[PATCH 21/57][Arm][GAS] Add support for MVE instructions: vmaxv, vmaxav, vminv and...
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
a302e574 6926
60f993ce
AV
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR, /* ARM LR register */
a302e574
AV
6929 OP_RRe, /* ARM register, only even numbered. */
6930 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6931 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6932
c19d1205 6933 OP_REGLST, /* ARM register list */
4b5a202f 6934 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6935 OP_VRSLST, /* VFP single-precision register list */
6936 OP_VRDLST, /* VFP double-precision register list */
037e8744 6937 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6938 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6940 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6941 OP_MSTRLST2, /* MVE vector list with two elements. */
6942 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6943
5287ad62 6944 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6945 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6946 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6947 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6948 zero. */
5287ad62 6949 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6950 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6951 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6952 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 */
5287ad62 6954 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5d281bf0 6955 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6956 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6957 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6958 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6959 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6960 OP_RNDQMQ_Ibig,
5287ad62 6961 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6962 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6963 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6964
6965 OP_I0, /* immediate zero */
c19d1205
ZW
6966 OP_I7, /* immediate value 0 .. 7 */
6967 OP_I15, /* 0 .. 15 */
6968 OP_I16, /* 1 .. 16 */
5287ad62 6969 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6970 OP_I31, /* 0 .. 31 */
6971 OP_I31w, /* 0 .. 31, optional trailing ! */
6972 OP_I32, /* 1 .. 32 */
5287ad62
JB
6973 OP_I32z, /* 0 .. 32 */
6974 OP_I63, /* 0 .. 63 */
c19d1205 6975 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6976 OP_I64, /* 1 .. 64 */
6977 OP_I64z, /* 0 .. 64 */
c19d1205 6978 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6979
6980 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6981 OP_I7b, /* 0 .. 7 */
6982 OP_I15b, /* 0 .. 15 */
6983 OP_I31b, /* 0 .. 31 */
6984
6985 OP_SH, /* shifter operand */
4962c51a 6986 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6987 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6988 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6989 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6990 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6991 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6992 OP_EXP, /* arbitrary expression */
6993 OP_EXPi, /* same, with optional immediate prefix */
6994 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6995 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6996 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6997 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6998 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6999
7000 OP_CPSF, /* CPS flags */
7001 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7002 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7003 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7004 OP_COND, /* conditional code */
92e90b6e 7005 OP_TB, /* Table branch. */
c19d1205 7006
037e8744
JB
7007 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7008
c19d1205 7009 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7010 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7011 OP_RR_EXi, /* ARM register or expression with imm prefix */
7012 OP_RF_IF, /* FPA register or immediate */
7013 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7014 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7015
7016 /* Optional operands. */
7017 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7018 OP_oI31b, /* 0 .. 31 */
5287ad62 7019 OP_oI32b, /* 1 .. 32 */
5f1af56b 7020 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7021 OP_oIffffb, /* 0 .. 65535 */
7022 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7023
7024 OP_oRR, /* ARM register */
60f993ce 7025 OP_oLR, /* ARM LR register */
c19d1205 7026 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7027 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7028 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7029 OP_oRND, /* Optional Neon double precision register */
7030 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7031 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7032 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7033 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7034 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7035 register. */
c19d1205
ZW
7036 OP_oSHll, /* LSL immediate */
7037 OP_oSHar, /* ASR immediate */
7038 OP_oSHllar, /* LSL or ASR immediate */
7039 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7040 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7041
1b883319
AV
7042 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7043
5be8be5d
DG
7044 /* Some pre-defined mixed (ARM/THUMB) operands. */
7045 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7046 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7047 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7048
c19d1205
ZW
7049 OP_FIRST_OPTIONAL = OP_oI7b
7050};
a737bd4d 7051
c19d1205
ZW
7052/* Generic instruction operand parser. This does no encoding and no
7053 semantic validation; it merely squirrels values away in the inst
7054 structure. Returns SUCCESS or FAIL depending on whether the
7055 specified grammar matched. */
7056static int
5be8be5d 7057parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7058{
5be8be5d 7059 unsigned const int *upat = pattern;
c19d1205
ZW
7060 char *backtrack_pos = 0;
7061 const char *backtrack_error = 0;
99aad254 7062 int i, val = 0, backtrack_index = 0;
5287ad62 7063 enum arm_reg_type rtype;
4962c51a 7064 parse_operand_result result;
5be8be5d 7065 unsigned int op_parse_code;
efd6b359 7066 bfd_boolean partial_match;
c19d1205 7067
e07e6e58
NC
7068#define po_char_or_fail(chr) \
7069 do \
7070 { \
7071 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7072 goto bad_args; \
e07e6e58
NC
7073 } \
7074 while (0)
c19d1205 7075
e07e6e58
NC
7076#define po_reg_or_fail(regtype) \
7077 do \
dcbf9037 7078 { \
e07e6e58 7079 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7080 & inst.operands[i].vectype); \
e07e6e58 7081 if (val == FAIL) \
477330fc
RM
7082 { \
7083 first_error (_(reg_expected_msgs[regtype])); \
7084 goto failure; \
7085 } \
e07e6e58
NC
7086 inst.operands[i].reg = val; \
7087 inst.operands[i].isreg = 1; \
7088 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7089 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7090 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7091 || rtype == REG_TYPE_VFD \
7092 || rtype == REG_TYPE_NQ); \
1b883319 7093 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7094 } \
e07e6e58
NC
7095 while (0)
7096
7097#define po_reg_or_goto(regtype, label) \
7098 do \
7099 { \
7100 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7101 & inst.operands[i].vectype); \
7102 if (val == FAIL) \
7103 goto label; \
dcbf9037 7104 \
e07e6e58
NC
7105 inst.operands[i].reg = val; \
7106 inst.operands[i].isreg = 1; \
7107 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7108 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7109 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7110 || rtype == REG_TYPE_VFD \
e07e6e58 7111 || rtype == REG_TYPE_NQ); \
1b883319 7112 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7113 } \
7114 while (0)
7115
7116#define po_imm_or_fail(min, max, popt) \
7117 do \
7118 { \
7119 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7120 goto failure; \
7121 inst.operands[i].imm = val; \
7122 } \
7123 while (0)
7124
57785aa2 7125#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7126 do \
7127 { \
57785aa2
AV
7128 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7129 reg_type); \
e07e6e58
NC
7130 if (val == FAIL) \
7131 goto label; \
7132 inst.operands[i].reg = val; \
7133 inst.operands[i].isscalar = 1; \
7134 } \
7135 while (0)
7136
7137#define po_misc_or_fail(expr) \
7138 do \
7139 { \
7140 if (expr) \
7141 goto failure; \
7142 } \
7143 while (0)
7144
7145#define po_misc_or_fail_no_backtrack(expr) \
7146 do \
7147 { \
7148 result = expr; \
7149 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7150 backtrack_pos = 0; \
7151 if (result != PARSE_OPERAND_SUCCESS) \
7152 goto failure; \
7153 } \
7154 while (0)
4962c51a 7155
52e7f43d
RE
7156#define po_barrier_or_imm(str) \
7157 do \
7158 { \
7159 val = parse_barrier (&str); \
ccb84d65
JB
7160 if (val == FAIL && ! ISALPHA (*str)) \
7161 goto immediate; \
7162 if (val == FAIL \
7163 /* ISB can only take SY as an option. */ \
7164 || ((inst.instruction & 0xf0) == 0x60 \
7165 && val != 0xf)) \
52e7f43d 7166 { \
ccb84d65
JB
7167 inst.error = _("invalid barrier type"); \
7168 backtrack_pos = 0; \
7169 goto failure; \
52e7f43d
RE
7170 } \
7171 } \
7172 while (0)
7173
c19d1205
ZW
7174 skip_whitespace (str);
7175
7176 for (i = 0; upat[i] != OP_stop; i++)
7177 {
5be8be5d
DG
7178 op_parse_code = upat[i];
7179 if (op_parse_code >= 1<<16)
7180 op_parse_code = thumb ? (op_parse_code >> 16)
7181 : (op_parse_code & ((1<<16)-1));
7182
7183 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7184 {
7185 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7186 backtrack_pos = str;
7187 backtrack_error = inst.error;
7188 backtrack_index = i;
7189 }
7190
b6702015 7191 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7192 po_char_or_fail (',');
7193
5be8be5d 7194 switch (op_parse_code)
c19d1205
ZW
7195 {
7196 /* Registers */
7197 case OP_oRRnpc:
5be8be5d 7198 case OP_oRRnpcsp:
c19d1205 7199 case OP_RRnpc:
5be8be5d 7200 case OP_RRnpcsp:
c19d1205 7201 case OP_oRR:
a302e574
AV
7202 case OP_RRe:
7203 case OP_RRo:
60f993ce
AV
7204 case OP_LR:
7205 case OP_oLR:
c19d1205
ZW
7206 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7207 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7208 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7209 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7210 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7211 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7212 case OP_oRND:
5ee91343
AV
7213 case OP_RNDMQR:
7214 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7215 break;
7216 try_rndmq:
7217 case OP_RNDMQ:
7218 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7219 break;
7220 try_rnd:
5287ad62 7221 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7222 case OP_RVC:
7223 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7224 break;
7225 /* Also accept generic coprocessor regs for unknown registers. */
7226 coproc_reg:
7227 po_reg_or_fail (REG_TYPE_CN);
7228 break;
c19d1205
ZW
7229 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7230 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7231 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7232 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7233 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7234 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7235 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7236 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7237 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7238 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7239 case OP_oRNQ:
5ee91343
AV
7240 case OP_RNQMQ:
7241 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7242 break;
7243 try_nq:
5287ad62 7244 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7245 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7246 case OP_RNDQMQR:
7247 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7248 break;
7249 try_rndqmq:
5ee91343
AV
7250 case OP_oRNDQMQ:
7251 case OP_RNDQMQ:
7252 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7253 break;
7254 try_rndq:
477330fc 7255 case OP_oRNDQ:
5287ad62 7256 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7257 case OP_RVSDMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7259 break;
7260 try_rvsd:
477330fc 7261 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7262 case OP_RVSD_COND:
7263 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7264 break;
477330fc
RM
7265 case OP_oRNSDQ:
7266 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7267 case OP_RNSDQMQR:
7268 po_reg_or_goto (REG_TYPE_RN, try_mq);
7269 break;
7270 try_mq:
7271 case OP_oRNSDQMQ:
7272 case OP_RNSDQMQ:
7273 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7274 break;
7275 try_nsdq2:
7276 po_reg_or_fail (REG_TYPE_NSDQ);
7277 inst.error = 0;
7278 break;
a302e574
AV
7279 case OP_RMQ:
7280 po_reg_or_fail (REG_TYPE_MQ);
7281 break;
477330fc
RM
7282 /* Neon scalar. Using an element size of 8 means that some invalid
7283 scalars are accepted here, so deal with those in later code. */
57785aa2 7284 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7285
7286 case OP_RNDQ_I0:
7287 {
7288 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7289 break;
7290 try_imm0:
7291 po_imm_or_fail (0, 0, TRUE);
7292 }
7293 break;
7294
7295 case OP_RVSD_I0:
7296 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7297 break;
7298
1b883319
AV
7299 case OP_RSVDMQ_FI0:
7300 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7301 break;
7302 try_rsvd_fi0:
aacf0b33
KT
7303 case OP_RSVD_FI0:
7304 {
7305 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7306 break;
7307 try_ifimm0:
7308 if (parse_ifimm_zero (&str))
7309 inst.operands[i].imm = 0;
7310 else
7311 {
7312 inst.error
7313 = _("only floating point zero is allowed as immediate value");
7314 goto failure;
7315 }
7316 }
7317 break;
7318
477330fc
RM
7319 case OP_RR_RNSC:
7320 {
57785aa2 7321 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7322 break;
7323 try_rr:
7324 po_reg_or_fail (REG_TYPE_RN);
7325 }
7326 break;
7327
886e1c73
AV
7328 case OP_RNSDQ_RNSC_MQ:
7329 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7330 break;
7331 try_rnsdq_rnsc:
477330fc
RM
7332 case OP_RNSDQ_RNSC:
7333 {
57785aa2
AV
7334 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7335 inst.error = 0;
477330fc
RM
7336 break;
7337 try_nsdq:
7338 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7339 inst.error = 0;
477330fc
RM
7340 }
7341 break;
7342
dec41383
JW
7343 case OP_RNSD_RNSC:
7344 {
57785aa2 7345 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7346 break;
7347 try_s_scalar:
57785aa2 7348 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7349 break;
7350 try_nsd:
7351 po_reg_or_fail (REG_TYPE_NSD);
7352 }
7353 break;
7354
5d281bf0
AV
7355 case OP_RNDQMQ_RNSC:
7356 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7357 break;
7358 try_rndq_rnsc:
477330fc
RM
7359 case OP_RNDQ_RNSC:
7360 {
57785aa2 7361 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7362 break;
7363 try_ndq:
7364 po_reg_or_fail (REG_TYPE_NDQ);
7365 }
7366 break;
7367
7368 case OP_RND_RNSC:
7369 {
57785aa2 7370 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7371 break;
7372 try_vfd:
7373 po_reg_or_fail (REG_TYPE_VFD);
7374 }
7375 break;
7376
7377 case OP_VMOV:
7378 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7379 not careful then bad things might happen. */
7380 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7381 break;
7382
f601a00c
AV
7383 case OP_RNDQMQ_Ibig:
7384 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7385 break;
7386 try_rndq_ibig:
477330fc
RM
7387 case OP_RNDQ_Ibig:
7388 {
7389 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7390 break;
7391 try_immbig:
7392 /* There's a possibility of getting a 64-bit immediate here, so
7393 we need special handling. */
8335d6aa
JW
7394 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7395 == FAIL)
477330fc
RM
7396 {
7397 inst.error = _("immediate value is out of range");
7398 goto failure;
7399 }
7400 }
7401 break;
7402
7403 case OP_RNDQ_I63b:
7404 {
7405 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7406 break;
7407 try_shimm:
7408 po_imm_or_fail (0, 63, TRUE);
7409 }
7410 break;
c19d1205
ZW
7411
7412 case OP_RRnpcb:
7413 po_char_or_fail ('[');
7414 po_reg_or_fail (REG_TYPE_RN);
7415 po_char_or_fail (']');
7416 break;
a737bd4d 7417
55881a11 7418 case OP_RRnpctw:
c19d1205 7419 case OP_RRw:
b6702015 7420 case OP_oRRw:
c19d1205
ZW
7421 po_reg_or_fail (REG_TYPE_RN);
7422 if (skip_past_char (&str, '!') == SUCCESS)
7423 inst.operands[i].writeback = 1;
7424 break;
7425
7426 /* Immediates */
7427 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7428 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7429 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7430 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7431 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7432 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7433 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7434 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7435 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7436 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7437 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7438 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7439
7440 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7441 case OP_oI7b:
7442 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7443 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7444 case OP_oI31b:
7445 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7446 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7447 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7448 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7449
7450 /* Immediate variants */
7451 case OP_oI255c:
7452 po_char_or_fail ('{');
7453 po_imm_or_fail (0, 255, TRUE);
7454 po_char_or_fail ('}');
7455 break;
7456
7457 case OP_I31w:
7458 /* The expression parser chokes on a trailing !, so we have
7459 to find it first and zap it. */
7460 {
7461 char *s = str;
7462 while (*s && *s != ',')
7463 s++;
7464 if (s[-1] == '!')
7465 {
7466 s[-1] = '\0';
7467 inst.operands[i].writeback = 1;
7468 }
7469 po_imm_or_fail (0, 31, TRUE);
7470 if (str == s - 1)
7471 str = s;
7472 }
7473 break;
7474
7475 /* Expressions */
7476 case OP_EXPi: EXPi:
e2b0ab59 7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7478 GE_OPT_PREFIX));
7479 break;
7480
7481 case OP_EXP:
e2b0ab59 7482 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7483 GE_NO_PREFIX));
7484 break;
7485
7486 case OP_EXPr: EXPr:
e2b0ab59 7487 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7488 GE_NO_PREFIX));
e2b0ab59 7489 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7490 {
c19d1205
ZW
7491 val = parse_reloc (&str);
7492 if (val == -1)
7493 {
7494 inst.error = _("unrecognized relocation suffix");
7495 goto failure;
7496 }
7497 else if (val != BFD_RELOC_UNUSED)
7498 {
7499 inst.operands[i].imm = val;
7500 inst.operands[i].hasreloc = 1;
7501 }
a737bd4d 7502 }
c19d1205 7503 break;
a737bd4d 7504
e2b0ab59
AV
7505 case OP_EXPs:
7506 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7507 GE_NO_PREFIX));
7508 if (inst.relocs[i].exp.X_op == O_symbol)
7509 {
7510 inst.operands[i].hasreloc = 1;
7511 }
7512 else if (inst.relocs[i].exp.X_op == O_constant)
7513 {
7514 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7515 inst.operands[i].hasreloc = 0;
7516 }
7517 break;
7518
b6895b4f
PB
7519 /* Operand for MOVW or MOVT. */
7520 case OP_HALF:
7521 po_misc_or_fail (parse_half (&str));
7522 break;
7523
e07e6e58 7524 /* Register or expression. */
c19d1205
ZW
7525 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7526 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7527
e07e6e58 7528 /* Register or immediate. */
c19d1205
ZW
7529 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7530 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7531
c19d1205
ZW
7532 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7533 IF:
7534 if (!is_immediate_prefix (*str))
7535 goto bad_args;
7536 str++;
7537 val = parse_fpa_immediate (&str);
7538 if (val == FAIL)
7539 goto failure;
7540 /* FPA immediates are encoded as registers 8-15.
7541 parse_fpa_immediate has already applied the offset. */
7542 inst.operands[i].reg = val;
7543 inst.operands[i].isreg = 1;
7544 break;
09d92015 7545
2d447fca
JM
7546 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7547 I32z: po_imm_or_fail (0, 32, FALSE); break;
7548
e07e6e58 7549 /* Two kinds of register. */
c19d1205
ZW
7550 case OP_RIWR_RIWC:
7551 {
7552 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7553 if (!rege
7554 || (rege->type != REG_TYPE_MMXWR
7555 && rege->type != REG_TYPE_MMXWC
7556 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7557 {
7558 inst.error = _("iWMMXt data or control register expected");
7559 goto failure;
7560 }
7561 inst.operands[i].reg = rege->number;
7562 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7563 }
7564 break;
09d92015 7565
41adaa5c
JM
7566 case OP_RIWC_RIWG:
7567 {
7568 struct reg_entry *rege = arm_reg_parse_multi (&str);
7569 if (!rege
7570 || (rege->type != REG_TYPE_MMXWC
7571 && rege->type != REG_TYPE_MMXWCG))
7572 {
7573 inst.error = _("iWMMXt control register expected");
7574 goto failure;
7575 }
7576 inst.operands[i].reg = rege->number;
7577 inst.operands[i].isreg = 1;
7578 }
7579 break;
7580
c19d1205
ZW
7581 /* Misc */
7582 case OP_CPSF: val = parse_cps_flags (&str); break;
7583 case OP_ENDI: val = parse_endian_specifier (&str); break;
7584 case OP_oROR: val = parse_ror (&str); break;
1b883319 7585 try_cond:
c19d1205 7586 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7587 case OP_oBARRIER_I15:
7588 po_barrier_or_imm (str); break;
7589 immediate:
7590 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7591 goto failure;
52e7f43d 7592 break;
c19d1205 7593
fa94de6b 7594 case OP_wPSR:
d2cd1205 7595 case OP_rPSR:
90ec0d68
MGD
7596 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7597 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7598 {
7599 inst.error = _("Banked registers are not available with this "
7600 "architecture.");
7601 goto failure;
7602 }
7603 break;
d2cd1205
JB
7604 try_psr:
7605 val = parse_psr (&str, op_parse_code == OP_wPSR);
7606 break;
037e8744 7607
32c36c3c
AV
7608 case OP_VLDR:
7609 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7610 break;
7611 try_sysreg:
7612 val = parse_sys_vldr_vstr (&str);
7613 break;
7614
477330fc
RM
7615 case OP_APSR_RR:
7616 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7617 break;
7618 try_apsr:
7619 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7620 instruction). */
7621 if (strncasecmp (str, "APSR_", 5) == 0)
7622 {
7623 unsigned found = 0;
7624 str += 5;
7625 while (found < 15)
7626 switch (*str++)
7627 {
7628 case 'c': found = (found & 1) ? 16 : found | 1; break;
7629 case 'n': found = (found & 2) ? 16 : found | 2; break;
7630 case 'z': found = (found & 4) ? 16 : found | 4; break;
7631 case 'v': found = (found & 8) ? 16 : found | 8; break;
7632 default: found = 16;
7633 }
7634 if (found != 15)
7635 goto failure;
7636 inst.operands[i].isvec = 1;
f7c21dc7
NC
7637 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7638 inst.operands[i].reg = REG_PC;
477330fc
RM
7639 }
7640 else
7641 goto failure;
7642 break;
037e8744 7643
92e90b6e
PB
7644 case OP_TB:
7645 po_misc_or_fail (parse_tb (&str));
7646 break;
7647
e07e6e58 7648 /* Register lists. */
c19d1205 7649 case OP_REGLST:
4b5a202f 7650 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7651 if (*str == '^')
7652 {
5e0d7f77 7653 inst.operands[i].writeback = 1;
c19d1205
ZW
7654 str++;
7655 }
7656 break;
09d92015 7657
4b5a202f
AV
7658 case OP_CLRMLST:
7659 val = parse_reg_list (&str, REGLIST_CLRM);
7660 break;
7661
c19d1205 7662 case OP_VRSLST:
efd6b359
AV
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7664 &partial_match);
c19d1205 7665 break;
09d92015 7666
c19d1205 7667 case OP_VRDLST:
efd6b359
AV
7668 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7669 &partial_match);
c19d1205 7670 break;
a737bd4d 7671
477330fc
RM
7672 case OP_VRSDLST:
7673 /* Allow Q registers too. */
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7675 REGLIST_NEON_D, &partial_match);
477330fc
RM
7676 if (val == FAIL)
7677 {
7678 inst.error = NULL;
7679 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7680 REGLIST_VFP_S, &partial_match);
7681 inst.operands[i].issingle = 1;
7682 }
7683 break;
7684
7685 case OP_VRSDVLST:
7686 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7687 REGLIST_VFP_D_VPR, &partial_match);
7688 if (val == FAIL && !partial_match)
7689 {
7690 inst.error = NULL;
7691 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7692 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7693 inst.operands[i].issingle = 1;
7694 }
7695 break;
7696
7697 case OP_NRDLST:
7698 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7699 REGLIST_NEON_D, &partial_match);
477330fc 7700 break;
5287ad62 7701
35c228db
AV
7702 case OP_MSTRLST4:
7703 case OP_MSTRLST2:
7704 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7705 1, &inst.operands[i].vectype);
7706 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7707 goto failure;
7708 break;
5287ad62 7709 case OP_NSTRLST:
477330fc 7710 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7711 0, &inst.operands[i].vectype);
477330fc 7712 break;
5287ad62 7713
c19d1205 7714 /* Addressing modes */
35c228db
AV
7715 case OP_ADDRMVE:
7716 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7717 break;
7718
c19d1205
ZW
7719 case OP_ADDR:
7720 po_misc_or_fail (parse_address (&str, i));
7721 break;
09d92015 7722
4962c51a
MS
7723 case OP_ADDRGLDR:
7724 po_misc_or_fail_no_backtrack (
477330fc 7725 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7726 break;
7727
7728 case OP_ADDRGLDRS:
7729 po_misc_or_fail_no_backtrack (
477330fc 7730 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7731 break;
7732
7733 case OP_ADDRGLDC:
7734 po_misc_or_fail_no_backtrack (
477330fc 7735 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7736 break;
7737
c19d1205
ZW
7738 case OP_SH:
7739 po_misc_or_fail (parse_shifter_operand (&str, i));
7740 break;
09d92015 7741
4962c51a
MS
7742 case OP_SHG:
7743 po_misc_or_fail_no_backtrack (
477330fc 7744 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7745 break;
7746
c19d1205
ZW
7747 case OP_oSHll:
7748 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7749 break;
09d92015 7750
c19d1205
ZW
7751 case OP_oSHar:
7752 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7753 break;
09d92015 7754
c19d1205
ZW
7755 case OP_oSHllar:
7756 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7757 break;
09d92015 7758
1b883319
AV
7759 case OP_RMQRZ:
7760 case OP_oRMQRZ:
7761 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7762 break;
7763 try_rr_zr:
7764 po_reg_or_goto (REG_TYPE_RN, ZR);
7765 break;
7766 ZR:
7767 po_reg_or_fail (REG_TYPE_ZR);
7768 break;
7769
c19d1205 7770 default:
5be8be5d 7771 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7772 }
09d92015 7773
c19d1205
ZW
7774 /* Various value-based sanity checks and shared operations. We
7775 do not signal immediate failures for the register constraints;
7776 this allows a syntax error to take precedence. */
5be8be5d 7777 switch (op_parse_code)
c19d1205
ZW
7778 {
7779 case OP_oRRnpc:
7780 case OP_RRnpc:
7781 case OP_RRnpcb:
7782 case OP_RRw:
b6702015 7783 case OP_oRRw:
c19d1205
ZW
7784 case OP_RRnpc_I0:
7785 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7786 inst.error = BAD_PC;
7787 break;
09d92015 7788
5be8be5d
DG
7789 case OP_oRRnpcsp:
7790 case OP_RRnpcsp:
7791 if (inst.operands[i].isreg)
7792 {
7793 if (inst.operands[i].reg == REG_PC)
7794 inst.error = BAD_PC;
5c8ed6a4
JW
7795 else if (inst.operands[i].reg == REG_SP
7796 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7797 relaxed since ARMv8-A. */
7798 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7799 {
7800 gas_assert (thumb);
7801 inst.error = BAD_SP;
7802 }
5be8be5d
DG
7803 }
7804 break;
7805
55881a11 7806 case OP_RRnpctw:
fa94de6b
RM
7807 if (inst.operands[i].isreg
7808 && inst.operands[i].reg == REG_PC
55881a11
MGD
7809 && (inst.operands[i].writeback || thumb))
7810 inst.error = BAD_PC;
7811 break;
7812
1b883319 7813 case OP_RVSD_COND:
32c36c3c
AV
7814 case OP_VLDR:
7815 if (inst.operands[i].isreg)
7816 break;
7817 /* fall through. */
1b883319 7818
c19d1205
ZW
7819 case OP_CPSF:
7820 case OP_ENDI:
7821 case OP_oROR:
d2cd1205
JB
7822 case OP_wPSR:
7823 case OP_rPSR:
c19d1205 7824 case OP_COND:
52e7f43d 7825 case OP_oBARRIER_I15:
c19d1205 7826 case OP_REGLST:
4b5a202f 7827 case OP_CLRMLST:
c19d1205
ZW
7828 case OP_VRSLST:
7829 case OP_VRDLST:
477330fc 7830 case OP_VRSDLST:
efd6b359 7831 case OP_VRSDVLST:
477330fc
RM
7832 case OP_NRDLST:
7833 case OP_NSTRLST:
35c228db
AV
7834 case OP_MSTRLST2:
7835 case OP_MSTRLST4:
c19d1205
ZW
7836 if (val == FAIL)
7837 goto failure;
7838 inst.operands[i].imm = val;
7839 break;
a737bd4d 7840
60f993ce
AV
7841 case OP_LR:
7842 case OP_oLR:
7843 if (inst.operands[i].reg != REG_LR)
7844 inst.error = _("operand must be LR register");
7845 break;
7846
1b883319
AV
7847 case OP_RMQRZ:
7848 case OP_oRMQRZ:
7849 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7850 inst.error = BAD_PC;
7851 break;
7852
a302e574
AV
7853 case OP_RRe:
7854 if (inst.operands[i].isreg
7855 && (inst.operands[i].reg & 0x00000001) != 0)
7856 inst.error = BAD_ODD;
7857 break;
7858
7859 case OP_RRo:
7860 if (inst.operands[i].isreg)
7861 {
7862 if ((inst.operands[i].reg & 0x00000001) != 1)
7863 inst.error = BAD_EVEN;
7864 else if (inst.operands[i].reg == REG_SP)
7865 as_tsktsk (MVE_BAD_SP);
7866 else if (inst.operands[i].reg == REG_PC)
7867 inst.error = BAD_PC;
7868 }
7869 break;
7870
c19d1205
ZW
7871 default:
7872 break;
7873 }
09d92015 7874
c19d1205
ZW
7875 /* If we get here, this operand was successfully parsed. */
7876 inst.operands[i].present = 1;
7877 continue;
09d92015 7878
c19d1205 7879 bad_args:
09d92015 7880 inst.error = BAD_ARGS;
c19d1205
ZW
7881
7882 failure:
7883 if (!backtrack_pos)
d252fdde
PB
7884 {
7885 /* The parse routine should already have set inst.error, but set a
5f4273c7 7886 default here just in case. */
d252fdde 7887 if (!inst.error)
5ee91343 7888 inst.error = BAD_SYNTAX;
d252fdde
PB
7889 return FAIL;
7890 }
c19d1205
ZW
7891
7892 /* Do not backtrack over a trailing optional argument that
7893 absorbed some text. We will only fail again, with the
7894 'garbage following instruction' error message, which is
7895 probably less helpful than the current one. */
7896 if (backtrack_index == i && backtrack_pos != str
7897 && upat[i+1] == OP_stop)
d252fdde
PB
7898 {
7899 if (!inst.error)
5ee91343 7900 inst.error = BAD_SYNTAX;
d252fdde
PB
7901 return FAIL;
7902 }
c19d1205
ZW
7903
7904 /* Try again, skipping the optional argument at backtrack_pos. */
7905 str = backtrack_pos;
7906 inst.error = backtrack_error;
7907 inst.operands[backtrack_index].present = 0;
7908 i = backtrack_index;
7909 backtrack_pos = 0;
09d92015 7910 }
09d92015 7911
c19d1205
ZW
7912 /* Check that we have parsed all the arguments. */
7913 if (*str != '\0' && !inst.error)
7914 inst.error = _("garbage following instruction");
09d92015 7915
c19d1205 7916 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7917}
7918
c19d1205
ZW
7919#undef po_char_or_fail
7920#undef po_reg_or_fail
7921#undef po_reg_or_goto
7922#undef po_imm_or_fail
5287ad62 7923#undef po_scalar_or_fail
52e7f43d 7924#undef po_barrier_or_imm
e07e6e58 7925
c19d1205 7926/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7927#define constraint(expr, err) \
7928 do \
c19d1205 7929 { \
e07e6e58
NC
7930 if (expr) \
7931 { \
7932 inst.error = err; \
7933 return; \
7934 } \
c19d1205 7935 } \
e07e6e58 7936 while (0)
c19d1205 7937
fdfde340
JM
7938/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7939 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7940 is the BadReg predicate in ARM's Thumb-2 documentation.
7941
7942 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7943 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7944#define reject_bad_reg(reg) \
7945 do \
7946 if (reg == REG_PC) \
7947 { \
7948 inst.error = BAD_PC; \
7949 return; \
7950 } \
7951 else if (reg == REG_SP \
7952 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7953 { \
7954 inst.error = BAD_SP; \
7955 return; \
7956 } \
fdfde340
JM
7957 while (0)
7958
94206790
MM
7959/* If REG is R13 (the stack pointer), warn that its use is
7960 deprecated. */
7961#define warn_deprecated_sp(reg) \
7962 do \
7963 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7964 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7965 while (0)
7966
c19d1205
ZW
7967/* Functions for operand encoding. ARM, then Thumb. */
7968
d840c081 7969#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7970
9db2f6b4
RL
7971/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7972
7973 The only binary encoding difference is the Coprocessor number. Coprocessor
7974 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7975 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7976 exists for Single-Precision operation. */
7977
7978static void
7979do_scalar_fp16_v82_encode (void)
7980{
5ee91343 7981 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
7982 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7983 " the behaviour is UNPREDICTABLE"));
7984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7985 _(BAD_FP16));
7986
7987 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7988 mark_feature_used (&arm_ext_fp16);
7989}
7990
c19d1205
ZW
7991/* If VAL can be encoded in the immediate field of an ARM instruction,
7992 return the encoded form. Otherwise, return FAIL. */
7993
7994static unsigned int
7995encode_arm_immediate (unsigned int val)
09d92015 7996{
c19d1205
ZW
7997 unsigned int a, i;
7998
4f1d6205
L
7999 if (val <= 0xff)
8000 return val;
8001
8002 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8003 if ((a = rotate_left (val, i)) <= 0xff)
8004 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8005
8006 return FAIL;
09d92015
MM
8007}
8008
c19d1205
ZW
8009/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8010 return the encoded form. Otherwise, return FAIL. */
8011static unsigned int
8012encode_thumb32_immediate (unsigned int val)
09d92015 8013{
c19d1205 8014 unsigned int a, i;
09d92015 8015
9c3c69f2 8016 if (val <= 0xff)
c19d1205 8017 return val;
a737bd4d 8018
9c3c69f2 8019 for (i = 1; i <= 24; i++)
09d92015 8020 {
9c3c69f2
PB
8021 a = val >> i;
8022 if ((val & ~(0xff << i)) == 0)
8023 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8024 }
a737bd4d 8025
c19d1205
ZW
8026 a = val & 0xff;
8027 if (val == ((a << 16) | a))
8028 return 0x100 | a;
8029 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8030 return 0x300 | a;
09d92015 8031
c19d1205
ZW
8032 a = val & 0xff00;
8033 if (val == ((a << 16) | a))
8034 return 0x200 | (a >> 8);
a737bd4d 8035
c19d1205 8036 return FAIL;
09d92015 8037}
5287ad62 8038/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8039
8040static void
5287ad62
JB
8041encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8042{
8043 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8044 && reg > 15)
8045 {
b1cc4aeb 8046 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8047 {
8048 if (thumb_mode)
8049 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8050 fpu_vfp_ext_d32);
8051 else
8052 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8053 fpu_vfp_ext_d32);
8054 }
5287ad62 8055 else
477330fc
RM
8056 {
8057 first_error (_("D register out of range for selected VFP version"));
8058 return;
8059 }
5287ad62
JB
8060 }
8061
c19d1205 8062 switch (pos)
09d92015 8063 {
c19d1205
ZW
8064 case VFP_REG_Sd:
8065 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8066 break;
8067
8068 case VFP_REG_Sn:
8069 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8070 break;
8071
8072 case VFP_REG_Sm:
8073 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8074 break;
8075
5287ad62
JB
8076 case VFP_REG_Dd:
8077 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8078 break;
5f4273c7 8079
5287ad62
JB
8080 case VFP_REG_Dn:
8081 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8082 break;
5f4273c7 8083
5287ad62
JB
8084 case VFP_REG_Dm:
8085 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8086 break;
8087
c19d1205
ZW
8088 default:
8089 abort ();
09d92015 8090 }
09d92015
MM
8091}
8092
c19d1205 8093/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8094 if any, is handled by md_apply_fix. */
09d92015 8095static void
c19d1205 8096encode_arm_shift (int i)
09d92015 8097{
008a97ef
RL
8098 /* register-shifted register. */
8099 if (inst.operands[i].immisreg)
8100 {
bf355b69
MR
8101 int op_index;
8102 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8103 {
5689c942
RL
8104 /* Check the operand only when it's presented. In pre-UAL syntax,
8105 if the destination register is the same as the first operand, two
8106 register form of the instruction can be used. */
bf355b69
MR
8107 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8108 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8109 as_warn (UNPRED_REG ("r15"));
8110 }
8111
8112 if (inst.operands[i].imm == REG_PC)
8113 as_warn (UNPRED_REG ("r15"));
8114 }
8115
c19d1205
ZW
8116 if (inst.operands[i].shift_kind == SHIFT_RRX)
8117 inst.instruction |= SHIFT_ROR << 5;
8118 else
09d92015 8119 {
c19d1205
ZW
8120 inst.instruction |= inst.operands[i].shift_kind << 5;
8121 if (inst.operands[i].immisreg)
8122 {
8123 inst.instruction |= SHIFT_BY_REG;
8124 inst.instruction |= inst.operands[i].imm << 8;
8125 }
8126 else
e2b0ab59 8127 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8128 }
c19d1205 8129}
09d92015 8130
c19d1205
ZW
8131static void
8132encode_arm_shifter_operand (int i)
8133{
8134 if (inst.operands[i].isreg)
09d92015 8135 {
c19d1205
ZW
8136 inst.instruction |= inst.operands[i].reg;
8137 encode_arm_shift (i);
09d92015 8138 }
c19d1205 8139 else
a415b1cd
JB
8140 {
8141 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8142 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8143 inst.instruction |= inst.operands[i].imm;
8144 }
09d92015
MM
8145}
8146
c19d1205 8147/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8148static void
c19d1205 8149encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8150{
2b2f5df9
NC
8151 /* PR 14260:
8152 Generate an error if the operand is not a register. */
8153 constraint (!inst.operands[i].isreg,
8154 _("Instruction does not support =N addresses"));
8155
c19d1205 8156 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8157
c19d1205 8158 if (inst.operands[i].preind)
09d92015 8159 {
c19d1205
ZW
8160 if (is_t)
8161 {
8162 inst.error = _("instruction does not accept preindexed addressing");
8163 return;
8164 }
8165 inst.instruction |= PRE_INDEX;
8166 if (inst.operands[i].writeback)
8167 inst.instruction |= WRITE_BACK;
09d92015 8168
c19d1205
ZW
8169 }
8170 else if (inst.operands[i].postind)
8171 {
9c2799c2 8172 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8173 if (is_t)
8174 inst.instruction |= WRITE_BACK;
8175 }
8176 else /* unindexed - only for coprocessor */
09d92015 8177 {
c19d1205 8178 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8179 return;
8180 }
8181
c19d1205
ZW
8182 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8183 && (((inst.instruction & 0x000f0000) >> 16)
8184 == ((inst.instruction & 0x0000f000) >> 12)))
8185 as_warn ((inst.instruction & LOAD_BIT)
8186 ? _("destination register same as write-back base")
8187 : _("source register same as write-back base"));
09d92015
MM
8188}
8189
c19d1205
ZW
8190/* inst.operands[i] was set up by parse_address. Encode it into an
8191 ARM-format mode 2 load or store instruction. If is_t is true,
8192 reject forms that cannot be used with a T instruction (i.e. not
8193 post-indexed). */
a737bd4d 8194static void
c19d1205 8195encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8196{
5be8be5d
DG
8197 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8198
c19d1205 8199 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8200
c19d1205 8201 if (inst.operands[i].immisreg)
09d92015 8202 {
5be8be5d
DG
8203 constraint ((inst.operands[i].imm == REG_PC
8204 || (is_pc && inst.operands[i].writeback)),
8205 BAD_PC_ADDRESSING);
c19d1205
ZW
8206 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8207 inst.instruction |= inst.operands[i].imm;
8208 if (!inst.operands[i].negative)
8209 inst.instruction |= INDEX_UP;
8210 if (inst.operands[i].shifted)
8211 {
8212 if (inst.operands[i].shift_kind == SHIFT_RRX)
8213 inst.instruction |= SHIFT_ROR << 5;
8214 else
8215 {
8216 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8217 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8218 }
8219 }
09d92015 8220 }
e2b0ab59 8221 else /* immediate offset in inst.relocs[0] */
09d92015 8222 {
e2b0ab59 8223 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8224 {
8225 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8226
8227 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8228 cannot use PC in addressing.
8229 PC cannot be used in writeback addressing, either. */
8230 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8231 BAD_PC_ADDRESSING);
23a10334 8232
dc5ec521 8233 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8234 if (warn_on_deprecated
8235 && !is_load
8236 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8237 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8238 }
8239
e2b0ab59 8240 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8241 {
8242 /* Prefer + for zero encoded value. */
8243 if (!inst.operands[i].negative)
8244 inst.instruction |= INDEX_UP;
e2b0ab59 8245 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8246 }
09d92015 8247 }
09d92015
MM
8248}
8249
c19d1205
ZW
8250/* inst.operands[i] was set up by parse_address. Encode it into an
8251 ARM-format mode 3 load or store instruction. Reject forms that
8252 cannot be used with such instructions. If is_t is true, reject
8253 forms that cannot be used with a T instruction (i.e. not
8254 post-indexed). */
8255static void
8256encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8257{
c19d1205 8258 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8259 {
c19d1205
ZW
8260 inst.error = _("instruction does not accept scaled register index");
8261 return;
09d92015 8262 }
a737bd4d 8263
c19d1205 8264 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8265
c19d1205
ZW
8266 if (inst.operands[i].immisreg)
8267 {
5be8be5d 8268 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8269 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8270 BAD_PC_ADDRESSING);
eb9f3f00
JB
8271 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8272 BAD_PC_WRITEBACK);
c19d1205
ZW
8273 inst.instruction |= inst.operands[i].imm;
8274 if (!inst.operands[i].negative)
8275 inst.instruction |= INDEX_UP;
8276 }
e2b0ab59 8277 else /* immediate offset in inst.relocs[0] */
c19d1205 8278 {
e2b0ab59 8279 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8280 && inst.operands[i].writeback),
8281 BAD_PC_WRITEBACK);
c19d1205 8282 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8283 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8284 {
8285 /* Prefer + for zero encoded value. */
8286 if (!inst.operands[i].negative)
8287 inst.instruction |= INDEX_UP;
8288
e2b0ab59 8289 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8290 }
c19d1205 8291 }
a737bd4d
NC
8292}
8293
8335d6aa
JW
8294/* Write immediate bits [7:0] to the following locations:
8295
8296 |28/24|23 19|18 16|15 4|3 0|
8297 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8298
8299 This function is used by VMOV/VMVN/VORR/VBIC. */
8300
8301static void
8302neon_write_immbits (unsigned immbits)
8303{
8304 inst.instruction |= immbits & 0xf;
8305 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8306 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8307}
8308
8309/* Invert low-order SIZE bits of XHI:XLO. */
8310
8311static void
8312neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8313{
8314 unsigned immlo = xlo ? *xlo : 0;
8315 unsigned immhi = xhi ? *xhi : 0;
8316
8317 switch (size)
8318 {
8319 case 8:
8320 immlo = (~immlo) & 0xff;
8321 break;
8322
8323 case 16:
8324 immlo = (~immlo) & 0xffff;
8325 break;
8326
8327 case 64:
8328 immhi = (~immhi) & 0xffffffff;
8329 /* fall through. */
8330
8331 case 32:
8332 immlo = (~immlo) & 0xffffffff;
8333 break;
8334
8335 default:
8336 abort ();
8337 }
8338
8339 if (xlo)
8340 *xlo = immlo;
8341
8342 if (xhi)
8343 *xhi = immhi;
8344}
8345
8346/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8347 A, B, C, D. */
09d92015 8348
c19d1205 8349static int
8335d6aa 8350neon_bits_same_in_bytes (unsigned imm)
09d92015 8351{
8335d6aa
JW
8352 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8353 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8354 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8355 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8356}
a737bd4d 8357
8335d6aa 8358/* For immediate of above form, return 0bABCD. */
09d92015 8359
8335d6aa
JW
8360static unsigned
8361neon_squash_bits (unsigned imm)
8362{
8363 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8364 | ((imm & 0x01000000) >> 21);
8365}
8366
8367/* Compress quarter-float representation to 0b...000 abcdefgh. */
8368
8369static unsigned
8370neon_qfloat_bits (unsigned imm)
8371{
8372 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8373}
8374
8375/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8376 the instruction. *OP is passed as the initial value of the op field, and
8377 may be set to a different value depending on the constant (i.e.
8378 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8379 MVN). If the immediate looks like a repeated pattern then also
8380 try smaller element sizes. */
8381
8382static int
8383neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8384 unsigned *immbits, int *op, int size,
8385 enum neon_el_type type)
8386{
8387 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8388 float. */
8389 if (type == NT_float && !float_p)
8390 return FAIL;
8391
8392 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8393 {
8335d6aa
JW
8394 if (size != 32 || *op == 1)
8395 return FAIL;
8396 *immbits = neon_qfloat_bits (immlo);
8397 return 0xf;
8398 }
8399
8400 if (size == 64)
8401 {
8402 if (neon_bits_same_in_bytes (immhi)
8403 && neon_bits_same_in_bytes (immlo))
c19d1205 8404 {
8335d6aa
JW
8405 if (*op == 1)
8406 return FAIL;
8407 *immbits = (neon_squash_bits (immhi) << 4)
8408 | neon_squash_bits (immlo);
8409 *op = 1;
8410 return 0xe;
c19d1205 8411 }
a737bd4d 8412
8335d6aa
JW
8413 if (immhi != immlo)
8414 return FAIL;
8415 }
a737bd4d 8416
8335d6aa 8417 if (size >= 32)
09d92015 8418 {
8335d6aa 8419 if (immlo == (immlo & 0x000000ff))
c19d1205 8420 {
8335d6aa
JW
8421 *immbits = immlo;
8422 return 0x0;
c19d1205 8423 }
8335d6aa 8424 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8425 {
8335d6aa
JW
8426 *immbits = immlo >> 8;
8427 return 0x2;
c19d1205 8428 }
8335d6aa
JW
8429 else if (immlo == (immlo & 0x00ff0000))
8430 {
8431 *immbits = immlo >> 16;
8432 return 0x4;
8433 }
8434 else if (immlo == (immlo & 0xff000000))
8435 {
8436 *immbits = immlo >> 24;
8437 return 0x6;
8438 }
8439 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8440 {
8441 *immbits = (immlo >> 8) & 0xff;
8442 return 0xc;
8443 }
8444 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8445 {
8446 *immbits = (immlo >> 16) & 0xff;
8447 return 0xd;
8448 }
8449
8450 if ((immlo & 0xffff) != (immlo >> 16))
8451 return FAIL;
8452 immlo &= 0xffff;
09d92015 8453 }
a737bd4d 8454
8335d6aa 8455 if (size >= 16)
4962c51a 8456 {
8335d6aa
JW
8457 if (immlo == (immlo & 0x000000ff))
8458 {
8459 *immbits = immlo;
8460 return 0x8;
8461 }
8462 else if (immlo == (immlo & 0x0000ff00))
8463 {
8464 *immbits = immlo >> 8;
8465 return 0xa;
8466 }
8467
8468 if ((immlo & 0xff) != (immlo >> 8))
8469 return FAIL;
8470 immlo &= 0xff;
4962c51a
MS
8471 }
8472
8335d6aa
JW
8473 if (immlo == (immlo & 0x000000ff))
8474 {
8475 /* Don't allow MVN with 8-bit immediate. */
8476 if (*op == 1)
8477 return FAIL;
8478 *immbits = immlo;
8479 return 0xe;
8480 }
26d97720 8481
8335d6aa 8482 return FAIL;
c19d1205 8483}
a737bd4d 8484
5fc177c8 8485#if defined BFD_HOST_64_BIT
ba592044
AM
8486/* Returns TRUE if double precision value V may be cast
8487 to single precision without loss of accuracy. */
8488
8489static bfd_boolean
5fc177c8 8490is_double_a_single (bfd_int64_t v)
ba592044 8491{
5fc177c8 8492 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8493 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8494
8495 return (exp == 0 || exp == 0x7FF
8496 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8497 && (mantissa & 0x1FFFFFFFl) == 0;
8498}
8499
3739860c 8500/* Returns a double precision value casted to single precision
ba592044
AM
8501 (ignoring the least significant bits in exponent and mantissa). */
8502
8503static int
5fc177c8 8504double_to_single (bfd_int64_t v)
ba592044
AM
8505{
8506 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8507 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8508 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8509
8510 if (exp == 0x7FF)
8511 exp = 0xFF;
8512 else
8513 {
8514 exp = exp - 1023 + 127;
8515 if (exp >= 0xFF)
8516 {
8517 /* Infinity. */
8518 exp = 0x7F;
8519 mantissa = 0;
8520 }
8521 else if (exp < 0)
8522 {
8523 /* No denormalized numbers. */
8524 exp = 0;
8525 mantissa = 0;
8526 }
8527 }
8528 mantissa >>= 29;
8529 return (sign << 31) | (exp << 23) | mantissa;
8530}
5fc177c8 8531#endif /* BFD_HOST_64_BIT */
ba592044 8532
8335d6aa
JW
8533enum lit_type
8534{
8535 CONST_THUMB,
8536 CONST_ARM,
8537 CONST_VEC
8538};
8539
ba592044
AM
8540static void do_vfp_nsyn_opcode (const char *);
8541
e2b0ab59 8542/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8543 Determine whether it can be performed with a move instruction; if
8544 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8545 return TRUE; if it can't, convert inst.instruction to a literal-pool
8546 load and return FALSE. If this is not a valid thing to do in the
8547 current context, set inst.error and return TRUE.
a737bd4d 8548
c19d1205
ZW
8549 inst.operands[i] describes the destination register. */
8550
c921be7d 8551static bfd_boolean
8335d6aa 8552move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8553{
53365c0d 8554 unsigned long tbit;
8335d6aa
JW
8555 bfd_boolean thumb_p = (t == CONST_THUMB);
8556 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8557
8558 if (thumb_p)
8559 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8560 else
8561 tbit = LOAD_BIT;
8562
8563 if ((inst.instruction & tbit) == 0)
09d92015 8564 {
c19d1205 8565 inst.error = _("invalid pseudo operation");
c921be7d 8566 return TRUE;
09d92015 8567 }
ba592044 8568
e2b0ab59
AV
8569 if (inst.relocs[0].exp.X_op != O_constant
8570 && inst.relocs[0].exp.X_op != O_symbol
8571 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8572 {
8573 inst.error = _("constant expression expected");
c921be7d 8574 return TRUE;
09d92015 8575 }
ba592044 8576
e2b0ab59
AV
8577 if (inst.relocs[0].exp.X_op == O_constant
8578 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8579 {
5fc177c8
NC
8580#if defined BFD_HOST_64_BIT
8581 bfd_int64_t v;
8582#else
ba592044 8583 offsetT v;
5fc177c8 8584#endif
e2b0ab59 8585 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8586 {
ba592044
AM
8587 LITTLENUM_TYPE w[X_PRECISION];
8588 LITTLENUM_TYPE * l;
8589
e2b0ab59 8590 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8591 {
ba592044
AM
8592 gen_to_words (w, X_PRECISION, E_PRECISION);
8593 l = w;
8594 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8595 }
ba592044
AM
8596 else
8597 l = generic_bignum;
3739860c 8598
5fc177c8
NC
8599#if defined BFD_HOST_64_BIT
8600 v =
8601 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8602 << LITTLENUM_NUMBER_OF_BITS)
8603 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8604 << LITTLENUM_NUMBER_OF_BITS)
8605 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8606 << LITTLENUM_NUMBER_OF_BITS)
8607 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8608#else
ba592044
AM
8609 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8610 | (l[0] & LITTLENUM_MASK);
5fc177c8 8611#endif
8335d6aa 8612 }
ba592044 8613 else
e2b0ab59 8614 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8615
8616 if (!inst.operands[i].issingle)
8335d6aa 8617 {
12569877 8618 if (thumb_p)
8335d6aa 8619 {
53445554
TP
8620 /* LDR should not use lead in a flag-setting instruction being
8621 chosen so we do not check whether movs can be used. */
12569877 8622
53445554 8623 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8624 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8625 && inst.operands[i].reg != 13
8626 && inst.operands[i].reg != 15)
12569877 8627 {
fc289b0a
TP
8628 /* Check if on thumb2 it can be done with a mov.w, mvn or
8629 movw instruction. */
12569877
AM
8630 unsigned int newimm;
8631 bfd_boolean isNegated;
8632
8633 newimm = encode_thumb32_immediate (v);
8634 if (newimm != (unsigned int) FAIL)
8635 isNegated = FALSE;
8636 else
8637 {
582cfe03 8638 newimm = encode_thumb32_immediate (~v);
12569877
AM
8639 if (newimm != (unsigned int) FAIL)
8640 isNegated = TRUE;
8641 }
8642
fc289b0a
TP
8643 /* The number can be loaded with a mov.w or mvn
8644 instruction. */
ff8646ee
TP
8645 if (newimm != (unsigned int) FAIL
8646 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8647 {
fc289b0a 8648 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8649 | (inst.operands[i].reg << 8));
fc289b0a 8650 /* Change to MOVN. */
582cfe03 8651 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8652 inst.instruction |= (newimm & 0x800) << 15;
8653 inst.instruction |= (newimm & 0x700) << 4;
8654 inst.instruction |= (newimm & 0x0ff);
8655 return TRUE;
8656 }
fc289b0a 8657 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8658 else if ((v & ~0xFFFF) == 0
8659 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8660 {
582cfe03 8661 int imm = v & 0xFFFF;
12569877 8662
582cfe03 8663 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8664 inst.instruction |= (inst.operands[i].reg << 8);
8665 inst.instruction |= (imm & 0xf000) << 4;
8666 inst.instruction |= (imm & 0x0800) << 15;
8667 inst.instruction |= (imm & 0x0700) << 4;
8668 inst.instruction |= (imm & 0x00ff);
8669 return TRUE;
8670 }
8671 }
8335d6aa 8672 }
12569877 8673 else if (arm_p)
ba592044
AM
8674 {
8675 int value = encode_arm_immediate (v);
12569877 8676
ba592044
AM
8677 if (value != FAIL)
8678 {
8679 /* This can be done with a mov instruction. */
8680 inst.instruction &= LITERAL_MASK;
8681 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8682 inst.instruction |= value & 0xfff;
8683 return TRUE;
8684 }
8335d6aa 8685
ba592044
AM
8686 value = encode_arm_immediate (~ v);
8687 if (value != FAIL)
8688 {
8689 /* This can be done with a mvn instruction. */
8690 inst.instruction &= LITERAL_MASK;
8691 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8692 inst.instruction |= value & 0xfff;
8693 return TRUE;
8694 }
8695 }
934c2632 8696 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8697 {
ba592044
AM
8698 int op = 0;
8699 unsigned immbits = 0;
8700 unsigned immlo = inst.operands[1].imm;
8701 unsigned immhi = inst.operands[1].regisimm
8702 ? inst.operands[1].reg
e2b0ab59 8703 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8704 ? 0
8705 : ((bfd_int64_t)((int) immlo)) >> 32;
8706 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8707 &op, 64, NT_invtype);
8708
8709 if (cmode == FAIL)
8710 {
8711 neon_invert_size (&immlo, &immhi, 64);
8712 op = !op;
8713 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8714 &op, 64, NT_invtype);
8715 }
8716
8717 if (cmode != FAIL)
8718 {
8719 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8720 | (1 << 23)
8721 | (cmode << 8)
8722 | (op << 5)
8723 | (1 << 4);
8724
8725 /* Fill other bits in vmov encoding for both thumb and arm. */
8726 if (thumb_mode)
eff0bc54 8727 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8728 else
eff0bc54 8729 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8730 neon_write_immbits (immbits);
8731 return TRUE;
8732 }
8335d6aa
JW
8733 }
8734 }
8335d6aa 8735
ba592044
AM
8736 if (t == CONST_VEC)
8737 {
8738 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8739 if (inst.operands[i].issingle
8740 && is_quarter_float (inst.operands[1].imm)
8741 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8742 {
ba592044
AM
8743 inst.operands[1].imm =
8744 neon_qfloat_bits (v);
8745 do_vfp_nsyn_opcode ("fconsts");
8746 return TRUE;
8335d6aa 8747 }
5fc177c8
NC
8748
8749 /* If our host does not support a 64-bit type then we cannot perform
8750 the following optimization. This mean that there will be a
8751 discrepancy between the output produced by an assembler built for
8752 a 32-bit-only host and the output produced from a 64-bit host, but
8753 this cannot be helped. */
8754#if defined BFD_HOST_64_BIT
ba592044
AM
8755 else if (!inst.operands[1].issingle
8756 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8757 {
ba592044
AM
8758 if (is_double_a_single (v)
8759 && is_quarter_float (double_to_single (v)))
8760 {
8761 inst.operands[1].imm =
8762 neon_qfloat_bits (double_to_single (v));
8763 do_vfp_nsyn_opcode ("fconstd");
8764 return TRUE;
8765 }
8335d6aa 8766 }
5fc177c8 8767#endif
8335d6aa
JW
8768 }
8769 }
8770
8771 if (add_to_lit_pool ((!inst.operands[i].isvec
8772 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8773 return TRUE;
8774
8775 inst.operands[1].reg = REG_PC;
8776 inst.operands[1].isreg = 1;
8777 inst.operands[1].preind = 1;
e2b0ab59
AV
8778 inst.relocs[0].pc_rel = 1;
8779 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8780 ? BFD_RELOC_ARM_THUMB_OFFSET
8781 : (mode_3
8782 ? BFD_RELOC_ARM_HWLITERAL
8783 : BFD_RELOC_ARM_LITERAL));
8784 return FALSE;
8785}
8786
8787/* inst.operands[i] was set up by parse_address. Encode it into an
8788 ARM-format instruction. Reject all forms which cannot be encoded
8789 into a coprocessor load/store instruction. If wb_ok is false,
8790 reject use of writeback; if unind_ok is false, reject use of
8791 unindexed addressing. If reloc_override is not 0, use it instead
8792 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8793 (in which case it is preserved). */
8794
8795static int
8796encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8797{
8798 if (!inst.operands[i].isreg)
8799 {
99b2a2dd
NC
8800 /* PR 18256 */
8801 if (! inst.operands[0].isvec)
8802 {
8803 inst.error = _("invalid co-processor operand");
8804 return FAIL;
8805 }
8335d6aa
JW
8806 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8807 return SUCCESS;
8808 }
8809
8810 inst.instruction |= inst.operands[i].reg << 16;
8811
8812 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8813
8814 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8815 {
8816 gas_assert (!inst.operands[i].writeback);
8817 if (!unind_ok)
8818 {
8819 inst.error = _("instruction does not support unindexed addressing");
8820 return FAIL;
8821 }
8822 inst.instruction |= inst.operands[i].imm;
8823 inst.instruction |= INDEX_UP;
8824 return SUCCESS;
8825 }
8826
8827 if (inst.operands[i].preind)
8828 inst.instruction |= PRE_INDEX;
8829
8830 if (inst.operands[i].writeback)
09d92015 8831 {
8335d6aa 8832 if (inst.operands[i].reg == REG_PC)
c19d1205 8833 {
8335d6aa
JW
8834 inst.error = _("pc may not be used with write-back");
8835 return FAIL;
c19d1205 8836 }
8335d6aa 8837 if (!wb_ok)
c19d1205 8838 {
8335d6aa
JW
8839 inst.error = _("instruction does not support writeback");
8840 return FAIL;
c19d1205 8841 }
8335d6aa 8842 inst.instruction |= WRITE_BACK;
09d92015
MM
8843 }
8844
8335d6aa 8845 if (reloc_override)
e2b0ab59
AV
8846 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8847 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8848 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8849 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8850 {
8335d6aa 8851 if (thumb_mode)
e2b0ab59 8852 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8853 else
e2b0ab59 8854 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8855 }
8335d6aa
JW
8856
8857 /* Prefer + for zero encoded value. */
8858 if (!inst.operands[i].negative)
8859 inst.instruction |= INDEX_UP;
8860
8861 return SUCCESS;
09d92015
MM
8862}
8863
5f4273c7 8864/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8865 First some generics; their names are taken from the conventional
8866 bit positions for register arguments in ARM format instructions. */
09d92015 8867
a737bd4d 8868static void
c19d1205 8869do_noargs (void)
09d92015 8870{
c19d1205 8871}
a737bd4d 8872
c19d1205
ZW
8873static void
8874do_rd (void)
8875{
8876 inst.instruction |= inst.operands[0].reg << 12;
8877}
a737bd4d 8878
16a1fa25
TP
8879static void
8880do_rn (void)
8881{
8882 inst.instruction |= inst.operands[0].reg << 16;
8883}
8884
c19d1205
ZW
8885static void
8886do_rd_rm (void)
8887{
8888 inst.instruction |= inst.operands[0].reg << 12;
8889 inst.instruction |= inst.operands[1].reg;
8890}
09d92015 8891
9eb6c0f1
MGD
8892static void
8893do_rm_rn (void)
8894{
8895 inst.instruction |= inst.operands[0].reg;
8896 inst.instruction |= inst.operands[1].reg << 16;
8897}
8898
c19d1205
ZW
8899static void
8900do_rd_rn (void)
8901{
8902 inst.instruction |= inst.operands[0].reg << 12;
8903 inst.instruction |= inst.operands[1].reg << 16;
8904}
a737bd4d 8905
c19d1205
ZW
8906static void
8907do_rn_rd (void)
8908{
8909 inst.instruction |= inst.operands[0].reg << 16;
8910 inst.instruction |= inst.operands[1].reg << 12;
8911}
09d92015 8912
4ed7ed8d
TP
8913static void
8914do_tt (void)
8915{
8916 inst.instruction |= inst.operands[0].reg << 8;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918}
8919
59d09be6
MGD
8920static bfd_boolean
8921check_obsolete (const arm_feature_set *feature, const char *msg)
8922{
8923 if (ARM_CPU_IS_ANY (cpu_variant))
8924 {
5c3696f8 8925 as_tsktsk ("%s", msg);
59d09be6
MGD
8926 return TRUE;
8927 }
8928 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8929 {
8930 as_bad ("%s", msg);
8931 return TRUE;
8932 }
8933
8934 return FALSE;
8935}
8936
c19d1205
ZW
8937static void
8938do_rd_rm_rn (void)
8939{
9a64e435 8940 unsigned Rn = inst.operands[2].reg;
708587a4 8941 /* Enforce restrictions on SWP instruction. */
9a64e435 8942 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8943 {
8944 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8945 _("Rn must not overlap other operands"));
8946
59d09be6
MGD
8947 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8948 */
8949 if (!check_obsolete (&arm_ext_v8,
8950 _("swp{b} use is obsoleted for ARMv8 and later"))
8951 && warn_on_deprecated
8952 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8953 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8954 }
59d09be6 8955
c19d1205
ZW
8956 inst.instruction |= inst.operands[0].reg << 12;
8957 inst.instruction |= inst.operands[1].reg;
9a64e435 8958 inst.instruction |= Rn << 16;
c19d1205 8959}
09d92015 8960
c19d1205
ZW
8961static void
8962do_rd_rn_rm (void)
8963{
8964 inst.instruction |= inst.operands[0].reg << 12;
8965 inst.instruction |= inst.operands[1].reg << 16;
8966 inst.instruction |= inst.operands[2].reg;
8967}
a737bd4d 8968
c19d1205
ZW
8969static void
8970do_rm_rd_rn (void)
8971{
5be8be5d 8972 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8973 constraint (((inst.relocs[0].exp.X_op != O_constant
8974 && inst.relocs[0].exp.X_op != O_illegal)
8975 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8976 BAD_ADDR_MODE);
c19d1205
ZW
8977 inst.instruction |= inst.operands[0].reg;
8978 inst.instruction |= inst.operands[1].reg << 12;
8979 inst.instruction |= inst.operands[2].reg << 16;
8980}
09d92015 8981
c19d1205
ZW
8982static void
8983do_imm0 (void)
8984{
8985 inst.instruction |= inst.operands[0].imm;
8986}
09d92015 8987
c19d1205
ZW
8988static void
8989do_rd_cpaddr (void)
8990{
8991 inst.instruction |= inst.operands[0].reg << 12;
8992 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8993}
a737bd4d 8994
c19d1205
ZW
8995/* ARM instructions, in alphabetical order by function name (except
8996 that wrapper functions appear immediately after the function they
8997 wrap). */
09d92015 8998
c19d1205
ZW
8999/* This is a pseudo-op of the form "adr rd, label" to be converted
9000 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9001
9002static void
c19d1205 9003do_adr (void)
09d92015 9004{
c19d1205 9005 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9006
c19d1205
ZW
9007 /* Frag hacking will turn this into a sub instruction if the offset turns
9008 out to be negative. */
e2b0ab59
AV
9009 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9010 inst.relocs[0].pc_rel = 1;
9011 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9012
fc6141f0 9013 if (support_interwork
e2b0ab59
AV
9014 && inst.relocs[0].exp.X_op == O_symbol
9015 && inst.relocs[0].exp.X_add_symbol != NULL
9016 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9017 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9018 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9019}
b99bd4ef 9020
c19d1205
ZW
9021/* This is a pseudo-op of the form "adrl rd, label" to be converted
9022 into a relative address of the form:
9023 add rd, pc, #low(label-.-8)"
9024 add rd, rd, #high(label-.-8)" */
b99bd4ef 9025
c19d1205
ZW
9026static void
9027do_adrl (void)
9028{
9029 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9030
c19d1205
ZW
9031 /* Frag hacking will turn this into a sub instruction if the offset turns
9032 out to be negative. */
e2b0ab59
AV
9033 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9034 inst.relocs[0].pc_rel = 1;
c19d1205 9035 inst.size = INSN_SIZE * 2;
e2b0ab59 9036 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9037
fc6141f0 9038 if (support_interwork
e2b0ab59
AV
9039 && inst.relocs[0].exp.X_op == O_symbol
9040 && inst.relocs[0].exp.X_add_symbol != NULL
9041 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9042 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9043 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9044}
9045
b99bd4ef 9046static void
c19d1205 9047do_arit (void)
b99bd4ef 9048{
e2b0ab59
AV
9049 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9050 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9051 THUMB1_RELOC_ONLY);
c19d1205
ZW
9052 if (!inst.operands[1].present)
9053 inst.operands[1].reg = inst.operands[0].reg;
9054 inst.instruction |= inst.operands[0].reg << 12;
9055 inst.instruction |= inst.operands[1].reg << 16;
9056 encode_arm_shifter_operand (2);
9057}
b99bd4ef 9058
62b3e311
PB
9059static void
9060do_barrier (void)
9061{
9062 if (inst.operands[0].present)
ccb84d65 9063 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9064 else
9065 inst.instruction |= 0xf;
9066}
9067
c19d1205
ZW
9068static void
9069do_bfc (void)
9070{
9071 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9072 constraint (msb > 32, _("bit-field extends past end of register"));
9073 /* The instruction encoding stores the LSB and MSB,
9074 not the LSB and width. */
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].imm << 7;
9077 inst.instruction |= (msb - 1) << 16;
9078}
b99bd4ef 9079
c19d1205
ZW
9080static void
9081do_bfi (void)
9082{
9083 unsigned int msb;
b99bd4ef 9084
c19d1205
ZW
9085 /* #0 in second position is alternative syntax for bfc, which is
9086 the same instruction but with REG_PC in the Rm field. */
9087 if (!inst.operands[1].isreg)
9088 inst.operands[1].reg = REG_PC;
b99bd4ef 9089
c19d1205
ZW
9090 msb = inst.operands[2].imm + inst.operands[3].imm;
9091 constraint (msb > 32, _("bit-field extends past end of register"));
9092 /* The instruction encoding stores the LSB and MSB,
9093 not the LSB and width. */
9094 inst.instruction |= inst.operands[0].reg << 12;
9095 inst.instruction |= inst.operands[1].reg;
9096 inst.instruction |= inst.operands[2].imm << 7;
9097 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9098}
9099
b99bd4ef 9100static void
c19d1205 9101do_bfx (void)
b99bd4ef 9102{
c19d1205
ZW
9103 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9104 _("bit-field extends past end of register"));
9105 inst.instruction |= inst.operands[0].reg << 12;
9106 inst.instruction |= inst.operands[1].reg;
9107 inst.instruction |= inst.operands[2].imm << 7;
9108 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9109}
09d92015 9110
c19d1205
ZW
9111/* ARM V5 breakpoint instruction (argument parse)
9112 BKPT <16 bit unsigned immediate>
9113 Instruction is not conditional.
9114 The bit pattern given in insns[] has the COND_ALWAYS condition,
9115 and it is an error if the caller tried to override that. */
b99bd4ef 9116
c19d1205
ZW
9117static void
9118do_bkpt (void)
9119{
9120 /* Top 12 of 16 bits to bits 19:8. */
9121 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9122
c19d1205
ZW
9123 /* Bottom 4 of 16 bits to bits 3:0. */
9124 inst.instruction |= inst.operands[0].imm & 0xf;
9125}
09d92015 9126
c19d1205
ZW
9127static void
9128encode_branch (int default_reloc)
9129{
9130 if (inst.operands[0].hasreloc)
9131 {
0855e32b
NS
9132 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9133 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9134 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9135 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9136 ? BFD_RELOC_ARM_PLT32
9137 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9138 }
b99bd4ef 9139 else
e2b0ab59
AV
9140 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9141 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9142}
9143
b99bd4ef 9144static void
c19d1205 9145do_branch (void)
b99bd4ef 9146{
39b41c9c
PB
9147#ifdef OBJ_ELF
9148 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9149 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9150 else
9151#endif
9152 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9153}
9154
9155static void
9156do_bl (void)
9157{
9158#ifdef OBJ_ELF
9159 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9160 {
9161 if (inst.cond == COND_ALWAYS)
9162 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9163 else
9164 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9165 }
9166 else
9167#endif
9168 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9169}
b99bd4ef 9170
c19d1205
ZW
9171/* ARM V5 branch-link-exchange instruction (argument parse)
9172 BLX <target_addr> ie BLX(1)
9173 BLX{<condition>} <Rm> ie BLX(2)
9174 Unfortunately, there are two different opcodes for this mnemonic.
9175 So, the insns[].value is not used, and the code here zaps values
9176 into inst.instruction.
9177 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9178
c19d1205
ZW
9179static void
9180do_blx (void)
9181{
9182 if (inst.operands[0].isreg)
b99bd4ef 9183 {
c19d1205
ZW
9184 /* Arg is a register; the opcode provided by insns[] is correct.
9185 It is not illegal to do "blx pc", just useless. */
9186 if (inst.operands[0].reg == REG_PC)
9187 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9188
c19d1205
ZW
9189 inst.instruction |= inst.operands[0].reg;
9190 }
9191 else
b99bd4ef 9192 {
c19d1205 9193 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9194 conditionally, and the opcode must be adjusted.
9195 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9196 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9197 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9198 inst.instruction = 0xfa000000;
267bf995 9199 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9200 }
c19d1205
ZW
9201}
9202
9203static void
9204do_bx (void)
9205{
845b51d6
PB
9206 bfd_boolean want_reloc;
9207
c19d1205
ZW
9208 if (inst.operands[0].reg == REG_PC)
9209 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9210
c19d1205 9211 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9212 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9213 it is for ARMv4t or earlier. */
9214 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9215 if (!ARM_FEATURE_ZERO (selected_object_arch)
9216 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9217 want_reloc = TRUE;
9218
5ad34203 9219#ifdef OBJ_ELF
845b51d6 9220 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9221#endif
584206db 9222 want_reloc = FALSE;
845b51d6
PB
9223
9224 if (want_reloc)
e2b0ab59 9225 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9226}
9227
c19d1205
ZW
9228
9229/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9230
9231static void
c19d1205 9232do_bxj (void)
a737bd4d 9233{
c19d1205
ZW
9234 if (inst.operands[0].reg == REG_PC)
9235 as_tsktsk (_("use of r15 in bxj is not really useful"));
9236
9237 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9238}
9239
c19d1205
ZW
9240/* Co-processor data operation:
9241 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9242 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9243static void
9244do_cdp (void)
9245{
9246 inst.instruction |= inst.operands[0].reg << 8;
9247 inst.instruction |= inst.operands[1].imm << 20;
9248 inst.instruction |= inst.operands[2].reg << 12;
9249 inst.instruction |= inst.operands[3].reg << 16;
9250 inst.instruction |= inst.operands[4].reg;
9251 inst.instruction |= inst.operands[5].imm << 5;
9252}
a737bd4d
NC
9253
9254static void
c19d1205 9255do_cmp (void)
a737bd4d 9256{
c19d1205
ZW
9257 inst.instruction |= inst.operands[0].reg << 16;
9258 encode_arm_shifter_operand (1);
a737bd4d
NC
9259}
9260
c19d1205
ZW
9261/* Transfer between coprocessor and ARM registers.
9262 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9263 MRC2
9264 MCR{cond}
9265 MCR2
9266
9267 No special properties. */
09d92015 9268
dcbd0d71
MGD
9269struct deprecated_coproc_regs_s
9270{
9271 unsigned cp;
9272 int opc1;
9273 unsigned crn;
9274 unsigned crm;
9275 int opc2;
9276 arm_feature_set deprecated;
9277 arm_feature_set obsoleted;
9278 const char *dep_msg;
9279 const char *obs_msg;
9280};
9281
9282#define DEPR_ACCESS_V8 \
9283 N_("This coprocessor register access is deprecated in ARMv8")
9284
9285/* Table of all deprecated coprocessor registers. */
9286static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9287{
9288 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9289 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9290 DEPR_ACCESS_V8, NULL},
9291 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9292 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9293 DEPR_ACCESS_V8, NULL},
9294 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9295 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9296 DEPR_ACCESS_V8, NULL},
9297 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9298 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9299 DEPR_ACCESS_V8, NULL},
9300 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9301 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9302 DEPR_ACCESS_V8, NULL},
9303};
9304
9305#undef DEPR_ACCESS_V8
9306
9307static const size_t deprecated_coproc_reg_count =
9308 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9309
09d92015 9310static void
c19d1205 9311do_co_reg (void)
09d92015 9312{
fdfde340 9313 unsigned Rd;
dcbd0d71 9314 size_t i;
fdfde340
JM
9315
9316 Rd = inst.operands[2].reg;
9317 if (thumb_mode)
9318 {
9319 if (inst.instruction == 0xee000010
9320 || inst.instruction == 0xfe000010)
9321 /* MCR, MCR2 */
9322 reject_bad_reg (Rd);
5c8ed6a4 9323 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9324 /* MRC, MRC2 */
9325 constraint (Rd == REG_SP, BAD_SP);
9326 }
9327 else
9328 {
9329 /* MCR */
9330 if (inst.instruction == 0xe000010)
9331 constraint (Rd == REG_PC, BAD_PC);
9332 }
9333
dcbd0d71
MGD
9334 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9335 {
9336 const struct deprecated_coproc_regs_s *r =
9337 deprecated_coproc_regs + i;
9338
9339 if (inst.operands[0].reg == r->cp
9340 && inst.operands[1].imm == r->opc1
9341 && inst.operands[3].reg == r->crn
9342 && inst.operands[4].reg == r->crm
9343 && inst.operands[5].imm == r->opc2)
9344 {
b10bf8c5 9345 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9346 && warn_on_deprecated
dcbd0d71 9347 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9348 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9349 }
9350 }
fdfde340 9351
c19d1205
ZW
9352 inst.instruction |= inst.operands[0].reg << 8;
9353 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9354 inst.instruction |= Rd << 12;
c19d1205
ZW
9355 inst.instruction |= inst.operands[3].reg << 16;
9356 inst.instruction |= inst.operands[4].reg;
9357 inst.instruction |= inst.operands[5].imm << 5;
9358}
09d92015 9359
c19d1205
ZW
9360/* Transfer between coprocessor register and pair of ARM registers.
9361 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9362 MCRR2
9363 MRRC{cond}
9364 MRRC2
b99bd4ef 9365
c19d1205 9366 Two XScale instructions are special cases of these:
09d92015 9367
c19d1205
ZW
9368 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9369 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9370
5f4273c7 9371 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9372
c19d1205
ZW
9373static void
9374do_co_reg2c (void)
9375{
fdfde340
JM
9376 unsigned Rd, Rn;
9377
9378 Rd = inst.operands[2].reg;
9379 Rn = inst.operands[3].reg;
9380
9381 if (thumb_mode)
9382 {
9383 reject_bad_reg (Rd);
9384 reject_bad_reg (Rn);
9385 }
9386 else
9387 {
9388 constraint (Rd == REG_PC, BAD_PC);
9389 constraint (Rn == REG_PC, BAD_PC);
9390 }
9391
873f10f0
TC
9392 /* Only check the MRRC{2} variants. */
9393 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9394 {
9395 /* If Rd == Rn, error that the operation is
9396 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9397 constraint (Rd == Rn, BAD_OVERLAP);
9398 }
9399
c19d1205
ZW
9400 inst.instruction |= inst.operands[0].reg << 8;
9401 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9402 inst.instruction |= Rd << 12;
9403 inst.instruction |= Rn << 16;
c19d1205 9404 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9405}
9406
c19d1205
ZW
9407static void
9408do_cpsi (void)
9409{
9410 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9411 if (inst.operands[1].present)
9412 {
9413 inst.instruction |= CPSI_MMOD;
9414 inst.instruction |= inst.operands[1].imm;
9415 }
c19d1205 9416}
b99bd4ef 9417
62b3e311
PB
9418static void
9419do_dbg (void)
9420{
9421 inst.instruction |= inst.operands[0].imm;
9422}
9423
eea54501
MGD
9424static void
9425do_div (void)
9426{
9427 unsigned Rd, Rn, Rm;
9428
9429 Rd = inst.operands[0].reg;
9430 Rn = (inst.operands[1].present
9431 ? inst.operands[1].reg : Rd);
9432 Rm = inst.operands[2].reg;
9433
9434 constraint ((Rd == REG_PC), BAD_PC);
9435 constraint ((Rn == REG_PC), BAD_PC);
9436 constraint ((Rm == REG_PC), BAD_PC);
9437
9438 inst.instruction |= Rd << 16;
9439 inst.instruction |= Rn << 0;
9440 inst.instruction |= Rm << 8;
9441}
9442
b99bd4ef 9443static void
c19d1205 9444do_it (void)
b99bd4ef 9445{
c19d1205 9446 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9447 process it to do the validation as if in
9448 thumb mode, just in case the code gets
9449 assembled for thumb using the unified syntax. */
9450
c19d1205 9451 inst.size = 0;
e07e6e58
NC
9452 if (unified_syntax)
9453 {
5ee91343
AV
9454 set_pred_insn_type (IT_INSN);
9455 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9456 now_pred.cc = inst.operands[0].imm;
e07e6e58 9457 }
09d92015 9458}
b99bd4ef 9459
6530b175
NC
9460/* If there is only one register in the register list,
9461 then return its register number. Otherwise return -1. */
9462static int
9463only_one_reg_in_list (int range)
9464{
9465 int i = ffs (range) - 1;
9466 return (i > 15 || range != (1 << i)) ? -1 : i;
9467}
9468
09d92015 9469static void
6530b175 9470encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9471{
c19d1205
ZW
9472 int base_reg = inst.operands[0].reg;
9473 int range = inst.operands[1].imm;
6530b175 9474 int one_reg;
ea6ef066 9475
c19d1205
ZW
9476 inst.instruction |= base_reg << 16;
9477 inst.instruction |= range;
ea6ef066 9478
c19d1205
ZW
9479 if (inst.operands[1].writeback)
9480 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9481
c19d1205 9482 if (inst.operands[0].writeback)
ea6ef066 9483 {
c19d1205
ZW
9484 inst.instruction |= WRITE_BACK;
9485 /* Check for unpredictable uses of writeback. */
9486 if (inst.instruction & LOAD_BIT)
09d92015 9487 {
c19d1205
ZW
9488 /* Not allowed in LDM type 2. */
9489 if ((inst.instruction & LDM_TYPE_2_OR_3)
9490 && ((range & (1 << REG_PC)) == 0))
9491 as_warn (_("writeback of base register is UNPREDICTABLE"));
9492 /* Only allowed if base reg not in list for other types. */
9493 else if (range & (1 << base_reg))
9494 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9495 }
9496 else /* STM. */
9497 {
9498 /* Not allowed for type 2. */
9499 if (inst.instruction & LDM_TYPE_2_OR_3)
9500 as_warn (_("writeback of base register is UNPREDICTABLE"));
9501 /* Only allowed if base reg not in list, or first in list. */
9502 else if ((range & (1 << base_reg))
9503 && (range & ((1 << base_reg) - 1)))
9504 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9505 }
ea6ef066 9506 }
6530b175
NC
9507
9508 /* If PUSH/POP has only one register, then use the A2 encoding. */
9509 one_reg = only_one_reg_in_list (range);
9510 if (from_push_pop_mnem && one_reg >= 0)
9511 {
9512 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9513
4f588891
NC
9514 if (is_push && one_reg == 13 /* SP */)
9515 /* PR 22483: The A2 encoding cannot be used when
9516 pushing the stack pointer as this is UNPREDICTABLE. */
9517 return;
9518
6530b175
NC
9519 inst.instruction &= A_COND_MASK;
9520 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9521 inst.instruction |= one_reg << 12;
9522 }
9523}
9524
9525static void
9526do_ldmstm (void)
9527{
9528 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9529}
9530
c19d1205
ZW
9531/* ARMv5TE load-consecutive (argument parse)
9532 Mode is like LDRH.
9533
9534 LDRccD R, mode
9535 STRccD R, mode. */
9536
a737bd4d 9537static void
c19d1205 9538do_ldrd (void)
a737bd4d 9539{
c19d1205 9540 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9541 _("first transfer register must be even"));
c19d1205
ZW
9542 constraint (inst.operands[1].present
9543 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9544 _("can only transfer two consecutive registers"));
c19d1205
ZW
9545 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9546 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9547
c19d1205
ZW
9548 if (!inst.operands[1].present)
9549 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9550
c56791bb
RE
9551 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9552 register and the first register written; we have to diagnose
9553 overlap between the base and the second register written here. */
ea6ef066 9554
c56791bb
RE
9555 if (inst.operands[2].reg == inst.operands[1].reg
9556 && (inst.operands[2].writeback || inst.operands[2].postind))
9557 as_warn (_("base register written back, and overlaps "
9558 "second transfer register"));
b05fe5cf 9559
c56791bb
RE
9560 if (!(inst.instruction & V4_STR_BIT))
9561 {
c19d1205 9562 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9563 destination (even if not write-back). */
9564 if (inst.operands[2].immisreg
9565 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9566 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9567 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9568 }
c19d1205
ZW
9569 inst.instruction |= inst.operands[0].reg << 12;
9570 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9571}
9572
9573static void
c19d1205 9574do_ldrex (void)
b05fe5cf 9575{
c19d1205
ZW
9576 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9577 || inst.operands[1].postind || inst.operands[1].writeback
9578 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9579 || inst.operands[1].negative
9580 /* This can arise if the programmer has written
9581 strex rN, rM, foo
9582 or if they have mistakenly used a register name as the last
9583 operand, eg:
9584 strex rN, rM, rX
9585 It is very difficult to distinguish between these two cases
9586 because "rX" might actually be a label. ie the register
9587 name has been occluded by a symbol of the same name. So we
9588 just generate a general 'bad addressing mode' type error
9589 message and leave it up to the programmer to discover the
9590 true cause and fix their mistake. */
9591 || (inst.operands[1].reg == REG_PC),
9592 BAD_ADDR_MODE);
b05fe5cf 9593
e2b0ab59
AV
9594 constraint (inst.relocs[0].exp.X_op != O_constant
9595 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9596 _("offset must be zero in ARM encoding"));
b05fe5cf 9597
5be8be5d
DG
9598 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9599
c19d1205
ZW
9600 inst.instruction |= inst.operands[0].reg << 12;
9601 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9602 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9603}
9604
9605static void
c19d1205 9606do_ldrexd (void)
b05fe5cf 9607{
c19d1205
ZW
9608 constraint (inst.operands[0].reg % 2 != 0,
9609 _("even register required"));
9610 constraint (inst.operands[1].present
9611 && inst.operands[1].reg != inst.operands[0].reg + 1,
9612 _("can only load two consecutive registers"));
9613 /* If op 1 were present and equal to PC, this function wouldn't
9614 have been called in the first place. */
9615 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9616
c19d1205
ZW
9617 inst.instruction |= inst.operands[0].reg << 12;
9618 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9619}
9620
1be5fd2e
NC
9621/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9622 which is not a multiple of four is UNPREDICTABLE. */
9623static void
9624check_ldr_r15_aligned (void)
9625{
9626 constraint (!(inst.operands[1].immisreg)
9627 && (inst.operands[0].reg == REG_PC
9628 && inst.operands[1].reg == REG_PC
e2b0ab59 9629 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9630 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9631}
9632
b05fe5cf 9633static void
c19d1205 9634do_ldst (void)
b05fe5cf 9635{
c19d1205
ZW
9636 inst.instruction |= inst.operands[0].reg << 12;
9637 if (!inst.operands[1].isreg)
8335d6aa 9638 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9639 return;
c19d1205 9640 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9641 check_ldr_r15_aligned ();
b05fe5cf
ZW
9642}
9643
9644static void
c19d1205 9645do_ldstt (void)
b05fe5cf 9646{
c19d1205
ZW
9647 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9648 reject [Rn,...]. */
9649 if (inst.operands[1].preind)
b05fe5cf 9650 {
e2b0ab59
AV
9651 constraint (inst.relocs[0].exp.X_op != O_constant
9652 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9653 _("this instruction requires a post-indexed address"));
b05fe5cf 9654
c19d1205
ZW
9655 inst.operands[1].preind = 0;
9656 inst.operands[1].postind = 1;
9657 inst.operands[1].writeback = 1;
b05fe5cf 9658 }
c19d1205
ZW
9659 inst.instruction |= inst.operands[0].reg << 12;
9660 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9661}
b05fe5cf 9662
c19d1205 9663/* Halfword and signed-byte load/store operations. */
b05fe5cf 9664
c19d1205
ZW
9665static void
9666do_ldstv4 (void)
9667{
ff4a8d2b 9668 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9669 inst.instruction |= inst.operands[0].reg << 12;
9670 if (!inst.operands[1].isreg)
8335d6aa 9671 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9672 return;
c19d1205 9673 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9674}
9675
9676static void
c19d1205 9677do_ldsttv4 (void)
b05fe5cf 9678{
c19d1205
ZW
9679 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9680 reject [Rn,...]. */
9681 if (inst.operands[1].preind)
b05fe5cf 9682 {
e2b0ab59
AV
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9685 _("this instruction requires a post-indexed address"));
b05fe5cf 9686
c19d1205
ZW
9687 inst.operands[1].preind = 0;
9688 inst.operands[1].postind = 1;
9689 inst.operands[1].writeback = 1;
b05fe5cf 9690 }
c19d1205
ZW
9691 inst.instruction |= inst.operands[0].reg << 12;
9692 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9693}
b05fe5cf 9694
c19d1205
ZW
9695/* Co-processor register load/store.
9696 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9697static void
9698do_lstc (void)
9699{
9700 inst.instruction |= inst.operands[0].reg << 8;
9701 inst.instruction |= inst.operands[1].reg << 12;
9702 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9703}
9704
b05fe5cf 9705static void
c19d1205 9706do_mlas (void)
b05fe5cf 9707{
8fb9d7b9 9708 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9709 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9710 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9711 && !(inst.instruction & 0x00400000))
8fb9d7b9 9712 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9713
c19d1205
ZW
9714 inst.instruction |= inst.operands[0].reg << 16;
9715 inst.instruction |= inst.operands[1].reg;
9716 inst.instruction |= inst.operands[2].reg << 8;
9717 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9718}
b05fe5cf 9719
c19d1205
ZW
9720static void
9721do_mov (void)
9722{
e2b0ab59
AV
9723 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9724 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9725 THUMB1_RELOC_ONLY);
c19d1205
ZW
9726 inst.instruction |= inst.operands[0].reg << 12;
9727 encode_arm_shifter_operand (1);
9728}
b05fe5cf 9729
c19d1205
ZW
9730/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9731static void
9732do_mov16 (void)
9733{
b6895b4f
PB
9734 bfd_vma imm;
9735 bfd_boolean top;
9736
9737 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9738 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9739 _(":lower16: not allowed in this instruction"));
e2b0ab59 9740 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9741 _(":upper16: not allowed in this instruction"));
c19d1205 9742 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9743 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9744 {
e2b0ab59 9745 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9746 /* The value is in two pieces: 0:11, 16:19. */
9747 inst.instruction |= (imm & 0x00000fff);
9748 inst.instruction |= (imm & 0x0000f000) << 4;
9749 }
b05fe5cf 9750}
b99bd4ef 9751
037e8744
JB
9752static int
9753do_vfp_nsyn_mrs (void)
9754{
9755 if (inst.operands[0].isvec)
9756 {
9757 if (inst.operands[1].reg != 1)
477330fc 9758 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9759 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9760 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9761 do_vfp_nsyn_opcode ("fmstat");
9762 }
9763 else if (inst.operands[1].isvec)
9764 do_vfp_nsyn_opcode ("fmrx");
9765 else
9766 return FAIL;
5f4273c7 9767
037e8744
JB
9768 return SUCCESS;
9769}
9770
9771static int
9772do_vfp_nsyn_msr (void)
9773{
9774 if (inst.operands[0].isvec)
9775 do_vfp_nsyn_opcode ("fmxr");
9776 else
9777 return FAIL;
9778
9779 return SUCCESS;
9780}
9781
f7c21dc7
NC
9782static void
9783do_vmrs (void)
9784{
9785 unsigned Rt = inst.operands[0].reg;
fa94de6b 9786
16d02dc9 9787 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9788 {
9789 inst.error = BAD_SP;
9790 return;
9791 }
9792
40c7d507
RR
9793 /* MVFR2 is only valid at ARMv8-A. */
9794 if (inst.operands[1].reg == 5)
9795 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9796 _(BAD_FPU));
9797
f7c21dc7 9798 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9799 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9800 {
9801 inst.error = BAD_PC;
9802 return;
9803 }
9804
16d02dc9
JB
9805 /* If we get through parsing the register name, we just insert the number
9806 generated into the instruction without further validation. */
9807 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9808 inst.instruction |= (Rt << 12);
9809}
9810
9811static void
9812do_vmsr (void)
9813{
9814 unsigned Rt = inst.operands[1].reg;
fa94de6b 9815
f7c21dc7
NC
9816 if (thumb_mode)
9817 reject_bad_reg (Rt);
9818 else if (Rt == REG_PC)
9819 {
9820 inst.error = BAD_PC;
9821 return;
9822 }
9823
40c7d507
RR
9824 /* MVFR2 is only valid for ARMv8-A. */
9825 if (inst.operands[0].reg == 5)
9826 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9827 _(BAD_FPU));
9828
16d02dc9
JB
9829 /* If we get through parsing the register name, we just insert the number
9830 generated into the instruction without further validation. */
9831 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9832 inst.instruction |= (Rt << 12);
9833}
9834
b99bd4ef 9835static void
c19d1205 9836do_mrs (void)
b99bd4ef 9837{
90ec0d68
MGD
9838 unsigned br;
9839
037e8744
JB
9840 if (do_vfp_nsyn_mrs () == SUCCESS)
9841 return;
9842
ff4a8d2b 9843 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9844 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9845
9846 if (inst.operands[1].isreg)
9847 {
9848 br = inst.operands[1].reg;
806ab1c0 9849 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9850 as_bad (_("bad register for mrs"));
9851 }
9852 else
9853 {
9854 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9855 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9856 != (PSR_c|PSR_f),
d2cd1205 9857 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9858 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9859 }
9860
9861 inst.instruction |= br;
c19d1205 9862}
b99bd4ef 9863
c19d1205
ZW
9864/* Two possible forms:
9865 "{C|S}PSR_<field>, Rm",
9866 "{C|S}PSR_f, #expression". */
b99bd4ef 9867
c19d1205
ZW
9868static void
9869do_msr (void)
9870{
037e8744
JB
9871 if (do_vfp_nsyn_msr () == SUCCESS)
9872 return;
9873
c19d1205
ZW
9874 inst.instruction |= inst.operands[0].imm;
9875 if (inst.operands[1].isreg)
9876 inst.instruction |= inst.operands[1].reg;
9877 else
b99bd4ef 9878 {
c19d1205 9879 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9880 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9881 inst.relocs[0].pc_rel = 0;
b99bd4ef 9882 }
b99bd4ef
NC
9883}
9884
c19d1205
ZW
9885static void
9886do_mul (void)
a737bd4d 9887{
ff4a8d2b
NC
9888 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9889
c19d1205
ZW
9890 if (!inst.operands[2].present)
9891 inst.operands[2].reg = inst.operands[0].reg;
9892 inst.instruction |= inst.operands[0].reg << 16;
9893 inst.instruction |= inst.operands[1].reg;
9894 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9895
8fb9d7b9
MS
9896 if (inst.operands[0].reg == inst.operands[1].reg
9897 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9898 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9899}
9900
c19d1205
ZW
9901/* Long Multiply Parser
9902 UMULL RdLo, RdHi, Rm, Rs
9903 SMULL RdLo, RdHi, Rm, Rs
9904 UMLAL RdLo, RdHi, Rm, Rs
9905 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9906
9907static void
c19d1205 9908do_mull (void)
b99bd4ef 9909{
c19d1205
ZW
9910 inst.instruction |= inst.operands[0].reg << 12;
9911 inst.instruction |= inst.operands[1].reg << 16;
9912 inst.instruction |= inst.operands[2].reg;
9913 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9914
682b27ad
PB
9915 /* rdhi and rdlo must be different. */
9916 if (inst.operands[0].reg == inst.operands[1].reg)
9917 as_tsktsk (_("rdhi and rdlo must be different"));
9918
9919 /* rdhi, rdlo and rm must all be different before armv6. */
9920 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9921 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9922 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9923 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9924}
b99bd4ef 9925
c19d1205
ZW
9926static void
9927do_nop (void)
9928{
e7495e45
NS
9929 if (inst.operands[0].present
9930 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9931 {
9932 /* Architectural NOP hints are CPSR sets with no bits selected. */
9933 inst.instruction &= 0xf0000000;
e7495e45
NS
9934 inst.instruction |= 0x0320f000;
9935 if (inst.operands[0].present)
9936 inst.instruction |= inst.operands[0].imm;
c19d1205 9937 }
b99bd4ef
NC
9938}
9939
c19d1205
ZW
9940/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9941 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9942 Condition defaults to COND_ALWAYS.
9943 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9944
9945static void
c19d1205 9946do_pkhbt (void)
b99bd4ef 9947{
c19d1205
ZW
9948 inst.instruction |= inst.operands[0].reg << 12;
9949 inst.instruction |= inst.operands[1].reg << 16;
9950 inst.instruction |= inst.operands[2].reg;
9951 if (inst.operands[3].present)
9952 encode_arm_shift (3);
9953}
b99bd4ef 9954
c19d1205 9955/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9956
c19d1205
ZW
9957static void
9958do_pkhtb (void)
9959{
9960 if (!inst.operands[3].present)
b99bd4ef 9961 {
c19d1205
ZW
9962 /* If the shift specifier is omitted, turn the instruction
9963 into pkhbt rd, rm, rn. */
9964 inst.instruction &= 0xfff00010;
9965 inst.instruction |= inst.operands[0].reg << 12;
9966 inst.instruction |= inst.operands[1].reg;
9967 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9968 }
9969 else
9970 {
c19d1205
ZW
9971 inst.instruction |= inst.operands[0].reg << 12;
9972 inst.instruction |= inst.operands[1].reg << 16;
9973 inst.instruction |= inst.operands[2].reg;
9974 encode_arm_shift (3);
b99bd4ef
NC
9975 }
9976}
9977
c19d1205 9978/* ARMv5TE: Preload-Cache
60e5ef9f 9979 MP Extensions: Preload for write
c19d1205 9980
60e5ef9f 9981 PLD(W) <addr_mode>
c19d1205
ZW
9982
9983 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9984
9985static void
c19d1205 9986do_pld (void)
b99bd4ef 9987{
c19d1205
ZW
9988 constraint (!inst.operands[0].isreg,
9989 _("'[' expected after PLD mnemonic"));
9990 constraint (inst.operands[0].postind,
9991 _("post-indexed expression used in preload instruction"));
9992 constraint (inst.operands[0].writeback,
9993 _("writeback used in preload instruction"));
9994 constraint (!inst.operands[0].preind,
9995 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9996 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9997}
b99bd4ef 9998
62b3e311
PB
9999/* ARMv7: PLI <addr_mode> */
10000static void
10001do_pli (void)
10002{
10003 constraint (!inst.operands[0].isreg,
10004 _("'[' expected after PLI mnemonic"));
10005 constraint (inst.operands[0].postind,
10006 _("post-indexed expression used in preload instruction"));
10007 constraint (inst.operands[0].writeback,
10008 _("writeback used in preload instruction"));
10009 constraint (!inst.operands[0].preind,
10010 _("unindexed addressing used in preload instruction"));
10011 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10012 inst.instruction &= ~PRE_INDEX;
10013}
10014
c19d1205
ZW
10015static void
10016do_push_pop (void)
10017{
5e0d7f77
MP
10018 constraint (inst.operands[0].writeback,
10019 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10020 inst.operands[1] = inst.operands[0];
10021 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10022 inst.operands[0].isreg = 1;
10023 inst.operands[0].writeback = 1;
10024 inst.operands[0].reg = REG_SP;
6530b175 10025 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10026}
b99bd4ef 10027
c19d1205
ZW
10028/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10029 word at the specified address and the following word
10030 respectively.
10031 Unconditionally executed.
10032 Error if Rn is R15. */
b99bd4ef 10033
c19d1205
ZW
10034static void
10035do_rfe (void)
10036{
10037 inst.instruction |= inst.operands[0].reg << 16;
10038 if (inst.operands[0].writeback)
10039 inst.instruction |= WRITE_BACK;
10040}
b99bd4ef 10041
c19d1205 10042/* ARM V6 ssat (argument parse). */
b99bd4ef 10043
c19d1205
ZW
10044static void
10045do_ssat (void)
10046{
10047 inst.instruction |= inst.operands[0].reg << 12;
10048 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10049 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10050
c19d1205
ZW
10051 if (inst.operands[3].present)
10052 encode_arm_shift (3);
b99bd4ef
NC
10053}
10054
c19d1205 10055/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10056
10057static void
c19d1205 10058do_usat (void)
b99bd4ef 10059{
c19d1205
ZW
10060 inst.instruction |= inst.operands[0].reg << 12;
10061 inst.instruction |= inst.operands[1].imm << 16;
10062 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10063
c19d1205
ZW
10064 if (inst.operands[3].present)
10065 encode_arm_shift (3);
b99bd4ef
NC
10066}
10067
c19d1205 10068/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10069
10070static void
c19d1205 10071do_ssat16 (void)
09d92015 10072{
c19d1205
ZW
10073 inst.instruction |= inst.operands[0].reg << 12;
10074 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10075 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10076}
10077
c19d1205
ZW
10078static void
10079do_usat16 (void)
a737bd4d 10080{
c19d1205
ZW
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
10084}
a737bd4d 10085
c19d1205
ZW
10086/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10087 preserving the other bits.
a737bd4d 10088
c19d1205
ZW
10089 setend <endian_specifier>, where <endian_specifier> is either
10090 BE or LE. */
a737bd4d 10091
c19d1205
ZW
10092static void
10093do_setend (void)
10094{
12e37cbc
MGD
10095 if (warn_on_deprecated
10096 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10097 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10098
c19d1205
ZW
10099 if (inst.operands[0].imm)
10100 inst.instruction |= 0x200;
a737bd4d
NC
10101}
10102
10103static void
c19d1205 10104do_shift (void)
a737bd4d 10105{
c19d1205
ZW
10106 unsigned int Rm = (inst.operands[1].present
10107 ? inst.operands[1].reg
10108 : inst.operands[0].reg);
a737bd4d 10109
c19d1205
ZW
10110 inst.instruction |= inst.operands[0].reg << 12;
10111 inst.instruction |= Rm;
10112 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10113 {
c19d1205
ZW
10114 inst.instruction |= inst.operands[2].reg << 8;
10115 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10116 /* PR 12854: Error on extraneous shifts. */
10117 constraint (inst.operands[2].shifted,
10118 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10119 }
10120 else
e2b0ab59 10121 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10122}
10123
09d92015 10124static void
3eb17e6b 10125do_smc (void)
09d92015 10126{
e2b0ab59
AV
10127 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10128 inst.relocs[0].pc_rel = 0;
09d92015
MM
10129}
10130
90ec0d68
MGD
10131static void
10132do_hvc (void)
10133{
e2b0ab59
AV
10134 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10135 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10136}
10137
09d92015 10138static void
c19d1205 10139do_swi (void)
09d92015 10140{
e2b0ab59
AV
10141 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10142 inst.relocs[0].pc_rel = 0;
09d92015
MM
10143}
10144
ddfded2f
MW
10145static void
10146do_setpan (void)
10147{
10148 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10149 _("selected processor does not support SETPAN instruction"));
10150
10151 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10152}
10153
10154static void
10155do_t_setpan (void)
10156{
10157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10158 _("selected processor does not support SETPAN instruction"));
10159
10160 inst.instruction |= (inst.operands[0].imm << 3);
10161}
10162
c19d1205
ZW
10163/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10164 SMLAxy{cond} Rd,Rm,Rs,Rn
10165 SMLAWy{cond} Rd,Rm,Rs,Rn
10166 Error if any register is R15. */
e16bb312 10167
c19d1205
ZW
10168static void
10169do_smla (void)
e16bb312 10170{
c19d1205
ZW
10171 inst.instruction |= inst.operands[0].reg << 16;
10172 inst.instruction |= inst.operands[1].reg;
10173 inst.instruction |= inst.operands[2].reg << 8;
10174 inst.instruction |= inst.operands[3].reg << 12;
10175}
a737bd4d 10176
c19d1205
ZW
10177/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10178 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10179 Error if any register is R15.
10180 Warning if Rdlo == Rdhi. */
a737bd4d 10181
c19d1205
ZW
10182static void
10183do_smlal (void)
10184{
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 inst.instruction |= inst.operands[1].reg << 16;
10187 inst.instruction |= inst.operands[2].reg;
10188 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10189
c19d1205
ZW
10190 if (inst.operands[0].reg == inst.operands[1].reg)
10191 as_tsktsk (_("rdhi and rdlo must be different"));
10192}
a737bd4d 10193
c19d1205
ZW
10194/* ARM V5E (El Segundo) signed-multiply (argument parse)
10195 SMULxy{cond} Rd,Rm,Rs
10196 Error if any register is R15. */
a737bd4d 10197
c19d1205
ZW
10198static void
10199do_smul (void)
10200{
10201 inst.instruction |= inst.operands[0].reg << 16;
10202 inst.instruction |= inst.operands[1].reg;
10203 inst.instruction |= inst.operands[2].reg << 8;
10204}
a737bd4d 10205
b6702015
PB
10206/* ARM V6 srs (argument parse). The variable fields in the encoding are
10207 the same for both ARM and Thumb-2. */
a737bd4d 10208
c19d1205
ZW
10209static void
10210do_srs (void)
10211{
b6702015
PB
10212 int reg;
10213
10214 if (inst.operands[0].present)
10215 {
10216 reg = inst.operands[0].reg;
fdfde340 10217 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10218 }
10219 else
fdfde340 10220 reg = REG_SP;
b6702015
PB
10221
10222 inst.instruction |= reg << 16;
10223 inst.instruction |= inst.operands[1].imm;
10224 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10225 inst.instruction |= WRITE_BACK;
10226}
a737bd4d 10227
c19d1205 10228/* ARM V6 strex (argument parse). */
a737bd4d 10229
c19d1205
ZW
10230static void
10231do_strex (void)
10232{
10233 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10234 || inst.operands[2].postind || inst.operands[2].writeback
10235 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10236 || inst.operands[2].negative
10237 /* See comment in do_ldrex(). */
10238 || (inst.operands[2].reg == REG_PC),
10239 BAD_ADDR_MODE);
a737bd4d 10240
c19d1205
ZW
10241 constraint (inst.operands[0].reg == inst.operands[1].reg
10242 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10243
e2b0ab59
AV
10244 constraint (inst.relocs[0].exp.X_op != O_constant
10245 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10246 _("offset must be zero in ARM encoding"));
a737bd4d 10247
c19d1205
ZW
10248 inst.instruction |= inst.operands[0].reg << 12;
10249 inst.instruction |= inst.operands[1].reg;
10250 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10251 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10252}
10253
877807f8
NC
10254static void
10255do_t_strexbh (void)
10256{
10257 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10258 || inst.operands[2].postind || inst.operands[2].writeback
10259 || inst.operands[2].immisreg || inst.operands[2].shifted
10260 || inst.operands[2].negative,
10261 BAD_ADDR_MODE);
10262
10263 constraint (inst.operands[0].reg == inst.operands[1].reg
10264 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10265
10266 do_rm_rd_rn ();
10267}
10268
e16bb312 10269static void
c19d1205 10270do_strexd (void)
e16bb312 10271{
c19d1205
ZW
10272 constraint (inst.operands[1].reg % 2 != 0,
10273 _("even register required"));
10274 constraint (inst.operands[2].present
10275 && inst.operands[2].reg != inst.operands[1].reg + 1,
10276 _("can only store two consecutive registers"));
10277 /* If op 2 were present and equal to PC, this function wouldn't
10278 have been called in the first place. */
10279 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10280
c19d1205
ZW
10281 constraint (inst.operands[0].reg == inst.operands[1].reg
10282 || inst.operands[0].reg == inst.operands[1].reg + 1
10283 || inst.operands[0].reg == inst.operands[3].reg,
10284 BAD_OVERLAP);
e16bb312 10285
c19d1205
ZW
10286 inst.instruction |= inst.operands[0].reg << 12;
10287 inst.instruction |= inst.operands[1].reg;
10288 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10289}
10290
9eb6c0f1
MGD
10291/* ARM V8 STRL. */
10292static void
4b8c8c02 10293do_stlex (void)
9eb6c0f1
MGD
10294{
10295 constraint (inst.operands[0].reg == inst.operands[1].reg
10296 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10297
10298 do_rd_rm_rn ();
10299}
10300
10301static void
4b8c8c02 10302do_t_stlex (void)
9eb6c0f1
MGD
10303{
10304 constraint (inst.operands[0].reg == inst.operands[1].reg
10305 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10306
10307 do_rm_rd_rn ();
10308}
10309
c19d1205
ZW
10310/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10311 extends it to 32-bits, and adds the result to a value in another
10312 register. You can specify a rotation by 0, 8, 16, or 24 bits
10313 before extracting the 16-bit value.
10314 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10315 Condition defaults to COND_ALWAYS.
10316 Error if any register uses R15. */
10317
e16bb312 10318static void
c19d1205 10319do_sxtah (void)
e16bb312 10320{
c19d1205
ZW
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
10323 inst.instruction |= inst.operands[2].reg;
10324 inst.instruction |= inst.operands[3].imm << 10;
10325}
e16bb312 10326
c19d1205 10327/* ARM V6 SXTH.
e16bb312 10328
c19d1205
ZW
10329 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10330 Condition defaults to COND_ALWAYS.
10331 Error if any register uses R15. */
e16bb312
NC
10332
10333static void
c19d1205 10334do_sxth (void)
e16bb312 10335{
c19d1205
ZW
10336 inst.instruction |= inst.operands[0].reg << 12;
10337 inst.instruction |= inst.operands[1].reg;
10338 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10339}
c19d1205
ZW
10340\f
10341/* VFP instructions. In a logical order: SP variant first, monad
10342 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10343
10344static void
c19d1205 10345do_vfp_sp_monadic (void)
e16bb312 10346{
57785aa2
AV
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10348 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10349 _(BAD_FPU));
10350
5287ad62
JB
10351 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10352 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10353}
10354
10355static void
c19d1205 10356do_vfp_sp_dyadic (void)
e16bb312 10357{
5287ad62
JB
10358 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10359 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10360 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10361}
10362
10363static void
c19d1205 10364do_vfp_sp_compare_z (void)
e16bb312 10365{
5287ad62 10366 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10367}
10368
10369static void
c19d1205 10370do_vfp_dp_sp_cvt (void)
e16bb312 10371{
5287ad62
JB
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10374}
10375
10376static void
c19d1205 10377do_vfp_sp_dp_cvt (void)
e16bb312 10378{
5287ad62
JB
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10381}
10382
10383static void
c19d1205 10384do_vfp_reg_from_sp (void)
e16bb312 10385{
57785aa2
AV
10386 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10387 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10388 _(BAD_FPU));
10389
c19d1205 10390 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10391 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10392}
10393
10394static void
c19d1205 10395do_vfp_reg2_from_sp2 (void)
e16bb312 10396{
c19d1205
ZW
10397 constraint (inst.operands[2].imm != 2,
10398 _("only two consecutive VFP SP registers allowed here"));
10399 inst.instruction |= inst.operands[0].reg << 12;
10400 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10401 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10402}
10403
10404static void
c19d1205 10405do_vfp_sp_from_reg (void)
e16bb312 10406{
57785aa2
AV
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
5287ad62 10411 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10412 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10413}
10414
10415static void
c19d1205 10416do_vfp_sp2_from_reg2 (void)
e16bb312 10417{
c19d1205
ZW
10418 constraint (inst.operands[0].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10420 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10421 inst.instruction |= inst.operands[1].reg << 12;
10422 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10423}
10424
10425static void
c19d1205 10426do_vfp_sp_ldst (void)
e16bb312 10427{
5287ad62 10428 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10429 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10430}
10431
10432static void
c19d1205 10433do_vfp_dp_ldst (void)
e16bb312 10434{
5287ad62 10435 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10436 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10437}
10438
c19d1205 10439
e16bb312 10440static void
c19d1205 10441vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10442{
c19d1205
ZW
10443 if (inst.operands[0].writeback)
10444 inst.instruction |= WRITE_BACK;
10445 else
10446 constraint (ldstm_type != VFP_LDSTMIA,
10447 _("this addressing mode requires base-register writeback"));
10448 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10449 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10450 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10451}
10452
10453static void
c19d1205 10454vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10455{
c19d1205 10456 int count;
e16bb312 10457
c19d1205
ZW
10458 if (inst.operands[0].writeback)
10459 inst.instruction |= WRITE_BACK;
10460 else
10461 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10462 _("this addressing mode requires base-register writeback"));
e16bb312 10463
c19d1205 10464 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10465 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10466
c19d1205
ZW
10467 count = inst.operands[1].imm << 1;
10468 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10469 count += 1;
e16bb312 10470
c19d1205 10471 inst.instruction |= count;
e16bb312
NC
10472}
10473
10474static void
c19d1205 10475do_vfp_sp_ldstmia (void)
e16bb312 10476{
c19d1205 10477 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10478}
10479
10480static void
c19d1205 10481do_vfp_sp_ldstmdb (void)
e16bb312 10482{
c19d1205 10483 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10484}
10485
10486static void
c19d1205 10487do_vfp_dp_ldstmia (void)
e16bb312 10488{
c19d1205 10489 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10490}
10491
10492static void
c19d1205 10493do_vfp_dp_ldstmdb (void)
e16bb312 10494{
c19d1205 10495 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10496}
10497
10498static void
c19d1205 10499do_vfp_xp_ldstmia (void)
e16bb312 10500{
c19d1205
ZW
10501 vfp_dp_ldstm (VFP_LDSTMIAX);
10502}
e16bb312 10503
c19d1205
ZW
10504static void
10505do_vfp_xp_ldstmdb (void)
10506{
10507 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10508}
5287ad62
JB
10509
10510static void
10511do_vfp_dp_rd_rm (void)
10512{
57785aa2
AV
10513 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10514 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10515 _(BAD_FPU));
10516
5287ad62
JB
10517 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10518 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10519}
10520
10521static void
10522do_vfp_dp_rn_rd (void)
10523{
10524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10525 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10526}
10527
10528static void
10529do_vfp_dp_rd_rn (void)
10530{
10531 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10532 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10533}
10534
10535static void
10536do_vfp_dp_rd_rn_rm (void)
10537{
57785aa2
AV
10538 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10539 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10540 _(BAD_FPU));
10541
5287ad62
JB
10542 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10543 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10544 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10545}
10546
10547static void
10548do_vfp_dp_rd (void)
10549{
10550 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10551}
10552
10553static void
10554do_vfp_dp_rm_rd_rn (void)
10555{
57785aa2
AV
10556 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10557 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10558 _(BAD_FPU));
10559
5287ad62
JB
10560 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10561 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10562 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10563}
10564
10565/* VFPv3 instructions. */
10566static void
10567do_vfp_sp_const (void)
10568{
10569 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10570 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10571 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10572}
10573
10574static void
10575do_vfp_dp_const (void)
10576{
10577 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10578 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10579 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10580}
10581
10582static void
10583vfp_conv (int srcsize)
10584{
5f1af56b
MGD
10585 int immbits = srcsize - inst.operands[1].imm;
10586
fa94de6b
RM
10587 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10588 {
5f1af56b 10589 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10590 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10591 inst.error = _("immediate value out of range, expected range [0, 16]");
10592 return;
10593 }
fa94de6b 10594 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10595 {
10596 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10597 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10598 inst.error = _("immediate value out of range, expected range [1, 32]");
10599 return;
10600 }
10601
5287ad62
JB
10602 inst.instruction |= (immbits & 1) << 5;
10603 inst.instruction |= (immbits >> 1);
10604}
10605
10606static void
10607do_vfp_sp_conv_16 (void)
10608{
10609 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10610 vfp_conv (16);
10611}
10612
10613static void
10614do_vfp_dp_conv_16 (void)
10615{
10616 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10617 vfp_conv (16);
10618}
10619
10620static void
10621do_vfp_sp_conv_32 (void)
10622{
10623 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10624 vfp_conv (32);
10625}
10626
10627static void
10628do_vfp_dp_conv_32 (void)
10629{
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10631 vfp_conv (32);
10632}
c19d1205
ZW
10633\f
10634/* FPA instructions. Also in a logical order. */
e16bb312 10635
c19d1205
ZW
10636static void
10637do_fpa_cmp (void)
10638{
10639 inst.instruction |= inst.operands[0].reg << 16;
10640 inst.instruction |= inst.operands[1].reg;
10641}
b99bd4ef
NC
10642
10643static void
c19d1205 10644do_fpa_ldmstm (void)
b99bd4ef 10645{
c19d1205
ZW
10646 inst.instruction |= inst.operands[0].reg << 12;
10647 switch (inst.operands[1].imm)
10648 {
10649 case 1: inst.instruction |= CP_T_X; break;
10650 case 2: inst.instruction |= CP_T_Y; break;
10651 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10652 case 4: break;
10653 default: abort ();
10654 }
b99bd4ef 10655
c19d1205
ZW
10656 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10657 {
10658 /* The instruction specified "ea" or "fd", so we can only accept
10659 [Rn]{!}. The instruction does not really support stacking or
10660 unstacking, so we have to emulate these by setting appropriate
10661 bits and offsets. */
e2b0ab59
AV
10662 constraint (inst.relocs[0].exp.X_op != O_constant
10663 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10664 _("this instruction does not support indexing"));
b99bd4ef 10665
c19d1205 10666 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10667 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10668
c19d1205 10669 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10670 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10671
c19d1205
ZW
10672 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10673 {
10674 inst.operands[2].preind = 0;
10675 inst.operands[2].postind = 1;
10676 }
10677 }
b99bd4ef 10678
c19d1205 10679 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10680}
c19d1205
ZW
10681\f
10682/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10683
c19d1205
ZW
10684static void
10685do_iwmmxt_tandorc (void)
10686{
10687 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10688}
b99bd4ef 10689
c19d1205
ZW
10690static void
10691do_iwmmxt_textrc (void)
10692{
10693 inst.instruction |= inst.operands[0].reg << 12;
10694 inst.instruction |= inst.operands[1].imm;
10695}
b99bd4ef
NC
10696
10697static void
c19d1205 10698do_iwmmxt_textrm (void)
b99bd4ef 10699{
c19d1205
ZW
10700 inst.instruction |= inst.operands[0].reg << 12;
10701 inst.instruction |= inst.operands[1].reg << 16;
10702 inst.instruction |= inst.operands[2].imm;
10703}
b99bd4ef 10704
c19d1205
ZW
10705static void
10706do_iwmmxt_tinsr (void)
10707{
10708 inst.instruction |= inst.operands[0].reg << 16;
10709 inst.instruction |= inst.operands[1].reg << 12;
10710 inst.instruction |= inst.operands[2].imm;
10711}
b99bd4ef 10712
c19d1205
ZW
10713static void
10714do_iwmmxt_tmia (void)
10715{
10716 inst.instruction |= inst.operands[0].reg << 5;
10717 inst.instruction |= inst.operands[1].reg;
10718 inst.instruction |= inst.operands[2].reg << 12;
10719}
b99bd4ef 10720
c19d1205
ZW
10721static void
10722do_iwmmxt_waligni (void)
10723{
10724 inst.instruction |= inst.operands[0].reg << 12;
10725 inst.instruction |= inst.operands[1].reg << 16;
10726 inst.instruction |= inst.operands[2].reg;
10727 inst.instruction |= inst.operands[3].imm << 20;
10728}
b99bd4ef 10729
2d447fca
JM
10730static void
10731do_iwmmxt_wmerge (void)
10732{
10733 inst.instruction |= inst.operands[0].reg << 12;
10734 inst.instruction |= inst.operands[1].reg << 16;
10735 inst.instruction |= inst.operands[2].reg;
10736 inst.instruction |= inst.operands[3].imm << 21;
10737}
10738
c19d1205
ZW
10739static void
10740do_iwmmxt_wmov (void)
10741{
10742 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10743 inst.instruction |= inst.operands[0].reg << 12;
10744 inst.instruction |= inst.operands[1].reg << 16;
10745 inst.instruction |= inst.operands[1].reg;
10746}
b99bd4ef 10747
c19d1205
ZW
10748static void
10749do_iwmmxt_wldstbh (void)
10750{
8f06b2d8 10751 int reloc;
c19d1205 10752 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10753 if (thumb_mode)
10754 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10755 else
10756 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10757 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10758}
10759
c19d1205
ZW
10760static void
10761do_iwmmxt_wldstw (void)
10762{
10763 /* RIWR_RIWC clears .isreg for a control register. */
10764 if (!inst.operands[0].isreg)
10765 {
10766 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10767 inst.instruction |= 0xf0000000;
10768 }
b99bd4ef 10769
c19d1205
ZW
10770 inst.instruction |= inst.operands[0].reg << 12;
10771 encode_arm_cp_address (1, TRUE, TRUE, 0);
10772}
b99bd4ef
NC
10773
10774static void
c19d1205 10775do_iwmmxt_wldstd (void)
b99bd4ef 10776{
c19d1205 10777 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10778 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10779 && inst.operands[1].immisreg)
10780 {
10781 inst.instruction &= ~0x1a000ff;
eff0bc54 10782 inst.instruction |= (0xfU << 28);
2d447fca
JM
10783 if (inst.operands[1].preind)
10784 inst.instruction |= PRE_INDEX;
10785 if (!inst.operands[1].negative)
10786 inst.instruction |= INDEX_UP;
10787 if (inst.operands[1].writeback)
10788 inst.instruction |= WRITE_BACK;
10789 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10790 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10791 inst.instruction |= inst.operands[1].imm;
10792 }
10793 else
10794 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10795}
b99bd4ef 10796
c19d1205
ZW
10797static void
10798do_iwmmxt_wshufh (void)
10799{
10800 inst.instruction |= inst.operands[0].reg << 12;
10801 inst.instruction |= inst.operands[1].reg << 16;
10802 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10803 inst.instruction |= (inst.operands[2].imm & 0x0f);
10804}
b99bd4ef 10805
c19d1205
ZW
10806static void
10807do_iwmmxt_wzero (void)
10808{
10809 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10810 inst.instruction |= inst.operands[0].reg;
10811 inst.instruction |= inst.operands[0].reg << 12;
10812 inst.instruction |= inst.operands[0].reg << 16;
10813}
2d447fca
JM
10814
10815static void
10816do_iwmmxt_wrwrwr_or_imm5 (void)
10817{
10818 if (inst.operands[2].isreg)
10819 do_rd_rn_rm ();
10820 else {
10821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10822 _("immediate operand requires iWMMXt2"));
10823 do_rd_rn ();
10824 if (inst.operands[2].imm == 0)
10825 {
10826 switch ((inst.instruction >> 20) & 0xf)
10827 {
10828 case 4:
10829 case 5:
10830 case 6:
5f4273c7 10831 case 7:
2d447fca
JM
10832 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10833 inst.operands[2].imm = 16;
10834 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10835 break;
10836 case 8:
10837 case 9:
10838 case 10:
10839 case 11:
10840 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10841 inst.operands[2].imm = 32;
10842 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10843 break;
10844 case 12:
10845 case 13:
10846 case 14:
10847 case 15:
10848 {
10849 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10850 unsigned long wrn;
10851 wrn = (inst.instruction >> 16) & 0xf;
10852 inst.instruction &= 0xff0fff0f;
10853 inst.instruction |= wrn;
10854 /* Bail out here; the instruction is now assembled. */
10855 return;
10856 }
10857 }
10858 }
10859 /* Map 32 -> 0, etc. */
10860 inst.operands[2].imm &= 0x1f;
eff0bc54 10861 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10862 }
10863}
c19d1205
ZW
10864\f
10865/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10866 operations first, then control, shift, and load/store. */
b99bd4ef 10867
c19d1205 10868/* Insns like "foo X,Y,Z". */
b99bd4ef 10869
c19d1205
ZW
10870static void
10871do_mav_triple (void)
10872{
10873 inst.instruction |= inst.operands[0].reg << 16;
10874 inst.instruction |= inst.operands[1].reg;
10875 inst.instruction |= inst.operands[2].reg << 12;
10876}
b99bd4ef 10877
c19d1205
ZW
10878/* Insns like "foo W,X,Y,Z".
10879 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10880
c19d1205
ZW
10881static void
10882do_mav_quad (void)
10883{
10884 inst.instruction |= inst.operands[0].reg << 5;
10885 inst.instruction |= inst.operands[1].reg << 12;
10886 inst.instruction |= inst.operands[2].reg << 16;
10887 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10888}
10889
c19d1205
ZW
10890/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10891static void
10892do_mav_dspsc (void)
a737bd4d 10893{
c19d1205
ZW
10894 inst.instruction |= inst.operands[1].reg << 12;
10895}
a737bd4d 10896
c19d1205
ZW
10897/* Maverick shift immediate instructions.
10898 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10899 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10900
c19d1205
ZW
10901static void
10902do_mav_shift (void)
10903{
10904 int imm = inst.operands[2].imm;
a737bd4d 10905
c19d1205
ZW
10906 inst.instruction |= inst.operands[0].reg << 12;
10907 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10908
c19d1205
ZW
10909 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10910 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10911 Bit 4 should be 0. */
10912 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10913
c19d1205
ZW
10914 inst.instruction |= imm;
10915}
10916\f
10917/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10918
c19d1205
ZW
10919/* Xscale multiply-accumulate (argument parse)
10920 MIAcc acc0,Rm,Rs
10921 MIAPHcc acc0,Rm,Rs
10922 MIAxycc acc0,Rm,Rs. */
a737bd4d 10923
c19d1205
ZW
10924static void
10925do_xsc_mia (void)
10926{
10927 inst.instruction |= inst.operands[1].reg;
10928 inst.instruction |= inst.operands[2].reg << 12;
10929}
a737bd4d 10930
c19d1205 10931/* Xscale move-accumulator-register (argument parse)
a737bd4d 10932
c19d1205 10933 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10934
c19d1205
ZW
10935static void
10936do_xsc_mar (void)
10937{
10938 inst.instruction |= inst.operands[1].reg << 12;
10939 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10940}
10941
c19d1205 10942/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10943
c19d1205 10944 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10945
10946static void
c19d1205 10947do_xsc_mra (void)
b99bd4ef 10948{
c19d1205
ZW
10949 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10950 inst.instruction |= inst.operands[0].reg << 12;
10951 inst.instruction |= inst.operands[1].reg << 16;
10952}
10953\f
10954/* Encoding functions relevant only to Thumb. */
b99bd4ef 10955
c19d1205
ZW
10956/* inst.operands[i] is a shifted-register operand; encode
10957 it into inst.instruction in the format used by Thumb32. */
10958
10959static void
10960encode_thumb32_shifted_operand (int i)
10961{
e2b0ab59 10962 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10963 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10964
9c3c69f2
PB
10965 constraint (inst.operands[i].immisreg,
10966 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10967 inst.instruction |= inst.operands[i].reg;
10968 if (shift == SHIFT_RRX)
10969 inst.instruction |= SHIFT_ROR << 4;
10970 else
b99bd4ef 10971 {
e2b0ab59 10972 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10973 _("expression too complex"));
10974
10975 constraint (value > 32
10976 || (value == 32 && (shift == SHIFT_LSL
10977 || shift == SHIFT_ROR)),
10978 _("shift expression is too large"));
10979
10980 if (value == 0)
10981 shift = SHIFT_LSL;
10982 else if (value == 32)
10983 value = 0;
10984
10985 inst.instruction |= shift << 4;
10986 inst.instruction |= (value & 0x1c) << 10;
10987 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10988 }
c19d1205 10989}
b99bd4ef 10990
b99bd4ef 10991
c19d1205
ZW
10992/* inst.operands[i] was set up by parse_address. Encode it into a
10993 Thumb32 format load or store instruction. Reject forms that cannot
10994 be used with such instructions. If is_t is true, reject forms that
10995 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10996 that cannot be used with a D instruction. If it is a store insn,
10997 reject PC in Rn. */
b99bd4ef 10998
c19d1205
ZW
10999static void
11000encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11001{
5be8be5d 11002 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11003
11004 constraint (!inst.operands[i].isreg,
53365c0d 11005 _("Instruction does not support =N addresses"));
b99bd4ef 11006
c19d1205
ZW
11007 inst.instruction |= inst.operands[i].reg << 16;
11008 if (inst.operands[i].immisreg)
b99bd4ef 11009 {
5be8be5d 11010 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11011 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11012 constraint (inst.operands[i].negative,
11013 _("Thumb does not support negative register indexing"));
11014 constraint (inst.operands[i].postind,
11015 _("Thumb does not support register post-indexing"));
11016 constraint (inst.operands[i].writeback,
11017 _("Thumb does not support register indexing with writeback"));
11018 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11019 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11020
f40d1643 11021 inst.instruction |= inst.operands[i].imm;
c19d1205 11022 if (inst.operands[i].shifted)
b99bd4ef 11023 {
e2b0ab59 11024 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11025 _("expression too complex"));
e2b0ab59
AV
11026 constraint (inst.relocs[0].exp.X_add_number < 0
11027 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11028 _("shift out of range"));
e2b0ab59 11029 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11030 }
e2b0ab59 11031 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11032 }
11033 else if (inst.operands[i].preind)
11034 {
5be8be5d 11035 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11036 constraint (is_t && inst.operands[i].writeback,
c19d1205 11037 _("cannot use writeback with this instruction"));
4755303e
WN
11038 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11039 BAD_PC_ADDRESSING);
c19d1205
ZW
11040
11041 if (is_d)
11042 {
11043 inst.instruction |= 0x01000000;
11044 if (inst.operands[i].writeback)
11045 inst.instruction |= 0x00200000;
b99bd4ef 11046 }
c19d1205 11047 else
b99bd4ef 11048 {
c19d1205
ZW
11049 inst.instruction |= 0x00000c00;
11050 if (inst.operands[i].writeback)
11051 inst.instruction |= 0x00000100;
b99bd4ef 11052 }
e2b0ab59 11053 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11054 }
c19d1205 11055 else if (inst.operands[i].postind)
b99bd4ef 11056 {
9c2799c2 11057 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11058 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11059 constraint (is_t, _("cannot use post-indexing with this instruction"));
11060
11061 if (is_d)
11062 inst.instruction |= 0x00200000;
11063 else
11064 inst.instruction |= 0x00000900;
e2b0ab59 11065 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11066 }
11067 else /* unindexed - only for coprocessor */
11068 inst.error = _("instruction does not accept unindexed addressing");
11069}
11070
11071/* Table of Thumb instructions which exist in both 16- and 32-bit
11072 encodings (the latter only in post-V6T2 cores). The index is the
11073 value used in the insns table below. When there is more than one
11074 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11075 holds variant (1).
11076 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11077#define T16_32_TAB \
21d799b5
NC
11078 X(_adc, 4140, eb400000), \
11079 X(_adcs, 4140, eb500000), \
11080 X(_add, 1c00, eb000000), \
11081 X(_adds, 1c00, eb100000), \
11082 X(_addi, 0000, f1000000), \
11083 X(_addis, 0000, f1100000), \
11084 X(_add_pc,000f, f20f0000), \
11085 X(_add_sp,000d, f10d0000), \
11086 X(_adr, 000f, f20f0000), \
11087 X(_and, 4000, ea000000), \
11088 X(_ands, 4000, ea100000), \
11089 X(_asr, 1000, fa40f000), \
11090 X(_asrs, 1000, fa50f000), \
11091 X(_b, e000, f000b000), \
11092 X(_bcond, d000, f0008000), \
4389b29a 11093 X(_bf, 0000, f040e001), \
f6b2b12d 11094 X(_bfcsel,0000, f000e001), \
f1c7f421 11095 X(_bfx, 0000, f060e001), \
65d1bc05 11096 X(_bfl, 0000, f000c001), \
f1c7f421 11097 X(_bflx, 0000, f070e001), \
21d799b5
NC
11098 X(_bic, 4380, ea200000), \
11099 X(_bics, 4380, ea300000), \
11100 X(_cmn, 42c0, eb100f00), \
11101 X(_cmp, 2800, ebb00f00), \
11102 X(_cpsie, b660, f3af8400), \
11103 X(_cpsid, b670, f3af8600), \
11104 X(_cpy, 4600, ea4f0000), \
11105 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11106 X(_dls, 0000, f040e001), \
21d799b5
NC
11107 X(_eor, 4040, ea800000), \
11108 X(_eors, 4040, ea900000), \
11109 X(_inc_sp,00dd, f10d0d00), \
11110 X(_ldmia, c800, e8900000), \
11111 X(_ldr, 6800, f8500000), \
11112 X(_ldrb, 7800, f8100000), \
11113 X(_ldrh, 8800, f8300000), \
11114 X(_ldrsb, 5600, f9100000), \
11115 X(_ldrsh, 5e00, f9300000), \
11116 X(_ldr_pc,4800, f85f0000), \
11117 X(_ldr_pc2,4800, f85f0000), \
11118 X(_ldr_sp,9800, f85d0000), \
60f993ce 11119 X(_le, 0000, f00fc001), \
21d799b5
NC
11120 X(_lsl, 0000, fa00f000), \
11121 X(_lsls, 0000, fa10f000), \
11122 X(_lsr, 0800, fa20f000), \
11123 X(_lsrs, 0800, fa30f000), \
11124 X(_mov, 2000, ea4f0000), \
11125 X(_movs, 2000, ea5f0000), \
11126 X(_mul, 4340, fb00f000), \
11127 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11128 X(_mvn, 43c0, ea6f0000), \
11129 X(_mvns, 43c0, ea7f0000), \
11130 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11131 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11132 X(_orr, 4300, ea400000), \
11133 X(_orrs, 4300, ea500000), \
11134 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11135 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11136 X(_rev, ba00, fa90f080), \
11137 X(_rev16, ba40, fa90f090), \
11138 X(_revsh, bac0, fa90f0b0), \
11139 X(_ror, 41c0, fa60f000), \
11140 X(_rors, 41c0, fa70f000), \
11141 X(_sbc, 4180, eb600000), \
11142 X(_sbcs, 4180, eb700000), \
11143 X(_stmia, c000, e8800000), \
11144 X(_str, 6000, f8400000), \
11145 X(_strb, 7000, f8000000), \
11146 X(_strh, 8000, f8200000), \
11147 X(_str_sp,9000, f84d0000), \
11148 X(_sub, 1e00, eba00000), \
11149 X(_subs, 1e00, ebb00000), \
11150 X(_subi, 8000, f1a00000), \
11151 X(_subis, 8000, f1b00000), \
11152 X(_sxtb, b240, fa4ff080), \
11153 X(_sxth, b200, fa0ff080), \
11154 X(_tst, 4200, ea100f00), \
11155 X(_uxtb, b2c0, fa5ff080), \
11156 X(_uxth, b280, fa1ff080), \
11157 X(_nop, bf00, f3af8000), \
11158 X(_yield, bf10, f3af8001), \
11159 X(_wfe, bf20, f3af8002), \
11160 X(_wfi, bf30, f3af8003), \
60f993ce 11161 X(_wls, 0000, f040c001), \
53c4b28b 11162 X(_sev, bf40, f3af8004), \
74db7efb
NC
11163 X(_sevl, bf50, f3af8005), \
11164 X(_udf, de00, f7f0a000)
c19d1205
ZW
11165
11166/* To catch errors in encoding functions, the codes are all offset by
11167 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11168 as 16-bit instructions. */
21d799b5 11169#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11170enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11171#undef X
11172
11173#define X(a,b,c) 0x##b
11174static const unsigned short thumb_op16[] = { T16_32_TAB };
11175#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11176#undef X
11177
11178#define X(a,b,c) 0x##c
11179static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11180#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11181#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11182#undef X
11183#undef T16_32_TAB
11184
11185/* Thumb instruction encoders, in alphabetical order. */
11186
92e90b6e 11187/* ADDW or SUBW. */
c921be7d 11188
92e90b6e
PB
11189static void
11190do_t_add_sub_w (void)
11191{
11192 int Rd, Rn;
11193
11194 Rd = inst.operands[0].reg;
11195 Rn = inst.operands[1].reg;
11196
539d4391
NC
11197 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11198 is the SP-{plus,minus}-immediate form of the instruction. */
11199 if (Rn == REG_SP)
11200 constraint (Rd == REG_PC, BAD_PC);
11201 else
11202 reject_bad_reg (Rd);
fdfde340 11203
92e90b6e 11204 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11205 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11206}
11207
c19d1205 11208/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11209 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11210
11211static void
11212do_t_add_sub (void)
11213{
11214 int Rd, Rs, Rn;
11215
11216 Rd = inst.operands[0].reg;
11217 Rs = (inst.operands[1].present
11218 ? inst.operands[1].reg /* Rd, Rs, foo */
11219 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11220
e07e6e58 11221 if (Rd == REG_PC)
5ee91343 11222 set_pred_insn_type_last ();
e07e6e58 11223
c19d1205
ZW
11224 if (unified_syntax)
11225 {
0110f2b8
PB
11226 bfd_boolean flags;
11227 bfd_boolean narrow;
11228 int opcode;
11229
11230 flags = (inst.instruction == T_MNEM_adds
11231 || inst.instruction == T_MNEM_subs);
11232 if (flags)
5ee91343 11233 narrow = !in_pred_block ();
0110f2b8 11234 else
5ee91343 11235 narrow = in_pred_block ();
c19d1205 11236 if (!inst.operands[2].isreg)
b99bd4ef 11237 {
16805f35
PB
11238 int add;
11239
5c8ed6a4
JW
11240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11241 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11242
16805f35
PB
11243 add = (inst.instruction == T_MNEM_add
11244 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11245 opcode = 0;
11246 if (inst.size_req != 4)
11247 {
0110f2b8 11248 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11249 appropriate. */
0110f2b8
PB
11250 if (Rd == REG_SP && Rs == REG_SP && !flags)
11251 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11252 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11253 opcode = T_MNEM_add_sp;
11254 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11255 opcode = T_MNEM_add_pc;
11256 else if (Rd <= 7 && Rs <= 7 && narrow)
11257 {
11258 if (flags)
11259 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11260 else
11261 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11262 }
11263 if (opcode)
11264 {
11265 inst.instruction = THUMB_OP16(opcode);
11266 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11267 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11268 || (inst.relocs[0].type
11269 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11270 {
11271 if (inst.size_req == 2)
e2b0ab59 11272 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11273 else
11274 inst.relax = opcode;
11275 }
0110f2b8
PB
11276 }
11277 else
11278 constraint (inst.size_req == 2, BAD_HIREG);
11279 }
11280 if (inst.size_req == 4
11281 || (inst.size_req != 2 && !opcode))
11282 {
e2b0ab59
AV
11283 constraint ((inst.relocs[0].type
11284 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11285 && (inst.relocs[0].type
11286 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11287 THUMB1_RELOC_ONLY);
efd81785
PB
11288 if (Rd == REG_PC)
11289 {
fdfde340 11290 constraint (add, BAD_PC);
efd81785
PB
11291 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11292 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11293 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11294 _("expression too complex"));
e2b0ab59
AV
11295 constraint (inst.relocs[0].exp.X_add_number < 0
11296 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11297 _("immediate value out of range"));
11298 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11299 | inst.relocs[0].exp.X_add_number;
11300 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11301 return;
11302 }
11303 else if (Rs == REG_PC)
16805f35
PB
11304 {
11305 /* Always use addw/subw. */
11306 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11307 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11308 }
11309 else
11310 {
11311 inst.instruction = THUMB_OP32 (inst.instruction);
11312 inst.instruction = (inst.instruction & 0xe1ffffff)
11313 | 0x10000000;
11314 if (flags)
e2b0ab59 11315 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11316 else
e2b0ab59 11317 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11318 }
dc4503c6
PB
11319 inst.instruction |= Rd << 8;
11320 inst.instruction |= Rs << 16;
0110f2b8 11321 }
b99bd4ef 11322 }
c19d1205
ZW
11323 else
11324 {
e2b0ab59 11325 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11326 unsigned int shift = inst.operands[2].shift_kind;
11327
c19d1205
ZW
11328 Rn = inst.operands[2].reg;
11329 /* See if we can do this with a 16-bit instruction. */
11330 if (!inst.operands[2].shifted && inst.size_req != 4)
11331 {
e27ec89e
PB
11332 if (Rd > 7 || Rs > 7 || Rn > 7)
11333 narrow = FALSE;
11334
11335 if (narrow)
c19d1205 11336 {
e27ec89e
PB
11337 inst.instruction = ((inst.instruction == T_MNEM_adds
11338 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11339 ? T_OPCODE_ADD_R3
11340 : T_OPCODE_SUB_R3);
11341 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11342 return;
11343 }
b99bd4ef 11344
7e806470 11345 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11346 {
7e806470
PB
11347 /* Thumb-1 cores (except v6-M) require at least one high
11348 register in a narrow non flag setting add. */
11349 if (Rd > 7 || Rn > 7
11350 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11351 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11352 {
7e806470
PB
11353 if (Rd == Rn)
11354 {
11355 Rn = Rs;
11356 Rs = Rd;
11357 }
c19d1205
ZW
11358 inst.instruction = T_OPCODE_ADD_HI;
11359 inst.instruction |= (Rd & 8) << 4;
11360 inst.instruction |= (Rd & 7);
11361 inst.instruction |= Rn << 3;
11362 return;
11363 }
c19d1205
ZW
11364 }
11365 }
c921be7d 11366
fdfde340 11367 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11368 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11369 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11370 constraint (Rs == REG_PC, BAD_PC);
11371 reject_bad_reg (Rn);
11372
c19d1205
ZW
11373 /* If we get here, it can't be done in 16 bits. */
11374 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11375 _("shift must be constant"));
11376 inst.instruction = THUMB_OP32 (inst.instruction);
11377 inst.instruction |= Rd << 8;
11378 inst.instruction |= Rs << 16;
5f4cb198
NC
11379 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11380 _("shift value over 3 not allowed in thumb mode"));
11381 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11382 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11383 encode_thumb32_shifted_operand (2);
11384 }
11385 }
11386 else
11387 {
11388 constraint (inst.instruction == T_MNEM_adds
11389 || inst.instruction == T_MNEM_subs,
11390 BAD_THUMB32);
b99bd4ef 11391
c19d1205 11392 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11393 {
c19d1205
ZW
11394 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11395 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11396 BAD_HIREG);
11397
11398 inst.instruction = (inst.instruction == T_MNEM_add
11399 ? 0x0000 : 0x8000);
11400 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11401 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11402 return;
11403 }
11404
c19d1205
ZW
11405 Rn = inst.operands[2].reg;
11406 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11407
c19d1205
ZW
11408 /* We now have Rd, Rs, and Rn set to registers. */
11409 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11410 {
c19d1205
ZW
11411 /* Can't do this for SUB. */
11412 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11413 inst.instruction = T_OPCODE_ADD_HI;
11414 inst.instruction |= (Rd & 8) << 4;
11415 inst.instruction |= (Rd & 7);
11416 if (Rs == Rd)
11417 inst.instruction |= Rn << 3;
11418 else if (Rn == Rd)
11419 inst.instruction |= Rs << 3;
11420 else
11421 constraint (1, _("dest must overlap one source register"));
11422 }
11423 else
11424 {
11425 inst.instruction = (inst.instruction == T_MNEM_add
11426 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11427 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11428 }
b99bd4ef 11429 }
b99bd4ef
NC
11430}
11431
c19d1205
ZW
11432static void
11433do_t_adr (void)
11434{
fdfde340
JM
11435 unsigned Rd;
11436
11437 Rd = inst.operands[0].reg;
11438 reject_bad_reg (Rd);
11439
11440 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11441 {
11442 /* Defer to section relaxation. */
11443 inst.relax = inst.instruction;
11444 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11445 inst.instruction |= Rd << 4;
0110f2b8
PB
11446 }
11447 else if (unified_syntax && inst.size_req != 2)
e9f89963 11448 {
0110f2b8 11449 /* Generate a 32-bit opcode. */
e9f89963 11450 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11451 inst.instruction |= Rd << 8;
e2b0ab59
AV
11452 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11453 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11454 }
11455 else
11456 {
0110f2b8 11457 /* Generate a 16-bit opcode. */
e9f89963 11458 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11459 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11460 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11461 inst.relocs[0].pc_rel = 1;
fdfde340 11462 inst.instruction |= Rd << 4;
e9f89963 11463 }
52a86f84 11464
e2b0ab59
AV
11465 if (inst.relocs[0].exp.X_op == O_symbol
11466 && inst.relocs[0].exp.X_add_symbol != NULL
11467 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11468 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11469 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11470}
b99bd4ef 11471
c19d1205
ZW
11472/* Arithmetic instructions for which there is just one 16-bit
11473 instruction encoding, and it allows only two low registers.
11474 For maximal compatibility with ARM syntax, we allow three register
11475 operands even when Thumb-32 instructions are not available, as long
11476 as the first two are identical. For instance, both "sbc r0,r1" and
11477 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11478static void
c19d1205 11479do_t_arit3 (void)
b99bd4ef 11480{
c19d1205 11481 int Rd, Rs, Rn;
b99bd4ef 11482
c19d1205
ZW
11483 Rd = inst.operands[0].reg;
11484 Rs = (inst.operands[1].present
11485 ? inst.operands[1].reg /* Rd, Rs, foo */
11486 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11487 Rn = inst.operands[2].reg;
b99bd4ef 11488
fdfde340
JM
11489 reject_bad_reg (Rd);
11490 reject_bad_reg (Rs);
11491 if (inst.operands[2].isreg)
11492 reject_bad_reg (Rn);
11493
c19d1205 11494 if (unified_syntax)
b99bd4ef 11495 {
c19d1205
ZW
11496 if (!inst.operands[2].isreg)
11497 {
11498 /* For an immediate, we always generate a 32-bit opcode;
11499 section relaxation will shrink it later if possible. */
11500 inst.instruction = THUMB_OP32 (inst.instruction);
11501 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11502 inst.instruction |= Rd << 8;
11503 inst.instruction |= Rs << 16;
e2b0ab59 11504 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11505 }
11506 else
11507 {
e27ec89e
PB
11508 bfd_boolean narrow;
11509
c19d1205 11510 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11511 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11512 narrow = !in_pred_block ();
e27ec89e 11513 else
5ee91343 11514 narrow = in_pred_block ();
e27ec89e
PB
11515
11516 if (Rd > 7 || Rn > 7 || Rs > 7)
11517 narrow = FALSE;
11518 if (inst.operands[2].shifted)
11519 narrow = FALSE;
11520 if (inst.size_req == 4)
11521 narrow = FALSE;
11522
11523 if (narrow
c19d1205
ZW
11524 && Rd == Rs)
11525 {
11526 inst.instruction = THUMB_OP16 (inst.instruction);
11527 inst.instruction |= Rd;
11528 inst.instruction |= Rn << 3;
11529 return;
11530 }
b99bd4ef 11531
c19d1205
ZW
11532 /* If we get here, it can't be done in 16 bits. */
11533 constraint (inst.operands[2].shifted
11534 && inst.operands[2].immisreg,
11535 _("shift must be constant"));
11536 inst.instruction = THUMB_OP32 (inst.instruction);
11537 inst.instruction |= Rd << 8;
11538 inst.instruction |= Rs << 16;
11539 encode_thumb32_shifted_operand (2);
11540 }
a737bd4d 11541 }
c19d1205 11542 else
b99bd4ef 11543 {
c19d1205
ZW
11544 /* On its face this is a lie - the instruction does set the
11545 flags. However, the only supported mnemonic in this mode
11546 says it doesn't. */
11547 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11548
c19d1205
ZW
11549 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11550 _("unshifted register required"));
11551 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11552 constraint (Rd != Rs,
11553 _("dest and source1 must be the same register"));
a737bd4d 11554
c19d1205
ZW
11555 inst.instruction = THUMB_OP16 (inst.instruction);
11556 inst.instruction |= Rd;
11557 inst.instruction |= Rn << 3;
b99bd4ef 11558 }
a737bd4d 11559}
b99bd4ef 11560
c19d1205
ZW
11561/* Similarly, but for instructions where the arithmetic operation is
11562 commutative, so we can allow either of them to be different from
11563 the destination operand in a 16-bit instruction. For instance, all
11564 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11565 accepted. */
11566static void
11567do_t_arit3c (void)
a737bd4d 11568{
c19d1205 11569 int Rd, Rs, Rn;
b99bd4ef 11570
c19d1205
ZW
11571 Rd = inst.operands[0].reg;
11572 Rs = (inst.operands[1].present
11573 ? inst.operands[1].reg /* Rd, Rs, foo */
11574 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11575 Rn = inst.operands[2].reg;
c921be7d 11576
fdfde340
JM
11577 reject_bad_reg (Rd);
11578 reject_bad_reg (Rs);
11579 if (inst.operands[2].isreg)
11580 reject_bad_reg (Rn);
a737bd4d 11581
c19d1205 11582 if (unified_syntax)
a737bd4d 11583 {
c19d1205 11584 if (!inst.operands[2].isreg)
b99bd4ef 11585 {
c19d1205
ZW
11586 /* For an immediate, we always generate a 32-bit opcode;
11587 section relaxation will shrink it later if possible. */
11588 inst.instruction = THUMB_OP32 (inst.instruction);
11589 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11590 inst.instruction |= Rd << 8;
11591 inst.instruction |= Rs << 16;
e2b0ab59 11592 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11593 }
c19d1205 11594 else
a737bd4d 11595 {
e27ec89e
PB
11596 bfd_boolean narrow;
11597
c19d1205 11598 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11599 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11600 narrow = !in_pred_block ();
e27ec89e 11601 else
5ee91343 11602 narrow = in_pred_block ();
e27ec89e
PB
11603
11604 if (Rd > 7 || Rn > 7 || Rs > 7)
11605 narrow = FALSE;
11606 if (inst.operands[2].shifted)
11607 narrow = FALSE;
11608 if (inst.size_req == 4)
11609 narrow = FALSE;
11610
11611 if (narrow)
a737bd4d 11612 {
c19d1205 11613 if (Rd == Rs)
a737bd4d 11614 {
c19d1205
ZW
11615 inst.instruction = THUMB_OP16 (inst.instruction);
11616 inst.instruction |= Rd;
11617 inst.instruction |= Rn << 3;
11618 return;
a737bd4d 11619 }
c19d1205 11620 if (Rd == Rn)
a737bd4d 11621 {
c19d1205
ZW
11622 inst.instruction = THUMB_OP16 (inst.instruction);
11623 inst.instruction |= Rd;
11624 inst.instruction |= Rs << 3;
11625 return;
a737bd4d
NC
11626 }
11627 }
c19d1205
ZW
11628
11629 /* If we get here, it can't be done in 16 bits. */
11630 constraint (inst.operands[2].shifted
11631 && inst.operands[2].immisreg,
11632 _("shift must be constant"));
11633 inst.instruction = THUMB_OP32 (inst.instruction);
11634 inst.instruction |= Rd << 8;
11635 inst.instruction |= Rs << 16;
11636 encode_thumb32_shifted_operand (2);
a737bd4d 11637 }
b99bd4ef 11638 }
c19d1205
ZW
11639 else
11640 {
11641 /* On its face this is a lie - the instruction does set the
11642 flags. However, the only supported mnemonic in this mode
11643 says it doesn't. */
11644 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11645
c19d1205
ZW
11646 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11647 _("unshifted register required"));
11648 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11649
11650 inst.instruction = THUMB_OP16 (inst.instruction);
11651 inst.instruction |= Rd;
11652
11653 if (Rd == Rs)
11654 inst.instruction |= Rn << 3;
11655 else if (Rd == Rn)
11656 inst.instruction |= Rs << 3;
11657 else
11658 constraint (1, _("dest must overlap one source register"));
11659 }
a737bd4d
NC
11660}
11661
c19d1205
ZW
11662static void
11663do_t_bfc (void)
a737bd4d 11664{
fdfde340 11665 unsigned Rd;
c19d1205
ZW
11666 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11667 constraint (msb > 32, _("bit-field extends past end of register"));
11668 /* The instruction encoding stores the LSB and MSB,
11669 not the LSB and width. */
fdfde340
JM
11670 Rd = inst.operands[0].reg;
11671 reject_bad_reg (Rd);
11672 inst.instruction |= Rd << 8;
c19d1205
ZW
11673 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11674 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11675 inst.instruction |= msb - 1;
b99bd4ef
NC
11676}
11677
c19d1205
ZW
11678static void
11679do_t_bfi (void)
b99bd4ef 11680{
fdfde340 11681 int Rd, Rn;
c19d1205 11682 unsigned int msb;
b99bd4ef 11683
fdfde340
JM
11684 Rd = inst.operands[0].reg;
11685 reject_bad_reg (Rd);
11686
c19d1205
ZW
11687 /* #0 in second position is alternative syntax for bfc, which is
11688 the same instruction but with REG_PC in the Rm field. */
11689 if (!inst.operands[1].isreg)
fdfde340
JM
11690 Rn = REG_PC;
11691 else
11692 {
11693 Rn = inst.operands[1].reg;
11694 reject_bad_reg (Rn);
11695 }
b99bd4ef 11696
c19d1205
ZW
11697 msb = inst.operands[2].imm + inst.operands[3].imm;
11698 constraint (msb > 32, _("bit-field extends past end of register"));
11699 /* The instruction encoding stores the LSB and MSB,
11700 not the LSB and width. */
fdfde340
JM
11701 inst.instruction |= Rd << 8;
11702 inst.instruction |= Rn << 16;
c19d1205
ZW
11703 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11704 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11705 inst.instruction |= msb - 1;
b99bd4ef
NC
11706}
11707
c19d1205
ZW
11708static void
11709do_t_bfx (void)
b99bd4ef 11710{
fdfde340
JM
11711 unsigned Rd, Rn;
11712
11713 Rd = inst.operands[0].reg;
11714 Rn = inst.operands[1].reg;
11715
11716 reject_bad_reg (Rd);
11717 reject_bad_reg (Rn);
11718
c19d1205
ZW
11719 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11720 _("bit-field extends past end of register"));
fdfde340
JM
11721 inst.instruction |= Rd << 8;
11722 inst.instruction |= Rn << 16;
c19d1205
ZW
11723 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11724 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11725 inst.instruction |= inst.operands[3].imm - 1;
11726}
b99bd4ef 11727
c19d1205
ZW
11728/* ARM V5 Thumb BLX (argument parse)
11729 BLX <target_addr> which is BLX(1)
11730 BLX <Rm> which is BLX(2)
11731 Unfortunately, there are two different opcodes for this mnemonic.
11732 So, the insns[].value is not used, and the code here zaps values
11733 into inst.instruction.
b99bd4ef 11734
c19d1205
ZW
11735 ??? How to take advantage of the additional two bits of displacement
11736 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11737
c19d1205
ZW
11738static void
11739do_t_blx (void)
11740{
5ee91343 11741 set_pred_insn_type_last ();
e07e6e58 11742
c19d1205 11743 if (inst.operands[0].isreg)
fdfde340
JM
11744 {
11745 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11746 /* We have a register, so this is BLX(2). */
11747 inst.instruction |= inst.operands[0].reg << 3;
11748 }
b99bd4ef
NC
11749 else
11750 {
c19d1205 11751 /* No register. This must be BLX(1). */
2fc8bdac 11752 inst.instruction = 0xf000e800;
0855e32b 11753 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11754 }
11755}
11756
c19d1205
ZW
11757static void
11758do_t_branch (void)
b99bd4ef 11759{
0110f2b8 11760 int opcode;
dfa9f0d5 11761 int cond;
2fe88214 11762 bfd_reloc_code_real_type reloc;
dfa9f0d5 11763
e07e6e58 11764 cond = inst.cond;
5ee91343 11765 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11766
5ee91343 11767 if (in_pred_block ())
dfa9f0d5
PB
11768 {
11769 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11770 branches. */
dfa9f0d5 11771 cond = COND_ALWAYS;
dfa9f0d5
PB
11772 }
11773 else
11774 cond = inst.cond;
11775
11776 if (cond != COND_ALWAYS)
0110f2b8
PB
11777 opcode = T_MNEM_bcond;
11778 else
11779 opcode = inst.instruction;
11780
12d6b0b7
RS
11781 if (unified_syntax
11782 && (inst.size_req == 4
10960bfb
PB
11783 || (inst.size_req != 2
11784 && (inst.operands[0].hasreloc
e2b0ab59 11785 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11786 {
0110f2b8 11787 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11788 if (cond == COND_ALWAYS)
9ae92b05 11789 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11790 else
11791 {
ff8646ee
TP
11792 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11793 _("selected architecture does not support "
11794 "wide conditional branch instruction"));
11795
9c2799c2 11796 gas_assert (cond != 0xF);
dfa9f0d5 11797 inst.instruction |= cond << 22;
9ae92b05 11798 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11799 }
11800 }
b99bd4ef
NC
11801 else
11802 {
0110f2b8 11803 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11804 if (cond == COND_ALWAYS)
9ae92b05 11805 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11806 else
b99bd4ef 11807 {
dfa9f0d5 11808 inst.instruction |= cond << 8;
9ae92b05 11809 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11810 }
0110f2b8
PB
11811 /* Allow section relaxation. */
11812 if (unified_syntax && inst.size_req != 2)
11813 inst.relax = opcode;
b99bd4ef 11814 }
e2b0ab59
AV
11815 inst.relocs[0].type = reloc;
11816 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11817}
11818
8884b720 11819/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11820 between the two is the maximum immediate allowed - which is passed in
8884b720 11821 RANGE. */
b99bd4ef 11822static void
8884b720 11823do_t_bkpt_hlt1 (int range)
b99bd4ef 11824{
dfa9f0d5
PB
11825 constraint (inst.cond != COND_ALWAYS,
11826 _("instruction is always unconditional"));
c19d1205 11827 if (inst.operands[0].present)
b99bd4ef 11828 {
8884b720 11829 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11830 _("immediate value out of range"));
11831 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11832 }
8884b720 11833
5ee91343 11834 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11835}
11836
11837static void
11838do_t_hlt (void)
11839{
11840 do_t_bkpt_hlt1 (63);
11841}
11842
11843static void
11844do_t_bkpt (void)
11845{
11846 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11847}
11848
11849static void
c19d1205 11850do_t_branch23 (void)
b99bd4ef 11851{
5ee91343 11852 set_pred_insn_type_last ();
0855e32b 11853 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11854
0855e32b
NS
11855 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11856 this file. We used to simply ignore the PLT reloc type here --
11857 the branch encoding is now needed to deal with TLSCALL relocs.
11858 So if we see a PLT reloc now, put it back to how it used to be to
11859 keep the preexisting behaviour. */
e2b0ab59
AV
11860 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11861 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11862
4343666d 11863#if defined(OBJ_COFF)
c19d1205
ZW
11864 /* If the destination of the branch is a defined symbol which does not have
11865 the THUMB_FUNC attribute, then we must be calling a function which has
11866 the (interfacearm) attribute. We look for the Thumb entry point to that
11867 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11868 if ( inst.relocs[0].exp.X_op == O_symbol
11869 && inst.relocs[0].exp.X_add_symbol != NULL
11870 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11871 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11872 inst.relocs[0].exp.X_add_symbol
11873 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11874#endif
90e4755a
RE
11875}
11876
11877static void
c19d1205 11878do_t_bx (void)
90e4755a 11879{
5ee91343 11880 set_pred_insn_type_last ();
c19d1205
ZW
11881 inst.instruction |= inst.operands[0].reg << 3;
11882 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11883 should cause the alignment to be checked once it is known. This is
11884 because BX PC only works if the instruction is word aligned. */
11885}
90e4755a 11886
c19d1205
ZW
11887static void
11888do_t_bxj (void)
11889{
fdfde340 11890 int Rm;
90e4755a 11891
5ee91343 11892 set_pred_insn_type_last ();
fdfde340
JM
11893 Rm = inst.operands[0].reg;
11894 reject_bad_reg (Rm);
11895 inst.instruction |= Rm << 16;
90e4755a
RE
11896}
11897
11898static void
c19d1205 11899do_t_clz (void)
90e4755a 11900{
fdfde340
JM
11901 unsigned Rd;
11902 unsigned Rm;
11903
11904 Rd = inst.operands[0].reg;
11905 Rm = inst.operands[1].reg;
11906
11907 reject_bad_reg (Rd);
11908 reject_bad_reg (Rm);
11909
11910 inst.instruction |= Rd << 8;
11911 inst.instruction |= Rm << 16;
11912 inst.instruction |= Rm;
c19d1205 11913}
90e4755a 11914
91d8b670
JG
11915static void
11916do_t_csdb (void)
11917{
5ee91343 11918 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11919}
11920
dfa9f0d5
PB
11921static void
11922do_t_cps (void)
11923{
5ee91343 11924 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11925 inst.instruction |= inst.operands[0].imm;
11926}
11927
c19d1205
ZW
11928static void
11929do_t_cpsi (void)
11930{
5ee91343 11931 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11932 if (unified_syntax
62b3e311
PB
11933 && (inst.operands[1].present || inst.size_req == 4)
11934 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11935 {
c19d1205
ZW
11936 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11937 inst.instruction = 0xf3af8000;
11938 inst.instruction |= imod << 9;
11939 inst.instruction |= inst.operands[0].imm << 5;
11940 if (inst.operands[1].present)
11941 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11942 }
c19d1205 11943 else
90e4755a 11944 {
62b3e311
PB
11945 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11946 && (inst.operands[0].imm & 4),
11947 _("selected processor does not support 'A' form "
11948 "of this instruction"));
11949 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11950 _("Thumb does not support the 2-argument "
11951 "form of this instruction"));
11952 inst.instruction |= inst.operands[0].imm;
90e4755a 11953 }
90e4755a
RE
11954}
11955
c19d1205
ZW
11956/* THUMB CPY instruction (argument parse). */
11957
90e4755a 11958static void
c19d1205 11959do_t_cpy (void)
90e4755a 11960{
c19d1205 11961 if (inst.size_req == 4)
90e4755a 11962 {
c19d1205
ZW
11963 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11964 inst.instruction |= inst.operands[0].reg << 8;
11965 inst.instruction |= inst.operands[1].reg;
90e4755a 11966 }
c19d1205 11967 else
90e4755a 11968 {
c19d1205
ZW
11969 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11970 inst.instruction |= (inst.operands[0].reg & 0x7);
11971 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11972 }
90e4755a
RE
11973}
11974
90e4755a 11975static void
25fe350b 11976do_t_cbz (void)
90e4755a 11977{
5ee91343 11978 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
11979 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11980 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11981 inst.relocs[0].pc_rel = 1;
11982 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11983}
90e4755a 11984
62b3e311
PB
11985static void
11986do_t_dbg (void)
11987{
11988 inst.instruction |= inst.operands[0].imm;
11989}
11990
11991static void
11992do_t_div (void)
11993{
fdfde340
JM
11994 unsigned Rd, Rn, Rm;
11995
11996 Rd = inst.operands[0].reg;
11997 Rn = (inst.operands[1].present
11998 ? inst.operands[1].reg : Rd);
11999 Rm = inst.operands[2].reg;
12000
12001 reject_bad_reg (Rd);
12002 reject_bad_reg (Rn);
12003 reject_bad_reg (Rm);
12004
12005 inst.instruction |= Rd << 8;
12006 inst.instruction |= Rn << 16;
12007 inst.instruction |= Rm;
62b3e311
PB
12008}
12009
c19d1205
ZW
12010static void
12011do_t_hint (void)
12012{
12013 if (unified_syntax && inst.size_req == 4)
12014 inst.instruction = THUMB_OP32 (inst.instruction);
12015 else
12016 inst.instruction = THUMB_OP16 (inst.instruction);
12017}
90e4755a 12018
c19d1205
ZW
12019static void
12020do_t_it (void)
12021{
12022 unsigned int cond = inst.operands[0].imm;
e27ec89e 12023
5ee91343
AV
12024 set_pred_insn_type (IT_INSN);
12025 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12026 now_pred.cc = cond;
12027 now_pred.warn_deprecated = FALSE;
12028 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12029
12030 /* If the condition is a negative condition, invert the mask. */
c19d1205 12031 if ((cond & 0x1) == 0x0)
90e4755a 12032 {
c19d1205 12033 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12034
c19d1205 12035 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12036 {
12037 /* No conversion needed. */
5ee91343 12038 now_pred.block_length = 1;
5a01bb1d 12039 }
c19d1205 12040 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12041 {
12042 mask ^= 0x8;
5ee91343 12043 now_pred.block_length = 2;
5a01bb1d 12044 }
e27ec89e 12045 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12046 {
12047 mask ^= 0xC;
5ee91343 12048 now_pred.block_length = 3;
5a01bb1d 12049 }
c19d1205 12050 else
5a01bb1d
MGD
12051 {
12052 mask ^= 0xE;
5ee91343 12053 now_pred.block_length = 4;
5a01bb1d 12054 }
90e4755a 12055
e27ec89e
PB
12056 inst.instruction &= 0xfff0;
12057 inst.instruction |= mask;
c19d1205 12058 }
90e4755a 12059
c19d1205
ZW
12060 inst.instruction |= cond << 4;
12061}
90e4755a 12062
3c707909
PB
12063/* Helper function used for both push/pop and ldm/stm. */
12064static void
4b5a202f
AV
12065encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12066 bfd_boolean writeback)
3c707909 12067{
4b5a202f 12068 bfd_boolean load, store;
3c707909 12069
4b5a202f
AV
12070 gas_assert (base != -1 || !do_io);
12071 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12072 store = do_io && !load;
3c707909
PB
12073
12074 if (mask & (1 << 13))
12075 inst.error = _("SP not allowed in register list");
1e5b0379 12076
4b5a202f 12077 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12078 && writeback)
12079 inst.error = _("having the base register in the register list when "
12080 "using write back is UNPREDICTABLE");
12081
3c707909
PB
12082 if (load)
12083 {
e07e6e58 12084 if (mask & (1 << 15))
477330fc
RM
12085 {
12086 if (mask & (1 << 14))
12087 inst.error = _("LR and PC should not both be in register list");
12088 else
5ee91343 12089 set_pred_insn_type_last ();
477330fc 12090 }
3c707909 12091 }
4b5a202f 12092 else if (store)
3c707909
PB
12093 {
12094 if (mask & (1 << 15))
12095 inst.error = _("PC not allowed in register list");
3c707909
PB
12096 }
12097
4b5a202f 12098 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12099 {
12100 /* Single register transfers implemented as str/ldr. */
12101 if (writeback)
12102 {
12103 if (inst.instruction & (1 << 23))
12104 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12105 else
12106 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12107 }
12108 else
12109 {
12110 if (inst.instruction & (1 << 23))
12111 inst.instruction = 0x00800000; /* ia -> [base] */
12112 else
12113 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12114 }
12115
12116 inst.instruction |= 0xf8400000;
12117 if (load)
12118 inst.instruction |= 0x00100000;
12119
5f4273c7 12120 mask = ffs (mask) - 1;
3c707909
PB
12121 mask <<= 12;
12122 }
12123 else if (writeback)
12124 inst.instruction |= WRITE_BACK;
12125
12126 inst.instruction |= mask;
4b5a202f
AV
12127 if (do_io)
12128 inst.instruction |= base << 16;
3c707909
PB
12129}
12130
c19d1205
ZW
12131static void
12132do_t_ldmstm (void)
12133{
12134 /* This really doesn't seem worth it. */
e2b0ab59 12135 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12136 _("expression too complex"));
12137 constraint (inst.operands[1].writeback,
12138 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12139
c19d1205
ZW
12140 if (unified_syntax)
12141 {
3c707909
PB
12142 bfd_boolean narrow;
12143 unsigned mask;
12144
12145 narrow = FALSE;
c19d1205
ZW
12146 /* See if we can use a 16-bit instruction. */
12147 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12148 && inst.size_req != 4
3c707909 12149 && !(inst.operands[1].imm & ~0xff))
90e4755a 12150 {
3c707909 12151 mask = 1 << inst.operands[0].reg;
90e4755a 12152
eab4f823 12153 if (inst.operands[0].reg <= 7)
90e4755a 12154 {
3c707909 12155 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12156 ? inst.operands[0].writeback
12157 : (inst.operands[0].writeback
12158 == !(inst.operands[1].imm & mask)))
477330fc 12159 {
eab4f823
MGD
12160 if (inst.instruction == T_MNEM_stmia
12161 && (inst.operands[1].imm & mask)
12162 && (inst.operands[1].imm & (mask - 1)))
12163 as_warn (_("value stored for r%d is UNKNOWN"),
12164 inst.operands[0].reg);
3c707909 12165
eab4f823
MGD
12166 inst.instruction = THUMB_OP16 (inst.instruction);
12167 inst.instruction |= inst.operands[0].reg << 8;
12168 inst.instruction |= inst.operands[1].imm;
12169 narrow = TRUE;
12170 }
12171 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12172 {
12173 /* This means 1 register in reg list one of 3 situations:
12174 1. Instruction is stmia, but without writeback.
12175 2. lmdia without writeback, but with Rn not in
477330fc 12176 reglist.
eab4f823
MGD
12177 3. ldmia with writeback, but with Rn in reglist.
12178 Case 3 is UNPREDICTABLE behaviour, so we handle
12179 case 1 and 2 which can be converted into a 16-bit
12180 str or ldr. The SP cases are handled below. */
12181 unsigned long opcode;
12182 /* First, record an error for Case 3. */
12183 if (inst.operands[1].imm & mask
12184 && inst.operands[0].writeback)
fa94de6b 12185 inst.error =
eab4f823
MGD
12186 _("having the base register in the register list when "
12187 "using write back is UNPREDICTABLE");
fa94de6b
RM
12188
12189 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12190 : T_MNEM_ldr);
12191 inst.instruction = THUMB_OP16 (opcode);
12192 inst.instruction |= inst.operands[0].reg << 3;
12193 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12194 narrow = TRUE;
12195 }
90e4755a 12196 }
eab4f823 12197 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12198 {
eab4f823
MGD
12199 if (inst.operands[0].writeback)
12200 {
fa94de6b 12201 inst.instruction =
eab4f823 12202 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12203 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12204 inst.instruction |= inst.operands[1].imm;
477330fc 12205 narrow = TRUE;
eab4f823
MGD
12206 }
12207 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12208 {
fa94de6b 12209 inst.instruction =
eab4f823 12210 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12211 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12212 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12213 narrow = TRUE;
eab4f823 12214 }
90e4755a 12215 }
3c707909
PB
12216 }
12217
12218 if (!narrow)
12219 {
c19d1205
ZW
12220 if (inst.instruction < 0xffff)
12221 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12222
4b5a202f
AV
12223 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12224 inst.operands[1].imm,
12225 inst.operands[0].writeback);
90e4755a
RE
12226 }
12227 }
c19d1205 12228 else
90e4755a 12229 {
c19d1205
ZW
12230 constraint (inst.operands[0].reg > 7
12231 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12232 constraint (inst.instruction != T_MNEM_ldmia
12233 && inst.instruction != T_MNEM_stmia,
12234 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12235 if (inst.instruction == T_MNEM_stmia)
f03698e6 12236 {
c19d1205
ZW
12237 if (!inst.operands[0].writeback)
12238 as_warn (_("this instruction will write back the base register"));
12239 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12240 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12241 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12242 inst.operands[0].reg);
f03698e6 12243 }
c19d1205 12244 else
90e4755a 12245 {
c19d1205
ZW
12246 if (!inst.operands[0].writeback
12247 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12248 as_warn (_("this instruction will write back the base register"));
12249 else if (inst.operands[0].writeback
12250 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12251 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12252 }
12253
c19d1205
ZW
12254 inst.instruction = THUMB_OP16 (inst.instruction);
12255 inst.instruction |= inst.operands[0].reg << 8;
12256 inst.instruction |= inst.operands[1].imm;
12257 }
12258}
e28cd48c 12259
c19d1205
ZW
12260static void
12261do_t_ldrex (void)
12262{
12263 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12264 || inst.operands[1].postind || inst.operands[1].writeback
12265 || inst.operands[1].immisreg || inst.operands[1].shifted
12266 || inst.operands[1].negative,
01cfc07f 12267 BAD_ADDR_MODE);
e28cd48c 12268
5be8be5d
DG
12269 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12270
c19d1205
ZW
12271 inst.instruction |= inst.operands[0].reg << 12;
12272 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12273 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12274}
e28cd48c 12275
c19d1205
ZW
12276static void
12277do_t_ldrexd (void)
12278{
12279 if (!inst.operands[1].present)
1cac9012 12280 {
c19d1205
ZW
12281 constraint (inst.operands[0].reg == REG_LR,
12282 _("r14 not allowed as first register "
12283 "when second register is omitted"));
12284 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12285 }
c19d1205
ZW
12286 constraint (inst.operands[0].reg == inst.operands[1].reg,
12287 BAD_OVERLAP);
b99bd4ef 12288
c19d1205
ZW
12289 inst.instruction |= inst.operands[0].reg << 12;
12290 inst.instruction |= inst.operands[1].reg << 8;
12291 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12292}
12293
12294static void
c19d1205 12295do_t_ldst (void)
b99bd4ef 12296{
0110f2b8
PB
12297 unsigned long opcode;
12298 int Rn;
12299
e07e6e58
NC
12300 if (inst.operands[0].isreg
12301 && !inst.operands[0].preind
12302 && inst.operands[0].reg == REG_PC)
5ee91343 12303 set_pred_insn_type_last ();
e07e6e58 12304
0110f2b8 12305 opcode = inst.instruction;
c19d1205 12306 if (unified_syntax)
b99bd4ef 12307 {
53365c0d
PB
12308 if (!inst.operands[1].isreg)
12309 {
12310 if (opcode <= 0xffff)
12311 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12312 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12313 return;
12314 }
0110f2b8
PB
12315 if (inst.operands[1].isreg
12316 && !inst.operands[1].writeback
c19d1205
ZW
12317 && !inst.operands[1].shifted && !inst.operands[1].postind
12318 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12319 && opcode <= 0xffff
12320 && inst.size_req != 4)
c19d1205 12321 {
0110f2b8
PB
12322 /* Insn may have a 16-bit form. */
12323 Rn = inst.operands[1].reg;
12324 if (inst.operands[1].immisreg)
12325 {
12326 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12327 /* [Rn, Rik] */
0110f2b8
PB
12328 if (Rn <= 7 && inst.operands[1].imm <= 7)
12329 goto op16;
5be8be5d
DG
12330 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12331 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12332 }
12333 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12334 && opcode != T_MNEM_ldrsb)
12335 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12336 || (Rn == REG_SP && opcode == T_MNEM_str))
12337 {
12338 /* [Rn, #const] */
12339 if (Rn > 7)
12340 {
12341 if (Rn == REG_PC)
12342 {
e2b0ab59 12343 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12344 opcode = T_MNEM_ldr_pc2;
12345 else
12346 opcode = T_MNEM_ldr_pc;
12347 }
12348 else
12349 {
12350 if (opcode == T_MNEM_ldr)
12351 opcode = T_MNEM_ldr_sp;
12352 else
12353 opcode = T_MNEM_str_sp;
12354 }
12355 inst.instruction = inst.operands[0].reg << 8;
12356 }
12357 else
12358 {
12359 inst.instruction = inst.operands[0].reg;
12360 inst.instruction |= inst.operands[1].reg << 3;
12361 }
12362 inst.instruction |= THUMB_OP16 (opcode);
12363 if (inst.size_req == 2)
e2b0ab59 12364 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12365 else
12366 inst.relax = opcode;
12367 return;
12368 }
c19d1205 12369 }
0110f2b8 12370 /* Definitely a 32-bit variant. */
5be8be5d 12371
8d67f500
NC
12372 /* Warning for Erratum 752419. */
12373 if (opcode == T_MNEM_ldr
12374 && inst.operands[0].reg == REG_SP
12375 && inst.operands[1].writeback == 1
12376 && !inst.operands[1].immisreg)
12377 {
12378 if (no_cpu_selected ()
12379 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12380 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12381 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12382 as_warn (_("This instruction may be unpredictable "
12383 "if executed on M-profile cores "
12384 "with interrupts enabled."));
12385 }
12386
5be8be5d 12387 /* Do some validations regarding addressing modes. */
1be5fd2e 12388 if (inst.operands[1].immisreg)
5be8be5d
DG
12389 reject_bad_reg (inst.operands[1].imm);
12390
1be5fd2e
NC
12391 constraint (inst.operands[1].writeback == 1
12392 && inst.operands[0].reg == inst.operands[1].reg,
12393 BAD_OVERLAP);
12394
0110f2b8 12395 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12396 inst.instruction |= inst.operands[0].reg << 12;
12397 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12398 check_ldr_r15_aligned ();
b99bd4ef
NC
12399 return;
12400 }
12401
c19d1205
ZW
12402 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12403
12404 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12405 {
c19d1205
ZW
12406 /* Only [Rn,Rm] is acceptable. */
12407 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12408 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12409 || inst.operands[1].postind || inst.operands[1].shifted
12410 || inst.operands[1].negative,
12411 _("Thumb does not support this addressing mode"));
12412 inst.instruction = THUMB_OP16 (inst.instruction);
12413 goto op16;
b99bd4ef 12414 }
5f4273c7 12415
c19d1205
ZW
12416 inst.instruction = THUMB_OP16 (inst.instruction);
12417 if (!inst.operands[1].isreg)
8335d6aa 12418 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12419 return;
b99bd4ef 12420
c19d1205
ZW
12421 constraint (!inst.operands[1].preind
12422 || inst.operands[1].shifted
12423 || inst.operands[1].writeback,
12424 _("Thumb does not support this addressing mode"));
12425 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12426 {
c19d1205
ZW
12427 constraint (inst.instruction & 0x0600,
12428 _("byte or halfword not valid for base register"));
12429 constraint (inst.operands[1].reg == REG_PC
12430 && !(inst.instruction & THUMB_LOAD_BIT),
12431 _("r15 based store not allowed"));
12432 constraint (inst.operands[1].immisreg,
12433 _("invalid base register for register offset"));
b99bd4ef 12434
c19d1205
ZW
12435 if (inst.operands[1].reg == REG_PC)
12436 inst.instruction = T_OPCODE_LDR_PC;
12437 else if (inst.instruction & THUMB_LOAD_BIT)
12438 inst.instruction = T_OPCODE_LDR_SP;
12439 else
12440 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12441
c19d1205 12442 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12443 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12444 return;
12445 }
90e4755a 12446
c19d1205
ZW
12447 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12448 if (!inst.operands[1].immisreg)
12449 {
12450 /* Immediate offset. */
12451 inst.instruction |= inst.operands[0].reg;
12452 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12453 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12454 return;
12455 }
90e4755a 12456
c19d1205
ZW
12457 /* Register offset. */
12458 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12459 constraint (inst.operands[1].negative,
12460 _("Thumb does not support this addressing mode"));
90e4755a 12461
c19d1205
ZW
12462 op16:
12463 switch (inst.instruction)
12464 {
12465 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12466 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12467 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12468 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12469 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12470 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12471 case 0x5600 /* ldrsb */:
12472 case 0x5e00 /* ldrsh */: break;
12473 default: abort ();
12474 }
90e4755a 12475
c19d1205
ZW
12476 inst.instruction |= inst.operands[0].reg;
12477 inst.instruction |= inst.operands[1].reg << 3;
12478 inst.instruction |= inst.operands[1].imm << 6;
12479}
90e4755a 12480
c19d1205
ZW
12481static void
12482do_t_ldstd (void)
12483{
12484 if (!inst.operands[1].present)
b99bd4ef 12485 {
c19d1205
ZW
12486 inst.operands[1].reg = inst.operands[0].reg + 1;
12487 constraint (inst.operands[0].reg == REG_LR,
12488 _("r14 not allowed here"));
bd340a04 12489 constraint (inst.operands[0].reg == REG_R12,
477330fc 12490 _("r12 not allowed here"));
b99bd4ef 12491 }
bd340a04
MGD
12492
12493 if (inst.operands[2].writeback
12494 && (inst.operands[0].reg == inst.operands[2].reg
12495 || inst.operands[1].reg == inst.operands[2].reg))
12496 as_warn (_("base register written back, and overlaps "
477330fc 12497 "one of transfer registers"));
bd340a04 12498
c19d1205
ZW
12499 inst.instruction |= inst.operands[0].reg << 12;
12500 inst.instruction |= inst.operands[1].reg << 8;
12501 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12502}
12503
c19d1205
ZW
12504static void
12505do_t_ldstt (void)
12506{
12507 inst.instruction |= inst.operands[0].reg << 12;
12508 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12509}
a737bd4d 12510
b99bd4ef 12511static void
c19d1205 12512do_t_mla (void)
b99bd4ef 12513{
fdfde340 12514 unsigned Rd, Rn, Rm, Ra;
c921be7d 12515
fdfde340
JM
12516 Rd = inst.operands[0].reg;
12517 Rn = inst.operands[1].reg;
12518 Rm = inst.operands[2].reg;
12519 Ra = inst.operands[3].reg;
12520
12521 reject_bad_reg (Rd);
12522 reject_bad_reg (Rn);
12523 reject_bad_reg (Rm);
12524 reject_bad_reg (Ra);
12525
12526 inst.instruction |= Rd << 8;
12527 inst.instruction |= Rn << 16;
12528 inst.instruction |= Rm;
12529 inst.instruction |= Ra << 12;
c19d1205 12530}
b99bd4ef 12531
c19d1205
ZW
12532static void
12533do_t_mlal (void)
12534{
fdfde340
JM
12535 unsigned RdLo, RdHi, Rn, Rm;
12536
12537 RdLo = inst.operands[0].reg;
12538 RdHi = inst.operands[1].reg;
12539 Rn = inst.operands[2].reg;
12540 Rm = inst.operands[3].reg;
12541
12542 reject_bad_reg (RdLo);
12543 reject_bad_reg (RdHi);
12544 reject_bad_reg (Rn);
12545 reject_bad_reg (Rm);
12546
12547 inst.instruction |= RdLo << 12;
12548 inst.instruction |= RdHi << 8;
12549 inst.instruction |= Rn << 16;
12550 inst.instruction |= Rm;
c19d1205 12551}
b99bd4ef 12552
c19d1205
ZW
12553static void
12554do_t_mov_cmp (void)
12555{
fdfde340
JM
12556 unsigned Rn, Rm;
12557
12558 Rn = inst.operands[0].reg;
12559 Rm = inst.operands[1].reg;
12560
e07e6e58 12561 if (Rn == REG_PC)
5ee91343 12562 set_pred_insn_type_last ();
e07e6e58 12563
c19d1205 12564 if (unified_syntax)
b99bd4ef 12565 {
c19d1205
ZW
12566 int r0off = (inst.instruction == T_MNEM_mov
12567 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12568 unsigned long opcode;
3d388997
PB
12569 bfd_boolean narrow;
12570 bfd_boolean low_regs;
12571
fdfde340 12572 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12573 opcode = inst.instruction;
5ee91343 12574 if (in_pred_block ())
0110f2b8 12575 narrow = opcode != T_MNEM_movs;
3d388997 12576 else
0110f2b8 12577 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12578 if (inst.size_req == 4
12579 || inst.operands[1].shifted)
12580 narrow = FALSE;
12581
efd81785
PB
12582 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12583 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12584 && !inst.operands[1].shifted
fdfde340
JM
12585 && Rn == REG_PC
12586 && Rm == REG_LR)
efd81785
PB
12587 {
12588 inst.instruction = T2_SUBS_PC_LR;
12589 return;
12590 }
12591
fdfde340
JM
12592 if (opcode == T_MNEM_cmp)
12593 {
12594 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12595 if (narrow)
12596 {
12597 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12598 but valid. */
12599 warn_deprecated_sp (Rm);
12600 /* R15 was documented as a valid choice for Rm in ARMv6,
12601 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12602 tools reject R15, so we do too. */
12603 constraint (Rm == REG_PC, BAD_PC);
12604 }
12605 else
12606 reject_bad_reg (Rm);
fdfde340
JM
12607 }
12608 else if (opcode == T_MNEM_mov
12609 || opcode == T_MNEM_movs)
12610 {
12611 if (inst.operands[1].isreg)
12612 {
12613 if (opcode == T_MNEM_movs)
12614 {
12615 reject_bad_reg (Rn);
12616 reject_bad_reg (Rm);
12617 }
76fa04a4
MGD
12618 else if (narrow)
12619 {
12620 /* This is mov.n. */
12621 if ((Rn == REG_SP || Rn == REG_PC)
12622 && (Rm == REG_SP || Rm == REG_PC))
12623 {
5c3696f8 12624 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12625 "deprecated when r%u is the destination "
12626 "register."), Rm, Rn);
12627 }
12628 }
12629 else
12630 {
12631 /* This is mov.w. */
12632 constraint (Rn == REG_PC, BAD_PC);
12633 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12634 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12635 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12636 }
fdfde340
JM
12637 }
12638 else
12639 reject_bad_reg (Rn);
12640 }
12641
c19d1205
ZW
12642 if (!inst.operands[1].isreg)
12643 {
0110f2b8 12644 /* Immediate operand. */
5ee91343 12645 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12646 narrow = 0;
12647 if (low_regs && narrow)
12648 {
12649 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12650 inst.instruction |= Rn << 8;
e2b0ab59
AV
12651 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12652 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12653 {
a9f02af8 12654 if (inst.size_req == 2)
e2b0ab59 12655 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12656 else
12657 inst.relax = opcode;
72d98d16 12658 }
0110f2b8
PB
12659 }
12660 else
12661 {
e2b0ab59
AV
12662 constraint ((inst.relocs[0].type
12663 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12664 && (inst.relocs[0].type
12665 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12666 THUMB1_RELOC_ONLY);
12667
0110f2b8
PB
12668 inst.instruction = THUMB_OP32 (inst.instruction);
12669 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12670 inst.instruction |= Rn << r0off;
e2b0ab59 12671 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12672 }
c19d1205 12673 }
728ca7c9
PB
12674 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12675 && (inst.instruction == T_MNEM_mov
12676 || inst.instruction == T_MNEM_movs))
12677 {
12678 /* Register shifts are encoded as separate shift instructions. */
12679 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12680
5ee91343 12681 if (in_pred_block ())
728ca7c9
PB
12682 narrow = !flags;
12683 else
12684 narrow = flags;
12685
12686 if (inst.size_req == 4)
12687 narrow = FALSE;
12688
12689 if (!low_regs || inst.operands[1].imm > 7)
12690 narrow = FALSE;
12691
fdfde340 12692 if (Rn != Rm)
728ca7c9
PB
12693 narrow = FALSE;
12694
12695 switch (inst.operands[1].shift_kind)
12696 {
12697 case SHIFT_LSL:
12698 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12699 break;
12700 case SHIFT_ASR:
12701 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12702 break;
12703 case SHIFT_LSR:
12704 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12705 break;
12706 case SHIFT_ROR:
12707 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12708 break;
12709 default:
5f4273c7 12710 abort ();
728ca7c9
PB
12711 }
12712
12713 inst.instruction = opcode;
12714 if (narrow)
12715 {
fdfde340 12716 inst.instruction |= Rn;
728ca7c9
PB
12717 inst.instruction |= inst.operands[1].imm << 3;
12718 }
12719 else
12720 {
12721 if (flags)
12722 inst.instruction |= CONDS_BIT;
12723
fdfde340
JM
12724 inst.instruction |= Rn << 8;
12725 inst.instruction |= Rm << 16;
728ca7c9
PB
12726 inst.instruction |= inst.operands[1].imm;
12727 }
12728 }
3d388997 12729 else if (!narrow)
c19d1205 12730 {
728ca7c9
PB
12731 /* Some mov with immediate shift have narrow variants.
12732 Register shifts are handled above. */
12733 if (low_regs && inst.operands[1].shifted
12734 && (inst.instruction == T_MNEM_mov
12735 || inst.instruction == T_MNEM_movs))
12736 {
5ee91343 12737 if (in_pred_block ())
728ca7c9
PB
12738 narrow = (inst.instruction == T_MNEM_mov);
12739 else
12740 narrow = (inst.instruction == T_MNEM_movs);
12741 }
12742
12743 if (narrow)
12744 {
12745 switch (inst.operands[1].shift_kind)
12746 {
12747 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12748 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12749 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12750 default: narrow = FALSE; break;
12751 }
12752 }
12753
12754 if (narrow)
12755 {
fdfde340
JM
12756 inst.instruction |= Rn;
12757 inst.instruction |= Rm << 3;
e2b0ab59 12758 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12759 }
12760 else
12761 {
12762 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12763 inst.instruction |= Rn << r0off;
728ca7c9
PB
12764 encode_thumb32_shifted_operand (1);
12765 }
c19d1205
ZW
12766 }
12767 else
12768 switch (inst.instruction)
12769 {
12770 case T_MNEM_mov:
837b3435 12771 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12772 results. Don't allow this. */
12773 if (low_regs)
12774 {
12775 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12776 "MOV Rd, Rs with two low registers is not "
12777 "permitted on this architecture");
fa94de6b 12778 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12779 arm_ext_v6);
12780 }
12781
c19d1205 12782 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12783 inst.instruction |= (Rn & 0x8) << 4;
12784 inst.instruction |= (Rn & 0x7);
12785 inst.instruction |= Rm << 3;
c19d1205 12786 break;
b99bd4ef 12787
c19d1205
ZW
12788 case T_MNEM_movs:
12789 /* We know we have low registers at this point.
941a8a52
MGD
12790 Generate LSLS Rd, Rs, #0. */
12791 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12792 inst.instruction |= Rn;
12793 inst.instruction |= Rm << 3;
c19d1205
ZW
12794 break;
12795
12796 case T_MNEM_cmp:
3d388997 12797 if (low_regs)
c19d1205
ZW
12798 {
12799 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12800 inst.instruction |= Rn;
12801 inst.instruction |= Rm << 3;
c19d1205
ZW
12802 }
12803 else
12804 {
12805 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12806 inst.instruction |= (Rn & 0x8) << 4;
12807 inst.instruction |= (Rn & 0x7);
12808 inst.instruction |= Rm << 3;
c19d1205
ZW
12809 }
12810 break;
12811 }
b99bd4ef
NC
12812 return;
12813 }
12814
c19d1205 12815 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12816
12817 /* PR 10443: Do not silently ignore shifted operands. */
12818 constraint (inst.operands[1].shifted,
12819 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12820
c19d1205 12821 if (inst.operands[1].isreg)
b99bd4ef 12822 {
fdfde340 12823 if (Rn < 8 && Rm < 8)
b99bd4ef 12824 {
c19d1205
ZW
12825 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12826 since a MOV instruction produces unpredictable results. */
12827 if (inst.instruction == T_OPCODE_MOV_I8)
12828 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12829 else
c19d1205 12830 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12831
fdfde340
JM
12832 inst.instruction |= Rn;
12833 inst.instruction |= Rm << 3;
b99bd4ef
NC
12834 }
12835 else
12836 {
c19d1205
ZW
12837 if (inst.instruction == T_OPCODE_MOV_I8)
12838 inst.instruction = T_OPCODE_MOV_HR;
12839 else
12840 inst.instruction = T_OPCODE_CMP_HR;
12841 do_t_cpy ();
b99bd4ef
NC
12842 }
12843 }
c19d1205 12844 else
b99bd4ef 12845 {
fdfde340 12846 constraint (Rn > 7,
c19d1205 12847 _("only lo regs allowed with immediate"));
fdfde340 12848 inst.instruction |= Rn << 8;
e2b0ab59 12849 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12850 }
12851}
b99bd4ef 12852
c19d1205
ZW
12853static void
12854do_t_mov16 (void)
12855{
fdfde340 12856 unsigned Rd;
b6895b4f
PB
12857 bfd_vma imm;
12858 bfd_boolean top;
12859
12860 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12861 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12862 {
33eaf5de 12863 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12865 }
e2b0ab59 12866 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12867 {
33eaf5de 12868 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12869 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12870 }
12871
fdfde340
JM
12872 Rd = inst.operands[0].reg;
12873 reject_bad_reg (Rd);
12874
12875 inst.instruction |= Rd << 8;
e2b0ab59 12876 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12877 {
e2b0ab59 12878 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12879 inst.instruction |= (imm & 0xf000) << 4;
12880 inst.instruction |= (imm & 0x0800) << 15;
12881 inst.instruction |= (imm & 0x0700) << 4;
12882 inst.instruction |= (imm & 0x00ff);
12883 }
c19d1205 12884}
b99bd4ef 12885
c19d1205
ZW
12886static void
12887do_t_mvn_tst (void)
12888{
fdfde340 12889 unsigned Rn, Rm;
c921be7d 12890
fdfde340
JM
12891 Rn = inst.operands[0].reg;
12892 Rm = inst.operands[1].reg;
12893
12894 if (inst.instruction == T_MNEM_cmp
12895 || inst.instruction == T_MNEM_cmn)
12896 constraint (Rn == REG_PC, BAD_PC);
12897 else
12898 reject_bad_reg (Rn);
12899 reject_bad_reg (Rm);
12900
c19d1205
ZW
12901 if (unified_syntax)
12902 {
12903 int r0off = (inst.instruction == T_MNEM_mvn
12904 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12905 bfd_boolean narrow;
12906
12907 if (inst.size_req == 4
12908 || inst.instruction > 0xffff
12909 || inst.operands[1].shifted
fdfde340 12910 || Rn > 7 || Rm > 7)
3d388997 12911 narrow = FALSE;
fe8b4cc3
KT
12912 else if (inst.instruction == T_MNEM_cmn
12913 || inst.instruction == T_MNEM_tst)
3d388997
PB
12914 narrow = TRUE;
12915 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12916 narrow = !in_pred_block ();
3d388997 12917 else
5ee91343 12918 narrow = in_pred_block ();
3d388997 12919
c19d1205 12920 if (!inst.operands[1].isreg)
b99bd4ef 12921 {
c19d1205
ZW
12922 /* For an immediate, we always generate a 32-bit opcode;
12923 section relaxation will shrink it later if possible. */
12924 if (inst.instruction < 0xffff)
12925 inst.instruction = THUMB_OP32 (inst.instruction);
12926 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12927 inst.instruction |= Rn << r0off;
e2b0ab59 12928 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12929 }
c19d1205 12930 else
b99bd4ef 12931 {
c19d1205 12932 /* See if we can do this with a 16-bit instruction. */
3d388997 12933 if (narrow)
b99bd4ef 12934 {
c19d1205 12935 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12936 inst.instruction |= Rn;
12937 inst.instruction |= Rm << 3;
b99bd4ef 12938 }
c19d1205 12939 else
b99bd4ef 12940 {
c19d1205
ZW
12941 constraint (inst.operands[1].shifted
12942 && inst.operands[1].immisreg,
12943 _("shift must be constant"));
12944 if (inst.instruction < 0xffff)
12945 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12946 inst.instruction |= Rn << r0off;
c19d1205 12947 encode_thumb32_shifted_operand (1);
b99bd4ef 12948 }
b99bd4ef
NC
12949 }
12950 }
12951 else
12952 {
c19d1205
ZW
12953 constraint (inst.instruction > 0xffff
12954 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12955 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12956 _("unshifted register required"));
fdfde340 12957 constraint (Rn > 7 || Rm > 7,
c19d1205 12958 BAD_HIREG);
b99bd4ef 12959
c19d1205 12960 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12961 inst.instruction |= Rn;
12962 inst.instruction |= Rm << 3;
b99bd4ef 12963 }
b99bd4ef
NC
12964}
12965
b05fe5cf 12966static void
c19d1205 12967do_t_mrs (void)
b05fe5cf 12968{
fdfde340 12969 unsigned Rd;
037e8744
JB
12970
12971 if (do_vfp_nsyn_mrs () == SUCCESS)
12972 return;
12973
90ec0d68
MGD
12974 Rd = inst.operands[0].reg;
12975 reject_bad_reg (Rd);
12976 inst.instruction |= Rd << 8;
12977
12978 if (inst.operands[1].isreg)
62b3e311 12979 {
90ec0d68
MGD
12980 unsigned br = inst.operands[1].reg;
12981 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12982 as_bad (_("bad register for mrs"));
12983
12984 inst.instruction |= br & (0xf << 16);
12985 inst.instruction |= (br & 0x300) >> 4;
12986 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12987 }
12988 else
12989 {
90ec0d68 12990 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12991
d2cd1205 12992 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12993 {
12994 /* PR gas/12698: The constraint is only applied for m_profile.
12995 If the user has specified -march=all, we want to ignore it as
12996 we are building for any CPU type, including non-m variants. */
823d2571
TG
12997 bfd_boolean m_profile =
12998 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12999 constraint ((flags != 0) && m_profile, _("selected processor does "
13000 "not support requested special purpose register"));
13001 }
90ec0d68 13002 else
d2cd1205
JB
13003 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13004 devices). */
13005 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13006 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13007
90ec0d68
MGD
13008 inst.instruction |= (flags & SPSR_BIT) >> 2;
13009 inst.instruction |= inst.operands[1].imm & 0xff;
13010 inst.instruction |= 0xf0000;
13011 }
c19d1205 13012}
b05fe5cf 13013
c19d1205
ZW
13014static void
13015do_t_msr (void)
13016{
62b3e311 13017 int flags;
fdfde340 13018 unsigned Rn;
62b3e311 13019
037e8744
JB
13020 if (do_vfp_nsyn_msr () == SUCCESS)
13021 return;
13022
c19d1205
ZW
13023 constraint (!inst.operands[1].isreg,
13024 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13025
13026 if (inst.operands[0].isreg)
13027 flags = (int)(inst.operands[0].reg);
13028 else
13029 flags = inst.operands[0].imm;
13030
d2cd1205 13031 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13032 {
d2cd1205
JB
13033 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13034
1a43faaf 13035 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13036 If the user has specified -march=all, we want to ignore it as
13037 we are building for any CPU type, including non-m variants. */
823d2571
TG
13038 bfd_boolean m_profile =
13039 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13040 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13041 && (bits & ~(PSR_s | PSR_f)) != 0)
13042 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13043 && bits != PSR_f)) && m_profile,
13044 _("selected processor does not support requested special "
13045 "purpose register"));
62b3e311
PB
13046 }
13047 else
d2cd1205
JB
13048 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13049 "requested special purpose register"));
c921be7d 13050
fdfde340
JM
13051 Rn = inst.operands[1].reg;
13052 reject_bad_reg (Rn);
13053
62b3e311 13054 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13055 inst.instruction |= (flags & 0xf0000) >> 8;
13056 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13057 inst.instruction |= (flags & 0xff);
fdfde340 13058 inst.instruction |= Rn << 16;
c19d1205 13059}
b05fe5cf 13060
c19d1205
ZW
13061static void
13062do_t_mul (void)
13063{
17828f45 13064 bfd_boolean narrow;
fdfde340 13065 unsigned Rd, Rn, Rm;
17828f45 13066
c19d1205
ZW
13067 if (!inst.operands[2].present)
13068 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13069
fdfde340
JM
13070 Rd = inst.operands[0].reg;
13071 Rn = inst.operands[1].reg;
13072 Rm = inst.operands[2].reg;
13073
17828f45 13074 if (unified_syntax)
b05fe5cf 13075 {
17828f45 13076 if (inst.size_req == 4
fdfde340
JM
13077 || (Rd != Rn
13078 && Rd != Rm)
13079 || Rn > 7
13080 || Rm > 7)
17828f45
JM
13081 narrow = FALSE;
13082 else if (inst.instruction == T_MNEM_muls)
5ee91343 13083 narrow = !in_pred_block ();
17828f45 13084 else
5ee91343 13085 narrow = in_pred_block ();
b05fe5cf 13086 }
c19d1205 13087 else
b05fe5cf 13088 {
17828f45 13089 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13090 constraint (Rn > 7 || Rm > 7,
c19d1205 13091 BAD_HIREG);
17828f45
JM
13092 narrow = TRUE;
13093 }
b05fe5cf 13094
17828f45
JM
13095 if (narrow)
13096 {
13097 /* 16-bit MULS/Conditional MUL. */
c19d1205 13098 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13099 inst.instruction |= Rd;
b05fe5cf 13100
fdfde340
JM
13101 if (Rd == Rn)
13102 inst.instruction |= Rm << 3;
13103 else if (Rd == Rm)
13104 inst.instruction |= Rn << 3;
c19d1205
ZW
13105 else
13106 constraint (1, _("dest must overlap one source register"));
13107 }
17828f45
JM
13108 else
13109 {
e07e6e58
NC
13110 constraint (inst.instruction != T_MNEM_mul,
13111 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13112 /* 32-bit MUL. */
13113 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13114 inst.instruction |= Rd << 8;
13115 inst.instruction |= Rn << 16;
13116 inst.instruction |= Rm << 0;
13117
13118 reject_bad_reg (Rd);
13119 reject_bad_reg (Rn);
13120 reject_bad_reg (Rm);
17828f45 13121 }
c19d1205 13122}
b05fe5cf 13123
c19d1205
ZW
13124static void
13125do_t_mull (void)
13126{
fdfde340 13127 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13128
fdfde340
JM
13129 RdLo = inst.operands[0].reg;
13130 RdHi = inst.operands[1].reg;
13131 Rn = inst.operands[2].reg;
13132 Rm = inst.operands[3].reg;
13133
13134 reject_bad_reg (RdLo);
13135 reject_bad_reg (RdHi);
13136 reject_bad_reg (Rn);
13137 reject_bad_reg (Rm);
13138
13139 inst.instruction |= RdLo << 12;
13140 inst.instruction |= RdHi << 8;
13141 inst.instruction |= Rn << 16;
13142 inst.instruction |= Rm;
13143
13144 if (RdLo == RdHi)
c19d1205
ZW
13145 as_tsktsk (_("rdhi and rdlo must be different"));
13146}
b05fe5cf 13147
c19d1205
ZW
13148static void
13149do_t_nop (void)
13150{
5ee91343 13151 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13152
c19d1205
ZW
13153 if (unified_syntax)
13154 {
13155 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13156 {
c19d1205
ZW
13157 inst.instruction = THUMB_OP32 (inst.instruction);
13158 inst.instruction |= inst.operands[0].imm;
13159 }
13160 else
13161 {
bc2d1808
NC
13162 /* PR9722: Check for Thumb2 availability before
13163 generating a thumb2 nop instruction. */
afa62d5e 13164 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13165 {
13166 inst.instruction = THUMB_OP16 (inst.instruction);
13167 inst.instruction |= inst.operands[0].imm << 4;
13168 }
13169 else
13170 inst.instruction = 0x46c0;
c19d1205
ZW
13171 }
13172 }
13173 else
13174 {
13175 constraint (inst.operands[0].present,
13176 _("Thumb does not support NOP with hints"));
13177 inst.instruction = 0x46c0;
13178 }
13179}
b05fe5cf 13180
c19d1205
ZW
13181static void
13182do_t_neg (void)
13183{
13184 if (unified_syntax)
13185 {
3d388997
PB
13186 bfd_boolean narrow;
13187
13188 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13189 narrow = !in_pred_block ();
3d388997 13190 else
5ee91343 13191 narrow = in_pred_block ();
3d388997
PB
13192 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13193 narrow = FALSE;
13194 if (inst.size_req == 4)
13195 narrow = FALSE;
13196
13197 if (!narrow)
c19d1205
ZW
13198 {
13199 inst.instruction = THUMB_OP32 (inst.instruction);
13200 inst.instruction |= inst.operands[0].reg << 8;
13201 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13202 }
13203 else
13204 {
c19d1205
ZW
13205 inst.instruction = THUMB_OP16 (inst.instruction);
13206 inst.instruction |= inst.operands[0].reg;
13207 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13208 }
13209 }
13210 else
13211 {
c19d1205
ZW
13212 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13213 BAD_HIREG);
13214 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13215
13216 inst.instruction = THUMB_OP16 (inst.instruction);
13217 inst.instruction |= inst.operands[0].reg;
13218 inst.instruction |= inst.operands[1].reg << 3;
13219 }
13220}
13221
1c444d06
JM
13222static void
13223do_t_orn (void)
13224{
13225 unsigned Rd, Rn;
13226
13227 Rd = inst.operands[0].reg;
13228 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13229
fdfde340
JM
13230 reject_bad_reg (Rd);
13231 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13232 reject_bad_reg (Rn);
13233
1c444d06
JM
13234 inst.instruction |= Rd << 8;
13235 inst.instruction |= Rn << 16;
13236
13237 if (!inst.operands[2].isreg)
13238 {
13239 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13240 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13241 }
13242 else
13243 {
13244 unsigned Rm;
13245
13246 Rm = inst.operands[2].reg;
fdfde340 13247 reject_bad_reg (Rm);
1c444d06
JM
13248
13249 constraint (inst.operands[2].shifted
13250 && inst.operands[2].immisreg,
13251 _("shift must be constant"));
13252 encode_thumb32_shifted_operand (2);
13253 }
13254}
13255
c19d1205
ZW
13256static void
13257do_t_pkhbt (void)
13258{
fdfde340
JM
13259 unsigned Rd, Rn, Rm;
13260
13261 Rd = inst.operands[0].reg;
13262 Rn = inst.operands[1].reg;
13263 Rm = inst.operands[2].reg;
13264
13265 reject_bad_reg (Rd);
13266 reject_bad_reg (Rn);
13267 reject_bad_reg (Rm);
13268
13269 inst.instruction |= Rd << 8;
13270 inst.instruction |= Rn << 16;
13271 inst.instruction |= Rm;
c19d1205
ZW
13272 if (inst.operands[3].present)
13273 {
e2b0ab59
AV
13274 unsigned int val = inst.relocs[0].exp.X_add_number;
13275 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13276 _("expression too complex"));
13277 inst.instruction |= (val & 0x1c) << 10;
13278 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13279 }
c19d1205 13280}
b05fe5cf 13281
c19d1205
ZW
13282static void
13283do_t_pkhtb (void)
13284{
13285 if (!inst.operands[3].present)
1ef52f49
NC
13286 {
13287 unsigned Rtmp;
13288
13289 inst.instruction &= ~0x00000020;
13290
13291 /* PR 10168. Swap the Rm and Rn registers. */
13292 Rtmp = inst.operands[1].reg;
13293 inst.operands[1].reg = inst.operands[2].reg;
13294 inst.operands[2].reg = Rtmp;
13295 }
c19d1205 13296 do_t_pkhbt ();
b05fe5cf
ZW
13297}
13298
c19d1205
ZW
13299static void
13300do_t_pld (void)
13301{
fdfde340
JM
13302 if (inst.operands[0].immisreg)
13303 reject_bad_reg (inst.operands[0].imm);
13304
c19d1205
ZW
13305 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13306}
b05fe5cf 13307
c19d1205
ZW
13308static void
13309do_t_push_pop (void)
b99bd4ef 13310{
e9f89963 13311 unsigned mask;
5f4273c7 13312
c19d1205
ZW
13313 constraint (inst.operands[0].writeback,
13314 _("push/pop do not support {reglist}^"));
e2b0ab59 13315 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13316 _("expression too complex"));
b99bd4ef 13317
e9f89963 13318 mask = inst.operands[0].imm;
d3bfe16e 13319 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13320 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13321 else if (inst.size_req != 4
c6025a80 13322 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13323 ? REG_LR : REG_PC)))
b99bd4ef 13324 {
c19d1205
ZW
13325 inst.instruction = THUMB_OP16 (inst.instruction);
13326 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13327 inst.instruction |= mask & 0xff;
c19d1205
ZW
13328 }
13329 else if (unified_syntax)
13330 {
3c707909 13331 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13332 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13333 }
13334 else
13335 {
13336 inst.error = _("invalid register list to push/pop instruction");
13337 return;
c19d1205 13338 }
4b5a202f
AV
13339}
13340
13341static void
13342do_t_clrm (void)
13343{
13344 if (unified_syntax)
13345 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13346 else
13347 {
13348 inst.error = _("invalid register list to push/pop instruction");
13349 return;
13350 }
c19d1205 13351}
b99bd4ef 13352
efd6b359
AV
13353static void
13354do_t_vscclrm (void)
13355{
13356 if (inst.operands[0].issingle)
13357 {
13358 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13359 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13360 inst.instruction |= inst.operands[0].imm;
13361 }
13362 else
13363 {
13364 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13365 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13366 inst.instruction |= 1 << 8;
13367 inst.instruction |= inst.operands[0].imm << 1;
13368 }
13369}
13370
c19d1205
ZW
13371static void
13372do_t_rbit (void)
13373{
fdfde340
JM
13374 unsigned Rd, Rm;
13375
13376 Rd = inst.operands[0].reg;
13377 Rm = inst.operands[1].reg;
13378
13379 reject_bad_reg (Rd);
13380 reject_bad_reg (Rm);
13381
13382 inst.instruction |= Rd << 8;
13383 inst.instruction |= Rm << 16;
13384 inst.instruction |= Rm;
c19d1205 13385}
b99bd4ef 13386
c19d1205
ZW
13387static void
13388do_t_rev (void)
13389{
fdfde340
JM
13390 unsigned Rd, Rm;
13391
13392 Rd = inst.operands[0].reg;
13393 Rm = inst.operands[1].reg;
13394
13395 reject_bad_reg (Rd);
13396 reject_bad_reg (Rm);
13397
13398 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13399 && inst.size_req != 4)
13400 {
13401 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13402 inst.instruction |= Rd;
13403 inst.instruction |= Rm << 3;
c19d1205
ZW
13404 }
13405 else if (unified_syntax)
13406 {
13407 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13408 inst.instruction |= Rd << 8;
13409 inst.instruction |= Rm << 16;
13410 inst.instruction |= Rm;
c19d1205
ZW
13411 }
13412 else
13413 inst.error = BAD_HIREG;
13414}
b99bd4ef 13415
1c444d06
JM
13416static void
13417do_t_rrx (void)
13418{
13419 unsigned Rd, Rm;
13420
13421 Rd = inst.operands[0].reg;
13422 Rm = inst.operands[1].reg;
13423
fdfde340
JM
13424 reject_bad_reg (Rd);
13425 reject_bad_reg (Rm);
c921be7d 13426
1c444d06
JM
13427 inst.instruction |= Rd << 8;
13428 inst.instruction |= Rm;
13429}
13430
c19d1205
ZW
13431static void
13432do_t_rsb (void)
13433{
fdfde340 13434 unsigned Rd, Rs;
b99bd4ef 13435
c19d1205
ZW
13436 Rd = inst.operands[0].reg;
13437 Rs = (inst.operands[1].present
13438 ? inst.operands[1].reg /* Rd, Rs, foo */
13439 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13440
fdfde340
JM
13441 reject_bad_reg (Rd);
13442 reject_bad_reg (Rs);
13443 if (inst.operands[2].isreg)
13444 reject_bad_reg (inst.operands[2].reg);
13445
c19d1205
ZW
13446 inst.instruction |= Rd << 8;
13447 inst.instruction |= Rs << 16;
13448 if (!inst.operands[2].isreg)
13449 {
026d3abb
PB
13450 bfd_boolean narrow;
13451
13452 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13453 narrow = !in_pred_block ();
026d3abb 13454 else
5ee91343 13455 narrow = in_pred_block ();
026d3abb
PB
13456
13457 if (Rd > 7 || Rs > 7)
13458 narrow = FALSE;
13459
13460 if (inst.size_req == 4 || !unified_syntax)
13461 narrow = FALSE;
13462
e2b0ab59
AV
13463 if (inst.relocs[0].exp.X_op != O_constant
13464 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13465 narrow = FALSE;
13466
13467 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13468 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13469 if (narrow)
13470 {
e2b0ab59 13471 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13472 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13473 inst.instruction |= Rs << 3;
13474 inst.instruction |= Rd;
13475 }
13476 else
13477 {
13478 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13479 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13480 }
c19d1205
ZW
13481 }
13482 else
13483 encode_thumb32_shifted_operand (2);
13484}
b99bd4ef 13485
c19d1205
ZW
13486static void
13487do_t_setend (void)
13488{
12e37cbc
MGD
13489 if (warn_on_deprecated
13490 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13491 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13492
5ee91343 13493 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13494 if (inst.operands[0].imm)
13495 inst.instruction |= 0x8;
13496}
b99bd4ef 13497
c19d1205
ZW
13498static void
13499do_t_shift (void)
13500{
13501 if (!inst.operands[1].present)
13502 inst.operands[1].reg = inst.operands[0].reg;
13503
13504 if (unified_syntax)
13505 {
3d388997
PB
13506 bfd_boolean narrow;
13507 int shift_kind;
13508
13509 switch (inst.instruction)
13510 {
13511 case T_MNEM_asr:
13512 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13513 case T_MNEM_lsl:
13514 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13515 case T_MNEM_lsr:
13516 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13517 case T_MNEM_ror:
13518 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13519 default: abort ();
13520 }
13521
13522 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13523 narrow = !in_pred_block ();
3d388997 13524 else
5ee91343 13525 narrow = in_pred_block ();
3d388997
PB
13526 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13527 narrow = FALSE;
13528 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13529 narrow = FALSE;
13530 if (inst.operands[2].isreg
13531 && (inst.operands[1].reg != inst.operands[0].reg
13532 || inst.operands[2].reg > 7))
13533 narrow = FALSE;
13534 if (inst.size_req == 4)
13535 narrow = FALSE;
13536
fdfde340
JM
13537 reject_bad_reg (inst.operands[0].reg);
13538 reject_bad_reg (inst.operands[1].reg);
c921be7d 13539
3d388997 13540 if (!narrow)
c19d1205
ZW
13541 {
13542 if (inst.operands[2].isreg)
b99bd4ef 13543 {
fdfde340 13544 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13545 inst.instruction = THUMB_OP32 (inst.instruction);
13546 inst.instruction |= inst.operands[0].reg << 8;
13547 inst.instruction |= inst.operands[1].reg << 16;
13548 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13549
13550 /* PR 12854: Error on extraneous shifts. */
13551 constraint (inst.operands[2].shifted,
13552 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13553 }
13554 else
13555 {
13556 inst.operands[1].shifted = 1;
3d388997 13557 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13558 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13559 ? T_MNEM_movs : T_MNEM_mov);
13560 inst.instruction |= inst.operands[0].reg << 8;
13561 encode_thumb32_shifted_operand (1);
13562 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13563 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13564 }
13565 }
13566 else
13567 {
c19d1205 13568 if (inst.operands[2].isreg)
b99bd4ef 13569 {
3d388997 13570 switch (shift_kind)
b99bd4ef 13571 {
3d388997
PB
13572 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13573 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13574 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13575 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13576 default: abort ();
b99bd4ef 13577 }
5f4273c7 13578
c19d1205
ZW
13579 inst.instruction |= inst.operands[0].reg;
13580 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13581
13582 /* PR 12854: Error on extraneous shifts. */
13583 constraint (inst.operands[2].shifted,
13584 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13585 }
13586 else
13587 {
3d388997 13588 switch (shift_kind)
b99bd4ef 13589 {
3d388997
PB
13590 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13591 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13592 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13593 default: abort ();
b99bd4ef 13594 }
e2b0ab59 13595 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13596 inst.instruction |= inst.operands[0].reg;
13597 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13598 }
13599 }
c19d1205
ZW
13600 }
13601 else
13602 {
13603 constraint (inst.operands[0].reg > 7
13604 || inst.operands[1].reg > 7, BAD_HIREG);
13605 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13606
c19d1205
ZW
13607 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13608 {
13609 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13610 constraint (inst.operands[0].reg != inst.operands[1].reg,
13611 _("source1 and dest must be same register"));
b99bd4ef 13612
c19d1205
ZW
13613 switch (inst.instruction)
13614 {
13615 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13616 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13617 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13618 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13619 default: abort ();
13620 }
5f4273c7 13621
c19d1205
ZW
13622 inst.instruction |= inst.operands[0].reg;
13623 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13624
13625 /* PR 12854: Error on extraneous shifts. */
13626 constraint (inst.operands[2].shifted,
13627 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13628 }
13629 else
b99bd4ef 13630 {
c19d1205
ZW
13631 switch (inst.instruction)
13632 {
13633 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13634 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13635 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13636 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13637 default: abort ();
13638 }
e2b0ab59 13639 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13640 inst.instruction |= inst.operands[0].reg;
13641 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13642 }
13643 }
b99bd4ef
NC
13644}
13645
13646static void
c19d1205 13647do_t_simd (void)
b99bd4ef 13648{
fdfde340
JM
13649 unsigned Rd, Rn, Rm;
13650
13651 Rd = inst.operands[0].reg;
13652 Rn = inst.operands[1].reg;
13653 Rm = inst.operands[2].reg;
13654
13655 reject_bad_reg (Rd);
13656 reject_bad_reg (Rn);
13657 reject_bad_reg (Rm);
13658
13659 inst.instruction |= Rd << 8;
13660 inst.instruction |= Rn << 16;
13661 inst.instruction |= Rm;
c19d1205 13662}
b99bd4ef 13663
03ee1b7f
NC
13664static void
13665do_t_simd2 (void)
13666{
13667 unsigned Rd, Rn, Rm;
13668
13669 Rd = inst.operands[0].reg;
13670 Rm = inst.operands[1].reg;
13671 Rn = inst.operands[2].reg;
13672
13673 reject_bad_reg (Rd);
13674 reject_bad_reg (Rn);
13675 reject_bad_reg (Rm);
13676
13677 inst.instruction |= Rd << 8;
13678 inst.instruction |= Rn << 16;
13679 inst.instruction |= Rm;
13680}
13681
c19d1205 13682static void
3eb17e6b 13683do_t_smc (void)
c19d1205 13684{
e2b0ab59 13685 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13686 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13687 _("SMC is not permitted on this architecture"));
e2b0ab59 13688 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13689 _("expression too complex"));
e2b0ab59 13690 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13691 inst.instruction |= (value & 0xf000) >> 12;
13692 inst.instruction |= (value & 0x0ff0);
13693 inst.instruction |= (value & 0x000f) << 16;
24382199 13694 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13695 set_pred_insn_type_last ();
c19d1205 13696}
b99bd4ef 13697
90ec0d68
MGD
13698static void
13699do_t_hvc (void)
13700{
e2b0ab59 13701 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13702
e2b0ab59 13703 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13704 inst.instruction |= (value & 0x0fff);
13705 inst.instruction |= (value & 0xf000) << 4;
13706}
13707
c19d1205 13708static void
3a21c15a 13709do_t_ssat_usat (int bias)
c19d1205 13710{
fdfde340
JM
13711 unsigned Rd, Rn;
13712
13713 Rd = inst.operands[0].reg;
13714 Rn = inst.operands[2].reg;
13715
13716 reject_bad_reg (Rd);
13717 reject_bad_reg (Rn);
13718
13719 inst.instruction |= Rd << 8;
3a21c15a 13720 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13721 inst.instruction |= Rn << 16;
b99bd4ef 13722
c19d1205 13723 if (inst.operands[3].present)
b99bd4ef 13724 {
e2b0ab59 13725 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13726
e2b0ab59 13727 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13728
e2b0ab59 13729 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13730 _("expression too complex"));
b99bd4ef 13731
3a21c15a 13732 if (shift_amount != 0)
6189168b 13733 {
3a21c15a
NC
13734 constraint (shift_amount > 31,
13735 _("shift expression is too large"));
13736
c19d1205 13737 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13738 inst.instruction |= 0x00200000; /* sh bit. */
13739
13740 inst.instruction |= (shift_amount & 0x1c) << 10;
13741 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13742 }
13743 }
b99bd4ef 13744}
c921be7d 13745
3a21c15a
NC
13746static void
13747do_t_ssat (void)
13748{
13749 do_t_ssat_usat (1);
13750}
b99bd4ef 13751
0dd132b6 13752static void
c19d1205 13753do_t_ssat16 (void)
0dd132b6 13754{
fdfde340
JM
13755 unsigned Rd, Rn;
13756
13757 Rd = inst.operands[0].reg;
13758 Rn = inst.operands[2].reg;
13759
13760 reject_bad_reg (Rd);
13761 reject_bad_reg (Rn);
13762
13763 inst.instruction |= Rd << 8;
c19d1205 13764 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13765 inst.instruction |= Rn << 16;
c19d1205 13766}
0dd132b6 13767
c19d1205
ZW
13768static void
13769do_t_strex (void)
13770{
13771 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13772 || inst.operands[2].postind || inst.operands[2].writeback
13773 || inst.operands[2].immisreg || inst.operands[2].shifted
13774 || inst.operands[2].negative,
01cfc07f 13775 BAD_ADDR_MODE);
0dd132b6 13776
5be8be5d
DG
13777 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13778
c19d1205
ZW
13779 inst.instruction |= inst.operands[0].reg << 8;
13780 inst.instruction |= inst.operands[1].reg << 12;
13781 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13782 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13783}
13784
b99bd4ef 13785static void
c19d1205 13786do_t_strexd (void)
b99bd4ef 13787{
c19d1205
ZW
13788 if (!inst.operands[2].present)
13789 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13790
c19d1205
ZW
13791 constraint (inst.operands[0].reg == inst.operands[1].reg
13792 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13793 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13794 BAD_OVERLAP);
b99bd4ef 13795
c19d1205
ZW
13796 inst.instruction |= inst.operands[0].reg;
13797 inst.instruction |= inst.operands[1].reg << 12;
13798 inst.instruction |= inst.operands[2].reg << 8;
13799 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13800}
13801
13802static void
c19d1205 13803do_t_sxtah (void)
b99bd4ef 13804{
fdfde340
JM
13805 unsigned Rd, Rn, Rm;
13806
13807 Rd = inst.operands[0].reg;
13808 Rn = inst.operands[1].reg;
13809 Rm = inst.operands[2].reg;
13810
13811 reject_bad_reg (Rd);
13812 reject_bad_reg (Rn);
13813 reject_bad_reg (Rm);
13814
13815 inst.instruction |= Rd << 8;
13816 inst.instruction |= Rn << 16;
13817 inst.instruction |= Rm;
c19d1205
ZW
13818 inst.instruction |= inst.operands[3].imm << 4;
13819}
b99bd4ef 13820
c19d1205
ZW
13821static void
13822do_t_sxth (void)
13823{
fdfde340
JM
13824 unsigned Rd, Rm;
13825
13826 Rd = inst.operands[0].reg;
13827 Rm = inst.operands[1].reg;
13828
13829 reject_bad_reg (Rd);
13830 reject_bad_reg (Rm);
c921be7d
NC
13831
13832 if (inst.instruction <= 0xffff
13833 && inst.size_req != 4
fdfde340 13834 && Rd <= 7 && Rm <= 7
c19d1205 13835 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13836 {
c19d1205 13837 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13838 inst.instruction |= Rd;
13839 inst.instruction |= Rm << 3;
b99bd4ef 13840 }
c19d1205 13841 else if (unified_syntax)
b99bd4ef 13842 {
c19d1205
ZW
13843 if (inst.instruction <= 0xffff)
13844 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13845 inst.instruction |= Rd << 8;
13846 inst.instruction |= Rm;
c19d1205 13847 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13848 }
c19d1205 13849 else
b99bd4ef 13850 {
c19d1205
ZW
13851 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13852 _("Thumb encoding does not support rotation"));
13853 constraint (1, BAD_HIREG);
b99bd4ef 13854 }
c19d1205 13855}
b99bd4ef 13856
c19d1205
ZW
13857static void
13858do_t_swi (void)
13859{
e2b0ab59 13860 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13861}
b99bd4ef 13862
92e90b6e
PB
13863static void
13864do_t_tb (void)
13865{
fdfde340 13866 unsigned Rn, Rm;
92e90b6e
PB
13867 int half;
13868
13869 half = (inst.instruction & 0x10) != 0;
5ee91343 13870 set_pred_insn_type_last ();
dfa9f0d5
PB
13871 constraint (inst.operands[0].immisreg,
13872 _("instruction requires register index"));
fdfde340
JM
13873
13874 Rn = inst.operands[0].reg;
13875 Rm = inst.operands[0].imm;
c921be7d 13876
5c8ed6a4
JW
13877 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13878 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13879 reject_bad_reg (Rm);
13880
92e90b6e
PB
13881 constraint (!half && inst.operands[0].shifted,
13882 _("instruction does not allow shifted index"));
fdfde340 13883 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13884}
13885
74db7efb
NC
13886static void
13887do_t_udf (void)
13888{
13889 if (!inst.operands[0].present)
13890 inst.operands[0].imm = 0;
13891
13892 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13893 {
13894 constraint (inst.size_req == 2,
13895 _("immediate value out of range"));
13896 inst.instruction = THUMB_OP32 (inst.instruction);
13897 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13898 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13899 }
13900 else
13901 {
13902 inst.instruction = THUMB_OP16 (inst.instruction);
13903 inst.instruction |= inst.operands[0].imm;
13904 }
13905
5ee91343 13906 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13907}
13908
13909
c19d1205
ZW
13910static void
13911do_t_usat (void)
13912{
3a21c15a 13913 do_t_ssat_usat (0);
b99bd4ef
NC
13914}
13915
13916static void
c19d1205 13917do_t_usat16 (void)
b99bd4ef 13918{
fdfde340
JM
13919 unsigned Rd, Rn;
13920
13921 Rd = inst.operands[0].reg;
13922 Rn = inst.operands[2].reg;
13923
13924 reject_bad_reg (Rd);
13925 reject_bad_reg (Rn);
13926
13927 inst.instruction |= Rd << 8;
c19d1205 13928 inst.instruction |= inst.operands[1].imm;
fdfde340 13929 inst.instruction |= Rn << 16;
b99bd4ef 13930}
c19d1205 13931
e12437dc
AV
13932/* Checking the range of the branch offset (VAL) with NBITS bits
13933 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13934static int
13935v8_1_branch_value_check (int val, int nbits, int is_signed)
13936{
13937 gas_assert (nbits > 0 && nbits <= 32);
13938 if (is_signed)
13939 {
13940 int cmp = (1 << (nbits - 1));
13941 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13942 return FAIL;
13943 }
13944 else
13945 {
13946 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13947 return FAIL;
13948 }
13949 return SUCCESS;
13950}
13951
4389b29a
AV
13952/* For branches in Armv8.1-M Mainline. */
13953static void
13954do_t_branch_future (void)
13955{
13956 unsigned long insn = inst.instruction;
13957
13958 inst.instruction = THUMB_OP32 (inst.instruction);
13959 if (inst.operands[0].hasreloc == 0)
13960 {
13961 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13962 as_bad (BAD_BRANCH_OFF);
13963
13964 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13965 }
13966 else
13967 {
13968 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13969 inst.relocs[0].pc_rel = 1;
13970 }
13971
13972 switch (insn)
13973 {
13974 case T_MNEM_bf:
13975 if (inst.operands[1].hasreloc == 0)
13976 {
13977 int val = inst.operands[1].imm;
13978 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13979 as_bad (BAD_BRANCH_OFF);
13980
13981 int immA = (val & 0x0001f000) >> 12;
13982 int immB = (val & 0x00000ffc) >> 2;
13983 int immC = (val & 0x00000002) >> 1;
13984 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13985 }
13986 else
13987 {
13988 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13989 inst.relocs[1].pc_rel = 1;
13990 }
13991 break;
13992
65d1bc05
AV
13993 case T_MNEM_bfl:
13994 if (inst.operands[1].hasreloc == 0)
13995 {
13996 int val = inst.operands[1].imm;
13997 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13998 as_bad (BAD_BRANCH_OFF);
13999
14000 int immA = (val & 0x0007f000) >> 12;
14001 int immB = (val & 0x00000ffc) >> 2;
14002 int immC = (val & 0x00000002) >> 1;
14003 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14004 }
14005 else
14006 {
14007 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14008 inst.relocs[1].pc_rel = 1;
14009 }
14010 break;
14011
f6b2b12d
AV
14012 case T_MNEM_bfcsel:
14013 /* Operand 1. */
14014 if (inst.operands[1].hasreloc == 0)
14015 {
14016 int val = inst.operands[1].imm;
14017 int immA = (val & 0x00001000) >> 12;
14018 int immB = (val & 0x00000ffc) >> 2;
14019 int immC = (val & 0x00000002) >> 1;
14020 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14021 }
14022 else
14023 {
14024 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14025 inst.relocs[1].pc_rel = 1;
14026 }
14027
14028 /* Operand 2. */
14029 if (inst.operands[2].hasreloc == 0)
14030 {
14031 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14032 int val2 = inst.operands[2].imm;
14033 int val0 = inst.operands[0].imm & 0x1f;
14034 int diff = val2 - val0;
14035 if (diff == 4)
14036 inst.instruction |= 1 << 17; /* T bit. */
14037 else if (diff != 2)
14038 as_bad (_("out of range label-relative fixup value"));
14039 }
14040 else
14041 {
14042 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14043 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14044 inst.relocs[2].pc_rel = 1;
14045 }
14046
14047 /* Operand 3. */
14048 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14049 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14050 break;
14051
f1c7f421
AV
14052 case T_MNEM_bfx:
14053 case T_MNEM_bflx:
14054 inst.instruction |= inst.operands[1].reg << 16;
14055 break;
14056
4389b29a
AV
14057 default: abort ();
14058 }
14059}
14060
60f993ce
AV
14061/* Helper function for do_t_loloop to handle relocations. */
14062static void
14063v8_1_loop_reloc (int is_le)
14064{
14065 if (inst.relocs[0].exp.X_op == O_constant)
14066 {
14067 int value = inst.relocs[0].exp.X_add_number;
14068 value = (is_le) ? -value : value;
14069
14070 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14071 as_bad (BAD_BRANCH_OFF);
14072
14073 int imml, immh;
14074
14075 immh = (value & 0x00000ffc) >> 2;
14076 imml = (value & 0x00000002) >> 1;
14077
14078 inst.instruction |= (imml << 11) | (immh << 1);
14079 }
14080 else
14081 {
14082 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14083 inst.relocs[0].pc_rel = 1;
14084 }
14085}
14086
14087/* To handle the Scalar Low Overhead Loop instructions
14088 in Armv8.1-M Mainline. */
14089static void
14090do_t_loloop (void)
14091{
14092 unsigned long insn = inst.instruction;
14093
5ee91343 14094 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14095 inst.instruction = THUMB_OP32 (inst.instruction);
14096
14097 switch (insn)
14098 {
14099 case T_MNEM_le:
14100 /* le <label>. */
14101 if (!inst.operands[0].present)
14102 inst.instruction |= 1 << 21;
14103
14104 v8_1_loop_reloc (TRUE);
14105 break;
14106
14107 case T_MNEM_wls:
14108 v8_1_loop_reloc (FALSE);
14109 /* Fall through. */
14110 case T_MNEM_dls:
14111 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14112 inst.instruction |= (inst.operands[1].reg << 16);
14113 break;
14114
14115 default: abort();
14116 }
14117}
14118
a302e574
AV
14119/* MVE instruction encoder helpers. */
14120#define M_MNEM_vabav 0xee800f01
14121#define M_MNEM_vmladav 0xeef00e00
14122#define M_MNEM_vmladava 0xeef00e20
14123#define M_MNEM_vmladavx 0xeef01e00
14124#define M_MNEM_vmladavax 0xeef01e20
14125#define M_MNEM_vmlsdav 0xeef00e01
14126#define M_MNEM_vmlsdava 0xeef00e21
14127#define M_MNEM_vmlsdavx 0xeef01e01
14128#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14129#define M_MNEM_vmullt 0xee011e00
14130#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14131#define M_MNEM_vst20 0xfc801e00
14132#define M_MNEM_vst21 0xfc801e20
14133#define M_MNEM_vst40 0xfc801e01
14134#define M_MNEM_vst41 0xfc801e21
14135#define M_MNEM_vst42 0xfc801e41
14136#define M_MNEM_vst43 0xfc801e61
14137#define M_MNEM_vld20 0xfc901e00
14138#define M_MNEM_vld21 0xfc901e20
14139#define M_MNEM_vld40 0xfc901e01
14140#define M_MNEM_vld41 0xfc901e21
14141#define M_MNEM_vld42 0xfc901e41
14142#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14143#define M_MNEM_vstrb 0xec000e00
14144#define M_MNEM_vstrh 0xec000e10
14145#define M_MNEM_vstrw 0xec000e40
14146#define M_MNEM_vstrd 0xec000e50
14147#define M_MNEM_vldrb 0xec100e00
14148#define M_MNEM_vldrh 0xec100e10
14149#define M_MNEM_vldrw 0xec100e40
14150#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14151#define M_MNEM_vmovlt 0xeea01f40
14152#define M_MNEM_vmovlb 0xeea00f40
14153#define M_MNEM_vmovnt 0xfe311e81
14154#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14155#define M_MNEM_vadc 0xee300f00
14156#define M_MNEM_vadci 0xee301f00
14157#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14158#define M_MNEM_vaddlv 0xee890f00
14159#define M_MNEM_vaddlva 0xee890f20
14160#define M_MNEM_vaddv 0xeef10f00
14161#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14162#define M_MNEM_vddup 0xee011f6e
14163#define M_MNEM_vdwdup 0xee011f60
14164#define M_MNEM_vidup 0xee010f6e
14165#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14166#define M_MNEM_vmaxv 0xeee20f00
14167#define M_MNEM_vmaxav 0xeee00f00
14168#define M_MNEM_vminv 0xeee20f80
14169#define M_MNEM_vminav 0xeee00f80
a302e574 14170
5287ad62 14171/* Neon instruction encoder helpers. */
5f4273c7 14172
5287ad62 14173/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14174
5287ad62
JB
14175/* An "invalid" code for the following tables. */
14176#define N_INV -1u
14177
14178struct neon_tab_entry
b99bd4ef 14179{
5287ad62
JB
14180 unsigned integer;
14181 unsigned float_or_poly;
14182 unsigned scalar_or_imm;
14183};
5f4273c7 14184
5287ad62
JB
14185/* Map overloaded Neon opcodes to their respective encodings. */
14186#define NEON_ENC_TAB \
14187 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14188 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14189 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14190 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14191 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14192 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14193 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14194 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14195 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14196 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14197 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14198 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14199 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14200 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14201 /* Register variants of the following two instructions are encoded as
e07e6e58 14202 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14203 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14204 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14205 X(vfma, N_INV, 0x0000c10, N_INV), \
14206 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14207 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14208 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14209 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14210 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14211 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14212 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14213 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14214 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14215 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14216 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14217 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14218 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14219 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14220 X(vshl, 0x0000400, N_INV, 0x0800510), \
14221 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14222 X(vand, 0x0000110, N_INV, 0x0800030), \
14223 X(vbic, 0x0100110, N_INV, 0x0800030), \
14224 X(veor, 0x1000110, N_INV, N_INV), \
14225 X(vorn, 0x0300110, N_INV, 0x0800010), \
14226 X(vorr, 0x0200110, N_INV, 0x0800010), \
14227 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14228 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14229 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14230 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14231 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14232 X(vst1, 0x0000000, 0x0800000, N_INV), \
14233 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14234 X(vst2, 0x0000100, 0x0800100, N_INV), \
14235 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14236 X(vst3, 0x0000200, 0x0800200, N_INV), \
14237 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14238 X(vst4, 0x0000300, 0x0800300, N_INV), \
14239 X(vmovn, 0x1b20200, N_INV, N_INV), \
14240 X(vtrn, 0x1b20080, N_INV, N_INV), \
14241 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14242 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14243 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14244 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14245 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14246 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14247 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14248 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14249 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14250 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14251 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14252 X(vseleq, 0xe000a00, N_INV, N_INV), \
14253 X(vselvs, 0xe100a00, N_INV, N_INV), \
14254 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14255 X(vselgt, 0xe300a00, N_INV, N_INV), \
14256 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14257 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14258 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14259 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14260 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14261 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14262 X(sha3op, 0x2000c00, N_INV, N_INV), \
14263 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14264 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14265
14266enum neon_opc
14267{
14268#define X(OPC,I,F,S) N_MNEM_##OPC
14269NEON_ENC_TAB
14270#undef X
14271};
b99bd4ef 14272
5287ad62
JB
14273static const struct neon_tab_entry neon_enc_tab[] =
14274{
14275#define X(OPC,I,F,S) { (I), (F), (S) }
14276NEON_ENC_TAB
14277#undef X
14278};
b99bd4ef 14279
88714cb8
DG
14280/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14281#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14282#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14283#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14284#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14285#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14286#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14287#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14288#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14289#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14290#define NEON_ENC_SINGLE_(X) \
037e8744 14291 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14292#define NEON_ENC_DOUBLE_(X) \
037e8744 14293 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14294#define NEON_ENC_FPV8_(X) \
14295 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14296
88714cb8
DG
14297#define NEON_ENCODE(type, inst) \
14298 do \
14299 { \
14300 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14301 inst.is_neon = 1; \
14302 } \
14303 while (0)
14304
14305#define check_neon_suffixes \
14306 do \
14307 { \
14308 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14309 { \
14310 as_bad (_("invalid neon suffix for non neon instruction")); \
14311 return; \
14312 } \
14313 } \
14314 while (0)
14315
037e8744
JB
14316/* Define shapes for instruction operands. The following mnemonic characters
14317 are used in this table:
5287ad62 14318
037e8744 14319 F - VFP S<n> register
5287ad62
JB
14320 D - Neon D<n> register
14321 Q - Neon Q<n> register
14322 I - Immediate
14323 S - Scalar
14324 R - ARM register
14325 L - D<n> register list
5f4273c7 14326
037e8744
JB
14327 This table is used to generate various data:
14328 - enumerations of the form NS_DDR to be used as arguments to
14329 neon_select_shape.
14330 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14331 - a table used to drive neon_select_shape. */
b99bd4ef 14332
037e8744 14333#define NEON_SHAPE_DEF \
b409bdb6 14334 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14335 X(4, (R, R, S, S), QUAD), \
14336 X(4, (S, S, R, R), QUAD), \
b409bdb6 14337 X(3, (Q, R, I), QUAD), \
1b883319
AV
14338 X(3, (I, Q, Q), QUAD), \
14339 X(3, (I, Q, R), QUAD), \
a302e574 14340 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14341 X(3, (D, D, D), DOUBLE), \
14342 X(3, (Q, Q, Q), QUAD), \
14343 X(3, (D, D, I), DOUBLE), \
14344 X(3, (Q, Q, I), QUAD), \
14345 X(3, (D, D, S), DOUBLE), \
14346 X(3, (Q, Q, S), QUAD), \
5ee91343 14347 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14348 X(3, (R, R, Q), QUAD), \
14349 X(2, (R, Q), QUAD), \
037e8744
JB
14350 X(2, (D, D), DOUBLE), \
14351 X(2, (Q, Q), QUAD), \
14352 X(2, (D, S), DOUBLE), \
14353 X(2, (Q, S), QUAD), \
14354 X(2, (D, R), DOUBLE), \
14355 X(2, (Q, R), QUAD), \
14356 X(2, (D, I), DOUBLE), \
14357 X(2, (Q, I), QUAD), \
14358 X(3, (D, L, D), DOUBLE), \
14359 X(2, (D, Q), MIXED), \
14360 X(2, (Q, D), MIXED), \
14361 X(3, (D, Q, I), MIXED), \
14362 X(3, (Q, D, I), MIXED), \
14363 X(3, (Q, D, D), MIXED), \
14364 X(3, (D, Q, Q), MIXED), \
14365 X(3, (Q, Q, D), MIXED), \
14366 X(3, (Q, D, S), MIXED), \
14367 X(3, (D, Q, S), MIXED), \
14368 X(4, (D, D, D, I), DOUBLE), \
14369 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14370 X(4, (D, D, S, I), DOUBLE), \
14371 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14372 X(2, (F, F), SINGLE), \
14373 X(3, (F, F, F), SINGLE), \
14374 X(2, (F, I), SINGLE), \
14375 X(2, (F, D), MIXED), \
14376 X(2, (D, F), MIXED), \
14377 X(3, (F, F, I), MIXED), \
14378 X(4, (R, R, F, F), SINGLE), \
14379 X(4, (F, F, R, R), SINGLE), \
14380 X(3, (D, R, R), DOUBLE), \
14381 X(3, (R, R, D), DOUBLE), \
14382 X(2, (S, R), SINGLE), \
14383 X(2, (R, S), SINGLE), \
14384 X(2, (F, R), SINGLE), \
d54af2d0
RL
14385 X(2, (R, F), SINGLE), \
14386/* Half float shape supported so far. */\
14387 X (2, (H, D), MIXED), \
14388 X (2, (D, H), MIXED), \
14389 X (2, (H, F), MIXED), \
14390 X (2, (F, H), MIXED), \
14391 X (2, (H, H), HALF), \
14392 X (2, (H, R), HALF), \
14393 X (2, (R, H), HALF), \
14394 X (2, (H, I), HALF), \
14395 X (3, (H, H, H), HALF), \
14396 X (3, (H, F, I), MIXED), \
dec41383
JW
14397 X (3, (F, H, I), MIXED), \
14398 X (3, (D, H, H), MIXED), \
14399 X (3, (D, H, S), MIXED)
037e8744
JB
14400
14401#define S2(A,B) NS_##A##B
14402#define S3(A,B,C) NS_##A##B##C
14403#define S4(A,B,C,D) NS_##A##B##C##D
14404
14405#define X(N, L, C) S##N L
14406
5287ad62
JB
14407enum neon_shape
14408{
037e8744
JB
14409 NEON_SHAPE_DEF,
14410 NS_NULL
5287ad62 14411};
b99bd4ef 14412
037e8744
JB
14413#undef X
14414#undef S2
14415#undef S3
14416#undef S4
14417
14418enum neon_shape_class
14419{
d54af2d0 14420 SC_HALF,
037e8744
JB
14421 SC_SINGLE,
14422 SC_DOUBLE,
14423 SC_QUAD,
14424 SC_MIXED
14425};
14426
14427#define X(N, L, C) SC_##C
14428
14429static enum neon_shape_class neon_shape_class[] =
14430{
14431 NEON_SHAPE_DEF
14432};
14433
14434#undef X
14435
14436enum neon_shape_el
14437{
d54af2d0 14438 SE_H,
037e8744
JB
14439 SE_F,
14440 SE_D,
14441 SE_Q,
14442 SE_I,
14443 SE_S,
14444 SE_R,
14445 SE_L
14446};
14447
14448/* Register widths of above. */
14449static unsigned neon_shape_el_size[] =
14450{
d54af2d0 14451 16,
037e8744
JB
14452 32,
14453 64,
14454 128,
14455 0,
14456 32,
14457 32,
14458 0
14459};
14460
14461struct neon_shape_info
14462{
14463 unsigned els;
14464 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14465};
14466
14467#define S2(A,B) { SE_##A, SE_##B }
14468#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14469#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14470
14471#define X(N, L, C) { N, S##N L }
14472
14473static struct neon_shape_info neon_shape_tab[] =
14474{
14475 NEON_SHAPE_DEF
14476};
14477
14478#undef X
14479#undef S2
14480#undef S3
14481#undef S4
14482
5287ad62
JB
14483/* Bit masks used in type checking given instructions.
14484 'N_EQK' means the type must be the same as (or based on in some way) the key
14485 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14486 set, various other bits can be set as well in order to modify the meaning of
14487 the type constraint. */
14488
14489enum neon_type_mask
14490{
8e79c3df
CM
14491 N_S8 = 0x0000001,
14492 N_S16 = 0x0000002,
14493 N_S32 = 0x0000004,
14494 N_S64 = 0x0000008,
14495 N_U8 = 0x0000010,
14496 N_U16 = 0x0000020,
14497 N_U32 = 0x0000040,
14498 N_U64 = 0x0000080,
14499 N_I8 = 0x0000100,
14500 N_I16 = 0x0000200,
14501 N_I32 = 0x0000400,
14502 N_I64 = 0x0000800,
14503 N_8 = 0x0001000,
14504 N_16 = 0x0002000,
14505 N_32 = 0x0004000,
14506 N_64 = 0x0008000,
14507 N_P8 = 0x0010000,
14508 N_P16 = 0x0020000,
14509 N_F16 = 0x0040000,
14510 N_F32 = 0x0080000,
14511 N_F64 = 0x0100000,
4f51b4bd 14512 N_P64 = 0x0200000,
c921be7d
NC
14513 N_KEY = 0x1000000, /* Key element (main type specifier). */
14514 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14515 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14516 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14517 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14518 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14519 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14520 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14521 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14522 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14523 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14524 N_UTYP = 0,
4f51b4bd 14525 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14526};
14527
dcbf9037
JB
14528#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14529
5287ad62
JB
14530#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14531#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14532#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14533#define N_S_32 (N_S8 | N_S16 | N_S32)
14534#define N_F_16_32 (N_F16 | N_F32)
14535#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14536#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14537#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14538#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14539#define N_I_MVE (N_I8 | N_I16 | N_I32)
14540#define N_F_MVE (N_F16 | N_F32)
14541#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14542
14543/* Pass this as the first type argument to neon_check_type to ignore types
14544 altogether. */
14545#define N_IGNORE_TYPE (N_KEY | N_EQK)
14546
037e8744
JB
14547/* Select a "shape" for the current instruction (describing register types or
14548 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14549 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14550 function of operand parsing, so this function doesn't need to be called.
14551 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14552
14553static enum neon_shape
037e8744 14554neon_select_shape (enum neon_shape shape, ...)
5287ad62 14555{
037e8744
JB
14556 va_list ap;
14557 enum neon_shape first_shape = shape;
5287ad62
JB
14558
14559 /* Fix missing optional operands. FIXME: we don't know at this point how
14560 many arguments we should have, so this makes the assumption that we have
14561 > 1. This is true of all current Neon opcodes, I think, but may not be
14562 true in the future. */
14563 if (!inst.operands[1].present)
14564 inst.operands[1] = inst.operands[0];
14565
037e8744 14566 va_start (ap, shape);
5f4273c7 14567
21d799b5 14568 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14569 {
14570 unsigned j;
14571 int matches = 1;
14572
14573 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14574 {
14575 if (!inst.operands[j].present)
14576 {
14577 matches = 0;
14578 break;
14579 }
14580
14581 switch (neon_shape_tab[shape].el[j])
14582 {
d54af2d0
RL
14583 /* If a .f16, .16, .u16, .s16 type specifier is given over
14584 a VFP single precision register operand, it's essentially
14585 means only half of the register is used.
14586
14587 If the type specifier is given after the mnemonics, the
14588 information is stored in inst.vectype. If the type specifier
14589 is given after register operand, the information is stored
14590 in inst.operands[].vectype.
14591
14592 When there is only one type specifier, and all the register
14593 operands are the same type of hardware register, the type
14594 specifier applies to all register operands.
14595
14596 If no type specifier is given, the shape is inferred from
14597 operand information.
14598
14599 for example:
14600 vadd.f16 s0, s1, s2: NS_HHH
14601 vabs.f16 s0, s1: NS_HH
14602 vmov.f16 s0, r1: NS_HR
14603 vmov.f16 r0, s1: NS_RH
14604 vcvt.f16 r0, s1: NS_RH
14605 vcvt.f16.s32 s2, s2, #29: NS_HFI
14606 vcvt.f16.s32 s2, s2: NS_HF
14607 */
14608 case SE_H:
14609 if (!(inst.operands[j].isreg
14610 && inst.operands[j].isvec
14611 && inst.operands[j].issingle
14612 && !inst.operands[j].isquad
14613 && ((inst.vectype.elems == 1
14614 && inst.vectype.el[0].size == 16)
14615 || (inst.vectype.elems > 1
14616 && inst.vectype.el[j].size == 16)
14617 || (inst.vectype.elems == 0
14618 && inst.operands[j].vectype.type != NT_invtype
14619 && inst.operands[j].vectype.size == 16))))
14620 matches = 0;
14621 break;
14622
477330fc
RM
14623 case SE_F:
14624 if (!(inst.operands[j].isreg
14625 && inst.operands[j].isvec
14626 && inst.operands[j].issingle
d54af2d0
RL
14627 && !inst.operands[j].isquad
14628 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14629 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14630 || (inst.vectype.elems == 0
14631 && (inst.operands[j].vectype.size == 32
14632 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14633 matches = 0;
14634 break;
14635
14636 case SE_D:
14637 if (!(inst.operands[j].isreg
14638 && inst.operands[j].isvec
14639 && !inst.operands[j].isquad
14640 && !inst.operands[j].issingle))
14641 matches = 0;
14642 break;
14643
14644 case SE_R:
14645 if (!(inst.operands[j].isreg
14646 && !inst.operands[j].isvec))
14647 matches = 0;
14648 break;
14649
14650 case SE_Q:
14651 if (!(inst.operands[j].isreg
14652 && inst.operands[j].isvec
14653 && inst.operands[j].isquad
14654 && !inst.operands[j].issingle))
14655 matches = 0;
14656 break;
14657
14658 case SE_I:
14659 if (!(!inst.operands[j].isreg
14660 && !inst.operands[j].isscalar))
14661 matches = 0;
14662 break;
14663
14664 case SE_S:
14665 if (!(!inst.operands[j].isreg
14666 && inst.operands[j].isscalar))
14667 matches = 0;
14668 break;
14669
14670 case SE_L:
14671 break;
14672 }
3fde54a2
JZ
14673 if (!matches)
14674 break;
477330fc 14675 }
ad6cec43
MGD
14676 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14677 /* We've matched all the entries in the shape table, and we don't
14678 have any left over operands which have not been matched. */
477330fc 14679 break;
037e8744 14680 }
5f4273c7 14681
037e8744 14682 va_end (ap);
5287ad62 14683
037e8744
JB
14684 if (shape == NS_NULL && first_shape != NS_NULL)
14685 first_error (_("invalid instruction shape"));
5287ad62 14686
037e8744
JB
14687 return shape;
14688}
5287ad62 14689
037e8744
JB
14690/* True if SHAPE is predominantly a quadword operation (most of the time, this
14691 means the Q bit should be set). */
14692
14693static int
14694neon_quad (enum neon_shape shape)
14695{
14696 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14697}
037e8744 14698
5287ad62
JB
14699static void
14700neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14701 unsigned *g_size)
5287ad62
JB
14702{
14703 /* Allow modification to be made to types which are constrained to be
14704 based on the key element, based on bits set alongside N_EQK. */
14705 if ((typebits & N_EQK) != 0)
14706 {
14707 if ((typebits & N_HLF) != 0)
14708 *g_size /= 2;
14709 else if ((typebits & N_DBL) != 0)
14710 *g_size *= 2;
14711 if ((typebits & N_SGN) != 0)
14712 *g_type = NT_signed;
14713 else if ((typebits & N_UNS) != 0)
477330fc 14714 *g_type = NT_unsigned;
5287ad62 14715 else if ((typebits & N_INT) != 0)
477330fc 14716 *g_type = NT_integer;
5287ad62 14717 else if ((typebits & N_FLT) != 0)
477330fc 14718 *g_type = NT_float;
dcbf9037 14719 else if ((typebits & N_SIZ) != 0)
477330fc 14720 *g_type = NT_untyped;
5287ad62
JB
14721 }
14722}
5f4273c7 14723
5287ad62
JB
14724/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14725 operand type, i.e. the single type specified in a Neon instruction when it
14726 is the only one given. */
14727
14728static struct neon_type_el
14729neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14730{
14731 struct neon_type_el dest = *key;
5f4273c7 14732
9c2799c2 14733 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14734
5287ad62
JB
14735 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14736
14737 return dest;
14738}
14739
14740/* Convert Neon type and size into compact bitmask representation. */
14741
14742static enum neon_type_mask
14743type_chk_of_el_type (enum neon_el_type type, unsigned size)
14744{
14745 switch (type)
14746 {
14747 case NT_untyped:
14748 switch (size)
477330fc
RM
14749 {
14750 case 8: return N_8;
14751 case 16: return N_16;
14752 case 32: return N_32;
14753 case 64: return N_64;
14754 default: ;
14755 }
5287ad62
JB
14756 break;
14757
14758 case NT_integer:
14759 switch (size)
477330fc
RM
14760 {
14761 case 8: return N_I8;
14762 case 16: return N_I16;
14763 case 32: return N_I32;
14764 case 64: return N_I64;
14765 default: ;
14766 }
5287ad62
JB
14767 break;
14768
14769 case NT_float:
037e8744 14770 switch (size)
477330fc 14771 {
8e79c3df 14772 case 16: return N_F16;
477330fc
RM
14773 case 32: return N_F32;
14774 case 64: return N_F64;
14775 default: ;
14776 }
5287ad62
JB
14777 break;
14778
14779 case NT_poly:
14780 switch (size)
477330fc
RM
14781 {
14782 case 8: return N_P8;
14783 case 16: return N_P16;
4f51b4bd 14784 case 64: return N_P64;
477330fc
RM
14785 default: ;
14786 }
5287ad62
JB
14787 break;
14788
14789 case NT_signed:
14790 switch (size)
477330fc
RM
14791 {
14792 case 8: return N_S8;
14793 case 16: return N_S16;
14794 case 32: return N_S32;
14795 case 64: return N_S64;
14796 default: ;
14797 }
5287ad62
JB
14798 break;
14799
14800 case NT_unsigned:
14801 switch (size)
477330fc
RM
14802 {
14803 case 8: return N_U8;
14804 case 16: return N_U16;
14805 case 32: return N_U32;
14806 case 64: return N_U64;
14807 default: ;
14808 }
5287ad62
JB
14809 break;
14810
14811 default: ;
14812 }
5f4273c7 14813
5287ad62
JB
14814 return N_UTYP;
14815}
14816
14817/* Convert compact Neon bitmask type representation to a type and size. Only
14818 handles the case where a single bit is set in the mask. */
14819
dcbf9037 14820static int
5287ad62 14821el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14822 enum neon_type_mask mask)
5287ad62 14823{
dcbf9037
JB
14824 if ((mask & N_EQK) != 0)
14825 return FAIL;
14826
5287ad62
JB
14827 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14828 *size = 8;
c70a8987 14829 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14830 *size = 16;
dcbf9037 14831 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14832 *size = 32;
4f51b4bd 14833 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14834 *size = 64;
dcbf9037
JB
14835 else
14836 return FAIL;
14837
5287ad62
JB
14838 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14839 *type = NT_signed;
dcbf9037 14840 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14841 *type = NT_unsigned;
dcbf9037 14842 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14843 *type = NT_integer;
dcbf9037 14844 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14845 *type = NT_untyped;
4f51b4bd 14846 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14847 *type = NT_poly;
d54af2d0 14848 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14849 *type = NT_float;
dcbf9037
JB
14850 else
14851 return FAIL;
5f4273c7 14852
dcbf9037 14853 return SUCCESS;
5287ad62
JB
14854}
14855
14856/* Modify a bitmask of allowed types. This is only needed for type
14857 relaxation. */
14858
14859static unsigned
14860modify_types_allowed (unsigned allowed, unsigned mods)
14861{
14862 unsigned size;
14863 enum neon_el_type type;
14864 unsigned destmask;
14865 int i;
5f4273c7 14866
5287ad62 14867 destmask = 0;
5f4273c7 14868
5287ad62
JB
14869 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14870 {
21d799b5 14871 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14872 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14873 {
14874 neon_modify_type_size (mods, &type, &size);
14875 destmask |= type_chk_of_el_type (type, size);
14876 }
5287ad62 14877 }
5f4273c7 14878
5287ad62
JB
14879 return destmask;
14880}
14881
14882/* Check type and return type classification.
14883 The manual states (paraphrase): If one datatype is given, it indicates the
14884 type given in:
14885 - the second operand, if there is one
14886 - the operand, if there is no second operand
14887 - the result, if there are no operands.
14888 This isn't quite good enough though, so we use a concept of a "key" datatype
14889 which is set on a per-instruction basis, which is the one which matters when
14890 only one data type is written.
14891 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14892 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14893
14894static struct neon_type_el
14895neon_check_type (unsigned els, enum neon_shape ns, ...)
14896{
14897 va_list ap;
14898 unsigned i, pass, key_el = 0;
14899 unsigned types[NEON_MAX_TYPE_ELS];
14900 enum neon_el_type k_type = NT_invtype;
14901 unsigned k_size = -1u;
14902 struct neon_type_el badtype = {NT_invtype, -1};
14903 unsigned key_allowed = 0;
14904
14905 /* Optional registers in Neon instructions are always (not) in operand 1.
14906 Fill in the missing operand here, if it was omitted. */
14907 if (els > 1 && !inst.operands[1].present)
14908 inst.operands[1] = inst.operands[0];
14909
14910 /* Suck up all the varargs. */
14911 va_start (ap, ns);
14912 for (i = 0; i < els; i++)
14913 {
14914 unsigned thisarg = va_arg (ap, unsigned);
14915 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14916 {
14917 va_end (ap);
14918 return badtype;
14919 }
5287ad62
JB
14920 types[i] = thisarg;
14921 if ((thisarg & N_KEY) != 0)
477330fc 14922 key_el = i;
5287ad62
JB
14923 }
14924 va_end (ap);
14925
dcbf9037
JB
14926 if (inst.vectype.elems > 0)
14927 for (i = 0; i < els; i++)
14928 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14929 {
14930 first_error (_("types specified in both the mnemonic and operands"));
14931 return badtype;
14932 }
dcbf9037 14933
5287ad62
JB
14934 /* Duplicate inst.vectype elements here as necessary.
14935 FIXME: No idea if this is exactly the same as the ARM assembler,
14936 particularly when an insn takes one register and one non-register
14937 operand. */
14938 if (inst.vectype.elems == 1 && els > 1)
14939 {
14940 unsigned j;
14941 inst.vectype.elems = els;
14942 inst.vectype.el[key_el] = inst.vectype.el[0];
14943 for (j = 0; j < els; j++)
477330fc
RM
14944 if (j != key_el)
14945 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14946 types[j]);
dcbf9037
JB
14947 }
14948 else if (inst.vectype.elems == 0 && els > 0)
14949 {
14950 unsigned j;
14951 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14952 after each operand. We allow some flexibility here; as long as the
14953 "key" operand has a type, we can infer the others. */
dcbf9037 14954 for (j = 0; j < els; j++)
477330fc
RM
14955 if (inst.operands[j].vectype.type != NT_invtype)
14956 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14957
14958 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14959 {
14960 for (j = 0; j < els; j++)
14961 if (inst.operands[j].vectype.type == NT_invtype)
14962 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14963 types[j]);
14964 }
dcbf9037 14965 else
477330fc
RM
14966 {
14967 first_error (_("operand types can't be inferred"));
14968 return badtype;
14969 }
5287ad62
JB
14970 }
14971 else if (inst.vectype.elems != els)
14972 {
dcbf9037 14973 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14974 return badtype;
14975 }
14976
14977 for (pass = 0; pass < 2; pass++)
14978 {
14979 for (i = 0; i < els; i++)
477330fc
RM
14980 {
14981 unsigned thisarg = types[i];
14982 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14983 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14984 enum neon_el_type g_type = inst.vectype.el[i].type;
14985 unsigned g_size = inst.vectype.el[i].size;
14986
14987 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14988 integer types if sign-specific variants are unavailable. */
477330fc 14989 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14990 && (types_allowed & N_SU_ALL) == 0)
14991 g_type = NT_integer;
14992
477330fc 14993 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14994 them. Some instructions only care about signs for some element
14995 sizes, so handle that properly. */
477330fc 14996 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14997 && ((g_size == 8 && (types_allowed & N_8) != 0)
14998 || (g_size == 16 && (types_allowed & N_16) != 0)
14999 || (g_size == 32 && (types_allowed & N_32) != 0)
15000 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15001 g_type = NT_untyped;
15002
477330fc
RM
15003 if (pass == 0)
15004 {
15005 if ((thisarg & N_KEY) != 0)
15006 {
15007 k_type = g_type;
15008 k_size = g_size;
15009 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15010
15011 /* Check architecture constraint on FP16 extension. */
15012 if (k_size == 16
15013 && k_type == NT_float
15014 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15015 {
15016 inst.error = _(BAD_FP16);
15017 return badtype;
15018 }
477330fc
RM
15019 }
15020 }
15021 else
15022 {
15023 if ((thisarg & N_VFP) != 0)
15024 {
15025 enum neon_shape_el regshape;
15026 unsigned regwidth, match;
99b253c5
NC
15027
15028 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15029 if (ns == NS_NULL)
15030 {
15031 first_error (_("invalid instruction shape"));
15032 return badtype;
15033 }
477330fc
RM
15034 regshape = neon_shape_tab[ns].el[i];
15035 regwidth = neon_shape_el_size[regshape];
15036
15037 /* In VFP mode, operands must match register widths. If we
15038 have a key operand, use its width, else use the width of
15039 the current operand. */
15040 if (k_size != -1u)
15041 match = k_size;
15042 else
15043 match = g_size;
15044
9db2f6b4
RL
15045 /* FP16 will use a single precision register. */
15046 if (regwidth == 32 && match == 16)
15047 {
15048 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15049 match = regwidth;
15050 else
15051 {
15052 inst.error = _(BAD_FP16);
15053 return badtype;
15054 }
15055 }
15056
477330fc
RM
15057 if (regwidth != match)
15058 {
15059 first_error (_("operand size must match register width"));
15060 return badtype;
15061 }
15062 }
15063
15064 if ((thisarg & N_EQK) == 0)
15065 {
15066 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15067
15068 if ((given_type & types_allowed) == 0)
15069 {
a302e574 15070 first_error (BAD_SIMD_TYPE);
477330fc
RM
15071 return badtype;
15072 }
15073 }
15074 else
15075 {
15076 enum neon_el_type mod_k_type = k_type;
15077 unsigned mod_k_size = k_size;
15078 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15079 if (g_type != mod_k_type || g_size != mod_k_size)
15080 {
15081 first_error (_("inconsistent types in Neon instruction"));
15082 return badtype;
15083 }
15084 }
15085 }
15086 }
5287ad62
JB
15087 }
15088
15089 return inst.vectype.el[key_el];
15090}
15091
037e8744 15092/* Neon-style VFP instruction forwarding. */
5287ad62 15093
037e8744
JB
15094/* Thumb VFP instructions have 0xE in the condition field. */
15095
15096static void
15097do_vfp_cond_or_thumb (void)
5287ad62 15098{
88714cb8
DG
15099 inst.is_neon = 1;
15100
5287ad62 15101 if (thumb_mode)
037e8744 15102 inst.instruction |= 0xe0000000;
5287ad62 15103 else
037e8744 15104 inst.instruction |= inst.cond << 28;
5287ad62
JB
15105}
15106
037e8744
JB
15107/* Look up and encode a simple mnemonic, for use as a helper function for the
15108 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15109 etc. It is assumed that operand parsing has already been done, and that the
15110 operands are in the form expected by the given opcode (this isn't necessarily
15111 the same as the form in which they were parsed, hence some massaging must
15112 take place before this function is called).
15113 Checks current arch version against that in the looked-up opcode. */
5287ad62 15114
037e8744
JB
15115static void
15116do_vfp_nsyn_opcode (const char *opname)
5287ad62 15117{
037e8744 15118 const struct asm_opcode *opcode;
5f4273c7 15119
21d799b5 15120 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15121
037e8744
JB
15122 if (!opcode)
15123 abort ();
5287ad62 15124
037e8744 15125 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15126 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15127 _(BAD_FPU));
5287ad62 15128
88714cb8
DG
15129 inst.is_neon = 1;
15130
037e8744
JB
15131 if (thumb_mode)
15132 {
15133 inst.instruction = opcode->tvalue;
15134 opcode->tencode ();
15135 }
15136 else
15137 {
15138 inst.instruction = (inst.cond << 28) | opcode->avalue;
15139 opcode->aencode ();
15140 }
15141}
5287ad62
JB
15142
15143static void
037e8744 15144do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15145{
037e8744
JB
15146 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15147
9db2f6b4 15148 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15149 {
15150 if (is_add)
477330fc 15151 do_vfp_nsyn_opcode ("fadds");
037e8744 15152 else
477330fc 15153 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15154
15155 /* ARMv8.2 fp16 instruction. */
15156 if (rs == NS_HHH)
15157 do_scalar_fp16_v82_encode ();
037e8744
JB
15158 }
15159 else
15160 {
15161 if (is_add)
477330fc 15162 do_vfp_nsyn_opcode ("faddd");
037e8744 15163 else
477330fc 15164 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15165 }
15166}
15167
15168/* Check operand types to see if this is a VFP instruction, and if so call
15169 PFN (). */
15170
15171static int
15172try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15173{
15174 enum neon_shape rs;
15175 struct neon_type_el et;
15176
15177 switch (args)
15178 {
15179 case 2:
9db2f6b4
RL
15180 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15181 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15182 break;
5f4273c7 15183
037e8744 15184 case 3:
9db2f6b4
RL
15185 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15186 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15187 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15188 break;
15189
15190 default:
15191 abort ();
15192 }
15193
15194 if (et.type != NT_invtype)
15195 {
15196 pfn (rs);
15197 return SUCCESS;
15198 }
037e8744 15199
99b253c5 15200 inst.error = NULL;
037e8744
JB
15201 return FAIL;
15202}
15203
15204static void
15205do_vfp_nsyn_mla_mls (enum neon_shape rs)
15206{
15207 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15208
9db2f6b4 15209 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15210 {
15211 if (is_mla)
477330fc 15212 do_vfp_nsyn_opcode ("fmacs");
037e8744 15213 else
477330fc 15214 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15215
15216 /* ARMv8.2 fp16 instruction. */
15217 if (rs == NS_HHH)
15218 do_scalar_fp16_v82_encode ();
037e8744
JB
15219 }
15220 else
15221 {
15222 if (is_mla)
477330fc 15223 do_vfp_nsyn_opcode ("fmacd");
037e8744 15224 else
477330fc 15225 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15226 }
15227}
15228
62f3b8c8
PB
15229static void
15230do_vfp_nsyn_fma_fms (enum neon_shape rs)
15231{
15232 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15233
9db2f6b4 15234 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15235 {
15236 if (is_fma)
477330fc 15237 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15238 else
477330fc 15239 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15240
15241 /* ARMv8.2 fp16 instruction. */
15242 if (rs == NS_HHH)
15243 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15244 }
15245 else
15246 {
15247 if (is_fma)
477330fc 15248 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15249 else
477330fc 15250 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15251 }
15252}
15253
037e8744
JB
15254static void
15255do_vfp_nsyn_mul (enum neon_shape rs)
15256{
9db2f6b4
RL
15257 if (rs == NS_FFF || rs == NS_HHH)
15258 {
15259 do_vfp_nsyn_opcode ("fmuls");
15260
15261 /* ARMv8.2 fp16 instruction. */
15262 if (rs == NS_HHH)
15263 do_scalar_fp16_v82_encode ();
15264 }
037e8744
JB
15265 else
15266 do_vfp_nsyn_opcode ("fmuld");
15267}
15268
15269static void
15270do_vfp_nsyn_abs_neg (enum neon_shape rs)
15271{
15272 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15273 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15274
9db2f6b4 15275 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15276 {
15277 if (is_neg)
477330fc 15278 do_vfp_nsyn_opcode ("fnegs");
037e8744 15279 else
477330fc 15280 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15281
15282 /* ARMv8.2 fp16 instruction. */
15283 if (rs == NS_HH)
15284 do_scalar_fp16_v82_encode ();
037e8744
JB
15285 }
15286 else
15287 {
15288 if (is_neg)
477330fc 15289 do_vfp_nsyn_opcode ("fnegd");
037e8744 15290 else
477330fc 15291 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15292 }
15293}
15294
15295/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15296 insns belong to Neon, and are handled elsewhere. */
15297
15298static void
15299do_vfp_nsyn_ldm_stm (int is_dbmode)
15300{
15301 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15302 if (is_ldm)
15303 {
15304 if (is_dbmode)
477330fc 15305 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15306 else
477330fc 15307 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15308 }
15309 else
15310 {
15311 if (is_dbmode)
477330fc 15312 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15313 else
477330fc 15314 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15315 }
15316}
15317
037e8744
JB
15318static void
15319do_vfp_nsyn_sqrt (void)
15320{
9db2f6b4
RL
15321 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15322 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15323
9db2f6b4
RL
15324 if (rs == NS_FF || rs == NS_HH)
15325 {
15326 do_vfp_nsyn_opcode ("fsqrts");
15327
15328 /* ARMv8.2 fp16 instruction. */
15329 if (rs == NS_HH)
15330 do_scalar_fp16_v82_encode ();
15331 }
037e8744
JB
15332 else
15333 do_vfp_nsyn_opcode ("fsqrtd");
15334}
15335
15336static void
15337do_vfp_nsyn_div (void)
15338{
9db2f6b4 15339 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15340 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15341 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15342
9db2f6b4
RL
15343 if (rs == NS_FFF || rs == NS_HHH)
15344 {
15345 do_vfp_nsyn_opcode ("fdivs");
15346
15347 /* ARMv8.2 fp16 instruction. */
15348 if (rs == NS_HHH)
15349 do_scalar_fp16_v82_encode ();
15350 }
037e8744
JB
15351 else
15352 do_vfp_nsyn_opcode ("fdivd");
15353}
15354
15355static void
15356do_vfp_nsyn_nmul (void)
15357{
9db2f6b4 15358 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15359 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15360 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15361
9db2f6b4 15362 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15363 {
88714cb8 15364 NEON_ENCODE (SINGLE, inst);
037e8744 15365 do_vfp_sp_dyadic ();
9db2f6b4
RL
15366
15367 /* ARMv8.2 fp16 instruction. */
15368 if (rs == NS_HHH)
15369 do_scalar_fp16_v82_encode ();
037e8744
JB
15370 }
15371 else
15372 {
88714cb8 15373 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15374 do_vfp_dp_rd_rn_rm ();
15375 }
15376 do_vfp_cond_or_thumb ();
9db2f6b4 15377
037e8744
JB
15378}
15379
1b883319
AV
15380/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15381 (0, 1, 2, 3). */
15382
15383static unsigned
15384neon_logbits (unsigned x)
15385{
15386 return ffs (x) - 4;
15387}
15388
15389#define LOW4(R) ((R) & 0xf)
15390#define HI1(R) (((R) >> 4) & 1)
15391
15392static unsigned
15393mve_get_vcmp_vpt_cond (struct neon_type_el et)
15394{
15395 switch (et.type)
15396 {
15397 default:
15398 first_error (BAD_EL_TYPE);
15399 return 0;
15400 case NT_float:
15401 switch (inst.operands[0].imm)
15402 {
15403 default:
15404 first_error (_("invalid condition"));
15405 return 0;
15406 case 0x0:
15407 /* eq. */
15408 return 0;
15409 case 0x1:
15410 /* ne. */
15411 return 1;
15412 case 0xa:
15413 /* ge/ */
15414 return 4;
15415 case 0xb:
15416 /* lt. */
15417 return 5;
15418 case 0xc:
15419 /* gt. */
15420 return 6;
15421 case 0xd:
15422 /* le. */
15423 return 7;
15424 }
15425 case NT_integer:
15426 /* only accept eq and ne. */
15427 if (inst.operands[0].imm > 1)
15428 {
15429 first_error (_("invalid condition"));
15430 return 0;
15431 }
15432 return inst.operands[0].imm;
15433 case NT_unsigned:
15434 if (inst.operands[0].imm == 0x2)
15435 return 2;
15436 else if (inst.operands[0].imm == 0x8)
15437 return 3;
15438 else
15439 {
15440 first_error (_("invalid condition"));
15441 return 0;
15442 }
15443 case NT_signed:
15444 switch (inst.operands[0].imm)
15445 {
15446 default:
15447 first_error (_("invalid condition"));
15448 return 0;
15449 case 0xa:
15450 /* ge. */
15451 return 4;
15452 case 0xb:
15453 /* lt. */
15454 return 5;
15455 case 0xc:
15456 /* gt. */
15457 return 6;
15458 case 0xd:
15459 /* le. */
15460 return 7;
15461 }
15462 }
15463 /* Should be unreachable. */
15464 abort ();
15465}
15466
15467static void
15468do_mve_vpt (void)
15469{
15470 /* We are dealing with a vector predicated block. */
15471 if (inst.operands[0].present)
15472 {
15473 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15474 struct neon_type_el et
15475 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15476 N_EQK);
15477
15478 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15479
15480 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15481
15482 if (et.type == NT_invtype)
15483 return;
15484
15485 if (et.type == NT_float)
15486 {
15487 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15488 BAD_FPU);
15489 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15490 inst.instruction |= (et.size == 16) << 28;
15491 inst.instruction |= 0x3 << 20;
15492 }
15493 else
15494 {
15495 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15496 BAD_EL_TYPE);
15497 inst.instruction |= 1 << 28;
15498 inst.instruction |= neon_logbits (et.size) << 20;
15499 }
15500
15501 if (inst.operands[2].isquad)
15502 {
15503 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15504 inst.instruction |= LOW4 (inst.operands[2].reg);
15505 inst.instruction |= (fcond & 0x2) >> 1;
15506 }
15507 else
15508 {
15509 if (inst.operands[2].reg == REG_SP)
15510 as_tsktsk (MVE_BAD_SP);
15511 inst.instruction |= 1 << 6;
15512 inst.instruction |= (fcond & 0x2) << 4;
15513 inst.instruction |= inst.operands[2].reg;
15514 }
15515 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15516 inst.instruction |= (fcond & 0x4) << 10;
15517 inst.instruction |= (fcond & 0x1) << 7;
15518
15519 }
15520 set_pred_insn_type (VPT_INSN);
15521 now_pred.cc = 0;
15522 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15523 | ((inst.instruction & 0xe000) >> 13);
15524 now_pred.warn_deprecated = FALSE;
15525 now_pred.type = VECTOR_PRED;
15526 inst.is_neon = 1;
15527}
15528
15529static void
15530do_mve_vcmp (void)
15531{
15532 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15533 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15534 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15535 if (!inst.operands[2].present)
15536 first_error (_("MVE vector or ARM register expected"));
15537 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15538
15539 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15540 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15541 && inst.operands[1].isquad)
15542 {
15543 inst.instruction = N_MNEM_vcmp;
15544 inst.cond = 0x10;
15545 }
15546
15547 if (inst.cond > COND_ALWAYS)
15548 inst.pred_insn_type = INSIDE_VPT_INSN;
15549 else
15550 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15551
15552 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15553 struct neon_type_el et
15554 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15555 N_EQK);
15556
15557 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15558 && !inst.operands[2].iszr, BAD_PC);
15559
15560 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15561
15562 inst.instruction = 0xee010f00;
15563 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15564 inst.instruction |= (fcond & 0x4) << 10;
15565 inst.instruction |= (fcond & 0x1) << 7;
15566 if (et.type == NT_float)
15567 {
15568 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15569 BAD_FPU);
15570 inst.instruction |= (et.size == 16) << 28;
15571 inst.instruction |= 0x3 << 20;
15572 }
15573 else
15574 {
15575 inst.instruction |= 1 << 28;
15576 inst.instruction |= neon_logbits (et.size) << 20;
15577 }
15578 if (inst.operands[2].isquad)
15579 {
15580 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15581 inst.instruction |= (fcond & 0x2) >> 1;
15582 inst.instruction |= LOW4 (inst.operands[2].reg);
15583 }
15584 else
15585 {
15586 if (inst.operands[2].reg == REG_SP)
15587 as_tsktsk (MVE_BAD_SP);
15588 inst.instruction |= 1 << 6;
15589 inst.instruction |= (fcond & 0x2) << 4;
15590 inst.instruction |= inst.operands[2].reg;
15591 }
15592
15593 inst.is_neon = 1;
15594 return;
15595}
15596
935295b5
AV
15597static void
15598do_mve_vmaxa_vmina (void)
15599{
15600 if (inst.cond > COND_ALWAYS)
15601 inst.pred_insn_type = INSIDE_VPT_INSN;
15602 else
15603 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15604
15605 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15606 struct neon_type_el et
15607 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15608
15609 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15610 inst.instruction |= neon_logbits (et.size) << 18;
15611 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15612 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15613 inst.instruction |= LOW4 (inst.operands[1].reg);
15614 inst.is_neon = 1;
15615}
15616
f30ee27c
AV
15617static void
15618do_mve_vfmas (void)
15619{
15620 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15621 struct neon_type_el et
15622 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15623
15624 if (inst.cond > COND_ALWAYS)
15625 inst.pred_insn_type = INSIDE_VPT_INSN;
15626 else
15627 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15628
15629 if (inst.operands[2].reg == REG_SP)
15630 as_tsktsk (MVE_BAD_SP);
15631 else if (inst.operands[2].reg == REG_PC)
15632 as_tsktsk (MVE_BAD_PC);
15633
15634 inst.instruction |= (et.size == 16) << 28;
15635 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15636 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15637 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15638 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15639 inst.instruction |= inst.operands[2].reg;
15640 inst.is_neon = 1;
15641}
15642
b409bdb6
AV
15643static void
15644do_mve_viddup (void)
15645{
15646 if (inst.cond > COND_ALWAYS)
15647 inst.pred_insn_type = INSIDE_VPT_INSN;
15648 else
15649 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15650
15651 unsigned imm = inst.relocs[0].exp.X_add_number;
15652 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15653 _("immediate must be either 1, 2, 4 or 8"));
15654
15655 enum neon_shape rs;
15656 struct neon_type_el et;
15657 unsigned Rm;
15658 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15659 {
15660 rs = neon_select_shape (NS_QRI, NS_NULL);
15661 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15662 Rm = 7;
15663 }
15664 else
15665 {
15666 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15667 if (inst.operands[2].reg == REG_SP)
15668 as_tsktsk (MVE_BAD_SP);
15669 else if (inst.operands[2].reg == REG_PC)
15670 first_error (BAD_PC);
15671
15672 rs = neon_select_shape (NS_QRRI, NS_NULL);
15673 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15674 Rm = inst.operands[2].reg >> 1;
15675 }
15676 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15677 inst.instruction |= neon_logbits (et.size) << 20;
15678 inst.instruction |= inst.operands[1].reg << 16;
15679 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15680 inst.instruction |= (imm > 2) << 7;
15681 inst.instruction |= Rm << 1;
15682 inst.instruction |= (imm == 2 || imm == 8);
15683 inst.is_neon = 1;
15684}
15685
935295b5
AV
15686static void
15687do_mve_vmaxnma_vminnma (void)
15688{
15689 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15690 struct neon_type_el et
15691 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15692
15693 if (inst.cond > COND_ALWAYS)
15694 inst.pred_insn_type = INSIDE_VPT_INSN;
15695 else
15696 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15697
15698 inst.instruction |= (et.size == 16) << 28;
15699 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15700 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15701 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15702 inst.instruction |= LOW4 (inst.operands[1].reg);
15703 inst.is_neon = 1;
15704}
15705
5d281bf0
AV
15706static void
15707do_mve_vcmul (void)
15708{
15709 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15710 struct neon_type_el et
15711 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15712
15713 if (inst.cond > COND_ALWAYS)
15714 inst.pred_insn_type = INSIDE_VPT_INSN;
15715 else
15716 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15717
15718 unsigned rot = inst.relocs[0].exp.X_add_number;
15719 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15720 _("immediate out of range"));
15721
15722 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15723 || inst.operands[0].reg == inst.operands[2].reg))
15724 as_tsktsk (BAD_MVE_SRCDEST);
15725
15726 inst.instruction |= (et.size == 32) << 28;
15727 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15728 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15729 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15730 inst.instruction |= (rot > 90) << 12;
15731 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15732 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15733 inst.instruction |= LOW4 (inst.operands[2].reg);
15734 inst.instruction |= (rot == 90 || rot == 270);
15735 inst.is_neon = 1;
15736}
15737
037e8744
JB
15738static void
15739do_vfp_nsyn_cmp (void)
15740{
9db2f6b4 15741 enum neon_shape rs;
1b883319
AV
15742 if (!inst.operands[0].isreg)
15743 {
15744 do_mve_vcmp ();
15745 return;
15746 }
15747 else
15748 {
15749 constraint (inst.operands[2].present, BAD_SYNTAX);
15750 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15751 BAD_FPU);
15752 }
15753
037e8744
JB
15754 if (inst.operands[1].isreg)
15755 {
9db2f6b4
RL
15756 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15757 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15758
9db2f6b4 15759 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15760 {
15761 NEON_ENCODE (SINGLE, inst);
15762 do_vfp_sp_monadic ();
15763 }
037e8744 15764 else
477330fc
RM
15765 {
15766 NEON_ENCODE (DOUBLE, inst);
15767 do_vfp_dp_rd_rm ();
15768 }
037e8744
JB
15769 }
15770 else
15771 {
9db2f6b4
RL
15772 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15773 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15774
15775 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15776 {
15777 case N_MNEM_vcmp:
15778 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15779 break;
15780 case N_MNEM_vcmpe:
15781 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15782 break;
15783 default:
15784 abort ();
15785 }
5f4273c7 15786
9db2f6b4 15787 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15788 {
15789 NEON_ENCODE (SINGLE, inst);
15790 do_vfp_sp_compare_z ();
15791 }
037e8744 15792 else
477330fc
RM
15793 {
15794 NEON_ENCODE (DOUBLE, inst);
15795 do_vfp_dp_rd ();
15796 }
037e8744
JB
15797 }
15798 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15799
15800 /* ARMv8.2 fp16 instruction. */
15801 if (rs == NS_HI || rs == NS_HH)
15802 do_scalar_fp16_v82_encode ();
037e8744
JB
15803}
15804
15805static void
15806nsyn_insert_sp (void)
15807{
15808 inst.operands[1] = inst.operands[0];
15809 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15810 inst.operands[0].reg = REG_SP;
037e8744
JB
15811 inst.operands[0].isreg = 1;
15812 inst.operands[0].writeback = 1;
15813 inst.operands[0].present = 1;
15814}
15815
15816static void
15817do_vfp_nsyn_push (void)
15818{
15819 nsyn_insert_sp ();
b126985e
NC
15820
15821 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15822 _("register list must contain at least 1 and at most 16 "
15823 "registers"));
15824
037e8744
JB
15825 if (inst.operands[1].issingle)
15826 do_vfp_nsyn_opcode ("fstmdbs");
15827 else
15828 do_vfp_nsyn_opcode ("fstmdbd");
15829}
15830
15831static void
15832do_vfp_nsyn_pop (void)
15833{
15834 nsyn_insert_sp ();
b126985e
NC
15835
15836 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15837 _("register list must contain at least 1 and at most 16 "
15838 "registers"));
15839
037e8744 15840 if (inst.operands[1].issingle)
22b5b651 15841 do_vfp_nsyn_opcode ("fldmias");
037e8744 15842 else
22b5b651 15843 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
15844}
15845
15846/* Fix up Neon data-processing instructions, ORing in the correct bits for
15847 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15848
88714cb8
DG
15849static void
15850neon_dp_fixup (struct arm_it* insn)
037e8744 15851{
88714cb8
DG
15852 unsigned int i = insn->instruction;
15853 insn->is_neon = 1;
15854
037e8744
JB
15855 if (thumb_mode)
15856 {
15857 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15858 if (i & (1 << 24))
477330fc 15859 i |= 1 << 28;
5f4273c7 15860
037e8744 15861 i &= ~(1 << 24);
5f4273c7 15862
037e8744
JB
15863 i |= 0xef000000;
15864 }
15865 else
15866 i |= 0xf2000000;
5f4273c7 15867
88714cb8 15868 insn->instruction = i;
037e8744
JB
15869}
15870
5ee91343 15871static void
7df54120 15872mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
15873{
15874 if (inst.operands[2].reg == REG_SP)
15875 as_tsktsk (MVE_BAD_SP);
15876 else if (inst.operands[2].reg == REG_PC)
15877 as_tsktsk (MVE_BAD_PC);
15878
15879 if (fp)
15880 {
15881 /* vadd. */
15882 if (((unsigned)inst.instruction) == 0xd00)
15883 inst.instruction = 0xee300f40;
15884 /* vsub. */
15885 else if (((unsigned)inst.instruction) == 0x200d00)
15886 inst.instruction = 0xee301f40;
15887
15888 /* Setting size which is 1 for F16 and 0 for F32. */
15889 inst.instruction |= (size == 16) << 28;
15890 }
15891 else
15892 {
15893 /* vadd. */
15894 if (((unsigned)inst.instruction) == 0x800)
15895 inst.instruction = 0xee010f40;
15896 /* vsub. */
15897 else if (((unsigned)inst.instruction) == 0x1000800)
15898 inst.instruction = 0xee011f40;
7df54120
AV
15899 /* vhadd. */
15900 else if (((unsigned)inst.instruction) == 0)
15901 inst.instruction = 0xee000f40;
15902 /* vhsub. */
15903 else if (((unsigned)inst.instruction) == 0x200)
15904 inst.instruction = 0xee001f40;
15905
15906 /* Set U-bit. */
15907 inst.instruction |= U << 28;
15908
5ee91343
AV
15909 /* Setting bits for size. */
15910 inst.instruction |= neon_logbits (size) << 20;
15911 }
15912 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15913 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15914 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15915 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15916 inst.instruction |= inst.operands[2].reg;
15917 inst.is_neon = 1;
15918}
15919
a302e574
AV
15920static void
15921mve_encode_rqq (unsigned bit28, unsigned size)
15922{
15923 inst.instruction |= bit28 << 28;
15924 inst.instruction |= neon_logbits (size) << 20;
15925 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15926 inst.instruction |= inst.operands[0].reg << 12;
15927 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15928 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15929 inst.instruction |= LOW4 (inst.operands[2].reg);
15930 inst.is_neon = 1;
15931}
15932
886e1c73
AV
15933static void
15934mve_encode_qqq (int ubit, int size)
15935{
15936
15937 inst.instruction |= (ubit != 0) << 28;
15938 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15939 inst.instruction |= neon_logbits (size) << 20;
15940 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15941 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15942 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15943 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15944 inst.instruction |= LOW4 (inst.operands[2].reg);
15945
15946 inst.is_neon = 1;
15947}
15948
26c1e780
AV
15949static void
15950mve_encode_rq (unsigned bit28, unsigned size)
15951{
15952 inst.instruction |= bit28 << 28;
15953 inst.instruction |= neon_logbits (size) << 18;
15954 inst.instruction |= inst.operands[0].reg << 12;
15955 inst.instruction |= LOW4 (inst.operands[1].reg);
15956 inst.is_neon = 1;
15957}
886e1c73 15958
037e8744
JB
15959/* Encode insns with bit pattern:
15960
15961 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15962 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 15963
037e8744
JB
15964 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15965 different meaning for some instruction. */
15966
15967static void
15968neon_three_same (int isquad, int ubit, int size)
15969{
15970 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15971 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15972 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15973 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15974 inst.instruction |= LOW4 (inst.operands[2].reg);
15975 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15976 inst.instruction |= (isquad != 0) << 6;
15977 inst.instruction |= (ubit != 0) << 24;
15978 if (size != -1)
15979 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 15980
88714cb8 15981 neon_dp_fixup (&inst);
037e8744
JB
15982}
15983
15984/* Encode instructions of the form:
15985
15986 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15987 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
15988
15989 Don't write size if SIZE == -1. */
15990
15991static void
15992neon_two_same (int qbit, int ubit, int size)
15993{
15994 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15995 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15996 inst.instruction |= LOW4 (inst.operands[1].reg);
15997 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15998 inst.instruction |= (qbit != 0) << 6;
15999 inst.instruction |= (ubit != 0) << 24;
16000
16001 if (size != -1)
16002 inst.instruction |= neon_logbits (size) << 18;
16003
88714cb8 16004 neon_dp_fixup (&inst);
5287ad62
JB
16005}
16006
7df54120
AV
16007enum vfp_or_neon_is_neon_bits
16008{
16009NEON_CHECK_CC = 1,
16010NEON_CHECK_ARCH = 2,
16011NEON_CHECK_ARCH8 = 4
16012};
16013
16014/* Call this function if an instruction which may have belonged to the VFP or
16015 Neon instruction sets, but turned out to be a Neon instruction (due to the
16016 operand types involved, etc.). We have to check and/or fix-up a couple of
16017 things:
16018
16019 - Make sure the user hasn't attempted to make a Neon instruction
16020 conditional.
16021 - Alter the value in the condition code field if necessary.
16022 - Make sure that the arch supports Neon instructions.
16023
16024 Which of these operations take place depends on bits from enum
16025 vfp_or_neon_is_neon_bits.
16026
16027 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16028 current instruction's condition is COND_ALWAYS, the condition field is
16029 changed to inst.uncond_value. This is necessary because instructions shared
16030 between VFP and Neon may be conditional for the VFP variants only, and the
16031 unconditional Neon version must have, e.g., 0xF in the condition field. */
16032
16033static int
16034vfp_or_neon_is_neon (unsigned check)
16035{
16036/* Conditions are always legal in Thumb mode (IT blocks). */
16037if (!thumb_mode && (check & NEON_CHECK_CC))
16038 {
16039 if (inst.cond != COND_ALWAYS)
16040 {
16041 first_error (_(BAD_COND));
16042 return FAIL;
16043 }
16044 if (inst.uncond_value != -1)
16045 inst.instruction |= inst.uncond_value << 28;
16046 }
16047
16048
16049 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16050 || ((check & NEON_CHECK_ARCH8)
16051 && !mark_feature_used (&fpu_neon_ext_armv8)))
16052 {
16053 first_error (_(BAD_FPU));
16054 return FAIL;
16055 }
16056
16057return SUCCESS;
16058}
16059
16060static int
16061check_simd_pred_availability (int fp, unsigned check)
16062{
16063if (inst.cond > COND_ALWAYS)
16064 {
16065 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16066 {
16067 inst.error = BAD_FPU;
16068 return 1;
16069 }
16070 inst.pred_insn_type = INSIDE_VPT_INSN;
16071 }
16072else if (inst.cond < COND_ALWAYS)
16073 {
16074 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16075 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16076 else if (vfp_or_neon_is_neon (check) == FAIL)
16077 return 2;
16078 }
16079else
16080 {
16081 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16082 && vfp_or_neon_is_neon (check) == FAIL)
16083 return 3;
16084
16085 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16086 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16087 }
16088return 0;
16089}
16090
5287ad62
JB
16091/* Neon instruction encoders, in approximate order of appearance. */
16092
16093static void
16094do_neon_dyadic_i_su (void)
16095{
7df54120
AV
16096 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16097 return;
16098
16099 enum neon_shape rs;
16100 struct neon_type_el et;
16101 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16102 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16103 else
16104 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16105
16106 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16107
16108
16109 if (rs != NS_QQR)
16110 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16111 else
16112 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16113}
16114
16115static void
16116do_neon_dyadic_i64_su (void)
16117{
037e8744 16118 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
16119 struct neon_type_el et = neon_check_type (3, rs,
16120 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 16121 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16122}
16123
16124static void
16125neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16126 unsigned immbits)
5287ad62
JB
16127{
16128 unsigned size = et.size >> 3;
16129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16130 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16131 inst.instruction |= LOW4 (inst.operands[1].reg);
16132 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16133 inst.instruction |= (isquad != 0) << 6;
16134 inst.instruction |= immbits << 16;
16135 inst.instruction |= (size >> 3) << 7;
16136 inst.instruction |= (size & 0x7) << 19;
16137 if (write_ubit)
16138 inst.instruction |= (uval != 0) << 24;
16139
88714cb8 16140 neon_dp_fixup (&inst);
5287ad62
JB
16141}
16142
16143static void
16144do_neon_shl_imm (void)
16145{
16146 if (!inst.operands[2].isreg)
16147 {
037e8744 16148 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16149 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
16150 int imm = inst.operands[2].imm;
16151
16152 constraint (imm < 0 || (unsigned)imm >= et.size,
16153 _("immediate out of range for shift"));
88714cb8 16154 NEON_ENCODE (IMMED, inst);
cb3b1e65 16155 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16156 }
16157 else
16158 {
037e8744 16159 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16160 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16161 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16162 unsigned int tmp;
16163
16164 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
16165 vshl.xx Dd, Dm, Dn
16166 whereas other 3-register operations encoded by neon_three_same have
16167 syntax like:
16168 vadd.xx Dd, Dn, Dm
16169 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16170 here. */
627907b7
JB
16171 tmp = inst.operands[2].reg;
16172 inst.operands[2].reg = inst.operands[1].reg;
16173 inst.operands[1].reg = tmp;
88714cb8 16174 NEON_ENCODE (INTEGER, inst);
037e8744 16175 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16176 }
16177}
16178
16179static void
16180do_neon_qshl_imm (void)
16181{
16182 if (!inst.operands[2].isreg)
16183 {
037e8744 16184 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16185 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 16186 int imm = inst.operands[2].imm;
627907b7 16187
cb3b1e65
JB
16188 constraint (imm < 0 || (unsigned)imm >= et.size,
16189 _("immediate out of range for shift"));
88714cb8 16190 NEON_ENCODE (IMMED, inst);
cb3b1e65 16191 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16192 }
16193 else
16194 {
037e8744 16195 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16196 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16197 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16198 unsigned int tmp;
16199
16200 /* See note in do_neon_shl_imm. */
16201 tmp = inst.operands[2].reg;
16202 inst.operands[2].reg = inst.operands[1].reg;
16203 inst.operands[1].reg = tmp;
88714cb8 16204 NEON_ENCODE (INTEGER, inst);
037e8744 16205 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16206 }
16207}
16208
627907b7
JB
16209static void
16210do_neon_rshl (void)
16211{
16212 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16213 struct neon_type_el et = neon_check_type (3, rs,
16214 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16215 unsigned int tmp;
16216
16217 tmp = inst.operands[2].reg;
16218 inst.operands[2].reg = inst.operands[1].reg;
16219 inst.operands[1].reg = tmp;
16220 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16221}
16222
5287ad62
JB
16223static int
16224neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16225{
036dc3f7
PB
16226 /* Handle .I8 pseudo-instructions. */
16227 if (size == 8)
5287ad62 16228 {
5287ad62 16229 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16230 FIXME is this the intended semantics? There doesn't seem much point in
16231 accepting .I8 if so. */
5287ad62
JB
16232 immediate |= immediate << 8;
16233 size = 16;
036dc3f7
PB
16234 }
16235
16236 if (size >= 32)
16237 {
16238 if (immediate == (immediate & 0x000000ff))
16239 {
16240 *immbits = immediate;
16241 return 0x1;
16242 }
16243 else if (immediate == (immediate & 0x0000ff00))
16244 {
16245 *immbits = immediate >> 8;
16246 return 0x3;
16247 }
16248 else if (immediate == (immediate & 0x00ff0000))
16249 {
16250 *immbits = immediate >> 16;
16251 return 0x5;
16252 }
16253 else if (immediate == (immediate & 0xff000000))
16254 {
16255 *immbits = immediate >> 24;
16256 return 0x7;
16257 }
16258 if ((immediate & 0xffff) != (immediate >> 16))
16259 goto bad_immediate;
16260 immediate &= 0xffff;
5287ad62
JB
16261 }
16262
16263 if (immediate == (immediate & 0x000000ff))
16264 {
16265 *immbits = immediate;
036dc3f7 16266 return 0x9;
5287ad62
JB
16267 }
16268 else if (immediate == (immediate & 0x0000ff00))
16269 {
16270 *immbits = immediate >> 8;
036dc3f7 16271 return 0xb;
5287ad62
JB
16272 }
16273
16274 bad_immediate:
dcbf9037 16275 first_error (_("immediate value out of range"));
5287ad62
JB
16276 return FAIL;
16277}
16278
5287ad62
JB
16279static void
16280do_neon_logic (void)
16281{
16282 if (inst.operands[2].present && inst.operands[2].isreg)
16283 {
037e8744 16284 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16285 if (rs == NS_QQQ
16286 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16287 == FAIL)
16288 return;
16289 else if (rs != NS_QQQ
16290 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16291 first_error (BAD_FPU);
16292
5287ad62
JB
16293 neon_check_type (3, rs, N_IGNORE_TYPE);
16294 /* U bit and size field were set as part of the bitmask. */
88714cb8 16295 NEON_ENCODE (INTEGER, inst);
037e8744 16296 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16297 }
16298 else
16299 {
4316f0d2
DG
16300 const int three_ops_form = (inst.operands[2].present
16301 && !inst.operands[2].isreg);
16302 const int immoperand = (three_ops_form ? 2 : 1);
16303 enum neon_shape rs = (three_ops_form
16304 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16305 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16306 /* Because neon_select_shape makes the second operand a copy of the first
16307 if the second operand is not present. */
16308 if (rs == NS_QQI
16309 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16310 == FAIL)
16311 return;
16312 else if (rs != NS_QQI
16313 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16314 first_error (BAD_FPU);
16315
16316 struct neon_type_el et;
16317 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16318 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16319 else
16320 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16321 | N_KEY, N_EQK);
16322
16323 if (et.type == NT_invtype)
16324 return;
21d799b5 16325 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16326 unsigned immbits;
16327 int cmode;
5f4273c7 16328
5f4273c7 16329
4316f0d2
DG
16330 if (three_ops_form)
16331 constraint (inst.operands[0].reg != inst.operands[1].reg,
16332 _("first and second operands shall be the same register"));
16333
88714cb8 16334 NEON_ENCODE (IMMED, inst);
5287ad62 16335
4316f0d2 16336 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16337 if (et.size == 64)
16338 {
16339 /* .i64 is a pseudo-op, so the immediate must be a repeating
16340 pattern. */
4316f0d2
DG
16341 if (immbits != (inst.operands[immoperand].regisimm ?
16342 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16343 {
16344 /* Set immbits to an invalid constant. */
16345 immbits = 0xdeadbeef;
16346 }
16347 }
16348
5287ad62 16349 switch (opcode)
477330fc
RM
16350 {
16351 case N_MNEM_vbic:
16352 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16353 break;
16354
16355 case N_MNEM_vorr:
16356 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16357 break;
16358
16359 case N_MNEM_vand:
16360 /* Pseudo-instruction for VBIC. */
16361 neon_invert_size (&immbits, 0, et.size);
16362 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16363 break;
16364
16365 case N_MNEM_vorn:
16366 /* Pseudo-instruction for VORR. */
16367 neon_invert_size (&immbits, 0, et.size);
16368 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16369 break;
16370
16371 default:
16372 abort ();
16373 }
5287ad62
JB
16374
16375 if (cmode == FAIL)
477330fc 16376 return;
5287ad62 16377
037e8744 16378 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16379 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16380 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16381 inst.instruction |= cmode << 8;
16382 neon_write_immbits (immbits);
5f4273c7 16383
88714cb8 16384 neon_dp_fixup (&inst);
5287ad62
JB
16385 }
16386}
16387
16388static void
16389do_neon_bitfield (void)
16390{
037e8744 16391 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16392 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16393 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16394}
16395
16396static void
dcbf9037 16397neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16398 unsigned destbits)
5287ad62 16399{
5ee91343 16400 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16401 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16402 types | N_KEY);
5287ad62
JB
16403 if (et.type == NT_float)
16404 {
88714cb8 16405 NEON_ENCODE (FLOAT, inst);
5ee91343 16406 if (rs == NS_QQR)
7df54120 16407 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16408 else
16409 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16410 }
16411 else
16412 {
88714cb8 16413 NEON_ENCODE (INTEGER, inst);
5ee91343 16414 if (rs == NS_QQR)
7df54120 16415 mve_encode_qqr (et.size, 0, 0);
5ee91343
AV
16416 else
16417 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16418 }
16419}
16420
5287ad62
JB
16421
16422static void
16423do_neon_dyadic_if_su_d (void)
16424{
16425 /* This version only allow D registers, but that constraint is enforced during
16426 operand parsing so we don't need to do anything extra here. */
dcbf9037 16427 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16428}
16429
5287ad62
JB
16430static void
16431do_neon_dyadic_if_i_d (void)
16432{
428e3f1f
PB
16433 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16434 affected if we specify unsigned args. */
16435 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16436}
16437
f5f10c66
AV
16438static void
16439do_mve_vstr_vldr_QI (int size, int elsize, int load)
16440{
16441 constraint (size < 32, BAD_ADDR_MODE);
16442 constraint (size != elsize, BAD_EL_TYPE);
16443 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16444 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16445 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16446 _("destination register and offset register may not be the"
16447 " same"));
16448
16449 int imm = inst.relocs[0].exp.X_add_number;
16450 int add = 1;
16451 if (imm < 0)
16452 {
16453 add = 0;
16454 imm = -imm;
16455 }
16456 constraint ((imm % (size / 8) != 0)
16457 || imm > (0x7f << neon_logbits (size)),
16458 (size == 32) ? _("immediate must be a multiple of 4 in the"
16459 " range of +/-[0,508]")
16460 : _("immediate must be a multiple of 8 in the"
16461 " range of +/-[0,1016]"));
16462 inst.instruction |= 0x11 << 24;
16463 inst.instruction |= add << 23;
16464 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16465 inst.instruction |= inst.operands[1].writeback << 21;
16466 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16467 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16468 inst.instruction |= 1 << 12;
16469 inst.instruction |= (size == 64) << 8;
16470 inst.instruction &= 0xffffff00;
16471 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16472 inst.instruction |= imm >> neon_logbits (size);
16473}
16474
16475static void
16476do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16477{
16478 unsigned os = inst.operands[1].imm >> 5;
16479 constraint (os != 0 && size == 8,
16480 _("can not shift offsets when accessing less than half-word"));
16481 constraint (os && os != neon_logbits (size),
16482 _("shift immediate must be 1, 2 or 3 for half-word, word"
16483 " or double-word accesses respectively"));
16484 if (inst.operands[1].reg == REG_PC)
16485 as_tsktsk (MVE_BAD_PC);
16486
16487 switch (size)
16488 {
16489 case 8:
16490 constraint (elsize >= 64, BAD_EL_TYPE);
16491 break;
16492 case 16:
16493 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16494 break;
16495 case 32:
16496 case 64:
16497 constraint (elsize != size, BAD_EL_TYPE);
16498 break;
16499 default:
16500 break;
16501 }
16502 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16503 BAD_ADDR_MODE);
16504 if (load)
16505 {
16506 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16507 _("destination register and offset register may not be"
16508 " the same"));
16509 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16510 BAD_EL_TYPE);
16511 constraint (inst.vectype.el[0].type != NT_unsigned
16512 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16513 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16514 }
16515 else
16516 {
16517 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16518 }
16519
16520 inst.instruction |= 1 << 23;
16521 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16522 inst.instruction |= inst.operands[1].reg << 16;
16523 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16524 inst.instruction |= neon_logbits (elsize) << 7;
16525 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16526 inst.instruction |= LOW4 (inst.operands[1].imm);
16527 inst.instruction |= !!os;
16528}
16529
16530static void
16531do_mve_vstr_vldr_RI (int size, int elsize, int load)
16532{
16533 enum neon_el_type type = inst.vectype.el[0].type;
16534
16535 constraint (size >= 64, BAD_ADDR_MODE);
16536 switch (size)
16537 {
16538 case 16:
16539 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16540 break;
16541 case 32:
16542 constraint (elsize != size, BAD_EL_TYPE);
16543 break;
16544 default:
16545 break;
16546 }
16547 if (load)
16548 {
16549 constraint (elsize != size && type != NT_unsigned
16550 && type != NT_signed, BAD_EL_TYPE);
16551 }
16552 else
16553 {
16554 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16555 }
16556
16557 int imm = inst.relocs[0].exp.X_add_number;
16558 int add = 1;
16559 if (imm < 0)
16560 {
16561 add = 0;
16562 imm = -imm;
16563 }
16564
16565 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16566 {
16567 switch (size)
16568 {
16569 case 8:
16570 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16571 break;
16572 case 16:
16573 constraint (1, _("immediate must be a multiple of 2 in the"
16574 " range of +/-[0,254]"));
16575 break;
16576 case 32:
16577 constraint (1, _("immediate must be a multiple of 4 in the"
16578 " range of +/-[0,508]"));
16579 break;
16580 }
16581 }
16582
16583 if (size != elsize)
16584 {
16585 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16586 constraint (inst.operands[0].reg > 14,
16587 _("MVE vector register in the range [Q0..Q7] expected"));
16588 inst.instruction |= (load && type == NT_unsigned) << 28;
16589 inst.instruction |= (size == 16) << 19;
16590 inst.instruction |= neon_logbits (elsize) << 7;
16591 }
16592 else
16593 {
16594 if (inst.operands[1].reg == REG_PC)
16595 as_tsktsk (MVE_BAD_PC);
16596 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16597 as_tsktsk (MVE_BAD_SP);
16598 inst.instruction |= 1 << 12;
16599 inst.instruction |= neon_logbits (size) << 7;
16600 }
16601 inst.instruction |= inst.operands[1].preind << 24;
16602 inst.instruction |= add << 23;
16603 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16604 inst.instruction |= inst.operands[1].writeback << 21;
16605 inst.instruction |= inst.operands[1].reg << 16;
16606 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16607 inst.instruction &= 0xffffff80;
16608 inst.instruction |= imm >> neon_logbits (size);
16609
16610}
16611
16612static void
16613do_mve_vstr_vldr (void)
16614{
16615 unsigned size;
16616 int load = 0;
16617
16618 if (inst.cond > COND_ALWAYS)
16619 inst.pred_insn_type = INSIDE_VPT_INSN;
16620 else
16621 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16622
16623 switch (inst.instruction)
16624 {
16625 default:
16626 gas_assert (0);
16627 break;
16628 case M_MNEM_vldrb:
16629 load = 1;
16630 /* fall through. */
16631 case M_MNEM_vstrb:
16632 size = 8;
16633 break;
16634 case M_MNEM_vldrh:
16635 load = 1;
16636 /* fall through. */
16637 case M_MNEM_vstrh:
16638 size = 16;
16639 break;
16640 case M_MNEM_vldrw:
16641 load = 1;
16642 /* fall through. */
16643 case M_MNEM_vstrw:
16644 size = 32;
16645 break;
16646 case M_MNEM_vldrd:
16647 load = 1;
16648 /* fall through. */
16649 case M_MNEM_vstrd:
16650 size = 64;
16651 break;
16652 }
16653 unsigned elsize = inst.vectype.el[0].size;
16654
16655 if (inst.operands[1].isquad)
16656 {
16657 /* We are dealing with [Q, imm]{!} cases. */
16658 do_mve_vstr_vldr_QI (size, elsize, load);
16659 }
16660 else
16661 {
16662 if (inst.operands[1].immisreg == 2)
16663 {
16664 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16665 do_mve_vstr_vldr_RQ (size, elsize, load);
16666 }
16667 else if (!inst.operands[1].immisreg)
16668 {
16669 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16670 do_mve_vstr_vldr_RI (size, elsize, load);
16671 }
16672 else
16673 constraint (1, BAD_ADDR_MODE);
16674 }
16675
16676 inst.is_neon = 1;
16677}
16678
35c228db
AV
16679static void
16680do_mve_vst_vld (void)
16681{
16682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16683 return;
16684
16685 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16686 || inst.relocs[0].exp.X_add_number != 0
16687 || inst.operands[1].immisreg != 0,
16688 BAD_ADDR_MODE);
16689 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16690 if (inst.operands[1].reg == REG_PC)
16691 as_tsktsk (MVE_BAD_PC);
16692 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16693 as_tsktsk (MVE_BAD_SP);
16694
16695
16696 /* These instructions are one of the "exceptions" mentioned in
16697 handle_pred_state. They are MVE instructions that are not VPT compatible
16698 and do not accept a VPT code, thus appending such a code is a syntax
16699 error. */
16700 if (inst.cond > COND_ALWAYS)
16701 first_error (BAD_SYNTAX);
16702 /* If we append a scalar condition code we can set this to
16703 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16704 else if (inst.cond < COND_ALWAYS)
16705 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16706 else
16707 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16708
16709 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16710 inst.instruction |= inst.operands[1].writeback << 21;
16711 inst.instruction |= inst.operands[1].reg << 16;
16712 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16713 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16714 inst.is_neon = 1;
16715}
16716
26c1e780
AV
16717static void
16718do_mve_vaddlv (void)
16719{
16720 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16721 struct neon_type_el et
16722 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16723
16724 if (et.type == NT_invtype)
16725 first_error (BAD_EL_TYPE);
16726
16727 if (inst.cond > COND_ALWAYS)
16728 inst.pred_insn_type = INSIDE_VPT_INSN;
16729 else
16730 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16731
16732 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16733
16734 inst.instruction |= (et.type == NT_unsigned) << 28;
16735 inst.instruction |= inst.operands[1].reg << 19;
16736 inst.instruction |= inst.operands[0].reg << 12;
16737 inst.instruction |= inst.operands[2].reg;
16738 inst.is_neon = 1;
16739}
16740
5287ad62 16741static void
5ee91343 16742do_neon_dyadic_if_su (void)
5287ad62 16743{
5ee91343
AV
16744 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16745 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16746 N_SUF_32 | N_KEY);
16747
935295b5
AV
16748 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16749 || inst.instruction == ((unsigned) N_MNEM_vmin))
16750 && et.type == NT_float
16751 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16752
5ee91343
AV
16753 if (check_simd_pred_availability (et.type == NT_float,
16754 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
16755 return;
16756
5ee91343
AV
16757 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16758}
16759
16760static void
16761do_neon_addsub_if_i (void)
16762{
16763 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16764 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
16765 return;
16766
5ee91343
AV
16767 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16768 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16769 N_EQK, N_IF_32 | N_I64 | N_KEY);
16770
16771 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16772 /* If we are parsing Q registers and the element types match MVE, which NEON
16773 also supports, then we must check whether this is an instruction that can
16774 be used by both MVE/NEON. This distinction can be made based on whether
16775 they are predicated or not. */
16776 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16777 {
16778 if (check_simd_pred_availability (et.type == NT_float,
16779 NEON_CHECK_ARCH | NEON_CHECK_CC))
16780 return;
16781 }
16782 else
16783 {
16784 /* If they are either in a D register or are using an unsupported. */
16785 if (rs != NS_QQR
16786 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16787 return;
16788 }
16789
5287ad62
JB
16790 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16791 affected if we specify unsigned args. */
dcbf9037 16792 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
16793}
16794
16795/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16796 result to be:
16797 V<op> A,B (A is operand 0, B is operand 2)
16798 to mean:
16799 V<op> A,B,A
16800 not:
16801 V<op> A,B,B
16802 so handle that case specially. */
16803
16804static void
16805neon_exchange_operands (void)
16806{
5287ad62
JB
16807 if (inst.operands[1].present)
16808 {
e1fa0163
NC
16809 void *scratch = xmalloc (sizeof (inst.operands[0]));
16810
5287ad62
JB
16811 /* Swap operands[1] and operands[2]. */
16812 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16813 inst.operands[1] = inst.operands[2];
16814 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 16815 free (scratch);
5287ad62
JB
16816 }
16817 else
16818 {
16819 inst.operands[1] = inst.operands[2];
16820 inst.operands[2] = inst.operands[0];
16821 }
16822}
16823
16824static void
16825neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16826{
16827 if (inst.operands[2].isreg)
16828 {
16829 if (invert)
477330fc 16830 neon_exchange_operands ();
dcbf9037 16831 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
16832 }
16833 else
16834 {
037e8744 16835 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 16836 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16837 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 16838
88714cb8 16839 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16840 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16841 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16842 inst.instruction |= LOW4 (inst.operands[1].reg);
16843 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16844 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16845 inst.instruction |= (et.type == NT_float) << 10;
16846 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 16847
88714cb8 16848 neon_dp_fixup (&inst);
5287ad62
JB
16849 }
16850}
16851
16852static void
16853do_neon_cmp (void)
16854{
cc933301 16855 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
16856}
16857
16858static void
16859do_neon_cmp_inv (void)
16860{
cc933301 16861 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
16862}
16863
16864static void
16865do_neon_ceq (void)
16866{
16867 neon_compare (N_IF_32, N_IF_32, FALSE);
16868}
16869
16870/* For multiply instructions, we have the possibility of 16-bit or 32-bit
16871 scalars, which are encoded in 5 bits, M : Rm.
16872 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16873 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
16874 index in M.
16875
16876 Dot Product instructions are similar to multiply instructions except elsize
16877 should always be 32.
16878
16879 This function translates SCALAR, which is GAS's internal encoding of indexed
16880 scalar register, to raw encoding. There is also register and index range
16881 check based on ELSIZE. */
5287ad62
JB
16882
16883static unsigned
16884neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16885{
dcbf9037
JB
16886 unsigned regno = NEON_SCALAR_REG (scalar);
16887 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
16888
16889 switch (elsize)
16890 {
16891 case 16:
16892 if (regno > 7 || elno > 3)
477330fc 16893 goto bad_scalar;
5287ad62 16894 return regno | (elno << 3);
5f4273c7 16895
5287ad62
JB
16896 case 32:
16897 if (regno > 15 || elno > 1)
477330fc 16898 goto bad_scalar;
5287ad62
JB
16899 return regno | (elno << 4);
16900
16901 default:
16902 bad_scalar:
dcbf9037 16903 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
16904 }
16905
16906 return 0;
16907}
16908
16909/* Encode multiply / multiply-accumulate scalar instructions. */
16910
16911static void
16912neon_mul_mac (struct neon_type_el et, int ubit)
16913{
dcbf9037
JB
16914 unsigned scalar;
16915
16916 /* Give a more helpful error message if we have an invalid type. */
16917 if (et.type == NT_invtype)
16918 return;
5f4273c7 16919
dcbf9037 16920 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
16921 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16922 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16923 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16924 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16925 inst.instruction |= LOW4 (scalar);
16926 inst.instruction |= HI1 (scalar) << 5;
16927 inst.instruction |= (et.type == NT_float) << 8;
16928 inst.instruction |= neon_logbits (et.size) << 20;
16929 inst.instruction |= (ubit != 0) << 24;
16930
88714cb8 16931 neon_dp_fixup (&inst);
5287ad62
JB
16932}
16933
16934static void
16935do_neon_mac_maybe_scalar (void)
16936{
037e8744
JB
16937 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16938 return;
16939
16940 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16941 return;
16942
5287ad62
JB
16943 if (inst.operands[2].isscalar)
16944 {
037e8744 16945 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16946 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 16947 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 16948 NEON_ENCODE (SCALAR, inst);
037e8744 16949 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16950 }
16951 else
428e3f1f
PB
16952 {
16953 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16954 affected if we specify unsigned args. */
16955 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16956 }
5287ad62
JB
16957}
16958
62f3b8c8
PB
16959static void
16960do_neon_fmac (void)
16961{
d58196e0
AV
16962 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
16963 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
16964 return;
16965
d58196e0 16966 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
16967 return;
16968
d58196e0
AV
16969 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
16970 {
16971 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16972 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
16973 N_EQK);
16974
16975 if (rs == NS_QQR)
16976 {
16977 if (inst.operands[2].reg == REG_SP)
16978 as_tsktsk (MVE_BAD_SP);
16979 else if (inst.operands[2].reg == REG_PC)
16980 as_tsktsk (MVE_BAD_PC);
16981
16982 inst.instruction = 0xee310e40;
16983 inst.instruction |= (et.size == 16) << 28;
16984 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16985 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16986 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16987 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
16988 inst.instruction |= inst.operands[2].reg;
16989 inst.is_neon = 1;
16990 return;
16991 }
16992 }
16993 else
16994 {
16995 constraint (!inst.operands[2].isvec, BAD_FPU);
16996 }
16997
62f3b8c8
PB
16998 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16999}
17000
5287ad62
JB
17001static void
17002do_neon_tst (void)
17003{
037e8744 17004 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17005 struct neon_type_el et = neon_check_type (3, rs,
17006 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17007 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17008}
17009
17010/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17011 same types as the MAC equivalents. The polynomial type for this instruction
17012 is encoded the same as the integer type. */
17013
17014static void
17015do_neon_mul (void)
17016{
037e8744
JB
17017 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17018 return;
17019
17020 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17021 return;
17022
5287ad62
JB
17023 if (inst.operands[2].isscalar)
17024 do_neon_mac_maybe_scalar ();
17025 else
cc933301 17026 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
17027}
17028
17029static void
17030do_neon_qdmulh (void)
17031{
17032 if (inst.operands[2].isscalar)
17033 {
037e8744 17034 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17035 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17036 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17037 NEON_ENCODE (SCALAR, inst);
037e8744 17038 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
17039 }
17040 else
17041 {
037e8744 17042 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 17043 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17044 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17045 NEON_ENCODE (INTEGER, inst);
5287ad62 17046 /* The U bit (rounding) comes from bit mask. */
037e8744 17047 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17048 }
17049}
17050
26c1e780
AV
17051static void
17052do_mve_vaddv (void)
17053{
17054 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17055 struct neon_type_el et
17056 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17057
17058 if (et.type == NT_invtype)
17059 first_error (BAD_EL_TYPE);
17060
17061 if (inst.cond > COND_ALWAYS)
17062 inst.pred_insn_type = INSIDE_VPT_INSN;
17063 else
17064 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17065
17066 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17067
17068 mve_encode_rq (et.type == NT_unsigned, et.size);
17069}
17070
7df54120
AV
17071static void
17072do_mve_vhcadd (void)
17073{
17074 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17075 struct neon_type_el et
17076 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17077
17078 if (inst.cond > COND_ALWAYS)
17079 inst.pred_insn_type = INSIDE_VPT_INSN;
17080 else
17081 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17082
17083 unsigned rot = inst.relocs[0].exp.X_add_number;
17084 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17085
17086 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17087 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17088 "operand makes instruction UNPREDICTABLE"));
17089
17090 mve_encode_qqq (0, et.size);
17091 inst.instruction |= (rot == 270) << 12;
17092 inst.is_neon = 1;
17093}
17094
c2dafc2a
AV
17095static void
17096do_mve_vadc (void)
17097{
17098 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17099 struct neon_type_el et
17100 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17101
17102 if (et.type == NT_invtype)
17103 first_error (BAD_EL_TYPE);
17104
17105 if (inst.cond > COND_ALWAYS)
17106 inst.pred_insn_type = INSIDE_VPT_INSN;
17107 else
17108 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17109
17110 mve_encode_qqq (0, 64);
17111}
17112
17113static void
17114do_mve_vbrsr (void)
17115{
17116 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17117 struct neon_type_el et
17118 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17119
17120 if (inst.cond > COND_ALWAYS)
17121 inst.pred_insn_type = INSIDE_VPT_INSN;
17122 else
17123 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17124
7df54120 17125 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17126}
17127
17128static void
17129do_mve_vsbc (void)
17130{
17131 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17132
17133 if (inst.cond > COND_ALWAYS)
17134 inst.pred_insn_type = INSIDE_VPT_INSN;
17135 else
17136 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17137
17138 mve_encode_qqq (1, 64);
17139}
17140
886e1c73
AV
17141static void
17142do_mve_vmull (void)
17143{
17144
17145 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17146 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17147 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17148 && inst.cond == COND_ALWAYS
17149 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17150 {
17151 if (rs == NS_QQQ)
17152 {
17153
17154 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17155 N_SUF_32 | N_F64 | N_P8
17156 | N_P16 | N_I_MVE | N_KEY);
17157 if (((et.type == NT_poly) && et.size == 8
17158 && ARM_CPU_IS_ANY (cpu_variant))
17159 || (et.type == NT_integer) || (et.type == NT_float))
17160 goto neon_vmul;
17161 }
17162 else
17163 goto neon_vmul;
17164 }
17165
17166 constraint (rs != NS_QQQ, BAD_FPU);
17167 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17168 N_SU_32 | N_P8 | N_P16 | N_KEY);
17169
17170 /* We are dealing with MVE's vmullt. */
17171 if (et.size == 32
17172 && (inst.operands[0].reg == inst.operands[1].reg
17173 || inst.operands[0].reg == inst.operands[2].reg))
17174 as_tsktsk (BAD_MVE_SRCDEST);
17175
17176 if (inst.cond > COND_ALWAYS)
17177 inst.pred_insn_type = INSIDE_VPT_INSN;
17178 else
17179 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17180
17181 if (et.type == NT_poly)
17182 mve_encode_qqq (neon_logbits (et.size), 64);
17183 else
17184 mve_encode_qqq (et.type == NT_unsigned, et.size);
17185
17186 return;
17187
17188neon_vmul:
17189 inst.instruction = N_MNEM_vmul;
17190 inst.cond = 0xb;
17191 if (thumb_mode)
17192 inst.pred_insn_type = INSIDE_IT_INSN;
17193 do_neon_mul ();
17194}
17195
a302e574
AV
17196static void
17197do_mve_vabav (void)
17198{
17199 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17200
17201 if (rs == NS_NULL)
17202 return;
17203
17204 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17205 return;
17206
17207 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17208 | N_S16 | N_S32 | N_U8 | N_U16
17209 | N_U32);
17210
17211 if (inst.cond > COND_ALWAYS)
17212 inst.pred_insn_type = INSIDE_VPT_INSN;
17213 else
17214 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17215
17216 mve_encode_rqq (et.type == NT_unsigned, et.size);
17217}
17218
17219static void
17220do_mve_vmladav (void)
17221{
17222 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17223 struct neon_type_el et = neon_check_type (3, rs,
17224 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17225
17226 if (et.type == NT_unsigned
17227 && (inst.instruction == M_MNEM_vmladavx
17228 || inst.instruction == M_MNEM_vmladavax
17229 || inst.instruction == M_MNEM_vmlsdav
17230 || inst.instruction == M_MNEM_vmlsdava
17231 || inst.instruction == M_MNEM_vmlsdavx
17232 || inst.instruction == M_MNEM_vmlsdavax))
17233 first_error (BAD_SIMD_TYPE);
17234
17235 constraint (inst.operands[2].reg > 14,
17236 _("MVE vector register in the range [Q0..Q7] expected"));
17237
17238 if (inst.cond > COND_ALWAYS)
17239 inst.pred_insn_type = INSIDE_VPT_INSN;
17240 else
17241 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17242
17243 if (inst.instruction == M_MNEM_vmlsdav
17244 || inst.instruction == M_MNEM_vmlsdava
17245 || inst.instruction == M_MNEM_vmlsdavx
17246 || inst.instruction == M_MNEM_vmlsdavax)
17247 inst.instruction |= (et.size == 8) << 28;
17248 else
17249 inst.instruction |= (et.size == 8) << 8;
17250
17251 mve_encode_rqq (et.type == NT_unsigned, 64);
17252 inst.instruction |= (et.size == 32) << 16;
17253}
17254
8cd78170
AV
17255static void
17256do_mve_vmaxnmv (void)
17257{
17258 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17259 struct neon_type_el et
17260 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17261
17262 if (inst.cond > COND_ALWAYS)
17263 inst.pred_insn_type = INSIDE_VPT_INSN;
17264 else
17265 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17266
17267 if (inst.operands[0].reg == REG_SP)
17268 as_tsktsk (MVE_BAD_SP);
17269 else if (inst.operands[0].reg == REG_PC)
17270 as_tsktsk (MVE_BAD_PC);
17271
17272 mve_encode_rq (et.size == 16, 64);
17273}
17274
13ccd4c0
AV
17275static void
17276do_mve_vmaxv (void)
17277{
17278 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17279 struct neon_type_el et;
17280
17281 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17282 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17283 else
17284 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17285
17286 if (inst.cond > COND_ALWAYS)
17287 inst.pred_insn_type = INSIDE_VPT_INSN;
17288 else
17289 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17290
17291 if (inst.operands[0].reg == REG_SP)
17292 as_tsktsk (MVE_BAD_SP);
17293 else if (inst.operands[0].reg == REG_PC)
17294 as_tsktsk (MVE_BAD_PC);
17295
17296 mve_encode_rq (et.type == NT_unsigned, et.size);
17297}
17298
17299
643afb90
MW
17300static void
17301do_neon_qrdmlah (void)
17302{
17303 /* Check we're on the correct architecture. */
17304 if (!mark_feature_used (&fpu_neon_ext_armv8))
17305 inst.error =
17306 _("instruction form not available on this architecture.");
17307 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17308 {
17309 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17310 record_feature_use (&fpu_neon_ext_v8_1);
17311 }
17312
17313 if (inst.operands[2].isscalar)
17314 {
17315 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17316 struct neon_type_el et = neon_check_type (3, rs,
17317 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17318 NEON_ENCODE (SCALAR, inst);
17319 neon_mul_mac (et, neon_quad (rs));
17320 }
17321 else
17322 {
17323 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17324 struct neon_type_el et = neon_check_type (3, rs,
17325 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17326 NEON_ENCODE (INTEGER, inst);
17327 /* The U bit (rounding) comes from bit mask. */
17328 neon_three_same (neon_quad (rs), 0, et.size);
17329 }
17330}
17331
5287ad62
JB
17332static void
17333do_neon_fcmp_absolute (void)
17334{
037e8744 17335 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17336 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17337 N_F_16_32 | N_KEY);
5287ad62 17338 /* Size field comes from bit mask. */
cc933301 17339 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17340}
17341
17342static void
17343do_neon_fcmp_absolute_inv (void)
17344{
17345 neon_exchange_operands ();
17346 do_neon_fcmp_absolute ();
17347}
17348
17349static void
17350do_neon_step (void)
17351{
037e8744 17352 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17353 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17354 N_F_16_32 | N_KEY);
17355 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17356}
17357
17358static void
17359do_neon_abs_neg (void)
17360{
037e8744
JB
17361 enum neon_shape rs;
17362 struct neon_type_el et;
5f4273c7 17363
037e8744
JB
17364 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17365 return;
17366
037e8744 17367 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17368 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17369
485dee97
AV
17370 if (check_simd_pred_availability (et.type == NT_float,
17371 NEON_CHECK_ARCH | NEON_CHECK_CC))
17372 return;
17373
5287ad62
JB
17374 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17375 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17376 inst.instruction |= LOW4 (inst.operands[1].reg);
17377 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17378 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17379 inst.instruction |= (et.type == NT_float) << 10;
17380 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17381
88714cb8 17382 neon_dp_fixup (&inst);
5287ad62
JB
17383}
17384
17385static void
17386do_neon_sli (void)
17387{
037e8744 17388 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17389 struct neon_type_el et = neon_check_type (2, rs,
17390 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17391 int imm = inst.operands[2].imm;
17392 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17393 _("immediate out of range for insert"));
037e8744 17394 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17395}
17396
17397static void
17398do_neon_sri (void)
17399{
037e8744 17400 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17401 struct neon_type_el et = neon_check_type (2, rs,
17402 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17403 int imm = inst.operands[2].imm;
17404 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17405 _("immediate out of range for insert"));
037e8744 17406 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17407}
17408
17409static void
17410do_neon_qshlu_imm (void)
17411{
037e8744 17412 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17413 struct neon_type_el et = neon_check_type (2, rs,
17414 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17415 int imm = inst.operands[2].imm;
17416 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17417 _("immediate out of range for shift"));
5287ad62
JB
17418 /* Only encodes the 'U present' variant of the instruction.
17419 In this case, signed types have OP (bit 8) set to 0.
17420 Unsigned types have OP set to 1. */
17421 inst.instruction |= (et.type == NT_unsigned) << 8;
17422 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17423 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17424}
17425
17426static void
17427do_neon_qmovn (void)
17428{
17429 struct neon_type_el et = neon_check_type (2, NS_DQ,
17430 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17431 /* Saturating move where operands can be signed or unsigned, and the
17432 destination has the same signedness. */
88714cb8 17433 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17434 if (et.type == NT_unsigned)
17435 inst.instruction |= 0xc0;
17436 else
17437 inst.instruction |= 0x80;
17438 neon_two_same (0, 1, et.size / 2);
17439}
17440
17441static void
17442do_neon_qmovun (void)
17443{
17444 struct neon_type_el et = neon_check_type (2, NS_DQ,
17445 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17446 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17447 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17448 neon_two_same (0, 1, et.size / 2);
17449}
17450
17451static void
17452do_neon_rshift_sat_narrow (void)
17453{
17454 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17455 or unsigned. If operands are unsigned, results must also be unsigned. */
17456 struct neon_type_el et = neon_check_type (2, NS_DQI,
17457 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17458 int imm = inst.operands[2].imm;
17459 /* This gets the bounds check, size encoding and immediate bits calculation
17460 right. */
17461 et.size /= 2;
5f4273c7 17462
5287ad62
JB
17463 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17464 VQMOVN.I<size> <Dd>, <Qm>. */
17465 if (imm == 0)
17466 {
17467 inst.operands[2].present = 0;
17468 inst.instruction = N_MNEM_vqmovn;
17469 do_neon_qmovn ();
17470 return;
17471 }
5f4273c7 17472
5287ad62 17473 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17474 _("immediate out of range"));
5287ad62
JB
17475 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17476}
17477
17478static void
17479do_neon_rshift_sat_narrow_u (void)
17480{
17481 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17482 or unsigned. If operands are unsigned, results must also be unsigned. */
17483 struct neon_type_el et = neon_check_type (2, NS_DQI,
17484 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17485 int imm = inst.operands[2].imm;
17486 /* This gets the bounds check, size encoding and immediate bits calculation
17487 right. */
17488 et.size /= 2;
17489
17490 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17491 VQMOVUN.I<size> <Dd>, <Qm>. */
17492 if (imm == 0)
17493 {
17494 inst.operands[2].present = 0;
17495 inst.instruction = N_MNEM_vqmovun;
17496 do_neon_qmovun ();
17497 return;
17498 }
17499
17500 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17501 _("immediate out of range"));
5287ad62
JB
17502 /* FIXME: The manual is kind of unclear about what value U should have in
17503 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17504 must be 1. */
17505 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17506}
17507
17508static void
17509do_neon_movn (void)
17510{
17511 struct neon_type_el et = neon_check_type (2, NS_DQ,
17512 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 17513 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17514 neon_two_same (0, 1, et.size / 2);
17515}
17516
17517static void
17518do_neon_rshift_narrow (void)
17519{
17520 struct neon_type_el et = neon_check_type (2, NS_DQI,
17521 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17522 int imm = inst.operands[2].imm;
17523 /* This gets the bounds check, size encoding and immediate bits calculation
17524 right. */
17525 et.size /= 2;
5f4273c7 17526
5287ad62
JB
17527 /* If immediate is zero then we are a pseudo-instruction for
17528 VMOVN.I<size> <Dd>, <Qm> */
17529 if (imm == 0)
17530 {
17531 inst.operands[2].present = 0;
17532 inst.instruction = N_MNEM_vmovn;
17533 do_neon_movn ();
17534 return;
17535 }
5f4273c7 17536
5287ad62 17537 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17538 _("immediate out of range for narrowing operation"));
5287ad62
JB
17539 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17540}
17541
17542static void
17543do_neon_shll (void)
17544{
17545 /* FIXME: Type checking when lengthening. */
17546 struct neon_type_el et = neon_check_type (2, NS_QDI,
17547 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17548 unsigned imm = inst.operands[2].imm;
17549
17550 if (imm == et.size)
17551 {
17552 /* Maximum shift variant. */
88714cb8 17553 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17554 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17555 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17556 inst.instruction |= LOW4 (inst.operands[1].reg);
17557 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17558 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17559
88714cb8 17560 neon_dp_fixup (&inst);
5287ad62
JB
17561 }
17562 else
17563 {
17564 /* A more-specific type check for non-max versions. */
17565 et = neon_check_type (2, NS_QDI,
477330fc 17566 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 17567 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17568 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17569 }
17570}
17571
037e8744 17572/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
17573 the current instruction is. */
17574
6b9a8b67
MGD
17575#define CVT_FLAVOUR_VAR \
17576 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17577 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17578 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17579 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17580 /* Half-precision conversions. */ \
cc933301
JW
17581 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17582 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17583 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17584 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
17585 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17586 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
17587 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17588 Compared with single/double precision variants, only the co-processor \
17589 field is different, so the encoding flow is reused here. */ \
17590 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17591 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17592 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17593 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
17594 /* VFP instructions. */ \
17595 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17596 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17597 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17598 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17599 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17600 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17601 /* VFP instructions with bitshift. */ \
17602 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17603 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17604 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17605 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17606 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17607 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17608 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17609 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17610
17611#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17612 neon_cvt_flavour_##C,
17613
17614/* The different types of conversions we can do. */
17615enum neon_cvt_flavour
17616{
17617 CVT_FLAVOUR_VAR
17618 neon_cvt_flavour_invalid,
17619 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17620};
17621
17622#undef CVT_VAR
17623
17624static enum neon_cvt_flavour
17625get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 17626{
6b9a8b67
MGD
17627#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17628 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17629 if (et.type != NT_invtype) \
17630 { \
17631 inst.error = NULL; \
17632 return (neon_cvt_flavour_##C); \
5287ad62 17633 }
6b9a8b67 17634
5287ad62 17635 struct neon_type_el et;
037e8744 17636 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 17637 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
17638 /* The instruction versions which take an immediate take one register
17639 argument, which is extended to the width of the full register. Thus the
17640 "source" and "destination" registers must have the same width. Hack that
17641 here by making the size equal to the key (wider, in this case) operand. */
17642 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 17643
6b9a8b67
MGD
17644 CVT_FLAVOUR_VAR;
17645
17646 return neon_cvt_flavour_invalid;
5287ad62
JB
17647#undef CVT_VAR
17648}
17649
7e8e6784
MGD
17650enum neon_cvt_mode
17651{
17652 neon_cvt_mode_a,
17653 neon_cvt_mode_n,
17654 neon_cvt_mode_p,
17655 neon_cvt_mode_m,
17656 neon_cvt_mode_z,
30bdf752
MGD
17657 neon_cvt_mode_x,
17658 neon_cvt_mode_r
7e8e6784
MGD
17659};
17660
037e8744
JB
17661/* Neon-syntax VFP conversions. */
17662
5287ad62 17663static void
6b9a8b67 17664do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 17665{
037e8744 17666 const char *opname = 0;
5f4273c7 17667
d54af2d0
RL
17668 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17669 || rs == NS_FHI || rs == NS_HFI)
5287ad62 17670 {
037e8744
JB
17671 /* Conversions with immediate bitshift. */
17672 const char *enc[] =
477330fc 17673 {
6b9a8b67
MGD
17674#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17675 CVT_FLAVOUR_VAR
17676 NULL
17677#undef CVT_VAR
477330fc 17678 };
037e8744 17679
6b9a8b67 17680 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
17681 {
17682 opname = enc[flavour];
17683 constraint (inst.operands[0].reg != inst.operands[1].reg,
17684 _("operands 0 and 1 must be the same register"));
17685 inst.operands[1] = inst.operands[2];
17686 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17687 }
5287ad62
JB
17688 }
17689 else
17690 {
037e8744
JB
17691 /* Conversions without bitshift. */
17692 const char *enc[] =
477330fc 17693 {
6b9a8b67
MGD
17694#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17695 CVT_FLAVOUR_VAR
17696 NULL
17697#undef CVT_VAR
477330fc 17698 };
037e8744 17699
6b9a8b67 17700 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 17701 opname = enc[flavour];
037e8744
JB
17702 }
17703
17704 if (opname)
17705 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
17706
17707 /* ARMv8.2 fp16 VCVT instruction. */
17708 if (flavour == neon_cvt_flavour_s32_f16
17709 || flavour == neon_cvt_flavour_u32_f16
17710 || flavour == neon_cvt_flavour_f16_u32
17711 || flavour == neon_cvt_flavour_f16_s32)
17712 do_scalar_fp16_v82_encode ();
037e8744
JB
17713}
17714
17715static void
17716do_vfp_nsyn_cvtz (void)
17717{
d54af2d0 17718 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 17719 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
17720 const char *enc[] =
17721 {
6b9a8b67
MGD
17722#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17723 CVT_FLAVOUR_VAR
17724 NULL
17725#undef CVT_VAR
037e8744
JB
17726 };
17727
6b9a8b67 17728 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
17729 do_vfp_nsyn_opcode (enc[flavour]);
17730}
f31fef98 17731
037e8744 17732static void
bacebabc 17733do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
17734 enum neon_cvt_mode mode)
17735{
17736 int sz, op;
17737 int rm;
17738
a715796b
TG
17739 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17740 D register operands. */
17741 if (flavour == neon_cvt_flavour_s32_f64
17742 || flavour == neon_cvt_flavour_u32_f64)
17743 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17744 _(BAD_FPU));
17745
9db2f6b4
RL
17746 if (flavour == neon_cvt_flavour_s32_f16
17747 || flavour == neon_cvt_flavour_u32_f16)
17748 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17749 _(BAD_FP16));
17750
5ee91343 17751 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
17752
17753 switch (flavour)
17754 {
17755 case neon_cvt_flavour_s32_f64:
17756 sz = 1;
827f64ff 17757 op = 1;
7e8e6784
MGD
17758 break;
17759 case neon_cvt_flavour_s32_f32:
17760 sz = 0;
17761 op = 1;
17762 break;
9db2f6b4
RL
17763 case neon_cvt_flavour_s32_f16:
17764 sz = 0;
17765 op = 1;
17766 break;
7e8e6784
MGD
17767 case neon_cvt_flavour_u32_f64:
17768 sz = 1;
17769 op = 0;
17770 break;
17771 case neon_cvt_flavour_u32_f32:
17772 sz = 0;
17773 op = 0;
17774 break;
9db2f6b4
RL
17775 case neon_cvt_flavour_u32_f16:
17776 sz = 0;
17777 op = 0;
17778 break;
7e8e6784
MGD
17779 default:
17780 first_error (_("invalid instruction shape"));
17781 return;
17782 }
17783
17784 switch (mode)
17785 {
17786 case neon_cvt_mode_a: rm = 0; break;
17787 case neon_cvt_mode_n: rm = 1; break;
17788 case neon_cvt_mode_p: rm = 2; break;
17789 case neon_cvt_mode_m: rm = 3; break;
17790 default: first_error (_("invalid rounding mode")); return;
17791 }
17792
17793 NEON_ENCODE (FPV8, inst);
17794 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17795 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17796 inst.instruction |= sz << 8;
9db2f6b4
RL
17797
17798 /* ARMv8.2 fp16 VCVT instruction. */
17799 if (flavour == neon_cvt_flavour_s32_f16
17800 ||flavour == neon_cvt_flavour_u32_f16)
17801 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
17802 inst.instruction |= op << 7;
17803 inst.instruction |= rm << 16;
17804 inst.instruction |= 0xf0000000;
17805 inst.is_neon = TRUE;
17806}
17807
17808static void
17809do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
17810{
17811 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
17812 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17813 NS_FH, NS_HF, NS_FHI, NS_HFI,
17814 NS_NULL);
6b9a8b67 17815 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 17816
cc933301
JW
17817 if (flavour == neon_cvt_flavour_invalid)
17818 return;
17819
e3e535bc 17820 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 17821 if (mode == neon_cvt_mode_z
e3e535bc 17822 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
17823 && (flavour == neon_cvt_flavour_s16_f16
17824 || flavour == neon_cvt_flavour_u16_f16
17825 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
17826 || flavour == neon_cvt_flavour_u32_f32
17827 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 17828 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
17829 && (rs == NS_FD || rs == NS_FF))
17830 {
17831 do_vfp_nsyn_cvtz ();
17832 return;
17833 }
17834
9db2f6b4
RL
17835 /* ARMv8.2 fp16 VCVT conversions. */
17836 if (mode == neon_cvt_mode_z
17837 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17838 && (flavour == neon_cvt_flavour_s32_f16
17839 || flavour == neon_cvt_flavour_u32_f16)
17840 && (rs == NS_FH))
17841 {
17842 do_vfp_nsyn_cvtz ();
17843 do_scalar_fp16_v82_encode ();
17844 return;
17845 }
17846
037e8744 17847 /* VFP rather than Neon conversions. */
6b9a8b67 17848 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 17849 {
7e8e6784
MGD
17850 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17851 do_vfp_nsyn_cvt (rs, flavour);
17852 else
17853 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17854
037e8744
JB
17855 return;
17856 }
17857
17858 switch (rs)
17859 {
037e8744 17860 case NS_QQI:
dd9634d9
AV
17861 if (mode == neon_cvt_mode_z
17862 && (flavour == neon_cvt_flavour_f16_s16
17863 || flavour == neon_cvt_flavour_f16_u16
17864 || flavour == neon_cvt_flavour_s16_f16
17865 || flavour == neon_cvt_flavour_u16_f16
17866 || flavour == neon_cvt_flavour_f32_u32
17867 || flavour == neon_cvt_flavour_f32_s32
17868 || flavour == neon_cvt_flavour_s32_f32
17869 || flavour == neon_cvt_flavour_u32_f32))
17870 {
17871 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17872 return;
17873 }
17874 else if (mode == neon_cvt_mode_n)
17875 {
17876 /* We are dealing with vcvt with the 'ne' condition. */
17877 inst.cond = 0x1;
17878 inst.instruction = N_MNEM_vcvt;
17879 do_neon_cvt_1 (neon_cvt_mode_z);
17880 return;
17881 }
17882 /* fall through. */
17883 case NS_DDI:
037e8744 17884 {
477330fc 17885 unsigned immbits;
cc933301
JW
17886 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17887 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 17888
dd9634d9
AV
17889 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17890 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17891 return;
17892
17893 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17894 {
17895 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17896 _("immediate value out of range"));
17897 switch (flavour)
17898 {
17899 case neon_cvt_flavour_f16_s16:
17900 case neon_cvt_flavour_f16_u16:
17901 case neon_cvt_flavour_s16_f16:
17902 case neon_cvt_flavour_u16_f16:
17903 constraint (inst.operands[2].imm > 16,
17904 _("immediate value out of range"));
17905 break;
17906 case neon_cvt_flavour_f32_u32:
17907 case neon_cvt_flavour_f32_s32:
17908 case neon_cvt_flavour_s32_f32:
17909 case neon_cvt_flavour_u32_f32:
17910 constraint (inst.operands[2].imm > 32,
17911 _("immediate value out of range"));
17912 break;
17913 default:
17914 inst.error = BAD_FPU;
17915 return;
17916 }
17917 }
037e8744 17918
477330fc
RM
17919 /* Fixed-point conversion with #0 immediate is encoded as an
17920 integer conversion. */
17921 if (inst.operands[2].present && inst.operands[2].imm == 0)
17922 goto int_encode;
477330fc
RM
17923 NEON_ENCODE (IMMED, inst);
17924 if (flavour != neon_cvt_flavour_invalid)
17925 inst.instruction |= enctab[flavour];
17926 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17927 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17928 inst.instruction |= LOW4 (inst.operands[1].reg);
17929 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17930 inst.instruction |= neon_quad (rs) << 6;
17931 inst.instruction |= 1 << 21;
cc933301
JW
17932 if (flavour < neon_cvt_flavour_s16_f16)
17933 {
17934 inst.instruction |= 1 << 21;
17935 immbits = 32 - inst.operands[2].imm;
17936 inst.instruction |= immbits << 16;
17937 }
17938 else
17939 {
17940 inst.instruction |= 3 << 20;
17941 immbits = 16 - inst.operands[2].imm;
17942 inst.instruction |= immbits << 16;
17943 inst.instruction &= ~(1 << 9);
17944 }
477330fc
RM
17945
17946 neon_dp_fixup (&inst);
037e8744
JB
17947 }
17948 break;
17949
037e8744 17950 case NS_QQ:
dd9634d9
AV
17951 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17952 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17953 && (flavour == neon_cvt_flavour_s16_f16
17954 || flavour == neon_cvt_flavour_u16_f16
17955 || flavour == neon_cvt_flavour_s32_f32
17956 || flavour == neon_cvt_flavour_u32_f32))
17957 {
17958 if (check_simd_pred_availability (1,
17959 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17960 return;
17961 }
17962 else if (mode == neon_cvt_mode_z
17963 && (flavour == neon_cvt_flavour_f16_s16
17964 || flavour == neon_cvt_flavour_f16_u16
17965 || flavour == neon_cvt_flavour_s16_f16
17966 || flavour == neon_cvt_flavour_u16_f16
17967 || flavour == neon_cvt_flavour_f32_u32
17968 || flavour == neon_cvt_flavour_f32_s32
17969 || flavour == neon_cvt_flavour_s32_f32
17970 || flavour == neon_cvt_flavour_u32_f32))
17971 {
17972 if (check_simd_pred_availability (1,
17973 NEON_CHECK_CC | NEON_CHECK_ARCH))
17974 return;
17975 }
17976 /* fall through. */
17977 case NS_DD:
7e8e6784
MGD
17978 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17979 {
7e8e6784 17980
dd9634d9
AV
17981 NEON_ENCODE (FLOAT, inst);
17982 if (check_simd_pred_availability (1,
17983 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
17984 return;
17985
17986 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17987 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17988 inst.instruction |= LOW4 (inst.operands[1].reg);
17989 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17990 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17991 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17992 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 17993 inst.instruction |= mode << 8;
cc933301
JW
17994 if (flavour == neon_cvt_flavour_u16_f16
17995 || flavour == neon_cvt_flavour_s16_f16)
17996 /* Mask off the original size bits and reencode them. */
17997 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17998
7e8e6784
MGD
17999 if (thumb_mode)
18000 inst.instruction |= 0xfc000000;
18001 else
18002 inst.instruction |= 0xf0000000;
18003 }
18004 else
18005 {
037e8744 18006 int_encode:
7e8e6784 18007 {
cc933301
JW
18008 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18009 0x100, 0x180, 0x0, 0x080};
037e8744 18010
7e8e6784 18011 NEON_ENCODE (INTEGER, inst);
037e8744 18012
dd9634d9
AV
18013 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18014 {
18015 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18016 return;
18017 }
037e8744 18018
7e8e6784
MGD
18019 if (flavour != neon_cvt_flavour_invalid)
18020 inst.instruction |= enctab[flavour];
037e8744 18021
7e8e6784
MGD
18022 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18023 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18024 inst.instruction |= LOW4 (inst.operands[1].reg);
18025 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18026 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18027 if (flavour >= neon_cvt_flavour_s16_f16
18028 && flavour <= neon_cvt_flavour_f16_u16)
18029 /* Half precision. */
18030 inst.instruction |= 1 << 18;
18031 else
18032 inst.instruction |= 2 << 18;
037e8744 18033
7e8e6784
MGD
18034 neon_dp_fixup (&inst);
18035 }
18036 }
18037 break;
037e8744 18038
8e79c3df
CM
18039 /* Half-precision conversions for Advanced SIMD -- neon. */
18040 case NS_QD:
18041 case NS_DQ:
bc52d49c
MM
18042 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18043 return;
8e79c3df
CM
18044
18045 if ((rs == NS_DQ)
18046 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18047 {
18048 as_bad (_("operand size must match register width"));
18049 break;
18050 }
18051
18052 if ((rs == NS_QD)
18053 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18054 {
18055 as_bad (_("operand size must match register width"));
18056 break;
18057 }
18058
18059 if (rs == NS_DQ)
477330fc 18060 inst.instruction = 0x3b60600;
8e79c3df
CM
18061 else
18062 inst.instruction = 0x3b60700;
18063
18064 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18065 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18066 inst.instruction |= LOW4 (inst.operands[1].reg);
18067 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 18068 neon_dp_fixup (&inst);
8e79c3df
CM
18069 break;
18070
037e8744
JB
18071 default:
18072 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
18073 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18074 do_vfp_nsyn_cvt (rs, flavour);
18075 else
18076 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 18077 }
5287ad62
JB
18078}
18079
e3e535bc
NC
18080static void
18081do_neon_cvtr (void)
18082{
7e8e6784 18083 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
18084}
18085
18086static void
18087do_neon_cvt (void)
18088{
7e8e6784
MGD
18089 do_neon_cvt_1 (neon_cvt_mode_z);
18090}
18091
18092static void
18093do_neon_cvta (void)
18094{
18095 do_neon_cvt_1 (neon_cvt_mode_a);
18096}
18097
18098static void
18099do_neon_cvtn (void)
18100{
18101 do_neon_cvt_1 (neon_cvt_mode_n);
18102}
18103
18104static void
18105do_neon_cvtp (void)
18106{
18107 do_neon_cvt_1 (neon_cvt_mode_p);
18108}
18109
18110static void
18111do_neon_cvtm (void)
18112{
18113 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18114}
18115
8e79c3df 18116static void
c70a8987 18117do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18118{
c70a8987
MGD
18119 if (is_double)
18120 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18121
c70a8987
MGD
18122 encode_arm_vfp_reg (inst.operands[0].reg,
18123 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18124 encode_arm_vfp_reg (inst.operands[1].reg,
18125 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18126 inst.instruction |= to ? 0x10000 : 0;
18127 inst.instruction |= t ? 0x80 : 0;
18128 inst.instruction |= is_double ? 0x100 : 0;
18129 do_vfp_cond_or_thumb ();
18130}
8e79c3df 18131
c70a8987
MGD
18132static void
18133do_neon_cvttb_1 (bfd_boolean t)
18134{
d54af2d0 18135 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18136 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18137
c70a8987
MGD
18138 if (rs == NS_NULL)
18139 return;
dd9634d9
AV
18140 else if (rs == NS_QQ || rs == NS_QQI)
18141 {
18142 int single_to_half = 0;
18143 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18144 return;
18145
18146 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18147
18148 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18149 && (flavour == neon_cvt_flavour_u16_f16
18150 || flavour == neon_cvt_flavour_s16_f16
18151 || flavour == neon_cvt_flavour_f16_s16
18152 || flavour == neon_cvt_flavour_f16_u16
18153 || flavour == neon_cvt_flavour_u32_f32
18154 || flavour == neon_cvt_flavour_s32_f32
18155 || flavour == neon_cvt_flavour_f32_s32
18156 || flavour == neon_cvt_flavour_f32_u32))
18157 {
18158 inst.cond = 0xf;
18159 inst.instruction = N_MNEM_vcvt;
18160 set_pred_insn_type (INSIDE_VPT_INSN);
18161 do_neon_cvt_1 (neon_cvt_mode_z);
18162 return;
18163 }
18164 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18165 single_to_half = 1;
18166 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18167 {
18168 first_error (BAD_FPU);
18169 return;
18170 }
18171
18172 inst.instruction = 0xee3f0e01;
18173 inst.instruction |= single_to_half << 28;
18174 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18175 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18176 inst.instruction |= t << 12;
18177 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18178 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18179 inst.is_neon = 1;
18180 }
c70a8987
MGD
18181 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18182 {
18183 inst.error = NULL;
18184 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18185 }
18186 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18187 {
18188 inst.error = NULL;
18189 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18190 }
18191 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18192 {
a715796b
TG
18193 /* The VCVTB and VCVTT instructions with D-register operands
18194 don't work for SP only targets. */
18195 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18196 _(BAD_FPU));
18197
c70a8987
MGD
18198 inst.error = NULL;
18199 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18200 }
18201 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18202 {
a715796b
TG
18203 /* The VCVTB and VCVTT instructions with D-register operands
18204 don't work for SP only targets. */
18205 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18206 _(BAD_FPU));
18207
c70a8987
MGD
18208 inst.error = NULL;
18209 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18210 }
18211 else
18212 return;
18213}
18214
18215static void
18216do_neon_cvtb (void)
18217{
18218 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18219}
18220
18221
18222static void
18223do_neon_cvtt (void)
18224{
c70a8987 18225 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18226}
18227
5287ad62
JB
18228static void
18229neon_move_immediate (void)
18230{
037e8744
JB
18231 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18232 struct neon_type_el et = neon_check_type (2, rs,
18233 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18234 unsigned immlo, immhi = 0, immbits;
c96612cc 18235 int op, cmode, float_p;
5287ad62 18236
037e8744 18237 constraint (et.type == NT_invtype,
477330fc 18238 _("operand size must be specified for immediate VMOV"));
037e8744 18239
5287ad62
JB
18240 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18241 op = (inst.instruction & (1 << 5)) != 0;
18242
18243 immlo = inst.operands[1].imm;
18244 if (inst.operands[1].regisimm)
18245 immhi = inst.operands[1].reg;
18246
18247 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18248 _("immediate has bits set outside the operand size"));
5287ad62 18249
c96612cc
JB
18250 float_p = inst.operands[1].immisfloat;
18251
18252 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18253 et.size, et.type)) == FAIL)
5287ad62
JB
18254 {
18255 /* Invert relevant bits only. */
18256 neon_invert_size (&immlo, &immhi, et.size);
18257 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18258 with one or the other; those cases are caught by
18259 neon_cmode_for_move_imm. */
5287ad62 18260 op = !op;
c96612cc
JB
18261 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18262 &op, et.size, et.type)) == FAIL)
477330fc
RM
18263 {
18264 first_error (_("immediate out of range"));
18265 return;
18266 }
5287ad62
JB
18267 }
18268
18269 inst.instruction &= ~(1 << 5);
18270 inst.instruction |= op << 5;
18271
18272 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18273 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18274 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18275 inst.instruction |= cmode << 8;
18276
18277 neon_write_immbits (immbits);
18278}
18279
18280static void
18281do_neon_mvn (void)
18282{
18283 if (inst.operands[1].isreg)
18284 {
037e8744 18285 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18286
88714cb8 18287 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18288 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18289 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18290 inst.instruction |= LOW4 (inst.operands[1].reg);
18291 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18292 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18293 }
18294 else
18295 {
88714cb8 18296 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18297 neon_move_immediate ();
18298 }
18299
88714cb8 18300 neon_dp_fixup (&inst);
5287ad62
JB
18301}
18302
18303/* Encode instructions of form:
18304
18305 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18306 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18307
18308static void
18309neon_mixed_length (struct neon_type_el et, unsigned size)
18310{
18311 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18312 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18313 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18314 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18315 inst.instruction |= LOW4 (inst.operands[2].reg);
18316 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18317 inst.instruction |= (et.type == NT_unsigned) << 24;
18318 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18319
88714cb8 18320 neon_dp_fixup (&inst);
5287ad62
JB
18321}
18322
18323static void
18324do_neon_dyadic_long (void)
18325{
5ee91343
AV
18326 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18327 if (rs == NS_QDD)
18328 {
18329 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18330 return;
18331
18332 NEON_ENCODE (INTEGER, inst);
18333 /* FIXME: Type checking for lengthening op. */
18334 struct neon_type_el et = neon_check_type (3, NS_QDD,
18335 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18336 neon_mixed_length (et, et.size);
18337 }
18338 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18339 && (inst.cond == 0xf || inst.cond == 0x10))
18340 {
18341 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18342 in an IT block with le/lt conditions. */
18343
18344 if (inst.cond == 0xf)
18345 inst.cond = 0xb;
18346 else if (inst.cond == 0x10)
18347 inst.cond = 0xd;
18348
18349 inst.pred_insn_type = INSIDE_IT_INSN;
18350
18351 if (inst.instruction == N_MNEM_vaddl)
18352 {
18353 inst.instruction = N_MNEM_vadd;
18354 do_neon_addsub_if_i ();
18355 }
18356 else if (inst.instruction == N_MNEM_vsubl)
18357 {
18358 inst.instruction = N_MNEM_vsub;
18359 do_neon_addsub_if_i ();
18360 }
18361 else if (inst.instruction == N_MNEM_vabdl)
18362 {
18363 inst.instruction = N_MNEM_vabd;
18364 do_neon_dyadic_if_su ();
18365 }
18366 }
18367 else
18368 first_error (BAD_FPU);
5287ad62
JB
18369}
18370
18371static void
18372do_neon_abal (void)
18373{
18374 struct neon_type_el et = neon_check_type (3, NS_QDD,
18375 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18376 neon_mixed_length (et, et.size);
18377}
18378
18379static void
18380neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18381{
18382 if (inst.operands[2].isscalar)
18383 {
dcbf9037 18384 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18385 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18386 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18387 neon_mul_mac (et, et.type == NT_unsigned);
18388 }
18389 else
18390 {
18391 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18392 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18393 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18394 neon_mixed_length (et, et.size);
18395 }
18396}
18397
18398static void
18399do_neon_mac_maybe_scalar_long (void)
18400{
18401 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18402}
18403
dec41383
JW
18404/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18405 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18406
18407static unsigned
18408neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18409{
18410 unsigned regno = NEON_SCALAR_REG (scalar);
18411 unsigned elno = NEON_SCALAR_INDEX (scalar);
18412
18413 if (quad_p)
18414 {
18415 if (regno > 7 || elno > 3)
18416 goto bad_scalar;
18417
18418 return ((regno & 0x7)
18419 | ((elno & 0x1) << 3)
18420 | (((elno >> 1) & 0x1) << 5));
18421 }
18422 else
18423 {
18424 if (regno > 15 || elno > 1)
18425 goto bad_scalar;
18426
18427 return (((regno & 0x1) << 5)
18428 | ((regno >> 1) & 0x7)
18429 | ((elno & 0x1) << 3));
18430 }
18431
18432bad_scalar:
18433 first_error (_("scalar out of range for multiply instruction"));
18434 return 0;
18435}
18436
18437static void
18438do_neon_fmac_maybe_scalar_long (int subtype)
18439{
18440 enum neon_shape rs;
18441 int high8;
18442 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18443 field (bits[21:20]) has different meaning. For scalar index variant, it's
18444 used to differentiate add and subtract, otherwise it's with fixed value
18445 0x2. */
18446 int size = -1;
18447
18448 if (inst.cond != COND_ALWAYS)
18449 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18450 "behaviour is UNPREDICTABLE"));
18451
01f48020 18452 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18453 _(BAD_FP16));
18454
18455 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18456 _(BAD_FPU));
18457
18458 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18459 be a scalar index register. */
18460 if (inst.operands[2].isscalar)
18461 {
18462 high8 = 0xfe000000;
18463 if (subtype)
18464 size = 16;
18465 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18466 }
18467 else
18468 {
18469 high8 = 0xfc000000;
18470 size = 32;
18471 if (subtype)
18472 inst.instruction |= (0x1 << 23);
18473 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18474 }
18475
18476 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18477
18478 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18479 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18480 so we simply pass -1 as size. */
18481 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18482 neon_three_same (quad_p, 0, size);
18483
18484 /* Undo neon_dp_fixup. Redo the high eight bits. */
18485 inst.instruction &= 0x00ffffff;
18486 inst.instruction |= high8;
18487
18488#define LOW1(R) ((R) & 0x1)
18489#define HI4(R) (((R) >> 1) & 0xf)
18490 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18491 whether the instruction is in Q form and whether Vm is a scalar indexed
18492 operand. */
18493 if (inst.operands[2].isscalar)
18494 {
18495 unsigned rm
18496 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18497 inst.instruction &= 0xffffffd0;
18498 inst.instruction |= rm;
18499
18500 if (!quad_p)
18501 {
18502 /* Redo Rn as well. */
18503 inst.instruction &= 0xfff0ff7f;
18504 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18505 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18506 }
18507 }
18508 else if (!quad_p)
18509 {
18510 /* Redo Rn and Rm. */
18511 inst.instruction &= 0xfff0ff50;
18512 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18513 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18514 inst.instruction |= HI4 (inst.operands[2].reg);
18515 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18516 }
18517}
18518
18519static void
18520do_neon_vfmal (void)
18521{
18522 return do_neon_fmac_maybe_scalar_long (0);
18523}
18524
18525static void
18526do_neon_vfmsl (void)
18527{
18528 return do_neon_fmac_maybe_scalar_long (1);
18529}
18530
5287ad62
JB
18531static void
18532do_neon_dyadic_wide (void)
18533{
18534 struct neon_type_el et = neon_check_type (3, NS_QQD,
18535 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18536 neon_mixed_length (et, et.size);
18537}
18538
18539static void
18540do_neon_dyadic_narrow (void)
18541{
18542 struct neon_type_el et = neon_check_type (3, NS_QDD,
18543 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
18544 /* Operand sign is unimportant, and the U bit is part of the opcode,
18545 so force the operand type to integer. */
18546 et.type = NT_integer;
5287ad62
JB
18547 neon_mixed_length (et, et.size / 2);
18548}
18549
18550static void
18551do_neon_mul_sat_scalar_long (void)
18552{
18553 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18554}
18555
18556static void
18557do_neon_vmull (void)
18558{
18559 if (inst.operands[2].isscalar)
18560 do_neon_mac_maybe_scalar_long ();
18561 else
18562 {
18563 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18564 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 18565
5287ad62 18566 if (et.type == NT_poly)
477330fc 18567 NEON_ENCODE (POLY, inst);
5287ad62 18568 else
477330fc 18569 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
18570
18571 /* For polynomial encoding the U bit must be zero, and the size must
18572 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18573 obviously, as 0b10). */
18574 if (et.size == 64)
18575 {
18576 /* Check we're on the correct architecture. */
18577 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18578 inst.error =
18579 _("Instruction form not available on this architecture.");
18580
18581 et.size = 32;
18582 }
18583
5287ad62
JB
18584 neon_mixed_length (et, et.size);
18585 }
18586}
18587
18588static void
18589do_neon_ext (void)
18590{
037e8744 18591 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
18592 struct neon_type_el et = neon_check_type (3, rs,
18593 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18594 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
18595
18596 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18597 _("shift out of range"));
5287ad62
JB
18598 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18599 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18600 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18601 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18602 inst.instruction |= LOW4 (inst.operands[2].reg);
18603 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 18604 inst.instruction |= neon_quad (rs) << 6;
5287ad62 18605 inst.instruction |= imm << 8;
5f4273c7 18606
88714cb8 18607 neon_dp_fixup (&inst);
5287ad62
JB
18608}
18609
18610static void
18611do_neon_rev (void)
18612{
037e8744 18613 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18614 struct neon_type_el et = neon_check_type (2, rs,
18615 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18616 unsigned op = (inst.instruction >> 7) & 3;
18617 /* N (width of reversed regions) is encoded as part of the bitmask. We
18618 extract it here to check the elements to be reversed are smaller.
18619 Otherwise we'd get a reserved instruction. */
18620 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 18621 gas_assert (elsize != 0);
5287ad62 18622 constraint (et.size >= elsize,
477330fc 18623 _("elements must be smaller than reversal region"));
037e8744 18624 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18625}
18626
18627static void
18628do_neon_dup (void)
18629{
18630 if (inst.operands[1].isscalar)
18631 {
b409bdb6
AV
18632 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18633 BAD_FPU);
037e8744 18634 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 18635 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18636 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 18637 unsigned sizebits = et.size >> 3;
dcbf9037 18638 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 18639 int logsize = neon_logbits (et.size);
dcbf9037 18640 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
18641
18642 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 18643 return;
037e8744 18644
88714cb8 18645 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18646 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18647 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18648 inst.instruction |= LOW4 (dm);
18649 inst.instruction |= HI1 (dm) << 5;
037e8744 18650 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18651 inst.instruction |= x << 17;
18652 inst.instruction |= sizebits << 16;
5f4273c7 18653
88714cb8 18654 neon_dp_fixup (&inst);
5287ad62
JB
18655 }
18656 else
18657 {
037e8744
JB
18658 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18659 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18660 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
18661 if (rs == NS_QR)
18662 {
18663 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18664 return;
18665 }
18666 else
18667 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18668 BAD_FPU);
18669
18670 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18671 {
18672 if (inst.operands[1].reg == REG_SP)
18673 as_tsktsk (MVE_BAD_SP);
18674 else if (inst.operands[1].reg == REG_PC)
18675 as_tsktsk (MVE_BAD_PC);
18676 }
18677
5287ad62 18678 /* Duplicate ARM register to lanes of vector. */
88714cb8 18679 NEON_ENCODE (ARMREG, inst);
5287ad62 18680 switch (et.size)
477330fc
RM
18681 {
18682 case 8: inst.instruction |= 0x400000; break;
18683 case 16: inst.instruction |= 0x000020; break;
18684 case 32: inst.instruction |= 0x000000; break;
18685 default: break;
18686 }
5287ad62
JB
18687 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18688 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18689 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 18690 inst.instruction |= neon_quad (rs) << 21;
5287ad62 18691 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 18692 variants, except for the condition field. */
037e8744 18693 do_vfp_cond_or_thumb ();
5287ad62
JB
18694 }
18695}
18696
57785aa2
AV
18697static void
18698do_mve_mov (int toQ)
18699{
18700 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18701 return;
18702 if (inst.cond > COND_ALWAYS)
18703 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18704
18705 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18706 if (toQ)
18707 {
18708 Q0 = 0;
18709 Q1 = 1;
18710 Rt = 2;
18711 Rt2 = 3;
18712 }
18713
18714 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18715 _("Index one must be [2,3] and index two must be two less than"
18716 " index one."));
18717 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18718 _("General purpose registers may not be the same"));
18719 constraint (inst.operands[Rt].reg == REG_SP
18720 || inst.operands[Rt2].reg == REG_SP,
18721 BAD_SP);
18722 constraint (inst.operands[Rt].reg == REG_PC
18723 || inst.operands[Rt2].reg == REG_PC,
18724 BAD_PC);
18725
18726 inst.instruction = 0xec000f00;
18727 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18728 inst.instruction |= !!toQ << 20;
18729 inst.instruction |= inst.operands[Rt2].reg << 16;
18730 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18731 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18732 inst.instruction |= inst.operands[Rt].reg;
18733}
18734
18735static void
18736do_mve_movn (void)
18737{
18738 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18739 return;
18740
18741 if (inst.cond > COND_ALWAYS)
18742 inst.pred_insn_type = INSIDE_VPT_INSN;
18743 else
18744 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18745
18746 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18747 | N_KEY);
18748
18749 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18750 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18751 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18752 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18753 inst.instruction |= LOW4 (inst.operands[1].reg);
18754 inst.is_neon = 1;
18755
18756}
18757
5287ad62
JB
18758/* VMOV has particularly many variations. It can be one of:
18759 0. VMOV<c><q> <Qd>, <Qm>
18760 1. VMOV<c><q> <Dd>, <Dm>
18761 (Register operations, which are VORR with Rm = Rn.)
18762 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18763 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18764 (Immediate loads.)
18765 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18766 (ARM register to scalar.)
18767 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18768 (Two ARM registers to vector.)
18769 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18770 (Scalar to ARM register.)
18771 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18772 (Vector to two ARM registers.)
037e8744
JB
18773 8. VMOV.F32 <Sd>, <Sm>
18774 9. VMOV.F64 <Dd>, <Dm>
18775 (VFP register moves.)
18776 10. VMOV.F32 <Sd>, #imm
18777 11. VMOV.F64 <Dd>, #imm
18778 (VFP float immediate load.)
18779 12. VMOV <Rd>, <Sm>
18780 (VFP single to ARM reg.)
18781 13. VMOV <Sd>, <Rm>
18782 (ARM reg to VFP single.)
18783 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18784 (Two ARM regs to two VFP singles.)
18785 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18786 (Two VFP singles to two ARM regs.)
57785aa2
AV
18787 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18788 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18789 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18790 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 18791
037e8744
JB
18792 These cases can be disambiguated using neon_select_shape, except cases 1/9
18793 and 3/11 which depend on the operand type too.
5f4273c7 18794
5287ad62 18795 All the encoded bits are hardcoded by this function.
5f4273c7 18796
b7fc2769
JB
18797 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18798 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 18799
5287ad62 18800 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 18801 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
18802
18803static void
18804do_neon_mov (void)
18805{
57785aa2
AV
18806 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18807 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18808 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18809 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18810 NS_NULL);
037e8744
JB
18811 struct neon_type_el et;
18812 const char *ldconst = 0;
5287ad62 18813
037e8744 18814 switch (rs)
5287ad62 18815 {
037e8744
JB
18816 case NS_DD: /* case 1/9. */
18817 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18818 /* It is not an error here if no type is given. */
18819 inst.error = NULL;
18820 if (et.type == NT_float && et.size == 64)
477330fc
RM
18821 {
18822 do_vfp_nsyn_opcode ("fcpyd");
18823 break;
18824 }
037e8744 18825 /* fall through. */
5287ad62 18826
037e8744
JB
18827 case NS_QQ: /* case 0/1. */
18828 {
57785aa2 18829 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
18830 return;
18831 /* The architecture manual I have doesn't explicitly state which
18832 value the U bit should have for register->register moves, but
18833 the equivalent VORR instruction has U = 0, so do that. */
18834 inst.instruction = 0x0200110;
18835 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18836 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18837 inst.instruction |= LOW4 (inst.operands[1].reg);
18838 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18839 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18840 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18841 inst.instruction |= neon_quad (rs) << 6;
18842
18843 neon_dp_fixup (&inst);
037e8744
JB
18844 }
18845 break;
5f4273c7 18846
037e8744
JB
18847 case NS_DI: /* case 3/11. */
18848 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18849 inst.error = NULL;
18850 if (et.type == NT_float && et.size == 64)
477330fc
RM
18851 {
18852 /* case 11 (fconstd). */
18853 ldconst = "fconstd";
18854 goto encode_fconstd;
18855 }
037e8744
JB
18856 /* fall through. */
18857
18858 case NS_QI: /* case 2/3. */
57785aa2 18859 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 18860 return;
037e8744
JB
18861 inst.instruction = 0x0800010;
18862 neon_move_immediate ();
88714cb8 18863 neon_dp_fixup (&inst);
5287ad62 18864 break;
5f4273c7 18865
037e8744
JB
18866 case NS_SR: /* case 4. */
18867 {
477330fc
RM
18868 unsigned bcdebits = 0;
18869 int logsize;
18870 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18871 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 18872
05ac0ffb
JB
18873 /* .<size> is optional here, defaulting to .32. */
18874 if (inst.vectype.elems == 0
18875 && inst.operands[0].vectype.type == NT_invtype
18876 && inst.operands[1].vectype.type == NT_invtype)
18877 {
18878 inst.vectype.el[0].type = NT_untyped;
18879 inst.vectype.el[0].size = 32;
18880 inst.vectype.elems = 1;
18881 }
18882
477330fc
RM
18883 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18884 logsize = neon_logbits (et.size);
18885
57785aa2
AV
18886 if (et.size != 32)
18887 {
18888 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18889 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18890 return;
18891 }
18892 else
18893 {
18894 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18895 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18896 _(BAD_FPU));
18897 }
18898
18899 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18900 {
18901 if (inst.operands[1].reg == REG_SP)
18902 as_tsktsk (MVE_BAD_SP);
18903 else if (inst.operands[1].reg == REG_PC)
18904 as_tsktsk (MVE_BAD_PC);
18905 }
18906 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18907
477330fc 18908 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
18909 constraint (x >= size / et.size, _("scalar index out of range"));
18910
477330fc
RM
18911
18912 switch (et.size)
18913 {
18914 case 8: bcdebits = 0x8; break;
18915 case 16: bcdebits = 0x1; break;
18916 case 32: bcdebits = 0x0; break;
18917 default: ;
18918 }
18919
57785aa2 18920 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18921
18922 inst.instruction = 0xe000b10;
18923 do_vfp_cond_or_thumb ();
18924 inst.instruction |= LOW4 (dn) << 16;
18925 inst.instruction |= HI1 (dn) << 7;
18926 inst.instruction |= inst.operands[1].reg << 12;
18927 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
18928 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18929 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18930 }
18931 break;
5f4273c7 18932
037e8744 18933 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
18934 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18935 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18936 _(BAD_FPU));
b7fc2769 18937
037e8744
JB
18938 inst.instruction = 0xc400b10;
18939 do_vfp_cond_or_thumb ();
18940 inst.instruction |= LOW4 (inst.operands[0].reg);
18941 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18942 inst.instruction |= inst.operands[1].reg << 12;
18943 inst.instruction |= inst.operands[2].reg << 16;
18944 break;
5f4273c7 18945
037e8744
JB
18946 case NS_RS: /* case 6. */
18947 {
477330fc
RM
18948 unsigned logsize;
18949 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18950 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18951 unsigned abcdebits = 0;
037e8744 18952
05ac0ffb
JB
18953 /* .<dt> is optional here, defaulting to .32. */
18954 if (inst.vectype.elems == 0
18955 && inst.operands[0].vectype.type == NT_invtype
18956 && inst.operands[1].vectype.type == NT_invtype)
18957 {
18958 inst.vectype.el[0].type = NT_untyped;
18959 inst.vectype.el[0].size = 32;
18960 inst.vectype.elems = 1;
18961 }
18962
91d6fa6a
NC
18963 et = neon_check_type (2, NS_NULL,
18964 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
18965 logsize = neon_logbits (et.size);
18966
57785aa2
AV
18967 if (et.size != 32)
18968 {
18969 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18970 && vfp_or_neon_is_neon (NEON_CHECK_CC
18971 | NEON_CHECK_ARCH) == FAIL)
18972 return;
18973 }
18974 else
18975 {
18976 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18977 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18978 _(BAD_FPU));
18979 }
18980
18981 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18982 {
18983 if (inst.operands[0].reg == REG_SP)
18984 as_tsktsk (MVE_BAD_SP);
18985 else if (inst.operands[0].reg == REG_PC)
18986 as_tsktsk (MVE_BAD_PC);
18987 }
18988
18989 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18990
477330fc 18991 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 18992 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
18993
18994 switch (et.size)
18995 {
18996 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18997 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18998 case 32: abcdebits = 0x00; break;
18999 default: ;
19000 }
19001
57785aa2 19002 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19003 inst.instruction = 0xe100b10;
19004 do_vfp_cond_or_thumb ();
19005 inst.instruction |= LOW4 (dn) << 16;
19006 inst.instruction |= HI1 (dn) << 7;
19007 inst.instruction |= inst.operands[0].reg << 12;
19008 inst.instruction |= (abcdebits & 3) << 5;
19009 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 19010 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19011 }
19012 break;
5f4273c7 19013
037e8744 19014 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
19015 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19016 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19017 _(BAD_FPU));
037e8744
JB
19018
19019 inst.instruction = 0xc500b10;
19020 do_vfp_cond_or_thumb ();
19021 inst.instruction |= inst.operands[0].reg << 12;
19022 inst.instruction |= inst.operands[1].reg << 16;
19023 inst.instruction |= LOW4 (inst.operands[2].reg);
19024 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19025 break;
5f4273c7 19026
037e8744
JB
19027 case NS_FF: /* case 8 (fcpys). */
19028 do_vfp_nsyn_opcode ("fcpys");
19029 break;
5f4273c7 19030
9db2f6b4 19031 case NS_HI:
037e8744
JB
19032 case NS_FI: /* case 10 (fconsts). */
19033 ldconst = "fconsts";
4ef4710f 19034 encode_fconstd:
58ed5c38
TC
19035 if (!inst.operands[1].immisfloat)
19036 {
4ef4710f 19037 unsigned new_imm;
58ed5c38 19038 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
19039 float imm = (float) inst.operands[1].imm;
19040 memcpy (&new_imm, &imm, sizeof (float));
19041 /* But the assembly may have been written to provide an integer
19042 bit pattern that equates to a float, so check that the
19043 conversion has worked. */
19044 if (is_quarter_float (new_imm))
19045 {
19046 if (is_quarter_float (inst.operands[1].imm))
19047 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19048
19049 inst.operands[1].imm = new_imm;
19050 inst.operands[1].immisfloat = 1;
19051 }
58ed5c38
TC
19052 }
19053
037e8744 19054 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
19055 {
19056 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19057 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
19058
19059 /* ARMv8.2 fp16 vmov.f16 instruction. */
19060 if (rs == NS_HI)
19061 do_scalar_fp16_v82_encode ();
477330fc 19062 }
5287ad62 19063 else
477330fc 19064 first_error (_("immediate out of range"));
037e8744 19065 break;
5f4273c7 19066
9db2f6b4 19067 case NS_RH:
037e8744
JB
19068 case NS_RF: /* case 12 (fmrs). */
19069 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
19070 /* ARMv8.2 fp16 vmov.f16 instruction. */
19071 if (rs == NS_RH)
19072 do_scalar_fp16_v82_encode ();
037e8744 19073 break;
5f4273c7 19074
9db2f6b4 19075 case NS_HR:
037e8744
JB
19076 case NS_FR: /* case 13 (fmsr). */
19077 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
19078 /* ARMv8.2 fp16 vmov.f16 instruction. */
19079 if (rs == NS_HR)
19080 do_scalar_fp16_v82_encode ();
037e8744 19081 break;
5f4273c7 19082
57785aa2
AV
19083 case NS_RRSS:
19084 do_mve_mov (0);
19085 break;
19086 case NS_SSRR:
19087 do_mve_mov (1);
19088 break;
19089
037e8744
JB
19090 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19091 (one of which is a list), but we have parsed four. Do some fiddling to
19092 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19093 expect. */
19094 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19095 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19096 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19097 _(BAD_FPU));
037e8744 19098 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19099 _("VFP registers must be adjacent"));
037e8744
JB
19100 inst.operands[2].imm = 2;
19101 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19102 do_vfp_nsyn_opcode ("fmrrs");
19103 break;
5f4273c7 19104
037e8744 19105 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19106 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19107 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19108 _(BAD_FPU));
037e8744 19109 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19110 _("VFP registers must be adjacent"));
037e8744
JB
19111 inst.operands[1] = inst.operands[2];
19112 inst.operands[2] = inst.operands[3];
19113 inst.operands[0].imm = 2;
19114 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19115 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19116 break;
5f4273c7 19117
4c261dff
NC
19118 case NS_NULL:
19119 /* neon_select_shape has determined that the instruction
19120 shape is wrong and has already set the error message. */
19121 break;
19122
5287ad62
JB
19123 default:
19124 abort ();
19125 }
19126}
19127
57785aa2
AV
19128static void
19129do_mve_movl (void)
19130{
19131 if (!(inst.operands[0].present && inst.operands[0].isquad
19132 && inst.operands[1].present && inst.operands[1].isquad
19133 && !inst.operands[2].present))
19134 {
19135 inst.instruction = 0;
19136 inst.cond = 0xb;
19137 if (thumb_mode)
19138 set_pred_insn_type (INSIDE_IT_INSN);
19139 do_neon_mov ();
19140 return;
19141 }
19142
19143 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19144 return;
19145
19146 if (inst.cond != COND_ALWAYS)
19147 inst.pred_insn_type = INSIDE_VPT_INSN;
19148
19149 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19150 | N_S16 | N_U16 | N_KEY);
19151
19152 inst.instruction |= (et.type == NT_unsigned) << 28;
19153 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19154 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19155 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19156 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19157 inst.instruction |= LOW4 (inst.operands[1].reg);
19158 inst.is_neon = 1;
19159}
19160
5287ad62
JB
19161static void
19162do_neon_rshift_round_imm (void)
19163{
037e8744 19164 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
19165 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19166 int imm = inst.operands[2].imm;
19167
19168 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19169 if (imm == 0)
19170 {
19171 inst.operands[2].present = 0;
19172 do_neon_mov ();
19173 return;
19174 }
19175
19176 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19177 _("immediate out of range for shift"));
037e8744 19178 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19179 et.size - imm);
5287ad62
JB
19180}
19181
9db2f6b4
RL
19182static void
19183do_neon_movhf (void)
19184{
19185 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19186 constraint (rs != NS_HH, _("invalid suffix"));
19187
7bdf778b
ASDV
19188 if (inst.cond != COND_ALWAYS)
19189 {
19190 if (thumb_mode)
19191 {
19192 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19193 " the behaviour is UNPREDICTABLE"));
19194 }
19195 else
19196 {
19197 inst.error = BAD_COND;
19198 return;
19199 }
19200 }
19201
9db2f6b4
RL
19202 do_vfp_sp_monadic ();
19203
19204 inst.is_neon = 1;
19205 inst.instruction |= 0xf0000000;
19206}
19207
5287ad62
JB
19208static void
19209do_neon_movl (void)
19210{
19211 struct neon_type_el et = neon_check_type (2, NS_QD,
19212 N_EQK | N_DBL, N_SU_32 | N_KEY);
19213 unsigned sizebits = et.size >> 3;
19214 inst.instruction |= sizebits << 19;
19215 neon_two_same (0, et.type == NT_unsigned, -1);
19216}
19217
19218static void
19219do_neon_trn (void)
19220{
037e8744 19221 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19222 struct neon_type_el et = neon_check_type (2, rs,
19223 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19224 NEON_ENCODE (INTEGER, inst);
037e8744 19225 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19226}
19227
19228static void
19229do_neon_zip_uzp (void)
19230{
037e8744 19231 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19232 struct neon_type_el et = neon_check_type (2, rs,
19233 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19234 if (rs == NS_DD && et.size == 32)
19235 {
19236 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19237 inst.instruction = N_MNEM_vtrn;
19238 do_neon_trn ();
19239 return;
19240 }
037e8744 19241 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19242}
19243
19244static void
19245do_neon_sat_abs_neg (void)
19246{
037e8744 19247 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19248 struct neon_type_el et = neon_check_type (2, rs,
19249 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19250 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19251}
19252
19253static void
19254do_neon_pair_long (void)
19255{
037e8744 19256 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19257 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19258 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19259 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19260 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19261}
19262
19263static void
19264do_neon_recip_est (void)
19265{
037e8744 19266 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19267 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19268 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19269 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19270 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19271}
19272
19273static void
19274do_neon_cls (void)
19275{
f30ee27c
AV
19276 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19277 return;
19278
19279 enum neon_shape rs;
19280 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19281 rs = neon_select_shape (NS_QQ, NS_NULL);
19282 else
19283 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19284
5287ad62
JB
19285 struct neon_type_el et = neon_check_type (2, rs,
19286 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19287 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19288}
19289
19290static void
19291do_neon_clz (void)
19292{
f30ee27c
AV
19293 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19294 return;
19295
19296 enum neon_shape rs;
19297 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19298 rs = neon_select_shape (NS_QQ, NS_NULL);
19299 else
19300 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19301
5287ad62
JB
19302 struct neon_type_el et = neon_check_type (2, rs,
19303 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19304 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19305}
19306
19307static void
19308do_neon_cnt (void)
19309{
037e8744 19310 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19311 struct neon_type_el et = neon_check_type (2, rs,
19312 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19313 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19314}
19315
19316static void
19317do_neon_swp (void)
19318{
037e8744
JB
19319 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19320 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19321}
19322
19323static void
19324do_neon_tbl_tbx (void)
19325{
19326 unsigned listlenbits;
dcbf9037 19327 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19328
5287ad62
JB
19329 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19330 {
dcbf9037 19331 first_error (_("bad list length for table lookup"));
5287ad62
JB
19332 return;
19333 }
5f4273c7 19334
5287ad62
JB
19335 listlenbits = inst.operands[1].imm - 1;
19336 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19337 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19338 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19339 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19340 inst.instruction |= LOW4 (inst.operands[2].reg);
19341 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19342 inst.instruction |= listlenbits << 8;
5f4273c7 19343
88714cb8 19344 neon_dp_fixup (&inst);
5287ad62
JB
19345}
19346
19347static void
19348do_neon_ldm_stm (void)
19349{
19350 /* P, U and L bits are part of bitmask. */
19351 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19352 unsigned offsetbits = inst.operands[1].imm * 2;
19353
037e8744
JB
19354 if (inst.operands[1].issingle)
19355 {
19356 do_vfp_nsyn_ldm_stm (is_dbmode);
19357 return;
19358 }
19359
5287ad62 19360 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19361 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19362
19363 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19364 _("register list must contain at least 1 and at most 16 "
19365 "registers"));
5287ad62
JB
19366
19367 inst.instruction |= inst.operands[0].reg << 16;
19368 inst.instruction |= inst.operands[0].writeback << 21;
19369 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19370 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19371
19372 inst.instruction |= offsetbits;
5f4273c7 19373
037e8744 19374 do_vfp_cond_or_thumb ();
5287ad62
JB
19375}
19376
19377static void
19378do_neon_ldr_str (void)
19379{
5287ad62 19380 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19381
6844b2c2
MGD
19382 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19383 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19384 if (!is_ldr
6844b2c2 19385 && inst.operands[1].reg == REG_PC
ba86b375 19386 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19387 {
94dcf8bf 19388 if (thumb_mode)
6844b2c2 19389 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19390 else if (warn_on_deprecated)
5c3696f8 19391 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19392 }
19393
037e8744
JB
19394 if (inst.operands[0].issingle)
19395 {
cd2f129f 19396 if (is_ldr)
477330fc 19397 do_vfp_nsyn_opcode ("flds");
cd2f129f 19398 else
477330fc 19399 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19400
19401 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19402 if (inst.vectype.el[0].size == 16)
19403 do_scalar_fp16_v82_encode ();
5287ad62
JB
19404 }
19405 else
5287ad62 19406 {
cd2f129f 19407 if (is_ldr)
477330fc 19408 do_vfp_nsyn_opcode ("fldd");
5287ad62 19409 else
477330fc 19410 do_vfp_nsyn_opcode ("fstd");
5287ad62 19411 }
5287ad62
JB
19412}
19413
32c36c3c
AV
19414static void
19415do_t_vldr_vstr_sysreg (void)
19416{
19417 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19418 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19419
19420 /* Use of PC is UNPREDICTABLE. */
19421 if (inst.operands[1].reg == REG_PC)
19422 inst.error = _("Use of PC here is UNPREDICTABLE");
19423
19424 if (inst.operands[1].immisreg)
19425 inst.error = _("instruction does not accept register index");
19426
19427 if (!inst.operands[1].isreg)
19428 inst.error = _("instruction does not accept PC-relative addressing");
19429
19430 if (abs (inst.operands[1].imm) >= (1 << 7))
19431 inst.error = _("immediate value out of range");
19432
19433 inst.instruction = 0xec000f80;
19434 if (is_vldr)
19435 inst.instruction |= 1 << sysreg_vldr_bitno;
19436 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19437 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19438 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19439}
19440
19441static void
19442do_vldr_vstr (void)
19443{
19444 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19445
19446 /* VLDR/VSTR (System Register). */
19447 if (sysreg_op)
19448 {
19449 if (!mark_feature_used (&arm_ext_v8_1m_main))
19450 as_bad (_("Instruction not permitted on this architecture"));
19451
19452 do_t_vldr_vstr_sysreg ();
19453 }
19454 /* VLDR/VSTR. */
19455 else
19456 {
19457 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19458 as_bad (_("Instruction not permitted on this architecture"));
19459 do_neon_ldr_str ();
19460 }
19461}
19462
5287ad62
JB
19463/* "interleave" version also handles non-interleaving register VLD1/VST1
19464 instructions. */
19465
19466static void
19467do_neon_ld_st_interleave (void)
19468{
037e8744 19469 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19470 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19471 unsigned alignbits = 0;
19472 unsigned idx;
19473 /* The bits in this table go:
19474 0: register stride of one (0) or two (1)
19475 1,2: register list length, minus one (1, 2, 3, 4).
19476 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19477 We use -1 for invalid entries. */
19478 const int typetable[] =
19479 {
19480 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19481 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19482 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19483 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19484 };
19485 int typebits;
19486
dcbf9037
JB
19487 if (et.type == NT_invtype)
19488 return;
19489
5287ad62
JB
19490 if (inst.operands[1].immisalign)
19491 switch (inst.operands[1].imm >> 8)
19492 {
19493 case 64: alignbits = 1; break;
19494 case 128:
477330fc 19495 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 19496 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
19497 goto bad_alignment;
19498 alignbits = 2;
19499 break;
5287ad62 19500 case 256:
477330fc
RM
19501 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19502 goto bad_alignment;
19503 alignbits = 3;
19504 break;
5287ad62
JB
19505 default:
19506 bad_alignment:
477330fc
RM
19507 first_error (_("bad alignment"));
19508 return;
5287ad62
JB
19509 }
19510
19511 inst.instruction |= alignbits << 4;
19512 inst.instruction |= neon_logbits (et.size) << 6;
19513
19514 /* Bits [4:6] of the immediate in a list specifier encode register stride
19515 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19516 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19517 up the right value for "type" in a table based on this value and the given
19518 list style, then stick it back. */
19519 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 19520 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
19521
19522 typebits = typetable[idx];
5f4273c7 19523
5287ad62 19524 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 19525 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 19526 BAD_EL_TYPE);
5287ad62
JB
19527
19528 inst.instruction &= ~0xf00;
19529 inst.instruction |= typebits << 8;
19530}
19531
19532/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19533 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19534 otherwise. The variable arguments are a list of pairs of legal (size, align)
19535 values, terminated with -1. */
19536
19537static int
aa8a0863 19538neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
19539{
19540 va_list ap;
19541 int result = FAIL, thissize, thisalign;
5f4273c7 19542
5287ad62
JB
19543 if (!inst.operands[1].immisalign)
19544 {
aa8a0863 19545 *do_alignment = 0;
5287ad62
JB
19546 return SUCCESS;
19547 }
5f4273c7 19548
aa8a0863 19549 va_start (ap, do_alignment);
5287ad62
JB
19550
19551 do
19552 {
19553 thissize = va_arg (ap, int);
19554 if (thissize == -1)
477330fc 19555 break;
5287ad62
JB
19556 thisalign = va_arg (ap, int);
19557
19558 if (size == thissize && align == thisalign)
477330fc 19559 result = SUCCESS;
5287ad62
JB
19560 }
19561 while (result != SUCCESS);
19562
19563 va_end (ap);
19564
19565 if (result == SUCCESS)
aa8a0863 19566 *do_alignment = 1;
5287ad62 19567 else
dcbf9037 19568 first_error (_("unsupported alignment for instruction"));
5f4273c7 19569
5287ad62
JB
19570 return result;
19571}
19572
19573static void
19574do_neon_ld_st_lane (void)
19575{
037e8744 19576 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19577 int align_good, do_alignment = 0;
5287ad62
JB
19578 int logsize = neon_logbits (et.size);
19579 int align = inst.operands[1].imm >> 8;
19580 int n = (inst.instruction >> 8) & 3;
19581 int max_el = 64 / et.size;
5f4273c7 19582
dcbf9037
JB
19583 if (et.type == NT_invtype)
19584 return;
5f4273c7 19585
5287ad62 19586 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 19587 _("bad list length"));
5287ad62 19588 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 19589 _("scalar index out of range"));
5287ad62 19590 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
19591 && et.size == 8,
19592 _("stride of 2 unavailable when element size is 8"));
5f4273c7 19593
5287ad62
JB
19594 switch (n)
19595 {
19596 case 0: /* VLD1 / VST1. */
aa8a0863 19597 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 19598 32, 32, -1);
5287ad62 19599 if (align_good == FAIL)
477330fc 19600 return;
aa8a0863 19601 if (do_alignment)
477330fc
RM
19602 {
19603 unsigned alignbits = 0;
19604 switch (et.size)
19605 {
19606 case 16: alignbits = 0x1; break;
19607 case 32: alignbits = 0x3; break;
19608 default: ;
19609 }
19610 inst.instruction |= alignbits << 4;
19611 }
5287ad62
JB
19612 break;
19613
19614 case 1: /* VLD2 / VST2. */
aa8a0863
TS
19615 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19616 16, 32, 32, 64, -1);
5287ad62 19617 if (align_good == FAIL)
477330fc 19618 return;
aa8a0863 19619 if (do_alignment)
477330fc 19620 inst.instruction |= 1 << 4;
5287ad62
JB
19621 break;
19622
19623 case 2: /* VLD3 / VST3. */
19624 constraint (inst.operands[1].immisalign,
477330fc 19625 _("can't use alignment with this instruction"));
5287ad62
JB
19626 break;
19627
19628 case 3: /* VLD4 / VST4. */
aa8a0863 19629 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 19630 16, 64, 32, 64, 32, 128, -1);
5287ad62 19631 if (align_good == FAIL)
477330fc 19632 return;
aa8a0863 19633 if (do_alignment)
477330fc
RM
19634 {
19635 unsigned alignbits = 0;
19636 switch (et.size)
19637 {
19638 case 8: alignbits = 0x1; break;
19639 case 16: alignbits = 0x1; break;
19640 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19641 default: ;
19642 }
19643 inst.instruction |= alignbits << 4;
19644 }
5287ad62
JB
19645 break;
19646
19647 default: ;
19648 }
19649
19650 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19651 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19652 inst.instruction |= 1 << (4 + logsize);
5f4273c7 19653
5287ad62
JB
19654 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19655 inst.instruction |= logsize << 10;
19656}
19657
19658/* Encode single n-element structure to all lanes VLD<n> instructions. */
19659
19660static void
19661do_neon_ld_dup (void)
19662{
037e8744 19663 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19664 int align_good, do_alignment = 0;
5287ad62 19665
dcbf9037
JB
19666 if (et.type == NT_invtype)
19667 return;
19668
5287ad62
JB
19669 switch ((inst.instruction >> 8) & 3)
19670 {
19671 case 0: /* VLD1. */
9c2799c2 19672 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 19673 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 19674 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 19675 if (align_good == FAIL)
477330fc 19676 return;
5287ad62 19677 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
19678 {
19679 case 1: break;
19680 case 2: inst.instruction |= 1 << 5; break;
19681 default: first_error (_("bad list length")); return;
19682 }
5287ad62
JB
19683 inst.instruction |= neon_logbits (et.size) << 6;
19684 break;
19685
19686 case 1: /* VLD2. */
19687 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
19688 &do_alignment, 8, 16, 16, 32, 32, 64,
19689 -1);
5287ad62 19690 if (align_good == FAIL)
477330fc 19691 return;
5287ad62 19692 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 19693 _("bad list length"));
5287ad62 19694 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19695 inst.instruction |= 1 << 5;
5287ad62
JB
19696 inst.instruction |= neon_logbits (et.size) << 6;
19697 break;
19698
19699 case 2: /* VLD3. */
19700 constraint (inst.operands[1].immisalign,
477330fc 19701 _("can't use alignment with this instruction"));
5287ad62 19702 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 19703 _("bad list length"));
5287ad62 19704 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19705 inst.instruction |= 1 << 5;
5287ad62
JB
19706 inst.instruction |= neon_logbits (et.size) << 6;
19707 break;
19708
19709 case 3: /* VLD4. */
19710 {
477330fc 19711 int align = inst.operands[1].imm >> 8;
aa8a0863 19712 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
19713 16, 64, 32, 64, 32, 128, -1);
19714 if (align_good == FAIL)
19715 return;
19716 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19717 _("bad list length"));
19718 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19719 inst.instruction |= 1 << 5;
19720 if (et.size == 32 && align == 128)
19721 inst.instruction |= 0x3 << 6;
19722 else
19723 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
19724 }
19725 break;
19726
19727 default: ;
19728 }
19729
aa8a0863 19730 inst.instruction |= do_alignment << 4;
5287ad62
JB
19731}
19732
19733/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19734 apart from bits [11:4]. */
19735
19736static void
19737do_neon_ldx_stx (void)
19738{
b1a769ed
DG
19739 if (inst.operands[1].isreg)
19740 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19741
5287ad62
JB
19742 switch (NEON_LANE (inst.operands[0].imm))
19743 {
19744 case NEON_INTERLEAVE_LANES:
88714cb8 19745 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
19746 do_neon_ld_st_interleave ();
19747 break;
5f4273c7 19748
5287ad62 19749 case NEON_ALL_LANES:
88714cb8 19750 NEON_ENCODE (DUP, inst);
2d51fb74
JB
19751 if (inst.instruction == N_INV)
19752 {
19753 first_error ("only loads support such operands");
19754 break;
19755 }
5287ad62
JB
19756 do_neon_ld_dup ();
19757 break;
5f4273c7 19758
5287ad62 19759 default:
88714cb8 19760 NEON_ENCODE (LANE, inst);
5287ad62
JB
19761 do_neon_ld_st_lane ();
19762 }
19763
19764 /* L bit comes from bit mask. */
19765 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19766 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19767 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 19768
5287ad62
JB
19769 if (inst.operands[1].postind)
19770 {
19771 int postreg = inst.operands[1].imm & 0xf;
19772 constraint (!inst.operands[1].immisreg,
477330fc 19773 _("post-index must be a register"));
5287ad62 19774 constraint (postreg == 0xd || postreg == 0xf,
477330fc 19775 _("bad register for post-index"));
5287ad62
JB
19776 inst.instruction |= postreg;
19777 }
4f2374c7 19778 else
5287ad62 19779 {
4f2374c7 19780 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
19781 constraint (inst.relocs[0].exp.X_op != O_constant
19782 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
19783 BAD_ADDR_MODE);
19784
19785 if (inst.operands[1].writeback)
19786 {
19787 inst.instruction |= 0xd;
19788 }
19789 else
19790 inst.instruction |= 0xf;
5287ad62 19791 }
5f4273c7 19792
5287ad62
JB
19793 if (thumb_mode)
19794 inst.instruction |= 0xf9000000;
19795 else
19796 inst.instruction |= 0xf4000000;
19797}
33399f07
MGD
19798
19799/* FP v8. */
19800static void
19801do_vfp_nsyn_fpv8 (enum neon_shape rs)
19802{
a715796b
TG
19803 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19804 D register operands. */
19805 if (neon_shape_class[rs] == SC_DOUBLE)
19806 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19807 _(BAD_FPU));
19808
33399f07
MGD
19809 NEON_ENCODE (FPV8, inst);
19810
9db2f6b4
RL
19811 if (rs == NS_FFF || rs == NS_HHH)
19812 {
19813 do_vfp_sp_dyadic ();
19814
19815 /* ARMv8.2 fp16 instruction. */
19816 if (rs == NS_HHH)
19817 do_scalar_fp16_v82_encode ();
19818 }
33399f07
MGD
19819 else
19820 do_vfp_dp_rd_rn_rm ();
19821
19822 if (rs == NS_DDD)
19823 inst.instruction |= 0x100;
19824
19825 inst.instruction |= 0xf0000000;
19826}
19827
19828static void
19829do_vsel (void)
19830{
5ee91343 19831 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
19832
19833 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19834 first_error (_("invalid instruction shape"));
19835}
19836
73924fbc
MGD
19837static void
19838do_vmaxnm (void)
19839{
935295b5
AV
19840 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19841 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
19842
19843 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19844 return;
19845
935295b5 19846 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
19847 return;
19848
cc933301 19849 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
19850}
19851
30bdf752
MGD
19852static void
19853do_vrint_1 (enum neon_cvt_mode mode)
19854{
9db2f6b4 19855 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
19856 struct neon_type_el et;
19857
19858 if (rs == NS_NULL)
19859 return;
19860
a715796b
TG
19861 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19862 D register operands. */
19863 if (neon_shape_class[rs] == SC_DOUBLE)
19864 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19865 _(BAD_FPU));
19866
9db2f6b4
RL
19867 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19868 | N_VFP);
30bdf752
MGD
19869 if (et.type != NT_invtype)
19870 {
19871 /* VFP encodings. */
19872 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19873 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 19874 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19875
19876 NEON_ENCODE (FPV8, inst);
9db2f6b4 19877 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
19878 do_vfp_sp_monadic ();
19879 else
19880 do_vfp_dp_rd_rm ();
19881
19882 switch (mode)
19883 {
19884 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19885 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19886 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19887 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19888 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19889 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19890 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19891 default: abort ();
19892 }
19893
19894 inst.instruction |= (rs == NS_DD) << 8;
19895 do_vfp_cond_or_thumb ();
9db2f6b4
RL
19896
19897 /* ARMv8.2 fp16 vrint instruction. */
19898 if (rs == NS_HH)
19899 do_scalar_fp16_v82_encode ();
30bdf752
MGD
19900 }
19901 else
19902 {
19903 /* Neon encodings (or something broken...). */
19904 inst.error = NULL;
cc933301 19905 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
19906
19907 if (et.type == NT_invtype)
19908 return;
19909
5ee91343 19910 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19911 NEON_ENCODE (FLOAT, inst);
19912
19913 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19914 return;
19915
19916 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19917 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19918 inst.instruction |= LOW4 (inst.operands[1].reg);
19919 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19920 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
19921 /* Mask off the original size bits and reencode them. */
19922 inst.instruction = ((inst.instruction & 0xfff3ffff)
19923 | neon_logbits (et.size) << 18);
19924
30bdf752
MGD
19925 switch (mode)
19926 {
19927 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19928 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19929 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19930 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19931 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19932 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19933 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19934 default: abort ();
19935 }
19936
19937 if (thumb_mode)
19938 inst.instruction |= 0xfc000000;
19939 else
19940 inst.instruction |= 0xf0000000;
19941 }
19942}
19943
19944static void
19945do_vrintx (void)
19946{
19947 do_vrint_1 (neon_cvt_mode_x);
19948}
19949
19950static void
19951do_vrintz (void)
19952{
19953 do_vrint_1 (neon_cvt_mode_z);
19954}
19955
19956static void
19957do_vrintr (void)
19958{
19959 do_vrint_1 (neon_cvt_mode_r);
19960}
19961
19962static void
19963do_vrinta (void)
19964{
19965 do_vrint_1 (neon_cvt_mode_a);
19966}
19967
19968static void
19969do_vrintn (void)
19970{
19971 do_vrint_1 (neon_cvt_mode_n);
19972}
19973
19974static void
19975do_vrintp (void)
19976{
19977 do_vrint_1 (neon_cvt_mode_p);
19978}
19979
19980static void
19981do_vrintm (void)
19982{
19983 do_vrint_1 (neon_cvt_mode_m);
19984}
19985
c28eeff2
SN
19986static unsigned
19987neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19988{
19989 unsigned regno = NEON_SCALAR_REG (opnd);
19990 unsigned elno = NEON_SCALAR_INDEX (opnd);
19991
19992 if (elsize == 16 && elno < 2 && regno < 16)
19993 return regno | (elno << 4);
19994 else if (elsize == 32 && elno == 0)
19995 return regno;
19996
19997 first_error (_("scalar out of range"));
19998 return 0;
19999}
20000
20001static void
20002do_vcmla (void)
20003{
5d281bf0
AV
20004 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20005 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20006 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20007 constraint (inst.relocs[0].exp.X_op != O_constant,
20008 _("expression too complex"));
20009 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
20010 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20011 _("immediate out of range"));
20012 rot /= 90;
5d281bf0
AV
20013
20014 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20015 return;
20016
c28eeff2
SN
20017 if (inst.operands[2].isscalar)
20018 {
5d281bf0
AV
20019 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20020 first_error (_("invalid instruction shape"));
c28eeff2
SN
20021 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20022 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20023 N_KEY | N_F16 | N_F32).size;
20024 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20025 inst.is_neon = 1;
20026 inst.instruction = 0xfe000800;
20027 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20028 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20029 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20030 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20031 inst.instruction |= LOW4 (m);
20032 inst.instruction |= HI1 (m) << 5;
20033 inst.instruction |= neon_quad (rs) << 6;
20034 inst.instruction |= rot << 20;
20035 inst.instruction |= (size == 32) << 23;
20036 }
20037 else
20038 {
5d281bf0
AV
20039 enum neon_shape rs;
20040 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20041 rs = neon_select_shape (NS_QQQI, NS_NULL);
20042 else
20043 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20044
c28eeff2
SN
20045 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20046 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
20047 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20048 && (inst.operands[0].reg == inst.operands[1].reg
20049 || inst.operands[0].reg == inst.operands[2].reg))
20050 as_tsktsk (BAD_MVE_SRCDEST);
20051
c28eeff2
SN
20052 neon_three_same (neon_quad (rs), 0, -1);
20053 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20054 inst.instruction |= 0xfc200800;
20055 inst.instruction |= rot << 23;
20056 inst.instruction |= (size == 32) << 20;
20057 }
20058}
20059
20060static void
20061do_vcadd (void)
20062{
5d281bf0
AV
20063 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20064 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20065 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20066 constraint (inst.relocs[0].exp.X_op != O_constant,
20067 _("expression too complex"));
5d281bf0 20068
e2b0ab59 20069 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 20070 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
20071 enum neon_shape rs;
20072 struct neon_type_el et;
20073 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20074 {
20075 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20076 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20077 }
20078 else
20079 {
20080 rs = neon_select_shape (NS_QQQI, NS_NULL);
20081 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20082 | N_I16 | N_I32);
20083 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20084 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20085 "operand makes instruction UNPREDICTABLE"));
20086 }
20087
20088 if (et.type == NT_invtype)
20089 return;
20090
20091 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20092 | NEON_CHECK_CC))
20093 return;
20094
20095 if (et.type == NT_float)
20096 {
20097 neon_three_same (neon_quad (rs), 0, -1);
20098 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20099 inst.instruction |= 0xfc800800;
20100 inst.instruction |= (rot == 270) << 24;
20101 inst.instruction |= (et.size == 32) << 20;
20102 }
20103 else
20104 {
20105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20106 inst.instruction = 0xfe000f00;
20107 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20108 inst.instruction |= neon_logbits (et.size) << 20;
20109 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20110 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20111 inst.instruction |= (rot == 270) << 12;
20112 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20113 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20114 inst.instruction |= LOW4 (inst.operands[2].reg);
20115 inst.is_neon = 1;
20116 }
c28eeff2
SN
20117}
20118
c604a79a
JW
20119/* Dot Product instructions encoding support. */
20120
20121static void
20122do_neon_dotproduct (int unsigned_p)
20123{
20124 enum neon_shape rs;
20125 unsigned scalar_oprd2 = 0;
20126 int high8;
20127
20128 if (inst.cond != COND_ALWAYS)
20129 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20130 "is UNPREDICTABLE"));
20131
20132 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20133 _(BAD_FPU));
20134
20135 /* Dot Product instructions are in three-same D/Q register format or the third
20136 operand can be a scalar index register. */
20137 if (inst.operands[2].isscalar)
20138 {
20139 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20140 high8 = 0xfe000000;
20141 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20142 }
20143 else
20144 {
20145 high8 = 0xfc000000;
20146 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20147 }
20148
20149 if (unsigned_p)
20150 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20151 else
20152 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20153
20154 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20155 Product instruction, so we pass 0 as the "ubit" parameter. And the
20156 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20157 neon_three_same (neon_quad (rs), 0, 32);
20158
20159 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20160 different NEON three-same encoding. */
20161 inst.instruction &= 0x00ffffff;
20162 inst.instruction |= high8;
20163 /* Encode 'U' bit which indicates signedness. */
20164 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20165 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20166 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20167 the instruction encoding. */
20168 if (inst.operands[2].isscalar)
20169 {
20170 inst.instruction &= 0xffffffd0;
20171 inst.instruction |= LOW4 (scalar_oprd2);
20172 inst.instruction |= HI1 (scalar_oprd2) << 5;
20173 }
20174}
20175
20176/* Dot Product instructions for signed integer. */
20177
20178static void
20179do_neon_dotproduct_s (void)
20180{
20181 return do_neon_dotproduct (0);
20182}
20183
20184/* Dot Product instructions for unsigned integer. */
20185
20186static void
20187do_neon_dotproduct_u (void)
20188{
20189 return do_neon_dotproduct (1);
20190}
20191
91ff7894
MGD
20192/* Crypto v1 instructions. */
20193static void
20194do_crypto_2op_1 (unsigned elttype, int op)
20195{
5ee91343 20196 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20197
20198 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20199 == NT_invtype)
20200 return;
20201
20202 inst.error = NULL;
20203
20204 NEON_ENCODE (INTEGER, inst);
20205 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20207 inst.instruction |= LOW4 (inst.operands[1].reg);
20208 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20209 if (op != -1)
20210 inst.instruction |= op << 6;
20211
20212 if (thumb_mode)
20213 inst.instruction |= 0xfc000000;
20214 else
20215 inst.instruction |= 0xf0000000;
20216}
20217
48adcd8e
MGD
20218static void
20219do_crypto_3op_1 (int u, int op)
20220{
5ee91343 20221 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
20222
20223 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20224 N_32 | N_UNT | N_KEY).type == NT_invtype)
20225 return;
20226
20227 inst.error = NULL;
20228
20229 NEON_ENCODE (INTEGER, inst);
20230 neon_three_same (1, u, 8 << op);
20231}
20232
91ff7894
MGD
20233static void
20234do_aese (void)
20235{
20236 do_crypto_2op_1 (N_8, 0);
20237}
20238
20239static void
20240do_aesd (void)
20241{
20242 do_crypto_2op_1 (N_8, 1);
20243}
20244
20245static void
20246do_aesmc (void)
20247{
20248 do_crypto_2op_1 (N_8, 2);
20249}
20250
20251static void
20252do_aesimc (void)
20253{
20254 do_crypto_2op_1 (N_8, 3);
20255}
20256
48adcd8e
MGD
20257static void
20258do_sha1c (void)
20259{
20260 do_crypto_3op_1 (0, 0);
20261}
20262
20263static void
20264do_sha1p (void)
20265{
20266 do_crypto_3op_1 (0, 1);
20267}
20268
20269static void
20270do_sha1m (void)
20271{
20272 do_crypto_3op_1 (0, 2);
20273}
20274
20275static void
20276do_sha1su0 (void)
20277{
20278 do_crypto_3op_1 (0, 3);
20279}
91ff7894 20280
48adcd8e
MGD
20281static void
20282do_sha256h (void)
20283{
20284 do_crypto_3op_1 (1, 0);
20285}
20286
20287static void
20288do_sha256h2 (void)
20289{
20290 do_crypto_3op_1 (1, 1);
20291}
20292
20293static void
20294do_sha256su1 (void)
20295{
20296 do_crypto_3op_1 (1, 2);
20297}
3c9017d2
MGD
20298
20299static void
20300do_sha1h (void)
20301{
20302 do_crypto_2op_1 (N_32, -1);
20303}
20304
20305static void
20306do_sha1su1 (void)
20307{
20308 do_crypto_2op_1 (N_32, 0);
20309}
20310
20311static void
20312do_sha256su0 (void)
20313{
20314 do_crypto_2op_1 (N_32, 1);
20315}
dd5181d5
KT
20316
20317static void
20318do_crc32_1 (unsigned int poly, unsigned int sz)
20319{
20320 unsigned int Rd = inst.operands[0].reg;
20321 unsigned int Rn = inst.operands[1].reg;
20322 unsigned int Rm = inst.operands[2].reg;
20323
5ee91343 20324 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20325 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20326 inst.instruction |= LOW4 (Rn) << 16;
20327 inst.instruction |= LOW4 (Rm);
20328 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20329 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20330
20331 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20332 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20333}
20334
20335static void
20336do_crc32b (void)
20337{
20338 do_crc32_1 (0, 0);
20339}
20340
20341static void
20342do_crc32h (void)
20343{
20344 do_crc32_1 (0, 1);
20345}
20346
20347static void
20348do_crc32w (void)
20349{
20350 do_crc32_1 (0, 2);
20351}
20352
20353static void
20354do_crc32cb (void)
20355{
20356 do_crc32_1 (1, 0);
20357}
20358
20359static void
20360do_crc32ch (void)
20361{
20362 do_crc32_1 (1, 1);
20363}
20364
20365static void
20366do_crc32cw (void)
20367{
20368 do_crc32_1 (1, 2);
20369}
20370
49e8a725
SN
20371static void
20372do_vjcvt (void)
20373{
20374 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20375 _(BAD_FPU));
20376 neon_check_type (2, NS_FD, N_S32, N_F64);
20377 do_vfp_sp_dp_cvt ();
20378 do_vfp_cond_or_thumb ();
20379}
20380
5287ad62
JB
20381\f
20382/* Overall per-instruction processing. */
20383
20384/* We need to be able to fix up arbitrary expressions in some statements.
20385 This is so that we can handle symbols that are an arbitrary distance from
20386 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20387 which returns part of an address in a form which will be valid for
20388 a data instruction. We do this by pushing the expression into a symbol
20389 in the expr_section, and creating a fix for that. */
20390
20391static void
20392fix_new_arm (fragS * frag,
20393 int where,
20394 short int size,
20395 expressionS * exp,
20396 int pc_rel,
20397 int reloc)
20398{
20399 fixS * new_fix;
20400
20401 switch (exp->X_op)
20402 {
20403 case O_constant:
6e7ce2cd
PB
20404 if (pc_rel)
20405 {
20406 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20407 refer to in the object file. Unfortunately for us, gas's
20408 generic expression parsing will already have folded out
20409 any use of .set foo/.type foo %function that may have
20410 been used to set type information of the target location,
20411 that's being specified symbolically. We have to presume
20412 the user knows what they are doing. */
6e7ce2cd
PB
20413 char name[16 + 8];
20414 symbolS *symbol;
20415
20416 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20417
20418 symbol = symbol_find_or_make (name);
20419 S_SET_SEGMENT (symbol, absolute_section);
20420 symbol_set_frag (symbol, &zero_address_frag);
20421 S_SET_VALUE (symbol, exp->X_add_number);
20422 exp->X_op = O_symbol;
20423 exp->X_add_symbol = symbol;
20424 exp->X_add_number = 0;
20425 }
20426 /* FALLTHROUGH */
5287ad62
JB
20427 case O_symbol:
20428 case O_add:
20429 case O_subtract:
21d799b5 20430 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20431 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20432 break;
20433
20434 default:
21d799b5 20435 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 20436 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20437 break;
20438 }
20439
20440 /* Mark whether the fix is to a THUMB instruction, or an ARM
20441 instruction. */
20442 new_fix->tc_fix_data = thumb_mode;
20443}
20444
20445/* Create a frg for an instruction requiring relaxation. */
20446static void
20447output_relax_insn (void)
20448{
20449 char * to;
20450 symbolS *sym;
0110f2b8
PB
20451 int offset;
20452
6e1cb1a6
PB
20453 /* The size of the instruction is unknown, so tie the debug info to the
20454 start of the instruction. */
20455 dwarf2_emit_insn (0);
6e1cb1a6 20456
e2b0ab59 20457 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
20458 {
20459 case O_symbol:
e2b0ab59
AV
20460 sym = inst.relocs[0].exp.X_add_symbol;
20461 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20462 break;
20463 case O_constant:
20464 sym = NULL;
e2b0ab59 20465 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20466 break;
20467 default:
e2b0ab59 20468 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20469 offset = 0;
20470 break;
20471 }
20472 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20473 inst.relax, sym, offset, NULL/*offset, opcode*/);
20474 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20475}
20476
20477/* Write a 32-bit thumb instruction to buf. */
20478static void
20479put_thumb32_insn (char * buf, unsigned long insn)
20480{
20481 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20482 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20483}
20484
b99bd4ef 20485static void
c19d1205 20486output_inst (const char * str)
b99bd4ef 20487{
c19d1205 20488 char * to = NULL;
b99bd4ef 20489
c19d1205 20490 if (inst.error)
b99bd4ef 20491 {
c19d1205 20492 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
20493 return;
20494 }
5f4273c7
NC
20495 if (inst.relax)
20496 {
20497 output_relax_insn ();
0110f2b8 20498 return;
5f4273c7 20499 }
c19d1205
ZW
20500 if (inst.size == 0)
20501 return;
b99bd4ef 20502
c19d1205 20503 to = frag_more (inst.size);
8dc2430f
NC
20504 /* PR 9814: Record the thumb mode into the current frag so that we know
20505 what type of NOP padding to use, if necessary. We override any previous
20506 setting so that if the mode has changed then the NOPS that we use will
20507 match the encoding of the last instruction in the frag. */
cd000bff 20508 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
20509
20510 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 20511 {
9c2799c2 20512 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 20513 put_thumb32_insn (to, inst.instruction);
b99bd4ef 20514 }
c19d1205 20515 else if (inst.size > INSN_SIZE)
b99bd4ef 20516 {
9c2799c2 20517 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
20518 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20519 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 20520 }
c19d1205
ZW
20521 else
20522 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 20523
e2b0ab59
AV
20524 int r;
20525 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20526 {
20527 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20528 fix_new_arm (frag_now, to - frag_now->fr_literal,
20529 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20530 inst.relocs[r].type);
20531 }
b99bd4ef 20532
c19d1205 20533 dwarf2_emit_insn (inst.size);
c19d1205 20534}
b99bd4ef 20535
e07e6e58
NC
20536static char *
20537output_it_inst (int cond, int mask, char * to)
20538{
20539 unsigned long instruction = 0xbf00;
20540
20541 mask &= 0xf;
20542 instruction |= mask;
20543 instruction |= cond << 4;
20544
20545 if (to == NULL)
20546 {
20547 to = frag_more (2);
20548#ifdef OBJ_ELF
20549 dwarf2_emit_insn (2);
20550#endif
20551 }
20552
20553 md_number_to_chars (to, instruction, 2);
20554
20555 return to;
20556}
20557
c19d1205
ZW
20558/* Tag values used in struct asm_opcode's tag field. */
20559enum opcode_tag
20560{
20561 OT_unconditional, /* Instruction cannot be conditionalized.
20562 The ARM condition field is still 0xE. */
20563 OT_unconditionalF, /* Instruction cannot be conditionalized
20564 and carries 0xF in its ARM condition field. */
20565 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
20566 OT_csuffixF, /* Some forms of the instruction take a scalar
20567 conditional suffix, others place 0xF where the
20568 condition field would be, others take a vector
20569 conditional suffix. */
c19d1205
ZW
20570 OT_cinfix3, /* Instruction takes a conditional infix,
20571 beginning at character index 3. (In
20572 unified mode, it becomes a suffix.) */
088fa78e
KH
20573 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20574 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
20575 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20576 character index 3, even in unified mode. Used for
20577 legacy instructions where suffix and infix forms
20578 may be ambiguous. */
c19d1205 20579 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 20580 suffix or an infix at character index 3. */
c19d1205
ZW
20581 OT_odd_infix_unc, /* This is the unconditional variant of an
20582 instruction that takes a conditional infix
20583 at an unusual position. In unified mode,
20584 this variant will accept a suffix. */
20585 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20586 are the conditional variants of instructions that
20587 take conditional infixes in unusual positions.
20588 The infix appears at character index
20589 (tag - OT_odd_infix_0). These are not accepted
20590 in unified mode. */
20591};
b99bd4ef 20592
c19d1205
ZW
20593/* Subroutine of md_assemble, responsible for looking up the primary
20594 opcode from the mnemonic the user wrote. STR points to the
20595 beginning of the mnemonic.
20596
20597 This is not simply a hash table lookup, because of conditional
20598 variants. Most instructions have conditional variants, which are
20599 expressed with a _conditional affix_ to the mnemonic. If we were
20600 to encode each conditional variant as a literal string in the opcode
20601 table, it would have approximately 20,000 entries.
20602
20603 Most mnemonics take this affix as a suffix, and in unified syntax,
20604 'most' is upgraded to 'all'. However, in the divided syntax, some
20605 instructions take the affix as an infix, notably the s-variants of
20606 the arithmetic instructions. Of those instructions, all but six
20607 have the infix appear after the third character of the mnemonic.
20608
20609 Accordingly, the algorithm for looking up primary opcodes given
20610 an identifier is:
20611
20612 1. Look up the identifier in the opcode table.
20613 If we find a match, go to step U.
20614
20615 2. Look up the last two characters of the identifier in the
20616 conditions table. If we find a match, look up the first N-2
20617 characters of the identifier in the opcode table. If we
20618 find a match, go to step CE.
20619
20620 3. Look up the fourth and fifth characters of the identifier in
20621 the conditions table. If we find a match, extract those
20622 characters from the identifier, and look up the remaining
20623 characters in the opcode table. If we find a match, go
20624 to step CM.
20625
20626 4. Fail.
20627
20628 U. Examine the tag field of the opcode structure, in case this is
20629 one of the six instructions with its conditional infix in an
20630 unusual place. If it is, the tag tells us where to find the
20631 infix; look it up in the conditions table and set inst.cond
20632 accordingly. Otherwise, this is an unconditional instruction.
20633 Again set inst.cond accordingly. Return the opcode structure.
20634
20635 CE. Examine the tag field to make sure this is an instruction that
20636 should receive a conditional suffix. If it is not, fail.
20637 Otherwise, set inst.cond from the suffix we already looked up,
20638 and return the opcode structure.
20639
20640 CM. Examine the tag field to make sure this is an instruction that
20641 should receive a conditional infix after the third character.
20642 If it is not, fail. Otherwise, undo the edits to the current
20643 line of input and proceed as for case CE. */
20644
20645static const struct asm_opcode *
20646opcode_lookup (char **str)
20647{
20648 char *end, *base;
20649 char *affix;
20650 const struct asm_opcode *opcode;
20651 const struct asm_cond *cond;
e3cb604e 20652 char save[2];
c19d1205
ZW
20653
20654 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 20655 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 20656 for (base = end = *str; *end != '\0'; end++)
721a8186 20657 if (*end == ' ' || *end == '.')
c19d1205 20658 break;
b99bd4ef 20659
c19d1205 20660 if (end == base)
c921be7d 20661 return NULL;
b99bd4ef 20662
5287ad62 20663 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 20664 if (end[0] == '.')
b99bd4ef 20665 {
5287ad62 20666 int offset = 2;
5f4273c7 20667
267d2029 20668 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 20669 use. */
267d2029 20670 if (unified_syntax && end[1] == 'w')
c19d1205 20671 inst.size_req = 4;
267d2029 20672 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
20673 inst.size_req = 2;
20674 else
477330fc 20675 offset = 0;
5287ad62
JB
20676
20677 inst.vectype.elems = 0;
20678
20679 *str = end + offset;
b99bd4ef 20680
5f4273c7 20681 if (end[offset] == '.')
5287ad62 20682 {
267d2029 20683 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
20684 non-unified ARM syntax mode). */
20685 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 20686 return NULL;
477330fc 20687 }
5287ad62 20688 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 20689 return NULL;
b99bd4ef 20690 }
c19d1205
ZW
20691 else
20692 *str = end;
b99bd4ef 20693
c19d1205 20694 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 20695 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20696 end - base);
c19d1205 20697 if (opcode)
b99bd4ef 20698 {
c19d1205
ZW
20699 /* step U */
20700 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 20701 {
c19d1205
ZW
20702 inst.cond = COND_ALWAYS;
20703 return opcode;
b99bd4ef 20704 }
b99bd4ef 20705
278df34e 20706 if (warn_on_deprecated && unified_syntax)
5c3696f8 20707 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 20708 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 20709 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 20710 gas_assert (cond);
b99bd4ef 20711
c19d1205
ZW
20712 inst.cond = cond->value;
20713 return opcode;
20714 }
5ee91343
AV
20715 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20716 {
20717 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20718 */
20719 if (end - base < 2)
20720 return NULL;
20721 affix = end - 1;
20722 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20723 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20724 affix - base);
20725 /* If this opcode can not be vector predicated then don't accept it with a
20726 vector predication code. */
20727 if (opcode && !opcode->mayBeVecPred)
20728 opcode = NULL;
20729 }
20730 if (!opcode || !cond)
20731 {
20732 /* Cannot have a conditional suffix on a mnemonic of less than two
20733 characters. */
20734 if (end - base < 3)
20735 return NULL;
b99bd4ef 20736
5ee91343
AV
20737 /* Look for suffixed mnemonic. */
20738 affix = end - 2;
20739 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20740 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20741 affix - base);
20742 }
b99bd4ef 20743
c19d1205
ZW
20744 if (opcode && cond)
20745 {
20746 /* step CE */
20747 switch (opcode->tag)
20748 {
e3cb604e
PB
20749 case OT_cinfix3_legacy:
20750 /* Ignore conditional suffixes matched on infix only mnemonics. */
20751 break;
20752
c19d1205 20753 case OT_cinfix3:
088fa78e 20754 case OT_cinfix3_deprecated:
c19d1205
ZW
20755 case OT_odd_infix_unc:
20756 if (!unified_syntax)
0198d5e6 20757 return NULL;
1a0670f3 20758 /* Fall through. */
c19d1205
ZW
20759
20760 case OT_csuffix:
477330fc 20761 case OT_csuffixF:
c19d1205
ZW
20762 case OT_csuf_or_in3:
20763 inst.cond = cond->value;
20764 return opcode;
20765
20766 case OT_unconditional:
20767 case OT_unconditionalF:
dfa9f0d5 20768 if (thumb_mode)
c921be7d 20769 inst.cond = cond->value;
dfa9f0d5
PB
20770 else
20771 {
c921be7d 20772 /* Delayed diagnostic. */
dfa9f0d5
PB
20773 inst.error = BAD_COND;
20774 inst.cond = COND_ALWAYS;
20775 }
c19d1205 20776 return opcode;
b99bd4ef 20777
c19d1205 20778 default:
c921be7d 20779 return NULL;
c19d1205
ZW
20780 }
20781 }
b99bd4ef 20782
c19d1205
ZW
20783 /* Cannot have a usual-position infix on a mnemonic of less than
20784 six characters (five would be a suffix). */
20785 if (end - base < 6)
c921be7d 20786 return NULL;
b99bd4ef 20787
c19d1205
ZW
20788 /* Look for infixed mnemonic in the usual position. */
20789 affix = base + 3;
21d799b5 20790 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 20791 if (!cond)
c921be7d 20792 return NULL;
e3cb604e
PB
20793
20794 memcpy (save, affix, 2);
20795 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 20796 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20797 (end - base) - 2);
e3cb604e
PB
20798 memmove (affix + 2, affix, (end - affix) - 2);
20799 memcpy (affix, save, 2);
20800
088fa78e
KH
20801 if (opcode
20802 && (opcode->tag == OT_cinfix3
20803 || opcode->tag == OT_cinfix3_deprecated
20804 || opcode->tag == OT_csuf_or_in3
20805 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 20806 {
c921be7d 20807 /* Step CM. */
278df34e 20808 if (warn_on_deprecated && unified_syntax
088fa78e
KH
20809 && (opcode->tag == OT_cinfix3
20810 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 20811 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
20812
20813 inst.cond = cond->value;
20814 return opcode;
b99bd4ef
NC
20815 }
20816
c921be7d 20817 return NULL;
b99bd4ef
NC
20818}
20819
e07e6e58
NC
20820/* This function generates an initial IT instruction, leaving its block
20821 virtually open for the new instructions. Eventually,
5ee91343 20822 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
20823 a new instruction needs to be included in the IT block.
20824 Finally, the block is closed with close_automatic_it_block ().
20825 The block closure can be requested either from md_assemble (),
20826 a tencode (), or due to a label hook. */
20827
20828static void
20829new_automatic_it_block (int cond)
20830{
5ee91343
AV
20831 now_pred.state = AUTOMATIC_PRED_BLOCK;
20832 now_pred.mask = 0x18;
20833 now_pred.cc = cond;
20834 now_pred.block_length = 1;
cd000bff 20835 mapping_state (MAP_THUMB);
5ee91343
AV
20836 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20837 now_pred.warn_deprecated = FALSE;
20838 now_pred.insn_cond = TRUE;
e07e6e58
NC
20839}
20840
20841/* Close an automatic IT block.
20842 See comments in new_automatic_it_block (). */
20843
20844static void
20845close_automatic_it_block (void)
20846{
5ee91343
AV
20847 now_pred.mask = 0x10;
20848 now_pred.block_length = 0;
e07e6e58
NC
20849}
20850
20851/* Update the mask of the current automatically-generated IT
20852 instruction. See comments in new_automatic_it_block (). */
20853
20854static void
5ee91343 20855now_pred_add_mask (int cond)
e07e6e58
NC
20856{
20857#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20858#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 20859 | ((bitvalue) << (nbit)))
e07e6e58 20860 const int resulting_bit = (cond & 1);
c921be7d 20861
5ee91343
AV
20862 now_pred.mask &= 0xf;
20863 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20864 resulting_bit,
5ee91343
AV
20865 (5 - now_pred.block_length));
20866 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20867 1,
5ee91343
AV
20868 ((5 - now_pred.block_length) - 1));
20869 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
20870
20871#undef CLEAR_BIT
20872#undef SET_BIT_VALUE
e07e6e58
NC
20873}
20874
20875/* The IT blocks handling machinery is accessed through the these functions:
20876 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
20877 set_pred_insn_type () optional, from the tencode functions
20878 set_pred_insn_type_last () ditto
20879 in_pred_block () ditto
e07e6e58 20880 it_fsm_post_encode () from md_assemble ()
33eaf5de 20881 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
20882
20883 Rationale:
20884 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
20885 initializing the IT insn type with a generic initial value depending
20886 on the inst.condition.
e07e6e58 20887 2) During the tencode function, two things may happen:
477330fc 20888 a) The tencode function overrides the IT insn type by
5ee91343
AV
20889 calling either set_pred_insn_type (type) or
20890 set_pred_insn_type_last ().
477330fc 20891 b) The tencode function queries the IT block state by
5ee91343 20892 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 20893
5ee91343
AV
20894 Both set_pred_insn_type and in_pred_block run the internal FSM state
20895 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
20896 type may incur in an invalid state (exiting the function),
20897 and b) querying the state requires the FSM to be updated.
20898 Specifically we want to avoid creating an IT block for conditional
20899 branches, so it_fsm_pre_encode is actually a guess and we can't
20900 determine whether an IT block is required until the tencode () routine
20901 has decided what type of instruction this actually it.
5ee91343
AV
20902 Because of this, if set_pred_insn_type and in_pred_block have to be
20903 used, set_pred_insn_type has to be called first.
477330fc 20904
5ee91343
AV
20905 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20906 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
20907 When a tencode () routine encodes an instruction that can be
20908 either outside an IT block, or, in the case of being inside, has to be
5ee91343 20909 the last one, set_pred_insn_type_last () will determine the proper
477330fc 20910 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 20911 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
20912 for covering other cases.
20913
5ee91343
AV
20914 Calling handle_pred_state () may not transition the IT block state to
20915 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 20916 still queried. Instead, if the FSM determines that the state should
5ee91343 20917 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
20918 after the tencode () function: that's what it_fsm_post_encode () does.
20919
5ee91343 20920 Since in_pred_block () calls the state handling function to get an
477330fc
RM
20921 updated state, an error may occur (due to invalid insns combination).
20922 In that case, inst.error is set.
20923 Therefore, inst.error has to be checked after the execution of
20924 the tencode () routine.
e07e6e58
NC
20925
20926 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 20927 any pending state change (if any) that didn't take place in
5ee91343 20928 handle_pred_state () as explained above. */
e07e6e58
NC
20929
20930static void
20931it_fsm_pre_encode (void)
20932{
20933 if (inst.cond != COND_ALWAYS)
5ee91343 20934 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 20935 else
5ee91343 20936 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 20937
5ee91343 20938 now_pred.state_handled = 0;
e07e6e58
NC
20939}
20940
20941/* IT state FSM handling function. */
5ee91343
AV
20942/* MVE instructions and non-MVE instructions are handled differently because of
20943 the introduction of VPT blocks.
20944 Specifications say that any non-MVE instruction inside a VPT block is
20945 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20946 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 20947 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
20948 The error messages provided depending on the different combinations possible
20949 are described in the cases below:
20950 For 'most' MVE instructions:
20951 1) In an IT block, with an IT code: syntax error
20952 2) In an IT block, with a VPT code: error: must be in a VPT block
20953 3) In an IT block, with no code: warning: UNPREDICTABLE
20954 4) In a VPT block, with an IT code: syntax error
20955 5) In a VPT block, with a VPT code: OK!
20956 6) In a VPT block, with no code: error: missing code
20957 7) Outside a pred block, with an IT code: error: syntax error
20958 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20959 9) Outside a pred block, with no code: OK!
20960 For non-MVE instructions:
20961 10) In an IT block, with an IT code: OK!
20962 11) In an IT block, with a VPT code: syntax error
20963 12) In an IT block, with no code: error: missing code
20964 13) In a VPT block, with an IT code: error: should be in an IT block
20965 14) In a VPT block, with a VPT code: syntax error
20966 15) In a VPT block, with no code: UNPREDICTABLE
20967 16) Outside a pred block, with an IT code: error: should be in an IT block
20968 17) Outside a pred block, with a VPT code: syntax error
20969 18) Outside a pred block, with no code: OK!
20970 */
20971
e07e6e58
NC
20972
20973static int
5ee91343 20974handle_pred_state (void)
e07e6e58 20975{
5ee91343
AV
20976 now_pred.state_handled = 1;
20977 now_pred.insn_cond = FALSE;
e07e6e58 20978
5ee91343 20979 switch (now_pred.state)
e07e6e58 20980 {
5ee91343
AV
20981 case OUTSIDE_PRED_BLOCK:
20982 switch (inst.pred_insn_type)
e07e6e58 20983 {
35c228db 20984 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20985 case MVE_OUTSIDE_PRED_INSN:
20986 if (inst.cond < COND_ALWAYS)
20987 {
20988 /* Case 7: Outside a pred block, with an IT code: error: syntax
20989 error. */
20990 inst.error = BAD_SYNTAX;
20991 return FAIL;
20992 }
20993 /* Case 9: Outside a pred block, with no code: OK! */
20994 break;
20995 case OUTSIDE_PRED_INSN:
20996 if (inst.cond > COND_ALWAYS)
20997 {
20998 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20999 */
21000 inst.error = BAD_SYNTAX;
21001 return FAIL;
21002 }
21003 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
21004 break;
21005
5ee91343
AV
21006 case INSIDE_VPT_INSN:
21007 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21008 a VPT block. */
21009 inst.error = BAD_OUT_VPT;
21010 return FAIL;
21011
e07e6e58
NC
21012 case INSIDE_IT_INSN:
21013 case INSIDE_IT_LAST_INSN:
5ee91343 21014 if (inst.cond < COND_ALWAYS)
e07e6e58 21015 {
5ee91343
AV
21016 /* Case 16: Outside a pred block, with an IT code: error: should
21017 be in an IT block. */
21018 if (thumb_mode == 0)
e07e6e58 21019 {
5ee91343
AV
21020 if (unified_syntax
21021 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21022 as_tsktsk (_("Warning: conditional outside an IT block"\
21023 " for Thumb."));
e07e6e58
NC
21024 }
21025 else
21026 {
5ee91343
AV
21027 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21028 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21029 {
21030 /* Automatically generate the IT instruction. */
21031 new_automatic_it_block (inst.cond);
21032 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21033 close_automatic_it_block ();
21034 }
21035 else
21036 {
21037 inst.error = BAD_OUT_IT;
21038 return FAIL;
21039 }
e07e6e58 21040 }
5ee91343 21041 break;
e07e6e58 21042 }
5ee91343
AV
21043 else if (inst.cond > COND_ALWAYS)
21044 {
21045 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21046 */
21047 inst.error = BAD_SYNTAX;
21048 return FAIL;
21049 }
21050 else
21051 gas_assert (0);
e07e6e58
NC
21052 case IF_INSIDE_IT_LAST_INSN:
21053 case NEUTRAL_IT_INSN:
21054 break;
21055
5ee91343
AV
21056 case VPT_INSN:
21057 if (inst.cond != COND_ALWAYS)
21058 first_error (BAD_SYNTAX);
21059 now_pred.state = MANUAL_PRED_BLOCK;
21060 now_pred.block_length = 0;
21061 now_pred.type = VECTOR_PRED;
21062 now_pred.cc = 0;
21063 break;
e07e6e58 21064 case IT_INSN:
5ee91343
AV
21065 now_pred.state = MANUAL_PRED_BLOCK;
21066 now_pred.block_length = 0;
21067 now_pred.type = SCALAR_PRED;
e07e6e58
NC
21068 break;
21069 }
21070 break;
21071
5ee91343 21072 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
21073 /* Three things may happen now:
21074 a) We should increment current it block size;
21075 b) We should close current it block (closing insn or 4 insns);
21076 c) We should close current it block and start a new one (due
21077 to incompatible conditions or
21078 4 insns-length block reached). */
21079
5ee91343 21080 switch (inst.pred_insn_type)
e07e6e58 21081 {
5ee91343
AV
21082 case INSIDE_VPT_INSN:
21083 case VPT_INSN:
35c228db 21084 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21085 case MVE_OUTSIDE_PRED_INSN:
21086 gas_assert (0);
21087 case OUTSIDE_PRED_INSN:
2b0f3761 21088 /* The closure of the block shall happen immediately,
5ee91343 21089 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
21090 force_automatic_it_block_close ();
21091 break;
21092
21093 case INSIDE_IT_INSN:
21094 case INSIDE_IT_LAST_INSN:
21095 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21096 now_pred.block_length++;
e07e6e58 21097
5ee91343
AV
21098 if (now_pred.block_length > 4
21099 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21100 {
21101 force_automatic_it_block_close ();
5ee91343 21102 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21103 new_automatic_it_block (inst.cond);
21104 }
21105 else
21106 {
5ee91343
AV
21107 now_pred.insn_cond = TRUE;
21108 now_pred_add_mask (inst.cond);
e07e6e58
NC
21109 }
21110
5ee91343
AV
21111 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21112 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21113 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21114 close_automatic_it_block ();
21115 break;
21116
21117 case NEUTRAL_IT_INSN:
5ee91343
AV
21118 now_pred.block_length++;
21119 now_pred.insn_cond = TRUE;
e07e6e58 21120
5ee91343 21121 if (now_pred.block_length > 4)
e07e6e58
NC
21122 force_automatic_it_block_close ();
21123 else
5ee91343 21124 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21125 break;
21126
21127 case IT_INSN:
21128 close_automatic_it_block ();
5ee91343 21129 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21130 break;
21131 }
21132 break;
21133
5ee91343 21134 case MANUAL_PRED_BLOCK:
e07e6e58 21135 {
5ee91343
AV
21136 int cond, is_last;
21137 if (now_pred.type == SCALAR_PRED)
e07e6e58 21138 {
5ee91343
AV
21139 /* Check conditional suffixes. */
21140 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21141 now_pred.mask <<= 1;
21142 now_pred.mask &= 0x1f;
21143 is_last = (now_pred.mask == 0x10);
21144 }
21145 else
21146 {
21147 now_pred.cc ^= (now_pred.mask >> 4);
21148 cond = now_pred.cc + 0xf;
21149 now_pred.mask <<= 1;
21150 now_pred.mask &= 0x1f;
21151 is_last = now_pred.mask == 0x10;
21152 }
21153 now_pred.insn_cond = TRUE;
e07e6e58 21154
5ee91343
AV
21155 switch (inst.pred_insn_type)
21156 {
21157 case OUTSIDE_PRED_INSN:
21158 if (now_pred.type == SCALAR_PRED)
21159 {
21160 if (inst.cond == COND_ALWAYS)
21161 {
21162 /* Case 12: In an IT block, with no code: error: missing
21163 code. */
21164 inst.error = BAD_NOT_IT;
21165 return FAIL;
21166 }
21167 else if (inst.cond > COND_ALWAYS)
21168 {
21169 /* Case 11: In an IT block, with a VPT code: syntax error.
21170 */
21171 inst.error = BAD_SYNTAX;
21172 return FAIL;
21173 }
21174 else if (thumb_mode)
21175 {
21176 /* This is for some special cases where a non-MVE
21177 instruction is not allowed in an IT block, such as cbz,
21178 but are put into one with a condition code.
21179 You could argue this should be a syntax error, but we
21180 gave the 'not allowed in IT block' diagnostic in the
21181 past so we will keep doing so. */
21182 inst.error = BAD_NOT_IT;
21183 return FAIL;
21184 }
21185 break;
21186 }
21187 else
21188 {
21189 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21190 as_tsktsk (MVE_NOT_VPT);
21191 return SUCCESS;
21192 }
21193 case MVE_OUTSIDE_PRED_INSN:
21194 if (now_pred.type == SCALAR_PRED)
21195 {
21196 if (inst.cond == COND_ALWAYS)
21197 {
21198 /* Case 3: In an IT block, with no code: warning:
21199 UNPREDICTABLE. */
21200 as_tsktsk (MVE_NOT_IT);
21201 return SUCCESS;
21202 }
21203 else if (inst.cond < COND_ALWAYS)
21204 {
21205 /* Case 1: In an IT block, with an IT code: syntax error.
21206 */
21207 inst.error = BAD_SYNTAX;
21208 return FAIL;
21209 }
21210 else
21211 gas_assert (0);
21212 }
21213 else
21214 {
21215 if (inst.cond < COND_ALWAYS)
21216 {
21217 /* Case 4: In a VPT block, with an IT code: syntax error.
21218 */
21219 inst.error = BAD_SYNTAX;
21220 return FAIL;
21221 }
21222 else if (inst.cond == COND_ALWAYS)
21223 {
21224 /* Case 6: In a VPT block, with no code: error: missing
21225 code. */
21226 inst.error = BAD_NOT_VPT;
21227 return FAIL;
21228 }
21229 else
21230 {
21231 gas_assert (0);
21232 }
21233 }
35c228db
AV
21234 case MVE_UNPREDICABLE_INSN:
21235 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21236 return SUCCESS;
e07e6e58 21237 case INSIDE_IT_INSN:
5ee91343 21238 if (inst.cond > COND_ALWAYS)
e07e6e58 21239 {
5ee91343
AV
21240 /* Case 11: In an IT block, with a VPT code: syntax error. */
21241 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21242 inst.error = BAD_SYNTAX;
21243 return FAIL;
21244 }
21245 else if (now_pred.type == SCALAR_PRED)
21246 {
21247 /* Case 10: In an IT block, with an IT code: OK! */
21248 if (cond != inst.cond)
21249 {
21250 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21251 BAD_VPT_COND;
21252 return FAIL;
21253 }
21254 }
21255 else
21256 {
21257 /* Case 13: In a VPT block, with an IT code: error: should be
21258 in an IT block. */
21259 inst.error = BAD_OUT_IT;
e07e6e58
NC
21260 return FAIL;
21261 }
21262 break;
21263
5ee91343
AV
21264 case INSIDE_VPT_INSN:
21265 if (now_pred.type == SCALAR_PRED)
21266 {
21267 /* Case 2: In an IT block, with a VPT code: error: must be in a
21268 VPT block. */
21269 inst.error = BAD_OUT_VPT;
21270 return FAIL;
21271 }
21272 /* Case 5: In a VPT block, with a VPT code: OK! */
21273 else if (cond != inst.cond)
21274 {
21275 inst.error = BAD_VPT_COND;
21276 return FAIL;
21277 }
21278 break;
e07e6e58
NC
21279 case INSIDE_IT_LAST_INSN:
21280 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21281 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21282 {
21283 /* Case 4: In a VPT block, with an IT code: syntax error. */
21284 /* Case 11: In an IT block, with a VPT code: syntax error. */
21285 inst.error = BAD_SYNTAX;
21286 return FAIL;
21287 }
21288 else if (cond != inst.cond)
e07e6e58
NC
21289 {
21290 inst.error = BAD_IT_COND;
21291 return FAIL;
21292 }
21293 if (!is_last)
21294 {
21295 inst.error = BAD_BRANCH;
21296 return FAIL;
21297 }
21298 break;
21299
21300 case NEUTRAL_IT_INSN:
5ee91343
AV
21301 /* The BKPT instruction is unconditional even in a IT or VPT
21302 block. */
e07e6e58
NC
21303 break;
21304
21305 case IT_INSN:
5ee91343
AV
21306 if (now_pred.type == SCALAR_PRED)
21307 {
21308 inst.error = BAD_IT_IT;
21309 return FAIL;
21310 }
21311 /* fall through. */
21312 case VPT_INSN:
21313 if (inst.cond == COND_ALWAYS)
21314 {
21315 /* Executing a VPT/VPST instruction inside an IT block or a
21316 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21317 */
21318 if (now_pred.type == SCALAR_PRED)
21319 as_tsktsk (MVE_NOT_IT);
21320 else
21321 as_tsktsk (MVE_NOT_VPT);
21322 return SUCCESS;
21323 }
21324 else
21325 {
21326 /* VPT/VPST do not accept condition codes. */
21327 inst.error = BAD_SYNTAX;
21328 return FAIL;
21329 }
e07e6e58 21330 }
5ee91343 21331 }
e07e6e58
NC
21332 break;
21333 }
21334
21335 return SUCCESS;
21336}
21337
5a01bb1d
MGD
21338struct depr_insn_mask
21339{
21340 unsigned long pattern;
21341 unsigned long mask;
21342 const char* description;
21343};
21344
21345/* List of 16-bit instruction patterns deprecated in an IT block in
21346 ARMv8. */
21347static const struct depr_insn_mask depr_it_insns[] = {
21348 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21349 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21350 { 0xa000, 0xb800, N_("ADR") },
21351 { 0x4800, 0xf800, N_("Literal loads") },
21352 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21353 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21354 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21355 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21356 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21357 { 0, 0, NULL }
21358};
21359
e07e6e58
NC
21360static void
21361it_fsm_post_encode (void)
21362{
21363 int is_last;
21364
5ee91343
AV
21365 if (!now_pred.state_handled)
21366 handle_pred_state ();
e07e6e58 21367
5ee91343
AV
21368 if (now_pred.insn_cond
21369 && !now_pred.warn_deprecated
5a01bb1d 21370 && warn_on_deprecated
df9909b8
TP
21371 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21372 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21373 {
21374 if (inst.instruction >= 0x10000)
21375 {
5c3696f8 21376 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21377 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21378 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21379 }
21380 else
21381 {
21382 const struct depr_insn_mask *p = depr_it_insns;
21383
21384 while (p->mask != 0)
21385 {
21386 if ((inst.instruction & p->mask) == p->pattern)
21387 {
df9909b8
TP
21388 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21389 "instructions of the following class are "
21390 "performance deprecated in ARMv8-A and "
21391 "ARMv8-R: %s"), p->description);
5ee91343 21392 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21393 break;
21394 }
21395
21396 ++p;
21397 }
21398 }
21399
5ee91343 21400 if (now_pred.block_length > 1)
5a01bb1d 21401 {
5c3696f8 21402 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21403 "instruction are performance deprecated in ARMv8-A and "
21404 "ARMv8-R"));
5ee91343 21405 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21406 }
21407 }
21408
5ee91343
AV
21409 is_last = (now_pred.mask == 0x10);
21410 if (is_last)
21411 {
21412 now_pred.state = OUTSIDE_PRED_BLOCK;
21413 now_pred.mask = 0;
21414 }
e07e6e58
NC
21415}
21416
21417static void
21418force_automatic_it_block_close (void)
21419{
5ee91343 21420 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21421 {
21422 close_automatic_it_block ();
5ee91343
AV
21423 now_pred.state = OUTSIDE_PRED_BLOCK;
21424 now_pred.mask = 0;
e07e6e58
NC
21425 }
21426}
21427
21428static int
5ee91343 21429in_pred_block (void)
e07e6e58 21430{
5ee91343
AV
21431 if (!now_pred.state_handled)
21432 handle_pred_state ();
e07e6e58 21433
5ee91343 21434 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21435}
21436
ff8646ee
TP
21437/* Whether OPCODE only has T32 encoding. Since this function is only used by
21438 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21439 here, hence the "known" in the function name. */
fc289b0a
TP
21440
21441static bfd_boolean
ff8646ee 21442known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
21443{
21444 /* Original Thumb-1 wide instruction. */
21445 if (opcode->tencode == do_t_blx
21446 || opcode->tencode == do_t_branch23
21447 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21448 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21449 return TRUE;
21450
16a1fa25
TP
21451 /* Wide-only instruction added to ARMv8-M Baseline. */
21452 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
21453 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21454 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21455 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21456 return TRUE;
21457
21458 return FALSE;
21459}
21460
21461/* Whether wide instruction variant can be used if available for a valid OPCODE
21462 in ARCH. */
21463
21464static bfd_boolean
21465t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21466{
21467 if (known_t32_only_insn (opcode))
21468 return TRUE;
21469
21470 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21471 of variant T3 of B.W is checked in do_t_branch. */
21472 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21473 && opcode->tencode == do_t_branch)
21474 return TRUE;
21475
bada4342
JW
21476 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21477 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21478 && opcode->tencode == do_t_mov_cmp
21479 /* Make sure CMP instruction is not affected. */
21480 && opcode->aencode == do_mov)
21481 return TRUE;
21482
ff8646ee
TP
21483 /* Wide instruction variants of all instructions with narrow *and* wide
21484 variants become available with ARMv6t2. Other opcodes are either
21485 narrow-only or wide-only and are thus available if OPCODE is valid. */
21486 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21487 return TRUE;
21488
21489 /* OPCODE with narrow only instruction variant or wide variant not
21490 available. */
fc289b0a
TP
21491 return FALSE;
21492}
21493
c19d1205
ZW
21494void
21495md_assemble (char *str)
b99bd4ef 21496{
c19d1205
ZW
21497 char *p = str;
21498 const struct asm_opcode * opcode;
b99bd4ef 21499
c19d1205
ZW
21500 /* Align the previous label if needed. */
21501 if (last_label_seen != NULL)
b99bd4ef 21502 {
c19d1205
ZW
21503 symbol_set_frag (last_label_seen, frag_now);
21504 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21505 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
21506 }
21507
c19d1205 21508 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
21509 int r;
21510 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21511 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 21512
c19d1205
ZW
21513 opcode = opcode_lookup (&p);
21514 if (!opcode)
b99bd4ef 21515 {
c19d1205 21516 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 21517 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 21518 if (! create_register_alias (str, p)
477330fc 21519 && ! create_neon_reg_alias (str, p))
c19d1205 21520 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 21521
b99bd4ef
NC
21522 return;
21523 }
21524
278df34e 21525 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 21526 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 21527
037e8744
JB
21528 /* The value which unconditional instructions should have in place of the
21529 condition field. */
21530 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21531
c19d1205 21532 if (thumb_mode)
b99bd4ef 21533 {
e74cfd16 21534 arm_feature_set variant;
8f06b2d8
PB
21535
21536 variant = cpu_variant;
21537 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
21538 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21539 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 21540 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
21541 if (!opcode->tvariant
21542 || (thumb_mode == 1
21543 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 21544 {
173205ca
TP
21545 if (opcode->tencode == do_t_swi)
21546 as_bad (_("SVC is not permitted on this architecture"));
21547 else
21548 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
21549 return;
21550 }
c19d1205
ZW
21551 if (inst.cond != COND_ALWAYS && !unified_syntax
21552 && opcode->tencode != do_t_branch)
b99bd4ef 21553 {
c19d1205 21554 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
21555 return;
21556 }
21557
fc289b0a
TP
21558 /* Two things are addressed here:
21559 1) Implicit require narrow instructions on Thumb-1.
21560 This avoids relaxation accidentally introducing Thumb-2
21561 instructions.
21562 2) Reject wide instructions in non Thumb-2 cores.
21563
21564 Only instructions with narrow and wide variants need to be handled
21565 but selecting all non wide-only instructions is easier. */
21566 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 21567 && !t32_insn_ok (variant, opcode))
076d447c 21568 {
fc289b0a
TP
21569 if (inst.size_req == 0)
21570 inst.size_req = 2;
21571 else if (inst.size_req == 4)
752d5da4 21572 {
ff8646ee
TP
21573 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21574 as_bad (_("selected processor does not support 32bit wide "
21575 "variant of instruction `%s'"), str);
21576 else
21577 as_bad (_("selected processor does not support `%s' in "
21578 "Thumb-2 mode"), str);
fc289b0a 21579 return;
752d5da4 21580 }
076d447c
PB
21581 }
21582
c19d1205
ZW
21583 inst.instruction = opcode->tvalue;
21584
5be8be5d 21585 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 21586 {
5ee91343 21587 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
21588 it. */
21589 it_fsm_pre_encode ();
c19d1205 21590
477330fc 21591 opcode->tencode ();
e07e6e58 21592
477330fc
RM
21593 it_fsm_post_encode ();
21594 }
e27ec89e 21595
0110f2b8 21596 if (!(inst.error || inst.relax))
b99bd4ef 21597 {
9c2799c2 21598 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
21599 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21600 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 21601 {
c19d1205 21602 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
21603 return;
21604 }
21605 }
076d447c
PB
21606
21607 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 21608 instruction. */
9c2799c2 21609 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 21610
e74cfd16
PB
21611 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21612 *opcode->tvariant);
ee065d83 21613 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
21614 set those bits when Thumb-2 32-bit instructions are seen. The impact
21615 of relaxable instructions will be considered later after we finish all
21616 relaxation. */
ff8646ee
TP
21617 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21618 variant = arm_arch_none;
21619 else
21620 variant = cpu_variant;
21621 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
21622 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21623 arm_ext_v6t2);
cd000bff 21624
88714cb8
DG
21625 check_neon_suffixes;
21626
cd000bff 21627 if (!inst.error)
c877a2f2
NC
21628 {
21629 mapping_state (MAP_THUMB);
21630 }
c19d1205 21631 }
3e9e4fcf 21632 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 21633 {
845b51d6
PB
21634 bfd_boolean is_bx;
21635
21636 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21637 is_bx = (opcode->aencode == do_bx);
21638
c19d1205 21639 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
21640 if (!(is_bx && fix_v4bx)
21641 && !(opcode->avariant &&
21642 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 21643 {
84b52b66 21644 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 21645 return;
b99bd4ef 21646 }
c19d1205 21647 if (inst.size_req)
b99bd4ef 21648 {
c19d1205
ZW
21649 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21650 return;
b99bd4ef
NC
21651 }
21652
c19d1205
ZW
21653 inst.instruction = opcode->avalue;
21654 if (opcode->tag == OT_unconditionalF)
eff0bc54 21655 inst.instruction |= 0xFU << 28;
c19d1205
ZW
21656 else
21657 inst.instruction |= inst.cond << 28;
21658 inst.size = INSN_SIZE;
5be8be5d 21659 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
21660 {
21661 it_fsm_pre_encode ();
21662 opcode->aencode ();
21663 it_fsm_post_encode ();
21664 }
ee065d83 21665 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 21666 on a hypothetical non-thumb v5 core. */
845b51d6 21667 if (is_bx)
e74cfd16 21668 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 21669 else
e74cfd16
PB
21670 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21671 *opcode->avariant);
88714cb8
DG
21672
21673 check_neon_suffixes;
21674
cd000bff 21675 if (!inst.error)
c877a2f2
NC
21676 {
21677 mapping_state (MAP_ARM);
21678 }
b99bd4ef 21679 }
3e9e4fcf
JB
21680 else
21681 {
21682 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21683 "-- `%s'"), str);
21684 return;
21685 }
c19d1205
ZW
21686 output_inst (str);
21687}
b99bd4ef 21688
e07e6e58 21689static void
5ee91343 21690check_pred_blocks_finished (void)
e07e6e58
NC
21691{
21692#ifdef OBJ_ELF
21693 asection *sect;
21694
21695 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
21696 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21697 == MANUAL_PRED_BLOCK)
e07e6e58 21698 {
5ee91343
AV
21699 if (now_pred.type == SCALAR_PRED)
21700 as_warn (_("section '%s' finished with an open IT block."),
21701 sect->name);
21702 else
21703 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21704 sect->name);
e07e6e58
NC
21705 }
21706#else
5ee91343
AV
21707 if (now_pred.state == MANUAL_PRED_BLOCK)
21708 {
21709 if (now_pred.type == SCALAR_PRED)
21710 as_warn (_("file finished with an open IT block."));
21711 else
21712 as_warn (_("file finished with an open VPT/VPST block."));
21713 }
e07e6e58
NC
21714#endif
21715}
21716
c19d1205
ZW
21717/* Various frobbings of labels and their addresses. */
21718
21719void
21720arm_start_line_hook (void)
21721{
21722 last_label_seen = NULL;
b99bd4ef
NC
21723}
21724
c19d1205
ZW
21725void
21726arm_frob_label (symbolS * sym)
b99bd4ef 21727{
c19d1205 21728 last_label_seen = sym;
b99bd4ef 21729
c19d1205 21730 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 21731
c19d1205
ZW
21732#if defined OBJ_COFF || defined OBJ_ELF
21733 ARM_SET_INTERWORK (sym, support_interwork);
21734#endif
b99bd4ef 21735
e07e6e58
NC
21736 force_automatic_it_block_close ();
21737
5f4273c7 21738 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
21739 as Thumb functions. This is because these labels, whilst
21740 they exist inside Thumb code, are not the entry points for
21741 possible ARM->Thumb calls. Also, these labels can be used
21742 as part of a computed goto or switch statement. eg gcc
21743 can generate code that looks like this:
b99bd4ef 21744
c19d1205
ZW
21745 ldr r2, [pc, .Laaa]
21746 lsl r3, r3, #2
21747 ldr r2, [r3, r2]
21748 mov pc, r2
b99bd4ef 21749
c19d1205
ZW
21750 .Lbbb: .word .Lxxx
21751 .Lccc: .word .Lyyy
21752 ..etc...
21753 .Laaa: .word Lbbb
b99bd4ef 21754
c19d1205
ZW
21755 The first instruction loads the address of the jump table.
21756 The second instruction converts a table index into a byte offset.
21757 The third instruction gets the jump address out of the table.
21758 The fourth instruction performs the jump.
b99bd4ef 21759
c19d1205
ZW
21760 If the address stored at .Laaa is that of a symbol which has the
21761 Thumb_Func bit set, then the linker will arrange for this address
21762 to have the bottom bit set, which in turn would mean that the
21763 address computation performed by the third instruction would end
21764 up with the bottom bit set. Since the ARM is capable of unaligned
21765 word loads, the instruction would then load the incorrect address
21766 out of the jump table, and chaos would ensue. */
21767 if (label_is_thumb_function_name
21768 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21769 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 21770 {
c19d1205
ZW
21771 /* When the address of a Thumb function is taken the bottom
21772 bit of that address should be set. This will allow
21773 interworking between Arm and Thumb functions to work
21774 correctly. */
b99bd4ef 21775
c19d1205 21776 THUMB_SET_FUNC (sym, 1);
b99bd4ef 21777
c19d1205 21778 label_is_thumb_function_name = FALSE;
b99bd4ef 21779 }
07a53e5c 21780
07a53e5c 21781 dwarf2_emit_label (sym);
b99bd4ef
NC
21782}
21783
c921be7d 21784bfd_boolean
c19d1205 21785arm_data_in_code (void)
b99bd4ef 21786{
c19d1205 21787 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 21788 {
c19d1205
ZW
21789 *input_line_pointer = '/';
21790 input_line_pointer += 5;
21791 *input_line_pointer = 0;
c921be7d 21792 return TRUE;
b99bd4ef
NC
21793 }
21794
c921be7d 21795 return FALSE;
b99bd4ef
NC
21796}
21797
c19d1205
ZW
21798char *
21799arm_canonicalize_symbol_name (char * name)
b99bd4ef 21800{
c19d1205 21801 int len;
b99bd4ef 21802
c19d1205
ZW
21803 if (thumb_mode && (len = strlen (name)) > 5
21804 && streq (name + len - 5, "/data"))
21805 *(name + len - 5) = 0;
b99bd4ef 21806
c19d1205 21807 return name;
b99bd4ef 21808}
c19d1205
ZW
21809\f
21810/* Table of all register names defined by default. The user can
21811 define additional names with .req. Note that all register names
21812 should appear in both upper and lowercase variants. Some registers
21813 also have mixed-case names. */
b99bd4ef 21814
dcbf9037 21815#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 21816#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 21817#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
21818#define REGSET(p,t) \
21819 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21820 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21821 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21822 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
21823#define REGSETH(p,t) \
21824 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21825 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21826 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21827 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21828#define REGSET2(p,t) \
21829 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21830 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21831 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21832 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
21833#define SPLRBANK(base,bank,t) \
21834 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21835 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21836 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21837 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21838 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21839 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 21840
c19d1205 21841static const struct reg_entry reg_names[] =
7ed4c4c5 21842{
c19d1205
ZW
21843 /* ARM integer registers. */
21844 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 21845
c19d1205
ZW
21846 /* ATPCS synonyms. */
21847 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21848 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21849 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 21850
c19d1205
ZW
21851 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21852 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21853 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 21854
c19d1205
ZW
21855 /* Well-known aliases. */
21856 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21857 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21858
21859 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21860 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21861
1b883319
AV
21862 /* Defining the new Zero register from ARMv8.1-M. */
21863 REGDEF(zr,15,ZR),
21864 REGDEF(ZR,15,ZR),
21865
c19d1205
ZW
21866 /* Coprocessor numbers. */
21867 REGSET(p, CP), REGSET(P, CP),
21868
21869 /* Coprocessor register numbers. The "cr" variants are for backward
21870 compatibility. */
21871 REGSET(c, CN), REGSET(C, CN),
21872 REGSET(cr, CN), REGSET(CR, CN),
21873
90ec0d68
MGD
21874 /* ARM banked registers. */
21875 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21876 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21877 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21878 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21879 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21880 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21881 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21882
21883 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21884 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21885 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21886 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21887 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 21888 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
21889 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21890 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21891
21892 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21893 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21894 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21895 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21896 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21897 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21898 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 21899 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
21900 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21901
c19d1205
ZW
21902 /* FPA registers. */
21903 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21904 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21905
21906 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21907 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21908
21909 /* VFP SP registers. */
5287ad62
JB
21910 REGSET(s,VFS), REGSET(S,VFS),
21911 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
21912
21913 /* VFP DP Registers. */
5287ad62
JB
21914 REGSET(d,VFD), REGSET(D,VFD),
21915 /* Extra Neon DP registers. */
21916 REGSETH(d,VFD), REGSETH(D,VFD),
21917
21918 /* Neon QP registers. */
21919 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
21920
21921 /* VFP control registers. */
21922 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21923 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
21924 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21925 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21926 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21927 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 21928 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
21929
21930 /* Maverick DSP coprocessor registers. */
21931 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21932 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21933
21934 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21935 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21936 REGDEF(dspsc,0,DSPSC),
21937
21938 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21939 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21940 REGDEF(DSPSC,0,DSPSC),
21941
21942 /* iWMMXt data registers - p0, c0-15. */
21943 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21944
21945 /* iWMMXt control registers - p1, c0-3. */
21946 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21947 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21948 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21949 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21950
21951 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21952 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21953 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21954 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21955 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21956
21957 /* XScale accumulator registers. */
21958 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21959};
21960#undef REGDEF
21961#undef REGNUM
21962#undef REGSET
7ed4c4c5 21963
c19d1205
ZW
21964/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21965 within psr_required_here. */
21966static const struct asm_psr psrs[] =
21967{
21968 /* Backward compatibility notation. Note that "all" is no longer
21969 truly all possible PSR bits. */
21970 {"all", PSR_c | PSR_f},
21971 {"flg", PSR_f},
21972 {"ctl", PSR_c},
21973
21974 /* Individual flags. */
21975 {"f", PSR_f},
21976 {"c", PSR_c},
21977 {"x", PSR_x},
21978 {"s", PSR_s},
59b42a0d 21979
c19d1205
ZW
21980 /* Combinations of flags. */
21981 {"fs", PSR_f | PSR_s},
21982 {"fx", PSR_f | PSR_x},
21983 {"fc", PSR_f | PSR_c},
21984 {"sf", PSR_s | PSR_f},
21985 {"sx", PSR_s | PSR_x},
21986 {"sc", PSR_s | PSR_c},
21987 {"xf", PSR_x | PSR_f},
21988 {"xs", PSR_x | PSR_s},
21989 {"xc", PSR_x | PSR_c},
21990 {"cf", PSR_c | PSR_f},
21991 {"cs", PSR_c | PSR_s},
21992 {"cx", PSR_c | PSR_x},
21993 {"fsx", PSR_f | PSR_s | PSR_x},
21994 {"fsc", PSR_f | PSR_s | PSR_c},
21995 {"fxs", PSR_f | PSR_x | PSR_s},
21996 {"fxc", PSR_f | PSR_x | PSR_c},
21997 {"fcs", PSR_f | PSR_c | PSR_s},
21998 {"fcx", PSR_f | PSR_c | PSR_x},
21999 {"sfx", PSR_s | PSR_f | PSR_x},
22000 {"sfc", PSR_s | PSR_f | PSR_c},
22001 {"sxf", PSR_s | PSR_x | PSR_f},
22002 {"sxc", PSR_s | PSR_x | PSR_c},
22003 {"scf", PSR_s | PSR_c | PSR_f},
22004 {"scx", PSR_s | PSR_c | PSR_x},
22005 {"xfs", PSR_x | PSR_f | PSR_s},
22006 {"xfc", PSR_x | PSR_f | PSR_c},
22007 {"xsf", PSR_x | PSR_s | PSR_f},
22008 {"xsc", PSR_x | PSR_s | PSR_c},
22009 {"xcf", PSR_x | PSR_c | PSR_f},
22010 {"xcs", PSR_x | PSR_c | PSR_s},
22011 {"cfs", PSR_c | PSR_f | PSR_s},
22012 {"cfx", PSR_c | PSR_f | PSR_x},
22013 {"csf", PSR_c | PSR_s | PSR_f},
22014 {"csx", PSR_c | PSR_s | PSR_x},
22015 {"cxf", PSR_c | PSR_x | PSR_f},
22016 {"cxs", PSR_c | PSR_x | PSR_s},
22017 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22018 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22019 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22020 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22021 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22022 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22023 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22024 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22025 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22026 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22027 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22028 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22029 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22030 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22031 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22032 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22033 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22034 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22035 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22036 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22037 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22038 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22039 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22040 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22041};
22042
62b3e311
PB
22043/* Table of V7M psr names. */
22044static const struct asm_psr v7m_psrs[] =
22045{
1a336194
TP
22046 {"apsr", 0x0 }, {"APSR", 0x0 },
22047 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22048 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22049 {"psr", 0x3 }, {"PSR", 0x3 },
22050 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22051 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22052 {"epsr", 0x6 }, {"EPSR", 0x6 },
22053 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22054 {"msp", 0x8 }, {"MSP", 0x8 },
22055 {"psp", 0x9 }, {"PSP", 0x9 },
22056 {"msplim", 0xa }, {"MSPLIM", 0xa },
22057 {"psplim", 0xb }, {"PSPLIM", 0xb },
22058 {"primask", 0x10}, {"PRIMASK", 0x10},
22059 {"basepri", 0x11}, {"BASEPRI", 0x11},
22060 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
22061 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22062 {"control", 0x14}, {"CONTROL", 0x14},
22063 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22064 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22065 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22066 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22067 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22068 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22069 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22070 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22071 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
22072};
22073
c19d1205
ZW
22074/* Table of all shift-in-operand names. */
22075static const struct asm_shift_name shift_names [] =
b99bd4ef 22076{
c19d1205
ZW
22077 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22078 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22079 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22080 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22081 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
22082 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22083 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 22084};
b99bd4ef 22085
c19d1205
ZW
22086/* Table of all explicit relocation names. */
22087#ifdef OBJ_ELF
22088static struct reloc_entry reloc_names[] =
22089{
22090 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22091 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22092 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22093 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22094 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22095 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22096 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22097 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22098 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22099 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22100 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22101 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22102 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22103 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22104 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22105 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22106 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22107 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22108 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22109 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22110 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22111 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22112 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22113 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22114 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22115 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22116 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22117};
22118#endif
b99bd4ef 22119
5ee91343 22120/* Table of all conditional affixes. */
c19d1205
ZW
22121static const struct asm_cond conds[] =
22122{
22123 {"eq", 0x0},
22124 {"ne", 0x1},
22125 {"cs", 0x2}, {"hs", 0x2},
22126 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22127 {"mi", 0x4},
22128 {"pl", 0x5},
22129 {"vs", 0x6},
22130 {"vc", 0x7},
22131 {"hi", 0x8},
22132 {"ls", 0x9},
22133 {"ge", 0xa},
22134 {"lt", 0xb},
22135 {"gt", 0xc},
22136 {"le", 0xd},
22137 {"al", 0xe}
22138};
5ee91343
AV
22139static const struct asm_cond vconds[] =
22140{
22141 {"t", 0xf},
22142 {"e", 0x10}
22143};
bfae80f2 22144
e797f7e0 22145#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22146 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22147 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22148
62b3e311
PB
22149static struct asm_barrier_opt barrier_opt_names[] =
22150{
e797f7e0
MGD
22151 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22152 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22153 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22154 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22155 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22156 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22157 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22158 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22159 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22160 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22161 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22162 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22163 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22164 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22165 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22166 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22167};
22168
e797f7e0
MGD
22169#undef UL_BARRIER
22170
c19d1205
ZW
22171/* Table of ARM-format instructions. */
22172
22173/* Macros for gluing together operand strings. N.B. In all cases
22174 other than OPS0, the trailing OP_stop comes from default
22175 zero-initialization of the unspecified elements of the array. */
22176#define OPS0() { OP_stop, }
22177#define OPS1(a) { OP_##a, }
22178#define OPS2(a,b) { OP_##a,OP_##b, }
22179#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22180#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22181#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22182#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22183
5be8be5d
DG
22184/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22185 This is useful when mixing operands for ARM and THUMB, i.e. using the
22186 MIX_ARM_THUMB_OPERANDS macro.
22187 In order to use these macros, prefix the number of operands with _
22188 e.g. _3. */
22189#define OPS_1(a) { a, }
22190#define OPS_2(a,b) { a,b, }
22191#define OPS_3(a,b,c) { a,b,c, }
22192#define OPS_4(a,b,c,d) { a,b,c,d, }
22193#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22194#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22195
c19d1205
ZW
22196/* These macros abstract out the exact format of the mnemonic table and
22197 save some repeated characters. */
22198
22199/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22200#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22201 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22202 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22203
22204/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22205 a T_MNEM_xyz enumerator. */
22206#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22207 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22208#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22209 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22210
22211/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22212 infix after the third character. */
22213#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22214 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22215 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22216#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22217 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 22218 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22219#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22220 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 22221#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22222 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22223#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22224 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 22225#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22226 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 22227
c19d1205 22228/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
22229 field is still 0xE. Many of the Thumb variants can be executed
22230 conditionally, so this is checked separately. */
c19d1205 22231#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22232 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22233 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22234
dd5181d5
KT
22235/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22236 Used by mnemonics that have very minimal differences in the encoding for
22237 ARM and Thumb variants and can be handled in a common function. */
22238#define TUEc(mnem, op, top, nops, ops, en) \
22239 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22240 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 22241
c19d1205
ZW
22242/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22243 condition code field. */
22244#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22245 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22246 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22247
22248/* ARM-only variants of all the above. */
6a86118a 22249#define CE(mnem, op, nops, ops, ae) \
5ee91343 22250 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22251
22252#define C3(mnem, op, nops, ops, ae) \
5ee91343 22253 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22254
cf3cf39d
TP
22255/* Thumb-only variants of TCE and TUE. */
22256#define ToC(mnem, top, nops, ops, te) \
22257 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22258 do_##te, 0 }
cf3cf39d
TP
22259
22260#define ToU(mnem, top, nops, ops, te) \
22261 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22262 NULL, do_##te, 0 }
cf3cf39d 22263
4389b29a
AV
22264/* T_MNEM_xyz enumerator variants of ToC. */
22265#define toC(mnem, top, nops, ops, te) \
22266 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22267 do_##te, 0 }
4389b29a 22268
f6b2b12d
AV
22269/* T_MNEM_xyz enumerator variants of ToU. */
22270#define toU(mnem, top, nops, ops, te) \
22271 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22272 NULL, do_##te, 0 }
f6b2b12d 22273
e3cb604e
PB
22274/* Legacy mnemonics that always have conditional infix after the third
22275 character. */
22276#define CL(mnem, op, nops, ops, ae) \
21d799b5 22277 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22278 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22279
8f06b2d8
PB
22280/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22281#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22282 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22283
57785aa2
AV
22284/* mov instructions that are shared between coprocessor and MVE. */
22285#define mcCE(mnem, op, nops, ops, ae) \
22286 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22287
e3cb604e
PB
22288/* Legacy coprocessor instructions where conditional infix and conditional
22289 suffix are ambiguous. For consistency this includes all FPA instructions,
22290 not just the potentially ambiguous ones. */
22291#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22292 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22293 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22294
22295/* Coprocessor, takes either a suffix or a position-3 infix
22296 (for an FPA corner case). */
22297#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22298 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22299 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22300
6a86118a 22301#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22302 { m1 #m2 m3, OPS##nops ops, \
22303 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22304 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22305
22306#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22307 xCM_ (m1, , m2, op, nops, ops, ae), \
22308 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22309 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22310 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22311 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22312 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22313 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22314 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22315 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22316 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22317 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22318 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22319 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22320 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22321 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22322 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22323 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22324 xCM_ (m1, le, m2, op, nops, ops, ae), \
22325 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22326
22327#define UE(mnem, op, nops, ops, ae) \
5ee91343 22328 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22329
22330#define UF(mnem, op, nops, ops, ae) \
5ee91343 22331 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22332
5287ad62
JB
22333/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22334 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22335 use the same encoding function for each. */
22336#define NUF(mnem, op, nops, ops, enc) \
22337 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22338 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22339
22340/* Neon data processing, version which indirects through neon_enc_tab for
22341 the various overloaded versions of opcodes. */
22342#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22343 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22344 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22345
22346/* Neon insn with conditional suffix for the ARM version, non-overloaded
22347 version. */
5ee91343 22348#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22349 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22350 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22351
037e8744 22352#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22353 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22354
22355#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22356 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22357
5287ad62 22358/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22359#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22360 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22361 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22362
037e8744 22363#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22364 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22365
22366#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22367 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22368
22369/* */
22370#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22371 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22372 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22373
22374
22375/* nCEF but for MVE predicated instructions. */
22376#define mnCEF(mnem, op, nops, ops, enc) \
22377 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22378
22379/* nCE but for MVE predicated instructions. */
22380#define mnCE(mnem, op, nops, ops, enc) \
22381 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22382
5ee91343
AV
22383/* NUF but for potentially MVE predicated instructions. */
22384#define MNUF(mnem, op, nops, ops, enc) \
22385 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22386 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22387
22388/* nUF but for potentially MVE predicated instructions. */
22389#define mnUF(mnem, op, nops, ops, enc) \
22390 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22391 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22392
22393/* ToC but for potentially MVE predicated instructions. */
22394#define mToC(mnem, top, nops, ops, te) \
22395 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22396 do_##te, 1 }
22397
22398/* NCE but for MVE predicated instructions. */
22399#define MNCE(mnem, op, nops, ops, enc) \
22400 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22401
22402/* NCEF but for MVE predicated instructions. */
22403#define MNCEF(mnem, op, nops, ops, enc) \
22404 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22405#define do_0 0
22406
c19d1205 22407static const struct asm_opcode insns[] =
bfae80f2 22408{
74db7efb
NC
22409#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22410#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22411 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22412 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22413 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22414 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22415 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22416 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22417 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22418 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22419 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22420 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22421 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22422 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22423 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22424 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22425 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22426 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22427
22428 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22429 for setting PSR flag bits. They are obsolete in V6 and do not
22430 have Thumb equivalents. */
21d799b5
NC
22431 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22432 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22433 CL("tstp", 110f000, 2, (RR, SH), cmp),
22434 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22435 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22436 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22437 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22438 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22439 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22440
22441 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 22442 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
22443 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22444 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22445
22446 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
22447 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22448 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22449 OP_RRnpc),
22450 OP_ADDRGLDR),ldst, t_ldst),
22451 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
22452
22453 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22454 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22455 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22456 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22457 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22458 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22459
21d799b5
NC
22460 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22461 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 22462
c19d1205 22463 /* Pseudo ops. */
21d799b5 22464 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 22465 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 22466 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 22467 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
22468
22469 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22470 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22471 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22472 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22473 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22474 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22475 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22476 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22477 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22478 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22479 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22480 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22481 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22482
16a4cf17 22483 /* These may simplify to neg. */
21d799b5
NC
22484 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22485 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22486
173205ca
TP
22487#undef THUMB_VARIANT
22488#define THUMB_VARIANT & arm_ext_os
22489
22490 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22491 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22492
c921be7d
NC
22493#undef THUMB_VARIANT
22494#define THUMB_VARIANT & arm_ext_v6
22495
21d799b5 22496 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
22497
22498 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
22499#undef THUMB_VARIANT
22500#define THUMB_VARIANT & arm_ext_v6t2
22501
21d799b5
NC
22502 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22503 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22504 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 22505
5be8be5d
DG
22506 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22507 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22508 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22509 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 22510
21d799b5
NC
22511 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22512 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 22513
21d799b5
NC
22514 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22515 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
22516
22517 /* V1 instructions with no Thumb analogue at all. */
21d799b5 22518 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
22519 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22520
22521 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22522 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22523 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22524 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22525 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22526 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22527 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22528 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22529
c921be7d
NC
22530#undef ARM_VARIANT
22531#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22532#undef THUMB_VARIANT
22533#define THUMB_VARIANT & arm_ext_v4t
22534
21d799b5
NC
22535 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22536 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 22537
c921be7d
NC
22538#undef THUMB_VARIANT
22539#define THUMB_VARIANT & arm_ext_v6t2
22540
21d799b5 22541 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
22542 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22543
22544 /* Generic coprocessor instructions. */
21d799b5
NC
22545 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22546 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22547 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22548 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22549 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22550 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 22551 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22552
c921be7d
NC
22553#undef ARM_VARIANT
22554#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22555
21d799b5 22556 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
22557 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22558
c921be7d
NC
22559#undef ARM_VARIANT
22560#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22561#undef THUMB_VARIANT
22562#define THUMB_VARIANT & arm_ext_msr
22563
d2cd1205
JB
22564 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22565 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 22566
c921be7d
NC
22567#undef ARM_VARIANT
22568#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22569#undef THUMB_VARIANT
22570#define THUMB_VARIANT & arm_ext_v6t2
22571
21d799b5
NC
22572 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22573 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22574 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22575 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22576 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22577 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22578 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22579 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 22580
c921be7d
NC
22581#undef ARM_VARIANT
22582#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22583#undef THUMB_VARIANT
22584#define THUMB_VARIANT & arm_ext_v4t
22585
5be8be5d
DG
22586 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22587 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22588 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22589 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
22590 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22591 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 22592
c921be7d
NC
22593#undef ARM_VARIANT
22594#define ARM_VARIANT & arm_ext_v4t_5
22595
c19d1205
ZW
22596 /* ARM Architecture 4T. */
22597 /* Note: bx (and blx) are required on V5, even if the processor does
22598 not support Thumb. */
21d799b5 22599 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 22600
c921be7d
NC
22601#undef ARM_VARIANT
22602#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22603#undef THUMB_VARIANT
22604#define THUMB_VARIANT & arm_ext_v5t
22605
c19d1205
ZW
22606 /* Note: blx has 2 variants; the .value coded here is for
22607 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
22608 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22609 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 22610
c921be7d
NC
22611#undef THUMB_VARIANT
22612#define THUMB_VARIANT & arm_ext_v6t2
22613
21d799b5
NC
22614 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22615 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22616 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22617 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22618 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22619 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22620 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22621 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22622
c921be7d 22623#undef ARM_VARIANT
74db7efb
NC
22624#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22625#undef THUMB_VARIANT
22626#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 22627
21d799b5
NC
22628 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22629 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22630 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22631 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22632
21d799b5
NC
22633 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22634 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22635
21d799b5
NC
22636 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22637 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22638 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22639 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 22640
21d799b5
NC
22641 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22642 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22643 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22644 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22645
21d799b5
NC
22646 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22647 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22648
03ee1b7f
NC
22649 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22650 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22651 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22652 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 22653
c921be7d 22654#undef ARM_VARIANT
74db7efb
NC
22655#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22656#undef THUMB_VARIANT
22657#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22658
21d799b5 22659 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
22660 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22661 ldrd, t_ldstd),
22662 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22663 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 22664
21d799b5
NC
22665 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22666 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 22667
c921be7d
NC
22668#undef ARM_VARIANT
22669#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22670
21d799b5 22671 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 22672
c921be7d
NC
22673#undef ARM_VARIANT
22674#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22675#undef THUMB_VARIANT
22676#define THUMB_VARIANT & arm_ext_v6
22677
21d799b5
NC
22678 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22679 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22680 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22681 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22682 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22683 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22684 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22685 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22686 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22687 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 22688
c921be7d 22689#undef THUMB_VARIANT
ff8646ee 22690#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 22691
5be8be5d
DG
22692 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22693 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22694 strex, t_strex),
ff8646ee
TP
22695#undef THUMB_VARIANT
22696#define THUMB_VARIANT & arm_ext_v6t2
22697
21d799b5
NC
22698 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22699 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 22700
21d799b5
NC
22701 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22702 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 22703
9e3c6df6 22704/* ARM V6 not included in V7M. */
c921be7d
NC
22705#undef THUMB_VARIANT
22706#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 22707 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 22708 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
22709 UF(rfeib, 9900a00, 1, (RRw), rfe),
22710 UF(rfeda, 8100a00, 1, (RRw), rfe),
22711 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22712 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
22713 UF(rfefa, 8100a00, 1, (RRw), rfe),
22714 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22715 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 22716 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
22717 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22718 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 22719 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 22720 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 22721 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 22722 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 22723 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 22724 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 22725 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 22726
9e3c6df6
PB
22727/* ARM V6 not included in V7M (eg. integer SIMD). */
22728#undef THUMB_VARIANT
22729#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
22730 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22731 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22732 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22733 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22734 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22735 /* Old name for QASX. */
74db7efb 22736 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22737 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22738 /* Old name for QSAX. */
74db7efb 22739 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22740 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22741 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22742 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22743 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22744 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22745 /* Old name for SASX. */
74db7efb 22746 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22747 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22748 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22749 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22750 /* Old name for SHASX. */
21d799b5 22751 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22752 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22753 /* Old name for SHSAX. */
21d799b5
NC
22754 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22755 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22756 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22757 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22758 /* Old name for SSAX. */
74db7efb 22759 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22760 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22761 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22762 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22763 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22764 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22765 /* Old name for UASX. */
74db7efb 22766 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22767 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22768 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22769 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22770 /* Old name for UHASX. */
21d799b5
NC
22771 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22772 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22773 /* Old name for UHSAX. */
21d799b5
NC
22774 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22775 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22776 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22777 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22778 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22779 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22780 /* Old name for UQASX. */
21d799b5
NC
22781 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22782 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22783 /* Old name for UQSAX. */
21d799b5
NC
22784 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22785 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22786 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22787 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22788 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22789 /* Old name for USAX. */
74db7efb 22790 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22791 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22792 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22793 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22794 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22795 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22796 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22797 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22798 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22799 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22800 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22801 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22802 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22803 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22804 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22805 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22806 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22807 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22808 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22809 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22810 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22811 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22812 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22813 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22814 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22815 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22816 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22817 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22818 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
22819 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22820 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22821 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22822 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22823 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 22824
c921be7d 22825#undef ARM_VARIANT
55e8aae7 22826#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 22827#undef THUMB_VARIANT
55e8aae7 22828#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 22829
21d799b5
NC
22830 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22831 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22832 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22833 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 22834
c921be7d
NC
22835#undef THUMB_VARIANT
22836#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
22837 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22838 ldrexd, t_ldrexd),
22839 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22840 RRnpcb), strexd, t_strexd),
ebdca51a 22841
c921be7d 22842#undef THUMB_VARIANT
ff8646ee 22843#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
22844 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22845 rd_rn, rd_rn),
22846 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22847 rd_rn, rd_rn),
22848 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22849 strex, t_strexbh),
5be8be5d 22850 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22851 strex, t_strexbh),
21d799b5 22852 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 22853
c921be7d 22854#undef ARM_VARIANT
f4c65163 22855#define ARM_VARIANT & arm_ext_sec
74db7efb 22856#undef THUMB_VARIANT
f4c65163 22857#define THUMB_VARIANT & arm_ext_sec
c921be7d 22858
21d799b5 22859 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 22860
90ec0d68
MGD
22861#undef ARM_VARIANT
22862#define ARM_VARIANT & arm_ext_virt
22863#undef THUMB_VARIANT
22864#define THUMB_VARIANT & arm_ext_virt
22865
22866 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22867 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22868
ddfded2f
MW
22869#undef ARM_VARIANT
22870#define ARM_VARIANT & arm_ext_pan
22871#undef THUMB_VARIANT
22872#define THUMB_VARIANT & arm_ext_pan
22873
22874 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22875
c921be7d 22876#undef ARM_VARIANT
74db7efb 22877#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
22878#undef THUMB_VARIANT
22879#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22880
21d799b5
NC
22881 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22882 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22883 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22884 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 22885
21d799b5 22886 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 22887 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 22888
5be8be5d
DG
22889 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22890 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22891 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22892 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 22893
91d8b670
JG
22894#undef ARM_VARIANT
22895#define ARM_VARIANT & arm_ext_v3
22896#undef THUMB_VARIANT
22897#define THUMB_VARIANT & arm_ext_v6t2
22898
22899 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
22900 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22901 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
22902
22903#undef ARM_VARIANT
22904#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
22905#undef THUMB_VARIANT
22906#define THUMB_VARIANT & arm_ext_v6t2_v8m
22907 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22908 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22909
bf3eeda7 22910 /* Thumb-only instructions. */
74db7efb 22911#undef ARM_VARIANT
bf3eeda7
NS
22912#define ARM_VARIANT NULL
22913 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22914 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
22915
22916 /* ARM does not really have an IT instruction, so always allow it.
22917 The opcode is copied from Thumb in order to allow warnings in
22918 -mimplicit-it=[never | arm] modes. */
22919#undef ARM_VARIANT
22920#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
22921#undef THUMB_VARIANT
22922#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22923
21d799b5
NC
22924 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22925 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22926 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22927 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22928 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22929 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22930 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22931 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22932 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22933 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22934 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22935 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22936 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22937 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22938 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 22939 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
22940 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22941 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 22942
92e90b6e 22943 /* Thumb2 only instructions. */
c921be7d
NC
22944#undef ARM_VARIANT
22945#define ARM_VARIANT NULL
92e90b6e 22946
21d799b5
NC
22947 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22948 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22949 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22950 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22951 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22952 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 22953
eea54501
MGD
22954 /* Hardware division instructions. */
22955#undef ARM_VARIANT
22956#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
22957#undef THUMB_VARIANT
22958#define THUMB_VARIANT & arm_ext_div
22959
eea54501
MGD
22960 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22961 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 22962
7e806470 22963 /* ARM V6M/V7 instructions. */
c921be7d
NC
22964#undef ARM_VARIANT
22965#define ARM_VARIANT & arm_ext_barrier
22966#undef THUMB_VARIANT
22967#define THUMB_VARIANT & arm_ext_barrier
22968
ccb84d65
JB
22969 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22970 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22971 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 22972
62b3e311 22973 /* ARM V7 instructions. */
c921be7d
NC
22974#undef ARM_VARIANT
22975#define ARM_VARIANT & arm_ext_v7
22976#undef THUMB_VARIANT
22977#define THUMB_VARIANT & arm_ext_v7
22978
21d799b5
NC
22979 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22980 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 22981
74db7efb 22982#undef ARM_VARIANT
60e5ef9f 22983#define ARM_VARIANT & arm_ext_mp
74db7efb 22984#undef THUMB_VARIANT
60e5ef9f
MGD
22985#define THUMB_VARIANT & arm_ext_mp
22986
22987 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22988
53c4b28b
MGD
22989 /* AArchv8 instructions. */
22990#undef ARM_VARIANT
22991#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
22992
22993/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 22994#undef THUMB_VARIANT
4ed7ed8d 22995#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 22996
4ed7ed8d
TP
22997 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22998 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22999 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23000 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23001 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23002 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 23003 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
23004 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23005 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23006 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23007 stlex, t_stlex),
4b8c8c02
RE
23008 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23009 stlex, t_stlex),
23010 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23011 stlex, t_stlex),
4ed7ed8d
TP
23012#undef THUMB_VARIANT
23013#define THUMB_VARIANT & arm_ext_v8
53c4b28b 23014
4ed7ed8d 23015 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
23016 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23017 ldrexd, t_ldrexd),
23018 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23019 strexd, t_strexd),
f7dd2fb2
TC
23020
23021/* Defined in V8 but is in undefined encoding space for earlier
23022 architectures. However earlier architectures are required to treat
23023 this instuction as a semihosting trap as well. Hence while not explicitly
23024 defined as such, it is in fact correct to define the instruction for all
23025 architectures. */
23026#undef THUMB_VARIANT
23027#define THUMB_VARIANT & arm_ext_v1
23028#undef ARM_VARIANT
23029#define ARM_VARIANT & arm_ext_v1
23030 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23031
8884b720 23032 /* ARMv8 T32 only. */
74db7efb 23033#undef ARM_VARIANT
b79f7053
MGD
23034#define ARM_VARIANT NULL
23035 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23036 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23037 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23038
33399f07
MGD
23039 /* FP for ARMv8. */
23040#undef ARM_VARIANT
a715796b 23041#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 23042#undef THUMB_VARIANT
a715796b 23043#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
23044
23045 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23046 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23047 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23048 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752
MGD
23049 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23050 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23051 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23052 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23053 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23054 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23055 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 23056
91ff7894
MGD
23057 /* Crypto v1 extensions. */
23058#undef ARM_VARIANT
23059#define ARM_VARIANT & fpu_crypto_ext_armv8
23060#undef THUMB_VARIANT
23061#define THUMB_VARIANT & fpu_crypto_ext_armv8
23062
23063 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23064 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23065 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23066 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
23067 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23068 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23069 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23070 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23071 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23072 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23073 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
23074 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23075 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23076 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 23077
dd5181d5 23078#undef ARM_VARIANT
74db7efb 23079#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
23080#undef THUMB_VARIANT
23081#define THUMB_VARIANT & crc_ext_armv8
23082 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23083 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23084 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23085 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23086 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23087 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23088
105bde57
MW
23089 /* ARMv8.2 RAS extension. */
23090#undef ARM_VARIANT
4d1464f2 23091#define ARM_VARIANT & arm_ext_ras
105bde57 23092#undef THUMB_VARIANT
4d1464f2 23093#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23094 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23095
49e8a725
SN
23096#undef ARM_VARIANT
23097#define ARM_VARIANT & arm_ext_v8_3
23098#undef THUMB_VARIANT
23099#define THUMB_VARIANT & arm_ext_v8_3
23100 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23101
c604a79a
JW
23102#undef ARM_VARIANT
23103#define ARM_VARIANT & fpu_neon_ext_dotprod
23104#undef THUMB_VARIANT
23105#define THUMB_VARIANT & fpu_neon_ext_dotprod
23106 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23107 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23108
c921be7d
NC
23109#undef ARM_VARIANT
23110#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23111#undef THUMB_VARIANT
23112#define THUMB_VARIANT NULL
c921be7d 23113
21d799b5
NC
23114 cCE("wfs", e200110, 1, (RR), rd),
23115 cCE("rfs", e300110, 1, (RR), rd),
23116 cCE("wfc", e400110, 1, (RR), rd),
23117 cCE("rfc", e500110, 1, (RR), rd),
23118
23119 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23120 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23121 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23122 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23123
23124 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23125 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23126 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23127 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23128
23129 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23130 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23131 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23132 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23133 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23134 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23135 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23136 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23137 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23138 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23139 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23140 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23141
23142 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23143 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23144 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23145 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23146 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23147 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23148 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23149 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23150 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23151 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23152 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23153 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23154
23155 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23156 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23157 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23158 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23159 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23160 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23161 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23162 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23163 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23164 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23165 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23166 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23167
23168 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23169 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23170 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23171 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23172 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23173 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23174 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23175 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23176 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23177 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23178 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23179 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23180
23181 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23182 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23183 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23184 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23185 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23186 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23187 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23188 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23189 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23190 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23191 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23192 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23193
23194 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23195 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23196 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23197 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23198 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23199 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23200 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23201 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23202 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23203 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23204 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23205 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23206
23207 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23208 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23209 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23210 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23211 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23212 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23213 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23214 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23215 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23216 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23217 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23218 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23219
23220 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23221 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23222 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23223 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23224 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23225 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23226 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23227 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23228 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23229 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23230 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23231 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23232
23233 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23234 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23235 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23236 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23237 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23238 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23239 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23240 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23241 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23242 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23243 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23244 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23245
23246 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23247 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23248 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23249 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23250 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23251 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23252 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23253 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23254 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23255 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23256 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23257 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23258
23259 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23260 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23261 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23262 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23263 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23264 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23265 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23266 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23267 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23268 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23269 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23270 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23271
23272 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23273 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23274 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23275 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23276 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23277 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23278 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23279 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23280 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23281 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23282 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23283 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23284
23285 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23286 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23287 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23288 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23289 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23290 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23291 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23292 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23293 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23294 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23295 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23296 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23297
23298 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23299 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23300 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23301 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23302 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23303 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23304 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23305 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23306 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23307 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23308 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23309 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23310
23311 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23312 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23313 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23314 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23315 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23316 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23317 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23318 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23319 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23320 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23321 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23322 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23323
23324 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23325 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23326 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23327 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23328 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23329 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23330 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23331 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23332 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23333 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23334 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23335 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23336
23337 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23338 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23339 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23340 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23341 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23342 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23343 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23344 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23345 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23346 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23347 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23348 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23349
23350 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23351 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23352 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23353 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23354 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23355 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23356 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23357 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23358 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23359 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23360 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23361 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23362
23363 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23364 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23365 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23366 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23367 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23368 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23369 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23370 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23371 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23372 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23373 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23374 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23375
23376 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23377 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23378 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23379 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23380 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23381 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23382 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23383 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23384 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23385 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23386 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23387 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23388
23389 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23390 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23391 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23392 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23393 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23394 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23395 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23396 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23397 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23398 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23399 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23400 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23401
23402 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23403 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23404 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23405 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23406 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23407 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23408 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23409 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23410 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23411 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23412 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23413 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23414
23415 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23416 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23417 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23418 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23419 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23420 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23421 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23422 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23423 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23424 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23425 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23426 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23427
23428 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23429 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23430 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23431 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23432 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23433 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23434 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23435 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23436 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23437 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23438 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23439 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23440
23441 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23442 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23443 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23444 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23445 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23446 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23447 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23448 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23449 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23450 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23451 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23452 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23453
23454 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23455 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23456 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23457 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23458 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23459 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23460 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23461 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23462 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23463 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23464 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23465 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23466
23467 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23468 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23469 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23470 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23471 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23472 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23473 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23474 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23475 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23476 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23477 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23478 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23479
23480 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23481 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23482 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23483 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23484 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23485 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23486 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23487 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23488 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23489 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23490 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23491 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23492
23493 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23494 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23495 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23496 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23497 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23498 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23499 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23500 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23501 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23502 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23503 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23504 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23505
23506 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23507 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23508 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23509 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23510
23511 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23512 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23513 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23514 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23515 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23516 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23517 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23518 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23519 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23520 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23521 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23522 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 23523
c19d1205
ZW
23524 /* The implementation of the FIX instruction is broken on some
23525 assemblers, in that it accepts a precision specifier as well as a
23526 rounding specifier, despite the fact that this is meaningless.
23527 To be more compatible, we accept it as well, though of course it
23528 does not set any bits. */
21d799b5
NC
23529 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23530 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23531 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23532 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23533 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23534 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23535 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23536 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23537 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23538 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23539 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23540 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23541 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 23542
c19d1205 23543 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
23544#undef ARM_VARIANT
23545#define ARM_VARIANT & fpu_fpa_ext_v2
23546
21d799b5
NC
23547 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23548 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23549 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23550 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23551 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23552 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 23553
c921be7d
NC
23554#undef ARM_VARIANT
23555#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23556
c19d1205 23557 /* Moves and type conversions. */
21d799b5 23558 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
23559 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23560 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
23561 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23562 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23563 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23564 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23565 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23566 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23567 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23568 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
23569
23570 /* Memory operations. */
21d799b5
NC
23571 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23572 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
23573 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23574 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23575 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23576 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23577 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23578 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23579 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23580 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23581 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23582 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23583 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23584 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23585 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23586 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23587 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23588 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 23589
c19d1205 23590 /* Monadic operations. */
21d799b5
NC
23591 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23592 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23593 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
23594
23595 /* Dyadic operations. */
21d799b5
NC
23596 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23597 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23598 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23599 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23600 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23601 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23602 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23603 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23604 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 23605
c19d1205 23606 /* Comparisons. */
21d799b5
NC
23607 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23608 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23609 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23610 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 23611
62f3b8c8
PB
23612 /* Double precision load/store are still present on single precision
23613 implementations. */
23614 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23615 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
23616 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23617 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23618 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23619 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23620 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23621 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23622 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23623 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 23624
c921be7d
NC
23625#undef ARM_VARIANT
23626#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23627
c19d1205 23628 /* Moves and type conversions. */
21d799b5
NC
23629 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23630 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23631 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23632 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23633 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23634 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23635 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23636 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23637 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23638 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23639 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23640 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 23641
c19d1205 23642 /* Monadic operations. */
21d799b5
NC
23643 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23644 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23645 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
23646
23647 /* Dyadic operations. */
21d799b5
NC
23648 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23649 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23650 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23651 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23652 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23653 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23654 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23655 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23656 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 23657
c19d1205 23658 /* Comparisons. */
21d799b5
NC
23659 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23660 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23661 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23662 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 23663
037e8744
JB
23664/* Instructions which may belong to either the Neon or VFP instruction sets.
23665 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
23666#undef ARM_VARIANT
23667#define ARM_VARIANT & fpu_vfp_ext_v1xd
23668#undef THUMB_VARIANT
23669#define THUMB_VARIANT & fpu_vfp_ext_v1xd
23670
037e8744
JB
23671 /* These mnemonics are unique to VFP. */
23672 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23673 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
23674 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23675 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23676 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
23677 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23678 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23679 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23680
23681 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
23682 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23683 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23684 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 23685
55881a11
MGD
23686 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23687 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23688 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23689 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23690 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23691 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 23692
dd9634d9 23693 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 23694 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
23695 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23696 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 23697
037e8744
JB
23698
23699 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
23700 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23701
32c36c3c
AV
23702#undef THUMB_VARIANT
23703/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23704 by different feature bits. Since we are setting the Thumb guard, we can
23705 require Thumb-1 which makes it a nop guard and set the right feature bit in
23706 do_vldr_vstr (). */
23707#define THUMB_VARIANT & arm_ext_v4t
23708 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23709 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23710
9db2f6b4
RL
23711#undef ARM_VARIANT
23712#define ARM_VARIANT & arm_ext_fp16
23713#undef THUMB_VARIANT
23714#define THUMB_VARIANT & arm_ext_fp16
23715 /* New instructions added from v8.2, allowing the extraction and insertion of
23716 the upper 16 bits of a 32-bit vector register. */
23717 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23718 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23719
dec41383
JW
23720 /* New backported fma/fms instructions optional in v8.2. */
23721 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23722 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23723
c921be7d
NC
23724#undef THUMB_VARIANT
23725#define THUMB_VARIANT & fpu_neon_ext_v1
23726#undef ARM_VARIANT
23727#define ARM_VARIANT & fpu_neon_ext_v1
23728
5287ad62
JB
23729 /* Data processing with three registers of the same length. */
23730 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23731 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23732 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 23733 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 23734 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
23735 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23736 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23737 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23738 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23739 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23740 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
23741 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23742 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23743 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23744 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
23745 /* If not immediate, fall back to neon_dyadic_i64_su.
23746 shl_imm should accept I8 I16 I32 I64,
23747 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
23748 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23749 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23750 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23751 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 23752 /* Logic ops, types optional & ignored. */
4316f0d2 23753 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23754 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23755 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23756 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23757 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
23758 /* Bitfield ops, untyped. */
23759 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23760 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23761 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23762 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23763 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23764 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 23765 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 23766 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 23767 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 23768 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
23769 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23770 back to neon_dyadic_if_su. */
21d799b5
NC
23771 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23772 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23773 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23774 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23775 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23776 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23777 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23778 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 23779 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
23780 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23781 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 23782 /* As above, D registers only. */
21d799b5
NC
23783 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23784 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 23785 /* Int and float variants, signedness unimportant. */
21d799b5
NC
23786 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23787 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23788 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 23789 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
23790 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23791 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
23792 /* vtst takes sizes 8, 16, 32. */
23793 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23794 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23795 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 23796 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 23797 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
23798 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23799 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23800 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23801 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
23802 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23803 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23804 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23805 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
23806 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23807 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23808 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23809 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
23810 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23811 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23812 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23813 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 23814 /* ARM v8.1 extension. */
643afb90
MW
23815 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23816 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23817 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23818 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
23819
23820 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 23821 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
23822 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23823
23824 /* Data processing with two registers and a shift amount. */
23825 /* Right shifts, and variants with rounding.
23826 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23827 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23828 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23829 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23830 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23831 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23832 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23833 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23834 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23835 /* Shift and insert. Sizes accepted 8 16 32 64. */
23836 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23837 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23838 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23839 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23840 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23841 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23842 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23843 /* Right shift immediate, saturating & narrowing, with rounding variants.
23844 Types accepted S16 S32 S64 U16 U32 U64. */
23845 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23846 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23847 /* As above, unsigned. Types accepted S16 S32 S64. */
23848 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23849 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23850 /* Right shift narrowing. Types accepted I16 I32 I64. */
23851 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23852 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23853 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 23854 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 23855 /* CVT with optional immediate for fixed-point variant. */
21d799b5 23856 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 23857
4316f0d2
DG
23858 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23859 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
23860
23861 /* Data processing, three registers of different lengths. */
23862 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23863 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
23864 /* If not scalar, fall back to neon_dyadic_long.
23865 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
23866 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23867 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
23868 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23869 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23870 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23871 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23872 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23873 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23874 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23875 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23876 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
23877 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23878 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23879 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
23880 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23881 S16 S32 U16 U32. */
21d799b5 23882 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
23883
23884 /* Extract. Size 8. */
3b8d421e
PB
23885 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23886 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
23887
23888 /* Two registers, miscellaneous. */
23889 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23890 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23891 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23892 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23893 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23894 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23895 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23896 /* Vector replicate. Sizes 8 16 32. */
21d799b5 23897 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
23898 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23899 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23900 /* VMOVN. Types I16 I32 I64. */
21d799b5 23901 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 23902 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 23903 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 23904 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 23905 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
23906 /* VZIP / VUZP. Sizes 8 16 32. */
23907 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23908 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23909 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23910 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23911 /* VQABS / VQNEG. Types S8 S16 S32. */
23912 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23913 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23914 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23915 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23916 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23917 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23918 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23919 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23920 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 23921 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
23922 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23923 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23924 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23925 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23926 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
23927 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23928 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
23929 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23930 /* VCNT. Size 8. */
23931 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23932 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23933 /* Two address, untyped. */
23934 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23935 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23936 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
23937 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23938 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
23939
23940 /* Table lookup. Size 8. */
23941 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23942 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23943
c921be7d
NC
23944#undef THUMB_VARIANT
23945#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23946#undef ARM_VARIANT
23947#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23948
5287ad62 23949 /* Neon element/structure load/store. */
21d799b5
NC
23950 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23951 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23952 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23953 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23954 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23955 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23956 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23957 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 23958
c921be7d 23959#undef THUMB_VARIANT
74db7efb
NC
23960#define THUMB_VARIANT & fpu_vfp_ext_v3xd
23961#undef ARM_VARIANT
23962#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
23963 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23964 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23965 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23966 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23967 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23968 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23969 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23970 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23971 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23972
74db7efb 23973#undef THUMB_VARIANT
c921be7d
NC
23974#define THUMB_VARIANT & fpu_vfp_ext_v3
23975#undef ARM_VARIANT
23976#define ARM_VARIANT & fpu_vfp_ext_v3
23977
21d799b5 23978 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 23979 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23980 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23981 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23982 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23983 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23984 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23985 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23986 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 23987
74db7efb
NC
23988#undef ARM_VARIANT
23989#define ARM_VARIANT & fpu_vfp_ext_fma
23990#undef THUMB_VARIANT
23991#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 23992 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
23993 VFP FMA variant; NEON and VFP FMA always includes the NEON
23994 FMA instructions. */
d58196e0
AV
23995 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
23996 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
23997
62f3b8c8
PB
23998 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23999 the v form should always be used. */
24000 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24001 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24002 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24003 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24004 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24005 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24006
5287ad62 24007#undef THUMB_VARIANT
c921be7d
NC
24008#undef ARM_VARIANT
24009#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24010
21d799b5
NC
24011 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24012 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24013 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24014 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24015 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24016 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24017 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24018 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 24019
c921be7d
NC
24020#undef ARM_VARIANT
24021#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24022
21d799b5
NC
24023 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24024 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24025 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24026 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24027 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24028 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24029 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24030 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24031 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
24032 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24033 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24034 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24035 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24036 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24037 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
24038 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24039 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24040 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24041 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24042 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24043 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24044 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24045 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24046 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24047 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24048 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
24049 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24050 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24051 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
24052 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24053 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24054 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24055 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24056 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24057 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24058 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24059 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24060 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24061 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24062 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24063 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24064 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24065 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24066 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24067 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24068 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24069 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
24070 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24071 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24072 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24073 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24074 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24075 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24076 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24077 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24078 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24079 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24080 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24081 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24082 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24083 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24084 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24085 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24086 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24087 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24088 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24089 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24090 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24091 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24092 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24093 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24094 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24095 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24096 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24097 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24098 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24099 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24100 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24101 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24102 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24103 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24104 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24105 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24106 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24107 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24108 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24109 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24110 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24111 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24112 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24113 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24114 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24115 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24116 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24117 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24118 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24119 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24120 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24121 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24122 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24123 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24124 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24125 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24126 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24127 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24128 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24129 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24130 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24131 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24132 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24133 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24134 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24135 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24136 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24137 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24138 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24139 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24140 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24141 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24142 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24143 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24144 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24145 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24146 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24147 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24148 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24149 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24150 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24151 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24152 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24153 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24154 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24155 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24156 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24157 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24158 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24159 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24160 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24161 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24162 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24163 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24164 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24165 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24166 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24167 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24168 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24169 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24170 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24171 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24172 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24173 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24174 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24175 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24176 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24177 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24178 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24179 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24180 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24181 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24182 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24183 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24184 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24185
c921be7d
NC
24186#undef ARM_VARIANT
24187#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24188
21d799b5
NC
24189 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24190 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24191 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24192 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24193 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24194 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24195 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24196 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24197 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24198 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24199 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24200 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24201 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24202 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24203 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24204 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24205 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24206 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24207 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24208 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24209 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24210 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24211 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24212 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24213 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24214 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24215 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24216 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24217 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24218 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24219 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24220 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24221 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24222 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24223 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24224 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24225 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24226 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24227 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24228 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24229 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24230 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24231 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24232 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24233 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24234 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24235 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24236 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24237 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24238 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24239 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24240 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24241 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24242 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24243 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24244 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24245 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24246
c921be7d
NC
24247#undef ARM_VARIANT
24248#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24249
21d799b5
NC
24250 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24251 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24252 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24253 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24254 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24255 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24256 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24257 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24258 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24259 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24260 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24261 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24262 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24263 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24264 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24265 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24266 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24267 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24268 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24269 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24270 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24271 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24272 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24273 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24274 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24275 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24276 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24277 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24278 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24279 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24280 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24281 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24282 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24283 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24284 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24285 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24286 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24287 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24288 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24289 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24290 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24291 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24292 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24293 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24294 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24295 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24296 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24297 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24298 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24299 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24300 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24301 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24302 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24303 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24304 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24305 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24306 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24307 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24308 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24309 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24310 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24311 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24312 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24313 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24314 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24315 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24316 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24317 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24318 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24319 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24320 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24321 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24322 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24323 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24324 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24325 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24326
7fadb25d
SD
24327 /* ARMv8.5-A instructions. */
24328#undef ARM_VARIANT
24329#define ARM_VARIANT & arm_ext_sb
24330#undef THUMB_VARIANT
24331#define THUMB_VARIANT & arm_ext_sb
24332 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24333
dad0c3bf
SD
24334#undef ARM_VARIANT
24335#define ARM_VARIANT & arm_ext_predres
24336#undef THUMB_VARIANT
24337#define THUMB_VARIANT & arm_ext_predres
24338 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24339 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24340 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24341
16a1fa25 24342 /* ARMv8-M instructions. */
4ed7ed8d
TP
24343#undef ARM_VARIANT
24344#define ARM_VARIANT NULL
24345#undef THUMB_VARIANT
24346#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24347 ToU("sg", e97fe97f, 0, (), noargs),
24348 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24349 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24350 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24351 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24352 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24353 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24354
24355 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24356 instructions behave as nop if no VFP is present. */
24357#undef THUMB_VARIANT
24358#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24359 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24360 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24361
24362 /* Armv8.1-M Mainline instructions. */
24363#undef THUMB_VARIANT
24364#define THUMB_VARIANT & arm_ext_v8_1m_main
24365 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24366 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24367 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24368 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24369 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24370
24371 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24372 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24373 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24374
efd6b359 24375 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24376 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24377
24378#undef THUMB_VARIANT
24379#define THUMB_VARIANT & mve_ext
1b883319
AV
24380
24381 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24382 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24383 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24384 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24385 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24386 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24387 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24388 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24389 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24390 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24391 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24392 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24393 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24394 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24395 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24396
5ee91343
AV
24397 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24398 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24399 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24400 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24401 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24402 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24403 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24404 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24405 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24406 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24407 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24408 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24409 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24410 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24411 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24412
a302e574 24413 /* MVE and MVE FP only. */
7df54120 24414 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
24415 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24416 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24417 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24418 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24419 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24420 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24421 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24422 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24423 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24424 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24425 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24426 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24427 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24428 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24429 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24430 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24431
35c228db
AV
24432 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24433 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24434 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24435 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24436 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24437 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24438 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24439 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24440 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24441 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24442 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24443 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24444 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24445 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24446 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24447 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24448 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24449 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24450 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24451 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24452
57785aa2
AV
24453 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24454 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24455 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
24456 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24457 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24458 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24459 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
24460 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24461 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24462 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24463 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
24464 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24465 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
24466 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24467 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24468 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24469 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 24470
5d281bf0
AV
24471#undef THUMB_VARIANT
24472#define THUMB_VARIANT & mve_fp_ext
24473 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 24474 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
24475 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24476 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
24477 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24478 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24479 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24480 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 24481
5ee91343 24482#undef ARM_VARIANT
57785aa2 24483#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
24484#undef THUMB_VARIANT
24485#define THUMB_VARIANT & arm_ext_v6t2
24486
57785aa2
AV
24487 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24488
24489#undef ARM_VARIANT
24490#define ARM_VARIANT & fpu_vfp_ext_v1xd
24491
24492 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24493 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24494 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24495 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24496
886e1c73
AV
24497 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24498 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24499 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 24500
485dee97
AV
24501 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24502 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24503
57785aa2
AV
24504 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24505 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24506
1b883319
AV
24507 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24508 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24509
57785aa2
AV
24510#undef ARM_VARIANT
24511#define ARM_VARIANT & fpu_vfp_ext_v2
24512
24513 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24514 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24515 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24516 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24517
dd9634d9
AV
24518#undef ARM_VARIANT
24519#define ARM_VARIANT & fpu_vfp_ext_armv8xd
24520 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24521 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24522 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24523 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
24524 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24525 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
24526
24527#undef ARM_VARIANT
5ee91343 24528#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 24529 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
24530 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24531 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24532 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
24533 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24534 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24535 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24536 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24537 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
24538 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24539 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 24540 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
24541 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24542 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24543 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
24544 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24545 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5d281bf0
AV
24546
24547#undef ARM_VARIANT
24548#define ARM_VARIANT & arm_ext_v8_3
24549#undef THUMB_VARIANT
24550#define THUMB_VARIANT & arm_ext_v6t2_v8m
24551 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24552 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
24553};
24554#undef ARM_VARIANT
24555#undef THUMB_VARIANT
24556#undef TCE
c19d1205
ZW
24557#undef TUE
24558#undef TUF
24559#undef TCC
8f06b2d8 24560#undef cCE
e3cb604e
PB
24561#undef cCL
24562#undef C3E
4389b29a 24563#undef C3
c19d1205
ZW
24564#undef CE
24565#undef CM
4389b29a 24566#undef CL
c19d1205
ZW
24567#undef UE
24568#undef UF
24569#undef UT
5287ad62
JB
24570#undef NUF
24571#undef nUF
24572#undef NCE
24573#undef nCE
c19d1205
ZW
24574#undef OPS0
24575#undef OPS1
24576#undef OPS2
24577#undef OPS3
24578#undef OPS4
24579#undef OPS5
24580#undef OPS6
24581#undef do_0
4389b29a
AV
24582#undef ToC
24583#undef toC
24584#undef ToU
f6b2b12d 24585#undef toU
c19d1205
ZW
24586\f
24587/* MD interface: bits in the object file. */
bfae80f2 24588
c19d1205
ZW
24589/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24590 for use in the a.out file, and stores them in the array pointed to by buf.
24591 This knows about the endian-ness of the target machine and does
24592 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24593 2 (short) and 4 (long) Floating numbers are put out as a series of
24594 LITTLENUMS (shorts, here at least). */
b99bd4ef 24595
c19d1205
ZW
24596void
24597md_number_to_chars (char * buf, valueT val, int n)
24598{
24599 if (target_big_endian)
24600 number_to_chars_bigendian (buf, val, n);
24601 else
24602 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
24603}
24604
c19d1205
ZW
24605static valueT
24606md_chars_to_number (char * buf, int n)
bfae80f2 24607{
c19d1205
ZW
24608 valueT result = 0;
24609 unsigned char * where = (unsigned char *) buf;
bfae80f2 24610
c19d1205 24611 if (target_big_endian)
b99bd4ef 24612 {
c19d1205
ZW
24613 while (n--)
24614 {
24615 result <<= 8;
24616 result |= (*where++ & 255);
24617 }
b99bd4ef 24618 }
c19d1205 24619 else
b99bd4ef 24620 {
c19d1205
ZW
24621 while (n--)
24622 {
24623 result <<= 8;
24624 result |= (where[n] & 255);
24625 }
bfae80f2 24626 }
b99bd4ef 24627
c19d1205 24628 return result;
bfae80f2 24629}
b99bd4ef 24630
c19d1205 24631/* MD interface: Sections. */
b99bd4ef 24632
fa94de6b
RM
24633/* Calculate the maximum variable size (i.e., excluding fr_fix)
24634 that an rs_machine_dependent frag may reach. */
24635
24636unsigned int
24637arm_frag_max_var (fragS *fragp)
24638{
24639 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24640 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24641
24642 Note that we generate relaxable instructions even for cases that don't
24643 really need it, like an immediate that's a trivial constant. So we're
24644 overestimating the instruction size for some of those cases. Rather
24645 than putting more intelligence here, it would probably be better to
24646 avoid generating a relaxation frag in the first place when it can be
24647 determined up front that a short instruction will suffice. */
24648
24649 gas_assert (fragp->fr_type == rs_machine_dependent);
24650 return INSN_SIZE;
24651}
24652
0110f2b8
PB
24653/* Estimate the size of a frag before relaxing. Assume everything fits in
24654 2 bytes. */
24655
c19d1205 24656int
0110f2b8 24657md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
24658 segT segtype ATTRIBUTE_UNUSED)
24659{
0110f2b8
PB
24660 fragp->fr_var = 2;
24661 return 2;
24662}
24663
24664/* Convert a machine dependent frag. */
24665
24666void
24667md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24668{
24669 unsigned long insn;
24670 unsigned long old_op;
24671 char *buf;
24672 expressionS exp;
24673 fixS *fixp;
24674 int reloc_type;
24675 int pc_rel;
24676 int opcode;
24677
24678 buf = fragp->fr_literal + fragp->fr_fix;
24679
24680 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
24681 if (fragp->fr_symbol)
24682 {
0110f2b8
PB
24683 exp.X_op = O_symbol;
24684 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
24685 }
24686 else
24687 {
0110f2b8 24688 exp.X_op = O_constant;
5f4273c7 24689 }
0110f2b8
PB
24690 exp.X_add_number = fragp->fr_offset;
24691 opcode = fragp->fr_subtype;
24692 switch (opcode)
24693 {
24694 case T_MNEM_ldr_pc:
24695 case T_MNEM_ldr_pc2:
24696 case T_MNEM_ldr_sp:
24697 case T_MNEM_str_sp:
24698 case T_MNEM_ldr:
24699 case T_MNEM_ldrb:
24700 case T_MNEM_ldrh:
24701 case T_MNEM_str:
24702 case T_MNEM_strb:
24703 case T_MNEM_strh:
24704 if (fragp->fr_var == 4)
24705 {
5f4273c7 24706 insn = THUMB_OP32 (opcode);
0110f2b8
PB
24707 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24708 {
24709 insn |= (old_op & 0x700) << 4;
24710 }
24711 else
24712 {
24713 insn |= (old_op & 7) << 12;
24714 insn |= (old_op & 0x38) << 13;
24715 }
24716 insn |= 0x00000c00;
24717 put_thumb32_insn (buf, insn);
24718 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24719 }
24720 else
24721 {
24722 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24723 }
24724 pc_rel = (opcode == T_MNEM_ldr_pc2);
24725 break;
24726 case T_MNEM_adr:
24727 if (fragp->fr_var == 4)
24728 {
24729 insn = THUMB_OP32 (opcode);
24730 insn |= (old_op & 0xf0) << 4;
24731 put_thumb32_insn (buf, insn);
24732 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24733 }
24734 else
24735 {
24736 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24737 exp.X_add_number -= 4;
24738 }
24739 pc_rel = 1;
24740 break;
24741 case T_MNEM_mov:
24742 case T_MNEM_movs:
24743 case T_MNEM_cmp:
24744 case T_MNEM_cmn:
24745 if (fragp->fr_var == 4)
24746 {
24747 int r0off = (opcode == T_MNEM_mov
24748 || opcode == T_MNEM_movs) ? 0 : 8;
24749 insn = THUMB_OP32 (opcode);
24750 insn = (insn & 0xe1ffffff) | 0x10000000;
24751 insn |= (old_op & 0x700) << r0off;
24752 put_thumb32_insn (buf, insn);
24753 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24754 }
24755 else
24756 {
24757 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24758 }
24759 pc_rel = 0;
24760 break;
24761 case T_MNEM_b:
24762 if (fragp->fr_var == 4)
24763 {
24764 insn = THUMB_OP32(opcode);
24765 put_thumb32_insn (buf, insn);
24766 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24767 }
24768 else
24769 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24770 pc_rel = 1;
24771 break;
24772 case T_MNEM_bcond:
24773 if (fragp->fr_var == 4)
24774 {
24775 insn = THUMB_OP32(opcode);
24776 insn |= (old_op & 0xf00) << 14;
24777 put_thumb32_insn (buf, insn);
24778 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24779 }
24780 else
24781 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24782 pc_rel = 1;
24783 break;
24784 case T_MNEM_add_sp:
24785 case T_MNEM_add_pc:
24786 case T_MNEM_inc_sp:
24787 case T_MNEM_dec_sp:
24788 if (fragp->fr_var == 4)
24789 {
24790 /* ??? Choose between add and addw. */
24791 insn = THUMB_OP32 (opcode);
24792 insn |= (old_op & 0xf0) << 4;
24793 put_thumb32_insn (buf, insn);
16805f35
PB
24794 if (opcode == T_MNEM_add_pc)
24795 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24796 else
24797 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
24798 }
24799 else
24800 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24801 pc_rel = 0;
24802 break;
24803
24804 case T_MNEM_addi:
24805 case T_MNEM_addis:
24806 case T_MNEM_subi:
24807 case T_MNEM_subis:
24808 if (fragp->fr_var == 4)
24809 {
24810 insn = THUMB_OP32 (opcode);
24811 insn |= (old_op & 0xf0) << 4;
24812 insn |= (old_op & 0xf) << 16;
24813 put_thumb32_insn (buf, insn);
16805f35
PB
24814 if (insn & (1 << 20))
24815 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24816 else
24817 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
24818 }
24819 else
24820 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24821 pc_rel = 0;
24822 break;
24823 default:
5f4273c7 24824 abort ();
0110f2b8
PB
24825 }
24826 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 24827 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
24828 fixp->fx_file = fragp->fr_file;
24829 fixp->fx_line = fragp->fr_line;
24830 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
24831
24832 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24833 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24834 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24835 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
24836}
24837
24838/* Return the size of a relaxable immediate operand instruction.
24839 SHIFT and SIZE specify the form of the allowable immediate. */
24840static int
24841relax_immediate (fragS *fragp, int size, int shift)
24842{
24843 offsetT offset;
24844 offsetT mask;
24845 offsetT low;
24846
24847 /* ??? Should be able to do better than this. */
24848 if (fragp->fr_symbol)
24849 return 4;
24850
24851 low = (1 << shift) - 1;
24852 mask = (1 << (shift + size)) - (1 << shift);
24853 offset = fragp->fr_offset;
24854 /* Force misaligned offsets to 32-bit variant. */
24855 if (offset & low)
5e77afaa 24856 return 4;
0110f2b8
PB
24857 if (offset & ~mask)
24858 return 4;
24859 return 2;
24860}
24861
5e77afaa
PB
24862/* Get the address of a symbol during relaxation. */
24863static addressT
5f4273c7 24864relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
24865{
24866 fragS *sym_frag;
24867 addressT addr;
24868 symbolS *sym;
24869
24870 sym = fragp->fr_symbol;
24871 sym_frag = symbol_get_frag (sym);
24872 know (S_GET_SEGMENT (sym) != absolute_section
24873 || sym_frag == &zero_address_frag);
24874 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24875
24876 /* If frag has yet to be reached on this pass, assume it will
24877 move by STRETCH just as we did. If this is not so, it will
24878 be because some frag between grows, and that will force
24879 another pass. */
24880
24881 if (stretch != 0
24882 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
24883 {
24884 fragS *f;
24885
24886 /* Adjust stretch for any alignment frag. Note that if have
24887 been expanding the earlier code, the symbol may be
24888 defined in what appears to be an earlier frag. FIXME:
24889 This doesn't handle the fr_subtype field, which specifies
24890 a maximum number of bytes to skip when doing an
24891 alignment. */
24892 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24893 {
24894 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24895 {
24896 if (stretch < 0)
24897 stretch = - ((- stretch)
24898 & ~ ((1 << (int) f->fr_offset) - 1));
24899 else
24900 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24901 if (stretch == 0)
24902 break;
24903 }
24904 }
24905 if (f != NULL)
24906 addr += stretch;
24907 }
5e77afaa
PB
24908
24909 return addr;
24910}
24911
0110f2b8
PB
24912/* Return the size of a relaxable adr pseudo-instruction or PC-relative
24913 load. */
24914static int
5e77afaa 24915relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
24916{
24917 addressT addr;
24918 offsetT val;
24919
24920 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
24921 if (fragp->fr_symbol == NULL
24922 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24923 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24924 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24925 return 4;
24926
5f4273c7 24927 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24928 addr = fragp->fr_address + fragp->fr_fix;
24929 addr = (addr + 4) & ~3;
5e77afaa 24930 /* Force misaligned targets to 32-bit variant. */
0110f2b8 24931 if (val & 3)
5e77afaa 24932 return 4;
0110f2b8
PB
24933 val -= addr;
24934 if (val < 0 || val > 1020)
24935 return 4;
24936 return 2;
24937}
24938
24939/* Return the size of a relaxable add/sub immediate instruction. */
24940static int
24941relax_addsub (fragS *fragp, asection *sec)
24942{
24943 char *buf;
24944 int op;
24945
24946 buf = fragp->fr_literal + fragp->fr_fix;
24947 op = bfd_get_16(sec->owner, buf);
24948 if ((op & 0xf) == ((op >> 4) & 0xf))
24949 return relax_immediate (fragp, 8, 0);
24950 else
24951 return relax_immediate (fragp, 3, 0);
24952}
24953
e83a675f
RE
24954/* Return TRUE iff the definition of symbol S could be pre-empted
24955 (overridden) at link or load time. */
24956static bfd_boolean
24957symbol_preemptible (symbolS *s)
24958{
24959 /* Weak symbols can always be pre-empted. */
24960 if (S_IS_WEAK (s))
24961 return TRUE;
24962
24963 /* Non-global symbols cannot be pre-empted. */
24964 if (! S_IS_EXTERNAL (s))
24965 return FALSE;
24966
24967#ifdef OBJ_ELF
24968 /* In ELF, a global symbol can be marked protected, or private. In that
24969 case it can't be pre-empted (other definitions in the same link unit
24970 would violate the ODR). */
24971 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24972 return FALSE;
24973#endif
24974
24975 /* Other global symbols might be pre-empted. */
24976 return TRUE;
24977}
0110f2b8
PB
24978
24979/* Return the size of a relaxable branch instruction. BITS is the
24980 size of the offset field in the narrow instruction. */
24981
24982static int
5e77afaa 24983relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
24984{
24985 addressT addr;
24986 offsetT val;
24987 offsetT limit;
24988
24989 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 24990 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24991 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24992 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24993 return 4;
24994
267bf995 24995#ifdef OBJ_ELF
e83a675f 24996 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
24997 if (S_IS_DEFINED (fragp->fr_symbol)
24998 && ARM_IS_FUNC (fragp->fr_symbol))
24999 return 4;
e83a675f 25000#endif
0d9b4b55 25001
e83a675f 25002 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 25003 return 4;
267bf995 25004
5f4273c7 25005 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25006 addr = fragp->fr_address + fragp->fr_fix + 4;
25007 val -= addr;
25008
25009 /* Offset is a signed value *2 */
25010 limit = 1 << bits;
25011 if (val >= limit || val < -limit)
25012 return 4;
25013 return 2;
25014}
25015
25016
25017/* Relax a machine dependent frag. This returns the amount by which
25018 the current size of the frag should change. */
25019
25020int
5e77afaa 25021arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
25022{
25023 int oldsize;
25024 int newsize;
25025
25026 oldsize = fragp->fr_var;
25027 switch (fragp->fr_subtype)
25028 {
25029 case T_MNEM_ldr_pc2:
5f4273c7 25030 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25031 break;
25032 case T_MNEM_ldr_pc:
25033 case T_MNEM_ldr_sp:
25034 case T_MNEM_str_sp:
5f4273c7 25035 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
25036 break;
25037 case T_MNEM_ldr:
25038 case T_MNEM_str:
5f4273c7 25039 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
25040 break;
25041 case T_MNEM_ldrh:
25042 case T_MNEM_strh:
5f4273c7 25043 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
25044 break;
25045 case T_MNEM_ldrb:
25046 case T_MNEM_strb:
5f4273c7 25047 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
25048 break;
25049 case T_MNEM_adr:
5f4273c7 25050 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25051 break;
25052 case T_MNEM_mov:
25053 case T_MNEM_movs:
25054 case T_MNEM_cmp:
25055 case T_MNEM_cmn:
5f4273c7 25056 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
25057 break;
25058 case T_MNEM_b:
5f4273c7 25059 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
25060 break;
25061 case T_MNEM_bcond:
5f4273c7 25062 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
25063 break;
25064 case T_MNEM_add_sp:
25065 case T_MNEM_add_pc:
25066 newsize = relax_immediate (fragp, 8, 2);
25067 break;
25068 case T_MNEM_inc_sp:
25069 case T_MNEM_dec_sp:
25070 newsize = relax_immediate (fragp, 7, 2);
25071 break;
25072 case T_MNEM_addi:
25073 case T_MNEM_addis:
25074 case T_MNEM_subi:
25075 case T_MNEM_subis:
25076 newsize = relax_addsub (fragp, sec);
25077 break;
25078 default:
5f4273c7 25079 abort ();
0110f2b8 25080 }
5e77afaa
PB
25081
25082 fragp->fr_var = newsize;
25083 /* Freeze wide instructions that are at or before the same location as
25084 in the previous pass. This avoids infinite loops.
5f4273c7
NC
25085 Don't freeze them unconditionally because targets may be artificially
25086 misaligned by the expansion of preceding frags. */
5e77afaa 25087 if (stretch <= 0 && newsize > 2)
0110f2b8 25088 {
0110f2b8 25089 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 25090 frag_wane (fragp);
0110f2b8 25091 }
5e77afaa 25092
0110f2b8 25093 return newsize - oldsize;
c19d1205 25094}
b99bd4ef 25095
c19d1205 25096/* Round up a section size to the appropriate boundary. */
b99bd4ef 25097
c19d1205
ZW
25098valueT
25099md_section_align (segT segment ATTRIBUTE_UNUSED,
25100 valueT size)
25101{
6844c0cc 25102 return size;
bfae80f2 25103}
b99bd4ef 25104
c19d1205
ZW
25105/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25106 of an rs_align_code fragment. */
25107
25108void
25109arm_handle_align (fragS * fragP)
bfae80f2 25110{
d9235011 25111 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25112 {
25113 { /* ARMv1 */
25114 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25115 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25116 },
25117 { /* ARMv6k */
25118 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25119 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25120 },
25121 };
d9235011 25122 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25123 {
25124 { /* Thumb-1 */
25125 {0xc0, 0x46}, /* LE */
25126 {0x46, 0xc0}, /* BE */
25127 },
25128 { /* Thumb-2 */
25129 {0x00, 0xbf}, /* LE */
25130 {0xbf, 0x00} /* BE */
25131 }
25132 };
d9235011 25133 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25134 { /* Wide Thumb-2 */
25135 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25136 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25137 };
c921be7d 25138
e7495e45 25139 unsigned bytes, fix, noop_size;
c19d1205 25140 char * p;
d9235011
TS
25141 const unsigned char * noop;
25142 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25143#ifdef OBJ_ELF
25144 enum mstate state;
25145#endif
bfae80f2 25146
c19d1205 25147 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25148 return;
25149
c19d1205
ZW
25150 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25151 p = fragP->fr_literal + fragP->fr_fix;
25152 fix = 0;
bfae80f2 25153
c19d1205
ZW
25154 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25155 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 25156
cd000bff 25157 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 25158
cd000bff 25159 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 25160 {
7f78eb34
JW
25161 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25162 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
25163 {
25164 narrow_noop = thumb_noop[1][target_big_endian];
25165 noop = wide_thumb_noop[target_big_endian];
25166 }
c19d1205 25167 else
e7495e45
NS
25168 noop = thumb_noop[0][target_big_endian];
25169 noop_size = 2;
cd000bff
DJ
25170#ifdef OBJ_ELF
25171 state = MAP_THUMB;
25172#endif
7ed4c4c5
NC
25173 }
25174 else
25175 {
7f78eb34
JW
25176 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25177 ? selected_cpu : arm_arch_none,
25178 arm_ext_v6k) != 0]
e7495e45
NS
25179 [target_big_endian];
25180 noop_size = 4;
cd000bff
DJ
25181#ifdef OBJ_ELF
25182 state = MAP_ARM;
25183#endif
7ed4c4c5 25184 }
c921be7d 25185
e7495e45 25186 fragP->fr_var = noop_size;
c921be7d 25187
c19d1205 25188 if (bytes & (noop_size - 1))
7ed4c4c5 25189 {
c19d1205 25190 fix = bytes & (noop_size - 1);
cd000bff
DJ
25191#ifdef OBJ_ELF
25192 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25193#endif
c19d1205
ZW
25194 memset (p, 0, fix);
25195 p += fix;
25196 bytes -= fix;
a737bd4d 25197 }
a737bd4d 25198
e7495e45
NS
25199 if (narrow_noop)
25200 {
25201 if (bytes & noop_size)
25202 {
25203 /* Insert a narrow noop. */
25204 memcpy (p, narrow_noop, noop_size);
25205 p += noop_size;
25206 bytes -= noop_size;
25207 fix += noop_size;
25208 }
25209
25210 /* Use wide noops for the remainder */
25211 noop_size = 4;
25212 }
25213
c19d1205 25214 while (bytes >= noop_size)
a737bd4d 25215 {
c19d1205
ZW
25216 memcpy (p, noop, noop_size);
25217 p += noop_size;
25218 bytes -= noop_size;
25219 fix += noop_size;
a737bd4d
NC
25220 }
25221
c19d1205 25222 fragP->fr_fix += fix;
a737bd4d
NC
25223}
25224
c19d1205
ZW
25225/* Called from md_do_align. Used to create an alignment
25226 frag in a code section. */
25227
25228void
25229arm_frag_align_code (int n, int max)
bfae80f2 25230{
c19d1205 25231 char * p;
7ed4c4c5 25232
c19d1205 25233 /* We assume that there will never be a requirement
6ec8e702 25234 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 25235 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
25236 {
25237 char err_msg[128];
25238
fa94de6b 25239 sprintf (err_msg,
477330fc
RM
25240 _("alignments greater than %d bytes not supported in .text sections."),
25241 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 25242 as_fatal ("%s", err_msg);
6ec8e702 25243 }
bfae80f2 25244
c19d1205
ZW
25245 p = frag_var (rs_align_code,
25246 MAX_MEM_FOR_RS_ALIGN_CODE,
25247 1,
25248 (relax_substateT) max,
25249 (symbolS *) NULL,
25250 (offsetT) n,
25251 (char *) NULL);
25252 *p = 0;
25253}
bfae80f2 25254
8dc2430f
NC
25255/* Perform target specific initialisation of a frag.
25256 Note - despite the name this initialisation is not done when the frag
25257 is created, but only when its type is assigned. A frag can be created
25258 and used a long time before its type is set, so beware of assuming that
33eaf5de 25259 this initialisation is performed first. */
bfae80f2 25260
cd000bff
DJ
25261#ifndef OBJ_ELF
25262void
25263arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25264{
25265 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25266 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
25267}
25268
25269#else /* OBJ_ELF is defined. */
c19d1205 25270void
cd000bff 25271arm_init_frag (fragS * fragP, int max_chars)
c19d1205 25272{
e8d84ca1 25273 bfd_boolean frag_thumb_mode;
b968d18a 25274
8dc2430f
NC
25275 /* If the current ARM vs THUMB mode has not already
25276 been recorded into this frag then do so now. */
cd000bff 25277 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
25278 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25279
e8d84ca1
NC
25280 /* PR 21809: Do not set a mapping state for debug sections
25281 - it just confuses other tools. */
25282 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25283 return;
25284
b968d18a 25285 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 25286
f9c1b181
RL
25287 /* Record a mapping symbol for alignment frags. We will delete this
25288 later if the alignment ends up empty. */
25289 switch (fragP->fr_type)
25290 {
25291 case rs_align:
25292 case rs_align_test:
25293 case rs_fill:
25294 mapping_state_2 (MAP_DATA, max_chars);
25295 break;
25296 case rs_align_code:
b968d18a 25297 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
25298 break;
25299 default:
25300 break;
cd000bff 25301 }
bfae80f2
RE
25302}
25303
c19d1205
ZW
25304/* When we change sections we need to issue a new mapping symbol. */
25305
25306void
25307arm_elf_change_section (void)
bfae80f2 25308{
c19d1205
ZW
25309 /* Link an unlinked unwind index table section to the .text section. */
25310 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25311 && elf_linked_to_section (now_seg) == NULL)
25312 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25313}
25314
c19d1205
ZW
25315int
25316arm_elf_section_type (const char * str, size_t len)
e45d0630 25317{
c19d1205
ZW
25318 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25319 return SHT_ARM_EXIDX;
e45d0630 25320
c19d1205
ZW
25321 return -1;
25322}
25323\f
25324/* Code to deal with unwinding tables. */
e45d0630 25325
c19d1205 25326static void add_unwind_adjustsp (offsetT);
e45d0630 25327
5f4273c7 25328/* Generate any deferred unwind frame offset. */
e45d0630 25329
bfae80f2 25330static void
c19d1205 25331flush_pending_unwind (void)
bfae80f2 25332{
c19d1205 25333 offsetT offset;
bfae80f2 25334
c19d1205
ZW
25335 offset = unwind.pending_offset;
25336 unwind.pending_offset = 0;
25337 if (offset != 0)
25338 add_unwind_adjustsp (offset);
bfae80f2
RE
25339}
25340
c19d1205
ZW
25341/* Add an opcode to this list for this function. Two-byte opcodes should
25342 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25343 order. */
25344
bfae80f2 25345static void
c19d1205 25346add_unwind_opcode (valueT op, int length)
bfae80f2 25347{
c19d1205
ZW
25348 /* Add any deferred stack adjustment. */
25349 if (unwind.pending_offset)
25350 flush_pending_unwind ();
bfae80f2 25351
c19d1205 25352 unwind.sp_restored = 0;
bfae80f2 25353
c19d1205 25354 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25355 {
c19d1205
ZW
25356 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25357 if (unwind.opcodes)
325801bd
TS
25358 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25359 unwind.opcode_alloc);
c19d1205 25360 else
325801bd 25361 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25362 }
c19d1205 25363 while (length > 0)
bfae80f2 25364 {
c19d1205
ZW
25365 length--;
25366 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25367 op >>= 8;
25368 unwind.opcode_count++;
bfae80f2 25369 }
bfae80f2
RE
25370}
25371
c19d1205
ZW
25372/* Add unwind opcodes to adjust the stack pointer. */
25373
bfae80f2 25374static void
c19d1205 25375add_unwind_adjustsp (offsetT offset)
bfae80f2 25376{
c19d1205 25377 valueT op;
bfae80f2 25378
c19d1205 25379 if (offset > 0x200)
bfae80f2 25380 {
c19d1205
ZW
25381 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25382 char bytes[5];
25383 int n;
25384 valueT o;
bfae80f2 25385
c19d1205
ZW
25386 /* Long form: 0xb2, uleb128. */
25387 /* This might not fit in a word so add the individual bytes,
25388 remembering the list is built in reverse order. */
25389 o = (valueT) ((offset - 0x204) >> 2);
25390 if (o == 0)
25391 add_unwind_opcode (0, 1);
bfae80f2 25392
c19d1205
ZW
25393 /* Calculate the uleb128 encoding of the offset. */
25394 n = 0;
25395 while (o)
25396 {
25397 bytes[n] = o & 0x7f;
25398 o >>= 7;
25399 if (o)
25400 bytes[n] |= 0x80;
25401 n++;
25402 }
25403 /* Add the insn. */
25404 for (; n; n--)
25405 add_unwind_opcode (bytes[n - 1], 1);
25406 add_unwind_opcode (0xb2, 1);
25407 }
25408 else if (offset > 0x100)
bfae80f2 25409 {
c19d1205
ZW
25410 /* Two short opcodes. */
25411 add_unwind_opcode (0x3f, 1);
25412 op = (offset - 0x104) >> 2;
25413 add_unwind_opcode (op, 1);
bfae80f2 25414 }
c19d1205
ZW
25415 else if (offset > 0)
25416 {
25417 /* Short opcode. */
25418 op = (offset - 4) >> 2;
25419 add_unwind_opcode (op, 1);
25420 }
25421 else if (offset < 0)
bfae80f2 25422 {
c19d1205
ZW
25423 offset = -offset;
25424 while (offset > 0x100)
bfae80f2 25425 {
c19d1205
ZW
25426 add_unwind_opcode (0x7f, 1);
25427 offset -= 0x100;
bfae80f2 25428 }
c19d1205
ZW
25429 op = ((offset - 4) >> 2) | 0x40;
25430 add_unwind_opcode (op, 1);
bfae80f2 25431 }
bfae80f2
RE
25432}
25433
c19d1205 25434/* Finish the list of unwind opcodes for this function. */
0198d5e6 25435
c19d1205
ZW
25436static void
25437finish_unwind_opcodes (void)
bfae80f2 25438{
c19d1205 25439 valueT op;
bfae80f2 25440
c19d1205 25441 if (unwind.fp_used)
bfae80f2 25442 {
708587a4 25443 /* Adjust sp as necessary. */
c19d1205
ZW
25444 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25445 flush_pending_unwind ();
bfae80f2 25446
c19d1205
ZW
25447 /* After restoring sp from the frame pointer. */
25448 op = 0x90 | unwind.fp_reg;
25449 add_unwind_opcode (op, 1);
25450 }
25451 else
25452 flush_pending_unwind ();
bfae80f2
RE
25453}
25454
bfae80f2 25455
c19d1205
ZW
25456/* Start an exception table entry. If idx is nonzero this is an index table
25457 entry. */
bfae80f2
RE
25458
25459static void
c19d1205 25460start_unwind_section (const segT text_seg, int idx)
bfae80f2 25461{
c19d1205
ZW
25462 const char * text_name;
25463 const char * prefix;
25464 const char * prefix_once;
25465 const char * group_name;
c19d1205 25466 char * sec_name;
c19d1205
ZW
25467 int type;
25468 int flags;
25469 int linkonce;
bfae80f2 25470
c19d1205 25471 if (idx)
bfae80f2 25472 {
c19d1205
ZW
25473 prefix = ELF_STRING_ARM_unwind;
25474 prefix_once = ELF_STRING_ARM_unwind_once;
25475 type = SHT_ARM_EXIDX;
bfae80f2 25476 }
c19d1205 25477 else
bfae80f2 25478 {
c19d1205
ZW
25479 prefix = ELF_STRING_ARM_unwind_info;
25480 prefix_once = ELF_STRING_ARM_unwind_info_once;
25481 type = SHT_PROGBITS;
bfae80f2
RE
25482 }
25483
c19d1205
ZW
25484 text_name = segment_name (text_seg);
25485 if (streq (text_name, ".text"))
25486 text_name = "";
25487
25488 if (strncmp (text_name, ".gnu.linkonce.t.",
25489 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 25490 {
c19d1205
ZW
25491 prefix = prefix_once;
25492 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
25493 }
25494
29a2809e 25495 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 25496
c19d1205
ZW
25497 flags = SHF_ALLOC;
25498 linkonce = 0;
25499 group_name = 0;
bfae80f2 25500
c19d1205
ZW
25501 /* Handle COMDAT group. */
25502 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 25503 {
c19d1205
ZW
25504 group_name = elf_group_name (text_seg);
25505 if (group_name == NULL)
25506 {
bd3ba5d1 25507 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
25508 segment_name (text_seg));
25509 ignore_rest_of_line ();
25510 return;
25511 }
25512 flags |= SHF_GROUP;
25513 linkonce = 1;
bfae80f2
RE
25514 }
25515
a91e1603
L
25516 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25517 linkonce, 0);
bfae80f2 25518
5f4273c7 25519 /* Set the section link for index tables. */
c19d1205
ZW
25520 if (idx)
25521 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
25522}
25523
bfae80f2 25524
c19d1205
ZW
25525/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25526 personality routine data. Returns zero, or the index table value for
cad0da33 25527 an inline entry. */
c19d1205
ZW
25528
25529static valueT
25530create_unwind_entry (int have_data)
bfae80f2 25531{
c19d1205
ZW
25532 int size;
25533 addressT where;
25534 char *ptr;
25535 /* The current word of data. */
25536 valueT data;
25537 /* The number of bytes left in this word. */
25538 int n;
bfae80f2 25539
c19d1205 25540 finish_unwind_opcodes ();
bfae80f2 25541
c19d1205
ZW
25542 /* Remember the current text section. */
25543 unwind.saved_seg = now_seg;
25544 unwind.saved_subseg = now_subseg;
bfae80f2 25545
c19d1205 25546 start_unwind_section (now_seg, 0);
bfae80f2 25547
c19d1205 25548 if (unwind.personality_routine == NULL)
bfae80f2 25549 {
c19d1205
ZW
25550 if (unwind.personality_index == -2)
25551 {
25552 if (have_data)
5f4273c7 25553 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
25554 return 1; /* EXIDX_CANTUNWIND. */
25555 }
bfae80f2 25556
c19d1205
ZW
25557 /* Use a default personality routine if none is specified. */
25558 if (unwind.personality_index == -1)
25559 {
25560 if (unwind.opcode_count > 3)
25561 unwind.personality_index = 1;
25562 else
25563 unwind.personality_index = 0;
25564 }
bfae80f2 25565
c19d1205
ZW
25566 /* Space for the personality routine entry. */
25567 if (unwind.personality_index == 0)
25568 {
25569 if (unwind.opcode_count > 3)
25570 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 25571
c19d1205
ZW
25572 if (!have_data)
25573 {
25574 /* All the data is inline in the index table. */
25575 data = 0x80;
25576 n = 3;
25577 while (unwind.opcode_count > 0)
25578 {
25579 unwind.opcode_count--;
25580 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25581 n--;
25582 }
bfae80f2 25583
c19d1205
ZW
25584 /* Pad with "finish" opcodes. */
25585 while (n--)
25586 data = (data << 8) | 0xb0;
bfae80f2 25587
c19d1205
ZW
25588 return data;
25589 }
25590 size = 0;
25591 }
25592 else
25593 /* We get two opcodes "free" in the first word. */
25594 size = unwind.opcode_count - 2;
25595 }
25596 else
5011093d 25597 {
cad0da33
NC
25598 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25599 if (unwind.personality_index != -1)
25600 {
25601 as_bad (_("attempt to recreate an unwind entry"));
25602 return 1;
25603 }
5011093d
NC
25604
25605 /* An extra byte is required for the opcode count. */
25606 size = unwind.opcode_count + 1;
25607 }
bfae80f2 25608
c19d1205
ZW
25609 size = (size + 3) >> 2;
25610 if (size > 0xff)
25611 as_bad (_("too many unwind opcodes"));
bfae80f2 25612
c19d1205
ZW
25613 frag_align (2, 0, 0);
25614 record_alignment (now_seg, 2);
25615 unwind.table_entry = expr_build_dot ();
25616
25617 /* Allocate the table entry. */
25618 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
25619 /* PR 13449: Zero the table entries in case some of them are not used. */
25620 memset (ptr, 0, (size << 2) + 4);
c19d1205 25621 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 25622
c19d1205 25623 switch (unwind.personality_index)
bfae80f2 25624 {
c19d1205
ZW
25625 case -1:
25626 /* ??? Should this be a PLT generating relocation? */
25627 /* Custom personality routine. */
25628 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25629 BFD_RELOC_ARM_PREL31);
bfae80f2 25630
c19d1205
ZW
25631 where += 4;
25632 ptr += 4;
bfae80f2 25633
c19d1205 25634 /* Set the first byte to the number of additional words. */
5011093d 25635 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
25636 n = 3;
25637 break;
bfae80f2 25638
c19d1205
ZW
25639 /* ABI defined personality routines. */
25640 case 0:
25641 /* Three opcodes bytes are packed into the first word. */
25642 data = 0x80;
25643 n = 3;
25644 break;
bfae80f2 25645
c19d1205
ZW
25646 case 1:
25647 case 2:
25648 /* The size and first two opcode bytes go in the first word. */
25649 data = ((0x80 + unwind.personality_index) << 8) | size;
25650 n = 2;
25651 break;
bfae80f2 25652
c19d1205
ZW
25653 default:
25654 /* Should never happen. */
25655 abort ();
25656 }
bfae80f2 25657
c19d1205
ZW
25658 /* Pack the opcodes into words (MSB first), reversing the list at the same
25659 time. */
25660 while (unwind.opcode_count > 0)
25661 {
25662 if (n == 0)
25663 {
25664 md_number_to_chars (ptr, data, 4);
25665 ptr += 4;
25666 n = 4;
25667 data = 0;
25668 }
25669 unwind.opcode_count--;
25670 n--;
25671 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25672 }
25673
25674 /* Finish off the last word. */
25675 if (n < 4)
25676 {
25677 /* Pad with "finish" opcodes. */
25678 while (n--)
25679 data = (data << 8) | 0xb0;
25680
25681 md_number_to_chars (ptr, data, 4);
25682 }
25683
25684 if (!have_data)
25685 {
25686 /* Add an empty descriptor if there is no user-specified data. */
25687 ptr = frag_more (4);
25688 md_number_to_chars (ptr, 0, 4);
25689 }
25690
25691 return 0;
bfae80f2
RE
25692}
25693
f0927246
NC
25694
25695/* Initialize the DWARF-2 unwind information for this procedure. */
25696
25697void
25698tc_arm_frame_initial_instructions (void)
25699{
25700 cfi_add_CFA_def_cfa (REG_SP, 0);
25701}
25702#endif /* OBJ_ELF */
25703
c19d1205
ZW
25704/* Convert REGNAME to a DWARF-2 register number. */
25705
25706int
1df69f4f 25707tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 25708{
1df69f4f 25709 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
25710 if (reg != FAIL)
25711 return reg;
c19d1205 25712
1f5afe1c
NC
25713 /* PR 16694: Allow VFP registers as well. */
25714 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25715 if (reg != FAIL)
25716 return 64 + reg;
c19d1205 25717
1f5afe1c
NC
25718 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25719 if (reg != FAIL)
25720 return reg + 256;
25721
0198d5e6 25722 return FAIL;
bfae80f2
RE
25723}
25724
f0927246 25725#ifdef TE_PE
c19d1205 25726void
f0927246 25727tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 25728{
91d6fa6a 25729 expressionS exp;
bfae80f2 25730
91d6fa6a
NC
25731 exp.X_op = O_secrel;
25732 exp.X_add_symbol = symbol;
25733 exp.X_add_number = 0;
25734 emit_expr (&exp, size);
f0927246
NC
25735}
25736#endif
bfae80f2 25737
c19d1205 25738/* MD interface: Symbol and relocation handling. */
bfae80f2 25739
2fc8bdac
ZW
25740/* Return the address within the segment that a PC-relative fixup is
25741 relative to. For ARM, PC-relative fixups applied to instructions
25742 are generally relative to the location of the fixup plus 8 bytes.
25743 Thumb branches are offset by 4, and Thumb loads relative to PC
25744 require special handling. */
bfae80f2 25745
c19d1205 25746long
2fc8bdac 25747md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 25748{
2fc8bdac
ZW
25749 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25750
25751 /* If this is pc-relative and we are going to emit a relocation
25752 then we just want to put out any pipeline compensation that the linker
53baae48
NC
25753 will need. Otherwise we want to use the calculated base.
25754 For WinCE we skip the bias for externals as well, since this
25755 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 25756 if (fixP->fx_pcrel
2fc8bdac 25757 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
25758 || (arm_force_relocation (fixP)
25759#ifdef TE_WINCE
25760 && !S_IS_EXTERNAL (fixP->fx_addsy)
25761#endif
25762 )))
2fc8bdac 25763 base = 0;
bfae80f2 25764
267bf995 25765
c19d1205 25766 switch (fixP->fx_r_type)
bfae80f2 25767 {
2fc8bdac
ZW
25768 /* PC relative addressing on the Thumb is slightly odd as the
25769 bottom two bits of the PC are forced to zero for the
25770 calculation. This happens *after* application of the
25771 pipeline offset. However, Thumb adrl already adjusts for
25772 this, so we need not do it again. */
c19d1205 25773 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 25774 return base & ~3;
c19d1205
ZW
25775
25776 case BFD_RELOC_ARM_THUMB_OFFSET:
25777 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 25778 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 25779 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 25780 return (base + 4) & ~3;
c19d1205 25781
2fc8bdac 25782 /* Thumb branches are simply offset by +4. */
e12437dc 25783 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
25784 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25785 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25786 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25787 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 25788 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 25789 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 25790 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 25791 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 25792 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 25793 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 25794 return base + 4;
bfae80f2 25795
267bf995 25796 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
25797 if (fixP->fx_addsy
25798 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25799 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 25800 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
25801 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25802 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
25803 return base + 4;
25804
00adf2d4
JB
25805 /* BLX is like branches above, but forces the low two bits of PC to
25806 zero. */
486499d0
CL
25807 case BFD_RELOC_THUMB_PCREL_BLX:
25808 if (fixP->fx_addsy
25809 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25810 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25811 && THUMB_IS_FUNC (fixP->fx_addsy)
25812 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25813 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
25814 return (base + 4) & ~3;
25815
2fc8bdac
ZW
25816 /* ARM mode branches are offset by +8. However, the Windows CE
25817 loader expects the relocation not to take this into account. */
267bf995 25818 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
25819 if (fixP->fx_addsy
25820 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25821 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25822 && ARM_IS_FUNC (fixP->fx_addsy)
25823 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25824 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25825 return base + 8;
267bf995 25826
486499d0
CL
25827 case BFD_RELOC_ARM_PCREL_CALL:
25828 if (fixP->fx_addsy
25829 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25830 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25831 && THUMB_IS_FUNC (fixP->fx_addsy)
25832 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25833 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25834 return base + 8;
267bf995 25835
2fc8bdac 25836 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 25837 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 25838 case BFD_RELOC_ARM_PLT32:
c19d1205 25839#ifdef TE_WINCE
5f4273c7 25840 /* When handling fixups immediately, because we have already
477330fc 25841 discovered the value of a symbol, or the address of the frag involved
53baae48 25842 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
25843 see fixup_segment() in write.c
25844 The S_IS_EXTERNAL test handles the case of global symbols.
25845 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
25846 if (fixP->fx_pcrel
25847 && fixP->fx_addsy != NULL
25848 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25849 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25850 return base + 8;
2fc8bdac 25851 return base;
c19d1205 25852#else
2fc8bdac 25853 return base + 8;
c19d1205 25854#endif
2fc8bdac 25855
267bf995 25856
2fc8bdac
ZW
25857 /* ARM mode loads relative to PC are also offset by +8. Unlike
25858 branches, the Windows CE loader *does* expect the relocation
25859 to take this into account. */
25860 case BFD_RELOC_ARM_OFFSET_IMM:
25861 case BFD_RELOC_ARM_OFFSET_IMM8:
25862 case BFD_RELOC_ARM_HWLITERAL:
25863 case BFD_RELOC_ARM_LITERAL:
25864 case BFD_RELOC_ARM_CP_OFF_IMM:
25865 return base + 8;
25866
25867
25868 /* Other PC-relative relocations are un-offset. */
25869 default:
25870 return base;
25871 }
bfae80f2
RE
25872}
25873
8b2d793c
NC
25874static bfd_boolean flag_warn_syms = TRUE;
25875
ae8714c2
NC
25876bfd_boolean
25877arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 25878{
8b2d793c
NC
25879 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25880 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25881 does mean that the resulting code might be very confusing to the reader.
25882 Also this warning can be triggered if the user omits an operand before
25883 an immediate address, eg:
25884
25885 LDR =foo
25886
25887 GAS treats this as an assignment of the value of the symbol foo to a
25888 symbol LDR, and so (without this code) it will not issue any kind of
25889 warning or error message.
25890
25891 Note - ARM instructions are case-insensitive but the strings in the hash
25892 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
25893 lower case too. */
25894 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
25895 {
25896 char * nbuf = strdup (name);
25897 char * p;
25898
25899 for (p = nbuf; *p; p++)
25900 *p = TOLOWER (*p);
25901 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25902 {
25903 static struct hash_control * already_warned = NULL;
25904
25905 if (already_warned == NULL)
25906 already_warned = hash_new ();
25907 /* Only warn about the symbol once. To keep the code
25908 simple we let hash_insert do the lookup for us. */
3076e594 25909 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 25910 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
25911 }
25912 else
25913 free (nbuf);
25914 }
3739860c 25915
ae8714c2
NC
25916 return FALSE;
25917}
25918
25919/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25920 Otherwise we have no need to default values of symbols. */
25921
25922symbolS *
25923md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25924{
25925#ifdef OBJ_ELF
25926 if (name[0] == '_' && name[1] == 'G'
25927 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25928 {
25929 if (!GOT_symbol)
25930 {
25931 if (symbol_find (name))
25932 as_bad (_("GOT already in the symbol table"));
25933
25934 GOT_symbol = symbol_new (name, undefined_section,
25935 (valueT) 0, & zero_address_frag);
25936 }
25937
25938 return GOT_symbol;
25939 }
25940#endif
25941
c921be7d 25942 return NULL;
bfae80f2
RE
25943}
25944
55cf6793 25945/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
25946 computed as two separate immediate values, added together. We
25947 already know that this value cannot be computed by just one ARM
25948 instruction. */
25949
25950static unsigned int
25951validate_immediate_twopart (unsigned int val,
25952 unsigned int * highpart)
bfae80f2 25953{
c19d1205
ZW
25954 unsigned int a;
25955 unsigned int i;
bfae80f2 25956
c19d1205
ZW
25957 for (i = 0; i < 32; i += 2)
25958 if (((a = rotate_left (val, i)) & 0xff) != 0)
25959 {
25960 if (a & 0xff00)
25961 {
25962 if (a & ~ 0xffff)
25963 continue;
25964 * highpart = (a >> 8) | ((i + 24) << 7);
25965 }
25966 else if (a & 0xff0000)
25967 {
25968 if (a & 0xff000000)
25969 continue;
25970 * highpart = (a >> 16) | ((i + 16) << 7);
25971 }
25972 else
25973 {
9c2799c2 25974 gas_assert (a & 0xff000000);
c19d1205
ZW
25975 * highpart = (a >> 24) | ((i + 8) << 7);
25976 }
bfae80f2 25977
c19d1205
ZW
25978 return (a & 0xff) | (i << 7);
25979 }
bfae80f2 25980
c19d1205 25981 return FAIL;
bfae80f2
RE
25982}
25983
c19d1205
ZW
25984static int
25985validate_offset_imm (unsigned int val, int hwse)
25986{
25987 if ((hwse && val > 255) || val > 4095)
25988 return FAIL;
25989 return val;
25990}
bfae80f2 25991
55cf6793 25992/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
25993 negative immediate constant by altering the instruction. A bit of
25994 a hack really.
25995 MOV <-> MVN
25996 AND <-> BIC
25997 ADC <-> SBC
25998 by inverting the second operand, and
25999 ADD <-> SUB
26000 CMP <-> CMN
26001 by negating the second operand. */
bfae80f2 26002
c19d1205
ZW
26003static int
26004negate_data_op (unsigned long * instruction,
26005 unsigned long value)
bfae80f2 26006{
c19d1205
ZW
26007 int op, new_inst;
26008 unsigned long negated, inverted;
bfae80f2 26009
c19d1205
ZW
26010 negated = encode_arm_immediate (-value);
26011 inverted = encode_arm_immediate (~value);
bfae80f2 26012
c19d1205
ZW
26013 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26014 switch (op)
bfae80f2 26015 {
c19d1205
ZW
26016 /* First negates. */
26017 case OPCODE_SUB: /* ADD <-> SUB */
26018 new_inst = OPCODE_ADD;
26019 value = negated;
26020 break;
bfae80f2 26021
c19d1205
ZW
26022 case OPCODE_ADD:
26023 new_inst = OPCODE_SUB;
26024 value = negated;
26025 break;
bfae80f2 26026
c19d1205
ZW
26027 case OPCODE_CMP: /* CMP <-> CMN */
26028 new_inst = OPCODE_CMN;
26029 value = negated;
26030 break;
bfae80f2 26031
c19d1205
ZW
26032 case OPCODE_CMN:
26033 new_inst = OPCODE_CMP;
26034 value = negated;
26035 break;
bfae80f2 26036
c19d1205
ZW
26037 /* Now Inverted ops. */
26038 case OPCODE_MOV: /* MOV <-> MVN */
26039 new_inst = OPCODE_MVN;
26040 value = inverted;
26041 break;
bfae80f2 26042
c19d1205
ZW
26043 case OPCODE_MVN:
26044 new_inst = OPCODE_MOV;
26045 value = inverted;
26046 break;
bfae80f2 26047
c19d1205
ZW
26048 case OPCODE_AND: /* AND <-> BIC */
26049 new_inst = OPCODE_BIC;
26050 value = inverted;
26051 break;
bfae80f2 26052
c19d1205
ZW
26053 case OPCODE_BIC:
26054 new_inst = OPCODE_AND;
26055 value = inverted;
26056 break;
bfae80f2 26057
c19d1205
ZW
26058 case OPCODE_ADC: /* ADC <-> SBC */
26059 new_inst = OPCODE_SBC;
26060 value = inverted;
26061 break;
bfae80f2 26062
c19d1205
ZW
26063 case OPCODE_SBC:
26064 new_inst = OPCODE_ADC;
26065 value = inverted;
26066 break;
bfae80f2 26067
c19d1205
ZW
26068 /* We cannot do anything. */
26069 default:
26070 return FAIL;
b99bd4ef
NC
26071 }
26072
c19d1205
ZW
26073 if (value == (unsigned) FAIL)
26074 return FAIL;
26075
26076 *instruction &= OPCODE_MASK;
26077 *instruction |= new_inst << DATA_OP_SHIFT;
26078 return value;
b99bd4ef
NC
26079}
26080
ef8d22e6
PB
26081/* Like negate_data_op, but for Thumb-2. */
26082
26083static unsigned int
16dd5e42 26084thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
26085{
26086 int op, new_inst;
26087 int rd;
16dd5e42 26088 unsigned int negated, inverted;
ef8d22e6
PB
26089
26090 negated = encode_thumb32_immediate (-value);
26091 inverted = encode_thumb32_immediate (~value);
26092
26093 rd = (*instruction >> 8) & 0xf;
26094 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26095 switch (op)
26096 {
26097 /* ADD <-> SUB. Includes CMP <-> CMN. */
26098 case T2_OPCODE_SUB:
26099 new_inst = T2_OPCODE_ADD;
26100 value = negated;
26101 break;
26102
26103 case T2_OPCODE_ADD:
26104 new_inst = T2_OPCODE_SUB;
26105 value = negated;
26106 break;
26107
26108 /* ORR <-> ORN. Includes MOV <-> MVN. */
26109 case T2_OPCODE_ORR:
26110 new_inst = T2_OPCODE_ORN;
26111 value = inverted;
26112 break;
26113
26114 case T2_OPCODE_ORN:
26115 new_inst = T2_OPCODE_ORR;
26116 value = inverted;
26117 break;
26118
26119 /* AND <-> BIC. TST has no inverted equivalent. */
26120 case T2_OPCODE_AND:
26121 new_inst = T2_OPCODE_BIC;
26122 if (rd == 15)
26123 value = FAIL;
26124 else
26125 value = inverted;
26126 break;
26127
26128 case T2_OPCODE_BIC:
26129 new_inst = T2_OPCODE_AND;
26130 value = inverted;
26131 break;
26132
26133 /* ADC <-> SBC */
26134 case T2_OPCODE_ADC:
26135 new_inst = T2_OPCODE_SBC;
26136 value = inverted;
26137 break;
26138
26139 case T2_OPCODE_SBC:
26140 new_inst = T2_OPCODE_ADC;
26141 value = inverted;
26142 break;
26143
26144 /* We cannot do anything. */
26145 default:
26146 return FAIL;
26147 }
26148
16dd5e42 26149 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26150 return FAIL;
26151
26152 *instruction &= T2_OPCODE_MASK;
26153 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26154 return value;
26155}
26156
8f06b2d8 26157/* Read a 32-bit thumb instruction from buf. */
0198d5e6 26158
8f06b2d8
PB
26159static unsigned long
26160get_thumb32_insn (char * buf)
26161{
26162 unsigned long insn;
26163 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26164 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26165
26166 return insn;
26167}
26168
a8bc6c78
PB
26169/* We usually want to set the low bit on the address of thumb function
26170 symbols. In particular .word foo - . should have the low bit set.
26171 Generic code tries to fold the difference of two symbols to
26172 a constant. Prevent this and force a relocation when the first symbols
26173 is a thumb function. */
c921be7d
NC
26174
26175bfd_boolean
a8bc6c78
PB
26176arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26177{
26178 if (op == O_subtract
26179 && l->X_op == O_symbol
26180 && r->X_op == O_symbol
26181 && THUMB_IS_FUNC (l->X_add_symbol))
26182 {
26183 l->X_op = O_subtract;
26184 l->X_op_symbol = r->X_add_symbol;
26185 l->X_add_number -= r->X_add_number;
c921be7d 26186 return TRUE;
a8bc6c78 26187 }
c921be7d 26188
a8bc6c78 26189 /* Process as normal. */
c921be7d 26190 return FALSE;
a8bc6c78
PB
26191}
26192
4a42ebbc
RR
26193/* Encode Thumb2 unconditional branches and calls. The encoding
26194 for the 2 are identical for the immediate values. */
26195
26196static void
26197encode_thumb2_b_bl_offset (char * buf, offsetT value)
26198{
26199#define T2I1I2MASK ((1 << 13) | (1 << 11))
26200 offsetT newval;
26201 offsetT newval2;
26202 addressT S, I1, I2, lo, hi;
26203
26204 S = (value >> 24) & 0x01;
26205 I1 = (value >> 23) & 0x01;
26206 I2 = (value >> 22) & 0x01;
26207 hi = (value >> 12) & 0x3ff;
fa94de6b 26208 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
26209 newval = md_chars_to_number (buf, THUMB_SIZE);
26210 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26211 newval |= (S << 10) | hi;
26212 newval2 &= ~T2I1I2MASK;
26213 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26214 md_number_to_chars (buf, newval, THUMB_SIZE);
26215 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26216}
26217
c19d1205 26218void
55cf6793 26219md_apply_fix (fixS * fixP,
c19d1205
ZW
26220 valueT * valP,
26221 segT seg)
26222{
26223 offsetT value = * valP;
26224 offsetT newval;
26225 unsigned int newimm;
26226 unsigned long temp;
26227 int sign;
26228 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 26229
9c2799c2 26230 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 26231
c19d1205 26232 /* Note whether this will delete the relocation. */
4962c51a 26233
c19d1205
ZW
26234 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26235 fixP->fx_done = 1;
b99bd4ef 26236
adbaf948 26237 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 26238 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
26239 for emit_reloc. */
26240 value &= 0xffffffff;
26241 value ^= 0x80000000;
5f4273c7 26242 value -= 0x80000000;
adbaf948
ZW
26243
26244 *valP = value;
c19d1205 26245 fixP->fx_addnumber = value;
b99bd4ef 26246
adbaf948
ZW
26247 /* Same treatment for fixP->fx_offset. */
26248 fixP->fx_offset &= 0xffffffff;
26249 fixP->fx_offset ^= 0x80000000;
26250 fixP->fx_offset -= 0x80000000;
26251
c19d1205 26252 switch (fixP->fx_r_type)
b99bd4ef 26253 {
c19d1205
ZW
26254 case BFD_RELOC_NONE:
26255 /* This will need to go in the object file. */
26256 fixP->fx_done = 0;
26257 break;
b99bd4ef 26258
c19d1205
ZW
26259 case BFD_RELOC_ARM_IMMEDIATE:
26260 /* We claim that this fixup has been processed here,
26261 even if in fact we generate an error because we do
26262 not have a reloc for it, so tc_gen_reloc will reject it. */
26263 fixP->fx_done = 1;
b99bd4ef 26264
77db8e2e 26265 if (fixP->fx_addsy)
b99bd4ef 26266 {
77db8e2e 26267 const char *msg = 0;
b99bd4ef 26268
77db8e2e
NC
26269 if (! S_IS_DEFINED (fixP->fx_addsy))
26270 msg = _("undefined symbol %s used as an immediate value");
26271 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26272 msg = _("symbol %s is in a different section");
26273 else if (S_IS_WEAK (fixP->fx_addsy))
26274 msg = _("symbol %s is weak and may be overridden later");
26275
26276 if (msg)
26277 {
26278 as_bad_where (fixP->fx_file, fixP->fx_line,
26279 msg, S_GET_NAME (fixP->fx_addsy));
26280 break;
26281 }
42e5fcbf
AS
26282 }
26283
c19d1205
ZW
26284 temp = md_chars_to_number (buf, INSN_SIZE);
26285
5e73442d
SL
26286 /* If the offset is negative, we should use encoding A2 for ADR. */
26287 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26288 newimm = negate_data_op (&temp, value);
26289 else
26290 {
26291 newimm = encode_arm_immediate (value);
26292
26293 /* If the instruction will fail, see if we can fix things up by
26294 changing the opcode. */
26295 if (newimm == (unsigned int) FAIL)
26296 newimm = negate_data_op (&temp, value);
bada4342
JW
26297 /* MOV accepts both ARM modified immediate (A1 encoding) and
26298 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26299 When disassembling, MOV is preferred when there is no encoding
26300 overlap. */
26301 if (newimm == (unsigned int) FAIL
26302 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26303 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26304 && !((temp >> SBIT_SHIFT) & 0x1)
26305 && value >= 0 && value <= 0xffff)
26306 {
26307 /* Clear bits[23:20] to change encoding from A1 to A2. */
26308 temp &= 0xff0fffff;
26309 /* Encoding high 4bits imm. Code below will encode the remaining
26310 low 12bits. */
26311 temp |= (value & 0x0000f000) << 4;
26312 newimm = value & 0x00000fff;
26313 }
5e73442d
SL
26314 }
26315
26316 if (newimm == (unsigned int) FAIL)
b99bd4ef 26317 {
c19d1205
ZW
26318 as_bad_where (fixP->fx_file, fixP->fx_line,
26319 _("invalid constant (%lx) after fixup"),
26320 (unsigned long) value);
26321 break;
b99bd4ef 26322 }
b99bd4ef 26323
c19d1205
ZW
26324 newimm |= (temp & 0xfffff000);
26325 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26326 break;
b99bd4ef 26327
c19d1205
ZW
26328 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26329 {
26330 unsigned int highpart = 0;
26331 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26332
77db8e2e 26333 if (fixP->fx_addsy)
42e5fcbf 26334 {
77db8e2e 26335 const char *msg = 0;
42e5fcbf 26336
77db8e2e
NC
26337 if (! S_IS_DEFINED (fixP->fx_addsy))
26338 msg = _("undefined symbol %s used as an immediate value");
26339 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26340 msg = _("symbol %s is in a different section");
26341 else if (S_IS_WEAK (fixP->fx_addsy))
26342 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26343
77db8e2e
NC
26344 if (msg)
26345 {
26346 as_bad_where (fixP->fx_file, fixP->fx_line,
26347 msg, S_GET_NAME (fixP->fx_addsy));
26348 break;
26349 }
26350 }
fa94de6b 26351
c19d1205
ZW
26352 newimm = encode_arm_immediate (value);
26353 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26354
c19d1205
ZW
26355 /* If the instruction will fail, see if we can fix things up by
26356 changing the opcode. */
26357 if (newimm == (unsigned int) FAIL
26358 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26359 {
26360 /* No ? OK - try using two ADD instructions to generate
26361 the value. */
26362 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26363
c19d1205
ZW
26364 /* Yes - then make sure that the second instruction is
26365 also an add. */
26366 if (newimm != (unsigned int) FAIL)
26367 newinsn = temp;
26368 /* Still No ? Try using a negated value. */
26369 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26370 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26371 /* Otherwise - give up. */
26372 else
26373 {
26374 as_bad_where (fixP->fx_file, fixP->fx_line,
26375 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26376 (long) value);
26377 break;
26378 }
b99bd4ef 26379
c19d1205
ZW
26380 /* Replace the first operand in the 2nd instruction (which
26381 is the PC) with the destination register. We have
26382 already added in the PC in the first instruction and we
26383 do not want to do it again. */
26384 newinsn &= ~ 0xf0000;
26385 newinsn |= ((newinsn & 0x0f000) << 4);
26386 }
b99bd4ef 26387
c19d1205
ZW
26388 newimm |= (temp & 0xfffff000);
26389 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 26390
c19d1205
ZW
26391 highpart |= (newinsn & 0xfffff000);
26392 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26393 }
26394 break;
b99bd4ef 26395
c19d1205 26396 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
26397 if (!fixP->fx_done && seg->use_rela_p)
26398 value = 0;
1a0670f3 26399 /* Fall through. */
00a97672 26400
c19d1205 26401 case BFD_RELOC_ARM_LITERAL:
26d97720 26402 sign = value > 0;
b99bd4ef 26403
c19d1205
ZW
26404 if (value < 0)
26405 value = - value;
b99bd4ef 26406
c19d1205 26407 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 26408 {
c19d1205
ZW
26409 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26410 as_bad_where (fixP->fx_file, fixP->fx_line,
26411 _("invalid literal constant: pool needs to be closer"));
26412 else
26413 as_bad_where (fixP->fx_file, fixP->fx_line,
26414 _("bad immediate value for offset (%ld)"),
26415 (long) value);
26416 break;
f03698e6
RE
26417 }
26418
c19d1205 26419 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26420 if (value == 0)
26421 newval &= 0xfffff000;
26422 else
26423 {
26424 newval &= 0xff7ff000;
26425 newval |= value | (sign ? INDEX_UP : 0);
26426 }
c19d1205
ZW
26427 md_number_to_chars (buf, newval, INSN_SIZE);
26428 break;
b99bd4ef 26429
c19d1205
ZW
26430 case BFD_RELOC_ARM_OFFSET_IMM8:
26431 case BFD_RELOC_ARM_HWLITERAL:
26d97720 26432 sign = value > 0;
b99bd4ef 26433
c19d1205
ZW
26434 if (value < 0)
26435 value = - value;
b99bd4ef 26436
c19d1205 26437 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 26438 {
c19d1205
ZW
26439 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26440 as_bad_where (fixP->fx_file, fixP->fx_line,
26441 _("invalid literal constant: pool needs to be closer"));
26442 else
427d0db6
RM
26443 as_bad_where (fixP->fx_file, fixP->fx_line,
26444 _("bad immediate value for 8-bit offset (%ld)"),
26445 (long) value);
c19d1205 26446 break;
b99bd4ef
NC
26447 }
26448
c19d1205 26449 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26450 if (value == 0)
26451 newval &= 0xfffff0f0;
26452 else
26453 {
26454 newval &= 0xff7ff0f0;
26455 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26456 }
c19d1205
ZW
26457 md_number_to_chars (buf, newval, INSN_SIZE);
26458 break;
b99bd4ef 26459
c19d1205
ZW
26460 case BFD_RELOC_ARM_T32_OFFSET_U8:
26461 if (value < 0 || value > 1020 || value % 4 != 0)
26462 as_bad_where (fixP->fx_file, fixP->fx_line,
26463 _("bad immediate value for offset (%ld)"), (long) value);
26464 value /= 4;
b99bd4ef 26465
c19d1205 26466 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
26467 newval |= value;
26468 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26469 break;
b99bd4ef 26470
c19d1205
ZW
26471 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26472 /* This is a complicated relocation used for all varieties of Thumb32
26473 load/store instruction with immediate offset:
26474
26475 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 26476 *4, optional writeback(W)
c19d1205
ZW
26477 (doubleword load/store)
26478
26479 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26480 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26481 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26482 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26483 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26484
26485 Uppercase letters indicate bits that are already encoded at
26486 this point. Lowercase letters are our problem. For the
26487 second block of instructions, the secondary opcode nybble
26488 (bits 8..11) is present, and bit 23 is zero, even if this is
26489 a PC-relative operation. */
26490 newval = md_chars_to_number (buf, THUMB_SIZE);
26491 newval <<= 16;
26492 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 26493
c19d1205 26494 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 26495 {
c19d1205
ZW
26496 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26497 if (value >= 0)
26498 newval |= (1 << 23);
26499 else
26500 value = -value;
26501 if (value % 4 != 0)
26502 {
26503 as_bad_where (fixP->fx_file, fixP->fx_line,
26504 _("offset not a multiple of 4"));
26505 break;
26506 }
26507 value /= 4;
216d22bc 26508 if (value > 0xff)
c19d1205
ZW
26509 {
26510 as_bad_where (fixP->fx_file, fixP->fx_line,
26511 _("offset out of range"));
26512 break;
26513 }
26514 newval &= ~0xff;
b99bd4ef 26515 }
c19d1205 26516 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 26517 {
c19d1205
ZW
26518 /* PC-relative, 12-bit offset. */
26519 if (value >= 0)
26520 newval |= (1 << 23);
26521 else
26522 value = -value;
216d22bc 26523 if (value > 0xfff)
c19d1205
ZW
26524 {
26525 as_bad_where (fixP->fx_file, fixP->fx_line,
26526 _("offset out of range"));
26527 break;
26528 }
26529 newval &= ~0xfff;
b99bd4ef 26530 }
c19d1205 26531 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 26532 {
c19d1205
ZW
26533 /* Writeback: 8-bit, +/- offset. */
26534 if (value >= 0)
26535 newval |= (1 << 9);
26536 else
26537 value = -value;
216d22bc 26538 if (value > 0xff)
c19d1205
ZW
26539 {
26540 as_bad_where (fixP->fx_file, fixP->fx_line,
26541 _("offset out of range"));
26542 break;
26543 }
26544 newval &= ~0xff;
b99bd4ef 26545 }
c19d1205 26546 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 26547 {
c19d1205 26548 /* T-instruction: positive 8-bit offset. */
216d22bc 26549 if (value < 0 || value > 0xff)
b99bd4ef 26550 {
c19d1205
ZW
26551 as_bad_where (fixP->fx_file, fixP->fx_line,
26552 _("offset out of range"));
26553 break;
b99bd4ef 26554 }
c19d1205
ZW
26555 newval &= ~0xff;
26556 newval |= value;
b99bd4ef
NC
26557 }
26558 else
b99bd4ef 26559 {
c19d1205
ZW
26560 /* Positive 12-bit or negative 8-bit offset. */
26561 int limit;
26562 if (value >= 0)
b99bd4ef 26563 {
c19d1205
ZW
26564 newval |= (1 << 23);
26565 limit = 0xfff;
26566 }
26567 else
26568 {
26569 value = -value;
26570 limit = 0xff;
26571 }
26572 if (value > limit)
26573 {
26574 as_bad_where (fixP->fx_file, fixP->fx_line,
26575 _("offset out of range"));
26576 break;
b99bd4ef 26577 }
c19d1205 26578 newval &= ~limit;
b99bd4ef 26579 }
b99bd4ef 26580
c19d1205
ZW
26581 newval |= value;
26582 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26583 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26584 break;
404ff6b5 26585
c19d1205
ZW
26586 case BFD_RELOC_ARM_SHIFT_IMM:
26587 newval = md_chars_to_number (buf, INSN_SIZE);
26588 if (((unsigned long) value) > 32
26589 || (value == 32
26590 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26591 {
26592 as_bad_where (fixP->fx_file, fixP->fx_line,
26593 _("shift expression is too large"));
26594 break;
26595 }
404ff6b5 26596
c19d1205
ZW
26597 if (value == 0)
26598 /* Shifts of zero must be done as lsl. */
26599 newval &= ~0x60;
26600 else if (value == 32)
26601 value = 0;
26602 newval &= 0xfffff07f;
26603 newval |= (value & 0x1f) << 7;
26604 md_number_to_chars (buf, newval, INSN_SIZE);
26605 break;
404ff6b5 26606
c19d1205 26607 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 26608 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 26609 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 26610 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
26611 /* We claim that this fixup has been processed here,
26612 even if in fact we generate an error because we do
26613 not have a reloc for it, so tc_gen_reloc will reject it. */
26614 fixP->fx_done = 1;
404ff6b5 26615
c19d1205
ZW
26616 if (fixP->fx_addsy
26617 && ! S_IS_DEFINED (fixP->fx_addsy))
26618 {
26619 as_bad_where (fixP->fx_file, fixP->fx_line,
26620 _("undefined symbol %s used as an immediate value"),
26621 S_GET_NAME (fixP->fx_addsy));
26622 break;
26623 }
404ff6b5 26624
c19d1205
ZW
26625 newval = md_chars_to_number (buf, THUMB_SIZE);
26626 newval <<= 16;
26627 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 26628
16805f35 26629 newimm = FAIL;
bada4342
JW
26630 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26631 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26632 Thumb2 modified immediate encoding (T2). */
26633 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 26634 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
26635 {
26636 newimm = encode_thumb32_immediate (value);
26637 if (newimm == (unsigned int) FAIL)
26638 newimm = thumb32_negate_data_op (&newval, value);
26639 }
bada4342 26640 if (newimm == (unsigned int) FAIL)
92e90b6e 26641 {
bada4342 26642 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 26643 {
bada4342
JW
26644 /* Turn add/sum into addw/subw. */
26645 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26646 newval = (newval & 0xfeffffff) | 0x02000000;
26647 /* No flat 12-bit imm encoding for addsw/subsw. */
26648 if ((newval & 0x00100000) == 0)
40f246e3 26649 {
bada4342
JW
26650 /* 12 bit immediate for addw/subw. */
26651 if (value < 0)
26652 {
26653 value = -value;
26654 newval ^= 0x00a00000;
26655 }
26656 if (value > 0xfff)
26657 newimm = (unsigned int) FAIL;
26658 else
26659 newimm = value;
26660 }
26661 }
26662 else
26663 {
26664 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26665 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26666 disassembling, MOV is preferred when there is no encoding
db7bf105 26667 overlap. */
bada4342 26668 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
26669 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26670 but with the Rn field [19:16] set to 1111. */
26671 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
26672 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26673 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 26674 && value >= 0 && value <= 0xffff)
bada4342
JW
26675 {
26676 /* Toggle bit[25] to change encoding from T2 to T3. */
26677 newval ^= 1 << 25;
26678 /* Clear bits[19:16]. */
26679 newval &= 0xfff0ffff;
26680 /* Encoding high 4bits imm. Code below will encode the
26681 remaining low 12bits. */
26682 newval |= (value & 0x0000f000) << 4;
26683 newimm = value & 0x00000fff;
40f246e3 26684 }
e9f89963 26685 }
92e90b6e 26686 }
cc8a6dd0 26687
c19d1205 26688 if (newimm == (unsigned int)FAIL)
3631a3c8 26689 {
c19d1205
ZW
26690 as_bad_where (fixP->fx_file, fixP->fx_line,
26691 _("invalid constant (%lx) after fixup"),
26692 (unsigned long) value);
26693 break;
3631a3c8
NC
26694 }
26695
c19d1205
ZW
26696 newval |= (newimm & 0x800) << 15;
26697 newval |= (newimm & 0x700) << 4;
26698 newval |= (newimm & 0x0ff);
cc8a6dd0 26699
c19d1205
ZW
26700 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26701 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26702 break;
a737bd4d 26703
3eb17e6b 26704 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
26705 if (((unsigned long) value) > 0xffff)
26706 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 26707 _("invalid smc expression"));
2fc8bdac 26708 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26709 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26710 md_number_to_chars (buf, newval, INSN_SIZE);
26711 break;
a737bd4d 26712
90ec0d68
MGD
26713 case BFD_RELOC_ARM_HVC:
26714 if (((unsigned long) value) > 0xffff)
26715 as_bad_where (fixP->fx_file, fixP->fx_line,
26716 _("invalid hvc expression"));
26717 newval = md_chars_to_number (buf, INSN_SIZE);
26718 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26719 md_number_to_chars (buf, newval, INSN_SIZE);
26720 break;
26721
c19d1205 26722 case BFD_RELOC_ARM_SWI:
adbaf948 26723 if (fixP->tc_fix_data != 0)
c19d1205
ZW
26724 {
26725 if (((unsigned long) value) > 0xff)
26726 as_bad_where (fixP->fx_file, fixP->fx_line,
26727 _("invalid swi expression"));
2fc8bdac 26728 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
26729 newval |= value;
26730 md_number_to_chars (buf, newval, THUMB_SIZE);
26731 }
26732 else
26733 {
26734 if (((unsigned long) value) > 0x00ffffff)
26735 as_bad_where (fixP->fx_file, fixP->fx_line,
26736 _("invalid swi expression"));
2fc8bdac 26737 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26738 newval |= value;
26739 md_number_to_chars (buf, newval, INSN_SIZE);
26740 }
26741 break;
a737bd4d 26742
c19d1205
ZW
26743 case BFD_RELOC_ARM_MULTI:
26744 if (((unsigned long) value) > 0xffff)
26745 as_bad_where (fixP->fx_file, fixP->fx_line,
26746 _("invalid expression in load/store multiple"));
26747 newval = value | md_chars_to_number (buf, INSN_SIZE);
26748 md_number_to_chars (buf, newval, INSN_SIZE);
26749 break;
a737bd4d 26750
c19d1205 26751#ifdef OBJ_ELF
39b41c9c 26752 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
26753
26754 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26755 && fixP->fx_addsy
34e77a92 26756 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26757 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26758 && THUMB_IS_FUNC (fixP->fx_addsy))
26759 /* Flip the bl to blx. This is a simple flip
26760 bit here because we generate PCREL_CALL for
26761 unconditional bls. */
26762 {
26763 newval = md_chars_to_number (buf, INSN_SIZE);
26764 newval = newval | 0x10000000;
26765 md_number_to_chars (buf, newval, INSN_SIZE);
26766 temp = 1;
26767 fixP->fx_done = 1;
26768 }
39b41c9c
PB
26769 else
26770 temp = 3;
26771 goto arm_branch_common;
26772
26773 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
26774 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26775 && fixP->fx_addsy
34e77a92 26776 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26777 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26778 && THUMB_IS_FUNC (fixP->fx_addsy))
26779 {
26780 /* This would map to a bl<cond>, b<cond>,
26781 b<always> to a Thumb function. We
26782 need to force a relocation for this particular
26783 case. */
26784 newval = md_chars_to_number (buf, INSN_SIZE);
26785 fixP->fx_done = 0;
26786 }
1a0670f3 26787 /* Fall through. */
267bf995 26788
2fc8bdac 26789 case BFD_RELOC_ARM_PLT32:
c19d1205 26790#endif
39b41c9c
PB
26791 case BFD_RELOC_ARM_PCREL_BRANCH:
26792 temp = 3;
26793 goto arm_branch_common;
a737bd4d 26794
39b41c9c 26795 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 26796
39b41c9c 26797 temp = 1;
267bf995
RR
26798 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26799 && fixP->fx_addsy
34e77a92 26800 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26801 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26802 && ARM_IS_FUNC (fixP->fx_addsy))
26803 {
26804 /* Flip the blx to a bl and warn. */
26805 const char *name = S_GET_NAME (fixP->fx_addsy);
26806 newval = 0xeb000000;
26807 as_warn_where (fixP->fx_file, fixP->fx_line,
26808 _("blx to '%s' an ARM ISA state function changed to bl"),
26809 name);
26810 md_number_to_chars (buf, newval, INSN_SIZE);
26811 temp = 3;
26812 fixP->fx_done = 1;
26813 }
26814
26815#ifdef OBJ_ELF
26816 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 26817 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
26818#endif
26819
39b41c9c 26820 arm_branch_common:
c19d1205 26821 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
26822 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26823 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 26824 also be clear. */
39b41c9c 26825 if (value & temp)
c19d1205 26826 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
26827 _("misaligned branch destination"));
26828 if ((value & (offsetT)0xfe000000) != (offsetT)0
26829 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 26830 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26831
2fc8bdac 26832 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26833 {
2fc8bdac
ZW
26834 newval = md_chars_to_number (buf, INSN_SIZE);
26835 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
26836 /* Set the H bit on BLX instructions. */
26837 if (temp == 1)
26838 {
26839 if (value & 2)
26840 newval |= 0x01000000;
26841 else
26842 newval &= ~0x01000000;
26843 }
2fc8bdac 26844 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 26845 }
c19d1205 26846 break;
a737bd4d 26847
25fe350b
MS
26848 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26849 /* CBZ can only branch forward. */
a737bd4d 26850
738755b0 26851 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
26852 (which, strictly speaking, are prohibited) will be turned into
26853 no-ops.
738755b0
MS
26854
26855 FIXME: It may be better to remove the instruction completely and
26856 perform relaxation. */
26857 if (value == -2)
2fc8bdac
ZW
26858 {
26859 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 26860 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
26861 md_number_to_chars (buf, newval, THUMB_SIZE);
26862 }
738755b0
MS
26863 else
26864 {
26865 if (value & ~0x7e)
08f10d51 26866 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 26867
477330fc 26868 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
26869 {
26870 newval = md_chars_to_number (buf, THUMB_SIZE);
26871 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26872 md_number_to_chars (buf, newval, THUMB_SIZE);
26873 }
26874 }
c19d1205 26875 break;
a737bd4d 26876
c19d1205 26877 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 26878 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 26879 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26880
2fc8bdac
ZW
26881 if (fixP->fx_done || !seg->use_rela_p)
26882 {
26883 newval = md_chars_to_number (buf, THUMB_SIZE);
26884 newval |= (value & 0x1ff) >> 1;
26885 md_number_to_chars (buf, newval, THUMB_SIZE);
26886 }
c19d1205 26887 break;
a737bd4d 26888
c19d1205 26889 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 26890 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 26891 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26892
2fc8bdac
ZW
26893 if (fixP->fx_done || !seg->use_rela_p)
26894 {
26895 newval = md_chars_to_number (buf, THUMB_SIZE);
26896 newval |= (value & 0xfff) >> 1;
26897 md_number_to_chars (buf, newval, THUMB_SIZE);
26898 }
c19d1205 26899 break;
a737bd4d 26900
c19d1205 26901 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
26902 if (fixP->fx_addsy
26903 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26904 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26905 && ARM_IS_FUNC (fixP->fx_addsy)
26906 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26907 {
26908 /* Force a relocation for a branch 20 bits wide. */
26909 fixP->fx_done = 0;
26910 }
08f10d51 26911 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
26912 as_bad_where (fixP->fx_file, fixP->fx_line,
26913 _("conditional branch out of range"));
404ff6b5 26914
2fc8bdac
ZW
26915 if (fixP->fx_done || !seg->use_rela_p)
26916 {
26917 offsetT newval2;
26918 addressT S, J1, J2, lo, hi;
404ff6b5 26919
2fc8bdac
ZW
26920 S = (value & 0x00100000) >> 20;
26921 J2 = (value & 0x00080000) >> 19;
26922 J1 = (value & 0x00040000) >> 18;
26923 hi = (value & 0x0003f000) >> 12;
26924 lo = (value & 0x00000ffe) >> 1;
6c43fab6 26925
2fc8bdac
ZW
26926 newval = md_chars_to_number (buf, THUMB_SIZE);
26927 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26928 newval |= (S << 10) | hi;
26929 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26930 md_number_to_chars (buf, newval, THUMB_SIZE);
26931 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26932 }
c19d1205 26933 break;
6c43fab6 26934
c19d1205 26935 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
26936 /* If there is a blx from a thumb state function to
26937 another thumb function flip this to a bl and warn
26938 about it. */
26939
26940 if (fixP->fx_addsy
34e77a92 26941 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26942 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26943 && THUMB_IS_FUNC (fixP->fx_addsy))
26944 {
26945 const char *name = S_GET_NAME (fixP->fx_addsy);
26946 as_warn_where (fixP->fx_file, fixP->fx_line,
26947 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26948 name);
26949 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26950 newval = newval | 0x1000;
26951 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26952 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26953 fixP->fx_done = 1;
26954 }
26955
26956
26957 goto thumb_bl_common;
26958
c19d1205 26959 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
26960 /* A bl from Thumb state ISA to an internal ARM state function
26961 is converted to a blx. */
26962 if (fixP->fx_addsy
26963 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26964 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26965 && ARM_IS_FUNC (fixP->fx_addsy)
26966 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26967 {
26968 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26969 newval = newval & ~0x1000;
26970 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26971 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26972 fixP->fx_done = 1;
26973 }
26974
26975 thumb_bl_common:
26976
2fc8bdac
ZW
26977 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26978 /* For a BLX instruction, make sure that the relocation is rounded up
26979 to a word boundary. This follows the semantics of the instruction
26980 which specifies that bit 1 of the target address will come from bit
26981 1 of the base address. */
d406f3e4
JB
26982 value = (value + 3) & ~ 3;
26983
26984#ifdef OBJ_ELF
26985 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26986 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26987 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26988#endif
404ff6b5 26989
2b2f5df9
NC
26990 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26991 {
fc289b0a 26992 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
26993 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26994 else if ((value & ~0x1ffffff)
26995 && ((value & ~0x1ffffff) != ~0x1ffffff))
26996 as_bad_where (fixP->fx_file, fixP->fx_line,
26997 _("Thumb2 branch out of range"));
26998 }
4a42ebbc
RR
26999
27000 if (fixP->fx_done || !seg->use_rela_p)
27001 encode_thumb2_b_bl_offset (buf, value);
27002
c19d1205 27003 break;
404ff6b5 27004
c19d1205 27005 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
27006 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27007 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 27008
2fc8bdac 27009 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 27010 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 27011
2fc8bdac 27012 break;
a737bd4d 27013
2fc8bdac
ZW
27014 case BFD_RELOC_8:
27015 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 27016 *buf = value;
c19d1205 27017 break;
a737bd4d 27018
c19d1205 27019 case BFD_RELOC_16:
2fc8bdac 27020 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27021 md_number_to_chars (buf, value, 2);
c19d1205 27022 break;
a737bd4d 27023
c19d1205 27024#ifdef OBJ_ELF
0855e32b
NS
27025 case BFD_RELOC_ARM_TLS_CALL:
27026 case BFD_RELOC_ARM_THM_TLS_CALL:
27027 case BFD_RELOC_ARM_TLS_DESCSEQ:
27028 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 27029 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
27030 case BFD_RELOC_ARM_TLS_GD32:
27031 case BFD_RELOC_ARM_TLS_LE32:
27032 case BFD_RELOC_ARM_TLS_IE32:
27033 case BFD_RELOC_ARM_TLS_LDM32:
27034 case BFD_RELOC_ARM_TLS_LDO32:
27035 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 27036 break;
6c43fab6 27037
5c5a4843
CL
27038 /* Same handling as above, but with the arm_fdpic guard. */
27039 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27040 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27041 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27042 if (arm_fdpic)
27043 {
27044 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27045 }
27046 else
27047 {
27048 as_bad_where (fixP->fx_file, fixP->fx_line,
27049 _("Relocation supported only in FDPIC mode"));
27050 }
27051 break;
27052
c19d1205
ZW
27053 case BFD_RELOC_ARM_GOT32:
27054 case BFD_RELOC_ARM_GOTOFF:
c19d1205 27055 break;
b43420e6
NC
27056
27057 case BFD_RELOC_ARM_GOT_PREL:
27058 if (fixP->fx_done || !seg->use_rela_p)
477330fc 27059 md_number_to_chars (buf, value, 4);
b43420e6
NC
27060 break;
27061
9a6f4e97
NS
27062 case BFD_RELOC_ARM_TARGET2:
27063 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
27064 addend here for REL targets, because it won't be written out
27065 during reloc processing later. */
9a6f4e97
NS
27066 if (fixP->fx_done || !seg->use_rela_p)
27067 md_number_to_chars (buf, fixP->fx_offset, 4);
27068 break;
188fd7ae
CL
27069
27070 /* Relocations for FDPIC. */
27071 case BFD_RELOC_ARM_GOTFUNCDESC:
27072 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27073 case BFD_RELOC_ARM_FUNCDESC:
27074 if (arm_fdpic)
27075 {
27076 if (fixP->fx_done || !seg->use_rela_p)
27077 md_number_to_chars (buf, 0, 4);
27078 }
27079 else
27080 {
27081 as_bad_where (fixP->fx_file, fixP->fx_line,
27082 _("Relocation supported only in FDPIC mode"));
27083 }
27084 break;
c19d1205 27085#endif
6c43fab6 27086
c19d1205
ZW
27087 case BFD_RELOC_RVA:
27088 case BFD_RELOC_32:
27089 case BFD_RELOC_ARM_TARGET1:
27090 case BFD_RELOC_ARM_ROSEGREL32:
27091 case BFD_RELOC_ARM_SBREL32:
27092 case BFD_RELOC_32_PCREL:
f0927246
NC
27093#ifdef TE_PE
27094 case BFD_RELOC_32_SECREL:
27095#endif
2fc8bdac 27096 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
27097#ifdef TE_WINCE
27098 /* For WinCE we only do this for pcrel fixups. */
27099 if (fixP->fx_done || fixP->fx_pcrel)
27100#endif
27101 md_number_to_chars (buf, value, 4);
c19d1205 27102 break;
6c43fab6 27103
c19d1205
ZW
27104#ifdef OBJ_ELF
27105 case BFD_RELOC_ARM_PREL31:
2fc8bdac 27106 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27107 {
27108 newval = md_chars_to_number (buf, 4) & 0x80000000;
27109 if ((value ^ (value >> 1)) & 0x40000000)
27110 {
27111 as_bad_where (fixP->fx_file, fixP->fx_line,
27112 _("rel31 relocation overflow"));
27113 }
27114 newval |= value & 0x7fffffff;
27115 md_number_to_chars (buf, newval, 4);
27116 }
27117 break;
c19d1205 27118#endif
a737bd4d 27119
c19d1205 27120 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27121 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27122 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27123 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27124 newval = md_chars_to_number (buf, INSN_SIZE);
27125 else
27126 newval = get_thumb32_insn (buf);
27127 if ((newval & 0x0f200f00) == 0x0d000900)
27128 {
27129 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27130 has permitted values that are multiples of 2, in the range 0
27131 to 510. */
27132 if (value < -510 || value > 510 || (value & 1))
27133 as_bad_where (fixP->fx_file, fixP->fx_line,
27134 _("co-processor offset out of range"));
27135 }
32c36c3c
AV
27136 else if ((newval & 0xfe001f80) == 0xec000f80)
27137 {
27138 if (value < -511 || value > 512 || (value & 3))
27139 as_bad_where (fixP->fx_file, fixP->fx_line,
27140 _("co-processor offset out of range"));
27141 }
9db2f6b4 27142 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27143 as_bad_where (fixP->fx_file, fixP->fx_line,
27144 _("co-processor offset out of range"));
27145 cp_off_common:
26d97720 27146 sign = value > 0;
c19d1205
ZW
27147 if (value < 0)
27148 value = -value;
8f06b2d8
PB
27149 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27150 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27151 newval = md_chars_to_number (buf, INSN_SIZE);
27152 else
27153 newval = get_thumb32_insn (buf);
26d97720 27154 if (value == 0)
32c36c3c
AV
27155 {
27156 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27157 newval &= 0xffffff80;
27158 else
27159 newval &= 0xffffff00;
27160 }
26d97720
NS
27161 else
27162 {
32c36c3c
AV
27163 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27164 newval &= 0xff7fff80;
27165 else
27166 newval &= 0xff7fff00;
9db2f6b4
RL
27167 if ((newval & 0x0f200f00) == 0x0d000900)
27168 {
27169 /* This is a fp16 vstr/vldr.
27170
27171 It requires the immediate offset in the instruction is shifted
27172 left by 1 to be a half-word offset.
27173
27174 Here, left shift by 1 first, and later right shift by 2
27175 should get the right offset. */
27176 value <<= 1;
27177 }
26d97720
NS
27178 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27179 }
8f06b2d8
PB
27180 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27181 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27182 md_number_to_chars (buf, newval, INSN_SIZE);
27183 else
27184 put_thumb32_insn (buf, newval);
c19d1205 27185 break;
a737bd4d 27186
c19d1205 27187 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 27188 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
27189 if (value < -255 || value > 255)
27190 as_bad_where (fixP->fx_file, fixP->fx_line,
27191 _("co-processor offset out of range"));
df7849c5 27192 value *= 4;
c19d1205 27193 goto cp_off_common;
6c43fab6 27194
c19d1205
ZW
27195 case BFD_RELOC_ARM_THUMB_OFFSET:
27196 newval = md_chars_to_number (buf, THUMB_SIZE);
27197 /* Exactly what ranges, and where the offset is inserted depends
27198 on the type of instruction, we can establish this from the
27199 top 4 bits. */
27200 switch (newval >> 12)
27201 {
27202 case 4: /* PC load. */
27203 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27204 forced to zero for these loads; md_pcrel_from has already
27205 compensated for this. */
27206 if (value & 3)
27207 as_bad_where (fixP->fx_file, fixP->fx_line,
27208 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
27209 (((unsigned long) fixP->fx_frag->fr_address
27210 + (unsigned long) fixP->fx_where) & ~3)
27211 + (unsigned long) value);
a737bd4d 27212
c19d1205
ZW
27213 if (value & ~0x3fc)
27214 as_bad_where (fixP->fx_file, fixP->fx_line,
27215 _("invalid offset, value too big (0x%08lX)"),
27216 (long) value);
a737bd4d 27217
c19d1205
ZW
27218 newval |= value >> 2;
27219 break;
a737bd4d 27220
c19d1205
ZW
27221 case 9: /* SP load/store. */
27222 if (value & ~0x3fc)
27223 as_bad_where (fixP->fx_file, fixP->fx_line,
27224 _("invalid offset, value too big (0x%08lX)"),
27225 (long) value);
27226 newval |= value >> 2;
27227 break;
6c43fab6 27228
c19d1205
ZW
27229 case 6: /* Word load/store. */
27230 if (value & ~0x7c)
27231 as_bad_where (fixP->fx_file, fixP->fx_line,
27232 _("invalid offset, value too big (0x%08lX)"),
27233 (long) value);
27234 newval |= value << 4; /* 6 - 2. */
27235 break;
a737bd4d 27236
c19d1205
ZW
27237 case 7: /* Byte load/store. */
27238 if (value & ~0x1f)
27239 as_bad_where (fixP->fx_file, fixP->fx_line,
27240 _("invalid offset, value too big (0x%08lX)"),
27241 (long) value);
27242 newval |= value << 6;
27243 break;
a737bd4d 27244
c19d1205
ZW
27245 case 8: /* Halfword load/store. */
27246 if (value & ~0x3e)
27247 as_bad_where (fixP->fx_file, fixP->fx_line,
27248 _("invalid offset, value too big (0x%08lX)"),
27249 (long) value);
27250 newval |= value << 5; /* 6 - 1. */
27251 break;
a737bd4d 27252
c19d1205
ZW
27253 default:
27254 as_bad_where (fixP->fx_file, fixP->fx_line,
27255 "Unable to process relocation for thumb opcode: %lx",
27256 (unsigned long) newval);
27257 break;
27258 }
27259 md_number_to_chars (buf, newval, THUMB_SIZE);
27260 break;
a737bd4d 27261
c19d1205
ZW
27262 case BFD_RELOC_ARM_THUMB_ADD:
27263 /* This is a complicated relocation, since we use it for all of
27264 the following immediate relocations:
a737bd4d 27265
c19d1205
ZW
27266 3bit ADD/SUB
27267 8bit ADD/SUB
27268 9bit ADD/SUB SP word-aligned
27269 10bit ADD PC/SP word-aligned
a737bd4d 27270
c19d1205
ZW
27271 The type of instruction being processed is encoded in the
27272 instruction field:
a737bd4d 27273
c19d1205
ZW
27274 0x8000 SUB
27275 0x00F0 Rd
27276 0x000F Rs
27277 */
27278 newval = md_chars_to_number (buf, THUMB_SIZE);
27279 {
27280 int rd = (newval >> 4) & 0xf;
27281 int rs = newval & 0xf;
27282 int subtract = !!(newval & 0x8000);
a737bd4d 27283
c19d1205
ZW
27284 /* Check for HI regs, only very restricted cases allowed:
27285 Adjusting SP, and using PC or SP to get an address. */
27286 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27287 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27288 as_bad_where (fixP->fx_file, fixP->fx_line,
27289 _("invalid Hi register with immediate"));
a737bd4d 27290
c19d1205
ZW
27291 /* If value is negative, choose the opposite instruction. */
27292 if (value < 0)
27293 {
27294 value = -value;
27295 subtract = !subtract;
27296 if (value < 0)
27297 as_bad_where (fixP->fx_file, fixP->fx_line,
27298 _("immediate value out of range"));
27299 }
a737bd4d 27300
c19d1205
ZW
27301 if (rd == REG_SP)
27302 {
75c11999 27303 if (value & ~0x1fc)
c19d1205
ZW
27304 as_bad_where (fixP->fx_file, fixP->fx_line,
27305 _("invalid immediate for stack address calculation"));
27306 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27307 newval |= value >> 2;
27308 }
27309 else if (rs == REG_PC || rs == REG_SP)
27310 {
c12d2c9d
NC
27311 /* PR gas/18541. If the addition is for a defined symbol
27312 within range of an ADR instruction then accept it. */
27313 if (subtract
27314 && value == 4
27315 && fixP->fx_addsy != NULL)
27316 {
27317 subtract = 0;
27318
27319 if (! S_IS_DEFINED (fixP->fx_addsy)
27320 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27321 || S_IS_WEAK (fixP->fx_addsy))
27322 {
27323 as_bad_where (fixP->fx_file, fixP->fx_line,
27324 _("address calculation needs a strongly defined nearby symbol"));
27325 }
27326 else
27327 {
27328 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27329
27330 /* Round up to the next 4-byte boundary. */
27331 if (v & 3)
27332 v = (v + 3) & ~ 3;
27333 else
27334 v += 4;
27335 v = S_GET_VALUE (fixP->fx_addsy) - v;
27336
27337 if (v & ~0x3fc)
27338 {
27339 as_bad_where (fixP->fx_file, fixP->fx_line,
27340 _("symbol too far away"));
27341 }
27342 else
27343 {
27344 fixP->fx_done = 1;
27345 value = v;
27346 }
27347 }
27348 }
27349
c19d1205
ZW
27350 if (subtract || value & ~0x3fc)
27351 as_bad_where (fixP->fx_file, fixP->fx_line,
27352 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27353 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27354 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27355 newval |= rd << 8;
27356 newval |= value >> 2;
27357 }
27358 else if (rs == rd)
27359 {
27360 if (value & ~0xff)
27361 as_bad_where (fixP->fx_file, fixP->fx_line,
27362 _("immediate value out of range"));
27363 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27364 newval |= (rd << 8) | value;
27365 }
27366 else
27367 {
27368 if (value & ~0x7)
27369 as_bad_where (fixP->fx_file, fixP->fx_line,
27370 _("immediate value out of range"));
27371 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27372 newval |= rd | (rs << 3) | (value << 6);
27373 }
27374 }
27375 md_number_to_chars (buf, newval, THUMB_SIZE);
27376 break;
a737bd4d 27377
c19d1205
ZW
27378 case BFD_RELOC_ARM_THUMB_IMM:
27379 newval = md_chars_to_number (buf, THUMB_SIZE);
27380 if (value < 0 || value > 255)
27381 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 27382 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
27383 (long) value);
27384 newval |= value;
27385 md_number_to_chars (buf, newval, THUMB_SIZE);
27386 break;
a737bd4d 27387
c19d1205
ZW
27388 case BFD_RELOC_ARM_THUMB_SHIFT:
27389 /* 5bit shift value (0..32). LSL cannot take 32. */
27390 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27391 temp = newval & 0xf800;
27392 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27393 as_bad_where (fixP->fx_file, fixP->fx_line,
27394 _("invalid shift value: %ld"), (long) value);
27395 /* Shifts of zero must be encoded as LSL. */
27396 if (value == 0)
27397 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27398 /* Shifts of 32 are encoded as zero. */
27399 else if (value == 32)
27400 value = 0;
27401 newval |= value << 6;
27402 md_number_to_chars (buf, newval, THUMB_SIZE);
27403 break;
a737bd4d 27404
c19d1205
ZW
27405 case BFD_RELOC_VTABLE_INHERIT:
27406 case BFD_RELOC_VTABLE_ENTRY:
27407 fixP->fx_done = 0;
27408 return;
6c43fab6 27409
b6895b4f
PB
27410 case BFD_RELOC_ARM_MOVW:
27411 case BFD_RELOC_ARM_MOVT:
27412 case BFD_RELOC_ARM_THUMB_MOVW:
27413 case BFD_RELOC_ARM_THUMB_MOVT:
27414 if (fixP->fx_done || !seg->use_rela_p)
27415 {
27416 /* REL format relocations are limited to a 16-bit addend. */
27417 if (!fixP->fx_done)
27418 {
39623e12 27419 if (value < -0x8000 || value > 0x7fff)
b6895b4f 27420 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 27421 _("offset out of range"));
b6895b4f
PB
27422 }
27423 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27424 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27425 {
27426 value >>= 16;
27427 }
27428
27429 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27430 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27431 {
27432 newval = get_thumb32_insn (buf);
27433 newval &= 0xfbf08f00;
27434 newval |= (value & 0xf000) << 4;
27435 newval |= (value & 0x0800) << 15;
27436 newval |= (value & 0x0700) << 4;
27437 newval |= (value & 0x00ff);
27438 put_thumb32_insn (buf, newval);
27439 }
27440 else
27441 {
27442 newval = md_chars_to_number (buf, 4);
27443 newval &= 0xfff0f000;
27444 newval |= value & 0x0fff;
27445 newval |= (value & 0xf000) << 4;
27446 md_number_to_chars (buf, newval, 4);
27447 }
27448 }
27449 return;
27450
72d98d16
MG
27451 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27452 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27453 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27454 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27455 gas_assert (!fixP->fx_done);
27456 {
27457 bfd_vma insn;
27458 bfd_boolean is_mov;
27459 bfd_vma encoded_addend = value;
27460
27461 /* Check that addend can be encoded in instruction. */
27462 if (!seg->use_rela_p && (value < 0 || value > 255))
27463 as_bad_where (fixP->fx_file, fixP->fx_line,
27464 _("the offset 0x%08lX is not representable"),
27465 (unsigned long) encoded_addend);
27466
27467 /* Extract the instruction. */
27468 insn = md_chars_to_number (buf, THUMB_SIZE);
27469 is_mov = (insn & 0xf800) == 0x2000;
27470
27471 /* Encode insn. */
27472 if (is_mov)
27473 {
27474 if (!seg->use_rela_p)
27475 insn |= encoded_addend;
27476 }
27477 else
27478 {
27479 int rd, rs;
27480
27481 /* Extract the instruction. */
27482 /* Encoding is the following
27483 0x8000 SUB
27484 0x00F0 Rd
27485 0x000F Rs
27486 */
27487 /* The following conditions must be true :
27488 - ADD
27489 - Rd == Rs
27490 - Rd <= 7
27491 */
27492 rd = (insn >> 4) & 0xf;
27493 rs = insn & 0xf;
27494 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27495 as_bad_where (fixP->fx_file, fixP->fx_line,
27496 _("Unable to process relocation for thumb opcode: %lx"),
27497 (unsigned long) insn);
27498
27499 /* Encode as ADD immediate8 thumb 1 code. */
27500 insn = 0x3000 | (rd << 8);
27501
27502 /* Place the encoded addend into the first 8 bits of the
27503 instruction. */
27504 if (!seg->use_rela_p)
27505 insn |= encoded_addend;
27506 }
27507
27508 /* Update the instruction. */
27509 md_number_to_chars (buf, insn, THUMB_SIZE);
27510 }
27511 break;
27512
4962c51a
MS
27513 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27514 case BFD_RELOC_ARM_ALU_PC_G0:
27515 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27516 case BFD_RELOC_ARM_ALU_PC_G1:
27517 case BFD_RELOC_ARM_ALU_PC_G2:
27518 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27519 case BFD_RELOC_ARM_ALU_SB_G0:
27520 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27521 case BFD_RELOC_ARM_ALU_SB_G1:
27522 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 27523 gas_assert (!fixP->fx_done);
4962c51a
MS
27524 if (!seg->use_rela_p)
27525 {
477330fc
RM
27526 bfd_vma insn;
27527 bfd_vma encoded_addend;
3ca4a8ec 27528 bfd_vma addend_abs = llabs (value);
477330fc
RM
27529
27530 /* Check that the absolute value of the addend can be
27531 expressed as an 8-bit constant plus a rotation. */
27532 encoded_addend = encode_arm_immediate (addend_abs);
27533 if (encoded_addend == (unsigned int) FAIL)
4962c51a 27534 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27535 _("the offset 0x%08lX is not representable"),
27536 (unsigned long) addend_abs);
27537
27538 /* Extract the instruction. */
27539 insn = md_chars_to_number (buf, INSN_SIZE);
27540
27541 /* If the addend is positive, use an ADD instruction.
27542 Otherwise use a SUB. Take care not to destroy the S bit. */
27543 insn &= 0xff1fffff;
27544 if (value < 0)
27545 insn |= 1 << 22;
27546 else
27547 insn |= 1 << 23;
27548
27549 /* Place the encoded addend into the first 12 bits of the
27550 instruction. */
27551 insn &= 0xfffff000;
27552 insn |= encoded_addend;
27553
27554 /* Update the instruction. */
27555 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
27556 }
27557 break;
27558
27559 case BFD_RELOC_ARM_LDR_PC_G0:
27560 case BFD_RELOC_ARM_LDR_PC_G1:
27561 case BFD_RELOC_ARM_LDR_PC_G2:
27562 case BFD_RELOC_ARM_LDR_SB_G0:
27563 case BFD_RELOC_ARM_LDR_SB_G1:
27564 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 27565 gas_assert (!fixP->fx_done);
4962c51a 27566 if (!seg->use_rela_p)
477330fc
RM
27567 {
27568 bfd_vma insn;
3ca4a8ec 27569 bfd_vma addend_abs = llabs (value);
4962c51a 27570
477330fc
RM
27571 /* Check that the absolute value of the addend can be
27572 encoded in 12 bits. */
27573 if (addend_abs >= 0x1000)
4962c51a 27574 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27575 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27576 (unsigned long) addend_abs);
27577
27578 /* Extract the instruction. */
27579 insn = md_chars_to_number (buf, INSN_SIZE);
27580
27581 /* If the addend is negative, clear bit 23 of the instruction.
27582 Otherwise set it. */
27583 if (value < 0)
27584 insn &= ~(1 << 23);
27585 else
27586 insn |= 1 << 23;
27587
27588 /* Place the absolute value of the addend into the first 12 bits
27589 of the instruction. */
27590 insn &= 0xfffff000;
27591 insn |= addend_abs;
27592
27593 /* Update the instruction. */
27594 md_number_to_chars (buf, insn, INSN_SIZE);
27595 }
4962c51a
MS
27596 break;
27597
27598 case BFD_RELOC_ARM_LDRS_PC_G0:
27599 case BFD_RELOC_ARM_LDRS_PC_G1:
27600 case BFD_RELOC_ARM_LDRS_PC_G2:
27601 case BFD_RELOC_ARM_LDRS_SB_G0:
27602 case BFD_RELOC_ARM_LDRS_SB_G1:
27603 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 27604 gas_assert (!fixP->fx_done);
4962c51a 27605 if (!seg->use_rela_p)
477330fc
RM
27606 {
27607 bfd_vma insn;
3ca4a8ec 27608 bfd_vma addend_abs = llabs (value);
4962c51a 27609
477330fc
RM
27610 /* Check that the absolute value of the addend can be
27611 encoded in 8 bits. */
27612 if (addend_abs >= 0x100)
4962c51a 27613 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27614 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27615 (unsigned long) addend_abs);
27616
27617 /* Extract the instruction. */
27618 insn = md_chars_to_number (buf, INSN_SIZE);
27619
27620 /* If the addend is negative, clear bit 23 of the instruction.
27621 Otherwise set it. */
27622 if (value < 0)
27623 insn &= ~(1 << 23);
27624 else
27625 insn |= 1 << 23;
27626
27627 /* Place the first four bits of the absolute value of the addend
27628 into the first 4 bits of the instruction, and the remaining
27629 four into bits 8 .. 11. */
27630 insn &= 0xfffff0f0;
27631 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27632
27633 /* Update the instruction. */
27634 md_number_to_chars (buf, insn, INSN_SIZE);
27635 }
4962c51a
MS
27636 break;
27637
27638 case BFD_RELOC_ARM_LDC_PC_G0:
27639 case BFD_RELOC_ARM_LDC_PC_G1:
27640 case BFD_RELOC_ARM_LDC_PC_G2:
27641 case BFD_RELOC_ARM_LDC_SB_G0:
27642 case BFD_RELOC_ARM_LDC_SB_G1:
27643 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 27644 gas_assert (!fixP->fx_done);
4962c51a 27645 if (!seg->use_rela_p)
477330fc
RM
27646 {
27647 bfd_vma insn;
3ca4a8ec 27648 bfd_vma addend_abs = llabs (value);
4962c51a 27649
477330fc
RM
27650 /* Check that the absolute value of the addend is a multiple of
27651 four and, when divided by four, fits in 8 bits. */
27652 if (addend_abs & 0x3)
4962c51a 27653 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27654 _("bad offset 0x%08lX (must be word-aligned)"),
27655 (unsigned long) addend_abs);
4962c51a 27656
477330fc 27657 if ((addend_abs >> 2) > 0xff)
4962c51a 27658 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27659 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27660 (unsigned long) addend_abs);
27661
27662 /* Extract the instruction. */
27663 insn = md_chars_to_number (buf, INSN_SIZE);
27664
27665 /* If the addend is negative, clear bit 23 of the instruction.
27666 Otherwise set it. */
27667 if (value < 0)
27668 insn &= ~(1 << 23);
27669 else
27670 insn |= 1 << 23;
27671
27672 /* Place the addend (divided by four) into the first eight
27673 bits of the instruction. */
27674 insn &= 0xfffffff0;
27675 insn |= addend_abs >> 2;
27676
27677 /* Update the instruction. */
27678 md_number_to_chars (buf, insn, INSN_SIZE);
27679 }
4962c51a
MS
27680 break;
27681
e12437dc
AV
27682 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27683 if (fixP->fx_addsy
27684 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27685 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27686 && ARM_IS_FUNC (fixP->fx_addsy)
27687 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27688 {
27689 /* Force a relocation for a branch 5 bits wide. */
27690 fixP->fx_done = 0;
27691 }
27692 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27693 as_bad_where (fixP->fx_file, fixP->fx_line,
27694 BAD_BRANCH_OFF);
27695
27696 if (fixP->fx_done || !seg->use_rela_p)
27697 {
27698 addressT boff = value >> 1;
27699
27700 newval = md_chars_to_number (buf, THUMB_SIZE);
27701 newval |= (boff << 7);
27702 md_number_to_chars (buf, newval, THUMB_SIZE);
27703 }
27704 break;
27705
f6b2b12d
AV
27706 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27707 if (fixP->fx_addsy
27708 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27709 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27710 && ARM_IS_FUNC (fixP->fx_addsy)
27711 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27712 {
27713 fixP->fx_done = 0;
27714 }
27715 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27716 as_bad_where (fixP->fx_file, fixP->fx_line,
27717 _("branch out of range"));
27718
27719 if (fixP->fx_done || !seg->use_rela_p)
27720 {
27721 newval = md_chars_to_number (buf, THUMB_SIZE);
27722
27723 addressT boff = ((newval & 0x0780) >> 7) << 1;
27724 addressT diff = value - boff;
27725
27726 if (diff == 4)
27727 {
27728 newval |= 1 << 1; /* T bit. */
27729 }
27730 else if (diff != 2)
27731 {
27732 as_bad_where (fixP->fx_file, fixP->fx_line,
27733 _("out of range label-relative fixup value"));
27734 }
27735 md_number_to_chars (buf, newval, THUMB_SIZE);
27736 }
27737 break;
27738
e5d6e09e
AV
27739 case BFD_RELOC_ARM_THUMB_BF17:
27740 if (fixP->fx_addsy
27741 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27742 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27743 && ARM_IS_FUNC (fixP->fx_addsy)
27744 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27745 {
27746 /* Force a relocation for a branch 17 bits wide. */
27747 fixP->fx_done = 0;
27748 }
27749
27750 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27751 as_bad_where (fixP->fx_file, fixP->fx_line,
27752 BAD_BRANCH_OFF);
27753
27754 if (fixP->fx_done || !seg->use_rela_p)
27755 {
27756 offsetT newval2;
27757 addressT immA, immB, immC;
27758
27759 immA = (value & 0x0001f000) >> 12;
27760 immB = (value & 0x00000ffc) >> 2;
27761 immC = (value & 0x00000002) >> 1;
27762
27763 newval = md_chars_to_number (buf, THUMB_SIZE);
27764 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27765 newval |= immA;
27766 newval2 |= (immC << 11) | (immB << 1);
27767 md_number_to_chars (buf, newval, THUMB_SIZE);
27768 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27769 }
27770 break;
27771
1caf72a5
AV
27772 case BFD_RELOC_ARM_THUMB_BF19:
27773 if (fixP->fx_addsy
27774 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27775 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27776 && ARM_IS_FUNC (fixP->fx_addsy)
27777 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27778 {
27779 /* Force a relocation for a branch 19 bits wide. */
27780 fixP->fx_done = 0;
27781 }
27782
27783 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27784 as_bad_where (fixP->fx_file, fixP->fx_line,
27785 BAD_BRANCH_OFF);
27786
27787 if (fixP->fx_done || !seg->use_rela_p)
27788 {
27789 offsetT newval2;
27790 addressT immA, immB, immC;
27791
27792 immA = (value & 0x0007f000) >> 12;
27793 immB = (value & 0x00000ffc) >> 2;
27794 immC = (value & 0x00000002) >> 1;
27795
27796 newval = md_chars_to_number (buf, THUMB_SIZE);
27797 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27798 newval |= immA;
27799 newval2 |= (immC << 11) | (immB << 1);
27800 md_number_to_chars (buf, newval, THUMB_SIZE);
27801 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27802 }
27803 break;
27804
1889da70
AV
27805 case BFD_RELOC_ARM_THUMB_BF13:
27806 if (fixP->fx_addsy
27807 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27808 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27809 && ARM_IS_FUNC (fixP->fx_addsy)
27810 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27811 {
27812 /* Force a relocation for a branch 13 bits wide. */
27813 fixP->fx_done = 0;
27814 }
27815
27816 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27817 as_bad_where (fixP->fx_file, fixP->fx_line,
27818 BAD_BRANCH_OFF);
27819
27820 if (fixP->fx_done || !seg->use_rela_p)
27821 {
27822 offsetT newval2;
27823 addressT immA, immB, immC;
27824
27825 immA = (value & 0x00001000) >> 12;
27826 immB = (value & 0x00000ffc) >> 2;
27827 immC = (value & 0x00000002) >> 1;
27828
27829 newval = md_chars_to_number (buf, THUMB_SIZE);
27830 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27831 newval |= immA;
27832 newval2 |= (immC << 11) | (immB << 1);
27833 md_number_to_chars (buf, newval, THUMB_SIZE);
27834 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27835 }
27836 break;
27837
60f993ce
AV
27838 case BFD_RELOC_ARM_THUMB_LOOP12:
27839 if (fixP->fx_addsy
27840 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27841 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27842 && ARM_IS_FUNC (fixP->fx_addsy)
27843 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27844 {
27845 /* Force a relocation for a branch 12 bits wide. */
27846 fixP->fx_done = 0;
27847 }
27848
27849 bfd_vma insn = get_thumb32_insn (buf);
27850 /* le lr, <label> or le <label> */
27851 if (((insn & 0xffffffff) == 0xf00fc001)
27852 || ((insn & 0xffffffff) == 0xf02fc001))
27853 value = -value;
27854
27855 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27856 as_bad_where (fixP->fx_file, fixP->fx_line,
27857 BAD_BRANCH_OFF);
27858 if (fixP->fx_done || !seg->use_rela_p)
27859 {
27860 addressT imml, immh;
27861
27862 immh = (value & 0x00000ffc) >> 2;
27863 imml = (value & 0x00000002) >> 1;
27864
27865 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27866 newval |= (imml << 11) | (immh << 1);
27867 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27868 }
27869 break;
27870
845b51d6
PB
27871 case BFD_RELOC_ARM_V4BX:
27872 /* This will need to go in the object file. */
27873 fixP->fx_done = 0;
27874 break;
27875
c19d1205
ZW
27876 case BFD_RELOC_UNUSED:
27877 default:
27878 as_bad_where (fixP->fx_file, fixP->fx_line,
27879 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27880 }
6c43fab6
RE
27881}
27882
c19d1205
ZW
27883/* Translate internal representation of relocation info to BFD target
27884 format. */
a737bd4d 27885
c19d1205 27886arelent *
00a97672 27887tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 27888{
c19d1205
ZW
27889 arelent * reloc;
27890 bfd_reloc_code_real_type code;
a737bd4d 27891
325801bd 27892 reloc = XNEW (arelent);
a737bd4d 27893
325801bd 27894 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
27895 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27896 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 27897
2fc8bdac 27898 if (fixp->fx_pcrel)
00a97672
RS
27899 {
27900 if (section->use_rela_p)
27901 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27902 else
27903 fixp->fx_offset = reloc->address;
27904 }
c19d1205 27905 reloc->addend = fixp->fx_offset;
a737bd4d 27906
c19d1205 27907 switch (fixp->fx_r_type)
a737bd4d 27908 {
c19d1205
ZW
27909 case BFD_RELOC_8:
27910 if (fixp->fx_pcrel)
27911 {
27912 code = BFD_RELOC_8_PCREL;
27913 break;
27914 }
1a0670f3 27915 /* Fall through. */
a737bd4d 27916
c19d1205
ZW
27917 case BFD_RELOC_16:
27918 if (fixp->fx_pcrel)
27919 {
27920 code = BFD_RELOC_16_PCREL;
27921 break;
27922 }
1a0670f3 27923 /* Fall through. */
6c43fab6 27924
c19d1205
ZW
27925 case BFD_RELOC_32:
27926 if (fixp->fx_pcrel)
27927 {
27928 code = BFD_RELOC_32_PCREL;
27929 break;
27930 }
1a0670f3 27931 /* Fall through. */
a737bd4d 27932
b6895b4f
PB
27933 case BFD_RELOC_ARM_MOVW:
27934 if (fixp->fx_pcrel)
27935 {
27936 code = BFD_RELOC_ARM_MOVW_PCREL;
27937 break;
27938 }
1a0670f3 27939 /* Fall through. */
b6895b4f
PB
27940
27941 case BFD_RELOC_ARM_MOVT:
27942 if (fixp->fx_pcrel)
27943 {
27944 code = BFD_RELOC_ARM_MOVT_PCREL;
27945 break;
27946 }
1a0670f3 27947 /* Fall through. */
b6895b4f
PB
27948
27949 case BFD_RELOC_ARM_THUMB_MOVW:
27950 if (fixp->fx_pcrel)
27951 {
27952 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27953 break;
27954 }
1a0670f3 27955 /* Fall through. */
b6895b4f
PB
27956
27957 case BFD_RELOC_ARM_THUMB_MOVT:
27958 if (fixp->fx_pcrel)
27959 {
27960 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27961 break;
27962 }
1a0670f3 27963 /* Fall through. */
b6895b4f 27964
c19d1205
ZW
27965 case BFD_RELOC_NONE:
27966 case BFD_RELOC_ARM_PCREL_BRANCH:
27967 case BFD_RELOC_ARM_PCREL_BLX:
27968 case BFD_RELOC_RVA:
27969 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27970 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27971 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27972 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27973 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27974 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
27975 case BFD_RELOC_VTABLE_ENTRY:
27976 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
27977#ifdef TE_PE
27978 case BFD_RELOC_32_SECREL:
27979#endif
c19d1205
ZW
27980 code = fixp->fx_r_type;
27981 break;
a737bd4d 27982
00adf2d4
JB
27983 case BFD_RELOC_THUMB_PCREL_BLX:
27984#ifdef OBJ_ELF
27985 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27986 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27987 else
27988#endif
27989 code = BFD_RELOC_THUMB_PCREL_BLX;
27990 break;
27991
c19d1205
ZW
27992 case BFD_RELOC_ARM_LITERAL:
27993 case BFD_RELOC_ARM_HWLITERAL:
27994 /* If this is called then the a literal has
27995 been referenced across a section boundary. */
27996 as_bad_where (fixp->fx_file, fixp->fx_line,
27997 _("literal referenced across section boundary"));
27998 return NULL;
a737bd4d 27999
c19d1205 28000#ifdef OBJ_ELF
0855e32b
NS
28001 case BFD_RELOC_ARM_TLS_CALL:
28002 case BFD_RELOC_ARM_THM_TLS_CALL:
28003 case BFD_RELOC_ARM_TLS_DESCSEQ:
28004 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
28005 case BFD_RELOC_ARM_GOT32:
28006 case BFD_RELOC_ARM_GOTOFF:
b43420e6 28007 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
28008 case BFD_RELOC_ARM_PLT32:
28009 case BFD_RELOC_ARM_TARGET1:
28010 case BFD_RELOC_ARM_ROSEGREL32:
28011 case BFD_RELOC_ARM_SBREL32:
28012 case BFD_RELOC_ARM_PREL31:
28013 case BFD_RELOC_ARM_TARGET2:
c19d1205 28014 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
28015 case BFD_RELOC_ARM_PCREL_CALL:
28016 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
28017 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28018 case BFD_RELOC_ARM_ALU_PC_G0:
28019 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28020 case BFD_RELOC_ARM_ALU_PC_G1:
28021 case BFD_RELOC_ARM_ALU_PC_G2:
28022 case BFD_RELOC_ARM_LDR_PC_G0:
28023 case BFD_RELOC_ARM_LDR_PC_G1:
28024 case BFD_RELOC_ARM_LDR_PC_G2:
28025 case BFD_RELOC_ARM_LDRS_PC_G0:
28026 case BFD_RELOC_ARM_LDRS_PC_G1:
28027 case BFD_RELOC_ARM_LDRS_PC_G2:
28028 case BFD_RELOC_ARM_LDC_PC_G0:
28029 case BFD_RELOC_ARM_LDC_PC_G1:
28030 case BFD_RELOC_ARM_LDC_PC_G2:
28031 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28032 case BFD_RELOC_ARM_ALU_SB_G0:
28033 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28034 case BFD_RELOC_ARM_ALU_SB_G1:
28035 case BFD_RELOC_ARM_ALU_SB_G2:
28036 case BFD_RELOC_ARM_LDR_SB_G0:
28037 case BFD_RELOC_ARM_LDR_SB_G1:
28038 case BFD_RELOC_ARM_LDR_SB_G2:
28039 case BFD_RELOC_ARM_LDRS_SB_G0:
28040 case BFD_RELOC_ARM_LDRS_SB_G1:
28041 case BFD_RELOC_ARM_LDRS_SB_G2:
28042 case BFD_RELOC_ARM_LDC_SB_G0:
28043 case BFD_RELOC_ARM_LDC_SB_G1:
28044 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 28045 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
28046 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28047 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28048 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28049 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
28050 case BFD_RELOC_ARM_GOTFUNCDESC:
28051 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28052 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 28053 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 28054 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 28055 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
28056 code = fixp->fx_r_type;
28057 break;
a737bd4d 28058
0855e32b 28059 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 28060 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 28061 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 28062 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 28063 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 28064 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 28065 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 28066 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
28067 /* BFD will include the symbol's address in the addend.
28068 But we don't want that, so subtract it out again here. */
28069 if (!S_IS_COMMON (fixp->fx_addsy))
28070 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28071 code = fixp->fx_r_type;
28072 break;
28073#endif
a737bd4d 28074
c19d1205
ZW
28075 case BFD_RELOC_ARM_IMMEDIATE:
28076 as_bad_where (fixp->fx_file, fixp->fx_line,
28077 _("internal relocation (type: IMMEDIATE) not fixed up"));
28078 return NULL;
a737bd4d 28079
c19d1205
ZW
28080 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28081 as_bad_where (fixp->fx_file, fixp->fx_line,
28082 _("ADRL used for a symbol not defined in the same file"));
28083 return NULL;
a737bd4d 28084
e12437dc 28085 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 28086 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 28087 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
28088 as_bad_where (fixp->fx_file, fixp->fx_line,
28089 _("%s used for a symbol not defined in the same file"),
28090 bfd_get_reloc_code_name (fixp->fx_r_type));
28091 return NULL;
28092
c19d1205 28093 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
28094 if (section->use_rela_p)
28095 {
28096 code = fixp->fx_r_type;
28097 break;
28098 }
28099
c19d1205
ZW
28100 if (fixp->fx_addsy != NULL
28101 && !S_IS_DEFINED (fixp->fx_addsy)
28102 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 28103 {
c19d1205
ZW
28104 as_bad_where (fixp->fx_file, fixp->fx_line,
28105 _("undefined local label `%s'"),
28106 S_GET_NAME (fixp->fx_addsy));
28107 return NULL;
a737bd4d
NC
28108 }
28109
c19d1205
ZW
28110 as_bad_where (fixp->fx_file, fixp->fx_line,
28111 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28112 return NULL;
a737bd4d 28113
c19d1205
ZW
28114 default:
28115 {
e0471c16 28116 const char * type;
6c43fab6 28117
c19d1205
ZW
28118 switch (fixp->fx_r_type)
28119 {
28120 case BFD_RELOC_NONE: type = "NONE"; break;
28121 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28122 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28123 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28124 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28125 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28126 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28127 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28128 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28129 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28130 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28131 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28132 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28133 default: type = _("<unknown>"); break;
28134 }
28135 as_bad_where (fixp->fx_file, fixp->fx_line,
28136 _("cannot represent %s relocation in this object file format"),
28137 type);
28138 return NULL;
28139 }
a737bd4d 28140 }
6c43fab6 28141
c19d1205
ZW
28142#ifdef OBJ_ELF
28143 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28144 && GOT_symbol
28145 && fixp->fx_addsy == GOT_symbol)
28146 {
28147 code = BFD_RELOC_ARM_GOTPC;
28148 reloc->addend = fixp->fx_offset = reloc->address;
28149 }
28150#endif
6c43fab6 28151
c19d1205 28152 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 28153
c19d1205
ZW
28154 if (reloc->howto == NULL)
28155 {
28156 as_bad_where (fixp->fx_file, fixp->fx_line,
28157 _("cannot represent %s relocation in this object file format"),
28158 bfd_get_reloc_code_name (code));
28159 return NULL;
28160 }
6c43fab6 28161
c19d1205
ZW
28162 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28163 vtable entry to be used in the relocation's section offset. */
28164 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28165 reloc->address = fixp->fx_offset;
6c43fab6 28166
c19d1205 28167 return reloc;
6c43fab6
RE
28168}
28169
c19d1205 28170/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 28171
c19d1205
ZW
28172void
28173cons_fix_new_arm (fragS * frag,
28174 int where,
28175 int size,
62ebcb5c
AM
28176 expressionS * exp,
28177 bfd_reloc_code_real_type reloc)
6c43fab6 28178{
c19d1205 28179 int pcrel = 0;
6c43fab6 28180
c19d1205
ZW
28181 /* Pick a reloc.
28182 FIXME: @@ Should look at CPU word size. */
28183 switch (size)
28184 {
28185 case 1:
62ebcb5c 28186 reloc = BFD_RELOC_8;
c19d1205
ZW
28187 break;
28188 case 2:
62ebcb5c 28189 reloc = BFD_RELOC_16;
c19d1205
ZW
28190 break;
28191 case 4:
28192 default:
62ebcb5c 28193 reloc = BFD_RELOC_32;
c19d1205
ZW
28194 break;
28195 case 8:
62ebcb5c 28196 reloc = BFD_RELOC_64;
c19d1205
ZW
28197 break;
28198 }
6c43fab6 28199
f0927246
NC
28200#ifdef TE_PE
28201 if (exp->X_op == O_secrel)
28202 {
28203 exp->X_op = O_symbol;
62ebcb5c 28204 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
28205 }
28206#endif
28207
62ebcb5c 28208 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 28209}
6c43fab6 28210
4343666d 28211#if defined (OBJ_COFF)
c19d1205
ZW
28212void
28213arm_validate_fix (fixS * fixP)
6c43fab6 28214{
c19d1205
ZW
28215 /* If the destination of the branch is a defined symbol which does not have
28216 the THUMB_FUNC attribute, then we must be calling a function which has
28217 the (interfacearm) attribute. We look for the Thumb entry point to that
28218 function and change the branch to refer to that function instead. */
28219 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28220 && fixP->fx_addsy != NULL
28221 && S_IS_DEFINED (fixP->fx_addsy)
28222 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 28223 {
c19d1205 28224 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 28225 }
c19d1205
ZW
28226}
28227#endif
6c43fab6 28228
267bf995 28229
c19d1205
ZW
28230int
28231arm_force_relocation (struct fix * fixp)
28232{
28233#if defined (OBJ_COFF) && defined (TE_PE)
28234 if (fixp->fx_r_type == BFD_RELOC_RVA)
28235 return 1;
28236#endif
6c43fab6 28237
267bf995
RR
28238 /* In case we have a call or a branch to a function in ARM ISA mode from
28239 a thumb function or vice-versa force the relocation. These relocations
28240 are cleared off for some cores that might have blx and simple transformations
28241 are possible. */
28242
28243#ifdef OBJ_ELF
28244 switch (fixp->fx_r_type)
28245 {
28246 case BFD_RELOC_ARM_PCREL_JUMP:
28247 case BFD_RELOC_ARM_PCREL_CALL:
28248 case BFD_RELOC_THUMB_PCREL_BLX:
28249 if (THUMB_IS_FUNC (fixp->fx_addsy))
28250 return 1;
28251 break;
28252
28253 case BFD_RELOC_ARM_PCREL_BLX:
28254 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28255 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28256 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28257 if (ARM_IS_FUNC (fixp->fx_addsy))
28258 return 1;
28259 break;
28260
28261 default:
28262 break;
28263 }
28264#endif
28265
b5884301
PB
28266 /* Resolve these relocations even if the symbol is extern or weak.
28267 Technically this is probably wrong due to symbol preemption.
28268 In practice these relocations do not have enough range to be useful
28269 at dynamic link time, and some code (e.g. in the Linux kernel)
28270 expects these references to be resolved. */
c19d1205
ZW
28271 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28272 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 28273 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 28274 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
28275 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28276 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28277 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 28278 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
28279 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28280 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
28281 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28282 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28283 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28284 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 28285 return 0;
a737bd4d 28286
4962c51a
MS
28287 /* Always leave these relocations for the linker. */
28288 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28289 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28290 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28291 return 1;
28292
f0291e4c
PB
28293 /* Always generate relocations against function symbols. */
28294 if (fixp->fx_r_type == BFD_RELOC_32
28295 && fixp->fx_addsy
28296 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28297 return 1;
28298
c19d1205 28299 return generic_force_reloc (fixp);
404ff6b5
AH
28300}
28301
0ffdc86c 28302#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
28303/* Relocations against function names must be left unadjusted,
28304 so that the linker can use this information to generate interworking
28305 stubs. The MIPS version of this function
c19d1205
ZW
28306 also prevents relocations that are mips-16 specific, but I do not
28307 know why it does this.
404ff6b5 28308
c19d1205
ZW
28309 FIXME:
28310 There is one other problem that ought to be addressed here, but
28311 which currently is not: Taking the address of a label (rather
28312 than a function) and then later jumping to that address. Such
28313 addresses also ought to have their bottom bit set (assuming that
28314 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28315
c19d1205
ZW
28316bfd_boolean
28317arm_fix_adjustable (fixS * fixP)
404ff6b5 28318{
c19d1205
ZW
28319 if (fixP->fx_addsy == NULL)
28320 return 1;
404ff6b5 28321
e28387c3
PB
28322 /* Preserve relocations against symbols with function type. */
28323 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28324 return FALSE;
e28387c3 28325
c19d1205
ZW
28326 if (THUMB_IS_FUNC (fixP->fx_addsy)
28327 && fixP->fx_subsy == NULL)
c921be7d 28328 return FALSE;
a737bd4d 28329
c19d1205
ZW
28330 /* We need the symbol name for the VTABLE entries. */
28331 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28332 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28333 return FALSE;
404ff6b5 28334
c19d1205
ZW
28335 /* Don't allow symbols to be discarded on GOT related relocs. */
28336 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28337 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28338 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28339 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28340 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28341 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28342 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28343 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28344 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28345 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28346 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28347 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28348 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28349 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28350 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28351 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28352 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28353 return FALSE;
a737bd4d 28354
4962c51a
MS
28355 /* Similarly for group relocations. */
28356 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28357 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28358 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28359 return FALSE;
4962c51a 28360
79947c54
CD
28361 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28362 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28363 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28364 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28365 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28366 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28367 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28368 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28369 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28370 return FALSE;
79947c54 28371
72d98d16
MG
28372 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28373 offsets, so keep these symbols. */
28374 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28375 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28376 return FALSE;
28377
c921be7d 28378 return TRUE;
a737bd4d 28379}
0ffdc86c
NC
28380#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28381
28382#ifdef OBJ_ELF
c19d1205
ZW
28383const char *
28384elf32_arm_target_format (void)
404ff6b5 28385{
c19d1205
ZW
28386#ifdef TE_SYMBIAN
28387 return (target_big_endian
28388 ? "elf32-bigarm-symbian"
28389 : "elf32-littlearm-symbian");
28390#elif defined (TE_VXWORKS)
28391 return (target_big_endian
28392 ? "elf32-bigarm-vxworks"
28393 : "elf32-littlearm-vxworks");
b38cadfb
NC
28394#elif defined (TE_NACL)
28395 return (target_big_endian
28396 ? "elf32-bigarm-nacl"
28397 : "elf32-littlearm-nacl");
c19d1205 28398#else
18a20338
CL
28399 if (arm_fdpic)
28400 {
28401 if (target_big_endian)
28402 return "elf32-bigarm-fdpic";
28403 else
28404 return "elf32-littlearm-fdpic";
28405 }
c19d1205 28406 else
18a20338
CL
28407 {
28408 if (target_big_endian)
28409 return "elf32-bigarm";
28410 else
28411 return "elf32-littlearm";
28412 }
c19d1205 28413#endif
404ff6b5
AH
28414}
28415
c19d1205
ZW
28416void
28417armelf_frob_symbol (symbolS * symp,
28418 int * puntp)
404ff6b5 28419{
c19d1205
ZW
28420 elf_frob_symbol (symp, puntp);
28421}
28422#endif
404ff6b5 28423
c19d1205 28424/* MD interface: Finalization. */
a737bd4d 28425
c19d1205
ZW
28426void
28427arm_cleanup (void)
28428{
28429 literal_pool * pool;
a737bd4d 28430
5ee91343
AV
28431 /* Ensure that all the predication blocks are properly closed. */
28432 check_pred_blocks_finished ();
e07e6e58 28433
c19d1205
ZW
28434 for (pool = list_of_pools; pool; pool = pool->next)
28435 {
5f4273c7 28436 /* Put it at the end of the relevant section. */
c19d1205
ZW
28437 subseg_set (pool->section, pool->sub_section);
28438#ifdef OBJ_ELF
28439 arm_elf_change_section ();
28440#endif
28441 s_ltorg (0);
28442 }
404ff6b5
AH
28443}
28444
cd000bff
DJ
28445#ifdef OBJ_ELF
28446/* Remove any excess mapping symbols generated for alignment frags in
28447 SEC. We may have created a mapping symbol before a zero byte
28448 alignment; remove it if there's a mapping symbol after the
28449 alignment. */
28450static void
28451check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28452 void *dummy ATTRIBUTE_UNUSED)
28453{
28454 segment_info_type *seginfo = seg_info (sec);
28455 fragS *fragp;
28456
28457 if (seginfo == NULL || seginfo->frchainP == NULL)
28458 return;
28459
28460 for (fragp = seginfo->frchainP->frch_root;
28461 fragp != NULL;
28462 fragp = fragp->fr_next)
28463 {
28464 symbolS *sym = fragp->tc_frag_data.last_map;
28465 fragS *next = fragp->fr_next;
28466
28467 /* Variable-sized frags have been converted to fixed size by
28468 this point. But if this was variable-sized to start with,
28469 there will be a fixed-size frag after it. So don't handle
28470 next == NULL. */
28471 if (sym == NULL || next == NULL)
28472 continue;
28473
28474 if (S_GET_VALUE (sym) < next->fr_address)
28475 /* Not at the end of this frag. */
28476 continue;
28477 know (S_GET_VALUE (sym) == next->fr_address);
28478
28479 do
28480 {
28481 if (next->tc_frag_data.first_map != NULL)
28482 {
28483 /* Next frag starts with a mapping symbol. Discard this
28484 one. */
28485 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28486 break;
28487 }
28488
28489 if (next->fr_next == NULL)
28490 {
28491 /* This mapping symbol is at the end of the section. Discard
28492 it. */
28493 know (next->fr_fix == 0 && next->fr_var == 0);
28494 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28495 break;
28496 }
28497
28498 /* As long as we have empty frags without any mapping symbols,
28499 keep looking. */
28500 /* If the next frag is non-empty and does not start with a
28501 mapping symbol, then this mapping symbol is required. */
28502 if (next->fr_address != next->fr_next->fr_address)
28503 break;
28504
28505 next = next->fr_next;
28506 }
28507 while (next != NULL);
28508 }
28509}
28510#endif
28511
c19d1205
ZW
28512/* Adjust the symbol table. This marks Thumb symbols as distinct from
28513 ARM ones. */
404ff6b5 28514
c19d1205
ZW
28515void
28516arm_adjust_symtab (void)
404ff6b5 28517{
c19d1205
ZW
28518#ifdef OBJ_COFF
28519 symbolS * sym;
404ff6b5 28520
c19d1205
ZW
28521 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28522 {
28523 if (ARM_IS_THUMB (sym))
28524 {
28525 if (THUMB_IS_FUNC (sym))
28526 {
28527 /* Mark the symbol as a Thumb function. */
28528 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28529 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28530 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 28531
c19d1205
ZW
28532 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28533 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28534 else
28535 as_bad (_("%s: unexpected function type: %d"),
28536 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28537 }
28538 else switch (S_GET_STORAGE_CLASS (sym))
28539 {
28540 case C_EXT:
28541 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28542 break;
28543 case C_STAT:
28544 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28545 break;
28546 case C_LABEL:
28547 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28548 break;
28549 default:
28550 /* Do nothing. */
28551 break;
28552 }
28553 }
a737bd4d 28554
c19d1205
ZW
28555 if (ARM_IS_INTERWORK (sym))
28556 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 28557 }
c19d1205
ZW
28558#endif
28559#ifdef OBJ_ELF
28560 symbolS * sym;
28561 char bind;
404ff6b5 28562
c19d1205 28563 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 28564 {
c19d1205
ZW
28565 if (ARM_IS_THUMB (sym))
28566 {
28567 elf_symbol_type * elf_sym;
404ff6b5 28568
c19d1205
ZW
28569 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28570 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 28571
b0796911
PB
28572 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28573 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
28574 {
28575 /* If it's a .thumb_func, declare it as so,
28576 otherwise tag label as .code 16. */
28577 if (THUMB_IS_FUNC (sym))
39d911fc
TP
28578 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28579 ST_BRANCH_TO_THUMB);
3ba67470 28580 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
28581 elf_sym->internal_elf_sym.st_info =
28582 ELF_ST_INFO (bind, STT_ARM_16BIT);
28583 }
28584 }
28585 }
cd000bff
DJ
28586
28587 /* Remove any overlapping mapping symbols generated by alignment frags. */
28588 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
28589 /* Now do generic ELF adjustments. */
28590 elf_adjust_symtab ();
c19d1205 28591#endif
404ff6b5
AH
28592}
28593
c19d1205 28594/* MD interface: Initialization. */
404ff6b5 28595
a737bd4d 28596static void
c19d1205 28597set_constant_flonums (void)
a737bd4d 28598{
c19d1205 28599 int i;
404ff6b5 28600
c19d1205
ZW
28601 for (i = 0; i < NUM_FLOAT_VALS; i++)
28602 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28603 abort ();
a737bd4d 28604}
404ff6b5 28605
3e9e4fcf
JB
28606/* Auto-select Thumb mode if it's the only available instruction set for the
28607 given architecture. */
28608
28609static void
28610autoselect_thumb_from_cpu_variant (void)
28611{
28612 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28613 opcode_select (16);
28614}
28615
c19d1205
ZW
28616void
28617md_begin (void)
a737bd4d 28618{
c19d1205
ZW
28619 unsigned mach;
28620 unsigned int i;
404ff6b5 28621
c19d1205
ZW
28622 if ( (arm_ops_hsh = hash_new ()) == NULL
28623 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 28624 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
28625 || (arm_shift_hsh = hash_new ()) == NULL
28626 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 28627 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 28628 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
28629 || (arm_reloc_hsh = hash_new ()) == NULL
28630 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
28631 as_fatal (_("virtual memory exhausted"));
28632
28633 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 28634 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 28635 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 28636 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
28637 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28638 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 28639 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 28640 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 28641 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28642 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 28643 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28644 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 28645 (void *) (v7m_psrs + i));
c19d1205 28646 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 28647 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
28648 for (i = 0;
28649 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28650 i++)
d3ce72d0 28651 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 28652 (void *) (barrier_opt_names + i));
c19d1205 28653#ifdef OBJ_ELF
3da1d841
NC
28654 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28655 {
28656 struct reloc_entry * entry = reloc_names + i;
28657
28658 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28659 /* This makes encode_branch() use the EABI versions of this relocation. */
28660 entry->reloc = BFD_RELOC_UNUSED;
28661
28662 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28663 }
c19d1205
ZW
28664#endif
28665
28666 set_constant_flonums ();
404ff6b5 28667
c19d1205
ZW
28668 /* Set the cpu variant based on the command-line options. We prefer
28669 -mcpu= over -march= if both are set (as for GCC); and we prefer
28670 -mfpu= over any other way of setting the floating point unit.
28671 Use of legacy options with new options are faulted. */
e74cfd16 28672 if (legacy_cpu)
404ff6b5 28673 {
e74cfd16 28674 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
28675 as_bad (_("use of old and new-style options to set CPU type"));
28676
4d354d8b 28677 selected_arch = *legacy_cpu;
404ff6b5 28678 }
4d354d8b
TP
28679 else if (mcpu_cpu_opt)
28680 {
28681 selected_arch = *mcpu_cpu_opt;
28682 selected_ext = *mcpu_ext_opt;
28683 }
28684 else if (march_cpu_opt)
c168ce07 28685 {
4d354d8b
TP
28686 selected_arch = *march_cpu_opt;
28687 selected_ext = *march_ext_opt;
c168ce07 28688 }
4d354d8b 28689 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 28690
e74cfd16 28691 if (legacy_fpu)
c19d1205 28692 {
e74cfd16 28693 if (mfpu_opt)
c19d1205 28694 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 28695
4d354d8b 28696 selected_fpu = *legacy_fpu;
03b1477f 28697 }
4d354d8b
TP
28698 else if (mfpu_opt)
28699 selected_fpu = *mfpu_opt;
28700 else
03b1477f 28701 {
45eb4c1b
NS
28702#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28703 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
28704 /* Some environments specify a default FPU. If they don't, infer it
28705 from the processor. */
e74cfd16 28706 if (mcpu_fpu_opt)
4d354d8b 28707 selected_fpu = *mcpu_fpu_opt;
e7da50fa 28708 else if (march_fpu_opt)
4d354d8b 28709 selected_fpu = *march_fpu_opt;
39c2da32 28710#else
4d354d8b 28711 selected_fpu = fpu_default;
39c2da32 28712#endif
03b1477f
RE
28713 }
28714
4d354d8b 28715 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 28716 {
4d354d8b
TP
28717 if (!no_cpu_selected ())
28718 selected_fpu = fpu_default;
03b1477f 28719 else
4d354d8b 28720 selected_fpu = fpu_arch_fpa;
03b1477f
RE
28721 }
28722
ee065d83 28723#ifdef CPU_DEFAULT
4d354d8b 28724 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 28725 {
4d354d8b
TP
28726 selected_arch = cpu_default;
28727 selected_cpu = selected_arch;
ee065d83 28728 }
4d354d8b 28729 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 28730#else
4d354d8b
TP
28731 /* Autodection of feature mode: allow all features in cpu_variant but leave
28732 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28733 after all instruction have been processed and we can decide what CPU
28734 should be selected. */
28735 if (ARM_FEATURE_ZERO (selected_arch))
28736 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 28737 else
4d354d8b 28738 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 28739#endif
03b1477f 28740
3e9e4fcf
JB
28741 autoselect_thumb_from_cpu_variant ();
28742
e74cfd16 28743 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 28744
f17c130b 28745#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 28746 {
7cc69913
NC
28747 unsigned int flags = 0;
28748
28749#if defined OBJ_ELF
28750 flags = meabi_flags;
d507cf36
PB
28751
28752 switch (meabi_flags)
33a392fb 28753 {
d507cf36 28754 case EF_ARM_EABI_UNKNOWN:
7cc69913 28755#endif
d507cf36
PB
28756 /* Set the flags in the private structure. */
28757 if (uses_apcs_26) flags |= F_APCS26;
28758 if (support_interwork) flags |= F_INTERWORK;
28759 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 28760 if (pic_code) flags |= F_PIC;
e74cfd16 28761 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
28762 flags |= F_SOFT_FLOAT;
28763
d507cf36
PB
28764 switch (mfloat_abi_opt)
28765 {
28766 case ARM_FLOAT_ABI_SOFT:
28767 case ARM_FLOAT_ABI_SOFTFP:
28768 flags |= F_SOFT_FLOAT;
28769 break;
33a392fb 28770
d507cf36
PB
28771 case ARM_FLOAT_ABI_HARD:
28772 if (flags & F_SOFT_FLOAT)
28773 as_bad (_("hard-float conflicts with specified fpu"));
28774 break;
28775 }
03b1477f 28776
e74cfd16
PB
28777 /* Using pure-endian doubles (even if soft-float). */
28778 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 28779 flags |= F_VFP_FLOAT;
f17c130b 28780
fde78edd 28781#if defined OBJ_ELF
e74cfd16 28782 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 28783 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
28784 break;
28785
8cb51566 28786 case EF_ARM_EABI_VER4:
3a4a14e9 28787 case EF_ARM_EABI_VER5:
c19d1205 28788 /* No additional flags to set. */
d507cf36
PB
28789 break;
28790
28791 default:
28792 abort ();
28793 }
7cc69913 28794#endif
b99bd4ef
NC
28795 bfd_set_private_flags (stdoutput, flags);
28796
28797 /* We have run out flags in the COFF header to encode the
28798 status of ATPCS support, so instead we create a dummy,
c19d1205 28799 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
28800 if (atpcs)
28801 {
28802 asection * sec;
28803
28804 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28805
28806 if (sec != NULL)
28807 {
28808 bfd_set_section_flags
28809 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28810 bfd_set_section_size (stdoutput, sec, 0);
28811 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28812 }
28813 }
7cc69913 28814 }
f17c130b 28815#endif
b99bd4ef
NC
28816
28817 /* Record the CPU type as well. */
2d447fca
JM
28818 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28819 mach = bfd_mach_arm_iWMMXt2;
28820 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 28821 mach = bfd_mach_arm_iWMMXt;
e74cfd16 28822 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 28823 mach = bfd_mach_arm_XScale;
e74cfd16 28824 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 28825 mach = bfd_mach_arm_ep9312;
e74cfd16 28826 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 28827 mach = bfd_mach_arm_5TE;
e74cfd16 28828 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 28829 {
e74cfd16 28830 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28831 mach = bfd_mach_arm_5T;
28832 else
28833 mach = bfd_mach_arm_5;
28834 }
e74cfd16 28835 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 28836 {
e74cfd16 28837 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28838 mach = bfd_mach_arm_4T;
28839 else
28840 mach = bfd_mach_arm_4;
28841 }
e74cfd16 28842 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 28843 mach = bfd_mach_arm_3M;
e74cfd16
PB
28844 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28845 mach = bfd_mach_arm_3;
28846 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28847 mach = bfd_mach_arm_2a;
28848 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28849 mach = bfd_mach_arm_2;
28850 else
28851 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
28852
28853 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28854}
28855
c19d1205 28856/* Command line processing. */
b99bd4ef 28857
c19d1205
ZW
28858/* md_parse_option
28859 Invocation line includes a switch not recognized by the base assembler.
28860 See if it's a processor-specific option.
b99bd4ef 28861
c19d1205
ZW
28862 This routine is somewhat complicated by the need for backwards
28863 compatibility (since older releases of gcc can't be changed).
28864 The new options try to make the interface as compatible as
28865 possible with GCC.
b99bd4ef 28866
c19d1205 28867 New options (supported) are:
b99bd4ef 28868
c19d1205
ZW
28869 -mcpu=<cpu name> Assemble for selected processor
28870 -march=<architecture name> Assemble for selected architecture
28871 -mfpu=<fpu architecture> Assemble for selected FPU.
28872 -EB/-mbig-endian Big-endian
28873 -EL/-mlittle-endian Little-endian
28874 -k Generate PIC code
28875 -mthumb Start in Thumb mode
28876 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 28877
278df34e 28878 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 28879 -m[no-]warn-syms Warn when symbols match instructions
267bf995 28880
c19d1205 28881 For now we will also provide support for:
b99bd4ef 28882
c19d1205
ZW
28883 -mapcs-32 32-bit Program counter
28884 -mapcs-26 26-bit Program counter
28885 -macps-float Floats passed in FP registers
28886 -mapcs-reentrant Reentrant code
28887 -matpcs
28888 (sometime these will probably be replaced with -mapcs=<list of options>
28889 and -matpcs=<list of options>)
b99bd4ef 28890
c19d1205
ZW
28891 The remaining options are only supported for back-wards compatibility.
28892 Cpu variants, the arm part is optional:
28893 -m[arm]1 Currently not supported.
28894 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28895 -m[arm]3 Arm 3 processor
28896 -m[arm]6[xx], Arm 6 processors
28897 -m[arm]7[xx][t][[d]m] Arm 7 processors
28898 -m[arm]8[10] Arm 8 processors
28899 -m[arm]9[20][tdmi] Arm 9 processors
28900 -mstrongarm[110[0]] StrongARM processors
28901 -mxscale XScale processors
28902 -m[arm]v[2345[t[e]]] Arm architectures
28903 -mall All (except the ARM1)
28904 FP variants:
28905 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28906 -mfpe-old (No float load/store multiples)
28907 -mvfpxd VFP Single precision
28908 -mvfp All VFP
28909 -mno-fpu Disable all floating point instructions
b99bd4ef 28910
c19d1205
ZW
28911 The following CPU names are recognized:
28912 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28913 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28914 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28915 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28916 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28917 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28918 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 28919
c19d1205 28920 */
b99bd4ef 28921
c19d1205 28922const char * md_shortopts = "m:k";
b99bd4ef 28923
c19d1205
ZW
28924#ifdef ARM_BI_ENDIAN
28925#define OPTION_EB (OPTION_MD_BASE + 0)
28926#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 28927#else
c19d1205
ZW
28928#if TARGET_BYTES_BIG_ENDIAN
28929#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 28930#else
c19d1205
ZW
28931#define OPTION_EL (OPTION_MD_BASE + 1)
28932#endif
b99bd4ef 28933#endif
845b51d6 28934#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 28935#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 28936
c19d1205 28937struct option md_longopts[] =
b99bd4ef 28938{
c19d1205
ZW
28939#ifdef OPTION_EB
28940 {"EB", no_argument, NULL, OPTION_EB},
28941#endif
28942#ifdef OPTION_EL
28943 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 28944#endif
845b51d6 28945 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
28946#ifdef OBJ_ELF
28947 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28948#endif
c19d1205
ZW
28949 {NULL, no_argument, NULL, 0}
28950};
b99bd4ef 28951
c19d1205 28952size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 28953
c19d1205 28954struct arm_option_table
b99bd4ef 28955{
0198d5e6
TC
28956 const char * option; /* Option name to match. */
28957 const char * help; /* Help information. */
28958 int * var; /* Variable to change. */
28959 int value; /* What to change it to. */
28960 const char * deprecated; /* If non-null, print this message. */
c19d1205 28961};
b99bd4ef 28962
c19d1205
ZW
28963struct arm_option_table arm_opts[] =
28964{
28965 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28966 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28967 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28968 &support_interwork, 1, NULL},
28969 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28970 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28971 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28972 1, NULL},
28973 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28974 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28975 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28976 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28977 NULL},
b99bd4ef 28978
c19d1205
ZW
28979 /* These are recognized by the assembler, but have no affect on code. */
28980 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28981 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
28982
28983 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28984 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28985 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
28986 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28987 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
28988 {NULL, NULL, NULL, 0, NULL}
28989};
28990
28991struct arm_legacy_option_table
28992{
0198d5e6
TC
28993 const char * option; /* Option name to match. */
28994 const arm_feature_set ** var; /* Variable to change. */
28995 const arm_feature_set value; /* What to change it to. */
28996 const char * deprecated; /* If non-null, print this message. */
e74cfd16 28997};
b99bd4ef 28998
e74cfd16
PB
28999const struct arm_legacy_option_table arm_legacy_opts[] =
29000{
c19d1205
ZW
29001 /* DON'T add any new processors to this list -- we want the whole list
29002 to go away... Add them to the processors table instead. */
e74cfd16
PB
29003 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29004 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29005 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29006 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29007 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29008 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29009 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29010 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29011 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29012 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29013 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29014 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29015 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29016 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29017 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29018 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29019 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29020 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29021 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29022 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29023 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29024 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29025 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29026 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29027 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29028 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29029 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29030 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29031 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29032 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29033 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29034 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29035 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29036 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29037 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29038 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29039 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29040 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29041 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29042 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29043 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29044 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29045 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29046 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29047 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29048 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29049 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29050 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29051 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29052 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29053 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29054 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29055 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29056 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29057 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29058 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29059 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29060 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29061 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29062 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29063 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29064 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29065 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29066 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29067 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29068 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29069 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29070 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29071 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29072 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29073 N_("use -mcpu=strongarm110")},
e74cfd16 29074 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29075 N_("use -mcpu=strongarm1100")},
e74cfd16 29076 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29077 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
29078 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29079 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29080 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 29081
c19d1205 29082 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
29083 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29084 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29085 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29086 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29087 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29088 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29089 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29090 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29091 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29092 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29093 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29094 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29095 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29096 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29097 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29098 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29099 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29100 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 29101
c19d1205 29102 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
29103 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29104 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29105 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29106 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29107 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29108
e74cfd16 29109 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29110};
7ed4c4c5 29111
c19d1205 29112struct arm_cpu_option_table
7ed4c4c5 29113{
0198d5e6
TC
29114 const char * name;
29115 size_t name_len;
29116 const arm_feature_set value;
29117 const arm_feature_set ext;
c19d1205
ZW
29118 /* For some CPUs we assume an FPU unless the user explicitly sets
29119 -mfpu=... */
0198d5e6 29120 const arm_feature_set default_fpu;
ee065d83
PB
29121 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29122 case. */
0198d5e6 29123 const char * canonical_name;
c19d1205 29124};
7ed4c4c5 29125
c19d1205
ZW
29126/* This list should, at a minimum, contain all the cpu names
29127 recognized by GCC. */
996b5569 29128#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29129
e74cfd16 29130static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29131{
996b5569
TP
29132 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29133 ARM_ARCH_NONE,
29134 FPU_ARCH_FPA),
29135 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29136 ARM_ARCH_NONE,
29137 FPU_ARCH_FPA),
29138 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29139 ARM_ARCH_NONE,
29140 FPU_ARCH_FPA),
29141 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29142 ARM_ARCH_NONE,
29143 FPU_ARCH_FPA),
29144 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29145 ARM_ARCH_NONE,
29146 FPU_ARCH_FPA),
29147 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29148 ARM_ARCH_NONE,
29149 FPU_ARCH_FPA),
29150 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29151 ARM_ARCH_NONE,
29152 FPU_ARCH_FPA),
29153 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29154 ARM_ARCH_NONE,
29155 FPU_ARCH_FPA),
29156 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29157 ARM_ARCH_NONE,
29158 FPU_ARCH_FPA),
29159 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29160 ARM_ARCH_NONE,
29161 FPU_ARCH_FPA),
29162 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29163 ARM_ARCH_NONE,
29164 FPU_ARCH_FPA),
29165 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29166 ARM_ARCH_NONE,
29167 FPU_ARCH_FPA),
29168 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29169 ARM_ARCH_NONE,
29170 FPU_ARCH_FPA),
29171 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29172 ARM_ARCH_NONE,
29173 FPU_ARCH_FPA),
29174 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29175 ARM_ARCH_NONE,
29176 FPU_ARCH_FPA),
29177 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29178 ARM_ARCH_NONE,
29179 FPU_ARCH_FPA),
29180 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29181 ARM_ARCH_NONE,
29182 FPU_ARCH_FPA),
29183 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29184 ARM_ARCH_NONE,
29185 FPU_ARCH_FPA),
29186 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29187 ARM_ARCH_NONE,
29188 FPU_ARCH_FPA),
29189 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29190 ARM_ARCH_NONE,
29191 FPU_ARCH_FPA),
29192 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29193 ARM_ARCH_NONE,
29194 FPU_ARCH_FPA),
29195 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29196 ARM_ARCH_NONE,
29197 FPU_ARCH_FPA),
29198 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29199 ARM_ARCH_NONE,
29200 FPU_ARCH_FPA),
29201 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29202 ARM_ARCH_NONE,
29203 FPU_ARCH_FPA),
29204 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29205 ARM_ARCH_NONE,
29206 FPU_ARCH_FPA),
29207 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29208 ARM_ARCH_NONE,
29209 FPU_ARCH_FPA),
29210 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29211 ARM_ARCH_NONE,
29212 FPU_ARCH_FPA),
29213 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29214 ARM_ARCH_NONE,
29215 FPU_ARCH_FPA),
29216 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29217 ARM_ARCH_NONE,
29218 FPU_ARCH_FPA),
29219 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29220 ARM_ARCH_NONE,
29221 FPU_ARCH_FPA),
29222 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29223 ARM_ARCH_NONE,
29224 FPU_ARCH_FPA),
29225 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29226 ARM_ARCH_NONE,
29227 FPU_ARCH_FPA),
29228 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29229 ARM_ARCH_NONE,
29230 FPU_ARCH_FPA),
29231 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29232 ARM_ARCH_NONE,
29233 FPU_ARCH_FPA),
29234 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29235 ARM_ARCH_NONE,
29236 FPU_ARCH_FPA),
29237 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29238 ARM_ARCH_NONE,
29239 FPU_ARCH_FPA),
29240 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29241 ARM_ARCH_NONE,
29242 FPU_ARCH_FPA),
29243 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29244 ARM_ARCH_NONE,
29245 FPU_ARCH_FPA),
29246 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29247 ARM_ARCH_NONE,
29248 FPU_ARCH_FPA),
29249 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29250 ARM_ARCH_NONE,
29251 FPU_ARCH_FPA),
29252 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29253 ARM_ARCH_NONE,
29254 FPU_ARCH_FPA),
29255 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29256 ARM_ARCH_NONE,
29257 FPU_ARCH_FPA),
29258 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29259 ARM_ARCH_NONE,
29260 FPU_ARCH_FPA),
29261 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29262 ARM_ARCH_NONE,
29263 FPU_ARCH_FPA),
29264 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29265 ARM_ARCH_NONE,
29266 FPU_ARCH_FPA),
29267 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29268 ARM_ARCH_NONE,
29269 FPU_ARCH_FPA),
29270
c19d1205
ZW
29271 /* For V5 or later processors we default to using VFP; but the user
29272 should really set the FPU type explicitly. */
996b5569
TP
29273 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29274 ARM_ARCH_NONE,
29275 FPU_ARCH_VFP_V2),
29276 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29277 ARM_ARCH_NONE,
29278 FPU_ARCH_VFP_V2),
29279 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29280 ARM_ARCH_NONE,
29281 FPU_ARCH_VFP_V2),
29282 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29283 ARM_ARCH_NONE,
29284 FPU_ARCH_VFP_V2),
29285 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29286 ARM_ARCH_NONE,
29287 FPU_ARCH_VFP_V2),
29288 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29289 ARM_ARCH_NONE,
29290 FPU_ARCH_VFP_V2),
29291 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29292 ARM_ARCH_NONE,
29293 FPU_ARCH_VFP_V2),
29294 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29295 ARM_ARCH_NONE,
29296 FPU_ARCH_VFP_V2),
29297 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29298 ARM_ARCH_NONE,
29299 FPU_ARCH_VFP_V2),
29300 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29301 ARM_ARCH_NONE,
29302 FPU_ARCH_VFP_V2),
29303 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29304 ARM_ARCH_NONE,
29305 FPU_ARCH_VFP_V2),
29306 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29307 ARM_ARCH_NONE,
29308 FPU_ARCH_VFP_V2),
29309 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29310 ARM_ARCH_NONE,
29311 FPU_ARCH_VFP_V1),
29312 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29313 ARM_ARCH_NONE,
29314 FPU_ARCH_VFP_V1),
29315 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29316 ARM_ARCH_NONE,
29317 FPU_ARCH_VFP_V2),
29318 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29319 ARM_ARCH_NONE,
29320 FPU_ARCH_VFP_V2),
29321 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29322 ARM_ARCH_NONE,
29323 FPU_ARCH_VFP_V1),
29324 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29325 ARM_ARCH_NONE,
29326 FPU_ARCH_VFP_V2),
29327 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29328 ARM_ARCH_NONE,
29329 FPU_ARCH_VFP_V2),
29330 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29331 ARM_ARCH_NONE,
29332 FPU_ARCH_VFP_V2),
29333 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29334 ARM_ARCH_NONE,
29335 FPU_ARCH_VFP_V2),
29336 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29337 ARM_ARCH_NONE,
29338 FPU_ARCH_VFP_V2),
29339 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29340 ARM_ARCH_NONE,
29341 FPU_ARCH_VFP_V2),
29342 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29343 ARM_ARCH_NONE,
29344 FPU_ARCH_VFP_V2),
29345 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29346 ARM_ARCH_NONE,
29347 FPU_ARCH_VFP_V2),
29348 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29349 ARM_ARCH_NONE,
29350 FPU_ARCH_VFP_V2),
29351 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29352 ARM_ARCH_NONE,
29353 FPU_NONE),
29354 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29355 ARM_ARCH_NONE,
29356 FPU_NONE),
29357 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29358 ARM_ARCH_NONE,
29359 FPU_ARCH_VFP_V2),
29360 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29361 ARM_ARCH_NONE,
29362 FPU_ARCH_VFP_V2),
29363 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29364 ARM_ARCH_NONE,
29365 FPU_ARCH_VFP_V2),
29366 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29367 ARM_ARCH_NONE,
29368 FPU_NONE),
29369 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29370 ARM_ARCH_NONE,
29371 FPU_NONE),
29372 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29373 ARM_ARCH_NONE,
29374 FPU_ARCH_VFP_V2),
29375 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29376 ARM_ARCH_NONE,
29377 FPU_NONE),
29378 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29379 ARM_ARCH_NONE,
29380 FPU_ARCH_VFP_V2),
29381 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29382 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29383 FPU_NONE),
29384 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29385 ARM_ARCH_NONE,
29386 FPU_ARCH_NEON_VFP_V4),
29387 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29388 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29389 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29390 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29391 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29392 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29393 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29394 ARM_ARCH_NONE,
29395 FPU_ARCH_NEON_VFP_V4),
29396 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29397 ARM_ARCH_NONE,
29398 FPU_ARCH_NEON_VFP_V4),
29399 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29400 ARM_ARCH_NONE,
29401 FPU_ARCH_NEON_VFP_V4),
29402 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29403 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29404 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29405 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29406 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29407 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29408 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29409 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29410 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29411 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29412 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29413 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29414 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29415 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29416 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29417 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29418 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29419 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29420 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29421 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29422 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29423 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29424 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29425 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 29426 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29427 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29428 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
29429 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29430 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29431 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29432 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29433 ARM_ARCH_NONE,
29434 FPU_NONE),
29435 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29436 ARM_ARCH_NONE,
29437 FPU_ARCH_VFP_V3D16),
29438 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29439 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29440 FPU_NONE),
29441 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29442 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29443 FPU_ARCH_VFP_V3D16),
29444 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29445 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29446 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
29447 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29448 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29449 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
29450 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29451 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29452 FPU_NONE),
29453 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29454 ARM_ARCH_NONE,
29455 FPU_NONE),
29456 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29457 ARM_ARCH_NONE,
29458 FPU_NONE),
29459 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29460 ARM_ARCH_NONE,
29461 FPU_NONE),
29462 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29463 ARM_ARCH_NONE,
29464 FPU_NONE),
29465 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29466 ARM_ARCH_NONE,
29467 FPU_NONE),
29468 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29469 ARM_ARCH_NONE,
29470 FPU_NONE),
29471 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29472 ARM_ARCH_NONE,
29473 FPU_NONE),
29474 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29475 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29476 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
29477 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29478 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29479 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 29480 /* ??? XSCALE is really an architecture. */
996b5569
TP
29481 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29482 ARM_ARCH_NONE,
29483 FPU_ARCH_VFP_V2),
29484
c19d1205 29485 /* ??? iwmmxt is not a processor. */
996b5569
TP
29486 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29487 ARM_ARCH_NONE,
29488 FPU_ARCH_VFP_V2),
29489 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29490 ARM_ARCH_NONE,
29491 FPU_ARCH_VFP_V2),
29492 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29493 ARM_ARCH_NONE,
29494 FPU_ARCH_VFP_V2),
29495
0198d5e6 29496 /* Maverick. */
996b5569
TP
29497 ARM_CPU_OPT ("ep9312", "ARM920T",
29498 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29499 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29500
da4339ed 29501 /* Marvell processors. */
996b5569
TP
29502 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29503 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29504 FPU_ARCH_VFP_V3D16),
29505 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29506 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29507 FPU_ARCH_NEON_VFP_V4),
da4339ed 29508
996b5569
TP
29509 /* APM X-Gene family. */
29510 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29511 ARM_ARCH_NONE,
29512 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29513 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29514 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29515 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29516
29517 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29518};
f3bad469 29519#undef ARM_CPU_OPT
7ed4c4c5 29520
34ef62f4
AV
29521struct arm_ext_table
29522{
29523 const char * name;
29524 size_t name_len;
29525 const arm_feature_set merge;
29526 const arm_feature_set clear;
29527};
29528
c19d1205 29529struct arm_arch_option_table
7ed4c4c5 29530{
34ef62f4
AV
29531 const char * name;
29532 size_t name_len;
29533 const arm_feature_set value;
29534 const arm_feature_set default_fpu;
29535 const struct arm_ext_table * ext_table;
29536};
29537
29538/* Used to add support for +E and +noE extension. */
29539#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29540/* Used to add support for a +E extension. */
29541#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29542/* Used to add support for a +noE extension. */
29543#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29544
29545#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29546 ~0 & ~FPU_ENDIAN_PURE)
29547
29548static const struct arm_ext_table armv5te_ext_table[] =
29549{
29550 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29551 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29552};
29553
29554static const struct arm_ext_table armv7_ext_table[] =
29555{
29556 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29557 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29558};
29559
29560static const struct arm_ext_table armv7ve_ext_table[] =
29561{
29562 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29563 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29564 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29565 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29566 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29567 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29568 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29569
29570 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29571 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29572
29573 /* Aliases for +simd. */
29574 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29575
29576 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29577 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29578 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29579
29580 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29581};
29582
29583static const struct arm_ext_table armv7a_ext_table[] =
29584{
29585 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29586 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29587 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29588 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29589 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29590 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29591 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29592
29593 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29594 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29595
29596 /* Aliases for +simd. */
29597 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29598 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29599
29600 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29601 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29602
29603 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29604 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29605 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29606};
29607
29608static const struct arm_ext_table armv7r_ext_table[] =
29609{
29610 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29611 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29612 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29613 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29614 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29615 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29616 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29617 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29618 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29619};
29620
29621static const struct arm_ext_table armv7em_ext_table[] =
29622{
29623 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29624 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29625 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29626 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29627 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29628 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29629 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29630};
29631
29632static const struct arm_ext_table armv8a_ext_table[] =
29633{
29634 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29635 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29636 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29637 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29638
29639 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29640 should use the +simd option to turn on FP. */
29641 ARM_REMOVE ("fp", ALL_FP),
29642 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29643 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29644 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29645};
29646
29647
29648static const struct arm_ext_table armv81a_ext_table[] =
29649{
29650 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29651 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29652 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29653
29654 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29655 should use the +simd option to turn on FP. */
29656 ARM_REMOVE ("fp", ALL_FP),
29657 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29658 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29659 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29660};
29661
29662static const struct arm_ext_table armv82a_ext_table[] =
29663{
29664 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29665 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29666 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29667 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29668 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29669 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29670
29671 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29672 should use the +simd option to turn on FP. */
29673 ARM_REMOVE ("fp", ALL_FP),
29674 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29675 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29676 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29677};
29678
29679static const struct arm_ext_table armv84a_ext_table[] =
29680{
29681 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29682 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29683 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29684 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29685
29686 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29687 should use the +simd option to turn on FP. */
29688 ARM_REMOVE ("fp", ALL_FP),
29689 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29690 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29691 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29692};
29693
29694static const struct arm_ext_table armv85a_ext_table[] =
29695{
29696 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29697 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29698 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29699 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29700
29701 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29702 should use the +simd option to turn on FP. */
29703 ARM_REMOVE ("fp", ALL_FP),
29704 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29705};
29706
29707static const struct arm_ext_table armv8m_main_ext_table[] =
29708{
29709 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29710 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29711 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29712 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29713 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29714};
29715
e0991585
AV
29716static const struct arm_ext_table armv8_1m_main_ext_table[] =
29717{
29718 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29719 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29720 ARM_EXT ("fp",
29721 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29722 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29723 ALL_FP),
29724 ARM_ADD ("fp.dp",
29725 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29726 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
29727 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29728 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29729 ARM_ADD ("mve.fp",
29730 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29731 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29732 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
29733 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29734};
29735
34ef62f4
AV
29736static const struct arm_ext_table armv8r_ext_table[] =
29737{
29738 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29739 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29740 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29741 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29742 ARM_REMOVE ("fp", ALL_FP),
29743 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29744 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 29745};
7ed4c4c5 29746
c19d1205
ZW
29747/* This list should, at a minimum, contain all the architecture names
29748 recognized by GCC. */
34ef62f4
AV
29749#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29750#define ARM_ARCH_OPT2(N, V, DF, ext) \
29751 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 29752
e74cfd16 29753static const struct arm_arch_option_table arm_archs[] =
c19d1205 29754{
497d849d
TP
29755 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29756 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29757 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29758 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29759 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29760 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29761 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29762 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29763 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29764 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29765 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29766 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29767 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29768 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
29769 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29770 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29771 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29772 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29773 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29774 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29775 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29776 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29777 kept to preserve existing behaviour. */
34ef62f4
AV
29778 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29779 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29780 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29781 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29782 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29783 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29784 kept to preserve existing behaviour. */
34ef62f4
AV
29785 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29786 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
29787 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29788 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 29789 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
29790 /* The official spelling of the ARMv7 profile variants is the dashed form.
29791 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
29792 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29793 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29794 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29795 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
29796 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29797 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29798 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 29799 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 29800 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
29801 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29802 armv8m_main),
e0991585
AV
29803 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29804 armv8_1m_main),
34ef62f4
AV
29805 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29806 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29807 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29808 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29809 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29810 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29811 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
29812 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29813 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29814 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 29815 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29816};
f3bad469 29817#undef ARM_ARCH_OPT
7ed4c4c5 29818
69133863 29819/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 29820
69133863 29821struct arm_option_extension_value_table
c19d1205 29822{
0198d5e6
TC
29823 const char * name;
29824 size_t name_len;
29825 const arm_feature_set merge_value;
29826 const arm_feature_set clear_value;
d942732e
TP
29827 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29828 indicates that an extension is available for all architectures while
29829 ARM_ANY marks an empty entry. */
0198d5e6 29830 const arm_feature_set allowed_archs[2];
c19d1205 29831};
7ed4c4c5 29832
0198d5e6
TC
29833/* The following table must be in alphabetical order with a NULL last entry. */
29834
d942732e
TP
29835#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29836#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 29837
34ef62f4
AV
29838/* DEPRECATED: Refrain from using this table to add any new extensions, instead
29839 use the context sensitive approach using arm_ext_table's. */
69133863 29840static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 29841{
823d2571
TG
29842 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29843 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 29844 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
29845 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29846 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
29847 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29848 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29849 ARM_ARCH_V8_2A),
15afaa63
TP
29850 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29851 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29852 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
29853 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29854 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
29855 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29856 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29857 ARM_ARCH_V8_2A),
01f48020
TC
29858 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29859 | ARM_EXT2_FP16_FML),
29860 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29861 | ARM_EXT2_FP16_FML),
29862 ARM_ARCH_V8_2A),
d942732e 29863 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 29864 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
29865 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29866 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
29867 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29868 Thumb divide instruction. Due to this having the same name as the
29869 previous entry, this will be ignored when doing command-line parsing and
29870 only considered by build attribute selection code. */
29871 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29872 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29873 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 29874 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 29875 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 29876 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 29877 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 29878 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
29879 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29880 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 29881 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
29882 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29883 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
29884 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29885 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29886 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
29887 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29888 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 29889 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
29890 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29891 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29892 ARM_ARCH_V8A),
4d1464f2
MW
29893 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29894 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 29895 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
29896 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29897 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 29898 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
29899 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29900 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29901 ARM_ARCH_V8A),
d942732e 29902 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 29903 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
29904 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29905 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
29906 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29907 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29908 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
29909 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29910 | ARM_EXT_DIV),
29911 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29912 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29913 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
29914 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29915 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 29916};
f3bad469 29917#undef ARM_EXT_OPT
69133863
MGD
29918
29919/* ISA floating-point and Advanced SIMD extensions. */
29920struct arm_option_fpu_value_table
29921{
0198d5e6
TC
29922 const char * name;
29923 const arm_feature_set value;
c19d1205 29924};
7ed4c4c5 29925
c19d1205
ZW
29926/* This list should, at a minimum, contain all the fpu names
29927 recognized by GCC. */
69133863 29928static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
29929{
29930 {"softfpa", FPU_NONE},
29931 {"fpe", FPU_ARCH_FPE},
29932 {"fpe2", FPU_ARCH_FPE},
29933 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29934 {"fpa", FPU_ARCH_FPA},
29935 {"fpa10", FPU_ARCH_FPA},
29936 {"fpa11", FPU_ARCH_FPA},
29937 {"arm7500fe", FPU_ARCH_FPA},
29938 {"softvfp", FPU_ARCH_VFP},
29939 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29940 {"vfp", FPU_ARCH_VFP_V2},
29941 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 29942 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
29943 {"vfp10", FPU_ARCH_VFP_V2},
29944 {"vfp10-r0", FPU_ARCH_VFP_V1},
29945 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
29946 {"vfpv2", FPU_ARCH_VFP_V2},
29947 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 29948 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 29949 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
29950 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29951 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29952 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
29953 {"arm1020t", FPU_ARCH_VFP_V1},
29954 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 29955 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
29956 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29957 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 29958 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 29959 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 29960 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
29961 {"vfpv4", FPU_ARCH_VFP_V4},
29962 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 29963 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
29964 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29965 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 29966 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
29967 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29968 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29969 {"crypto-neon-fp-armv8",
29970 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 29971 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
29972 {"crypto-neon-fp-armv8.1",
29973 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
29974 {NULL, ARM_ARCH_NONE}
29975};
29976
29977struct arm_option_value_table
29978{
e0471c16 29979 const char *name;
e74cfd16 29980 long value;
c19d1205 29981};
7ed4c4c5 29982
e74cfd16 29983static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
29984{
29985 {"hard", ARM_FLOAT_ABI_HARD},
29986 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29987 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 29988 {NULL, 0}
c19d1205 29989};
7ed4c4c5 29990
c19d1205 29991#ifdef OBJ_ELF
3a4a14e9 29992/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 29993static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
29994{
29995 {"gnu", EF_ARM_EABI_UNKNOWN},
29996 {"4", EF_ARM_EABI_VER4},
3a4a14e9 29997 {"5", EF_ARM_EABI_VER5},
e74cfd16 29998 {NULL, 0}
c19d1205
ZW
29999};
30000#endif
7ed4c4c5 30001
c19d1205
ZW
30002struct arm_long_option_table
30003{
0198d5e6 30004 const char * option; /* Substring to match. */
e0471c16 30005 const char * help; /* Help information. */
17b9d67d 30006 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 30007 const char * deprecated; /* If non-null, print this message. */
c19d1205 30008};
7ed4c4c5 30009
c921be7d 30010static bfd_boolean
c168ce07 30011arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
30012 arm_feature_set *ext_set,
30013 const struct arm_ext_table *ext_table)
7ed4c4c5 30014{
69133863 30015 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
30016 extensions being added before being removed. We achieve this by having
30017 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 30018 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 30019 or removing it (0) and only allowing it to change in the order
69133863
MGD
30020 -1 -> 1 -> 0. */
30021 const struct arm_option_extension_value_table * opt = NULL;
d942732e 30022 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
30023 int adding_value = -1;
30024
c19d1205 30025 while (str != NULL && *str != 0)
7ed4c4c5 30026 {
82b8a785 30027 const char *ext;
f3bad469 30028 size_t len;
7ed4c4c5 30029
c19d1205
ZW
30030 if (*str != '+')
30031 {
30032 as_bad (_("invalid architectural extension"));
c921be7d 30033 return FALSE;
c19d1205 30034 }
7ed4c4c5 30035
c19d1205
ZW
30036 str++;
30037 ext = strchr (str, '+');
7ed4c4c5 30038
c19d1205 30039 if (ext != NULL)
f3bad469 30040 len = ext - str;
c19d1205 30041 else
f3bad469 30042 len = strlen (str);
7ed4c4c5 30043
f3bad469 30044 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
30045 {
30046 if (adding_value != 0)
30047 {
30048 adding_value = 0;
30049 opt = arm_extensions;
30050 }
30051
f3bad469 30052 len -= 2;
69133863
MGD
30053 str += 2;
30054 }
f3bad469 30055 else if (len > 0)
69133863
MGD
30056 {
30057 if (adding_value == -1)
30058 {
30059 adding_value = 1;
30060 opt = arm_extensions;
30061 }
30062 else if (adding_value != 1)
30063 {
30064 as_bad (_("must specify extensions to add before specifying "
30065 "those to remove"));
30066 return FALSE;
30067 }
30068 }
30069
f3bad469 30070 if (len == 0)
c19d1205
ZW
30071 {
30072 as_bad (_("missing architectural extension"));
c921be7d 30073 return FALSE;
c19d1205 30074 }
7ed4c4c5 30075
69133863
MGD
30076 gas_assert (adding_value != -1);
30077 gas_assert (opt != NULL);
30078
34ef62f4
AV
30079 if (ext_table != NULL)
30080 {
30081 const struct arm_ext_table * ext_opt = ext_table;
30082 bfd_boolean found = FALSE;
30083 for (; ext_opt->name != NULL; ext_opt++)
30084 if (ext_opt->name_len == len
30085 && strncmp (ext_opt->name, str, len) == 0)
30086 {
30087 if (adding_value)
30088 {
30089 if (ARM_FEATURE_ZERO (ext_opt->merge))
30090 /* TODO: Option not supported. When we remove the
30091 legacy table this case should error out. */
30092 continue;
30093
30094 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30095 }
30096 else
30097 {
30098 if (ARM_FEATURE_ZERO (ext_opt->clear))
30099 /* TODO: Option not supported. When we remove the
30100 legacy table this case should error out. */
30101 continue;
30102 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30103 }
30104 found = TRUE;
30105 break;
30106 }
30107 if (found)
30108 {
30109 str = ext;
30110 continue;
30111 }
30112 }
30113
69133863
MGD
30114 /* Scan over the options table trying to find an exact match. */
30115 for (; opt->name != NULL; opt++)
f3bad469 30116 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30117 {
d942732e
TP
30118 int i, nb_allowed_archs =
30119 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30120 /* Check we can apply the extension to this architecture. */
d942732e
TP
30121 for (i = 0; i < nb_allowed_archs; i++)
30122 {
30123 /* Empty entry. */
30124 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30125 continue;
c168ce07 30126 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30127 break;
30128 }
30129 if (i == nb_allowed_archs)
69133863
MGD
30130 {
30131 as_bad (_("extension does not apply to the base architecture"));
30132 return FALSE;
30133 }
30134
30135 /* Add or remove the extension. */
30136 if (adding_value)
4d354d8b 30137 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30138 else
4d354d8b 30139 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30140
3d030cdb
TP
30141 /* Allowing Thumb division instructions for ARMv7 in autodetection
30142 rely on this break so that duplicate extensions (extensions
30143 with the same name as a previous extension in the list) are not
30144 considered for command-line parsing. */
c19d1205
ZW
30145 break;
30146 }
7ed4c4c5 30147
c19d1205
ZW
30148 if (opt->name == NULL)
30149 {
69133863
MGD
30150 /* Did we fail to find an extension because it wasn't specified in
30151 alphabetical order, or because it does not exist? */
30152
30153 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 30154 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
30155 break;
30156
30157 if (opt->name == NULL)
30158 as_bad (_("unknown architectural extension `%s'"), str);
30159 else
30160 as_bad (_("architectural extensions must be specified in "
30161 "alphabetical order"));
30162
c921be7d 30163 return FALSE;
c19d1205 30164 }
69133863
MGD
30165 else
30166 {
30167 /* We should skip the extension we've just matched the next time
30168 round. */
30169 opt++;
30170 }
7ed4c4c5 30171
c19d1205
ZW
30172 str = ext;
30173 };
7ed4c4c5 30174
c921be7d 30175 return TRUE;
c19d1205 30176}
7ed4c4c5 30177
c921be7d 30178static bfd_boolean
17b9d67d 30179arm_parse_cpu (const char *str)
7ed4c4c5 30180{
f3bad469 30181 const struct arm_cpu_option_table *opt;
82b8a785 30182 const char *ext = strchr (str, '+');
f3bad469 30183 size_t len;
7ed4c4c5 30184
c19d1205 30185 if (ext != NULL)
f3bad469 30186 len = ext - str;
7ed4c4c5 30187 else
f3bad469 30188 len = strlen (str);
7ed4c4c5 30189
f3bad469 30190 if (len == 0)
7ed4c4c5 30191 {
c19d1205 30192 as_bad (_("missing cpu name `%s'"), str);
c921be7d 30193 return FALSE;
7ed4c4c5
NC
30194 }
30195
c19d1205 30196 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 30197 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30198 {
c168ce07 30199 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
30200 if (mcpu_ext_opt == NULL)
30201 mcpu_ext_opt = XNEW (arm_feature_set);
30202 *mcpu_ext_opt = opt->ext;
e74cfd16 30203 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 30204 if (opt->canonical_name)
ef8e6722
JW
30205 {
30206 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30207 strcpy (selected_cpu_name, opt->canonical_name);
30208 }
ee065d83
PB
30209 else
30210 {
f3bad469 30211 size_t i;
c921be7d 30212
ef8e6722
JW
30213 if (len >= sizeof selected_cpu_name)
30214 len = (sizeof selected_cpu_name) - 1;
30215
f3bad469 30216 for (i = 0; i < len; i++)
ee065d83
PB
30217 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30218 selected_cpu_name[i] = 0;
30219 }
7ed4c4c5 30220
c19d1205 30221 if (ext != NULL)
34ef62f4 30222 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 30223
c921be7d 30224 return TRUE;
c19d1205 30225 }
7ed4c4c5 30226
c19d1205 30227 as_bad (_("unknown cpu `%s'"), str);
c921be7d 30228 return FALSE;
7ed4c4c5
NC
30229}
30230
c921be7d 30231static bfd_boolean
17b9d67d 30232arm_parse_arch (const char *str)
7ed4c4c5 30233{
e74cfd16 30234 const struct arm_arch_option_table *opt;
82b8a785 30235 const char *ext = strchr (str, '+');
f3bad469 30236 size_t len;
7ed4c4c5 30237
c19d1205 30238 if (ext != NULL)
f3bad469 30239 len = ext - str;
7ed4c4c5 30240 else
f3bad469 30241 len = strlen (str);
7ed4c4c5 30242
f3bad469 30243 if (len == 0)
7ed4c4c5 30244 {
c19d1205 30245 as_bad (_("missing architecture name `%s'"), str);
c921be7d 30246 return FALSE;
7ed4c4c5
NC
30247 }
30248
c19d1205 30249 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 30250 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30251 {
e74cfd16 30252 march_cpu_opt = &opt->value;
4d354d8b
TP
30253 if (march_ext_opt == NULL)
30254 march_ext_opt = XNEW (arm_feature_set);
30255 *march_ext_opt = arm_arch_none;
e74cfd16 30256 march_fpu_opt = &opt->default_fpu;
5f4273c7 30257 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 30258
c19d1205 30259 if (ext != NULL)
34ef62f4
AV
30260 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30261 opt->ext_table);
7ed4c4c5 30262
c921be7d 30263 return TRUE;
c19d1205
ZW
30264 }
30265
30266 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 30267 return FALSE;
7ed4c4c5 30268}
eb043451 30269
c921be7d 30270static bfd_boolean
17b9d67d 30271arm_parse_fpu (const char * str)
c19d1205 30272{
69133863 30273 const struct arm_option_fpu_value_table * opt;
b99bd4ef 30274
c19d1205
ZW
30275 for (opt = arm_fpus; opt->name != NULL; opt++)
30276 if (streq (opt->name, str))
30277 {
e74cfd16 30278 mfpu_opt = &opt->value;
c921be7d 30279 return TRUE;
c19d1205 30280 }
b99bd4ef 30281
c19d1205 30282 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 30283 return FALSE;
c19d1205
ZW
30284}
30285
c921be7d 30286static bfd_boolean
17b9d67d 30287arm_parse_float_abi (const char * str)
b99bd4ef 30288{
e74cfd16 30289 const struct arm_option_value_table * opt;
b99bd4ef 30290
c19d1205
ZW
30291 for (opt = arm_float_abis; opt->name != NULL; opt++)
30292 if (streq (opt->name, str))
30293 {
30294 mfloat_abi_opt = opt->value;
c921be7d 30295 return TRUE;
c19d1205 30296 }
cc8a6dd0 30297
c19d1205 30298 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 30299 return FALSE;
c19d1205 30300}
b99bd4ef 30301
c19d1205 30302#ifdef OBJ_ELF
c921be7d 30303static bfd_boolean
17b9d67d 30304arm_parse_eabi (const char * str)
c19d1205 30305{
e74cfd16 30306 const struct arm_option_value_table *opt;
cc8a6dd0 30307
c19d1205
ZW
30308 for (opt = arm_eabis; opt->name != NULL; opt++)
30309 if (streq (opt->name, str))
30310 {
30311 meabi_flags = opt->value;
c921be7d 30312 return TRUE;
c19d1205
ZW
30313 }
30314 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30315 return FALSE;
c19d1205
ZW
30316}
30317#endif
cc8a6dd0 30318
c921be7d 30319static bfd_boolean
17b9d67d 30320arm_parse_it_mode (const char * str)
e07e6e58 30321{
c921be7d 30322 bfd_boolean ret = TRUE;
e07e6e58
NC
30323
30324 if (streq ("arm", str))
30325 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30326 else if (streq ("thumb", str))
30327 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30328 else if (streq ("always", str))
30329 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30330 else if (streq ("never", str))
30331 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30332 else
30333 {
30334 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30335 "arm, thumb, always, or never."), str);
c921be7d 30336 ret = FALSE;
e07e6e58
NC
30337 }
30338
30339 return ret;
30340}
30341
2e6976a8 30342static bfd_boolean
17b9d67d 30343arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30344{
30345 codecomposer_syntax = TRUE;
30346 arm_comment_chars[0] = ';';
30347 arm_line_separator_chars[0] = 0;
30348 return TRUE;
30349}
30350
c19d1205
ZW
30351struct arm_long_option_table arm_long_opts[] =
30352{
30353 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30354 arm_parse_cpu, NULL},
30355 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30356 arm_parse_arch, NULL},
30357 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30358 arm_parse_fpu, NULL},
30359 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30360 arm_parse_float_abi, NULL},
30361#ifdef OBJ_ELF
7fac0536 30362 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30363 arm_parse_eabi, NULL},
30364#endif
e07e6e58
NC
30365 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30366 arm_parse_it_mode, NULL},
2e6976a8
DG
30367 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30368 arm_ccs_mode, NULL},
c19d1205
ZW
30369 {NULL, NULL, 0, NULL}
30370};
cc8a6dd0 30371
c19d1205 30372int
17b9d67d 30373md_parse_option (int c, const char * arg)
c19d1205
ZW
30374{
30375 struct arm_option_table *opt;
e74cfd16 30376 const struct arm_legacy_option_table *fopt;
c19d1205 30377 struct arm_long_option_table *lopt;
b99bd4ef 30378
c19d1205 30379 switch (c)
b99bd4ef 30380 {
c19d1205
ZW
30381#ifdef OPTION_EB
30382 case OPTION_EB:
30383 target_big_endian = 1;
30384 break;
30385#endif
cc8a6dd0 30386
c19d1205
ZW
30387#ifdef OPTION_EL
30388 case OPTION_EL:
30389 target_big_endian = 0;
30390 break;
30391#endif
b99bd4ef 30392
845b51d6
PB
30393 case OPTION_FIX_V4BX:
30394 fix_v4bx = TRUE;
30395 break;
30396
18a20338
CL
30397#ifdef OBJ_ELF
30398 case OPTION_FDPIC:
30399 arm_fdpic = TRUE;
30400 break;
30401#endif /* OBJ_ELF */
30402
c19d1205
ZW
30403 case 'a':
30404 /* Listing option. Just ignore these, we don't support additional
30405 ones. */
30406 return 0;
b99bd4ef 30407
c19d1205
ZW
30408 default:
30409 for (opt = arm_opts; opt->option != NULL; opt++)
30410 {
30411 if (c == opt->option[0]
30412 && ((arg == NULL && opt->option[1] == 0)
30413 || streq (arg, opt->option + 1)))
30414 {
c19d1205 30415 /* If the option is deprecated, tell the user. */
278df34e 30416 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
30417 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30418 arg ? arg : "", _(opt->deprecated));
b99bd4ef 30419
c19d1205
ZW
30420 if (opt->var != NULL)
30421 *opt->var = opt->value;
cc8a6dd0 30422
c19d1205
ZW
30423 return 1;
30424 }
30425 }
b99bd4ef 30426
e74cfd16
PB
30427 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30428 {
30429 if (c == fopt->option[0]
30430 && ((arg == NULL && fopt->option[1] == 0)
30431 || streq (arg, fopt->option + 1)))
30432 {
e74cfd16 30433 /* If the option is deprecated, tell the user. */
278df34e 30434 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
30435 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30436 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
30437
30438 if (fopt->var != NULL)
30439 *fopt->var = &fopt->value;
30440
30441 return 1;
30442 }
30443 }
30444
c19d1205
ZW
30445 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30446 {
30447 /* These options are expected to have an argument. */
30448 if (c == lopt->option[0]
30449 && arg != NULL
30450 && strncmp (arg, lopt->option + 1,
30451 strlen (lopt->option + 1)) == 0)
30452 {
c19d1205 30453 /* If the option is deprecated, tell the user. */
278df34e 30454 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
30455 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30456 _(lopt->deprecated));
b99bd4ef 30457
c19d1205
ZW
30458 /* Call the sup-option parser. */
30459 return lopt->func (arg + strlen (lopt->option) - 1);
30460 }
30461 }
a737bd4d 30462
c19d1205
ZW
30463 return 0;
30464 }
a394c00f 30465
c19d1205
ZW
30466 return 1;
30467}
a394c00f 30468
c19d1205
ZW
30469void
30470md_show_usage (FILE * fp)
a394c00f 30471{
c19d1205
ZW
30472 struct arm_option_table *opt;
30473 struct arm_long_option_table *lopt;
a394c00f 30474
c19d1205 30475 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 30476
c19d1205
ZW
30477 for (opt = arm_opts; opt->option != NULL; opt++)
30478 if (opt->help != NULL)
30479 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 30480
c19d1205
ZW
30481 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30482 if (lopt->help != NULL)
30483 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 30484
c19d1205
ZW
30485#ifdef OPTION_EB
30486 fprintf (fp, _("\
30487 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
30488#endif
30489
c19d1205
ZW
30490#ifdef OPTION_EL
30491 fprintf (fp, _("\
30492 -EL assemble code for a little-endian cpu\n"));
a737bd4d 30493#endif
845b51d6
PB
30494
30495 fprintf (fp, _("\
30496 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
30497
30498#ifdef OBJ_ELF
30499 fprintf (fp, _("\
30500 --fdpic generate an FDPIC object file\n"));
30501#endif /* OBJ_ELF */
c19d1205 30502}
ee065d83 30503
ee065d83 30504#ifdef OBJ_ELF
0198d5e6 30505
62b3e311
PB
30506typedef struct
30507{
30508 int val;
30509 arm_feature_set flags;
30510} cpu_arch_ver_table;
30511
2c6b98ea
TP
30512/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30513 chronologically for architectures, with an exception for ARMv6-M and
30514 ARMv6S-M due to legacy reasons. No new architecture should have a
30515 special case. This allows for build attribute selection results to be
30516 stable when new architectures are added. */
62b3e311
PB
30517static const cpu_arch_ver_table cpu_arch_ver[] =
30518{
031254f2
AV
30519 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30520 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30521 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30522 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30523 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30524 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30525 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30526 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30527 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30528 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30529 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30530 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30531 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30532 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30533 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30534 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30535 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30536 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30537 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30538 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30539 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30540 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30541 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30542 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
30543
30544 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30545 always selected build attributes to match those of ARMv6-M
30546 (resp. ARMv6S-M). However, due to these architectures being a strict
30547 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30548 would be selected when fully respecting chronology of architectures.
30549 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30550 move them before ARMv7 architectures. */
031254f2
AV
30551 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30552 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30553
30554 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30555 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30556 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30557 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30558 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30559 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30560 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30561 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30562 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30563 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30564 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30565 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30566 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30567 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30568 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30569 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30570 {-1, ARM_ARCH_NONE}
62b3e311
PB
30571};
30572
ee3c0378 30573/* Set an attribute if it has not already been set by the user. */
0198d5e6 30574
ee3c0378
AS
30575static void
30576aeabi_set_attribute_int (int tag, int value)
30577{
30578 if (tag < 1
30579 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30580 || !attributes_set_explicitly[tag])
30581 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30582}
30583
30584static void
30585aeabi_set_attribute_string (int tag, const char *value)
30586{
30587 if (tag < 1
30588 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30589 || !attributes_set_explicitly[tag])
30590 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30591}
30592
2c6b98ea
TP
30593/* Return whether features in the *NEEDED feature set are available via
30594 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 30595
2c6b98ea
TP
30596static bfd_boolean
30597have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30598 const arm_feature_set *needed)
30599{
30600 int i, nb_allowed_archs;
30601 arm_feature_set ext_fset;
30602 const struct arm_option_extension_value_table *opt;
30603
30604 ext_fset = arm_arch_none;
30605 for (opt = arm_extensions; opt->name != NULL; opt++)
30606 {
30607 /* Extension does not provide any feature we need. */
30608 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30609 continue;
30610
30611 nb_allowed_archs =
30612 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30613 for (i = 0; i < nb_allowed_archs; i++)
30614 {
30615 /* Empty entry. */
30616 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30617 break;
30618
30619 /* Extension is available, add it. */
30620 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30621 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30622 }
30623 }
30624
30625 /* Can we enable all features in *needed? */
30626 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30627}
30628
30629/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30630 a given architecture feature set *ARCH_EXT_FSET including extension feature
30631 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30632 - if true, check for an exact match of the architecture modulo extensions;
30633 - otherwise, select build attribute value of the first superset
30634 architecture released so that results remains stable when new architectures
30635 are added.
30636 For -march/-mcpu=all the build attribute value of the most featureful
30637 architecture is returned. Tag_CPU_arch_profile result is returned in
30638 PROFILE. */
0198d5e6 30639
2c6b98ea
TP
30640static int
30641get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30642 const arm_feature_set *ext_fset,
30643 char *profile, int exact_match)
30644{
30645 arm_feature_set arch_fset;
30646 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30647
30648 /* Select most featureful architecture with all its extensions if building
30649 for -march=all as the feature sets used to set build attributes. */
30650 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30651 {
30652 /* Force revisiting of decision for each new architecture. */
031254f2 30653 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
30654 *profile = 'A';
30655 return TAG_CPU_ARCH_V8;
30656 }
30657
30658 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30659
30660 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30661 {
30662 arm_feature_set known_arch_fset;
30663
30664 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30665 if (exact_match)
30666 {
30667 /* Base architecture match user-specified architecture and
30668 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30669 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30670 {
30671 p_ver_ret = p_ver;
30672 goto found;
30673 }
30674 /* Base architecture match user-specified architecture only
30675 (eg. ARMv6-M in the same case as above). Record it in case we
30676 find a match with above condition. */
30677 else if (p_ver_ret == NULL
30678 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30679 p_ver_ret = p_ver;
30680 }
30681 else
30682 {
30683
30684 /* Architecture has all features wanted. */
30685 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30686 {
30687 arm_feature_set added_fset;
30688
30689 /* Compute features added by this architecture over the one
30690 recorded in p_ver_ret. */
30691 if (p_ver_ret != NULL)
30692 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30693 p_ver_ret->flags);
30694 /* First architecture that match incl. with extensions, or the
30695 only difference in features over the recorded match is
30696 features that were optional and are now mandatory. */
30697 if (p_ver_ret == NULL
30698 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30699 {
30700 p_ver_ret = p_ver;
30701 goto found;
30702 }
30703 }
30704 else if (p_ver_ret == NULL)
30705 {
30706 arm_feature_set needed_ext_fset;
30707
30708 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30709
30710 /* Architecture has all features needed when using some
30711 extensions. Record it and continue searching in case there
30712 exist an architecture providing all needed features without
30713 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30714 OS extension). */
30715 if (have_ext_for_needed_feat_p (&known_arch_fset,
30716 &needed_ext_fset))
30717 p_ver_ret = p_ver;
30718 }
30719 }
30720 }
30721
30722 if (p_ver_ret == NULL)
30723 return -1;
30724
30725found:
30726 /* Tag_CPU_arch_profile. */
30727 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30728 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30729 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30730 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30731 *profile = 'A';
30732 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30733 *profile = 'R';
30734 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30735 *profile = 'M';
30736 else
30737 *profile = '\0';
30738 return p_ver_ret->val;
30739}
30740
ee065d83 30741/* Set the public EABI object attributes. */
0198d5e6 30742
c168ce07 30743static void
ee065d83
PB
30744aeabi_set_public_attributes (void)
30745{
b90d5ba0 30746 char profile = '\0';
2c6b98ea 30747 int arch = -1;
90ec0d68 30748 int virt_sec = 0;
bca38921 30749 int fp16_optional = 0;
2c6b98ea
TP
30750 int skip_exact_match = 0;
30751 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 30752
54bab281
TP
30753 /* Autodetection mode, choose the architecture based the instructions
30754 actually used. */
30755 if (no_cpu_selected ())
30756 {
30757 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 30758
54bab281
TP
30759 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30760 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 30761
54bab281
TP
30762 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30763 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 30764
54bab281 30765 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
30766 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30767 flags_ext = arm_arch_none;
30768 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30769 selected_ext = flags_ext;
54bab281
TP
30770 selected_cpu = flags;
30771 }
30772 /* Otherwise, choose the architecture based on the capabilities of the
30773 requested cpu. */
30774 else
4d354d8b
TP
30775 {
30776 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30777 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30778 flags_ext = selected_ext;
30779 flags = selected_cpu;
30780 }
30781 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 30782
ddd7f988 30783 /* Allow the user to override the reported architecture. */
4d354d8b 30784 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 30785 {
4d354d8b 30786 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 30787 flags_ext = arm_arch_none;
7a1d4c38 30788 }
2c6b98ea 30789 else
4d354d8b 30790 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
30791
30792 /* When this function is run again after relaxation has happened there is no
30793 way to determine whether an architecture or CPU was specified by the user:
30794 - selected_cpu is set above for relaxation to work;
30795 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30796 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30797 Therefore, if not in -march=all case we first try an exact match and fall
30798 back to autodetection. */
30799 if (!skip_exact_match)
30800 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30801 if (arch == -1)
30802 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30803 if (arch == -1)
30804 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 30805
ee065d83
PB
30806 /* Tag_CPU_name. */
30807 if (selected_cpu_name[0])
30808 {
91d6fa6a 30809 char *q;
ee065d83 30810
91d6fa6a
NC
30811 q = selected_cpu_name;
30812 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
30813 {
30814 int i;
5f4273c7 30815
91d6fa6a
NC
30816 q += 4;
30817 for (i = 0; q[i]; i++)
30818 q[i] = TOUPPER (q[i]);
ee065d83 30819 }
91d6fa6a 30820 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 30821 }
62f3b8c8 30822
ee065d83 30823 /* Tag_CPU_arch. */
ee3c0378 30824 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 30825
62b3e311 30826 /* Tag_CPU_arch_profile. */
69239280
MGD
30827 if (profile != '\0')
30828 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 30829
15afaa63 30830 /* Tag_DSP_extension. */
4d354d8b 30831 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 30832 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 30833
2c6b98ea 30834 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 30835 /* Tag_ARM_ISA_use. */
ee3c0378 30836 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 30837 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 30838 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 30839
ee065d83 30840 /* Tag_THUMB_ISA_use. */
ee3c0378 30841 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 30842 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
30843 {
30844 int thumb_isa_use;
30845
30846 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 30847 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
30848 thumb_isa_use = 3;
30849 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30850 thumb_isa_use = 2;
30851 else
30852 thumb_isa_use = 1;
30853 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30854 }
62f3b8c8 30855
ee065d83 30856 /* Tag_VFP_arch. */
a715796b
TG
30857 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30858 aeabi_set_attribute_int (Tag_VFP_arch,
30859 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30860 ? 7 : 8);
bca38921 30861 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
30862 aeabi_set_attribute_int (Tag_VFP_arch,
30863 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30864 ? 5 : 6);
30865 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
30866 {
30867 fp16_optional = 1;
30868 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30869 }
ada65aa3 30870 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
30871 {
30872 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30873 fp16_optional = 1;
30874 }
ee3c0378
AS
30875 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30876 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30877 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 30878 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 30879 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 30880
4547cb56
NC
30881 /* Tag_ABI_HardFP_use. */
30882 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30883 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30884 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30885
ee065d83 30886 /* Tag_WMMX_arch. */
ee3c0378
AS
30887 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30888 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30889 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30890 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 30891
ee3c0378 30892 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
30893 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30894 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30895 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
30896 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30897 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30898 {
30899 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30900 {
30901 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30902 }
30903 else
30904 {
30905 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30906 fp16_optional = 1;
30907 }
30908 }
fa94de6b 30909
a7ad558c
AV
30910 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30911 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30912 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30913 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30914
ee3c0378 30915 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 30916 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 30917 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 30918
69239280
MGD
30919 /* Tag_DIV_use.
30920
30921 We set Tag_DIV_use to two when integer divide instructions have been used
30922 in ARM state, or when Thumb integer divide instructions have been used,
30923 but we have no architecture profile set, nor have we any ARM instructions.
30924
4ed7ed8d
TP
30925 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30926 by the base architecture.
bca38921 30927
69239280 30928 For new architectures we will have to check these tests. */
031254f2 30929 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
30930 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30931 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
30932 aeabi_set_attribute_int (Tag_DIV_use, 0);
30933 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30934 || (profile == '\0'
30935 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30936 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 30937 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
30938
30939 /* Tag_MP_extension_use. */
30940 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30941 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
30942
30943 /* Tag Virtualization_use. */
30944 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
30945 virt_sec |= 1;
30946 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30947 virt_sec |= 2;
30948 if (virt_sec != 0)
30949 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
30950}
30951
c168ce07
TP
30952/* Post relaxation hook. Recompute ARM attributes now that relaxation is
30953 finished and free extension feature bits which will not be used anymore. */
0198d5e6 30954
c168ce07
TP
30955void
30956arm_md_post_relax (void)
30957{
30958 aeabi_set_public_attributes ();
4d354d8b
TP
30959 XDELETE (mcpu_ext_opt);
30960 mcpu_ext_opt = NULL;
30961 XDELETE (march_ext_opt);
30962 march_ext_opt = NULL;
c168ce07
TP
30963}
30964
104d59d1 30965/* Add the default contents for the .ARM.attributes section. */
0198d5e6 30966
ee065d83
PB
30967void
30968arm_md_end (void)
30969{
ee065d83
PB
30970 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30971 return;
30972
30973 aeabi_set_public_attributes ();
ee065d83 30974}
8463be01 30975#endif /* OBJ_ELF */
ee065d83 30976
ee065d83
PB
30977/* Parse a .cpu directive. */
30978
30979static void
30980s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30981{
e74cfd16 30982 const struct arm_cpu_option_table *opt;
ee065d83
PB
30983 char *name;
30984 char saved_char;
30985
30986 name = input_line_pointer;
5f4273c7 30987 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30988 input_line_pointer++;
30989 saved_char = *input_line_pointer;
30990 *input_line_pointer = 0;
30991
30992 /* Skip the first "all" entry. */
30993 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30994 if (streq (opt->name, name))
30995 {
4d354d8b
TP
30996 selected_arch = opt->value;
30997 selected_ext = opt->ext;
30998 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 30999 if (opt->canonical_name)
5f4273c7 31000 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
31001 else
31002 {
31003 int i;
31004 for (i = 0; opt->name[i]; i++)
31005 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 31006
ee065d83
PB
31007 selected_cpu_name[i] = 0;
31008 }
4d354d8b
TP
31009 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31010
ee065d83
PB
31011 *input_line_pointer = saved_char;
31012 demand_empty_rest_of_line ();
31013 return;
31014 }
31015 as_bad (_("unknown cpu `%s'"), name);
31016 *input_line_pointer = saved_char;
31017 ignore_rest_of_line ();
31018}
31019
ee065d83
PB
31020/* Parse a .arch directive. */
31021
31022static void
31023s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31024{
e74cfd16 31025 const struct arm_arch_option_table *opt;
ee065d83
PB
31026 char saved_char;
31027 char *name;
31028
31029 name = input_line_pointer;
5f4273c7 31030 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31031 input_line_pointer++;
31032 saved_char = *input_line_pointer;
31033 *input_line_pointer = 0;
31034
31035 /* Skip the first "all" entry. */
31036 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31037 if (streq (opt->name, name))
31038 {
4d354d8b
TP
31039 selected_arch = opt->value;
31040 selected_ext = arm_arch_none;
31041 selected_cpu = selected_arch;
5f4273c7 31042 strcpy (selected_cpu_name, opt->name);
4d354d8b 31043 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31044 *input_line_pointer = saved_char;
31045 demand_empty_rest_of_line ();
31046 return;
31047 }
31048
31049 as_bad (_("unknown architecture `%s'\n"), name);
31050 *input_line_pointer = saved_char;
31051 ignore_rest_of_line ();
31052}
31053
7a1d4c38
PB
31054/* Parse a .object_arch directive. */
31055
31056static void
31057s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31058{
31059 const struct arm_arch_option_table *opt;
31060 char saved_char;
31061 char *name;
31062
31063 name = input_line_pointer;
5f4273c7 31064 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
31065 input_line_pointer++;
31066 saved_char = *input_line_pointer;
31067 *input_line_pointer = 0;
31068
31069 /* Skip the first "all" entry. */
31070 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31071 if (streq (opt->name, name))
31072 {
4d354d8b 31073 selected_object_arch = opt->value;
7a1d4c38
PB
31074 *input_line_pointer = saved_char;
31075 demand_empty_rest_of_line ();
31076 return;
31077 }
31078
31079 as_bad (_("unknown architecture `%s'\n"), name);
31080 *input_line_pointer = saved_char;
31081 ignore_rest_of_line ();
31082}
31083
69133863
MGD
31084/* Parse a .arch_extension directive. */
31085
31086static void
31087s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31088{
31089 const struct arm_option_extension_value_table *opt;
31090 char saved_char;
31091 char *name;
31092 int adding_value = 1;
31093
31094 name = input_line_pointer;
31095 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31096 input_line_pointer++;
31097 saved_char = *input_line_pointer;
31098 *input_line_pointer = 0;
31099
31100 if (strlen (name) >= 2
31101 && strncmp (name, "no", 2) == 0)
31102 {
31103 adding_value = 0;
31104 name += 2;
31105 }
31106
31107 for (opt = arm_extensions; opt->name != NULL; opt++)
31108 if (streq (opt->name, name))
31109 {
d942732e
TP
31110 int i, nb_allowed_archs =
31111 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31112 for (i = 0; i < nb_allowed_archs; i++)
31113 {
31114 /* Empty entry. */
4d354d8b 31115 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31116 continue;
4d354d8b 31117 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31118 break;
31119 }
31120
31121 if (i == nb_allowed_archs)
69133863
MGD
31122 {
31123 as_bad (_("architectural extension `%s' is not allowed for the "
31124 "current base architecture"), name);
31125 break;
31126 }
31127
31128 if (adding_value)
4d354d8b 31129 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31130 opt->merge_value);
69133863 31131 else
4d354d8b 31132 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31133
4d354d8b
TP
31134 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31135 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31136 *input_line_pointer = saved_char;
31137 demand_empty_rest_of_line ();
3d030cdb
TP
31138 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31139 on this return so that duplicate extensions (extensions with the
31140 same name as a previous extension in the list) are not considered
31141 for command-line parsing. */
69133863
MGD
31142 return;
31143 }
31144
31145 if (opt->name == NULL)
e673710a 31146 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31147
31148 *input_line_pointer = saved_char;
31149 ignore_rest_of_line ();
31150}
31151
ee065d83
PB
31152/* Parse a .fpu directive. */
31153
31154static void
31155s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31156{
69133863 31157 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
31158 char saved_char;
31159 char *name;
31160
31161 name = input_line_pointer;
5f4273c7 31162 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31163 input_line_pointer++;
31164 saved_char = *input_line_pointer;
31165 *input_line_pointer = 0;
5f4273c7 31166
ee065d83
PB
31167 for (opt = arm_fpus; opt->name != NULL; opt++)
31168 if (streq (opt->name, name))
31169 {
4d354d8b
TP
31170 selected_fpu = opt->value;
31171#ifndef CPU_DEFAULT
31172 if (no_cpu_selected ())
31173 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31174 else
31175#endif
31176 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31177 *input_line_pointer = saved_char;
31178 demand_empty_rest_of_line ();
31179 return;
31180 }
31181
31182 as_bad (_("unknown floating point format `%s'\n"), name);
31183 *input_line_pointer = saved_char;
31184 ignore_rest_of_line ();
31185}
ee065d83 31186
794ba86a 31187/* Copy symbol information. */
f31fef98 31188
794ba86a
DJ
31189void
31190arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31191{
31192 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31193}
e04befd0 31194
f31fef98 31195#ifdef OBJ_ELF
e04befd0
AS
31196/* Given a symbolic attribute NAME, return the proper integer value.
31197 Returns -1 if the attribute is not known. */
f31fef98 31198
e04befd0
AS
31199int
31200arm_convert_symbolic_attribute (const char *name)
31201{
f31fef98
NC
31202 static const struct
31203 {
31204 const char * name;
31205 const int tag;
31206 }
31207 attribute_table[] =
31208 {
31209 /* When you modify this table you should
31210 also modify the list in doc/c-arm.texi. */
e04befd0 31211#define T(tag) {#tag, tag}
f31fef98
NC
31212 T (Tag_CPU_raw_name),
31213 T (Tag_CPU_name),
31214 T (Tag_CPU_arch),
31215 T (Tag_CPU_arch_profile),
31216 T (Tag_ARM_ISA_use),
31217 T (Tag_THUMB_ISA_use),
75375b3e 31218 T (Tag_FP_arch),
f31fef98
NC
31219 T (Tag_VFP_arch),
31220 T (Tag_WMMX_arch),
31221 T (Tag_Advanced_SIMD_arch),
31222 T (Tag_PCS_config),
31223 T (Tag_ABI_PCS_R9_use),
31224 T (Tag_ABI_PCS_RW_data),
31225 T (Tag_ABI_PCS_RO_data),
31226 T (Tag_ABI_PCS_GOT_use),
31227 T (Tag_ABI_PCS_wchar_t),
31228 T (Tag_ABI_FP_rounding),
31229 T (Tag_ABI_FP_denormal),
31230 T (Tag_ABI_FP_exceptions),
31231 T (Tag_ABI_FP_user_exceptions),
31232 T (Tag_ABI_FP_number_model),
75375b3e 31233 T (Tag_ABI_align_needed),
f31fef98 31234 T (Tag_ABI_align8_needed),
75375b3e 31235 T (Tag_ABI_align_preserved),
f31fef98
NC
31236 T (Tag_ABI_align8_preserved),
31237 T (Tag_ABI_enum_size),
31238 T (Tag_ABI_HardFP_use),
31239 T (Tag_ABI_VFP_args),
31240 T (Tag_ABI_WMMX_args),
31241 T (Tag_ABI_optimization_goals),
31242 T (Tag_ABI_FP_optimization_goals),
31243 T (Tag_compatibility),
31244 T (Tag_CPU_unaligned_access),
75375b3e 31245 T (Tag_FP_HP_extension),
f31fef98
NC
31246 T (Tag_VFP_HP_extension),
31247 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
31248 T (Tag_MPextension_use),
31249 T (Tag_DIV_use),
f31fef98
NC
31250 T (Tag_nodefaults),
31251 T (Tag_also_compatible_with),
31252 T (Tag_conformance),
31253 T (Tag_T2EE_use),
31254 T (Tag_Virtualization_use),
15afaa63 31255 T (Tag_DSP_extension),
a7ad558c 31256 T (Tag_MVE_arch),
cd21e546 31257 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 31258#undef T
f31fef98 31259 };
e04befd0
AS
31260 unsigned int i;
31261
31262 if (name == NULL)
31263 return -1;
31264
f31fef98 31265 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31266 if (streq (name, attribute_table[i].name))
e04befd0
AS
31267 return attribute_table[i].tag;
31268
31269 return -1;
31270}
267bf995 31271
93ef582d
NC
31272/* Apply sym value for relocations only in the case that they are for
31273 local symbols in the same segment as the fixup and you have the
31274 respective architectural feature for blx and simple switches. */
0198d5e6 31275
267bf995 31276int
93ef582d 31277arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
31278{
31279 if (fixP->fx_addsy
31280 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
31281 /* PR 17444: If the local symbol is in a different section then a reloc
31282 will always be generated for it, so applying the symbol value now
31283 will result in a double offset being stored in the relocation. */
31284 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 31285 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
31286 {
31287 switch (fixP->fx_r_type)
31288 {
31289 case BFD_RELOC_ARM_PCREL_BLX:
31290 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31291 if (ARM_IS_FUNC (fixP->fx_addsy))
31292 return 1;
31293 break;
31294
31295 case BFD_RELOC_ARM_PCREL_CALL:
31296 case BFD_RELOC_THUMB_PCREL_BLX:
31297 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 31298 return 1;
267bf995
RR
31299 break;
31300
31301 default:
31302 break;
31303 }
31304
31305 }
31306 return 0;
31307}
f31fef98 31308#endif /* OBJ_ELF */
This page took 4.218861 seconds and 4 git commands to generate.