Add support to the MSP430 linker for the automatic placement of code and data into...
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
b90efa5b 3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
409
410/* Stuff needed to resolve the label ambiguity
411 As:
412 ...
413 label: <insn>
414 may differ from:
415 ...
416 label:
417 <insn> */
418
419static symbolS *last_label_seen;
420
421/* Literal pool structure. Held on a per-section
422 and per-sub-section basis. */
423
424#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
425typedef struct literal_expression
426{
427 expressionS exp;
428 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
429 LITTLENUM_TYPE * bignum;
430} literal_expression;
431
a06ea964
NC
432typedef struct literal_pool
433{
55d9b4c1 434 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
435 unsigned int next_free_entry;
436 unsigned int id;
437 symbolS *symbol;
438 segT section;
439 subsegT sub_section;
440 int size;
441 struct literal_pool *next;
442} literal_pool;
443
444/* Pointer to a linked list of literal pools. */
445static literal_pool *list_of_pools = NULL;
446\f
447/* Pure syntax. */
448
449/* This array holds the chars that always start a comment. If the
450 pre-processor is disabled, these aren't very useful. */
451const char comment_chars[] = "";
452
453/* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
455 .line and .file directives will appear in the pre-processed output. */
456/* Note that input_file.c hand checks for '#' at the beginning of the
457 first line of the input file. This is because the compiler outputs
458 #NO_APP at the beginning of its output. */
459/* Also note that comments like this one will always work. */
460const char line_comment_chars[] = "#";
461
462const char line_separator_chars[] = ";";
463
464/* Chars that can be used to separate mant
465 from exp in floating point numbers. */
466const char EXP_CHARS[] = "eE";
467
468/* Chars that mean this number is a floating point constant. */
469/* As in 0f12.456 */
470/* or 0d1.2345e12 */
471
472const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
473
474/* Prefix character that indicates the start of an immediate value. */
475#define is_immediate_prefix(C) ((C) == '#')
476
477/* Separator character handling. */
478
479#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
480
481static inline bfd_boolean
482skip_past_char (char **str, char c)
483{
484 if (**str == c)
485 {
486 (*str)++;
487 return TRUE;
488 }
489 else
490 return FALSE;
491}
492
493#define skip_past_comma(str) skip_past_char (str, ',')
494
495/* Arithmetic expressions (possibly involving symbols). */
496
a06ea964
NC
497static bfd_boolean in_my_get_expression_p = FALSE;
498
499/* Third argument to my_get_expression. */
500#define GE_NO_PREFIX 0
501#define GE_OPT_PREFIX 1
502
503/* Return TRUE if the string pointed by *STR is successfully parsed
504 as an valid expression; *EP will be filled with the information of
505 such an expression. Otherwise return FALSE. */
506
507static bfd_boolean
508my_get_expression (expressionS * ep, char **str, int prefix_mode,
509 int reject_absent)
510{
511 char *save_in;
512 segT seg;
513 int prefix_present_p = 0;
514
515 switch (prefix_mode)
516 {
517 case GE_NO_PREFIX:
518 break;
519 case GE_OPT_PREFIX:
520 if (is_immediate_prefix (**str))
521 {
522 (*str)++;
523 prefix_present_p = 1;
524 }
525 break;
526 default:
527 abort ();
528 }
529
530 memset (ep, 0, sizeof (expressionS));
531
532 save_in = input_line_pointer;
533 input_line_pointer = *str;
534 in_my_get_expression_p = TRUE;
535 seg = expression (ep);
536 in_my_get_expression_p = FALSE;
537
538 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
539 {
540 /* We found a bad expression in md_operand(). */
541 *str = input_line_pointer;
542 input_line_pointer = save_in;
543 if (prefix_present_p && ! error_p ())
544 set_fatal_syntax_error (_("bad expression"));
545 else
546 set_first_syntax_error (_("bad expression"));
547 return FALSE;
548 }
549
550#ifdef OBJ_AOUT
551 if (seg != absolute_section
552 && seg != text_section
553 && seg != data_section
554 && seg != bss_section && seg != undefined_section)
555 {
556 set_syntax_error (_("bad segment"));
557 *str = input_line_pointer;
558 input_line_pointer = save_in;
559 return FALSE;
560 }
561#else
562 (void) seg;
563#endif
564
a06ea964
NC
565 *str = input_line_pointer;
566 input_line_pointer = save_in;
567 return TRUE;
568}
569
570/* Turn a string in input_line_pointer into a floating point constant
571 of type TYPE, and store the appropriate bytes in *LITP. The number
572 of LITTLENUMS emitted is stored in *SIZEP. An error message is
573 returned, or NULL on OK. */
574
575char *
576md_atof (int type, char *litP, int *sizeP)
577{
578 return ieee_md_atof (type, litP, sizeP, target_big_endian);
579}
580
581/* We handle all bad expressions here, so that we can report the faulty
582 instruction in the error message. */
583void
584md_operand (expressionS * exp)
585{
586 if (in_my_get_expression_p)
587 exp->X_op = O_illegal;
588}
589
590/* Immediate values. */
591
592/* Errors may be set multiple times during parsing or bit encoding
593 (particularly in the Neon bits), but usually the earliest error which is set
594 will be the most meaningful. Avoid overwriting it with later (cascading)
595 errors by calling this function. */
596
597static void
598first_error (const char *error)
599{
600 if (! error_p ())
601 set_syntax_error (error);
602}
603
604/* Similiar to first_error, but this function accepts formatted error
605 message. */
606static void
607first_error_fmt (const char *format, ...)
608{
609 va_list args;
610 enum
611 { size = 100 };
612 /* N.B. this single buffer will not cause error messages for different
613 instructions to pollute each other; this is because at the end of
614 processing of each assembly line, error message if any will be
615 collected by as_bad. */
616 static char buffer[size];
617
618 if (! error_p ())
619 {
3e0baa28 620 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
621 va_start (args, format);
622 ret = vsnprintf (buffer, size, format, args);
623 know (ret <= size - 1 && ret >= 0);
624 va_end (args);
625 set_syntax_error (buffer);
626 }
627}
628
629/* Register parsing. */
630
631/* Generic register parser which is called by other specialized
632 register parsers.
633 CCP points to what should be the beginning of a register name.
634 If it is indeed a valid register name, advance CCP over it and
635 return the reg_entry structure; otherwise return NULL.
636 It does not issue diagnostics. */
637
638static reg_entry *
639parse_reg (char **ccp)
640{
641 char *start = *ccp;
642 char *p;
643 reg_entry *reg;
644
645#ifdef REGISTER_PREFIX
646 if (*start != REGISTER_PREFIX)
647 return NULL;
648 start++;
649#endif
650
651 p = start;
652 if (!ISALPHA (*p) || !is_name_beginner (*p))
653 return NULL;
654
655 do
656 p++;
657 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
658
659 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
660
661 if (!reg)
662 return NULL;
663
664 *ccp = p;
665 return reg;
666}
667
668/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
669 return FALSE. */
670static bfd_boolean
671aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
672{
673 if (reg->type == type)
674 return TRUE;
675
676 switch (type)
677 {
678 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
679 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
680 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
681 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
682 case REG_TYPE_VN: /* Vector register. */
683 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
684 return ((reg_type_masks[reg->type] & reg_type_masks[type])
685 == reg_type_masks[reg->type]);
686 default:
687 as_fatal ("unhandled type %d", type);
688 abort ();
689 }
690}
691
692/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
693 Return the register number otherwise. *ISREG32 is set to one if the
694 register is 32-bit wide; *ISREGZERO is set to one if the register is
695 of type Z_32 or Z_64.
696 Note that this function does not issue any diagnostics. */
697
698static int
699aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
700 int *isreg32, int *isregzero)
701{
702 char *str = *ccp;
703 const reg_entry *reg = parse_reg (&str);
704
705 if (reg == NULL)
706 return PARSE_FAIL;
707
708 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
709 return PARSE_FAIL;
710
711 switch (reg->type)
712 {
713 case REG_TYPE_SP_32:
714 case REG_TYPE_SP_64:
715 if (reject_sp)
716 return PARSE_FAIL;
717 *isreg32 = reg->type == REG_TYPE_SP_32;
718 *isregzero = 0;
719 break;
720 case REG_TYPE_R_32:
721 case REG_TYPE_R_64:
722 *isreg32 = reg->type == REG_TYPE_R_32;
723 *isregzero = 0;
724 break;
725 case REG_TYPE_Z_32:
726 case REG_TYPE_Z_64:
727 if (reject_rz)
728 return PARSE_FAIL;
729 *isreg32 = reg->type == REG_TYPE_Z_32;
730 *isregzero = 1;
731 break;
732 default:
733 return PARSE_FAIL;
734 }
735
736 *ccp = str;
737
738 return reg->number;
739}
740
741/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
742 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
743 otherwise return FALSE.
744
745 Accept only one occurrence of:
746 8b 16b 4h 8h 2s 4s 1d 2d
747 b h s d q */
748static bfd_boolean
749parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
750{
751 char *ptr = *str;
752 unsigned width;
753 unsigned element_size;
754 enum neon_el_type type;
755
756 /* skip '.' */
757 ptr++;
758
759 if (!ISDIGIT (*ptr))
760 {
761 width = 0;
762 goto elt_size;
763 }
764 width = strtoul (ptr, &ptr, 10);
765 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
766 {
767 first_error_fmt (_("bad size %d in vector width specifier"), width);
768 return FALSE;
769 }
770
771elt_size:
772 switch (TOLOWER (*ptr))
773 {
774 case 'b':
775 type = NT_b;
776 element_size = 8;
777 break;
778 case 'h':
779 type = NT_h;
780 element_size = 16;
781 break;
782 case 's':
783 type = NT_s;
784 element_size = 32;
785 break;
786 case 'd':
787 type = NT_d;
788 element_size = 64;
789 break;
790 case 'q':
791 if (width == 1)
792 {
793 type = NT_q;
794 element_size = 128;
795 break;
796 }
797 /* fall through. */
798 default:
799 if (*ptr != '\0')
800 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
801 else
802 first_error (_("missing element size"));
803 return FALSE;
804 }
805 if (width != 0 && width * element_size != 64 && width * element_size != 128)
806 {
807 first_error_fmt (_
808 ("invalid element size %d and vector size combination %c"),
809 width, *ptr);
810 return FALSE;
811 }
812 ptr++;
813
814 parsed_type->type = type;
815 parsed_type->width = width;
816
817 *str = ptr;
818
819 return TRUE;
820}
821
822/* Parse a single type, e.g. ".8b", leading period included.
823 Only applicable to Vn registers.
824
825 Return TRUE on success; otherwise return FALSE. */
826static bfd_boolean
827parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
828{
829 char *str = *ccp;
830
831 if (*str == '.')
832 {
833 if (! parse_neon_type_for_operand (vectype, &str))
834 {
835 first_error (_("vector type expected"));
836 return FALSE;
837 }
838 }
839 else
840 return FALSE;
841
842 *ccp = str;
843
844 return TRUE;
845}
846
847/* Parse a register of the type TYPE.
848
849 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
850 name or the parsed register is not of TYPE.
851
852 Otherwise return the register number, and optionally fill in the actual
853 type of the register in *RTYPE when multiple alternatives were given, and
854 return the register shape and element index information in *TYPEINFO.
855
856 IN_REG_LIST should be set with TRUE if the caller is parsing a register
857 list. */
858
859static int
860parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
861 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
862{
863 char *str = *ccp;
864 const reg_entry *reg = parse_reg (&str);
865 struct neon_type_el atype;
866 struct neon_type_el parsetype;
867 bfd_boolean is_typed_vecreg = FALSE;
868
869 atype.defined = 0;
870 atype.type = NT_invtype;
871 atype.width = -1;
872 atype.index = 0;
873
874 if (reg == NULL)
875 {
876 if (typeinfo)
877 *typeinfo = atype;
878 set_default_error ();
879 return PARSE_FAIL;
880 }
881
882 if (! aarch64_check_reg_type (reg, type))
883 {
884 DEBUG_TRACE ("reg type check failed");
885 set_default_error ();
886 return PARSE_FAIL;
887 }
888 type = reg->type;
889
890 if (type == REG_TYPE_VN
891 && parse_neon_operand_type (&parsetype, &str))
892 {
893 /* Register if of the form Vn.[bhsdq]. */
894 is_typed_vecreg = TRUE;
895
896 if (parsetype.width == 0)
897 /* Expect index. In the new scheme we cannot have
898 Vn.[bhsdq] represent a scalar. Therefore any
899 Vn.[bhsdq] should have an index following it.
900 Except in reglists ofcourse. */
901 atype.defined |= NTA_HASINDEX;
902 else
903 atype.defined |= NTA_HASTYPE;
904
905 atype.type = parsetype.type;
906 atype.width = parsetype.width;
907 }
908
909 if (skip_past_char (&str, '['))
910 {
911 expressionS exp;
912
913 /* Reject Sn[index] syntax. */
914 if (!is_typed_vecreg)
915 {
916 first_error (_("this type of register can't be indexed"));
917 return PARSE_FAIL;
918 }
919
920 if (in_reg_list == TRUE)
921 {
922 first_error (_("index not allowed inside register list"));
923 return PARSE_FAIL;
924 }
925
926 atype.defined |= NTA_HASINDEX;
927
928 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
929
930 if (exp.X_op != O_constant)
931 {
932 first_error (_("constant expression required"));
933 return PARSE_FAIL;
934 }
935
936 if (! skip_past_char (&str, ']'))
937 return PARSE_FAIL;
938
939 atype.index = exp.X_add_number;
940 }
941 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
942 {
943 /* Indexed vector register expected. */
944 first_error (_("indexed vector register expected"));
945 return PARSE_FAIL;
946 }
947
948 /* A vector reg Vn should be typed or indexed. */
949 if (type == REG_TYPE_VN && atype.defined == 0)
950 {
951 first_error (_("invalid use of vector register"));
952 }
953
954 if (typeinfo)
955 *typeinfo = atype;
956
957 if (rtype)
958 *rtype = type;
959
960 *ccp = str;
961
962 return reg->number;
963}
964
965/* Parse register.
966
967 Return the register number on success; return PARSE_FAIL otherwise.
968
969 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
970 the register (e.g. NEON double or quad reg when either has been requested).
971
972 If this is a NEON vector register with additional type information, fill
973 in the struct pointed to by VECTYPE (if non-NULL).
974
975 This parser does not handle register list. */
976
977static int
978aarch64_reg_parse (char **ccp, aarch64_reg_type type,
979 aarch64_reg_type *rtype, struct neon_type_el *vectype)
980{
981 struct neon_type_el atype;
982 char *str = *ccp;
983 int reg = parse_typed_reg (&str, type, rtype, &atype,
984 /*in_reg_list= */ FALSE);
985
986 if (reg == PARSE_FAIL)
987 return PARSE_FAIL;
988
989 if (vectype)
990 *vectype = atype;
991
992 *ccp = str;
993
994 return reg;
995}
996
997static inline bfd_boolean
998eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
999{
1000 return
1001 e1.type == e2.type
1002 && e1.defined == e2.defined
1003 && e1.width == e2.width && e1.index == e2.index;
1004}
1005
1006/* This function parses the NEON register list. On success, it returns
1007 the parsed register list information in the following encoded format:
1008
1009 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1010 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1011
1012 The information of the register shape and/or index is returned in
1013 *VECTYPE.
1014
1015 It returns PARSE_FAIL if the register list is invalid.
1016
1017 The list contains one to four registers.
1018 Each register can be one of:
1019 <Vt>.<T>[<index>]
1020 <Vt>.<T>
1021 All <T> should be identical.
1022 All <index> should be identical.
1023 There are restrictions on <Vt> numbers which are checked later
1024 (by reg_list_valid_p). */
1025
1026static int
1027parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1028{
1029 char *str = *ccp;
1030 int nb_regs;
1031 struct neon_type_el typeinfo, typeinfo_first;
1032 int val, val_range;
1033 int in_range;
1034 int ret_val;
1035 int i;
1036 bfd_boolean error = FALSE;
1037 bfd_boolean expect_index = FALSE;
1038
1039 if (*str != '{')
1040 {
1041 set_syntax_error (_("expecting {"));
1042 return PARSE_FAIL;
1043 }
1044 str++;
1045
1046 nb_regs = 0;
1047 typeinfo_first.defined = 0;
1048 typeinfo_first.type = NT_invtype;
1049 typeinfo_first.width = -1;
1050 typeinfo_first.index = 0;
1051 ret_val = 0;
1052 val = -1;
1053 val_range = -1;
1054 in_range = 0;
1055 do
1056 {
1057 if (in_range)
1058 {
1059 str++; /* skip over '-' */
1060 val_range = val;
1061 }
1062 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1063 /*in_reg_list= */ TRUE);
1064 if (val == PARSE_FAIL)
1065 {
1066 set_first_syntax_error (_("invalid vector register in list"));
1067 error = TRUE;
1068 continue;
1069 }
1070 /* reject [bhsd]n */
1071 if (typeinfo.defined == 0)
1072 {
1073 set_first_syntax_error (_("invalid scalar register in list"));
1074 error = TRUE;
1075 continue;
1076 }
1077
1078 if (typeinfo.defined & NTA_HASINDEX)
1079 expect_index = TRUE;
1080
1081 if (in_range)
1082 {
1083 if (val < val_range)
1084 {
1085 set_first_syntax_error
1086 (_("invalid range in vector register list"));
1087 error = TRUE;
1088 }
1089 val_range++;
1090 }
1091 else
1092 {
1093 val_range = val;
1094 if (nb_regs == 0)
1095 typeinfo_first = typeinfo;
1096 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1097 {
1098 set_first_syntax_error
1099 (_("type mismatch in vector register list"));
1100 error = TRUE;
1101 }
1102 }
1103 if (! error)
1104 for (i = val_range; i <= val; i++)
1105 {
1106 ret_val |= i << (5 * nb_regs);
1107 nb_regs++;
1108 }
1109 in_range = 0;
1110 }
1111 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1112
1113 skip_whitespace (str);
1114 if (*str != '}')
1115 {
1116 set_first_syntax_error (_("end of vector register list not found"));
1117 error = TRUE;
1118 }
1119 str++;
1120
1121 skip_whitespace (str);
1122
1123 if (expect_index)
1124 {
1125 if (skip_past_char (&str, '['))
1126 {
1127 expressionS exp;
1128
1129 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1130 if (exp.X_op != O_constant)
1131 {
1132 set_first_syntax_error (_("constant expression required."));
1133 error = TRUE;
1134 }
1135 if (! skip_past_char (&str, ']'))
1136 error = TRUE;
1137 else
1138 typeinfo_first.index = exp.X_add_number;
1139 }
1140 else
1141 {
1142 set_first_syntax_error (_("expected index"));
1143 error = TRUE;
1144 }
1145 }
1146
1147 if (nb_regs > 4)
1148 {
1149 set_first_syntax_error (_("too many registers in vector register list"));
1150 error = TRUE;
1151 }
1152 else if (nb_regs == 0)
1153 {
1154 set_first_syntax_error (_("empty vector register list"));
1155 error = TRUE;
1156 }
1157
1158 *ccp = str;
1159 if (! error)
1160 *vectype = typeinfo_first;
1161
1162 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1163}
1164
1165/* Directives: register aliases. */
1166
1167static reg_entry *
1168insert_reg_alias (char *str, int number, aarch64_reg_type type)
1169{
1170 reg_entry *new;
1171 const char *name;
1172
1173 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1174 {
1175 if (new->builtin)
1176 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1177 str);
1178
1179 /* Only warn about a redefinition if it's not defined as the
1180 same register. */
1181 else if (new->number != number || new->type != type)
1182 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1183
1184 return NULL;
1185 }
1186
1187 name = xstrdup (str);
1188 new = xmalloc (sizeof (reg_entry));
1189
1190 new->name = name;
1191 new->number = number;
1192 new->type = type;
1193 new->builtin = FALSE;
1194
1195 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1196 abort ();
1197
1198 return new;
1199}
1200
1201/* Look for the .req directive. This is of the form:
1202
1203 new_register_name .req existing_register_name
1204
1205 If we find one, or if it looks sufficiently like one that we want to
1206 handle any error here, return TRUE. Otherwise return FALSE. */
1207
1208static bfd_boolean
1209create_register_alias (char *newname, char *p)
1210{
1211 const reg_entry *old;
1212 char *oldname, *nbuf;
1213 size_t nlen;
1214
1215 /* The input scrubber ensures that whitespace after the mnemonic is
1216 collapsed to single spaces. */
1217 oldname = p;
1218 if (strncmp (oldname, " .req ", 6) != 0)
1219 return FALSE;
1220
1221 oldname += 6;
1222 if (*oldname == '\0')
1223 return FALSE;
1224
1225 old = hash_find (aarch64_reg_hsh, oldname);
1226 if (!old)
1227 {
1228 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1229 return TRUE;
1230 }
1231
1232 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1233 the desired alias name, and p points to its end. If not, then
1234 the desired alias name is in the global original_case_string. */
1235#ifdef TC_CASE_SENSITIVE
1236 nlen = p - newname;
1237#else
1238 newname = original_case_string;
1239 nlen = strlen (newname);
1240#endif
1241
1242 nbuf = alloca (nlen + 1);
1243 memcpy (nbuf, newname, nlen);
1244 nbuf[nlen] = '\0';
1245
1246 /* Create aliases under the new name as stated; an all-lowercase
1247 version of the new name; and an all-uppercase version of the new
1248 name. */
1249 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1250 {
1251 for (p = nbuf; *p; p++)
1252 *p = TOUPPER (*p);
1253
1254 if (strncmp (nbuf, newname, nlen))
1255 {
1256 /* If this attempt to create an additional alias fails, do not bother
1257 trying to create the all-lower case alias. We will fail and issue
1258 a second, duplicate error message. This situation arises when the
1259 programmer does something like:
1260 foo .req r0
1261 Foo .req r1
1262 The second .req creates the "Foo" alias but then fails to create
1263 the artificial FOO alias because it has already been created by the
1264 first .req. */
1265 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1266 return TRUE;
1267 }
1268
1269 for (p = nbuf; *p; p++)
1270 *p = TOLOWER (*p);
1271
1272 if (strncmp (nbuf, newname, nlen))
1273 insert_reg_alias (nbuf, old->number, old->type);
1274 }
1275
1276 return TRUE;
1277}
1278
1279/* Should never be called, as .req goes between the alias and the
1280 register name, not at the beginning of the line. */
1281static void
1282s_req (int a ATTRIBUTE_UNUSED)
1283{
1284 as_bad (_("invalid syntax for .req directive"));
1285}
1286
1287/* The .unreq directive deletes an alias which was previously defined
1288 by .req. For example:
1289
1290 my_alias .req r11
1291 .unreq my_alias */
1292
1293static void
1294s_unreq (int a ATTRIBUTE_UNUSED)
1295{
1296 char *name;
1297 char saved_char;
1298
1299 name = input_line_pointer;
1300
1301 while (*input_line_pointer != 0
1302 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1303 ++input_line_pointer;
1304
1305 saved_char = *input_line_pointer;
1306 *input_line_pointer = 0;
1307
1308 if (!*name)
1309 as_bad (_("invalid syntax for .unreq directive"));
1310 else
1311 {
1312 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1313
1314 if (!reg)
1315 as_bad (_("unknown register alias '%s'"), name);
1316 else if (reg->builtin)
1317 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1318 name);
1319 else
1320 {
1321 char *p;
1322 char *nbuf;
1323
1324 hash_delete (aarch64_reg_hsh, name, FALSE);
1325 free ((char *) reg->name);
1326 free (reg);
1327
1328 /* Also locate the all upper case and all lower case versions.
1329 Do not complain if we cannot find one or the other as it
1330 was probably deleted above. */
1331
1332 nbuf = strdup (name);
1333 for (p = nbuf; *p; p++)
1334 *p = TOUPPER (*p);
1335 reg = hash_find (aarch64_reg_hsh, nbuf);
1336 if (reg)
1337 {
1338 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1339 free ((char *) reg->name);
1340 free (reg);
1341 }
1342
1343 for (p = nbuf; *p; p++)
1344 *p = TOLOWER (*p);
1345 reg = hash_find (aarch64_reg_hsh, nbuf);
1346 if (reg)
1347 {
1348 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1349 free ((char *) reg->name);
1350 free (reg);
1351 }
1352
1353 free (nbuf);
1354 }
1355 }
1356
1357 *input_line_pointer = saved_char;
1358 demand_empty_rest_of_line ();
1359}
1360
1361/* Directives: Instruction set selection. */
1362
1363#ifdef OBJ_ELF
1364/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1365 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1366 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1367 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1368
1369/* Create a new mapping symbol for the transition to STATE. */
1370
1371static void
1372make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1373{
1374 symbolS *symbolP;
1375 const char *symname;
1376 int type;
1377
1378 switch (state)
1379 {
1380 case MAP_DATA:
1381 symname = "$d";
1382 type = BSF_NO_FLAGS;
1383 break;
1384 case MAP_INSN:
1385 symname = "$x";
1386 type = BSF_NO_FLAGS;
1387 break;
1388 default:
1389 abort ();
1390 }
1391
1392 symbolP = symbol_new (symname, now_seg, value, frag);
1393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1394
1395 /* Save the mapping symbols for future reference. Also check that
1396 we do not place two mapping symbols at the same offset within a
1397 frag. We'll handle overlap between frags in
1398 check_mapping_symbols.
1399
1400 If .fill or other data filling directive generates zero sized data,
1401 the mapping symbol for the following code will have the same value
1402 as the one generated for the data filling directive. In this case,
1403 we replace the old symbol with the new one at the same address. */
1404 if (value == 0)
1405 {
1406 if (frag->tc_frag_data.first_map != NULL)
1407 {
1408 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1409 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1410 &symbol_lastP);
1411 }
1412 frag->tc_frag_data.first_map = symbolP;
1413 }
1414 if (frag->tc_frag_data.last_map != NULL)
1415 {
1416 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1417 S_GET_VALUE (symbolP));
1418 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1419 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1420 &symbol_lastP);
1421 }
1422 frag->tc_frag_data.last_map = symbolP;
1423}
1424
1425/* We must sometimes convert a region marked as code to data during
1426 code alignment, if an odd number of bytes have to be padded. The
1427 code mapping symbol is pushed to an aligned address. */
1428
1429static void
1430insert_data_mapping_symbol (enum mstate state,
1431 valueT value, fragS * frag, offsetT bytes)
1432{
1433 /* If there was already a mapping symbol, remove it. */
1434 if (frag->tc_frag_data.last_map != NULL
1435 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1436 frag->fr_address + value)
1437 {
1438 symbolS *symp = frag->tc_frag_data.last_map;
1439
1440 if (value == 0)
1441 {
1442 know (frag->tc_frag_data.first_map == symp);
1443 frag->tc_frag_data.first_map = NULL;
1444 }
1445 frag->tc_frag_data.last_map = NULL;
1446 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1447 }
1448
1449 make_mapping_symbol (MAP_DATA, value, frag);
1450 make_mapping_symbol (state, value + bytes, frag);
1451}
1452
1453static void mapping_state_2 (enum mstate state, int max_chars);
1454
1455/* Set the mapping state to STATE. Only call this when about to
1456 emit some STATE bytes to the file. */
1457
1458void
1459mapping_state (enum mstate state)
1460{
1461 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1462
a06ea964
NC
1463 if (mapstate == state)
1464 /* The mapping symbol has already been emitted.
1465 There is nothing else to do. */
1466 return;
a578ef7e
JW
1467
1468 if (state == MAP_INSN)
1469 /* AArch64 instructions require 4-byte alignment. When emitting
1470 instructions into any section, record the appropriate section
1471 alignment. */
1472 record_alignment (now_seg, 2);
1473
c1baaddf 1474#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1475 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1476 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1477 evaluated later in the next else. */
a06ea964 1478 return;
c1baaddf
RL
1479 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1480 {
1481 /* Only add the symbol if the offset is > 0:
1482 if we're at the first frag, check it's size > 0;
1483 if we're not at the first frag, then for sure
1484 the offset is > 0. */
1485 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1486 const int add_symbol = (frag_now != frag_first)
1487 || (frag_now_fix () > 0);
1488
1489 if (add_symbol)
1490 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1491 }
1492#undef TRANSITION
a06ea964
NC
1493
1494 mapping_state_2 (state, 0);
a06ea964
NC
1495}
1496
1497/* Same as mapping_state, but MAX_CHARS bytes have already been
1498 allocated. Put the mapping symbol that far back. */
1499
1500static void
1501mapping_state_2 (enum mstate state, int max_chars)
1502{
1503 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1504
1505 if (!SEG_NORMAL (now_seg))
1506 return;
1507
1508 if (mapstate == state)
1509 /* The mapping symbol has already been emitted.
1510 There is nothing else to do. */
1511 return;
1512
1513 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1514 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1515}
1516#else
1517#define mapping_state(x) /* nothing */
1518#define mapping_state_2(x, y) /* nothing */
1519#endif
1520
1521/* Directives: sectioning and alignment. */
1522
1523static void
1524s_bss (int ignore ATTRIBUTE_UNUSED)
1525{
1526 /* We don't support putting frags in the BSS segment, we fake it by
1527 marking in_bss, then looking at s_skip for clues. */
1528 subseg_set (bss_section, 0);
1529 demand_empty_rest_of_line ();
1530 mapping_state (MAP_DATA);
1531}
1532
1533static void
1534s_even (int ignore ATTRIBUTE_UNUSED)
1535{
1536 /* Never make frag if expect extra pass. */
1537 if (!need_pass_2)
1538 frag_align (1, 0, 0);
1539
1540 record_alignment (now_seg, 1);
1541
1542 demand_empty_rest_of_line ();
1543}
1544
1545/* Directives: Literal pools. */
1546
1547static literal_pool *
1548find_literal_pool (int size)
1549{
1550 literal_pool *pool;
1551
1552 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1553 {
1554 if (pool->section == now_seg
1555 && pool->sub_section == now_subseg && pool->size == size)
1556 break;
1557 }
1558
1559 return pool;
1560}
1561
1562static literal_pool *
1563find_or_make_literal_pool (int size)
1564{
1565 /* Next literal pool ID number. */
1566 static unsigned int latest_pool_num = 1;
1567 literal_pool *pool;
1568
1569 pool = find_literal_pool (size);
1570
1571 if (pool == NULL)
1572 {
1573 /* Create a new pool. */
1574 pool = xmalloc (sizeof (*pool));
1575 if (!pool)
1576 return NULL;
1577
1578 /* Currently we always put the literal pool in the current text
1579 section. If we were generating "small" model code where we
1580 knew that all code and initialised data was within 1MB then
1581 we could output literals to mergeable, read-only data
1582 sections. */
1583
1584 pool->next_free_entry = 0;
1585 pool->section = now_seg;
1586 pool->sub_section = now_subseg;
1587 pool->size = size;
1588 pool->next = list_of_pools;
1589 pool->symbol = NULL;
1590
1591 /* Add it to the list. */
1592 list_of_pools = pool;
1593 }
1594
1595 /* New pools, and emptied pools, will have a NULL symbol. */
1596 if (pool->symbol == NULL)
1597 {
1598 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1599 (valueT) 0, &zero_address_frag);
1600 pool->id = latest_pool_num++;
1601 }
1602
1603 /* Done. */
1604 return pool;
1605}
1606
1607/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1608 Return TRUE on success, otherwise return FALSE. */
1609static bfd_boolean
1610add_to_lit_pool (expressionS *exp, int size)
1611{
1612 literal_pool *pool;
1613 unsigned int entry;
1614
1615 pool = find_or_make_literal_pool (size);
1616
1617 /* Check if this literal value is already in the pool. */
1618 for (entry = 0; entry < pool->next_free_entry; entry++)
1619 {
55d9b4c1
NC
1620 expressionS * litexp = & pool->literals[entry].exp;
1621
1622 if ((litexp->X_op == exp->X_op)
a06ea964 1623 && (exp->X_op == O_constant)
55d9b4c1
NC
1624 && (litexp->X_add_number == exp->X_add_number)
1625 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1626 break;
1627
55d9b4c1 1628 if ((litexp->X_op == exp->X_op)
a06ea964 1629 && (exp->X_op == O_symbol)
55d9b4c1
NC
1630 && (litexp->X_add_number == exp->X_add_number)
1631 && (litexp->X_add_symbol == exp->X_add_symbol)
1632 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1633 break;
1634 }
1635
1636 /* Do we need to create a new entry? */
1637 if (entry == pool->next_free_entry)
1638 {
1639 if (entry >= MAX_LITERAL_POOL_SIZE)
1640 {
1641 set_syntax_error (_("literal pool overflow"));
1642 return FALSE;
1643 }
1644
55d9b4c1 1645 pool->literals[entry].exp = *exp;
a06ea964 1646 pool->next_free_entry += 1;
55d9b4c1
NC
1647 if (exp->X_op == O_big)
1648 {
1649 /* PR 16688: Bignums are held in a single global array. We must
1650 copy and preserve that value now, before it is overwritten. */
1651 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1652 memcpy (pool->literals[entry].bignum, generic_bignum,
1653 CHARS_PER_LITTLENUM * exp->X_add_number);
1654 }
1655 else
1656 pool->literals[entry].bignum = NULL;
a06ea964
NC
1657 }
1658
1659 exp->X_op = O_symbol;
1660 exp->X_add_number = ((int) entry) * size;
1661 exp->X_add_symbol = pool->symbol;
1662
1663 return TRUE;
1664}
1665
1666/* Can't use symbol_new here, so have to create a symbol and then at
1667 a later date assign it a value. Thats what these functions do. */
1668
1669static void
1670symbol_locate (symbolS * symbolP,
1671 const char *name,/* It is copied, the caller can modify. */
1672 segT segment, /* Segment identifier (SEG_<something>). */
1673 valueT valu, /* Symbol value. */
1674 fragS * frag) /* Associated fragment. */
1675{
e57e6ddc 1676 size_t name_length;
a06ea964
NC
1677 char *preserved_copy_of_name;
1678
1679 name_length = strlen (name) + 1; /* +1 for \0. */
1680 obstack_grow (&notes, name, name_length);
1681 preserved_copy_of_name = obstack_finish (&notes);
1682
1683#ifdef tc_canonicalize_symbol_name
1684 preserved_copy_of_name =
1685 tc_canonicalize_symbol_name (preserved_copy_of_name);
1686#endif
1687
1688 S_SET_NAME (symbolP, preserved_copy_of_name);
1689
1690 S_SET_SEGMENT (symbolP, segment);
1691 S_SET_VALUE (symbolP, valu);
1692 symbol_clear_list_pointers (symbolP);
1693
1694 symbol_set_frag (symbolP, frag);
1695
1696 /* Link to end of symbol chain. */
1697 {
1698 extern int symbol_table_frozen;
1699
1700 if (symbol_table_frozen)
1701 abort ();
1702 }
1703
1704 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1705
1706 obj_symbol_new_hook (symbolP);
1707
1708#ifdef tc_symbol_new_hook
1709 tc_symbol_new_hook (symbolP);
1710#endif
1711
1712#ifdef DEBUG_SYMS
1713 verify_symbol_chain (symbol_rootP, symbol_lastP);
1714#endif /* DEBUG_SYMS */
1715}
1716
1717
1718static void
1719s_ltorg (int ignored ATTRIBUTE_UNUSED)
1720{
1721 unsigned int entry;
1722 literal_pool *pool;
1723 char sym_name[20];
1724 int align;
1725
67a32447 1726 for (align = 2; align <= 4; align++)
a06ea964
NC
1727 {
1728 int size = 1 << align;
1729
1730 pool = find_literal_pool (size);
1731 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1732 continue;
1733
1734 mapping_state (MAP_DATA);
1735
1736 /* Align pool as you have word accesses.
1737 Only make a frag if we have to. */
1738 if (!need_pass_2)
1739 frag_align (align, 0, 0);
1740
1741 record_alignment (now_seg, align);
1742
1743 sprintf (sym_name, "$$lit_\002%x", pool->id);
1744
1745 symbol_locate (pool->symbol, sym_name, now_seg,
1746 (valueT) frag_now_fix (), frag_now);
1747 symbol_table_insert (pool->symbol);
1748
1749 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1750 {
1751 expressionS * exp = & pool->literals[entry].exp;
1752
1753 if (exp->X_op == O_big)
1754 {
1755 /* PR 16688: Restore the global bignum value. */
1756 gas_assert (pool->literals[entry].bignum != NULL);
1757 memcpy (generic_bignum, pool->literals[entry].bignum,
1758 CHARS_PER_LITTLENUM * exp->X_add_number);
1759 }
1760
1761 /* First output the expression in the instruction to the pool. */
1762 emit_expr (exp, size); /* .word|.xword */
1763
1764 if (exp->X_op == O_big)
1765 {
1766 free (pool->literals[entry].bignum);
1767 pool->literals[entry].bignum = NULL;
1768 }
1769 }
a06ea964
NC
1770
1771 /* Mark the pool as empty. */
1772 pool->next_free_entry = 0;
1773 pool->symbol = NULL;
1774 }
1775}
1776
1777#ifdef OBJ_ELF
1778/* Forward declarations for functions below, in the MD interface
1779 section. */
1780static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1781static struct reloc_table_entry * find_reloc_table_entry (char **);
1782
1783/* Directives: Data. */
1784/* N.B. the support for relocation suffix in this directive needs to be
1785 implemented properly. */
1786
1787static void
1788s_aarch64_elf_cons (int nbytes)
1789{
1790 expressionS exp;
1791
1792#ifdef md_flush_pending_output
1793 md_flush_pending_output ();
1794#endif
1795
1796 if (is_it_end_of_statement ())
1797 {
1798 demand_empty_rest_of_line ();
1799 return;
1800 }
1801
1802#ifdef md_cons_align
1803 md_cons_align (nbytes);
1804#endif
1805
1806 mapping_state (MAP_DATA);
1807 do
1808 {
1809 struct reloc_table_entry *reloc;
1810
1811 expression (&exp);
1812
1813 if (exp.X_op != O_symbol)
1814 emit_expr (&exp, (unsigned int) nbytes);
1815 else
1816 {
1817 skip_past_char (&input_line_pointer, '#');
1818 if (skip_past_char (&input_line_pointer, ':'))
1819 {
1820 reloc = find_reloc_table_entry (&input_line_pointer);
1821 if (reloc == NULL)
1822 as_bad (_("unrecognized relocation suffix"));
1823 else
1824 as_bad (_("unimplemented relocation suffix"));
1825 ignore_rest_of_line ();
1826 return;
1827 }
1828 else
1829 emit_expr (&exp, (unsigned int) nbytes);
1830 }
1831 }
1832 while (*input_line_pointer++ == ',');
1833
1834 /* Put terminator back into stream. */
1835 input_line_pointer--;
1836 demand_empty_rest_of_line ();
1837}
1838
1839#endif /* OBJ_ELF */
1840
1841/* Output a 32-bit word, but mark as an instruction. */
1842
1843static void
1844s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1845{
1846 expressionS exp;
1847
1848#ifdef md_flush_pending_output
1849 md_flush_pending_output ();
1850#endif
1851
1852 if (is_it_end_of_statement ())
1853 {
1854 demand_empty_rest_of_line ();
1855 return;
1856 }
1857
a97902de 1858 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1859 MAP_DATA symbol pending. So we only align the address during
1860 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1861 For other sections, this is not guaranteed. */
c1baaddf 1862 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1863 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1864 frag_align_code (2, 0);
c1baaddf 1865
a06ea964
NC
1866#ifdef OBJ_ELF
1867 mapping_state (MAP_INSN);
1868#endif
1869
1870 do
1871 {
1872 expression (&exp);
1873 if (exp.X_op != O_constant)
1874 {
1875 as_bad (_("constant expression required"));
1876 ignore_rest_of_line ();
1877 return;
1878 }
1879
1880 if (target_big_endian)
1881 {
1882 unsigned int val = exp.X_add_number;
1883 exp.X_add_number = SWAP_32 (val);
1884 }
1885 emit_expr (&exp, 4);
1886 }
1887 while (*input_line_pointer++ == ',');
1888
1889 /* Put terminator back into stream. */
1890 input_line_pointer--;
1891 demand_empty_rest_of_line ();
1892}
1893
1894#ifdef OBJ_ELF
1895/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1896
1897static void
1898s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1899{
1900 expressionS exp;
1901
1902 /* Since we're just labelling the code, there's no need to define a
1903 mapping symbol. */
1904 expression (&exp);
1905 /* Make sure there is enough room in this frag for the following
1906 blr. This trick only works if the blr follows immediately after
1907 the .tlsdesc directive. */
1908 frag_grow (4);
1909 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1910 BFD_RELOC_AARCH64_TLSDESC_CALL);
1911
1912 demand_empty_rest_of_line ();
1913}
1914#endif /* OBJ_ELF */
1915
1916static void s_aarch64_arch (int);
1917static void s_aarch64_cpu (int);
ae527cd8 1918static void s_aarch64_arch_extension (int);
a06ea964
NC
1919
1920/* This table describes all the machine specific pseudo-ops the assembler
1921 has to support. The fields are:
1922 pseudo-op name without dot
1923 function to call to execute this pseudo-op
1924 Integer arg to pass to the function. */
1925
1926const pseudo_typeS md_pseudo_table[] = {
1927 /* Never called because '.req' does not start a line. */
1928 {"req", s_req, 0},
1929 {"unreq", s_unreq, 0},
1930 {"bss", s_bss, 0},
1931 {"even", s_even, 0},
1932 {"ltorg", s_ltorg, 0},
1933 {"pool", s_ltorg, 0},
1934 {"cpu", s_aarch64_cpu, 0},
1935 {"arch", s_aarch64_arch, 0},
ae527cd8 1936 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1937 {"inst", s_aarch64_inst, 0},
1938#ifdef OBJ_ELF
1939 {"tlsdesccall", s_tlsdesccall, 0},
1940 {"word", s_aarch64_elf_cons, 4},
1941 {"long", s_aarch64_elf_cons, 4},
1942 {"xword", s_aarch64_elf_cons, 8},
1943 {"dword", s_aarch64_elf_cons, 8},
1944#endif
1945 {0, 0, 0}
1946};
1947\f
1948
1949/* Check whether STR points to a register name followed by a comma or the
1950 end of line; REG_TYPE indicates which register types are checked
1951 against. Return TRUE if STR is such a register name; otherwise return
1952 FALSE. The function does not intend to produce any diagnostics, but since
1953 the register parser aarch64_reg_parse, which is called by this function,
1954 does produce diagnostics, we call clear_error to clear any diagnostics
1955 that may be generated by aarch64_reg_parse.
1956 Also, the function returns FALSE directly if there is any user error
1957 present at the function entry. This prevents the existing diagnostics
1958 state from being spoiled.
1959 The function currently serves parse_constant_immediate and
1960 parse_big_immediate only. */
1961static bfd_boolean
1962reg_name_p (char *str, aarch64_reg_type reg_type)
1963{
1964 int reg;
1965
1966 /* Prevent the diagnostics state from being spoiled. */
1967 if (error_p ())
1968 return FALSE;
1969
1970 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1971
1972 /* Clear the parsing error that may be set by the reg parser. */
1973 clear_error ();
1974
1975 if (reg == PARSE_FAIL)
1976 return FALSE;
1977
1978 skip_whitespace (str);
1979 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1980 return TRUE;
1981
1982 return FALSE;
1983}
1984
1985/* Parser functions used exclusively in instruction operands. */
1986
1987/* Parse an immediate expression which may not be constant.
1988
1989 To prevent the expression parser from pushing a register name
1990 into the symbol table as an undefined symbol, firstly a check is
1991 done to find out whether STR is a valid register name followed
1992 by a comma or the end of line. Return FALSE if STR is such a
1993 string. */
1994
1995static bfd_boolean
1996parse_immediate_expression (char **str, expressionS *exp)
1997{
1998 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
1999 {
2000 set_recoverable_error (_("immediate operand required"));
2001 return FALSE;
2002 }
2003
2004 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2005
2006 if (exp->X_op == O_absent)
2007 {
2008 set_fatal_syntax_error (_("missing immediate expression"));
2009 return FALSE;
2010 }
2011
2012 return TRUE;
2013}
2014
2015/* Constant immediate-value read function for use in insn parsing.
2016 STR points to the beginning of the immediate (with the optional
2017 leading #); *VAL receives the value.
2018
2019 Return TRUE on success; otherwise return FALSE. */
2020
2021static bfd_boolean
2022parse_constant_immediate (char **str, int64_t * val)
2023{
2024 expressionS exp;
2025
2026 if (! parse_immediate_expression (str, &exp))
2027 return FALSE;
2028
2029 if (exp.X_op != O_constant)
2030 {
2031 set_syntax_error (_("constant expression required"));
2032 return FALSE;
2033 }
2034
2035 *val = exp.X_add_number;
2036 return TRUE;
2037}
2038
2039static uint32_t
2040encode_imm_float_bits (uint32_t imm)
2041{
2042 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2043 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2044}
2045
62b0d0d5
YZ
2046/* Return TRUE if the single-precision floating-point value encoded in IMM
2047 can be expressed in the AArch64 8-bit signed floating-point format with
2048 3-bit exponent and normalized 4 bits of precision; in other words, the
2049 floating-point value must be expressable as
2050 (+/-) n / 16 * power (2, r)
2051 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2052
a06ea964
NC
2053static bfd_boolean
2054aarch64_imm_float_p (uint32_t imm)
2055{
62b0d0d5
YZ
2056 /* If a single-precision floating-point value has the following bit
2057 pattern, it can be expressed in the AArch64 8-bit floating-point
2058 format:
2059
2060 3 32222222 2221111111111
a06ea964 2061 1 09876543 21098765432109876543210
62b0d0d5
YZ
2062 n Eeeeeexx xxxx0000000000000000000
2063
2064 where n, e and each x are either 0 or 1 independently, with
2065 E == ~ e. */
a06ea964 2066
62b0d0d5
YZ
2067 uint32_t pattern;
2068
2069 /* Prepare the pattern for 'Eeeeee'. */
2070 if (((imm >> 30) & 0x1) == 0)
2071 pattern = 0x3e000000;
a06ea964 2072 else
62b0d0d5
YZ
2073 pattern = 0x40000000;
2074
2075 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2076 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2077}
2078
62b0d0d5
YZ
2079/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2080
2081 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2082 8-bit signed floating-point format with 3-bit exponent and normalized 4
2083 bits of precision (i.e. can be used in an FMOV instruction); return the
2084 equivalent single-precision encoding in *FPWORD.
2085
2086 Otherwise return FALSE. */
2087
a06ea964 2088static bfd_boolean
62b0d0d5
YZ
2089aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2090{
2091 /* If a double-precision floating-point value has the following bit
2092 pattern, it can be expressed in the AArch64 8-bit floating-point
2093 format:
2094
2095 6 66655555555 554444444...21111111111
2096 3 21098765432 109876543...098765432109876543210
2097 n Eeeeeeeeexx xxxx00000...000000000000000000000
2098
2099 where n, e and each x are either 0 or 1 independently, with
2100 E == ~ e. */
2101
2102 uint32_t pattern;
2103 uint32_t high32 = imm >> 32;
2104
2105 /* Lower 32 bits need to be 0s. */
2106 if ((imm & 0xffffffff) != 0)
2107 return FALSE;
2108
2109 /* Prepare the pattern for 'Eeeeeeeee'. */
2110 if (((high32 >> 30) & 0x1) == 0)
2111 pattern = 0x3fc00000;
2112 else
2113 pattern = 0x40000000;
2114
2115 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2116 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2117 {
2118 /* Convert to the single-precision encoding.
2119 i.e. convert
2120 n Eeeeeeeeexx xxxx00000...000000000000000000000
2121 to
2122 n Eeeeeexx xxxx0000000000000000000. */
2123 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2124 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2125 return TRUE;
2126 }
2127 else
2128 return FALSE;
2129}
2130
2131/* Parse a floating-point immediate. Return TRUE on success and return the
2132 value in *IMMED in the format of IEEE754 single-precision encoding.
2133 *CCP points to the start of the string; DP_P is TRUE when the immediate
2134 is expected to be in double-precision (N.B. this only matters when
2135 hexadecimal representation is involved).
2136
2137 N.B. 0.0 is accepted by this function. */
2138
2139static bfd_boolean
2140parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2141{
2142 char *str = *ccp;
2143 char *fpnum;
2144 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2145 int found_fpchar = 0;
62b0d0d5
YZ
2146 int64_t val = 0;
2147 unsigned fpword = 0;
2148 bfd_boolean hex_p = FALSE;
a06ea964
NC
2149
2150 skip_past_char (&str, '#');
2151
a06ea964
NC
2152 fpnum = str;
2153 skip_whitespace (fpnum);
2154
2155 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2156 {
2157 /* Support the hexadecimal representation of the IEEE754 encoding.
2158 Double-precision is expected when DP_P is TRUE, otherwise the
2159 representation should be in single-precision. */
2160 if (! parse_constant_immediate (&str, &val))
2161 goto invalid_fp;
2162
2163 if (dp_p)
2164 {
2165 if (! aarch64_double_precision_fmovable (val, &fpword))
2166 goto invalid_fp;
2167 }
2168 else if ((uint64_t) val > 0xffffffff)
2169 goto invalid_fp;
2170 else
2171 fpword = val;
2172
2173 hex_p = TRUE;
2174 }
a06ea964
NC
2175 else
2176 {
62b0d0d5
YZ
2177 /* We must not accidentally parse an integer as a floating-point number.
2178 Make sure that the value we parse is not an integer by checking for
2179 special characters '.' or 'e'. */
a06ea964
NC
2180 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2181 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2182 {
2183 found_fpchar = 1;
2184 break;
2185 }
2186
2187 if (!found_fpchar)
2188 return FALSE;
2189 }
2190
62b0d0d5 2191 if (! hex_p)
a06ea964 2192 {
a06ea964
NC
2193 int i;
2194
62b0d0d5
YZ
2195 if ((str = atof_ieee (str, 's', words)) == NULL)
2196 goto invalid_fp;
2197
a06ea964
NC
2198 /* Our FP word must be 32 bits (single-precision FP). */
2199 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2200 {
2201 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2202 fpword |= words[i];
2203 }
62b0d0d5 2204 }
a06ea964 2205
62b0d0d5
YZ
2206 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2207 {
2208 *immed = fpword;
a06ea964 2209 *ccp = str;
a06ea964
NC
2210 return TRUE;
2211 }
2212
2213invalid_fp:
2214 set_fatal_syntax_error (_("invalid floating-point constant"));
2215 return FALSE;
2216}
2217
2218/* Less-generic immediate-value read function with the possibility of loading
2219 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2220 instructions.
2221
2222 To prevent the expression parser from pushing a register name into the
2223 symbol table as an undefined symbol, a check is firstly done to find
2224 out whether STR is a valid register name followed by a comma or the end
2225 of line. Return FALSE if STR is such a register. */
2226
2227static bfd_boolean
2228parse_big_immediate (char **str, int64_t *imm)
2229{
2230 char *ptr = *str;
2231
2232 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2233 {
2234 set_syntax_error (_("immediate operand required"));
2235 return FALSE;
2236 }
2237
2238 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2239
2240 if (inst.reloc.exp.X_op == O_constant)
2241 *imm = inst.reloc.exp.X_add_number;
2242
2243 *str = ptr;
2244
2245 return TRUE;
2246}
2247
2248/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2249 if NEED_LIBOPCODES is non-zero, the fixup will need
2250 assistance from the libopcodes. */
2251
2252static inline void
2253aarch64_set_gas_internal_fixup (struct reloc *reloc,
2254 const aarch64_opnd_info *operand,
2255 int need_libopcodes_p)
2256{
2257 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2258 reloc->opnd = operand->type;
2259 if (need_libopcodes_p)
2260 reloc->need_libopcodes_p = 1;
2261};
2262
2263/* Return TRUE if the instruction needs to be fixed up later internally by
2264 the GAS; otherwise return FALSE. */
2265
2266static inline bfd_boolean
2267aarch64_gas_internal_fixup_p (void)
2268{
2269 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2270}
2271
2272/* Assign the immediate value to the relavant field in *OPERAND if
2273 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2274 needs an internal fixup in a later stage.
2275 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2276 IMM.VALUE that may get assigned with the constant. */
2277static inline void
2278assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2279 aarch64_opnd_info *operand,
2280 int addr_off_p,
2281 int need_libopcodes_p,
2282 int skip_p)
2283{
2284 if (reloc->exp.X_op == O_constant)
2285 {
2286 if (addr_off_p)
2287 operand->addr.offset.imm = reloc->exp.X_add_number;
2288 else
2289 operand->imm.value = reloc->exp.X_add_number;
2290 reloc->type = BFD_RELOC_UNUSED;
2291 }
2292 else
2293 {
2294 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2295 /* Tell libopcodes to ignore this operand or not. This is helpful
2296 when one of the operands needs to be fixed up later but we need
2297 libopcodes to check the other operands. */
2298 operand->skip = skip_p;
2299 }
2300}
2301
2302/* Relocation modifiers. Each entry in the table contains the textual
2303 name for the relocation which may be placed before a symbol used as
2304 a load/store offset, or add immediate. It must be surrounded by a
2305 leading and trailing colon, for example:
2306
2307 ldr x0, [x1, #:rello:varsym]
2308 add x0, x1, #:rello:varsym */
2309
2310struct reloc_table_entry
2311{
2312 const char *name;
2313 int pc_rel;
6f4a313b 2314 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2315 bfd_reloc_code_real_type adrp_type;
2316 bfd_reloc_code_real_type movw_type;
2317 bfd_reloc_code_real_type add_type;
2318 bfd_reloc_code_real_type ldst_type;
74ad790c 2319 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2320};
2321
2322static struct reloc_table_entry reloc_table[] = {
2323 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2324 {"lo12", 0,
6f4a313b 2325 0, /* adr_type */
a06ea964
NC
2326 0,
2327 0,
2328 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2329 BFD_RELOC_AARCH64_LDST_LO12,
2330 0},
a06ea964
NC
2331
2332 /* Higher 21 bits of pc-relative page offset: ADRP */
2333 {"pg_hi21", 1,
6f4a313b 2334 0, /* adr_type */
a06ea964
NC
2335 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2336 0,
2337 0,
74ad790c 2338 0,
a06ea964
NC
2339 0},
2340
2341 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2342 {"pg_hi21_nc", 1,
6f4a313b 2343 0, /* adr_type */
a06ea964
NC
2344 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2345 0,
2346 0,
74ad790c 2347 0,
a06ea964
NC
2348 0},
2349
2350 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2351 {"abs_g0", 0,
6f4a313b 2352 0, /* adr_type */
a06ea964
NC
2353 0,
2354 BFD_RELOC_AARCH64_MOVW_G0,
2355 0,
74ad790c 2356 0,
a06ea964
NC
2357 0},
2358
2359 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2360 {"abs_g0_s", 0,
6f4a313b 2361 0, /* adr_type */
a06ea964
NC
2362 0,
2363 BFD_RELOC_AARCH64_MOVW_G0_S,
2364 0,
74ad790c 2365 0,
a06ea964
NC
2366 0},
2367
2368 /* Less significant bits 0-15 of address/value: MOVK, no check */
2369 {"abs_g0_nc", 0,
6f4a313b 2370 0, /* adr_type */
a06ea964
NC
2371 0,
2372 BFD_RELOC_AARCH64_MOVW_G0_NC,
2373 0,
74ad790c 2374 0,
a06ea964
NC
2375 0},
2376
2377 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2378 {"abs_g1", 0,
6f4a313b 2379 0, /* adr_type */
a06ea964
NC
2380 0,
2381 BFD_RELOC_AARCH64_MOVW_G1,
2382 0,
74ad790c 2383 0,
a06ea964
NC
2384 0},
2385
2386 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2387 {"abs_g1_s", 0,
6f4a313b 2388 0, /* adr_type */
a06ea964
NC
2389 0,
2390 BFD_RELOC_AARCH64_MOVW_G1_S,
2391 0,
74ad790c 2392 0,
a06ea964
NC
2393 0},
2394
2395 /* Less significant bits 16-31 of address/value: MOVK, no check */
2396 {"abs_g1_nc", 0,
6f4a313b 2397 0, /* adr_type */
a06ea964
NC
2398 0,
2399 BFD_RELOC_AARCH64_MOVW_G1_NC,
2400 0,
74ad790c 2401 0,
a06ea964
NC
2402 0},
2403
2404 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2405 {"abs_g2", 0,
6f4a313b 2406 0, /* adr_type */
a06ea964
NC
2407 0,
2408 BFD_RELOC_AARCH64_MOVW_G2,
2409 0,
74ad790c 2410 0,
a06ea964
NC
2411 0},
2412
2413 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2414 {"abs_g2_s", 0,
6f4a313b 2415 0, /* adr_type */
a06ea964
NC
2416 0,
2417 BFD_RELOC_AARCH64_MOVW_G2_S,
2418 0,
74ad790c 2419 0,
a06ea964
NC
2420 0},
2421
2422 /* Less significant bits 32-47 of address/value: MOVK, no check */
2423 {"abs_g2_nc", 0,
6f4a313b 2424 0, /* adr_type */
a06ea964
NC
2425 0,
2426 BFD_RELOC_AARCH64_MOVW_G2_NC,
2427 0,
74ad790c 2428 0,
a06ea964
NC
2429 0},
2430
2431 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2432 {"abs_g3", 0,
6f4a313b 2433 0, /* adr_type */
a06ea964
NC
2434 0,
2435 BFD_RELOC_AARCH64_MOVW_G3,
2436 0,
74ad790c 2437 0,
a06ea964 2438 0},
4aa2c5e2 2439
a06ea964
NC
2440 /* Get to the page containing GOT entry for a symbol. */
2441 {"got", 1,
6f4a313b 2442 0, /* adr_type */
a06ea964
NC
2443 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2444 0,
2445 0,
74ad790c 2446 0,
4aa2c5e2
MS
2447 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2448
a06ea964
NC
2449 /* 12 bit offset into the page containing GOT entry for that symbol. */
2450 {"got_lo12", 0,
6f4a313b 2451 0, /* adr_type */
a06ea964
NC
2452 0,
2453 0,
2454 0,
74ad790c
MS
2455 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2456 0},
a06ea964
NC
2457
2458 /* Get to the page containing GOT TLS entry for a symbol */
2459 {"tlsgd", 0,
3c12b054 2460 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2461 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2462 0,
2463 0,
74ad790c 2464 0,
a06ea964
NC
2465 0},
2466
2467 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2468 {"tlsgd_lo12", 0,
6f4a313b 2469 0, /* adr_type */
a06ea964
NC
2470 0,
2471 0,
2472 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2473 0,
a06ea964
NC
2474 0},
2475
2476 /* Get to the page containing GOT TLS entry for a symbol */
2477 {"tlsdesc", 0,
389b8029 2478 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2479 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2480 0,
2481 0,
74ad790c 2482 0,
1ada945d 2483 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2484
2485 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2486 {"tlsdesc_lo12", 0,
6f4a313b 2487 0, /* adr_type */
a06ea964
NC
2488 0,
2489 0,
2490 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2491 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2492 0},
a06ea964
NC
2493
2494 /* Get to the page containing GOT TLS entry for a symbol */
2495 {"gottprel", 0,
6f4a313b 2496 0, /* adr_type */
a06ea964
NC
2497 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2498 0,
2499 0,
74ad790c 2500 0,
043bf05a 2501 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2502
2503 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2504 {"gottprel_lo12", 0,
6f4a313b 2505 0, /* adr_type */
a06ea964
NC
2506 0,
2507 0,
2508 0,
74ad790c
MS
2509 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2510 0},
a06ea964
NC
2511
2512 /* Get tp offset for a symbol. */
2513 {"tprel", 0,
6f4a313b 2514 0, /* adr_type */
a06ea964
NC
2515 0,
2516 0,
2517 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2518 0,
a06ea964
NC
2519 0},
2520
2521 /* Get tp offset for a symbol. */
2522 {"tprel_lo12", 0,
6f4a313b 2523 0, /* adr_type */
a06ea964
NC
2524 0,
2525 0,
2526 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2527 0,
a06ea964
NC
2528 0},
2529
2530 /* Get tp offset for a symbol. */
2531 {"tprel_hi12", 0,
6f4a313b 2532 0, /* adr_type */
a06ea964
NC
2533 0,
2534 0,
2535 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2536 0,
a06ea964
NC
2537 0},
2538
2539 /* Get tp offset for a symbol. */
2540 {"tprel_lo12_nc", 0,
6f4a313b 2541 0, /* adr_type */
a06ea964
NC
2542 0,
2543 0,
2544 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2545 0,
a06ea964
NC
2546 0},
2547
2548 /* Most significant bits 32-47 of address/value: MOVZ. */
2549 {"tprel_g2", 0,
6f4a313b 2550 0, /* adr_type */
a06ea964
NC
2551 0,
2552 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2553 0,
74ad790c 2554 0,
a06ea964
NC
2555 0},
2556
2557 /* Most significant bits 16-31 of address/value: MOVZ. */
2558 {"tprel_g1", 0,
6f4a313b 2559 0, /* adr_type */
a06ea964
NC
2560 0,
2561 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2562 0,
74ad790c 2563 0,
a06ea964
NC
2564 0},
2565
2566 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2567 {"tprel_g1_nc", 0,
6f4a313b 2568 0, /* adr_type */
a06ea964
NC
2569 0,
2570 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2571 0,
74ad790c 2572 0,
a06ea964
NC
2573 0},
2574
2575 /* Most significant bits 0-15 of address/value: MOVZ. */
2576 {"tprel_g0", 0,
6f4a313b 2577 0, /* adr_type */
a06ea964
NC
2578 0,
2579 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2580 0,
74ad790c 2581 0,
a06ea964
NC
2582 0},
2583
2584 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2585 {"tprel_g0_nc", 0,
6f4a313b 2586 0, /* adr_type */
a06ea964
NC
2587 0,
2588 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2589 0,
74ad790c 2590 0,
a06ea964
NC
2591 0},
2592};
2593
2594/* Given the address of a pointer pointing to the textual name of a
2595 relocation as may appear in assembler source, attempt to find its
2596 details in reloc_table. The pointer will be updated to the character
2597 after the trailing colon. On failure, NULL will be returned;
2598 otherwise return the reloc_table_entry. */
2599
2600static struct reloc_table_entry *
2601find_reloc_table_entry (char **str)
2602{
2603 unsigned int i;
2604 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2605 {
2606 int length = strlen (reloc_table[i].name);
2607
2608 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2609 && (*str)[length] == ':')
2610 {
2611 *str += (length + 1);
2612 return &reloc_table[i];
2613 }
2614 }
2615
2616 return NULL;
2617}
2618
2619/* Mode argument to parse_shift and parser_shifter_operand. */
2620enum parse_shift_mode
2621{
2622 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2623 "#imm{,lsl #n}" */
2624 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2625 "#imm" */
2626 SHIFTED_LSL, /* bare "lsl #n" */
2627 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2628 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2629};
2630
2631/* Parse a <shift> operator on an AArch64 data processing instruction.
2632 Return TRUE on success; otherwise return FALSE. */
2633static bfd_boolean
2634parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2635{
2636 const struct aarch64_name_value_pair *shift_op;
2637 enum aarch64_modifier_kind kind;
2638 expressionS exp;
2639 int exp_has_prefix;
2640 char *s = *str;
2641 char *p = s;
2642
2643 for (p = *str; ISALPHA (*p); p++)
2644 ;
2645
2646 if (p == *str)
2647 {
2648 set_syntax_error (_("shift expression expected"));
2649 return FALSE;
2650 }
2651
2652 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2653
2654 if (shift_op == NULL)
2655 {
2656 set_syntax_error (_("shift operator expected"));
2657 return FALSE;
2658 }
2659
2660 kind = aarch64_get_operand_modifier (shift_op);
2661
2662 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2663 {
2664 set_syntax_error (_("invalid use of 'MSL'"));
2665 return FALSE;
2666 }
2667
2668 switch (mode)
2669 {
2670 case SHIFTED_LOGIC_IMM:
2671 if (aarch64_extend_operator_p (kind) == TRUE)
2672 {
2673 set_syntax_error (_("extending shift is not permitted"));
2674 return FALSE;
2675 }
2676 break;
2677
2678 case SHIFTED_ARITH_IMM:
2679 if (kind == AARCH64_MOD_ROR)
2680 {
2681 set_syntax_error (_("'ROR' shift is not permitted"));
2682 return FALSE;
2683 }
2684 break;
2685
2686 case SHIFTED_LSL:
2687 if (kind != AARCH64_MOD_LSL)
2688 {
2689 set_syntax_error (_("only 'LSL' shift is permitted"));
2690 return FALSE;
2691 }
2692 break;
2693
2694 case SHIFTED_REG_OFFSET:
2695 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2696 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2697 {
2698 set_fatal_syntax_error
2699 (_("invalid shift for the register offset addressing mode"));
2700 return FALSE;
2701 }
2702 break;
2703
2704 case SHIFTED_LSL_MSL:
2705 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2706 {
2707 set_syntax_error (_("invalid shift operator"));
2708 return FALSE;
2709 }
2710 break;
2711
2712 default:
2713 abort ();
2714 }
2715
2716 /* Whitespace can appear here if the next thing is a bare digit. */
2717 skip_whitespace (p);
2718
2719 /* Parse shift amount. */
2720 exp_has_prefix = 0;
2721 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2722 exp.X_op = O_absent;
2723 else
2724 {
2725 if (is_immediate_prefix (*p))
2726 {
2727 p++;
2728 exp_has_prefix = 1;
2729 }
2730 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2731 }
2732 if (exp.X_op == O_absent)
2733 {
2734 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2735 {
2736 set_syntax_error (_("missing shift amount"));
2737 return FALSE;
2738 }
2739 operand->shifter.amount = 0;
2740 }
2741 else if (exp.X_op != O_constant)
2742 {
2743 set_syntax_error (_("constant shift amount required"));
2744 return FALSE;
2745 }
2746 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2747 {
2748 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2749 return FALSE;
2750 }
2751 else
2752 {
2753 operand->shifter.amount = exp.X_add_number;
2754 operand->shifter.amount_present = 1;
2755 }
2756
2757 operand->shifter.operator_present = 1;
2758 operand->shifter.kind = kind;
2759
2760 *str = p;
2761 return TRUE;
2762}
2763
2764/* Parse a <shifter_operand> for a data processing instruction:
2765
2766 #<immediate>
2767 #<immediate>, LSL #imm
2768
2769 Validation of immediate operands is deferred to md_apply_fix.
2770
2771 Return TRUE on success; otherwise return FALSE. */
2772
2773static bfd_boolean
2774parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2775 enum parse_shift_mode mode)
2776{
2777 char *p;
2778
2779 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2780 return FALSE;
2781
2782 p = *str;
2783
2784 /* Accept an immediate expression. */
2785 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2786 return FALSE;
2787
2788 /* Accept optional LSL for arithmetic immediate values. */
2789 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2790 if (! parse_shift (&p, operand, SHIFTED_LSL))
2791 return FALSE;
2792
2793 /* Not accept any shifter for logical immediate values. */
2794 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2795 && parse_shift (&p, operand, mode))
2796 {
2797 set_syntax_error (_("unexpected shift operator"));
2798 return FALSE;
2799 }
2800
2801 *str = p;
2802 return TRUE;
2803}
2804
2805/* Parse a <shifter_operand> for a data processing instruction:
2806
2807 <Rm>
2808 <Rm>, <shift>
2809 #<immediate>
2810 #<immediate>, LSL #imm
2811
2812 where <shift> is handled by parse_shift above, and the last two
2813 cases are handled by the function above.
2814
2815 Validation of immediate operands is deferred to md_apply_fix.
2816
2817 Return TRUE on success; otherwise return FALSE. */
2818
2819static bfd_boolean
2820parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2821 enum parse_shift_mode mode)
2822{
2823 int reg;
2824 int isreg32, isregzero;
2825 enum aarch64_operand_class opd_class
2826 = aarch64_get_operand_class (operand->type);
2827
2828 if ((reg =
2829 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2830 {
2831 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2832 {
2833 set_syntax_error (_("unexpected register in the immediate operand"));
2834 return FALSE;
2835 }
2836
2837 if (!isregzero && reg == REG_SP)
2838 {
2839 set_syntax_error (BAD_SP);
2840 return FALSE;
2841 }
2842
2843 operand->reg.regno = reg;
2844 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2845
2846 /* Accept optional shift operation on register. */
2847 if (! skip_past_comma (str))
2848 return TRUE;
2849
2850 if (! parse_shift (str, operand, mode))
2851 return FALSE;
2852
2853 return TRUE;
2854 }
2855 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2856 {
2857 set_syntax_error
2858 (_("integer register expected in the extended/shifted operand "
2859 "register"));
2860 return FALSE;
2861 }
2862
2863 /* We have a shifted immediate variable. */
2864 return parse_shifter_operand_imm (str, operand, mode);
2865}
2866
2867/* Return TRUE on success; return FALSE otherwise. */
2868
2869static bfd_boolean
2870parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
2871 enum parse_shift_mode mode)
2872{
2873 char *p = *str;
2874
2875 /* Determine if we have the sequence of characters #: or just :
2876 coming next. If we do, then we check for a :rello: relocation
2877 modifier. If we don't, punt the whole lot to
2878 parse_shifter_operand. */
2879
2880 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
2881 {
2882 struct reloc_table_entry *entry;
2883
2884 if (p[0] == '#')
2885 p += 2;
2886 else
2887 p++;
2888 *str = p;
2889
2890 /* Try to parse a relocation. Anything else is an error. */
2891 if (!(entry = find_reloc_table_entry (str)))
2892 {
2893 set_syntax_error (_("unknown relocation modifier"));
2894 return FALSE;
2895 }
2896
2897 if (entry->add_type == 0)
2898 {
2899 set_syntax_error
2900 (_("this relocation modifier is not allowed on this instruction"));
2901 return FALSE;
2902 }
2903
2904 /* Save str before we decompose it. */
2905 p = *str;
2906
2907 /* Next, we parse the expression. */
2908 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
2909 return FALSE;
2910
2911 /* Record the relocation type (use the ADD variant here). */
2912 inst.reloc.type = entry->add_type;
2913 inst.reloc.pc_rel = entry->pc_rel;
2914
2915 /* If str is empty, we've reached the end, stop here. */
2916 if (**str == '\0')
2917 return TRUE;
2918
55d9b4c1 2919 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
2920 recover the variable name and continue parsing for the shifter. */
2921 *str = p;
2922 return parse_shifter_operand_imm (str, operand, mode);
2923 }
2924
2925 return parse_shifter_operand (str, operand, mode);
2926}
2927
2928/* Parse all forms of an address expression. Information is written
2929 to *OPERAND and/or inst.reloc.
2930
2931 The A64 instruction set has the following addressing modes:
2932
2933 Offset
2934 [base] // in SIMD ld/st structure
2935 [base{,#0}] // in ld/st exclusive
2936 [base{,#imm}]
2937 [base,Xm{,LSL #imm}]
2938 [base,Xm,SXTX {#imm}]
2939 [base,Wm,(S|U)XTW {#imm}]
2940 Pre-indexed
2941 [base,#imm]!
2942 Post-indexed
2943 [base],#imm
2944 [base],Xm // in SIMD ld/st structure
2945 PC-relative (literal)
2946 label
2947 =immediate
2948
2949 (As a convenience, the notation "=immediate" is permitted in conjunction
2950 with the pc-relative literal load instructions to automatically place an
2951 immediate value or symbolic address in a nearby literal pool and generate
2952 a hidden label which references it.)
2953
2954 Upon a successful parsing, the address structure in *OPERAND will be
2955 filled in the following way:
2956
2957 .base_regno = <base>
2958 .offset.is_reg // 1 if the offset is a register
2959 .offset.imm = <imm>
2960 .offset.regno = <Rm>
2961
2962 For different addressing modes defined in the A64 ISA:
2963
2964 Offset
2965 .pcrel=0; .preind=1; .postind=0; .writeback=0
2966 Pre-indexed
2967 .pcrel=0; .preind=1; .postind=0; .writeback=1
2968 Post-indexed
2969 .pcrel=0; .preind=0; .postind=1; .writeback=1
2970 PC-relative (literal)
2971 .pcrel=1; .preind=1; .postind=0; .writeback=0
2972
2973 The shift/extension information, if any, will be stored in .shifter.
2974
2975 It is the caller's responsibility to check for addressing modes not
2976 supported by the instruction, and to set inst.reloc.type. */
2977
2978static bfd_boolean
2979parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
2980 int accept_reg_post_index)
2981{
2982 char *p = *str;
2983 int reg;
2984 int isreg32, isregzero;
2985 expressionS *exp = &inst.reloc.exp;
2986
2987 if (! skip_past_char (&p, '['))
2988 {
2989 /* =immediate or label. */
2990 operand->addr.pcrel = 1;
2991 operand->addr.preind = 1;
2992
f41aef5f
RE
2993 /* #:<reloc_op>:<symbol> */
2994 skip_past_char (&p, '#');
2995 if (reloc && skip_past_char (&p, ':'))
2996 {
6f4a313b 2997 bfd_reloc_code_real_type ty;
f41aef5f
RE
2998 struct reloc_table_entry *entry;
2999
3000 /* Try to parse a relocation modifier. Anything else is
3001 an error. */
3002 entry = find_reloc_table_entry (&p);
3003 if (! entry)
3004 {
3005 set_syntax_error (_("unknown relocation modifier"));
3006 return FALSE;
3007 }
3008
6f4a313b
MS
3009 switch (operand->type)
3010 {
3011 case AARCH64_OPND_ADDR_PCREL21:
3012 /* adr */
3013 ty = entry->adr_type;
3014 break;
3015
3016 default:
74ad790c 3017 ty = entry->ld_literal_type;
6f4a313b
MS
3018 break;
3019 }
3020
3021 if (ty == 0)
f41aef5f
RE
3022 {
3023 set_syntax_error
3024 (_("this relocation modifier is not allowed on this "
3025 "instruction"));
3026 return FALSE;
3027 }
3028
3029 /* #:<reloc_op>: */
3030 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3031 {
3032 set_syntax_error (_("invalid relocation expression"));
3033 return FALSE;
3034 }
a06ea964 3035
f41aef5f 3036 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3037 /* Record the relocation type. */
3038 inst.reloc.type = ty;
f41aef5f
RE
3039 inst.reloc.pc_rel = entry->pc_rel;
3040 }
3041 else
a06ea964 3042 {
f41aef5f
RE
3043
3044 if (skip_past_char (&p, '='))
3045 /* =immediate; need to generate the literal in the literal pool. */
3046 inst.gen_lit_pool = 1;
3047
3048 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3049 {
3050 set_syntax_error (_("invalid address"));
3051 return FALSE;
3052 }
a06ea964
NC
3053 }
3054
3055 *str = p;
3056 return TRUE;
3057 }
3058
3059 /* [ */
3060
3061 /* Accept SP and reject ZR */
3062 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3063 if (reg == PARSE_FAIL || isreg32)
3064 {
3065 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3066 return FALSE;
3067 }
3068 operand->addr.base_regno = reg;
3069
3070 /* [Xn */
3071 if (skip_past_comma (&p))
3072 {
3073 /* [Xn, */
3074 operand->addr.preind = 1;
3075
3076 /* Reject SP and accept ZR */
3077 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3078 if (reg != PARSE_FAIL)
3079 {
3080 /* [Xn,Rm */
3081 operand->addr.offset.regno = reg;
3082 operand->addr.offset.is_reg = 1;
3083 /* Shifted index. */
3084 if (skip_past_comma (&p))
3085 {
3086 /* [Xn,Rm, */
3087 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3088 /* Use the diagnostics set in parse_shift, so not set new
3089 error message here. */
3090 return FALSE;
3091 }
3092 /* We only accept:
3093 [base,Xm{,LSL #imm}]
3094 [base,Xm,SXTX {#imm}]
3095 [base,Wm,(S|U)XTW {#imm}] */
3096 if (operand->shifter.kind == AARCH64_MOD_NONE
3097 || operand->shifter.kind == AARCH64_MOD_LSL
3098 || operand->shifter.kind == AARCH64_MOD_SXTX)
3099 {
3100 if (isreg32)
3101 {
3102 set_syntax_error (_("invalid use of 32-bit register offset"));
3103 return FALSE;
3104 }
3105 }
3106 else if (!isreg32)
3107 {
3108 set_syntax_error (_("invalid use of 64-bit register offset"));
3109 return FALSE;
3110 }
3111 }
3112 else
3113 {
3114 /* [Xn,#:<reloc_op>:<symbol> */
3115 skip_past_char (&p, '#');
3116 if (reloc && skip_past_char (&p, ':'))
3117 {
3118 struct reloc_table_entry *entry;
3119
3120 /* Try to parse a relocation modifier. Anything else is
3121 an error. */
3122 if (!(entry = find_reloc_table_entry (&p)))
3123 {
3124 set_syntax_error (_("unknown relocation modifier"));
3125 return FALSE;
3126 }
3127
3128 if (entry->ldst_type == 0)
3129 {
3130 set_syntax_error
3131 (_("this relocation modifier is not allowed on this "
3132 "instruction"));
3133 return FALSE;
3134 }
3135
3136 /* [Xn,#:<reloc_op>: */
3137 /* We now have the group relocation table entry corresponding to
3138 the name in the assembler source. Next, we parse the
3139 expression. */
3140 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3141 {
3142 set_syntax_error (_("invalid relocation expression"));
3143 return FALSE;
3144 }
3145
3146 /* [Xn,#:<reloc_op>:<expr> */
3147 /* Record the load/store relocation type. */
3148 inst.reloc.type = entry->ldst_type;
3149 inst.reloc.pc_rel = entry->pc_rel;
3150 }
3151 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3152 {
3153 set_syntax_error (_("invalid expression in the address"));
3154 return FALSE;
3155 }
3156 /* [Xn,<expr> */
3157 }
3158 }
3159
3160 if (! skip_past_char (&p, ']'))
3161 {
3162 set_syntax_error (_("']' expected"));
3163 return FALSE;
3164 }
3165
3166 if (skip_past_char (&p, '!'))
3167 {
3168 if (operand->addr.preind && operand->addr.offset.is_reg)
3169 {
3170 set_syntax_error (_("register offset not allowed in pre-indexed "
3171 "addressing mode"));
3172 return FALSE;
3173 }
3174 /* [Xn]! */
3175 operand->addr.writeback = 1;
3176 }
3177 else if (skip_past_comma (&p))
3178 {
3179 /* [Xn], */
3180 operand->addr.postind = 1;
3181 operand->addr.writeback = 1;
3182
3183 if (operand->addr.preind)
3184 {
3185 set_syntax_error (_("cannot combine pre- and post-indexing"));
3186 return FALSE;
3187 }
3188
3189 if (accept_reg_post_index
3190 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3191 &isregzero)) != PARSE_FAIL)
3192 {
3193 /* [Xn],Xm */
3194 if (isreg32)
3195 {
3196 set_syntax_error (_("invalid 32-bit register offset"));
3197 return FALSE;
3198 }
3199 operand->addr.offset.regno = reg;
3200 operand->addr.offset.is_reg = 1;
3201 }
3202 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3203 {
3204 /* [Xn],#expr */
3205 set_syntax_error (_("invalid expression in the address"));
3206 return FALSE;
3207 }
3208 }
3209
3210 /* If at this point neither .preind nor .postind is set, we have a
3211 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3212 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3213 {
3214 if (operand->addr.writeback)
3215 {
3216 /* Reject [Rn]! */
3217 set_syntax_error (_("missing offset in the pre-indexed address"));
3218 return FALSE;
3219 }
3220 operand->addr.preind = 1;
3221 inst.reloc.exp.X_op = O_constant;
3222 inst.reloc.exp.X_add_number = 0;
3223 }
3224
3225 *str = p;
3226 return TRUE;
3227}
3228
3229/* Return TRUE on success; otherwise return FALSE. */
3230static bfd_boolean
3231parse_address (char **str, aarch64_opnd_info *operand,
3232 int accept_reg_post_index)
3233{
3234 return parse_address_main (str, operand, 0, accept_reg_post_index);
3235}
3236
3237/* Return TRUE on success; otherwise return FALSE. */
3238static bfd_boolean
3239parse_address_reloc (char **str, aarch64_opnd_info *operand)
3240{
3241 return parse_address_main (str, operand, 1, 0);
3242}
3243
3244/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3245 Return TRUE on success; otherwise return FALSE. */
3246static bfd_boolean
3247parse_half (char **str, int *internal_fixup_p)
3248{
3249 char *p, *saved;
3250 int dummy;
3251
3252 p = *str;
3253 skip_past_char (&p, '#');
3254
3255 gas_assert (internal_fixup_p);
3256 *internal_fixup_p = 0;
3257
3258 if (*p == ':')
3259 {
3260 struct reloc_table_entry *entry;
3261
3262 /* Try to parse a relocation. Anything else is an error. */
3263 ++p;
3264 if (!(entry = find_reloc_table_entry (&p)))
3265 {
3266 set_syntax_error (_("unknown relocation modifier"));
3267 return FALSE;
3268 }
3269
3270 if (entry->movw_type == 0)
3271 {
3272 set_syntax_error
3273 (_("this relocation modifier is not allowed on this instruction"));
3274 return FALSE;
3275 }
3276
3277 inst.reloc.type = entry->movw_type;
3278 }
3279 else
3280 *internal_fixup_p = 1;
3281
3282 /* Avoid parsing a register as a general symbol. */
3283 saved = p;
3284 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3285 return FALSE;
3286 p = saved;
3287
3288 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3289 return FALSE;
3290
3291 *str = p;
3292 return TRUE;
3293}
3294
3295/* Parse an operand for an ADRP instruction:
3296 ADRP <Xd>, <label>
3297 Return TRUE on success; otherwise return FALSE. */
3298
3299static bfd_boolean
3300parse_adrp (char **str)
3301{
3302 char *p;
3303
3304 p = *str;
3305 if (*p == ':')
3306 {
3307 struct reloc_table_entry *entry;
3308
3309 /* Try to parse a relocation. Anything else is an error. */
3310 ++p;
3311 if (!(entry = find_reloc_table_entry (&p)))
3312 {
3313 set_syntax_error (_("unknown relocation modifier"));
3314 return FALSE;
3315 }
3316
3317 if (entry->adrp_type == 0)
3318 {
3319 set_syntax_error
3320 (_("this relocation modifier is not allowed on this instruction"));
3321 return FALSE;
3322 }
3323
3324 inst.reloc.type = entry->adrp_type;
3325 }
3326 else
3327 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3328
3329 inst.reloc.pc_rel = 1;
3330
3331 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3332 return FALSE;
3333
3334 *str = p;
3335 return TRUE;
3336}
3337
3338/* Miscellaneous. */
3339
3340/* Parse an option for a preload instruction. Returns the encoding for the
3341 option, or PARSE_FAIL. */
3342
3343static int
3344parse_pldop (char **str)
3345{
3346 char *p, *q;
3347 const struct aarch64_name_value_pair *o;
3348
3349 p = q = *str;
3350 while (ISALNUM (*q))
3351 q++;
3352
3353 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3354 if (!o)
3355 return PARSE_FAIL;
3356
3357 *str = q;
3358 return o->value;
3359}
3360
3361/* Parse an option for a barrier instruction. Returns the encoding for the
3362 option, or PARSE_FAIL. */
3363
3364static int
3365parse_barrier (char **str)
3366{
3367 char *p, *q;
3368 const asm_barrier_opt *o;
3369
3370 p = q = *str;
3371 while (ISALPHA (*q))
3372 q++;
3373
3374 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3375 if (!o)
3376 return PARSE_FAIL;
3377
3378 *str = q;
3379 return o->value;
3380}
3381
3382/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3383 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3384
3385 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
18cf6de4 3386 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964
NC
3387
3388static int
a203d9b7 3389parse_sys_reg (char **str, struct hash_control *sys_regs, int imple_defined_p)
a06ea964
NC
3390{
3391 char *p, *q;
3392 char buf[32];
49eec193 3393 const aarch64_sys_reg *o;
a06ea964
NC
3394 int value;
3395
3396 p = buf;
3397 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3398 if (p < buf + 31)
3399 *p++ = TOLOWER (*q);
3400 *p = '\0';
3401 /* Assert that BUF be large enough. */
3402 gas_assert (p - buf == q - *str);
3403
3404 o = hash_find (sys_regs, buf);
3405 if (!o)
3406 {
3407 if (!imple_defined_p)
3408 return PARSE_FAIL;
3409 else
3410 {
df7b4545 3411 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3412 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3413
3414 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3415 != 5)
a06ea964 3416 return PARSE_FAIL;
df7b4545 3417 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3418 return PARSE_FAIL;
3419 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3420 }
3421 }
3422 else
49eec193 3423 {
9a73e520 3424 if (aarch64_sys_reg_deprecated_p (o))
49eec193
YZ
3425 as_warn (_("system register name '%s' is deprecated and may be "
3426"removed in a future release"), buf);
3427 value = o->value;
3428 }
a06ea964
NC
3429
3430 *str = q;
3431 return value;
3432}
3433
3434/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3435 for the option, or NULL. */
3436
3437static const aarch64_sys_ins_reg *
3438parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3439{
3440 char *p, *q;
3441 char buf[32];
3442 const aarch64_sys_ins_reg *o;
3443
3444 p = buf;
3445 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3446 if (p < buf + 31)
3447 *p++ = TOLOWER (*q);
3448 *p = '\0';
3449
3450 o = hash_find (sys_ins_regs, buf);
3451 if (!o)
3452 return NULL;
3453
3454 *str = q;
3455 return o;
3456}
3457\f
3458#define po_char_or_fail(chr) do { \
3459 if (! skip_past_char (&str, chr)) \
3460 goto failure; \
3461} while (0)
3462
3463#define po_reg_or_fail(regtype) do { \
3464 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3465 if (val == PARSE_FAIL) \
3466 { \
3467 set_default_error (); \
3468 goto failure; \
3469 } \
3470 } while (0)
3471
3472#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3473 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3474 &isreg32, &isregzero); \
3475 if (val == PARSE_FAIL) \
3476 { \
3477 set_default_error (); \
3478 goto failure; \
3479 } \
3480 info->reg.regno = val; \
3481 if (isreg32) \
3482 info->qualifier = AARCH64_OPND_QLF_W; \
3483 else \
3484 info->qualifier = AARCH64_OPND_QLF_X; \
3485 } while (0)
3486
3487#define po_imm_nc_or_fail() do { \
3488 if (! parse_constant_immediate (&str, &val)) \
3489 goto failure; \
3490 } while (0)
3491
3492#define po_imm_or_fail(min, max) do { \
3493 if (! parse_constant_immediate (&str, &val)) \
3494 goto failure; \
3495 if (val < min || val > max) \
3496 { \
3497 set_fatal_syntax_error (_("immediate value out of range "\
3498#min " to "#max)); \
3499 goto failure; \
3500 } \
3501 } while (0)
3502
3503#define po_misc_or_fail(expr) do { \
3504 if (!expr) \
3505 goto failure; \
3506 } while (0)
3507\f
3508/* encode the 12-bit imm field of Add/sub immediate */
3509static inline uint32_t
3510encode_addsub_imm (uint32_t imm)
3511{
3512 return imm << 10;
3513}
3514
3515/* encode the shift amount field of Add/sub immediate */
3516static inline uint32_t
3517encode_addsub_imm_shift_amount (uint32_t cnt)
3518{
3519 return cnt << 22;
3520}
3521
3522
3523/* encode the imm field of Adr instruction */
3524static inline uint32_t
3525encode_adr_imm (uint32_t imm)
3526{
3527 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3528 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3529}
3530
3531/* encode the immediate field of Move wide immediate */
3532static inline uint32_t
3533encode_movw_imm (uint32_t imm)
3534{
3535 return imm << 5;
3536}
3537
3538/* encode the 26-bit offset of unconditional branch */
3539static inline uint32_t
3540encode_branch_ofs_26 (uint32_t ofs)
3541{
3542 return ofs & ((1 << 26) - 1);
3543}
3544
3545/* encode the 19-bit offset of conditional branch and compare & branch */
3546static inline uint32_t
3547encode_cond_branch_ofs_19 (uint32_t ofs)
3548{
3549 return (ofs & ((1 << 19) - 1)) << 5;
3550}
3551
3552/* encode the 19-bit offset of ld literal */
3553static inline uint32_t
3554encode_ld_lit_ofs_19 (uint32_t ofs)
3555{
3556 return (ofs & ((1 << 19) - 1)) << 5;
3557}
3558
3559/* Encode the 14-bit offset of test & branch. */
3560static inline uint32_t
3561encode_tst_branch_ofs_14 (uint32_t ofs)
3562{
3563 return (ofs & ((1 << 14) - 1)) << 5;
3564}
3565
3566/* Encode the 16-bit imm field of svc/hvc/smc. */
3567static inline uint32_t
3568encode_svc_imm (uint32_t imm)
3569{
3570 return imm << 5;
3571}
3572
3573/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3574static inline uint32_t
3575reencode_addsub_switch_add_sub (uint32_t opcode)
3576{
3577 return opcode ^ (1 << 30);
3578}
3579
3580static inline uint32_t
3581reencode_movzn_to_movz (uint32_t opcode)
3582{
3583 return opcode | (1 << 30);
3584}
3585
3586static inline uint32_t
3587reencode_movzn_to_movn (uint32_t opcode)
3588{
3589 return opcode & ~(1 << 30);
3590}
3591
3592/* Overall per-instruction processing. */
3593
3594/* We need to be able to fix up arbitrary expressions in some statements.
3595 This is so that we can handle symbols that are an arbitrary distance from
3596 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3597 which returns part of an address in a form which will be valid for
3598 a data instruction. We do this by pushing the expression into a symbol
3599 in the expr_section, and creating a fix for that. */
3600
3601static fixS *
3602fix_new_aarch64 (fragS * frag,
3603 int where,
3604 short int size, expressionS * exp, int pc_rel, int reloc)
3605{
3606 fixS *new_fix;
3607
3608 switch (exp->X_op)
3609 {
3610 case O_constant:
3611 case O_symbol:
3612 case O_add:
3613 case O_subtract:
3614 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3615 break;
3616
3617 default:
3618 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3619 pc_rel, reloc);
3620 break;
3621 }
3622 return new_fix;
3623}
3624\f
3625/* Diagnostics on operands errors. */
3626
a52e6fd3
YZ
3627/* By default, output verbose error message.
3628 Disable the verbose error message by -mno-verbose-error. */
3629static int verbose_error_p = 1;
a06ea964
NC
3630
3631#ifdef DEBUG_AARCH64
3632/* N.B. this is only for the purpose of debugging. */
3633const char* operand_mismatch_kind_names[] =
3634{
3635 "AARCH64_OPDE_NIL",
3636 "AARCH64_OPDE_RECOVERABLE",
3637 "AARCH64_OPDE_SYNTAX_ERROR",
3638 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3639 "AARCH64_OPDE_INVALID_VARIANT",
3640 "AARCH64_OPDE_OUT_OF_RANGE",
3641 "AARCH64_OPDE_UNALIGNED",
3642 "AARCH64_OPDE_REG_LIST",
3643 "AARCH64_OPDE_OTHER_ERROR",
3644};
3645#endif /* DEBUG_AARCH64 */
3646
3647/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3648
3649 When multiple errors of different kinds are found in the same assembly
3650 line, only the error of the highest severity will be picked up for
3651 issuing the diagnostics. */
3652
3653static inline bfd_boolean
3654operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3655 enum aarch64_operand_error_kind rhs)
3656{
3657 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3658 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3659 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3660 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3661 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3662 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3663 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3664 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3665 return lhs > rhs;
3666}
3667
3668/* Helper routine to get the mnemonic name from the assembly instruction
3669 line; should only be called for the diagnosis purpose, as there is
3670 string copy operation involved, which may affect the runtime
3671 performance if used in elsewhere. */
3672
3673static const char*
3674get_mnemonic_name (const char *str)
3675{
3676 static char mnemonic[32];
3677 char *ptr;
3678
3679 /* Get the first 15 bytes and assume that the full name is included. */
3680 strncpy (mnemonic, str, 31);
3681 mnemonic[31] = '\0';
3682
3683 /* Scan up to the end of the mnemonic, which must end in white space,
3684 '.', or end of string. */
3685 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3686 ;
3687
3688 *ptr = '\0';
3689
3690 /* Append '...' to the truncated long name. */
3691 if (ptr - mnemonic == 31)
3692 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3693
3694 return mnemonic;
3695}
3696
3697static void
3698reset_aarch64_instruction (aarch64_instruction *instruction)
3699{
3700 memset (instruction, '\0', sizeof (aarch64_instruction));
3701 instruction->reloc.type = BFD_RELOC_UNUSED;
3702}
3703
3704/* Data strutures storing one user error in the assembly code related to
3705 operands. */
3706
3707struct operand_error_record
3708{
3709 const aarch64_opcode *opcode;
3710 aarch64_operand_error detail;
3711 struct operand_error_record *next;
3712};
3713
3714typedef struct operand_error_record operand_error_record;
3715
3716struct operand_errors
3717{
3718 operand_error_record *head;
3719 operand_error_record *tail;
3720};
3721
3722typedef struct operand_errors operand_errors;
3723
3724/* Top-level data structure reporting user errors for the current line of
3725 the assembly code.
3726 The way md_assemble works is that all opcodes sharing the same mnemonic
3727 name are iterated to find a match to the assembly line. In this data
3728 structure, each of the such opcodes will have one operand_error_record
3729 allocated and inserted. In other words, excessive errors related with
3730 a single opcode are disregarded. */
3731operand_errors operand_error_report;
3732
3733/* Free record nodes. */
3734static operand_error_record *free_opnd_error_record_nodes = NULL;
3735
3736/* Initialize the data structure that stores the operand mismatch
3737 information on assembling one line of the assembly code. */
3738static void
3739init_operand_error_report (void)
3740{
3741 if (operand_error_report.head != NULL)
3742 {
3743 gas_assert (operand_error_report.tail != NULL);
3744 operand_error_report.tail->next = free_opnd_error_record_nodes;
3745 free_opnd_error_record_nodes = operand_error_report.head;
3746 operand_error_report.head = NULL;
3747 operand_error_report.tail = NULL;
3748 return;
3749 }
3750 gas_assert (operand_error_report.tail == NULL);
3751}
3752
3753/* Return TRUE if some operand error has been recorded during the
3754 parsing of the current assembly line using the opcode *OPCODE;
3755 otherwise return FALSE. */
3756static inline bfd_boolean
3757opcode_has_operand_error_p (const aarch64_opcode *opcode)
3758{
3759 operand_error_record *record = operand_error_report.head;
3760 return record && record->opcode == opcode;
3761}
3762
3763/* Add the error record *NEW_RECORD to operand_error_report. The record's
3764 OPCODE field is initialized with OPCODE.
3765 N.B. only one record for each opcode, i.e. the maximum of one error is
3766 recorded for each instruction template. */
3767
3768static void
3769add_operand_error_record (const operand_error_record* new_record)
3770{
3771 const aarch64_opcode *opcode = new_record->opcode;
3772 operand_error_record* record = operand_error_report.head;
3773
3774 /* The record may have been created for this opcode. If not, we need
3775 to prepare one. */
3776 if (! opcode_has_operand_error_p (opcode))
3777 {
3778 /* Get one empty record. */
3779 if (free_opnd_error_record_nodes == NULL)
3780 {
3781 record = xmalloc (sizeof (operand_error_record));
3782 if (record == NULL)
3783 abort ();
3784 }
3785 else
3786 {
3787 record = free_opnd_error_record_nodes;
3788 free_opnd_error_record_nodes = record->next;
3789 }
3790 record->opcode = opcode;
3791 /* Insert at the head. */
3792 record->next = operand_error_report.head;
3793 operand_error_report.head = record;
3794 if (operand_error_report.tail == NULL)
3795 operand_error_report.tail = record;
3796 }
3797 else if (record->detail.kind != AARCH64_OPDE_NIL
3798 && record->detail.index <= new_record->detail.index
3799 && operand_error_higher_severity_p (record->detail.kind,
3800 new_record->detail.kind))
3801 {
3802 /* In the case of multiple errors found on operands related with a
3803 single opcode, only record the error of the leftmost operand and
3804 only if the error is of higher severity. */
3805 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3806 " the existing error %s on operand %d",
3807 operand_mismatch_kind_names[new_record->detail.kind],
3808 new_record->detail.index,
3809 operand_mismatch_kind_names[record->detail.kind],
3810 record->detail.index);
3811 return;
3812 }
3813
3814 record->detail = new_record->detail;
3815}
3816
3817static inline void
3818record_operand_error_info (const aarch64_opcode *opcode,
3819 aarch64_operand_error *error_info)
3820{
3821 operand_error_record record;
3822 record.opcode = opcode;
3823 record.detail = *error_info;
3824 add_operand_error_record (&record);
3825}
3826
3827/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3828 error message *ERROR, for operand IDX (count from 0). */
3829
3830static void
3831record_operand_error (const aarch64_opcode *opcode, int idx,
3832 enum aarch64_operand_error_kind kind,
3833 const char* error)
3834{
3835 aarch64_operand_error info;
3836 memset(&info, 0, sizeof (info));
3837 info.index = idx;
3838 info.kind = kind;
3839 info.error = error;
3840 record_operand_error_info (opcode, &info);
3841}
3842
3843static void
3844record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3845 enum aarch64_operand_error_kind kind,
3846 const char* error, const int *extra_data)
3847{
3848 aarch64_operand_error info;
3849 info.index = idx;
3850 info.kind = kind;
3851 info.error = error;
3852 info.data[0] = extra_data[0];
3853 info.data[1] = extra_data[1];
3854 info.data[2] = extra_data[2];
3855 record_operand_error_info (opcode, &info);
3856}
3857
3858static void
3859record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
3860 const char* error, int lower_bound,
3861 int upper_bound)
3862{
3863 int data[3] = {lower_bound, upper_bound, 0};
3864 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
3865 error, data);
3866}
3867
3868/* Remove the operand error record for *OPCODE. */
3869static void ATTRIBUTE_UNUSED
3870remove_operand_error_record (const aarch64_opcode *opcode)
3871{
3872 if (opcode_has_operand_error_p (opcode))
3873 {
3874 operand_error_record* record = operand_error_report.head;
3875 gas_assert (record != NULL && operand_error_report.tail != NULL);
3876 operand_error_report.head = record->next;
3877 record->next = free_opnd_error_record_nodes;
3878 free_opnd_error_record_nodes = record;
3879 if (operand_error_report.head == NULL)
3880 {
3881 gas_assert (operand_error_report.tail == record);
3882 operand_error_report.tail = NULL;
3883 }
3884 }
3885}
3886
3887/* Given the instruction in *INSTR, return the index of the best matched
3888 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
3889
3890 Return -1 if there is no qualifier sequence; return the first match
3891 if there is multiple matches found. */
3892
3893static int
3894find_best_match (const aarch64_inst *instr,
3895 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
3896{
3897 int i, num_opnds, max_num_matched, idx;
3898
3899 num_opnds = aarch64_num_of_operands (instr->opcode);
3900 if (num_opnds == 0)
3901 {
3902 DEBUG_TRACE ("no operand");
3903 return -1;
3904 }
3905
3906 max_num_matched = 0;
3907 idx = -1;
3908
3909 /* For each pattern. */
3910 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
3911 {
3912 int j, num_matched;
3913 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
3914
3915 /* Most opcodes has much fewer patterns in the list. */
3916 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
3917 {
3918 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
3919 if (i != 0 && idx == -1)
3920 /* If nothing has been matched, return the 1st sequence. */
3921 idx = 0;
3922 break;
3923 }
3924
3925 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
3926 if (*qualifiers == instr->operands[j].qualifier)
3927 ++num_matched;
3928
3929 if (num_matched > max_num_matched)
3930 {
3931 max_num_matched = num_matched;
3932 idx = i;
3933 }
3934 }
3935
3936 DEBUG_TRACE ("return with %d", idx);
3937 return idx;
3938}
3939
3940/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
3941 corresponding operands in *INSTR. */
3942
3943static inline void
3944assign_qualifier_sequence (aarch64_inst *instr,
3945 const aarch64_opnd_qualifier_t *qualifiers)
3946{
3947 int i = 0;
3948 int num_opnds = aarch64_num_of_operands (instr->opcode);
3949 gas_assert (num_opnds);
3950 for (i = 0; i < num_opnds; ++i, ++qualifiers)
3951 instr->operands[i].qualifier = *qualifiers;
3952}
3953
3954/* Print operands for the diagnosis purpose. */
3955
3956static void
3957print_operands (char *buf, const aarch64_opcode *opcode,
3958 const aarch64_opnd_info *opnds)
3959{
3960 int i;
3961
3962 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
3963 {
3964 const size_t size = 128;
3965 char str[size];
3966
3967 /* We regard the opcode operand info more, however we also look into
3968 the inst->operands to support the disassembling of the optional
3969 operand.
3970 The two operand code should be the same in all cases, apart from
3971 when the operand can be optional. */
3972 if (opcode->operands[i] == AARCH64_OPND_NIL
3973 || opnds[i].type == AARCH64_OPND_NIL)
3974 break;
3975
3976 /* Generate the operand string in STR. */
3977 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
3978
3979 /* Delimiter. */
3980 if (str[0] != '\0')
3981 strcat (buf, i == 0 ? " " : ",");
3982
3983 /* Append the operand string. */
3984 strcat (buf, str);
3985 }
3986}
3987
3988/* Send to stderr a string as information. */
3989
3990static void
3991output_info (const char *format, ...)
3992{
3993 char *file;
3994 unsigned int line;
3995 va_list args;
3996
3997 as_where (&file, &line);
3998 if (file)
3999 {
4000 if (line != 0)
4001 fprintf (stderr, "%s:%u: ", file, line);
4002 else
4003 fprintf (stderr, "%s: ", file);
4004 }
4005 fprintf (stderr, _("Info: "));
4006 va_start (args, format);
4007 vfprintf (stderr, format, args);
4008 va_end (args);
4009 (void) putc ('\n', stderr);
4010}
4011
4012/* Output one operand error record. */
4013
4014static void
4015output_operand_error_record (const operand_error_record *record, char *str)
4016{
28f013d5
JB
4017 const aarch64_operand_error *detail = &record->detail;
4018 int idx = detail->index;
a06ea964 4019 const aarch64_opcode *opcode = record->opcode;
28f013d5 4020 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4021 : AARCH64_OPND_NIL);
a06ea964
NC
4022
4023 switch (detail->kind)
4024 {
4025 case AARCH64_OPDE_NIL:
4026 gas_assert (0);
4027 break;
4028
4029 case AARCH64_OPDE_SYNTAX_ERROR:
4030 case AARCH64_OPDE_RECOVERABLE:
4031 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4032 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4033 /* Use the prepared error message if there is, otherwise use the
4034 operand description string to describe the error. */
4035 if (detail->error != NULL)
4036 {
28f013d5 4037 if (idx < 0)
a06ea964
NC
4038 as_bad (_("%s -- `%s'"), detail->error, str);
4039 else
4040 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4041 detail->error, idx + 1, str);
a06ea964
NC
4042 }
4043 else
28f013d5
JB
4044 {
4045 gas_assert (idx >= 0);
4046 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4047 aarch64_get_operand_desc (opd_code), str);
28f013d5 4048 }
a06ea964
NC
4049 break;
4050
4051 case AARCH64_OPDE_INVALID_VARIANT:
4052 as_bad (_("operand mismatch -- `%s'"), str);
4053 if (verbose_error_p)
4054 {
4055 /* We will try to correct the erroneous instruction and also provide
4056 more information e.g. all other valid variants.
4057
4058 The string representation of the corrected instruction and other
4059 valid variants are generated by
4060
4061 1) obtaining the intermediate representation of the erroneous
4062 instruction;
4063 2) manipulating the IR, e.g. replacing the operand qualifier;
4064 3) printing out the instruction by calling the printer functions
4065 shared with the disassembler.
4066
4067 The limitation of this method is that the exact input assembly
4068 line cannot be accurately reproduced in some cases, for example an
4069 optional operand present in the actual assembly line will be
4070 omitted in the output; likewise for the optional syntax rules,
4071 e.g. the # before the immediate. Another limitation is that the
4072 assembly symbols and relocation operations in the assembly line
4073 currently cannot be printed out in the error report. Last but not
4074 least, when there is other error(s) co-exist with this error, the
4075 'corrected' instruction may be still incorrect, e.g. given
4076 'ldnp h0,h1,[x0,#6]!'
4077 this diagnosis will provide the version:
4078 'ldnp s0,s1,[x0,#6]!'
4079 which is still not right. */
4080 size_t len = strlen (get_mnemonic_name (str));
4081 int i, qlf_idx;
4082 bfd_boolean result;
4083 const size_t size = 2048;
4084 char buf[size];
4085 aarch64_inst *inst_base = &inst.base;
4086 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4087
4088 /* Init inst. */
4089 reset_aarch64_instruction (&inst);
4090 inst_base->opcode = opcode;
4091
4092 /* Reset the error report so that there is no side effect on the
4093 following operand parsing. */
4094 init_operand_error_report ();
4095
4096 /* Fill inst. */
4097 result = parse_operands (str + len, opcode)
4098 && programmer_friendly_fixup (&inst);
4099 gas_assert (result);
4100 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4101 NULL, NULL);
4102 gas_assert (!result);
4103
4104 /* Find the most matched qualifier sequence. */
4105 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4106 gas_assert (qlf_idx > -1);
4107
4108 /* Assign the qualifiers. */
4109 assign_qualifier_sequence (inst_base,
4110 opcode->qualifiers_list[qlf_idx]);
4111
4112 /* Print the hint. */
4113 output_info (_(" did you mean this?"));
4114 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4115 print_operands (buf, opcode, inst_base->operands);
4116 output_info (_(" %s"), buf);
4117
4118 /* Print out other variant(s) if there is any. */
4119 if (qlf_idx != 0 ||
4120 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4121 output_info (_(" other valid variant(s):"));
4122
4123 /* For each pattern. */
4124 qualifiers_list = opcode->qualifiers_list;
4125 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4126 {
4127 /* Most opcodes has much fewer patterns in the list.
4128 First NIL qualifier indicates the end in the list. */
4129 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4130 break;
4131
4132 if (i != qlf_idx)
4133 {
4134 /* Mnemonics name. */
4135 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4136
4137 /* Assign the qualifiers. */
4138 assign_qualifier_sequence (inst_base, *qualifiers_list);
4139
4140 /* Print instruction. */
4141 print_operands (buf, opcode, inst_base->operands);
4142
4143 output_info (_(" %s"), buf);
4144 }
4145 }
4146 }
4147 break;
4148
4149 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4150 if (detail->data[0] != detail->data[1])
4151 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4152 detail->error ? detail->error : _("immediate value"),
28f013d5 4153 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4154 else
4155 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4156 detail->error ? detail->error : _("immediate value"),
28f013d5 4157 detail->data[0], idx + 1, str);
a06ea964
NC
4158 break;
4159
4160 case AARCH64_OPDE_REG_LIST:
4161 if (detail->data[0] == 1)
4162 as_bad (_("invalid number of registers in the list; "
4163 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4164 idx + 1, str);
a06ea964
NC
4165 else
4166 as_bad (_("invalid number of registers in the list; "
4167 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4168 detail->data[0], idx + 1, str);
a06ea964
NC
4169 break;
4170
4171 case AARCH64_OPDE_UNALIGNED:
4172 as_bad (_("immediate value should be a multiple of "
4173 "%d at operand %d -- `%s'"),
28f013d5 4174 detail->data[0], idx + 1, str);
a06ea964
NC
4175 break;
4176
4177 default:
4178 gas_assert (0);
4179 break;
4180 }
4181}
4182
4183/* Process and output the error message about the operand mismatching.
4184
4185 When this function is called, the operand error information had
4186 been collected for an assembly line and there will be multiple
4187 errors in the case of mulitple instruction templates; output the
4188 error message that most closely describes the problem. */
4189
4190static void
4191output_operand_error_report (char *str)
4192{
4193 int largest_error_pos;
4194 const char *msg = NULL;
4195 enum aarch64_operand_error_kind kind;
4196 operand_error_record *curr;
4197 operand_error_record *head = operand_error_report.head;
4198 operand_error_record *record = NULL;
4199
4200 /* No error to report. */
4201 if (head == NULL)
4202 return;
4203
4204 gas_assert (head != NULL && operand_error_report.tail != NULL);
4205
4206 /* Only one error. */
4207 if (head == operand_error_report.tail)
4208 {
4209 DEBUG_TRACE ("single opcode entry with error kind: %s",
4210 operand_mismatch_kind_names[head->detail.kind]);
4211 output_operand_error_record (head, str);
4212 return;
4213 }
4214
4215 /* Find the error kind of the highest severity. */
4216 DEBUG_TRACE ("multiple opcode entres with error kind");
4217 kind = AARCH64_OPDE_NIL;
4218 for (curr = head; curr != NULL; curr = curr->next)
4219 {
4220 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4221 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4222 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4223 kind = curr->detail.kind;
4224 }
4225 gas_assert (kind != AARCH64_OPDE_NIL);
4226
4227 /* Pick up one of errors of KIND to report. */
4228 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4229 for (curr = head; curr != NULL; curr = curr->next)
4230 {
4231 if (curr->detail.kind != kind)
4232 continue;
4233 /* If there are multiple errors, pick up the one with the highest
4234 mismatching operand index. In the case of multiple errors with
4235 the equally highest operand index, pick up the first one or the
4236 first one with non-NULL error message. */
4237 if (curr->detail.index > largest_error_pos
4238 || (curr->detail.index == largest_error_pos && msg == NULL
4239 && curr->detail.error != NULL))
4240 {
4241 largest_error_pos = curr->detail.index;
4242 record = curr;
4243 msg = record->detail.error;
4244 }
4245 }
4246
4247 gas_assert (largest_error_pos != -2 && record != NULL);
4248 DEBUG_TRACE ("Pick up error kind %s to report",
4249 operand_mismatch_kind_names[record->detail.kind]);
4250
4251 /* Output. */
4252 output_operand_error_record (record, str);
4253}
4254\f
4255/* Write an AARCH64 instruction to buf - always little-endian. */
4256static void
4257put_aarch64_insn (char *buf, uint32_t insn)
4258{
4259 unsigned char *where = (unsigned char *) buf;
4260 where[0] = insn;
4261 where[1] = insn >> 8;
4262 where[2] = insn >> 16;
4263 where[3] = insn >> 24;
4264}
4265
4266static uint32_t
4267get_aarch64_insn (char *buf)
4268{
4269 unsigned char *where = (unsigned char *) buf;
4270 uint32_t result;
4271 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4272 return result;
4273}
4274
4275static void
4276output_inst (struct aarch64_inst *new_inst)
4277{
4278 char *to = NULL;
4279
4280 to = frag_more (INSN_SIZE);
4281
4282 frag_now->tc_frag_data.recorded = 1;
4283
4284 put_aarch64_insn (to, inst.base.value);
4285
4286 if (inst.reloc.type != BFD_RELOC_UNUSED)
4287 {
4288 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4289 INSN_SIZE, &inst.reloc.exp,
4290 inst.reloc.pc_rel,
4291 inst.reloc.type);
4292 DEBUG_TRACE ("Prepared relocation fix up");
4293 /* Don't check the addend value against the instruction size,
4294 that's the job of our code in md_apply_fix(). */
4295 fixp->fx_no_overflow = 1;
4296 if (new_inst != NULL)
4297 fixp->tc_fix_data.inst = new_inst;
4298 if (aarch64_gas_internal_fixup_p ())
4299 {
4300 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4301 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4302 fixp->fx_addnumber = inst.reloc.flags;
4303 }
4304 }
4305
4306 dwarf2_emit_insn (INSN_SIZE);
4307}
4308
4309/* Link together opcodes of the same name. */
4310
4311struct templates
4312{
4313 aarch64_opcode *opcode;
4314 struct templates *next;
4315};
4316
4317typedef struct templates templates;
4318
4319static templates *
4320lookup_mnemonic (const char *start, int len)
4321{
4322 templates *templ = NULL;
4323
4324 templ = hash_find_n (aarch64_ops_hsh, start, len);
4325 return templ;
4326}
4327
4328/* Subroutine of md_assemble, responsible for looking up the primary
4329 opcode from the mnemonic the user wrote. STR points to the
4330 beginning of the mnemonic. */
4331
4332static templates *
4333opcode_lookup (char **str)
4334{
4335 char *end, *base;
4336 const aarch64_cond *cond;
4337 char condname[16];
4338 int len;
4339
4340 /* Scan up to the end of the mnemonic, which must end in white space,
4341 '.', or end of string. */
4342 for (base = end = *str; is_part_of_name(*end); end++)
4343 if (*end == '.')
4344 break;
4345
4346 if (end == base)
4347 return 0;
4348
4349 inst.cond = COND_ALWAYS;
4350
4351 /* Handle a possible condition. */
4352 if (end[0] == '.')
4353 {
4354 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4355 if (cond)
4356 {
4357 inst.cond = cond->value;
4358 *str = end + 3;
4359 }
4360 else
4361 {
4362 *str = end;
4363 return 0;
4364 }
4365 }
4366 else
4367 *str = end;
4368
4369 len = end - base;
4370
4371 if (inst.cond == COND_ALWAYS)
4372 {
4373 /* Look for unaffixed mnemonic. */
4374 return lookup_mnemonic (base, len);
4375 }
4376 else if (len <= 13)
4377 {
4378 /* append ".c" to mnemonic if conditional */
4379 memcpy (condname, base, len);
4380 memcpy (condname + len, ".c", 2);
4381 base = condname;
4382 len += 2;
4383 return lookup_mnemonic (base, len);
4384 }
4385
4386 return NULL;
4387}
4388
4389/* Internal helper routine converting a vector neon_type_el structure
4390 *VECTYPE to a corresponding operand qualifier. */
4391
4392static inline aarch64_opnd_qualifier_t
4393vectype_to_qualifier (const struct neon_type_el *vectype)
4394{
4395 /* Element size in bytes indexed by neon_el_type. */
4396 const unsigned char ele_size[5]
4397 = {1, 2, 4, 8, 16};
4398
4399 if (!vectype->defined || vectype->type == NT_invtype)
4400 goto vectype_conversion_fail;
4401
4402 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4403
4404 if (vectype->defined & NTA_HASINDEX)
4405 /* Vector element register. */
4406 return AARCH64_OPND_QLF_S_B + vectype->type;
4407 else
4408 {
4409 /* Vector register. */
4410 int reg_size = ele_size[vectype->type] * vectype->width;
4411 unsigned offset;
4412 if (reg_size != 16 && reg_size != 8)
4413 goto vectype_conversion_fail;
4414 /* The conversion is calculated based on the relation of the order of
4415 qualifiers to the vector element size and vector register size. */
4416 offset = (vectype->type == NT_q)
4417 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4418 gas_assert (offset <= 8);
4419 return AARCH64_OPND_QLF_V_8B + offset;
4420 }
4421
4422vectype_conversion_fail:
4423 first_error (_("bad vector arrangement type"));
4424 return AARCH64_OPND_QLF_NIL;
4425}
4426
4427/* Process an optional operand that is found omitted from the assembly line.
4428 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4429 instruction's opcode entry while IDX is the index of this omitted operand.
4430 */
4431
4432static void
4433process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4434 int idx, aarch64_opnd_info *operand)
4435{
4436 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4437 gas_assert (optional_operand_p (opcode, idx));
4438 gas_assert (!operand->present);
4439
4440 switch (type)
4441 {
4442 case AARCH64_OPND_Rd:
4443 case AARCH64_OPND_Rn:
4444 case AARCH64_OPND_Rm:
4445 case AARCH64_OPND_Rt:
4446 case AARCH64_OPND_Rt2:
4447 case AARCH64_OPND_Rs:
4448 case AARCH64_OPND_Ra:
4449 case AARCH64_OPND_Rt_SYS:
4450 case AARCH64_OPND_Rd_SP:
4451 case AARCH64_OPND_Rn_SP:
4452 case AARCH64_OPND_Fd:
4453 case AARCH64_OPND_Fn:
4454 case AARCH64_OPND_Fm:
4455 case AARCH64_OPND_Fa:
4456 case AARCH64_OPND_Ft:
4457 case AARCH64_OPND_Ft2:
4458 case AARCH64_OPND_Sd:
4459 case AARCH64_OPND_Sn:
4460 case AARCH64_OPND_Sm:
4461 case AARCH64_OPND_Vd:
4462 case AARCH64_OPND_Vn:
4463 case AARCH64_OPND_Vm:
4464 case AARCH64_OPND_VdD1:
4465 case AARCH64_OPND_VnD1:
4466 operand->reg.regno = default_value;
4467 break;
4468
4469 case AARCH64_OPND_Ed:
4470 case AARCH64_OPND_En:
4471 case AARCH64_OPND_Em:
4472 operand->reglane.regno = default_value;
4473 break;
4474
4475 case AARCH64_OPND_IDX:
4476 case AARCH64_OPND_BIT_NUM:
4477 case AARCH64_OPND_IMMR:
4478 case AARCH64_OPND_IMMS:
4479 case AARCH64_OPND_SHLL_IMM:
4480 case AARCH64_OPND_IMM_VLSL:
4481 case AARCH64_OPND_IMM_VLSR:
4482 case AARCH64_OPND_CCMP_IMM:
4483 case AARCH64_OPND_FBITS:
4484 case AARCH64_OPND_UIMM4:
4485 case AARCH64_OPND_UIMM3_OP1:
4486 case AARCH64_OPND_UIMM3_OP2:
4487 case AARCH64_OPND_IMM:
4488 case AARCH64_OPND_WIDTH:
4489 case AARCH64_OPND_UIMM7:
4490 case AARCH64_OPND_NZCV:
4491 operand->imm.value = default_value;
4492 break;
4493
4494 case AARCH64_OPND_EXCEPTION:
4495 inst.reloc.type = BFD_RELOC_UNUSED;
4496 break;
4497
4498 case AARCH64_OPND_BARRIER_ISB:
4499 operand->barrier = aarch64_barrier_options + default_value;
4500
4501 default:
4502 break;
4503 }
4504}
4505
4506/* Process the relocation type for move wide instructions.
4507 Return TRUE on success; otherwise return FALSE. */
4508
4509static bfd_boolean
4510process_movw_reloc_info (void)
4511{
4512 int is32;
4513 unsigned shift;
4514
4515 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4516
4517 if (inst.base.opcode->op == OP_MOVK)
4518 switch (inst.reloc.type)
4519 {
4520 case BFD_RELOC_AARCH64_MOVW_G0_S:
4521 case BFD_RELOC_AARCH64_MOVW_G1_S:
4522 case BFD_RELOC_AARCH64_MOVW_G2_S:
4523 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4524 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4525 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4526 set_syntax_error
4527 (_("the specified relocation type is not allowed for MOVK"));
4528 return FALSE;
4529 default:
4530 break;
4531 }
4532
4533 switch (inst.reloc.type)
4534 {
4535 case BFD_RELOC_AARCH64_MOVW_G0:
4536 case BFD_RELOC_AARCH64_MOVW_G0_S:
4537 case BFD_RELOC_AARCH64_MOVW_G0_NC:
4538 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4539 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4540 shift = 0;
4541 break;
4542 case BFD_RELOC_AARCH64_MOVW_G1:
4543 case BFD_RELOC_AARCH64_MOVW_G1_S:
4544 case BFD_RELOC_AARCH64_MOVW_G1_NC:
4545 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4546 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4547 shift = 16;
4548 break;
4549 case BFD_RELOC_AARCH64_MOVW_G2:
4550 case BFD_RELOC_AARCH64_MOVW_G2_S:
4551 case BFD_RELOC_AARCH64_MOVW_G2_NC:
4552 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4553 if (is32)
4554 {
4555 set_fatal_syntax_error
4556 (_("the specified relocation type is not allowed for 32-bit "
4557 "register"));
4558 return FALSE;
4559 }
4560 shift = 32;
4561 break;
4562 case BFD_RELOC_AARCH64_MOVW_G3:
4563 if (is32)
4564 {
4565 set_fatal_syntax_error
4566 (_("the specified relocation type is not allowed for 32-bit "
4567 "register"));
4568 return FALSE;
4569 }
4570 shift = 48;
4571 break;
4572 default:
4573 /* More cases should be added when more MOVW-related relocation types
4574 are supported in GAS. */
4575 gas_assert (aarch64_gas_internal_fixup_p ());
4576 /* The shift amount should have already been set by the parser. */
4577 return TRUE;
4578 }
4579 inst.base.operands[1].shifter.amount = shift;
4580 return TRUE;
4581}
4582
4583/* A primitive log caculator. */
4584
4585static inline unsigned int
4586get_logsz (unsigned int size)
4587{
4588 const unsigned char ls[16] =
4589 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4590 if (size > 16)
4591 {
4592 gas_assert (0);
4593 return -1;
4594 }
4595 gas_assert (ls[size - 1] != (unsigned char)-1);
4596 return ls[size - 1];
4597}
4598
4599/* Determine and return the real reloc type code for an instruction
4600 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4601
4602static inline bfd_reloc_code_real_type
4603ldst_lo12_determine_real_reloc_type (void)
4604{
4605 int logsz;
4606 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4607 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4608
4609 const bfd_reloc_code_real_type reloc_ldst_lo12[5] = {
4610 BFD_RELOC_AARCH64_LDST8_LO12, BFD_RELOC_AARCH64_LDST16_LO12,
4611 BFD_RELOC_AARCH64_LDST32_LO12, BFD_RELOC_AARCH64_LDST64_LO12,
4612 BFD_RELOC_AARCH64_LDST128_LO12
4613 };
4614
4615 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12);
4616 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4617
4618 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4619 opd1_qlf =
4620 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4621 1, opd0_qlf, 0);
4622 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4623
4624 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4625 gas_assert (logsz >= 0 && logsz <= 4);
4626
4627 return reloc_ldst_lo12[logsz];
4628}
4629
4630/* Check whether a register list REGINFO is valid. The registers must be
4631 numbered in increasing order (modulo 32), in increments of one or two.
4632
4633 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4634 increments of two.
4635
4636 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4637
4638static bfd_boolean
4639reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4640{
4641 uint32_t i, nb_regs, prev_regno, incr;
4642
4643 nb_regs = 1 + (reginfo & 0x3);
4644 reginfo >>= 2;
4645 prev_regno = reginfo & 0x1f;
4646 incr = accept_alternate ? 2 : 1;
4647
4648 for (i = 1; i < nb_regs; ++i)
4649 {
4650 uint32_t curr_regno;
4651 reginfo >>= 5;
4652 curr_regno = reginfo & 0x1f;
4653 if (curr_regno != ((prev_regno + incr) & 0x1f))
4654 return FALSE;
4655 prev_regno = curr_regno;
4656 }
4657
4658 return TRUE;
4659}
4660
4661/* Generic instruction operand parser. This does no encoding and no
4662 semantic validation; it merely squirrels values away in the inst
4663 structure. Returns TRUE or FALSE depending on whether the
4664 specified grammar matched. */
4665
4666static bfd_boolean
4667parse_operands (char *str, const aarch64_opcode *opcode)
4668{
4669 int i;
4670 char *backtrack_pos = 0;
4671 const enum aarch64_opnd *operands = opcode->operands;
4672
4673 clear_error ();
4674 skip_whitespace (str);
4675
4676 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4677 {
4678 int64_t val;
4679 int isreg32, isregzero;
4680 int comma_skipped_p = 0;
4681 aarch64_reg_type rtype;
4682 struct neon_type_el vectype;
4683 aarch64_opnd_info *info = &inst.base.operands[i];
4684
4685 DEBUG_TRACE ("parse operand %d", i);
4686
4687 /* Assign the operand code. */
4688 info->type = operands[i];
4689
4690 if (optional_operand_p (opcode, i))
4691 {
4692 /* Remember where we are in case we need to backtrack. */
4693 gas_assert (!backtrack_pos);
4694 backtrack_pos = str;
4695 }
4696
4697 /* Expect comma between operands; the backtrack mechanizm will take
4698 care of cases of omitted optional operand. */
4699 if (i > 0 && ! skip_past_char (&str, ','))
4700 {
4701 set_syntax_error (_("comma expected between operands"));
4702 goto failure;
4703 }
4704 else
4705 comma_skipped_p = 1;
4706
4707 switch (operands[i])
4708 {
4709 case AARCH64_OPND_Rd:
4710 case AARCH64_OPND_Rn:
4711 case AARCH64_OPND_Rm:
4712 case AARCH64_OPND_Rt:
4713 case AARCH64_OPND_Rt2:
4714 case AARCH64_OPND_Rs:
4715 case AARCH64_OPND_Ra:
4716 case AARCH64_OPND_Rt_SYS:
ee804238 4717 case AARCH64_OPND_PAIRREG:
a06ea964
NC
4718 po_int_reg_or_fail (1, 0);
4719 break;
4720
4721 case AARCH64_OPND_Rd_SP:
4722 case AARCH64_OPND_Rn_SP:
4723 po_int_reg_or_fail (0, 1);
4724 break;
4725
4726 case AARCH64_OPND_Rm_EXT:
4727 case AARCH64_OPND_Rm_SFT:
4728 po_misc_or_fail (parse_shifter_operand
4729 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4730 ? SHIFTED_ARITH_IMM
4731 : SHIFTED_LOGIC_IMM)));
4732 if (!info->shifter.operator_present)
4733 {
4734 /* Default to LSL if not present. Libopcodes prefers shifter
4735 kind to be explicit. */
4736 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4737 info->shifter.kind = AARCH64_MOD_LSL;
4738 /* For Rm_EXT, libopcodes will carry out further check on whether
4739 or not stack pointer is used in the instruction (Recall that
4740 "the extend operator is not optional unless at least one of
4741 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4742 }
4743 break;
4744
4745 case AARCH64_OPND_Fd:
4746 case AARCH64_OPND_Fn:
4747 case AARCH64_OPND_Fm:
4748 case AARCH64_OPND_Fa:
4749 case AARCH64_OPND_Ft:
4750 case AARCH64_OPND_Ft2:
4751 case AARCH64_OPND_Sd:
4752 case AARCH64_OPND_Sn:
4753 case AARCH64_OPND_Sm:
4754 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4755 if (val == PARSE_FAIL)
4756 {
4757 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4758 goto failure;
4759 }
4760 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4761
4762 info->reg.regno = val;
4763 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4764 break;
4765
4766 case AARCH64_OPND_Vd:
4767 case AARCH64_OPND_Vn:
4768 case AARCH64_OPND_Vm:
4769 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4770 if (val == PARSE_FAIL)
4771 {
4772 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4773 goto failure;
4774 }
4775 if (vectype.defined & NTA_HASINDEX)
4776 goto failure;
4777
4778 info->reg.regno = val;
4779 info->qualifier = vectype_to_qualifier (&vectype);
4780 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4781 goto failure;
4782 break;
4783
4784 case AARCH64_OPND_VdD1:
4785 case AARCH64_OPND_VnD1:
4786 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4787 if (val == PARSE_FAIL)
4788 {
4789 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4790 goto failure;
4791 }
4792 if (vectype.type != NT_d || vectype.index != 1)
4793 {
4794 set_fatal_syntax_error
4795 (_("the top half of a 128-bit FP/SIMD register is expected"));
4796 goto failure;
4797 }
4798 info->reg.regno = val;
4799 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4800 here; it is correct for the purpose of encoding/decoding since
4801 only the register number is explicitly encoded in the related
4802 instructions, although this appears a bit hacky. */
4803 info->qualifier = AARCH64_OPND_QLF_S_D;
4804 break;
4805
4806 case AARCH64_OPND_Ed:
4807 case AARCH64_OPND_En:
4808 case AARCH64_OPND_Em:
4809 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4810 if (val == PARSE_FAIL)
4811 {
4812 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4813 goto failure;
4814 }
4815 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
4816 goto failure;
4817
4818 info->reglane.regno = val;
4819 info->reglane.index = vectype.index;
4820 info->qualifier = vectype_to_qualifier (&vectype);
4821 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4822 goto failure;
4823 break;
4824
4825 case AARCH64_OPND_LVn:
4826 case AARCH64_OPND_LVt:
4827 case AARCH64_OPND_LVt_AL:
4828 case AARCH64_OPND_LEt:
4829 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
4830 goto failure;
4831 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
4832 {
4833 set_fatal_syntax_error (_("invalid register list"));
4834 goto failure;
4835 }
4836 info->reglist.first_regno = (val >> 2) & 0x1f;
4837 info->reglist.num_regs = (val & 0x3) + 1;
4838 if (operands[i] == AARCH64_OPND_LEt)
4839 {
4840 if (!(vectype.defined & NTA_HASINDEX))
4841 goto failure;
4842 info->reglist.has_index = 1;
4843 info->reglist.index = vectype.index;
4844 }
4845 else if (!(vectype.defined & NTA_HASTYPE))
4846 goto failure;
4847 info->qualifier = vectype_to_qualifier (&vectype);
4848 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4849 goto failure;
4850 break;
4851
4852 case AARCH64_OPND_Cn:
4853 case AARCH64_OPND_Cm:
4854 po_reg_or_fail (REG_TYPE_CN);
4855 if (val > 15)
4856 {
4857 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
4858 goto failure;
4859 }
4860 inst.base.operands[i].reg.regno = val;
4861 break;
4862
4863 case AARCH64_OPND_SHLL_IMM:
4864 case AARCH64_OPND_IMM_VLSR:
4865 po_imm_or_fail (1, 64);
4866 info->imm.value = val;
4867 break;
4868
4869 case AARCH64_OPND_CCMP_IMM:
4870 case AARCH64_OPND_FBITS:
4871 case AARCH64_OPND_UIMM4:
4872 case AARCH64_OPND_UIMM3_OP1:
4873 case AARCH64_OPND_UIMM3_OP2:
4874 case AARCH64_OPND_IMM_VLSL:
4875 case AARCH64_OPND_IMM:
4876 case AARCH64_OPND_WIDTH:
4877 po_imm_nc_or_fail ();
4878 info->imm.value = val;
4879 break;
4880
4881 case AARCH64_OPND_UIMM7:
4882 po_imm_or_fail (0, 127);
4883 info->imm.value = val;
4884 break;
4885
4886 case AARCH64_OPND_IDX:
4887 case AARCH64_OPND_BIT_NUM:
4888 case AARCH64_OPND_IMMR:
4889 case AARCH64_OPND_IMMS:
4890 po_imm_or_fail (0, 63);
4891 info->imm.value = val;
4892 break;
4893
4894 case AARCH64_OPND_IMM0:
4895 po_imm_nc_or_fail ();
4896 if (val != 0)
4897 {
4898 set_fatal_syntax_error (_("immediate zero expected"));
4899 goto failure;
4900 }
4901 info->imm.value = 0;
4902 break;
4903
4904 case AARCH64_OPND_FPIMM0:
4905 {
4906 int qfloat;
4907 bfd_boolean res1 = FALSE, res2 = FALSE;
4908 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
4909 it is probably not worth the effort to support it. */
62b0d0d5 4910 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
4911 && !(res2 = parse_constant_immediate (&str, &val)))
4912 goto failure;
4913 if ((res1 && qfloat == 0) || (res2 && val == 0))
4914 {
4915 info->imm.value = 0;
4916 info->imm.is_fp = 1;
4917 break;
4918 }
4919 set_fatal_syntax_error (_("immediate zero expected"));
4920 goto failure;
4921 }
4922
4923 case AARCH64_OPND_IMM_MOV:
4924 {
4925 char *saved = str;
8db49cc2
WN
4926 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
4927 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
4928 goto failure;
4929 str = saved;
4930 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
4931 GE_OPT_PREFIX, 1));
4932 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
4933 later. fix_mov_imm_insn will try to determine a machine
4934 instruction (MOVZ, MOVN or ORR) for it and will issue an error
4935 message if the immediate cannot be moved by a single
4936 instruction. */
4937 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4938 inst.base.operands[i].skip = 1;
4939 }
4940 break;
4941
4942 case AARCH64_OPND_SIMD_IMM:
4943 case AARCH64_OPND_SIMD_IMM_SFT:
4944 if (! parse_big_immediate (&str, &val))
4945 goto failure;
4946 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4947 /* addr_off_p */ 0,
4948 /* need_libopcodes_p */ 1,
4949 /* skip_p */ 1);
4950 /* Parse shift.
4951 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
4952 shift, we don't check it here; we leave the checking to
4953 the libopcodes (operand_general_constraint_met_p). By
4954 doing this, we achieve better diagnostics. */
4955 if (skip_past_comma (&str)
4956 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
4957 goto failure;
4958 if (!info->shifter.operator_present
4959 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
4960 {
4961 /* Default to LSL if not present. Libopcodes prefers shifter
4962 kind to be explicit. */
4963 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4964 info->shifter.kind = AARCH64_MOD_LSL;
4965 }
4966 break;
4967
4968 case AARCH64_OPND_FPIMM:
4969 case AARCH64_OPND_SIMD_FPIMM:
4970 {
4971 int qfloat;
62b0d0d5
YZ
4972 bfd_boolean dp_p
4973 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
4974 == 8);
4975 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
4976 goto failure;
4977 if (qfloat == 0)
4978 {
4979 set_fatal_syntax_error (_("invalid floating-point constant"));
4980 goto failure;
4981 }
4982 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
4983 inst.base.operands[i].imm.is_fp = 1;
4984 }
4985 break;
4986
4987 case AARCH64_OPND_LIMM:
4988 po_misc_or_fail (parse_shifter_operand (&str, info,
4989 SHIFTED_LOGIC_IMM));
4990 if (info->shifter.operator_present)
4991 {
4992 set_fatal_syntax_error
4993 (_("shift not allowed for bitmask immediate"));
4994 goto failure;
4995 }
4996 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4997 /* addr_off_p */ 0,
4998 /* need_libopcodes_p */ 1,
4999 /* skip_p */ 1);
5000 break;
5001
5002 case AARCH64_OPND_AIMM:
5003 if (opcode->op == OP_ADD)
5004 /* ADD may have relocation types. */
5005 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5006 SHIFTED_ARITH_IMM));
5007 else
5008 po_misc_or_fail (parse_shifter_operand (&str, info,
5009 SHIFTED_ARITH_IMM));
5010 switch (inst.reloc.type)
5011 {
5012 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5013 info->shifter.amount = 12;
5014 break;
5015 case BFD_RELOC_UNUSED:
5016 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5017 if (info->shifter.kind != AARCH64_MOD_NONE)
5018 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5019 inst.reloc.pc_rel = 0;
5020 break;
5021 default:
5022 break;
5023 }
5024 info->imm.value = 0;
5025 if (!info->shifter.operator_present)
5026 {
5027 /* Default to LSL if not present. Libopcodes prefers shifter
5028 kind to be explicit. */
5029 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5030 info->shifter.kind = AARCH64_MOD_LSL;
5031 }
5032 break;
5033
5034 case AARCH64_OPND_HALF:
5035 {
5036 /* #<imm16> or relocation. */
5037 int internal_fixup_p;
5038 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5039 if (internal_fixup_p)
5040 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5041 skip_whitespace (str);
5042 if (skip_past_comma (&str))
5043 {
5044 /* {, LSL #<shift>} */
5045 if (! aarch64_gas_internal_fixup_p ())
5046 {
5047 set_fatal_syntax_error (_("can't mix relocation modifier "
5048 "with explicit shift"));
5049 goto failure;
5050 }
5051 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5052 }
5053 else
5054 inst.base.operands[i].shifter.amount = 0;
5055 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5056 inst.base.operands[i].imm.value = 0;
5057 if (! process_movw_reloc_info ())
5058 goto failure;
5059 }
5060 break;
5061
5062 case AARCH64_OPND_EXCEPTION:
5063 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5064 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5065 /* addr_off_p */ 0,
5066 /* need_libopcodes_p */ 0,
5067 /* skip_p */ 1);
5068 break;
5069
5070 case AARCH64_OPND_NZCV:
5071 {
5072 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5073 if (nzcv != NULL)
5074 {
5075 str += 4;
5076 info->imm.value = nzcv->value;
5077 break;
5078 }
5079 po_imm_or_fail (0, 15);
5080 info->imm.value = val;
5081 }
5082 break;
5083
5084 case AARCH64_OPND_COND:
68a64283 5085 case AARCH64_OPND_COND1:
a06ea964
NC
5086 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5087 str += 2;
5088 if (info->cond == NULL)
5089 {
5090 set_syntax_error (_("invalid condition"));
5091 goto failure;
5092 }
68a64283
YZ
5093 else if (operands[i] == AARCH64_OPND_COND1
5094 && (info->cond->value & 0xe) == 0xe)
5095 {
5096 /* Not allow AL or NV. */
5097 set_default_error ();
5098 goto failure;
5099 }
a06ea964
NC
5100 break;
5101
5102 case AARCH64_OPND_ADDR_ADRP:
5103 po_misc_or_fail (parse_adrp (&str));
5104 /* Clear the value as operand needs to be relocated. */
5105 info->imm.value = 0;
5106 break;
5107
5108 case AARCH64_OPND_ADDR_PCREL14:
5109 case AARCH64_OPND_ADDR_PCREL19:
5110 case AARCH64_OPND_ADDR_PCREL21:
5111 case AARCH64_OPND_ADDR_PCREL26:
5112 po_misc_or_fail (parse_address_reloc (&str, info));
5113 if (!info->addr.pcrel)
5114 {
5115 set_syntax_error (_("invalid pc-relative address"));
5116 goto failure;
5117 }
5118 if (inst.gen_lit_pool
5119 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5120 {
5121 /* Only permit "=value" in the literal load instructions.
5122 The literal will be generated by programmer_friendly_fixup. */
5123 set_syntax_error (_("invalid use of \"=immediate\""));
5124 goto failure;
5125 }
5126 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5127 {
5128 set_syntax_error (_("unrecognized relocation suffix"));
5129 goto failure;
5130 }
5131 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5132 {
5133 info->imm.value = inst.reloc.exp.X_add_number;
5134 inst.reloc.type = BFD_RELOC_UNUSED;
5135 }
5136 else
5137 {
5138 info->imm.value = 0;
f41aef5f
RE
5139 if (inst.reloc.type == BFD_RELOC_UNUSED)
5140 switch (opcode->iclass)
5141 {
5142 case compbranch:
5143 case condbranch:
5144 /* e.g. CBZ or B.COND */
5145 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5146 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5147 break;
5148 case testbranch:
5149 /* e.g. TBZ */
5150 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5151 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5152 break;
5153 case branch_imm:
5154 /* e.g. B or BL */
5155 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5156 inst.reloc.type =
5157 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5158 : BFD_RELOC_AARCH64_JUMP26;
5159 break;
5160 case loadlit:
5161 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5162 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5163 break;
5164 case pcreladdr:
5165 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5166 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5167 break;
5168 default:
5169 gas_assert (0);
5170 abort ();
5171 }
a06ea964
NC
5172 inst.reloc.pc_rel = 1;
5173 }
5174 break;
5175
5176 case AARCH64_OPND_ADDR_SIMPLE:
5177 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5178 /* [<Xn|SP>{, #<simm>}] */
5179 po_char_or_fail ('[');
5180 po_reg_or_fail (REG_TYPE_R64_SP);
5181 /* Accept optional ", #0". */
5182 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5183 && skip_past_char (&str, ','))
5184 {
5185 skip_past_char (&str, '#');
5186 if (! skip_past_char (&str, '0'))
5187 {
5188 set_fatal_syntax_error
5189 (_("the optional immediate offset can only be 0"));
5190 goto failure;
5191 }
5192 }
5193 po_char_or_fail (']');
5194 info->addr.base_regno = val;
5195 break;
5196
5197 case AARCH64_OPND_ADDR_REGOFF:
5198 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5199 po_misc_or_fail (parse_address (&str, info, 0));
5200 if (info->addr.pcrel || !info->addr.offset.is_reg
5201 || !info->addr.preind || info->addr.postind
5202 || info->addr.writeback)
5203 {
5204 set_syntax_error (_("invalid addressing mode"));
5205 goto failure;
5206 }
5207 if (!info->shifter.operator_present)
5208 {
5209 /* Default to LSL if not present. Libopcodes prefers shifter
5210 kind to be explicit. */
5211 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5212 info->shifter.kind = AARCH64_MOD_LSL;
5213 }
5214 /* Qualifier to be deduced by libopcodes. */
5215 break;
5216
5217 case AARCH64_OPND_ADDR_SIMM7:
5218 po_misc_or_fail (parse_address (&str, info, 0));
5219 if (info->addr.pcrel || info->addr.offset.is_reg
5220 || (!info->addr.preind && !info->addr.postind))
5221 {
5222 set_syntax_error (_("invalid addressing mode"));
5223 goto failure;
5224 }
5225 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5226 /* addr_off_p */ 1,
5227 /* need_libopcodes_p */ 1,
5228 /* skip_p */ 0);
5229 break;
5230
5231 case AARCH64_OPND_ADDR_SIMM9:
5232 case AARCH64_OPND_ADDR_SIMM9_2:
5233 po_misc_or_fail (parse_address_reloc (&str, info));
5234 if (info->addr.pcrel || info->addr.offset.is_reg
5235 || (!info->addr.preind && !info->addr.postind)
5236 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5237 && info->addr.writeback))
5238 {
5239 set_syntax_error (_("invalid addressing mode"));
5240 goto failure;
5241 }
5242 if (inst.reloc.type != BFD_RELOC_UNUSED)
5243 {
5244 set_syntax_error (_("relocation not allowed"));
5245 goto failure;
5246 }
5247 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5248 /* addr_off_p */ 1,
5249 /* need_libopcodes_p */ 1,
5250 /* skip_p */ 0);
5251 break;
5252
5253 case AARCH64_OPND_ADDR_UIMM12:
5254 po_misc_or_fail (parse_address_reloc (&str, info));
5255 if (info->addr.pcrel || info->addr.offset.is_reg
5256 || !info->addr.preind || info->addr.writeback)
5257 {
5258 set_syntax_error (_("invalid addressing mode"));
5259 goto failure;
5260 }
5261 if (inst.reloc.type == BFD_RELOC_UNUSED)
5262 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5263 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12)
5264 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5265 /* Leave qualifier to be determined by libopcodes. */
5266 break;
5267
5268 case AARCH64_OPND_SIMD_ADDR_POST:
5269 /* [<Xn|SP>], <Xm|#<amount>> */
5270 po_misc_or_fail (parse_address (&str, info, 1));
5271 if (!info->addr.postind || !info->addr.writeback)
5272 {
5273 set_syntax_error (_("invalid addressing mode"));
5274 goto failure;
5275 }
5276 if (!info->addr.offset.is_reg)
5277 {
5278 if (inst.reloc.exp.X_op == O_constant)
5279 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5280 else
5281 {
5282 set_fatal_syntax_error
5283 (_("writeback value should be an immediate constant"));
5284 goto failure;
5285 }
5286 }
5287 /* No qualifier. */
5288 break;
5289
5290 case AARCH64_OPND_SYSREG:
a203d9b7
YZ
5291 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1))
5292 == PARSE_FAIL)
a06ea964 5293 {
a203d9b7
YZ
5294 set_syntax_error (_("unknown or missing system register name"));
5295 goto failure;
a06ea964 5296 }
a203d9b7 5297 inst.base.operands[i].sysreg = val;
a06ea964
NC
5298 break;
5299
5300 case AARCH64_OPND_PSTATEFIELD:
a203d9b7 5301 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0))
a3251895 5302 == PARSE_FAIL)
a06ea964
NC
5303 {
5304 set_syntax_error (_("unknown or missing PSTATE field name"));
5305 goto failure;
5306 }
5307 inst.base.operands[i].pstatefield = val;
5308 break;
5309
5310 case AARCH64_OPND_SYSREG_IC:
5311 inst.base.operands[i].sysins_op =
5312 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5313 goto sys_reg_ins;
5314 case AARCH64_OPND_SYSREG_DC:
5315 inst.base.operands[i].sysins_op =
5316 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5317 goto sys_reg_ins;
5318 case AARCH64_OPND_SYSREG_AT:
5319 inst.base.operands[i].sysins_op =
5320 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5321 goto sys_reg_ins;
5322 case AARCH64_OPND_SYSREG_TLBI:
5323 inst.base.operands[i].sysins_op =
5324 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5325sys_reg_ins:
5326 if (inst.base.operands[i].sysins_op == NULL)
5327 {
5328 set_fatal_syntax_error ( _("unknown or missing operation name"));
5329 goto failure;
5330 }
5331 break;
5332
5333 case AARCH64_OPND_BARRIER:
5334 case AARCH64_OPND_BARRIER_ISB:
5335 val = parse_barrier (&str);
5336 if (val != PARSE_FAIL
5337 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5338 {
5339 /* ISB only accepts options name 'sy'. */
5340 set_syntax_error
5341 (_("the specified option is not accepted in ISB"));
5342 /* Turn off backtrack as this optional operand is present. */
5343 backtrack_pos = 0;
5344 goto failure;
5345 }
5346 /* This is an extension to accept a 0..15 immediate. */
5347 if (val == PARSE_FAIL)
5348 po_imm_or_fail (0, 15);
5349 info->barrier = aarch64_barrier_options + val;
5350 break;
5351
5352 case AARCH64_OPND_PRFOP:
5353 val = parse_pldop (&str);
5354 /* This is an extension to accept a 0..31 immediate. */
5355 if (val == PARSE_FAIL)
5356 po_imm_or_fail (0, 31);
5357 inst.base.operands[i].prfop = aarch64_prfops + val;
5358 break;
5359
5360 default:
5361 as_fatal (_("unhandled operand code %d"), operands[i]);
5362 }
5363
5364 /* If we get here, this operand was successfully parsed. */
5365 inst.base.operands[i].present = 1;
5366 continue;
5367
5368failure:
5369 /* The parse routine should already have set the error, but in case
5370 not, set a default one here. */
5371 if (! error_p ())
5372 set_default_error ();
5373
5374 if (! backtrack_pos)
5375 goto parse_operands_return;
5376
f4c51f60
JW
5377 {
5378 /* We reach here because this operand is marked as optional, and
5379 either no operand was supplied or the operand was supplied but it
5380 was syntactically incorrect. In the latter case we report an
5381 error. In the former case we perform a few more checks before
5382 dropping through to the code to insert the default operand. */
5383
5384 char *tmp = backtrack_pos;
5385 char endchar = END_OF_INSN;
5386
5387 if (i != (aarch64_num_of_operands (opcode) - 1))
5388 endchar = ',';
5389 skip_past_char (&tmp, ',');
5390
5391 if (*tmp != endchar)
5392 /* The user has supplied an operand in the wrong format. */
5393 goto parse_operands_return;
5394
5395 /* Make sure there is not a comma before the optional operand.
5396 For example the fifth operand of 'sys' is optional:
5397
5398 sys #0,c0,c0,#0, <--- wrong
5399 sys #0,c0,c0,#0 <--- correct. */
5400 if (comma_skipped_p && i && endchar == END_OF_INSN)
5401 {
5402 set_fatal_syntax_error
5403 (_("unexpected comma before the omitted optional operand"));
5404 goto parse_operands_return;
5405 }
5406 }
5407
a06ea964
NC
5408 /* Reaching here means we are dealing with an optional operand that is
5409 omitted from the assembly line. */
5410 gas_assert (optional_operand_p (opcode, i));
5411 info->present = 0;
5412 process_omitted_operand (operands[i], opcode, i, info);
5413
5414 /* Try again, skipping the optional operand at backtrack_pos. */
5415 str = backtrack_pos;
5416 backtrack_pos = 0;
5417
a06ea964
NC
5418 /* Clear any error record after the omitted optional operand has been
5419 successfully handled. */
5420 clear_error ();
5421 }
5422
5423 /* Check if we have parsed all the operands. */
5424 if (*str != '\0' && ! error_p ())
5425 {
5426 /* Set I to the index of the last present operand; this is
5427 for the purpose of diagnostics. */
5428 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5429 ;
5430 set_fatal_syntax_error
5431 (_("unexpected characters following instruction"));
5432 }
5433
5434parse_operands_return:
5435
5436 if (error_p ())
5437 {
5438 DEBUG_TRACE ("parsing FAIL: %s - %s",
5439 operand_mismatch_kind_names[get_error_kind ()],
5440 get_error_message ());
5441 /* Record the operand error properly; this is useful when there
5442 are multiple instruction templates for a mnemonic name, so that
5443 later on, we can select the error that most closely describes
5444 the problem. */
5445 record_operand_error (opcode, i, get_error_kind (),
5446 get_error_message ());
5447 return FALSE;
5448 }
5449 else
5450 {
5451 DEBUG_TRACE ("parsing SUCCESS");
5452 return TRUE;
5453 }
5454}
5455
5456/* It does some fix-up to provide some programmer friendly feature while
5457 keeping the libopcodes happy, i.e. libopcodes only accepts
5458 the preferred architectural syntax.
5459 Return FALSE if there is any failure; otherwise return TRUE. */
5460
5461static bfd_boolean
5462programmer_friendly_fixup (aarch64_instruction *instr)
5463{
5464 aarch64_inst *base = &instr->base;
5465 const aarch64_opcode *opcode = base->opcode;
5466 enum aarch64_op op = opcode->op;
5467 aarch64_opnd_info *operands = base->operands;
5468
5469 DEBUG_TRACE ("enter");
5470
5471 switch (opcode->iclass)
5472 {
5473 case testbranch:
5474 /* TBNZ Xn|Wn, #uimm6, label
5475 Test and Branch Not Zero: conditionally jumps to label if bit number
5476 uimm6 in register Xn is not zero. The bit number implies the width of
5477 the register, which may be written and should be disassembled as Wn if
5478 uimm is less than 32. */
5479 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5480 {
5481 if (operands[1].imm.value >= 32)
5482 {
5483 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5484 0, 31);
5485 return FALSE;
5486 }
5487 operands[0].qualifier = AARCH64_OPND_QLF_X;
5488 }
5489 break;
5490 case loadlit:
5491 /* LDR Wt, label | =value
5492 As a convenience assemblers will typically permit the notation
5493 "=value" in conjunction with the pc-relative literal load instructions
5494 to automatically place an immediate value or symbolic address in a
5495 nearby literal pool and generate a hidden label which references it.
5496 ISREG has been set to 0 in the case of =value. */
5497 if (instr->gen_lit_pool
5498 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5499 {
5500 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5501 if (op == OP_LDRSW_LIT)
5502 size = 4;
5503 if (instr->reloc.exp.X_op != O_constant
67a32447 5504 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5505 && instr->reloc.exp.X_op != O_symbol)
5506 {
5507 record_operand_error (opcode, 1,
5508 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5509 _("constant expression expected"));
5510 return FALSE;
5511 }
5512 if (! add_to_lit_pool (&instr->reloc.exp, size))
5513 {
5514 record_operand_error (opcode, 1,
5515 AARCH64_OPDE_OTHER_ERROR,
5516 _("literal pool insertion failed"));
5517 return FALSE;
5518 }
5519 }
5520 break;
a06ea964
NC
5521 case log_shift:
5522 case bitfield:
5523 /* UXT[BHW] Wd, Wn
5524 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5525 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5526 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5527 A programmer-friendly assembler should accept a destination Xd in
5528 place of Wd, however that is not the preferred form for disassembly.
5529 */
5530 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5531 && operands[1].qualifier == AARCH64_OPND_QLF_W
5532 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5533 operands[0].qualifier = AARCH64_OPND_QLF_W;
5534 break;
5535
5536 case addsub_ext:
5537 {
5538 /* In the 64-bit form, the final register operand is written as Wm
5539 for all but the (possibly omitted) UXTX/LSL and SXTX
5540 operators.
5541 As a programmer-friendly assembler, we accept e.g.
5542 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5543 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5544 int idx = aarch64_operand_index (opcode->operands,
5545 AARCH64_OPND_Rm_EXT);
5546 gas_assert (idx == 1 || idx == 2);
5547 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5548 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5549 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5550 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5551 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5552 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5553 }
5554 break;
5555
5556 default:
5557 break;
5558 }
5559
5560 DEBUG_TRACE ("exit with SUCCESS");
5561 return TRUE;
5562}
5563
5c47e525 5564/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5565
5566static void
5567warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5568{
5569 aarch64_inst *base = &instr->base;
5570 const aarch64_opcode *opcode = base->opcode;
5571 const aarch64_opnd_info *opnds = base->operands;
5572 switch (opcode->iclass)
5573 {
5574 case ldst_pos:
5575 case ldst_imm9:
5576 case ldst_unscaled:
5577 case ldst_unpriv:
5c47e525
RE
5578 /* Loading/storing the base register is unpredictable if writeback. */
5579 if ((aarch64_get_operand_class (opnds[0].type)
5580 == AARCH64_OPND_CLASS_INT_REG)
5581 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5582 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5583 && opnds[1].addr.writeback)
5c47e525 5584 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5585 break;
5586 case ldstpair_off:
5587 case ldstnapair_offs:
5588 case ldstpair_indexed:
5c47e525
RE
5589 /* Loading/storing the base register is unpredictable if writeback. */
5590 if ((aarch64_get_operand_class (opnds[0].type)
5591 == AARCH64_OPND_CLASS_INT_REG)
5592 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5593 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5594 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5595 && opnds[2].addr.writeback)
5c47e525
RE
5596 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5597 /* Load operations must load different registers. */
54a28c4c
JW
5598 if ((opcode->opcode & (1 << 22))
5599 && opnds[0].reg.regno == opnds[1].reg.regno)
5600 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5601 break;
5602 default:
5603 break;
5604 }
5605}
5606
a06ea964
NC
5607/* A wrapper function to interface with libopcodes on encoding and
5608 record the error message if there is any.
5609
5610 Return TRUE on success; otherwise return FALSE. */
5611
5612static bfd_boolean
5613do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5614 aarch64_insn *code)
5615{
5616 aarch64_operand_error error_info;
5617 error_info.kind = AARCH64_OPDE_NIL;
5618 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5619 return TRUE;
5620 else
5621 {
5622 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5623 record_operand_error_info (opcode, &error_info);
5624 return FALSE;
5625 }
5626}
5627
5628#ifdef DEBUG_AARCH64
5629static inline void
5630dump_opcode_operands (const aarch64_opcode *opcode)
5631{
5632 int i = 0;
5633 while (opcode->operands[i] != AARCH64_OPND_NIL)
5634 {
5635 aarch64_verbose ("\t\t opnd%d: %s", i,
5636 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5637 ? aarch64_get_operand_name (opcode->operands[i])
5638 : aarch64_get_operand_desc (opcode->operands[i]));
5639 ++i;
5640 }
5641}
5642#endif /* DEBUG_AARCH64 */
5643
5644/* This is the guts of the machine-dependent assembler. STR points to a
5645 machine dependent instruction. This function is supposed to emit
5646 the frags/bytes it assembles to. */
5647
5648void
5649md_assemble (char *str)
5650{
5651 char *p = str;
5652 templates *template;
5653 aarch64_opcode *opcode;
5654 aarch64_inst *inst_base;
5655 unsigned saved_cond;
5656
5657 /* Align the previous label if needed. */
5658 if (last_label_seen != NULL)
5659 {
5660 symbol_set_frag (last_label_seen, frag_now);
5661 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5662 S_SET_SEGMENT (last_label_seen, now_seg);
5663 }
5664
5665 inst.reloc.type = BFD_RELOC_UNUSED;
5666
5667 DEBUG_TRACE ("\n\n");
5668 DEBUG_TRACE ("==============================");
5669 DEBUG_TRACE ("Enter md_assemble with %s", str);
5670
5671 template = opcode_lookup (&p);
5672 if (!template)
5673 {
5674 /* It wasn't an instruction, but it might be a register alias of
5675 the form alias .req reg directive. */
5676 if (!create_register_alias (str, p))
5677 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5678 str);
5679 return;
5680 }
5681
5682 skip_whitespace (p);
5683 if (*p == ',')
5684 {
5685 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5686 get_mnemonic_name (str), str);
5687 return;
5688 }
5689
5690 init_operand_error_report ();
5691
eb9d6cc9
RL
5692 /* Sections are assumed to start aligned. In executable section, there is no
5693 MAP_DATA symbol pending. So we only align the address during
5694 MAP_DATA --> MAP_INSN transition.
5695 For other sections, this is not guaranteed. */
5696 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
5697 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
5698 frag_align_code (2, 0);
5699
a06ea964
NC
5700 saved_cond = inst.cond;
5701 reset_aarch64_instruction (&inst);
5702 inst.cond = saved_cond;
5703
5704 /* Iterate through all opcode entries with the same mnemonic name. */
5705 do
5706 {
5707 opcode = template->opcode;
5708
5709 DEBUG_TRACE ("opcode %s found", opcode->name);
5710#ifdef DEBUG_AARCH64
5711 if (debug_dump)
5712 dump_opcode_operands (opcode);
5713#endif /* DEBUG_AARCH64 */
5714
a06ea964
NC
5715 mapping_state (MAP_INSN);
5716
5717 inst_base = &inst.base;
5718 inst_base->opcode = opcode;
5719
5720 /* Truly conditionally executed instructions, e.g. b.cond. */
5721 if (opcode->flags & F_COND)
5722 {
5723 gas_assert (inst.cond != COND_ALWAYS);
5724 inst_base->cond = get_cond_from_value (inst.cond);
5725 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5726 }
5727 else if (inst.cond != COND_ALWAYS)
5728 {
5729 /* It shouldn't arrive here, where the assembly looks like a
5730 conditional instruction but the found opcode is unconditional. */
5731 gas_assert (0);
5732 continue;
5733 }
5734
5735 if (parse_operands (p, opcode)
5736 && programmer_friendly_fixup (&inst)
5737 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5738 {
3f06bfce
YZ
5739 /* Check that this instruction is supported for this CPU. */
5740 if (!opcode->avariant
5741 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5742 {
5743 as_bad (_("selected processor does not support `%s'"), str);
5744 return;
5745 }
5746
54a28c4c
JW
5747 warn_unpredictable_ldst (&inst, str);
5748
a06ea964
NC
5749 if (inst.reloc.type == BFD_RELOC_UNUSED
5750 || !inst.reloc.need_libopcodes_p)
5751 output_inst (NULL);
5752 else
5753 {
5754 /* If there is relocation generated for the instruction,
5755 store the instruction information for the future fix-up. */
5756 struct aarch64_inst *copy;
5757 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5758 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5759 abort ();
5760 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5761 output_inst (copy);
5762 }
5763 return;
5764 }
5765
5766 template = template->next;
5767 if (template != NULL)
5768 {
5769 reset_aarch64_instruction (&inst);
5770 inst.cond = saved_cond;
5771 }
5772 }
5773 while (template != NULL);
5774
5775 /* Issue the error messages if any. */
5776 output_operand_error_report (str);
5777}
5778
5779/* Various frobbings of labels and their addresses. */
5780
5781void
5782aarch64_start_line_hook (void)
5783{
5784 last_label_seen = NULL;
5785}
5786
5787void
5788aarch64_frob_label (symbolS * sym)
5789{
5790 last_label_seen = sym;
5791
5792 dwarf2_emit_label (sym);
5793}
5794
5795int
5796aarch64_data_in_code (void)
5797{
5798 if (!strncmp (input_line_pointer + 1, "data:", 5))
5799 {
5800 *input_line_pointer = '/';
5801 input_line_pointer += 5;
5802 *input_line_pointer = 0;
5803 return 1;
5804 }
5805
5806 return 0;
5807}
5808
5809char *
5810aarch64_canonicalize_symbol_name (char *name)
5811{
5812 int len;
5813
5814 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
5815 *(name + len - 5) = 0;
5816
5817 return name;
5818}
5819\f
5820/* Table of all register names defined by default. The user can
5821 define additional names with .req. Note that all register names
5822 should appear in both upper and lowercase variants. Some registers
5823 also have mixed-case names. */
5824
5825#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
5826#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5827#define REGSET31(p,t) \
5828 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
5829 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
5830 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
5831 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
5832 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
5833 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
5834 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
5835 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
5836#define REGSET(p,t) \
5837 REGSET31(p,t), REGNUM(p,31,t)
5838
5839/* These go into aarch64_reg_hsh hash-table. */
5840static const reg_entry reg_names[] = {
5841 /* Integer registers. */
5842 REGSET31 (x, R_64), REGSET31 (X, R_64),
5843 REGSET31 (w, R_32), REGSET31 (W, R_32),
5844
5845 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
5846 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
5847
5848 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
5849 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
5850
5851 /* Coprocessor register numbers. */
5852 REGSET (c, CN), REGSET (C, CN),
5853
5854 /* Floating-point single precision registers. */
5855 REGSET (s, FP_S), REGSET (S, FP_S),
5856
5857 /* Floating-point double precision registers. */
5858 REGSET (d, FP_D), REGSET (D, FP_D),
5859
5860 /* Floating-point half precision registers. */
5861 REGSET (h, FP_H), REGSET (H, FP_H),
5862
5863 /* Floating-point byte precision registers. */
5864 REGSET (b, FP_B), REGSET (B, FP_B),
5865
5866 /* Floating-point quad precision registers. */
5867 REGSET (q, FP_Q), REGSET (Q, FP_Q),
5868
5869 /* FP/SIMD registers. */
5870 REGSET (v, VN), REGSET (V, VN),
5871};
5872
5873#undef REGDEF
5874#undef REGNUM
5875#undef REGSET
5876
5877#define N 1
5878#define n 0
5879#define Z 1
5880#define z 0
5881#define C 1
5882#define c 0
5883#define V 1
5884#define v 0
5885#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
5886static const asm_nzcv nzcv_names[] = {
5887 {"nzcv", B (n, z, c, v)},
5888 {"nzcV", B (n, z, c, V)},
5889 {"nzCv", B (n, z, C, v)},
5890 {"nzCV", B (n, z, C, V)},
5891 {"nZcv", B (n, Z, c, v)},
5892 {"nZcV", B (n, Z, c, V)},
5893 {"nZCv", B (n, Z, C, v)},
5894 {"nZCV", B (n, Z, C, V)},
5895 {"Nzcv", B (N, z, c, v)},
5896 {"NzcV", B (N, z, c, V)},
5897 {"NzCv", B (N, z, C, v)},
5898 {"NzCV", B (N, z, C, V)},
5899 {"NZcv", B (N, Z, c, v)},
5900 {"NZcV", B (N, Z, c, V)},
5901 {"NZCv", B (N, Z, C, v)},
5902 {"NZCV", B (N, Z, C, V)}
5903};
5904
5905#undef N
5906#undef n
5907#undef Z
5908#undef z
5909#undef C
5910#undef c
5911#undef V
5912#undef v
5913#undef B
5914\f
5915/* MD interface: bits in the object file. */
5916
5917/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
5918 for use in the a.out file, and stores them in the array pointed to by buf.
5919 This knows about the endian-ness of the target machine and does
5920 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
5921 2 (short) and 4 (long) Floating numbers are put out as a series of
5922 LITTLENUMS (shorts, here at least). */
5923
5924void
5925md_number_to_chars (char *buf, valueT val, int n)
5926{
5927 if (target_big_endian)
5928 number_to_chars_bigendian (buf, val, n);
5929 else
5930 number_to_chars_littleendian (buf, val, n);
5931}
5932
5933/* MD interface: Sections. */
5934
5935/* Estimate the size of a frag before relaxing. Assume everything fits in
5936 4 bytes. */
5937
5938int
5939md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
5940{
5941 fragp->fr_var = 4;
5942 return 4;
5943}
5944
5945/* Round up a section size to the appropriate boundary. */
5946
5947valueT
5948md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5949{
5950 return size;
5951}
5952
5953/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
5954 of an rs_align_code fragment.
5955
5956 Here we fill the frag with the appropriate info for padding the
5957 output stream. The resulting frag will consist of a fixed (fr_fix)
5958 and of a repeating (fr_var) part.
5959
5960 The fixed content is always emitted before the repeating content and
5961 these two parts are used as follows in constructing the output:
5962 - the fixed part will be used to align to a valid instruction word
5963 boundary, in case that we start at a misaligned address; as no
5964 executable instruction can live at the misaligned location, we
5965 simply fill with zeros;
5966 - the variable part will be used to cover the remaining padding and
5967 we fill using the AArch64 NOP instruction.
5968
5969 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
5970 enough storage space for up to 3 bytes for padding the back to a valid
5971 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
5972
5973void
5974aarch64_handle_align (fragS * fragP)
5975{
5976 /* NOP = d503201f */
5977 /* AArch64 instructions are always little-endian. */
5978 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
5979
5980 int bytes, fix, noop_size;
5981 char *p;
a06ea964
NC
5982
5983 if (fragP->fr_type != rs_align_code)
5984 return;
5985
5986 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5987 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
5988
5989#ifdef OBJ_ELF
5990 gas_assert (fragP->tc_frag_data.recorded);
5991#endif
5992
a06ea964 5993 noop_size = sizeof (aarch64_noop);
a06ea964 5994
f803aa8e
DPT
5995 fix = bytes & (noop_size - 1);
5996 if (fix)
a06ea964 5997 {
a06ea964
NC
5998#ifdef OBJ_ELF
5999 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6000#endif
6001 memset (p, 0, fix);
6002 p += fix;
f803aa8e 6003 fragP->fr_fix += fix;
a06ea964
NC
6004 }
6005
f803aa8e
DPT
6006 if (noop_size)
6007 memcpy (p, aarch64_noop, noop_size);
6008 fragP->fr_var = noop_size;
a06ea964
NC
6009}
6010
6011/* Perform target specific initialisation of a frag.
6012 Note - despite the name this initialisation is not done when the frag
6013 is created, but only when its type is assigned. A frag can be created
6014 and used a long time before its type is set, so beware of assuming that
6015 this initialisationis performed first. */
6016
6017#ifndef OBJ_ELF
6018void
6019aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6020 int max_chars ATTRIBUTE_UNUSED)
6021{
6022}
6023
6024#else /* OBJ_ELF is defined. */
6025void
6026aarch64_init_frag (fragS * fragP, int max_chars)
6027{
6028 /* Record a mapping symbol for alignment frags. We will delete this
6029 later if the alignment ends up empty. */
6030 if (!fragP->tc_frag_data.recorded)
6031 {
6032 fragP->tc_frag_data.recorded = 1;
6033 switch (fragP->fr_type)
6034 {
6035 case rs_align:
6036 case rs_align_test:
6037 case rs_fill:
6038 mapping_state_2 (MAP_DATA, max_chars);
6039 break;
6040 case rs_align_code:
6041 mapping_state_2 (MAP_INSN, max_chars);
6042 break;
6043 default:
6044 break;
6045 }
6046 }
6047}
6048\f
6049/* Initialize the DWARF-2 unwind information for this procedure. */
6050
6051void
6052tc_aarch64_frame_initial_instructions (void)
6053{
6054 cfi_add_CFA_def_cfa (REG_SP, 0);
6055}
6056#endif /* OBJ_ELF */
6057
6058/* Convert REGNAME to a DWARF-2 register number. */
6059
6060int
6061tc_aarch64_regname_to_dw2regnum (char *regname)
6062{
6063 const reg_entry *reg = parse_reg (&regname);
6064 if (reg == NULL)
6065 return -1;
6066
6067 switch (reg->type)
6068 {
6069 case REG_TYPE_SP_32:
6070 case REG_TYPE_SP_64:
6071 case REG_TYPE_R_32:
6072 case REG_TYPE_R_64:
a2cac51c
RH
6073 return reg->number;
6074
a06ea964
NC
6075 case REG_TYPE_FP_B:
6076 case REG_TYPE_FP_H:
6077 case REG_TYPE_FP_S:
6078 case REG_TYPE_FP_D:
6079 case REG_TYPE_FP_Q:
a2cac51c
RH
6080 return reg->number + 64;
6081
a06ea964
NC
6082 default:
6083 break;
6084 }
6085 return -1;
6086}
6087
cec5225b
YZ
6088/* Implement DWARF2_ADDR_SIZE. */
6089
6090int
6091aarch64_dwarf2_addr_size (void)
6092{
6093#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6094 if (ilp32_p)
6095 return 4;
6096#endif
6097 return bfd_arch_bits_per_address (stdoutput) / 8;
6098}
6099
a06ea964
NC
6100/* MD interface: Symbol and relocation handling. */
6101
6102/* Return the address within the segment that a PC-relative fixup is
6103 relative to. For AArch64 PC-relative fixups applied to instructions
6104 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6105
6106long
6107md_pcrel_from_section (fixS * fixP, segT seg)
6108{
6109 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6110
6111 /* If this is pc-relative and we are going to emit a relocation
6112 then we just want to put out any pipeline compensation that the linker
6113 will need. Otherwise we want to use the calculated base. */
6114 if (fixP->fx_pcrel
6115 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6116 || aarch64_force_relocation (fixP)))
6117 base = 0;
6118
6119 /* AArch64 should be consistent for all pc-relative relocations. */
6120 return base + AARCH64_PCREL_OFFSET;
6121}
6122
6123/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6124 Otherwise we have no need to default values of symbols. */
6125
6126symbolS *
6127md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6128{
6129#ifdef OBJ_ELF
6130 if (name[0] == '_' && name[1] == 'G'
6131 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6132 {
6133 if (!GOT_symbol)
6134 {
6135 if (symbol_find (name))
6136 as_bad (_("GOT already in the symbol table"));
6137
6138 GOT_symbol = symbol_new (name, undefined_section,
6139 (valueT) 0, &zero_address_frag);
6140 }
6141
6142 return GOT_symbol;
6143 }
6144#endif
6145
6146 return 0;
6147}
6148
6149/* Return non-zero if the indicated VALUE has overflowed the maximum
6150 range expressible by a unsigned number with the indicated number of
6151 BITS. */
6152
6153static bfd_boolean
6154unsigned_overflow (valueT value, unsigned bits)
6155{
6156 valueT lim;
6157 if (bits >= sizeof (valueT) * 8)
6158 return FALSE;
6159 lim = (valueT) 1 << bits;
6160 return (value >= lim);
6161}
6162
6163
6164/* Return non-zero if the indicated VALUE has overflowed the maximum
6165 range expressible by an signed number with the indicated number of
6166 BITS. */
6167
6168static bfd_boolean
6169signed_overflow (offsetT value, unsigned bits)
6170{
6171 offsetT lim;
6172 if (bits >= sizeof (offsetT) * 8)
6173 return FALSE;
6174 lim = (offsetT) 1 << (bits - 1);
6175 return (value < -lim || value >= lim);
6176}
6177
6178/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6179 unsigned immediate offset load/store instruction, try to encode it as
6180 an unscaled, 9-bit, signed immediate offset load/store instruction.
6181 Return TRUE if it is successful; otherwise return FALSE.
6182
6183 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6184 in response to the standard LDR/STR mnemonics when the immediate offset is
6185 unambiguous, i.e. when it is negative or unaligned. */
6186
6187static bfd_boolean
6188try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6189{
6190 int idx;
6191 enum aarch64_op new_op;
6192 const aarch64_opcode *new_opcode;
6193
6194 gas_assert (instr->opcode->iclass == ldst_pos);
6195
6196 switch (instr->opcode->op)
6197 {
6198 case OP_LDRB_POS:new_op = OP_LDURB; break;
6199 case OP_STRB_POS: new_op = OP_STURB; break;
6200 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6201 case OP_LDRH_POS: new_op = OP_LDURH; break;
6202 case OP_STRH_POS: new_op = OP_STURH; break;
6203 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6204 case OP_LDR_POS: new_op = OP_LDUR; break;
6205 case OP_STR_POS: new_op = OP_STUR; break;
6206 case OP_LDRF_POS: new_op = OP_LDURV; break;
6207 case OP_STRF_POS: new_op = OP_STURV; break;
6208 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6209 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6210 default: new_op = OP_NIL; break;
6211 }
6212
6213 if (new_op == OP_NIL)
6214 return FALSE;
6215
6216 new_opcode = aarch64_get_opcode (new_op);
6217 gas_assert (new_opcode != NULL);
6218
6219 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6220 instr->opcode->op, new_opcode->op);
6221
6222 aarch64_replace_opcode (instr, new_opcode);
6223
6224 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6225 qualifier matching may fail because the out-of-date qualifier will
6226 prevent the operand being updated with a new and correct qualifier. */
6227 idx = aarch64_operand_index (instr->opcode->operands,
6228 AARCH64_OPND_ADDR_SIMM9);
6229 gas_assert (idx == 1);
6230 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6231
6232 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6233
6234 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6235 return FALSE;
6236
6237 return TRUE;
6238}
6239
6240/* Called by fix_insn to fix a MOV immediate alias instruction.
6241
6242 Operand for a generic move immediate instruction, which is an alias
6243 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6244 a 32-bit/64-bit immediate value into general register. An assembler error
6245 shall result if the immediate cannot be created by a single one of these
6246 instructions. If there is a choice, then to ensure reversability an
6247 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6248
6249static void
6250fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6251{
6252 const aarch64_opcode *opcode;
6253
6254 /* Need to check if the destination is SP/ZR. The check has to be done
6255 before any aarch64_replace_opcode. */
6256 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6257 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6258
6259 instr->operands[1].imm.value = value;
6260 instr->operands[1].skip = 0;
6261
6262 if (try_mov_wide_p)
6263 {
6264 /* Try the MOVZ alias. */
6265 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6266 aarch64_replace_opcode (instr, opcode);
6267 if (aarch64_opcode_encode (instr->opcode, instr,
6268 &instr->value, NULL, NULL))
6269 {
6270 put_aarch64_insn (buf, instr->value);
6271 return;
6272 }
6273 /* Try the MOVK alias. */
6274 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6275 aarch64_replace_opcode (instr, opcode);
6276 if (aarch64_opcode_encode (instr->opcode, instr,
6277 &instr->value, NULL, NULL))
6278 {
6279 put_aarch64_insn (buf, instr->value);
6280 return;
6281 }
6282 }
6283
6284 if (try_mov_bitmask_p)
6285 {
6286 /* Try the ORR alias. */
6287 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6288 aarch64_replace_opcode (instr, opcode);
6289 if (aarch64_opcode_encode (instr->opcode, instr,
6290 &instr->value, NULL, NULL))
6291 {
6292 put_aarch64_insn (buf, instr->value);
6293 return;
6294 }
6295 }
6296
6297 as_bad_where (fixP->fx_file, fixP->fx_line,
6298 _("immediate cannot be moved by a single instruction"));
6299}
6300
6301/* An instruction operand which is immediate related may have symbol used
6302 in the assembly, e.g.
6303
6304 mov w0, u32
6305 .set u32, 0x00ffff00
6306
6307 At the time when the assembly instruction is parsed, a referenced symbol,
6308 like 'u32' in the above example may not have been seen; a fixS is created
6309 in such a case and is handled here after symbols have been resolved.
6310 Instruction is fixed up with VALUE using the information in *FIXP plus
6311 extra information in FLAGS.
6312
6313 This function is called by md_apply_fix to fix up instructions that need
6314 a fix-up described above but does not involve any linker-time relocation. */
6315
6316static void
6317fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6318{
6319 int idx;
6320 uint32_t insn;
6321 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6322 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6323 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6324
6325 if (new_inst)
6326 {
6327 /* Now the instruction is about to be fixed-up, so the operand that
6328 was previously marked as 'ignored' needs to be unmarked in order
6329 to get the encoding done properly. */
6330 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6331 new_inst->operands[idx].skip = 0;
6332 }
6333
6334 gas_assert (opnd != AARCH64_OPND_NIL);
6335
6336 switch (opnd)
6337 {
6338 case AARCH64_OPND_EXCEPTION:
6339 if (unsigned_overflow (value, 16))
6340 as_bad_where (fixP->fx_file, fixP->fx_line,
6341 _("immediate out of range"));
6342 insn = get_aarch64_insn (buf);
6343 insn |= encode_svc_imm (value);
6344 put_aarch64_insn (buf, insn);
6345 break;
6346
6347 case AARCH64_OPND_AIMM:
6348 /* ADD or SUB with immediate.
6349 NOTE this assumes we come here with a add/sub shifted reg encoding
6350 3 322|2222|2 2 2 21111 111111
6351 1 098|7654|3 2 1 09876 543210 98765 43210
6352 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6353 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6354 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6355 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6356 ->
6357 3 322|2222|2 2 221111111111
6358 1 098|7654|3 2 109876543210 98765 43210
6359 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6360 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6361 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6362 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6363 Fields sf Rn Rd are already set. */
6364 insn = get_aarch64_insn (buf);
6365 if (value < 0)
6366 {
6367 /* Add <-> sub. */
6368 insn = reencode_addsub_switch_add_sub (insn);
6369 value = -value;
6370 }
6371
6372 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6373 && unsigned_overflow (value, 12))
6374 {
6375 /* Try to shift the value by 12 to make it fit. */
6376 if (((value >> 12) << 12) == value
6377 && ! unsigned_overflow (value, 12 + 12))
6378 {
6379 value >>= 12;
6380 insn |= encode_addsub_imm_shift_amount (1);
6381 }
6382 }
6383
6384 if (unsigned_overflow (value, 12))
6385 as_bad_where (fixP->fx_file, fixP->fx_line,
6386 _("immediate out of range"));
6387
6388 insn |= encode_addsub_imm (value);
6389
6390 put_aarch64_insn (buf, insn);
6391 break;
6392
6393 case AARCH64_OPND_SIMD_IMM:
6394 case AARCH64_OPND_SIMD_IMM_SFT:
6395 case AARCH64_OPND_LIMM:
6396 /* Bit mask immediate. */
6397 gas_assert (new_inst != NULL);
6398 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6399 new_inst->operands[idx].imm.value = value;
6400 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6401 &new_inst->value, NULL, NULL))
6402 put_aarch64_insn (buf, new_inst->value);
6403 else
6404 as_bad_where (fixP->fx_file, fixP->fx_line,
6405 _("invalid immediate"));
6406 break;
6407
6408 case AARCH64_OPND_HALF:
6409 /* 16-bit unsigned immediate. */
6410 if (unsigned_overflow (value, 16))
6411 as_bad_where (fixP->fx_file, fixP->fx_line,
6412 _("immediate out of range"));
6413 insn = get_aarch64_insn (buf);
6414 insn |= encode_movw_imm (value & 0xffff);
6415 put_aarch64_insn (buf, insn);
6416 break;
6417
6418 case AARCH64_OPND_IMM_MOV:
6419 /* Operand for a generic move immediate instruction, which is
6420 an alias instruction that generates a single MOVZ, MOVN or ORR
6421 instruction to loads a 32-bit/64-bit immediate value into general
6422 register. An assembler error shall result if the immediate cannot be
6423 created by a single one of these instructions. If there is a choice,
6424 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6425 and MOVZ or MOVN to ORR. */
6426 gas_assert (new_inst != NULL);
6427 fix_mov_imm_insn (fixP, buf, new_inst, value);
6428 break;
6429
6430 case AARCH64_OPND_ADDR_SIMM7:
6431 case AARCH64_OPND_ADDR_SIMM9:
6432 case AARCH64_OPND_ADDR_SIMM9_2:
6433 case AARCH64_OPND_ADDR_UIMM12:
6434 /* Immediate offset in an address. */
6435 insn = get_aarch64_insn (buf);
6436
6437 gas_assert (new_inst != NULL && new_inst->value == insn);
6438 gas_assert (new_inst->opcode->operands[1] == opnd
6439 || new_inst->opcode->operands[2] == opnd);
6440
6441 /* Get the index of the address operand. */
6442 if (new_inst->opcode->operands[1] == opnd)
6443 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6444 idx = 1;
6445 else
6446 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6447 idx = 2;
6448
6449 /* Update the resolved offset value. */
6450 new_inst->operands[idx].addr.offset.imm = value;
6451
6452 /* Encode/fix-up. */
6453 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6454 &new_inst->value, NULL, NULL))
6455 {
6456 put_aarch64_insn (buf, new_inst->value);
6457 break;
6458 }
6459 else if (new_inst->opcode->iclass == ldst_pos
6460 && try_to_encode_as_unscaled_ldst (new_inst))
6461 {
6462 put_aarch64_insn (buf, new_inst->value);
6463 break;
6464 }
6465
6466 as_bad_where (fixP->fx_file, fixP->fx_line,
6467 _("immediate offset out of range"));
6468 break;
6469
6470 default:
6471 gas_assert (0);
6472 as_fatal (_("unhandled operand code %d"), opnd);
6473 }
6474}
6475
6476/* Apply a fixup (fixP) to segment data, once it has been determined
6477 by our caller that we have all the info we need to fix it up.
6478
6479 Parameter valP is the pointer to the value of the bits. */
6480
6481void
6482md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6483{
6484 offsetT value = *valP;
6485 uint32_t insn;
6486 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6487 int scale;
6488 unsigned flags = fixP->fx_addnumber;
6489
6490 DEBUG_TRACE ("\n\n");
6491 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6492 DEBUG_TRACE ("Enter md_apply_fix");
6493
6494 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6495
6496 /* Note whether this will delete the relocation. */
6497
6498 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6499 fixP->fx_done = 1;
6500
6501 /* Process the relocations. */
6502 switch (fixP->fx_r_type)
6503 {
6504 case BFD_RELOC_NONE:
6505 /* This will need to go in the object file. */
6506 fixP->fx_done = 0;
6507 break;
6508
6509 case BFD_RELOC_8:
6510 case BFD_RELOC_8_PCREL:
6511 if (fixP->fx_done || !seg->use_rela_p)
6512 md_number_to_chars (buf, value, 1);
6513 break;
6514
6515 case BFD_RELOC_16:
6516 case BFD_RELOC_16_PCREL:
6517 if (fixP->fx_done || !seg->use_rela_p)
6518 md_number_to_chars (buf, value, 2);
6519 break;
6520
6521 case BFD_RELOC_32:
6522 case BFD_RELOC_32_PCREL:
6523 if (fixP->fx_done || !seg->use_rela_p)
6524 md_number_to_chars (buf, value, 4);
6525 break;
6526
6527 case BFD_RELOC_64:
6528 case BFD_RELOC_64_PCREL:
6529 if (fixP->fx_done || !seg->use_rela_p)
6530 md_number_to_chars (buf, value, 8);
6531 break;
6532
6533 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6534 /* We claim that these fixups have been processed here, even if
6535 in fact we generate an error because we do not have a reloc
6536 for them, so tc_gen_reloc() will reject them. */
6537 fixP->fx_done = 1;
6538 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6539 {
6540 as_bad_where (fixP->fx_file, fixP->fx_line,
6541 _("undefined symbol %s used as an immediate value"),
6542 S_GET_NAME (fixP->fx_addsy));
6543 goto apply_fix_return;
6544 }
6545 fix_insn (fixP, flags, value);
6546 break;
6547
6548 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6549 if (fixP->fx_done || !seg->use_rela_p)
6550 {
89d2a2a3
MS
6551 if (value & 3)
6552 as_bad_where (fixP->fx_file, fixP->fx_line,
6553 _("pc-relative load offset not word aligned"));
6554 if (signed_overflow (value, 21))
6555 as_bad_where (fixP->fx_file, fixP->fx_line,
6556 _("pc-relative load offset out of range"));
a06ea964
NC
6557 insn = get_aarch64_insn (buf);
6558 insn |= encode_ld_lit_ofs_19 (value >> 2);
6559 put_aarch64_insn (buf, insn);
6560 }
6561 break;
6562
6563 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6564 if (fixP->fx_done || !seg->use_rela_p)
6565 {
89d2a2a3
MS
6566 if (signed_overflow (value, 21))
6567 as_bad_where (fixP->fx_file, fixP->fx_line,
6568 _("pc-relative address offset out of range"));
a06ea964
NC
6569 insn = get_aarch64_insn (buf);
6570 insn |= encode_adr_imm (value);
6571 put_aarch64_insn (buf, insn);
6572 }
6573 break;
6574
6575 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6576 if (fixP->fx_done || !seg->use_rela_p)
6577 {
89d2a2a3
MS
6578 if (value & 3)
6579 as_bad_where (fixP->fx_file, fixP->fx_line,
6580 _("conditional branch target not word aligned"));
6581 if (signed_overflow (value, 21))
6582 as_bad_where (fixP->fx_file, fixP->fx_line,
6583 _("conditional branch out of range"));
a06ea964
NC
6584 insn = get_aarch64_insn (buf);
6585 insn |= encode_cond_branch_ofs_19 (value >> 2);
6586 put_aarch64_insn (buf, insn);
6587 }
6588 break;
6589
6590 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6591 if (fixP->fx_done || !seg->use_rela_p)
6592 {
89d2a2a3
MS
6593 if (value & 3)
6594 as_bad_where (fixP->fx_file, fixP->fx_line,
6595 _("conditional branch target not word aligned"));
6596 if (signed_overflow (value, 16))
6597 as_bad_where (fixP->fx_file, fixP->fx_line,
6598 _("conditional branch out of range"));
a06ea964
NC
6599 insn = get_aarch64_insn (buf);
6600 insn |= encode_tst_branch_ofs_14 (value >> 2);
6601 put_aarch64_insn (buf, insn);
6602 }
6603 break;
6604
6605 case BFD_RELOC_AARCH64_JUMP26:
6606 case BFD_RELOC_AARCH64_CALL26:
a06ea964
NC
6607 if (fixP->fx_done || !seg->use_rela_p)
6608 {
89d2a2a3
MS
6609 if (value & 3)
6610 as_bad_where (fixP->fx_file, fixP->fx_line,
6611 _("branch target not word aligned"));
6612 if (signed_overflow (value, 28))
6613 as_bad_where (fixP->fx_file, fixP->fx_line,
6614 _("branch out of range"));
a06ea964
NC
6615 insn = get_aarch64_insn (buf);
6616 insn |= encode_branch_ofs_26 (value >> 2);
6617 put_aarch64_insn (buf, insn);
6618 }
6619 break;
6620
6621 case BFD_RELOC_AARCH64_MOVW_G0:
6622 case BFD_RELOC_AARCH64_MOVW_G0_S:
6623 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6624 scale = 0;
6625 goto movw_common;
6626 case BFD_RELOC_AARCH64_MOVW_G1:
6627 case BFD_RELOC_AARCH64_MOVW_G1_S:
6628 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6629 scale = 16;
6630 goto movw_common;
6631 case BFD_RELOC_AARCH64_MOVW_G2:
6632 case BFD_RELOC_AARCH64_MOVW_G2_S:
6633 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6634 scale = 32;
6635 goto movw_common;
6636 case BFD_RELOC_AARCH64_MOVW_G3:
6637 scale = 48;
6638 movw_common:
6639 if (fixP->fx_done || !seg->use_rela_p)
6640 {
6641 insn = get_aarch64_insn (buf);
6642
6643 if (!fixP->fx_done)
6644 {
6645 /* REL signed addend must fit in 16 bits */
6646 if (signed_overflow (value, 16))
6647 as_bad_where (fixP->fx_file, fixP->fx_line,
6648 _("offset out of range"));
6649 }
6650 else
6651 {
6652 /* Check for overflow and scale. */
6653 switch (fixP->fx_r_type)
6654 {
6655 case BFD_RELOC_AARCH64_MOVW_G0:
6656 case BFD_RELOC_AARCH64_MOVW_G1:
6657 case BFD_RELOC_AARCH64_MOVW_G2:
6658 case BFD_RELOC_AARCH64_MOVW_G3:
6659 if (unsigned_overflow (value, scale + 16))
6660 as_bad_where (fixP->fx_file, fixP->fx_line,
6661 _("unsigned value out of range"));
6662 break;
6663 case BFD_RELOC_AARCH64_MOVW_G0_S:
6664 case BFD_RELOC_AARCH64_MOVW_G1_S:
6665 case BFD_RELOC_AARCH64_MOVW_G2_S:
6666 /* NOTE: We can only come here with movz or movn. */
6667 if (signed_overflow (value, scale + 16))
6668 as_bad_where (fixP->fx_file, fixP->fx_line,
6669 _("signed value out of range"));
6670 if (value < 0)
6671 {
6672 /* Force use of MOVN. */
6673 value = ~value;
6674 insn = reencode_movzn_to_movn (insn);
6675 }
6676 else
6677 {
6678 /* Force use of MOVZ. */
6679 insn = reencode_movzn_to_movz (insn);
6680 }
6681 break;
6682 default:
6683 /* Unchecked relocations. */
6684 break;
6685 }
6686 value >>= scale;
6687 }
6688
6689 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6690 insn |= encode_movw_imm (value & 0xffff);
6691
6692 put_aarch64_insn (buf, insn);
6693 }
6694 break;
6695
a6bb11b2
YZ
6696 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6697 fixP->fx_r_type = (ilp32_p
6698 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6699 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6700 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6701 /* Should always be exported to object file, see
6702 aarch64_force_relocation(). */
6703 gas_assert (!fixP->fx_done);
6704 gas_assert (seg->use_rela_p);
6705 break;
6706
6707 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6708 fixP->fx_r_type = (ilp32_p
6709 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6710 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6711 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6712 /* Should always be exported to object file, see
6713 aarch64_force_relocation(). */
6714 gas_assert (!fixP->fx_done);
6715 gas_assert (seg->use_rela_p);
6716 break;
6717
2c0a3565
MS
6718 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6719 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6720 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
6721 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6722 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6723 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 6724 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6725 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6726 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 6727 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6728 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6729 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6730 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
a06ea964 6731 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6732 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6733 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6734 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6735 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6736 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6737 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6738 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6739 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6740 /* Should always be exported to object file, see
6741 aarch64_force_relocation(). */
6742 gas_assert (!fixP->fx_done);
6743 gas_assert (seg->use_rela_p);
6744 break;
6745
a6bb11b2
YZ
6746 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6747 /* Should always be exported to object file, see
6748 aarch64_force_relocation(). */
6749 fixP->fx_r_type = (ilp32_p
6750 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6751 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6752 gas_assert (!fixP->fx_done);
6753 gas_assert (seg->use_rela_p);
6754 break;
6755
a06ea964
NC
6756 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6757 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6758 case BFD_RELOC_AARCH64_ADD_LO12:
6759 case BFD_RELOC_AARCH64_LDST8_LO12:
6760 case BFD_RELOC_AARCH64_LDST16_LO12:
6761 case BFD_RELOC_AARCH64_LDST32_LO12:
6762 case BFD_RELOC_AARCH64_LDST64_LO12:
6763 case BFD_RELOC_AARCH64_LDST128_LO12:
f41aef5f 6764 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
6765 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6766 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
a6bb11b2 6767 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a06ea964
NC
6768 /* Should always be exported to object file, see
6769 aarch64_force_relocation(). */
6770 gas_assert (!fixP->fx_done);
6771 gas_assert (seg->use_rela_p);
6772 break;
6773
6774 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6775 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6776 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6777 break;
6778
b97e87cc
NC
6779 case BFD_RELOC_UNUSED:
6780 /* An error will already have been reported. */
6781 break;
6782
a06ea964
NC
6783 default:
6784 as_bad_where (fixP->fx_file, fixP->fx_line,
6785 _("unexpected %s fixup"),
6786 bfd_get_reloc_code_name (fixP->fx_r_type));
6787 break;
6788 }
6789
6790apply_fix_return:
6791 /* Free the allocated the struct aarch64_inst.
6792 N.B. currently there are very limited number of fix-up types actually use
6793 this field, so the impact on the performance should be minimal . */
6794 if (fixP->tc_fix_data.inst != NULL)
6795 free (fixP->tc_fix_data.inst);
6796
6797 return;
6798}
6799
6800/* Translate internal representation of relocation info to BFD target
6801 format. */
6802
6803arelent *
6804tc_gen_reloc (asection * section, fixS * fixp)
6805{
6806 arelent *reloc;
6807 bfd_reloc_code_real_type code;
6808
6809 reloc = xmalloc (sizeof (arelent));
6810
6811 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
6812 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6813 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6814
6815 if (fixp->fx_pcrel)
6816 {
6817 if (section->use_rela_p)
6818 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
6819 else
6820 fixp->fx_offset = reloc->address;
6821 }
6822 reloc->addend = fixp->fx_offset;
6823
6824 code = fixp->fx_r_type;
6825 switch (code)
6826 {
6827 case BFD_RELOC_16:
6828 if (fixp->fx_pcrel)
6829 code = BFD_RELOC_16_PCREL;
6830 break;
6831
6832 case BFD_RELOC_32:
6833 if (fixp->fx_pcrel)
6834 code = BFD_RELOC_32_PCREL;
6835 break;
6836
6837 case BFD_RELOC_64:
6838 if (fixp->fx_pcrel)
6839 code = BFD_RELOC_64_PCREL;
6840 break;
6841
6842 default:
6843 break;
6844 }
6845
6846 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6847 if (reloc->howto == NULL)
6848 {
6849 as_bad_where (fixp->fx_file, fixp->fx_line,
6850 _
6851 ("cannot represent %s relocation in this object file format"),
6852 bfd_get_reloc_code_name (code));
6853 return NULL;
6854 }
6855
6856 return reloc;
6857}
6858
6859/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6860
6861void
6862cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
6863{
6864 bfd_reloc_code_real_type type;
6865 int pcrel = 0;
6866
6867 /* Pick a reloc.
6868 FIXME: @@ Should look at CPU word size. */
6869 switch (size)
6870 {
6871 case 1:
6872 type = BFD_RELOC_8;
6873 break;
6874 case 2:
6875 type = BFD_RELOC_16;
6876 break;
6877 case 4:
6878 type = BFD_RELOC_32;
6879 break;
6880 case 8:
6881 type = BFD_RELOC_64;
6882 break;
6883 default:
6884 as_bad (_("cannot do %u-byte relocation"), size);
6885 type = BFD_RELOC_UNUSED;
6886 break;
6887 }
6888
6889 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
6890}
6891
6892int
6893aarch64_force_relocation (struct fix *fixp)
6894{
6895 switch (fixp->fx_r_type)
6896 {
6897 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6898 /* Perform these "immediate" internal relocations
6899 even if the symbol is extern or weak. */
6900 return 0;
6901
a6bb11b2
YZ
6902 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6903 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6904 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6905 /* Pseudo relocs that need to be fixed up according to
6906 ilp32_p. */
6907 return 0;
6908
2c0a3565
MS
6909 case BFD_RELOC_AARCH64_ADD_LO12:
6910 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6911 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6912 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6913 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6914 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6915 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6916 case BFD_RELOC_AARCH64_LDST128_LO12:
6917 case BFD_RELOC_AARCH64_LDST16_LO12:
6918 case BFD_RELOC_AARCH64_LDST32_LO12:
6919 case BFD_RELOC_AARCH64_LDST64_LO12:
6920 case BFD_RELOC_AARCH64_LDST8_LO12:
6921 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6922 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6923 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
6924 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6925 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6926 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 6927 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6928 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6929 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 6930 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6931 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6932 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6933 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
a06ea964 6934 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6935 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6936 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6937 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6938 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6939 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6940 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6941 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6942 /* Always leave these relocations for the linker. */
6943 return 1;
6944
6945 default:
6946 break;
6947 }
6948
6949 return generic_force_reloc (fixp);
6950}
6951
6952#ifdef OBJ_ELF
6953
6954const char *
6955elf64_aarch64_target_format (void)
6956{
6957 if (target_big_endian)
cec5225b 6958 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 6959 else
cec5225b 6960 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
6961}
6962
6963void
6964aarch64elf_frob_symbol (symbolS * symp, int *puntp)
6965{
6966 elf_frob_symbol (symp, puntp);
6967}
6968#endif
6969
6970/* MD interface: Finalization. */
6971
6972/* A good place to do this, although this was probably not intended
6973 for this kind of use. We need to dump the literal pool before
6974 references are made to a null symbol pointer. */
6975
6976void
6977aarch64_cleanup (void)
6978{
6979 literal_pool *pool;
6980
6981 for (pool = list_of_pools; pool; pool = pool->next)
6982 {
6983 /* Put it at the end of the relevant section. */
6984 subseg_set (pool->section, pool->sub_section);
6985 s_ltorg (0);
6986 }
6987}
6988
6989#ifdef OBJ_ELF
6990/* Remove any excess mapping symbols generated for alignment frags in
6991 SEC. We may have created a mapping symbol before a zero byte
6992 alignment; remove it if there's a mapping symbol after the
6993 alignment. */
6994static void
6995check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
6996 void *dummy ATTRIBUTE_UNUSED)
6997{
6998 segment_info_type *seginfo = seg_info (sec);
6999 fragS *fragp;
7000
7001 if (seginfo == NULL || seginfo->frchainP == NULL)
7002 return;
7003
7004 for (fragp = seginfo->frchainP->frch_root;
7005 fragp != NULL; fragp = fragp->fr_next)
7006 {
7007 symbolS *sym = fragp->tc_frag_data.last_map;
7008 fragS *next = fragp->fr_next;
7009
7010 /* Variable-sized frags have been converted to fixed size by
7011 this point. But if this was variable-sized to start with,
7012 there will be a fixed-size frag after it. So don't handle
7013 next == NULL. */
7014 if (sym == NULL || next == NULL)
7015 continue;
7016
7017 if (S_GET_VALUE (sym) < next->fr_address)
7018 /* Not at the end of this frag. */
7019 continue;
7020 know (S_GET_VALUE (sym) == next->fr_address);
7021
7022 do
7023 {
7024 if (next->tc_frag_data.first_map != NULL)
7025 {
7026 /* Next frag starts with a mapping symbol. Discard this
7027 one. */
7028 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7029 break;
7030 }
7031
7032 if (next->fr_next == NULL)
7033 {
7034 /* This mapping symbol is at the end of the section. Discard
7035 it. */
7036 know (next->fr_fix == 0 && next->fr_var == 0);
7037 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7038 break;
7039 }
7040
7041 /* As long as we have empty frags without any mapping symbols,
7042 keep looking. */
7043 /* If the next frag is non-empty and does not start with a
7044 mapping symbol, then this mapping symbol is required. */
7045 if (next->fr_address != next->fr_next->fr_address)
7046 break;
7047
7048 next = next->fr_next;
7049 }
7050 while (next != NULL);
7051 }
7052}
7053#endif
7054
7055/* Adjust the symbol table. */
7056
7057void
7058aarch64_adjust_symtab (void)
7059{
7060#ifdef OBJ_ELF
7061 /* Remove any overlapping mapping symbols generated by alignment frags. */
7062 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7063 /* Now do generic ELF adjustments. */
7064 elf_adjust_symtab ();
7065#endif
7066}
7067
7068static void
7069checked_hash_insert (struct hash_control *table, const char *key, void *value)
7070{
7071 const char *hash_err;
7072
7073 hash_err = hash_insert (table, key, value);
7074 if (hash_err)
7075 printf ("Internal Error: Can't hash %s\n", key);
7076}
7077
7078static void
7079fill_instruction_hash_table (void)
7080{
7081 aarch64_opcode *opcode = aarch64_opcode_table;
7082
7083 while (opcode->name != NULL)
7084 {
7085 templates *templ, *new_templ;
7086 templ = hash_find (aarch64_ops_hsh, opcode->name);
7087
7088 new_templ = (templates *) xmalloc (sizeof (templates));
7089 new_templ->opcode = opcode;
7090 new_templ->next = NULL;
7091
7092 if (!templ)
7093 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7094 else
7095 {
7096 new_templ->next = templ->next;
7097 templ->next = new_templ;
7098 }
7099 ++opcode;
7100 }
7101}
7102
7103static inline void
7104convert_to_upper (char *dst, const char *src, size_t num)
7105{
7106 unsigned int i;
7107 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7108 *dst = TOUPPER (*src);
7109 *dst = '\0';
7110}
7111
7112/* Assume STR point to a lower-case string, allocate, convert and return
7113 the corresponding upper-case string. */
7114static inline const char*
7115get_upper_str (const char *str)
7116{
7117 char *ret;
7118 size_t len = strlen (str);
7119 if ((ret = xmalloc (len + 1)) == NULL)
7120 abort ();
7121 convert_to_upper (ret, str, len);
7122 return ret;
7123}
7124
7125/* MD interface: Initialization. */
7126
7127void
7128md_begin (void)
7129{
7130 unsigned mach;
7131 unsigned int i;
7132
7133 if ((aarch64_ops_hsh = hash_new ()) == NULL
7134 || (aarch64_cond_hsh = hash_new ()) == NULL
7135 || (aarch64_shift_hsh = hash_new ()) == NULL
7136 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7137 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7138 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7139 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7140 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7141 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7142 || (aarch64_reg_hsh = hash_new ()) == NULL
7143 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7144 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7145 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7146 as_fatal (_("virtual memory exhausted"));
7147
7148 fill_instruction_hash_table ();
7149
7150 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7151 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7152 (void *) (aarch64_sys_regs + i));
7153
7154 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7155 checked_hash_insert (aarch64_pstatefield_hsh,
7156 aarch64_pstatefields[i].name,
7157 (void *) (aarch64_pstatefields + i));
7158
7159 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7160 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7161 aarch64_sys_regs_ic[i].template,
7162 (void *) (aarch64_sys_regs_ic + i));
7163
7164 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7165 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7166 aarch64_sys_regs_dc[i].template,
7167 (void *) (aarch64_sys_regs_dc + i));
7168
7169 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7170 checked_hash_insert (aarch64_sys_regs_at_hsh,
7171 aarch64_sys_regs_at[i].template,
7172 (void *) (aarch64_sys_regs_at + i));
7173
7174 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7175 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7176 aarch64_sys_regs_tlbi[i].template,
7177 (void *) (aarch64_sys_regs_tlbi + i));
7178
7179 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7180 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7181 (void *) (reg_names + i));
7182
7183 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7184 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7185 (void *) (nzcv_names + i));
7186
7187 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7188 {
7189 const char *name = aarch64_operand_modifiers[i].name;
7190 checked_hash_insert (aarch64_shift_hsh, name,
7191 (void *) (aarch64_operand_modifiers + i));
7192 /* Also hash the name in the upper case. */
7193 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7194 (void *) (aarch64_operand_modifiers + i));
7195 }
7196
7197 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7198 {
7199 unsigned int j;
7200 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7201 the same condition code. */
7202 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7203 {
7204 const char *name = aarch64_conds[i].names[j];
7205 if (name == NULL)
7206 break;
7207 checked_hash_insert (aarch64_cond_hsh, name,
7208 (void *) (aarch64_conds + i));
7209 /* Also hash the name in the upper case. */
7210 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7211 (void *) (aarch64_conds + i));
7212 }
7213 }
7214
7215 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7216 {
7217 const char *name = aarch64_barrier_options[i].name;
7218 /* Skip xx00 - the unallocated values of option. */
7219 if ((i & 0x3) == 0)
7220 continue;
7221 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7222 (void *) (aarch64_barrier_options + i));
7223 /* Also hash the name in the upper case. */
7224 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7225 (void *) (aarch64_barrier_options + i));
7226 }
7227
7228 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7229 {
7230 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7231 /* Skip the unallocated hint encodings. */
7232 if (name == NULL)
a06ea964
NC
7233 continue;
7234 checked_hash_insert (aarch64_pldop_hsh, name,
7235 (void *) (aarch64_prfops + i));
7236 /* Also hash the name in the upper case. */
7237 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7238 (void *) (aarch64_prfops + i));
7239 }
7240
7241 /* Set the cpu variant based on the command-line options. */
7242 if (!mcpu_cpu_opt)
7243 mcpu_cpu_opt = march_cpu_opt;
7244
7245 if (!mcpu_cpu_opt)
7246 mcpu_cpu_opt = &cpu_default;
7247
7248 cpu_variant = *mcpu_cpu_opt;
7249
7250 /* Record the CPU type. */
cec5225b 7251 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7252
7253 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7254}
7255
7256/* Command line processing. */
7257
7258const char *md_shortopts = "m:";
7259
7260#ifdef AARCH64_BI_ENDIAN
7261#define OPTION_EB (OPTION_MD_BASE + 0)
7262#define OPTION_EL (OPTION_MD_BASE + 1)
7263#else
7264#if TARGET_BYTES_BIG_ENDIAN
7265#define OPTION_EB (OPTION_MD_BASE + 0)
7266#else
7267#define OPTION_EL (OPTION_MD_BASE + 1)
7268#endif
7269#endif
7270
7271struct option md_longopts[] = {
7272#ifdef OPTION_EB
7273 {"EB", no_argument, NULL, OPTION_EB},
7274#endif
7275#ifdef OPTION_EL
7276 {"EL", no_argument, NULL, OPTION_EL},
7277#endif
7278 {NULL, no_argument, NULL, 0}
7279};
7280
7281size_t md_longopts_size = sizeof (md_longopts);
7282
7283struct aarch64_option_table
7284{
7285 char *option; /* Option name to match. */
7286 char *help; /* Help information. */
7287 int *var; /* Variable to change. */
7288 int value; /* What to change it to. */
7289 char *deprecated; /* If non-null, print this message. */
7290};
7291
7292static struct aarch64_option_table aarch64_opts[] = {
7293 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7294 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7295 NULL},
7296#ifdef DEBUG_AARCH64
7297 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7298#endif /* DEBUG_AARCH64 */
7299 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7300 NULL},
a52e6fd3
YZ
7301 {"mno-verbose-error", N_("do not output verbose error messages"),
7302 &verbose_error_p, 0, NULL},
a06ea964
NC
7303 {NULL, NULL, NULL, 0, NULL}
7304};
7305
7306struct aarch64_cpu_option_table
7307{
7308 char *name;
7309 const aarch64_feature_set value;
7310 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7311 case. */
7312 const char *canonical_name;
7313};
7314
7315/* This list should, at a minimum, contain all the cpu names
7316 recognized by GCC. */
7317static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7318 {"all", AARCH64_ANY, NULL},
aa31c464
JW
7319 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7320 AARCH64_FEATURE_CRC), "Cortex-A53"},
7321 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7322 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7323 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7324 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7325 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7326 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7327 "Samsung Exynos M1"},
faade851
JW
7328 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7329 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7330 "Cavium ThunderX"},
070cb956
PT
7331 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7332 in earlier releases and is superseded by 'xgene1' in all
7333 tools. */
9877c63c 7334 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7335 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7336 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7337 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7338 {"generic", AARCH64_ARCH_V8, NULL},
7339
a06ea964
NC
7340 {NULL, AARCH64_ARCH_NONE, NULL}
7341};
7342
7343struct aarch64_arch_option_table
7344{
7345 char *name;
7346 const aarch64_feature_set value;
7347};
7348
7349/* This list should, at a minimum, contain all the architecture names
7350 recognized by GCC. */
7351static const struct aarch64_arch_option_table aarch64_archs[] = {
7352 {"all", AARCH64_ANY},
5a1ad39d 7353 {"armv8-a", AARCH64_ARCH_V8},
a06ea964
NC
7354 {NULL, AARCH64_ARCH_NONE}
7355};
7356
7357/* ISA extensions. */
7358struct aarch64_option_cpu_value_table
7359{
7360 char *name;
7361 const aarch64_feature_set value;
7362};
7363
7364static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7365 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7366 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7367 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7368 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964
NC
7369 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
7370 {NULL, AARCH64_ARCH_NONE}
7371};
7372
7373struct aarch64_long_option_table
7374{
7375 char *option; /* Substring to match. */
7376 char *help; /* Help information. */
7377 int (*func) (char *subopt); /* Function to decode sub-option. */
7378 char *deprecated; /* If non-null, print this message. */
7379};
7380
7381static int
ae527cd8
JB
7382aarch64_parse_features (char *str, const aarch64_feature_set **opt_p,
7383 bfd_boolean ext_only)
a06ea964
NC
7384{
7385 /* We insist on extensions being added before being removed. We achieve
7386 this by using the ADDING_VALUE variable to indicate whether we are
7387 adding an extension (1) or removing it (0) and only allowing it to
7388 change in the order -1 -> 1 -> 0. */
7389 int adding_value = -1;
7390 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7391
7392 /* Copy the feature set, so that we can modify it. */
7393 *ext_set = **opt_p;
7394 *opt_p = ext_set;
7395
7396 while (str != NULL && *str != 0)
7397 {
7398 const struct aarch64_option_cpu_value_table *opt;
ae527cd8 7399 char *ext = NULL;
a06ea964
NC
7400 int optlen;
7401
ae527cd8 7402 if (!ext_only)
a06ea964 7403 {
ae527cd8
JB
7404 if (*str != '+')
7405 {
7406 as_bad (_("invalid architectural extension"));
7407 return 0;
7408 }
a06ea964 7409
ae527cd8
JB
7410 ext = strchr (++str, '+');
7411 }
a06ea964
NC
7412
7413 if (ext != NULL)
7414 optlen = ext - str;
7415 else
7416 optlen = strlen (str);
7417
7418 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7419 {
7420 if (adding_value != 0)
7421 adding_value = 0;
7422 optlen -= 2;
7423 str += 2;
7424 }
7425 else if (optlen > 0)
7426 {
7427 if (adding_value == -1)
7428 adding_value = 1;
7429 else if (adding_value != 1)
7430 {
7431 as_bad (_("must specify extensions to add before specifying "
7432 "those to remove"));
7433 return FALSE;
7434 }
7435 }
7436
7437 if (optlen == 0)
7438 {
7439 as_bad (_("missing architectural extension"));
7440 return 0;
7441 }
7442
7443 gas_assert (adding_value != -1);
7444
7445 for (opt = aarch64_features; opt->name != NULL; opt++)
7446 if (strncmp (opt->name, str, optlen) == 0)
7447 {
7448 /* Add or remove the extension. */
7449 if (adding_value)
7450 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7451 else
7452 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7453 break;
7454 }
7455
7456 if (opt->name == NULL)
7457 {
7458 as_bad (_("unknown architectural extension `%s'"), str);
7459 return 0;
7460 }
7461
7462 str = ext;
7463 };
7464
7465 return 1;
7466}
7467
7468static int
7469aarch64_parse_cpu (char *str)
7470{
7471 const struct aarch64_cpu_option_table *opt;
7472 char *ext = strchr (str, '+');
7473 size_t optlen;
7474
7475 if (ext != NULL)
7476 optlen = ext - str;
7477 else
7478 optlen = strlen (str);
7479
7480 if (optlen == 0)
7481 {
7482 as_bad (_("missing cpu name `%s'"), str);
7483 return 0;
7484 }
7485
7486 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7487 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7488 {
7489 mcpu_cpu_opt = &opt->value;
7490 if (ext != NULL)
ae527cd8 7491 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7492
7493 return 1;
7494 }
7495
7496 as_bad (_("unknown cpu `%s'"), str);
7497 return 0;
7498}
7499
7500static int
7501aarch64_parse_arch (char *str)
7502{
7503 const struct aarch64_arch_option_table *opt;
7504 char *ext = strchr (str, '+');
7505 size_t optlen;
7506
7507 if (ext != NULL)
7508 optlen = ext - str;
7509 else
7510 optlen = strlen (str);
7511
7512 if (optlen == 0)
7513 {
7514 as_bad (_("missing architecture name `%s'"), str);
7515 return 0;
7516 }
7517
7518 for (opt = aarch64_archs; opt->name != NULL; opt++)
7519 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7520 {
7521 march_cpu_opt = &opt->value;
7522 if (ext != NULL)
ae527cd8 7523 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7524
7525 return 1;
7526 }
7527
7528 as_bad (_("unknown architecture `%s'\n"), str);
7529 return 0;
7530}
7531
69091a2c
YZ
7532/* ABIs. */
7533struct aarch64_option_abi_value_table
7534{
7535 char *name;
7536 enum aarch64_abi_type value;
7537};
7538
7539static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7540 {"ilp32", AARCH64_ABI_ILP32},
7541 {"lp64", AARCH64_ABI_LP64},
7542 {NULL, 0}
7543};
7544
7545static int
7546aarch64_parse_abi (char *str)
7547{
7548 const struct aarch64_option_abi_value_table *opt;
7549 size_t optlen = strlen (str);
7550
7551 if (optlen == 0)
7552 {
7553 as_bad (_("missing abi name `%s'"), str);
7554 return 0;
7555 }
7556
7557 for (opt = aarch64_abis; opt->name != NULL; opt++)
7558 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7559 {
7560 aarch64_abi = opt->value;
7561 return 1;
7562 }
7563
7564 as_bad (_("unknown abi `%s'\n"), str);
7565 return 0;
7566}
7567
a06ea964 7568static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
7569#ifdef OBJ_ELF
7570 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7571 aarch64_parse_abi, NULL},
7572#endif /* OBJ_ELF */
a06ea964
NC
7573 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7574 aarch64_parse_cpu, NULL},
7575 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7576 aarch64_parse_arch, NULL},
7577 {NULL, NULL, 0, NULL}
7578};
7579
7580int
7581md_parse_option (int c, char *arg)
7582{
7583 struct aarch64_option_table *opt;
7584 struct aarch64_long_option_table *lopt;
7585
7586 switch (c)
7587 {
7588#ifdef OPTION_EB
7589 case OPTION_EB:
7590 target_big_endian = 1;
7591 break;
7592#endif
7593
7594#ifdef OPTION_EL
7595 case OPTION_EL:
7596 target_big_endian = 0;
7597 break;
7598#endif
7599
7600 case 'a':
7601 /* Listing option. Just ignore these, we don't support additional
7602 ones. */
7603 return 0;
7604
7605 default:
7606 for (opt = aarch64_opts; opt->option != NULL; opt++)
7607 {
7608 if (c == opt->option[0]
7609 && ((arg == NULL && opt->option[1] == 0)
7610 || streq (arg, opt->option + 1)))
7611 {
7612 /* If the option is deprecated, tell the user. */
7613 if (opt->deprecated != NULL)
7614 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7615 arg ? arg : "", _(opt->deprecated));
7616
7617 if (opt->var != NULL)
7618 *opt->var = opt->value;
7619
7620 return 1;
7621 }
7622 }
7623
7624 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7625 {
7626 /* These options are expected to have an argument. */
7627 if (c == lopt->option[0]
7628 && arg != NULL
7629 && strncmp (arg, lopt->option + 1,
7630 strlen (lopt->option + 1)) == 0)
7631 {
7632 /* If the option is deprecated, tell the user. */
7633 if (lopt->deprecated != NULL)
7634 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7635 _(lopt->deprecated));
7636
7637 /* Call the sup-option parser. */
7638 return lopt->func (arg + strlen (lopt->option) - 1);
7639 }
7640 }
7641
7642 return 0;
7643 }
7644
7645 return 1;
7646}
7647
7648void
7649md_show_usage (FILE * fp)
7650{
7651 struct aarch64_option_table *opt;
7652 struct aarch64_long_option_table *lopt;
7653
7654 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7655
7656 for (opt = aarch64_opts; opt->option != NULL; opt++)
7657 if (opt->help != NULL)
7658 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7659
7660 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7661 if (lopt->help != NULL)
7662 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7663
7664#ifdef OPTION_EB
7665 fprintf (fp, _("\
7666 -EB assemble code for a big-endian cpu\n"));
7667#endif
7668
7669#ifdef OPTION_EL
7670 fprintf (fp, _("\
7671 -EL assemble code for a little-endian cpu\n"));
7672#endif
7673}
7674
7675/* Parse a .cpu directive. */
7676
7677static void
7678s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7679{
7680 const struct aarch64_cpu_option_table *opt;
7681 char saved_char;
7682 char *name;
7683 char *ext;
7684 size_t optlen;
7685
7686 name = input_line_pointer;
7687 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7688 input_line_pointer++;
7689 saved_char = *input_line_pointer;
7690 *input_line_pointer = 0;
7691
7692 ext = strchr (name, '+');
7693
7694 if (ext != NULL)
7695 optlen = ext - name;
7696 else
7697 optlen = strlen (name);
7698
7699 /* Skip the first "all" entry. */
7700 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7701 if (strlen (opt->name) == optlen
7702 && strncmp (name, opt->name, optlen) == 0)
7703 {
7704 mcpu_cpu_opt = &opt->value;
7705 if (ext != NULL)
ae527cd8 7706 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7707 return;
7708
7709 cpu_variant = *mcpu_cpu_opt;
7710
7711 *input_line_pointer = saved_char;
7712 demand_empty_rest_of_line ();
7713 return;
7714 }
7715 as_bad (_("unknown cpu `%s'"), name);
7716 *input_line_pointer = saved_char;
7717 ignore_rest_of_line ();
7718}
7719
7720
7721/* Parse a .arch directive. */
7722
7723static void
7724s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7725{
7726 const struct aarch64_arch_option_table *opt;
7727 char saved_char;
7728 char *name;
7729 char *ext;
7730 size_t optlen;
7731
7732 name = input_line_pointer;
7733 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7734 input_line_pointer++;
7735 saved_char = *input_line_pointer;
7736 *input_line_pointer = 0;
7737
7738 ext = strchr (name, '+');
7739
7740 if (ext != NULL)
7741 optlen = ext - name;
7742 else
7743 optlen = strlen (name);
7744
7745 /* Skip the first "all" entry. */
7746 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7747 if (strlen (opt->name) == optlen
7748 && strncmp (name, opt->name, optlen) == 0)
7749 {
7750 mcpu_cpu_opt = &opt->value;
7751 if (ext != NULL)
ae527cd8 7752 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7753 return;
7754
7755 cpu_variant = *mcpu_cpu_opt;
7756
7757 *input_line_pointer = saved_char;
7758 demand_empty_rest_of_line ();
7759 return;
7760 }
7761
7762 as_bad (_("unknown architecture `%s'\n"), name);
7763 *input_line_pointer = saved_char;
7764 ignore_rest_of_line ();
7765}
7766
ae527cd8
JB
7767/* Parse a .arch_extension directive. */
7768
7769static void
7770s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
7771{
7772 char saved_char;
7773 char *ext = input_line_pointer;;
7774
7775 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7776 input_line_pointer++;
7777 saved_char = *input_line_pointer;
7778 *input_line_pointer = 0;
7779
7780 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
7781 return;
7782
7783 cpu_variant = *mcpu_cpu_opt;
7784
7785 *input_line_pointer = saved_char;
7786 demand_empty_rest_of_line ();
7787}
7788
a06ea964
NC
7789/* Copy symbol information. */
7790
7791void
7792aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
7793{
7794 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
7795}
This page took 0.91204 seconds and 4 git commands to generate.