2946 if (entry->ldst_type == 0)
2947 {
2948 set_syntax_error
2949 (_("this relocation modifier is not allowed on this "
2950 "instruction"));
2951 return FALSE;
2952 }
2953
2954 /* #:<reloc_op>: */
2955 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
2956 {
2957 set_syntax_error (_("invalid relocation expression"));
2958 return FALSE;
2959 }
a06ea964 2960
f41aef5f
RE
2961 /* #:<reloc_op>:<expr> */
2962 /* Record the load/store relocation type. */
2963 inst.reloc.type = entry->ldst_type;
2964 inst.reloc.pc_rel = entry->pc_rel;
2965 }
2966 else
a06ea964 2967 {
f41aef5f
RE
2968
2969 if (skip_past_char (&p, '='))
2970 /* =immediate; need to generate the literal in the literal pool. */
2971 inst.gen_lit_pool = 1;
2972
2973 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
2974 {
2975 set_syntax_error (_("invalid address"));
2976 return FALSE;
2977 }
a06ea964
NC
2978 }
2979
2980 *str = p;
2981 return TRUE;
2982 }
2983
2984 /* [ */
2985
2986 /* Accept SP and reject ZR */
2987 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
2988 if (reg == PARSE_FAIL || isreg32)
2989 {
2990 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
2991 return FALSE;
2992 }
2993 operand->addr.base_regno = reg;
2994
2995 /* [Xn */
2996 if (skip_past_comma (&p))
2997 {
2998 /* [Xn, */
2999 operand->addr.preind = 1;
3000
3001 /* Reject SP and accept ZR */
3002 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3003 if (reg != PARSE_FAIL)
3004 {
3005 /* [Xn,Rm */
3006 operand->addr.offset.regno = reg;
3007 operand->addr.offset.is_reg = 1;
3008 /* Shifted index. */
3009 if (skip_past_comma (&p))
3010 {
3011 /* [Xn,Rm, */
3012 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3013 /* Use the diagnostics set in parse_shift, so not set new
3014 error message here. */
3015 return FALSE;
3016 }
3017 /* We only accept:
3018 [base,Xm{,LSL #imm}]
3019 [base,Xm,SXTX {#imm}]
3020 [base,Wm,(S|U)XTW {#imm}] */
3021 if (operand->shifter.kind == AARCH64_MOD_NONE
3022 || operand->shifter.kind == AARCH64_MOD_LSL
3023 || operand->shifter.kind == AARCH64_MOD_SXTX)
3024 {
3025 if (isreg32)
3026 {
3027 set_syntax_error (_("invalid use of 32-bit register offset"));
3028 return FALSE;
3029 }
3030 }
3031 else if (!isreg32)
3032 {
3033 set_syntax_error (_("invalid use of 64-bit register offset"));
3034 return FALSE;
3035 }
3036 }
3037 else
3038 {
3039 /* [Xn,#:<reloc_op>:<symbol> */
3040 skip_past_char (&p, '#');
3041 if (reloc && skip_past_char (&p, ':'))
3042 {
3043 struct reloc_table_entry *entry;
3044
3045 /* Try to parse a relocation modifier. Anything else is
3046 an error. */
3047 if (!(entry = find_reloc_table_entry (&p)))
3048 {
3049 set_syntax_error (_("unknown relocation modifier"));
3050 return FALSE;
3051 }
3052
3053 if (entry->ldst_type == 0)
3054 {
3055 set_syntax_error
3056 (_("this relocation modifier is not allowed on this "
3057 "instruction"));
3058 return FALSE;
3059 }
3060
3061 /* [Xn,#:<reloc_op>: */
3062 /* We now have the group relocation table entry corresponding to
3063 the name in the assembler source. Next, we parse the
3064 expression. */
3065 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3066 {
3067 set_syntax_error (_("invalid relocation expression"));
3068 return FALSE;
3069 }
3070
3071 /* [Xn,#:<reloc_op>:<expr> */
3072 /* Record the load/store relocation type. */
3073 inst.reloc.type = entry->ldst_type;
3074 inst.reloc.pc_rel = entry->pc_rel;
3075 }
3076 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3077 {
3078 set_syntax_error (_("invalid expression in the address"));
3079 return FALSE;
3080 }
3081 /* [Xn,<expr> */
3082 }
3083 }
3084
3085 if (! skip_past_char (&p, ']'))
3086 {
3087 set_syntax_error (_("']' expected"));
3088 return FALSE;
3089 }
3090
3091 if (skip_past_char (&p, '!'))
3092 {
3093 if (operand->addr.preind && operand->addr.offset.is_reg)
3094 {
3095 set_syntax_error (_("register offset not allowed in pre-indexed "
3096 "addressing mode"));
3097 return FALSE;
3098 }
3099 /* [Xn]! */
3100 operand->addr.writeback = 1;
3101 }
3102 else if (skip_past_comma (&p))
3103 {
3104 /* [Xn], */
3105 operand->addr.postind = 1;
3106 operand->addr.writeback = 1;
3107
3108 if (operand->addr.preind)
3109 {
3110 set_syntax_error (_("cannot combine pre- and post-indexing"));
3111 return FALSE;
3112 }
3113
3114 if (accept_reg_post_index
3115 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3116 &isregzero)) != PARSE_FAIL)
3117 {
3118 /* [Xn],Xm */
3119 if (isreg32)
3120 {
3121 set_syntax_error (_("invalid 32-bit register offset"));
3122 return FALSE;
3123 }
3124 operand->addr.offset.regno = reg;
3125 operand->addr.offset.is_reg = 1;
3126 }
3127 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3128 {
3129 /* [Xn],#expr */
3130 set_syntax_error (_("invalid expression in the address"));
3131 return FALSE;
3132 }
3133 }
3134
3135 /* If at this point neither .preind nor .postind is set, we have a
3136 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3137 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3138 {
3139 if (operand->addr.writeback)
3140 {
3141 /* Reject [Rn]! */
3142 set_syntax_error (_("missing offset in the pre-indexed address"));
3143 return FALSE;
3144 }
3145 operand->addr.preind = 1;
3146 inst.reloc.exp.X_op = O_constant;
3147 inst.reloc.exp.X_add_number = 0;
3148 }
3149
3150 *str = p;
3151 return TRUE;
3152}
3153
3154/* Return TRUE on success; otherwise return FALSE. */
3155static bfd_boolean
3156parse_address (char **str, aarch64_opnd_info *operand,
3157 int accept_reg_post_index)
3158{
3159 return parse_address_main (str, operand, 0, accept_reg_post_index);
3160}
3161
3162/* Return TRUE on success; otherwise return FALSE. */
3163static bfd_boolean
3164parse_address_reloc (char **str, aarch64_opnd_info *operand)
3165{
3166 return parse_address_main (str, operand, 1, 0);
3167}
3168
3169/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3170 Return TRUE on success; otherwise return FALSE. */
3171static bfd_boolean
3172parse_half (char **str, int *internal_fixup_p)
3173{
3174 char *p, *saved;
3175 int dummy;
3176
3177 p = *str;
3178 skip_past_char (&p, '#');
3179
3180 gas_assert (internal_fixup_p);
3181 *internal_fixup_p = 0;
3182
3183 if (*p == ':')
3184 {
3185 struct reloc_table_entry *entry;
3186
3187 /* Try to parse a relocation. Anything else is an error. */
3188 ++p;
3189 if (!(entry = find_reloc_table_entry (&p)))
3190 {
3191 set_syntax_error (_("unknown relocation modifier"));
3192 return FALSE;
3193 }
3194
3195 if (entry->movw_type == 0)
3196 {
3197 set_syntax_error
3198 (_("this relocation modifier is not allowed on this instruction"));
3199 return FALSE;
3200 }
3201
3202 inst.reloc.type = entry->movw_type;
3203 }
3204 else
3205 *internal_fixup_p = 1;
3206
3207 /* Avoid parsing a register as a general symbol. */
3208 saved = p;
3209 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3210 return FALSE;
3211 p = saved;
3212
3213 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3214 return FALSE;
3215
3216 *str = p;
3217 return TRUE;
3218}
3219
3220/* Parse an operand for an ADRP instruction:
3221 ADRP <Xd>, <label>
3222 Return TRUE on success; otherwise return FALSE. */
3223
3224static bfd_boolean
3225parse_adrp (char **str)
3226{
3227 char *p;
3228
3229 p = *str;
3230 if (*p == ':')
3231 {
3232 struct reloc_table_entry *entry;
3233
3234 /* Try to parse a relocation. Anything else is an error. */
3235 ++p;
3236 if (!(entry = find_reloc_table_entry (&p)))
3237 {
3238 set_syntax_error (_("unknown relocation modifier"));
3239 return FALSE;
3240 }
3241
3242 if (entry->adrp_type == 0)
3243 {
3244 set_syntax_error
3245 (_("this relocation modifier is not allowed on this instruction"));
3246 return FALSE;
3247 }
3248
3249 inst.reloc.type = entry->adrp_type;
3250 }
3251 else
3252 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3253
3254 inst.reloc.pc_rel = 1;
3255
3256 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3257 return FALSE;
3258
3259 *str = p;
3260 return TRUE;
3261}
3262
3263/* Miscellaneous. */
3264
3265/* Parse an option for a preload instruction. Returns the encoding for the
3266 option, or PARSE_FAIL. */
3267
3268static int
3269parse_pldop (char **str)
3270{
3271 char *p, *q;
3272 const struct aarch64_name_value_pair *o;
3273
3274 p = q = *str;
3275 while (ISALNUM (*q))
3276 q++;
3277
3278 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3279 if (!o)
3280 return PARSE_FAIL;
3281
3282 *str = q;
3283 return o->value;
3284}
3285
3286/* Parse an option for a barrier instruction. Returns the encoding for the
3287 option, or PARSE_FAIL. */
3288
3289static int
3290parse_barrier (char **str)
3291{
3292 char *p, *q;
3293 const asm_barrier_opt *o;
3294
3295 p = q = *str;
3296 while (ISALPHA (*q))
3297 q++;
3298
3299 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3300 if (!o)
3301 return PARSE_FAIL;
3302
3303 *str = q;
3304 return o->value;
3305}
3306
3307/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3308 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3309
3310 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
18cf6de4 3311 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964
NC
3312
3313static int
a203d9b7 3314parse_sys_reg (char **str, struct hash_control *sys_regs, int imple_defined_p)
a06ea964
NC
3315{
3316 char *p, *q;
3317 char buf[32];
49eec193 3318 const aarch64_sys_reg *o;
a06ea964
NC
3319 int value;
3320
3321 p = buf;
3322 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3323 if (p < buf + 31)
3324 *p++ = TOLOWER (*q);
3325 *p = '\0';
3326 /* Assert that BUF be large enough. */
3327 gas_assert (p - buf == q - *str);
3328
3329 o = hash_find (sys_regs, buf);
3330 if (!o)
3331 {
3332 if (!imple_defined_p)
3333 return PARSE_FAIL;
3334 else
3335 {
df7b4545 3336 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3337 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3338
3339 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3340 != 5)
a06ea964 3341 return PARSE_FAIL;
df7b4545 3342 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3343 return PARSE_FAIL;
3344 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3345 }
3346 }
3347 else
49eec193 3348 {
9a73e520 3349 if (aarch64_sys_reg_deprecated_p (o))
49eec193
YZ
3350 as_warn (_("system register name '%s' is deprecated and may be "
3351"removed in a future release"), buf);
3352 value = o->value;
3353 }
a06ea964
NC
3354
3355 *str = q;
3356 return value;
3357}
3358
3359/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3360 for the option, or NULL. */
3361
3362static const aarch64_sys_ins_reg *
3363parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3364{
3365 char *p, *q;
3366 char buf[32];
3367 const aarch64_sys_ins_reg *o;
3368
3369 p = buf;
3370 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3371 if (p < buf + 31)
3372 *p++ = TOLOWER (*q);
3373 *p = '\0';
3374
3375 o = hash_find (sys_ins_regs, buf);
3376 if (!o)
3377 return NULL;
3378
3379 *str = q;
3380 return o;
3381}
3382\f
3383#define po_char_or_fail(chr) do { \
3384 if (! skip_past_char (&str, chr)) \
3385 goto failure; \
3386} while (0)
3387
3388#define po_reg_or_fail(regtype) do { \
3389 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3390 if (val == PARSE_FAIL) \
3391 { \
3392 set_default_error (); \
3393 goto failure; \
3394 } \
3395 } while (0)
3396
3397#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3398 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3399 &isreg32, &isregzero); \
3400 if (val == PARSE_FAIL) \
3401 { \
3402 set_default_error (); \
3403 goto failure; \
3404 } \
3405 info->reg.regno = val; \
3406 if (isreg32) \
3407 info->qualifier = AARCH64_OPND_QLF_W; \
3408 else \
3409 info->qualifier = AARCH64_OPND_QLF_X; \
3410 } while (0)
3411
3412#define po_imm_nc_or_fail() do { \
3413 if (! parse_constant_immediate (&str, &val)) \
3414 goto failure; \
3415 } while (0)
3416
3417#define po_imm_or_fail(min, max) do { \
3418 if (! parse_constant_immediate (&str, &val)) \
3419 goto failure; \
3420 if (val < min || val > max) \
3421 { \
3422 set_fatal_syntax_error (_("immediate value out of range "\
3423#min " to "#max)); \
3424 goto failure; \
3425 } \
3426 } while (0)
3427
3428#define po_misc_or_fail(expr) do { \
3429 if (!expr) \
3430 goto failure; \
3431 } while (0)
3432\f
3433/* encode the 12-bit imm field of Add/sub immediate */
3434static inline uint32_t
3435encode_addsub_imm (uint32_t imm)
3436{
3437 return imm << 10;
3438}
3439
3440/* encode the shift amount field of Add/sub immediate */
3441static inline uint32_t
3442encode_addsub_imm_shift_amount (uint32_t cnt)
3443{
3444 return cnt << 22;
3445}
3446
3447
3448/* encode the imm field of Adr instruction */
3449static inline uint32_t
3450encode_adr_imm (uint32_t imm)
3451{
3452 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3453 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3454}
3455
3456/* encode the immediate field of Move wide immediate */
3457static inline uint32_t
3458encode_movw_imm (uint32_t imm)
3459{
3460 return imm << 5;
3461}
3462
3463/* encode the 26-bit offset of unconditional branch */
3464static inline uint32_t
3465encode_branch_ofs_26 (uint32_t ofs)
3466{
3467 return ofs & ((1 << 26) - 1);
3468}
3469
3470/* encode the 19-bit offset of conditional branch and compare & branch */
3471static inline uint32_t
3472encode_cond_branch_ofs_19 (uint32_t ofs)
3473{
3474 return (ofs & ((1 << 19) - 1)) << 5;
3475}
3476
3477/* encode the 19-bit offset of ld literal */
3478static inline uint32_t
3479encode_ld_lit_ofs_19 (uint32_t ofs)
3480{
3481 return (ofs & ((1 << 19) - 1)) << 5;
3482}
3483
3484/* Encode the 14-bit offset of test & branch. */
3485static inline uint32_t
3486encode_tst_branch_ofs_14 (uint32_t ofs)
3487{
3488 return (ofs & ((1 << 14) - 1)) << 5;
3489}
3490
3491/* Encode the 16-bit imm field of svc/hvc/smc. */
3492static inline uint32_t
3493encode_svc_imm (uint32_t imm)
3494{
3495 return imm << 5;
3496}
3497
3498/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3499static inline uint32_t
3500reencode_addsub_switch_add_sub (uint32_t opcode)
3501{
3502 return opcode ^ (1 << 30);
3503}
3504
3505static inline uint32_t
3506reencode_movzn_to_movz (uint32_t opcode)
3507{
3508 return opcode | (1 << 30);
3509}
3510
3511static inline uint32_t
3512reencode_movzn_to_movn (uint32_t opcode)
3513{
3514 return opcode & ~(1 << 30);
3515}
3516
3517/* Overall per-instruction processing. */
3518
3519/* We need to be able to fix up arbitrary expressions in some statements.
3520 This is so that we can handle symbols that are an arbitrary distance from
3521 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3522 which returns part of an address in a form which will be valid for
3523 a data instruction. We do this by pushing the expression into a symbol
3524 in the expr_section, and creating a fix for that. */
3525
3526static fixS *
3527fix_new_aarch64 (fragS * frag,
3528 int where,
3529 short int size, expressionS * exp, int pc_rel, int reloc)
3530{
3531 fixS *new_fix;
3532
3533 switch (exp->X_op)
3534 {
3535 case O_constant:
3536 case O_symbol:
3537 case O_add:
3538 case O_subtract:
3539 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3540 break;
3541
3542 default:
3543 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3544 pc_rel, reloc);
3545 break;
3546 }
3547 return new_fix;
3548}
3549\f
3550/* Diagnostics on operands errors. */
3551
a52e6fd3
YZ
3552/* By default, output verbose error message.
3553 Disable the verbose error message by -mno-verbose-error. */
3554static int verbose_error_p = 1;
a06ea964
NC
3555
3556#ifdef DEBUG_AARCH64
3557/* N.B. this is only for the purpose of debugging. */
3558const char* operand_mismatch_kind_names[] =
3559{
3560 "AARCH64_OPDE_NIL",
3561 "AARCH64_OPDE_RECOVERABLE",
3562 "AARCH64_OPDE_SYNTAX_ERROR",
3563 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3564 "AARCH64_OPDE_INVALID_VARIANT",
3565 "AARCH64_OPDE_OUT_OF_RANGE",
3566 "AARCH64_OPDE_UNALIGNED",
3567 "AARCH64_OPDE_REG_LIST",
3568 "AARCH64_OPDE_OTHER_ERROR",
3569};
3570#endif /* DEBUG_AARCH64 */
3571
3572/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3573
3574 When multiple errors of different kinds are found in the same assembly
3575 line, only the error of the highest severity will be picked up for
3576 issuing the diagnostics. */
3577
3578static inline bfd_boolean
3579operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3580 enum aarch64_operand_error_kind rhs)
3581{
3582 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3583 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3584 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3585 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3586 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3587 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3588 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3589 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3590 return lhs > rhs;
3591}
3592
3593/* Helper routine to get the mnemonic name from the assembly instruction
3594 line; should only be called for the diagnosis purpose, as there is
3595 string copy operation involved, which may affect the runtime
3596 performance if used in elsewhere. */
3597
3598static const char*
3599get_mnemonic_name (const char *str)
3600{
3601 static char mnemonic[32];
3602 char *ptr;
3603
3604 /* Get the first 15 bytes and assume that the full name is included. */
3605 strncpy (mnemonic, str, 31);
3606 mnemonic[31] = '\0';
3607
3608 /* Scan up to the end of the mnemonic, which must end in white space,
3609 '.', or end of string. */
3610 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3611 ;
3612
3613 *ptr = '\0';
3614
3615 /* Append '...' to the truncated long name. */
3616 if (ptr - mnemonic == 31)
3617 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3618
3619 return mnemonic;
3620}
3621
3622static void
3623reset_aarch64_instruction (aarch64_instruction *instruction)
3624{
3625 memset (instruction, '\0', sizeof (aarch64_instruction));
3626 instruction->reloc.type = BFD_RELOC_UNUSED;
3627}
3628
3629/* Data strutures storing one user error in the assembly code related to
3630 operands. */
3631
3632struct operand_error_record
3633{
3634 const aarch64_opcode *opcode;
3635 aarch64_operand_error detail;
3636 struct operand_error_record *next;
3637};
3638
3639typedef struct operand_error_record operand_error_record;
3640
3641struct operand_errors
3642{
3643 operand_error_record *head;
3644 operand_error_record *tail;
3645};
3646
3647typedef struct operand_errors operand_errors;
3648
3649/* Top-level data structure reporting user errors for the current line of
3650 the assembly code.
3651 The way md_assemble works is that all opcodes sharing the same mnemonic
3652 name are iterated to find a match to the assembly line. In this data
3653 structure, each of the such opcodes will have one operand_error_record
3654 allocated and inserted. In other words, excessive errors related with
3655 a single opcode are disregarded. */
3656operand_errors operand_error_report;
3657
3658/* Free record nodes. */
3659static operand_error_record *free_opnd_error_record_nodes = NULL;
3660
3661/* Initialize the data structure that stores the operand mismatch
3662 information on assembling one line of the assembly code. */
3663static void
3664init_operand_error_report (void)
3665{
3666 if (operand_error_report.head != NULL)
3667 {
3668 gas_assert (operand_error_report.tail != NULL);
3669 operand_error_report.tail->next = free_opnd_error_record_nodes;
3670 free_opnd_error_record_nodes = operand_error_report.head;
3671 operand_error_report.head = NULL;
3672 operand_error_report.tail = NULL;
3673 return;
3674 }
3675 gas_assert (operand_error_report.tail == NULL);
3676}
3677
3678/* Return TRUE if some operand error has been recorded during the
3679 parsing of the current assembly line using the opcode *OPCODE;
3680 otherwise return FALSE. */
3681static inline bfd_boolean
3682opcode_has_operand_error_p (const aarch64_opcode *opcode)
3683{
3684 operand_error_record *record = operand_error_report.head;
3685 return record && record->opcode == opcode;
3686}
3687
3688/* Add the error record *NEW_RECORD to operand_error_report. The record's
3689 OPCODE field is initialized with OPCODE.
3690 N.B. only one record for each opcode, i.e. the maximum of one error is
3691 recorded for each instruction template. */
3692
3693static void
3694add_operand_error_record (const operand_error_record* new_record)
3695{
3696 const aarch64_opcode *opcode = new_record->opcode;
3697 operand_error_record* record = operand_error_report.head;
3698
3699 /* The record may have been created for this opcode. If not, we need
3700 to prepare one. */
3701 if (! opcode_has_operand_error_p (opcode))
3702 {
3703 /* Get one empty record. */
3704 if (free_opnd_error_record_nodes == NULL)
3705 {
3706 record = xmalloc (sizeof (operand_error_record));
3707 if (record == NULL)
3708 abort ();
3709 }
3710 else
3711 {
3712 record = free_opnd_error_record_nodes;
3713 free_opnd_error_record_nodes = record->next;
3714 }
3715 record->opcode = opcode;
3716 /* Insert at the head. */
3717 record->next = operand_error_report.head;
3718 operand_error_report.head = record;
3719 if (operand_error_report.tail == NULL)
3720 operand_error_report.tail = record;
3721 }
3722 else if (record->detail.kind != AARCH64_OPDE_NIL
3723 && record->detail.index <= new_record->detail.index
3724 && operand_error_higher_severity_p (record->detail.kind,
3725 new_record->detail.kind))
3726 {
3727 /* In the case of multiple errors found on operands related with a
3728 single opcode, only record the error of the leftmost operand and
3729 only if the error is of higher severity. */
3730 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3731 " the existing error %s on operand %d",
3732 operand_mismatch_kind_names[new_record->detail.kind],
3733 new_record->detail.index,
3734 operand_mismatch_kind_names[record->detail.kind],
3735 record->detail.index);
3736 return;
3737 }
3738
3739 record->detail = new_record->detail;
3740}
3741
3742static inline void
3743record_operand_error_info (const aarch64_opcode *opcode,
3744 aarch64_operand_error *error_info)
3745{
3746 operand_error_record record;
3747 record.opcode = opcode;
3748 record.detail = *error_info;
3749 add_operand_error_record (&record);
3750}
3751
3752/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3753 error message *ERROR, for operand IDX (count from 0). */
3754
3755static void
3756record_operand_error (const aarch64_opcode *opcode, int idx,
3757 enum aarch64_operand_error_kind kind,
3758 const char* error)
3759{
3760 aarch64_operand_error info;
3761 memset(&info, 0, sizeof (info));
3762 info.index = idx;
3763 info.kind = kind;
3764 info.error = error;
3765 record_operand_error_info (opcode, &info);
3766}
3767
3768static void
3769record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3770 enum aarch64_operand_error_kind kind,
3771 const char* error, const int *extra_data)
3772{
3773 aarch64_operand_error info;
3774 info.index = idx;
3775 info.kind = kind;
3776 info.error = error;
3777 info.data[0] = extra_data[0];
3778 info.data[1] = extra_data[1];
3779 info.data[2] = extra_data[2];
3780 record_operand_error_info (opcode, &info);
3781}
3782
3783static void
3784record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
3785 const char* error, int lower_bound,
3786 int upper_bound)
3787{
3788 int data[3] = {lower_bound, upper_bound, 0};
3789 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
3790 error, data);
3791}
3792
3793/* Remove the operand error record for *OPCODE. */
3794static void ATTRIBUTE_UNUSED
3795remove_operand_error_record (const aarch64_opcode *opcode)
3796{
3797 if (opcode_has_operand_error_p (opcode))
3798 {
3799 operand_error_record* record = operand_error_report.head;
3800 gas_assert (record != NULL && operand_error_report.tail != NULL);
3801 operand_error_report.head = record->next;
3802 record->next = free_opnd_error_record_nodes;
3803 free_opnd_error_record_nodes = record;
3804 if (operand_error_report.head == NULL)
3805 {
3806 gas_assert (operand_error_report.tail == record);
3807 operand_error_report.tail = NULL;
3808 }
3809 }
3810}
3811
3812/* Given the instruction in *INSTR, return the index of the best matched
3813 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
3814
3815 Return -1 if there is no qualifier sequence; return the first match
3816 if there is multiple matches found. */
3817
3818static int
3819find_best_match (const aarch64_inst *instr,
3820 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
3821{
3822 int i, num_opnds, max_num_matched, idx;
3823
3824 num_opnds = aarch64_num_of_operands (instr->opcode);
3825 if (num_opnds == 0)
3826 {
3827 DEBUG_TRACE ("no operand");
3828 return -1;
3829 }
3830
3831 max_num_matched = 0;
3832 idx = -1;
3833
3834 /* For each pattern. */
3835 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
3836 {
3837 int j, num_matched;
3838 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
3839
3840 /* Most opcodes has much fewer patterns in the list. */
3841 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
3842 {
3843 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
3844 if (i != 0 && idx == -1)
3845 /* If nothing has been matched, return the 1st sequence. */
3846 idx = 0;
3847 break;
3848 }
3849
3850 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
3851 if (*qualifiers == instr->operands[j].qualifier)
3852 ++num_matched;
3853
3854 if (num_matched > max_num_matched)
3855 {
3856 max_num_matched = num_matched;
3857 idx = i;
3858 }
3859 }
3860
3861 DEBUG_TRACE ("return with %d", idx);
3862 return idx;
3863}
3864
3865/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
3866 corresponding operands in *INSTR. */
3867
3868static inline void
3869assign_qualifier_sequence (aarch64_inst *instr,
3870 const aarch64_opnd_qualifier_t *qualifiers)
3871{
3872 int i = 0;
3873 int num_opnds = aarch64_num_of_operands (instr->opcode);
3874 gas_assert (num_opnds);
3875 for (i = 0; i < num_opnds; ++i, ++qualifiers)
3876 instr->operands[i].qualifier = *qualifiers;
3877}
3878
3879/* Print operands for the diagnosis purpose. */
3880
3881static void
3882print_operands (char *buf, const aarch64_opcode *opcode,
3883 const aarch64_opnd_info *opnds)
3884{
3885 int i;
3886
3887 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
3888 {
3889 const size_t size = 128;
3890 char str[size];
3891
3892 /* We regard the opcode operand info more, however we also look into
3893 the inst->operands to support the disassembling of the optional
3894 operand.
3895 The two operand code should be the same in all cases, apart from
3896 when the operand can be optional. */
3897 if (opcode->operands[i] == AARCH64_OPND_NIL
3898 || opnds[i].type == AARCH64_OPND_NIL)
3899 break;
3900
3901 /* Generate the operand string in STR. */
3902 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
3903
3904 /* Delimiter. */
3905 if (str[0] != '\0')
3906 strcat (buf, i == 0 ? " " : ",");
3907
3908 /* Append the operand string. */
3909 strcat (buf, str);
3910 }
3911}
3912
3913/* Send to stderr a string as information. */
3914
3915static void
3916output_info (const char *format, ...)
3917{
3918 char *file;
3919 unsigned int line;
3920 va_list args;
3921
3922 as_where (&file, &line);
3923 if (file)
3924 {
3925 if (line != 0)
3926 fprintf (stderr, "%s:%u: ", file, line);
3927 else
3928 fprintf (stderr, "%s: ", file);
3929 }
3930 fprintf (stderr, _("Info: "));
3931 va_start (args, format);
3932 vfprintf (stderr, format, args);
3933 va_end (args);
3934 (void) putc ('\n', stderr);
3935}
3936
3937/* Output one operand error record. */
3938
3939static void
3940output_operand_error_record (const operand_error_record *record, char *str)
3941{
3942 int idx = record->detail.index;
3943 const aarch64_opcode *opcode = record->opcode;
3944 enum aarch64_opnd opd_code = (idx != -1 ? opcode->operands[idx]
3945 : AARCH64_OPND_NIL);
3946 const aarch64_operand_error *detail = &record->detail;
3947
3948 switch (detail->kind)
3949 {
3950 case AARCH64_OPDE_NIL:
3951 gas_assert (0);
3952 break;
3953
3954 case AARCH64_OPDE_SYNTAX_ERROR:
3955 case AARCH64_OPDE_RECOVERABLE:
3956 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
3957 case AARCH64_OPDE_OTHER_ERROR:
3958 gas_assert (idx >= 0);
3959 /* Use the prepared error message if there is, otherwise use the
3960 operand description string to describe the error. */
3961 if (detail->error != NULL)
3962 {
3963 if (detail->index == -1)
3964 as_bad (_("%s -- `%s'"), detail->error, str);
3965 else
3966 as_bad (_("%s at operand %d -- `%s'"),
3967 detail->error, detail->index + 1, str);
3968 }
3969 else
3970 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
3971 aarch64_get_operand_desc (opd_code), str);
3972 break;
3973
3974 case AARCH64_OPDE_INVALID_VARIANT:
3975 as_bad (_("operand mismatch -- `%s'"), str);
3976 if (verbose_error_p)
3977 {
3978 /* We will try to correct the erroneous instruction and also provide
3979 more information e.g. all other valid variants.
3980
3981 The string representation of the corrected instruction and other
3982 valid variants are generated by
3983
3984 1) obtaining the intermediate representation of the erroneous
3985 instruction;
3986 2) manipulating the IR, e.g. replacing the operand qualifier;
3987 3) printing out the instruction by calling the printer functions
3988 shared with the disassembler.
3989
3990 The limitation of this method is that the exact input assembly
3991 line cannot be accurately reproduced in some cases, for example an
3992 optional operand present in the actual assembly line will be
3993 omitted in the output; likewise for the optional syntax rules,
3994 e.g. the # before the immediate. Another limitation is that the
3995 assembly symbols and relocation operations in the assembly line
3996 currently cannot be printed out in the error report. Last but not
3997 least, when there is other error(s) co-exist with this error, the
3998 'corrected' instruction may be still incorrect, e.g. given
3999 'ldnp h0,h1,[x0,#6]!'
4000 this diagnosis will provide the version:
4001 'ldnp s0,s1,[x0,#6]!'
4002 which is still not right. */
4003 size_t len = strlen (get_mnemonic_name (str));
4004 int i, qlf_idx;
4005 bfd_boolean result;
4006 const size_t size = 2048;
4007 char buf[size];
4008 aarch64_inst *inst_base = &inst.base;
4009 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4010
4011 /* Init inst. */
4012 reset_aarch64_instruction (&inst);
4013 inst_base->opcode = opcode;
4014
4015 /* Reset the error report so that there is no side effect on the
4016 following operand parsing. */
4017 init_operand_error_report ();
4018
4019 /* Fill inst. */
4020 result = parse_operands (str + len, opcode)
4021 && programmer_friendly_fixup (&inst);
4022 gas_assert (result);
4023 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4024 NULL, NULL);
4025 gas_assert (!result);
4026
4027 /* Find the most matched qualifier sequence. */
4028 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4029 gas_assert (qlf_idx > -1);
4030
4031 /* Assign the qualifiers. */
4032 assign_qualifier_sequence (inst_base,
4033 opcode->qualifiers_list[qlf_idx]);
4034
4035 /* Print the hint. */
4036 output_info (_(" did you mean this?"));
4037 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4038 print_operands (buf, opcode, inst_base->operands);
4039 output_info (_(" %s"), buf);
4040
4041 /* Print out other variant(s) if there is any. */
4042 if (qlf_idx != 0 ||
4043 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4044 output_info (_(" other valid variant(s):"));
4045
4046 /* For each pattern. */
4047 qualifiers_list = opcode->qualifiers_list;
4048 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4049 {
4050 /* Most opcodes has much fewer patterns in the list.
4051 First NIL qualifier indicates the end in the list. */
4052 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4053 break;
4054
4055 if (i != qlf_idx)
4056 {
4057 /* Mnemonics name. */
4058 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4059
4060 /* Assign the qualifiers. */
4061 assign_qualifier_sequence (inst_base, *qualifiers_list);
4062
4063 /* Print instruction. */
4064 print_operands (buf, opcode, inst_base->operands);
4065
4066 output_info (_(" %s"), buf);
4067 }
4068 }
4069 }
4070 break;
4071
4072 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4073 if (detail->data[0] != detail->data[1])
4074 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4075 detail->error ? detail->error : _("immediate value"),
4076 detail->data[0], detail->data[1], detail->index + 1, str);
4077 else
4078 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4079 detail->error ? detail->error : _("immediate value"),
4080 detail->data[0], detail->index + 1, str);
a06ea964
NC
4081 break;
4082
4083 case AARCH64_OPDE_REG_LIST:
4084 if (detail->data[0] == 1)
4085 as_bad (_("invalid number of registers in the list; "
4086 "only 1 register is expected at operand %d -- `%s'"),
4087 detail->index + 1, str);
4088 else
4089 as_bad (_("invalid number of registers in the list; "
4090 "%d registers are expected at operand %d -- `%s'"),
4091 detail->data[0], detail->index + 1, str);
4092 break;
4093
4094 case AARCH64_OPDE_UNALIGNED:
4095 as_bad (_("immediate value should be a multiple of "
4096 "%d at operand %d -- `%s'"),
4097 detail->data[0], detail->index + 1, str);
4098 break;
4099
4100 default:
4101 gas_assert (0);
4102 break;
4103 }
4104}
4105
4106/* Process and output the error message about the operand mismatching.
4107
4108 When this function is called, the operand error information had
4109 been collected for an assembly line and there will be multiple
4110 errors in the case of mulitple instruction templates; output the
4111 error message that most closely describes the problem. */
4112
4113static void
4114output_operand_error_report (char *str)
4115{
4116 int largest_error_pos;
4117 const char *msg = NULL;
4118 enum aarch64_operand_error_kind kind;
4119 operand_error_record *curr;
4120 operand_error_record *head = operand_error_report.head;
4121 operand_error_record *record = NULL;
4122
4123 /* No error to report. */
4124 if (head == NULL)
4125 return;
4126
4127 gas_assert (head != NULL && operand_error_report.tail != NULL);
4128
4129 /* Only one error. */
4130 if (head == operand_error_report.tail)
4131 {
4132 DEBUG_TRACE ("single opcode entry with error kind: %s",
4133 operand_mismatch_kind_names[head->detail.kind]);
4134 output_operand_error_record (head, str);
4135 return;
4136 }
4137
4138 /* Find the error kind of the highest severity. */
4139 DEBUG_TRACE ("multiple opcode entres with error kind");
4140 kind = AARCH64_OPDE_NIL;
4141 for (curr = head; curr != NULL; curr = curr->next)
4142 {
4143 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4144 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4145 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4146 kind = curr->detail.kind;
4147 }
4148 gas_assert (kind != AARCH64_OPDE_NIL);
4149
4150 /* Pick up one of errors of KIND to report. */
4151 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4152 for (curr = head; curr != NULL; curr = curr->next)
4153 {
4154 if (curr->detail.kind != kind)
4155 continue;
4156 /* If there are multiple errors, pick up the one with the highest
4157 mismatching operand index. In the case of multiple errors with
4158 the equally highest operand index, pick up the first one or the
4159 first one with non-NULL error message. */
4160 if (curr->detail.index > largest_error_pos
4161 || (curr->detail.index == largest_error_pos && msg == NULL
4162 && curr->detail.error != NULL))
4163 {
4164 largest_error_pos = curr->detail.index;
4165 record = curr;
4166 msg = record->detail.error;
4167 }
4168 }
4169
4170 gas_assert (largest_error_pos != -2 && record != NULL);
4171 DEBUG_TRACE ("Pick up error kind %s to report",
4172 operand_mismatch_kind_names[record->detail.kind]);
4173
4174 /* Output. */
4175 output_operand_error_record (record, str);
4176}
4177\f
4178/* Write an AARCH64 instruction to buf - always little-endian. */
4179static void
4180put_aarch64_insn (char *buf, uint32_t insn)
4181{
4182 unsigned char *where = (unsigned char *) buf;
4183 where[0] = insn;
4184 where[1] = insn >> 8;
4185 where[2] = insn >> 16;
4186 where[3] = insn >> 24;
4187}
4188
4189static uint32_t
4190get_aarch64_insn (char *buf)
4191{
4192 unsigned char *where = (unsigned char *) buf;
4193 uint32_t result;
4194 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4195 return result;
4196}
4197
4198static void
4199output_inst (struct aarch64_inst *new_inst)
4200{
4201 char *to = NULL;
4202
4203 to = frag_more (INSN_SIZE);
4204
4205 frag_now->tc_frag_data.recorded = 1;
4206
4207 put_aarch64_insn (to, inst.base.value);
4208
4209 if (inst.reloc.type != BFD_RELOC_UNUSED)
4210 {
4211 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4212 INSN_SIZE, &inst.reloc.exp,
4213 inst.reloc.pc_rel,
4214 inst.reloc.type);
4215 DEBUG_TRACE ("Prepared relocation fix up");
4216 /* Don't check the addend value against the instruction size,
4217 that's the job of our code in md_apply_fix(). */
4218 fixp->fx_no_overflow = 1;
4219 if (new_inst != NULL)
4220 fixp->tc_fix_data.inst = new_inst;
4221 if (aarch64_gas_internal_fixup_p ())
4222 {
4223 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4224 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4225 fixp->fx_addnumber = inst.reloc.flags;
4226 }
4227 }
4228
4229 dwarf2_emit_insn (INSN_SIZE);
4230}
4231
4232/* Link together opcodes of the same name. */
4233
4234struct templates
4235{
4236 aarch64_opcode *opcode;
4237 struct templates *next;
4238};
4239
4240typedef struct templates templates;
4241
4242static templates *
4243lookup_mnemonic (const char *start, int len)
4244{
4245 templates *templ = NULL;
4246
4247 templ = hash_find_n (aarch64_ops_hsh, start, len);
4248 return templ;
4249}
4250
4251/* Subroutine of md_assemble, responsible for looking up the primary
4252 opcode from the mnemonic the user wrote. STR points to the
4253 beginning of the mnemonic. */
4254
4255static templates *
4256opcode_lookup (char **str)
4257{
4258 char *end, *base;
4259 const aarch64_cond *cond;
4260 char condname[16];
4261 int len;
4262
4263 /* Scan up to the end of the mnemonic, which must end in white space,
4264 '.', or end of string. */
4265 for (base = end = *str; is_part_of_name(*end); end++)
4266 if (*end == '.')
4267 break;
4268
4269 if (end == base)
4270 return 0;
4271
4272 inst.cond = COND_ALWAYS;
4273
4274 /* Handle a possible condition. */
4275 if (end[0] == '.')
4276 {
4277 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4278 if (cond)
4279 {
4280 inst.cond = cond->value;
4281 *str = end + 3;
4282 }
4283 else
4284 {
4285 *str = end;
4286 return 0;
4287 }
4288 }
4289 else
4290 *str = end;
4291
4292 len = end - base;
4293
4294 if (inst.cond == COND_ALWAYS)
4295 {
4296 /* Look for unaffixed mnemonic. */
4297 return lookup_mnemonic (base, len);
4298 }
4299 else if (len <= 13)
4300 {
4301 /* append ".c" to mnemonic if conditional */
4302 memcpy (condname, base, len);
4303 memcpy (condname + len, ".c", 2);
4304 base = condname;
4305 len += 2;
4306 return lookup_mnemonic (base, len);
4307 }
4308
4309 return NULL;
4310}
4311
4312/* Internal helper routine converting a vector neon_type_el structure
4313 *VECTYPE to a corresponding operand qualifier. */
4314
4315static inline aarch64_opnd_qualifier_t
4316vectype_to_qualifier (const struct neon_type_el *vectype)
4317{
4318 /* Element size in bytes indexed by neon_el_type. */
4319 const unsigned char ele_size[5]
4320 = {1, 2, 4, 8, 16};
4321
4322 if (!vectype->defined || vectype->type == NT_invtype)
4323 goto vectype_conversion_fail;
4324
4325 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4326
4327 if (vectype->defined & NTA_HASINDEX)
4328 /* Vector element register. */
4329 return AARCH64_OPND_QLF_S_B + vectype->type;
4330 else
4331 {
4332 /* Vector register. */
4333 int reg_size = ele_size[vectype->type] * vectype->width;
4334 unsigned offset;
4335 if (reg_size != 16 && reg_size != 8)
4336 goto vectype_conversion_fail;
4337 /* The conversion is calculated based on the relation of the order of
4338 qualifiers to the vector element size and vector register size. */
4339 offset = (vectype->type == NT_q)
4340 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4341 gas_assert (offset <= 8);
4342 return AARCH64_OPND_QLF_V_8B + offset;
4343 }
4344
4345vectype_conversion_fail:
4346 first_error (_("bad vector arrangement type"));
4347 return AARCH64_OPND_QLF_NIL;
4348}
4349
4350/* Process an optional operand that is found omitted from the assembly line.
4351 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4352 instruction's opcode entry while IDX is the index of this omitted operand.
4353 */
4354
4355static void
4356process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4357 int idx, aarch64_opnd_info *operand)
4358{
4359 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4360 gas_assert (optional_operand_p (opcode, idx));
4361 gas_assert (!operand->present);
4362
4363 switch (type)
4364 {
4365 case AARCH64_OPND_Rd:
4366 case AARCH64_OPND_Rn:
4367 case AARCH64_OPND_Rm:
4368 case AARCH64_OPND_Rt:
4369 case AARCH64_OPND_Rt2:
4370 case AARCH64_OPND_Rs:
4371 case AARCH64_OPND_Ra:
4372 case AARCH64_OPND_Rt_SYS:
4373 case AARCH64_OPND_Rd_SP:
4374 case AARCH64_OPND_Rn_SP:
4375 case AARCH64_OPND_Fd:
4376 case AARCH64_OPND_Fn:
4377 case AARCH64_OPND_Fm:
4378 case AARCH64_OPND_Fa:
4379 case AARCH64_OPND_Ft:
4380 case AARCH64_OPND_Ft2:
4381 case AARCH64_OPND_Sd:
4382 case AARCH64_OPND_Sn:
4383 case AARCH64_OPND_Sm:
4384 case AARCH64_OPND_Vd:
4385 case AARCH64_OPND_Vn:
4386 case AARCH64_OPND_Vm:
4387 case AARCH64_OPND_VdD1:
4388 case AARCH64_OPND_VnD1:
4389 operand->reg.regno = default_value;
4390 break;
4391
4392 case AARCH64_OPND_Ed:
4393 case AARCH64_OPND_En:
4394 case AARCH64_OPND_Em:
4395 operand->reglane.regno = default_value;
4396 break;
4397
4398 case AARCH64_OPND_IDX:
4399 case AARCH64_OPND_BIT_NUM:
4400 case AARCH64_OPND_IMMR:
4401 case AARCH64_OPND_IMMS:
4402 case AARCH64_OPND_SHLL_IMM:
4403 case AARCH64_OPND_IMM_VLSL:
4404 case AARCH64_OPND_IMM_VLSR:
4405 case AARCH64_OPND_CCMP_IMM:
4406 case AARCH64_OPND_FBITS:
4407 case AARCH64_OPND_UIMM4:
4408 case AARCH64_OPND_UIMM3_OP1:
4409 case AARCH64_OPND_UIMM3_OP2:
4410 case AARCH64_OPND_IMM:
4411 case AARCH64_OPND_WIDTH:
4412 case AARCH64_OPND_UIMM7:
4413 case AARCH64_OPND_NZCV:
4414 operand->imm.value = default_value;
4415 break;
4416
4417 case AARCH64_OPND_EXCEPTION:
4418 inst.reloc.type = BFD_RELOC_UNUSED;
4419 break;
4420
4421 case AARCH64_OPND_BARRIER_ISB:
4422 operand->barrier = aarch64_barrier_options + default_value;
4423
4424 default:
4425 break;
4426 }
4427}
4428
4429/* Process the relocation type for move wide instructions.
4430 Return TRUE on success; otherwise return FALSE. */
4431
4432static bfd_boolean
4433process_movw_reloc_info (void)
4434{
4435 int is32;
4436 unsigned shift;
4437
4438 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4439
4440 if (inst.base.opcode->op == OP_MOVK)
4441 switch (inst.reloc.type)
4442 {
4443 case BFD_RELOC_AARCH64_MOVW_G0_S:
4444 case BFD_RELOC_AARCH64_MOVW_G1_S:
4445 case BFD_RELOC_AARCH64_MOVW_G2_S:
4446 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4447 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4448 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4449 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4450 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4451 set_syntax_error
4452 (_("the specified relocation type is not allowed for MOVK"));
4453 return FALSE;
4454 default:
4455 break;
4456 }
4457
4458 switch (inst.reloc.type)
4459 {
4460 case BFD_RELOC_AARCH64_MOVW_G0:
4461 case BFD_RELOC_AARCH64_MOVW_G0_S:
4462 case BFD_RELOC_AARCH64_MOVW_G0_NC:
4463 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4464 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4465 shift = 0;
4466 break;
4467 case BFD_RELOC_AARCH64_MOVW_G1:
4468 case BFD_RELOC_AARCH64_MOVW_G1_S:
4469 case BFD_RELOC_AARCH64_MOVW_G1_NC:
4470 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4471 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4472 shift = 16;
4473 break;
4474 case BFD_RELOC_AARCH64_MOVW_G2:
4475 case BFD_RELOC_AARCH64_MOVW_G2_S:
4476 case BFD_RELOC_AARCH64_MOVW_G2_NC:
4477 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4478 if (is32)
4479 {
4480 set_fatal_syntax_error
4481 (_("the specified relocation type is not allowed for 32-bit "
4482 "register"));
4483 return FALSE;
4484 }
4485 shift = 32;
4486 break;
4487 case BFD_RELOC_AARCH64_MOVW_G3:
4488 if (is32)
4489 {
4490 set_fatal_syntax_error
4491 (_("the specified relocation type is not allowed for 32-bit "
4492 "register"));
4493 return FALSE;
4494 }
4495 shift = 48;
4496 break;
4497 default:
4498 /* More cases should be added when more MOVW-related relocation types
4499 are supported in GAS. */
4500 gas_assert (aarch64_gas_internal_fixup_p ());
4501 /* The shift amount should have already been set by the parser. */
4502 return TRUE;
4503 }
4504 inst.base.operands[1].shifter.amount = shift;
4505 return TRUE;
4506}
4507
4508/* A primitive log caculator. */
4509
4510static inline unsigned int
4511get_logsz (unsigned int size)
4512{
4513 const unsigned char ls[16] =
4514 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4515 if (size > 16)
4516 {
4517 gas_assert (0);
4518 return -1;
4519 }
4520 gas_assert (ls[size - 1] != (unsigned char)-1);
4521 return ls[size - 1];
4522}
4523
4524/* Determine and return the real reloc type code for an instruction
4525 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4526
4527static inline bfd_reloc_code_real_type
4528ldst_lo12_determine_real_reloc_type (void)
4529{
4530 int logsz;
4531 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4532 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4533
4534 const bfd_reloc_code_real_type reloc_ldst_lo12[5] = {
4535 BFD_RELOC_AARCH64_LDST8_LO12, BFD_RELOC_AARCH64_LDST16_LO12,
4536 BFD_RELOC_AARCH64_LDST32_LO12, BFD_RELOC_AARCH64_LDST64_LO12,
4537 BFD_RELOC_AARCH64_LDST128_LO12
4538 };
4539
4540 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12);
4541 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4542
4543 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4544 opd1_qlf =
4545 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4546 1, opd0_qlf, 0);
4547 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4548
4549 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4550 gas_assert (logsz >= 0 && logsz <= 4);
4551
4552 return reloc_ldst_lo12[logsz];
4553}
4554
4555/* Check whether a register list REGINFO is valid. The registers must be
4556 numbered in increasing order (modulo 32), in increments of one or two.
4557
4558 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4559 increments of two.
4560
4561 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4562
4563static bfd_boolean
4564reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4565{
4566 uint32_t i, nb_regs, prev_regno, incr;
4567
4568 nb_regs = 1 + (reginfo & 0x3);
4569 reginfo >>= 2;
4570 prev_regno = reginfo & 0x1f;
4571 incr = accept_alternate ? 2 : 1;
4572
4573 for (i = 1; i < nb_regs; ++i)
4574 {
4575 uint32_t curr_regno;
4576 reginfo >>= 5;
4577 curr_regno = reginfo & 0x1f;
4578 if (curr_regno != ((prev_regno + incr) & 0x1f))
4579 return FALSE;
4580 prev_regno = curr_regno;
4581 }
4582
4583 return TRUE;
4584}
4585
4586/* Generic instruction operand parser. This does no encoding and no
4587 semantic validation; it merely squirrels values away in the inst
4588 structure. Returns TRUE or FALSE depending on whether the
4589 specified grammar matched. */
4590
4591static bfd_boolean
4592parse_operands (char *str, const aarch64_opcode *opcode)
4593{
4594 int i;
4595 char *backtrack_pos = 0;
4596 const enum aarch64_opnd *operands = opcode->operands;
4597
4598 clear_error ();
4599 skip_whitespace (str);
4600
4601 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4602 {
4603 int64_t val;
4604 int isreg32, isregzero;
4605 int comma_skipped_p = 0;
4606 aarch64_reg_type rtype;
4607 struct neon_type_el vectype;
4608 aarch64_opnd_info *info = &inst.base.operands[i];
4609
4610 DEBUG_TRACE ("parse operand %d", i);
4611
4612 /* Assign the operand code. */
4613 info->type = operands[i];
4614
4615 if (optional_operand_p (opcode, i))
4616 {
4617 /* Remember where we are in case we need to backtrack. */
4618 gas_assert (!backtrack_pos);
4619 backtrack_pos = str;
4620 }
4621
4622 /* Expect comma between operands; the backtrack mechanizm will take
4623 care of cases of omitted optional operand. */
4624 if (i > 0 && ! skip_past_char (&str, ','))
4625 {
4626 set_syntax_error (_("comma expected between operands"));
4627 goto failure;
4628 }
4629 else
4630 comma_skipped_p = 1;
4631
4632 switch (operands[i])
4633 {
4634 case AARCH64_OPND_Rd:
4635 case AARCH64_OPND_Rn:
4636 case AARCH64_OPND_Rm:
4637 case AARCH64_OPND_Rt:
4638 case AARCH64_OPND_Rt2:
4639 case AARCH64_OPND_Rs:
4640 case AARCH64_OPND_Ra:
4641 case AARCH64_OPND_Rt_SYS:
ee804238 4642 case AARCH64_OPND_PAIRREG:
a06ea964
NC
4643 po_int_reg_or_fail (1, 0);
4644 break;
4645
4646 case AARCH64_OPND_Rd_SP:
4647 case AARCH64_OPND_Rn_SP:
4648 po_int_reg_or_fail (0, 1);
4649 break;
4650
4651 case AARCH64_OPND_Rm_EXT:
4652 case AARCH64_OPND_Rm_SFT:
4653 po_misc_or_fail (parse_shifter_operand
4654 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4655 ? SHIFTED_ARITH_IMM
4656 : SHIFTED_LOGIC_IMM)));
4657 if (!info->shifter.operator_present)
4658 {
4659 /* Default to LSL if not present. Libopcodes prefers shifter
4660 kind to be explicit. */
4661 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4662 info->shifter.kind = AARCH64_MOD_LSL;
4663 /* For Rm_EXT, libopcodes will carry out further check on whether
4664 or not stack pointer is used in the instruction (Recall that
4665 "the extend operator is not optional unless at least one of
4666 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4667 }
4668 break;
4669
4670 case AARCH64_OPND_Fd:
4671 case AARCH64_OPND_Fn:
4672 case AARCH64_OPND_Fm:
4673 case AARCH64_OPND_Fa:
4674 case AARCH64_OPND_Ft:
4675 case AARCH64_OPND_Ft2:
4676 case AARCH64_OPND_Sd:
4677 case AARCH64_OPND_Sn:
4678 case AARCH64_OPND_Sm:
4679 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4680 if (val == PARSE_FAIL)
4681 {
4682 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4683 goto failure;
4684 }
4685 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4686
4687 info->reg.regno = val;
4688 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4689 break;
4690
4691 case AARCH64_OPND_Vd:
4692 case AARCH64_OPND_Vn:
4693 case AARCH64_OPND_Vm:
4694 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4695 if (val == PARSE_FAIL)
4696 {
4697 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4698 goto failure;
4699 }
4700 if (vectype.defined & NTA_HASINDEX)
4701 goto failure;
4702
4703 info->reg.regno = val;
4704 info->qualifier = vectype_to_qualifier (&vectype);
4705 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4706 goto failure;
4707 break;
4708
4709 case AARCH64_OPND_VdD1:
4710 case AARCH64_OPND_VnD1:
4711 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4712 if (val == PARSE_FAIL)
4713 {
4714 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4715 goto failure;
4716 }
4717 if (vectype.type != NT_d || vectype.index != 1)
4718 {
4719 set_fatal_syntax_error
4720 (_("the top half of a 128-bit FP/SIMD register is expected"));
4721 goto failure;
4722 }
4723 info->reg.regno = val;
4724 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4725 here; it is correct for the purpose of encoding/decoding since
4726 only the register number is explicitly encoded in the related
4727 instructions, although this appears a bit hacky. */
4728 info->qualifier = AARCH64_OPND_QLF_S_D;
4729 break;
4730
4731 case AARCH64_OPND_Ed:
4732 case AARCH64_OPND_En:
4733 case AARCH64_OPND_Em:
4734 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4735 if (val == PARSE_FAIL)
4736 {
4737 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4738 goto failure;
4739 }
4740 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
4741 goto failure;
4742
4743 info->reglane.regno = val;
4744 info->reglane.index = vectype.index;
4745 info->qualifier = vectype_to_qualifier (&vectype);
4746 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4747 goto failure;
4748 break;
4749
4750 case AARCH64_OPND_LVn:
4751 case AARCH64_OPND_LVt:
4752 case AARCH64_OPND_LVt_AL:
4753 case AARCH64_OPND_LEt:
4754 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
4755 goto failure;
4756 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
4757 {
4758 set_fatal_syntax_error (_("invalid register list"));
4759 goto failure;
4760 }
4761 info->reglist.first_regno = (val >> 2) & 0x1f;
4762 info->reglist.num_regs = (val & 0x3) + 1;
4763 if (operands[i] == AARCH64_OPND_LEt)
4764 {
4765 if (!(vectype.defined & NTA_HASINDEX))
4766 goto failure;
4767 info->reglist.has_index = 1;
4768 info->reglist.index = vectype.index;
4769 }
4770 else if (!(vectype.defined & NTA_HASTYPE))
4771 goto failure;
4772 info->qualifier = vectype_to_qualifier (&vectype);
4773 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4774 goto failure;
4775 break;
4776
4777 case AARCH64_OPND_Cn:
4778 case AARCH64_OPND_Cm:
4779 po_reg_or_fail (REG_TYPE_CN);
4780 if (val > 15)
4781 {
4782 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
4783 goto failure;
4784 }
4785 inst.base.operands[i].reg.regno = val;
4786 break;
4787
4788 case AARCH64_OPND_SHLL_IMM:
4789 case AARCH64_OPND_IMM_VLSR:
4790 po_imm_or_fail (1, 64);
4791 info->imm.value = val;
4792 break;
4793
4794 case AARCH64_OPND_CCMP_IMM:
4795 case AARCH64_OPND_FBITS:
4796 case AARCH64_OPND_UIMM4:
4797 case AARCH64_OPND_UIMM3_OP1:
4798 case AARCH64_OPND_UIMM3_OP2:
4799 case AARCH64_OPND_IMM_VLSL:
4800 case AARCH64_OPND_IMM:
4801 case AARCH64_OPND_WIDTH:
4802 po_imm_nc_or_fail ();
4803 info->imm.value = val;
4804 break;
4805
4806 case AARCH64_OPND_UIMM7:
4807 po_imm_or_fail (0, 127);
4808 info->imm.value = val;
4809 break;
4810
4811 case AARCH64_OPND_IDX:
4812 case AARCH64_OPND_BIT_NUM:
4813 case AARCH64_OPND_IMMR:
4814 case AARCH64_OPND_IMMS:
4815 po_imm_or_fail (0, 63);
4816 info->imm.value = val;
4817 break;
4818
4819 case AARCH64_OPND_IMM0:
4820 po_imm_nc_or_fail ();
4821 if (val != 0)
4822 {
4823 set_fatal_syntax_error (_("immediate zero expected"));
4824 goto failure;
4825 }
4826 info->imm.value = 0;
4827 break;
4828
4829 case AARCH64_OPND_FPIMM0:
4830 {
4831 int qfloat;
4832 bfd_boolean res1 = FALSE, res2 = FALSE;
4833 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
4834 it is probably not worth the effort to support it. */
62b0d0d5 4835 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
4836 && !(res2 = parse_constant_immediate (&str, &val)))
4837 goto failure;
4838 if ((res1 && qfloat == 0) || (res2 && val == 0))
4839 {
4840 info->imm.value = 0;
4841 info->imm.is_fp = 1;
4842 break;
4843 }
4844 set_fatal_syntax_error (_("immediate zero expected"));
4845 goto failure;
4846 }
4847
4848 case AARCH64_OPND_IMM_MOV:
4849 {
4850 char *saved = str;
8db49cc2
WN
4851 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
4852 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
4853 goto failure;
4854 str = saved;
4855 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
4856 GE_OPT_PREFIX, 1));
4857 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
4858 later. fix_mov_imm_insn will try to determine a machine
4859 instruction (MOVZ, MOVN or ORR) for it and will issue an error
4860 message if the immediate cannot be moved by a single
4861 instruction. */
4862 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4863 inst.base.operands[i].skip = 1;
4864 }
4865 break;
4866
4867 case AARCH64_OPND_SIMD_IMM:
4868 case AARCH64_OPND_SIMD_IMM_SFT:
4869 if (! parse_big_immediate (&str, &val))
4870 goto failure;
4871 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4872 /* addr_off_p */ 0,
4873 /* need_libopcodes_p */ 1,
4874 /* skip_p */ 1);
4875 /* Parse shift.
4876 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
4877 shift, we don't check it here; we leave the checking to
4878 the libopcodes (operand_general_constraint_met_p). By
4879 doing this, we achieve better diagnostics. */
4880 if (skip_past_comma (&str)
4881 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
4882 goto failure;
4883 if (!info->shifter.operator_present
4884 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
4885 {
4886 /* Default to LSL if not present. Libopcodes prefers shifter
4887 kind to be explicit. */
4888 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4889 info->shifter.kind = AARCH64_MOD_LSL;
4890 }
4891 break;
4892
4893 case AARCH64_OPND_FPIMM:
4894 case AARCH64_OPND_SIMD_FPIMM:
4895 {
4896 int qfloat;
62b0d0d5
YZ
4897 bfd_boolean dp_p
4898 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
4899 == 8);
4900 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
4901 goto failure;
4902 if (qfloat == 0)
4903 {
4904 set_fatal_syntax_error (_("invalid floating-point constant"));
4905 goto failure;
4906 }
4907 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
4908 inst.base.operands[i].imm.is_fp = 1;
4909 }
4910 break;
4911
4912 case AARCH64_OPND_LIMM:
4913 po_misc_or_fail (parse_shifter_operand (&str, info,
4914 SHIFTED_LOGIC_IMM));
4915 if (info->shifter.operator_present)
4916 {
4917 set_fatal_syntax_error
4918 (_("shift not allowed for bitmask immediate"));
4919 goto failure;
4920 }
4921 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4922 /* addr_off_p */ 0,
4923 /* need_libopcodes_p */ 1,
4924 /* skip_p */ 1);
4925 break;
4926
4927 case AARCH64_OPND_AIMM:
4928 if (opcode->op == OP_ADD)
4929 /* ADD may have relocation types. */
4930 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
4931 SHIFTED_ARITH_IMM));
4932 else
4933 po_misc_or_fail (parse_shifter_operand (&str, info,
4934 SHIFTED_ARITH_IMM));
4935 switch (inst.reloc.type)
4936 {
4937 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4938 info->shifter.amount = 12;
4939 break;
4940 case BFD_RELOC_UNUSED:
4941 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
4942 if (info->shifter.kind != AARCH64_MOD_NONE)
4943 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
4944 inst.reloc.pc_rel = 0;
4945 break;
4946 default:
4947 break;
4948 }
4949 info->imm.value = 0;
4950 if (!info->shifter.operator_present)
4951 {
4952 /* Default to LSL if not present. Libopcodes prefers shifter
4953 kind to be explicit. */
4954 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4955 info->shifter.kind = AARCH64_MOD_LSL;
4956 }
4957 break;
4958
4959 case AARCH64_OPND_HALF:
4960 {
4961 /* #<imm16> or relocation. */
4962 int internal_fixup_p;
4963 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
4964 if (internal_fixup_p)
4965 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
4966 skip_whitespace (str);
4967 if (skip_past_comma (&str))
4968 {
4969 /* {, LSL #<shift>} */
4970 if (! aarch64_gas_internal_fixup_p ())
4971 {
4972 set_fatal_syntax_error (_("can't mix relocation modifier "
4973 "with explicit shift"));
4974 goto failure;
4975 }
4976 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
4977 }
4978 else
4979 inst.base.operands[i].shifter.amount = 0;
4980 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
4981 inst.base.operands[i].imm.value = 0;
4982 if (! process_movw_reloc_info ())
4983 goto failure;
4984 }
4985 break;
4986
4987 case AARCH64_OPND_EXCEPTION:
4988 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
4989 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4990 /* addr_off_p */ 0,
4991 /* need_libopcodes_p */ 0,
4992 /* skip_p */ 1);
4993 break;
4994
4995 case AARCH64_OPND_NZCV:
4996 {
4997 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
4998 if (nzcv != NULL)
4999 {
5000 str += 4;
5001 info->imm.value = nzcv->value;
5002 break;
5003 }
5004 po_imm_or_fail (0, 15);
5005 info->imm.value = val;
5006 }
5007 break;
5008
5009 case AARCH64_OPND_COND:
68a64283 5010 case AARCH64_OPND_COND1:
a06ea964
NC
5011 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5012 str += 2;
5013 if (info->cond == NULL)
5014 {
5015 set_syntax_error (_("invalid condition"));
5016 goto failure;
5017 }
68a64283
YZ
5018 else if (operands[i] == AARCH64_OPND_COND1
5019 && (info->cond->value & 0xe) == 0xe)
5020 {
5021 /* Not allow AL or NV. */
5022 set_default_error ();
5023 goto failure;
5024 }
a06ea964
NC
5025 break;
5026
5027 case AARCH64_OPND_ADDR_ADRP:
5028 po_misc_or_fail (parse_adrp (&str));
5029 /* Clear the value as operand needs to be relocated. */
5030 info->imm.value = 0;
5031 break;
5032
5033 case AARCH64_OPND_ADDR_PCREL14:
5034 case AARCH64_OPND_ADDR_PCREL19:
5035 case AARCH64_OPND_ADDR_PCREL21:
5036 case AARCH64_OPND_ADDR_PCREL26:
5037 po_misc_or_fail (parse_address_reloc (&str, info));
5038 if (!info->addr.pcrel)
5039 {
5040 set_syntax_error (_("invalid pc-relative address"));
5041 goto failure;
5042 }
5043 if (inst.gen_lit_pool
5044 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5045 {
5046 /* Only permit "=value" in the literal load instructions.
5047 The literal will be generated by programmer_friendly_fixup. */
5048 set_syntax_error (_("invalid use of \"=immediate\""));
5049 goto failure;
5050 }
5051 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5052 {
5053 set_syntax_error (_("unrecognized relocation suffix"));
5054 goto failure;
5055 }
5056 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5057 {
5058 info->imm.value = inst.reloc.exp.X_add_number;
5059 inst.reloc.type = BFD_RELOC_UNUSED;
5060 }
5061 else
5062 {
5063 info->imm.value = 0;
f41aef5f
RE
5064 if (inst.reloc.type == BFD_RELOC_UNUSED)
5065 switch (opcode->iclass)
5066 {
5067 case compbranch:
5068 case condbranch:
5069 /* e.g. CBZ or B.COND */
5070 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5071 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5072 break;
5073 case testbranch:
5074 /* e.g. TBZ */
5075 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5076 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5077 break;
5078 case branch_imm:
5079 /* e.g. B or BL */
5080 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5081 inst.reloc.type =
5082 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5083 : BFD_RELOC_AARCH64_JUMP26;
5084 break;
5085 case loadlit:
5086 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5087 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5088 break;
5089 case pcreladdr:
5090 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5091 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5092 break;
5093 default:
5094 gas_assert (0);
5095 abort ();
5096 }
a06ea964
NC
5097 inst.reloc.pc_rel = 1;
5098 }
5099 break;
5100
5101 case AARCH64_OPND_ADDR_SIMPLE:
5102 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5103 /* [<Xn|SP>{, #<simm>}] */
5104 po_char_or_fail ('[');
5105 po_reg_or_fail (REG_TYPE_R64_SP);
5106 /* Accept optional ", #0". */
5107 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5108 && skip_past_char (&str, ','))
5109 {
5110 skip_past_char (&str, '#');
5111 if (! skip_past_char (&str, '0'))
5112 {
5113 set_fatal_syntax_error
5114 (_("the optional immediate offset can only be 0"));
5115 goto failure;
5116 }
5117 }
5118 po_char_or_fail (']');
5119 info->addr.base_regno = val;
5120 break;
5121
5122 case AARCH64_OPND_ADDR_REGOFF:
5123 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5124 po_misc_or_fail (parse_address (&str, info, 0));
5125 if (info->addr.pcrel || !info->addr.offset.is_reg
5126 || !info->addr.preind || info->addr.postind
5127 || info->addr.writeback)
5128 {
5129 set_syntax_error (_("invalid addressing mode"));
5130 goto failure;
5131 }
5132 if (!info->shifter.operator_present)
5133 {
5134 /* Default to LSL if not present. Libopcodes prefers shifter
5135 kind to be explicit. */
5136 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5137 info->shifter.kind = AARCH64_MOD_LSL;
5138 }
5139 /* Qualifier to be deduced by libopcodes. */
5140 break;
5141
5142 case AARCH64_OPND_ADDR_SIMM7:
5143 po_misc_or_fail (parse_address (&str, info, 0));
5144 if (info->addr.pcrel || info->addr.offset.is_reg
5145 || (!info->addr.preind && !info->addr.postind))
5146 {
5147 set_syntax_error (_("invalid addressing mode"));
5148 goto failure;
5149 }
5150 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5151 /* addr_off_p */ 1,
5152 /* need_libopcodes_p */ 1,
5153 /* skip_p */ 0);
5154 break;
5155
5156 case AARCH64_OPND_ADDR_SIMM9:
5157 case AARCH64_OPND_ADDR_SIMM9_2:
5158 po_misc_or_fail (parse_address_reloc (&str, info));
5159 if (info->addr.pcrel || info->addr.offset.is_reg
5160 || (!info->addr.preind && !info->addr.postind)
5161 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5162 && info->addr.writeback))
5163 {
5164 set_syntax_error (_("invalid addressing mode"));
5165 goto failure;
5166 }
5167 if (inst.reloc.type != BFD_RELOC_UNUSED)
5168 {
5169 set_syntax_error (_("relocation not allowed"));
5170 goto failure;
5171 }
5172 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5173 /* addr_off_p */ 1,
5174 /* need_libopcodes_p */ 1,
5175 /* skip_p */ 0);
5176 break;
5177
5178 case AARCH64_OPND_ADDR_UIMM12:
5179 po_misc_or_fail (parse_address_reloc (&str, info));
5180 if (info->addr.pcrel || info->addr.offset.is_reg
5181 || !info->addr.preind || info->addr.writeback)
5182 {
5183 set_syntax_error (_("invalid addressing mode"));
5184 goto failure;
5185 }
5186 if (inst.reloc.type == BFD_RELOC_UNUSED)
5187 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5188 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12)
5189 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5190 /* Leave qualifier to be determined by libopcodes. */
5191 break;
5192
5193 case AARCH64_OPND_SIMD_ADDR_POST:
5194 /* [<Xn|SP>], <Xm|#<amount>> */
5195 po_misc_or_fail (parse_address (&str, info, 1));
5196 if (!info->addr.postind || !info->addr.writeback)
5197 {
5198 set_syntax_error (_("invalid addressing mode"));
5199 goto failure;
5200 }
5201 if (!info->addr.offset.is_reg)
5202 {
5203 if (inst.reloc.exp.X_op == O_constant)
5204 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5205 else
5206 {
5207 set_fatal_syntax_error
5208 (_("writeback value should be an immediate constant"));
5209 goto failure;
5210 }
5211 }
5212 /* No qualifier. */
5213 break;
5214
5215 case AARCH64_OPND_SYSREG:
a203d9b7
YZ
5216 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1))
5217 == PARSE_FAIL)
a06ea964 5218 {
a203d9b7
YZ
5219 set_syntax_error (_("unknown or missing system register name"));
5220 goto failure;
a06ea964 5221 }
a203d9b7 5222 inst.base.operands[i].sysreg = val;
a06ea964
NC
5223 break;
5224
5225 case AARCH64_OPND_PSTATEFIELD:
a203d9b7 5226 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0))
a3251895 5227 == PARSE_FAIL)
a06ea964
NC
5228 {
5229 set_syntax_error (_("unknown or missing PSTATE field name"));
5230 goto failure;
5231 }
5232 inst.base.operands[i].pstatefield = val;
5233 break;
5234
5235 case AARCH64_OPND_SYSREG_IC:
5236 inst.base.operands[i].sysins_op =
5237 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5238 goto sys_reg_ins;
5239 case AARCH64_OPND_SYSREG_DC:
5240 inst.base.operands[i].sysins_op =
5241 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5242 goto sys_reg_ins;
5243 case AARCH64_OPND_SYSREG_AT:
5244 inst.base.operands[i].sysins_op =
5245 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5246 goto sys_reg_ins;
5247 case AARCH64_OPND_SYSREG_TLBI:
5248 inst.base.operands[i].sysins_op =
5249 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5250sys_reg_ins:
5251 if (inst.base.operands[i].sysins_op == NULL)
5252 {
5253 set_fatal_syntax_error ( _("unknown or missing operation name"));
5254 goto failure;
5255 }
5256 break;
5257
5258 case AARCH64_OPND_BARRIER:
5259 case AARCH64_OPND_BARRIER_ISB:
5260 val = parse_barrier (&str);
5261 if (val != PARSE_FAIL
5262 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5263 {
5264 /* ISB only accepts options name 'sy'. */
5265 set_syntax_error
5266 (_("the specified option is not accepted in ISB"));
5267 /* Turn off backtrack as this optional operand is present. */
5268 backtrack_pos = 0;
5269 goto failure;
5270 }
5271 /* This is an extension to accept a 0..15 immediate. */
5272 if (val == PARSE_FAIL)
5273 po_imm_or_fail (0, 15);
5274 info->barrier = aarch64_barrier_options + val;
5275 break;
5276
5277 case AARCH64_OPND_PRFOP:
5278 val = parse_pldop (&str);
5279 /* This is an extension to accept a 0..31 immediate. */
5280 if (val == PARSE_FAIL)
5281 po_imm_or_fail (0, 31);
5282 inst.base.operands[i].prfop = aarch64_prfops + val;
5283 break;
5284
5285 default:
5286 as_fatal (_("unhandled operand code %d"), operands[i]);
5287 }
5288
5289 /* If we get here, this operand was successfully parsed. */
5290 inst.base.operands[i].present = 1;
5291 continue;
5292
5293failure:
5294 /* The parse routine should already have set the error, but in case
5295 not, set a default one here. */
5296 if (! error_p ())
5297 set_default_error ();
5298
5299 if (! backtrack_pos)
5300 goto parse_operands_return;
5301
f4c51f60
JW
5302 {
5303 /* We reach here because this operand is marked as optional, and
5304 either no operand was supplied or the operand was supplied but it
5305 was syntactically incorrect. In the latter case we report an
5306 error. In the former case we perform a few more checks before
5307 dropping through to the code to insert the default operand. */
5308
5309 char *tmp = backtrack_pos;
5310 char endchar = END_OF_INSN;
5311
5312 if (i != (aarch64_num_of_operands (opcode) - 1))
5313 endchar = ',';
5314 skip_past_char (&tmp, ',');
5315
5316 if (*tmp != endchar)
5317 /* The user has supplied an operand in the wrong format. */
5318 goto parse_operands_return;
5319
5320 /* Make sure there is not a comma before the optional operand.
5321 For example the fifth operand of 'sys' is optional:
5322
5323 sys #0,c0,c0,#0, <--- wrong
5324 sys #0,c0,c0,#0 <--- correct. */
5325 if (comma_skipped_p && i && endchar == END_OF_INSN)
5326 {
5327 set_fatal_syntax_error
5328 (_("unexpected comma before the omitted optional operand"));
5329 goto parse_operands_return;
5330 }
5331 }
5332
a06ea964
NC
5333 /* Reaching here means we are dealing with an optional operand that is
5334 omitted from the assembly line. */
5335 gas_assert (optional_operand_p (opcode, i));
5336 info->present = 0;
5337 process_omitted_operand (operands[i], opcode, i, info);
5338
5339 /* Try again, skipping the optional operand at backtrack_pos. */
5340 str = backtrack_pos;
5341 backtrack_pos = 0;
5342
a06ea964
NC
5343 /* Clear any error record after the omitted optional operand has been
5344 successfully handled. */
5345 clear_error ();
5346 }
5347
5348 /* Check if we have parsed all the operands. */
5349 if (*str != '\0' && ! error_p ())
5350 {
5351 /* Set I to the index of the last present operand; this is
5352 for the purpose of diagnostics. */
5353 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5354 ;
5355 set_fatal_syntax_error
5356 (_("unexpected characters following instruction"));
5357 }
5358
5359parse_operands_return:
5360
5361 if (error_p ())
5362 {
5363 DEBUG_TRACE ("parsing FAIL: %s - %s",
5364 operand_mismatch_kind_names[get_error_kind ()],
5365 get_error_message ());
5366 /* Record the operand error properly; this is useful when there
5367 are multiple instruction templates for a mnemonic name, so that
5368 later on, we can select the error that most closely describes
5369 the problem. */
5370 record_operand_error (opcode, i, get_error_kind (),
5371 get_error_message ());
5372 return FALSE;
5373 }
5374 else
5375 {
5376 DEBUG_TRACE ("parsing SUCCESS");
5377 return TRUE;
5378 }
5379}
5380
5381/* It does some fix-up to provide some programmer friendly feature while
5382 keeping the libopcodes happy, i.e. libopcodes only accepts
5383 the preferred architectural syntax.
5384 Return FALSE if there is any failure; otherwise return TRUE. */
5385
5386static bfd_boolean
5387programmer_friendly_fixup (aarch64_instruction *instr)
5388{
5389 aarch64_inst *base = &instr->base;
5390 const aarch64_opcode *opcode = base->opcode;
5391 enum aarch64_op op = opcode->op;
5392 aarch64_opnd_info *operands = base->operands;
5393
5394 DEBUG_TRACE ("enter");
5395
5396 switch (opcode->iclass)
5397 {
5398 case testbranch:
5399 /* TBNZ Xn|Wn, #uimm6, label
5400 Test and Branch Not Zero: conditionally jumps to label if bit number
5401 uimm6 in register Xn is not zero. The bit number implies the width of
5402 the register, which may be written and should be disassembled as Wn if
5403 uimm is less than 32. */
5404 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5405 {
5406 if (operands[1].imm.value >= 32)
5407 {
5408 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5409 0, 31);
5410 return FALSE;
5411 }
5412 operands[0].qualifier = AARCH64_OPND_QLF_X;
5413 }
5414 break;
5415 case loadlit:
5416 /* LDR Wt, label | =value
5417 As a convenience assemblers will typically permit the notation
5418 "=value" in conjunction with the pc-relative literal load instructions
5419 to automatically place an immediate value or symbolic address in a
5420 nearby literal pool and generate a hidden label which references it.
5421 ISREG has been set to 0 in the case of =value. */
5422 if (instr->gen_lit_pool
5423 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5424 {
5425 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5426 if (op == OP_LDRSW_LIT)
5427 size = 4;
5428 if (instr->reloc.exp.X_op != O_constant
67a32447 5429 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5430 && instr->reloc.exp.X_op != O_symbol)
5431 {
5432 record_operand_error (opcode, 1,
5433 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5434 _("constant expression expected"));
5435 return FALSE;
5436 }
5437 if (! add_to_lit_pool (&instr->reloc.exp, size))
5438 {
5439 record_operand_error (opcode, 1,
5440 AARCH64_OPDE_OTHER_ERROR,
5441 _("literal pool insertion failed"));
5442 return FALSE;
5443 }
5444 }
5445 break;
a06ea964
NC
5446 case log_shift:
5447 case bitfield:
5448 /* UXT[BHW] Wd, Wn
5449 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5450 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5451 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5452 A programmer-friendly assembler should accept a destination Xd in
5453 place of Wd, however that is not the preferred form for disassembly.
5454 */
5455 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5456 && operands[1].qualifier == AARCH64_OPND_QLF_W
5457 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5458 operands[0].qualifier = AARCH64_OPND_QLF_W;
5459 break;
5460
5461 case addsub_ext:
5462 {
5463 /* In the 64-bit form, the final register operand is written as Wm
5464 for all but the (possibly omitted) UXTX/LSL and SXTX
5465 operators.
5466 As a programmer-friendly assembler, we accept e.g.
5467 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5468 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5469 int idx = aarch64_operand_index (opcode->operands,
5470 AARCH64_OPND_Rm_EXT);
5471 gas_assert (idx == 1 || idx == 2);
5472 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5473 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5474 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5475 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5476 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5477 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5478 }
5479 break;
5480
5481 default:
5482 break;
5483 }
5484
5485 DEBUG_TRACE ("exit with SUCCESS");
5486 return TRUE;
5487}
5488
5489/* A wrapper function to interface with libopcodes on encoding and
5490 record the error message if there is any.
5491
5492 Return TRUE on success; otherwise return FALSE. */
5493
5494static bfd_boolean
5495do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5496 aarch64_insn *code)
5497{
5498 aarch64_operand_error error_info;
5499 error_info.kind = AARCH64_OPDE_NIL;
5500 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5501 return TRUE;
5502 else
5503 {
5504 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5505 record_operand_error_info (opcode, &error_info);
5506 return FALSE;
5507 }
5508}
5509
5510#ifdef DEBUG_AARCH64
5511static inline void
5512dump_opcode_operands (const aarch64_opcode *opcode)
5513{
5514 int i = 0;
5515 while (opcode->operands[i] != AARCH64_OPND_NIL)
5516 {
5517 aarch64_verbose ("\t\t opnd%d: %s", i,
5518 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5519 ? aarch64_get_operand_name (opcode->operands[i])
5520 : aarch64_get_operand_desc (opcode->operands[i]));
5521 ++i;
5522 }
5523}
5524#endif /* DEBUG_AARCH64 */
5525
5526/* This is the guts of the machine-dependent assembler. STR points to a
5527 machine dependent instruction. This function is supposed to emit
5528 the frags/bytes it assembles to. */
5529
5530void
5531md_assemble (char *str)
5532{
5533 char *p = str;
5534 templates *template;
5535 aarch64_opcode *opcode;
5536 aarch64_inst *inst_base;
5537 unsigned saved_cond;
5538
5539 /* Align the previous label if needed. */
5540 if (last_label_seen != NULL)
5541 {
5542 symbol_set_frag (last_label_seen, frag_now);
5543 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5544 S_SET_SEGMENT (last_label_seen, now_seg);
5545 }
5546
5547 inst.reloc.type = BFD_RELOC_UNUSED;
5548
5549 DEBUG_TRACE ("\n\n");
5550 DEBUG_TRACE ("==============================");
5551 DEBUG_TRACE ("Enter md_assemble with %s", str);
5552
5553 template = opcode_lookup (&p);
5554 if (!template)
5555 {
5556 /* It wasn't an instruction, but it might be a register alias of
5557 the form alias .req reg directive. */
5558 if (!create_register_alias (str, p))
5559 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5560 str);
5561 return;
5562 }
5563
5564 skip_whitespace (p);
5565 if (*p == ',')
5566 {
5567 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5568 get_mnemonic_name (str), str);
5569 return;
5570 }
5571
5572 init_operand_error_report ();
5573
5574 saved_cond = inst.cond;
5575 reset_aarch64_instruction (&inst);
5576 inst.cond = saved_cond;
5577
5578 /* Iterate through all opcode entries with the same mnemonic name. */
5579 do
5580 {
5581 opcode = template->opcode;
5582
5583 DEBUG_TRACE ("opcode %s found", opcode->name);
5584#ifdef DEBUG_AARCH64
5585 if (debug_dump)
5586 dump_opcode_operands (opcode);
5587#endif /* DEBUG_AARCH64 */
5588
a06ea964
NC
5589 mapping_state (MAP_INSN);
5590
5591 inst_base = &inst.base;
5592 inst_base->opcode = opcode;
5593
5594 /* Truly conditionally executed instructions, e.g. b.cond. */
5595 if (opcode->flags & F_COND)
5596 {
5597 gas_assert (inst.cond != COND_ALWAYS);
5598 inst_base->cond = get_cond_from_value (inst.cond);
5599 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5600 }
5601 else if (inst.cond != COND_ALWAYS)
5602 {
5603 /* It shouldn't arrive here, where the assembly looks like a
5604 conditional instruction but the found opcode is unconditional. */
5605 gas_assert (0);
5606 continue;
5607 }
5608
5609 if (parse_operands (p, opcode)
5610 && programmer_friendly_fixup (&inst)
5611 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5612 {
3f06bfce
YZ
5613 /* Check that this instruction is supported for this CPU. */
5614 if (!opcode->avariant
5615 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5616 {
5617 as_bad (_("selected processor does not support `%s'"), str);
5618 return;
5619 }
5620
a06ea964
NC
5621 if (inst.reloc.type == BFD_RELOC_UNUSED
5622 || !inst.reloc.need_libopcodes_p)
5623 output_inst (NULL);
5624 else
5625 {
5626 /* If there is relocation generated for the instruction,
5627 store the instruction information for the future fix-up. */
5628 struct aarch64_inst *copy;
5629 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5630 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5631 abort ();
5632 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5633 output_inst (copy);
5634 }
5635 return;
5636 }
5637
5638 template = template->next;
5639 if (template != NULL)
5640 {
5641 reset_aarch64_instruction (&inst);
5642 inst.cond = saved_cond;
5643 }
5644 }
5645 while (template != NULL);
5646
5647 /* Issue the error messages if any. */
5648 output_operand_error_report (str);
5649}
5650
5651/* Various frobbings of labels and their addresses. */
5652
5653void
5654aarch64_start_line_hook (void)
5655{
5656 last_label_seen = NULL;
5657}
5658
5659void
5660aarch64_frob_label (symbolS * sym)
5661{
5662 last_label_seen = sym;
5663
5664 dwarf2_emit_label (sym);
5665}
5666
5667int
5668aarch64_data_in_code (void)
5669{
5670 if (!strncmp (input_line_pointer + 1, "data:", 5))
5671 {
5672 *input_line_pointer = '/';
5673 input_line_pointer += 5;
5674 *input_line_pointer = 0;
5675 return 1;
5676 }
5677
5678 return 0;
5679}
5680
5681char *
5682aarch64_canonicalize_symbol_name (char *name)
5683{
5684 int len;
5685
5686 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
5687 *(name + len - 5) = 0;
5688
5689 return name;
5690}
5691\f
5692/* Table of all register names defined by default. The user can
5693 define additional names with .req. Note that all register names
5694 should appear in both upper and lowercase variants. Some registers
5695 also have mixed-case names. */
5696
5697#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
5698#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5699#define REGSET31(p,t) \
5700 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
5701 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
5702 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
5703 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
5704 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
5705 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
5706 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
5707 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
5708#define REGSET(p,t) \
5709 REGSET31(p,t), REGNUM(p,31,t)
5710
5711/* These go into aarch64_reg_hsh hash-table. */
5712static const reg_entry reg_names[] = {
5713 /* Integer registers. */
5714 REGSET31 (x, R_64), REGSET31 (X, R_64),
5715 REGSET31 (w, R_32), REGSET31 (W, R_32),
5716
5717 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
5718 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
5719
5720 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
5721 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
5722
5723 /* Coprocessor register numbers. */
5724 REGSET (c, CN), REGSET (C, CN),
5725
5726 /* Floating-point single precision registers. */
5727 REGSET (s, FP_S), REGSET (S, FP_S),
5728
5729 /* Floating-point double precision registers. */
5730 REGSET (d, FP_D), REGSET (D, FP_D),
5731
5732 /* Floating-point half precision registers. */
5733 REGSET (h, FP_H), REGSET (H, FP_H),
5734
5735 /* Floating-point byte precision registers. */
5736 REGSET (b, FP_B), REGSET (B, FP_B),
5737
5738 /* Floating-point quad precision registers. */
5739 REGSET (q, FP_Q), REGSET (Q, FP_Q),
5740
5741 /* FP/SIMD registers. */
5742 REGSET (v, VN), REGSET (V, VN),
5743};
5744
5745#undef REGDEF
5746#undef REGNUM
5747#undef REGSET
5748
5749#define N 1
5750#define n 0
5751#define Z 1
5752#define z 0
5753#define C 1
5754#define c 0
5755#define V 1
5756#define v 0
5757#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
5758static const asm_nzcv nzcv_names[] = {
5759 {"nzcv", B (n, z, c, v)},
5760 {"nzcV", B (n, z, c, V)},
5761 {"nzCv", B (n, z, C, v)},
5762 {"nzCV", B (n, z, C, V)},
5763 {"nZcv", B (n, Z, c, v)},
5764 {"nZcV", B (n, Z, c, V)},
5765 {"nZCv", B (n, Z, C, v)},
5766 {"nZCV", B (n, Z, C, V)},
5767 {"Nzcv", B (N, z, c, v)},
5768 {"NzcV", B (N, z, c, V)},
5769 {"NzCv", B (N, z, C, v)},
5770 {"NzCV", B (N, z, C, V)},
5771 {"NZcv", B (N, Z, c, v)},
5772 {"NZcV", B (N, Z, c, V)},
5773 {"NZCv", B (N, Z, C, v)},
5774 {"NZCV", B (N, Z, C, V)}
5775};
5776
5777#undef N
5778#undef n
5779#undef Z
5780#undef z
5781#undef C
5782#undef c
5783#undef V
5784#undef v
5785#undef B
5786\f
5787/* MD interface: bits in the object file. */
5788
5789/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
5790 for use in the a.out file, and stores them in the array pointed to by buf.
5791 This knows about the endian-ness of the target machine and does
5792 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
5793 2 (short) and 4 (long) Floating numbers are put out as a series of
5794 LITTLENUMS (shorts, here at least). */
5795
5796void
5797md_number_to_chars (char *buf, valueT val, int n)
5798{
5799 if (target_big_endian)
5800 number_to_chars_bigendian (buf, val, n);
5801 else
5802 number_to_chars_littleendian (buf, val, n);
5803}
5804
5805/* MD interface: Sections. */
5806
5807/* Estimate the size of a frag before relaxing. Assume everything fits in
5808 4 bytes. */
5809
5810int
5811md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
5812{
5813 fragp->fr_var = 4;
5814 return 4;
5815}
5816
5817/* Round up a section size to the appropriate boundary. */
5818
5819valueT
5820md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5821{
5822 return size;
5823}
5824
5825/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
5826 of an rs_align_code fragment. */
5827
5828void
5829aarch64_handle_align (fragS * fragP)
5830{
5831 /* NOP = d503201f */
5832 /* AArch64 instructions are always little-endian. */
5833 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
5834
5835 int bytes, fix, noop_size;
5836 char *p;
5837 const char *noop;
5838
5839 if (fragP->fr_type != rs_align_code)
5840 return;
5841
5842 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5843 p = fragP->fr_literal + fragP->fr_fix;
5844 fix = 0;
5845
5846 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
5847 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
5848
5849#ifdef OBJ_ELF
5850 gas_assert (fragP->tc_frag_data.recorded);
5851#endif
5852
5853 noop = aarch64_noop;
5854 noop_size = sizeof (aarch64_noop);
5855 fragP->fr_var = noop_size;
5856
5857 if (bytes & (noop_size - 1))
5858 {
5859 fix = bytes & (noop_size - 1);
5860#ifdef OBJ_ELF
5861 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
5862#endif
5863 memset (p, 0, fix);
5864 p += fix;
5865 bytes -= fix;
5866 }
5867
5868 while (bytes >= noop_size)
5869 {
5870 memcpy (p, noop, noop_size);
5871 p += noop_size;
5872 bytes -= noop_size;
5873 fix += noop_size;
5874 }
5875
5876 fragP->fr_fix += fix;
5877}
5878
5879/* Called from md_do_align. Used to create an alignment
5880 frag in a code section. */
5881
5882void
5883aarch64_frag_align_code (int n, int max)
5884{
5885 char *p;
5886
5887 /* We assume that there will never be a requirement
5888 to support alignments greater than x bytes. */
5889 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
5890 as_fatal (_
5891 ("alignments greater than %d bytes not supported in .text sections"),
5892 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
5893
5894 p = frag_var (rs_align_code,
5895 MAX_MEM_FOR_RS_ALIGN_CODE,
5896 1,
5897 (relax_substateT) max,
5898 (symbolS *) NULL, (offsetT) n, (char *) NULL);
5899 *p = 0;
5900}
5901
5902/* Perform target specific initialisation of a frag.
5903 Note - despite the name this initialisation is not done when the frag
5904 is created, but only when its type is assigned. A frag can be created
5905 and used a long time before its type is set, so beware of assuming that
5906 this initialisationis performed first. */
5907
5908#ifndef OBJ_ELF
5909void
5910aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
5911 int max_chars ATTRIBUTE_UNUSED)
5912{
5913}
5914
5915#else /* OBJ_ELF is defined. */
5916void
5917aarch64_init_frag (fragS * fragP, int max_chars)
5918{
5919 /* Record a mapping symbol for alignment frags. We will delete this
5920 later if the alignment ends up empty. */
5921 if (!fragP->tc_frag_data.recorded)
5922 {
5923 fragP->tc_frag_data.recorded = 1;
5924 switch (fragP->fr_type)
5925 {
5926 case rs_align:
5927 case rs_align_test:
5928 case rs_fill:
5929 mapping_state_2 (MAP_DATA, max_chars);
5930 break;
5931 case rs_align_code:
5932 mapping_state_2 (MAP_INSN, max_chars);
5933 break;
5934 default:
5935 break;
5936 }
5937 }
5938}
5939\f
5940/* Initialize the DWARF-2 unwind information for this procedure. */
5941
5942void
5943tc_aarch64_frame_initial_instructions (void)
5944{
5945 cfi_add_CFA_def_cfa (REG_SP, 0);
5946}
5947#endif /* OBJ_ELF */
5948
5949/* Convert REGNAME to a DWARF-2 register number. */
5950
5951int
5952tc_aarch64_regname_to_dw2regnum (char *regname)
5953{
5954 const reg_entry *reg = parse_reg (&regname);
5955 if (reg == NULL)
5956 return -1;
5957
5958 switch (reg->type)
5959 {
5960 case REG_TYPE_SP_32:
5961 case REG_TYPE_SP_64:
5962 case REG_TYPE_R_32:
5963 case REG_TYPE_R_64:
a2cac51c
RH
5964 return reg->number;
5965
a06ea964
NC
5966 case REG_TYPE_FP_B:
5967 case REG_TYPE_FP_H:
5968 case REG_TYPE_FP_S:
5969 case REG_TYPE_FP_D:
5970 case REG_TYPE_FP_Q:
a2cac51c
RH
5971 return reg->number + 64;
5972
a06ea964
NC
5973 default:
5974 break;
5975 }
5976 return -1;
5977}
5978
cec5225b
YZ
5979/* Implement DWARF2_ADDR_SIZE. */
5980
5981int
5982aarch64_dwarf2_addr_size (void)
5983{
5984#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5985 if (ilp32_p)
5986 return 4;
5987#endif
5988 return bfd_arch_bits_per_address (stdoutput) / 8;
5989}
5990
a06ea964
NC
5991/* MD interface: Symbol and relocation handling. */
5992
5993/* Return the address within the segment that a PC-relative fixup is
5994 relative to. For AArch64 PC-relative fixups applied to instructions
5995 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
5996
5997long
5998md_pcrel_from_section (fixS * fixP, segT seg)
5999{
6000 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6001
6002 /* If this is pc-relative and we are going to emit a relocation
6003 then we just want to put out any pipeline compensation that the linker
6004 will need. Otherwise we want to use the calculated base. */
6005 if (fixP->fx_pcrel
6006 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6007 || aarch64_force_relocation (fixP)))
6008 base = 0;
6009
6010 /* AArch64 should be consistent for all pc-relative relocations. */
6011 return base + AARCH64_PCREL_OFFSET;
6012}
6013
6014/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6015 Otherwise we have no need to default values of symbols. */
6016
6017symbolS *
6018md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6019{
6020#ifdef OBJ_ELF
6021 if (name[0] == '_' && name[1] == 'G'
6022 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6023 {
6024 if (!GOT_symbol)
6025 {
6026 if (symbol_find (name))
6027 as_bad (_("GOT already in the symbol table"));
6028
6029 GOT_symbol = symbol_new (name, undefined_section,
6030 (valueT) 0, &zero_address_frag);
6031 }
6032
6033 return GOT_symbol;
6034 }
6035#endif
6036
6037 return 0;
6038}
6039
6040/* Return non-zero if the indicated VALUE has overflowed the maximum
6041 range expressible by a unsigned number with the indicated number of
6042 BITS. */
6043
6044static bfd_boolean
6045unsigned_overflow (valueT value, unsigned bits)
6046{
6047 valueT lim;
6048 if (bits >= sizeof (valueT) * 8)
6049 return FALSE;
6050 lim = (valueT) 1 << bits;
6051 return (value >= lim);
6052}
6053
6054
6055/* Return non-zero if the indicated VALUE has overflowed the maximum
6056 range expressible by an signed number with the indicated number of
6057 BITS. */
6058
6059static bfd_boolean
6060signed_overflow (offsetT value, unsigned bits)
6061{
6062 offsetT lim;
6063 if (bits >= sizeof (offsetT) * 8)
6064 return FALSE;
6065 lim = (offsetT) 1 << (bits - 1);
6066 return (value < -lim || value >= lim);
6067}
6068
6069/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6070 unsigned immediate offset load/store instruction, try to encode it as
6071 an unscaled, 9-bit, signed immediate offset load/store instruction.
6072 Return TRUE if it is successful; otherwise return FALSE.
6073
6074 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6075 in response to the standard LDR/STR mnemonics when the immediate offset is
6076 unambiguous, i.e. when it is negative or unaligned. */
6077
6078static bfd_boolean
6079try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6080{
6081 int idx;
6082 enum aarch64_op new_op;
6083 const aarch64_opcode *new_opcode;
6084
6085 gas_assert (instr->opcode->iclass == ldst_pos);
6086
6087 switch (instr->opcode->op)
6088 {
6089 case OP_LDRB_POS:new_op = OP_LDURB; break;
6090 case OP_STRB_POS: new_op = OP_STURB; break;
6091 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6092 case OP_LDRH_POS: new_op = OP_LDURH; break;
6093 case OP_STRH_POS: new_op = OP_STURH; break;
6094 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6095 case OP_LDR_POS: new_op = OP_LDUR; break;
6096 case OP_STR_POS: new_op = OP_STUR; break;
6097 case OP_LDRF_POS: new_op = OP_LDURV; break;
6098 case OP_STRF_POS: new_op = OP_STURV; break;
6099 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6100 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6101 default: new_op = OP_NIL; break;
6102 }
6103
6104 if (new_op == OP_NIL)
6105 return FALSE;
6106
6107 new_opcode = aarch64_get_opcode (new_op);
6108 gas_assert (new_opcode != NULL);
6109
6110 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6111 instr->opcode->op, new_opcode->op);
6112
6113 aarch64_replace_opcode (instr, new_opcode);
6114
6115 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6116 qualifier matching may fail because the out-of-date qualifier will
6117 prevent the operand being updated with a new and correct qualifier. */
6118 idx = aarch64_operand_index (instr->opcode->operands,
6119 AARCH64_OPND_ADDR_SIMM9);
6120 gas_assert (idx == 1);
6121 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6122
6123 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6124
6125 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6126 return FALSE;
6127
6128 return TRUE;
6129}
6130
6131/* Called by fix_insn to fix a MOV immediate alias instruction.
6132
6133 Operand for a generic move immediate instruction, which is an alias
6134 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6135 a 32-bit/64-bit immediate value into general register. An assembler error
6136 shall result if the immediate cannot be created by a single one of these
6137 instructions. If there is a choice, then to ensure reversability an
6138 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6139
6140static void
6141fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6142{
6143 const aarch64_opcode *opcode;
6144
6145 /* Need to check if the destination is SP/ZR. The check has to be done
6146 before any aarch64_replace_opcode. */
6147 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6148 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6149
6150 instr->operands[1].imm.value = value;
6151 instr->operands[1].skip = 0;
6152
6153 if (try_mov_wide_p)
6154 {
6155 /* Try the MOVZ alias. */
6156 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6157 aarch64_replace_opcode (instr, opcode);
6158 if (aarch64_opcode_encode (instr->opcode, instr,
6159 &instr->value, NULL, NULL))
6160 {
6161 put_aarch64_insn (buf, instr->value);
6162 return;
6163 }
6164 /* Try the MOVK alias. */
6165 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6166 aarch64_replace_opcode (instr, opcode);
6167 if (aarch64_opcode_encode (instr->opcode, instr,
6168 &instr->value, NULL, NULL))
6169 {
6170 put_aarch64_insn (buf, instr->value);
6171 return;
6172 }
6173 }
6174
6175 if (try_mov_bitmask_p)
6176 {
6177 /* Try the ORR alias. */
6178 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6179 aarch64_replace_opcode (instr, opcode);
6180 if (aarch64_opcode_encode (instr->opcode, instr,
6181 &instr->value, NULL, NULL))
6182 {
6183 put_aarch64_insn (buf, instr->value);
6184 return;
6185 }
6186 }
6187
6188 as_bad_where (fixP->fx_file, fixP->fx_line,
6189 _("immediate cannot be moved by a single instruction"));
6190}
6191
6192/* An instruction operand which is immediate related may have symbol used
6193 in the assembly, e.g.
6194
6195 mov w0, u32
6196 .set u32, 0x00ffff00
6197
6198 At the time when the assembly instruction is parsed, a referenced symbol,
6199 like 'u32' in the above example may not have been seen; a fixS is created
6200 in such a case and is handled here after symbols have been resolved.
6201 Instruction is fixed up with VALUE using the information in *FIXP plus
6202 extra information in FLAGS.
6203
6204 This function is called by md_apply_fix to fix up instructions that need
6205 a fix-up described above but does not involve any linker-time relocation. */
6206
6207static void
6208fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6209{
6210 int idx;
6211 uint32_t insn;
6212 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6213 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6214 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6215
6216 if (new_inst)
6217 {
6218 /* Now the instruction is about to be fixed-up, so the operand that
6219 was previously marked as 'ignored' needs to be unmarked in order
6220 to get the encoding done properly. */
6221 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6222 new_inst->operands[idx].skip = 0;
6223 }
6224
6225 gas_assert (opnd != AARCH64_OPND_NIL);
6226
6227 switch (opnd)
6228 {
6229 case AARCH64_OPND_EXCEPTION:
6230 if (unsigned_overflow (value, 16))
6231 as_bad_where (fixP->fx_file, fixP->fx_line,
6232 _("immediate out of range"));
6233 insn = get_aarch64_insn (buf);
6234 insn |= encode_svc_imm (value);
6235 put_aarch64_insn (buf, insn);
6236 break;
6237
6238 case AARCH64_OPND_AIMM:
6239 /* ADD or SUB with immediate.
6240 NOTE this assumes we come here with a add/sub shifted reg encoding
6241 3 322|2222|2 2 2 21111 111111
6242 1 098|7654|3 2 1 09876 543210 98765 43210
6243 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6244 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6245 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6246 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6247 ->
6248 3 322|2222|2 2 221111111111
6249 1 098|7654|3 2 109876543210 98765 43210
6250 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6251 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6252 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6253 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6254 Fields sf Rn Rd are already set. */
6255 insn = get_aarch64_insn (buf);
6256 if (value < 0)
6257 {
6258 /* Add <-> sub. */
6259 insn = reencode_addsub_switch_add_sub (insn);
6260 value = -value;
6261 }
6262
6263 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6264 && unsigned_overflow (value, 12))
6265 {
6266 /* Try to shift the value by 12 to make it fit. */
6267 if (((value >> 12) << 12) == value
6268 && ! unsigned_overflow (value, 12 + 12))
6269 {
6270 value >>= 12;
6271 insn |= encode_addsub_imm_shift_amount (1);
6272 }
6273 }
6274
6275 if (unsigned_overflow (value, 12))
6276 as_bad_where (fixP->fx_file, fixP->fx_line,
6277 _("immediate out of range"));
6278
6279 insn |= encode_addsub_imm (value);
6280
6281 put_aarch64_insn (buf, insn);
6282 break;
6283
6284 case AARCH64_OPND_SIMD_IMM:
6285 case AARCH64_OPND_SIMD_IMM_SFT:
6286 case AARCH64_OPND_LIMM:
6287 /* Bit mask immediate. */
6288 gas_assert (new_inst != NULL);
6289 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6290 new_inst->operands[idx].imm.value = value;
6291 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6292 &new_inst->value, NULL, NULL))
6293 put_aarch64_insn (buf, new_inst->value);
6294 else
6295 as_bad_where (fixP->fx_file, fixP->fx_line,
6296 _("invalid immediate"));
6297 break;
6298
6299 case AARCH64_OPND_HALF:
6300 /* 16-bit unsigned immediate. */
6301 if (unsigned_overflow (value, 16))
6302 as_bad_where (fixP->fx_file, fixP->fx_line,
6303 _("immediate out of range"));
6304 insn = get_aarch64_insn (buf);
6305 insn |= encode_movw_imm (value & 0xffff);
6306 put_aarch64_insn (buf, insn);
6307 break;
6308
6309 case AARCH64_OPND_IMM_MOV:
6310 /* Operand for a generic move immediate instruction, which is
6311 an alias instruction that generates a single MOVZ, MOVN or ORR
6312 instruction to loads a 32-bit/64-bit immediate value into general
6313 register. An assembler error shall result if the immediate cannot be
6314 created by a single one of these instructions. If there is a choice,
6315 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6316 and MOVZ or MOVN to ORR. */
6317 gas_assert (new_inst != NULL);
6318 fix_mov_imm_insn (fixP, buf, new_inst, value);
6319 break;
6320
6321 case AARCH64_OPND_ADDR_SIMM7:
6322 case AARCH64_OPND_ADDR_SIMM9:
6323 case AARCH64_OPND_ADDR_SIMM9_2:
6324 case AARCH64_OPND_ADDR_UIMM12:
6325 /* Immediate offset in an address. */
6326 insn = get_aarch64_insn (buf);
6327
6328 gas_assert (new_inst != NULL && new_inst->value == insn);
6329 gas_assert (new_inst->opcode->operands[1] == opnd
6330 || new_inst->opcode->operands[2] == opnd);
6331
6332 /* Get the index of the address operand. */
6333 if (new_inst->opcode->operands[1] == opnd)
6334 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6335 idx = 1;
6336 else
6337 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6338 idx = 2;
6339
6340 /* Update the resolved offset value. */
6341 new_inst->operands[idx].addr.offset.imm = value;
6342
6343 /* Encode/fix-up. */
6344 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6345 &new_inst->value, NULL, NULL))
6346 {
6347 put_aarch64_insn (buf, new_inst->value);
6348 break;
6349 }
6350 else if (new_inst->opcode->iclass == ldst_pos
6351 && try_to_encode_as_unscaled_ldst (new_inst))
6352 {
6353 put_aarch64_insn (buf, new_inst->value);
6354 break;
6355 }
6356
6357 as_bad_where (fixP->fx_file, fixP->fx_line,
6358 _("immediate offset out of range"));
6359 break;
6360
6361 default:
6362 gas_assert (0);
6363 as_fatal (_("unhandled operand code %d"), opnd);
6364 }
6365}
6366
6367/* Apply a fixup (fixP) to segment data, once it has been determined
6368 by our caller that we have all the info we need to fix it up.
6369
6370 Parameter valP is the pointer to the value of the bits. */
6371
6372void
6373md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6374{
6375 offsetT value = *valP;
6376 uint32_t insn;
6377 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6378 int scale;
6379 unsigned flags = fixP->fx_addnumber;
6380
6381 DEBUG_TRACE ("\n\n");
6382 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6383 DEBUG_TRACE ("Enter md_apply_fix");
6384
6385 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6386
6387 /* Note whether this will delete the relocation. */
6388
6389 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6390 fixP->fx_done = 1;
6391
6392 /* Process the relocations. */
6393 switch (fixP->fx_r_type)
6394 {
6395 case BFD_RELOC_NONE:
6396 /* This will need to go in the object file. */
6397 fixP->fx_done = 0;
6398 break;
6399
6400 case BFD_RELOC_8:
6401 case BFD_RELOC_8_PCREL:
6402 if (fixP->fx_done || !seg->use_rela_p)
6403 md_number_to_chars (buf, value, 1);
6404 break;
6405
6406 case BFD_RELOC_16:
6407 case BFD_RELOC_16_PCREL:
6408 if (fixP->fx_done || !seg->use_rela_p)
6409 md_number_to_chars (buf, value, 2);
6410 break;
6411
6412 case BFD_RELOC_32:
6413 case BFD_RELOC_32_PCREL:
6414 if (fixP->fx_done || !seg->use_rela_p)
6415 md_number_to_chars (buf, value, 4);
6416 break;
6417
6418 case BFD_RELOC_64:
6419 case BFD_RELOC_64_PCREL:
6420 if (fixP->fx_done || !seg->use_rela_p)
6421 md_number_to_chars (buf, value, 8);
6422 break;
6423
6424 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6425 /* We claim that these fixups have been processed here, even if
6426 in fact we generate an error because we do not have a reloc
6427 for them, so tc_gen_reloc() will reject them. */
6428 fixP->fx_done = 1;
6429 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6430 {
6431 as_bad_where (fixP->fx_file, fixP->fx_line,
6432 _("undefined symbol %s used as an immediate value"),
6433 S_GET_NAME (fixP->fx_addsy));
6434 goto apply_fix_return;
6435 }
6436 fix_insn (fixP, flags, value);
6437 break;
6438
6439 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6440 if (fixP->fx_done || !seg->use_rela_p)
6441 {
89d2a2a3
MS
6442 if (value & 3)
6443 as_bad_where (fixP->fx_file, fixP->fx_line,
6444 _("pc-relative load offset not word aligned"));
6445 if (signed_overflow (value, 21))
6446 as_bad_where (fixP->fx_file, fixP->fx_line,
6447 _("pc-relative load offset out of range"));
a06ea964
NC
6448 insn = get_aarch64_insn (buf);
6449 insn |= encode_ld_lit_ofs_19 (value >> 2);
6450 put_aarch64_insn (buf, insn);
6451 }
6452 break;
6453
6454 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6455 if (fixP->fx_done || !seg->use_rela_p)
6456 {
89d2a2a3
MS
6457 if (signed_overflow (value, 21))
6458 as_bad_where (fixP->fx_file, fixP->fx_line,
6459 _("pc-relative address offset out of range"));
a06ea964
NC
6460 insn = get_aarch64_insn (buf);
6461 insn |= encode_adr_imm (value);
6462 put_aarch64_insn (buf, insn);
6463 }
6464 break;
6465
6466 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6467 if (fixP->fx_done || !seg->use_rela_p)
6468 {
89d2a2a3
MS
6469 if (value & 3)
6470 as_bad_where (fixP->fx_file, fixP->fx_line,
6471 _("conditional branch target not word aligned"));
6472 if (signed_overflow (value, 21))
6473 as_bad_where (fixP->fx_file, fixP->fx_line,
6474 _("conditional branch out of range"));
a06ea964
NC
6475 insn = get_aarch64_insn (buf);
6476 insn |= encode_cond_branch_ofs_19 (value >> 2);
6477 put_aarch64_insn (buf, insn);
6478 }
6479 break;
6480
6481 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6482 if (fixP->fx_done || !seg->use_rela_p)
6483 {
89d2a2a3
MS
6484 if (value & 3)
6485 as_bad_where (fixP->fx_file, fixP->fx_line,
6486 _("conditional branch target not word aligned"));
6487 if (signed_overflow (value, 16))
6488 as_bad_where (fixP->fx_file, fixP->fx_line,
6489 _("conditional branch out of range"));
a06ea964
NC
6490 insn = get_aarch64_insn (buf);
6491 insn |= encode_tst_branch_ofs_14 (value >> 2);
6492 put_aarch64_insn (buf, insn);
6493 }
6494 break;
6495
6496 case BFD_RELOC_AARCH64_JUMP26:
6497 case BFD_RELOC_AARCH64_CALL26:
a06ea964
NC
6498 if (fixP->fx_done || !seg->use_rela_p)
6499 {
89d2a2a3
MS
6500 if (value & 3)
6501 as_bad_where (fixP->fx_file, fixP->fx_line,
6502 _("branch target not word aligned"));
6503 if (signed_overflow (value, 28))
6504 as_bad_where (fixP->fx_file, fixP->fx_line,
6505 _("branch out of range"));
a06ea964
NC
6506 insn = get_aarch64_insn (buf);
6507 insn |= encode_branch_ofs_26 (value >> 2);
6508 put_aarch64_insn (buf, insn);
6509 }
6510 break;
6511
6512 case BFD_RELOC_AARCH64_MOVW_G0:
6513 case BFD_RELOC_AARCH64_MOVW_G0_S:
6514 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6515 scale = 0;
6516 goto movw_common;
6517 case BFD_RELOC_AARCH64_MOVW_G1:
6518 case BFD_RELOC_AARCH64_MOVW_G1_S:
6519 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6520 scale = 16;
6521 goto movw_common;
6522 case BFD_RELOC_AARCH64_MOVW_G2:
6523 case BFD_RELOC_AARCH64_MOVW_G2_S:
6524 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6525 scale = 32;
6526 goto movw_common;
6527 case BFD_RELOC_AARCH64_MOVW_G3:
6528 scale = 48;
6529 movw_common:
6530 if (fixP->fx_done || !seg->use_rela_p)
6531 {
6532 insn = get_aarch64_insn (buf);
6533
6534 if (!fixP->fx_done)
6535 {
6536 /* REL signed addend must fit in 16 bits */
6537 if (signed_overflow (value, 16))
6538 as_bad_where (fixP->fx_file, fixP->fx_line,
6539 _("offset out of range"));
6540 }
6541 else
6542 {
6543 /* Check for overflow and scale. */
6544 switch (fixP->fx_r_type)
6545 {
6546 case BFD_RELOC_AARCH64_MOVW_G0:
6547 case BFD_RELOC_AARCH64_MOVW_G1:
6548 case BFD_RELOC_AARCH64_MOVW_G2:
6549 case BFD_RELOC_AARCH64_MOVW_G3:
6550 if (unsigned_overflow (value, scale + 16))
6551 as_bad_where (fixP->fx_file, fixP->fx_line,
6552 _("unsigned value out of range"));
6553 break;
6554 case BFD_RELOC_AARCH64_MOVW_G0_S:
6555 case BFD_RELOC_AARCH64_MOVW_G1_S:
6556 case BFD_RELOC_AARCH64_MOVW_G2_S:
6557 /* NOTE: We can only come here with movz or movn. */
6558 if (signed_overflow (value, scale + 16))
6559 as_bad_where (fixP->fx_file, fixP->fx_line,
6560 _("signed value out of range"));
6561 if (value < 0)
6562 {
6563 /* Force use of MOVN. */
6564 value = ~value;
6565 insn = reencode_movzn_to_movn (insn);
6566 }
6567 else
6568 {
6569 /* Force use of MOVZ. */
6570 insn = reencode_movzn_to_movz (insn);
6571 }
6572 break;
6573 default:
6574 /* Unchecked relocations. */
6575 break;
6576 }
6577 value >>= scale;
6578 }
6579
6580 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6581 insn |= encode_movw_imm (value & 0xffff);
6582
6583 put_aarch64_insn (buf, insn);
6584 }
6585 break;
6586
a6bb11b2
YZ
6587 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6588 fixP->fx_r_type = (ilp32_p
6589 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6590 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6591 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6592 /* Should always be exported to object file, see
6593 aarch64_force_relocation(). */
6594 gas_assert (!fixP->fx_done);
6595 gas_assert (seg->use_rela_p);
6596 break;
6597
6598 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6599 fixP->fx_r_type = (ilp32_p
6600 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6601 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6602 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6603 /* Should always be exported to object file, see
6604 aarch64_force_relocation(). */
6605 gas_assert (!fixP->fx_done);
6606 gas_assert (seg->use_rela_p);
6607 break;
6608
2c0a3565
MS
6609 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6610 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6611 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6612 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a06ea964 6613 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6614 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a06ea964 6615 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6616 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6617 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a06ea964 6618 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6619 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6620 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6621 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6622 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6623 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6624 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6625 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6626 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6627 /* Should always be exported to object file, see
6628 aarch64_force_relocation(). */
6629 gas_assert (!fixP->fx_done);
6630 gas_assert (seg->use_rela_p);
6631 break;
6632
a6bb11b2
YZ
6633 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6634 /* Should always be exported to object file, see
6635 aarch64_force_relocation(). */
6636 fixP->fx_r_type = (ilp32_p
6637 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6638 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6639 gas_assert (!fixP->fx_done);
6640 gas_assert (seg->use_rela_p);
6641 break;
6642
a06ea964
NC
6643 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6644 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6645 case BFD_RELOC_AARCH64_ADD_LO12:
6646 case BFD_RELOC_AARCH64_LDST8_LO12:
6647 case BFD_RELOC_AARCH64_LDST16_LO12:
6648 case BFD_RELOC_AARCH64_LDST32_LO12:
6649 case BFD_RELOC_AARCH64_LDST64_LO12:
6650 case BFD_RELOC_AARCH64_LDST128_LO12:
f41aef5f 6651 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
6652 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6653 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
a6bb11b2 6654 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a06ea964
NC
6655 /* Should always be exported to object file, see
6656 aarch64_force_relocation(). */
6657 gas_assert (!fixP->fx_done);
6658 gas_assert (seg->use_rela_p);
6659 break;
6660
6661 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6662 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6663 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6664 break;
6665
b97e87cc
NC
6666 case BFD_RELOC_UNUSED:
6667 /* An error will already have been reported. */
6668 break;
6669
a06ea964
NC
6670 default:
6671 as_bad_where (fixP->fx_file, fixP->fx_line,
6672 _("unexpected %s fixup"),
6673 bfd_get_reloc_code_name (fixP->fx_r_type));
6674 break;
6675 }
6676
6677apply_fix_return:
6678 /* Free the allocated the struct aarch64_inst.
6679 N.B. currently there are very limited number of fix-up types actually use
6680 this field, so the impact on the performance should be minimal . */
6681 if (fixP->tc_fix_data.inst != NULL)
6682 free (fixP->tc_fix_data.inst);
6683
6684 return;
6685}
6686
6687/* Translate internal representation of relocation info to BFD target
6688 format. */
6689
6690arelent *
6691tc_gen_reloc (asection * section, fixS * fixp)
6692{
6693 arelent *reloc;
6694 bfd_reloc_code_real_type code;
6695
6696 reloc = xmalloc (sizeof (arelent));
6697
6698 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
6699 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6700 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6701
6702 if (fixp->fx_pcrel)
6703 {
6704 if (section->use_rela_p)
6705 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
6706 else
6707 fixp->fx_offset = reloc->address;
6708 }
6709 reloc->addend = fixp->fx_offset;
6710
6711 code = fixp->fx_r_type;
6712 switch (code)
6713 {
6714 case BFD_RELOC_16:
6715 if (fixp->fx_pcrel)
6716 code = BFD_RELOC_16_PCREL;
6717 break;
6718
6719 case BFD_RELOC_32:
6720 if (fixp->fx_pcrel)
6721 code = BFD_RELOC_32_PCREL;
6722 break;
6723
6724 case BFD_RELOC_64:
6725 if (fixp->fx_pcrel)
6726 code = BFD_RELOC_64_PCREL;
6727 break;
6728
6729 default:
6730 break;
6731 }
6732
6733 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6734 if (reloc->howto == NULL)
6735 {
6736 as_bad_where (fixp->fx_file, fixp->fx_line,
6737 _
6738 ("cannot represent %s relocation in this object file format"),
6739 bfd_get_reloc_code_name (code));
6740 return NULL;
6741 }
6742
6743 return reloc;
6744}
6745
6746/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6747
6748void
6749cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
6750{
6751 bfd_reloc_code_real_type type;
6752 int pcrel = 0;
6753
6754 /* Pick a reloc.
6755 FIXME: @@ Should look at CPU word size. */
6756 switch (size)
6757 {
6758 case 1:
6759 type = BFD_RELOC_8;
6760 break;
6761 case 2:
6762 type = BFD_RELOC_16;
6763 break;
6764 case 4:
6765 type = BFD_RELOC_32;
6766 break;
6767 case 8:
6768 type = BFD_RELOC_64;
6769 break;
6770 default:
6771 as_bad (_("cannot do %u-byte relocation"), size);
6772 type = BFD_RELOC_UNUSED;
6773 break;
6774 }
6775
6776 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
6777}
6778
6779int
6780aarch64_force_relocation (struct fix *fixp)
6781{
6782 switch (fixp->fx_r_type)
6783 {
6784 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6785 /* Perform these "immediate" internal relocations
6786 even if the symbol is extern or weak. */
6787 return 0;
6788
a6bb11b2
YZ
6789 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6790 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6791 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6792 /* Pseudo relocs that need to be fixed up according to
6793 ilp32_p. */
6794 return 0;
6795
2c0a3565
MS
6796 case BFD_RELOC_AARCH64_ADD_LO12:
6797 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6798 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6799 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6800 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6801 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6802 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6803 case BFD_RELOC_AARCH64_LDST128_LO12:
6804 case BFD_RELOC_AARCH64_LDST16_LO12:
6805 case BFD_RELOC_AARCH64_LDST32_LO12:
6806 case BFD_RELOC_AARCH64_LDST64_LO12:
6807 case BFD_RELOC_AARCH64_LDST8_LO12:
6808 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6809 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6810 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6811 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a06ea964 6812 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6813 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a06ea964 6814 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6815 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6816 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a06ea964 6817 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6818 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6819 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6820 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6821 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6822 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6823 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6824 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6825 /* Always leave these relocations for the linker. */
6826 return 1;
6827
6828 default:
6829 break;
6830 }
6831
6832 return generic_force_reloc (fixp);
6833}
6834
6835#ifdef OBJ_ELF
6836
6837const char *
6838elf64_aarch64_target_format (void)
6839{
6840 if (target_big_endian)
cec5225b 6841 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 6842 else
cec5225b 6843 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
6844}
6845
6846void
6847aarch64elf_frob_symbol (symbolS * symp, int *puntp)
6848{
6849 elf_frob_symbol (symp, puntp);
6850}
6851#endif
6852
6853/* MD interface: Finalization. */
6854
6855/* A good place to do this, although this was probably not intended
6856 for this kind of use. We need to dump the literal pool before
6857 references are made to a null symbol pointer. */
6858
6859void
6860aarch64_cleanup (void)
6861{
6862 literal_pool *pool;
6863
6864 for (pool = list_of_pools; pool; pool = pool->next)
6865 {
6866 /* Put it at the end of the relevant section. */
6867 subseg_set (pool->section, pool->sub_section);
6868 s_ltorg (0);
6869 }
6870}
6871
6872#ifdef OBJ_ELF
6873/* Remove any excess mapping symbols generated for alignment frags in
6874 SEC. We may have created a mapping symbol before a zero byte
6875 alignment; remove it if there's a mapping symbol after the
6876 alignment. */
6877static void
6878check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
6879 void *dummy ATTRIBUTE_UNUSED)
6880{
6881 segment_info_type *seginfo = seg_info (sec);
6882 fragS *fragp;
6883
6884 if (seginfo == NULL || seginfo->frchainP == NULL)
6885 return;
6886
6887 for (fragp = seginfo->frchainP->frch_root;
6888 fragp != NULL; fragp = fragp->fr_next)
6889 {
6890 symbolS *sym = fragp->tc_frag_data.last_map;
6891 fragS *next = fragp->fr_next;
6892
6893 /* Variable-sized frags have been converted to fixed size by
6894 this point. But if this was variable-sized to start with,
6895 there will be a fixed-size frag after it. So don't handle
6896 next == NULL. */
6897 if (sym == NULL || next == NULL)
6898 continue;
6899
6900 if (S_GET_VALUE (sym) < next->fr_address)
6901 /* Not at the end of this frag. */
6902 continue;
6903 know (S_GET_VALUE (sym) == next->fr_address);
6904
6905 do
6906 {
6907 if (next->tc_frag_data.first_map != NULL)
6908 {
6909 /* Next frag starts with a mapping symbol. Discard this
6910 one. */
6911 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
6912 break;
6913 }
6914
6915 if (next->fr_next == NULL)
6916 {
6917 /* This mapping symbol is at the end of the section. Discard
6918 it. */
6919 know (next->fr_fix == 0 && next->fr_var == 0);
6920 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
6921 break;
6922 }
6923
6924 /* As long as we have empty frags without any mapping symbols,
6925 keep looking. */
6926 /* If the next frag is non-empty and does not start with a
6927 mapping symbol, then this mapping symbol is required. */
6928 if (next->fr_address != next->fr_next->fr_address)
6929 break;
6930
6931 next = next->fr_next;
6932 }
6933 while (next != NULL);
6934 }
6935}
6936#endif
6937
6938/* Adjust the symbol table. */
6939
6940void
6941aarch64_adjust_symtab (void)
6942{
6943#ifdef OBJ_ELF
6944 /* Remove any overlapping mapping symbols generated by alignment frags. */
6945 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
6946 /* Now do generic ELF adjustments. */
6947 elf_adjust_symtab ();
6948#endif
6949}
6950
6951static void
6952checked_hash_insert (struct hash_control *table, const char *key, void *value)
6953{
6954 const char *hash_err;
6955
6956 hash_err = hash_insert (table, key, value);
6957 if (hash_err)
6958 printf ("Internal Error: Can't hash %s\n", key);
6959}
6960
6961static void
6962fill_instruction_hash_table (void)
6963{
6964 aarch64_opcode *opcode = aarch64_opcode_table;
6965
6966 while (opcode->name != NULL)
6967 {
6968 templates *templ, *new_templ;
6969 templ = hash_find (aarch64_ops_hsh, opcode->name);
6970
6971 new_templ = (templates *) xmalloc (sizeof (templates));
6972 new_templ->opcode = opcode;
6973 new_templ->next = NULL;
6974
6975 if (!templ)
6976 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
6977 else
6978 {
6979 new_templ->next = templ->next;
6980 templ->next = new_templ;
6981 }
6982 ++opcode;
6983 }
6984}
6985
6986static inline void
6987convert_to_upper (char *dst, const char *src, size_t num)
6988{
6989 unsigned int i;
6990 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
6991 *dst = TOUPPER (*src);
6992 *dst = '\0';
6993}
6994
6995/* Assume STR point to a lower-case string, allocate, convert and return
6996 the corresponding upper-case string. */
6997static inline const char*
6998get_upper_str (const char *str)
6999{
7000 char *ret;
7001 size_t len = strlen (str);
7002 if ((ret = xmalloc (len + 1)) == NULL)
7003 abort ();
7004 convert_to_upper (ret, str, len);
7005 return ret;
7006}
7007
7008/* MD interface: Initialization. */
7009
7010void
7011md_begin (void)
7012{
7013 unsigned mach;
7014 unsigned int i;
7015
7016 if ((aarch64_ops_hsh = hash_new ()) == NULL
7017 || (aarch64_cond_hsh = hash_new ()) == NULL
7018 || (aarch64_shift_hsh = hash_new ()) == NULL
7019 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7020 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7021 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7022 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7023 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7024 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7025 || (aarch64_reg_hsh = hash_new ()) == NULL
7026 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7027 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7028 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7029 as_fatal (_("virtual memory exhausted"));
7030
7031 fill_instruction_hash_table ();
7032
7033 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7034 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7035 (void *) (aarch64_sys_regs + i));
7036
7037 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7038 checked_hash_insert (aarch64_pstatefield_hsh,
7039 aarch64_pstatefields[i].name,
7040 (void *) (aarch64_pstatefields + i));
7041
7042 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7043 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7044 aarch64_sys_regs_ic[i].template,
7045 (void *) (aarch64_sys_regs_ic + i));
7046
7047 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7048 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7049 aarch64_sys_regs_dc[i].template,
7050 (void *) (aarch64_sys_regs_dc + i));
7051
7052 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7053 checked_hash_insert (aarch64_sys_regs_at_hsh,
7054 aarch64_sys_regs_at[i].template,
7055 (void *) (aarch64_sys_regs_at + i));
7056
7057 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7058 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7059 aarch64_sys_regs_tlbi[i].template,
7060 (void *) (aarch64_sys_regs_tlbi + i));
7061
7062 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7063 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7064 (void *) (reg_names + i));
7065
7066 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7067 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7068 (void *) (nzcv_names + i));
7069
7070 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7071 {
7072 const char *name = aarch64_operand_modifiers[i].name;
7073 checked_hash_insert (aarch64_shift_hsh, name,
7074 (void *) (aarch64_operand_modifiers + i));
7075 /* Also hash the name in the upper case. */
7076 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7077 (void *) (aarch64_operand_modifiers + i));
7078 }
7079
7080 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7081 {
7082 unsigned int j;
7083 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7084 the same condition code. */
7085 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7086 {
7087 const char *name = aarch64_conds[i].names[j];
7088 if (name == NULL)
7089 break;
7090 checked_hash_insert (aarch64_cond_hsh, name,
7091 (void *) (aarch64_conds + i));
7092 /* Also hash the name in the upper case. */
7093 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7094 (void *) (aarch64_conds + i));
7095 }
7096 }
7097
7098 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7099 {
7100 const char *name = aarch64_barrier_options[i].name;
7101 /* Skip xx00 - the unallocated values of option. */
7102 if ((i & 0x3) == 0)
7103 continue;
7104 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7105 (void *) (aarch64_barrier_options + i));
7106 /* Also hash the name in the upper case. */
7107 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7108 (void *) (aarch64_barrier_options + i));
7109 }
7110
7111 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7112 {
7113 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7114 /* Skip the unallocated hint encodings. */
7115 if (name == NULL)
a06ea964
NC
7116 continue;
7117 checked_hash_insert (aarch64_pldop_hsh, name,
7118 (void *) (aarch64_prfops + i));
7119 /* Also hash the name in the upper case. */
7120 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7121 (void *) (aarch64_prfops + i));
7122 }
7123
7124 /* Set the cpu variant based on the command-line options. */
7125 if (!mcpu_cpu_opt)
7126 mcpu_cpu_opt = march_cpu_opt;
7127
7128 if (!mcpu_cpu_opt)
7129 mcpu_cpu_opt = &cpu_default;
7130
7131 cpu_variant = *mcpu_cpu_opt;
7132
7133 /* Record the CPU type. */
cec5225b 7134 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7135
7136 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7137}
7138
7139/* Command line processing. */
7140
7141const char *md_shortopts = "m:";
7142
7143#ifdef AARCH64_BI_ENDIAN
7144#define OPTION_EB (OPTION_MD_BASE + 0)
7145#define OPTION_EL (OPTION_MD_BASE + 1)
7146#else
7147#if TARGET_BYTES_BIG_ENDIAN
7148#define OPTION_EB (OPTION_MD_BASE + 0)
7149#else
7150#define OPTION_EL (OPTION_MD_BASE + 1)
7151#endif
7152#endif
7153
7154struct option md_longopts[] = {
7155#ifdef OPTION_EB
7156 {"EB", no_argument, NULL, OPTION_EB},
7157#endif
7158#ifdef OPTION_EL
7159 {"EL", no_argument, NULL, OPTION_EL},
7160#endif
7161 {NULL, no_argument, NULL, 0}
7162};
7163
7164size_t md_longopts_size = sizeof (md_longopts);
7165
7166struct aarch64_option_table
7167{
7168 char *option; /* Option name to match. */
7169 char *help; /* Help information. */
7170 int *var; /* Variable to change. */
7171 int value; /* What to change it to. */
7172 char *deprecated; /* If non-null, print this message. */
7173};
7174
7175static struct aarch64_option_table aarch64_opts[] = {
7176 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7177 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7178 NULL},
7179#ifdef DEBUG_AARCH64
7180 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7181#endif /* DEBUG_AARCH64 */
7182 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7183 NULL},
a52e6fd3
YZ
7184 {"mno-verbose-error", N_("do not output verbose error messages"),
7185 &verbose_error_p, 0, NULL},
a06ea964
NC
7186 {NULL, NULL, NULL, 0, NULL}
7187};
7188
7189struct aarch64_cpu_option_table
7190{
7191 char *name;
7192 const aarch64_feature_set value;
7193 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7194 case. */
7195 const char *canonical_name;
7196};
7197
7198/* This list should, at a minimum, contain all the cpu names
7199 recognized by GCC. */
7200static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7201 {"all", AARCH64_ANY, NULL},
95830fd1
YZ
7202 {"cortex-a53", AARCH64_ARCH_V8, "Cortex-A53"},
7203 {"cortex-a57", AARCH64_ARCH_V8, "Cortex-A57"},
9877c63c 7204 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
a06ea964
NC
7205 {"generic", AARCH64_ARCH_V8, NULL},
7206
7207 /* These two are example CPUs supported in GCC, once we have real
7208 CPUs they will be removed. */
7209 {"example-1", AARCH64_ARCH_V8, NULL},
7210 {"example-2", AARCH64_ARCH_V8, NULL},
7211
7212 {NULL, AARCH64_ARCH_NONE, NULL}
7213};
7214
7215struct aarch64_arch_option_table
7216{
7217 char *name;
7218 const aarch64_feature_set value;
7219};
7220
7221/* This list should, at a minimum, contain all the architecture names
7222 recognized by GCC. */
7223static const struct aarch64_arch_option_table aarch64_archs[] = {
7224 {"all", AARCH64_ANY},
5a1ad39d 7225 {"armv8-a", AARCH64_ARCH_V8},
a06ea964
NC
7226 {NULL, AARCH64_ARCH_NONE}
7227};
7228
7229/* ISA extensions. */
7230struct aarch64_option_cpu_value_table
7231{
7232 char *name;
7233 const aarch64_feature_set value;
7234};
7235
7236static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7237 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7238 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7239 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7240 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964
NC
7241 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
7242 {NULL, AARCH64_ARCH_NONE}
7243};
7244
7245struct aarch64_long_option_table
7246{
7247 char *option; /* Substring to match. */
7248 char *help; /* Help information. */
7249 int (*func) (char *subopt); /* Function to decode sub-option. */
7250 char *deprecated; /* If non-null, print this message. */
7251};
7252
7253static int
7254aarch64_parse_features (char *str, const aarch64_feature_set **opt_p)
7255{
7256 /* We insist on extensions being added before being removed. We achieve
7257 this by using the ADDING_VALUE variable to indicate whether we are
7258 adding an extension (1) or removing it (0) and only allowing it to
7259 change in the order -1 -> 1 -> 0. */
7260 int adding_value = -1;
7261 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7262
7263 /* Copy the feature set, so that we can modify it. */
7264 *ext_set = **opt_p;
7265 *opt_p = ext_set;
7266
7267 while (str != NULL && *str != 0)
7268 {
7269 const struct aarch64_option_cpu_value_table *opt;
7270 char *ext;
7271 int optlen;
7272
7273 if (*str != '+')
7274 {
7275 as_bad (_("invalid architectural extension"));
7276 return 0;
7277 }
7278
7279 str++;
7280 ext = strchr (str, '+');
7281
7282 if (ext != NULL)
7283 optlen = ext - str;
7284 else
7285 optlen = strlen (str);
7286
7287 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7288 {
7289 if (adding_value != 0)
7290 adding_value = 0;
7291 optlen -= 2;
7292 str += 2;
7293 }
7294 else if (optlen > 0)
7295 {
7296 if (adding_value == -1)
7297 adding_value = 1;
7298 else if (adding_value != 1)
7299 {
7300 as_bad (_("must specify extensions to add before specifying "
7301 "those to remove"));
7302 return FALSE;
7303 }
7304 }
7305
7306 if (optlen == 0)
7307 {
7308 as_bad (_("missing architectural extension"));
7309 return 0;
7310 }
7311
7312 gas_assert (adding_value != -1);
7313
7314 for (opt = aarch64_features; opt->name != NULL; opt++)
7315 if (strncmp (opt->name, str, optlen) == 0)
7316 {
7317 /* Add or remove the extension. */
7318 if (adding_value)
7319 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7320 else
7321 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7322 break;
7323 }
7324
7325 if (opt->name == NULL)
7326 {
7327 as_bad (_("unknown architectural extension `%s'"), str);
7328 return 0;
7329 }
7330
7331 str = ext;
7332 };
7333
7334 return 1;
7335}
7336
7337static int
7338aarch64_parse_cpu (char *str)
7339{
7340 const struct aarch64_cpu_option_table *opt;
7341 char *ext = strchr (str, '+');
7342 size_t optlen;
7343
7344 if (ext != NULL)
7345 optlen = ext - str;
7346 else
7347 optlen = strlen (str);
7348
7349 if (optlen == 0)
7350 {
7351 as_bad (_("missing cpu name `%s'"), str);
7352 return 0;
7353 }
7354
7355 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7356 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7357 {
7358 mcpu_cpu_opt = &opt->value;
7359 if (ext != NULL)
7360 return aarch64_parse_features (ext, &mcpu_cpu_opt);
7361
7362 return 1;
7363 }
7364
7365 as_bad (_("unknown cpu `%s'"), str);
7366 return 0;
7367}
7368
7369static int
7370aarch64_parse_arch (char *str)
7371{
7372 const struct aarch64_arch_option_table *opt;
7373 char *ext = strchr (str, '+');
7374 size_t optlen;
7375
7376 if (ext != NULL)
7377 optlen = ext - str;
7378 else
7379 optlen = strlen (str);
7380
7381 if (optlen == 0)
7382 {
7383 as_bad (_("missing architecture name `%s'"), str);
7384 return 0;
7385 }
7386
7387 for (opt = aarch64_archs; opt->name != NULL; opt++)
7388 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7389 {
7390 march_cpu_opt = &opt->value;
7391 if (ext != NULL)
7392 return aarch64_parse_features (ext, &march_cpu_opt);
7393
7394 return 1;
7395 }
7396
7397 as_bad (_("unknown architecture `%s'\n"), str);
7398 return 0;
7399}
7400
69091a2c
YZ
7401/* ABIs. */
7402struct aarch64_option_abi_value_table
7403{
7404 char *name;
7405 enum aarch64_abi_type value;
7406};
7407
7408static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7409 {"ilp32", AARCH64_ABI_ILP32},
7410 {"lp64", AARCH64_ABI_LP64},
7411 {NULL, 0}
7412};
7413
7414static int
7415aarch64_parse_abi (char *str)
7416{
7417 const struct aarch64_option_abi_value_table *opt;
7418 size_t optlen = strlen (str);
7419
7420 if (optlen == 0)
7421 {
7422 as_bad (_("missing abi name `%s'"), str);
7423 return 0;
7424 }
7425
7426 for (opt = aarch64_abis; opt->name != NULL; opt++)
7427 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7428 {
7429 aarch64_abi = opt->value;
7430 return 1;
7431 }
7432
7433 as_bad (_("unknown abi `%s'\n"), str);
7434 return 0;
7435}
7436
a06ea964 7437static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
7438#ifdef OBJ_ELF
7439 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7440 aarch64_parse_abi, NULL},
7441#endif /* OBJ_ELF */
a06ea964
NC
7442 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7443 aarch64_parse_cpu, NULL},
7444 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7445 aarch64_parse_arch, NULL},
7446 {NULL, NULL, 0, NULL}
7447};
7448
7449int
7450md_parse_option (int c, char *arg)
7451{
7452 struct aarch64_option_table *opt;
7453 struct aarch64_long_option_table *lopt;
7454
7455 switch (c)
7456 {
7457#ifdef OPTION_EB
7458 case OPTION_EB:
7459 target_big_endian = 1;
7460 break;
7461#endif
7462
7463#ifdef OPTION_EL
7464 case OPTION_EL:
7465 target_big_endian = 0;
7466 break;
7467#endif
7468
7469 case 'a':
7470 /* Listing option. Just ignore these, we don't support additional
7471 ones. */
7472 return 0;
7473
7474 default:
7475 for (opt = aarch64_opts; opt->option != NULL; opt++)
7476 {
7477 if (c == opt->option[0]
7478 && ((arg == NULL && opt->option[1] == 0)
7479 || streq (arg, opt->option + 1)))
7480 {
7481 /* If the option is deprecated, tell the user. */
7482 if (opt->deprecated != NULL)
7483 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7484 arg ? arg : "", _(opt->deprecated));
7485
7486 if (opt->var != NULL)
7487 *opt->var = opt->value;
7488
7489 return 1;
7490 }
7491 }
7492
7493 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7494 {
7495 /* These options are expected to have an argument. */
7496 if (c == lopt->option[0]
7497 && arg != NULL
7498 && strncmp (arg, lopt->option + 1,
7499 strlen (lopt->option + 1)) == 0)
7500 {
7501 /* If the option is deprecated, tell the user. */
7502 if (lopt->deprecated != NULL)
7503 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7504 _(lopt->deprecated));
7505
7506 /* Call the sup-option parser. */
7507 return lopt->func (arg + strlen (lopt->option) - 1);
7508 }
7509 }
7510
7511 return 0;
7512 }
7513
7514 return 1;
7515}
7516
7517void
7518md_show_usage (FILE * fp)
7519{
7520 struct aarch64_option_table *opt;
7521 struct aarch64_long_option_table *lopt;
7522
7523 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7524
7525 for (opt = aarch64_opts; opt->option != NULL; opt++)
7526 if (opt->help != NULL)
7527 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7528
7529 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7530 if (lopt->help != NULL)
7531 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7532
7533#ifdef OPTION_EB
7534 fprintf (fp, _("\
7535 -EB assemble code for a big-endian cpu\n"));
7536#endif
7537
7538#ifdef OPTION_EL
7539 fprintf (fp, _("\
7540 -EL assemble code for a little-endian cpu\n"));
7541#endif
7542}
7543
7544/* Parse a .cpu directive. */
7545
7546static void
7547s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7548{
7549 const struct aarch64_cpu_option_table *opt;
7550 char saved_char;
7551 char *name;
7552 char *ext;
7553 size_t optlen;
7554
7555 name = input_line_pointer;
7556 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7557 input_line_pointer++;
7558 saved_char = *input_line_pointer;
7559 *input_line_pointer = 0;
7560
7561 ext = strchr (name, '+');
7562
7563 if (ext != NULL)
7564 optlen = ext - name;
7565 else
7566 optlen = strlen (name);
7567
7568 /* Skip the first "all" entry. */
7569 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7570 if (strlen (opt->name) == optlen
7571 && strncmp (name, opt->name, optlen) == 0)
7572 {
7573 mcpu_cpu_opt = &opt->value;
7574 if (ext != NULL)
7575 if (!aarch64_parse_features (ext, &mcpu_cpu_opt))
7576 return;
7577
7578 cpu_variant = *mcpu_cpu_opt;
7579
7580 *input_line_pointer = saved_char;
7581 demand_empty_rest_of_line ();
7582 return;
7583 }
7584 as_bad (_("unknown cpu `%s'"), name);
7585 *input_line_pointer = saved_char;
7586 ignore_rest_of_line ();
7587}
7588
7589
7590/* Parse a .arch directive. */
7591
7592static void
7593s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7594{
7595 const struct aarch64_arch_option_table *opt;
7596 char saved_char;
7597 char *name;
7598 char *ext;
7599 size_t optlen;
7600
7601 name = input_line_pointer;
7602 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7603 input_line_pointer++;
7604 saved_char = *input_line_pointer;
7605 *input_line_pointer = 0;
7606
7607 ext = strchr (name, '+');
7608
7609 if (ext != NULL)
7610 optlen = ext - name;
7611 else
7612 optlen = strlen (name);
7613
7614 /* Skip the first "all" entry. */
7615 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7616 if (strlen (opt->name) == optlen
7617 && strncmp (name, opt->name, optlen) == 0)
7618 {
7619 mcpu_cpu_opt = &opt->value;
7620 if (ext != NULL)
7621 if (!aarch64_parse_features (ext, &mcpu_cpu_opt))
7622 return;
7623
7624 cpu_variant = *mcpu_cpu_opt;
7625
7626 *input_line_pointer = saved_char;
7627 demand_empty_rest_of_line ();
7628 return;
7629 }
7630
7631 as_bad (_("unknown architecture `%s'\n"), name);
7632 *input_line_pointer = saved_char;
7633 ignore_rest_of_line ();
7634}
7635
7636/* Copy symbol information. */
7637
7638void
7639aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
7640{
7641 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
7642}
This page took 0.459986 seconds and 4 git commands to generate.