[AArch64][4/6] LD support TLSLD move/add relocation types
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
b90efa5b 3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
409
410/* Stuff needed to resolve the label ambiguity
411 As:
412 ...
413 label: <insn>
414 may differ from:
415 ...
416 label:
417 <insn> */
418
419static symbolS *last_label_seen;
420
421/* Literal pool structure. Held on a per-section
422 and per-sub-section basis. */
423
424#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
425typedef struct literal_expression
426{
427 expressionS exp;
428 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
429 LITTLENUM_TYPE * bignum;
430} literal_expression;
431
a06ea964
NC
432typedef struct literal_pool
433{
55d9b4c1 434 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
435 unsigned int next_free_entry;
436 unsigned int id;
437 symbolS *symbol;
438 segT section;
439 subsegT sub_section;
440 int size;
441 struct literal_pool *next;
442} literal_pool;
443
444/* Pointer to a linked list of literal pools. */
445static literal_pool *list_of_pools = NULL;
446\f
447/* Pure syntax. */
448
449/* This array holds the chars that always start a comment. If the
450 pre-processor is disabled, these aren't very useful. */
451const char comment_chars[] = "";
452
453/* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
455 .line and .file directives will appear in the pre-processed output. */
456/* Note that input_file.c hand checks for '#' at the beginning of the
457 first line of the input file. This is because the compiler outputs
458 #NO_APP at the beginning of its output. */
459/* Also note that comments like this one will always work. */
460const char line_comment_chars[] = "#";
461
462const char line_separator_chars[] = ";";
463
464/* Chars that can be used to separate mant
465 from exp in floating point numbers. */
466const char EXP_CHARS[] = "eE";
467
468/* Chars that mean this number is a floating point constant. */
469/* As in 0f12.456 */
470/* or 0d1.2345e12 */
471
472const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
473
474/* Prefix character that indicates the start of an immediate value. */
475#define is_immediate_prefix(C) ((C) == '#')
476
477/* Separator character handling. */
478
479#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
480
481static inline bfd_boolean
482skip_past_char (char **str, char c)
483{
484 if (**str == c)
485 {
486 (*str)++;
487 return TRUE;
488 }
489 else
490 return FALSE;
491}
492
493#define skip_past_comma(str) skip_past_char (str, ',')
494
495/* Arithmetic expressions (possibly involving symbols). */
496
a06ea964
NC
497static bfd_boolean in_my_get_expression_p = FALSE;
498
499/* Third argument to my_get_expression. */
500#define GE_NO_PREFIX 0
501#define GE_OPT_PREFIX 1
502
503/* Return TRUE if the string pointed by *STR is successfully parsed
504 as an valid expression; *EP will be filled with the information of
505 such an expression. Otherwise return FALSE. */
506
507static bfd_boolean
508my_get_expression (expressionS * ep, char **str, int prefix_mode,
509 int reject_absent)
510{
511 char *save_in;
512 segT seg;
513 int prefix_present_p = 0;
514
515 switch (prefix_mode)
516 {
517 case GE_NO_PREFIX:
518 break;
519 case GE_OPT_PREFIX:
520 if (is_immediate_prefix (**str))
521 {
522 (*str)++;
523 prefix_present_p = 1;
524 }
525 break;
526 default:
527 abort ();
528 }
529
530 memset (ep, 0, sizeof (expressionS));
531
532 save_in = input_line_pointer;
533 input_line_pointer = *str;
534 in_my_get_expression_p = TRUE;
535 seg = expression (ep);
536 in_my_get_expression_p = FALSE;
537
538 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
539 {
540 /* We found a bad expression in md_operand(). */
541 *str = input_line_pointer;
542 input_line_pointer = save_in;
543 if (prefix_present_p && ! error_p ())
544 set_fatal_syntax_error (_("bad expression"));
545 else
546 set_first_syntax_error (_("bad expression"));
547 return FALSE;
548 }
549
550#ifdef OBJ_AOUT
551 if (seg != absolute_section
552 && seg != text_section
553 && seg != data_section
554 && seg != bss_section && seg != undefined_section)
555 {
556 set_syntax_error (_("bad segment"));
557 *str = input_line_pointer;
558 input_line_pointer = save_in;
559 return FALSE;
560 }
561#else
562 (void) seg;
563#endif
564
a06ea964
NC
565 *str = input_line_pointer;
566 input_line_pointer = save_in;
567 return TRUE;
568}
569
570/* Turn a string in input_line_pointer into a floating point constant
571 of type TYPE, and store the appropriate bytes in *LITP. The number
572 of LITTLENUMS emitted is stored in *SIZEP. An error message is
573 returned, or NULL on OK. */
574
575char *
576md_atof (int type, char *litP, int *sizeP)
577{
578 return ieee_md_atof (type, litP, sizeP, target_big_endian);
579}
580
581/* We handle all bad expressions here, so that we can report the faulty
582 instruction in the error message. */
583void
584md_operand (expressionS * exp)
585{
586 if (in_my_get_expression_p)
587 exp->X_op = O_illegal;
588}
589
590/* Immediate values. */
591
592/* Errors may be set multiple times during parsing or bit encoding
593 (particularly in the Neon bits), but usually the earliest error which is set
594 will be the most meaningful. Avoid overwriting it with later (cascading)
595 errors by calling this function. */
596
597static void
598first_error (const char *error)
599{
600 if (! error_p ())
601 set_syntax_error (error);
602}
603
604/* Similiar to first_error, but this function accepts formatted error
605 message. */
606static void
607first_error_fmt (const char *format, ...)
608{
609 va_list args;
610 enum
611 { size = 100 };
612 /* N.B. this single buffer will not cause error messages for different
613 instructions to pollute each other; this is because at the end of
614 processing of each assembly line, error message if any will be
615 collected by as_bad. */
616 static char buffer[size];
617
618 if (! error_p ())
619 {
3e0baa28 620 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
621 va_start (args, format);
622 ret = vsnprintf (buffer, size, format, args);
623 know (ret <= size - 1 && ret >= 0);
624 va_end (args);
625 set_syntax_error (buffer);
626 }
627}
628
629/* Register parsing. */
630
631/* Generic register parser which is called by other specialized
632 register parsers.
633 CCP points to what should be the beginning of a register name.
634 If it is indeed a valid register name, advance CCP over it and
635 return the reg_entry structure; otherwise return NULL.
636 It does not issue diagnostics. */
637
638static reg_entry *
639parse_reg (char **ccp)
640{
641 char *start = *ccp;
642 char *p;
643 reg_entry *reg;
644
645#ifdef REGISTER_PREFIX
646 if (*start != REGISTER_PREFIX)
647 return NULL;
648 start++;
649#endif
650
651 p = start;
652 if (!ISALPHA (*p) || !is_name_beginner (*p))
653 return NULL;
654
655 do
656 p++;
657 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
658
659 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
660
661 if (!reg)
662 return NULL;
663
664 *ccp = p;
665 return reg;
666}
667
668/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
669 return FALSE. */
670static bfd_boolean
671aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
672{
673 if (reg->type == type)
674 return TRUE;
675
676 switch (type)
677 {
678 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
679 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
680 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
681 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
682 case REG_TYPE_VN: /* Vector register. */
683 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
684 return ((reg_type_masks[reg->type] & reg_type_masks[type])
685 == reg_type_masks[reg->type]);
686 default:
687 as_fatal ("unhandled type %d", type);
688 abort ();
689 }
690}
691
692/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
693 Return the register number otherwise. *ISREG32 is set to one if the
694 register is 32-bit wide; *ISREGZERO is set to one if the register is
695 of type Z_32 or Z_64.
696 Note that this function does not issue any diagnostics. */
697
698static int
699aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
700 int *isreg32, int *isregzero)
701{
702 char *str = *ccp;
703 const reg_entry *reg = parse_reg (&str);
704
705 if (reg == NULL)
706 return PARSE_FAIL;
707
708 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
709 return PARSE_FAIL;
710
711 switch (reg->type)
712 {
713 case REG_TYPE_SP_32:
714 case REG_TYPE_SP_64:
715 if (reject_sp)
716 return PARSE_FAIL;
717 *isreg32 = reg->type == REG_TYPE_SP_32;
718 *isregzero = 0;
719 break;
720 case REG_TYPE_R_32:
721 case REG_TYPE_R_64:
722 *isreg32 = reg->type == REG_TYPE_R_32;
723 *isregzero = 0;
724 break;
725 case REG_TYPE_Z_32:
726 case REG_TYPE_Z_64:
727 if (reject_rz)
728 return PARSE_FAIL;
729 *isreg32 = reg->type == REG_TYPE_Z_32;
730 *isregzero = 1;
731 break;
732 default:
733 return PARSE_FAIL;
734 }
735
736 *ccp = str;
737
738 return reg->number;
739}
740
741/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
742 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
743 otherwise return FALSE.
744
745 Accept only one occurrence of:
746 8b 16b 4h 8h 2s 4s 1d 2d
747 b h s d q */
748static bfd_boolean
749parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
750{
751 char *ptr = *str;
752 unsigned width;
753 unsigned element_size;
754 enum neon_el_type type;
755
756 /* skip '.' */
757 ptr++;
758
759 if (!ISDIGIT (*ptr))
760 {
761 width = 0;
762 goto elt_size;
763 }
764 width = strtoul (ptr, &ptr, 10);
765 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
766 {
767 first_error_fmt (_("bad size %d in vector width specifier"), width);
768 return FALSE;
769 }
770
771elt_size:
772 switch (TOLOWER (*ptr))
773 {
774 case 'b':
775 type = NT_b;
776 element_size = 8;
777 break;
778 case 'h':
779 type = NT_h;
780 element_size = 16;
781 break;
782 case 's':
783 type = NT_s;
784 element_size = 32;
785 break;
786 case 'd':
787 type = NT_d;
788 element_size = 64;
789 break;
790 case 'q':
791 if (width == 1)
792 {
793 type = NT_q;
794 element_size = 128;
795 break;
796 }
797 /* fall through. */
798 default:
799 if (*ptr != '\0')
800 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
801 else
802 first_error (_("missing element size"));
803 return FALSE;
804 }
805 if (width != 0 && width * element_size != 64 && width * element_size != 128)
806 {
807 first_error_fmt (_
808 ("invalid element size %d and vector size combination %c"),
809 width, *ptr);
810 return FALSE;
811 }
812 ptr++;
813
814 parsed_type->type = type;
815 parsed_type->width = width;
816
817 *str = ptr;
818
819 return TRUE;
820}
821
822/* Parse a single type, e.g. ".8b", leading period included.
823 Only applicable to Vn registers.
824
825 Return TRUE on success; otherwise return FALSE. */
826static bfd_boolean
827parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
828{
829 char *str = *ccp;
830
831 if (*str == '.')
832 {
833 if (! parse_neon_type_for_operand (vectype, &str))
834 {
835 first_error (_("vector type expected"));
836 return FALSE;
837 }
838 }
839 else
840 return FALSE;
841
842 *ccp = str;
843
844 return TRUE;
845}
846
847/* Parse a register of the type TYPE.
848
849 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
850 name or the parsed register is not of TYPE.
851
852 Otherwise return the register number, and optionally fill in the actual
853 type of the register in *RTYPE when multiple alternatives were given, and
854 return the register shape and element index information in *TYPEINFO.
855
856 IN_REG_LIST should be set with TRUE if the caller is parsing a register
857 list. */
858
859static int
860parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
861 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
862{
863 char *str = *ccp;
864 const reg_entry *reg = parse_reg (&str);
865 struct neon_type_el atype;
866 struct neon_type_el parsetype;
867 bfd_boolean is_typed_vecreg = FALSE;
868
869 atype.defined = 0;
870 atype.type = NT_invtype;
871 atype.width = -1;
872 atype.index = 0;
873
874 if (reg == NULL)
875 {
876 if (typeinfo)
877 *typeinfo = atype;
878 set_default_error ();
879 return PARSE_FAIL;
880 }
881
882 if (! aarch64_check_reg_type (reg, type))
883 {
884 DEBUG_TRACE ("reg type check failed");
885 set_default_error ();
886 return PARSE_FAIL;
887 }
888 type = reg->type;
889
890 if (type == REG_TYPE_VN
891 && parse_neon_operand_type (&parsetype, &str))
892 {
893 /* Register if of the form Vn.[bhsdq]. */
894 is_typed_vecreg = TRUE;
895
896 if (parsetype.width == 0)
897 /* Expect index. In the new scheme we cannot have
898 Vn.[bhsdq] represent a scalar. Therefore any
899 Vn.[bhsdq] should have an index following it.
900 Except in reglists ofcourse. */
901 atype.defined |= NTA_HASINDEX;
902 else
903 atype.defined |= NTA_HASTYPE;
904
905 atype.type = parsetype.type;
906 atype.width = parsetype.width;
907 }
908
909 if (skip_past_char (&str, '['))
910 {
911 expressionS exp;
912
913 /* Reject Sn[index] syntax. */
914 if (!is_typed_vecreg)
915 {
916 first_error (_("this type of register can't be indexed"));
917 return PARSE_FAIL;
918 }
919
920 if (in_reg_list == TRUE)
921 {
922 first_error (_("index not allowed inside register list"));
923 return PARSE_FAIL;
924 }
925
926 atype.defined |= NTA_HASINDEX;
927
928 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
929
930 if (exp.X_op != O_constant)
931 {
932 first_error (_("constant expression required"));
933 return PARSE_FAIL;
934 }
935
936 if (! skip_past_char (&str, ']'))
937 return PARSE_FAIL;
938
939 atype.index = exp.X_add_number;
940 }
941 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
942 {
943 /* Indexed vector register expected. */
944 first_error (_("indexed vector register expected"));
945 return PARSE_FAIL;
946 }
947
948 /* A vector reg Vn should be typed or indexed. */
949 if (type == REG_TYPE_VN && atype.defined == 0)
950 {
951 first_error (_("invalid use of vector register"));
952 }
953
954 if (typeinfo)
955 *typeinfo = atype;
956
957 if (rtype)
958 *rtype = type;
959
960 *ccp = str;
961
962 return reg->number;
963}
964
965/* Parse register.
966
967 Return the register number on success; return PARSE_FAIL otherwise.
968
969 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
970 the register (e.g. NEON double or quad reg when either has been requested).
971
972 If this is a NEON vector register with additional type information, fill
973 in the struct pointed to by VECTYPE (if non-NULL).
974
975 This parser does not handle register list. */
976
977static int
978aarch64_reg_parse (char **ccp, aarch64_reg_type type,
979 aarch64_reg_type *rtype, struct neon_type_el *vectype)
980{
981 struct neon_type_el atype;
982 char *str = *ccp;
983 int reg = parse_typed_reg (&str, type, rtype, &atype,
984 /*in_reg_list= */ FALSE);
985
986 if (reg == PARSE_FAIL)
987 return PARSE_FAIL;
988
989 if (vectype)
990 *vectype = atype;
991
992 *ccp = str;
993
994 return reg;
995}
996
997static inline bfd_boolean
998eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
999{
1000 return
1001 e1.type == e2.type
1002 && e1.defined == e2.defined
1003 && e1.width == e2.width && e1.index == e2.index;
1004}
1005
1006/* This function parses the NEON register list. On success, it returns
1007 the parsed register list information in the following encoded format:
1008
1009 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1010 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1011
1012 The information of the register shape and/or index is returned in
1013 *VECTYPE.
1014
1015 It returns PARSE_FAIL if the register list is invalid.
1016
1017 The list contains one to four registers.
1018 Each register can be one of:
1019 <Vt>.<T>[<index>]
1020 <Vt>.<T>
1021 All <T> should be identical.
1022 All <index> should be identical.
1023 There are restrictions on <Vt> numbers which are checked later
1024 (by reg_list_valid_p). */
1025
1026static int
1027parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1028{
1029 char *str = *ccp;
1030 int nb_regs;
1031 struct neon_type_el typeinfo, typeinfo_first;
1032 int val, val_range;
1033 int in_range;
1034 int ret_val;
1035 int i;
1036 bfd_boolean error = FALSE;
1037 bfd_boolean expect_index = FALSE;
1038
1039 if (*str != '{')
1040 {
1041 set_syntax_error (_("expecting {"));
1042 return PARSE_FAIL;
1043 }
1044 str++;
1045
1046 nb_regs = 0;
1047 typeinfo_first.defined = 0;
1048 typeinfo_first.type = NT_invtype;
1049 typeinfo_first.width = -1;
1050 typeinfo_first.index = 0;
1051 ret_val = 0;
1052 val = -1;
1053 val_range = -1;
1054 in_range = 0;
1055 do
1056 {
1057 if (in_range)
1058 {
1059 str++; /* skip over '-' */
1060 val_range = val;
1061 }
1062 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1063 /*in_reg_list= */ TRUE);
1064 if (val == PARSE_FAIL)
1065 {
1066 set_first_syntax_error (_("invalid vector register in list"));
1067 error = TRUE;
1068 continue;
1069 }
1070 /* reject [bhsd]n */
1071 if (typeinfo.defined == 0)
1072 {
1073 set_first_syntax_error (_("invalid scalar register in list"));
1074 error = TRUE;
1075 continue;
1076 }
1077
1078 if (typeinfo.defined & NTA_HASINDEX)
1079 expect_index = TRUE;
1080
1081 if (in_range)
1082 {
1083 if (val < val_range)
1084 {
1085 set_first_syntax_error
1086 (_("invalid range in vector register list"));
1087 error = TRUE;
1088 }
1089 val_range++;
1090 }
1091 else
1092 {
1093 val_range = val;
1094 if (nb_regs == 0)
1095 typeinfo_first = typeinfo;
1096 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1097 {
1098 set_first_syntax_error
1099 (_("type mismatch in vector register list"));
1100 error = TRUE;
1101 }
1102 }
1103 if (! error)
1104 for (i = val_range; i <= val; i++)
1105 {
1106 ret_val |= i << (5 * nb_regs);
1107 nb_regs++;
1108 }
1109 in_range = 0;
1110 }
1111 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1112
1113 skip_whitespace (str);
1114 if (*str != '}')
1115 {
1116 set_first_syntax_error (_("end of vector register list not found"));
1117 error = TRUE;
1118 }
1119 str++;
1120
1121 skip_whitespace (str);
1122
1123 if (expect_index)
1124 {
1125 if (skip_past_char (&str, '['))
1126 {
1127 expressionS exp;
1128
1129 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1130 if (exp.X_op != O_constant)
1131 {
1132 set_first_syntax_error (_("constant expression required."));
1133 error = TRUE;
1134 }
1135 if (! skip_past_char (&str, ']'))
1136 error = TRUE;
1137 else
1138 typeinfo_first.index = exp.X_add_number;
1139 }
1140 else
1141 {
1142 set_first_syntax_error (_("expected index"));
1143 error = TRUE;
1144 }
1145 }
1146
1147 if (nb_regs > 4)
1148 {
1149 set_first_syntax_error (_("too many registers in vector register list"));
1150 error = TRUE;
1151 }
1152 else if (nb_regs == 0)
1153 {
1154 set_first_syntax_error (_("empty vector register list"));
1155 error = TRUE;
1156 }
1157
1158 *ccp = str;
1159 if (! error)
1160 *vectype = typeinfo_first;
1161
1162 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1163}
1164
1165/* Directives: register aliases. */
1166
1167static reg_entry *
1168insert_reg_alias (char *str, int number, aarch64_reg_type type)
1169{
1170 reg_entry *new;
1171 const char *name;
1172
1173 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1174 {
1175 if (new->builtin)
1176 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1177 str);
1178
1179 /* Only warn about a redefinition if it's not defined as the
1180 same register. */
1181 else if (new->number != number || new->type != type)
1182 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1183
1184 return NULL;
1185 }
1186
1187 name = xstrdup (str);
1188 new = xmalloc (sizeof (reg_entry));
1189
1190 new->name = name;
1191 new->number = number;
1192 new->type = type;
1193 new->builtin = FALSE;
1194
1195 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1196 abort ();
1197
1198 return new;
1199}
1200
1201/* Look for the .req directive. This is of the form:
1202
1203 new_register_name .req existing_register_name
1204
1205 If we find one, or if it looks sufficiently like one that we want to
1206 handle any error here, return TRUE. Otherwise return FALSE. */
1207
1208static bfd_boolean
1209create_register_alias (char *newname, char *p)
1210{
1211 const reg_entry *old;
1212 char *oldname, *nbuf;
1213 size_t nlen;
1214
1215 /* The input scrubber ensures that whitespace after the mnemonic is
1216 collapsed to single spaces. */
1217 oldname = p;
1218 if (strncmp (oldname, " .req ", 6) != 0)
1219 return FALSE;
1220
1221 oldname += 6;
1222 if (*oldname == '\0')
1223 return FALSE;
1224
1225 old = hash_find (aarch64_reg_hsh, oldname);
1226 if (!old)
1227 {
1228 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1229 return TRUE;
1230 }
1231
1232 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1233 the desired alias name, and p points to its end. If not, then
1234 the desired alias name is in the global original_case_string. */
1235#ifdef TC_CASE_SENSITIVE
1236 nlen = p - newname;
1237#else
1238 newname = original_case_string;
1239 nlen = strlen (newname);
1240#endif
1241
1242 nbuf = alloca (nlen + 1);
1243 memcpy (nbuf, newname, nlen);
1244 nbuf[nlen] = '\0';
1245
1246 /* Create aliases under the new name as stated; an all-lowercase
1247 version of the new name; and an all-uppercase version of the new
1248 name. */
1249 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1250 {
1251 for (p = nbuf; *p; p++)
1252 *p = TOUPPER (*p);
1253
1254 if (strncmp (nbuf, newname, nlen))
1255 {
1256 /* If this attempt to create an additional alias fails, do not bother
1257 trying to create the all-lower case alias. We will fail and issue
1258 a second, duplicate error message. This situation arises when the
1259 programmer does something like:
1260 foo .req r0
1261 Foo .req r1
1262 The second .req creates the "Foo" alias but then fails to create
1263 the artificial FOO alias because it has already been created by the
1264 first .req. */
1265 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1266 return TRUE;
1267 }
1268
1269 for (p = nbuf; *p; p++)
1270 *p = TOLOWER (*p);
1271
1272 if (strncmp (nbuf, newname, nlen))
1273 insert_reg_alias (nbuf, old->number, old->type);
1274 }
1275
1276 return TRUE;
1277}
1278
1279/* Should never be called, as .req goes between the alias and the
1280 register name, not at the beginning of the line. */
1281static void
1282s_req (int a ATTRIBUTE_UNUSED)
1283{
1284 as_bad (_("invalid syntax for .req directive"));
1285}
1286
1287/* The .unreq directive deletes an alias which was previously defined
1288 by .req. For example:
1289
1290 my_alias .req r11
1291 .unreq my_alias */
1292
1293static void
1294s_unreq (int a ATTRIBUTE_UNUSED)
1295{
1296 char *name;
1297 char saved_char;
1298
1299 name = input_line_pointer;
1300
1301 while (*input_line_pointer != 0
1302 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1303 ++input_line_pointer;
1304
1305 saved_char = *input_line_pointer;
1306 *input_line_pointer = 0;
1307
1308 if (!*name)
1309 as_bad (_("invalid syntax for .unreq directive"));
1310 else
1311 {
1312 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1313
1314 if (!reg)
1315 as_bad (_("unknown register alias '%s'"), name);
1316 else if (reg->builtin)
1317 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1318 name);
1319 else
1320 {
1321 char *p;
1322 char *nbuf;
1323
1324 hash_delete (aarch64_reg_hsh, name, FALSE);
1325 free ((char *) reg->name);
1326 free (reg);
1327
1328 /* Also locate the all upper case and all lower case versions.
1329 Do not complain if we cannot find one or the other as it
1330 was probably deleted above. */
1331
1332 nbuf = strdup (name);
1333 for (p = nbuf; *p; p++)
1334 *p = TOUPPER (*p);
1335 reg = hash_find (aarch64_reg_hsh, nbuf);
1336 if (reg)
1337 {
1338 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1339 free ((char *) reg->name);
1340 free (reg);
1341 }
1342
1343 for (p = nbuf; *p; p++)
1344 *p = TOLOWER (*p);
1345 reg = hash_find (aarch64_reg_hsh, nbuf);
1346 if (reg)
1347 {
1348 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1349 free ((char *) reg->name);
1350 free (reg);
1351 }
1352
1353 free (nbuf);
1354 }
1355 }
1356
1357 *input_line_pointer = saved_char;
1358 demand_empty_rest_of_line ();
1359}
1360
1361/* Directives: Instruction set selection. */
1362
1363#ifdef OBJ_ELF
1364/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1365 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1366 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1367 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1368
1369/* Create a new mapping symbol for the transition to STATE. */
1370
1371static void
1372make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1373{
1374 symbolS *symbolP;
1375 const char *symname;
1376 int type;
1377
1378 switch (state)
1379 {
1380 case MAP_DATA:
1381 symname = "$d";
1382 type = BSF_NO_FLAGS;
1383 break;
1384 case MAP_INSN:
1385 symname = "$x";
1386 type = BSF_NO_FLAGS;
1387 break;
1388 default:
1389 abort ();
1390 }
1391
1392 symbolP = symbol_new (symname, now_seg, value, frag);
1393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1394
1395 /* Save the mapping symbols for future reference. Also check that
1396 we do not place two mapping symbols at the same offset within a
1397 frag. We'll handle overlap between frags in
1398 check_mapping_symbols.
1399
1400 If .fill or other data filling directive generates zero sized data,
1401 the mapping symbol for the following code will have the same value
1402 as the one generated for the data filling directive. In this case,
1403 we replace the old symbol with the new one at the same address. */
1404 if (value == 0)
1405 {
1406 if (frag->tc_frag_data.first_map != NULL)
1407 {
1408 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1409 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1410 &symbol_lastP);
1411 }
1412 frag->tc_frag_data.first_map = symbolP;
1413 }
1414 if (frag->tc_frag_data.last_map != NULL)
1415 {
1416 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1417 S_GET_VALUE (symbolP));
1418 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1419 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1420 &symbol_lastP);
1421 }
1422 frag->tc_frag_data.last_map = symbolP;
1423}
1424
1425/* We must sometimes convert a region marked as code to data during
1426 code alignment, if an odd number of bytes have to be padded. The
1427 code mapping symbol is pushed to an aligned address. */
1428
1429static void
1430insert_data_mapping_symbol (enum mstate state,
1431 valueT value, fragS * frag, offsetT bytes)
1432{
1433 /* If there was already a mapping symbol, remove it. */
1434 if (frag->tc_frag_data.last_map != NULL
1435 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1436 frag->fr_address + value)
1437 {
1438 symbolS *symp = frag->tc_frag_data.last_map;
1439
1440 if (value == 0)
1441 {
1442 know (frag->tc_frag_data.first_map == symp);
1443 frag->tc_frag_data.first_map = NULL;
1444 }
1445 frag->tc_frag_data.last_map = NULL;
1446 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1447 }
1448
1449 make_mapping_symbol (MAP_DATA, value, frag);
1450 make_mapping_symbol (state, value + bytes, frag);
1451}
1452
1453static void mapping_state_2 (enum mstate state, int max_chars);
1454
1455/* Set the mapping state to STATE. Only call this when about to
1456 emit some STATE bytes to the file. */
1457
1458void
1459mapping_state (enum mstate state)
1460{
1461 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1462
a578ef7e
JW
1463 if (state == MAP_INSN)
1464 /* AArch64 instructions require 4-byte alignment. When emitting
1465 instructions into any section, record the appropriate section
1466 alignment. */
1467 record_alignment (now_seg, 2);
1468
448eb63d
RL
1469 if (mapstate == state)
1470 /* The mapping symbol has already been emitted.
1471 There is nothing else to do. */
1472 return;
1473
c1baaddf 1474#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1475 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1476 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1477 evaluated later in the next else. */
a06ea964 1478 return;
c1baaddf
RL
1479 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1480 {
1481 /* Only add the symbol if the offset is > 0:
1482 if we're at the first frag, check it's size > 0;
1483 if we're not at the first frag, then for sure
1484 the offset is > 0. */
1485 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1486 const int add_symbol = (frag_now != frag_first)
1487 || (frag_now_fix () > 0);
1488
1489 if (add_symbol)
1490 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1491 }
1492#undef TRANSITION
a06ea964
NC
1493
1494 mapping_state_2 (state, 0);
a06ea964
NC
1495}
1496
1497/* Same as mapping_state, but MAX_CHARS bytes have already been
1498 allocated. Put the mapping symbol that far back. */
1499
1500static void
1501mapping_state_2 (enum mstate state, int max_chars)
1502{
1503 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1504
1505 if (!SEG_NORMAL (now_seg))
1506 return;
1507
1508 if (mapstate == state)
1509 /* The mapping symbol has already been emitted.
1510 There is nothing else to do. */
1511 return;
1512
1513 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1514 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1515}
1516#else
1517#define mapping_state(x) /* nothing */
1518#define mapping_state_2(x, y) /* nothing */
1519#endif
1520
1521/* Directives: sectioning and alignment. */
1522
1523static void
1524s_bss (int ignore ATTRIBUTE_UNUSED)
1525{
1526 /* We don't support putting frags in the BSS segment, we fake it by
1527 marking in_bss, then looking at s_skip for clues. */
1528 subseg_set (bss_section, 0);
1529 demand_empty_rest_of_line ();
1530 mapping_state (MAP_DATA);
1531}
1532
1533static void
1534s_even (int ignore ATTRIBUTE_UNUSED)
1535{
1536 /* Never make frag if expect extra pass. */
1537 if (!need_pass_2)
1538 frag_align (1, 0, 0);
1539
1540 record_alignment (now_seg, 1);
1541
1542 demand_empty_rest_of_line ();
1543}
1544
1545/* Directives: Literal pools. */
1546
1547static literal_pool *
1548find_literal_pool (int size)
1549{
1550 literal_pool *pool;
1551
1552 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1553 {
1554 if (pool->section == now_seg
1555 && pool->sub_section == now_subseg && pool->size == size)
1556 break;
1557 }
1558
1559 return pool;
1560}
1561
1562static literal_pool *
1563find_or_make_literal_pool (int size)
1564{
1565 /* Next literal pool ID number. */
1566 static unsigned int latest_pool_num = 1;
1567 literal_pool *pool;
1568
1569 pool = find_literal_pool (size);
1570
1571 if (pool == NULL)
1572 {
1573 /* Create a new pool. */
1574 pool = xmalloc (sizeof (*pool));
1575 if (!pool)
1576 return NULL;
1577
1578 /* Currently we always put the literal pool in the current text
1579 section. If we were generating "small" model code where we
1580 knew that all code and initialised data was within 1MB then
1581 we could output literals to mergeable, read-only data
1582 sections. */
1583
1584 pool->next_free_entry = 0;
1585 pool->section = now_seg;
1586 pool->sub_section = now_subseg;
1587 pool->size = size;
1588 pool->next = list_of_pools;
1589 pool->symbol = NULL;
1590
1591 /* Add it to the list. */
1592 list_of_pools = pool;
1593 }
1594
1595 /* New pools, and emptied pools, will have a NULL symbol. */
1596 if (pool->symbol == NULL)
1597 {
1598 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1599 (valueT) 0, &zero_address_frag);
1600 pool->id = latest_pool_num++;
1601 }
1602
1603 /* Done. */
1604 return pool;
1605}
1606
1607/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1608 Return TRUE on success, otherwise return FALSE. */
1609static bfd_boolean
1610add_to_lit_pool (expressionS *exp, int size)
1611{
1612 literal_pool *pool;
1613 unsigned int entry;
1614
1615 pool = find_or_make_literal_pool (size);
1616
1617 /* Check if this literal value is already in the pool. */
1618 for (entry = 0; entry < pool->next_free_entry; entry++)
1619 {
55d9b4c1
NC
1620 expressionS * litexp = & pool->literals[entry].exp;
1621
1622 if ((litexp->X_op == exp->X_op)
a06ea964 1623 && (exp->X_op == O_constant)
55d9b4c1
NC
1624 && (litexp->X_add_number == exp->X_add_number)
1625 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1626 break;
1627
55d9b4c1 1628 if ((litexp->X_op == exp->X_op)
a06ea964 1629 && (exp->X_op == O_symbol)
55d9b4c1
NC
1630 && (litexp->X_add_number == exp->X_add_number)
1631 && (litexp->X_add_symbol == exp->X_add_symbol)
1632 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1633 break;
1634 }
1635
1636 /* Do we need to create a new entry? */
1637 if (entry == pool->next_free_entry)
1638 {
1639 if (entry >= MAX_LITERAL_POOL_SIZE)
1640 {
1641 set_syntax_error (_("literal pool overflow"));
1642 return FALSE;
1643 }
1644
55d9b4c1 1645 pool->literals[entry].exp = *exp;
a06ea964 1646 pool->next_free_entry += 1;
55d9b4c1
NC
1647 if (exp->X_op == O_big)
1648 {
1649 /* PR 16688: Bignums are held in a single global array. We must
1650 copy and preserve that value now, before it is overwritten. */
1651 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1652 memcpy (pool->literals[entry].bignum, generic_bignum,
1653 CHARS_PER_LITTLENUM * exp->X_add_number);
1654 }
1655 else
1656 pool->literals[entry].bignum = NULL;
a06ea964
NC
1657 }
1658
1659 exp->X_op = O_symbol;
1660 exp->X_add_number = ((int) entry) * size;
1661 exp->X_add_symbol = pool->symbol;
1662
1663 return TRUE;
1664}
1665
1666/* Can't use symbol_new here, so have to create a symbol and then at
1667 a later date assign it a value. Thats what these functions do. */
1668
1669static void
1670symbol_locate (symbolS * symbolP,
1671 const char *name,/* It is copied, the caller can modify. */
1672 segT segment, /* Segment identifier (SEG_<something>). */
1673 valueT valu, /* Symbol value. */
1674 fragS * frag) /* Associated fragment. */
1675{
e57e6ddc 1676 size_t name_length;
a06ea964
NC
1677 char *preserved_copy_of_name;
1678
1679 name_length = strlen (name) + 1; /* +1 for \0. */
1680 obstack_grow (&notes, name, name_length);
1681 preserved_copy_of_name = obstack_finish (&notes);
1682
1683#ifdef tc_canonicalize_symbol_name
1684 preserved_copy_of_name =
1685 tc_canonicalize_symbol_name (preserved_copy_of_name);
1686#endif
1687
1688 S_SET_NAME (symbolP, preserved_copy_of_name);
1689
1690 S_SET_SEGMENT (symbolP, segment);
1691 S_SET_VALUE (symbolP, valu);
1692 symbol_clear_list_pointers (symbolP);
1693
1694 symbol_set_frag (symbolP, frag);
1695
1696 /* Link to end of symbol chain. */
1697 {
1698 extern int symbol_table_frozen;
1699
1700 if (symbol_table_frozen)
1701 abort ();
1702 }
1703
1704 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1705
1706 obj_symbol_new_hook (symbolP);
1707
1708#ifdef tc_symbol_new_hook
1709 tc_symbol_new_hook (symbolP);
1710#endif
1711
1712#ifdef DEBUG_SYMS
1713 verify_symbol_chain (symbol_rootP, symbol_lastP);
1714#endif /* DEBUG_SYMS */
1715}
1716
1717
1718static void
1719s_ltorg (int ignored ATTRIBUTE_UNUSED)
1720{
1721 unsigned int entry;
1722 literal_pool *pool;
1723 char sym_name[20];
1724 int align;
1725
67a32447 1726 for (align = 2; align <= 4; align++)
a06ea964
NC
1727 {
1728 int size = 1 << align;
1729
1730 pool = find_literal_pool (size);
1731 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1732 continue;
1733
1734 mapping_state (MAP_DATA);
1735
1736 /* Align pool as you have word accesses.
1737 Only make a frag if we have to. */
1738 if (!need_pass_2)
1739 frag_align (align, 0, 0);
1740
1741 record_alignment (now_seg, align);
1742
1743 sprintf (sym_name, "$$lit_\002%x", pool->id);
1744
1745 symbol_locate (pool->symbol, sym_name, now_seg,
1746 (valueT) frag_now_fix (), frag_now);
1747 symbol_table_insert (pool->symbol);
1748
1749 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1750 {
1751 expressionS * exp = & pool->literals[entry].exp;
1752
1753 if (exp->X_op == O_big)
1754 {
1755 /* PR 16688: Restore the global bignum value. */
1756 gas_assert (pool->literals[entry].bignum != NULL);
1757 memcpy (generic_bignum, pool->literals[entry].bignum,
1758 CHARS_PER_LITTLENUM * exp->X_add_number);
1759 }
1760
1761 /* First output the expression in the instruction to the pool. */
1762 emit_expr (exp, size); /* .word|.xword */
1763
1764 if (exp->X_op == O_big)
1765 {
1766 free (pool->literals[entry].bignum);
1767 pool->literals[entry].bignum = NULL;
1768 }
1769 }
a06ea964
NC
1770
1771 /* Mark the pool as empty. */
1772 pool->next_free_entry = 0;
1773 pool->symbol = NULL;
1774 }
1775}
1776
1777#ifdef OBJ_ELF
1778/* Forward declarations for functions below, in the MD interface
1779 section. */
1780static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1781static struct reloc_table_entry * find_reloc_table_entry (char **);
1782
1783/* Directives: Data. */
1784/* N.B. the support for relocation suffix in this directive needs to be
1785 implemented properly. */
1786
1787static void
1788s_aarch64_elf_cons (int nbytes)
1789{
1790 expressionS exp;
1791
1792#ifdef md_flush_pending_output
1793 md_flush_pending_output ();
1794#endif
1795
1796 if (is_it_end_of_statement ())
1797 {
1798 demand_empty_rest_of_line ();
1799 return;
1800 }
1801
1802#ifdef md_cons_align
1803 md_cons_align (nbytes);
1804#endif
1805
1806 mapping_state (MAP_DATA);
1807 do
1808 {
1809 struct reloc_table_entry *reloc;
1810
1811 expression (&exp);
1812
1813 if (exp.X_op != O_symbol)
1814 emit_expr (&exp, (unsigned int) nbytes);
1815 else
1816 {
1817 skip_past_char (&input_line_pointer, '#');
1818 if (skip_past_char (&input_line_pointer, ':'))
1819 {
1820 reloc = find_reloc_table_entry (&input_line_pointer);
1821 if (reloc == NULL)
1822 as_bad (_("unrecognized relocation suffix"));
1823 else
1824 as_bad (_("unimplemented relocation suffix"));
1825 ignore_rest_of_line ();
1826 return;
1827 }
1828 else
1829 emit_expr (&exp, (unsigned int) nbytes);
1830 }
1831 }
1832 while (*input_line_pointer++ == ',');
1833
1834 /* Put terminator back into stream. */
1835 input_line_pointer--;
1836 demand_empty_rest_of_line ();
1837}
1838
1839#endif /* OBJ_ELF */
1840
1841/* Output a 32-bit word, but mark as an instruction. */
1842
1843static void
1844s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1845{
1846 expressionS exp;
1847
1848#ifdef md_flush_pending_output
1849 md_flush_pending_output ();
1850#endif
1851
1852 if (is_it_end_of_statement ())
1853 {
1854 demand_empty_rest_of_line ();
1855 return;
1856 }
1857
a97902de 1858 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1859 MAP_DATA symbol pending. So we only align the address during
1860 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1861 For other sections, this is not guaranteed. */
c1baaddf 1862 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1863 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1864 frag_align_code (2, 0);
c1baaddf 1865
a06ea964
NC
1866#ifdef OBJ_ELF
1867 mapping_state (MAP_INSN);
1868#endif
1869
1870 do
1871 {
1872 expression (&exp);
1873 if (exp.X_op != O_constant)
1874 {
1875 as_bad (_("constant expression required"));
1876 ignore_rest_of_line ();
1877 return;
1878 }
1879
1880 if (target_big_endian)
1881 {
1882 unsigned int val = exp.X_add_number;
1883 exp.X_add_number = SWAP_32 (val);
1884 }
1885 emit_expr (&exp, 4);
1886 }
1887 while (*input_line_pointer++ == ',');
1888
1889 /* Put terminator back into stream. */
1890 input_line_pointer--;
1891 demand_empty_rest_of_line ();
1892}
1893
1894#ifdef OBJ_ELF
1895/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1896
1897static void
1898s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1899{
1900 expressionS exp;
1901
1902 /* Since we're just labelling the code, there's no need to define a
1903 mapping symbol. */
1904 expression (&exp);
1905 /* Make sure there is enough room in this frag for the following
1906 blr. This trick only works if the blr follows immediately after
1907 the .tlsdesc directive. */
1908 frag_grow (4);
1909 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1910 BFD_RELOC_AARCH64_TLSDESC_CALL);
1911
1912 demand_empty_rest_of_line ();
1913}
1914#endif /* OBJ_ELF */
1915
1916static void s_aarch64_arch (int);
1917static void s_aarch64_cpu (int);
ae527cd8 1918static void s_aarch64_arch_extension (int);
a06ea964
NC
1919
1920/* This table describes all the machine specific pseudo-ops the assembler
1921 has to support. The fields are:
1922 pseudo-op name without dot
1923 function to call to execute this pseudo-op
1924 Integer arg to pass to the function. */
1925
1926const pseudo_typeS md_pseudo_table[] = {
1927 /* Never called because '.req' does not start a line. */
1928 {"req", s_req, 0},
1929 {"unreq", s_unreq, 0},
1930 {"bss", s_bss, 0},
1931 {"even", s_even, 0},
1932 {"ltorg", s_ltorg, 0},
1933 {"pool", s_ltorg, 0},
1934 {"cpu", s_aarch64_cpu, 0},
1935 {"arch", s_aarch64_arch, 0},
ae527cd8 1936 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1937 {"inst", s_aarch64_inst, 0},
1938#ifdef OBJ_ELF
1939 {"tlsdesccall", s_tlsdesccall, 0},
1940 {"word", s_aarch64_elf_cons, 4},
1941 {"long", s_aarch64_elf_cons, 4},
1942 {"xword", s_aarch64_elf_cons, 8},
1943 {"dword", s_aarch64_elf_cons, 8},
1944#endif
1945 {0, 0, 0}
1946};
1947\f
1948
1949/* Check whether STR points to a register name followed by a comma or the
1950 end of line; REG_TYPE indicates which register types are checked
1951 against. Return TRUE if STR is such a register name; otherwise return
1952 FALSE. The function does not intend to produce any diagnostics, but since
1953 the register parser aarch64_reg_parse, which is called by this function,
1954 does produce diagnostics, we call clear_error to clear any diagnostics
1955 that may be generated by aarch64_reg_parse.
1956 Also, the function returns FALSE directly if there is any user error
1957 present at the function entry. This prevents the existing diagnostics
1958 state from being spoiled.
1959 The function currently serves parse_constant_immediate and
1960 parse_big_immediate only. */
1961static bfd_boolean
1962reg_name_p (char *str, aarch64_reg_type reg_type)
1963{
1964 int reg;
1965
1966 /* Prevent the diagnostics state from being spoiled. */
1967 if (error_p ())
1968 return FALSE;
1969
1970 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1971
1972 /* Clear the parsing error that may be set by the reg parser. */
1973 clear_error ();
1974
1975 if (reg == PARSE_FAIL)
1976 return FALSE;
1977
1978 skip_whitespace (str);
1979 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1980 return TRUE;
1981
1982 return FALSE;
1983}
1984
1985/* Parser functions used exclusively in instruction operands. */
1986
1987/* Parse an immediate expression which may not be constant.
1988
1989 To prevent the expression parser from pushing a register name
1990 into the symbol table as an undefined symbol, firstly a check is
1991 done to find out whether STR is a valid register name followed
1992 by a comma or the end of line. Return FALSE if STR is such a
1993 string. */
1994
1995static bfd_boolean
1996parse_immediate_expression (char **str, expressionS *exp)
1997{
1998 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
1999 {
2000 set_recoverable_error (_("immediate operand required"));
2001 return FALSE;
2002 }
2003
2004 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2005
2006 if (exp->X_op == O_absent)
2007 {
2008 set_fatal_syntax_error (_("missing immediate expression"));
2009 return FALSE;
2010 }
2011
2012 return TRUE;
2013}
2014
2015/* Constant immediate-value read function for use in insn parsing.
2016 STR points to the beginning of the immediate (with the optional
2017 leading #); *VAL receives the value.
2018
2019 Return TRUE on success; otherwise return FALSE. */
2020
2021static bfd_boolean
2022parse_constant_immediate (char **str, int64_t * val)
2023{
2024 expressionS exp;
2025
2026 if (! parse_immediate_expression (str, &exp))
2027 return FALSE;
2028
2029 if (exp.X_op != O_constant)
2030 {
2031 set_syntax_error (_("constant expression required"));
2032 return FALSE;
2033 }
2034
2035 *val = exp.X_add_number;
2036 return TRUE;
2037}
2038
2039static uint32_t
2040encode_imm_float_bits (uint32_t imm)
2041{
2042 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2043 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2044}
2045
62b0d0d5
YZ
2046/* Return TRUE if the single-precision floating-point value encoded in IMM
2047 can be expressed in the AArch64 8-bit signed floating-point format with
2048 3-bit exponent and normalized 4 bits of precision; in other words, the
2049 floating-point value must be expressable as
2050 (+/-) n / 16 * power (2, r)
2051 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2052
a06ea964
NC
2053static bfd_boolean
2054aarch64_imm_float_p (uint32_t imm)
2055{
62b0d0d5
YZ
2056 /* If a single-precision floating-point value has the following bit
2057 pattern, it can be expressed in the AArch64 8-bit floating-point
2058 format:
2059
2060 3 32222222 2221111111111
a06ea964 2061 1 09876543 21098765432109876543210
62b0d0d5
YZ
2062 n Eeeeeexx xxxx0000000000000000000
2063
2064 where n, e and each x are either 0 or 1 independently, with
2065 E == ~ e. */
a06ea964 2066
62b0d0d5
YZ
2067 uint32_t pattern;
2068
2069 /* Prepare the pattern for 'Eeeeee'. */
2070 if (((imm >> 30) & 0x1) == 0)
2071 pattern = 0x3e000000;
a06ea964 2072 else
62b0d0d5
YZ
2073 pattern = 0x40000000;
2074
2075 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2076 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2077}
2078
62b0d0d5
YZ
2079/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2080
2081 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2082 8-bit signed floating-point format with 3-bit exponent and normalized 4
2083 bits of precision (i.e. can be used in an FMOV instruction); return the
2084 equivalent single-precision encoding in *FPWORD.
2085
2086 Otherwise return FALSE. */
2087
a06ea964 2088static bfd_boolean
62b0d0d5
YZ
2089aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2090{
2091 /* If a double-precision floating-point value has the following bit
2092 pattern, it can be expressed in the AArch64 8-bit floating-point
2093 format:
2094
2095 6 66655555555 554444444...21111111111
2096 3 21098765432 109876543...098765432109876543210
2097 n Eeeeeeeeexx xxxx00000...000000000000000000000
2098
2099 where n, e and each x are either 0 or 1 independently, with
2100 E == ~ e. */
2101
2102 uint32_t pattern;
2103 uint32_t high32 = imm >> 32;
2104
2105 /* Lower 32 bits need to be 0s. */
2106 if ((imm & 0xffffffff) != 0)
2107 return FALSE;
2108
2109 /* Prepare the pattern for 'Eeeeeeeee'. */
2110 if (((high32 >> 30) & 0x1) == 0)
2111 pattern = 0x3fc00000;
2112 else
2113 pattern = 0x40000000;
2114
2115 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2116 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2117 {
2118 /* Convert to the single-precision encoding.
2119 i.e. convert
2120 n Eeeeeeeeexx xxxx00000...000000000000000000000
2121 to
2122 n Eeeeeexx xxxx0000000000000000000. */
2123 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2124 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2125 return TRUE;
2126 }
2127 else
2128 return FALSE;
2129}
2130
2131/* Parse a floating-point immediate. Return TRUE on success and return the
2132 value in *IMMED in the format of IEEE754 single-precision encoding.
2133 *CCP points to the start of the string; DP_P is TRUE when the immediate
2134 is expected to be in double-precision (N.B. this only matters when
2135 hexadecimal representation is involved).
2136
2137 N.B. 0.0 is accepted by this function. */
2138
2139static bfd_boolean
2140parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2141{
2142 char *str = *ccp;
2143 char *fpnum;
2144 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2145 int found_fpchar = 0;
62b0d0d5
YZ
2146 int64_t val = 0;
2147 unsigned fpword = 0;
2148 bfd_boolean hex_p = FALSE;
a06ea964
NC
2149
2150 skip_past_char (&str, '#');
2151
a06ea964
NC
2152 fpnum = str;
2153 skip_whitespace (fpnum);
2154
2155 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2156 {
2157 /* Support the hexadecimal representation of the IEEE754 encoding.
2158 Double-precision is expected when DP_P is TRUE, otherwise the
2159 representation should be in single-precision. */
2160 if (! parse_constant_immediate (&str, &val))
2161 goto invalid_fp;
2162
2163 if (dp_p)
2164 {
2165 if (! aarch64_double_precision_fmovable (val, &fpword))
2166 goto invalid_fp;
2167 }
2168 else if ((uint64_t) val > 0xffffffff)
2169 goto invalid_fp;
2170 else
2171 fpword = val;
2172
2173 hex_p = TRUE;
2174 }
a06ea964
NC
2175 else
2176 {
62b0d0d5
YZ
2177 /* We must not accidentally parse an integer as a floating-point number.
2178 Make sure that the value we parse is not an integer by checking for
2179 special characters '.' or 'e'. */
a06ea964
NC
2180 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2181 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2182 {
2183 found_fpchar = 1;
2184 break;
2185 }
2186
2187 if (!found_fpchar)
2188 return FALSE;
2189 }
2190
62b0d0d5 2191 if (! hex_p)
a06ea964 2192 {
a06ea964
NC
2193 int i;
2194
62b0d0d5
YZ
2195 if ((str = atof_ieee (str, 's', words)) == NULL)
2196 goto invalid_fp;
2197
a06ea964
NC
2198 /* Our FP word must be 32 bits (single-precision FP). */
2199 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2200 {
2201 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2202 fpword |= words[i];
2203 }
62b0d0d5 2204 }
a06ea964 2205
62b0d0d5
YZ
2206 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2207 {
2208 *immed = fpword;
a06ea964 2209 *ccp = str;
a06ea964
NC
2210 return TRUE;
2211 }
2212
2213invalid_fp:
2214 set_fatal_syntax_error (_("invalid floating-point constant"));
2215 return FALSE;
2216}
2217
2218/* Less-generic immediate-value read function with the possibility of loading
2219 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2220 instructions.
2221
2222 To prevent the expression parser from pushing a register name into the
2223 symbol table as an undefined symbol, a check is firstly done to find
2224 out whether STR is a valid register name followed by a comma or the end
2225 of line. Return FALSE if STR is such a register. */
2226
2227static bfd_boolean
2228parse_big_immediate (char **str, int64_t *imm)
2229{
2230 char *ptr = *str;
2231
2232 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2233 {
2234 set_syntax_error (_("immediate operand required"));
2235 return FALSE;
2236 }
2237
2238 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2239
2240 if (inst.reloc.exp.X_op == O_constant)
2241 *imm = inst.reloc.exp.X_add_number;
2242
2243 *str = ptr;
2244
2245 return TRUE;
2246}
2247
2248/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2249 if NEED_LIBOPCODES is non-zero, the fixup will need
2250 assistance from the libopcodes. */
2251
2252static inline void
2253aarch64_set_gas_internal_fixup (struct reloc *reloc,
2254 const aarch64_opnd_info *operand,
2255 int need_libopcodes_p)
2256{
2257 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2258 reloc->opnd = operand->type;
2259 if (need_libopcodes_p)
2260 reloc->need_libopcodes_p = 1;
2261};
2262
2263/* Return TRUE if the instruction needs to be fixed up later internally by
2264 the GAS; otherwise return FALSE. */
2265
2266static inline bfd_boolean
2267aarch64_gas_internal_fixup_p (void)
2268{
2269 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2270}
2271
2272/* Assign the immediate value to the relavant field in *OPERAND if
2273 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2274 needs an internal fixup in a later stage.
2275 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2276 IMM.VALUE that may get assigned with the constant. */
2277static inline void
2278assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2279 aarch64_opnd_info *operand,
2280 int addr_off_p,
2281 int need_libopcodes_p,
2282 int skip_p)
2283{
2284 if (reloc->exp.X_op == O_constant)
2285 {
2286 if (addr_off_p)
2287 operand->addr.offset.imm = reloc->exp.X_add_number;
2288 else
2289 operand->imm.value = reloc->exp.X_add_number;
2290 reloc->type = BFD_RELOC_UNUSED;
2291 }
2292 else
2293 {
2294 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2295 /* Tell libopcodes to ignore this operand or not. This is helpful
2296 when one of the operands needs to be fixed up later but we need
2297 libopcodes to check the other operands. */
2298 operand->skip = skip_p;
2299 }
2300}
2301
2302/* Relocation modifiers. Each entry in the table contains the textual
2303 name for the relocation which may be placed before a symbol used as
2304 a load/store offset, or add immediate. It must be surrounded by a
2305 leading and trailing colon, for example:
2306
2307 ldr x0, [x1, #:rello:varsym]
2308 add x0, x1, #:rello:varsym */
2309
2310struct reloc_table_entry
2311{
2312 const char *name;
2313 int pc_rel;
6f4a313b 2314 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2315 bfd_reloc_code_real_type adrp_type;
2316 bfd_reloc_code_real_type movw_type;
2317 bfd_reloc_code_real_type add_type;
2318 bfd_reloc_code_real_type ldst_type;
74ad790c 2319 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2320};
2321
2322static struct reloc_table_entry reloc_table[] = {
2323 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2324 {"lo12", 0,
6f4a313b 2325 0, /* adr_type */
a06ea964
NC
2326 0,
2327 0,
2328 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2329 BFD_RELOC_AARCH64_LDST_LO12,
2330 0},
a06ea964
NC
2331
2332 /* Higher 21 bits of pc-relative page offset: ADRP */
2333 {"pg_hi21", 1,
6f4a313b 2334 0, /* adr_type */
a06ea964
NC
2335 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2336 0,
2337 0,
74ad790c 2338 0,
a06ea964
NC
2339 0},
2340
2341 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2342 {"pg_hi21_nc", 1,
6f4a313b 2343 0, /* adr_type */
a06ea964
NC
2344 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2345 0,
2346 0,
74ad790c 2347 0,
a06ea964
NC
2348 0},
2349
2350 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2351 {"abs_g0", 0,
6f4a313b 2352 0, /* adr_type */
a06ea964
NC
2353 0,
2354 BFD_RELOC_AARCH64_MOVW_G0,
2355 0,
74ad790c 2356 0,
a06ea964
NC
2357 0},
2358
2359 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2360 {"abs_g0_s", 0,
6f4a313b 2361 0, /* adr_type */
a06ea964
NC
2362 0,
2363 BFD_RELOC_AARCH64_MOVW_G0_S,
2364 0,
74ad790c 2365 0,
a06ea964
NC
2366 0},
2367
2368 /* Less significant bits 0-15 of address/value: MOVK, no check */
2369 {"abs_g0_nc", 0,
6f4a313b 2370 0, /* adr_type */
a06ea964
NC
2371 0,
2372 BFD_RELOC_AARCH64_MOVW_G0_NC,
2373 0,
74ad790c 2374 0,
a06ea964
NC
2375 0},
2376
2377 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2378 {"abs_g1", 0,
6f4a313b 2379 0, /* adr_type */
a06ea964
NC
2380 0,
2381 BFD_RELOC_AARCH64_MOVW_G1,
2382 0,
74ad790c 2383 0,
a06ea964
NC
2384 0},
2385
2386 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2387 {"abs_g1_s", 0,
6f4a313b 2388 0, /* adr_type */
a06ea964
NC
2389 0,
2390 BFD_RELOC_AARCH64_MOVW_G1_S,
2391 0,
74ad790c 2392 0,
a06ea964
NC
2393 0},
2394
2395 /* Less significant bits 16-31 of address/value: MOVK, no check */
2396 {"abs_g1_nc", 0,
6f4a313b 2397 0, /* adr_type */
a06ea964
NC
2398 0,
2399 BFD_RELOC_AARCH64_MOVW_G1_NC,
2400 0,
74ad790c 2401 0,
a06ea964
NC
2402 0},
2403
2404 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2405 {"abs_g2", 0,
6f4a313b 2406 0, /* adr_type */
a06ea964
NC
2407 0,
2408 BFD_RELOC_AARCH64_MOVW_G2,
2409 0,
74ad790c 2410 0,
a06ea964
NC
2411 0},
2412
2413 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2414 {"abs_g2_s", 0,
6f4a313b 2415 0, /* adr_type */
a06ea964
NC
2416 0,
2417 BFD_RELOC_AARCH64_MOVW_G2_S,
2418 0,
74ad790c 2419 0,
a06ea964
NC
2420 0},
2421
2422 /* Less significant bits 32-47 of address/value: MOVK, no check */
2423 {"abs_g2_nc", 0,
6f4a313b 2424 0, /* adr_type */
a06ea964
NC
2425 0,
2426 BFD_RELOC_AARCH64_MOVW_G2_NC,
2427 0,
74ad790c 2428 0,
a06ea964
NC
2429 0},
2430
2431 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2432 {"abs_g3", 0,
6f4a313b 2433 0, /* adr_type */
a06ea964
NC
2434 0,
2435 BFD_RELOC_AARCH64_MOVW_G3,
2436 0,
74ad790c 2437 0,
a06ea964 2438 0},
4aa2c5e2 2439
a06ea964
NC
2440 /* Get to the page containing GOT entry for a symbol. */
2441 {"got", 1,
6f4a313b 2442 0, /* adr_type */
a06ea964
NC
2443 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2444 0,
2445 0,
74ad790c 2446 0,
4aa2c5e2
MS
2447 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2448
a06ea964
NC
2449 /* 12 bit offset into the page containing GOT entry for that symbol. */
2450 {"got_lo12", 0,
6f4a313b 2451 0, /* adr_type */
a06ea964
NC
2452 0,
2453 0,
2454 0,
74ad790c
MS
2455 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2456 0},
a06ea964 2457
87f5fbcc
RL
2458 /* 15 bit offset into the page containing GOT entry for that symbol. */
2459 {"gotoff_lo15", 0,
2460 0, /* adr_type */
2461 0,
2462 0,
2463 0,
2464 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2465 0},
2466
a06ea964
NC
2467 /* Get to the page containing GOT TLS entry for a symbol */
2468 {"tlsgd", 0,
3c12b054 2469 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2470 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2471 0,
2472 0,
74ad790c 2473 0,
a06ea964
NC
2474 0},
2475
2476 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2477 {"tlsgd_lo12", 0,
6f4a313b 2478 0, /* adr_type */
a06ea964
NC
2479 0,
2480 0,
2481 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2482 0,
a06ea964
NC
2483 0},
2484
2485 /* Get to the page containing GOT TLS entry for a symbol */
2486 {"tlsdesc", 0,
389b8029 2487 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2488 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2489 0,
2490 0,
74ad790c 2491 0,
1ada945d 2492 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2493
2494 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2495 {"tlsdesc_lo12", 0,
6f4a313b 2496 0, /* adr_type */
a06ea964
NC
2497 0,
2498 0,
2499 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2500 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2501 0},
a06ea964 2502
6c37fedc
JW
2503 /* Get to the page containing GOT TLS entry for a symbol.
2504 The same as GD, we allocate two consecutive GOT slots
2505 for module index and module offset, the only difference
2506 with GD is the module offset should be intialized to
2507 zero without any outstanding runtime relocation. */
2508 {"tlsldm", 0,
2509 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2510 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2511 0,
2512 0,
2513 0,
2514 0},
2515
a12fad50
JW
2516 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2517 {"tlsldm_lo12_nc", 0,
2518 0, /* adr_type */
2519 0,
2520 0,
2521 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2522 0,
2523 0},
2524
70151fb5
JW
2525 /* 12 bit offset into the module TLS base address. */
2526 {"dtprel_lo12", 0,
2527 0, /* adr_type */
2528 0,
2529 0,
2530 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2531 0,
2532 0},
2533
13289c10
JW
2534 /* Same as dtprel_lo12, no overflow check. */
2535 {"dtprel_lo12_nc", 0,
2536 0, /* adr_type */
2537 0,
2538 0,
2539 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2540 0,
2541 0},
2542
49df5539
JW
2543 /* bits[23:12] of offset to the module TLS base address. */
2544 {"dtprel_hi12", 0,
2545 0, /* adr_type */
2546 0,
2547 0,
2548 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2549 0,
2550 0},
2551
2552 /* bits[15:0] of offset to the module TLS base address. */
2553 {"dtprel_g0", 0,
2554 0, /* adr_type */
2555 0,
2556 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2557 0,
2558 0,
2559 0},
2560
2561 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2562 {"dtprel_g0_nc", 0,
2563 0, /* adr_type */
2564 0,
2565 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2566 0,
2567 0,
2568 0},
2569
2570 /* bits[31:16] of offset to the module TLS base address. */
2571 {"dtprel_g1", 0,
2572 0, /* adr_type */
2573 0,
2574 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2575 0,
2576 0,
2577 0},
2578
2579 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2580 {"dtprel_g1_nc", 0,
2581 0, /* adr_type */
2582 0,
2583 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2584 0,
2585 0,
2586 0},
2587
2588 /* bits[47:32] of offset to the module TLS base address. */
2589 {"dtprel_g2", 0,
2590 0, /* adr_type */
2591 0,
2592 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2593 0,
2594 0,
2595 0},
2596
a06ea964
NC
2597 /* Get to the page containing GOT TLS entry for a symbol */
2598 {"gottprel", 0,
6f4a313b 2599 0, /* adr_type */
a06ea964
NC
2600 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2601 0,
2602 0,
74ad790c 2603 0,
043bf05a 2604 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2605
2606 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2607 {"gottprel_lo12", 0,
6f4a313b 2608 0, /* adr_type */
a06ea964
NC
2609 0,
2610 0,
2611 0,
74ad790c
MS
2612 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2613 0},
a06ea964
NC
2614
2615 /* Get tp offset for a symbol. */
2616 {"tprel", 0,
6f4a313b 2617 0, /* adr_type */
a06ea964
NC
2618 0,
2619 0,
2620 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2621 0,
a06ea964
NC
2622 0},
2623
2624 /* Get tp offset for a symbol. */
2625 {"tprel_lo12", 0,
6f4a313b 2626 0, /* adr_type */
a06ea964
NC
2627 0,
2628 0,
2629 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2630 0,
a06ea964
NC
2631 0},
2632
2633 /* Get tp offset for a symbol. */
2634 {"tprel_hi12", 0,
6f4a313b 2635 0, /* adr_type */
a06ea964
NC
2636 0,
2637 0,
2638 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2639 0,
a06ea964
NC
2640 0},
2641
2642 /* Get tp offset for a symbol. */
2643 {"tprel_lo12_nc", 0,
6f4a313b 2644 0, /* adr_type */
a06ea964
NC
2645 0,
2646 0,
2647 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2648 0,
a06ea964
NC
2649 0},
2650
2651 /* Most significant bits 32-47 of address/value: MOVZ. */
2652 {"tprel_g2", 0,
6f4a313b 2653 0, /* adr_type */
a06ea964
NC
2654 0,
2655 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2656 0,
74ad790c 2657 0,
a06ea964
NC
2658 0},
2659
2660 /* Most significant bits 16-31 of address/value: MOVZ. */
2661 {"tprel_g1", 0,
6f4a313b 2662 0, /* adr_type */
a06ea964
NC
2663 0,
2664 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2665 0,
74ad790c 2666 0,
a06ea964
NC
2667 0},
2668
2669 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2670 {"tprel_g1_nc", 0,
6f4a313b 2671 0, /* adr_type */
a06ea964
NC
2672 0,
2673 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2674 0,
74ad790c 2675 0,
a06ea964
NC
2676 0},
2677
2678 /* Most significant bits 0-15 of address/value: MOVZ. */
2679 {"tprel_g0", 0,
6f4a313b 2680 0, /* adr_type */
a06ea964
NC
2681 0,
2682 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2683 0,
74ad790c 2684 0,
a06ea964
NC
2685 0},
2686
2687 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2688 {"tprel_g0_nc", 0,
6f4a313b 2689 0, /* adr_type */
a06ea964
NC
2690 0,
2691 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2692 0,
74ad790c 2693 0,
a06ea964 2694 0},
a921b5bd
JW
2695
2696 /* 15bit offset from got entry to base address of GOT table. */
2697 {"gotpage_lo15", 0,
2698 0,
2699 0,
2700 0,
2701 0,
2702 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2703 0},
3d715ce4
JW
2704
2705 /* 14bit offset from got entry to base address of GOT table. */
2706 {"gotpage_lo14", 0,
2707 0,
2708 0,
2709 0,
2710 0,
2711 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2712 0},
a06ea964
NC
2713};
2714
2715/* Given the address of a pointer pointing to the textual name of a
2716 relocation as may appear in assembler source, attempt to find its
2717 details in reloc_table. The pointer will be updated to the character
2718 after the trailing colon. On failure, NULL will be returned;
2719 otherwise return the reloc_table_entry. */
2720
2721static struct reloc_table_entry *
2722find_reloc_table_entry (char **str)
2723{
2724 unsigned int i;
2725 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2726 {
2727 int length = strlen (reloc_table[i].name);
2728
2729 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2730 && (*str)[length] == ':')
2731 {
2732 *str += (length + 1);
2733 return &reloc_table[i];
2734 }
2735 }
2736
2737 return NULL;
2738}
2739
2740/* Mode argument to parse_shift and parser_shifter_operand. */
2741enum parse_shift_mode
2742{
2743 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2744 "#imm{,lsl #n}" */
2745 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2746 "#imm" */
2747 SHIFTED_LSL, /* bare "lsl #n" */
2748 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2749 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2750};
2751
2752/* Parse a <shift> operator on an AArch64 data processing instruction.
2753 Return TRUE on success; otherwise return FALSE. */
2754static bfd_boolean
2755parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2756{
2757 const struct aarch64_name_value_pair *shift_op;
2758 enum aarch64_modifier_kind kind;
2759 expressionS exp;
2760 int exp_has_prefix;
2761 char *s = *str;
2762 char *p = s;
2763
2764 for (p = *str; ISALPHA (*p); p++)
2765 ;
2766
2767 if (p == *str)
2768 {
2769 set_syntax_error (_("shift expression expected"));
2770 return FALSE;
2771 }
2772
2773 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2774
2775 if (shift_op == NULL)
2776 {
2777 set_syntax_error (_("shift operator expected"));
2778 return FALSE;
2779 }
2780
2781 kind = aarch64_get_operand_modifier (shift_op);
2782
2783 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2784 {
2785 set_syntax_error (_("invalid use of 'MSL'"));
2786 return FALSE;
2787 }
2788
2789 switch (mode)
2790 {
2791 case SHIFTED_LOGIC_IMM:
2792 if (aarch64_extend_operator_p (kind) == TRUE)
2793 {
2794 set_syntax_error (_("extending shift is not permitted"));
2795 return FALSE;
2796 }
2797 break;
2798
2799 case SHIFTED_ARITH_IMM:
2800 if (kind == AARCH64_MOD_ROR)
2801 {
2802 set_syntax_error (_("'ROR' shift is not permitted"));
2803 return FALSE;
2804 }
2805 break;
2806
2807 case SHIFTED_LSL:
2808 if (kind != AARCH64_MOD_LSL)
2809 {
2810 set_syntax_error (_("only 'LSL' shift is permitted"));
2811 return FALSE;
2812 }
2813 break;
2814
2815 case SHIFTED_REG_OFFSET:
2816 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2817 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2818 {
2819 set_fatal_syntax_error
2820 (_("invalid shift for the register offset addressing mode"));
2821 return FALSE;
2822 }
2823 break;
2824
2825 case SHIFTED_LSL_MSL:
2826 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2827 {
2828 set_syntax_error (_("invalid shift operator"));
2829 return FALSE;
2830 }
2831 break;
2832
2833 default:
2834 abort ();
2835 }
2836
2837 /* Whitespace can appear here if the next thing is a bare digit. */
2838 skip_whitespace (p);
2839
2840 /* Parse shift amount. */
2841 exp_has_prefix = 0;
2842 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2843 exp.X_op = O_absent;
2844 else
2845 {
2846 if (is_immediate_prefix (*p))
2847 {
2848 p++;
2849 exp_has_prefix = 1;
2850 }
2851 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2852 }
2853 if (exp.X_op == O_absent)
2854 {
2855 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2856 {
2857 set_syntax_error (_("missing shift amount"));
2858 return FALSE;
2859 }
2860 operand->shifter.amount = 0;
2861 }
2862 else if (exp.X_op != O_constant)
2863 {
2864 set_syntax_error (_("constant shift amount required"));
2865 return FALSE;
2866 }
2867 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2868 {
2869 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2870 return FALSE;
2871 }
2872 else
2873 {
2874 operand->shifter.amount = exp.X_add_number;
2875 operand->shifter.amount_present = 1;
2876 }
2877
2878 operand->shifter.operator_present = 1;
2879 operand->shifter.kind = kind;
2880
2881 *str = p;
2882 return TRUE;
2883}
2884
2885/* Parse a <shifter_operand> for a data processing instruction:
2886
2887 #<immediate>
2888 #<immediate>, LSL #imm
2889
2890 Validation of immediate operands is deferred to md_apply_fix.
2891
2892 Return TRUE on success; otherwise return FALSE. */
2893
2894static bfd_boolean
2895parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2896 enum parse_shift_mode mode)
2897{
2898 char *p;
2899
2900 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2901 return FALSE;
2902
2903 p = *str;
2904
2905 /* Accept an immediate expression. */
2906 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2907 return FALSE;
2908
2909 /* Accept optional LSL for arithmetic immediate values. */
2910 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2911 if (! parse_shift (&p, operand, SHIFTED_LSL))
2912 return FALSE;
2913
2914 /* Not accept any shifter for logical immediate values. */
2915 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2916 && parse_shift (&p, operand, mode))
2917 {
2918 set_syntax_error (_("unexpected shift operator"));
2919 return FALSE;
2920 }
2921
2922 *str = p;
2923 return TRUE;
2924}
2925
2926/* Parse a <shifter_operand> for a data processing instruction:
2927
2928 <Rm>
2929 <Rm>, <shift>
2930 #<immediate>
2931 #<immediate>, LSL #imm
2932
2933 where <shift> is handled by parse_shift above, and the last two
2934 cases are handled by the function above.
2935
2936 Validation of immediate operands is deferred to md_apply_fix.
2937
2938 Return TRUE on success; otherwise return FALSE. */
2939
2940static bfd_boolean
2941parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2942 enum parse_shift_mode mode)
2943{
2944 int reg;
2945 int isreg32, isregzero;
2946 enum aarch64_operand_class opd_class
2947 = aarch64_get_operand_class (operand->type);
2948
2949 if ((reg =
2950 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2951 {
2952 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2953 {
2954 set_syntax_error (_("unexpected register in the immediate operand"));
2955 return FALSE;
2956 }
2957
2958 if (!isregzero && reg == REG_SP)
2959 {
2960 set_syntax_error (BAD_SP);
2961 return FALSE;
2962 }
2963
2964 operand->reg.regno = reg;
2965 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2966
2967 /* Accept optional shift operation on register. */
2968 if (! skip_past_comma (str))
2969 return TRUE;
2970
2971 if (! parse_shift (str, operand, mode))
2972 return FALSE;
2973
2974 return TRUE;
2975 }
2976 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2977 {
2978 set_syntax_error
2979 (_("integer register expected in the extended/shifted operand "
2980 "register"));
2981 return FALSE;
2982 }
2983
2984 /* We have a shifted immediate variable. */
2985 return parse_shifter_operand_imm (str, operand, mode);
2986}
2987
2988/* Return TRUE on success; return FALSE otherwise. */
2989
2990static bfd_boolean
2991parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
2992 enum parse_shift_mode mode)
2993{
2994 char *p = *str;
2995
2996 /* Determine if we have the sequence of characters #: or just :
2997 coming next. If we do, then we check for a :rello: relocation
2998 modifier. If we don't, punt the whole lot to
2999 parse_shifter_operand. */
3000
3001 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3002 {
3003 struct reloc_table_entry *entry;
3004
3005 if (p[0] == '#')
3006 p += 2;
3007 else
3008 p++;
3009 *str = p;
3010
3011 /* Try to parse a relocation. Anything else is an error. */
3012 if (!(entry = find_reloc_table_entry (str)))
3013 {
3014 set_syntax_error (_("unknown relocation modifier"));
3015 return FALSE;
3016 }
3017
3018 if (entry->add_type == 0)
3019 {
3020 set_syntax_error
3021 (_("this relocation modifier is not allowed on this instruction"));
3022 return FALSE;
3023 }
3024
3025 /* Save str before we decompose it. */
3026 p = *str;
3027
3028 /* Next, we parse the expression. */
3029 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3030 return FALSE;
3031
3032 /* Record the relocation type (use the ADD variant here). */
3033 inst.reloc.type = entry->add_type;
3034 inst.reloc.pc_rel = entry->pc_rel;
3035
3036 /* If str is empty, we've reached the end, stop here. */
3037 if (**str == '\0')
3038 return TRUE;
3039
55d9b4c1 3040 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3041 recover the variable name and continue parsing for the shifter. */
3042 *str = p;
3043 return parse_shifter_operand_imm (str, operand, mode);
3044 }
3045
3046 return parse_shifter_operand (str, operand, mode);
3047}
3048
3049/* Parse all forms of an address expression. Information is written
3050 to *OPERAND and/or inst.reloc.
3051
3052 The A64 instruction set has the following addressing modes:
3053
3054 Offset
3055 [base] // in SIMD ld/st structure
3056 [base{,#0}] // in ld/st exclusive
3057 [base{,#imm}]
3058 [base,Xm{,LSL #imm}]
3059 [base,Xm,SXTX {#imm}]
3060 [base,Wm,(S|U)XTW {#imm}]
3061 Pre-indexed
3062 [base,#imm]!
3063 Post-indexed
3064 [base],#imm
3065 [base],Xm // in SIMD ld/st structure
3066 PC-relative (literal)
3067 label
3068 =immediate
3069
3070 (As a convenience, the notation "=immediate" is permitted in conjunction
3071 with the pc-relative literal load instructions to automatically place an
3072 immediate value or symbolic address in a nearby literal pool and generate
3073 a hidden label which references it.)
3074
3075 Upon a successful parsing, the address structure in *OPERAND will be
3076 filled in the following way:
3077
3078 .base_regno = <base>
3079 .offset.is_reg // 1 if the offset is a register
3080 .offset.imm = <imm>
3081 .offset.regno = <Rm>
3082
3083 For different addressing modes defined in the A64 ISA:
3084
3085 Offset
3086 .pcrel=0; .preind=1; .postind=0; .writeback=0
3087 Pre-indexed
3088 .pcrel=0; .preind=1; .postind=0; .writeback=1
3089 Post-indexed
3090 .pcrel=0; .preind=0; .postind=1; .writeback=1
3091 PC-relative (literal)
3092 .pcrel=1; .preind=1; .postind=0; .writeback=0
3093
3094 The shift/extension information, if any, will be stored in .shifter.
3095
3096 It is the caller's responsibility to check for addressing modes not
3097 supported by the instruction, and to set inst.reloc.type. */
3098
3099static bfd_boolean
3100parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
3101 int accept_reg_post_index)
3102{
3103 char *p = *str;
3104 int reg;
3105 int isreg32, isregzero;
3106 expressionS *exp = &inst.reloc.exp;
3107
3108 if (! skip_past_char (&p, '['))
3109 {
3110 /* =immediate or label. */
3111 operand->addr.pcrel = 1;
3112 operand->addr.preind = 1;
3113
f41aef5f
RE
3114 /* #:<reloc_op>:<symbol> */
3115 skip_past_char (&p, '#');
3116 if (reloc && skip_past_char (&p, ':'))
3117 {
6f4a313b 3118 bfd_reloc_code_real_type ty;
f41aef5f
RE
3119 struct reloc_table_entry *entry;
3120
3121 /* Try to parse a relocation modifier. Anything else is
3122 an error. */
3123 entry = find_reloc_table_entry (&p);
3124 if (! entry)
3125 {
3126 set_syntax_error (_("unknown relocation modifier"));
3127 return FALSE;
3128 }
3129
6f4a313b
MS
3130 switch (operand->type)
3131 {
3132 case AARCH64_OPND_ADDR_PCREL21:
3133 /* adr */
3134 ty = entry->adr_type;
3135 break;
3136
3137 default:
74ad790c 3138 ty = entry->ld_literal_type;
6f4a313b
MS
3139 break;
3140 }
3141
3142 if (ty == 0)
f41aef5f
RE
3143 {
3144 set_syntax_error
3145 (_("this relocation modifier is not allowed on this "
3146 "instruction"));
3147 return FALSE;
3148 }
3149
3150 /* #:<reloc_op>: */
3151 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3152 {
3153 set_syntax_error (_("invalid relocation expression"));
3154 return FALSE;
3155 }
a06ea964 3156
f41aef5f 3157 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3158 /* Record the relocation type. */
3159 inst.reloc.type = ty;
f41aef5f
RE
3160 inst.reloc.pc_rel = entry->pc_rel;
3161 }
3162 else
a06ea964 3163 {
f41aef5f
RE
3164
3165 if (skip_past_char (&p, '='))
3166 /* =immediate; need to generate the literal in the literal pool. */
3167 inst.gen_lit_pool = 1;
3168
3169 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3170 {
3171 set_syntax_error (_("invalid address"));
3172 return FALSE;
3173 }
a06ea964
NC
3174 }
3175
3176 *str = p;
3177 return TRUE;
3178 }
3179
3180 /* [ */
3181
3182 /* Accept SP and reject ZR */
3183 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3184 if (reg == PARSE_FAIL || isreg32)
3185 {
3186 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3187 return FALSE;
3188 }
3189 operand->addr.base_regno = reg;
3190
3191 /* [Xn */
3192 if (skip_past_comma (&p))
3193 {
3194 /* [Xn, */
3195 operand->addr.preind = 1;
3196
3197 /* Reject SP and accept ZR */
3198 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3199 if (reg != PARSE_FAIL)
3200 {
3201 /* [Xn,Rm */
3202 operand->addr.offset.regno = reg;
3203 operand->addr.offset.is_reg = 1;
3204 /* Shifted index. */
3205 if (skip_past_comma (&p))
3206 {
3207 /* [Xn,Rm, */
3208 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3209 /* Use the diagnostics set in parse_shift, so not set new
3210 error message here. */
3211 return FALSE;
3212 }
3213 /* We only accept:
3214 [base,Xm{,LSL #imm}]
3215 [base,Xm,SXTX {#imm}]
3216 [base,Wm,(S|U)XTW {#imm}] */
3217 if (operand->shifter.kind == AARCH64_MOD_NONE
3218 || operand->shifter.kind == AARCH64_MOD_LSL
3219 || operand->shifter.kind == AARCH64_MOD_SXTX)
3220 {
3221 if (isreg32)
3222 {
3223 set_syntax_error (_("invalid use of 32-bit register offset"));
3224 return FALSE;
3225 }
3226 }
3227 else if (!isreg32)
3228 {
3229 set_syntax_error (_("invalid use of 64-bit register offset"));
3230 return FALSE;
3231 }
3232 }
3233 else
3234 {
3235 /* [Xn,#:<reloc_op>:<symbol> */
3236 skip_past_char (&p, '#');
3237 if (reloc && skip_past_char (&p, ':'))
3238 {
3239 struct reloc_table_entry *entry;
3240
3241 /* Try to parse a relocation modifier. Anything else is
3242 an error. */
3243 if (!(entry = find_reloc_table_entry (&p)))
3244 {
3245 set_syntax_error (_("unknown relocation modifier"));
3246 return FALSE;
3247 }
3248
3249 if (entry->ldst_type == 0)
3250 {
3251 set_syntax_error
3252 (_("this relocation modifier is not allowed on this "
3253 "instruction"));
3254 return FALSE;
3255 }
3256
3257 /* [Xn,#:<reloc_op>: */
3258 /* We now have the group relocation table entry corresponding to
3259 the name in the assembler source. Next, we parse the
3260 expression. */
3261 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3262 {
3263 set_syntax_error (_("invalid relocation expression"));
3264 return FALSE;
3265 }
3266
3267 /* [Xn,#:<reloc_op>:<expr> */
3268 /* Record the load/store relocation type. */
3269 inst.reloc.type = entry->ldst_type;
3270 inst.reloc.pc_rel = entry->pc_rel;
3271 }
3272 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3273 {
3274 set_syntax_error (_("invalid expression in the address"));
3275 return FALSE;
3276 }
3277 /* [Xn,<expr> */
3278 }
3279 }
3280
3281 if (! skip_past_char (&p, ']'))
3282 {
3283 set_syntax_error (_("']' expected"));
3284 return FALSE;
3285 }
3286
3287 if (skip_past_char (&p, '!'))
3288 {
3289 if (operand->addr.preind && operand->addr.offset.is_reg)
3290 {
3291 set_syntax_error (_("register offset not allowed in pre-indexed "
3292 "addressing mode"));
3293 return FALSE;
3294 }
3295 /* [Xn]! */
3296 operand->addr.writeback = 1;
3297 }
3298 else if (skip_past_comma (&p))
3299 {
3300 /* [Xn], */
3301 operand->addr.postind = 1;
3302 operand->addr.writeback = 1;
3303
3304 if (operand->addr.preind)
3305 {
3306 set_syntax_error (_("cannot combine pre- and post-indexing"));
3307 return FALSE;
3308 }
3309
3310 if (accept_reg_post_index
3311 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3312 &isregzero)) != PARSE_FAIL)
3313 {
3314 /* [Xn],Xm */
3315 if (isreg32)
3316 {
3317 set_syntax_error (_("invalid 32-bit register offset"));
3318 return FALSE;
3319 }
3320 operand->addr.offset.regno = reg;
3321 operand->addr.offset.is_reg = 1;
3322 }
3323 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3324 {
3325 /* [Xn],#expr */
3326 set_syntax_error (_("invalid expression in the address"));
3327 return FALSE;
3328 }
3329 }
3330
3331 /* If at this point neither .preind nor .postind is set, we have a
3332 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3333 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3334 {
3335 if (operand->addr.writeback)
3336 {
3337 /* Reject [Rn]! */
3338 set_syntax_error (_("missing offset in the pre-indexed address"));
3339 return FALSE;
3340 }
3341 operand->addr.preind = 1;
3342 inst.reloc.exp.X_op = O_constant;
3343 inst.reloc.exp.X_add_number = 0;
3344 }
3345
3346 *str = p;
3347 return TRUE;
3348}
3349
3350/* Return TRUE on success; otherwise return FALSE. */
3351static bfd_boolean
3352parse_address (char **str, aarch64_opnd_info *operand,
3353 int accept_reg_post_index)
3354{
3355 return parse_address_main (str, operand, 0, accept_reg_post_index);
3356}
3357
3358/* Return TRUE on success; otherwise return FALSE. */
3359static bfd_boolean
3360parse_address_reloc (char **str, aarch64_opnd_info *operand)
3361{
3362 return parse_address_main (str, operand, 1, 0);
3363}
3364
3365/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3366 Return TRUE on success; otherwise return FALSE. */
3367static bfd_boolean
3368parse_half (char **str, int *internal_fixup_p)
3369{
3370 char *p, *saved;
3371 int dummy;
3372
3373 p = *str;
3374 skip_past_char (&p, '#');
3375
3376 gas_assert (internal_fixup_p);
3377 *internal_fixup_p = 0;
3378
3379 if (*p == ':')
3380 {
3381 struct reloc_table_entry *entry;
3382
3383 /* Try to parse a relocation. Anything else is an error. */
3384 ++p;
3385 if (!(entry = find_reloc_table_entry (&p)))
3386 {
3387 set_syntax_error (_("unknown relocation modifier"));
3388 return FALSE;
3389 }
3390
3391 if (entry->movw_type == 0)
3392 {
3393 set_syntax_error
3394 (_("this relocation modifier is not allowed on this instruction"));
3395 return FALSE;
3396 }
3397
3398 inst.reloc.type = entry->movw_type;
3399 }
3400 else
3401 *internal_fixup_p = 1;
3402
3403 /* Avoid parsing a register as a general symbol. */
3404 saved = p;
3405 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3406 return FALSE;
3407 p = saved;
3408
3409 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3410 return FALSE;
3411
3412 *str = p;
3413 return TRUE;
3414}
3415
3416/* Parse an operand for an ADRP instruction:
3417 ADRP <Xd>, <label>
3418 Return TRUE on success; otherwise return FALSE. */
3419
3420static bfd_boolean
3421parse_adrp (char **str)
3422{
3423 char *p;
3424
3425 p = *str;
3426 if (*p == ':')
3427 {
3428 struct reloc_table_entry *entry;
3429
3430 /* Try to parse a relocation. Anything else is an error. */
3431 ++p;
3432 if (!(entry = find_reloc_table_entry (&p)))
3433 {
3434 set_syntax_error (_("unknown relocation modifier"));
3435 return FALSE;
3436 }
3437
3438 if (entry->adrp_type == 0)
3439 {
3440 set_syntax_error
3441 (_("this relocation modifier is not allowed on this instruction"));
3442 return FALSE;
3443 }
3444
3445 inst.reloc.type = entry->adrp_type;
3446 }
3447 else
3448 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3449
3450 inst.reloc.pc_rel = 1;
3451
3452 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3453 return FALSE;
3454
3455 *str = p;
3456 return TRUE;
3457}
3458
3459/* Miscellaneous. */
3460
3461/* Parse an option for a preload instruction. Returns the encoding for the
3462 option, or PARSE_FAIL. */
3463
3464static int
3465parse_pldop (char **str)
3466{
3467 char *p, *q;
3468 const struct aarch64_name_value_pair *o;
3469
3470 p = q = *str;
3471 while (ISALNUM (*q))
3472 q++;
3473
3474 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3475 if (!o)
3476 return PARSE_FAIL;
3477
3478 *str = q;
3479 return o->value;
3480}
3481
3482/* Parse an option for a barrier instruction. Returns the encoding for the
3483 option, or PARSE_FAIL. */
3484
3485static int
3486parse_barrier (char **str)
3487{
3488 char *p, *q;
3489 const asm_barrier_opt *o;
3490
3491 p = q = *str;
3492 while (ISALPHA (*q))
3493 q++;
3494
3495 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3496 if (!o)
3497 return PARSE_FAIL;
3498
3499 *str = q;
3500 return o->value;
3501}
3502
3503/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3504 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3505
3506 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3507 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3508
3509 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3510 field, otherwise as a system register.
3511*/
a06ea964
NC
3512
3513static int
72ca8fad
MW
3514parse_sys_reg (char **str, struct hash_control *sys_regs,
3515 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3516{
3517 char *p, *q;
3518 char buf[32];
49eec193 3519 const aarch64_sys_reg *o;
a06ea964
NC
3520 int value;
3521
3522 p = buf;
3523 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3524 if (p < buf + 31)
3525 *p++ = TOLOWER (*q);
3526 *p = '\0';
3527 /* Assert that BUF be large enough. */
3528 gas_assert (p - buf == q - *str);
3529
3530 o = hash_find (sys_regs, buf);
3531 if (!o)
3532 {
3533 if (!imple_defined_p)
3534 return PARSE_FAIL;
3535 else
3536 {
df7b4545 3537 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3538 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3539
3540 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3541 != 5)
a06ea964 3542 return PARSE_FAIL;
df7b4545 3543 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3544 return PARSE_FAIL;
3545 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3546 }
3547 }
3548 else
49eec193 3549 {
72ca8fad
MW
3550 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3551 as_bad (_("selected processor does not support PSTATE field "
3552 "name '%s'"), buf);
3553 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3554 as_bad (_("selected processor does not support system register "
3555 "name '%s'"), buf);
9a73e520 3556 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3557 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3558 "removed in a future release"), buf);
49eec193
YZ
3559 value = o->value;
3560 }
a06ea964
NC
3561
3562 *str = q;
3563 return value;
3564}
3565
3566/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3567 for the option, or NULL. */
3568
3569static const aarch64_sys_ins_reg *
3570parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3571{
3572 char *p, *q;
3573 char buf[32];
3574 const aarch64_sys_ins_reg *o;
3575
3576 p = buf;
3577 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3578 if (p < buf + 31)
3579 *p++ = TOLOWER (*q);
3580 *p = '\0';
3581
3582 o = hash_find (sys_ins_regs, buf);
3583 if (!o)
3584 return NULL;
3585
3586 *str = q;
3587 return o;
3588}
3589\f
3590#define po_char_or_fail(chr) do { \
3591 if (! skip_past_char (&str, chr)) \
3592 goto failure; \
3593} while (0)
3594
3595#define po_reg_or_fail(regtype) do { \
3596 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3597 if (val == PARSE_FAIL) \
3598 { \
3599 set_default_error (); \
3600 goto failure; \
3601 } \
3602 } while (0)
3603
3604#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3605 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3606 &isreg32, &isregzero); \
3607 if (val == PARSE_FAIL) \
3608 { \
3609 set_default_error (); \
3610 goto failure; \
3611 } \
3612 info->reg.regno = val; \
3613 if (isreg32) \
3614 info->qualifier = AARCH64_OPND_QLF_W; \
3615 else \
3616 info->qualifier = AARCH64_OPND_QLF_X; \
3617 } while (0)
3618
3619#define po_imm_nc_or_fail() do { \
3620 if (! parse_constant_immediate (&str, &val)) \
3621 goto failure; \
3622 } while (0)
3623
3624#define po_imm_or_fail(min, max) do { \
3625 if (! parse_constant_immediate (&str, &val)) \
3626 goto failure; \
3627 if (val < min || val > max) \
3628 { \
3629 set_fatal_syntax_error (_("immediate value out of range "\
3630#min " to "#max)); \
3631 goto failure; \
3632 } \
3633 } while (0)
3634
3635#define po_misc_or_fail(expr) do { \
3636 if (!expr) \
3637 goto failure; \
3638 } while (0)
3639\f
3640/* encode the 12-bit imm field of Add/sub immediate */
3641static inline uint32_t
3642encode_addsub_imm (uint32_t imm)
3643{
3644 return imm << 10;
3645}
3646
3647/* encode the shift amount field of Add/sub immediate */
3648static inline uint32_t
3649encode_addsub_imm_shift_amount (uint32_t cnt)
3650{
3651 return cnt << 22;
3652}
3653
3654
3655/* encode the imm field of Adr instruction */
3656static inline uint32_t
3657encode_adr_imm (uint32_t imm)
3658{
3659 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3660 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3661}
3662
3663/* encode the immediate field of Move wide immediate */
3664static inline uint32_t
3665encode_movw_imm (uint32_t imm)
3666{
3667 return imm << 5;
3668}
3669
3670/* encode the 26-bit offset of unconditional branch */
3671static inline uint32_t
3672encode_branch_ofs_26 (uint32_t ofs)
3673{
3674 return ofs & ((1 << 26) - 1);
3675}
3676
3677/* encode the 19-bit offset of conditional branch and compare & branch */
3678static inline uint32_t
3679encode_cond_branch_ofs_19 (uint32_t ofs)
3680{
3681 return (ofs & ((1 << 19) - 1)) << 5;
3682}
3683
3684/* encode the 19-bit offset of ld literal */
3685static inline uint32_t
3686encode_ld_lit_ofs_19 (uint32_t ofs)
3687{
3688 return (ofs & ((1 << 19) - 1)) << 5;
3689}
3690
3691/* Encode the 14-bit offset of test & branch. */
3692static inline uint32_t
3693encode_tst_branch_ofs_14 (uint32_t ofs)
3694{
3695 return (ofs & ((1 << 14) - 1)) << 5;
3696}
3697
3698/* Encode the 16-bit imm field of svc/hvc/smc. */
3699static inline uint32_t
3700encode_svc_imm (uint32_t imm)
3701{
3702 return imm << 5;
3703}
3704
3705/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3706static inline uint32_t
3707reencode_addsub_switch_add_sub (uint32_t opcode)
3708{
3709 return opcode ^ (1 << 30);
3710}
3711
3712static inline uint32_t
3713reencode_movzn_to_movz (uint32_t opcode)
3714{
3715 return opcode | (1 << 30);
3716}
3717
3718static inline uint32_t
3719reencode_movzn_to_movn (uint32_t opcode)
3720{
3721 return opcode & ~(1 << 30);
3722}
3723
3724/* Overall per-instruction processing. */
3725
3726/* We need to be able to fix up arbitrary expressions in some statements.
3727 This is so that we can handle symbols that are an arbitrary distance from
3728 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3729 which returns part of an address in a form which will be valid for
3730 a data instruction. We do this by pushing the expression into a symbol
3731 in the expr_section, and creating a fix for that. */
3732
3733static fixS *
3734fix_new_aarch64 (fragS * frag,
3735 int where,
3736 short int size, expressionS * exp, int pc_rel, int reloc)
3737{
3738 fixS *new_fix;
3739
3740 switch (exp->X_op)
3741 {
3742 case O_constant:
3743 case O_symbol:
3744 case O_add:
3745 case O_subtract:
3746 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3747 break;
3748
3749 default:
3750 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3751 pc_rel, reloc);
3752 break;
3753 }
3754 return new_fix;
3755}
3756\f
3757/* Diagnostics on operands errors. */
3758
a52e6fd3
YZ
3759/* By default, output verbose error message.
3760 Disable the verbose error message by -mno-verbose-error. */
3761static int verbose_error_p = 1;
a06ea964
NC
3762
3763#ifdef DEBUG_AARCH64
3764/* N.B. this is only for the purpose of debugging. */
3765const char* operand_mismatch_kind_names[] =
3766{
3767 "AARCH64_OPDE_NIL",
3768 "AARCH64_OPDE_RECOVERABLE",
3769 "AARCH64_OPDE_SYNTAX_ERROR",
3770 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3771 "AARCH64_OPDE_INVALID_VARIANT",
3772 "AARCH64_OPDE_OUT_OF_RANGE",
3773 "AARCH64_OPDE_UNALIGNED",
3774 "AARCH64_OPDE_REG_LIST",
3775 "AARCH64_OPDE_OTHER_ERROR",
3776};
3777#endif /* DEBUG_AARCH64 */
3778
3779/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3780
3781 When multiple errors of different kinds are found in the same assembly
3782 line, only the error of the highest severity will be picked up for
3783 issuing the diagnostics. */
3784
3785static inline bfd_boolean
3786operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3787 enum aarch64_operand_error_kind rhs)
3788{
3789 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3790 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3791 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3792 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3793 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3794 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3795 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3796 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3797 return lhs > rhs;
3798}
3799
3800/* Helper routine to get the mnemonic name from the assembly instruction
3801 line; should only be called for the diagnosis purpose, as there is
3802 string copy operation involved, which may affect the runtime
3803 performance if used in elsewhere. */
3804
3805static const char*
3806get_mnemonic_name (const char *str)
3807{
3808 static char mnemonic[32];
3809 char *ptr;
3810
3811 /* Get the first 15 bytes and assume that the full name is included. */
3812 strncpy (mnemonic, str, 31);
3813 mnemonic[31] = '\0';
3814
3815 /* Scan up to the end of the mnemonic, which must end in white space,
3816 '.', or end of string. */
3817 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3818 ;
3819
3820 *ptr = '\0';
3821
3822 /* Append '...' to the truncated long name. */
3823 if (ptr - mnemonic == 31)
3824 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3825
3826 return mnemonic;
3827}
3828
3829static void
3830reset_aarch64_instruction (aarch64_instruction *instruction)
3831{
3832 memset (instruction, '\0', sizeof (aarch64_instruction));
3833 instruction->reloc.type = BFD_RELOC_UNUSED;
3834}
3835
3836/* Data strutures storing one user error in the assembly code related to
3837 operands. */
3838
3839struct operand_error_record
3840{
3841 const aarch64_opcode *opcode;
3842 aarch64_operand_error detail;
3843 struct operand_error_record *next;
3844};
3845
3846typedef struct operand_error_record operand_error_record;
3847
3848struct operand_errors
3849{
3850 operand_error_record *head;
3851 operand_error_record *tail;
3852};
3853
3854typedef struct operand_errors operand_errors;
3855
3856/* Top-level data structure reporting user errors for the current line of
3857 the assembly code.
3858 The way md_assemble works is that all opcodes sharing the same mnemonic
3859 name are iterated to find a match to the assembly line. In this data
3860 structure, each of the such opcodes will have one operand_error_record
3861 allocated and inserted. In other words, excessive errors related with
3862 a single opcode are disregarded. */
3863operand_errors operand_error_report;
3864
3865/* Free record nodes. */
3866static operand_error_record *free_opnd_error_record_nodes = NULL;
3867
3868/* Initialize the data structure that stores the operand mismatch
3869 information on assembling one line of the assembly code. */
3870static void
3871init_operand_error_report (void)
3872{
3873 if (operand_error_report.head != NULL)
3874 {
3875 gas_assert (operand_error_report.tail != NULL);
3876 operand_error_report.tail->next = free_opnd_error_record_nodes;
3877 free_opnd_error_record_nodes = operand_error_report.head;
3878 operand_error_report.head = NULL;
3879 operand_error_report.tail = NULL;
3880 return;
3881 }
3882 gas_assert (operand_error_report.tail == NULL);
3883}
3884
3885/* Return TRUE if some operand error has been recorded during the
3886 parsing of the current assembly line using the opcode *OPCODE;
3887 otherwise return FALSE. */
3888static inline bfd_boolean
3889opcode_has_operand_error_p (const aarch64_opcode *opcode)
3890{
3891 operand_error_record *record = operand_error_report.head;
3892 return record && record->opcode == opcode;
3893}
3894
3895/* Add the error record *NEW_RECORD to operand_error_report. The record's
3896 OPCODE field is initialized with OPCODE.
3897 N.B. only one record for each opcode, i.e. the maximum of one error is
3898 recorded for each instruction template. */
3899
3900static void
3901add_operand_error_record (const operand_error_record* new_record)
3902{
3903 const aarch64_opcode *opcode = new_record->opcode;
3904 operand_error_record* record = operand_error_report.head;
3905
3906 /* The record may have been created for this opcode. If not, we need
3907 to prepare one. */
3908 if (! opcode_has_operand_error_p (opcode))
3909 {
3910 /* Get one empty record. */
3911 if (free_opnd_error_record_nodes == NULL)
3912 {
3913 record = xmalloc (sizeof (operand_error_record));
3914 if (record == NULL)
3915 abort ();
3916 }
3917 else
3918 {
3919 record = free_opnd_error_record_nodes;
3920 free_opnd_error_record_nodes = record->next;
3921 }
3922 record->opcode = opcode;
3923 /* Insert at the head. */
3924 record->next = operand_error_report.head;
3925 operand_error_report.head = record;
3926 if (operand_error_report.tail == NULL)
3927 operand_error_report.tail = record;
3928 }
3929 else if (record->detail.kind != AARCH64_OPDE_NIL
3930 && record->detail.index <= new_record->detail.index
3931 && operand_error_higher_severity_p (record->detail.kind,
3932 new_record->detail.kind))
3933 {
3934 /* In the case of multiple errors found on operands related with a
3935 single opcode, only record the error of the leftmost operand and
3936 only if the error is of higher severity. */
3937 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3938 " the existing error %s on operand %d",
3939 operand_mismatch_kind_names[new_record->detail.kind],
3940 new_record->detail.index,
3941 operand_mismatch_kind_names[record->detail.kind],
3942 record->detail.index);
3943 return;
3944 }
3945
3946 record->detail = new_record->detail;
3947}
3948
3949static inline void
3950record_operand_error_info (const aarch64_opcode *opcode,
3951 aarch64_operand_error *error_info)
3952{
3953 operand_error_record record;
3954 record.opcode = opcode;
3955 record.detail = *error_info;
3956 add_operand_error_record (&record);
3957}
3958
3959/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3960 error message *ERROR, for operand IDX (count from 0). */
3961
3962static void
3963record_operand_error (const aarch64_opcode *opcode, int idx,
3964 enum aarch64_operand_error_kind kind,
3965 const char* error)
3966{
3967 aarch64_operand_error info;
3968 memset(&info, 0, sizeof (info));
3969 info.index = idx;
3970 info.kind = kind;
3971 info.error = error;
3972 record_operand_error_info (opcode, &info);
3973}
3974
3975static void
3976record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3977 enum aarch64_operand_error_kind kind,
3978 const char* error, const int *extra_data)
3979{
3980 aarch64_operand_error info;
3981 info.index = idx;
3982 info.kind = kind;
3983 info.error = error;
3984 info.data[0] = extra_data[0];
3985 info.data[1] = extra_data[1];
3986 info.data[2] = extra_data[2];
3987 record_operand_error_info (opcode, &info);
3988}
3989
3990static void
3991record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
3992 const char* error, int lower_bound,
3993 int upper_bound)
3994{
3995 int data[3] = {lower_bound, upper_bound, 0};
3996 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
3997 error, data);
3998}
3999
4000/* Remove the operand error record for *OPCODE. */
4001static void ATTRIBUTE_UNUSED
4002remove_operand_error_record (const aarch64_opcode *opcode)
4003{
4004 if (opcode_has_operand_error_p (opcode))
4005 {
4006 operand_error_record* record = operand_error_report.head;
4007 gas_assert (record != NULL && operand_error_report.tail != NULL);
4008 operand_error_report.head = record->next;
4009 record->next = free_opnd_error_record_nodes;
4010 free_opnd_error_record_nodes = record;
4011 if (operand_error_report.head == NULL)
4012 {
4013 gas_assert (operand_error_report.tail == record);
4014 operand_error_report.tail = NULL;
4015 }
4016 }
4017}
4018
4019/* Given the instruction in *INSTR, return the index of the best matched
4020 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4021
4022 Return -1 if there is no qualifier sequence; return the first match
4023 if there is multiple matches found. */
4024
4025static int
4026find_best_match (const aarch64_inst *instr,
4027 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4028{
4029 int i, num_opnds, max_num_matched, idx;
4030
4031 num_opnds = aarch64_num_of_operands (instr->opcode);
4032 if (num_opnds == 0)
4033 {
4034 DEBUG_TRACE ("no operand");
4035 return -1;
4036 }
4037
4038 max_num_matched = 0;
4039 idx = -1;
4040
4041 /* For each pattern. */
4042 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4043 {
4044 int j, num_matched;
4045 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4046
4047 /* Most opcodes has much fewer patterns in the list. */
4048 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4049 {
4050 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4051 if (i != 0 && idx == -1)
4052 /* If nothing has been matched, return the 1st sequence. */
4053 idx = 0;
4054 break;
4055 }
4056
4057 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4058 if (*qualifiers == instr->operands[j].qualifier)
4059 ++num_matched;
4060
4061 if (num_matched > max_num_matched)
4062 {
4063 max_num_matched = num_matched;
4064 idx = i;
4065 }
4066 }
4067
4068 DEBUG_TRACE ("return with %d", idx);
4069 return idx;
4070}
4071
4072/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4073 corresponding operands in *INSTR. */
4074
4075static inline void
4076assign_qualifier_sequence (aarch64_inst *instr,
4077 const aarch64_opnd_qualifier_t *qualifiers)
4078{
4079 int i = 0;
4080 int num_opnds = aarch64_num_of_operands (instr->opcode);
4081 gas_assert (num_opnds);
4082 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4083 instr->operands[i].qualifier = *qualifiers;
4084}
4085
4086/* Print operands for the diagnosis purpose. */
4087
4088static void
4089print_operands (char *buf, const aarch64_opcode *opcode,
4090 const aarch64_opnd_info *opnds)
4091{
4092 int i;
4093
4094 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4095 {
4096 const size_t size = 128;
4097 char str[size];
4098
4099 /* We regard the opcode operand info more, however we also look into
4100 the inst->operands to support the disassembling of the optional
4101 operand.
4102 The two operand code should be the same in all cases, apart from
4103 when the operand can be optional. */
4104 if (opcode->operands[i] == AARCH64_OPND_NIL
4105 || opnds[i].type == AARCH64_OPND_NIL)
4106 break;
4107
4108 /* Generate the operand string in STR. */
4109 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
4110
4111 /* Delimiter. */
4112 if (str[0] != '\0')
4113 strcat (buf, i == 0 ? " " : ",");
4114
4115 /* Append the operand string. */
4116 strcat (buf, str);
4117 }
4118}
4119
4120/* Send to stderr a string as information. */
4121
4122static void
4123output_info (const char *format, ...)
4124{
4125 char *file;
4126 unsigned int line;
4127 va_list args;
4128
4129 as_where (&file, &line);
4130 if (file)
4131 {
4132 if (line != 0)
4133 fprintf (stderr, "%s:%u: ", file, line);
4134 else
4135 fprintf (stderr, "%s: ", file);
4136 }
4137 fprintf (stderr, _("Info: "));
4138 va_start (args, format);
4139 vfprintf (stderr, format, args);
4140 va_end (args);
4141 (void) putc ('\n', stderr);
4142}
4143
4144/* Output one operand error record. */
4145
4146static void
4147output_operand_error_record (const operand_error_record *record, char *str)
4148{
28f013d5
JB
4149 const aarch64_operand_error *detail = &record->detail;
4150 int idx = detail->index;
a06ea964 4151 const aarch64_opcode *opcode = record->opcode;
28f013d5 4152 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4153 : AARCH64_OPND_NIL);
a06ea964
NC
4154
4155 switch (detail->kind)
4156 {
4157 case AARCH64_OPDE_NIL:
4158 gas_assert (0);
4159 break;
4160
4161 case AARCH64_OPDE_SYNTAX_ERROR:
4162 case AARCH64_OPDE_RECOVERABLE:
4163 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4164 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4165 /* Use the prepared error message if there is, otherwise use the
4166 operand description string to describe the error. */
4167 if (detail->error != NULL)
4168 {
28f013d5 4169 if (idx < 0)
a06ea964
NC
4170 as_bad (_("%s -- `%s'"), detail->error, str);
4171 else
4172 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4173 detail->error, idx + 1, str);
a06ea964
NC
4174 }
4175 else
28f013d5
JB
4176 {
4177 gas_assert (idx >= 0);
4178 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4179 aarch64_get_operand_desc (opd_code), str);
28f013d5 4180 }
a06ea964
NC
4181 break;
4182
4183 case AARCH64_OPDE_INVALID_VARIANT:
4184 as_bad (_("operand mismatch -- `%s'"), str);
4185 if (verbose_error_p)
4186 {
4187 /* We will try to correct the erroneous instruction and also provide
4188 more information e.g. all other valid variants.
4189
4190 The string representation of the corrected instruction and other
4191 valid variants are generated by
4192
4193 1) obtaining the intermediate representation of the erroneous
4194 instruction;
4195 2) manipulating the IR, e.g. replacing the operand qualifier;
4196 3) printing out the instruction by calling the printer functions
4197 shared with the disassembler.
4198
4199 The limitation of this method is that the exact input assembly
4200 line cannot be accurately reproduced in some cases, for example an
4201 optional operand present in the actual assembly line will be
4202 omitted in the output; likewise for the optional syntax rules,
4203 e.g. the # before the immediate. Another limitation is that the
4204 assembly symbols and relocation operations in the assembly line
4205 currently cannot be printed out in the error report. Last but not
4206 least, when there is other error(s) co-exist with this error, the
4207 'corrected' instruction may be still incorrect, e.g. given
4208 'ldnp h0,h1,[x0,#6]!'
4209 this diagnosis will provide the version:
4210 'ldnp s0,s1,[x0,#6]!'
4211 which is still not right. */
4212 size_t len = strlen (get_mnemonic_name (str));
4213 int i, qlf_idx;
4214 bfd_boolean result;
4215 const size_t size = 2048;
4216 char buf[size];
4217 aarch64_inst *inst_base = &inst.base;
4218 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4219
4220 /* Init inst. */
4221 reset_aarch64_instruction (&inst);
4222 inst_base->opcode = opcode;
4223
4224 /* Reset the error report so that there is no side effect on the
4225 following operand parsing. */
4226 init_operand_error_report ();
4227
4228 /* Fill inst. */
4229 result = parse_operands (str + len, opcode)
4230 && programmer_friendly_fixup (&inst);
4231 gas_assert (result);
4232 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4233 NULL, NULL);
4234 gas_assert (!result);
4235
4236 /* Find the most matched qualifier sequence. */
4237 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4238 gas_assert (qlf_idx > -1);
4239
4240 /* Assign the qualifiers. */
4241 assign_qualifier_sequence (inst_base,
4242 opcode->qualifiers_list[qlf_idx]);
4243
4244 /* Print the hint. */
4245 output_info (_(" did you mean this?"));
4246 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4247 print_operands (buf, opcode, inst_base->operands);
4248 output_info (_(" %s"), buf);
4249
4250 /* Print out other variant(s) if there is any. */
4251 if (qlf_idx != 0 ||
4252 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4253 output_info (_(" other valid variant(s):"));
4254
4255 /* For each pattern. */
4256 qualifiers_list = opcode->qualifiers_list;
4257 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4258 {
4259 /* Most opcodes has much fewer patterns in the list.
4260 First NIL qualifier indicates the end in the list. */
4261 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4262 break;
4263
4264 if (i != qlf_idx)
4265 {
4266 /* Mnemonics name. */
4267 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4268
4269 /* Assign the qualifiers. */
4270 assign_qualifier_sequence (inst_base, *qualifiers_list);
4271
4272 /* Print instruction. */
4273 print_operands (buf, opcode, inst_base->operands);
4274
4275 output_info (_(" %s"), buf);
4276 }
4277 }
4278 }
4279 break;
4280
4281 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4282 if (detail->data[0] != detail->data[1])
4283 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4284 detail->error ? detail->error : _("immediate value"),
28f013d5 4285 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4286 else
4287 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4288 detail->error ? detail->error : _("immediate value"),
28f013d5 4289 detail->data[0], idx + 1, str);
a06ea964
NC
4290 break;
4291
4292 case AARCH64_OPDE_REG_LIST:
4293 if (detail->data[0] == 1)
4294 as_bad (_("invalid number of registers in the list; "
4295 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4296 idx + 1, str);
a06ea964
NC
4297 else
4298 as_bad (_("invalid number of registers in the list; "
4299 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4300 detail->data[0], idx + 1, str);
a06ea964
NC
4301 break;
4302
4303 case AARCH64_OPDE_UNALIGNED:
4304 as_bad (_("immediate value should be a multiple of "
4305 "%d at operand %d -- `%s'"),
28f013d5 4306 detail->data[0], idx + 1, str);
a06ea964
NC
4307 break;
4308
4309 default:
4310 gas_assert (0);
4311 break;
4312 }
4313}
4314
4315/* Process and output the error message about the operand mismatching.
4316
4317 When this function is called, the operand error information had
4318 been collected for an assembly line and there will be multiple
4319 errors in the case of mulitple instruction templates; output the
4320 error message that most closely describes the problem. */
4321
4322static void
4323output_operand_error_report (char *str)
4324{
4325 int largest_error_pos;
4326 const char *msg = NULL;
4327 enum aarch64_operand_error_kind kind;
4328 operand_error_record *curr;
4329 operand_error_record *head = operand_error_report.head;
4330 operand_error_record *record = NULL;
4331
4332 /* No error to report. */
4333 if (head == NULL)
4334 return;
4335
4336 gas_assert (head != NULL && operand_error_report.tail != NULL);
4337
4338 /* Only one error. */
4339 if (head == operand_error_report.tail)
4340 {
4341 DEBUG_TRACE ("single opcode entry with error kind: %s",
4342 operand_mismatch_kind_names[head->detail.kind]);
4343 output_operand_error_record (head, str);
4344 return;
4345 }
4346
4347 /* Find the error kind of the highest severity. */
4348 DEBUG_TRACE ("multiple opcode entres with error kind");
4349 kind = AARCH64_OPDE_NIL;
4350 for (curr = head; curr != NULL; curr = curr->next)
4351 {
4352 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4353 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4354 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4355 kind = curr->detail.kind;
4356 }
4357 gas_assert (kind != AARCH64_OPDE_NIL);
4358
4359 /* Pick up one of errors of KIND to report. */
4360 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4361 for (curr = head; curr != NULL; curr = curr->next)
4362 {
4363 if (curr->detail.kind != kind)
4364 continue;
4365 /* If there are multiple errors, pick up the one with the highest
4366 mismatching operand index. In the case of multiple errors with
4367 the equally highest operand index, pick up the first one or the
4368 first one with non-NULL error message. */
4369 if (curr->detail.index > largest_error_pos
4370 || (curr->detail.index == largest_error_pos && msg == NULL
4371 && curr->detail.error != NULL))
4372 {
4373 largest_error_pos = curr->detail.index;
4374 record = curr;
4375 msg = record->detail.error;
4376 }
4377 }
4378
4379 gas_assert (largest_error_pos != -2 && record != NULL);
4380 DEBUG_TRACE ("Pick up error kind %s to report",
4381 operand_mismatch_kind_names[record->detail.kind]);
4382
4383 /* Output. */
4384 output_operand_error_record (record, str);
4385}
4386\f
4387/* Write an AARCH64 instruction to buf - always little-endian. */
4388static void
4389put_aarch64_insn (char *buf, uint32_t insn)
4390{
4391 unsigned char *where = (unsigned char *) buf;
4392 where[0] = insn;
4393 where[1] = insn >> 8;
4394 where[2] = insn >> 16;
4395 where[3] = insn >> 24;
4396}
4397
4398static uint32_t
4399get_aarch64_insn (char *buf)
4400{
4401 unsigned char *where = (unsigned char *) buf;
4402 uint32_t result;
4403 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4404 return result;
4405}
4406
4407static void
4408output_inst (struct aarch64_inst *new_inst)
4409{
4410 char *to = NULL;
4411
4412 to = frag_more (INSN_SIZE);
4413
4414 frag_now->tc_frag_data.recorded = 1;
4415
4416 put_aarch64_insn (to, inst.base.value);
4417
4418 if (inst.reloc.type != BFD_RELOC_UNUSED)
4419 {
4420 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4421 INSN_SIZE, &inst.reloc.exp,
4422 inst.reloc.pc_rel,
4423 inst.reloc.type);
4424 DEBUG_TRACE ("Prepared relocation fix up");
4425 /* Don't check the addend value against the instruction size,
4426 that's the job of our code in md_apply_fix(). */
4427 fixp->fx_no_overflow = 1;
4428 if (new_inst != NULL)
4429 fixp->tc_fix_data.inst = new_inst;
4430 if (aarch64_gas_internal_fixup_p ())
4431 {
4432 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4433 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4434 fixp->fx_addnumber = inst.reloc.flags;
4435 }
4436 }
4437
4438 dwarf2_emit_insn (INSN_SIZE);
4439}
4440
4441/* Link together opcodes of the same name. */
4442
4443struct templates
4444{
4445 aarch64_opcode *opcode;
4446 struct templates *next;
4447};
4448
4449typedef struct templates templates;
4450
4451static templates *
4452lookup_mnemonic (const char *start, int len)
4453{
4454 templates *templ = NULL;
4455
4456 templ = hash_find_n (aarch64_ops_hsh, start, len);
4457 return templ;
4458}
4459
4460/* Subroutine of md_assemble, responsible for looking up the primary
4461 opcode from the mnemonic the user wrote. STR points to the
4462 beginning of the mnemonic. */
4463
4464static templates *
4465opcode_lookup (char **str)
4466{
4467 char *end, *base;
4468 const aarch64_cond *cond;
4469 char condname[16];
4470 int len;
4471
4472 /* Scan up to the end of the mnemonic, which must end in white space,
4473 '.', or end of string. */
4474 for (base = end = *str; is_part_of_name(*end); end++)
4475 if (*end == '.')
4476 break;
4477
4478 if (end == base)
4479 return 0;
4480
4481 inst.cond = COND_ALWAYS;
4482
4483 /* Handle a possible condition. */
4484 if (end[0] == '.')
4485 {
4486 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4487 if (cond)
4488 {
4489 inst.cond = cond->value;
4490 *str = end + 3;
4491 }
4492 else
4493 {
4494 *str = end;
4495 return 0;
4496 }
4497 }
4498 else
4499 *str = end;
4500
4501 len = end - base;
4502
4503 if (inst.cond == COND_ALWAYS)
4504 {
4505 /* Look for unaffixed mnemonic. */
4506 return lookup_mnemonic (base, len);
4507 }
4508 else if (len <= 13)
4509 {
4510 /* append ".c" to mnemonic if conditional */
4511 memcpy (condname, base, len);
4512 memcpy (condname + len, ".c", 2);
4513 base = condname;
4514 len += 2;
4515 return lookup_mnemonic (base, len);
4516 }
4517
4518 return NULL;
4519}
4520
4521/* Internal helper routine converting a vector neon_type_el structure
4522 *VECTYPE to a corresponding operand qualifier. */
4523
4524static inline aarch64_opnd_qualifier_t
4525vectype_to_qualifier (const struct neon_type_el *vectype)
4526{
4527 /* Element size in bytes indexed by neon_el_type. */
4528 const unsigned char ele_size[5]
4529 = {1, 2, 4, 8, 16};
4530
4531 if (!vectype->defined || vectype->type == NT_invtype)
4532 goto vectype_conversion_fail;
4533
4534 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4535
4536 if (vectype->defined & NTA_HASINDEX)
4537 /* Vector element register. */
4538 return AARCH64_OPND_QLF_S_B + vectype->type;
4539 else
4540 {
4541 /* Vector register. */
4542 int reg_size = ele_size[vectype->type] * vectype->width;
4543 unsigned offset;
4544 if (reg_size != 16 && reg_size != 8)
4545 goto vectype_conversion_fail;
4546 /* The conversion is calculated based on the relation of the order of
4547 qualifiers to the vector element size and vector register size. */
4548 offset = (vectype->type == NT_q)
4549 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4550 gas_assert (offset <= 8);
4551 return AARCH64_OPND_QLF_V_8B + offset;
4552 }
4553
4554vectype_conversion_fail:
4555 first_error (_("bad vector arrangement type"));
4556 return AARCH64_OPND_QLF_NIL;
4557}
4558
4559/* Process an optional operand that is found omitted from the assembly line.
4560 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4561 instruction's opcode entry while IDX is the index of this omitted operand.
4562 */
4563
4564static void
4565process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4566 int idx, aarch64_opnd_info *operand)
4567{
4568 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4569 gas_assert (optional_operand_p (opcode, idx));
4570 gas_assert (!operand->present);
4571
4572 switch (type)
4573 {
4574 case AARCH64_OPND_Rd:
4575 case AARCH64_OPND_Rn:
4576 case AARCH64_OPND_Rm:
4577 case AARCH64_OPND_Rt:
4578 case AARCH64_OPND_Rt2:
4579 case AARCH64_OPND_Rs:
4580 case AARCH64_OPND_Ra:
4581 case AARCH64_OPND_Rt_SYS:
4582 case AARCH64_OPND_Rd_SP:
4583 case AARCH64_OPND_Rn_SP:
4584 case AARCH64_OPND_Fd:
4585 case AARCH64_OPND_Fn:
4586 case AARCH64_OPND_Fm:
4587 case AARCH64_OPND_Fa:
4588 case AARCH64_OPND_Ft:
4589 case AARCH64_OPND_Ft2:
4590 case AARCH64_OPND_Sd:
4591 case AARCH64_OPND_Sn:
4592 case AARCH64_OPND_Sm:
4593 case AARCH64_OPND_Vd:
4594 case AARCH64_OPND_Vn:
4595 case AARCH64_OPND_Vm:
4596 case AARCH64_OPND_VdD1:
4597 case AARCH64_OPND_VnD1:
4598 operand->reg.regno = default_value;
4599 break;
4600
4601 case AARCH64_OPND_Ed:
4602 case AARCH64_OPND_En:
4603 case AARCH64_OPND_Em:
4604 operand->reglane.regno = default_value;
4605 break;
4606
4607 case AARCH64_OPND_IDX:
4608 case AARCH64_OPND_BIT_NUM:
4609 case AARCH64_OPND_IMMR:
4610 case AARCH64_OPND_IMMS:
4611 case AARCH64_OPND_SHLL_IMM:
4612 case AARCH64_OPND_IMM_VLSL:
4613 case AARCH64_OPND_IMM_VLSR:
4614 case AARCH64_OPND_CCMP_IMM:
4615 case AARCH64_OPND_FBITS:
4616 case AARCH64_OPND_UIMM4:
4617 case AARCH64_OPND_UIMM3_OP1:
4618 case AARCH64_OPND_UIMM3_OP2:
4619 case AARCH64_OPND_IMM:
4620 case AARCH64_OPND_WIDTH:
4621 case AARCH64_OPND_UIMM7:
4622 case AARCH64_OPND_NZCV:
4623 operand->imm.value = default_value;
4624 break;
4625
4626 case AARCH64_OPND_EXCEPTION:
4627 inst.reloc.type = BFD_RELOC_UNUSED;
4628 break;
4629
4630 case AARCH64_OPND_BARRIER_ISB:
4631 operand->barrier = aarch64_barrier_options + default_value;
4632
4633 default:
4634 break;
4635 }
4636}
4637
4638/* Process the relocation type for move wide instructions.
4639 Return TRUE on success; otherwise return FALSE. */
4640
4641static bfd_boolean
4642process_movw_reloc_info (void)
4643{
4644 int is32;
4645 unsigned shift;
4646
4647 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4648
4649 if (inst.base.opcode->op == OP_MOVK)
4650 switch (inst.reloc.type)
4651 {
4652 case BFD_RELOC_AARCH64_MOVW_G0_S:
4653 case BFD_RELOC_AARCH64_MOVW_G1_S:
4654 case BFD_RELOC_AARCH64_MOVW_G2_S:
4655 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4656 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4657 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4658 set_syntax_error
4659 (_("the specified relocation type is not allowed for MOVK"));
4660 return FALSE;
4661 default:
4662 break;
4663 }
4664
4665 switch (inst.reloc.type)
4666 {
4667 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 4668 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 4669 case BFD_RELOC_AARCH64_MOVW_G0_S:
49df5539
JW
4670 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
4671 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
4672 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4673 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4674 shift = 0;
4675 break;
4676 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 4677 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 4678 case BFD_RELOC_AARCH64_MOVW_G1_S:
49df5539
JW
4679 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
4680 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
4681 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4682 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4683 shift = 16;
4684 break;
4685 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 4686 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 4687 case BFD_RELOC_AARCH64_MOVW_G2_S:
49df5539 4688 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
4689 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4690 if (is32)
4691 {
4692 set_fatal_syntax_error
4693 (_("the specified relocation type is not allowed for 32-bit "
4694 "register"));
4695 return FALSE;
4696 }
4697 shift = 32;
4698 break;
4699 case BFD_RELOC_AARCH64_MOVW_G3:
4700 if (is32)
4701 {
4702 set_fatal_syntax_error
4703 (_("the specified relocation type is not allowed for 32-bit "
4704 "register"));
4705 return FALSE;
4706 }
4707 shift = 48;
4708 break;
4709 default:
4710 /* More cases should be added when more MOVW-related relocation types
4711 are supported in GAS. */
4712 gas_assert (aarch64_gas_internal_fixup_p ());
4713 /* The shift amount should have already been set by the parser. */
4714 return TRUE;
4715 }
4716 inst.base.operands[1].shifter.amount = shift;
4717 return TRUE;
4718}
4719
4720/* A primitive log caculator. */
4721
4722static inline unsigned int
4723get_logsz (unsigned int size)
4724{
4725 const unsigned char ls[16] =
4726 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4727 if (size > 16)
4728 {
4729 gas_assert (0);
4730 return -1;
4731 }
4732 gas_assert (ls[size - 1] != (unsigned char)-1);
4733 return ls[size - 1];
4734}
4735
4736/* Determine and return the real reloc type code for an instruction
4737 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4738
4739static inline bfd_reloc_code_real_type
4740ldst_lo12_determine_real_reloc_type (void)
4741{
4742 int logsz;
4743 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4744 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4745
4746 const bfd_reloc_code_real_type reloc_ldst_lo12[5] = {
4747 BFD_RELOC_AARCH64_LDST8_LO12, BFD_RELOC_AARCH64_LDST16_LO12,
4748 BFD_RELOC_AARCH64_LDST32_LO12, BFD_RELOC_AARCH64_LDST64_LO12,
4749 BFD_RELOC_AARCH64_LDST128_LO12
4750 };
4751
4752 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12);
4753 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4754
4755 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4756 opd1_qlf =
4757 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4758 1, opd0_qlf, 0);
4759 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4760
4761 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4762 gas_assert (logsz >= 0 && logsz <= 4);
4763
4764 return reloc_ldst_lo12[logsz];
4765}
4766
4767/* Check whether a register list REGINFO is valid. The registers must be
4768 numbered in increasing order (modulo 32), in increments of one or two.
4769
4770 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4771 increments of two.
4772
4773 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4774
4775static bfd_boolean
4776reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4777{
4778 uint32_t i, nb_regs, prev_regno, incr;
4779
4780 nb_regs = 1 + (reginfo & 0x3);
4781 reginfo >>= 2;
4782 prev_regno = reginfo & 0x1f;
4783 incr = accept_alternate ? 2 : 1;
4784
4785 for (i = 1; i < nb_regs; ++i)
4786 {
4787 uint32_t curr_regno;
4788 reginfo >>= 5;
4789 curr_regno = reginfo & 0x1f;
4790 if (curr_regno != ((prev_regno + incr) & 0x1f))
4791 return FALSE;
4792 prev_regno = curr_regno;
4793 }
4794
4795 return TRUE;
4796}
4797
4798/* Generic instruction operand parser. This does no encoding and no
4799 semantic validation; it merely squirrels values away in the inst
4800 structure. Returns TRUE or FALSE depending on whether the
4801 specified grammar matched. */
4802
4803static bfd_boolean
4804parse_operands (char *str, const aarch64_opcode *opcode)
4805{
4806 int i;
4807 char *backtrack_pos = 0;
4808 const enum aarch64_opnd *operands = opcode->operands;
4809
4810 clear_error ();
4811 skip_whitespace (str);
4812
4813 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4814 {
4815 int64_t val;
4816 int isreg32, isregzero;
4817 int comma_skipped_p = 0;
4818 aarch64_reg_type rtype;
4819 struct neon_type_el vectype;
4820 aarch64_opnd_info *info = &inst.base.operands[i];
4821
4822 DEBUG_TRACE ("parse operand %d", i);
4823
4824 /* Assign the operand code. */
4825 info->type = operands[i];
4826
4827 if (optional_operand_p (opcode, i))
4828 {
4829 /* Remember where we are in case we need to backtrack. */
4830 gas_assert (!backtrack_pos);
4831 backtrack_pos = str;
4832 }
4833
4834 /* Expect comma between operands; the backtrack mechanizm will take
4835 care of cases of omitted optional operand. */
4836 if (i > 0 && ! skip_past_char (&str, ','))
4837 {
4838 set_syntax_error (_("comma expected between operands"));
4839 goto failure;
4840 }
4841 else
4842 comma_skipped_p = 1;
4843
4844 switch (operands[i])
4845 {
4846 case AARCH64_OPND_Rd:
4847 case AARCH64_OPND_Rn:
4848 case AARCH64_OPND_Rm:
4849 case AARCH64_OPND_Rt:
4850 case AARCH64_OPND_Rt2:
4851 case AARCH64_OPND_Rs:
4852 case AARCH64_OPND_Ra:
4853 case AARCH64_OPND_Rt_SYS:
ee804238 4854 case AARCH64_OPND_PAIRREG:
a06ea964
NC
4855 po_int_reg_or_fail (1, 0);
4856 break;
4857
4858 case AARCH64_OPND_Rd_SP:
4859 case AARCH64_OPND_Rn_SP:
4860 po_int_reg_or_fail (0, 1);
4861 break;
4862
4863 case AARCH64_OPND_Rm_EXT:
4864 case AARCH64_OPND_Rm_SFT:
4865 po_misc_or_fail (parse_shifter_operand
4866 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4867 ? SHIFTED_ARITH_IMM
4868 : SHIFTED_LOGIC_IMM)));
4869 if (!info->shifter.operator_present)
4870 {
4871 /* Default to LSL if not present. Libopcodes prefers shifter
4872 kind to be explicit. */
4873 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4874 info->shifter.kind = AARCH64_MOD_LSL;
4875 /* For Rm_EXT, libopcodes will carry out further check on whether
4876 or not stack pointer is used in the instruction (Recall that
4877 "the extend operator is not optional unless at least one of
4878 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4879 }
4880 break;
4881
4882 case AARCH64_OPND_Fd:
4883 case AARCH64_OPND_Fn:
4884 case AARCH64_OPND_Fm:
4885 case AARCH64_OPND_Fa:
4886 case AARCH64_OPND_Ft:
4887 case AARCH64_OPND_Ft2:
4888 case AARCH64_OPND_Sd:
4889 case AARCH64_OPND_Sn:
4890 case AARCH64_OPND_Sm:
4891 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4892 if (val == PARSE_FAIL)
4893 {
4894 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4895 goto failure;
4896 }
4897 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4898
4899 info->reg.regno = val;
4900 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4901 break;
4902
4903 case AARCH64_OPND_Vd:
4904 case AARCH64_OPND_Vn:
4905 case AARCH64_OPND_Vm:
4906 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4907 if (val == PARSE_FAIL)
4908 {
4909 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4910 goto failure;
4911 }
4912 if (vectype.defined & NTA_HASINDEX)
4913 goto failure;
4914
4915 info->reg.regno = val;
4916 info->qualifier = vectype_to_qualifier (&vectype);
4917 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4918 goto failure;
4919 break;
4920
4921 case AARCH64_OPND_VdD1:
4922 case AARCH64_OPND_VnD1:
4923 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4924 if (val == PARSE_FAIL)
4925 {
4926 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4927 goto failure;
4928 }
4929 if (vectype.type != NT_d || vectype.index != 1)
4930 {
4931 set_fatal_syntax_error
4932 (_("the top half of a 128-bit FP/SIMD register is expected"));
4933 goto failure;
4934 }
4935 info->reg.regno = val;
4936 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4937 here; it is correct for the purpose of encoding/decoding since
4938 only the register number is explicitly encoded in the related
4939 instructions, although this appears a bit hacky. */
4940 info->qualifier = AARCH64_OPND_QLF_S_D;
4941 break;
4942
4943 case AARCH64_OPND_Ed:
4944 case AARCH64_OPND_En:
4945 case AARCH64_OPND_Em:
4946 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4947 if (val == PARSE_FAIL)
4948 {
4949 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4950 goto failure;
4951 }
4952 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
4953 goto failure;
4954
4955 info->reglane.regno = val;
4956 info->reglane.index = vectype.index;
4957 info->qualifier = vectype_to_qualifier (&vectype);
4958 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4959 goto failure;
4960 break;
4961
4962 case AARCH64_OPND_LVn:
4963 case AARCH64_OPND_LVt:
4964 case AARCH64_OPND_LVt_AL:
4965 case AARCH64_OPND_LEt:
4966 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
4967 goto failure;
4968 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
4969 {
4970 set_fatal_syntax_error (_("invalid register list"));
4971 goto failure;
4972 }
4973 info->reglist.first_regno = (val >> 2) & 0x1f;
4974 info->reglist.num_regs = (val & 0x3) + 1;
4975 if (operands[i] == AARCH64_OPND_LEt)
4976 {
4977 if (!(vectype.defined & NTA_HASINDEX))
4978 goto failure;
4979 info->reglist.has_index = 1;
4980 info->reglist.index = vectype.index;
4981 }
4982 else if (!(vectype.defined & NTA_HASTYPE))
4983 goto failure;
4984 info->qualifier = vectype_to_qualifier (&vectype);
4985 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4986 goto failure;
4987 break;
4988
4989 case AARCH64_OPND_Cn:
4990 case AARCH64_OPND_Cm:
4991 po_reg_or_fail (REG_TYPE_CN);
4992 if (val > 15)
4993 {
4994 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
4995 goto failure;
4996 }
4997 inst.base.operands[i].reg.regno = val;
4998 break;
4999
5000 case AARCH64_OPND_SHLL_IMM:
5001 case AARCH64_OPND_IMM_VLSR:
5002 po_imm_or_fail (1, 64);
5003 info->imm.value = val;
5004 break;
5005
5006 case AARCH64_OPND_CCMP_IMM:
5007 case AARCH64_OPND_FBITS:
5008 case AARCH64_OPND_UIMM4:
5009 case AARCH64_OPND_UIMM3_OP1:
5010 case AARCH64_OPND_UIMM3_OP2:
5011 case AARCH64_OPND_IMM_VLSL:
5012 case AARCH64_OPND_IMM:
5013 case AARCH64_OPND_WIDTH:
5014 po_imm_nc_or_fail ();
5015 info->imm.value = val;
5016 break;
5017
5018 case AARCH64_OPND_UIMM7:
5019 po_imm_or_fail (0, 127);
5020 info->imm.value = val;
5021 break;
5022
5023 case AARCH64_OPND_IDX:
5024 case AARCH64_OPND_BIT_NUM:
5025 case AARCH64_OPND_IMMR:
5026 case AARCH64_OPND_IMMS:
5027 po_imm_or_fail (0, 63);
5028 info->imm.value = val;
5029 break;
5030
5031 case AARCH64_OPND_IMM0:
5032 po_imm_nc_or_fail ();
5033 if (val != 0)
5034 {
5035 set_fatal_syntax_error (_("immediate zero expected"));
5036 goto failure;
5037 }
5038 info->imm.value = 0;
5039 break;
5040
5041 case AARCH64_OPND_FPIMM0:
5042 {
5043 int qfloat;
5044 bfd_boolean res1 = FALSE, res2 = FALSE;
5045 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5046 it is probably not worth the effort to support it. */
62b0d0d5 5047 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
5048 && !(res2 = parse_constant_immediate (&str, &val)))
5049 goto failure;
5050 if ((res1 && qfloat == 0) || (res2 && val == 0))
5051 {
5052 info->imm.value = 0;
5053 info->imm.is_fp = 1;
5054 break;
5055 }
5056 set_fatal_syntax_error (_("immediate zero expected"));
5057 goto failure;
5058 }
5059
5060 case AARCH64_OPND_IMM_MOV:
5061 {
5062 char *saved = str;
8db49cc2
WN
5063 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5064 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5065 goto failure;
5066 str = saved;
5067 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5068 GE_OPT_PREFIX, 1));
5069 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5070 later. fix_mov_imm_insn will try to determine a machine
5071 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5072 message if the immediate cannot be moved by a single
5073 instruction. */
5074 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5075 inst.base.operands[i].skip = 1;
5076 }
5077 break;
5078
5079 case AARCH64_OPND_SIMD_IMM:
5080 case AARCH64_OPND_SIMD_IMM_SFT:
5081 if (! parse_big_immediate (&str, &val))
5082 goto failure;
5083 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5084 /* addr_off_p */ 0,
5085 /* need_libopcodes_p */ 1,
5086 /* skip_p */ 1);
5087 /* Parse shift.
5088 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5089 shift, we don't check it here; we leave the checking to
5090 the libopcodes (operand_general_constraint_met_p). By
5091 doing this, we achieve better diagnostics. */
5092 if (skip_past_comma (&str)
5093 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5094 goto failure;
5095 if (!info->shifter.operator_present
5096 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5097 {
5098 /* Default to LSL if not present. Libopcodes prefers shifter
5099 kind to be explicit. */
5100 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5101 info->shifter.kind = AARCH64_MOD_LSL;
5102 }
5103 break;
5104
5105 case AARCH64_OPND_FPIMM:
5106 case AARCH64_OPND_SIMD_FPIMM:
5107 {
5108 int qfloat;
62b0d0d5
YZ
5109 bfd_boolean dp_p
5110 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
5111 == 8);
5112 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
5113 goto failure;
5114 if (qfloat == 0)
5115 {
5116 set_fatal_syntax_error (_("invalid floating-point constant"));
5117 goto failure;
5118 }
5119 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5120 inst.base.operands[i].imm.is_fp = 1;
5121 }
5122 break;
5123
5124 case AARCH64_OPND_LIMM:
5125 po_misc_or_fail (parse_shifter_operand (&str, info,
5126 SHIFTED_LOGIC_IMM));
5127 if (info->shifter.operator_present)
5128 {
5129 set_fatal_syntax_error
5130 (_("shift not allowed for bitmask immediate"));
5131 goto failure;
5132 }
5133 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5134 /* addr_off_p */ 0,
5135 /* need_libopcodes_p */ 1,
5136 /* skip_p */ 1);
5137 break;
5138
5139 case AARCH64_OPND_AIMM:
5140 if (opcode->op == OP_ADD)
5141 /* ADD may have relocation types. */
5142 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5143 SHIFTED_ARITH_IMM));
5144 else
5145 po_misc_or_fail (parse_shifter_operand (&str, info,
5146 SHIFTED_ARITH_IMM));
5147 switch (inst.reloc.type)
5148 {
5149 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5150 info->shifter.amount = 12;
5151 break;
5152 case BFD_RELOC_UNUSED:
5153 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5154 if (info->shifter.kind != AARCH64_MOD_NONE)
5155 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5156 inst.reloc.pc_rel = 0;
5157 break;
5158 default:
5159 break;
5160 }
5161 info->imm.value = 0;
5162 if (!info->shifter.operator_present)
5163 {
5164 /* Default to LSL if not present. Libopcodes prefers shifter
5165 kind to be explicit. */
5166 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5167 info->shifter.kind = AARCH64_MOD_LSL;
5168 }
5169 break;
5170
5171 case AARCH64_OPND_HALF:
5172 {
5173 /* #<imm16> or relocation. */
5174 int internal_fixup_p;
5175 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5176 if (internal_fixup_p)
5177 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5178 skip_whitespace (str);
5179 if (skip_past_comma (&str))
5180 {
5181 /* {, LSL #<shift>} */
5182 if (! aarch64_gas_internal_fixup_p ())
5183 {
5184 set_fatal_syntax_error (_("can't mix relocation modifier "
5185 "with explicit shift"));
5186 goto failure;
5187 }
5188 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5189 }
5190 else
5191 inst.base.operands[i].shifter.amount = 0;
5192 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5193 inst.base.operands[i].imm.value = 0;
5194 if (! process_movw_reloc_info ())
5195 goto failure;
5196 }
5197 break;
5198
5199 case AARCH64_OPND_EXCEPTION:
5200 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5201 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5202 /* addr_off_p */ 0,
5203 /* need_libopcodes_p */ 0,
5204 /* skip_p */ 1);
5205 break;
5206
5207 case AARCH64_OPND_NZCV:
5208 {
5209 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5210 if (nzcv != NULL)
5211 {
5212 str += 4;
5213 info->imm.value = nzcv->value;
5214 break;
5215 }
5216 po_imm_or_fail (0, 15);
5217 info->imm.value = val;
5218 }
5219 break;
5220
5221 case AARCH64_OPND_COND:
68a64283 5222 case AARCH64_OPND_COND1:
a06ea964
NC
5223 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5224 str += 2;
5225 if (info->cond == NULL)
5226 {
5227 set_syntax_error (_("invalid condition"));
5228 goto failure;
5229 }
68a64283
YZ
5230 else if (operands[i] == AARCH64_OPND_COND1
5231 && (info->cond->value & 0xe) == 0xe)
5232 {
5233 /* Not allow AL or NV. */
5234 set_default_error ();
5235 goto failure;
5236 }
a06ea964
NC
5237 break;
5238
5239 case AARCH64_OPND_ADDR_ADRP:
5240 po_misc_or_fail (parse_adrp (&str));
5241 /* Clear the value as operand needs to be relocated. */
5242 info->imm.value = 0;
5243 break;
5244
5245 case AARCH64_OPND_ADDR_PCREL14:
5246 case AARCH64_OPND_ADDR_PCREL19:
5247 case AARCH64_OPND_ADDR_PCREL21:
5248 case AARCH64_OPND_ADDR_PCREL26:
5249 po_misc_or_fail (parse_address_reloc (&str, info));
5250 if (!info->addr.pcrel)
5251 {
5252 set_syntax_error (_("invalid pc-relative address"));
5253 goto failure;
5254 }
5255 if (inst.gen_lit_pool
5256 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5257 {
5258 /* Only permit "=value" in the literal load instructions.
5259 The literal will be generated by programmer_friendly_fixup. */
5260 set_syntax_error (_("invalid use of \"=immediate\""));
5261 goto failure;
5262 }
5263 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5264 {
5265 set_syntax_error (_("unrecognized relocation suffix"));
5266 goto failure;
5267 }
5268 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5269 {
5270 info->imm.value = inst.reloc.exp.X_add_number;
5271 inst.reloc.type = BFD_RELOC_UNUSED;
5272 }
5273 else
5274 {
5275 info->imm.value = 0;
f41aef5f
RE
5276 if (inst.reloc.type == BFD_RELOC_UNUSED)
5277 switch (opcode->iclass)
5278 {
5279 case compbranch:
5280 case condbranch:
5281 /* e.g. CBZ or B.COND */
5282 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5283 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5284 break;
5285 case testbranch:
5286 /* e.g. TBZ */
5287 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5288 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5289 break;
5290 case branch_imm:
5291 /* e.g. B or BL */
5292 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5293 inst.reloc.type =
5294 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5295 : BFD_RELOC_AARCH64_JUMP26;
5296 break;
5297 case loadlit:
5298 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5299 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5300 break;
5301 case pcreladdr:
5302 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5303 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5304 break;
5305 default:
5306 gas_assert (0);
5307 abort ();
5308 }
a06ea964
NC
5309 inst.reloc.pc_rel = 1;
5310 }
5311 break;
5312
5313 case AARCH64_OPND_ADDR_SIMPLE:
5314 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5315 /* [<Xn|SP>{, #<simm>}] */
5316 po_char_or_fail ('[');
5317 po_reg_or_fail (REG_TYPE_R64_SP);
5318 /* Accept optional ", #0". */
5319 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5320 && skip_past_char (&str, ','))
5321 {
5322 skip_past_char (&str, '#');
5323 if (! skip_past_char (&str, '0'))
5324 {
5325 set_fatal_syntax_error
5326 (_("the optional immediate offset can only be 0"));
5327 goto failure;
5328 }
5329 }
5330 po_char_or_fail (']');
5331 info->addr.base_regno = val;
5332 break;
5333
5334 case AARCH64_OPND_ADDR_REGOFF:
5335 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5336 po_misc_or_fail (parse_address (&str, info, 0));
5337 if (info->addr.pcrel || !info->addr.offset.is_reg
5338 || !info->addr.preind || info->addr.postind
5339 || info->addr.writeback)
5340 {
5341 set_syntax_error (_("invalid addressing mode"));
5342 goto failure;
5343 }
5344 if (!info->shifter.operator_present)
5345 {
5346 /* Default to LSL if not present. Libopcodes prefers shifter
5347 kind to be explicit. */
5348 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5349 info->shifter.kind = AARCH64_MOD_LSL;
5350 }
5351 /* Qualifier to be deduced by libopcodes. */
5352 break;
5353
5354 case AARCH64_OPND_ADDR_SIMM7:
5355 po_misc_or_fail (parse_address (&str, info, 0));
5356 if (info->addr.pcrel || info->addr.offset.is_reg
5357 || (!info->addr.preind && !info->addr.postind))
5358 {
5359 set_syntax_error (_("invalid addressing mode"));
5360 goto failure;
5361 }
5362 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5363 /* addr_off_p */ 1,
5364 /* need_libopcodes_p */ 1,
5365 /* skip_p */ 0);
5366 break;
5367
5368 case AARCH64_OPND_ADDR_SIMM9:
5369 case AARCH64_OPND_ADDR_SIMM9_2:
5370 po_misc_or_fail (parse_address_reloc (&str, info));
5371 if (info->addr.pcrel || info->addr.offset.is_reg
5372 || (!info->addr.preind && !info->addr.postind)
5373 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5374 && info->addr.writeback))
5375 {
5376 set_syntax_error (_("invalid addressing mode"));
5377 goto failure;
5378 }
5379 if (inst.reloc.type != BFD_RELOC_UNUSED)
5380 {
5381 set_syntax_error (_("relocation not allowed"));
5382 goto failure;
5383 }
5384 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5385 /* addr_off_p */ 1,
5386 /* need_libopcodes_p */ 1,
5387 /* skip_p */ 0);
5388 break;
5389
5390 case AARCH64_OPND_ADDR_UIMM12:
5391 po_misc_or_fail (parse_address_reloc (&str, info));
5392 if (info->addr.pcrel || info->addr.offset.is_reg
5393 || !info->addr.preind || info->addr.writeback)
5394 {
5395 set_syntax_error (_("invalid addressing mode"));
5396 goto failure;
5397 }
5398 if (inst.reloc.type == BFD_RELOC_UNUSED)
5399 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5400 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12)
5401 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5402 /* Leave qualifier to be determined by libopcodes. */
5403 break;
5404
5405 case AARCH64_OPND_SIMD_ADDR_POST:
5406 /* [<Xn|SP>], <Xm|#<amount>> */
5407 po_misc_or_fail (parse_address (&str, info, 1));
5408 if (!info->addr.postind || !info->addr.writeback)
5409 {
5410 set_syntax_error (_("invalid addressing mode"));
5411 goto failure;
5412 }
5413 if (!info->addr.offset.is_reg)
5414 {
5415 if (inst.reloc.exp.X_op == O_constant)
5416 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5417 else
5418 {
5419 set_fatal_syntax_error
5420 (_("writeback value should be an immediate constant"));
5421 goto failure;
5422 }
5423 }
5424 /* No qualifier. */
5425 break;
5426
5427 case AARCH64_OPND_SYSREG:
72ca8fad 5428 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 5429 == PARSE_FAIL)
a06ea964 5430 {
a203d9b7
YZ
5431 set_syntax_error (_("unknown or missing system register name"));
5432 goto failure;
a06ea964 5433 }
a203d9b7 5434 inst.base.operands[i].sysreg = val;
a06ea964
NC
5435 break;
5436
5437 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 5438 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 5439 == PARSE_FAIL)
a06ea964
NC
5440 {
5441 set_syntax_error (_("unknown or missing PSTATE field name"));
5442 goto failure;
5443 }
5444 inst.base.operands[i].pstatefield = val;
5445 break;
5446
5447 case AARCH64_OPND_SYSREG_IC:
5448 inst.base.operands[i].sysins_op =
5449 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5450 goto sys_reg_ins;
5451 case AARCH64_OPND_SYSREG_DC:
5452 inst.base.operands[i].sysins_op =
5453 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5454 goto sys_reg_ins;
5455 case AARCH64_OPND_SYSREG_AT:
5456 inst.base.operands[i].sysins_op =
5457 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5458 goto sys_reg_ins;
5459 case AARCH64_OPND_SYSREG_TLBI:
5460 inst.base.operands[i].sysins_op =
5461 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5462sys_reg_ins:
5463 if (inst.base.operands[i].sysins_op == NULL)
5464 {
5465 set_fatal_syntax_error ( _("unknown or missing operation name"));
5466 goto failure;
5467 }
5468 break;
5469
5470 case AARCH64_OPND_BARRIER:
5471 case AARCH64_OPND_BARRIER_ISB:
5472 val = parse_barrier (&str);
5473 if (val != PARSE_FAIL
5474 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5475 {
5476 /* ISB only accepts options name 'sy'. */
5477 set_syntax_error
5478 (_("the specified option is not accepted in ISB"));
5479 /* Turn off backtrack as this optional operand is present. */
5480 backtrack_pos = 0;
5481 goto failure;
5482 }
5483 /* This is an extension to accept a 0..15 immediate. */
5484 if (val == PARSE_FAIL)
5485 po_imm_or_fail (0, 15);
5486 info->barrier = aarch64_barrier_options + val;
5487 break;
5488
5489 case AARCH64_OPND_PRFOP:
5490 val = parse_pldop (&str);
5491 /* This is an extension to accept a 0..31 immediate. */
5492 if (val == PARSE_FAIL)
5493 po_imm_or_fail (0, 31);
5494 inst.base.operands[i].prfop = aarch64_prfops + val;
5495 break;
5496
5497 default:
5498 as_fatal (_("unhandled operand code %d"), operands[i]);
5499 }
5500
5501 /* If we get here, this operand was successfully parsed. */
5502 inst.base.operands[i].present = 1;
5503 continue;
5504
5505failure:
5506 /* The parse routine should already have set the error, but in case
5507 not, set a default one here. */
5508 if (! error_p ())
5509 set_default_error ();
5510
5511 if (! backtrack_pos)
5512 goto parse_operands_return;
5513
f4c51f60
JW
5514 {
5515 /* We reach here because this operand is marked as optional, and
5516 either no operand was supplied or the operand was supplied but it
5517 was syntactically incorrect. In the latter case we report an
5518 error. In the former case we perform a few more checks before
5519 dropping through to the code to insert the default operand. */
5520
5521 char *tmp = backtrack_pos;
5522 char endchar = END_OF_INSN;
5523
5524 if (i != (aarch64_num_of_operands (opcode) - 1))
5525 endchar = ',';
5526 skip_past_char (&tmp, ',');
5527
5528 if (*tmp != endchar)
5529 /* The user has supplied an operand in the wrong format. */
5530 goto parse_operands_return;
5531
5532 /* Make sure there is not a comma before the optional operand.
5533 For example the fifth operand of 'sys' is optional:
5534
5535 sys #0,c0,c0,#0, <--- wrong
5536 sys #0,c0,c0,#0 <--- correct. */
5537 if (comma_skipped_p && i && endchar == END_OF_INSN)
5538 {
5539 set_fatal_syntax_error
5540 (_("unexpected comma before the omitted optional operand"));
5541 goto parse_operands_return;
5542 }
5543 }
5544
a06ea964
NC
5545 /* Reaching here means we are dealing with an optional operand that is
5546 omitted from the assembly line. */
5547 gas_assert (optional_operand_p (opcode, i));
5548 info->present = 0;
5549 process_omitted_operand (operands[i], opcode, i, info);
5550
5551 /* Try again, skipping the optional operand at backtrack_pos. */
5552 str = backtrack_pos;
5553 backtrack_pos = 0;
5554
a06ea964
NC
5555 /* Clear any error record after the omitted optional operand has been
5556 successfully handled. */
5557 clear_error ();
5558 }
5559
5560 /* Check if we have parsed all the operands. */
5561 if (*str != '\0' && ! error_p ())
5562 {
5563 /* Set I to the index of the last present operand; this is
5564 for the purpose of diagnostics. */
5565 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5566 ;
5567 set_fatal_syntax_error
5568 (_("unexpected characters following instruction"));
5569 }
5570
5571parse_operands_return:
5572
5573 if (error_p ())
5574 {
5575 DEBUG_TRACE ("parsing FAIL: %s - %s",
5576 operand_mismatch_kind_names[get_error_kind ()],
5577 get_error_message ());
5578 /* Record the operand error properly; this is useful when there
5579 are multiple instruction templates for a mnemonic name, so that
5580 later on, we can select the error that most closely describes
5581 the problem. */
5582 record_operand_error (opcode, i, get_error_kind (),
5583 get_error_message ());
5584 return FALSE;
5585 }
5586 else
5587 {
5588 DEBUG_TRACE ("parsing SUCCESS");
5589 return TRUE;
5590 }
5591}
5592
5593/* It does some fix-up to provide some programmer friendly feature while
5594 keeping the libopcodes happy, i.e. libopcodes only accepts
5595 the preferred architectural syntax.
5596 Return FALSE if there is any failure; otherwise return TRUE. */
5597
5598static bfd_boolean
5599programmer_friendly_fixup (aarch64_instruction *instr)
5600{
5601 aarch64_inst *base = &instr->base;
5602 const aarch64_opcode *opcode = base->opcode;
5603 enum aarch64_op op = opcode->op;
5604 aarch64_opnd_info *operands = base->operands;
5605
5606 DEBUG_TRACE ("enter");
5607
5608 switch (opcode->iclass)
5609 {
5610 case testbranch:
5611 /* TBNZ Xn|Wn, #uimm6, label
5612 Test and Branch Not Zero: conditionally jumps to label if bit number
5613 uimm6 in register Xn is not zero. The bit number implies the width of
5614 the register, which may be written and should be disassembled as Wn if
5615 uimm is less than 32. */
5616 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5617 {
5618 if (operands[1].imm.value >= 32)
5619 {
5620 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5621 0, 31);
5622 return FALSE;
5623 }
5624 operands[0].qualifier = AARCH64_OPND_QLF_X;
5625 }
5626 break;
5627 case loadlit:
5628 /* LDR Wt, label | =value
5629 As a convenience assemblers will typically permit the notation
5630 "=value" in conjunction with the pc-relative literal load instructions
5631 to automatically place an immediate value or symbolic address in a
5632 nearby literal pool and generate a hidden label which references it.
5633 ISREG has been set to 0 in the case of =value. */
5634 if (instr->gen_lit_pool
5635 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5636 {
5637 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5638 if (op == OP_LDRSW_LIT)
5639 size = 4;
5640 if (instr->reloc.exp.X_op != O_constant
67a32447 5641 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5642 && instr->reloc.exp.X_op != O_symbol)
5643 {
5644 record_operand_error (opcode, 1,
5645 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5646 _("constant expression expected"));
5647 return FALSE;
5648 }
5649 if (! add_to_lit_pool (&instr->reloc.exp, size))
5650 {
5651 record_operand_error (opcode, 1,
5652 AARCH64_OPDE_OTHER_ERROR,
5653 _("literal pool insertion failed"));
5654 return FALSE;
5655 }
5656 }
5657 break;
a06ea964
NC
5658 case log_shift:
5659 case bitfield:
5660 /* UXT[BHW] Wd, Wn
5661 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5662 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5663 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5664 A programmer-friendly assembler should accept a destination Xd in
5665 place of Wd, however that is not the preferred form for disassembly.
5666 */
5667 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5668 && operands[1].qualifier == AARCH64_OPND_QLF_W
5669 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5670 operands[0].qualifier = AARCH64_OPND_QLF_W;
5671 break;
5672
5673 case addsub_ext:
5674 {
5675 /* In the 64-bit form, the final register operand is written as Wm
5676 for all but the (possibly omitted) UXTX/LSL and SXTX
5677 operators.
5678 As a programmer-friendly assembler, we accept e.g.
5679 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5680 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5681 int idx = aarch64_operand_index (opcode->operands,
5682 AARCH64_OPND_Rm_EXT);
5683 gas_assert (idx == 1 || idx == 2);
5684 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5685 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5686 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5687 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5688 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5689 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5690 }
5691 break;
5692
5693 default:
5694 break;
5695 }
5696
5697 DEBUG_TRACE ("exit with SUCCESS");
5698 return TRUE;
5699}
5700
5c47e525 5701/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5702
5703static void
5704warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5705{
5706 aarch64_inst *base = &instr->base;
5707 const aarch64_opcode *opcode = base->opcode;
5708 const aarch64_opnd_info *opnds = base->operands;
5709 switch (opcode->iclass)
5710 {
5711 case ldst_pos:
5712 case ldst_imm9:
5713 case ldst_unscaled:
5714 case ldst_unpriv:
5c47e525
RE
5715 /* Loading/storing the base register is unpredictable if writeback. */
5716 if ((aarch64_get_operand_class (opnds[0].type)
5717 == AARCH64_OPND_CLASS_INT_REG)
5718 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5719 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5720 && opnds[1].addr.writeback)
5c47e525 5721 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5722 break;
5723 case ldstpair_off:
5724 case ldstnapair_offs:
5725 case ldstpair_indexed:
5c47e525
RE
5726 /* Loading/storing the base register is unpredictable if writeback. */
5727 if ((aarch64_get_operand_class (opnds[0].type)
5728 == AARCH64_OPND_CLASS_INT_REG)
5729 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5730 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5731 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5732 && opnds[2].addr.writeback)
5c47e525
RE
5733 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5734 /* Load operations must load different registers. */
54a28c4c
JW
5735 if ((opcode->opcode & (1 << 22))
5736 && opnds[0].reg.regno == opnds[1].reg.regno)
5737 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5738 break;
5739 default:
5740 break;
5741 }
5742}
5743
a06ea964
NC
5744/* A wrapper function to interface with libopcodes on encoding and
5745 record the error message if there is any.
5746
5747 Return TRUE on success; otherwise return FALSE. */
5748
5749static bfd_boolean
5750do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5751 aarch64_insn *code)
5752{
5753 aarch64_operand_error error_info;
5754 error_info.kind = AARCH64_OPDE_NIL;
5755 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5756 return TRUE;
5757 else
5758 {
5759 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5760 record_operand_error_info (opcode, &error_info);
5761 return FALSE;
5762 }
5763}
5764
5765#ifdef DEBUG_AARCH64
5766static inline void
5767dump_opcode_operands (const aarch64_opcode *opcode)
5768{
5769 int i = 0;
5770 while (opcode->operands[i] != AARCH64_OPND_NIL)
5771 {
5772 aarch64_verbose ("\t\t opnd%d: %s", i,
5773 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5774 ? aarch64_get_operand_name (opcode->operands[i])
5775 : aarch64_get_operand_desc (opcode->operands[i]));
5776 ++i;
5777 }
5778}
5779#endif /* DEBUG_AARCH64 */
5780
5781/* This is the guts of the machine-dependent assembler. STR points to a
5782 machine dependent instruction. This function is supposed to emit
5783 the frags/bytes it assembles to. */
5784
5785void
5786md_assemble (char *str)
5787{
5788 char *p = str;
5789 templates *template;
5790 aarch64_opcode *opcode;
5791 aarch64_inst *inst_base;
5792 unsigned saved_cond;
5793
5794 /* Align the previous label if needed. */
5795 if (last_label_seen != NULL)
5796 {
5797 symbol_set_frag (last_label_seen, frag_now);
5798 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5799 S_SET_SEGMENT (last_label_seen, now_seg);
5800 }
5801
5802 inst.reloc.type = BFD_RELOC_UNUSED;
5803
5804 DEBUG_TRACE ("\n\n");
5805 DEBUG_TRACE ("==============================");
5806 DEBUG_TRACE ("Enter md_assemble with %s", str);
5807
5808 template = opcode_lookup (&p);
5809 if (!template)
5810 {
5811 /* It wasn't an instruction, but it might be a register alias of
5812 the form alias .req reg directive. */
5813 if (!create_register_alias (str, p))
5814 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5815 str);
5816 return;
5817 }
5818
5819 skip_whitespace (p);
5820 if (*p == ',')
5821 {
5822 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5823 get_mnemonic_name (str), str);
5824 return;
5825 }
5826
5827 init_operand_error_report ();
5828
eb9d6cc9
RL
5829 /* Sections are assumed to start aligned. In executable section, there is no
5830 MAP_DATA symbol pending. So we only align the address during
5831 MAP_DATA --> MAP_INSN transition.
5832 For other sections, this is not guaranteed. */
5833 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
5834 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
5835 frag_align_code (2, 0);
5836
a06ea964
NC
5837 saved_cond = inst.cond;
5838 reset_aarch64_instruction (&inst);
5839 inst.cond = saved_cond;
5840
5841 /* Iterate through all opcode entries with the same mnemonic name. */
5842 do
5843 {
5844 opcode = template->opcode;
5845
5846 DEBUG_TRACE ("opcode %s found", opcode->name);
5847#ifdef DEBUG_AARCH64
5848 if (debug_dump)
5849 dump_opcode_operands (opcode);
5850#endif /* DEBUG_AARCH64 */
5851
a06ea964
NC
5852 mapping_state (MAP_INSN);
5853
5854 inst_base = &inst.base;
5855 inst_base->opcode = opcode;
5856
5857 /* Truly conditionally executed instructions, e.g. b.cond. */
5858 if (opcode->flags & F_COND)
5859 {
5860 gas_assert (inst.cond != COND_ALWAYS);
5861 inst_base->cond = get_cond_from_value (inst.cond);
5862 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5863 }
5864 else if (inst.cond != COND_ALWAYS)
5865 {
5866 /* It shouldn't arrive here, where the assembly looks like a
5867 conditional instruction but the found opcode is unconditional. */
5868 gas_assert (0);
5869 continue;
5870 }
5871
5872 if (parse_operands (p, opcode)
5873 && programmer_friendly_fixup (&inst)
5874 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5875 {
3f06bfce
YZ
5876 /* Check that this instruction is supported for this CPU. */
5877 if (!opcode->avariant
5878 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5879 {
5880 as_bad (_("selected processor does not support `%s'"), str);
5881 return;
5882 }
5883
54a28c4c
JW
5884 warn_unpredictable_ldst (&inst, str);
5885
a06ea964
NC
5886 if (inst.reloc.type == BFD_RELOC_UNUSED
5887 || !inst.reloc.need_libopcodes_p)
5888 output_inst (NULL);
5889 else
5890 {
5891 /* If there is relocation generated for the instruction,
5892 store the instruction information for the future fix-up. */
5893 struct aarch64_inst *copy;
5894 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5895 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5896 abort ();
5897 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5898 output_inst (copy);
5899 }
5900 return;
5901 }
5902
5903 template = template->next;
5904 if (template != NULL)
5905 {
5906 reset_aarch64_instruction (&inst);
5907 inst.cond = saved_cond;
5908 }
5909 }
5910 while (template != NULL);
5911
5912 /* Issue the error messages if any. */
5913 output_operand_error_report (str);
5914}
5915
5916/* Various frobbings of labels and their addresses. */
5917
5918void
5919aarch64_start_line_hook (void)
5920{
5921 last_label_seen = NULL;
5922}
5923
5924void
5925aarch64_frob_label (symbolS * sym)
5926{
5927 last_label_seen = sym;
5928
5929 dwarf2_emit_label (sym);
5930}
5931
5932int
5933aarch64_data_in_code (void)
5934{
5935 if (!strncmp (input_line_pointer + 1, "data:", 5))
5936 {
5937 *input_line_pointer = '/';
5938 input_line_pointer += 5;
5939 *input_line_pointer = 0;
5940 return 1;
5941 }
5942
5943 return 0;
5944}
5945
5946char *
5947aarch64_canonicalize_symbol_name (char *name)
5948{
5949 int len;
5950
5951 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
5952 *(name + len - 5) = 0;
5953
5954 return name;
5955}
5956\f
5957/* Table of all register names defined by default. The user can
5958 define additional names with .req. Note that all register names
5959 should appear in both upper and lowercase variants. Some registers
5960 also have mixed-case names. */
5961
5962#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
5963#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5964#define REGSET31(p,t) \
5965 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
5966 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
5967 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
5968 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
5969 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
5970 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
5971 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
5972 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
5973#define REGSET(p,t) \
5974 REGSET31(p,t), REGNUM(p,31,t)
5975
5976/* These go into aarch64_reg_hsh hash-table. */
5977static const reg_entry reg_names[] = {
5978 /* Integer registers. */
5979 REGSET31 (x, R_64), REGSET31 (X, R_64),
5980 REGSET31 (w, R_32), REGSET31 (W, R_32),
5981
5982 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
5983 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
5984
5985 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
5986 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
5987
5988 /* Coprocessor register numbers. */
5989 REGSET (c, CN), REGSET (C, CN),
5990
5991 /* Floating-point single precision registers. */
5992 REGSET (s, FP_S), REGSET (S, FP_S),
5993
5994 /* Floating-point double precision registers. */
5995 REGSET (d, FP_D), REGSET (D, FP_D),
5996
5997 /* Floating-point half precision registers. */
5998 REGSET (h, FP_H), REGSET (H, FP_H),
5999
6000 /* Floating-point byte precision registers. */
6001 REGSET (b, FP_B), REGSET (B, FP_B),
6002
6003 /* Floating-point quad precision registers. */
6004 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6005
6006 /* FP/SIMD registers. */
6007 REGSET (v, VN), REGSET (V, VN),
6008};
6009
6010#undef REGDEF
6011#undef REGNUM
6012#undef REGSET
6013
6014#define N 1
6015#define n 0
6016#define Z 1
6017#define z 0
6018#define C 1
6019#define c 0
6020#define V 1
6021#define v 0
6022#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6023static const asm_nzcv nzcv_names[] = {
6024 {"nzcv", B (n, z, c, v)},
6025 {"nzcV", B (n, z, c, V)},
6026 {"nzCv", B (n, z, C, v)},
6027 {"nzCV", B (n, z, C, V)},
6028 {"nZcv", B (n, Z, c, v)},
6029 {"nZcV", B (n, Z, c, V)},
6030 {"nZCv", B (n, Z, C, v)},
6031 {"nZCV", B (n, Z, C, V)},
6032 {"Nzcv", B (N, z, c, v)},
6033 {"NzcV", B (N, z, c, V)},
6034 {"NzCv", B (N, z, C, v)},
6035 {"NzCV", B (N, z, C, V)},
6036 {"NZcv", B (N, Z, c, v)},
6037 {"NZcV", B (N, Z, c, V)},
6038 {"NZCv", B (N, Z, C, v)},
6039 {"NZCV", B (N, Z, C, V)}
6040};
6041
6042#undef N
6043#undef n
6044#undef Z
6045#undef z
6046#undef C
6047#undef c
6048#undef V
6049#undef v
6050#undef B
6051\f
6052/* MD interface: bits in the object file. */
6053
6054/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6055 for use in the a.out file, and stores them in the array pointed to by buf.
6056 This knows about the endian-ness of the target machine and does
6057 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6058 2 (short) and 4 (long) Floating numbers are put out as a series of
6059 LITTLENUMS (shorts, here at least). */
6060
6061void
6062md_number_to_chars (char *buf, valueT val, int n)
6063{
6064 if (target_big_endian)
6065 number_to_chars_bigendian (buf, val, n);
6066 else
6067 number_to_chars_littleendian (buf, val, n);
6068}
6069
6070/* MD interface: Sections. */
6071
6072/* Estimate the size of a frag before relaxing. Assume everything fits in
6073 4 bytes. */
6074
6075int
6076md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6077{
6078 fragp->fr_var = 4;
6079 return 4;
6080}
6081
6082/* Round up a section size to the appropriate boundary. */
6083
6084valueT
6085md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6086{
6087 return size;
6088}
6089
6090/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
6091 of an rs_align_code fragment.
6092
6093 Here we fill the frag with the appropriate info for padding the
6094 output stream. The resulting frag will consist of a fixed (fr_fix)
6095 and of a repeating (fr_var) part.
6096
6097 The fixed content is always emitted before the repeating content and
6098 these two parts are used as follows in constructing the output:
6099 - the fixed part will be used to align to a valid instruction word
6100 boundary, in case that we start at a misaligned address; as no
6101 executable instruction can live at the misaligned location, we
6102 simply fill with zeros;
6103 - the variable part will be used to cover the remaining padding and
6104 we fill using the AArch64 NOP instruction.
6105
6106 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6107 enough storage space for up to 3 bytes for padding the back to a valid
6108 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6109
6110void
6111aarch64_handle_align (fragS * fragP)
6112{
6113 /* NOP = d503201f */
6114 /* AArch64 instructions are always little-endian. */
6115 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6116
6117 int bytes, fix, noop_size;
6118 char *p;
a06ea964
NC
6119
6120 if (fragP->fr_type != rs_align_code)
6121 return;
6122
6123 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6124 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6125
6126#ifdef OBJ_ELF
6127 gas_assert (fragP->tc_frag_data.recorded);
6128#endif
6129
a06ea964 6130 noop_size = sizeof (aarch64_noop);
a06ea964 6131
f803aa8e
DPT
6132 fix = bytes & (noop_size - 1);
6133 if (fix)
a06ea964 6134 {
a06ea964
NC
6135#ifdef OBJ_ELF
6136 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6137#endif
6138 memset (p, 0, fix);
6139 p += fix;
f803aa8e 6140 fragP->fr_fix += fix;
a06ea964
NC
6141 }
6142
f803aa8e
DPT
6143 if (noop_size)
6144 memcpy (p, aarch64_noop, noop_size);
6145 fragP->fr_var = noop_size;
a06ea964
NC
6146}
6147
6148/* Perform target specific initialisation of a frag.
6149 Note - despite the name this initialisation is not done when the frag
6150 is created, but only when its type is assigned. A frag can be created
6151 and used a long time before its type is set, so beware of assuming that
6152 this initialisationis performed first. */
6153
6154#ifndef OBJ_ELF
6155void
6156aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6157 int max_chars ATTRIBUTE_UNUSED)
6158{
6159}
6160
6161#else /* OBJ_ELF is defined. */
6162void
6163aarch64_init_frag (fragS * fragP, int max_chars)
6164{
6165 /* Record a mapping symbol for alignment frags. We will delete this
6166 later if the alignment ends up empty. */
6167 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6168 fragP->tc_frag_data.recorded = 1;
6169
6170 switch (fragP->fr_type)
a06ea964 6171 {
c7ad08e6
RL
6172 case rs_align:
6173 case rs_align_test:
6174 case rs_fill:
6175 mapping_state_2 (MAP_DATA, max_chars);
6176 break;
6177 case rs_align_code:
6178 mapping_state_2 (MAP_INSN, max_chars);
6179 break;
6180 default:
6181 break;
a06ea964
NC
6182 }
6183}
6184\f
6185/* Initialize the DWARF-2 unwind information for this procedure. */
6186
6187void
6188tc_aarch64_frame_initial_instructions (void)
6189{
6190 cfi_add_CFA_def_cfa (REG_SP, 0);
6191}
6192#endif /* OBJ_ELF */
6193
6194/* Convert REGNAME to a DWARF-2 register number. */
6195
6196int
6197tc_aarch64_regname_to_dw2regnum (char *regname)
6198{
6199 const reg_entry *reg = parse_reg (&regname);
6200 if (reg == NULL)
6201 return -1;
6202
6203 switch (reg->type)
6204 {
6205 case REG_TYPE_SP_32:
6206 case REG_TYPE_SP_64:
6207 case REG_TYPE_R_32:
6208 case REG_TYPE_R_64:
a2cac51c
RH
6209 return reg->number;
6210
a06ea964
NC
6211 case REG_TYPE_FP_B:
6212 case REG_TYPE_FP_H:
6213 case REG_TYPE_FP_S:
6214 case REG_TYPE_FP_D:
6215 case REG_TYPE_FP_Q:
a2cac51c
RH
6216 return reg->number + 64;
6217
a06ea964
NC
6218 default:
6219 break;
6220 }
6221 return -1;
6222}
6223
cec5225b
YZ
6224/* Implement DWARF2_ADDR_SIZE. */
6225
6226int
6227aarch64_dwarf2_addr_size (void)
6228{
6229#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6230 if (ilp32_p)
6231 return 4;
6232#endif
6233 return bfd_arch_bits_per_address (stdoutput) / 8;
6234}
6235
a06ea964
NC
6236/* MD interface: Symbol and relocation handling. */
6237
6238/* Return the address within the segment that a PC-relative fixup is
6239 relative to. For AArch64 PC-relative fixups applied to instructions
6240 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6241
6242long
6243md_pcrel_from_section (fixS * fixP, segT seg)
6244{
6245 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6246
6247 /* If this is pc-relative and we are going to emit a relocation
6248 then we just want to put out any pipeline compensation that the linker
6249 will need. Otherwise we want to use the calculated base. */
6250 if (fixP->fx_pcrel
6251 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6252 || aarch64_force_relocation (fixP)))
6253 base = 0;
6254
6255 /* AArch64 should be consistent for all pc-relative relocations. */
6256 return base + AARCH64_PCREL_OFFSET;
6257}
6258
6259/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6260 Otherwise we have no need to default values of symbols. */
6261
6262symbolS *
6263md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6264{
6265#ifdef OBJ_ELF
6266 if (name[0] == '_' && name[1] == 'G'
6267 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6268 {
6269 if (!GOT_symbol)
6270 {
6271 if (symbol_find (name))
6272 as_bad (_("GOT already in the symbol table"));
6273
6274 GOT_symbol = symbol_new (name, undefined_section,
6275 (valueT) 0, &zero_address_frag);
6276 }
6277
6278 return GOT_symbol;
6279 }
6280#endif
6281
6282 return 0;
6283}
6284
6285/* Return non-zero if the indicated VALUE has overflowed the maximum
6286 range expressible by a unsigned number with the indicated number of
6287 BITS. */
6288
6289static bfd_boolean
6290unsigned_overflow (valueT value, unsigned bits)
6291{
6292 valueT lim;
6293 if (bits >= sizeof (valueT) * 8)
6294 return FALSE;
6295 lim = (valueT) 1 << bits;
6296 return (value >= lim);
6297}
6298
6299
6300/* Return non-zero if the indicated VALUE has overflowed the maximum
6301 range expressible by an signed number with the indicated number of
6302 BITS. */
6303
6304static bfd_boolean
6305signed_overflow (offsetT value, unsigned bits)
6306{
6307 offsetT lim;
6308 if (bits >= sizeof (offsetT) * 8)
6309 return FALSE;
6310 lim = (offsetT) 1 << (bits - 1);
6311 return (value < -lim || value >= lim);
6312}
6313
6314/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6315 unsigned immediate offset load/store instruction, try to encode it as
6316 an unscaled, 9-bit, signed immediate offset load/store instruction.
6317 Return TRUE if it is successful; otherwise return FALSE.
6318
6319 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6320 in response to the standard LDR/STR mnemonics when the immediate offset is
6321 unambiguous, i.e. when it is negative or unaligned. */
6322
6323static bfd_boolean
6324try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6325{
6326 int idx;
6327 enum aarch64_op new_op;
6328 const aarch64_opcode *new_opcode;
6329
6330 gas_assert (instr->opcode->iclass == ldst_pos);
6331
6332 switch (instr->opcode->op)
6333 {
6334 case OP_LDRB_POS:new_op = OP_LDURB; break;
6335 case OP_STRB_POS: new_op = OP_STURB; break;
6336 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6337 case OP_LDRH_POS: new_op = OP_LDURH; break;
6338 case OP_STRH_POS: new_op = OP_STURH; break;
6339 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6340 case OP_LDR_POS: new_op = OP_LDUR; break;
6341 case OP_STR_POS: new_op = OP_STUR; break;
6342 case OP_LDRF_POS: new_op = OP_LDURV; break;
6343 case OP_STRF_POS: new_op = OP_STURV; break;
6344 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6345 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6346 default: new_op = OP_NIL; break;
6347 }
6348
6349 if (new_op == OP_NIL)
6350 return FALSE;
6351
6352 new_opcode = aarch64_get_opcode (new_op);
6353 gas_assert (new_opcode != NULL);
6354
6355 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6356 instr->opcode->op, new_opcode->op);
6357
6358 aarch64_replace_opcode (instr, new_opcode);
6359
6360 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6361 qualifier matching may fail because the out-of-date qualifier will
6362 prevent the operand being updated with a new and correct qualifier. */
6363 idx = aarch64_operand_index (instr->opcode->operands,
6364 AARCH64_OPND_ADDR_SIMM9);
6365 gas_assert (idx == 1);
6366 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6367
6368 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6369
6370 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6371 return FALSE;
6372
6373 return TRUE;
6374}
6375
6376/* Called by fix_insn to fix a MOV immediate alias instruction.
6377
6378 Operand for a generic move immediate instruction, which is an alias
6379 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6380 a 32-bit/64-bit immediate value into general register. An assembler error
6381 shall result if the immediate cannot be created by a single one of these
6382 instructions. If there is a choice, then to ensure reversability an
6383 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6384
6385static void
6386fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6387{
6388 const aarch64_opcode *opcode;
6389
6390 /* Need to check if the destination is SP/ZR. The check has to be done
6391 before any aarch64_replace_opcode. */
6392 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6393 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6394
6395 instr->operands[1].imm.value = value;
6396 instr->operands[1].skip = 0;
6397
6398 if (try_mov_wide_p)
6399 {
6400 /* Try the MOVZ alias. */
6401 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6402 aarch64_replace_opcode (instr, opcode);
6403 if (aarch64_opcode_encode (instr->opcode, instr,
6404 &instr->value, NULL, NULL))
6405 {
6406 put_aarch64_insn (buf, instr->value);
6407 return;
6408 }
6409 /* Try the MOVK alias. */
6410 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6411 aarch64_replace_opcode (instr, opcode);
6412 if (aarch64_opcode_encode (instr->opcode, instr,
6413 &instr->value, NULL, NULL))
6414 {
6415 put_aarch64_insn (buf, instr->value);
6416 return;
6417 }
6418 }
6419
6420 if (try_mov_bitmask_p)
6421 {
6422 /* Try the ORR alias. */
6423 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6424 aarch64_replace_opcode (instr, opcode);
6425 if (aarch64_opcode_encode (instr->opcode, instr,
6426 &instr->value, NULL, NULL))
6427 {
6428 put_aarch64_insn (buf, instr->value);
6429 return;
6430 }
6431 }
6432
6433 as_bad_where (fixP->fx_file, fixP->fx_line,
6434 _("immediate cannot be moved by a single instruction"));
6435}
6436
6437/* An instruction operand which is immediate related may have symbol used
6438 in the assembly, e.g.
6439
6440 mov w0, u32
6441 .set u32, 0x00ffff00
6442
6443 At the time when the assembly instruction is parsed, a referenced symbol,
6444 like 'u32' in the above example may not have been seen; a fixS is created
6445 in such a case and is handled here after symbols have been resolved.
6446 Instruction is fixed up with VALUE using the information in *FIXP plus
6447 extra information in FLAGS.
6448
6449 This function is called by md_apply_fix to fix up instructions that need
6450 a fix-up described above but does not involve any linker-time relocation. */
6451
6452static void
6453fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6454{
6455 int idx;
6456 uint32_t insn;
6457 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6458 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6459 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6460
6461 if (new_inst)
6462 {
6463 /* Now the instruction is about to be fixed-up, so the operand that
6464 was previously marked as 'ignored' needs to be unmarked in order
6465 to get the encoding done properly. */
6466 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6467 new_inst->operands[idx].skip = 0;
6468 }
6469
6470 gas_assert (opnd != AARCH64_OPND_NIL);
6471
6472 switch (opnd)
6473 {
6474 case AARCH64_OPND_EXCEPTION:
6475 if (unsigned_overflow (value, 16))
6476 as_bad_where (fixP->fx_file, fixP->fx_line,
6477 _("immediate out of range"));
6478 insn = get_aarch64_insn (buf);
6479 insn |= encode_svc_imm (value);
6480 put_aarch64_insn (buf, insn);
6481 break;
6482
6483 case AARCH64_OPND_AIMM:
6484 /* ADD or SUB with immediate.
6485 NOTE this assumes we come here with a add/sub shifted reg encoding
6486 3 322|2222|2 2 2 21111 111111
6487 1 098|7654|3 2 1 09876 543210 98765 43210
6488 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6489 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6490 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6491 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6492 ->
6493 3 322|2222|2 2 221111111111
6494 1 098|7654|3 2 109876543210 98765 43210
6495 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6496 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6497 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6498 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6499 Fields sf Rn Rd are already set. */
6500 insn = get_aarch64_insn (buf);
6501 if (value < 0)
6502 {
6503 /* Add <-> sub. */
6504 insn = reencode_addsub_switch_add_sub (insn);
6505 value = -value;
6506 }
6507
6508 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6509 && unsigned_overflow (value, 12))
6510 {
6511 /* Try to shift the value by 12 to make it fit. */
6512 if (((value >> 12) << 12) == value
6513 && ! unsigned_overflow (value, 12 + 12))
6514 {
6515 value >>= 12;
6516 insn |= encode_addsub_imm_shift_amount (1);
6517 }
6518 }
6519
6520 if (unsigned_overflow (value, 12))
6521 as_bad_where (fixP->fx_file, fixP->fx_line,
6522 _("immediate out of range"));
6523
6524 insn |= encode_addsub_imm (value);
6525
6526 put_aarch64_insn (buf, insn);
6527 break;
6528
6529 case AARCH64_OPND_SIMD_IMM:
6530 case AARCH64_OPND_SIMD_IMM_SFT:
6531 case AARCH64_OPND_LIMM:
6532 /* Bit mask immediate. */
6533 gas_assert (new_inst != NULL);
6534 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6535 new_inst->operands[idx].imm.value = value;
6536 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6537 &new_inst->value, NULL, NULL))
6538 put_aarch64_insn (buf, new_inst->value);
6539 else
6540 as_bad_where (fixP->fx_file, fixP->fx_line,
6541 _("invalid immediate"));
6542 break;
6543
6544 case AARCH64_OPND_HALF:
6545 /* 16-bit unsigned immediate. */
6546 if (unsigned_overflow (value, 16))
6547 as_bad_where (fixP->fx_file, fixP->fx_line,
6548 _("immediate out of range"));
6549 insn = get_aarch64_insn (buf);
6550 insn |= encode_movw_imm (value & 0xffff);
6551 put_aarch64_insn (buf, insn);
6552 break;
6553
6554 case AARCH64_OPND_IMM_MOV:
6555 /* Operand for a generic move immediate instruction, which is
6556 an alias instruction that generates a single MOVZ, MOVN or ORR
6557 instruction to loads a 32-bit/64-bit immediate value into general
6558 register. An assembler error shall result if the immediate cannot be
6559 created by a single one of these instructions. If there is a choice,
6560 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6561 and MOVZ or MOVN to ORR. */
6562 gas_assert (new_inst != NULL);
6563 fix_mov_imm_insn (fixP, buf, new_inst, value);
6564 break;
6565
6566 case AARCH64_OPND_ADDR_SIMM7:
6567 case AARCH64_OPND_ADDR_SIMM9:
6568 case AARCH64_OPND_ADDR_SIMM9_2:
6569 case AARCH64_OPND_ADDR_UIMM12:
6570 /* Immediate offset in an address. */
6571 insn = get_aarch64_insn (buf);
6572
6573 gas_assert (new_inst != NULL && new_inst->value == insn);
6574 gas_assert (new_inst->opcode->operands[1] == opnd
6575 || new_inst->opcode->operands[2] == opnd);
6576
6577 /* Get the index of the address operand. */
6578 if (new_inst->opcode->operands[1] == opnd)
6579 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6580 idx = 1;
6581 else
6582 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6583 idx = 2;
6584
6585 /* Update the resolved offset value. */
6586 new_inst->operands[idx].addr.offset.imm = value;
6587
6588 /* Encode/fix-up. */
6589 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6590 &new_inst->value, NULL, NULL))
6591 {
6592 put_aarch64_insn (buf, new_inst->value);
6593 break;
6594 }
6595 else if (new_inst->opcode->iclass == ldst_pos
6596 && try_to_encode_as_unscaled_ldst (new_inst))
6597 {
6598 put_aarch64_insn (buf, new_inst->value);
6599 break;
6600 }
6601
6602 as_bad_where (fixP->fx_file, fixP->fx_line,
6603 _("immediate offset out of range"));
6604 break;
6605
6606 default:
6607 gas_assert (0);
6608 as_fatal (_("unhandled operand code %d"), opnd);
6609 }
6610}
6611
6612/* Apply a fixup (fixP) to segment data, once it has been determined
6613 by our caller that we have all the info we need to fix it up.
6614
6615 Parameter valP is the pointer to the value of the bits. */
6616
6617void
6618md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6619{
6620 offsetT value = *valP;
6621 uint32_t insn;
6622 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6623 int scale;
6624 unsigned flags = fixP->fx_addnumber;
6625
6626 DEBUG_TRACE ("\n\n");
6627 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6628 DEBUG_TRACE ("Enter md_apply_fix");
6629
6630 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6631
6632 /* Note whether this will delete the relocation. */
6633
6634 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6635 fixP->fx_done = 1;
6636
6637 /* Process the relocations. */
6638 switch (fixP->fx_r_type)
6639 {
6640 case BFD_RELOC_NONE:
6641 /* This will need to go in the object file. */
6642 fixP->fx_done = 0;
6643 break;
6644
6645 case BFD_RELOC_8:
6646 case BFD_RELOC_8_PCREL:
6647 if (fixP->fx_done || !seg->use_rela_p)
6648 md_number_to_chars (buf, value, 1);
6649 break;
6650
6651 case BFD_RELOC_16:
6652 case BFD_RELOC_16_PCREL:
6653 if (fixP->fx_done || !seg->use_rela_p)
6654 md_number_to_chars (buf, value, 2);
6655 break;
6656
6657 case BFD_RELOC_32:
6658 case BFD_RELOC_32_PCREL:
6659 if (fixP->fx_done || !seg->use_rela_p)
6660 md_number_to_chars (buf, value, 4);
6661 break;
6662
6663 case BFD_RELOC_64:
6664 case BFD_RELOC_64_PCREL:
6665 if (fixP->fx_done || !seg->use_rela_p)
6666 md_number_to_chars (buf, value, 8);
6667 break;
6668
6669 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6670 /* We claim that these fixups have been processed here, even if
6671 in fact we generate an error because we do not have a reloc
6672 for them, so tc_gen_reloc() will reject them. */
6673 fixP->fx_done = 1;
6674 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6675 {
6676 as_bad_where (fixP->fx_file, fixP->fx_line,
6677 _("undefined symbol %s used as an immediate value"),
6678 S_GET_NAME (fixP->fx_addsy));
6679 goto apply_fix_return;
6680 }
6681 fix_insn (fixP, flags, value);
6682 break;
6683
6684 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6685 if (fixP->fx_done || !seg->use_rela_p)
6686 {
89d2a2a3
MS
6687 if (value & 3)
6688 as_bad_where (fixP->fx_file, fixP->fx_line,
6689 _("pc-relative load offset not word aligned"));
6690 if (signed_overflow (value, 21))
6691 as_bad_where (fixP->fx_file, fixP->fx_line,
6692 _("pc-relative load offset out of range"));
a06ea964
NC
6693 insn = get_aarch64_insn (buf);
6694 insn |= encode_ld_lit_ofs_19 (value >> 2);
6695 put_aarch64_insn (buf, insn);
6696 }
6697 break;
6698
6699 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6700 if (fixP->fx_done || !seg->use_rela_p)
6701 {
89d2a2a3
MS
6702 if (signed_overflow (value, 21))
6703 as_bad_where (fixP->fx_file, fixP->fx_line,
6704 _("pc-relative address offset out of range"));
a06ea964
NC
6705 insn = get_aarch64_insn (buf);
6706 insn |= encode_adr_imm (value);
6707 put_aarch64_insn (buf, insn);
6708 }
6709 break;
6710
6711 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6712 if (fixP->fx_done || !seg->use_rela_p)
6713 {
89d2a2a3
MS
6714 if (value & 3)
6715 as_bad_where (fixP->fx_file, fixP->fx_line,
6716 _("conditional branch target not word aligned"));
6717 if (signed_overflow (value, 21))
6718 as_bad_where (fixP->fx_file, fixP->fx_line,
6719 _("conditional branch out of range"));
a06ea964
NC
6720 insn = get_aarch64_insn (buf);
6721 insn |= encode_cond_branch_ofs_19 (value >> 2);
6722 put_aarch64_insn (buf, insn);
6723 }
6724 break;
6725
6726 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6727 if (fixP->fx_done || !seg->use_rela_p)
6728 {
89d2a2a3
MS
6729 if (value & 3)
6730 as_bad_where (fixP->fx_file, fixP->fx_line,
6731 _("conditional branch target not word aligned"));
6732 if (signed_overflow (value, 16))
6733 as_bad_where (fixP->fx_file, fixP->fx_line,
6734 _("conditional branch out of range"));
a06ea964
NC
6735 insn = get_aarch64_insn (buf);
6736 insn |= encode_tst_branch_ofs_14 (value >> 2);
6737 put_aarch64_insn (buf, insn);
6738 }
6739 break;
6740
a06ea964 6741 case BFD_RELOC_AARCH64_CALL26:
f09c556a 6742 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6743 if (fixP->fx_done || !seg->use_rela_p)
6744 {
89d2a2a3
MS
6745 if (value & 3)
6746 as_bad_where (fixP->fx_file, fixP->fx_line,
6747 _("branch target not word aligned"));
6748 if (signed_overflow (value, 28))
6749 as_bad_where (fixP->fx_file, fixP->fx_line,
6750 _("branch out of range"));
a06ea964
NC
6751 insn = get_aarch64_insn (buf);
6752 insn |= encode_branch_ofs_26 (value >> 2);
6753 put_aarch64_insn (buf, insn);
6754 }
6755 break;
6756
6757 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6758 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6759 case BFD_RELOC_AARCH64_MOVW_G0_S:
a06ea964
NC
6760 scale = 0;
6761 goto movw_common;
6762 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6763 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6764 case BFD_RELOC_AARCH64_MOVW_G1_S:
a06ea964
NC
6765 scale = 16;
6766 goto movw_common;
6767 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 6768 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 6769 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
6770 scale = 32;
6771 goto movw_common;
6772 case BFD_RELOC_AARCH64_MOVW_G3:
6773 scale = 48;
6774 movw_common:
6775 if (fixP->fx_done || !seg->use_rela_p)
6776 {
6777 insn = get_aarch64_insn (buf);
6778
6779 if (!fixP->fx_done)
6780 {
6781 /* REL signed addend must fit in 16 bits */
6782 if (signed_overflow (value, 16))
6783 as_bad_where (fixP->fx_file, fixP->fx_line,
6784 _("offset out of range"));
6785 }
6786 else
6787 {
6788 /* Check for overflow and scale. */
6789 switch (fixP->fx_r_type)
6790 {
6791 case BFD_RELOC_AARCH64_MOVW_G0:
6792 case BFD_RELOC_AARCH64_MOVW_G1:
6793 case BFD_RELOC_AARCH64_MOVW_G2:
6794 case BFD_RELOC_AARCH64_MOVW_G3:
6795 if (unsigned_overflow (value, scale + 16))
6796 as_bad_where (fixP->fx_file, fixP->fx_line,
6797 _("unsigned value out of range"));
6798 break;
6799 case BFD_RELOC_AARCH64_MOVW_G0_S:
6800 case BFD_RELOC_AARCH64_MOVW_G1_S:
6801 case BFD_RELOC_AARCH64_MOVW_G2_S:
6802 /* NOTE: We can only come here with movz or movn. */
6803 if (signed_overflow (value, scale + 16))
6804 as_bad_where (fixP->fx_file, fixP->fx_line,
6805 _("signed value out of range"));
6806 if (value < 0)
6807 {
6808 /* Force use of MOVN. */
6809 value = ~value;
6810 insn = reencode_movzn_to_movn (insn);
6811 }
6812 else
6813 {
6814 /* Force use of MOVZ. */
6815 insn = reencode_movzn_to_movz (insn);
6816 }
6817 break;
6818 default:
6819 /* Unchecked relocations. */
6820 break;
6821 }
6822 value >>= scale;
6823 }
6824
6825 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6826 insn |= encode_movw_imm (value & 0xffff);
6827
6828 put_aarch64_insn (buf, insn);
6829 }
6830 break;
6831
a6bb11b2
YZ
6832 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6833 fixP->fx_r_type = (ilp32_p
6834 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6835 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6836 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6837 /* Should always be exported to object file, see
6838 aarch64_force_relocation(). */
6839 gas_assert (!fixP->fx_done);
6840 gas_assert (seg->use_rela_p);
6841 break;
6842
6843 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6844 fixP->fx_r_type = (ilp32_p
6845 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6846 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6847 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6848 /* Should always be exported to object file, see
6849 aarch64_force_relocation(). */
6850 gas_assert (!fixP->fx_done);
6851 gas_assert (seg->use_rela_p);
6852 break;
6853
2c0a3565
MS
6854 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6855 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6856 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
6857 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6858 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6859 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 6860 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6861 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6862 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 6863 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6864 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6865 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6866 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
49df5539 6867 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 6868 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 6869 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 6870 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 6871 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 6872 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
49df5539
JW
6873 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6874 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6875 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6876 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6877 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 6878 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6879 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6880 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6881 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6882 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6883 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6884 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6885 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6886 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6887 /* Should always be exported to object file, see
6888 aarch64_force_relocation(). */
6889 gas_assert (!fixP->fx_done);
6890 gas_assert (seg->use_rela_p);
6891 break;
6892
a6bb11b2
YZ
6893 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6894 /* Should always be exported to object file, see
6895 aarch64_force_relocation(). */
6896 fixP->fx_r_type = (ilp32_p
6897 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6898 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6899 gas_assert (!fixP->fx_done);
6900 gas_assert (seg->use_rela_p);
6901 break;
6902
a06ea964 6903 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
6904 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6905 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6906 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6907 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6908 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 6909 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 6910 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 6911 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
6912 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6913 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
6914 case BFD_RELOC_AARCH64_LDST16_LO12:
6915 case BFD_RELOC_AARCH64_LDST32_LO12:
6916 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 6917 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
6918 /* Should always be exported to object file, see
6919 aarch64_force_relocation(). */
6920 gas_assert (!fixP->fx_done);
6921 gas_assert (seg->use_rela_p);
6922 break;
6923
6924 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 6925 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 6926 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
6927 break;
6928
b97e87cc
NC
6929 case BFD_RELOC_UNUSED:
6930 /* An error will already have been reported. */
6931 break;
6932
a06ea964
NC
6933 default:
6934 as_bad_where (fixP->fx_file, fixP->fx_line,
6935 _("unexpected %s fixup"),
6936 bfd_get_reloc_code_name (fixP->fx_r_type));
6937 break;
6938 }
6939
6940apply_fix_return:
6941 /* Free the allocated the struct aarch64_inst.
6942 N.B. currently there are very limited number of fix-up types actually use
6943 this field, so the impact on the performance should be minimal . */
6944 if (fixP->tc_fix_data.inst != NULL)
6945 free (fixP->tc_fix_data.inst);
6946
6947 return;
6948}
6949
6950/* Translate internal representation of relocation info to BFD target
6951 format. */
6952
6953arelent *
6954tc_gen_reloc (asection * section, fixS * fixp)
6955{
6956 arelent *reloc;
6957 bfd_reloc_code_real_type code;
6958
6959 reloc = xmalloc (sizeof (arelent));
6960
6961 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
6962 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6963 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6964
6965 if (fixp->fx_pcrel)
6966 {
6967 if (section->use_rela_p)
6968 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
6969 else
6970 fixp->fx_offset = reloc->address;
6971 }
6972 reloc->addend = fixp->fx_offset;
6973
6974 code = fixp->fx_r_type;
6975 switch (code)
6976 {
6977 case BFD_RELOC_16:
6978 if (fixp->fx_pcrel)
6979 code = BFD_RELOC_16_PCREL;
6980 break;
6981
6982 case BFD_RELOC_32:
6983 if (fixp->fx_pcrel)
6984 code = BFD_RELOC_32_PCREL;
6985 break;
6986
6987 case BFD_RELOC_64:
6988 if (fixp->fx_pcrel)
6989 code = BFD_RELOC_64_PCREL;
6990 break;
6991
6992 default:
6993 break;
6994 }
6995
6996 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6997 if (reloc->howto == NULL)
6998 {
6999 as_bad_where (fixp->fx_file, fixp->fx_line,
7000 _
7001 ("cannot represent %s relocation in this object file format"),
7002 bfd_get_reloc_code_name (code));
7003 return NULL;
7004 }
7005
7006 return reloc;
7007}
7008
7009/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7010
7011void
7012cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7013{
7014 bfd_reloc_code_real_type type;
7015 int pcrel = 0;
7016
7017 /* Pick a reloc.
7018 FIXME: @@ Should look at CPU word size. */
7019 switch (size)
7020 {
7021 case 1:
7022 type = BFD_RELOC_8;
7023 break;
7024 case 2:
7025 type = BFD_RELOC_16;
7026 break;
7027 case 4:
7028 type = BFD_RELOC_32;
7029 break;
7030 case 8:
7031 type = BFD_RELOC_64;
7032 break;
7033 default:
7034 as_bad (_("cannot do %u-byte relocation"), size);
7035 type = BFD_RELOC_UNUSED;
7036 break;
7037 }
7038
7039 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7040}
7041
7042int
7043aarch64_force_relocation (struct fix *fixp)
7044{
7045 switch (fixp->fx_r_type)
7046 {
7047 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7048 /* Perform these "immediate" internal relocations
7049 even if the symbol is extern or weak. */
7050 return 0;
7051
a6bb11b2 7052 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
7053 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7054 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
7055 /* Pseudo relocs that need to be fixed up according to
7056 ilp32_p. */
7057 return 0;
7058
2c0a3565
MS
7059 case BFD_RELOC_AARCH64_ADD_LO12:
7060 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7061 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7062 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7063 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7064 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7065 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7066 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7067 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
7068 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7069 case BFD_RELOC_AARCH64_LDST128_LO12:
7070 case BFD_RELOC_AARCH64_LDST16_LO12:
7071 case BFD_RELOC_AARCH64_LDST32_LO12:
7072 case BFD_RELOC_AARCH64_LDST64_LO12:
7073 case BFD_RELOC_AARCH64_LDST8_LO12:
7074 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7075 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7076 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7077 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7078 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7079 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7080 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7081 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7082 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 7083 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7084 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7085 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7086 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
49df5539 7087 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7088 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7089 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7090 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7091 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7092 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
49df5539
JW
7093 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7094 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7095 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7096 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7097 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7098 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7099 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7100 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7101 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7102 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7103 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7104 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7105 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7106 /* Always leave these relocations for the linker. */
7107 return 1;
7108
7109 default:
7110 break;
7111 }
7112
7113 return generic_force_reloc (fixp);
7114}
7115
7116#ifdef OBJ_ELF
7117
7118const char *
7119elf64_aarch64_target_format (void)
7120{
7121 if (target_big_endian)
cec5225b 7122 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 7123 else
cec5225b 7124 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
7125}
7126
7127void
7128aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7129{
7130 elf_frob_symbol (symp, puntp);
7131}
7132#endif
7133
7134/* MD interface: Finalization. */
7135
7136/* A good place to do this, although this was probably not intended
7137 for this kind of use. We need to dump the literal pool before
7138 references are made to a null symbol pointer. */
7139
7140void
7141aarch64_cleanup (void)
7142{
7143 literal_pool *pool;
7144
7145 for (pool = list_of_pools; pool; pool = pool->next)
7146 {
7147 /* Put it at the end of the relevant section. */
7148 subseg_set (pool->section, pool->sub_section);
7149 s_ltorg (0);
7150 }
7151}
7152
7153#ifdef OBJ_ELF
7154/* Remove any excess mapping symbols generated for alignment frags in
7155 SEC. We may have created a mapping symbol before a zero byte
7156 alignment; remove it if there's a mapping symbol after the
7157 alignment. */
7158static void
7159check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7160 void *dummy ATTRIBUTE_UNUSED)
7161{
7162 segment_info_type *seginfo = seg_info (sec);
7163 fragS *fragp;
7164
7165 if (seginfo == NULL || seginfo->frchainP == NULL)
7166 return;
7167
7168 for (fragp = seginfo->frchainP->frch_root;
7169 fragp != NULL; fragp = fragp->fr_next)
7170 {
7171 symbolS *sym = fragp->tc_frag_data.last_map;
7172 fragS *next = fragp->fr_next;
7173
7174 /* Variable-sized frags have been converted to fixed size by
7175 this point. But if this was variable-sized to start with,
7176 there will be a fixed-size frag after it. So don't handle
7177 next == NULL. */
7178 if (sym == NULL || next == NULL)
7179 continue;
7180
7181 if (S_GET_VALUE (sym) < next->fr_address)
7182 /* Not at the end of this frag. */
7183 continue;
7184 know (S_GET_VALUE (sym) == next->fr_address);
7185
7186 do
7187 {
7188 if (next->tc_frag_data.first_map != NULL)
7189 {
7190 /* Next frag starts with a mapping symbol. Discard this
7191 one. */
7192 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7193 break;
7194 }
7195
7196 if (next->fr_next == NULL)
7197 {
7198 /* This mapping symbol is at the end of the section. Discard
7199 it. */
7200 know (next->fr_fix == 0 && next->fr_var == 0);
7201 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7202 break;
7203 }
7204
7205 /* As long as we have empty frags without any mapping symbols,
7206 keep looking. */
7207 /* If the next frag is non-empty and does not start with a
7208 mapping symbol, then this mapping symbol is required. */
7209 if (next->fr_address != next->fr_next->fr_address)
7210 break;
7211
7212 next = next->fr_next;
7213 }
7214 while (next != NULL);
7215 }
7216}
7217#endif
7218
7219/* Adjust the symbol table. */
7220
7221void
7222aarch64_adjust_symtab (void)
7223{
7224#ifdef OBJ_ELF
7225 /* Remove any overlapping mapping symbols generated by alignment frags. */
7226 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7227 /* Now do generic ELF adjustments. */
7228 elf_adjust_symtab ();
7229#endif
7230}
7231
7232static void
7233checked_hash_insert (struct hash_control *table, const char *key, void *value)
7234{
7235 const char *hash_err;
7236
7237 hash_err = hash_insert (table, key, value);
7238 if (hash_err)
7239 printf ("Internal Error: Can't hash %s\n", key);
7240}
7241
7242static void
7243fill_instruction_hash_table (void)
7244{
7245 aarch64_opcode *opcode = aarch64_opcode_table;
7246
7247 while (opcode->name != NULL)
7248 {
7249 templates *templ, *new_templ;
7250 templ = hash_find (aarch64_ops_hsh, opcode->name);
7251
7252 new_templ = (templates *) xmalloc (sizeof (templates));
7253 new_templ->opcode = opcode;
7254 new_templ->next = NULL;
7255
7256 if (!templ)
7257 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7258 else
7259 {
7260 new_templ->next = templ->next;
7261 templ->next = new_templ;
7262 }
7263 ++opcode;
7264 }
7265}
7266
7267static inline void
7268convert_to_upper (char *dst, const char *src, size_t num)
7269{
7270 unsigned int i;
7271 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7272 *dst = TOUPPER (*src);
7273 *dst = '\0';
7274}
7275
7276/* Assume STR point to a lower-case string, allocate, convert and return
7277 the corresponding upper-case string. */
7278static inline const char*
7279get_upper_str (const char *str)
7280{
7281 char *ret;
7282 size_t len = strlen (str);
7283 if ((ret = xmalloc (len + 1)) == NULL)
7284 abort ();
7285 convert_to_upper (ret, str, len);
7286 return ret;
7287}
7288
7289/* MD interface: Initialization. */
7290
7291void
7292md_begin (void)
7293{
7294 unsigned mach;
7295 unsigned int i;
7296
7297 if ((aarch64_ops_hsh = hash_new ()) == NULL
7298 || (aarch64_cond_hsh = hash_new ()) == NULL
7299 || (aarch64_shift_hsh = hash_new ()) == NULL
7300 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7301 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7302 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7303 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7304 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7305 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7306 || (aarch64_reg_hsh = hash_new ()) == NULL
7307 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7308 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7309 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7310 as_fatal (_("virtual memory exhausted"));
7311
7312 fill_instruction_hash_table ();
7313
7314 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7315 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7316 (void *) (aarch64_sys_regs + i));
7317
7318 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7319 checked_hash_insert (aarch64_pstatefield_hsh,
7320 aarch64_pstatefields[i].name,
7321 (void *) (aarch64_pstatefields + i));
7322
7323 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7324 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7325 aarch64_sys_regs_ic[i].template,
7326 (void *) (aarch64_sys_regs_ic + i));
7327
7328 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7329 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7330 aarch64_sys_regs_dc[i].template,
7331 (void *) (aarch64_sys_regs_dc + i));
7332
7333 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7334 checked_hash_insert (aarch64_sys_regs_at_hsh,
7335 aarch64_sys_regs_at[i].template,
7336 (void *) (aarch64_sys_regs_at + i));
7337
7338 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7339 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7340 aarch64_sys_regs_tlbi[i].template,
7341 (void *) (aarch64_sys_regs_tlbi + i));
7342
7343 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7344 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7345 (void *) (reg_names + i));
7346
7347 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7348 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7349 (void *) (nzcv_names + i));
7350
7351 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7352 {
7353 const char *name = aarch64_operand_modifiers[i].name;
7354 checked_hash_insert (aarch64_shift_hsh, name,
7355 (void *) (aarch64_operand_modifiers + i));
7356 /* Also hash the name in the upper case. */
7357 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7358 (void *) (aarch64_operand_modifiers + i));
7359 }
7360
7361 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7362 {
7363 unsigned int j;
7364 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7365 the same condition code. */
7366 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7367 {
7368 const char *name = aarch64_conds[i].names[j];
7369 if (name == NULL)
7370 break;
7371 checked_hash_insert (aarch64_cond_hsh, name,
7372 (void *) (aarch64_conds + i));
7373 /* Also hash the name in the upper case. */
7374 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7375 (void *) (aarch64_conds + i));
7376 }
7377 }
7378
7379 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7380 {
7381 const char *name = aarch64_barrier_options[i].name;
7382 /* Skip xx00 - the unallocated values of option. */
7383 if ((i & 0x3) == 0)
7384 continue;
7385 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7386 (void *) (aarch64_barrier_options + i));
7387 /* Also hash the name in the upper case. */
7388 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7389 (void *) (aarch64_barrier_options + i));
7390 }
7391
7392 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7393 {
7394 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7395 /* Skip the unallocated hint encodings. */
7396 if (name == NULL)
a06ea964
NC
7397 continue;
7398 checked_hash_insert (aarch64_pldop_hsh, name,
7399 (void *) (aarch64_prfops + i));
7400 /* Also hash the name in the upper case. */
7401 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7402 (void *) (aarch64_prfops + i));
7403 }
7404
7405 /* Set the cpu variant based on the command-line options. */
7406 if (!mcpu_cpu_opt)
7407 mcpu_cpu_opt = march_cpu_opt;
7408
7409 if (!mcpu_cpu_opt)
7410 mcpu_cpu_opt = &cpu_default;
7411
7412 cpu_variant = *mcpu_cpu_opt;
7413
7414 /* Record the CPU type. */
cec5225b 7415 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7416
7417 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7418}
7419
7420/* Command line processing. */
7421
7422const char *md_shortopts = "m:";
7423
7424#ifdef AARCH64_BI_ENDIAN
7425#define OPTION_EB (OPTION_MD_BASE + 0)
7426#define OPTION_EL (OPTION_MD_BASE + 1)
7427#else
7428#if TARGET_BYTES_BIG_ENDIAN
7429#define OPTION_EB (OPTION_MD_BASE + 0)
7430#else
7431#define OPTION_EL (OPTION_MD_BASE + 1)
7432#endif
7433#endif
7434
7435struct option md_longopts[] = {
7436#ifdef OPTION_EB
7437 {"EB", no_argument, NULL, OPTION_EB},
7438#endif
7439#ifdef OPTION_EL
7440 {"EL", no_argument, NULL, OPTION_EL},
7441#endif
7442 {NULL, no_argument, NULL, 0}
7443};
7444
7445size_t md_longopts_size = sizeof (md_longopts);
7446
7447struct aarch64_option_table
7448{
7449 char *option; /* Option name to match. */
7450 char *help; /* Help information. */
7451 int *var; /* Variable to change. */
7452 int value; /* What to change it to. */
7453 char *deprecated; /* If non-null, print this message. */
7454};
7455
7456static struct aarch64_option_table aarch64_opts[] = {
7457 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7458 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7459 NULL},
7460#ifdef DEBUG_AARCH64
7461 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7462#endif /* DEBUG_AARCH64 */
7463 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7464 NULL},
a52e6fd3
YZ
7465 {"mno-verbose-error", N_("do not output verbose error messages"),
7466 &verbose_error_p, 0, NULL},
a06ea964
NC
7467 {NULL, NULL, NULL, 0, NULL}
7468};
7469
7470struct aarch64_cpu_option_table
7471{
7472 char *name;
7473 const aarch64_feature_set value;
7474 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7475 case. */
7476 const char *canonical_name;
7477};
7478
7479/* This list should, at a minimum, contain all the cpu names
7480 recognized by GCC. */
7481static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7482 {"all", AARCH64_ANY, NULL},
aa31c464
JW
7483 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7484 AARCH64_FEATURE_CRC), "Cortex-A53"},
7485 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7486 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7487 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7488 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7489 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7490 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7491 "Samsung Exynos M1"},
faade851
JW
7492 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7493 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7494 "Cavium ThunderX"},
070cb956
PT
7495 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7496 in earlier releases and is superseded by 'xgene1' in all
7497 tools. */
9877c63c 7498 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7499 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7500 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7501 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7502 {"generic", AARCH64_ARCH_V8, NULL},
7503
a06ea964
NC
7504 {NULL, AARCH64_ARCH_NONE, NULL}
7505};
7506
7507struct aarch64_arch_option_table
7508{
7509 char *name;
7510 const aarch64_feature_set value;
7511};
7512
7513/* This list should, at a minimum, contain all the architecture names
7514 recognized by GCC. */
7515static const struct aarch64_arch_option_table aarch64_archs[] = {
7516 {"all", AARCH64_ANY},
5a1ad39d 7517 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 7518 {"armv8.1-a", AARCH64_ARCH_V8_1},
a06ea964
NC
7519 {NULL, AARCH64_ARCH_NONE}
7520};
7521
7522/* ISA extensions. */
7523struct aarch64_option_cpu_value_table
7524{
7525 char *name;
7526 const aarch64_feature_set value;
7527};
7528
7529static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7530 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7531 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7532 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7533 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964 7534 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
72ca8fad 7535 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0)},
290806fd 7536 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0)},
9e1f0fa7
MW
7537 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_SIMD
7538 | AARCH64_FEATURE_RDMA, 0)},
a06ea964
NC
7539 {NULL, AARCH64_ARCH_NONE}
7540};
7541
7542struct aarch64_long_option_table
7543{
7544 char *option; /* Substring to match. */
7545 char *help; /* Help information. */
7546 int (*func) (char *subopt); /* Function to decode sub-option. */
7547 char *deprecated; /* If non-null, print this message. */
7548};
7549
7550static int
ae527cd8
JB
7551aarch64_parse_features (char *str, const aarch64_feature_set **opt_p,
7552 bfd_boolean ext_only)
a06ea964
NC
7553{
7554 /* We insist on extensions being added before being removed. We achieve
7555 this by using the ADDING_VALUE variable to indicate whether we are
7556 adding an extension (1) or removing it (0) and only allowing it to
7557 change in the order -1 -> 1 -> 0. */
7558 int adding_value = -1;
7559 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7560
7561 /* Copy the feature set, so that we can modify it. */
7562 *ext_set = **opt_p;
7563 *opt_p = ext_set;
7564
7565 while (str != NULL && *str != 0)
7566 {
7567 const struct aarch64_option_cpu_value_table *opt;
ae527cd8 7568 char *ext = NULL;
a06ea964
NC
7569 int optlen;
7570
ae527cd8 7571 if (!ext_only)
a06ea964 7572 {
ae527cd8
JB
7573 if (*str != '+')
7574 {
7575 as_bad (_("invalid architectural extension"));
7576 return 0;
7577 }
a06ea964 7578
ae527cd8
JB
7579 ext = strchr (++str, '+');
7580 }
a06ea964
NC
7581
7582 if (ext != NULL)
7583 optlen = ext - str;
7584 else
7585 optlen = strlen (str);
7586
7587 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7588 {
7589 if (adding_value != 0)
7590 adding_value = 0;
7591 optlen -= 2;
7592 str += 2;
7593 }
7594 else if (optlen > 0)
7595 {
7596 if (adding_value == -1)
7597 adding_value = 1;
7598 else if (adding_value != 1)
7599 {
7600 as_bad (_("must specify extensions to add before specifying "
7601 "those to remove"));
7602 return FALSE;
7603 }
7604 }
7605
7606 if (optlen == 0)
7607 {
7608 as_bad (_("missing architectural extension"));
7609 return 0;
7610 }
7611
7612 gas_assert (adding_value != -1);
7613
7614 for (opt = aarch64_features; opt->name != NULL; opt++)
7615 if (strncmp (opt->name, str, optlen) == 0)
7616 {
7617 /* Add or remove the extension. */
7618 if (adding_value)
7619 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7620 else
7621 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7622 break;
7623 }
7624
7625 if (opt->name == NULL)
7626 {
7627 as_bad (_("unknown architectural extension `%s'"), str);
7628 return 0;
7629 }
7630
7631 str = ext;
7632 };
7633
7634 return 1;
7635}
7636
7637static int
7638aarch64_parse_cpu (char *str)
7639{
7640 const struct aarch64_cpu_option_table *opt;
7641 char *ext = strchr (str, '+');
7642 size_t optlen;
7643
7644 if (ext != NULL)
7645 optlen = ext - str;
7646 else
7647 optlen = strlen (str);
7648
7649 if (optlen == 0)
7650 {
7651 as_bad (_("missing cpu name `%s'"), str);
7652 return 0;
7653 }
7654
7655 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7656 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7657 {
7658 mcpu_cpu_opt = &opt->value;
7659 if (ext != NULL)
ae527cd8 7660 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7661
7662 return 1;
7663 }
7664
7665 as_bad (_("unknown cpu `%s'"), str);
7666 return 0;
7667}
7668
7669static int
7670aarch64_parse_arch (char *str)
7671{
7672 const struct aarch64_arch_option_table *opt;
7673 char *ext = strchr (str, '+');
7674 size_t optlen;
7675
7676 if (ext != NULL)
7677 optlen = ext - str;
7678 else
7679 optlen = strlen (str);
7680
7681 if (optlen == 0)
7682 {
7683 as_bad (_("missing architecture name `%s'"), str);
7684 return 0;
7685 }
7686
7687 for (opt = aarch64_archs; opt->name != NULL; opt++)
7688 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7689 {
7690 march_cpu_opt = &opt->value;
7691 if (ext != NULL)
ae527cd8 7692 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7693
7694 return 1;
7695 }
7696
7697 as_bad (_("unknown architecture `%s'\n"), str);
7698 return 0;
7699}
7700
69091a2c
YZ
7701/* ABIs. */
7702struct aarch64_option_abi_value_table
7703{
7704 char *name;
7705 enum aarch64_abi_type value;
7706};
7707
7708static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7709 {"ilp32", AARCH64_ABI_ILP32},
7710 {"lp64", AARCH64_ABI_LP64},
7711 {NULL, 0}
7712};
7713
7714static int
7715aarch64_parse_abi (char *str)
7716{
7717 const struct aarch64_option_abi_value_table *opt;
7718 size_t optlen = strlen (str);
7719
7720 if (optlen == 0)
7721 {
7722 as_bad (_("missing abi name `%s'"), str);
7723 return 0;
7724 }
7725
7726 for (opt = aarch64_abis; opt->name != NULL; opt++)
7727 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7728 {
7729 aarch64_abi = opt->value;
7730 return 1;
7731 }
7732
7733 as_bad (_("unknown abi `%s'\n"), str);
7734 return 0;
7735}
7736
a06ea964 7737static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
7738#ifdef OBJ_ELF
7739 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7740 aarch64_parse_abi, NULL},
7741#endif /* OBJ_ELF */
a06ea964
NC
7742 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7743 aarch64_parse_cpu, NULL},
7744 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7745 aarch64_parse_arch, NULL},
7746 {NULL, NULL, 0, NULL}
7747};
7748
7749int
7750md_parse_option (int c, char *arg)
7751{
7752 struct aarch64_option_table *opt;
7753 struct aarch64_long_option_table *lopt;
7754
7755 switch (c)
7756 {
7757#ifdef OPTION_EB
7758 case OPTION_EB:
7759 target_big_endian = 1;
7760 break;
7761#endif
7762
7763#ifdef OPTION_EL
7764 case OPTION_EL:
7765 target_big_endian = 0;
7766 break;
7767#endif
7768
7769 case 'a':
7770 /* Listing option. Just ignore these, we don't support additional
7771 ones. */
7772 return 0;
7773
7774 default:
7775 for (opt = aarch64_opts; opt->option != NULL; opt++)
7776 {
7777 if (c == opt->option[0]
7778 && ((arg == NULL && opt->option[1] == 0)
7779 || streq (arg, opt->option + 1)))
7780 {
7781 /* If the option is deprecated, tell the user. */
7782 if (opt->deprecated != NULL)
7783 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7784 arg ? arg : "", _(opt->deprecated));
7785
7786 if (opt->var != NULL)
7787 *opt->var = opt->value;
7788
7789 return 1;
7790 }
7791 }
7792
7793 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7794 {
7795 /* These options are expected to have an argument. */
7796 if (c == lopt->option[0]
7797 && arg != NULL
7798 && strncmp (arg, lopt->option + 1,
7799 strlen (lopt->option + 1)) == 0)
7800 {
7801 /* If the option is deprecated, tell the user. */
7802 if (lopt->deprecated != NULL)
7803 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7804 _(lopt->deprecated));
7805
7806 /* Call the sup-option parser. */
7807 return lopt->func (arg + strlen (lopt->option) - 1);
7808 }
7809 }
7810
7811 return 0;
7812 }
7813
7814 return 1;
7815}
7816
7817void
7818md_show_usage (FILE * fp)
7819{
7820 struct aarch64_option_table *opt;
7821 struct aarch64_long_option_table *lopt;
7822
7823 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7824
7825 for (opt = aarch64_opts; opt->option != NULL; opt++)
7826 if (opt->help != NULL)
7827 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7828
7829 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7830 if (lopt->help != NULL)
7831 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7832
7833#ifdef OPTION_EB
7834 fprintf (fp, _("\
7835 -EB assemble code for a big-endian cpu\n"));
7836#endif
7837
7838#ifdef OPTION_EL
7839 fprintf (fp, _("\
7840 -EL assemble code for a little-endian cpu\n"));
7841#endif
7842}
7843
7844/* Parse a .cpu directive. */
7845
7846static void
7847s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7848{
7849 const struct aarch64_cpu_option_table *opt;
7850 char saved_char;
7851 char *name;
7852 char *ext;
7853 size_t optlen;
7854
7855 name = input_line_pointer;
7856 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7857 input_line_pointer++;
7858 saved_char = *input_line_pointer;
7859 *input_line_pointer = 0;
7860
7861 ext = strchr (name, '+');
7862
7863 if (ext != NULL)
7864 optlen = ext - name;
7865 else
7866 optlen = strlen (name);
7867
7868 /* Skip the first "all" entry. */
7869 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7870 if (strlen (opt->name) == optlen
7871 && strncmp (name, opt->name, optlen) == 0)
7872 {
7873 mcpu_cpu_opt = &opt->value;
7874 if (ext != NULL)
ae527cd8 7875 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7876 return;
7877
7878 cpu_variant = *mcpu_cpu_opt;
7879
7880 *input_line_pointer = saved_char;
7881 demand_empty_rest_of_line ();
7882 return;
7883 }
7884 as_bad (_("unknown cpu `%s'"), name);
7885 *input_line_pointer = saved_char;
7886 ignore_rest_of_line ();
7887}
7888
7889
7890/* Parse a .arch directive. */
7891
7892static void
7893s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7894{
7895 const struct aarch64_arch_option_table *opt;
7896 char saved_char;
7897 char *name;
7898 char *ext;
7899 size_t optlen;
7900
7901 name = input_line_pointer;
7902 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7903 input_line_pointer++;
7904 saved_char = *input_line_pointer;
7905 *input_line_pointer = 0;
7906
7907 ext = strchr (name, '+');
7908
7909 if (ext != NULL)
7910 optlen = ext - name;
7911 else
7912 optlen = strlen (name);
7913
7914 /* Skip the first "all" entry. */
7915 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7916 if (strlen (opt->name) == optlen
7917 && strncmp (name, opt->name, optlen) == 0)
7918 {
7919 mcpu_cpu_opt = &opt->value;
7920 if (ext != NULL)
ae527cd8 7921 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7922 return;
7923
7924 cpu_variant = *mcpu_cpu_opt;
7925
7926 *input_line_pointer = saved_char;
7927 demand_empty_rest_of_line ();
7928 return;
7929 }
7930
7931 as_bad (_("unknown architecture `%s'\n"), name);
7932 *input_line_pointer = saved_char;
7933 ignore_rest_of_line ();
7934}
7935
ae527cd8
JB
7936/* Parse a .arch_extension directive. */
7937
7938static void
7939s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
7940{
7941 char saved_char;
7942 char *ext = input_line_pointer;;
7943
7944 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7945 input_line_pointer++;
7946 saved_char = *input_line_pointer;
7947 *input_line_pointer = 0;
7948
7949 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
7950 return;
7951
7952 cpu_variant = *mcpu_cpu_opt;
7953
7954 *input_line_pointer = saved_char;
7955 demand_empty_rest_of_line ();
7956}
7957
a06ea964
NC
7958/* Copy symbol information. */
7959
7960void
7961aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
7962{
7963 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
7964}
This page took 0.671671 seconds and 4 git commands to generate.