[binutils, ARM, 10/16] BFCSEL infrastructure with new global reloc R_ARM_THM_BF12
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
69c9e028 305#ifdef OBJ_ELF
823d2571
TG
306static const arm_feature_set fpu_vfp_fp16 =
307 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
308static const arm_feature_set fpu_neon_ext_fma =
309 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 310#endif
823d2571
TG
311static const arm_feature_set fpu_vfp_ext_fma =
312 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 313static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 314 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 315static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 316 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 317static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 319static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 320 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 321static const arm_feature_set crc_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 323static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 324 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
325static const arm_feature_set fpu_neon_ext_dotprod =
326 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 327
33a392fb 328static int mfloat_abi_opt = -1;
4d354d8b
TP
329/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
330 directive. */
331static arm_feature_set selected_arch = ARM_ARCH_NONE;
332/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
333 directive. */
334static arm_feature_set selected_ext = ARM_ARCH_NONE;
335/* Feature bits selected by the last -mcpu/-march or by the combination of the
336 last .cpu/.arch directive .arch_extension directives since that
337 directive. */
e74cfd16 338static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
339/* FPU feature bits selected by the last -mfpu or .fpu directive. */
340static arm_feature_set selected_fpu = FPU_NONE;
341/* Feature bits selected by the last .object_arch directive. */
342static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 343/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 344static char selected_cpu_name[20];
8d67f500 345
aacf0b33
KT
346extern FLONUM_TYPE generic_floating_point_number;
347
8d67f500
NC
348/* Return if no cpu was selected on command-line. */
349static bfd_boolean
350no_cpu_selected (void)
351{
823d2571 352 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
353}
354
7cc69913 355#ifdef OBJ_ELF
deeaaff8
DJ
356# ifdef EABI_DEFAULT
357static int meabi_flags = EABI_DEFAULT;
358# else
d507cf36 359static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 360# endif
e1da3f5b 361
ee3c0378
AS
362static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
363
e1da3f5b 364bfd_boolean
5f4273c7 365arm_is_eabi (void)
e1da3f5b
PB
366{
367 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
368}
7cc69913 369#endif
b99bd4ef 370
b99bd4ef 371#ifdef OBJ_ELF
c19d1205 372/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
373symbolS * GOT_symbol;
374#endif
375
b99bd4ef
NC
376/* 0: assemble for ARM,
377 1: assemble for Thumb,
378 2: assemble for Thumb even though target CPU does not support thumb
379 instructions. */
380static int thumb_mode = 0;
8dc2430f
NC
381/* A value distinct from the possible values for thumb_mode that we
382 can use to record whether thumb_mode has been copied into the
383 tc_frag_data field of a frag. */
384#define MODE_RECORDED (1 << 4)
b99bd4ef 385
e07e6e58
NC
386/* Specifies the intrinsic IT insn behavior mode. */
387enum implicit_it_mode
388{
389 IMPLICIT_IT_MODE_NEVER = 0x00,
390 IMPLICIT_IT_MODE_ARM = 0x01,
391 IMPLICIT_IT_MODE_THUMB = 0x02,
392 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
393};
394static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
395
c19d1205
ZW
396/* If unified_syntax is true, we are processing the new unified
397 ARM/Thumb syntax. Important differences from the old ARM mode:
398
399 - Immediate operands do not require a # prefix.
400 - Conditional affixes always appear at the end of the
401 instruction. (For backward compatibility, those instructions
402 that formerly had them in the middle, continue to accept them
403 there.)
404 - The IT instruction may appear, and if it does is validated
405 against subsequent conditional affixes. It does not generate
406 machine code.
407
408 Important differences from the old Thumb mode:
409
410 - Immediate operands do not require a # prefix.
411 - Most of the V6T2 instructions are only available in unified mode.
412 - The .N and .W suffixes are recognized and honored (it is an error
413 if they cannot be honored).
414 - All instructions set the flags if and only if they have an 's' affix.
415 - Conditional affixes may be used. They are validated against
416 preceding IT instructions. Unlike ARM mode, you cannot use a
417 conditional affix except in the scope of an IT instruction. */
418
419static bfd_boolean unified_syntax = FALSE;
b99bd4ef 420
bacebabc
RM
421/* An immediate operand can start with #, and ld*, st*, pld operands
422 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
423 before a [, which can appear as the first operand for pld.
424 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
425const char arm_symbol_chars[] = "#[]{}";
bacebabc 426
5287ad62
JB
427enum neon_el_type
428{
dcbf9037 429 NT_invtype,
5287ad62
JB
430 NT_untyped,
431 NT_integer,
432 NT_float,
433 NT_poly,
434 NT_signed,
dcbf9037 435 NT_unsigned
5287ad62
JB
436};
437
438struct neon_type_el
439{
440 enum neon_el_type type;
441 unsigned size;
442};
443
444#define NEON_MAX_TYPE_ELS 4
445
446struct neon_type
447{
448 struct neon_type_el el[NEON_MAX_TYPE_ELS];
449 unsigned elems;
450};
451
e07e6e58
NC
452enum it_instruction_type
453{
454 OUTSIDE_IT_INSN,
455 INSIDE_IT_INSN,
456 INSIDE_IT_LAST_INSN,
457 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 458 if inside, should be the last one. */
e07e6e58 459 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 460 i.e. BKPT and NOP. */
e07e6e58
NC
461 IT_INSN /* The IT insn has been parsed. */
462};
463
ad6cec43
MGD
464/* The maximum number of operands we need. */
465#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 466#define ARM_IT_MAX_RELOCS 3
ad6cec43 467
b99bd4ef
NC
468struct arm_it
469{
c19d1205 470 const char * error;
b99bd4ef 471 unsigned long instruction;
c19d1205
ZW
472 int size;
473 int size_req;
474 int cond;
037e8744
JB
475 /* "uncond_value" is set to the value in place of the conditional field in
476 unconditional versions of the instruction, or -1 if nothing is
477 appropriate. */
478 int uncond_value;
5287ad62 479 struct neon_type vectype;
88714cb8
DG
480 /* This does not indicate an actual NEON instruction, only that
481 the mnemonic accepts neon-style type suffixes. */
482 int is_neon;
0110f2b8
PB
483 /* Set to the opcode if the instruction needs relaxation.
484 Zero if the instruction is not relaxed. */
485 unsigned long relax;
b99bd4ef
NC
486 struct
487 {
488 bfd_reloc_code_real_type type;
c19d1205
ZW
489 expressionS exp;
490 int pc_rel;
e2b0ab59 491 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 492
e07e6e58
NC
493 enum it_instruction_type it_insn_type;
494
c19d1205
ZW
495 struct
496 {
497 unsigned reg;
ca3f61f7 498 signed int imm;
dcbf9037 499 struct neon_type_el vectype;
ca3f61f7
NC
500 unsigned present : 1; /* Operand present. */
501 unsigned isreg : 1; /* Operand was a register. */
502 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
503 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
504 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 505 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
506 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
507 instructions. This allows us to disambiguate ARM <-> vector insns. */
508 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 509 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 510 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 511 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
512 unsigned hasreloc : 1; /* Operand has relocation suffix. */
513 unsigned writeback : 1; /* Operand has trailing ! */
514 unsigned preind : 1; /* Preindexed address. */
515 unsigned postind : 1; /* Postindexed address. */
516 unsigned negative : 1; /* Index register was negated. */
517 unsigned shifted : 1; /* Shift applied to operation. */
518 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 519 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
520};
521
c19d1205 522static struct arm_it inst;
b99bd4ef
NC
523
524#define NUM_FLOAT_VALS 8
525
05d2d07e 526const char * fp_const[] =
b99bd4ef
NC
527{
528 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
529};
530
c19d1205 531/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
532#define MAX_LITTLENUMS 6
533
534LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
535
536#define FAIL (-1)
537#define SUCCESS (0)
538
539#define SUFF_S 1
540#define SUFF_D 2
541#define SUFF_E 3
542#define SUFF_P 4
543
c19d1205
ZW
544#define CP_T_X 0x00008000
545#define CP_T_Y 0x00400000
b99bd4ef 546
c19d1205
ZW
547#define CONDS_BIT 0x00100000
548#define LOAD_BIT 0x00100000
b99bd4ef
NC
549
550#define DOUBLE_LOAD_FLAG 0x00000001
551
552struct asm_cond
553{
d3ce72d0 554 const char * template_name;
c921be7d 555 unsigned long value;
b99bd4ef
NC
556};
557
c19d1205 558#define COND_ALWAYS 0xE
b99bd4ef 559
b99bd4ef
NC
560struct asm_psr
561{
d3ce72d0 562 const char * template_name;
c921be7d 563 unsigned long field;
b99bd4ef
NC
564};
565
62b3e311
PB
566struct asm_barrier_opt
567{
e797f7e0
MGD
568 const char * template_name;
569 unsigned long value;
570 const arm_feature_set arch;
62b3e311
PB
571};
572
2d2255b5 573/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
574#define SPSR_BIT (1 << 22)
575
c19d1205
ZW
576/* The individual PSR flag bits. */
577#define PSR_c (1 << 16)
578#define PSR_x (1 << 17)
579#define PSR_s (1 << 18)
580#define PSR_f (1 << 19)
b99bd4ef 581
c19d1205 582struct reloc_entry
bfae80f2 583{
0198d5e6 584 const char * name;
c921be7d 585 bfd_reloc_code_real_type reloc;
bfae80f2
RE
586};
587
5287ad62 588enum vfp_reg_pos
bfae80f2 589{
5287ad62
JB
590 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
591 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
592};
593
594enum vfp_ldstm_type
595{
596 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
597};
598
dcbf9037
JB
599/* Bits for DEFINED field in neon_typed_alias. */
600#define NTA_HASTYPE 1
601#define NTA_HASINDEX 2
602
603struct neon_typed_alias
604{
c921be7d
NC
605 unsigned char defined;
606 unsigned char index;
607 struct neon_type_el eltype;
dcbf9037
JB
608};
609
c19d1205 610/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
611 architecture extensions' registers. Each entry should have an error message
612 in reg_expected_msgs below. */
c19d1205 613enum arm_reg_type
bfae80f2 614{
c19d1205
ZW
615 REG_TYPE_RN,
616 REG_TYPE_CP,
617 REG_TYPE_CN,
618 REG_TYPE_FN,
619 REG_TYPE_VFS,
620 REG_TYPE_VFD,
5287ad62 621 REG_TYPE_NQ,
037e8744 622 REG_TYPE_VFSD,
5287ad62 623 REG_TYPE_NDQ,
dec41383 624 REG_TYPE_NSD,
037e8744 625 REG_TYPE_NSDQ,
c19d1205
ZW
626 REG_TYPE_VFC,
627 REG_TYPE_MVF,
628 REG_TYPE_MVD,
629 REG_TYPE_MVFX,
630 REG_TYPE_MVDX,
631 REG_TYPE_MVAX,
632 REG_TYPE_DSPSC,
633 REG_TYPE_MMXWR,
634 REG_TYPE_MMXWC,
635 REG_TYPE_MMXWCG,
636 REG_TYPE_XSCALE,
90ec0d68 637 REG_TYPE_RNB
bfae80f2
RE
638};
639
dcbf9037
JB
640/* Structure for a hash table entry for a register.
641 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
642 information which states whether a vector type or index is specified (for a
643 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
644struct reg_entry
645{
c921be7d 646 const char * name;
90ec0d68 647 unsigned int number;
c921be7d
NC
648 unsigned char type;
649 unsigned char builtin;
650 struct neon_typed_alias * neon;
6c43fab6
RE
651};
652
c19d1205 653/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 654const char * const reg_expected_msgs[] =
c19d1205 655{
5aa75429
TP
656 [REG_TYPE_RN] = N_("ARM register expected"),
657 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
658 [REG_TYPE_CN] = N_("co-processor register expected"),
659 [REG_TYPE_FN] = N_("FPA register expected"),
660 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
661 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
662 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
663 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
664 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
665 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
666 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
667 " expected"),
668 [REG_TYPE_VFC] = N_("VFP system register expected"),
669 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
670 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
671 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
672 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
673 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
674 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
675 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
676 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
677 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
678 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
679 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
680};
681
c19d1205 682/* Some well known registers that we refer to directly elsewhere. */
bd340a04 683#define REG_R12 12
c19d1205
ZW
684#define REG_SP 13
685#define REG_LR 14
686#define REG_PC 15
404ff6b5 687
b99bd4ef
NC
688/* ARM instructions take 4bytes in the object file, Thumb instructions
689 take 2: */
c19d1205 690#define INSN_SIZE 4
b99bd4ef
NC
691
692struct asm_opcode
693{
694 /* Basic string to match. */
d3ce72d0 695 const char * template_name;
c19d1205
ZW
696
697 /* Parameters to instruction. */
5be8be5d 698 unsigned int operands[8];
c19d1205
ZW
699
700 /* Conditional tag - see opcode_lookup. */
701 unsigned int tag : 4;
b99bd4ef
NC
702
703 /* Basic instruction code. */
c19d1205 704 unsigned int avalue : 28;
b99bd4ef 705
c19d1205
ZW
706 /* Thumb-format instruction code. */
707 unsigned int tvalue;
b99bd4ef 708
90e4755a 709 /* Which architecture variant provides this instruction. */
c921be7d
NC
710 const arm_feature_set * avariant;
711 const arm_feature_set * tvariant;
c19d1205
ZW
712
713 /* Function to call to encode instruction in ARM format. */
714 void (* aencode) (void);
b99bd4ef 715
c19d1205
ZW
716 /* Function to call to encode instruction in Thumb format. */
717 void (* tencode) (void);
b99bd4ef
NC
718};
719
a737bd4d
NC
720/* Defines for various bits that we will want to toggle. */
721#define INST_IMMEDIATE 0x02000000
722#define OFFSET_REG 0x02000000
c19d1205 723#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
724#define SHIFT_BY_REG 0x00000010
725#define PRE_INDEX 0x01000000
726#define INDEX_UP 0x00800000
727#define WRITE_BACK 0x00200000
728#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 729#define CPSI_MMOD 0x00020000
90e4755a 730
a737bd4d
NC
731#define LITERAL_MASK 0xf000f000
732#define OPCODE_MASK 0xfe1fffff
733#define V4_STR_BIT 0x00000020
8335d6aa 734#define VLDR_VMOV_SAME 0x0040f000
90e4755a 735
efd81785
PB
736#define T2_SUBS_PC_LR 0xf3de8f00
737
a737bd4d 738#define DATA_OP_SHIFT 21
bada4342 739#define SBIT_SHIFT 20
90e4755a 740
ef8d22e6
PB
741#define T2_OPCODE_MASK 0xfe1fffff
742#define T2_DATA_OP_SHIFT 21
bada4342 743#define T2_SBIT_SHIFT 20
ef8d22e6 744
6530b175
NC
745#define A_COND_MASK 0xf0000000
746#define A_PUSH_POP_OP_MASK 0x0fff0000
747
748/* Opcodes for pushing/poping registers to/from the stack. */
749#define A1_OPCODE_PUSH 0x092d0000
750#define A2_OPCODE_PUSH 0x052d0004
751#define A2_OPCODE_POP 0x049d0004
752
a737bd4d
NC
753/* Codes to distinguish the arithmetic instructions. */
754#define OPCODE_AND 0
755#define OPCODE_EOR 1
756#define OPCODE_SUB 2
757#define OPCODE_RSB 3
758#define OPCODE_ADD 4
759#define OPCODE_ADC 5
760#define OPCODE_SBC 6
761#define OPCODE_RSC 7
762#define OPCODE_TST 8
763#define OPCODE_TEQ 9
764#define OPCODE_CMP 10
765#define OPCODE_CMN 11
766#define OPCODE_ORR 12
767#define OPCODE_MOV 13
768#define OPCODE_BIC 14
769#define OPCODE_MVN 15
90e4755a 770
ef8d22e6
PB
771#define T2_OPCODE_AND 0
772#define T2_OPCODE_BIC 1
773#define T2_OPCODE_ORR 2
774#define T2_OPCODE_ORN 3
775#define T2_OPCODE_EOR 4
776#define T2_OPCODE_ADD 8
777#define T2_OPCODE_ADC 10
778#define T2_OPCODE_SBC 11
779#define T2_OPCODE_SUB 13
780#define T2_OPCODE_RSB 14
781
a737bd4d
NC
782#define T_OPCODE_MUL 0x4340
783#define T_OPCODE_TST 0x4200
784#define T_OPCODE_CMN 0x42c0
785#define T_OPCODE_NEG 0x4240
786#define T_OPCODE_MVN 0x43c0
90e4755a 787
a737bd4d
NC
788#define T_OPCODE_ADD_R3 0x1800
789#define T_OPCODE_SUB_R3 0x1a00
790#define T_OPCODE_ADD_HI 0x4400
791#define T_OPCODE_ADD_ST 0xb000
792#define T_OPCODE_SUB_ST 0xb080
793#define T_OPCODE_ADD_SP 0xa800
794#define T_OPCODE_ADD_PC 0xa000
795#define T_OPCODE_ADD_I8 0x3000
796#define T_OPCODE_SUB_I8 0x3800
797#define T_OPCODE_ADD_I3 0x1c00
798#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 799
a737bd4d
NC
800#define T_OPCODE_ASR_R 0x4100
801#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
802#define T_OPCODE_LSR_R 0x40c0
803#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
804#define T_OPCODE_ASR_I 0x1000
805#define T_OPCODE_LSL_I 0x0000
806#define T_OPCODE_LSR_I 0x0800
b99bd4ef 807
a737bd4d
NC
808#define T_OPCODE_MOV_I8 0x2000
809#define T_OPCODE_CMP_I8 0x2800
810#define T_OPCODE_CMP_LR 0x4280
811#define T_OPCODE_MOV_HR 0x4600
812#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 813
a737bd4d
NC
814#define T_OPCODE_LDR_PC 0x4800
815#define T_OPCODE_LDR_SP 0x9800
816#define T_OPCODE_STR_SP 0x9000
817#define T_OPCODE_LDR_IW 0x6800
818#define T_OPCODE_STR_IW 0x6000
819#define T_OPCODE_LDR_IH 0x8800
820#define T_OPCODE_STR_IH 0x8000
821#define T_OPCODE_LDR_IB 0x7800
822#define T_OPCODE_STR_IB 0x7000
823#define T_OPCODE_LDR_RW 0x5800
824#define T_OPCODE_STR_RW 0x5000
825#define T_OPCODE_LDR_RH 0x5a00
826#define T_OPCODE_STR_RH 0x5200
827#define T_OPCODE_LDR_RB 0x5c00
828#define T_OPCODE_STR_RB 0x5400
c9b604bd 829
a737bd4d
NC
830#define T_OPCODE_PUSH 0xb400
831#define T_OPCODE_POP 0xbc00
b99bd4ef 832
2fc8bdac 833#define T_OPCODE_BRANCH 0xe000
b99bd4ef 834
a737bd4d 835#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 836#define THUMB_PP_PC_LR 0x0100
c19d1205 837#define THUMB_LOAD_BIT 0x0800
53365c0d 838#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
839
840#define BAD_ARGS _("bad arguments to instruction")
fdfde340 841#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
842#define BAD_PC _("r15 not allowed here")
843#define BAD_COND _("instruction cannot be conditional")
844#define BAD_OVERLAP _("registers may not be the same")
845#define BAD_HIREG _("lo register required")
846#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 847#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5 848#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 849#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 850#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 851#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
852#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
853#define BAD_IT_COND _("incorrect condition in IT block")
854#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 855#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
856#define BAD_PC_ADDRESSING \
857 _("cannot use register index with PC-relative addressing")
858#define BAD_PC_WRITEBACK \
859 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
860#define BAD_RANGE _("branch out of range")
861#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 862#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 863#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
c19d1205 864
c921be7d
NC
865static struct hash_control * arm_ops_hsh;
866static struct hash_control * arm_cond_hsh;
867static struct hash_control * arm_shift_hsh;
868static struct hash_control * arm_psr_hsh;
869static struct hash_control * arm_v7m_psr_hsh;
870static struct hash_control * arm_reg_hsh;
871static struct hash_control * arm_reloc_hsh;
872static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 873
b99bd4ef
NC
874/* Stuff needed to resolve the label ambiguity
875 As:
876 ...
877 label: <insn>
878 may differ from:
879 ...
880 label:
5f4273c7 881 <insn> */
b99bd4ef
NC
882
883symbolS * last_label_seen;
b34976b6 884static int label_is_thumb_function_name = FALSE;
e07e6e58 885
3d0c9500
NC
886/* Literal pool structure. Held on a per-section
887 and per-sub-section basis. */
a737bd4d 888
c19d1205 889#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 890typedef struct literal_pool
b99bd4ef 891{
c921be7d
NC
892 expressionS literals [MAX_LITERAL_POOL_SIZE];
893 unsigned int next_free_entry;
894 unsigned int id;
895 symbolS * symbol;
896 segT section;
897 subsegT sub_section;
a8040cf2
NC
898#ifdef OBJ_ELF
899 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
900#endif
c921be7d 901 struct literal_pool * next;
8335d6aa 902 unsigned int alignment;
3d0c9500 903} literal_pool;
b99bd4ef 904
3d0c9500
NC
905/* Pointer to a linked list of literal pools. */
906literal_pool * list_of_pools = NULL;
e27ec89e 907
2e6976a8
DG
908typedef enum asmfunc_states
909{
910 OUTSIDE_ASMFUNC,
911 WAITING_ASMFUNC_NAME,
912 WAITING_ENDASMFUNC
913} asmfunc_states;
914
915static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
916
e07e6e58
NC
917#ifdef OBJ_ELF
918# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
919#else
920static struct current_it now_it;
921#endif
922
923static inline int
924now_it_compatible (int cond)
925{
926 return (cond & ~1) == (now_it.cc & ~1);
927}
928
929static inline int
930conditional_insn (void)
931{
932 return inst.cond != COND_ALWAYS;
933}
934
935static int in_it_block (void);
936
937static int handle_it_state (void);
938
939static void force_automatic_it_block_close (void);
940
c921be7d
NC
941static void it_fsm_post_encode (void);
942
e07e6e58
NC
943#define set_it_insn_type(type) \
944 do \
945 { \
946 inst.it_insn_type = type; \
947 if (handle_it_state () == FAIL) \
477330fc 948 return; \
e07e6e58
NC
949 } \
950 while (0)
951
c921be7d
NC
952#define set_it_insn_type_nonvoid(type, failret) \
953 do \
954 { \
955 inst.it_insn_type = type; \
956 if (handle_it_state () == FAIL) \
477330fc 957 return failret; \
c921be7d
NC
958 } \
959 while(0)
960
e07e6e58
NC
961#define set_it_insn_type_last() \
962 do \
963 { \
964 if (inst.cond == COND_ALWAYS) \
477330fc 965 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 966 else \
477330fc 967 set_it_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
968 } \
969 while (0)
970
c19d1205 971/* Pure syntax. */
b99bd4ef 972
c19d1205
ZW
973/* This array holds the chars that always start a comment. If the
974 pre-processor is disabled, these aren't very useful. */
2e6976a8 975char arm_comment_chars[] = "@";
3d0c9500 976
c19d1205
ZW
977/* This array holds the chars that only start a comment at the beginning of
978 a line. If the line seems to have the form '# 123 filename'
979 .line and .file directives will appear in the pre-processed output. */
980/* Note that input_file.c hand checks for '#' at the beginning of the
981 first line of the input file. This is because the compiler outputs
982 #NO_APP at the beginning of its output. */
983/* Also note that comments like this one will always work. */
984const char line_comment_chars[] = "#";
3d0c9500 985
2e6976a8 986char arm_line_separator_chars[] = ";";
b99bd4ef 987
c19d1205
ZW
988/* Chars that can be used to separate mant
989 from exp in floating point numbers. */
990const char EXP_CHARS[] = "eE";
3d0c9500 991
c19d1205
ZW
992/* Chars that mean this number is a floating point constant. */
993/* As in 0f12.456 */
994/* or 0d1.2345e12 */
b99bd4ef 995
c19d1205 996const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 997
c19d1205
ZW
998/* Prefix characters that indicate the start of an immediate
999 value. */
1000#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1001
c19d1205
ZW
1002/* Separator character handling. */
1003
1004#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1005
1006static inline int
1007skip_past_char (char ** str, char c)
1008{
8ab8155f
NC
1009 /* PR gas/14987: Allow for whitespace before the expected character. */
1010 skip_whitespace (*str);
427d0db6 1011
c19d1205
ZW
1012 if (**str == c)
1013 {
1014 (*str)++;
1015 return SUCCESS;
3d0c9500 1016 }
c19d1205
ZW
1017 else
1018 return FAIL;
1019}
c921be7d 1020
c19d1205 1021#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1022
c19d1205
ZW
1023/* Arithmetic expressions (possibly involving symbols). */
1024
1025/* Return TRUE if anything in the expression is a bignum. */
1026
0198d5e6 1027static bfd_boolean
c19d1205
ZW
1028walk_no_bignums (symbolS * sp)
1029{
1030 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1031 return TRUE;
c19d1205
ZW
1032
1033 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1034 {
c19d1205
ZW
1035 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1036 || (symbol_get_value_expression (sp)->X_op_symbol
1037 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1038 }
1039
0198d5e6 1040 return FALSE;
3d0c9500
NC
1041}
1042
0198d5e6 1043static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1044
1045/* Third argument to my_get_expression. */
1046#define GE_NO_PREFIX 0
1047#define GE_IMM_PREFIX 1
1048#define GE_OPT_PREFIX 2
5287ad62
JB
1049/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1050 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1051#define GE_OPT_PREFIX_BIG 3
a737bd4d 1052
b99bd4ef 1053static int
c19d1205 1054my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1055{
c19d1205 1056 char * save_in;
b99bd4ef 1057
c19d1205
ZW
1058 /* In unified syntax, all prefixes are optional. */
1059 if (unified_syntax)
5287ad62 1060 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1061 : GE_OPT_PREFIX;
b99bd4ef 1062
c19d1205 1063 switch (prefix_mode)
b99bd4ef 1064 {
c19d1205
ZW
1065 case GE_NO_PREFIX: break;
1066 case GE_IMM_PREFIX:
1067 if (!is_immediate_prefix (**str))
1068 {
1069 inst.error = _("immediate expression requires a # prefix");
1070 return FAIL;
1071 }
1072 (*str)++;
1073 break;
1074 case GE_OPT_PREFIX:
5287ad62 1075 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1076 if (is_immediate_prefix (**str))
1077 (*str)++;
1078 break;
0198d5e6
TC
1079 default:
1080 abort ();
c19d1205 1081 }
b99bd4ef 1082
c19d1205 1083 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1084
c19d1205
ZW
1085 save_in = input_line_pointer;
1086 input_line_pointer = *str;
0198d5e6 1087 in_my_get_expression = TRUE;
2ac93be7 1088 expression (ep);
0198d5e6 1089 in_my_get_expression = FALSE;
c19d1205 1090
f86adc07 1091 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1092 {
f86adc07 1093 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1094 *str = input_line_pointer;
1095 input_line_pointer = save_in;
1096 if (inst.error == NULL)
f86adc07
NS
1097 inst.error = (ep->X_op == O_absent
1098 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1099 return 1;
1100 }
b99bd4ef 1101
c19d1205
ZW
1102 /* Get rid of any bignums now, so that we don't generate an error for which
1103 we can't establish a line number later on. Big numbers are never valid
1104 in instructions, which is where this routine is always called. */
5287ad62
JB
1105 if (prefix_mode != GE_OPT_PREFIX_BIG
1106 && (ep->X_op == O_big
477330fc 1107 || (ep->X_add_symbol
5287ad62 1108 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1109 || (ep->X_op_symbol
5287ad62 1110 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1111 {
1112 inst.error = _("invalid constant");
1113 *str = input_line_pointer;
1114 input_line_pointer = save_in;
1115 return 1;
1116 }
b99bd4ef 1117
c19d1205
ZW
1118 *str = input_line_pointer;
1119 input_line_pointer = save_in;
0198d5e6 1120 return SUCCESS;
b99bd4ef
NC
1121}
1122
c19d1205
ZW
1123/* Turn a string in input_line_pointer into a floating point constant
1124 of type TYPE, and store the appropriate bytes in *LITP. The number
1125 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1126 returned, or NULL on OK.
b99bd4ef 1127
c19d1205
ZW
1128 Note that fp constants aren't represent in the normal way on the ARM.
1129 In big endian mode, things are as expected. However, in little endian
1130 mode fp constants are big-endian word-wise, and little-endian byte-wise
1131 within the words. For example, (double) 1.1 in big endian mode is
1132 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1133 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1134
c19d1205 1135 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1136
6d4af3c2 1137const char *
c19d1205
ZW
1138md_atof (int type, char * litP, int * sizeP)
1139{
1140 int prec;
1141 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1142 char *t;
1143 int i;
b99bd4ef 1144
c19d1205
ZW
1145 switch (type)
1146 {
1147 case 'f':
1148 case 'F':
1149 case 's':
1150 case 'S':
1151 prec = 2;
1152 break;
b99bd4ef 1153
c19d1205
ZW
1154 case 'd':
1155 case 'D':
1156 case 'r':
1157 case 'R':
1158 prec = 4;
1159 break;
b99bd4ef 1160
c19d1205
ZW
1161 case 'x':
1162 case 'X':
499ac353 1163 prec = 5;
c19d1205 1164 break;
b99bd4ef 1165
c19d1205
ZW
1166 case 'p':
1167 case 'P':
499ac353 1168 prec = 5;
c19d1205 1169 break;
a737bd4d 1170
c19d1205
ZW
1171 default:
1172 *sizeP = 0;
499ac353 1173 return _("Unrecognized or unsupported floating point constant");
c19d1205 1174 }
b99bd4ef 1175
c19d1205
ZW
1176 t = atof_ieee (input_line_pointer, type, words);
1177 if (t)
1178 input_line_pointer = t;
499ac353 1179 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1180
c19d1205
ZW
1181 if (target_big_endian)
1182 {
1183 for (i = 0; i < prec; i++)
1184 {
499ac353
NC
1185 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1186 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1187 }
1188 }
1189 else
1190 {
e74cfd16 1191 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1192 for (i = prec - 1; i >= 0; i--)
1193 {
499ac353
NC
1194 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1195 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1196 }
1197 else
1198 /* For a 4 byte float the order of elements in `words' is 1 0.
1199 For an 8 byte float the order is 1 0 3 2. */
1200 for (i = 0; i < prec; i += 2)
1201 {
499ac353
NC
1202 md_number_to_chars (litP, (valueT) words[i + 1],
1203 sizeof (LITTLENUM_TYPE));
1204 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1205 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1206 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1207 }
1208 }
b99bd4ef 1209
499ac353 1210 return NULL;
c19d1205 1211}
b99bd4ef 1212
c19d1205
ZW
1213/* We handle all bad expressions here, so that we can report the faulty
1214 instruction in the error message. */
0198d5e6 1215
c19d1205 1216void
91d6fa6a 1217md_operand (expressionS * exp)
c19d1205
ZW
1218{
1219 if (in_my_get_expression)
91d6fa6a 1220 exp->X_op = O_illegal;
b99bd4ef
NC
1221}
1222
c19d1205 1223/* Immediate values. */
b99bd4ef 1224
0198d5e6 1225#ifdef OBJ_ELF
c19d1205
ZW
1226/* Generic immediate-value read function for use in directives.
1227 Accepts anything that 'expression' can fold to a constant.
1228 *val receives the number. */
0198d5e6 1229
c19d1205
ZW
1230static int
1231immediate_for_directive (int *val)
b99bd4ef 1232{
c19d1205
ZW
1233 expressionS exp;
1234 exp.X_op = O_illegal;
b99bd4ef 1235
c19d1205
ZW
1236 if (is_immediate_prefix (*input_line_pointer))
1237 {
1238 input_line_pointer++;
1239 expression (&exp);
1240 }
b99bd4ef 1241
c19d1205
ZW
1242 if (exp.X_op != O_constant)
1243 {
1244 as_bad (_("expected #constant"));
1245 ignore_rest_of_line ();
1246 return FAIL;
1247 }
1248 *val = exp.X_add_number;
1249 return SUCCESS;
b99bd4ef 1250}
c19d1205 1251#endif
b99bd4ef 1252
c19d1205 1253/* Register parsing. */
b99bd4ef 1254
c19d1205
ZW
1255/* Generic register parser. CCP points to what should be the
1256 beginning of a register name. If it is indeed a valid register
1257 name, advance CCP over it and return the reg_entry structure;
1258 otherwise return NULL. Does not issue diagnostics. */
1259
1260static struct reg_entry *
1261arm_reg_parse_multi (char **ccp)
b99bd4ef 1262{
c19d1205
ZW
1263 char *start = *ccp;
1264 char *p;
1265 struct reg_entry *reg;
b99bd4ef 1266
477330fc
RM
1267 skip_whitespace (start);
1268
c19d1205
ZW
1269#ifdef REGISTER_PREFIX
1270 if (*start != REGISTER_PREFIX)
01cfc07f 1271 return NULL;
c19d1205
ZW
1272 start++;
1273#endif
1274#ifdef OPTIONAL_REGISTER_PREFIX
1275 if (*start == OPTIONAL_REGISTER_PREFIX)
1276 start++;
1277#endif
b99bd4ef 1278
c19d1205
ZW
1279 p = start;
1280 if (!ISALPHA (*p) || !is_name_beginner (*p))
1281 return NULL;
b99bd4ef 1282
c19d1205
ZW
1283 do
1284 p++;
1285 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1286
1287 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1288
1289 if (!reg)
1290 return NULL;
1291
1292 *ccp = p;
1293 return reg;
b99bd4ef
NC
1294}
1295
1296static int
dcbf9037 1297arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1298 enum arm_reg_type type)
b99bd4ef 1299{
c19d1205
ZW
1300 /* Alternative syntaxes are accepted for a few register classes. */
1301 switch (type)
1302 {
1303 case REG_TYPE_MVF:
1304 case REG_TYPE_MVD:
1305 case REG_TYPE_MVFX:
1306 case REG_TYPE_MVDX:
1307 /* Generic coprocessor register names are allowed for these. */
79134647 1308 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1309 return reg->number;
1310 break;
69b97547 1311
c19d1205
ZW
1312 case REG_TYPE_CP:
1313 /* For backward compatibility, a bare number is valid here. */
1314 {
1315 unsigned long processor = strtoul (start, ccp, 10);
1316 if (*ccp != start && processor <= 15)
1317 return processor;
1318 }
1a0670f3 1319 /* Fall through. */
6057a28f 1320
c19d1205
ZW
1321 case REG_TYPE_MMXWC:
1322 /* WC includes WCG. ??? I'm not sure this is true for all
1323 instructions that take WC registers. */
79134647 1324 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1325 return reg->number;
6057a28f 1326 break;
c19d1205 1327
6057a28f 1328 default:
c19d1205 1329 break;
6057a28f
NC
1330 }
1331
dcbf9037
JB
1332 return FAIL;
1333}
1334
1335/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1336 return value is the register number or FAIL. */
1337
1338static int
1339arm_reg_parse (char **ccp, enum arm_reg_type type)
1340{
1341 char *start = *ccp;
1342 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1343 int ret;
1344
1345 /* Do not allow a scalar (reg+index) to parse as a register. */
1346 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1347 return FAIL;
1348
1349 if (reg && reg->type == type)
1350 return reg->number;
1351
1352 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1353 return ret;
1354
c19d1205
ZW
1355 *ccp = start;
1356 return FAIL;
1357}
69b97547 1358
dcbf9037
JB
1359/* Parse a Neon type specifier. *STR should point at the leading '.'
1360 character. Does no verification at this stage that the type fits the opcode
1361 properly. E.g.,
1362
1363 .i32.i32.s16
1364 .s32.f32
1365 .u16
1366
1367 Can all be legally parsed by this function.
1368
1369 Fills in neon_type struct pointer with parsed information, and updates STR
1370 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1371 type, FAIL if not. */
1372
1373static int
1374parse_neon_type (struct neon_type *type, char **str)
1375{
1376 char *ptr = *str;
1377
1378 if (type)
1379 type->elems = 0;
1380
1381 while (type->elems < NEON_MAX_TYPE_ELS)
1382 {
1383 enum neon_el_type thistype = NT_untyped;
1384 unsigned thissize = -1u;
1385
1386 if (*ptr != '.')
1387 break;
1388
1389 ptr++;
1390
1391 /* Just a size without an explicit type. */
1392 if (ISDIGIT (*ptr))
1393 goto parsesize;
1394
1395 switch (TOLOWER (*ptr))
1396 {
1397 case 'i': thistype = NT_integer; break;
1398 case 'f': thistype = NT_float; break;
1399 case 'p': thistype = NT_poly; break;
1400 case 's': thistype = NT_signed; break;
1401 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1402 case 'd':
1403 thistype = NT_float;
1404 thissize = 64;
1405 ptr++;
1406 goto done;
dcbf9037
JB
1407 default:
1408 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1409 return FAIL;
1410 }
1411
1412 ptr++;
1413
1414 /* .f is an abbreviation for .f32. */
1415 if (thistype == NT_float && !ISDIGIT (*ptr))
1416 thissize = 32;
1417 else
1418 {
1419 parsesize:
1420 thissize = strtoul (ptr, &ptr, 10);
1421
1422 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1423 && thissize != 64)
1424 {
1425 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1426 return FAIL;
1427 }
1428 }
1429
037e8744 1430 done:
dcbf9037 1431 if (type)
477330fc
RM
1432 {
1433 type->el[type->elems].type = thistype;
dcbf9037
JB
1434 type->el[type->elems].size = thissize;
1435 type->elems++;
1436 }
1437 }
1438
1439 /* Empty/missing type is not a successful parse. */
1440 if (type->elems == 0)
1441 return FAIL;
1442
1443 *str = ptr;
1444
1445 return SUCCESS;
1446}
1447
1448/* Errors may be set multiple times during parsing or bit encoding
1449 (particularly in the Neon bits), but usually the earliest error which is set
1450 will be the most meaningful. Avoid overwriting it with later (cascading)
1451 errors by calling this function. */
1452
1453static void
1454first_error (const char *err)
1455{
1456 if (!inst.error)
1457 inst.error = err;
1458}
1459
1460/* Parse a single type, e.g. ".s32", leading period included. */
1461static int
1462parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1463{
1464 char *str = *ccp;
1465 struct neon_type optype;
1466
1467 if (*str == '.')
1468 {
1469 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1470 {
1471 if (optype.elems == 1)
1472 *vectype = optype.el[0];
1473 else
1474 {
1475 first_error (_("only one type should be specified for operand"));
1476 return FAIL;
1477 }
1478 }
dcbf9037 1479 else
477330fc
RM
1480 {
1481 first_error (_("vector type expected"));
1482 return FAIL;
1483 }
dcbf9037
JB
1484 }
1485 else
1486 return FAIL;
5f4273c7 1487
dcbf9037 1488 *ccp = str;
5f4273c7 1489
dcbf9037
JB
1490 return SUCCESS;
1491}
1492
1493/* Special meanings for indices (which have a range of 0-7), which will fit into
1494 a 4-bit integer. */
1495
1496#define NEON_ALL_LANES 15
1497#define NEON_INTERLEAVE_LANES 14
1498
1499/* Parse either a register or a scalar, with an optional type. Return the
1500 register number, and optionally fill in the actual type of the register
1501 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1502 type/index information in *TYPEINFO. */
1503
1504static int
1505parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1506 enum arm_reg_type *rtype,
1507 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1508{
1509 char *str = *ccp;
1510 struct reg_entry *reg = arm_reg_parse_multi (&str);
1511 struct neon_typed_alias atype;
1512 struct neon_type_el parsetype;
1513
1514 atype.defined = 0;
1515 atype.index = -1;
1516 atype.eltype.type = NT_invtype;
1517 atype.eltype.size = -1;
1518
1519 /* Try alternate syntax for some types of register. Note these are mutually
1520 exclusive with the Neon syntax extensions. */
1521 if (reg == NULL)
1522 {
1523 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1524 if (altreg != FAIL)
477330fc 1525 *ccp = str;
dcbf9037 1526 if (typeinfo)
477330fc 1527 *typeinfo = atype;
dcbf9037
JB
1528 return altreg;
1529 }
1530
037e8744
JB
1531 /* Undo polymorphism when a set of register types may be accepted. */
1532 if ((type == REG_TYPE_NDQ
1533 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1534 || (type == REG_TYPE_VFSD
477330fc 1535 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1536 || (type == REG_TYPE_NSDQ
477330fc
RM
1537 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1538 || reg->type == REG_TYPE_NQ))
dec41383
JW
1539 || (type == REG_TYPE_NSD
1540 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1541 || (type == REG_TYPE_MMXWC
1542 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1543 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1544
1545 if (type != reg->type)
1546 return FAIL;
1547
1548 if (reg->neon)
1549 atype = *reg->neon;
5f4273c7 1550
dcbf9037
JB
1551 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1552 {
1553 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1554 {
1555 first_error (_("can't redefine type for operand"));
1556 return FAIL;
1557 }
dcbf9037
JB
1558 atype.defined |= NTA_HASTYPE;
1559 atype.eltype = parsetype;
1560 }
5f4273c7 1561
dcbf9037
JB
1562 if (skip_past_char (&str, '[') == SUCCESS)
1563 {
dec41383
JW
1564 if (type != REG_TYPE_VFD
1565 && !(type == REG_TYPE_VFS
1566 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
477330fc
RM
1567 {
1568 first_error (_("only D registers may be indexed"));
1569 return FAIL;
1570 }
5f4273c7 1571
dcbf9037 1572 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1573 {
1574 first_error (_("can't change index for operand"));
1575 return FAIL;
1576 }
dcbf9037
JB
1577
1578 atype.defined |= NTA_HASINDEX;
1579
1580 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1581 atype.index = NEON_ALL_LANES;
dcbf9037 1582 else
477330fc
RM
1583 {
1584 expressionS exp;
dcbf9037 1585
477330fc 1586 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1587
477330fc
RM
1588 if (exp.X_op != O_constant)
1589 {
1590 first_error (_("constant expression required"));
1591 return FAIL;
1592 }
dcbf9037 1593
477330fc
RM
1594 if (skip_past_char (&str, ']') == FAIL)
1595 return FAIL;
dcbf9037 1596
477330fc
RM
1597 atype.index = exp.X_add_number;
1598 }
dcbf9037 1599 }
5f4273c7 1600
dcbf9037
JB
1601 if (typeinfo)
1602 *typeinfo = atype;
5f4273c7 1603
dcbf9037
JB
1604 if (rtype)
1605 *rtype = type;
5f4273c7 1606
dcbf9037 1607 *ccp = str;
5f4273c7 1608
dcbf9037
JB
1609 return reg->number;
1610}
1611
1612/* Like arm_reg_parse, but allow allow the following extra features:
1613 - If RTYPE is non-zero, return the (possibly restricted) type of the
1614 register (e.g. Neon double or quad reg when either has been requested).
1615 - If this is a Neon vector type with additional type information, fill
1616 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1617 This function will fault on encountering a scalar. */
dcbf9037
JB
1618
1619static int
1620arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1621 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1622{
1623 struct neon_typed_alias atype;
1624 char *str = *ccp;
1625 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1626
1627 if (reg == FAIL)
1628 return FAIL;
1629
0855e32b
NS
1630 /* Do not allow regname(... to parse as a register. */
1631 if (*str == '(')
1632 return FAIL;
1633
dcbf9037
JB
1634 /* Do not allow a scalar (reg+index) to parse as a register. */
1635 if ((atype.defined & NTA_HASINDEX) != 0)
1636 {
1637 first_error (_("register operand expected, but got scalar"));
1638 return FAIL;
1639 }
1640
1641 if (vectype)
1642 *vectype = atype.eltype;
1643
1644 *ccp = str;
1645
1646 return reg;
1647}
1648
1649#define NEON_SCALAR_REG(X) ((X) >> 4)
1650#define NEON_SCALAR_INDEX(X) ((X) & 15)
1651
5287ad62
JB
1652/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1653 have enough information to be able to do a good job bounds-checking. So, we
1654 just do easy checks here, and do further checks later. */
1655
1656static int
dcbf9037 1657parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1658{
dcbf9037 1659 int reg;
5287ad62 1660 char *str = *ccp;
dcbf9037 1661 struct neon_typed_alias atype;
dec41383
JW
1662 enum arm_reg_type reg_type = REG_TYPE_VFD;
1663
1664 if (elsize == 4)
1665 reg_type = REG_TYPE_VFS;
5f4273c7 1666
dec41383 1667 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1668
dcbf9037 1669 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1670 return FAIL;
5f4273c7 1671
dcbf9037 1672 if (atype.index == NEON_ALL_LANES)
5287ad62 1673 {
dcbf9037 1674 first_error (_("scalar must have an index"));
5287ad62
JB
1675 return FAIL;
1676 }
dcbf9037 1677 else if (atype.index >= 64 / elsize)
5287ad62 1678 {
dcbf9037 1679 first_error (_("scalar index out of range"));
5287ad62
JB
1680 return FAIL;
1681 }
5f4273c7 1682
dcbf9037
JB
1683 if (type)
1684 *type = atype.eltype;
5f4273c7 1685
5287ad62 1686 *ccp = str;
5f4273c7 1687
dcbf9037 1688 return reg * 16 + atype.index;
5287ad62
JB
1689}
1690
c19d1205 1691/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1692
c19d1205
ZW
1693static long
1694parse_reg_list (char ** strp)
1695{
1696 char * str = * strp;
1697 long range = 0;
1698 int another_range;
a737bd4d 1699
c19d1205
ZW
1700 /* We come back here if we get ranges concatenated by '+' or '|'. */
1701 do
6057a28f 1702 {
477330fc
RM
1703 skip_whitespace (str);
1704
c19d1205 1705 another_range = 0;
a737bd4d 1706
c19d1205
ZW
1707 if (*str == '{')
1708 {
1709 int in_range = 0;
1710 int cur_reg = -1;
a737bd4d 1711
c19d1205
ZW
1712 str++;
1713 do
1714 {
1715 int reg;
6057a28f 1716
dcbf9037 1717 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1718 {
dcbf9037 1719 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1720 return FAIL;
1721 }
a737bd4d 1722
c19d1205
ZW
1723 if (in_range)
1724 {
1725 int i;
a737bd4d 1726
c19d1205
ZW
1727 if (reg <= cur_reg)
1728 {
dcbf9037 1729 first_error (_("bad range in register list"));
c19d1205
ZW
1730 return FAIL;
1731 }
40a18ebd 1732
c19d1205
ZW
1733 for (i = cur_reg + 1; i < reg; i++)
1734 {
1735 if (range & (1 << i))
1736 as_tsktsk
1737 (_("Warning: duplicated register (r%d) in register list"),
1738 i);
1739 else
1740 range |= 1 << i;
1741 }
1742 in_range = 0;
1743 }
a737bd4d 1744
c19d1205
ZW
1745 if (range & (1 << reg))
1746 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1747 reg);
1748 else if (reg <= cur_reg)
1749 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1750
c19d1205
ZW
1751 range |= 1 << reg;
1752 cur_reg = reg;
1753 }
1754 while (skip_past_comma (&str) != FAIL
1755 || (in_range = 1, *str++ == '-'));
1756 str--;
a737bd4d 1757
d996d970 1758 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1759 {
dcbf9037 1760 first_error (_("missing `}'"));
c19d1205
ZW
1761 return FAIL;
1762 }
1763 }
1764 else
1765 {
91d6fa6a 1766 expressionS exp;
40a18ebd 1767
91d6fa6a 1768 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1769 return FAIL;
40a18ebd 1770
91d6fa6a 1771 if (exp.X_op == O_constant)
c19d1205 1772 {
91d6fa6a
NC
1773 if (exp.X_add_number
1774 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1775 {
1776 inst.error = _("invalid register mask");
1777 return FAIL;
1778 }
a737bd4d 1779
91d6fa6a 1780 if ((range & exp.X_add_number) != 0)
c19d1205 1781 {
91d6fa6a 1782 int regno = range & exp.X_add_number;
a737bd4d 1783
c19d1205
ZW
1784 regno &= -regno;
1785 regno = (1 << regno) - 1;
1786 as_tsktsk
1787 (_("Warning: duplicated register (r%d) in register list"),
1788 regno);
1789 }
a737bd4d 1790
91d6fa6a 1791 range |= exp.X_add_number;
c19d1205
ZW
1792 }
1793 else
1794 {
e2b0ab59 1795 if (inst.relocs[0].type != 0)
c19d1205
ZW
1796 {
1797 inst.error = _("expression too complex");
1798 return FAIL;
1799 }
a737bd4d 1800
e2b0ab59
AV
1801 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1802 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1803 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1804 }
1805 }
a737bd4d 1806
c19d1205
ZW
1807 if (*str == '|' || *str == '+')
1808 {
1809 str++;
1810 another_range = 1;
1811 }
a737bd4d 1812 }
c19d1205 1813 while (another_range);
a737bd4d 1814
c19d1205
ZW
1815 *strp = str;
1816 return range;
a737bd4d
NC
1817}
1818
5287ad62
JB
1819/* Types of registers in a list. */
1820
1821enum reg_list_els
1822{
1823 REGLIST_VFP_S,
1824 REGLIST_VFP_D,
1825 REGLIST_NEON_D
1826};
1827
c19d1205
ZW
1828/* Parse a VFP register list. If the string is invalid return FAIL.
1829 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1830 register. Parses registers of type ETYPE.
1831 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1832 - Q registers can be used to specify pairs of D registers
1833 - { } can be omitted from around a singleton register list
477330fc
RM
1834 FIXME: This is not implemented, as it would require backtracking in
1835 some cases, e.g.:
1836 vtbl.8 d3,d4,d5
1837 This could be done (the meaning isn't really ambiguous), but doesn't
1838 fit in well with the current parsing framework.
dcbf9037
JB
1839 - 32 D registers may be used (also true for VFPv3).
1840 FIXME: Types are ignored in these register lists, which is probably a
1841 bug. */
6057a28f 1842
c19d1205 1843static int
037e8744 1844parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1845{
037e8744 1846 char *str = *ccp;
c19d1205
ZW
1847 int base_reg;
1848 int new_base;
21d799b5 1849 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1850 int max_regs = 0;
c19d1205
ZW
1851 int count = 0;
1852 int warned = 0;
1853 unsigned long mask = 0;
a737bd4d 1854 int i;
6057a28f 1855
477330fc 1856 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
1857 {
1858 inst.error = _("expecting {");
1859 return FAIL;
1860 }
6057a28f 1861
5287ad62 1862 switch (etype)
c19d1205 1863 {
5287ad62 1864 case REGLIST_VFP_S:
c19d1205
ZW
1865 regtype = REG_TYPE_VFS;
1866 max_regs = 32;
5287ad62 1867 break;
5f4273c7 1868
5287ad62
JB
1869 case REGLIST_VFP_D:
1870 regtype = REG_TYPE_VFD;
b7fc2769 1871 break;
5f4273c7 1872
b7fc2769
JB
1873 case REGLIST_NEON_D:
1874 regtype = REG_TYPE_NDQ;
1875 break;
1876 }
1877
1878 if (etype != REGLIST_VFP_S)
1879 {
b1cc4aeb
PB
1880 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1881 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
1882 {
1883 max_regs = 32;
1884 if (thumb_mode)
1885 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1886 fpu_vfp_ext_d32);
1887 else
1888 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1889 fpu_vfp_ext_d32);
1890 }
5287ad62 1891 else
477330fc 1892 max_regs = 16;
c19d1205 1893 }
6057a28f 1894
c19d1205 1895 base_reg = max_regs;
a737bd4d 1896
c19d1205
ZW
1897 do
1898 {
5287ad62 1899 int setmask = 1, addregs = 1;
dcbf9037 1900
037e8744 1901 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1902
c19d1205 1903 if (new_base == FAIL)
a737bd4d 1904 {
dcbf9037 1905 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1906 return FAIL;
1907 }
5f4273c7 1908
b7fc2769 1909 if (new_base >= max_regs)
477330fc
RM
1910 {
1911 first_error (_("register out of range in list"));
1912 return FAIL;
1913 }
5f4273c7 1914
5287ad62
JB
1915 /* Note: a value of 2 * n is returned for the register Q<n>. */
1916 if (regtype == REG_TYPE_NQ)
477330fc
RM
1917 {
1918 setmask = 3;
1919 addregs = 2;
1920 }
5287ad62 1921
c19d1205
ZW
1922 if (new_base < base_reg)
1923 base_reg = new_base;
a737bd4d 1924
5287ad62 1925 if (mask & (setmask << new_base))
c19d1205 1926 {
dcbf9037 1927 first_error (_("invalid register list"));
c19d1205 1928 return FAIL;
a737bd4d 1929 }
a737bd4d 1930
c19d1205
ZW
1931 if ((mask >> new_base) != 0 && ! warned)
1932 {
1933 as_tsktsk (_("register list not in ascending order"));
1934 warned = 1;
1935 }
0bbf2aa4 1936
5287ad62
JB
1937 mask |= setmask << new_base;
1938 count += addregs;
0bbf2aa4 1939
037e8744 1940 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1941 {
1942 int high_range;
0bbf2aa4 1943
037e8744 1944 str++;
0bbf2aa4 1945
037e8744 1946 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 1947 == FAIL)
c19d1205
ZW
1948 {
1949 inst.error = gettext (reg_expected_msgs[regtype]);
1950 return FAIL;
1951 }
0bbf2aa4 1952
477330fc
RM
1953 if (high_range >= max_regs)
1954 {
1955 first_error (_("register out of range in list"));
1956 return FAIL;
1957 }
b7fc2769 1958
477330fc
RM
1959 if (regtype == REG_TYPE_NQ)
1960 high_range = high_range + 1;
5287ad62 1961
c19d1205
ZW
1962 if (high_range <= new_base)
1963 {
1964 inst.error = _("register range not in ascending order");
1965 return FAIL;
1966 }
0bbf2aa4 1967
5287ad62 1968 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1969 {
5287ad62 1970 if (mask & (setmask << new_base))
0bbf2aa4 1971 {
c19d1205
ZW
1972 inst.error = _("invalid register list");
1973 return FAIL;
0bbf2aa4 1974 }
c19d1205 1975
5287ad62
JB
1976 mask |= setmask << new_base;
1977 count += addregs;
0bbf2aa4 1978 }
0bbf2aa4 1979 }
0bbf2aa4 1980 }
037e8744 1981 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1982
037e8744 1983 str++;
0bbf2aa4 1984
c19d1205
ZW
1985 /* Sanity check -- should have raised a parse error above. */
1986 if (count == 0 || count > max_regs)
1987 abort ();
1988
1989 *pbase = base_reg;
1990
1991 /* Final test -- the registers must be consecutive. */
1992 mask >>= base_reg;
1993 for (i = 0; i < count; i++)
1994 {
1995 if ((mask & (1u << i)) == 0)
1996 {
1997 inst.error = _("non-contiguous register range");
1998 return FAIL;
1999 }
2000 }
2001
037e8744
JB
2002 *ccp = str;
2003
c19d1205 2004 return count;
b99bd4ef
NC
2005}
2006
dcbf9037
JB
2007/* True if two alias types are the same. */
2008
c921be7d 2009static bfd_boolean
dcbf9037
JB
2010neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2011{
2012 if (!a && !b)
c921be7d 2013 return TRUE;
5f4273c7 2014
dcbf9037 2015 if (!a || !b)
c921be7d 2016 return FALSE;
dcbf9037
JB
2017
2018 if (a->defined != b->defined)
c921be7d 2019 return FALSE;
5f4273c7 2020
dcbf9037
JB
2021 if ((a->defined & NTA_HASTYPE) != 0
2022 && (a->eltype.type != b->eltype.type
477330fc 2023 || a->eltype.size != b->eltype.size))
c921be7d 2024 return FALSE;
dcbf9037
JB
2025
2026 if ((a->defined & NTA_HASINDEX) != 0
2027 && (a->index != b->index))
c921be7d 2028 return FALSE;
5f4273c7 2029
c921be7d 2030 return TRUE;
dcbf9037
JB
2031}
2032
5287ad62
JB
2033/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2034 The base register is put in *PBASE.
dcbf9037 2035 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2036 the return value.
2037 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2038 Bits [6:5] encode the list length (minus one).
2039 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2040
5287ad62 2041#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2042#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2043#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2044
2045static int
dcbf9037 2046parse_neon_el_struct_list (char **str, unsigned *pbase,
477330fc 2047 struct neon_type_el *eltype)
5287ad62
JB
2048{
2049 char *ptr = *str;
2050 int base_reg = -1;
2051 int reg_incr = -1;
2052 int count = 0;
2053 int lane = -1;
2054 int leading_brace = 0;
2055 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
2056 const char *const incr_error = _("register stride must be 1 or 2");
2057 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2058 struct neon_typed_alias firsttype;
f85d59c3
KT
2059 firsttype.defined = 0;
2060 firsttype.eltype.type = NT_invtype;
2061 firsttype.eltype.size = -1;
2062 firsttype.index = -1;
5f4273c7 2063
5287ad62
JB
2064 if (skip_past_char (&ptr, '{') == SUCCESS)
2065 leading_brace = 1;
5f4273c7 2066
5287ad62
JB
2067 do
2068 {
dcbf9037
JB
2069 struct neon_typed_alias atype;
2070 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2071
5287ad62 2072 if (getreg == FAIL)
477330fc
RM
2073 {
2074 first_error (_(reg_expected_msgs[rtype]));
2075 return FAIL;
2076 }
5f4273c7 2077
5287ad62 2078 if (base_reg == -1)
477330fc
RM
2079 {
2080 base_reg = getreg;
2081 if (rtype == REG_TYPE_NQ)
2082 {
2083 reg_incr = 1;
2084 }
2085 firsttype = atype;
2086 }
5287ad62 2087 else if (reg_incr == -1)
477330fc
RM
2088 {
2089 reg_incr = getreg - base_reg;
2090 if (reg_incr < 1 || reg_incr > 2)
2091 {
2092 first_error (_(incr_error));
2093 return FAIL;
2094 }
2095 }
5287ad62 2096 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2097 {
2098 first_error (_(incr_error));
2099 return FAIL;
2100 }
dcbf9037 2101
c921be7d 2102 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2103 {
2104 first_error (_(type_error));
2105 return FAIL;
2106 }
5f4273c7 2107
5287ad62 2108 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2109 modes. */
5287ad62 2110 if (ptr[0] == '-')
477330fc
RM
2111 {
2112 struct neon_typed_alias htype;
2113 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2114 if (lane == -1)
2115 lane = NEON_INTERLEAVE_LANES;
2116 else if (lane != NEON_INTERLEAVE_LANES)
2117 {
2118 first_error (_(type_error));
2119 return FAIL;
2120 }
2121 if (reg_incr == -1)
2122 reg_incr = 1;
2123 else if (reg_incr != 1)
2124 {
2125 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2126 return FAIL;
2127 }
2128 ptr++;
2129 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2130 if (hireg == FAIL)
2131 {
2132 first_error (_(reg_expected_msgs[rtype]));
2133 return FAIL;
2134 }
2135 if (! neon_alias_types_same (&htype, &firsttype))
2136 {
2137 first_error (_(type_error));
2138 return FAIL;
2139 }
2140 count += hireg + dregs - getreg;
2141 continue;
2142 }
5f4273c7 2143
5287ad62
JB
2144 /* If we're using Q registers, we can't use [] or [n] syntax. */
2145 if (rtype == REG_TYPE_NQ)
477330fc
RM
2146 {
2147 count += 2;
2148 continue;
2149 }
5f4273c7 2150
dcbf9037 2151 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2152 {
2153 if (lane == -1)
2154 lane = atype.index;
2155 else if (lane != atype.index)
2156 {
2157 first_error (_(type_error));
2158 return FAIL;
2159 }
2160 }
5287ad62 2161 else if (lane == -1)
477330fc 2162 lane = NEON_INTERLEAVE_LANES;
5287ad62 2163 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2164 {
2165 first_error (_(type_error));
2166 return FAIL;
2167 }
5287ad62
JB
2168 count++;
2169 }
2170 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2171
5287ad62
JB
2172 /* No lane set by [x]. We must be interleaving structures. */
2173 if (lane == -1)
2174 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2175
5287ad62
JB
2176 /* Sanity check. */
2177 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2178 || (count > 1 && reg_incr == -1))
2179 {
dcbf9037 2180 first_error (_("error parsing element/structure list"));
5287ad62
JB
2181 return FAIL;
2182 }
2183
2184 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2185 {
dcbf9037 2186 first_error (_("expected }"));
5287ad62
JB
2187 return FAIL;
2188 }
5f4273c7 2189
5287ad62
JB
2190 if (reg_incr == -1)
2191 reg_incr = 1;
2192
dcbf9037
JB
2193 if (eltype)
2194 *eltype = firsttype.eltype;
2195
5287ad62
JB
2196 *pbase = base_reg;
2197 *str = ptr;
5f4273c7 2198
5287ad62
JB
2199 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2200}
2201
c19d1205
ZW
2202/* Parse an explicit relocation suffix on an expression. This is
2203 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2204 arm_reloc_hsh contains no entries, so this function can only
2205 succeed if there is no () after the word. Returns -1 on error,
2206 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2207
c19d1205
ZW
2208static int
2209parse_reloc (char **str)
b99bd4ef 2210{
c19d1205
ZW
2211 struct reloc_entry *r;
2212 char *p, *q;
b99bd4ef 2213
c19d1205
ZW
2214 if (**str != '(')
2215 return BFD_RELOC_UNUSED;
b99bd4ef 2216
c19d1205
ZW
2217 p = *str + 1;
2218 q = p;
2219
2220 while (*q && *q != ')' && *q != ',')
2221 q++;
2222 if (*q != ')')
2223 return -1;
2224
21d799b5
NC
2225 if ((r = (struct reloc_entry *)
2226 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2227 return -1;
2228
2229 *str = q + 1;
2230 return r->reloc;
b99bd4ef
NC
2231}
2232
c19d1205
ZW
2233/* Directives: register aliases. */
2234
dcbf9037 2235static struct reg_entry *
90ec0d68 2236insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2237{
d3ce72d0 2238 struct reg_entry *new_reg;
c19d1205 2239 const char *name;
b99bd4ef 2240
d3ce72d0 2241 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2242 {
d3ce72d0 2243 if (new_reg->builtin)
c19d1205 2244 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2245
c19d1205
ZW
2246 /* Only warn about a redefinition if it's not defined as the
2247 same register. */
d3ce72d0 2248 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2249 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2250
d929913e 2251 return NULL;
c19d1205 2252 }
b99bd4ef 2253
c19d1205 2254 name = xstrdup (str);
325801bd 2255 new_reg = XNEW (struct reg_entry);
b99bd4ef 2256
d3ce72d0
NC
2257 new_reg->name = name;
2258 new_reg->number = number;
2259 new_reg->type = type;
2260 new_reg->builtin = FALSE;
2261 new_reg->neon = NULL;
b99bd4ef 2262
d3ce72d0 2263 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2264 abort ();
5f4273c7 2265
d3ce72d0 2266 return new_reg;
dcbf9037
JB
2267}
2268
2269static void
2270insert_neon_reg_alias (char *str, int number, int type,
477330fc 2271 struct neon_typed_alias *atype)
dcbf9037
JB
2272{
2273 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2274
dcbf9037
JB
2275 if (!reg)
2276 {
2277 first_error (_("attempt to redefine typed alias"));
2278 return;
2279 }
5f4273c7 2280
dcbf9037
JB
2281 if (atype)
2282 {
325801bd 2283 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2284 *reg->neon = *atype;
2285 }
c19d1205 2286}
b99bd4ef 2287
c19d1205 2288/* Look for the .req directive. This is of the form:
b99bd4ef 2289
c19d1205 2290 new_register_name .req existing_register_name
b99bd4ef 2291
c19d1205 2292 If we find one, or if it looks sufficiently like one that we want to
d929913e 2293 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2294
d929913e 2295static bfd_boolean
c19d1205
ZW
2296create_register_alias (char * newname, char *p)
2297{
2298 struct reg_entry *old;
2299 char *oldname, *nbuf;
2300 size_t nlen;
b99bd4ef 2301
c19d1205
ZW
2302 /* The input scrubber ensures that whitespace after the mnemonic is
2303 collapsed to single spaces. */
2304 oldname = p;
2305 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2306 return FALSE;
b99bd4ef 2307
c19d1205
ZW
2308 oldname += 6;
2309 if (*oldname == '\0')
d929913e 2310 return FALSE;
b99bd4ef 2311
21d799b5 2312 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2313 if (!old)
b99bd4ef 2314 {
c19d1205 2315 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2316 return TRUE;
b99bd4ef
NC
2317 }
2318
c19d1205
ZW
2319 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2320 the desired alias name, and p points to its end. If not, then
2321 the desired alias name is in the global original_case_string. */
2322#ifdef TC_CASE_SENSITIVE
2323 nlen = p - newname;
2324#else
2325 newname = original_case_string;
2326 nlen = strlen (newname);
2327#endif
b99bd4ef 2328
29a2809e 2329 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2330
c19d1205
ZW
2331 /* Create aliases under the new name as stated; an all-lowercase
2332 version of the new name; and an all-uppercase version of the new
2333 name. */
d929913e
NC
2334 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2335 {
2336 for (p = nbuf; *p; p++)
2337 *p = TOUPPER (*p);
c19d1205 2338
d929913e
NC
2339 if (strncmp (nbuf, newname, nlen))
2340 {
2341 /* If this attempt to create an additional alias fails, do not bother
2342 trying to create the all-lower case alias. We will fail and issue
2343 a second, duplicate error message. This situation arises when the
2344 programmer does something like:
2345 foo .req r0
2346 Foo .req r1
2347 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2348 the artificial FOO alias because it has already been created by the
d929913e
NC
2349 first .req. */
2350 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2351 {
2352 free (nbuf);
2353 return TRUE;
2354 }
d929913e 2355 }
c19d1205 2356
d929913e
NC
2357 for (p = nbuf; *p; p++)
2358 *p = TOLOWER (*p);
c19d1205 2359
d929913e
NC
2360 if (strncmp (nbuf, newname, nlen))
2361 insert_reg_alias (nbuf, old->number, old->type);
2362 }
c19d1205 2363
e1fa0163 2364 free (nbuf);
d929913e 2365 return TRUE;
b99bd4ef
NC
2366}
2367
dcbf9037
JB
2368/* Create a Neon typed/indexed register alias using directives, e.g.:
2369 X .dn d5.s32[1]
2370 Y .qn 6.s16
2371 Z .dn d7
2372 T .dn Z[0]
2373 These typed registers can be used instead of the types specified after the
2374 Neon mnemonic, so long as all operands given have types. Types can also be
2375 specified directly, e.g.:
5f4273c7 2376 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2377
c921be7d 2378static bfd_boolean
dcbf9037
JB
2379create_neon_reg_alias (char *newname, char *p)
2380{
2381 enum arm_reg_type basetype;
2382 struct reg_entry *basereg;
2383 struct reg_entry mybasereg;
2384 struct neon_type ntype;
2385 struct neon_typed_alias typeinfo;
12d6b0b7 2386 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2387 int namelen;
5f4273c7 2388
dcbf9037
JB
2389 typeinfo.defined = 0;
2390 typeinfo.eltype.type = NT_invtype;
2391 typeinfo.eltype.size = -1;
2392 typeinfo.index = -1;
5f4273c7 2393
dcbf9037 2394 nameend = p;
5f4273c7 2395
dcbf9037
JB
2396 if (strncmp (p, " .dn ", 5) == 0)
2397 basetype = REG_TYPE_VFD;
2398 else if (strncmp (p, " .qn ", 5) == 0)
2399 basetype = REG_TYPE_NQ;
2400 else
c921be7d 2401 return FALSE;
5f4273c7 2402
dcbf9037 2403 p += 5;
5f4273c7 2404
dcbf9037 2405 if (*p == '\0')
c921be7d 2406 return FALSE;
5f4273c7 2407
dcbf9037
JB
2408 basereg = arm_reg_parse_multi (&p);
2409
2410 if (basereg && basereg->type != basetype)
2411 {
2412 as_bad (_("bad type for register"));
c921be7d 2413 return FALSE;
dcbf9037
JB
2414 }
2415
2416 if (basereg == NULL)
2417 {
2418 expressionS exp;
2419 /* Try parsing as an integer. */
2420 my_get_expression (&exp, &p, GE_NO_PREFIX);
2421 if (exp.X_op != O_constant)
477330fc
RM
2422 {
2423 as_bad (_("expression must be constant"));
2424 return FALSE;
2425 }
dcbf9037
JB
2426 basereg = &mybasereg;
2427 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2428 : exp.X_add_number;
dcbf9037
JB
2429 basereg->neon = 0;
2430 }
2431
2432 if (basereg->neon)
2433 typeinfo = *basereg->neon;
2434
2435 if (parse_neon_type (&ntype, &p) == SUCCESS)
2436 {
2437 /* We got a type. */
2438 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2439 {
2440 as_bad (_("can't redefine the type of a register alias"));
2441 return FALSE;
2442 }
5f4273c7 2443
dcbf9037
JB
2444 typeinfo.defined |= NTA_HASTYPE;
2445 if (ntype.elems != 1)
477330fc
RM
2446 {
2447 as_bad (_("you must specify a single type only"));
2448 return FALSE;
2449 }
dcbf9037
JB
2450 typeinfo.eltype = ntype.el[0];
2451 }
5f4273c7 2452
dcbf9037
JB
2453 if (skip_past_char (&p, '[') == SUCCESS)
2454 {
2455 expressionS exp;
2456 /* We got a scalar index. */
5f4273c7 2457
dcbf9037 2458 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2459 {
2460 as_bad (_("can't redefine the index of a scalar alias"));
2461 return FALSE;
2462 }
5f4273c7 2463
dcbf9037 2464 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2465
dcbf9037 2466 if (exp.X_op != O_constant)
477330fc
RM
2467 {
2468 as_bad (_("scalar index must be constant"));
2469 return FALSE;
2470 }
5f4273c7 2471
dcbf9037
JB
2472 typeinfo.defined |= NTA_HASINDEX;
2473 typeinfo.index = exp.X_add_number;
5f4273c7 2474
dcbf9037 2475 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2476 {
2477 as_bad (_("expecting ]"));
2478 return FALSE;
2479 }
dcbf9037
JB
2480 }
2481
15735687
NS
2482 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2483 the desired alias name, and p points to its end. If not, then
2484 the desired alias name is in the global original_case_string. */
2485#ifdef TC_CASE_SENSITIVE
dcbf9037 2486 namelen = nameend - newname;
15735687
NS
2487#else
2488 newname = original_case_string;
2489 namelen = strlen (newname);
2490#endif
2491
29a2809e 2492 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2493
dcbf9037 2494 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2495 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2496
dcbf9037
JB
2497 /* Insert name in all uppercase. */
2498 for (p = namebuf; *p; p++)
2499 *p = TOUPPER (*p);
5f4273c7 2500
dcbf9037
JB
2501 if (strncmp (namebuf, newname, namelen))
2502 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2503 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2504
dcbf9037
JB
2505 /* Insert name in all lowercase. */
2506 for (p = namebuf; *p; p++)
2507 *p = TOLOWER (*p);
5f4273c7 2508
dcbf9037
JB
2509 if (strncmp (namebuf, newname, namelen))
2510 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2511 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2512
e1fa0163 2513 free (namebuf);
c921be7d 2514 return TRUE;
dcbf9037
JB
2515}
2516
c19d1205
ZW
2517/* Should never be called, as .req goes between the alias and the
2518 register name, not at the beginning of the line. */
c921be7d 2519
b99bd4ef 2520static void
c19d1205 2521s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2522{
c19d1205
ZW
2523 as_bad (_("invalid syntax for .req directive"));
2524}
b99bd4ef 2525
dcbf9037
JB
2526static void
2527s_dn (int a ATTRIBUTE_UNUSED)
2528{
2529 as_bad (_("invalid syntax for .dn directive"));
2530}
2531
2532static void
2533s_qn (int a ATTRIBUTE_UNUSED)
2534{
2535 as_bad (_("invalid syntax for .qn directive"));
2536}
2537
c19d1205
ZW
2538/* The .unreq directive deletes an alias which was previously defined
2539 by .req. For example:
b99bd4ef 2540
c19d1205
ZW
2541 my_alias .req r11
2542 .unreq my_alias */
b99bd4ef
NC
2543
2544static void
c19d1205 2545s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2546{
c19d1205
ZW
2547 char * name;
2548 char saved_char;
b99bd4ef 2549
c19d1205
ZW
2550 name = input_line_pointer;
2551
2552 while (*input_line_pointer != 0
2553 && *input_line_pointer != ' '
2554 && *input_line_pointer != '\n')
2555 ++input_line_pointer;
2556
2557 saved_char = *input_line_pointer;
2558 *input_line_pointer = 0;
2559
2560 if (!*name)
2561 as_bad (_("invalid syntax for .unreq directive"));
2562 else
2563 {
21d799b5 2564 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2565 name);
c19d1205
ZW
2566
2567 if (!reg)
2568 as_bad (_("unknown register alias '%s'"), name);
2569 else if (reg->builtin)
a1727c1a 2570 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2571 name);
2572 else
2573 {
d929913e
NC
2574 char * p;
2575 char * nbuf;
2576
db0bc284 2577 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2578 free ((char *) reg->name);
477330fc
RM
2579 if (reg->neon)
2580 free (reg->neon);
c19d1205 2581 free (reg);
d929913e
NC
2582
2583 /* Also locate the all upper case and all lower case versions.
2584 Do not complain if we cannot find one or the other as it
2585 was probably deleted above. */
5f4273c7 2586
d929913e
NC
2587 nbuf = strdup (name);
2588 for (p = nbuf; *p; p++)
2589 *p = TOUPPER (*p);
21d799b5 2590 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2591 if (reg)
2592 {
db0bc284 2593 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2594 free ((char *) reg->name);
2595 if (reg->neon)
2596 free (reg->neon);
2597 free (reg);
2598 }
2599
2600 for (p = nbuf; *p; p++)
2601 *p = TOLOWER (*p);
21d799b5 2602 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2603 if (reg)
2604 {
db0bc284 2605 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2606 free ((char *) reg->name);
2607 if (reg->neon)
2608 free (reg->neon);
2609 free (reg);
2610 }
2611
2612 free (nbuf);
c19d1205
ZW
2613 }
2614 }
b99bd4ef 2615
c19d1205 2616 *input_line_pointer = saved_char;
b99bd4ef
NC
2617 demand_empty_rest_of_line ();
2618}
2619
c19d1205
ZW
2620/* Directives: Instruction set selection. */
2621
2622#ifdef OBJ_ELF
2623/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2624 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2625 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2626 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2627
cd000bff
DJ
2628/* Create a new mapping symbol for the transition to STATE. */
2629
2630static void
2631make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2632{
a737bd4d 2633 symbolS * symbolP;
c19d1205
ZW
2634 const char * symname;
2635 int type;
b99bd4ef 2636
c19d1205 2637 switch (state)
b99bd4ef 2638 {
c19d1205
ZW
2639 case MAP_DATA:
2640 symname = "$d";
2641 type = BSF_NO_FLAGS;
2642 break;
2643 case MAP_ARM:
2644 symname = "$a";
2645 type = BSF_NO_FLAGS;
2646 break;
2647 case MAP_THUMB:
2648 symname = "$t";
2649 type = BSF_NO_FLAGS;
2650 break;
c19d1205
ZW
2651 default:
2652 abort ();
2653 }
2654
cd000bff 2655 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2656 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2657
2658 switch (state)
2659 {
2660 case MAP_ARM:
2661 THUMB_SET_FUNC (symbolP, 0);
2662 ARM_SET_THUMB (symbolP, 0);
2663 ARM_SET_INTERWORK (symbolP, support_interwork);
2664 break;
2665
2666 case MAP_THUMB:
2667 THUMB_SET_FUNC (symbolP, 1);
2668 ARM_SET_THUMB (symbolP, 1);
2669 ARM_SET_INTERWORK (symbolP, support_interwork);
2670 break;
2671
2672 case MAP_DATA:
2673 default:
cd000bff
DJ
2674 break;
2675 }
2676
2677 /* Save the mapping symbols for future reference. Also check that
2678 we do not place two mapping symbols at the same offset within a
2679 frag. We'll handle overlap between frags in
2de7820f
JZ
2680 check_mapping_symbols.
2681
2682 If .fill or other data filling directive generates zero sized data,
2683 the mapping symbol for the following code will have the same value
2684 as the one generated for the data filling directive. In this case,
2685 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2686 if (value == 0)
2687 {
2de7820f
JZ
2688 if (frag->tc_frag_data.first_map != NULL)
2689 {
2690 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2691 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2692 }
cd000bff
DJ
2693 frag->tc_frag_data.first_map = symbolP;
2694 }
2695 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2696 {
2697 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2698 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2699 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2700 }
cd000bff
DJ
2701 frag->tc_frag_data.last_map = symbolP;
2702}
2703
2704/* We must sometimes convert a region marked as code to data during
2705 code alignment, if an odd number of bytes have to be padded. The
2706 code mapping symbol is pushed to an aligned address. */
2707
2708static void
2709insert_data_mapping_symbol (enum mstate state,
2710 valueT value, fragS *frag, offsetT bytes)
2711{
2712 /* If there was already a mapping symbol, remove it. */
2713 if (frag->tc_frag_data.last_map != NULL
2714 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2715 {
2716 symbolS *symp = frag->tc_frag_data.last_map;
2717
2718 if (value == 0)
2719 {
2720 know (frag->tc_frag_data.first_map == symp);
2721 frag->tc_frag_data.first_map = NULL;
2722 }
2723 frag->tc_frag_data.last_map = NULL;
2724 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2725 }
cd000bff
DJ
2726
2727 make_mapping_symbol (MAP_DATA, value, frag);
2728 make_mapping_symbol (state, value + bytes, frag);
2729}
2730
2731static void mapping_state_2 (enum mstate state, int max_chars);
2732
2733/* Set the mapping state to STATE. Only call this when about to
2734 emit some STATE bytes to the file. */
2735
4e9aaefb 2736#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2737void
2738mapping_state (enum mstate state)
2739{
940b5ce0
DJ
2740 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2741
cd000bff
DJ
2742 if (mapstate == state)
2743 /* The mapping symbol has already been emitted.
2744 There is nothing else to do. */
2745 return;
49c62a33
NC
2746
2747 if (state == MAP_ARM || state == MAP_THUMB)
2748 /* PR gas/12931
2749 All ARM instructions require 4-byte alignment.
2750 (Almost) all Thumb instructions require 2-byte alignment.
2751
2752 When emitting instructions into any section, mark the section
2753 appropriately.
2754
2755 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2756 but themselves require 2-byte alignment; this applies to some
33eaf5de 2757 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2758 literal pool generation or an explicit .align >=2, both of
2759 which will cause the section to me marked with sufficient
2760 alignment. Thus, we don't handle those cases here. */
2761 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2762
2763 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2764 /* This case will be evaluated later. */
cd000bff 2765 return;
cd000bff
DJ
2766
2767 mapping_state_2 (state, 0);
cd000bff
DJ
2768}
2769
2770/* Same as mapping_state, but MAX_CHARS bytes have already been
2771 allocated. Put the mapping symbol that far back. */
2772
2773static void
2774mapping_state_2 (enum mstate state, int max_chars)
2775{
940b5ce0
DJ
2776 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2777
2778 if (!SEG_NORMAL (now_seg))
2779 return;
2780
cd000bff
DJ
2781 if (mapstate == state)
2782 /* The mapping symbol has already been emitted.
2783 There is nothing else to do. */
2784 return;
2785
4e9aaefb
SA
2786 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2787 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2788 {
2789 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2790 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2791
2792 if (add_symbol)
2793 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2794 }
2795
cd000bff
DJ
2796 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2797 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2798}
4e9aaefb 2799#undef TRANSITION
c19d1205 2800#else
d3106081
NS
2801#define mapping_state(x) ((void)0)
2802#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2803#endif
2804
2805/* Find the real, Thumb encoded start of a Thumb function. */
2806
4343666d 2807#ifdef OBJ_COFF
c19d1205
ZW
2808static symbolS *
2809find_real_start (symbolS * symbolP)
2810{
2811 char * real_start;
2812 const char * name = S_GET_NAME (symbolP);
2813 symbolS * new_target;
2814
2815 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2816#define STUB_NAME ".real_start_of"
2817
2818 if (name == NULL)
2819 abort ();
2820
37f6032b
ZW
2821 /* The compiler may generate BL instructions to local labels because
2822 it needs to perform a branch to a far away location. These labels
2823 do not have a corresponding ".real_start_of" label. We check
2824 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2825 the ".real_start_of" convention for nonlocal branches. */
2826 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2827 return symbolP;
2828
e1fa0163 2829 real_start = concat (STUB_NAME, name, NULL);
c19d1205 2830 new_target = symbol_find (real_start);
e1fa0163 2831 free (real_start);
c19d1205
ZW
2832
2833 if (new_target == NULL)
2834 {
bd3ba5d1 2835 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2836 new_target = symbolP;
2837 }
2838
c19d1205
ZW
2839 return new_target;
2840}
4343666d 2841#endif
c19d1205
ZW
2842
2843static void
2844opcode_select (int width)
2845{
2846 switch (width)
2847 {
2848 case 16:
2849 if (! thumb_mode)
2850 {
e74cfd16 2851 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2852 as_bad (_("selected processor does not support THUMB opcodes"));
2853
2854 thumb_mode = 1;
2855 /* No need to force the alignment, since we will have been
2856 coming from ARM mode, which is word-aligned. */
2857 record_alignment (now_seg, 1);
2858 }
c19d1205
ZW
2859 break;
2860
2861 case 32:
2862 if (thumb_mode)
2863 {
e74cfd16 2864 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2865 as_bad (_("selected processor does not support ARM opcodes"));
2866
2867 thumb_mode = 0;
2868
2869 if (!need_pass_2)
2870 frag_align (2, 0, 0);
2871
2872 record_alignment (now_seg, 1);
2873 }
c19d1205
ZW
2874 break;
2875
2876 default:
2877 as_bad (_("invalid instruction size selected (%d)"), width);
2878 }
2879}
2880
2881static void
2882s_arm (int ignore ATTRIBUTE_UNUSED)
2883{
2884 opcode_select (32);
2885 demand_empty_rest_of_line ();
2886}
2887
2888static void
2889s_thumb (int ignore ATTRIBUTE_UNUSED)
2890{
2891 opcode_select (16);
2892 demand_empty_rest_of_line ();
2893}
2894
2895static void
2896s_code (int unused ATTRIBUTE_UNUSED)
2897{
2898 int temp;
2899
2900 temp = get_absolute_expression ();
2901 switch (temp)
2902 {
2903 case 16:
2904 case 32:
2905 opcode_select (temp);
2906 break;
2907
2908 default:
2909 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2910 }
2911}
2912
2913static void
2914s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2915{
2916 /* If we are not already in thumb mode go into it, EVEN if
2917 the target processor does not support thumb instructions.
2918 This is used by gcc/config/arm/lib1funcs.asm for example
2919 to compile interworking support functions even if the
2920 target processor should not support interworking. */
2921 if (! thumb_mode)
2922 {
2923 thumb_mode = 2;
2924 record_alignment (now_seg, 1);
2925 }
2926
2927 demand_empty_rest_of_line ();
2928}
2929
2930static void
2931s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2932{
2933 s_thumb (0);
2934
2935 /* The following label is the name/address of the start of a Thumb function.
2936 We need to know this for the interworking support. */
2937 label_is_thumb_function_name = TRUE;
2938}
2939
2940/* Perform a .set directive, but also mark the alias as
2941 being a thumb function. */
2942
2943static void
2944s_thumb_set (int equiv)
2945{
2946 /* XXX the following is a duplicate of the code for s_set() in read.c
2947 We cannot just call that code as we need to get at the symbol that
2948 is created. */
2949 char * name;
2950 char delim;
2951 char * end_name;
2952 symbolS * symbolP;
2953
2954 /* Especial apologies for the random logic:
2955 This just grew, and could be parsed much more simply!
2956 Dean - in haste. */
d02603dc 2957 delim = get_symbol_name (& name);
c19d1205 2958 end_name = input_line_pointer;
d02603dc 2959 (void) restore_line_pointer (delim);
c19d1205
ZW
2960
2961 if (*input_line_pointer != ',')
2962 {
2963 *end_name = 0;
2964 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2965 *end_name = delim;
2966 ignore_rest_of_line ();
2967 return;
2968 }
2969
2970 input_line_pointer++;
2971 *end_name = 0;
2972
2973 if (name[0] == '.' && name[1] == '\0')
2974 {
2975 /* XXX - this should not happen to .thumb_set. */
2976 abort ();
2977 }
2978
2979 if ((symbolP = symbol_find (name)) == NULL
2980 && (symbolP = md_undefined_symbol (name)) == NULL)
2981 {
2982#ifndef NO_LISTING
2983 /* When doing symbol listings, play games with dummy fragments living
2984 outside the normal fragment chain to record the file and line info
c19d1205 2985 for this symbol. */
b99bd4ef
NC
2986 if (listing & LISTING_SYMBOLS)
2987 {
2988 extern struct list_info_struct * listing_tail;
21d799b5 2989 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2990
2991 memset (dummy_frag, 0, sizeof (fragS));
2992 dummy_frag->fr_type = rs_fill;
2993 dummy_frag->line = listing_tail;
2994 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2995 dummy_frag->fr_symbol = symbolP;
2996 }
2997 else
2998#endif
2999 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3000
3001#ifdef OBJ_COFF
3002 /* "set" symbols are local unless otherwise specified. */
3003 SF_SET_LOCAL (symbolP);
3004#endif /* OBJ_COFF */
3005 } /* Make a new symbol. */
3006
3007 symbol_table_insert (symbolP);
3008
3009 * end_name = delim;
3010
3011 if (equiv
3012 && S_IS_DEFINED (symbolP)
3013 && S_GET_SEGMENT (symbolP) != reg_section)
3014 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3015
3016 pseudo_set (symbolP);
3017
3018 demand_empty_rest_of_line ();
3019
c19d1205 3020 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3021
3022 THUMB_SET_FUNC (symbolP, 1);
3023 ARM_SET_THUMB (symbolP, 1);
3024#if defined OBJ_ELF || defined OBJ_COFF
3025 ARM_SET_INTERWORK (symbolP, support_interwork);
3026#endif
3027}
3028
c19d1205 3029/* Directives: Mode selection. */
b99bd4ef 3030
c19d1205
ZW
3031/* .syntax [unified|divided] - choose the new unified syntax
3032 (same for Arm and Thumb encoding, modulo slight differences in what
3033 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3034static void
c19d1205 3035s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3036{
c19d1205
ZW
3037 char *name, delim;
3038
d02603dc 3039 delim = get_symbol_name (& name);
c19d1205
ZW
3040
3041 if (!strcasecmp (name, "unified"))
3042 unified_syntax = TRUE;
3043 else if (!strcasecmp (name, "divided"))
3044 unified_syntax = FALSE;
3045 else
3046 {
3047 as_bad (_("unrecognized syntax mode \"%s\""), name);
3048 return;
3049 }
d02603dc 3050 (void) restore_line_pointer (delim);
b99bd4ef
NC
3051 demand_empty_rest_of_line ();
3052}
3053
c19d1205
ZW
3054/* Directives: sectioning and alignment. */
3055
c19d1205
ZW
3056static void
3057s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3058{
c19d1205
ZW
3059 /* We don't support putting frags in the BSS segment, we fake it by
3060 marking in_bss, then looking at s_skip for clues. */
3061 subseg_set (bss_section, 0);
3062 demand_empty_rest_of_line ();
cd000bff
DJ
3063
3064#ifdef md_elf_section_change_hook
3065 md_elf_section_change_hook ();
3066#endif
c19d1205 3067}
b99bd4ef 3068
c19d1205
ZW
3069static void
3070s_even (int ignore ATTRIBUTE_UNUSED)
3071{
3072 /* Never make frag if expect extra pass. */
3073 if (!need_pass_2)
3074 frag_align (1, 0, 0);
b99bd4ef 3075
c19d1205 3076 record_alignment (now_seg, 1);
b99bd4ef 3077
c19d1205 3078 demand_empty_rest_of_line ();
b99bd4ef
NC
3079}
3080
2e6976a8
DG
3081/* Directives: CodeComposer Studio. */
3082
3083/* .ref (for CodeComposer Studio syntax only). */
3084static void
3085s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3086{
3087 if (codecomposer_syntax)
3088 ignore_rest_of_line ();
3089 else
3090 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3091}
3092
3093/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3094 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3095static void
3096asmfunc_debug (const char * name)
3097{
3098 static const char * last_name = NULL;
3099
3100 if (name != NULL)
3101 {
3102 gas_assert (last_name == NULL);
3103 last_name = name;
3104
3105 if (debug_type == DEBUG_STABS)
3106 stabs_generate_asm_func (name, name);
3107 }
3108 else
3109 {
3110 gas_assert (last_name != NULL);
3111
3112 if (debug_type == DEBUG_STABS)
3113 stabs_generate_asm_endfunc (last_name, last_name);
3114
3115 last_name = NULL;
3116 }
3117}
3118
3119static void
3120s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3121{
3122 if (codecomposer_syntax)
3123 {
3124 switch (asmfunc_state)
3125 {
3126 case OUTSIDE_ASMFUNC:
3127 asmfunc_state = WAITING_ASMFUNC_NAME;
3128 break;
3129
3130 case WAITING_ASMFUNC_NAME:
3131 as_bad (_(".asmfunc repeated."));
3132 break;
3133
3134 case WAITING_ENDASMFUNC:
3135 as_bad (_(".asmfunc without function."));
3136 break;
3137 }
3138 demand_empty_rest_of_line ();
3139 }
3140 else
3141 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3142}
3143
3144static void
3145s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3146{
3147 if (codecomposer_syntax)
3148 {
3149 switch (asmfunc_state)
3150 {
3151 case OUTSIDE_ASMFUNC:
3152 as_bad (_(".endasmfunc without a .asmfunc."));
3153 break;
3154
3155 case WAITING_ASMFUNC_NAME:
3156 as_bad (_(".endasmfunc without function."));
3157 break;
3158
3159 case WAITING_ENDASMFUNC:
3160 asmfunc_state = OUTSIDE_ASMFUNC;
3161 asmfunc_debug (NULL);
3162 break;
3163 }
3164 demand_empty_rest_of_line ();
3165 }
3166 else
3167 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3168}
3169
3170static void
3171s_ccs_def (int name)
3172{
3173 if (codecomposer_syntax)
3174 s_globl (name);
3175 else
3176 as_bad (_(".def pseudo-op only available with -mccs flag."));
3177}
3178
c19d1205 3179/* Directives: Literal pools. */
a737bd4d 3180
c19d1205
ZW
3181static literal_pool *
3182find_literal_pool (void)
a737bd4d 3183{
c19d1205 3184 literal_pool * pool;
a737bd4d 3185
c19d1205 3186 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3187 {
c19d1205
ZW
3188 if (pool->section == now_seg
3189 && pool->sub_section == now_subseg)
3190 break;
a737bd4d
NC
3191 }
3192
c19d1205 3193 return pool;
a737bd4d
NC
3194}
3195
c19d1205
ZW
3196static literal_pool *
3197find_or_make_literal_pool (void)
a737bd4d 3198{
c19d1205
ZW
3199 /* Next literal pool ID number. */
3200 static unsigned int latest_pool_num = 1;
3201 literal_pool * pool;
a737bd4d 3202
c19d1205 3203 pool = find_literal_pool ();
a737bd4d 3204
c19d1205 3205 if (pool == NULL)
a737bd4d 3206 {
c19d1205 3207 /* Create a new pool. */
325801bd 3208 pool = XNEW (literal_pool);
c19d1205
ZW
3209 if (! pool)
3210 return NULL;
a737bd4d 3211
c19d1205
ZW
3212 pool->next_free_entry = 0;
3213 pool->section = now_seg;
3214 pool->sub_section = now_subseg;
3215 pool->next = list_of_pools;
3216 pool->symbol = NULL;
8335d6aa 3217 pool->alignment = 2;
c19d1205
ZW
3218
3219 /* Add it to the list. */
3220 list_of_pools = pool;
a737bd4d 3221 }
a737bd4d 3222
c19d1205
ZW
3223 /* New pools, and emptied pools, will have a NULL symbol. */
3224 if (pool->symbol == NULL)
a737bd4d 3225 {
c19d1205
ZW
3226 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3227 (valueT) 0, &zero_address_frag);
3228 pool->id = latest_pool_num ++;
a737bd4d
NC
3229 }
3230
c19d1205
ZW
3231 /* Done. */
3232 return pool;
a737bd4d
NC
3233}
3234
c19d1205 3235/* Add the literal in the global 'inst'
5f4273c7 3236 structure to the relevant literal pool. */
b99bd4ef
NC
3237
3238static int
8335d6aa 3239add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3240{
8335d6aa
JW
3241#define PADDING_SLOT 0x1
3242#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3243 literal_pool * pool;
8335d6aa
JW
3244 unsigned int entry, pool_size = 0;
3245 bfd_boolean padding_slot_p = FALSE;
e56c722b 3246 unsigned imm1 = 0;
8335d6aa
JW
3247 unsigned imm2 = 0;
3248
3249 if (nbytes == 8)
3250 {
3251 imm1 = inst.operands[1].imm;
3252 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3253 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3254 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3255 if (target_big_endian)
3256 {
3257 imm1 = imm2;
3258 imm2 = inst.operands[1].imm;
3259 }
3260 }
b99bd4ef 3261
c19d1205
ZW
3262 pool = find_or_make_literal_pool ();
3263
3264 /* Check if this literal value is already in the pool. */
3265 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3266 {
8335d6aa
JW
3267 if (nbytes == 4)
3268 {
e2b0ab59
AV
3269 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3270 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3271 && (pool->literals[entry].X_add_number
e2b0ab59 3272 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3273 && (pool->literals[entry].X_md == nbytes)
3274 && (pool->literals[entry].X_unsigned
e2b0ab59 3275 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3276 break;
3277
e2b0ab59
AV
3278 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3279 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3280 && (pool->literals[entry].X_add_number
e2b0ab59 3281 == inst.relocs[0].exp.X_add_number)
8335d6aa 3282 && (pool->literals[entry].X_add_symbol
e2b0ab59 3283 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3284 && (pool->literals[entry].X_op_symbol
e2b0ab59 3285 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3286 && (pool->literals[entry].X_md == nbytes))
3287 break;
3288 }
3289 else if ((nbytes == 8)
3290 && !(pool_size & 0x7)
3291 && ((entry + 1) != pool->next_free_entry)
3292 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3293 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3294 && (pool->literals[entry].X_unsigned
e2b0ab59 3295 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3296 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3297 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3298 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3299 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3300 break;
3301
8335d6aa
JW
3302 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3303 if (padding_slot_p && (nbytes == 4))
c19d1205 3304 break;
8335d6aa
JW
3305
3306 pool_size += 4;
b99bd4ef
NC
3307 }
3308
c19d1205
ZW
3309 /* Do we need to create a new entry? */
3310 if (entry == pool->next_free_entry)
3311 {
3312 if (entry >= MAX_LITERAL_POOL_SIZE)
3313 {
3314 inst.error = _("literal pool overflow");
3315 return FAIL;
3316 }
3317
8335d6aa
JW
3318 if (nbytes == 8)
3319 {
3320 /* For 8-byte entries, we align to an 8-byte boundary,
3321 and split it into two 4-byte entries, because on 32-bit
3322 host, 8-byte constants are treated as big num, thus
3323 saved in "generic_bignum" which will be overwritten
3324 by later assignments.
3325
3326 We also need to make sure there is enough space for
3327 the split.
3328
3329 We also check to make sure the literal operand is a
3330 constant number. */
e2b0ab59
AV
3331 if (!(inst.relocs[0].exp.X_op == O_constant
3332 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3333 {
3334 inst.error = _("invalid type for literal pool");
3335 return FAIL;
3336 }
3337 else if (pool_size & 0x7)
3338 {
3339 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3340 {
3341 inst.error = _("literal pool overflow");
3342 return FAIL;
3343 }
3344
e2b0ab59 3345 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3346 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3347 pool->literals[entry].X_add_number = 0;
3348 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3349 pool->next_free_entry += 1;
3350 pool_size += 4;
3351 }
3352 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3353 {
3354 inst.error = _("literal pool overflow");
3355 return FAIL;
3356 }
3357
e2b0ab59 3358 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3359 pool->literals[entry].X_op = O_constant;
3360 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3361 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3362 pool->literals[entry++].X_md = 4;
e2b0ab59 3363 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3364 pool->literals[entry].X_op = O_constant;
3365 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3366 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3367 pool->literals[entry].X_md = 4;
3368 pool->alignment = 3;
3369 pool->next_free_entry += 1;
3370 }
3371 else
3372 {
e2b0ab59 3373 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3374 pool->literals[entry].X_md = 4;
3375 }
3376
a8040cf2
NC
3377#ifdef OBJ_ELF
3378 /* PR ld/12974: Record the location of the first source line to reference
3379 this entry in the literal pool. If it turns out during linking that the
3380 symbol does not exist we will be able to give an accurate line number for
3381 the (first use of the) missing reference. */
3382 if (debug_type == DEBUG_DWARF2)
3383 dwarf2_where (pool->locs + entry);
3384#endif
c19d1205
ZW
3385 pool->next_free_entry += 1;
3386 }
8335d6aa
JW
3387 else if (padding_slot_p)
3388 {
e2b0ab59 3389 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3390 pool->literals[entry].X_md = nbytes;
3391 }
b99bd4ef 3392
e2b0ab59
AV
3393 inst.relocs[0].exp.X_op = O_symbol;
3394 inst.relocs[0].exp.X_add_number = pool_size;
3395 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3396
c19d1205 3397 return SUCCESS;
b99bd4ef
NC
3398}
3399
2e6976a8 3400bfd_boolean
2e57ce7b 3401tc_start_label_without_colon (void)
2e6976a8
DG
3402{
3403 bfd_boolean ret = TRUE;
3404
3405 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3406 {
2e57ce7b 3407 const char *label = input_line_pointer;
2e6976a8
DG
3408
3409 while (!is_end_of_line[(int) label[-1]])
3410 --label;
3411
3412 if (*label == '.')
3413 {
3414 as_bad (_("Invalid label '%s'"), label);
3415 ret = FALSE;
3416 }
3417
3418 asmfunc_debug (label);
3419
3420 asmfunc_state = WAITING_ENDASMFUNC;
3421 }
3422
3423 return ret;
3424}
3425
c19d1205 3426/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3427 a later date assign it a value. That's what these functions do. */
e16bb312 3428
c19d1205
ZW
3429static void
3430symbol_locate (symbolS * symbolP,
3431 const char * name, /* It is copied, the caller can modify. */
3432 segT segment, /* Segment identifier (SEG_<something>). */
3433 valueT valu, /* Symbol value. */
3434 fragS * frag) /* Associated fragment. */
3435{
e57e6ddc 3436 size_t name_length;
c19d1205 3437 char * preserved_copy_of_name;
e16bb312 3438
c19d1205
ZW
3439 name_length = strlen (name) + 1; /* +1 for \0. */
3440 obstack_grow (&notes, name, name_length);
21d799b5 3441 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3442
c19d1205
ZW
3443#ifdef tc_canonicalize_symbol_name
3444 preserved_copy_of_name =
3445 tc_canonicalize_symbol_name (preserved_copy_of_name);
3446#endif
b99bd4ef 3447
c19d1205 3448 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3449
c19d1205
ZW
3450 S_SET_SEGMENT (symbolP, segment);
3451 S_SET_VALUE (symbolP, valu);
3452 symbol_clear_list_pointers (symbolP);
b99bd4ef 3453
c19d1205 3454 symbol_set_frag (symbolP, frag);
b99bd4ef 3455
c19d1205
ZW
3456 /* Link to end of symbol chain. */
3457 {
3458 extern int symbol_table_frozen;
b99bd4ef 3459
c19d1205
ZW
3460 if (symbol_table_frozen)
3461 abort ();
3462 }
b99bd4ef 3463
c19d1205 3464 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3465
c19d1205 3466 obj_symbol_new_hook (symbolP);
b99bd4ef 3467
c19d1205
ZW
3468#ifdef tc_symbol_new_hook
3469 tc_symbol_new_hook (symbolP);
3470#endif
3471
3472#ifdef DEBUG_SYMS
3473 verify_symbol_chain (symbol_rootP, symbol_lastP);
3474#endif /* DEBUG_SYMS */
b99bd4ef
NC
3475}
3476
c19d1205
ZW
3477static void
3478s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3479{
c19d1205
ZW
3480 unsigned int entry;
3481 literal_pool * pool;
3482 char sym_name[20];
b99bd4ef 3483
c19d1205
ZW
3484 pool = find_literal_pool ();
3485 if (pool == NULL
3486 || pool->symbol == NULL
3487 || pool->next_free_entry == 0)
3488 return;
b99bd4ef 3489
c19d1205
ZW
3490 /* Align pool as you have word accesses.
3491 Only make a frag if we have to. */
3492 if (!need_pass_2)
8335d6aa 3493 frag_align (pool->alignment, 0, 0);
b99bd4ef 3494
c19d1205 3495 record_alignment (now_seg, 2);
b99bd4ef 3496
aaca88ef 3497#ifdef OBJ_ELF
47fc6e36
WN
3498 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3499 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3500#endif
c19d1205 3501 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3502
c19d1205
ZW
3503 symbol_locate (pool->symbol, sym_name, now_seg,
3504 (valueT) frag_now_fix (), frag_now);
3505 symbol_table_insert (pool->symbol);
b99bd4ef 3506
c19d1205 3507 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3508
c19d1205
ZW
3509#if defined OBJ_COFF || defined OBJ_ELF
3510 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3511#endif
6c43fab6 3512
c19d1205 3513 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3514 {
3515#ifdef OBJ_ELF
3516 if (debug_type == DEBUG_DWARF2)
3517 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3518#endif
3519 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3520 emit_expr (&(pool->literals[entry]),
3521 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3522 }
b99bd4ef 3523
c19d1205
ZW
3524 /* Mark the pool as empty. */
3525 pool->next_free_entry = 0;
3526 pool->symbol = NULL;
b99bd4ef
NC
3527}
3528
c19d1205
ZW
3529#ifdef OBJ_ELF
3530/* Forward declarations for functions below, in the MD interface
3531 section. */
3532static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3533static valueT create_unwind_entry (int);
3534static void start_unwind_section (const segT, int);
3535static void add_unwind_opcode (valueT, int);
3536static void flush_pending_unwind (void);
b99bd4ef 3537
c19d1205 3538/* Directives: Data. */
b99bd4ef 3539
c19d1205
ZW
3540static void
3541s_arm_elf_cons (int nbytes)
3542{
3543 expressionS exp;
b99bd4ef 3544
c19d1205
ZW
3545#ifdef md_flush_pending_output
3546 md_flush_pending_output ();
3547#endif
b99bd4ef 3548
c19d1205 3549 if (is_it_end_of_statement ())
b99bd4ef 3550 {
c19d1205
ZW
3551 demand_empty_rest_of_line ();
3552 return;
b99bd4ef
NC
3553 }
3554
c19d1205
ZW
3555#ifdef md_cons_align
3556 md_cons_align (nbytes);
3557#endif
b99bd4ef 3558
c19d1205
ZW
3559 mapping_state (MAP_DATA);
3560 do
b99bd4ef 3561 {
c19d1205
ZW
3562 int reloc;
3563 char *base = input_line_pointer;
b99bd4ef 3564
c19d1205 3565 expression (& exp);
b99bd4ef 3566
c19d1205
ZW
3567 if (exp.X_op != O_symbol)
3568 emit_expr (&exp, (unsigned int) nbytes);
3569 else
3570 {
3571 char *before_reloc = input_line_pointer;
3572 reloc = parse_reloc (&input_line_pointer);
3573 if (reloc == -1)
3574 {
3575 as_bad (_("unrecognized relocation suffix"));
3576 ignore_rest_of_line ();
3577 return;
3578 }
3579 else if (reloc == BFD_RELOC_UNUSED)
3580 emit_expr (&exp, (unsigned int) nbytes);
3581 else
3582 {
21d799b5 3583 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3584 bfd_reloc_type_lookup (stdoutput,
3585 (bfd_reloc_code_real_type) reloc);
c19d1205 3586 int size = bfd_get_reloc_size (howto);
b99bd4ef 3587
2fc8bdac
ZW
3588 if (reloc == BFD_RELOC_ARM_PLT32)
3589 {
3590 as_bad (_("(plt) is only valid on branch targets"));
3591 reloc = BFD_RELOC_UNUSED;
3592 size = 0;
3593 }
3594
c19d1205 3595 if (size > nbytes)
992a06ee
AM
3596 as_bad (ngettext ("%s relocations do not fit in %d byte",
3597 "%s relocations do not fit in %d bytes",
3598 nbytes),
c19d1205
ZW
3599 howto->name, nbytes);
3600 else
3601 {
3602 /* We've parsed an expression stopping at O_symbol.
3603 But there may be more expression left now that we
3604 have parsed the relocation marker. Parse it again.
3605 XXX Surely there is a cleaner way to do this. */
3606 char *p = input_line_pointer;
3607 int offset;
325801bd 3608 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3609
c19d1205
ZW
3610 memcpy (save_buf, base, input_line_pointer - base);
3611 memmove (base + (input_line_pointer - before_reloc),
3612 base, before_reloc - base);
3613
3614 input_line_pointer = base + (input_line_pointer-before_reloc);
3615 expression (&exp);
3616 memcpy (base, save_buf, p - base);
3617
3618 offset = nbytes - size;
4b1a927e
AM
3619 p = frag_more (nbytes);
3620 memset (p, 0, nbytes);
c19d1205 3621 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3622 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3623 free (save_buf);
c19d1205
ZW
3624 }
3625 }
3626 }
b99bd4ef 3627 }
c19d1205 3628 while (*input_line_pointer++ == ',');
b99bd4ef 3629
c19d1205
ZW
3630 /* Put terminator back into stream. */
3631 input_line_pointer --;
3632 demand_empty_rest_of_line ();
b99bd4ef
NC
3633}
3634
c921be7d
NC
3635/* Emit an expression containing a 32-bit thumb instruction.
3636 Implementation based on put_thumb32_insn. */
3637
3638static void
3639emit_thumb32_expr (expressionS * exp)
3640{
3641 expressionS exp_high = *exp;
3642
3643 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3644 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3645 exp->X_add_number &= 0xffff;
3646 emit_expr (exp, (unsigned int) THUMB_SIZE);
3647}
3648
3649/* Guess the instruction size based on the opcode. */
3650
3651static int
3652thumb_insn_size (int opcode)
3653{
3654 if ((unsigned int) opcode < 0xe800u)
3655 return 2;
3656 else if ((unsigned int) opcode >= 0xe8000000u)
3657 return 4;
3658 else
3659 return 0;
3660}
3661
3662static bfd_boolean
3663emit_insn (expressionS *exp, int nbytes)
3664{
3665 int size = 0;
3666
3667 if (exp->X_op == O_constant)
3668 {
3669 size = nbytes;
3670
3671 if (size == 0)
3672 size = thumb_insn_size (exp->X_add_number);
3673
3674 if (size != 0)
3675 {
3676 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3677 {
3678 as_bad (_(".inst.n operand too big. "\
3679 "Use .inst.w instead"));
3680 size = 0;
3681 }
3682 else
3683 {
3684 if (now_it.state == AUTOMATIC_IT_BLOCK)
3685 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3686 else
3687 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3688
3689 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3690 emit_thumb32_expr (exp);
3691 else
3692 emit_expr (exp, (unsigned int) size);
3693
3694 it_fsm_post_encode ();
3695 }
3696 }
3697 else
3698 as_bad (_("cannot determine Thumb instruction size. " \
3699 "Use .inst.n/.inst.w instead"));
3700 }
3701 else
3702 as_bad (_("constant expression required"));
3703
3704 return (size != 0);
3705}
3706
3707/* Like s_arm_elf_cons but do not use md_cons_align and
3708 set the mapping state to MAP_ARM/MAP_THUMB. */
3709
3710static void
3711s_arm_elf_inst (int nbytes)
3712{
3713 if (is_it_end_of_statement ())
3714 {
3715 demand_empty_rest_of_line ();
3716 return;
3717 }
3718
3719 /* Calling mapping_state () here will not change ARM/THUMB,
3720 but will ensure not to be in DATA state. */
3721
3722 if (thumb_mode)
3723 mapping_state (MAP_THUMB);
3724 else
3725 {
3726 if (nbytes != 0)
3727 {
3728 as_bad (_("width suffixes are invalid in ARM mode"));
3729 ignore_rest_of_line ();
3730 return;
3731 }
3732
3733 nbytes = 4;
3734
3735 mapping_state (MAP_ARM);
3736 }
3737
3738 do
3739 {
3740 expressionS exp;
3741
3742 expression (& exp);
3743
3744 if (! emit_insn (& exp, nbytes))
3745 {
3746 ignore_rest_of_line ();
3747 return;
3748 }
3749 }
3750 while (*input_line_pointer++ == ',');
3751
3752 /* Put terminator back into stream. */
3753 input_line_pointer --;
3754 demand_empty_rest_of_line ();
3755}
b99bd4ef 3756
c19d1205 3757/* Parse a .rel31 directive. */
b99bd4ef 3758
c19d1205
ZW
3759static void
3760s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3761{
3762 expressionS exp;
3763 char *p;
3764 valueT highbit;
b99bd4ef 3765
c19d1205
ZW
3766 highbit = 0;
3767 if (*input_line_pointer == '1')
3768 highbit = 0x80000000;
3769 else if (*input_line_pointer != '0')
3770 as_bad (_("expected 0 or 1"));
b99bd4ef 3771
c19d1205
ZW
3772 input_line_pointer++;
3773 if (*input_line_pointer != ',')
3774 as_bad (_("missing comma"));
3775 input_line_pointer++;
b99bd4ef 3776
c19d1205
ZW
3777#ifdef md_flush_pending_output
3778 md_flush_pending_output ();
3779#endif
b99bd4ef 3780
c19d1205
ZW
3781#ifdef md_cons_align
3782 md_cons_align (4);
3783#endif
b99bd4ef 3784
c19d1205 3785 mapping_state (MAP_DATA);
b99bd4ef 3786
c19d1205 3787 expression (&exp);
b99bd4ef 3788
c19d1205
ZW
3789 p = frag_more (4);
3790 md_number_to_chars (p, highbit, 4);
3791 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3792 BFD_RELOC_ARM_PREL31);
b99bd4ef 3793
c19d1205 3794 demand_empty_rest_of_line ();
b99bd4ef
NC
3795}
3796
c19d1205 3797/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3798
c19d1205 3799/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3800
c19d1205
ZW
3801static void
3802s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3803{
3804 demand_empty_rest_of_line ();
921e5f0a
PB
3805 if (unwind.proc_start)
3806 {
c921be7d 3807 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3808 return;
3809 }
3810
c19d1205
ZW
3811 /* Mark the start of the function. */
3812 unwind.proc_start = expr_build_dot ();
b99bd4ef 3813
c19d1205
ZW
3814 /* Reset the rest of the unwind info. */
3815 unwind.opcode_count = 0;
3816 unwind.table_entry = NULL;
3817 unwind.personality_routine = NULL;
3818 unwind.personality_index = -1;
3819 unwind.frame_size = 0;
3820 unwind.fp_offset = 0;
fdfde340 3821 unwind.fp_reg = REG_SP;
c19d1205
ZW
3822 unwind.fp_used = 0;
3823 unwind.sp_restored = 0;
3824}
b99bd4ef 3825
b99bd4ef 3826
c19d1205
ZW
3827/* Parse a handlerdata directive. Creates the exception handling table entry
3828 for the function. */
b99bd4ef 3829
c19d1205
ZW
3830static void
3831s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3832{
3833 demand_empty_rest_of_line ();
921e5f0a 3834 if (!unwind.proc_start)
c921be7d 3835 as_bad (MISSING_FNSTART);
921e5f0a 3836
c19d1205 3837 if (unwind.table_entry)
6decc662 3838 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3839
c19d1205
ZW
3840 create_unwind_entry (1);
3841}
a737bd4d 3842
c19d1205 3843/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3844
c19d1205
ZW
3845static void
3846s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3847{
3848 long where;
3849 char *ptr;
3850 valueT val;
940b5ce0 3851 unsigned int marked_pr_dependency;
f02232aa 3852
c19d1205 3853 demand_empty_rest_of_line ();
f02232aa 3854
921e5f0a
PB
3855 if (!unwind.proc_start)
3856 {
c921be7d 3857 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3858 return;
3859 }
3860
c19d1205
ZW
3861 /* Add eh table entry. */
3862 if (unwind.table_entry == NULL)
3863 val = create_unwind_entry (0);
3864 else
3865 val = 0;
f02232aa 3866
c19d1205
ZW
3867 /* Add index table entry. This is two words. */
3868 start_unwind_section (unwind.saved_seg, 1);
3869 frag_align (2, 0, 0);
3870 record_alignment (now_seg, 2);
b99bd4ef 3871
c19d1205 3872 ptr = frag_more (8);
5011093d 3873 memset (ptr, 0, 8);
c19d1205 3874 where = frag_now_fix () - 8;
f02232aa 3875
c19d1205
ZW
3876 /* Self relative offset of the function start. */
3877 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3878 BFD_RELOC_ARM_PREL31);
f02232aa 3879
c19d1205
ZW
3880 /* Indicate dependency on EHABI-defined personality routines to the
3881 linker, if it hasn't been done already. */
940b5ce0
DJ
3882 marked_pr_dependency
3883 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3884 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3885 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3886 {
5f4273c7
NC
3887 static const char *const name[] =
3888 {
3889 "__aeabi_unwind_cpp_pr0",
3890 "__aeabi_unwind_cpp_pr1",
3891 "__aeabi_unwind_cpp_pr2"
3892 };
c19d1205
ZW
3893 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3894 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3895 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3896 |= 1 << unwind.personality_index;
c19d1205 3897 }
f02232aa 3898
c19d1205
ZW
3899 if (val)
3900 /* Inline exception table entry. */
3901 md_number_to_chars (ptr + 4, val, 4);
3902 else
3903 /* Self relative offset of the table entry. */
3904 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3905 BFD_RELOC_ARM_PREL31);
f02232aa 3906
c19d1205
ZW
3907 /* Restore the original section. */
3908 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3909
3910 unwind.proc_start = NULL;
c19d1205 3911}
f02232aa 3912
f02232aa 3913
c19d1205 3914/* Parse an unwind_cantunwind directive. */
b99bd4ef 3915
c19d1205
ZW
3916static void
3917s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3918{
3919 demand_empty_rest_of_line ();
921e5f0a 3920 if (!unwind.proc_start)
c921be7d 3921 as_bad (MISSING_FNSTART);
921e5f0a 3922
c19d1205
ZW
3923 if (unwind.personality_routine || unwind.personality_index != -1)
3924 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3925
c19d1205
ZW
3926 unwind.personality_index = -2;
3927}
b99bd4ef 3928
b99bd4ef 3929
c19d1205 3930/* Parse a personalityindex directive. */
b99bd4ef 3931
c19d1205
ZW
3932static void
3933s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3934{
3935 expressionS exp;
b99bd4ef 3936
921e5f0a 3937 if (!unwind.proc_start)
c921be7d 3938 as_bad (MISSING_FNSTART);
921e5f0a 3939
c19d1205
ZW
3940 if (unwind.personality_routine || unwind.personality_index != -1)
3941 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3942
c19d1205 3943 expression (&exp);
b99bd4ef 3944
c19d1205
ZW
3945 if (exp.X_op != O_constant
3946 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3947 {
c19d1205
ZW
3948 as_bad (_("bad personality routine number"));
3949 ignore_rest_of_line ();
3950 return;
b99bd4ef
NC
3951 }
3952
c19d1205 3953 unwind.personality_index = exp.X_add_number;
b99bd4ef 3954
c19d1205
ZW
3955 demand_empty_rest_of_line ();
3956}
e16bb312 3957
e16bb312 3958
c19d1205 3959/* Parse a personality directive. */
e16bb312 3960
c19d1205
ZW
3961static void
3962s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3963{
3964 char *name, *p, c;
a737bd4d 3965
921e5f0a 3966 if (!unwind.proc_start)
c921be7d 3967 as_bad (MISSING_FNSTART);
921e5f0a 3968
c19d1205
ZW
3969 if (unwind.personality_routine || unwind.personality_index != -1)
3970 as_bad (_("duplicate .personality directive"));
a737bd4d 3971
d02603dc 3972 c = get_symbol_name (& name);
c19d1205 3973 p = input_line_pointer;
d02603dc
NC
3974 if (c == '"')
3975 ++ input_line_pointer;
c19d1205
ZW
3976 unwind.personality_routine = symbol_find_or_make (name);
3977 *p = c;
3978 demand_empty_rest_of_line ();
3979}
e16bb312 3980
e16bb312 3981
c19d1205 3982/* Parse a directive saving core registers. */
e16bb312 3983
c19d1205
ZW
3984static void
3985s_arm_unwind_save_core (void)
e16bb312 3986{
c19d1205
ZW
3987 valueT op;
3988 long range;
3989 int n;
e16bb312 3990
c19d1205
ZW
3991 range = parse_reg_list (&input_line_pointer);
3992 if (range == FAIL)
e16bb312 3993 {
c19d1205
ZW
3994 as_bad (_("expected register list"));
3995 ignore_rest_of_line ();
3996 return;
3997 }
e16bb312 3998
c19d1205 3999 demand_empty_rest_of_line ();
e16bb312 4000
c19d1205
ZW
4001 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4002 into .unwind_save {..., sp...}. We aren't bothered about the value of
4003 ip because it is clobbered by calls. */
4004 if (unwind.sp_restored && unwind.fp_reg == 12
4005 && (range & 0x3000) == 0x1000)
4006 {
4007 unwind.opcode_count--;
4008 unwind.sp_restored = 0;
4009 range = (range | 0x2000) & ~0x1000;
4010 unwind.pending_offset = 0;
4011 }
e16bb312 4012
01ae4198
DJ
4013 /* Pop r4-r15. */
4014 if (range & 0xfff0)
c19d1205 4015 {
01ae4198
DJ
4016 /* See if we can use the short opcodes. These pop a block of up to 8
4017 registers starting with r4, plus maybe r14. */
4018 for (n = 0; n < 8; n++)
4019 {
4020 /* Break at the first non-saved register. */
4021 if ((range & (1 << (n + 4))) == 0)
4022 break;
4023 }
4024 /* See if there are any other bits set. */
4025 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4026 {
4027 /* Use the long form. */
4028 op = 0x8000 | ((range >> 4) & 0xfff);
4029 add_unwind_opcode (op, 2);
4030 }
0dd132b6 4031 else
01ae4198
DJ
4032 {
4033 /* Use the short form. */
4034 if (range & 0x4000)
4035 op = 0xa8; /* Pop r14. */
4036 else
4037 op = 0xa0; /* Do not pop r14. */
4038 op |= (n - 1);
4039 add_unwind_opcode (op, 1);
4040 }
c19d1205 4041 }
0dd132b6 4042
c19d1205
ZW
4043 /* Pop r0-r3. */
4044 if (range & 0xf)
4045 {
4046 op = 0xb100 | (range & 0xf);
4047 add_unwind_opcode (op, 2);
0dd132b6
NC
4048 }
4049
c19d1205
ZW
4050 /* Record the number of bytes pushed. */
4051 for (n = 0; n < 16; n++)
4052 {
4053 if (range & (1 << n))
4054 unwind.frame_size += 4;
4055 }
0dd132b6
NC
4056}
4057
c19d1205
ZW
4058
4059/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4060
4061static void
c19d1205 4062s_arm_unwind_save_fpa (int reg)
b99bd4ef 4063{
c19d1205
ZW
4064 expressionS exp;
4065 int num_regs;
4066 valueT op;
b99bd4ef 4067
c19d1205
ZW
4068 /* Get Number of registers to transfer. */
4069 if (skip_past_comma (&input_line_pointer) != FAIL)
4070 expression (&exp);
4071 else
4072 exp.X_op = O_illegal;
b99bd4ef 4073
c19d1205 4074 if (exp.X_op != O_constant)
b99bd4ef 4075 {
c19d1205
ZW
4076 as_bad (_("expected , <constant>"));
4077 ignore_rest_of_line ();
b99bd4ef
NC
4078 return;
4079 }
4080
c19d1205
ZW
4081 num_regs = exp.X_add_number;
4082
4083 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4084 {
c19d1205
ZW
4085 as_bad (_("number of registers must be in the range [1:4]"));
4086 ignore_rest_of_line ();
b99bd4ef
NC
4087 return;
4088 }
4089
c19d1205 4090 demand_empty_rest_of_line ();
b99bd4ef 4091
c19d1205
ZW
4092 if (reg == 4)
4093 {
4094 /* Short form. */
4095 op = 0xb4 | (num_regs - 1);
4096 add_unwind_opcode (op, 1);
4097 }
b99bd4ef
NC
4098 else
4099 {
c19d1205
ZW
4100 /* Long form. */
4101 op = 0xc800 | (reg << 4) | (num_regs - 1);
4102 add_unwind_opcode (op, 2);
b99bd4ef 4103 }
c19d1205 4104 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4105}
4106
c19d1205 4107
fa073d69
MS
4108/* Parse a directive saving VFP registers for ARMv6 and above. */
4109
4110static void
4111s_arm_unwind_save_vfp_armv6 (void)
4112{
4113 int count;
4114 unsigned int start;
4115 valueT op;
4116 int num_vfpv3_regs = 0;
4117 int num_regs_below_16;
4118
4119 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4120 if (count == FAIL)
4121 {
4122 as_bad (_("expected register list"));
4123 ignore_rest_of_line ();
4124 return;
4125 }
4126
4127 demand_empty_rest_of_line ();
4128
4129 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4130 than FSTMX/FLDMX-style ones). */
4131
4132 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4133 if (start >= 16)
4134 num_vfpv3_regs = count;
4135 else if (start + count > 16)
4136 num_vfpv3_regs = start + count - 16;
4137
4138 if (num_vfpv3_regs > 0)
4139 {
4140 int start_offset = start > 16 ? start - 16 : 0;
4141 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4142 add_unwind_opcode (op, 2);
4143 }
4144
4145 /* Generate opcode for registers numbered in the range 0 .. 15. */
4146 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4147 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4148 if (num_regs_below_16 > 0)
4149 {
4150 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4151 add_unwind_opcode (op, 2);
4152 }
4153
4154 unwind.frame_size += count * 8;
4155}
4156
4157
4158/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4159
4160static void
c19d1205 4161s_arm_unwind_save_vfp (void)
b99bd4ef 4162{
c19d1205 4163 int count;
ca3f61f7 4164 unsigned int reg;
c19d1205 4165 valueT op;
b99bd4ef 4166
5287ad62 4167 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 4168 if (count == FAIL)
b99bd4ef 4169 {
c19d1205
ZW
4170 as_bad (_("expected register list"));
4171 ignore_rest_of_line ();
b99bd4ef
NC
4172 return;
4173 }
4174
c19d1205 4175 demand_empty_rest_of_line ();
b99bd4ef 4176
c19d1205 4177 if (reg == 8)
b99bd4ef 4178 {
c19d1205
ZW
4179 /* Short form. */
4180 op = 0xb8 | (count - 1);
4181 add_unwind_opcode (op, 1);
b99bd4ef 4182 }
c19d1205 4183 else
b99bd4ef 4184 {
c19d1205
ZW
4185 /* Long form. */
4186 op = 0xb300 | (reg << 4) | (count - 1);
4187 add_unwind_opcode (op, 2);
b99bd4ef 4188 }
c19d1205
ZW
4189 unwind.frame_size += count * 8 + 4;
4190}
b99bd4ef 4191
b99bd4ef 4192
c19d1205
ZW
4193/* Parse a directive saving iWMMXt data registers. */
4194
4195static void
4196s_arm_unwind_save_mmxwr (void)
4197{
4198 int reg;
4199 int hi_reg;
4200 int i;
4201 unsigned mask = 0;
4202 valueT op;
b99bd4ef 4203
c19d1205
ZW
4204 if (*input_line_pointer == '{')
4205 input_line_pointer++;
b99bd4ef 4206
c19d1205 4207 do
b99bd4ef 4208 {
dcbf9037 4209 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4210
c19d1205 4211 if (reg == FAIL)
b99bd4ef 4212 {
9b7132d3 4213 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4214 goto error;
b99bd4ef
NC
4215 }
4216
c19d1205
ZW
4217 if (mask >> reg)
4218 as_tsktsk (_("register list not in ascending order"));
4219 mask |= 1 << reg;
b99bd4ef 4220
c19d1205
ZW
4221 if (*input_line_pointer == '-')
4222 {
4223 input_line_pointer++;
dcbf9037 4224 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4225 if (hi_reg == FAIL)
4226 {
9b7132d3 4227 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4228 goto error;
4229 }
4230 else if (reg >= hi_reg)
4231 {
4232 as_bad (_("bad register range"));
4233 goto error;
4234 }
4235 for (; reg < hi_reg; reg++)
4236 mask |= 1 << reg;
4237 }
4238 }
4239 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4240
d996d970 4241 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4242
c19d1205 4243 demand_empty_rest_of_line ();
b99bd4ef 4244
708587a4 4245 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4246 the list. */
4247 flush_pending_unwind ();
b99bd4ef 4248
c19d1205 4249 for (i = 0; i < 16; i++)
b99bd4ef 4250 {
c19d1205
ZW
4251 if (mask & (1 << i))
4252 unwind.frame_size += 8;
b99bd4ef
NC
4253 }
4254
c19d1205
ZW
4255 /* Attempt to combine with a previous opcode. We do this because gcc
4256 likes to output separate unwind directives for a single block of
4257 registers. */
4258 if (unwind.opcode_count > 0)
b99bd4ef 4259 {
c19d1205
ZW
4260 i = unwind.opcodes[unwind.opcode_count - 1];
4261 if ((i & 0xf8) == 0xc0)
4262 {
4263 i &= 7;
4264 /* Only merge if the blocks are contiguous. */
4265 if (i < 6)
4266 {
4267 if ((mask & 0xfe00) == (1 << 9))
4268 {
4269 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4270 unwind.opcode_count--;
4271 }
4272 }
4273 else if (i == 6 && unwind.opcode_count >= 2)
4274 {
4275 i = unwind.opcodes[unwind.opcode_count - 2];
4276 reg = i >> 4;
4277 i &= 0xf;
b99bd4ef 4278
c19d1205
ZW
4279 op = 0xffff << (reg - 1);
4280 if (reg > 0
87a1fd79 4281 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4282 {
4283 op = (1 << (reg + i + 1)) - 1;
4284 op &= ~((1 << reg) - 1);
4285 mask |= op;
4286 unwind.opcode_count -= 2;
4287 }
4288 }
4289 }
b99bd4ef
NC
4290 }
4291
c19d1205
ZW
4292 hi_reg = 15;
4293 /* We want to generate opcodes in the order the registers have been
4294 saved, ie. descending order. */
4295 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4296 {
c19d1205
ZW
4297 /* Save registers in blocks. */
4298 if (reg < 0
4299 || !(mask & (1 << reg)))
4300 {
4301 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4302 preceding block. */
c19d1205
ZW
4303 if (reg != hi_reg)
4304 {
4305 if (reg == 9)
4306 {
4307 /* Short form. */
4308 op = 0xc0 | (hi_reg - 10);
4309 add_unwind_opcode (op, 1);
4310 }
4311 else
4312 {
4313 /* Long form. */
4314 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4315 add_unwind_opcode (op, 2);
4316 }
4317 }
4318 hi_reg = reg - 1;
4319 }
b99bd4ef
NC
4320 }
4321
c19d1205
ZW
4322 return;
4323error:
4324 ignore_rest_of_line ();
b99bd4ef
NC
4325}
4326
4327static void
c19d1205 4328s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4329{
c19d1205
ZW
4330 int reg;
4331 int hi_reg;
4332 unsigned mask = 0;
4333 valueT op;
b99bd4ef 4334
c19d1205
ZW
4335 if (*input_line_pointer == '{')
4336 input_line_pointer++;
b99bd4ef 4337
477330fc
RM
4338 skip_whitespace (input_line_pointer);
4339
c19d1205 4340 do
b99bd4ef 4341 {
dcbf9037 4342 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4343
c19d1205
ZW
4344 if (reg == FAIL)
4345 {
9b7132d3 4346 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4347 goto error;
4348 }
b99bd4ef 4349
c19d1205
ZW
4350 reg -= 8;
4351 if (mask >> reg)
4352 as_tsktsk (_("register list not in ascending order"));
4353 mask |= 1 << reg;
b99bd4ef 4354
c19d1205
ZW
4355 if (*input_line_pointer == '-')
4356 {
4357 input_line_pointer++;
dcbf9037 4358 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4359 if (hi_reg == FAIL)
4360 {
9b7132d3 4361 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4362 goto error;
4363 }
4364 else if (reg >= hi_reg)
4365 {
4366 as_bad (_("bad register range"));
4367 goto error;
4368 }
4369 for (; reg < hi_reg; reg++)
4370 mask |= 1 << reg;
4371 }
b99bd4ef 4372 }
c19d1205 4373 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4374
d996d970 4375 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4376
c19d1205
ZW
4377 demand_empty_rest_of_line ();
4378
708587a4 4379 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4380 the list. */
4381 flush_pending_unwind ();
b99bd4ef 4382
c19d1205 4383 for (reg = 0; reg < 16; reg++)
b99bd4ef 4384 {
c19d1205
ZW
4385 if (mask & (1 << reg))
4386 unwind.frame_size += 4;
b99bd4ef 4387 }
c19d1205
ZW
4388 op = 0xc700 | mask;
4389 add_unwind_opcode (op, 2);
4390 return;
4391error:
4392 ignore_rest_of_line ();
b99bd4ef
NC
4393}
4394
c19d1205 4395
fa073d69
MS
4396/* Parse an unwind_save directive.
4397 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4398
b99bd4ef 4399static void
fa073d69 4400s_arm_unwind_save (int arch_v6)
b99bd4ef 4401{
c19d1205
ZW
4402 char *peek;
4403 struct reg_entry *reg;
4404 bfd_boolean had_brace = FALSE;
b99bd4ef 4405
921e5f0a 4406 if (!unwind.proc_start)
c921be7d 4407 as_bad (MISSING_FNSTART);
921e5f0a 4408
c19d1205
ZW
4409 /* Figure out what sort of save we have. */
4410 peek = input_line_pointer;
b99bd4ef 4411
c19d1205 4412 if (*peek == '{')
b99bd4ef 4413 {
c19d1205
ZW
4414 had_brace = TRUE;
4415 peek++;
b99bd4ef
NC
4416 }
4417
c19d1205 4418 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4419
c19d1205 4420 if (!reg)
b99bd4ef 4421 {
c19d1205
ZW
4422 as_bad (_("register expected"));
4423 ignore_rest_of_line ();
b99bd4ef
NC
4424 return;
4425 }
4426
c19d1205 4427 switch (reg->type)
b99bd4ef 4428 {
c19d1205
ZW
4429 case REG_TYPE_FN:
4430 if (had_brace)
4431 {
4432 as_bad (_("FPA .unwind_save does not take a register list"));
4433 ignore_rest_of_line ();
4434 return;
4435 }
93ac2687 4436 input_line_pointer = peek;
c19d1205 4437 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4438 return;
c19d1205 4439
1f5afe1c
NC
4440 case REG_TYPE_RN:
4441 s_arm_unwind_save_core ();
4442 return;
4443
fa073d69
MS
4444 case REG_TYPE_VFD:
4445 if (arch_v6)
477330fc 4446 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4447 else
477330fc 4448 s_arm_unwind_save_vfp ();
fa073d69 4449 return;
1f5afe1c
NC
4450
4451 case REG_TYPE_MMXWR:
4452 s_arm_unwind_save_mmxwr ();
4453 return;
4454
4455 case REG_TYPE_MMXWCG:
4456 s_arm_unwind_save_mmxwcg ();
4457 return;
c19d1205
ZW
4458
4459 default:
4460 as_bad (_(".unwind_save does not support this kind of register"));
4461 ignore_rest_of_line ();
b99bd4ef 4462 }
c19d1205 4463}
b99bd4ef 4464
b99bd4ef 4465
c19d1205
ZW
4466/* Parse an unwind_movsp directive. */
4467
4468static void
4469s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4470{
4471 int reg;
4472 valueT op;
4fa3602b 4473 int offset;
c19d1205 4474
921e5f0a 4475 if (!unwind.proc_start)
c921be7d 4476 as_bad (MISSING_FNSTART);
921e5f0a 4477
dcbf9037 4478 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4479 if (reg == FAIL)
b99bd4ef 4480 {
9b7132d3 4481 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4482 ignore_rest_of_line ();
b99bd4ef
NC
4483 return;
4484 }
4fa3602b
PB
4485
4486 /* Optional constant. */
4487 if (skip_past_comma (&input_line_pointer) != FAIL)
4488 {
4489 if (immediate_for_directive (&offset) == FAIL)
4490 return;
4491 }
4492 else
4493 offset = 0;
4494
c19d1205 4495 demand_empty_rest_of_line ();
b99bd4ef 4496
c19d1205 4497 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4498 {
c19d1205 4499 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4500 return;
4501 }
4502
c19d1205
ZW
4503 if (unwind.fp_reg != REG_SP)
4504 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4505
c19d1205
ZW
4506 /* Generate opcode to restore the value. */
4507 op = 0x90 | reg;
4508 add_unwind_opcode (op, 1);
4509
4510 /* Record the information for later. */
4511 unwind.fp_reg = reg;
4fa3602b 4512 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4513 unwind.sp_restored = 1;
b05fe5cf
ZW
4514}
4515
c19d1205
ZW
4516/* Parse an unwind_pad directive. */
4517
b05fe5cf 4518static void
c19d1205 4519s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4520{
c19d1205 4521 int offset;
b05fe5cf 4522
921e5f0a 4523 if (!unwind.proc_start)
c921be7d 4524 as_bad (MISSING_FNSTART);
921e5f0a 4525
c19d1205
ZW
4526 if (immediate_for_directive (&offset) == FAIL)
4527 return;
b99bd4ef 4528
c19d1205
ZW
4529 if (offset & 3)
4530 {
4531 as_bad (_("stack increment must be multiple of 4"));
4532 ignore_rest_of_line ();
4533 return;
4534 }
b99bd4ef 4535
c19d1205
ZW
4536 /* Don't generate any opcodes, just record the details for later. */
4537 unwind.frame_size += offset;
4538 unwind.pending_offset += offset;
4539
4540 demand_empty_rest_of_line ();
4541}
4542
4543/* Parse an unwind_setfp directive. */
4544
4545static void
4546s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4547{
c19d1205
ZW
4548 int sp_reg;
4549 int fp_reg;
4550 int offset;
4551
921e5f0a 4552 if (!unwind.proc_start)
c921be7d 4553 as_bad (MISSING_FNSTART);
921e5f0a 4554
dcbf9037 4555 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4556 if (skip_past_comma (&input_line_pointer) == FAIL)
4557 sp_reg = FAIL;
4558 else
dcbf9037 4559 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4560
c19d1205
ZW
4561 if (fp_reg == FAIL || sp_reg == FAIL)
4562 {
4563 as_bad (_("expected <reg>, <reg>"));
4564 ignore_rest_of_line ();
4565 return;
4566 }
b99bd4ef 4567
c19d1205
ZW
4568 /* Optional constant. */
4569 if (skip_past_comma (&input_line_pointer) != FAIL)
4570 {
4571 if (immediate_for_directive (&offset) == FAIL)
4572 return;
4573 }
4574 else
4575 offset = 0;
a737bd4d 4576
c19d1205 4577 demand_empty_rest_of_line ();
a737bd4d 4578
fdfde340 4579 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4580 {
c19d1205
ZW
4581 as_bad (_("register must be either sp or set by a previous"
4582 "unwind_movsp directive"));
4583 return;
a737bd4d
NC
4584 }
4585
c19d1205
ZW
4586 /* Don't generate any opcodes, just record the information for later. */
4587 unwind.fp_reg = fp_reg;
4588 unwind.fp_used = 1;
fdfde340 4589 if (sp_reg == REG_SP)
c19d1205
ZW
4590 unwind.fp_offset = unwind.frame_size - offset;
4591 else
4592 unwind.fp_offset -= offset;
a737bd4d
NC
4593}
4594
c19d1205
ZW
4595/* Parse an unwind_raw directive. */
4596
4597static void
4598s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4599{
c19d1205 4600 expressionS exp;
708587a4 4601 /* This is an arbitrary limit. */
c19d1205
ZW
4602 unsigned char op[16];
4603 int count;
a737bd4d 4604
921e5f0a 4605 if (!unwind.proc_start)
c921be7d 4606 as_bad (MISSING_FNSTART);
921e5f0a 4607
c19d1205
ZW
4608 expression (&exp);
4609 if (exp.X_op == O_constant
4610 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4611 {
c19d1205
ZW
4612 unwind.frame_size += exp.X_add_number;
4613 expression (&exp);
4614 }
4615 else
4616 exp.X_op = O_illegal;
a737bd4d 4617
c19d1205
ZW
4618 if (exp.X_op != O_constant)
4619 {
4620 as_bad (_("expected <offset>, <opcode>"));
4621 ignore_rest_of_line ();
4622 return;
4623 }
a737bd4d 4624
c19d1205 4625 count = 0;
a737bd4d 4626
c19d1205
ZW
4627 /* Parse the opcode. */
4628 for (;;)
4629 {
4630 if (count >= 16)
4631 {
4632 as_bad (_("unwind opcode too long"));
4633 ignore_rest_of_line ();
a737bd4d 4634 }
c19d1205 4635 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4636 {
c19d1205
ZW
4637 as_bad (_("invalid unwind opcode"));
4638 ignore_rest_of_line ();
4639 return;
a737bd4d 4640 }
c19d1205 4641 op[count++] = exp.X_add_number;
a737bd4d 4642
c19d1205
ZW
4643 /* Parse the next byte. */
4644 if (skip_past_comma (&input_line_pointer) == FAIL)
4645 break;
a737bd4d 4646
c19d1205
ZW
4647 expression (&exp);
4648 }
b99bd4ef 4649
c19d1205
ZW
4650 /* Add the opcode bytes in reverse order. */
4651 while (count--)
4652 add_unwind_opcode (op[count], 1);
b99bd4ef 4653
c19d1205 4654 demand_empty_rest_of_line ();
b99bd4ef 4655}
ee065d83
PB
4656
4657
4658/* Parse a .eabi_attribute directive. */
4659
4660static void
4661s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4662{
0420f52b 4663 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378
AS
4664
4665 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4666 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4667}
4668
0855e32b
NS
4669/* Emit a tls fix for the symbol. */
4670
4671static void
4672s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4673{
4674 char *p;
4675 expressionS exp;
4676#ifdef md_flush_pending_output
4677 md_flush_pending_output ();
4678#endif
4679
4680#ifdef md_cons_align
4681 md_cons_align (4);
4682#endif
4683
4684 /* Since we're just labelling the code, there's no need to define a
4685 mapping symbol. */
4686 expression (&exp);
4687 p = obstack_next_free (&frchain_now->frch_obstack);
4688 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4689 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4690 : BFD_RELOC_ARM_TLS_DESCSEQ);
4691}
cdf9ccec 4692#endif /* OBJ_ELF */
0855e32b 4693
ee065d83 4694static void s_arm_arch (int);
7a1d4c38 4695static void s_arm_object_arch (int);
ee065d83
PB
4696static void s_arm_cpu (int);
4697static void s_arm_fpu (int);
69133863 4698static void s_arm_arch_extension (int);
b99bd4ef 4699
f0927246
NC
4700#ifdef TE_PE
4701
4702static void
5f4273c7 4703pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4704{
4705 expressionS exp;
4706
4707 do
4708 {
4709 expression (&exp);
4710 if (exp.X_op == O_symbol)
4711 exp.X_op = O_secrel;
4712
4713 emit_expr (&exp, 4);
4714 }
4715 while (*input_line_pointer++ == ',');
4716
4717 input_line_pointer--;
4718 demand_empty_rest_of_line ();
4719}
4720#endif /* TE_PE */
4721
c19d1205
ZW
4722/* This table describes all the machine specific pseudo-ops the assembler
4723 has to support. The fields are:
4724 pseudo-op name without dot
4725 function to call to execute this pseudo-op
4726 Integer arg to pass to the function. */
b99bd4ef 4727
c19d1205 4728const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4729{
c19d1205
ZW
4730 /* Never called because '.req' does not start a line. */
4731 { "req", s_req, 0 },
dcbf9037
JB
4732 /* Following two are likewise never called. */
4733 { "dn", s_dn, 0 },
4734 { "qn", s_qn, 0 },
c19d1205
ZW
4735 { "unreq", s_unreq, 0 },
4736 { "bss", s_bss, 0 },
db2ed2e0 4737 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4738 { "arm", s_arm, 0 },
4739 { "thumb", s_thumb, 0 },
4740 { "code", s_code, 0 },
4741 { "force_thumb", s_force_thumb, 0 },
4742 { "thumb_func", s_thumb_func, 0 },
4743 { "thumb_set", s_thumb_set, 0 },
4744 { "even", s_even, 0 },
4745 { "ltorg", s_ltorg, 0 },
4746 { "pool", s_ltorg, 0 },
4747 { "syntax", s_syntax, 0 },
8463be01
PB
4748 { "cpu", s_arm_cpu, 0 },
4749 { "arch", s_arm_arch, 0 },
7a1d4c38 4750 { "object_arch", s_arm_object_arch, 0 },
8463be01 4751 { "fpu", s_arm_fpu, 0 },
69133863 4752 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4753#ifdef OBJ_ELF
c921be7d
NC
4754 { "word", s_arm_elf_cons, 4 },
4755 { "long", s_arm_elf_cons, 4 },
4756 { "inst.n", s_arm_elf_inst, 2 },
4757 { "inst.w", s_arm_elf_inst, 4 },
4758 { "inst", s_arm_elf_inst, 0 },
4759 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4760 { "fnstart", s_arm_unwind_fnstart, 0 },
4761 { "fnend", s_arm_unwind_fnend, 0 },
4762 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4763 { "personality", s_arm_unwind_personality, 0 },
4764 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4765 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4766 { "save", s_arm_unwind_save, 0 },
fa073d69 4767 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4768 { "movsp", s_arm_unwind_movsp, 0 },
4769 { "pad", s_arm_unwind_pad, 0 },
4770 { "setfp", s_arm_unwind_setfp, 0 },
4771 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4772 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4773 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4774#else
4775 { "word", cons, 4},
f0927246
NC
4776
4777 /* These are used for dwarf. */
4778 {"2byte", cons, 2},
4779 {"4byte", cons, 4},
4780 {"8byte", cons, 8},
4781 /* These are used for dwarf2. */
68d20676 4782 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4783 { "loc", dwarf2_directive_loc, 0 },
4784 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4785#endif
4786 { "extend", float_cons, 'x' },
4787 { "ldouble", float_cons, 'x' },
4788 { "packed", float_cons, 'p' },
f0927246
NC
4789#ifdef TE_PE
4790 {"secrel32", pe_directive_secrel, 0},
4791#endif
2e6976a8
DG
4792
4793 /* These are for compatibility with CodeComposer Studio. */
4794 {"ref", s_ccs_ref, 0},
4795 {"def", s_ccs_def, 0},
4796 {"asmfunc", s_ccs_asmfunc, 0},
4797 {"endasmfunc", s_ccs_endasmfunc, 0},
4798
c19d1205
ZW
4799 { 0, 0, 0 }
4800};
4801\f
4802/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4803
c19d1205
ZW
4804/* Generic immediate-value read function for use in insn parsing.
4805 STR points to the beginning of the immediate (the leading #);
4806 VAL receives the value; if the value is outside [MIN, MAX]
4807 issue an error. PREFIX_OPT is true if the immediate prefix is
4808 optional. */
b99bd4ef 4809
c19d1205
ZW
4810static int
4811parse_immediate (char **str, int *val, int min, int max,
4812 bfd_boolean prefix_opt)
4813{
4814 expressionS exp;
0198d5e6 4815
c19d1205
ZW
4816 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4817 if (exp.X_op != O_constant)
b99bd4ef 4818 {
c19d1205
ZW
4819 inst.error = _("constant expression required");
4820 return FAIL;
4821 }
b99bd4ef 4822
c19d1205
ZW
4823 if (exp.X_add_number < min || exp.X_add_number > max)
4824 {
4825 inst.error = _("immediate value out of range");
4826 return FAIL;
4827 }
b99bd4ef 4828
c19d1205
ZW
4829 *val = exp.X_add_number;
4830 return SUCCESS;
4831}
b99bd4ef 4832
5287ad62 4833/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4834 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4835 instructions. Puts the result directly in inst.operands[i]. */
4836
4837static int
8335d6aa
JW
4838parse_big_immediate (char **str, int i, expressionS *in_exp,
4839 bfd_boolean allow_symbol_p)
5287ad62
JB
4840{
4841 expressionS exp;
8335d6aa 4842 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
4843 char *ptr = *str;
4844
8335d6aa 4845 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 4846
8335d6aa 4847 if (exp_p->X_op == O_constant)
036dc3f7 4848 {
8335d6aa 4849 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
4850 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4851 O_constant. We have to be careful not to break compilation for
4852 32-bit X_add_number, though. */
8335d6aa 4853 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 4854 {
8335d6aa
JW
4855 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4856 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4857 & 0xffffffff);
036dc3f7
PB
4858 inst.operands[i].regisimm = 1;
4859 }
4860 }
8335d6aa
JW
4861 else if (exp_p->X_op == O_big
4862 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
4863 {
4864 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4865
5287ad62 4866 /* Bignums have their least significant bits in
477330fc
RM
4867 generic_bignum[0]. Make sure we put 32 bits in imm and
4868 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4869 gas_assert (parts != 0);
95b75c01
NC
4870
4871 /* Make sure that the number is not too big.
4872 PR 11972: Bignums can now be sign-extended to the
4873 size of a .octa so check that the out of range bits
4874 are all zero or all one. */
8335d6aa 4875 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
4876 {
4877 LITTLENUM_TYPE m = -1;
4878
4879 if (generic_bignum[parts * 2] != 0
4880 && generic_bignum[parts * 2] != m)
4881 return FAIL;
4882
8335d6aa 4883 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
4884 if (generic_bignum[j] != generic_bignum[j-1])
4885 return FAIL;
4886 }
4887
5287ad62
JB
4888 inst.operands[i].imm = 0;
4889 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4890 inst.operands[i].imm |= generic_bignum[idx]
4891 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4892 inst.operands[i].reg = 0;
4893 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4894 inst.operands[i].reg |= generic_bignum[idx]
4895 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4896 inst.operands[i].regisimm = 1;
4897 }
8335d6aa 4898 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 4899 return FAIL;
5f4273c7 4900
5287ad62
JB
4901 *str = ptr;
4902
4903 return SUCCESS;
4904}
4905
c19d1205
ZW
4906/* Returns the pseudo-register number of an FPA immediate constant,
4907 or FAIL if there isn't a valid constant here. */
b99bd4ef 4908
c19d1205
ZW
4909static int
4910parse_fpa_immediate (char ** str)
4911{
4912 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4913 char * save_in;
4914 expressionS exp;
4915 int i;
4916 int j;
b99bd4ef 4917
c19d1205
ZW
4918 /* First try and match exact strings, this is to guarantee
4919 that some formats will work even for cross assembly. */
b99bd4ef 4920
c19d1205
ZW
4921 for (i = 0; fp_const[i]; i++)
4922 {
4923 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4924 {
c19d1205 4925 char *start = *str;
b99bd4ef 4926
c19d1205
ZW
4927 *str += strlen (fp_const[i]);
4928 if (is_end_of_line[(unsigned char) **str])
4929 return i + 8;
4930 *str = start;
4931 }
4932 }
b99bd4ef 4933
c19d1205
ZW
4934 /* Just because we didn't get a match doesn't mean that the constant
4935 isn't valid, just that it is in a format that we don't
4936 automatically recognize. Try parsing it with the standard
4937 expression routines. */
b99bd4ef 4938
c19d1205 4939 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4940
c19d1205
ZW
4941 /* Look for a raw floating point number. */
4942 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4943 && is_end_of_line[(unsigned char) *save_in])
4944 {
4945 for (i = 0; i < NUM_FLOAT_VALS; i++)
4946 {
4947 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4948 {
c19d1205
ZW
4949 if (words[j] != fp_values[i][j])
4950 break;
b99bd4ef
NC
4951 }
4952
c19d1205 4953 if (j == MAX_LITTLENUMS)
b99bd4ef 4954 {
c19d1205
ZW
4955 *str = save_in;
4956 return i + 8;
b99bd4ef
NC
4957 }
4958 }
4959 }
b99bd4ef 4960
c19d1205
ZW
4961 /* Try and parse a more complex expression, this will probably fail
4962 unless the code uses a floating point prefix (eg "0f"). */
4963 save_in = input_line_pointer;
4964 input_line_pointer = *str;
4965 if (expression (&exp) == absolute_section
4966 && exp.X_op == O_big
4967 && exp.X_add_number < 0)
4968 {
4969 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4970 Ditto for 15. */
ba592044
AM
4971#define X_PRECISION 5
4972#define E_PRECISION 15L
4973 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
4974 {
4975 for (i = 0; i < NUM_FLOAT_VALS; i++)
4976 {
4977 for (j = 0; j < MAX_LITTLENUMS; j++)
4978 {
4979 if (words[j] != fp_values[i][j])
4980 break;
4981 }
b99bd4ef 4982
c19d1205
ZW
4983 if (j == MAX_LITTLENUMS)
4984 {
4985 *str = input_line_pointer;
4986 input_line_pointer = save_in;
4987 return i + 8;
4988 }
4989 }
4990 }
b99bd4ef
NC
4991 }
4992
c19d1205
ZW
4993 *str = input_line_pointer;
4994 input_line_pointer = save_in;
4995 inst.error = _("invalid FPA immediate expression");
4996 return FAIL;
b99bd4ef
NC
4997}
4998
136da414
JB
4999/* Returns 1 if a number has "quarter-precision" float format
5000 0baBbbbbbc defgh000 00000000 00000000. */
5001
5002static int
5003is_quarter_float (unsigned imm)
5004{
5005 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5006 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5007}
5008
aacf0b33
KT
5009
5010/* Detect the presence of a floating point or integer zero constant,
5011 i.e. #0.0 or #0. */
5012
5013static bfd_boolean
5014parse_ifimm_zero (char **in)
5015{
5016 int error_code;
5017
5018 if (!is_immediate_prefix (**in))
3c6452ae
TP
5019 {
5020 /* In unified syntax, all prefixes are optional. */
5021 if (!unified_syntax)
5022 return FALSE;
5023 }
5024 else
5025 ++*in;
0900a05b
JW
5026
5027 /* Accept #0x0 as a synonym for #0. */
5028 if (strncmp (*in, "0x", 2) == 0)
5029 {
5030 int val;
5031 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5032 return FALSE;
5033 return TRUE;
5034 }
5035
aacf0b33
KT
5036 error_code = atof_generic (in, ".", EXP_CHARS,
5037 &generic_floating_point_number);
5038
5039 if (!error_code
5040 && generic_floating_point_number.sign == '+'
5041 && (generic_floating_point_number.low
5042 > generic_floating_point_number.leader))
5043 return TRUE;
5044
5045 return FALSE;
5046}
5047
136da414
JB
5048/* Parse an 8-bit "quarter-precision" floating point number of the form:
5049 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5050 The zero and minus-zero cases need special handling, since they can't be
5051 encoded in the "quarter-precision" float format, but can nonetheless be
5052 loaded as integer constants. */
136da414
JB
5053
5054static unsigned
5055parse_qfloat_immediate (char **ccp, int *immed)
5056{
5057 char *str = *ccp;
c96612cc 5058 char *fpnum;
136da414 5059 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5060 int found_fpchar = 0;
5f4273c7 5061
136da414 5062 skip_past_char (&str, '#');
5f4273c7 5063
c96612cc
JB
5064 /* We must not accidentally parse an integer as a floating-point number. Make
5065 sure that the value we parse is not an integer by checking for special
5066 characters '.' or 'e'.
5067 FIXME: This is a horrible hack, but doing better is tricky because type
5068 information isn't in a very usable state at parse time. */
5069 fpnum = str;
5070 skip_whitespace (fpnum);
5071
5072 if (strncmp (fpnum, "0x", 2) == 0)
5073 return FAIL;
5074 else
5075 {
5076 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5077 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5078 {
5079 found_fpchar = 1;
5080 break;
5081 }
c96612cc
JB
5082
5083 if (!found_fpchar)
477330fc 5084 return FAIL;
c96612cc 5085 }
5f4273c7 5086
136da414
JB
5087 if ((str = atof_ieee (str, 's', words)) != NULL)
5088 {
5089 unsigned fpword = 0;
5090 int i;
5f4273c7 5091
136da414
JB
5092 /* Our FP word must be 32 bits (single-precision FP). */
5093 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5094 {
5095 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5096 fpword |= words[i];
5097 }
5f4273c7 5098
c96612cc 5099 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5100 *immed = fpword;
136da414 5101 else
477330fc 5102 return FAIL;
136da414
JB
5103
5104 *ccp = str;
5f4273c7 5105
136da414
JB
5106 return SUCCESS;
5107 }
5f4273c7 5108
136da414
JB
5109 return FAIL;
5110}
5111
c19d1205
ZW
5112/* Shift operands. */
5113enum shift_kind
b99bd4ef 5114{
c19d1205
ZW
5115 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5116};
b99bd4ef 5117
c19d1205
ZW
5118struct asm_shift_name
5119{
5120 const char *name;
5121 enum shift_kind kind;
5122};
b99bd4ef 5123
c19d1205
ZW
5124/* Third argument to parse_shift. */
5125enum parse_shift_mode
5126{
5127 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5128 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5129 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5130 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5131 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5132};
b99bd4ef 5133
c19d1205
ZW
5134/* Parse a <shift> specifier on an ARM data processing instruction.
5135 This has three forms:
b99bd4ef 5136
c19d1205
ZW
5137 (LSL|LSR|ASL|ASR|ROR) Rs
5138 (LSL|LSR|ASL|ASR|ROR) #imm
5139 RRX
b99bd4ef 5140
c19d1205
ZW
5141 Note that ASL is assimilated to LSL in the instruction encoding, and
5142 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5143
c19d1205
ZW
5144static int
5145parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5146{
c19d1205
ZW
5147 const struct asm_shift_name *shift_name;
5148 enum shift_kind shift;
5149 char *s = *str;
5150 char *p = s;
5151 int reg;
b99bd4ef 5152
c19d1205
ZW
5153 for (p = *str; ISALPHA (*p); p++)
5154 ;
b99bd4ef 5155
c19d1205 5156 if (p == *str)
b99bd4ef 5157 {
c19d1205
ZW
5158 inst.error = _("shift expression expected");
5159 return FAIL;
b99bd4ef
NC
5160 }
5161
21d799b5 5162 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5163 p - *str);
c19d1205
ZW
5164
5165 if (shift_name == NULL)
b99bd4ef 5166 {
c19d1205
ZW
5167 inst.error = _("shift expression expected");
5168 return FAIL;
b99bd4ef
NC
5169 }
5170
c19d1205 5171 shift = shift_name->kind;
b99bd4ef 5172
c19d1205
ZW
5173 switch (mode)
5174 {
5175 case NO_SHIFT_RESTRICT:
5176 case SHIFT_IMMEDIATE: break;
b99bd4ef 5177
c19d1205
ZW
5178 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5179 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5180 {
5181 inst.error = _("'LSL' or 'ASR' required");
5182 return FAIL;
5183 }
5184 break;
b99bd4ef 5185
c19d1205
ZW
5186 case SHIFT_LSL_IMMEDIATE:
5187 if (shift != SHIFT_LSL)
5188 {
5189 inst.error = _("'LSL' required");
5190 return FAIL;
5191 }
5192 break;
b99bd4ef 5193
c19d1205
ZW
5194 case SHIFT_ASR_IMMEDIATE:
5195 if (shift != SHIFT_ASR)
5196 {
5197 inst.error = _("'ASR' required");
5198 return FAIL;
5199 }
5200 break;
b99bd4ef 5201
c19d1205
ZW
5202 default: abort ();
5203 }
b99bd4ef 5204
c19d1205
ZW
5205 if (shift != SHIFT_RRX)
5206 {
5207 /* Whitespace can appear here if the next thing is a bare digit. */
5208 skip_whitespace (p);
b99bd4ef 5209
c19d1205 5210 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5211 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5212 {
5213 inst.operands[i].imm = reg;
5214 inst.operands[i].immisreg = 1;
5215 }
e2b0ab59 5216 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5217 return FAIL;
5218 }
5219 inst.operands[i].shift_kind = shift;
5220 inst.operands[i].shifted = 1;
5221 *str = p;
5222 return SUCCESS;
b99bd4ef
NC
5223}
5224
c19d1205 5225/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5226
c19d1205
ZW
5227 #<immediate>
5228 #<immediate>, <rotate>
5229 <Rm>
5230 <Rm>, <shift>
b99bd4ef 5231
c19d1205
ZW
5232 where <shift> is defined by parse_shift above, and <rotate> is a
5233 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5234 is deferred to md_apply_fix. */
b99bd4ef 5235
c19d1205
ZW
5236static int
5237parse_shifter_operand (char **str, int i)
5238{
5239 int value;
91d6fa6a 5240 expressionS exp;
b99bd4ef 5241
dcbf9037 5242 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5243 {
5244 inst.operands[i].reg = value;
5245 inst.operands[i].isreg = 1;
b99bd4ef 5246
c19d1205 5247 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5248 inst.relocs[0].exp.X_op = O_constant;
5249 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5250
c19d1205
ZW
5251 if (skip_past_comma (str) == FAIL)
5252 return SUCCESS;
b99bd4ef 5253
c19d1205
ZW
5254 /* Shift operation on register. */
5255 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5256 }
5257
e2b0ab59 5258 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5259 return FAIL;
b99bd4ef 5260
c19d1205 5261 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5262 {
c19d1205 5263 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5264 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5265 return FAIL;
b99bd4ef 5266
e2b0ab59 5267 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5268 {
5269 inst.error = _("constant expression expected");
5270 return FAIL;
5271 }
b99bd4ef 5272
91d6fa6a 5273 value = exp.X_add_number;
c19d1205
ZW
5274 if (value < 0 || value > 30 || value % 2 != 0)
5275 {
5276 inst.error = _("invalid rotation");
5277 return FAIL;
5278 }
e2b0ab59
AV
5279 if (inst.relocs[0].exp.X_add_number < 0
5280 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5281 {
5282 inst.error = _("invalid constant");
5283 return FAIL;
5284 }
09d92015 5285
a415b1cd 5286 /* Encode as specified. */
e2b0ab59 5287 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5288 return SUCCESS;
09d92015
MM
5289 }
5290
e2b0ab59
AV
5291 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5292 inst.relocs[0].pc_rel = 0;
c19d1205 5293 return SUCCESS;
09d92015
MM
5294}
5295
4962c51a
MS
5296/* Group relocation information. Each entry in the table contains the
5297 textual name of the relocation as may appear in assembler source
5298 and must end with a colon.
5299 Along with this textual name are the relocation codes to be used if
5300 the corresponding instruction is an ALU instruction (ADD or SUB only),
5301 an LDR, an LDRS, or an LDC. */
5302
5303struct group_reloc_table_entry
5304{
5305 const char *name;
5306 int alu_code;
5307 int ldr_code;
5308 int ldrs_code;
5309 int ldc_code;
5310};
5311
5312typedef enum
5313{
5314 /* Varieties of non-ALU group relocation. */
5315
5316 GROUP_LDR,
5317 GROUP_LDRS,
5318 GROUP_LDC
5319} group_reloc_type;
5320
5321static struct group_reloc_table_entry group_reloc_table[] =
5322 { /* Program counter relative: */
5323 { "pc_g0_nc",
5324 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5325 0, /* LDR */
5326 0, /* LDRS */
5327 0 }, /* LDC */
5328 { "pc_g0",
5329 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5330 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5331 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5332 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5333 { "pc_g1_nc",
5334 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5335 0, /* LDR */
5336 0, /* LDRS */
5337 0 }, /* LDC */
5338 { "pc_g1",
5339 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5340 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5341 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5342 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5343 { "pc_g2",
5344 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5345 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5346 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5347 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5348 /* Section base relative */
5349 { "sb_g0_nc",
5350 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5351 0, /* LDR */
5352 0, /* LDRS */
5353 0 }, /* LDC */
5354 { "sb_g0",
5355 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5356 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5357 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5358 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5359 { "sb_g1_nc",
5360 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5361 0, /* LDR */
5362 0, /* LDRS */
5363 0 }, /* LDC */
5364 { "sb_g1",
5365 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5366 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5367 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5368 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5369 { "sb_g2",
5370 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5371 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5372 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5373 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5374 /* Absolute thumb alu relocations. */
5375 { "lower0_7",
5376 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5377 0, /* LDR. */
5378 0, /* LDRS. */
5379 0 }, /* LDC. */
5380 { "lower8_15",
5381 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5382 0, /* LDR. */
5383 0, /* LDRS. */
5384 0 }, /* LDC. */
5385 { "upper0_7",
5386 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5387 0, /* LDR. */
5388 0, /* LDRS. */
5389 0 }, /* LDC. */
5390 { "upper8_15",
5391 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5392 0, /* LDR. */
5393 0, /* LDRS. */
5394 0 } }; /* LDC. */
4962c51a
MS
5395
5396/* Given the address of a pointer pointing to the textual name of a group
5397 relocation as may appear in assembler source, attempt to find its details
5398 in group_reloc_table. The pointer will be updated to the character after
5399 the trailing colon. On failure, FAIL will be returned; SUCCESS
5400 otherwise. On success, *entry will be updated to point at the relevant
5401 group_reloc_table entry. */
5402
5403static int
5404find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5405{
5406 unsigned int i;
5407 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5408 {
5409 int length = strlen (group_reloc_table[i].name);
5410
5f4273c7
NC
5411 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5412 && (*str)[length] == ':')
477330fc
RM
5413 {
5414 *out = &group_reloc_table[i];
5415 *str += (length + 1);
5416 return SUCCESS;
5417 }
4962c51a
MS
5418 }
5419
5420 return FAIL;
5421}
5422
5423/* Parse a <shifter_operand> for an ARM data processing instruction
5424 (as for parse_shifter_operand) where group relocations are allowed:
5425
5426 #<immediate>
5427 #<immediate>, <rotate>
5428 #:<group_reloc>:<expression>
5429 <Rm>
5430 <Rm>, <shift>
5431
5432 where <group_reloc> is one of the strings defined in group_reloc_table.
5433 The hashes are optional.
5434
5435 Everything else is as for parse_shifter_operand. */
5436
5437static parse_operand_result
5438parse_shifter_operand_group_reloc (char **str, int i)
5439{
5440 /* Determine if we have the sequence of characters #: or just :
5441 coming next. If we do, then we check for a group relocation.
5442 If we don't, punt the whole lot to parse_shifter_operand. */
5443
5444 if (((*str)[0] == '#' && (*str)[1] == ':')
5445 || (*str)[0] == ':')
5446 {
5447 struct group_reloc_table_entry *entry;
5448
5449 if ((*str)[0] == '#')
477330fc 5450 (*str) += 2;
4962c51a 5451 else
477330fc 5452 (*str)++;
4962c51a
MS
5453
5454 /* Try to parse a group relocation. Anything else is an error. */
5455 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5456 {
5457 inst.error = _("unknown group relocation");
5458 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5459 }
4962c51a
MS
5460
5461 /* We now have the group relocation table entry corresponding to
477330fc 5462 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5463 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5464 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5465
5466 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5467 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5468 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5469
5470 return PARSE_OPERAND_SUCCESS;
5471 }
5472 else
5473 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5474 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5475
5476 /* Never reached. */
5477}
5478
8e560766
MGD
5479/* Parse a Neon alignment expression. Information is written to
5480 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5481
8e560766
MGD
5482 align .imm = align << 8, .immisalign=1, .preind=0 */
5483static parse_operand_result
5484parse_neon_alignment (char **str, int i)
5485{
5486 char *p = *str;
5487 expressionS exp;
5488
5489 my_get_expression (&exp, &p, GE_NO_PREFIX);
5490
5491 if (exp.X_op != O_constant)
5492 {
5493 inst.error = _("alignment must be constant");
5494 return PARSE_OPERAND_FAIL;
5495 }
5496
5497 inst.operands[i].imm = exp.X_add_number << 8;
5498 inst.operands[i].immisalign = 1;
5499 /* Alignments are not pre-indexes. */
5500 inst.operands[i].preind = 0;
5501
5502 *str = p;
5503 return PARSE_OPERAND_SUCCESS;
5504}
5505
c19d1205 5506/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5507 to inst.operands[i] and/or inst.relocs[0].
09d92015 5508
c19d1205 5509 Preindexed addressing (.preind=1):
09d92015 5510
e2b0ab59 5511 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5512 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5513 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5514 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5515
c19d1205 5516 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5517
c19d1205 5518 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5519
e2b0ab59 5520 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5521 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5522 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5523 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5524
c19d1205 5525 Unindexed addressing (.preind=0, .postind=0):
09d92015 5526
c19d1205 5527 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5528
c19d1205 5529 Other:
09d92015 5530
c19d1205 5531 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5532 =immediate .isreg=0 .relocs[0].exp=immediate
5533 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5534
c19d1205 5535 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5536 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5537
4962c51a
MS
5538static parse_operand_result
5539parse_address_main (char **str, int i, int group_relocations,
477330fc 5540 group_reloc_type group_type)
09d92015 5541{
c19d1205
ZW
5542 char *p = *str;
5543 int reg;
09d92015 5544
c19d1205 5545 if (skip_past_char (&p, '[') == FAIL)
09d92015 5546 {
c19d1205
ZW
5547 if (skip_past_char (&p, '=') == FAIL)
5548 {
974da60d 5549 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5550 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5551 inst.operands[i].reg = REG_PC;
5552 inst.operands[i].isreg = 1;
5553 inst.operands[i].preind = 1;
09d92015 5554
e2b0ab59 5555 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5556 return PARSE_OPERAND_FAIL;
5557 }
e2b0ab59 5558 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5559 /*allow_symbol_p=*/TRUE))
4962c51a 5560 return PARSE_OPERAND_FAIL;
09d92015 5561
c19d1205 5562 *str = p;
4962c51a 5563 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5564 }
5565
8ab8155f
NC
5566 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5567 skip_whitespace (p);
5568
dcbf9037 5569 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5570 {
c19d1205 5571 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5572 return PARSE_OPERAND_FAIL;
09d92015 5573 }
c19d1205
ZW
5574 inst.operands[i].reg = reg;
5575 inst.operands[i].isreg = 1;
09d92015 5576
c19d1205 5577 if (skip_past_comma (&p) == SUCCESS)
09d92015 5578 {
c19d1205 5579 inst.operands[i].preind = 1;
09d92015 5580
c19d1205
ZW
5581 if (*p == '+') p++;
5582 else if (*p == '-') p++, inst.operands[i].negative = 1;
5583
dcbf9037 5584 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5585 {
c19d1205
ZW
5586 inst.operands[i].imm = reg;
5587 inst.operands[i].immisreg = 1;
5588
5589 if (skip_past_comma (&p) == SUCCESS)
5590 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5591 return PARSE_OPERAND_FAIL;
c19d1205 5592 }
5287ad62 5593 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5594 {
5595 /* FIXME: '@' should be used here, but it's filtered out by generic
5596 code before we get to see it here. This may be subject to
5597 change. */
5598 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5599
8e560766
MGD
5600 if (result != PARSE_OPERAND_SUCCESS)
5601 return result;
5602 }
c19d1205
ZW
5603 else
5604 {
5605 if (inst.operands[i].negative)
5606 {
5607 inst.operands[i].negative = 0;
5608 p--;
5609 }
4962c51a 5610
5f4273c7
NC
5611 if (group_relocations
5612 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5613 {
5614 struct group_reloc_table_entry *entry;
5615
477330fc
RM
5616 /* Skip over the #: or : sequence. */
5617 if (*p == '#')
5618 p += 2;
5619 else
5620 p++;
4962c51a
MS
5621
5622 /* Try to parse a group relocation. Anything else is an
477330fc 5623 error. */
4962c51a
MS
5624 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5625 {
5626 inst.error = _("unknown group relocation");
5627 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5628 }
5629
5630 /* We now have the group relocation table entry corresponding to
5631 the name in the assembler source. Next, we parse the
477330fc 5632 expression. */
e2b0ab59 5633 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5634 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5635
5636 /* Record the relocation type. */
477330fc
RM
5637 switch (group_type)
5638 {
5639 case GROUP_LDR:
e2b0ab59
AV
5640 inst.relocs[0].type
5641 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5642 break;
4962c51a 5643
477330fc 5644 case GROUP_LDRS:
e2b0ab59
AV
5645 inst.relocs[0].type
5646 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5647 break;
4962c51a 5648
477330fc 5649 case GROUP_LDC:
e2b0ab59
AV
5650 inst.relocs[0].type
5651 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5652 break;
4962c51a 5653
477330fc
RM
5654 default:
5655 gas_assert (0);
5656 }
4962c51a 5657
e2b0ab59 5658 if (inst.relocs[0].type == 0)
4962c51a
MS
5659 {
5660 inst.error = _("this group relocation is not allowed on this instruction");
5661 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5662 }
477330fc
RM
5663 }
5664 else
26d97720
NS
5665 {
5666 char *q = p;
0198d5e6 5667
e2b0ab59 5668 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5669 return PARSE_OPERAND_FAIL;
5670 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5671 if (inst.relocs[0].exp.X_op == O_constant
5672 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5673 {
5674 skip_whitespace (q);
5675 if (*q == '#')
5676 {
5677 q++;
5678 skip_whitespace (q);
5679 }
5680 if (*q == '-')
5681 inst.operands[i].negative = 1;
5682 }
5683 }
09d92015
MM
5684 }
5685 }
8e560766
MGD
5686 else if (skip_past_char (&p, ':') == SUCCESS)
5687 {
5688 /* FIXME: '@' should be used here, but it's filtered out by generic code
5689 before we get to see it here. This may be subject to change. */
5690 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5691
8e560766
MGD
5692 if (result != PARSE_OPERAND_SUCCESS)
5693 return result;
5694 }
09d92015 5695
c19d1205 5696 if (skip_past_char (&p, ']') == FAIL)
09d92015 5697 {
c19d1205 5698 inst.error = _("']' expected");
4962c51a 5699 return PARSE_OPERAND_FAIL;
09d92015
MM
5700 }
5701
c19d1205
ZW
5702 if (skip_past_char (&p, '!') == SUCCESS)
5703 inst.operands[i].writeback = 1;
09d92015 5704
c19d1205 5705 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5706 {
c19d1205
ZW
5707 if (skip_past_char (&p, '{') == SUCCESS)
5708 {
5709 /* [Rn], {expr} - unindexed, with option */
5710 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5711 0, 255, TRUE) == FAIL)
4962c51a 5712 return PARSE_OPERAND_FAIL;
09d92015 5713
c19d1205
ZW
5714 if (skip_past_char (&p, '}') == FAIL)
5715 {
5716 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5717 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5718 }
5719 if (inst.operands[i].preind)
5720 {
5721 inst.error = _("cannot combine index with option");
4962c51a 5722 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5723 }
5724 *str = p;
4962c51a 5725 return PARSE_OPERAND_SUCCESS;
09d92015 5726 }
c19d1205
ZW
5727 else
5728 {
5729 inst.operands[i].postind = 1;
5730 inst.operands[i].writeback = 1;
09d92015 5731
c19d1205
ZW
5732 if (inst.operands[i].preind)
5733 {
5734 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5735 return PARSE_OPERAND_FAIL;
c19d1205 5736 }
09d92015 5737
c19d1205
ZW
5738 if (*p == '+') p++;
5739 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5740
dcbf9037 5741 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5742 {
477330fc
RM
5743 /* We might be using the immediate for alignment already. If we
5744 are, OR the register number into the low-order bits. */
5745 if (inst.operands[i].immisalign)
5746 inst.operands[i].imm |= reg;
5747 else
5748 inst.operands[i].imm = reg;
c19d1205 5749 inst.operands[i].immisreg = 1;
a737bd4d 5750
c19d1205
ZW
5751 if (skip_past_comma (&p) == SUCCESS)
5752 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5753 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5754 }
5755 else
5756 {
26d97720 5757 char *q = p;
0198d5e6 5758
c19d1205
ZW
5759 if (inst.operands[i].negative)
5760 {
5761 inst.operands[i].negative = 0;
5762 p--;
5763 }
e2b0ab59 5764 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 5765 return PARSE_OPERAND_FAIL;
26d97720 5766 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5767 if (inst.relocs[0].exp.X_op == O_constant
5768 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5769 {
5770 skip_whitespace (q);
5771 if (*q == '#')
5772 {
5773 q++;
5774 skip_whitespace (q);
5775 }
5776 if (*q == '-')
5777 inst.operands[i].negative = 1;
5778 }
c19d1205
ZW
5779 }
5780 }
a737bd4d
NC
5781 }
5782
c19d1205
ZW
5783 /* If at this point neither .preind nor .postind is set, we have a
5784 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5785 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5786 {
5787 inst.operands[i].preind = 1;
e2b0ab59
AV
5788 inst.relocs[0].exp.X_op = O_constant;
5789 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
5790 }
5791 *str = p;
4962c51a
MS
5792 return PARSE_OPERAND_SUCCESS;
5793}
5794
5795static int
5796parse_address (char **str, int i)
5797{
21d799b5 5798 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 5799 ? SUCCESS : FAIL;
4962c51a
MS
5800}
5801
5802static parse_operand_result
5803parse_address_group_reloc (char **str, int i, group_reloc_type type)
5804{
5805 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5806}
5807
b6895b4f
PB
5808/* Parse an operand for a MOVW or MOVT instruction. */
5809static int
5810parse_half (char **str)
5811{
5812 char * p;
5f4273c7 5813
b6895b4f
PB
5814 p = *str;
5815 skip_past_char (&p, '#');
5f4273c7 5816 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 5817 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 5818 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 5819 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 5820
e2b0ab59 5821 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
5822 {
5823 p += 9;
5f4273c7 5824 skip_whitespace (p);
b6895b4f
PB
5825 }
5826
e2b0ab59 5827 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
5828 return FAIL;
5829
e2b0ab59 5830 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 5831 {
e2b0ab59 5832 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
5833 {
5834 inst.error = _("constant expression expected");
5835 return FAIL;
5836 }
e2b0ab59
AV
5837 if (inst.relocs[0].exp.X_add_number < 0
5838 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
5839 {
5840 inst.error = _("immediate value out of range");
5841 return FAIL;
5842 }
5843 }
5844 *str = p;
5845 return SUCCESS;
5846}
5847
c19d1205 5848/* Miscellaneous. */
a737bd4d 5849
c19d1205
ZW
5850/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5851 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5852static int
d2cd1205 5853parse_psr (char **str, bfd_boolean lhs)
09d92015 5854{
c19d1205
ZW
5855 char *p;
5856 unsigned long psr_field;
62b3e311
PB
5857 const struct asm_psr *psr;
5858 char *start;
d2cd1205 5859 bfd_boolean is_apsr = FALSE;
ac7f631b 5860 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5861
a4482bb6
NC
5862 /* PR gas/12698: If the user has specified -march=all then m_profile will
5863 be TRUE, but we want to ignore it in this case as we are building for any
5864 CPU type, including non-m variants. */
823d2571 5865 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
5866 m_profile = FALSE;
5867
c19d1205
ZW
5868 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5869 feature for ease of use and backwards compatibility. */
5870 p = *str;
62b3e311 5871 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5872 {
5873 if (m_profile)
5874 goto unsupported_psr;
fa94de6b 5875
d2cd1205
JB
5876 psr_field = SPSR_BIT;
5877 }
5878 else if (strncasecmp (p, "CPSR", 4) == 0)
5879 {
5880 if (m_profile)
5881 goto unsupported_psr;
5882
5883 psr_field = 0;
5884 }
5885 else if (strncasecmp (p, "APSR", 4) == 0)
5886 {
5887 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5888 and ARMv7-R architecture CPUs. */
5889 is_apsr = TRUE;
5890 psr_field = 0;
5891 }
5892 else if (m_profile)
62b3e311
PB
5893 {
5894 start = p;
5895 do
5896 p++;
5897 while (ISALNUM (*p) || *p == '_');
5898
d2cd1205
JB
5899 if (strncasecmp (start, "iapsr", 5) == 0
5900 || strncasecmp (start, "eapsr", 5) == 0
5901 || strncasecmp (start, "xpsr", 4) == 0
5902 || strncasecmp (start, "psr", 3) == 0)
5903 p = start + strcspn (start, "rR") + 1;
5904
21d799b5 5905 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 5906 p - start);
d2cd1205 5907
62b3e311
PB
5908 if (!psr)
5909 return FAIL;
09d92015 5910
d2cd1205
JB
5911 /* If APSR is being written, a bitfield may be specified. Note that
5912 APSR itself is handled above. */
5913 if (psr->field <= 3)
5914 {
5915 psr_field = psr->field;
5916 is_apsr = TRUE;
5917 goto check_suffix;
5918 }
5919
62b3e311 5920 *str = p;
d2cd1205
JB
5921 /* M-profile MSR instructions have the mask field set to "10", except
5922 *PSR variants which modify APSR, which may use a different mask (and
5923 have been handled already). Do that by setting the PSR_f field
5924 here. */
5925 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5926 }
d2cd1205
JB
5927 else
5928 goto unsupported_psr;
09d92015 5929
62b3e311 5930 p += 4;
d2cd1205 5931check_suffix:
c19d1205
ZW
5932 if (*p == '_')
5933 {
5934 /* A suffix follows. */
c19d1205
ZW
5935 p++;
5936 start = p;
a737bd4d 5937
c19d1205
ZW
5938 do
5939 p++;
5940 while (ISALNUM (*p) || *p == '_');
a737bd4d 5941
d2cd1205
JB
5942 if (is_apsr)
5943 {
5944 /* APSR uses a notation for bits, rather than fields. */
5945 unsigned int nzcvq_bits = 0;
5946 unsigned int g_bit = 0;
5947 char *bit;
fa94de6b 5948
d2cd1205
JB
5949 for (bit = start; bit != p; bit++)
5950 {
5951 switch (TOLOWER (*bit))
477330fc 5952 {
d2cd1205
JB
5953 case 'n':
5954 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5955 break;
5956
5957 case 'z':
5958 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5959 break;
5960
5961 case 'c':
5962 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5963 break;
5964
5965 case 'v':
5966 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5967 break;
fa94de6b 5968
d2cd1205
JB
5969 case 'q':
5970 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5971 break;
fa94de6b 5972
d2cd1205
JB
5973 case 'g':
5974 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5975 break;
fa94de6b 5976
d2cd1205
JB
5977 default:
5978 inst.error = _("unexpected bit specified after APSR");
5979 return FAIL;
5980 }
5981 }
fa94de6b 5982
d2cd1205
JB
5983 if (nzcvq_bits == 0x1f)
5984 psr_field |= PSR_f;
fa94de6b 5985
d2cd1205
JB
5986 if (g_bit == 0x1)
5987 {
5988 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 5989 {
d2cd1205
JB
5990 inst.error = _("selected processor does not "
5991 "support DSP extension");
5992 return FAIL;
5993 }
5994
5995 psr_field |= PSR_s;
5996 }
fa94de6b 5997
d2cd1205
JB
5998 if ((nzcvq_bits & 0x20) != 0
5999 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6000 || (g_bit & 0x2) != 0)
6001 {
6002 inst.error = _("bad bitmask specified after APSR");
6003 return FAIL;
6004 }
6005 }
6006 else
477330fc 6007 {
d2cd1205 6008 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6009 p - start);
d2cd1205 6010 if (!psr)
477330fc 6011 goto error;
a737bd4d 6012
d2cd1205
JB
6013 psr_field |= psr->field;
6014 }
a737bd4d 6015 }
c19d1205 6016 else
a737bd4d 6017 {
c19d1205
ZW
6018 if (ISALNUM (*p))
6019 goto error; /* Garbage after "[CS]PSR". */
6020
d2cd1205 6021 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6022 is deprecated, but allow it anyway. */
d2cd1205
JB
6023 if (is_apsr && lhs)
6024 {
6025 psr_field |= PSR_f;
6026 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6027 "deprecated"));
6028 }
6029 else if (!m_profile)
6030 /* These bits are never right for M-profile devices: don't set them
6031 (only code paths which read/write APSR reach here). */
6032 psr_field |= (PSR_c | PSR_f);
a737bd4d 6033 }
c19d1205
ZW
6034 *str = p;
6035 return psr_field;
a737bd4d 6036
d2cd1205
JB
6037 unsupported_psr:
6038 inst.error = _("selected processor does not support requested special "
6039 "purpose register");
6040 return FAIL;
6041
c19d1205
ZW
6042 error:
6043 inst.error = _("flag for {c}psr instruction expected");
6044 return FAIL;
a737bd4d
NC
6045}
6046
c19d1205
ZW
6047/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6048 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6049
c19d1205
ZW
6050static int
6051parse_cps_flags (char **str)
a737bd4d 6052{
c19d1205
ZW
6053 int val = 0;
6054 int saw_a_flag = 0;
6055 char *s = *str;
a737bd4d 6056
c19d1205
ZW
6057 for (;;)
6058 switch (*s++)
6059 {
6060 case '\0': case ',':
6061 goto done;
a737bd4d 6062
c19d1205
ZW
6063 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6064 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6065 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6066
c19d1205
ZW
6067 default:
6068 inst.error = _("unrecognized CPS flag");
6069 return FAIL;
6070 }
a737bd4d 6071
c19d1205
ZW
6072 done:
6073 if (saw_a_flag == 0)
a737bd4d 6074 {
c19d1205
ZW
6075 inst.error = _("missing CPS flags");
6076 return FAIL;
a737bd4d 6077 }
a737bd4d 6078
c19d1205
ZW
6079 *str = s - 1;
6080 return val;
a737bd4d
NC
6081}
6082
c19d1205
ZW
6083/* Parse an endian specifier ("BE" or "LE", case insensitive);
6084 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6085
6086static int
c19d1205 6087parse_endian_specifier (char **str)
a737bd4d 6088{
c19d1205
ZW
6089 int little_endian;
6090 char *s = *str;
a737bd4d 6091
c19d1205
ZW
6092 if (strncasecmp (s, "BE", 2))
6093 little_endian = 0;
6094 else if (strncasecmp (s, "LE", 2))
6095 little_endian = 1;
6096 else
a737bd4d 6097 {
c19d1205 6098 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6099 return FAIL;
6100 }
6101
c19d1205 6102 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6103 {
c19d1205 6104 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6105 return FAIL;
6106 }
6107
c19d1205
ZW
6108 *str = s + 2;
6109 return little_endian;
6110}
a737bd4d 6111
c19d1205
ZW
6112/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6113 value suitable for poking into the rotate field of an sxt or sxta
6114 instruction, or FAIL on error. */
6115
6116static int
6117parse_ror (char **str)
6118{
6119 int rot;
6120 char *s = *str;
6121
6122 if (strncasecmp (s, "ROR", 3) == 0)
6123 s += 3;
6124 else
a737bd4d 6125 {
c19d1205 6126 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6127 return FAIL;
6128 }
c19d1205
ZW
6129
6130 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6131 return FAIL;
6132
6133 switch (rot)
a737bd4d 6134 {
c19d1205
ZW
6135 case 0: *str = s; return 0x0;
6136 case 8: *str = s; return 0x1;
6137 case 16: *str = s; return 0x2;
6138 case 24: *str = s; return 0x3;
6139
6140 default:
6141 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6142 return FAIL;
6143 }
c19d1205 6144}
a737bd4d 6145
c19d1205
ZW
6146/* Parse a conditional code (from conds[] below). The value returned is in the
6147 range 0 .. 14, or FAIL. */
6148static int
6149parse_cond (char **str)
6150{
c462b453 6151 char *q;
c19d1205 6152 const struct asm_cond *c;
c462b453
PB
6153 int n;
6154 /* Condition codes are always 2 characters, so matching up to
6155 3 characters is sufficient. */
6156 char cond[3];
a737bd4d 6157
c462b453
PB
6158 q = *str;
6159 n = 0;
6160 while (ISALPHA (*q) && n < 3)
6161 {
e07e6e58 6162 cond[n] = TOLOWER (*q);
c462b453
PB
6163 q++;
6164 n++;
6165 }
a737bd4d 6166
21d799b5 6167 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6168 if (!c)
a737bd4d 6169 {
c19d1205 6170 inst.error = _("condition required");
a737bd4d
NC
6171 return FAIL;
6172 }
6173
c19d1205
ZW
6174 *str = q;
6175 return c->value;
6176}
6177
643afb90
MW
6178/* Record a use of the given feature. */
6179static void
6180record_feature_use (const arm_feature_set *feature)
6181{
6182 if (thumb_mode)
6183 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6184 else
6185 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6186}
6187
4d354d8b
TP
6188/* If the given feature is currently allowed, mark it as used and return TRUE.
6189 Return FALSE otherwise. */
e797f7e0
MGD
6190static bfd_boolean
6191mark_feature_used (const arm_feature_set *feature)
6192{
4d354d8b 6193 /* Ensure the option is currently allowed. */
e797f7e0
MGD
6194 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6195 return FALSE;
6196
4d354d8b 6197 /* Add the appropriate architecture feature for the barrier option used. */
643afb90 6198 record_feature_use (feature);
e797f7e0
MGD
6199
6200 return TRUE;
6201}
6202
62b3e311
PB
6203/* Parse an option for a barrier instruction. Returns the encoding for the
6204 option, or FAIL. */
6205static int
6206parse_barrier (char **str)
6207{
6208 char *p, *q;
6209 const struct asm_barrier_opt *o;
6210
6211 p = q = *str;
6212 while (ISALPHA (*q))
6213 q++;
6214
21d799b5 6215 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6216 q - p);
62b3e311
PB
6217 if (!o)
6218 return FAIL;
6219
e797f7e0
MGD
6220 if (!mark_feature_used (&o->arch))
6221 return FAIL;
6222
62b3e311
PB
6223 *str = q;
6224 return o->value;
6225}
6226
92e90b6e
PB
6227/* Parse the operands of a table branch instruction. Similar to a memory
6228 operand. */
6229static int
6230parse_tb (char **str)
6231{
6232 char * p = *str;
6233 int reg;
6234
6235 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6236 {
6237 inst.error = _("'[' expected");
6238 return FAIL;
6239 }
92e90b6e 6240
dcbf9037 6241 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6242 {
6243 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6244 return FAIL;
6245 }
6246 inst.operands[0].reg = reg;
6247
6248 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6249 {
6250 inst.error = _("',' expected");
6251 return FAIL;
6252 }
5f4273c7 6253
dcbf9037 6254 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6255 {
6256 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6257 return FAIL;
6258 }
6259 inst.operands[0].imm = reg;
6260
6261 if (skip_past_comma (&p) == SUCCESS)
6262 {
6263 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6264 return FAIL;
e2b0ab59 6265 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6266 {
6267 inst.error = _("invalid shift");
6268 return FAIL;
6269 }
6270 inst.operands[0].shifted = 1;
6271 }
6272
6273 if (skip_past_char (&p, ']') == FAIL)
6274 {
6275 inst.error = _("']' expected");
6276 return FAIL;
6277 }
6278 *str = p;
6279 return SUCCESS;
6280}
6281
5287ad62
JB
6282/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6283 information on the types the operands can take and how they are encoded.
037e8744
JB
6284 Up to four operands may be read; this function handles setting the
6285 ".present" field for each read operand itself.
5287ad62
JB
6286 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6287 else returns FAIL. */
6288
6289static int
6290parse_neon_mov (char **str, int *which_operand)
6291{
6292 int i = *which_operand, val;
6293 enum arm_reg_type rtype;
6294 char *ptr = *str;
dcbf9037 6295 struct neon_type_el optype;
5f4273c7 6296
dcbf9037 6297 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6298 {
6299 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6300 inst.operands[i].reg = val;
6301 inst.operands[i].isscalar = 1;
dcbf9037 6302 inst.operands[i].vectype = optype;
5287ad62
JB
6303 inst.operands[i++].present = 1;
6304
6305 if (skip_past_comma (&ptr) == FAIL)
477330fc 6306 goto wanted_comma;
5f4273c7 6307
dcbf9037 6308 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6309 goto wanted_arm;
5f4273c7 6310
5287ad62
JB
6311 inst.operands[i].reg = val;
6312 inst.operands[i].isreg = 1;
6313 inst.operands[i].present = 1;
6314 }
037e8744 6315 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
477330fc 6316 != FAIL)
5287ad62
JB
6317 {
6318 /* Cases 0, 1, 2, 3, 5 (D only). */
6319 if (skip_past_comma (&ptr) == FAIL)
477330fc 6320 goto wanted_comma;
5f4273c7 6321
5287ad62
JB
6322 inst.operands[i].reg = val;
6323 inst.operands[i].isreg = 1;
6324 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6325 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6326 inst.operands[i].isvec = 1;
dcbf9037 6327 inst.operands[i].vectype = optype;
5287ad62
JB
6328 inst.operands[i++].present = 1;
6329
dcbf9037 6330 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6331 {
6332 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6333 Case 13: VMOV <Sd>, <Rm> */
6334 inst.operands[i].reg = val;
6335 inst.operands[i].isreg = 1;
6336 inst.operands[i].present = 1;
6337
6338 if (rtype == REG_TYPE_NQ)
6339 {
6340 first_error (_("can't use Neon quad register here"));
6341 return FAIL;
6342 }
6343 else if (rtype != REG_TYPE_VFS)
6344 {
6345 i++;
6346 if (skip_past_comma (&ptr) == FAIL)
6347 goto wanted_comma;
6348 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6349 goto wanted_arm;
6350 inst.operands[i].reg = val;
6351 inst.operands[i].isreg = 1;
6352 inst.operands[i].present = 1;
6353 }
6354 }
037e8744 6355 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6356 &optype)) != FAIL)
6357 {
6358 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6359 Case 1: VMOV<c><q> <Dd>, <Dm>
6360 Case 8: VMOV.F32 <Sd>, <Sm>
6361 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6362
6363 inst.operands[i].reg = val;
6364 inst.operands[i].isreg = 1;
6365 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6366 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6367 inst.operands[i].isvec = 1;
6368 inst.operands[i].vectype = optype;
6369 inst.operands[i].present = 1;
6370
6371 if (skip_past_comma (&ptr) == SUCCESS)
6372 {
6373 /* Case 15. */
6374 i++;
6375
6376 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6377 goto wanted_arm;
6378
6379 inst.operands[i].reg = val;
6380 inst.operands[i].isreg = 1;
6381 inst.operands[i++].present = 1;
6382
6383 if (skip_past_comma (&ptr) == FAIL)
6384 goto wanted_comma;
6385
6386 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6387 goto wanted_arm;
6388
6389 inst.operands[i].reg = val;
6390 inst.operands[i].isreg = 1;
6391 inst.operands[i].present = 1;
6392 }
6393 }
4641781c 6394 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6395 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6396 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6397 Case 10: VMOV.F32 <Sd>, #<imm>
6398 Case 11: VMOV.F64 <Dd>, #<imm> */
6399 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6400 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6401 == SUCCESS)
477330fc
RM
6402 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6403 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6404 ;
5287ad62 6405 else
477330fc
RM
6406 {
6407 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6408 return FAIL;
6409 }
5287ad62 6410 }
dcbf9037 6411 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6412 {
6413 /* Cases 6, 7. */
6414 inst.operands[i].reg = val;
6415 inst.operands[i].isreg = 1;
6416 inst.operands[i++].present = 1;
5f4273c7 6417
5287ad62 6418 if (skip_past_comma (&ptr) == FAIL)
477330fc 6419 goto wanted_comma;
5f4273c7 6420
dcbf9037 6421 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
477330fc
RM
6422 {
6423 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6424 inst.operands[i].reg = val;
6425 inst.operands[i].isscalar = 1;
6426 inst.operands[i].present = 1;
6427 inst.operands[i].vectype = optype;
6428 }
dcbf9037 6429 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6430 {
6431 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6432 inst.operands[i].reg = val;
6433 inst.operands[i].isreg = 1;
6434 inst.operands[i++].present = 1;
6435
6436 if (skip_past_comma (&ptr) == FAIL)
6437 goto wanted_comma;
6438
6439 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6440 == FAIL)
6441 {
6442 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6443 return FAIL;
6444 }
6445
6446 inst.operands[i].reg = val;
6447 inst.operands[i].isreg = 1;
6448 inst.operands[i].isvec = 1;
6449 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6450 inst.operands[i].vectype = optype;
6451 inst.operands[i].present = 1;
6452
6453 if (rtype == REG_TYPE_VFS)
6454 {
6455 /* Case 14. */
6456 i++;
6457 if (skip_past_comma (&ptr) == FAIL)
6458 goto wanted_comma;
6459 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6460 &optype)) == FAIL)
6461 {
6462 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6463 return FAIL;
6464 }
6465 inst.operands[i].reg = val;
6466 inst.operands[i].isreg = 1;
6467 inst.operands[i].isvec = 1;
6468 inst.operands[i].issingle = 1;
6469 inst.operands[i].vectype = optype;
6470 inst.operands[i].present = 1;
6471 }
6472 }
037e8744 6473 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6474 != FAIL)
6475 {
6476 /* Case 13. */
6477 inst.operands[i].reg = val;
6478 inst.operands[i].isreg = 1;
6479 inst.operands[i].isvec = 1;
6480 inst.operands[i].issingle = 1;
6481 inst.operands[i].vectype = optype;
6482 inst.operands[i].present = 1;
6483 }
5287ad62
JB
6484 }
6485 else
6486 {
dcbf9037 6487 first_error (_("parse error"));
5287ad62
JB
6488 return FAIL;
6489 }
6490
6491 /* Successfully parsed the operands. Update args. */
6492 *which_operand = i;
6493 *str = ptr;
6494 return SUCCESS;
6495
5f4273c7 6496 wanted_comma:
dcbf9037 6497 first_error (_("expected comma"));
5287ad62 6498 return FAIL;
5f4273c7
NC
6499
6500 wanted_arm:
dcbf9037 6501 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6502 return FAIL;
5287ad62
JB
6503}
6504
5be8be5d
DG
6505/* Use this macro when the operand constraints are different
6506 for ARM and THUMB (e.g. ldrd). */
6507#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6508 ((arm_operand) | ((thumb_operand) << 16))
6509
c19d1205
ZW
6510/* Matcher codes for parse_operands. */
6511enum operand_parse_code
6512{
6513 OP_stop, /* end of line */
6514
6515 OP_RR, /* ARM register */
6516 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6517 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6518 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6519 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6520 optional trailing ! */
c19d1205
ZW
6521 OP_RRw, /* ARM register, not r15, optional trailing ! */
6522 OP_RCP, /* Coprocessor number */
6523 OP_RCN, /* Coprocessor register */
6524 OP_RF, /* FPA register */
6525 OP_RVS, /* VFP single precision register */
5287ad62
JB
6526 OP_RVD, /* VFP double precision register (0..15) */
6527 OP_RND, /* Neon double precision register (0..31) */
6528 OP_RNQ, /* Neon quad precision register */
037e8744 6529 OP_RVSD, /* VFP single or double precision register */
dec41383 6530 OP_RNSD, /* Neon single or double precision register */
5287ad62 6531 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6532 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6533 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6534 OP_RVC, /* VFP control register */
6535 OP_RMF, /* Maverick F register */
6536 OP_RMD, /* Maverick D register */
6537 OP_RMFX, /* Maverick FX register */
6538 OP_RMDX, /* Maverick DX register */
6539 OP_RMAX, /* Maverick AX register */
6540 OP_RMDS, /* Maverick DSPSC register */
6541 OP_RIWR, /* iWMMXt wR register */
6542 OP_RIWC, /* iWMMXt wC register */
6543 OP_RIWG, /* iWMMXt wCG register */
6544 OP_RXA, /* XScale accumulator register */
6545
6546 OP_REGLST, /* ARM register list */
6547 OP_VRSLST, /* VFP single-precision register list */
6548 OP_VRDLST, /* VFP double-precision register list */
037e8744 6549 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6550 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6551 OP_NSTRLST, /* Neon element/structure list */
6552
5287ad62 6553 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6554 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6555 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
5287ad62 6556 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6557 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6558 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6559 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6560 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6561 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6562 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6563 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6564 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6565
6566 OP_I0, /* immediate zero */
c19d1205
ZW
6567 OP_I7, /* immediate value 0 .. 7 */
6568 OP_I15, /* 0 .. 15 */
6569 OP_I16, /* 1 .. 16 */
5287ad62 6570 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6571 OP_I31, /* 0 .. 31 */
6572 OP_I31w, /* 0 .. 31, optional trailing ! */
6573 OP_I32, /* 1 .. 32 */
5287ad62
JB
6574 OP_I32z, /* 0 .. 32 */
6575 OP_I63, /* 0 .. 63 */
c19d1205 6576 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6577 OP_I64, /* 1 .. 64 */
6578 OP_I64z, /* 0 .. 64 */
c19d1205 6579 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6580
6581 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6582 OP_I7b, /* 0 .. 7 */
6583 OP_I15b, /* 0 .. 15 */
6584 OP_I31b, /* 0 .. 31 */
6585
6586 OP_SH, /* shifter operand */
4962c51a 6587 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6588 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6589 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6590 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6591 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6592 OP_EXP, /* arbitrary expression */
6593 OP_EXPi, /* same, with optional immediate prefix */
6594 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6595 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6596 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6597 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6598 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6599
6600 OP_CPSF, /* CPS flags */
6601 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6602 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6603 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6604 OP_COND, /* conditional code */
92e90b6e 6605 OP_TB, /* Table branch. */
c19d1205 6606
037e8744
JB
6607 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6608
c19d1205 6609 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 6610 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
6611 OP_RR_EXi, /* ARM register or expression with imm prefix */
6612 OP_RF_IF, /* FPA register or immediate */
6613 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6614 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6615
6616 /* Optional operands. */
6617 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6618 OP_oI31b, /* 0 .. 31 */
5287ad62 6619 OP_oI32b, /* 1 .. 32 */
5f1af56b 6620 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6621 OP_oIffffb, /* 0 .. 65535 */
6622 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6623
6624 OP_oRR, /* ARM register */
6625 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6626 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6627 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6628 OP_oRND, /* Optional Neon double precision register */
6629 OP_oRNQ, /* Optional Neon quad precision register */
6630 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6631 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6632 OP_oSHll, /* LSL immediate */
6633 OP_oSHar, /* ASR immediate */
6634 OP_oSHllar, /* LSL or ASR immediate */
6635 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6636 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6637
5be8be5d
DG
6638 /* Some pre-defined mixed (ARM/THUMB) operands. */
6639 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6640 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6641 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6642
c19d1205
ZW
6643 OP_FIRST_OPTIONAL = OP_oI7b
6644};
a737bd4d 6645
c19d1205
ZW
6646/* Generic instruction operand parser. This does no encoding and no
6647 semantic validation; it merely squirrels values away in the inst
6648 structure. Returns SUCCESS or FAIL depending on whether the
6649 specified grammar matched. */
6650static int
5be8be5d 6651parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6652{
5be8be5d 6653 unsigned const int *upat = pattern;
c19d1205
ZW
6654 char *backtrack_pos = 0;
6655 const char *backtrack_error = 0;
99aad254 6656 int i, val = 0, backtrack_index = 0;
5287ad62 6657 enum arm_reg_type rtype;
4962c51a 6658 parse_operand_result result;
5be8be5d 6659 unsigned int op_parse_code;
c19d1205 6660
e07e6e58
NC
6661#define po_char_or_fail(chr) \
6662 do \
6663 { \
6664 if (skip_past_char (&str, chr) == FAIL) \
477330fc 6665 goto bad_args; \
e07e6e58
NC
6666 } \
6667 while (0)
c19d1205 6668
e07e6e58
NC
6669#define po_reg_or_fail(regtype) \
6670 do \
dcbf9037 6671 { \
e07e6e58 6672 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 6673 & inst.operands[i].vectype); \
e07e6e58 6674 if (val == FAIL) \
477330fc
RM
6675 { \
6676 first_error (_(reg_expected_msgs[regtype])); \
6677 goto failure; \
6678 } \
e07e6e58
NC
6679 inst.operands[i].reg = val; \
6680 inst.operands[i].isreg = 1; \
6681 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6682 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6683 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
6684 || rtype == REG_TYPE_VFD \
6685 || rtype == REG_TYPE_NQ); \
dcbf9037 6686 } \
e07e6e58
NC
6687 while (0)
6688
6689#define po_reg_or_goto(regtype, label) \
6690 do \
6691 { \
6692 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6693 & inst.operands[i].vectype); \
6694 if (val == FAIL) \
6695 goto label; \
dcbf9037 6696 \
e07e6e58
NC
6697 inst.operands[i].reg = val; \
6698 inst.operands[i].isreg = 1; \
6699 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6700 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6701 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 6702 || rtype == REG_TYPE_VFD \
e07e6e58
NC
6703 || rtype == REG_TYPE_NQ); \
6704 } \
6705 while (0)
6706
6707#define po_imm_or_fail(min, max, popt) \
6708 do \
6709 { \
6710 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6711 goto failure; \
6712 inst.operands[i].imm = val; \
6713 } \
6714 while (0)
6715
6716#define po_scalar_or_goto(elsz, label) \
6717 do \
6718 { \
6719 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6720 if (val == FAIL) \
6721 goto label; \
6722 inst.operands[i].reg = val; \
6723 inst.operands[i].isscalar = 1; \
6724 } \
6725 while (0)
6726
6727#define po_misc_or_fail(expr) \
6728 do \
6729 { \
6730 if (expr) \
6731 goto failure; \
6732 } \
6733 while (0)
6734
6735#define po_misc_or_fail_no_backtrack(expr) \
6736 do \
6737 { \
6738 result = expr; \
6739 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6740 backtrack_pos = 0; \
6741 if (result != PARSE_OPERAND_SUCCESS) \
6742 goto failure; \
6743 } \
6744 while (0)
4962c51a 6745
52e7f43d
RE
6746#define po_barrier_or_imm(str) \
6747 do \
6748 { \
6749 val = parse_barrier (&str); \
ccb84d65
JB
6750 if (val == FAIL && ! ISALPHA (*str)) \
6751 goto immediate; \
6752 if (val == FAIL \
6753 /* ISB can only take SY as an option. */ \
6754 || ((inst.instruction & 0xf0) == 0x60 \
6755 && val != 0xf)) \
52e7f43d 6756 { \
ccb84d65
JB
6757 inst.error = _("invalid barrier type"); \
6758 backtrack_pos = 0; \
6759 goto failure; \
52e7f43d
RE
6760 } \
6761 } \
6762 while (0)
6763
c19d1205
ZW
6764 skip_whitespace (str);
6765
6766 for (i = 0; upat[i] != OP_stop; i++)
6767 {
5be8be5d
DG
6768 op_parse_code = upat[i];
6769 if (op_parse_code >= 1<<16)
6770 op_parse_code = thumb ? (op_parse_code >> 16)
6771 : (op_parse_code & ((1<<16)-1));
6772
6773 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6774 {
6775 /* Remember where we are in case we need to backtrack. */
9c2799c2 6776 gas_assert (!backtrack_pos);
c19d1205
ZW
6777 backtrack_pos = str;
6778 backtrack_error = inst.error;
6779 backtrack_index = i;
6780 }
6781
b6702015 6782 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6783 po_char_or_fail (',');
6784
5be8be5d 6785 switch (op_parse_code)
c19d1205
ZW
6786 {
6787 /* Registers */
6788 case OP_oRRnpc:
5be8be5d 6789 case OP_oRRnpcsp:
c19d1205 6790 case OP_RRnpc:
5be8be5d 6791 case OP_RRnpcsp:
c19d1205
ZW
6792 case OP_oRR:
6793 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6794 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6795 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6796 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6797 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6798 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 6799 case OP_oRND:
5287ad62 6800 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6801 case OP_RVC:
6802 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6803 break;
6804 /* Also accept generic coprocessor regs for unknown registers. */
6805 coproc_reg:
6806 po_reg_or_fail (REG_TYPE_CN);
6807 break;
c19d1205
ZW
6808 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6809 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6810 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6811 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6812 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6813 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6814 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6815 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6816 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6817 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 6818 case OP_oRNQ:
5287ad62 6819 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 6820 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
477330fc 6821 case OP_oRNDQ:
5287ad62 6822 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
477330fc
RM
6823 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6824 case OP_oRNSDQ:
6825 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6826
6827 /* Neon scalar. Using an element size of 8 means that some invalid
6828 scalars are accepted here, so deal with those in later code. */
6829 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6830
6831 case OP_RNDQ_I0:
6832 {
6833 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6834 break;
6835 try_imm0:
6836 po_imm_or_fail (0, 0, TRUE);
6837 }
6838 break;
6839
6840 case OP_RVSD_I0:
6841 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6842 break;
6843
aacf0b33
KT
6844 case OP_RSVD_FI0:
6845 {
6846 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6847 break;
6848 try_ifimm0:
6849 if (parse_ifimm_zero (&str))
6850 inst.operands[i].imm = 0;
6851 else
6852 {
6853 inst.error
6854 = _("only floating point zero is allowed as immediate value");
6855 goto failure;
6856 }
6857 }
6858 break;
6859
477330fc
RM
6860 case OP_RR_RNSC:
6861 {
6862 po_scalar_or_goto (8, try_rr);
6863 break;
6864 try_rr:
6865 po_reg_or_fail (REG_TYPE_RN);
6866 }
6867 break;
6868
6869 case OP_RNSDQ_RNSC:
6870 {
6871 po_scalar_or_goto (8, try_nsdq);
6872 break;
6873 try_nsdq:
6874 po_reg_or_fail (REG_TYPE_NSDQ);
6875 }
6876 break;
6877
dec41383
JW
6878 case OP_RNSD_RNSC:
6879 {
6880 po_scalar_or_goto (8, try_s_scalar);
6881 break;
6882 try_s_scalar:
6883 po_scalar_or_goto (4, try_nsd);
6884 break;
6885 try_nsd:
6886 po_reg_or_fail (REG_TYPE_NSD);
6887 }
6888 break;
6889
477330fc
RM
6890 case OP_RNDQ_RNSC:
6891 {
6892 po_scalar_or_goto (8, try_ndq);
6893 break;
6894 try_ndq:
6895 po_reg_or_fail (REG_TYPE_NDQ);
6896 }
6897 break;
6898
6899 case OP_RND_RNSC:
6900 {
6901 po_scalar_or_goto (8, try_vfd);
6902 break;
6903 try_vfd:
6904 po_reg_or_fail (REG_TYPE_VFD);
6905 }
6906 break;
6907
6908 case OP_VMOV:
6909 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6910 not careful then bad things might happen. */
6911 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6912 break;
6913
6914 case OP_RNDQ_Ibig:
6915 {
6916 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6917 break;
6918 try_immbig:
6919 /* There's a possibility of getting a 64-bit immediate here, so
6920 we need special handling. */
8335d6aa
JW
6921 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6922 == FAIL)
477330fc
RM
6923 {
6924 inst.error = _("immediate value is out of range");
6925 goto failure;
6926 }
6927 }
6928 break;
6929
6930 case OP_RNDQ_I63b:
6931 {
6932 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6933 break;
6934 try_shimm:
6935 po_imm_or_fail (0, 63, TRUE);
6936 }
6937 break;
c19d1205
ZW
6938
6939 case OP_RRnpcb:
6940 po_char_or_fail ('[');
6941 po_reg_or_fail (REG_TYPE_RN);
6942 po_char_or_fail (']');
6943 break;
a737bd4d 6944
55881a11 6945 case OP_RRnpctw:
c19d1205 6946 case OP_RRw:
b6702015 6947 case OP_oRRw:
c19d1205
ZW
6948 po_reg_or_fail (REG_TYPE_RN);
6949 if (skip_past_char (&str, '!') == SUCCESS)
6950 inst.operands[i].writeback = 1;
6951 break;
6952
6953 /* Immediates */
6954 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6955 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6956 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 6957 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6958 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6959 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 6960 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6961 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
6962 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6963 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6964 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6965 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6966
6967 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6968 case OP_oI7b:
6969 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6970 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6971 case OP_oI31b:
6972 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
6973 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6974 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6975 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6976
6977 /* Immediate variants */
6978 case OP_oI255c:
6979 po_char_or_fail ('{');
6980 po_imm_or_fail (0, 255, TRUE);
6981 po_char_or_fail ('}');
6982 break;
6983
6984 case OP_I31w:
6985 /* The expression parser chokes on a trailing !, so we have
6986 to find it first and zap it. */
6987 {
6988 char *s = str;
6989 while (*s && *s != ',')
6990 s++;
6991 if (s[-1] == '!')
6992 {
6993 s[-1] = '\0';
6994 inst.operands[i].writeback = 1;
6995 }
6996 po_imm_or_fail (0, 31, TRUE);
6997 if (str == s - 1)
6998 str = s;
6999 }
7000 break;
7001
7002 /* Expressions */
7003 case OP_EXPi: EXPi:
e2b0ab59 7004 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7005 GE_OPT_PREFIX));
7006 break;
7007
7008 case OP_EXP:
e2b0ab59 7009 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7010 GE_NO_PREFIX));
7011 break;
7012
7013 case OP_EXPr: EXPr:
e2b0ab59 7014 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7015 GE_NO_PREFIX));
e2b0ab59 7016 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7017 {
c19d1205
ZW
7018 val = parse_reloc (&str);
7019 if (val == -1)
7020 {
7021 inst.error = _("unrecognized relocation suffix");
7022 goto failure;
7023 }
7024 else if (val != BFD_RELOC_UNUSED)
7025 {
7026 inst.operands[i].imm = val;
7027 inst.operands[i].hasreloc = 1;
7028 }
a737bd4d 7029 }
c19d1205 7030 break;
a737bd4d 7031
e2b0ab59
AV
7032 case OP_EXPs:
7033 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7034 GE_NO_PREFIX));
7035 if (inst.relocs[i].exp.X_op == O_symbol)
7036 {
7037 inst.operands[i].hasreloc = 1;
7038 }
7039 else if (inst.relocs[i].exp.X_op == O_constant)
7040 {
7041 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7042 inst.operands[i].hasreloc = 0;
7043 }
7044 break;
7045
b6895b4f
PB
7046 /* Operand for MOVW or MOVT. */
7047 case OP_HALF:
7048 po_misc_or_fail (parse_half (&str));
7049 break;
7050
e07e6e58 7051 /* Register or expression. */
c19d1205
ZW
7052 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7053 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7054
e07e6e58 7055 /* Register or immediate. */
c19d1205
ZW
7056 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7057 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7058
c19d1205
ZW
7059 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7060 IF:
7061 if (!is_immediate_prefix (*str))
7062 goto bad_args;
7063 str++;
7064 val = parse_fpa_immediate (&str);
7065 if (val == FAIL)
7066 goto failure;
7067 /* FPA immediates are encoded as registers 8-15.
7068 parse_fpa_immediate has already applied the offset. */
7069 inst.operands[i].reg = val;
7070 inst.operands[i].isreg = 1;
7071 break;
09d92015 7072
2d447fca
JM
7073 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7074 I32z: po_imm_or_fail (0, 32, FALSE); break;
7075
e07e6e58 7076 /* Two kinds of register. */
c19d1205
ZW
7077 case OP_RIWR_RIWC:
7078 {
7079 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7080 if (!rege
7081 || (rege->type != REG_TYPE_MMXWR
7082 && rege->type != REG_TYPE_MMXWC
7083 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7084 {
7085 inst.error = _("iWMMXt data or control register expected");
7086 goto failure;
7087 }
7088 inst.operands[i].reg = rege->number;
7089 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7090 }
7091 break;
09d92015 7092
41adaa5c
JM
7093 case OP_RIWC_RIWG:
7094 {
7095 struct reg_entry *rege = arm_reg_parse_multi (&str);
7096 if (!rege
7097 || (rege->type != REG_TYPE_MMXWC
7098 && rege->type != REG_TYPE_MMXWCG))
7099 {
7100 inst.error = _("iWMMXt control register expected");
7101 goto failure;
7102 }
7103 inst.operands[i].reg = rege->number;
7104 inst.operands[i].isreg = 1;
7105 }
7106 break;
7107
c19d1205
ZW
7108 /* Misc */
7109 case OP_CPSF: val = parse_cps_flags (&str); break;
7110 case OP_ENDI: val = parse_endian_specifier (&str); break;
7111 case OP_oROR: val = parse_ror (&str); break;
c19d1205 7112 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7113 case OP_oBARRIER_I15:
7114 po_barrier_or_imm (str); break;
7115 immediate:
7116 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7117 goto failure;
52e7f43d 7118 break;
c19d1205 7119
fa94de6b 7120 case OP_wPSR:
d2cd1205 7121 case OP_rPSR:
90ec0d68
MGD
7122 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7123 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7124 {
7125 inst.error = _("Banked registers are not available with this "
7126 "architecture.");
7127 goto failure;
7128 }
7129 break;
d2cd1205
JB
7130 try_psr:
7131 val = parse_psr (&str, op_parse_code == OP_wPSR);
7132 break;
037e8744 7133
477330fc
RM
7134 case OP_APSR_RR:
7135 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7136 break;
7137 try_apsr:
7138 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7139 instruction). */
7140 if (strncasecmp (str, "APSR_", 5) == 0)
7141 {
7142 unsigned found = 0;
7143 str += 5;
7144 while (found < 15)
7145 switch (*str++)
7146 {
7147 case 'c': found = (found & 1) ? 16 : found | 1; break;
7148 case 'n': found = (found & 2) ? 16 : found | 2; break;
7149 case 'z': found = (found & 4) ? 16 : found | 4; break;
7150 case 'v': found = (found & 8) ? 16 : found | 8; break;
7151 default: found = 16;
7152 }
7153 if (found != 15)
7154 goto failure;
7155 inst.operands[i].isvec = 1;
f7c21dc7
NC
7156 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7157 inst.operands[i].reg = REG_PC;
477330fc
RM
7158 }
7159 else
7160 goto failure;
7161 break;
037e8744 7162
92e90b6e
PB
7163 case OP_TB:
7164 po_misc_or_fail (parse_tb (&str));
7165 break;
7166
e07e6e58 7167 /* Register lists. */
c19d1205
ZW
7168 case OP_REGLST:
7169 val = parse_reg_list (&str);
7170 if (*str == '^')
7171 {
5e0d7f77 7172 inst.operands[i].writeback = 1;
c19d1205
ZW
7173 str++;
7174 }
7175 break;
09d92015 7176
c19d1205 7177 case OP_VRSLST:
5287ad62 7178 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 7179 break;
09d92015 7180
c19d1205 7181 case OP_VRDLST:
5287ad62 7182 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 7183 break;
a737bd4d 7184
477330fc
RM
7185 case OP_VRSDLST:
7186 /* Allow Q registers too. */
7187 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7188 REGLIST_NEON_D);
7189 if (val == FAIL)
7190 {
7191 inst.error = NULL;
7192 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7193 REGLIST_VFP_S);
7194 inst.operands[i].issingle = 1;
7195 }
7196 break;
7197
7198 case OP_NRDLST:
7199 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7200 REGLIST_NEON_D);
7201 break;
5287ad62
JB
7202
7203 case OP_NSTRLST:
477330fc
RM
7204 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7205 &inst.operands[i].vectype);
7206 break;
5287ad62 7207
c19d1205
ZW
7208 /* Addressing modes */
7209 case OP_ADDR:
7210 po_misc_or_fail (parse_address (&str, i));
7211 break;
09d92015 7212
4962c51a
MS
7213 case OP_ADDRGLDR:
7214 po_misc_or_fail_no_backtrack (
477330fc 7215 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7216 break;
7217
7218 case OP_ADDRGLDRS:
7219 po_misc_or_fail_no_backtrack (
477330fc 7220 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7221 break;
7222
7223 case OP_ADDRGLDC:
7224 po_misc_or_fail_no_backtrack (
477330fc 7225 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7226 break;
7227
c19d1205
ZW
7228 case OP_SH:
7229 po_misc_or_fail (parse_shifter_operand (&str, i));
7230 break;
09d92015 7231
4962c51a
MS
7232 case OP_SHG:
7233 po_misc_or_fail_no_backtrack (
477330fc 7234 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7235 break;
7236
c19d1205
ZW
7237 case OP_oSHll:
7238 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7239 break;
09d92015 7240
c19d1205
ZW
7241 case OP_oSHar:
7242 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7243 break;
09d92015 7244
c19d1205
ZW
7245 case OP_oSHllar:
7246 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7247 break;
09d92015 7248
c19d1205 7249 default:
5be8be5d 7250 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7251 }
09d92015 7252
c19d1205
ZW
7253 /* Various value-based sanity checks and shared operations. We
7254 do not signal immediate failures for the register constraints;
7255 this allows a syntax error to take precedence. */
5be8be5d 7256 switch (op_parse_code)
c19d1205
ZW
7257 {
7258 case OP_oRRnpc:
7259 case OP_RRnpc:
7260 case OP_RRnpcb:
7261 case OP_RRw:
b6702015 7262 case OP_oRRw:
c19d1205
ZW
7263 case OP_RRnpc_I0:
7264 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7265 inst.error = BAD_PC;
7266 break;
09d92015 7267
5be8be5d
DG
7268 case OP_oRRnpcsp:
7269 case OP_RRnpcsp:
7270 if (inst.operands[i].isreg)
7271 {
7272 if (inst.operands[i].reg == REG_PC)
7273 inst.error = BAD_PC;
5c8ed6a4
JW
7274 else if (inst.operands[i].reg == REG_SP
7275 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7276 relaxed since ARMv8-A. */
7277 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7278 {
7279 gas_assert (thumb);
7280 inst.error = BAD_SP;
7281 }
5be8be5d
DG
7282 }
7283 break;
7284
55881a11 7285 case OP_RRnpctw:
fa94de6b
RM
7286 if (inst.operands[i].isreg
7287 && inst.operands[i].reg == REG_PC
55881a11
MGD
7288 && (inst.operands[i].writeback || thumb))
7289 inst.error = BAD_PC;
7290 break;
7291
c19d1205
ZW
7292 case OP_CPSF:
7293 case OP_ENDI:
7294 case OP_oROR:
d2cd1205
JB
7295 case OP_wPSR:
7296 case OP_rPSR:
c19d1205 7297 case OP_COND:
52e7f43d 7298 case OP_oBARRIER_I15:
c19d1205
ZW
7299 case OP_REGLST:
7300 case OP_VRSLST:
7301 case OP_VRDLST:
477330fc
RM
7302 case OP_VRSDLST:
7303 case OP_NRDLST:
7304 case OP_NSTRLST:
c19d1205
ZW
7305 if (val == FAIL)
7306 goto failure;
7307 inst.operands[i].imm = val;
7308 break;
a737bd4d 7309
c19d1205
ZW
7310 default:
7311 break;
7312 }
09d92015 7313
c19d1205
ZW
7314 /* If we get here, this operand was successfully parsed. */
7315 inst.operands[i].present = 1;
7316 continue;
09d92015 7317
c19d1205 7318 bad_args:
09d92015 7319 inst.error = BAD_ARGS;
c19d1205
ZW
7320
7321 failure:
7322 if (!backtrack_pos)
d252fdde
PB
7323 {
7324 /* The parse routine should already have set inst.error, but set a
5f4273c7 7325 default here just in case. */
d252fdde
PB
7326 if (!inst.error)
7327 inst.error = _("syntax error");
7328 return FAIL;
7329 }
c19d1205
ZW
7330
7331 /* Do not backtrack over a trailing optional argument that
7332 absorbed some text. We will only fail again, with the
7333 'garbage following instruction' error message, which is
7334 probably less helpful than the current one. */
7335 if (backtrack_index == i && backtrack_pos != str
7336 && upat[i+1] == OP_stop)
d252fdde
PB
7337 {
7338 if (!inst.error)
7339 inst.error = _("syntax error");
7340 return FAIL;
7341 }
c19d1205
ZW
7342
7343 /* Try again, skipping the optional argument at backtrack_pos. */
7344 str = backtrack_pos;
7345 inst.error = backtrack_error;
7346 inst.operands[backtrack_index].present = 0;
7347 i = backtrack_index;
7348 backtrack_pos = 0;
09d92015 7349 }
09d92015 7350
c19d1205
ZW
7351 /* Check that we have parsed all the arguments. */
7352 if (*str != '\0' && !inst.error)
7353 inst.error = _("garbage following instruction");
09d92015 7354
c19d1205 7355 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7356}
7357
c19d1205
ZW
7358#undef po_char_or_fail
7359#undef po_reg_or_fail
7360#undef po_reg_or_goto
7361#undef po_imm_or_fail
5287ad62 7362#undef po_scalar_or_fail
52e7f43d 7363#undef po_barrier_or_imm
e07e6e58 7364
c19d1205 7365/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7366#define constraint(expr, err) \
7367 do \
c19d1205 7368 { \
e07e6e58
NC
7369 if (expr) \
7370 { \
7371 inst.error = err; \
7372 return; \
7373 } \
c19d1205 7374 } \
e07e6e58 7375 while (0)
c19d1205 7376
fdfde340
JM
7377/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7378 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7379 is the BadReg predicate in ARM's Thumb-2 documentation.
7380
7381 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7382 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7383#define reject_bad_reg(reg) \
7384 do \
7385 if (reg == REG_PC) \
7386 { \
7387 inst.error = BAD_PC; \
7388 return; \
7389 } \
7390 else if (reg == REG_SP \
7391 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7392 { \
7393 inst.error = BAD_SP; \
7394 return; \
7395 } \
fdfde340
JM
7396 while (0)
7397
94206790
MM
7398/* If REG is R13 (the stack pointer), warn that its use is
7399 deprecated. */
7400#define warn_deprecated_sp(reg) \
7401 do \
7402 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7403 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7404 while (0)
7405
c19d1205
ZW
7406/* Functions for operand encoding. ARM, then Thumb. */
7407
d840c081 7408#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7409
9db2f6b4
RL
7410/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7411
7412 The only binary encoding difference is the Coprocessor number. Coprocessor
7413 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7414 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7415 exists for Single-Precision operation. */
7416
7417static void
7418do_scalar_fp16_v82_encode (void)
7419{
7420 if (inst.cond != COND_ALWAYS)
7421 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7422 " the behaviour is UNPREDICTABLE"));
7423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7424 _(BAD_FP16));
7425
7426 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7427 mark_feature_used (&arm_ext_fp16);
7428}
7429
c19d1205
ZW
7430/* If VAL can be encoded in the immediate field of an ARM instruction,
7431 return the encoded form. Otherwise, return FAIL. */
7432
7433static unsigned int
7434encode_arm_immediate (unsigned int val)
09d92015 7435{
c19d1205
ZW
7436 unsigned int a, i;
7437
4f1d6205
L
7438 if (val <= 0xff)
7439 return val;
7440
7441 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7442 if ((a = rotate_left (val, i)) <= 0xff)
7443 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7444
7445 return FAIL;
09d92015
MM
7446}
7447
c19d1205
ZW
7448/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7449 return the encoded form. Otherwise, return FAIL. */
7450static unsigned int
7451encode_thumb32_immediate (unsigned int val)
09d92015 7452{
c19d1205 7453 unsigned int a, i;
09d92015 7454
9c3c69f2 7455 if (val <= 0xff)
c19d1205 7456 return val;
a737bd4d 7457
9c3c69f2 7458 for (i = 1; i <= 24; i++)
09d92015 7459 {
9c3c69f2
PB
7460 a = val >> i;
7461 if ((val & ~(0xff << i)) == 0)
7462 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 7463 }
a737bd4d 7464
c19d1205
ZW
7465 a = val & 0xff;
7466 if (val == ((a << 16) | a))
7467 return 0x100 | a;
7468 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7469 return 0x300 | a;
09d92015 7470
c19d1205
ZW
7471 a = val & 0xff00;
7472 if (val == ((a << 16) | a))
7473 return 0x200 | (a >> 8);
a737bd4d 7474
c19d1205 7475 return FAIL;
09d92015 7476}
5287ad62 7477/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
7478
7479static void
5287ad62
JB
7480encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7481{
7482 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7483 && reg > 15)
7484 {
b1cc4aeb 7485 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
7486 {
7487 if (thumb_mode)
7488 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7489 fpu_vfp_ext_d32);
7490 else
7491 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7492 fpu_vfp_ext_d32);
7493 }
5287ad62 7494 else
477330fc
RM
7495 {
7496 first_error (_("D register out of range for selected VFP version"));
7497 return;
7498 }
5287ad62
JB
7499 }
7500
c19d1205 7501 switch (pos)
09d92015 7502 {
c19d1205
ZW
7503 case VFP_REG_Sd:
7504 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7505 break;
7506
7507 case VFP_REG_Sn:
7508 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7509 break;
7510
7511 case VFP_REG_Sm:
7512 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7513 break;
7514
5287ad62
JB
7515 case VFP_REG_Dd:
7516 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7517 break;
5f4273c7 7518
5287ad62
JB
7519 case VFP_REG_Dn:
7520 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7521 break;
5f4273c7 7522
5287ad62
JB
7523 case VFP_REG_Dm:
7524 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7525 break;
7526
c19d1205
ZW
7527 default:
7528 abort ();
09d92015 7529 }
09d92015
MM
7530}
7531
c19d1205 7532/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7533 if any, is handled by md_apply_fix. */
09d92015 7534static void
c19d1205 7535encode_arm_shift (int i)
09d92015 7536{
008a97ef
RL
7537 /* register-shifted register. */
7538 if (inst.operands[i].immisreg)
7539 {
bf355b69
MR
7540 int op_index;
7541 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 7542 {
5689c942
RL
7543 /* Check the operand only when it's presented. In pre-UAL syntax,
7544 if the destination register is the same as the first operand, two
7545 register form of the instruction can be used. */
bf355b69
MR
7546 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7547 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
7548 as_warn (UNPRED_REG ("r15"));
7549 }
7550
7551 if (inst.operands[i].imm == REG_PC)
7552 as_warn (UNPRED_REG ("r15"));
7553 }
7554
c19d1205
ZW
7555 if (inst.operands[i].shift_kind == SHIFT_RRX)
7556 inst.instruction |= SHIFT_ROR << 5;
7557 else
09d92015 7558 {
c19d1205
ZW
7559 inst.instruction |= inst.operands[i].shift_kind << 5;
7560 if (inst.operands[i].immisreg)
7561 {
7562 inst.instruction |= SHIFT_BY_REG;
7563 inst.instruction |= inst.operands[i].imm << 8;
7564 }
7565 else
e2b0ab59 7566 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7567 }
c19d1205 7568}
09d92015 7569
c19d1205
ZW
7570static void
7571encode_arm_shifter_operand (int i)
7572{
7573 if (inst.operands[i].isreg)
09d92015 7574 {
c19d1205
ZW
7575 inst.instruction |= inst.operands[i].reg;
7576 encode_arm_shift (i);
09d92015 7577 }
c19d1205 7578 else
a415b1cd
JB
7579 {
7580 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 7581 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
7582 inst.instruction |= inst.operands[i].imm;
7583 }
09d92015
MM
7584}
7585
c19d1205 7586/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7587static void
c19d1205 7588encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7589{
2b2f5df9
NC
7590 /* PR 14260:
7591 Generate an error if the operand is not a register. */
7592 constraint (!inst.operands[i].isreg,
7593 _("Instruction does not support =N addresses"));
7594
c19d1205 7595 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7596
c19d1205 7597 if (inst.operands[i].preind)
09d92015 7598 {
c19d1205
ZW
7599 if (is_t)
7600 {
7601 inst.error = _("instruction does not accept preindexed addressing");
7602 return;
7603 }
7604 inst.instruction |= PRE_INDEX;
7605 if (inst.operands[i].writeback)
7606 inst.instruction |= WRITE_BACK;
09d92015 7607
c19d1205
ZW
7608 }
7609 else if (inst.operands[i].postind)
7610 {
9c2799c2 7611 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7612 if (is_t)
7613 inst.instruction |= WRITE_BACK;
7614 }
7615 else /* unindexed - only for coprocessor */
09d92015 7616 {
c19d1205 7617 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7618 return;
7619 }
7620
c19d1205
ZW
7621 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7622 && (((inst.instruction & 0x000f0000) >> 16)
7623 == ((inst.instruction & 0x0000f000) >> 12)))
7624 as_warn ((inst.instruction & LOAD_BIT)
7625 ? _("destination register same as write-back base")
7626 : _("source register same as write-back base"));
09d92015
MM
7627}
7628
c19d1205
ZW
7629/* inst.operands[i] was set up by parse_address. Encode it into an
7630 ARM-format mode 2 load or store instruction. If is_t is true,
7631 reject forms that cannot be used with a T instruction (i.e. not
7632 post-indexed). */
a737bd4d 7633static void
c19d1205 7634encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7635{
5be8be5d
DG
7636 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7637
c19d1205 7638 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7639
c19d1205 7640 if (inst.operands[i].immisreg)
09d92015 7641 {
5be8be5d
DG
7642 constraint ((inst.operands[i].imm == REG_PC
7643 || (is_pc && inst.operands[i].writeback)),
7644 BAD_PC_ADDRESSING);
c19d1205
ZW
7645 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7646 inst.instruction |= inst.operands[i].imm;
7647 if (!inst.operands[i].negative)
7648 inst.instruction |= INDEX_UP;
7649 if (inst.operands[i].shifted)
7650 {
7651 if (inst.operands[i].shift_kind == SHIFT_RRX)
7652 inst.instruction |= SHIFT_ROR << 5;
7653 else
7654 {
7655 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 7656 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
7657 }
7658 }
09d92015 7659 }
e2b0ab59 7660 else /* immediate offset in inst.relocs[0] */
09d92015 7661 {
e2b0ab59 7662 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
7663 {
7664 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7665
7666 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7667 cannot use PC in addressing.
7668 PC cannot be used in writeback addressing, either. */
7669 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7670 BAD_PC_ADDRESSING);
23a10334 7671
dc5ec521 7672 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7673 if (warn_on_deprecated
7674 && !is_load
7675 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 7676 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7677 }
7678
e2b0ab59 7679 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
7680 {
7681 /* Prefer + for zero encoded value. */
7682 if (!inst.operands[i].negative)
7683 inst.instruction |= INDEX_UP;
e2b0ab59 7684 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 7685 }
09d92015 7686 }
09d92015
MM
7687}
7688
c19d1205
ZW
7689/* inst.operands[i] was set up by parse_address. Encode it into an
7690 ARM-format mode 3 load or store instruction. Reject forms that
7691 cannot be used with such instructions. If is_t is true, reject
7692 forms that cannot be used with a T instruction (i.e. not
7693 post-indexed). */
7694static void
7695encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7696{
c19d1205 7697 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7698 {
c19d1205
ZW
7699 inst.error = _("instruction does not accept scaled register index");
7700 return;
09d92015 7701 }
a737bd4d 7702
c19d1205 7703 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7704
c19d1205
ZW
7705 if (inst.operands[i].immisreg)
7706 {
5be8be5d 7707 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 7708 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 7709 BAD_PC_ADDRESSING);
eb9f3f00
JB
7710 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7711 BAD_PC_WRITEBACK);
c19d1205
ZW
7712 inst.instruction |= inst.operands[i].imm;
7713 if (!inst.operands[i].negative)
7714 inst.instruction |= INDEX_UP;
7715 }
e2b0ab59 7716 else /* immediate offset in inst.relocs[0] */
c19d1205 7717 {
e2b0ab59 7718 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
7719 && inst.operands[i].writeback),
7720 BAD_PC_WRITEBACK);
c19d1205 7721 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 7722 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
7723 {
7724 /* Prefer + for zero encoded value. */
7725 if (!inst.operands[i].negative)
7726 inst.instruction |= INDEX_UP;
7727
e2b0ab59 7728 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 7729 }
c19d1205 7730 }
a737bd4d
NC
7731}
7732
8335d6aa
JW
7733/* Write immediate bits [7:0] to the following locations:
7734
7735 |28/24|23 19|18 16|15 4|3 0|
7736 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7737
7738 This function is used by VMOV/VMVN/VORR/VBIC. */
7739
7740static void
7741neon_write_immbits (unsigned immbits)
7742{
7743 inst.instruction |= immbits & 0xf;
7744 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7745 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7746}
7747
7748/* Invert low-order SIZE bits of XHI:XLO. */
7749
7750static void
7751neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7752{
7753 unsigned immlo = xlo ? *xlo : 0;
7754 unsigned immhi = xhi ? *xhi : 0;
7755
7756 switch (size)
7757 {
7758 case 8:
7759 immlo = (~immlo) & 0xff;
7760 break;
7761
7762 case 16:
7763 immlo = (~immlo) & 0xffff;
7764 break;
7765
7766 case 64:
7767 immhi = (~immhi) & 0xffffffff;
7768 /* fall through. */
7769
7770 case 32:
7771 immlo = (~immlo) & 0xffffffff;
7772 break;
7773
7774 default:
7775 abort ();
7776 }
7777
7778 if (xlo)
7779 *xlo = immlo;
7780
7781 if (xhi)
7782 *xhi = immhi;
7783}
7784
7785/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7786 A, B, C, D. */
09d92015 7787
c19d1205 7788static int
8335d6aa 7789neon_bits_same_in_bytes (unsigned imm)
09d92015 7790{
8335d6aa
JW
7791 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7792 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7793 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7794 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7795}
a737bd4d 7796
8335d6aa 7797/* For immediate of above form, return 0bABCD. */
09d92015 7798
8335d6aa
JW
7799static unsigned
7800neon_squash_bits (unsigned imm)
7801{
7802 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7803 | ((imm & 0x01000000) >> 21);
7804}
7805
7806/* Compress quarter-float representation to 0b...000 abcdefgh. */
7807
7808static unsigned
7809neon_qfloat_bits (unsigned imm)
7810{
7811 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7812}
7813
7814/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7815 the instruction. *OP is passed as the initial value of the op field, and
7816 may be set to a different value depending on the constant (i.e.
7817 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7818 MVN). If the immediate looks like a repeated pattern then also
7819 try smaller element sizes. */
7820
7821static int
7822neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7823 unsigned *immbits, int *op, int size,
7824 enum neon_el_type type)
7825{
7826 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7827 float. */
7828 if (type == NT_float && !float_p)
7829 return FAIL;
7830
7831 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 7832 {
8335d6aa
JW
7833 if (size != 32 || *op == 1)
7834 return FAIL;
7835 *immbits = neon_qfloat_bits (immlo);
7836 return 0xf;
7837 }
7838
7839 if (size == 64)
7840 {
7841 if (neon_bits_same_in_bytes (immhi)
7842 && neon_bits_same_in_bytes (immlo))
c19d1205 7843 {
8335d6aa
JW
7844 if (*op == 1)
7845 return FAIL;
7846 *immbits = (neon_squash_bits (immhi) << 4)
7847 | neon_squash_bits (immlo);
7848 *op = 1;
7849 return 0xe;
c19d1205 7850 }
a737bd4d 7851
8335d6aa
JW
7852 if (immhi != immlo)
7853 return FAIL;
7854 }
a737bd4d 7855
8335d6aa 7856 if (size >= 32)
09d92015 7857 {
8335d6aa 7858 if (immlo == (immlo & 0x000000ff))
c19d1205 7859 {
8335d6aa
JW
7860 *immbits = immlo;
7861 return 0x0;
c19d1205 7862 }
8335d6aa 7863 else if (immlo == (immlo & 0x0000ff00))
c19d1205 7864 {
8335d6aa
JW
7865 *immbits = immlo >> 8;
7866 return 0x2;
c19d1205 7867 }
8335d6aa
JW
7868 else if (immlo == (immlo & 0x00ff0000))
7869 {
7870 *immbits = immlo >> 16;
7871 return 0x4;
7872 }
7873 else if (immlo == (immlo & 0xff000000))
7874 {
7875 *immbits = immlo >> 24;
7876 return 0x6;
7877 }
7878 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7879 {
7880 *immbits = (immlo >> 8) & 0xff;
7881 return 0xc;
7882 }
7883 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7884 {
7885 *immbits = (immlo >> 16) & 0xff;
7886 return 0xd;
7887 }
7888
7889 if ((immlo & 0xffff) != (immlo >> 16))
7890 return FAIL;
7891 immlo &= 0xffff;
09d92015 7892 }
a737bd4d 7893
8335d6aa 7894 if (size >= 16)
4962c51a 7895 {
8335d6aa
JW
7896 if (immlo == (immlo & 0x000000ff))
7897 {
7898 *immbits = immlo;
7899 return 0x8;
7900 }
7901 else if (immlo == (immlo & 0x0000ff00))
7902 {
7903 *immbits = immlo >> 8;
7904 return 0xa;
7905 }
7906
7907 if ((immlo & 0xff) != (immlo >> 8))
7908 return FAIL;
7909 immlo &= 0xff;
4962c51a
MS
7910 }
7911
8335d6aa
JW
7912 if (immlo == (immlo & 0x000000ff))
7913 {
7914 /* Don't allow MVN with 8-bit immediate. */
7915 if (*op == 1)
7916 return FAIL;
7917 *immbits = immlo;
7918 return 0xe;
7919 }
26d97720 7920
8335d6aa 7921 return FAIL;
c19d1205 7922}
a737bd4d 7923
5fc177c8 7924#if defined BFD_HOST_64_BIT
ba592044
AM
7925/* Returns TRUE if double precision value V may be cast
7926 to single precision without loss of accuracy. */
7927
7928static bfd_boolean
5fc177c8 7929is_double_a_single (bfd_int64_t v)
ba592044 7930{
5fc177c8 7931 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 7932 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7933
7934 return (exp == 0 || exp == 0x7FF
7935 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7936 && (mantissa & 0x1FFFFFFFl) == 0;
7937}
7938
3739860c 7939/* Returns a double precision value casted to single precision
ba592044
AM
7940 (ignoring the least significant bits in exponent and mantissa). */
7941
7942static int
5fc177c8 7943double_to_single (bfd_int64_t v)
ba592044
AM
7944{
7945 int sign = (int) ((v >> 63) & 1l);
5fc177c8 7946 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 7947 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7948
7949 if (exp == 0x7FF)
7950 exp = 0xFF;
7951 else
7952 {
7953 exp = exp - 1023 + 127;
7954 if (exp >= 0xFF)
7955 {
7956 /* Infinity. */
7957 exp = 0x7F;
7958 mantissa = 0;
7959 }
7960 else if (exp < 0)
7961 {
7962 /* No denormalized numbers. */
7963 exp = 0;
7964 mantissa = 0;
7965 }
7966 }
7967 mantissa >>= 29;
7968 return (sign << 31) | (exp << 23) | mantissa;
7969}
5fc177c8 7970#endif /* BFD_HOST_64_BIT */
ba592044 7971
8335d6aa
JW
7972enum lit_type
7973{
7974 CONST_THUMB,
7975 CONST_ARM,
7976 CONST_VEC
7977};
7978
ba592044
AM
7979static void do_vfp_nsyn_opcode (const char *);
7980
e2b0ab59 7981/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
7982 Determine whether it can be performed with a move instruction; if
7983 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7984 return TRUE; if it can't, convert inst.instruction to a literal-pool
7985 load and return FALSE. If this is not a valid thing to do in the
7986 current context, set inst.error and return TRUE.
a737bd4d 7987
c19d1205
ZW
7988 inst.operands[i] describes the destination register. */
7989
c921be7d 7990static bfd_boolean
8335d6aa 7991move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 7992{
53365c0d 7993 unsigned long tbit;
8335d6aa
JW
7994 bfd_boolean thumb_p = (t == CONST_THUMB);
7995 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
7996
7997 if (thumb_p)
7998 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7999 else
8000 tbit = LOAD_BIT;
8001
8002 if ((inst.instruction & tbit) == 0)
09d92015 8003 {
c19d1205 8004 inst.error = _("invalid pseudo operation");
c921be7d 8005 return TRUE;
09d92015 8006 }
ba592044 8007
e2b0ab59
AV
8008 if (inst.relocs[0].exp.X_op != O_constant
8009 && inst.relocs[0].exp.X_op != O_symbol
8010 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8011 {
8012 inst.error = _("constant expression expected");
c921be7d 8013 return TRUE;
09d92015 8014 }
ba592044 8015
e2b0ab59
AV
8016 if (inst.relocs[0].exp.X_op == O_constant
8017 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8018 {
5fc177c8
NC
8019#if defined BFD_HOST_64_BIT
8020 bfd_int64_t v;
8021#else
ba592044 8022 offsetT v;
5fc177c8 8023#endif
e2b0ab59 8024 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8025 {
ba592044
AM
8026 LITTLENUM_TYPE w[X_PRECISION];
8027 LITTLENUM_TYPE * l;
8028
e2b0ab59 8029 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8030 {
ba592044
AM
8031 gen_to_words (w, X_PRECISION, E_PRECISION);
8032 l = w;
8033 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8034 }
ba592044
AM
8035 else
8036 l = generic_bignum;
3739860c 8037
5fc177c8
NC
8038#if defined BFD_HOST_64_BIT
8039 v =
8040 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8041 << LITTLENUM_NUMBER_OF_BITS)
8042 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8043 << LITTLENUM_NUMBER_OF_BITS)
8044 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8045 << LITTLENUM_NUMBER_OF_BITS)
8046 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8047#else
ba592044
AM
8048 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8049 | (l[0] & LITTLENUM_MASK);
5fc177c8 8050#endif
8335d6aa 8051 }
ba592044 8052 else
e2b0ab59 8053 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8054
8055 if (!inst.operands[i].issingle)
8335d6aa 8056 {
12569877 8057 if (thumb_p)
8335d6aa 8058 {
53445554
TP
8059 /* LDR should not use lead in a flag-setting instruction being
8060 chosen so we do not check whether movs can be used. */
12569877 8061
53445554 8062 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8063 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8064 && inst.operands[i].reg != 13
8065 && inst.operands[i].reg != 15)
12569877 8066 {
fc289b0a
TP
8067 /* Check if on thumb2 it can be done with a mov.w, mvn or
8068 movw instruction. */
12569877
AM
8069 unsigned int newimm;
8070 bfd_boolean isNegated;
8071
8072 newimm = encode_thumb32_immediate (v);
8073 if (newimm != (unsigned int) FAIL)
8074 isNegated = FALSE;
8075 else
8076 {
582cfe03 8077 newimm = encode_thumb32_immediate (~v);
12569877
AM
8078 if (newimm != (unsigned int) FAIL)
8079 isNegated = TRUE;
8080 }
8081
fc289b0a
TP
8082 /* The number can be loaded with a mov.w or mvn
8083 instruction. */
ff8646ee
TP
8084 if (newimm != (unsigned int) FAIL
8085 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8086 {
fc289b0a 8087 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8088 | (inst.operands[i].reg << 8));
fc289b0a 8089 /* Change to MOVN. */
582cfe03 8090 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8091 inst.instruction |= (newimm & 0x800) << 15;
8092 inst.instruction |= (newimm & 0x700) << 4;
8093 inst.instruction |= (newimm & 0x0ff);
8094 return TRUE;
8095 }
fc289b0a 8096 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8097 else if ((v & ~0xFFFF) == 0
8098 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8099 {
582cfe03 8100 int imm = v & 0xFFFF;
12569877 8101
582cfe03 8102 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8103 inst.instruction |= (inst.operands[i].reg << 8);
8104 inst.instruction |= (imm & 0xf000) << 4;
8105 inst.instruction |= (imm & 0x0800) << 15;
8106 inst.instruction |= (imm & 0x0700) << 4;
8107 inst.instruction |= (imm & 0x00ff);
8108 return TRUE;
8109 }
8110 }
8335d6aa 8111 }
12569877 8112 else if (arm_p)
ba592044
AM
8113 {
8114 int value = encode_arm_immediate (v);
12569877 8115
ba592044
AM
8116 if (value != FAIL)
8117 {
8118 /* This can be done with a mov instruction. */
8119 inst.instruction &= LITERAL_MASK;
8120 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8121 inst.instruction |= value & 0xfff;
8122 return TRUE;
8123 }
8335d6aa 8124
ba592044
AM
8125 value = encode_arm_immediate (~ v);
8126 if (value != FAIL)
8127 {
8128 /* This can be done with a mvn instruction. */
8129 inst.instruction &= LITERAL_MASK;
8130 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8131 inst.instruction |= value & 0xfff;
8132 return TRUE;
8133 }
8134 }
934c2632 8135 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8136 {
ba592044
AM
8137 int op = 0;
8138 unsigned immbits = 0;
8139 unsigned immlo = inst.operands[1].imm;
8140 unsigned immhi = inst.operands[1].regisimm
8141 ? inst.operands[1].reg
e2b0ab59 8142 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8143 ? 0
8144 : ((bfd_int64_t)((int) immlo)) >> 32;
8145 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8146 &op, 64, NT_invtype);
8147
8148 if (cmode == FAIL)
8149 {
8150 neon_invert_size (&immlo, &immhi, 64);
8151 op = !op;
8152 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8153 &op, 64, NT_invtype);
8154 }
8155
8156 if (cmode != FAIL)
8157 {
8158 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8159 | (1 << 23)
8160 | (cmode << 8)
8161 | (op << 5)
8162 | (1 << 4);
8163
8164 /* Fill other bits in vmov encoding for both thumb and arm. */
8165 if (thumb_mode)
eff0bc54 8166 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8167 else
eff0bc54 8168 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8169 neon_write_immbits (immbits);
8170 return TRUE;
8171 }
8335d6aa
JW
8172 }
8173 }
8335d6aa 8174
ba592044
AM
8175 if (t == CONST_VEC)
8176 {
8177 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8178 if (inst.operands[i].issingle
8179 && is_quarter_float (inst.operands[1].imm)
8180 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8181 {
ba592044
AM
8182 inst.operands[1].imm =
8183 neon_qfloat_bits (v);
8184 do_vfp_nsyn_opcode ("fconsts");
8185 return TRUE;
8335d6aa 8186 }
5fc177c8
NC
8187
8188 /* If our host does not support a 64-bit type then we cannot perform
8189 the following optimization. This mean that there will be a
8190 discrepancy between the output produced by an assembler built for
8191 a 32-bit-only host and the output produced from a 64-bit host, but
8192 this cannot be helped. */
8193#if defined BFD_HOST_64_BIT
ba592044
AM
8194 else if (!inst.operands[1].issingle
8195 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8196 {
ba592044
AM
8197 if (is_double_a_single (v)
8198 && is_quarter_float (double_to_single (v)))
8199 {
8200 inst.operands[1].imm =
8201 neon_qfloat_bits (double_to_single (v));
8202 do_vfp_nsyn_opcode ("fconstd");
8203 return TRUE;
8204 }
8335d6aa 8205 }
5fc177c8 8206#endif
8335d6aa
JW
8207 }
8208 }
8209
8210 if (add_to_lit_pool ((!inst.operands[i].isvec
8211 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8212 return TRUE;
8213
8214 inst.operands[1].reg = REG_PC;
8215 inst.operands[1].isreg = 1;
8216 inst.operands[1].preind = 1;
e2b0ab59
AV
8217 inst.relocs[0].pc_rel = 1;
8218 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8219 ? BFD_RELOC_ARM_THUMB_OFFSET
8220 : (mode_3
8221 ? BFD_RELOC_ARM_HWLITERAL
8222 : BFD_RELOC_ARM_LITERAL));
8223 return FALSE;
8224}
8225
8226/* inst.operands[i] was set up by parse_address. Encode it into an
8227 ARM-format instruction. Reject all forms which cannot be encoded
8228 into a coprocessor load/store instruction. If wb_ok is false,
8229 reject use of writeback; if unind_ok is false, reject use of
8230 unindexed addressing. If reloc_override is not 0, use it instead
8231 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8232 (in which case it is preserved). */
8233
8234static int
8235encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8236{
8237 if (!inst.operands[i].isreg)
8238 {
99b2a2dd
NC
8239 /* PR 18256 */
8240 if (! inst.operands[0].isvec)
8241 {
8242 inst.error = _("invalid co-processor operand");
8243 return FAIL;
8244 }
8335d6aa
JW
8245 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8246 return SUCCESS;
8247 }
8248
8249 inst.instruction |= inst.operands[i].reg << 16;
8250
8251 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8252
8253 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8254 {
8255 gas_assert (!inst.operands[i].writeback);
8256 if (!unind_ok)
8257 {
8258 inst.error = _("instruction does not support unindexed addressing");
8259 return FAIL;
8260 }
8261 inst.instruction |= inst.operands[i].imm;
8262 inst.instruction |= INDEX_UP;
8263 return SUCCESS;
8264 }
8265
8266 if (inst.operands[i].preind)
8267 inst.instruction |= PRE_INDEX;
8268
8269 if (inst.operands[i].writeback)
09d92015 8270 {
8335d6aa 8271 if (inst.operands[i].reg == REG_PC)
c19d1205 8272 {
8335d6aa
JW
8273 inst.error = _("pc may not be used with write-back");
8274 return FAIL;
c19d1205 8275 }
8335d6aa 8276 if (!wb_ok)
c19d1205 8277 {
8335d6aa
JW
8278 inst.error = _("instruction does not support writeback");
8279 return FAIL;
c19d1205 8280 }
8335d6aa 8281 inst.instruction |= WRITE_BACK;
09d92015
MM
8282 }
8283
8335d6aa 8284 if (reloc_override)
e2b0ab59
AV
8285 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8286 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8287 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8288 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8289 {
8335d6aa 8290 if (thumb_mode)
e2b0ab59 8291 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8292 else
e2b0ab59 8293 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8294 }
8335d6aa
JW
8295
8296 /* Prefer + for zero encoded value. */
8297 if (!inst.operands[i].negative)
8298 inst.instruction |= INDEX_UP;
8299
8300 return SUCCESS;
09d92015
MM
8301}
8302
5f4273c7 8303/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8304 First some generics; their names are taken from the conventional
8305 bit positions for register arguments in ARM format instructions. */
09d92015 8306
a737bd4d 8307static void
c19d1205 8308do_noargs (void)
09d92015 8309{
c19d1205 8310}
a737bd4d 8311
c19d1205
ZW
8312static void
8313do_rd (void)
8314{
8315 inst.instruction |= inst.operands[0].reg << 12;
8316}
a737bd4d 8317
16a1fa25
TP
8318static void
8319do_rn (void)
8320{
8321 inst.instruction |= inst.operands[0].reg << 16;
8322}
8323
c19d1205
ZW
8324static void
8325do_rd_rm (void)
8326{
8327 inst.instruction |= inst.operands[0].reg << 12;
8328 inst.instruction |= inst.operands[1].reg;
8329}
09d92015 8330
9eb6c0f1
MGD
8331static void
8332do_rm_rn (void)
8333{
8334 inst.instruction |= inst.operands[0].reg;
8335 inst.instruction |= inst.operands[1].reg << 16;
8336}
8337
c19d1205
ZW
8338static void
8339do_rd_rn (void)
8340{
8341 inst.instruction |= inst.operands[0].reg << 12;
8342 inst.instruction |= inst.operands[1].reg << 16;
8343}
a737bd4d 8344
c19d1205
ZW
8345static void
8346do_rn_rd (void)
8347{
8348 inst.instruction |= inst.operands[0].reg << 16;
8349 inst.instruction |= inst.operands[1].reg << 12;
8350}
09d92015 8351
4ed7ed8d
TP
8352static void
8353do_tt (void)
8354{
8355 inst.instruction |= inst.operands[0].reg << 8;
8356 inst.instruction |= inst.operands[1].reg << 16;
8357}
8358
59d09be6
MGD
8359static bfd_boolean
8360check_obsolete (const arm_feature_set *feature, const char *msg)
8361{
8362 if (ARM_CPU_IS_ANY (cpu_variant))
8363 {
5c3696f8 8364 as_tsktsk ("%s", msg);
59d09be6
MGD
8365 return TRUE;
8366 }
8367 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8368 {
8369 as_bad ("%s", msg);
8370 return TRUE;
8371 }
8372
8373 return FALSE;
8374}
8375
c19d1205
ZW
8376static void
8377do_rd_rm_rn (void)
8378{
9a64e435 8379 unsigned Rn = inst.operands[2].reg;
708587a4 8380 /* Enforce restrictions on SWP instruction. */
9a64e435 8381 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8382 {
8383 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8384 _("Rn must not overlap other operands"));
8385
59d09be6
MGD
8386 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8387 */
8388 if (!check_obsolete (&arm_ext_v8,
8389 _("swp{b} use is obsoleted for ARMv8 and later"))
8390 && warn_on_deprecated
8391 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8392 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8393 }
59d09be6 8394
c19d1205
ZW
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 inst.instruction |= inst.operands[1].reg;
9a64e435 8397 inst.instruction |= Rn << 16;
c19d1205 8398}
09d92015 8399
c19d1205
ZW
8400static void
8401do_rd_rn_rm (void)
8402{
8403 inst.instruction |= inst.operands[0].reg << 12;
8404 inst.instruction |= inst.operands[1].reg << 16;
8405 inst.instruction |= inst.operands[2].reg;
8406}
a737bd4d 8407
c19d1205
ZW
8408static void
8409do_rm_rd_rn (void)
8410{
5be8be5d 8411 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8412 constraint (((inst.relocs[0].exp.X_op != O_constant
8413 && inst.relocs[0].exp.X_op != O_illegal)
8414 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8415 BAD_ADDR_MODE);
c19d1205
ZW
8416 inst.instruction |= inst.operands[0].reg;
8417 inst.instruction |= inst.operands[1].reg << 12;
8418 inst.instruction |= inst.operands[2].reg << 16;
8419}
09d92015 8420
c19d1205
ZW
8421static void
8422do_imm0 (void)
8423{
8424 inst.instruction |= inst.operands[0].imm;
8425}
09d92015 8426
c19d1205
ZW
8427static void
8428do_rd_cpaddr (void)
8429{
8430 inst.instruction |= inst.operands[0].reg << 12;
8431 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8432}
a737bd4d 8433
c19d1205
ZW
8434/* ARM instructions, in alphabetical order by function name (except
8435 that wrapper functions appear immediately after the function they
8436 wrap). */
09d92015 8437
c19d1205
ZW
8438/* This is a pseudo-op of the form "adr rd, label" to be converted
8439 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8440
8441static void
c19d1205 8442do_adr (void)
09d92015 8443{
c19d1205 8444 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8445
c19d1205
ZW
8446 /* Frag hacking will turn this into a sub instruction if the offset turns
8447 out to be negative. */
e2b0ab59
AV
8448 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
8449 inst.relocs[0].pc_rel = 1;
8450 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 8451
fc6141f0 8452 if (support_interwork
e2b0ab59
AV
8453 && inst.relocs[0].exp.X_op == O_symbol
8454 && inst.relocs[0].exp.X_add_symbol != NULL
8455 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8456 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8457 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 8458}
b99bd4ef 8459
c19d1205
ZW
8460/* This is a pseudo-op of the form "adrl rd, label" to be converted
8461 into a relative address of the form:
8462 add rd, pc, #low(label-.-8)"
8463 add rd, rd, #high(label-.-8)" */
b99bd4ef 8464
c19d1205
ZW
8465static void
8466do_adrl (void)
8467{
8468 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8469
c19d1205
ZW
8470 /* Frag hacking will turn this into a sub instruction if the offset turns
8471 out to be negative. */
e2b0ab59
AV
8472 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8473 inst.relocs[0].pc_rel = 1;
c19d1205 8474 inst.size = INSN_SIZE * 2;
e2b0ab59 8475 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 8476
fc6141f0 8477 if (support_interwork
e2b0ab59
AV
8478 && inst.relocs[0].exp.X_op == O_symbol
8479 && inst.relocs[0].exp.X_add_symbol != NULL
8480 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8481 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8482 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
8483}
8484
b99bd4ef 8485static void
c19d1205 8486do_arit (void)
b99bd4ef 8487{
e2b0ab59
AV
8488 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8489 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 8490 THUMB1_RELOC_ONLY);
c19d1205
ZW
8491 if (!inst.operands[1].present)
8492 inst.operands[1].reg = inst.operands[0].reg;
8493 inst.instruction |= inst.operands[0].reg << 12;
8494 inst.instruction |= inst.operands[1].reg << 16;
8495 encode_arm_shifter_operand (2);
8496}
b99bd4ef 8497
62b3e311
PB
8498static void
8499do_barrier (void)
8500{
8501 if (inst.operands[0].present)
ccb84d65 8502 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
8503 else
8504 inst.instruction |= 0xf;
8505}
8506
c19d1205
ZW
8507static void
8508do_bfc (void)
8509{
8510 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8511 constraint (msb > 32, _("bit-field extends past end of register"));
8512 /* The instruction encoding stores the LSB and MSB,
8513 not the LSB and width. */
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].imm << 7;
8516 inst.instruction |= (msb - 1) << 16;
8517}
b99bd4ef 8518
c19d1205
ZW
8519static void
8520do_bfi (void)
8521{
8522 unsigned int msb;
b99bd4ef 8523
c19d1205
ZW
8524 /* #0 in second position is alternative syntax for bfc, which is
8525 the same instruction but with REG_PC in the Rm field. */
8526 if (!inst.operands[1].isreg)
8527 inst.operands[1].reg = REG_PC;
b99bd4ef 8528
c19d1205
ZW
8529 msb = inst.operands[2].imm + inst.operands[3].imm;
8530 constraint (msb > 32, _("bit-field extends past end of register"));
8531 /* The instruction encoding stores the LSB and MSB,
8532 not the LSB and width. */
8533 inst.instruction |= inst.operands[0].reg << 12;
8534 inst.instruction |= inst.operands[1].reg;
8535 inst.instruction |= inst.operands[2].imm << 7;
8536 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
8537}
8538
b99bd4ef 8539static void
c19d1205 8540do_bfx (void)
b99bd4ef 8541{
c19d1205
ZW
8542 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8543 _("bit-field extends past end of register"));
8544 inst.instruction |= inst.operands[0].reg << 12;
8545 inst.instruction |= inst.operands[1].reg;
8546 inst.instruction |= inst.operands[2].imm << 7;
8547 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8548}
09d92015 8549
c19d1205
ZW
8550/* ARM V5 breakpoint instruction (argument parse)
8551 BKPT <16 bit unsigned immediate>
8552 Instruction is not conditional.
8553 The bit pattern given in insns[] has the COND_ALWAYS condition,
8554 and it is an error if the caller tried to override that. */
b99bd4ef 8555
c19d1205
ZW
8556static void
8557do_bkpt (void)
8558{
8559 /* Top 12 of 16 bits to bits 19:8. */
8560 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 8561
c19d1205
ZW
8562 /* Bottom 4 of 16 bits to bits 3:0. */
8563 inst.instruction |= inst.operands[0].imm & 0xf;
8564}
09d92015 8565
c19d1205
ZW
8566static void
8567encode_branch (int default_reloc)
8568{
8569 if (inst.operands[0].hasreloc)
8570 {
0855e32b
NS
8571 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8572 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8573 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 8574 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
8575 ? BFD_RELOC_ARM_PLT32
8576 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 8577 }
b99bd4ef 8578 else
e2b0ab59
AV
8579 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
8580 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
8581}
8582
b99bd4ef 8583static void
c19d1205 8584do_branch (void)
b99bd4ef 8585{
39b41c9c
PB
8586#ifdef OBJ_ELF
8587 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8588 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8589 else
8590#endif
8591 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8592}
8593
8594static void
8595do_bl (void)
8596{
8597#ifdef OBJ_ELF
8598 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8599 {
8600 if (inst.cond == COND_ALWAYS)
8601 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8602 else
8603 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8604 }
8605 else
8606#endif
8607 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 8608}
b99bd4ef 8609
c19d1205
ZW
8610/* ARM V5 branch-link-exchange instruction (argument parse)
8611 BLX <target_addr> ie BLX(1)
8612 BLX{<condition>} <Rm> ie BLX(2)
8613 Unfortunately, there are two different opcodes for this mnemonic.
8614 So, the insns[].value is not used, and the code here zaps values
8615 into inst.instruction.
8616 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 8617
c19d1205
ZW
8618static void
8619do_blx (void)
8620{
8621 if (inst.operands[0].isreg)
b99bd4ef 8622 {
c19d1205
ZW
8623 /* Arg is a register; the opcode provided by insns[] is correct.
8624 It is not illegal to do "blx pc", just useless. */
8625 if (inst.operands[0].reg == REG_PC)
8626 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 8627
c19d1205
ZW
8628 inst.instruction |= inst.operands[0].reg;
8629 }
8630 else
b99bd4ef 8631 {
c19d1205 8632 /* Arg is an address; this instruction cannot be executed
267bf995
RR
8633 conditionally, and the opcode must be adjusted.
8634 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8635 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 8636 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 8637 inst.instruction = 0xfa000000;
267bf995 8638 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 8639 }
c19d1205
ZW
8640}
8641
8642static void
8643do_bx (void)
8644{
845b51d6
PB
8645 bfd_boolean want_reloc;
8646
c19d1205
ZW
8647 if (inst.operands[0].reg == REG_PC)
8648 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 8649
c19d1205 8650 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
8651 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8652 it is for ARMv4t or earlier. */
8653 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
8654 if (!ARM_FEATURE_ZERO (selected_object_arch)
8655 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
8656 want_reloc = TRUE;
8657
5ad34203 8658#ifdef OBJ_ELF
845b51d6 8659 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 8660#endif
584206db 8661 want_reloc = FALSE;
845b51d6
PB
8662
8663 if (want_reloc)
e2b0ab59 8664 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
8665}
8666
c19d1205
ZW
8667
8668/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
8669
8670static void
c19d1205 8671do_bxj (void)
a737bd4d 8672{
c19d1205
ZW
8673 if (inst.operands[0].reg == REG_PC)
8674 as_tsktsk (_("use of r15 in bxj is not really useful"));
8675
8676 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
8677}
8678
c19d1205
ZW
8679/* Co-processor data operation:
8680 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8681 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8682static void
8683do_cdp (void)
8684{
8685 inst.instruction |= inst.operands[0].reg << 8;
8686 inst.instruction |= inst.operands[1].imm << 20;
8687 inst.instruction |= inst.operands[2].reg << 12;
8688 inst.instruction |= inst.operands[3].reg << 16;
8689 inst.instruction |= inst.operands[4].reg;
8690 inst.instruction |= inst.operands[5].imm << 5;
8691}
a737bd4d
NC
8692
8693static void
c19d1205 8694do_cmp (void)
a737bd4d 8695{
c19d1205
ZW
8696 inst.instruction |= inst.operands[0].reg << 16;
8697 encode_arm_shifter_operand (1);
a737bd4d
NC
8698}
8699
c19d1205
ZW
8700/* Transfer between coprocessor and ARM registers.
8701 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8702 MRC2
8703 MCR{cond}
8704 MCR2
8705
8706 No special properties. */
09d92015 8707
dcbd0d71
MGD
8708struct deprecated_coproc_regs_s
8709{
8710 unsigned cp;
8711 int opc1;
8712 unsigned crn;
8713 unsigned crm;
8714 int opc2;
8715 arm_feature_set deprecated;
8716 arm_feature_set obsoleted;
8717 const char *dep_msg;
8718 const char *obs_msg;
8719};
8720
8721#define DEPR_ACCESS_V8 \
8722 N_("This coprocessor register access is deprecated in ARMv8")
8723
8724/* Table of all deprecated coprocessor registers. */
8725static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8726{
8727 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 8728 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8729 DEPR_ACCESS_V8, NULL},
8730 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 8731 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8732 DEPR_ACCESS_V8, NULL},
8733 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 8734 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8735 DEPR_ACCESS_V8, NULL},
8736 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 8737 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8738 DEPR_ACCESS_V8, NULL},
8739 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 8740 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8741 DEPR_ACCESS_V8, NULL},
8742};
8743
8744#undef DEPR_ACCESS_V8
8745
8746static const size_t deprecated_coproc_reg_count =
8747 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8748
09d92015 8749static void
c19d1205 8750do_co_reg (void)
09d92015 8751{
fdfde340 8752 unsigned Rd;
dcbd0d71 8753 size_t i;
fdfde340
JM
8754
8755 Rd = inst.operands[2].reg;
8756 if (thumb_mode)
8757 {
8758 if (inst.instruction == 0xee000010
8759 || inst.instruction == 0xfe000010)
8760 /* MCR, MCR2 */
8761 reject_bad_reg (Rd);
5c8ed6a4 8762 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
8763 /* MRC, MRC2 */
8764 constraint (Rd == REG_SP, BAD_SP);
8765 }
8766 else
8767 {
8768 /* MCR */
8769 if (inst.instruction == 0xe000010)
8770 constraint (Rd == REG_PC, BAD_PC);
8771 }
8772
dcbd0d71
MGD
8773 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8774 {
8775 const struct deprecated_coproc_regs_s *r =
8776 deprecated_coproc_regs + i;
8777
8778 if (inst.operands[0].reg == r->cp
8779 && inst.operands[1].imm == r->opc1
8780 && inst.operands[3].reg == r->crn
8781 && inst.operands[4].reg == r->crm
8782 && inst.operands[5].imm == r->opc2)
8783 {
b10bf8c5 8784 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 8785 && warn_on_deprecated
dcbd0d71 8786 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 8787 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
8788 }
8789 }
fdfde340 8790
c19d1205
ZW
8791 inst.instruction |= inst.operands[0].reg << 8;
8792 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 8793 inst.instruction |= Rd << 12;
c19d1205
ZW
8794 inst.instruction |= inst.operands[3].reg << 16;
8795 inst.instruction |= inst.operands[4].reg;
8796 inst.instruction |= inst.operands[5].imm << 5;
8797}
09d92015 8798
c19d1205
ZW
8799/* Transfer between coprocessor register and pair of ARM registers.
8800 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8801 MCRR2
8802 MRRC{cond}
8803 MRRC2
b99bd4ef 8804
c19d1205 8805 Two XScale instructions are special cases of these:
09d92015 8806
c19d1205
ZW
8807 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8808 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 8809
5f4273c7 8810 Result unpredictable if Rd or Rn is R15. */
a737bd4d 8811
c19d1205
ZW
8812static void
8813do_co_reg2c (void)
8814{
fdfde340
JM
8815 unsigned Rd, Rn;
8816
8817 Rd = inst.operands[2].reg;
8818 Rn = inst.operands[3].reg;
8819
8820 if (thumb_mode)
8821 {
8822 reject_bad_reg (Rd);
8823 reject_bad_reg (Rn);
8824 }
8825 else
8826 {
8827 constraint (Rd == REG_PC, BAD_PC);
8828 constraint (Rn == REG_PC, BAD_PC);
8829 }
8830
873f10f0
TC
8831 /* Only check the MRRC{2} variants. */
8832 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8833 {
8834 /* If Rd == Rn, error that the operation is
8835 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8836 constraint (Rd == Rn, BAD_OVERLAP);
8837 }
8838
c19d1205
ZW
8839 inst.instruction |= inst.operands[0].reg << 8;
8840 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
8841 inst.instruction |= Rd << 12;
8842 inst.instruction |= Rn << 16;
c19d1205 8843 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
8844}
8845
c19d1205
ZW
8846static void
8847do_cpsi (void)
8848{
8849 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
8850 if (inst.operands[1].present)
8851 {
8852 inst.instruction |= CPSI_MMOD;
8853 inst.instruction |= inst.operands[1].imm;
8854 }
c19d1205 8855}
b99bd4ef 8856
62b3e311
PB
8857static void
8858do_dbg (void)
8859{
8860 inst.instruction |= inst.operands[0].imm;
8861}
8862
eea54501
MGD
8863static void
8864do_div (void)
8865{
8866 unsigned Rd, Rn, Rm;
8867
8868 Rd = inst.operands[0].reg;
8869 Rn = (inst.operands[1].present
8870 ? inst.operands[1].reg : Rd);
8871 Rm = inst.operands[2].reg;
8872
8873 constraint ((Rd == REG_PC), BAD_PC);
8874 constraint ((Rn == REG_PC), BAD_PC);
8875 constraint ((Rm == REG_PC), BAD_PC);
8876
8877 inst.instruction |= Rd << 16;
8878 inst.instruction |= Rn << 0;
8879 inst.instruction |= Rm << 8;
8880}
8881
b99bd4ef 8882static void
c19d1205 8883do_it (void)
b99bd4ef 8884{
c19d1205 8885 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
8886 process it to do the validation as if in
8887 thumb mode, just in case the code gets
8888 assembled for thumb using the unified syntax. */
8889
c19d1205 8890 inst.size = 0;
e07e6e58
NC
8891 if (unified_syntax)
8892 {
8893 set_it_insn_type (IT_INSN);
8894 now_it.mask = (inst.instruction & 0xf) | 0x10;
8895 now_it.cc = inst.operands[0].imm;
8896 }
09d92015 8897}
b99bd4ef 8898
6530b175
NC
8899/* If there is only one register in the register list,
8900 then return its register number. Otherwise return -1. */
8901static int
8902only_one_reg_in_list (int range)
8903{
8904 int i = ffs (range) - 1;
8905 return (i > 15 || range != (1 << i)) ? -1 : i;
8906}
8907
09d92015 8908static void
6530b175 8909encode_ldmstm(int from_push_pop_mnem)
ea6ef066 8910{
c19d1205
ZW
8911 int base_reg = inst.operands[0].reg;
8912 int range = inst.operands[1].imm;
6530b175 8913 int one_reg;
ea6ef066 8914
c19d1205
ZW
8915 inst.instruction |= base_reg << 16;
8916 inst.instruction |= range;
ea6ef066 8917
c19d1205
ZW
8918 if (inst.operands[1].writeback)
8919 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 8920
c19d1205 8921 if (inst.operands[0].writeback)
ea6ef066 8922 {
c19d1205
ZW
8923 inst.instruction |= WRITE_BACK;
8924 /* Check for unpredictable uses of writeback. */
8925 if (inst.instruction & LOAD_BIT)
09d92015 8926 {
c19d1205
ZW
8927 /* Not allowed in LDM type 2. */
8928 if ((inst.instruction & LDM_TYPE_2_OR_3)
8929 && ((range & (1 << REG_PC)) == 0))
8930 as_warn (_("writeback of base register is UNPREDICTABLE"));
8931 /* Only allowed if base reg not in list for other types. */
8932 else if (range & (1 << base_reg))
8933 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8934 }
8935 else /* STM. */
8936 {
8937 /* Not allowed for type 2. */
8938 if (inst.instruction & LDM_TYPE_2_OR_3)
8939 as_warn (_("writeback of base register is UNPREDICTABLE"));
8940 /* Only allowed if base reg not in list, or first in list. */
8941 else if ((range & (1 << base_reg))
8942 && (range & ((1 << base_reg) - 1)))
8943 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 8944 }
ea6ef066 8945 }
6530b175
NC
8946
8947 /* If PUSH/POP has only one register, then use the A2 encoding. */
8948 one_reg = only_one_reg_in_list (range);
8949 if (from_push_pop_mnem && one_reg >= 0)
8950 {
8951 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8952
4f588891
NC
8953 if (is_push && one_reg == 13 /* SP */)
8954 /* PR 22483: The A2 encoding cannot be used when
8955 pushing the stack pointer as this is UNPREDICTABLE. */
8956 return;
8957
6530b175
NC
8958 inst.instruction &= A_COND_MASK;
8959 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8960 inst.instruction |= one_reg << 12;
8961 }
8962}
8963
8964static void
8965do_ldmstm (void)
8966{
8967 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
8968}
8969
c19d1205
ZW
8970/* ARMv5TE load-consecutive (argument parse)
8971 Mode is like LDRH.
8972
8973 LDRccD R, mode
8974 STRccD R, mode. */
8975
a737bd4d 8976static void
c19d1205 8977do_ldrd (void)
a737bd4d 8978{
c19d1205 8979 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8980 _("first transfer register must be even"));
c19d1205
ZW
8981 constraint (inst.operands[1].present
8982 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8983 _("can only transfer two consecutive registers"));
c19d1205
ZW
8984 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8985 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8986
c19d1205
ZW
8987 if (!inst.operands[1].present)
8988 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8989
c56791bb
RE
8990 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8991 register and the first register written; we have to diagnose
8992 overlap between the base and the second register written here. */
ea6ef066 8993
c56791bb
RE
8994 if (inst.operands[2].reg == inst.operands[1].reg
8995 && (inst.operands[2].writeback || inst.operands[2].postind))
8996 as_warn (_("base register written back, and overlaps "
8997 "second transfer register"));
b05fe5cf 8998
c56791bb
RE
8999 if (!(inst.instruction & V4_STR_BIT))
9000 {
c19d1205 9001 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9002 destination (even if not write-back). */
9003 if (inst.operands[2].immisreg
9004 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9005 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9006 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9007 }
c19d1205
ZW
9008 inst.instruction |= inst.operands[0].reg << 12;
9009 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9010}
9011
9012static void
c19d1205 9013do_ldrex (void)
b05fe5cf 9014{
c19d1205
ZW
9015 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9016 || inst.operands[1].postind || inst.operands[1].writeback
9017 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9018 || inst.operands[1].negative
9019 /* This can arise if the programmer has written
9020 strex rN, rM, foo
9021 or if they have mistakenly used a register name as the last
9022 operand, eg:
9023 strex rN, rM, rX
9024 It is very difficult to distinguish between these two cases
9025 because "rX" might actually be a label. ie the register
9026 name has been occluded by a symbol of the same name. So we
9027 just generate a general 'bad addressing mode' type error
9028 message and leave it up to the programmer to discover the
9029 true cause and fix their mistake. */
9030 || (inst.operands[1].reg == REG_PC),
9031 BAD_ADDR_MODE);
b05fe5cf 9032
e2b0ab59
AV
9033 constraint (inst.relocs[0].exp.X_op != O_constant
9034 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9035 _("offset must be zero in ARM encoding"));
b05fe5cf 9036
5be8be5d
DG
9037 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9038
c19d1205
ZW
9039 inst.instruction |= inst.operands[0].reg << 12;
9040 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9041 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9042}
9043
9044static void
c19d1205 9045do_ldrexd (void)
b05fe5cf 9046{
c19d1205
ZW
9047 constraint (inst.operands[0].reg % 2 != 0,
9048 _("even register required"));
9049 constraint (inst.operands[1].present
9050 && inst.operands[1].reg != inst.operands[0].reg + 1,
9051 _("can only load two consecutive registers"));
9052 /* If op 1 were present and equal to PC, this function wouldn't
9053 have been called in the first place. */
9054 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9055
c19d1205
ZW
9056 inst.instruction |= inst.operands[0].reg << 12;
9057 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9058}
9059
1be5fd2e
NC
9060/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9061 which is not a multiple of four is UNPREDICTABLE. */
9062static void
9063check_ldr_r15_aligned (void)
9064{
9065 constraint (!(inst.operands[1].immisreg)
9066 && (inst.operands[0].reg == REG_PC
9067 && inst.operands[1].reg == REG_PC
e2b0ab59 9068 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9069 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9070}
9071
b05fe5cf 9072static void
c19d1205 9073do_ldst (void)
b05fe5cf 9074{
c19d1205
ZW
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 if (!inst.operands[1].isreg)
8335d6aa 9077 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9078 return;
c19d1205 9079 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9080 check_ldr_r15_aligned ();
b05fe5cf
ZW
9081}
9082
9083static void
c19d1205 9084do_ldstt (void)
b05fe5cf 9085{
c19d1205
ZW
9086 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9087 reject [Rn,...]. */
9088 if (inst.operands[1].preind)
b05fe5cf 9089 {
e2b0ab59
AV
9090 constraint (inst.relocs[0].exp.X_op != O_constant
9091 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9092 _("this instruction requires a post-indexed address"));
b05fe5cf 9093
c19d1205
ZW
9094 inst.operands[1].preind = 0;
9095 inst.operands[1].postind = 1;
9096 inst.operands[1].writeback = 1;
b05fe5cf 9097 }
c19d1205
ZW
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9100}
b05fe5cf 9101
c19d1205 9102/* Halfword and signed-byte load/store operations. */
b05fe5cf 9103
c19d1205
ZW
9104static void
9105do_ldstv4 (void)
9106{
ff4a8d2b 9107 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9108 inst.instruction |= inst.operands[0].reg << 12;
9109 if (!inst.operands[1].isreg)
8335d6aa 9110 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9111 return;
c19d1205 9112 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9113}
9114
9115static void
c19d1205 9116do_ldsttv4 (void)
b05fe5cf 9117{
c19d1205
ZW
9118 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9119 reject [Rn,...]. */
9120 if (inst.operands[1].preind)
b05fe5cf 9121 {
e2b0ab59
AV
9122 constraint (inst.relocs[0].exp.X_op != O_constant
9123 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9124 _("this instruction requires a post-indexed address"));
b05fe5cf 9125
c19d1205
ZW
9126 inst.operands[1].preind = 0;
9127 inst.operands[1].postind = 1;
9128 inst.operands[1].writeback = 1;
b05fe5cf 9129 }
c19d1205
ZW
9130 inst.instruction |= inst.operands[0].reg << 12;
9131 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9132}
b05fe5cf 9133
c19d1205
ZW
9134/* Co-processor register load/store.
9135 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9136static void
9137do_lstc (void)
9138{
9139 inst.instruction |= inst.operands[0].reg << 8;
9140 inst.instruction |= inst.operands[1].reg << 12;
9141 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9142}
9143
b05fe5cf 9144static void
c19d1205 9145do_mlas (void)
b05fe5cf 9146{
8fb9d7b9 9147 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9148 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9149 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9150 && !(inst.instruction & 0x00400000))
8fb9d7b9 9151 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9152
c19d1205
ZW
9153 inst.instruction |= inst.operands[0].reg << 16;
9154 inst.instruction |= inst.operands[1].reg;
9155 inst.instruction |= inst.operands[2].reg << 8;
9156 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9157}
b05fe5cf 9158
c19d1205
ZW
9159static void
9160do_mov (void)
9161{
e2b0ab59
AV
9162 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9163 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9164 THUMB1_RELOC_ONLY);
c19d1205
ZW
9165 inst.instruction |= inst.operands[0].reg << 12;
9166 encode_arm_shifter_operand (1);
9167}
b05fe5cf 9168
c19d1205
ZW
9169/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9170static void
9171do_mov16 (void)
9172{
b6895b4f
PB
9173 bfd_vma imm;
9174 bfd_boolean top;
9175
9176 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9177 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9178 _(":lower16: not allowed in this instruction"));
e2b0ab59 9179 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9180 _(":upper16: not allowed in this instruction"));
c19d1205 9181 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9182 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9183 {
e2b0ab59 9184 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9185 /* The value is in two pieces: 0:11, 16:19. */
9186 inst.instruction |= (imm & 0x00000fff);
9187 inst.instruction |= (imm & 0x0000f000) << 4;
9188 }
b05fe5cf 9189}
b99bd4ef 9190
037e8744
JB
9191static int
9192do_vfp_nsyn_mrs (void)
9193{
9194 if (inst.operands[0].isvec)
9195 {
9196 if (inst.operands[1].reg != 1)
477330fc 9197 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9198 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9199 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9200 do_vfp_nsyn_opcode ("fmstat");
9201 }
9202 else if (inst.operands[1].isvec)
9203 do_vfp_nsyn_opcode ("fmrx");
9204 else
9205 return FAIL;
5f4273c7 9206
037e8744
JB
9207 return SUCCESS;
9208}
9209
9210static int
9211do_vfp_nsyn_msr (void)
9212{
9213 if (inst.operands[0].isvec)
9214 do_vfp_nsyn_opcode ("fmxr");
9215 else
9216 return FAIL;
9217
9218 return SUCCESS;
9219}
9220
f7c21dc7
NC
9221static void
9222do_vmrs (void)
9223{
9224 unsigned Rt = inst.operands[0].reg;
fa94de6b 9225
16d02dc9 9226 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9227 {
9228 inst.error = BAD_SP;
9229 return;
9230 }
9231
40c7d507
RR
9232 /* MVFR2 is only valid at ARMv8-A. */
9233 if (inst.operands[1].reg == 5)
9234 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9235 _(BAD_FPU));
9236
f7c21dc7 9237 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9238 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9239 {
9240 inst.error = BAD_PC;
9241 return;
9242 }
9243
16d02dc9
JB
9244 /* If we get through parsing the register name, we just insert the number
9245 generated into the instruction without further validation. */
9246 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9247 inst.instruction |= (Rt << 12);
9248}
9249
9250static void
9251do_vmsr (void)
9252{
9253 unsigned Rt = inst.operands[1].reg;
fa94de6b 9254
f7c21dc7
NC
9255 if (thumb_mode)
9256 reject_bad_reg (Rt);
9257 else if (Rt == REG_PC)
9258 {
9259 inst.error = BAD_PC;
9260 return;
9261 }
9262
40c7d507
RR
9263 /* MVFR2 is only valid for ARMv8-A. */
9264 if (inst.operands[0].reg == 5)
9265 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9266 _(BAD_FPU));
9267
16d02dc9
JB
9268 /* If we get through parsing the register name, we just insert the number
9269 generated into the instruction without further validation. */
9270 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9271 inst.instruction |= (Rt << 12);
9272}
9273
b99bd4ef 9274static void
c19d1205 9275do_mrs (void)
b99bd4ef 9276{
90ec0d68
MGD
9277 unsigned br;
9278
037e8744
JB
9279 if (do_vfp_nsyn_mrs () == SUCCESS)
9280 return;
9281
ff4a8d2b 9282 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9283 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9284
9285 if (inst.operands[1].isreg)
9286 {
9287 br = inst.operands[1].reg;
806ab1c0 9288 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9289 as_bad (_("bad register for mrs"));
9290 }
9291 else
9292 {
9293 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9294 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9295 != (PSR_c|PSR_f),
d2cd1205 9296 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9297 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9298 }
9299
9300 inst.instruction |= br;
c19d1205 9301}
b99bd4ef 9302
c19d1205
ZW
9303/* Two possible forms:
9304 "{C|S}PSR_<field>, Rm",
9305 "{C|S}PSR_f, #expression". */
b99bd4ef 9306
c19d1205
ZW
9307static void
9308do_msr (void)
9309{
037e8744
JB
9310 if (do_vfp_nsyn_msr () == SUCCESS)
9311 return;
9312
c19d1205
ZW
9313 inst.instruction |= inst.operands[0].imm;
9314 if (inst.operands[1].isreg)
9315 inst.instruction |= inst.operands[1].reg;
9316 else
b99bd4ef 9317 {
c19d1205 9318 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9319 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9320 inst.relocs[0].pc_rel = 0;
b99bd4ef 9321 }
b99bd4ef
NC
9322}
9323
c19d1205
ZW
9324static void
9325do_mul (void)
a737bd4d 9326{
ff4a8d2b
NC
9327 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9328
c19d1205
ZW
9329 if (!inst.operands[2].present)
9330 inst.operands[2].reg = inst.operands[0].reg;
9331 inst.instruction |= inst.operands[0].reg << 16;
9332 inst.instruction |= inst.operands[1].reg;
9333 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9334
8fb9d7b9
MS
9335 if (inst.operands[0].reg == inst.operands[1].reg
9336 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9337 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9338}
9339
c19d1205
ZW
9340/* Long Multiply Parser
9341 UMULL RdLo, RdHi, Rm, Rs
9342 SMULL RdLo, RdHi, Rm, Rs
9343 UMLAL RdLo, RdHi, Rm, Rs
9344 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9345
9346static void
c19d1205 9347do_mull (void)
b99bd4ef 9348{
c19d1205
ZW
9349 inst.instruction |= inst.operands[0].reg << 12;
9350 inst.instruction |= inst.operands[1].reg << 16;
9351 inst.instruction |= inst.operands[2].reg;
9352 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9353
682b27ad
PB
9354 /* rdhi and rdlo must be different. */
9355 if (inst.operands[0].reg == inst.operands[1].reg)
9356 as_tsktsk (_("rdhi and rdlo must be different"));
9357
9358 /* rdhi, rdlo and rm must all be different before armv6. */
9359 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9360 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9361 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9362 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9363}
b99bd4ef 9364
c19d1205
ZW
9365static void
9366do_nop (void)
9367{
e7495e45
NS
9368 if (inst.operands[0].present
9369 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9370 {
9371 /* Architectural NOP hints are CPSR sets with no bits selected. */
9372 inst.instruction &= 0xf0000000;
e7495e45
NS
9373 inst.instruction |= 0x0320f000;
9374 if (inst.operands[0].present)
9375 inst.instruction |= inst.operands[0].imm;
c19d1205 9376 }
b99bd4ef
NC
9377}
9378
c19d1205
ZW
9379/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9380 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9381 Condition defaults to COND_ALWAYS.
9382 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9383
9384static void
c19d1205 9385do_pkhbt (void)
b99bd4ef 9386{
c19d1205
ZW
9387 inst.instruction |= inst.operands[0].reg << 12;
9388 inst.instruction |= inst.operands[1].reg << 16;
9389 inst.instruction |= inst.operands[2].reg;
9390 if (inst.operands[3].present)
9391 encode_arm_shift (3);
9392}
b99bd4ef 9393
c19d1205 9394/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9395
c19d1205
ZW
9396static void
9397do_pkhtb (void)
9398{
9399 if (!inst.operands[3].present)
b99bd4ef 9400 {
c19d1205
ZW
9401 /* If the shift specifier is omitted, turn the instruction
9402 into pkhbt rd, rm, rn. */
9403 inst.instruction &= 0xfff00010;
9404 inst.instruction |= inst.operands[0].reg << 12;
9405 inst.instruction |= inst.operands[1].reg;
9406 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9407 }
9408 else
9409 {
c19d1205
ZW
9410 inst.instruction |= inst.operands[0].reg << 12;
9411 inst.instruction |= inst.operands[1].reg << 16;
9412 inst.instruction |= inst.operands[2].reg;
9413 encode_arm_shift (3);
b99bd4ef
NC
9414 }
9415}
9416
c19d1205 9417/* ARMv5TE: Preload-Cache
60e5ef9f 9418 MP Extensions: Preload for write
c19d1205 9419
60e5ef9f 9420 PLD(W) <addr_mode>
c19d1205
ZW
9421
9422 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9423
9424static void
c19d1205 9425do_pld (void)
b99bd4ef 9426{
c19d1205
ZW
9427 constraint (!inst.operands[0].isreg,
9428 _("'[' expected after PLD mnemonic"));
9429 constraint (inst.operands[0].postind,
9430 _("post-indexed expression used in preload instruction"));
9431 constraint (inst.operands[0].writeback,
9432 _("writeback used in preload instruction"));
9433 constraint (!inst.operands[0].preind,
9434 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9435 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9436}
b99bd4ef 9437
62b3e311
PB
9438/* ARMv7: PLI <addr_mode> */
9439static void
9440do_pli (void)
9441{
9442 constraint (!inst.operands[0].isreg,
9443 _("'[' expected after PLI mnemonic"));
9444 constraint (inst.operands[0].postind,
9445 _("post-indexed expression used in preload instruction"));
9446 constraint (inst.operands[0].writeback,
9447 _("writeback used in preload instruction"));
9448 constraint (!inst.operands[0].preind,
9449 _("unindexed addressing used in preload instruction"));
9450 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9451 inst.instruction &= ~PRE_INDEX;
9452}
9453
c19d1205
ZW
9454static void
9455do_push_pop (void)
9456{
5e0d7f77
MP
9457 constraint (inst.operands[0].writeback,
9458 _("push/pop do not support {reglist}^"));
c19d1205
ZW
9459 inst.operands[1] = inst.operands[0];
9460 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9461 inst.operands[0].isreg = 1;
9462 inst.operands[0].writeback = 1;
9463 inst.operands[0].reg = REG_SP;
6530b175 9464 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 9465}
b99bd4ef 9466
c19d1205
ZW
9467/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9468 word at the specified address and the following word
9469 respectively.
9470 Unconditionally executed.
9471 Error if Rn is R15. */
b99bd4ef 9472
c19d1205
ZW
9473static void
9474do_rfe (void)
9475{
9476 inst.instruction |= inst.operands[0].reg << 16;
9477 if (inst.operands[0].writeback)
9478 inst.instruction |= WRITE_BACK;
9479}
b99bd4ef 9480
c19d1205 9481/* ARM V6 ssat (argument parse). */
b99bd4ef 9482
c19d1205
ZW
9483static void
9484do_ssat (void)
9485{
9486 inst.instruction |= inst.operands[0].reg << 12;
9487 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9488 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9489
c19d1205
ZW
9490 if (inst.operands[3].present)
9491 encode_arm_shift (3);
b99bd4ef
NC
9492}
9493
c19d1205 9494/* ARM V6 usat (argument parse). */
b99bd4ef
NC
9495
9496static void
c19d1205 9497do_usat (void)
b99bd4ef 9498{
c19d1205
ZW
9499 inst.instruction |= inst.operands[0].reg << 12;
9500 inst.instruction |= inst.operands[1].imm << 16;
9501 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9502
c19d1205
ZW
9503 if (inst.operands[3].present)
9504 encode_arm_shift (3);
b99bd4ef
NC
9505}
9506
c19d1205 9507/* ARM V6 ssat16 (argument parse). */
09d92015
MM
9508
9509static void
c19d1205 9510do_ssat16 (void)
09d92015 9511{
c19d1205
ZW
9512 inst.instruction |= inst.operands[0].reg << 12;
9513 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9514 inst.instruction |= inst.operands[2].reg;
09d92015
MM
9515}
9516
c19d1205
ZW
9517static void
9518do_usat16 (void)
a737bd4d 9519{
c19d1205
ZW
9520 inst.instruction |= inst.operands[0].reg << 12;
9521 inst.instruction |= inst.operands[1].imm << 16;
9522 inst.instruction |= inst.operands[2].reg;
9523}
a737bd4d 9524
c19d1205
ZW
9525/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9526 preserving the other bits.
a737bd4d 9527
c19d1205
ZW
9528 setend <endian_specifier>, where <endian_specifier> is either
9529 BE or LE. */
a737bd4d 9530
c19d1205
ZW
9531static void
9532do_setend (void)
9533{
12e37cbc
MGD
9534 if (warn_on_deprecated
9535 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 9536 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 9537
c19d1205
ZW
9538 if (inst.operands[0].imm)
9539 inst.instruction |= 0x200;
a737bd4d
NC
9540}
9541
9542static void
c19d1205 9543do_shift (void)
a737bd4d 9544{
c19d1205
ZW
9545 unsigned int Rm = (inst.operands[1].present
9546 ? inst.operands[1].reg
9547 : inst.operands[0].reg);
a737bd4d 9548
c19d1205
ZW
9549 inst.instruction |= inst.operands[0].reg << 12;
9550 inst.instruction |= Rm;
9551 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 9552 {
c19d1205
ZW
9553 inst.instruction |= inst.operands[2].reg << 8;
9554 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
9555 /* PR 12854: Error on extraneous shifts. */
9556 constraint (inst.operands[2].shifted,
9557 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
9558 }
9559 else
e2b0ab59 9560 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
9561}
9562
09d92015 9563static void
3eb17e6b 9564do_smc (void)
09d92015 9565{
e2b0ab59
AV
9566 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
9567 inst.relocs[0].pc_rel = 0;
09d92015
MM
9568}
9569
90ec0d68
MGD
9570static void
9571do_hvc (void)
9572{
e2b0ab59
AV
9573 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
9574 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
9575}
9576
09d92015 9577static void
c19d1205 9578do_swi (void)
09d92015 9579{
e2b0ab59
AV
9580 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
9581 inst.relocs[0].pc_rel = 0;
09d92015
MM
9582}
9583
ddfded2f
MW
9584static void
9585do_setpan (void)
9586{
9587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9588 _("selected processor does not support SETPAN instruction"));
9589
9590 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9591}
9592
9593static void
9594do_t_setpan (void)
9595{
9596 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9597 _("selected processor does not support SETPAN instruction"));
9598
9599 inst.instruction |= (inst.operands[0].imm << 3);
9600}
9601
c19d1205
ZW
9602/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9603 SMLAxy{cond} Rd,Rm,Rs,Rn
9604 SMLAWy{cond} Rd,Rm,Rs,Rn
9605 Error if any register is R15. */
e16bb312 9606
c19d1205
ZW
9607static void
9608do_smla (void)
e16bb312 9609{
c19d1205
ZW
9610 inst.instruction |= inst.operands[0].reg << 16;
9611 inst.instruction |= inst.operands[1].reg;
9612 inst.instruction |= inst.operands[2].reg << 8;
9613 inst.instruction |= inst.operands[3].reg << 12;
9614}
a737bd4d 9615
c19d1205
ZW
9616/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9617 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9618 Error if any register is R15.
9619 Warning if Rdlo == Rdhi. */
a737bd4d 9620
c19d1205
ZW
9621static void
9622do_smlal (void)
9623{
9624 inst.instruction |= inst.operands[0].reg << 12;
9625 inst.instruction |= inst.operands[1].reg << 16;
9626 inst.instruction |= inst.operands[2].reg;
9627 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 9628
c19d1205
ZW
9629 if (inst.operands[0].reg == inst.operands[1].reg)
9630 as_tsktsk (_("rdhi and rdlo must be different"));
9631}
a737bd4d 9632
c19d1205
ZW
9633/* ARM V5E (El Segundo) signed-multiply (argument parse)
9634 SMULxy{cond} Rd,Rm,Rs
9635 Error if any register is R15. */
a737bd4d 9636
c19d1205
ZW
9637static void
9638do_smul (void)
9639{
9640 inst.instruction |= inst.operands[0].reg << 16;
9641 inst.instruction |= inst.operands[1].reg;
9642 inst.instruction |= inst.operands[2].reg << 8;
9643}
a737bd4d 9644
b6702015
PB
9645/* ARM V6 srs (argument parse). The variable fields in the encoding are
9646 the same for both ARM and Thumb-2. */
a737bd4d 9647
c19d1205
ZW
9648static void
9649do_srs (void)
9650{
b6702015
PB
9651 int reg;
9652
9653 if (inst.operands[0].present)
9654 {
9655 reg = inst.operands[0].reg;
fdfde340 9656 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
9657 }
9658 else
fdfde340 9659 reg = REG_SP;
b6702015
PB
9660
9661 inst.instruction |= reg << 16;
9662 inst.instruction |= inst.operands[1].imm;
9663 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
9664 inst.instruction |= WRITE_BACK;
9665}
a737bd4d 9666
c19d1205 9667/* ARM V6 strex (argument parse). */
a737bd4d 9668
c19d1205
ZW
9669static void
9670do_strex (void)
9671{
9672 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9673 || inst.operands[2].postind || inst.operands[2].writeback
9674 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
9675 || inst.operands[2].negative
9676 /* See comment in do_ldrex(). */
9677 || (inst.operands[2].reg == REG_PC),
9678 BAD_ADDR_MODE);
a737bd4d 9679
c19d1205
ZW
9680 constraint (inst.operands[0].reg == inst.operands[1].reg
9681 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 9682
e2b0ab59
AV
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9685 _("offset must be zero in ARM encoding"));
a737bd4d 9686
c19d1205
ZW
9687 inst.instruction |= inst.operands[0].reg << 12;
9688 inst.instruction |= inst.operands[1].reg;
9689 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 9690 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
9691}
9692
877807f8
NC
9693static void
9694do_t_strexbh (void)
9695{
9696 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9697 || inst.operands[2].postind || inst.operands[2].writeback
9698 || inst.operands[2].immisreg || inst.operands[2].shifted
9699 || inst.operands[2].negative,
9700 BAD_ADDR_MODE);
9701
9702 constraint (inst.operands[0].reg == inst.operands[1].reg
9703 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9704
9705 do_rm_rd_rn ();
9706}
9707
e16bb312 9708static void
c19d1205 9709do_strexd (void)
e16bb312 9710{
c19d1205
ZW
9711 constraint (inst.operands[1].reg % 2 != 0,
9712 _("even register required"));
9713 constraint (inst.operands[2].present
9714 && inst.operands[2].reg != inst.operands[1].reg + 1,
9715 _("can only store two consecutive registers"));
9716 /* If op 2 were present and equal to PC, this function wouldn't
9717 have been called in the first place. */
9718 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 9719
c19d1205
ZW
9720 constraint (inst.operands[0].reg == inst.operands[1].reg
9721 || inst.operands[0].reg == inst.operands[1].reg + 1
9722 || inst.operands[0].reg == inst.operands[3].reg,
9723 BAD_OVERLAP);
e16bb312 9724
c19d1205
ZW
9725 inst.instruction |= inst.operands[0].reg << 12;
9726 inst.instruction |= inst.operands[1].reg;
9727 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
9728}
9729
9eb6c0f1
MGD
9730/* ARM V8 STRL. */
9731static void
4b8c8c02 9732do_stlex (void)
9eb6c0f1
MGD
9733{
9734 constraint (inst.operands[0].reg == inst.operands[1].reg
9735 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9736
9737 do_rd_rm_rn ();
9738}
9739
9740static void
4b8c8c02 9741do_t_stlex (void)
9eb6c0f1
MGD
9742{
9743 constraint (inst.operands[0].reg == inst.operands[1].reg
9744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9745
9746 do_rm_rd_rn ();
9747}
9748
c19d1205
ZW
9749/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9750 extends it to 32-bits, and adds the result to a value in another
9751 register. You can specify a rotation by 0, 8, 16, or 24 bits
9752 before extracting the 16-bit value.
9753 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9754 Condition defaults to COND_ALWAYS.
9755 Error if any register uses R15. */
9756
e16bb312 9757static void
c19d1205 9758do_sxtah (void)
e16bb312 9759{
c19d1205
ZW
9760 inst.instruction |= inst.operands[0].reg << 12;
9761 inst.instruction |= inst.operands[1].reg << 16;
9762 inst.instruction |= inst.operands[2].reg;
9763 inst.instruction |= inst.operands[3].imm << 10;
9764}
e16bb312 9765
c19d1205 9766/* ARM V6 SXTH.
e16bb312 9767
c19d1205
ZW
9768 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9769 Condition defaults to COND_ALWAYS.
9770 Error if any register uses R15. */
e16bb312
NC
9771
9772static void
c19d1205 9773do_sxth (void)
e16bb312 9774{
c19d1205
ZW
9775 inst.instruction |= inst.operands[0].reg << 12;
9776 inst.instruction |= inst.operands[1].reg;
9777 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 9778}
c19d1205
ZW
9779\f
9780/* VFP instructions. In a logical order: SP variant first, monad
9781 before dyad, arithmetic then move then load/store. */
e16bb312
NC
9782
9783static void
c19d1205 9784do_vfp_sp_monadic (void)
e16bb312 9785{
5287ad62
JB
9786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9787 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9788}
9789
9790static void
c19d1205 9791do_vfp_sp_dyadic (void)
e16bb312 9792{
5287ad62
JB
9793 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9794 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9795 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9796}
9797
9798static void
c19d1205 9799do_vfp_sp_compare_z (void)
e16bb312 9800{
5287ad62 9801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
9802}
9803
9804static void
c19d1205 9805do_vfp_dp_sp_cvt (void)
e16bb312 9806{
5287ad62
JB
9807 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9808 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9809}
9810
9811static void
c19d1205 9812do_vfp_sp_dp_cvt (void)
e16bb312 9813{
5287ad62
JB
9814 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9815 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
9816}
9817
9818static void
c19d1205 9819do_vfp_reg_from_sp (void)
e16bb312 9820{
c19d1205 9821 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 9822 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
9823}
9824
9825static void
c19d1205 9826do_vfp_reg2_from_sp2 (void)
e16bb312 9827{
c19d1205
ZW
9828 constraint (inst.operands[2].imm != 2,
9829 _("only two consecutive VFP SP registers allowed here"));
9830 inst.instruction |= inst.operands[0].reg << 12;
9831 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 9832 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9833}
9834
9835static void
c19d1205 9836do_vfp_sp_from_reg (void)
e16bb312 9837{
5287ad62 9838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 9839 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
9840}
9841
9842static void
c19d1205 9843do_vfp_sp2_from_reg2 (void)
e16bb312 9844{
c19d1205
ZW
9845 constraint (inst.operands[0].imm != 2,
9846 _("only two consecutive VFP SP registers allowed here"));
5287ad62 9847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
9848 inst.instruction |= inst.operands[1].reg << 12;
9849 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
9850}
9851
9852static void
c19d1205 9853do_vfp_sp_ldst (void)
e16bb312 9854{
5287ad62 9855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 9856 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9857}
9858
9859static void
c19d1205 9860do_vfp_dp_ldst (void)
e16bb312 9861{
5287ad62 9862 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 9863 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9864}
9865
c19d1205 9866
e16bb312 9867static void
c19d1205 9868vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9869{
c19d1205
ZW
9870 if (inst.operands[0].writeback)
9871 inst.instruction |= WRITE_BACK;
9872 else
9873 constraint (ldstm_type != VFP_LDSTMIA,
9874 _("this addressing mode requires base-register writeback"));
9875 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9876 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 9877 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
9878}
9879
9880static void
c19d1205 9881vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9882{
c19d1205 9883 int count;
e16bb312 9884
c19d1205
ZW
9885 if (inst.operands[0].writeback)
9886 inst.instruction |= WRITE_BACK;
9887 else
9888 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9889 _("this addressing mode requires base-register writeback"));
e16bb312 9890
c19d1205 9891 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9892 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 9893
c19d1205
ZW
9894 count = inst.operands[1].imm << 1;
9895 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9896 count += 1;
e16bb312 9897
c19d1205 9898 inst.instruction |= count;
e16bb312
NC
9899}
9900
9901static void
c19d1205 9902do_vfp_sp_ldstmia (void)
e16bb312 9903{
c19d1205 9904 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9905}
9906
9907static void
c19d1205 9908do_vfp_sp_ldstmdb (void)
e16bb312 9909{
c19d1205 9910 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9911}
9912
9913static void
c19d1205 9914do_vfp_dp_ldstmia (void)
e16bb312 9915{
c19d1205 9916 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9917}
9918
9919static void
c19d1205 9920do_vfp_dp_ldstmdb (void)
e16bb312 9921{
c19d1205 9922 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9923}
9924
9925static void
c19d1205 9926do_vfp_xp_ldstmia (void)
e16bb312 9927{
c19d1205
ZW
9928 vfp_dp_ldstm (VFP_LDSTMIAX);
9929}
e16bb312 9930
c19d1205
ZW
9931static void
9932do_vfp_xp_ldstmdb (void)
9933{
9934 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 9935}
5287ad62
JB
9936
9937static void
9938do_vfp_dp_rd_rm (void)
9939{
9940 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9941 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9942}
9943
9944static void
9945do_vfp_dp_rn_rd (void)
9946{
9947 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9948 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9949}
9950
9951static void
9952do_vfp_dp_rd_rn (void)
9953{
9954 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9955 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9956}
9957
9958static void
9959do_vfp_dp_rd_rn_rm (void)
9960{
9961 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9962 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9963 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9964}
9965
9966static void
9967do_vfp_dp_rd (void)
9968{
9969 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9970}
9971
9972static void
9973do_vfp_dp_rm_rd_rn (void)
9974{
9975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9976 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9977 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9978}
9979
9980/* VFPv3 instructions. */
9981static void
9982do_vfp_sp_const (void)
9983{
9984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
9985 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9986 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9987}
9988
9989static void
9990do_vfp_dp_const (void)
9991{
9992 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9993 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9994 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9995}
9996
9997static void
9998vfp_conv (int srcsize)
9999{
5f1af56b
MGD
10000 int immbits = srcsize - inst.operands[1].imm;
10001
fa94de6b
RM
10002 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10003 {
5f1af56b 10004 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10005 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10006 inst.error = _("immediate value out of range, expected range [0, 16]");
10007 return;
10008 }
fa94de6b 10009 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10010 {
10011 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10012 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10013 inst.error = _("immediate value out of range, expected range [1, 32]");
10014 return;
10015 }
10016
5287ad62
JB
10017 inst.instruction |= (immbits & 1) << 5;
10018 inst.instruction |= (immbits >> 1);
10019}
10020
10021static void
10022do_vfp_sp_conv_16 (void)
10023{
10024 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10025 vfp_conv (16);
10026}
10027
10028static void
10029do_vfp_dp_conv_16 (void)
10030{
10031 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10032 vfp_conv (16);
10033}
10034
10035static void
10036do_vfp_sp_conv_32 (void)
10037{
10038 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10039 vfp_conv (32);
10040}
10041
10042static void
10043do_vfp_dp_conv_32 (void)
10044{
10045 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10046 vfp_conv (32);
10047}
c19d1205
ZW
10048\f
10049/* FPA instructions. Also in a logical order. */
e16bb312 10050
c19d1205
ZW
10051static void
10052do_fpa_cmp (void)
10053{
10054 inst.instruction |= inst.operands[0].reg << 16;
10055 inst.instruction |= inst.operands[1].reg;
10056}
b99bd4ef
NC
10057
10058static void
c19d1205 10059do_fpa_ldmstm (void)
b99bd4ef 10060{
c19d1205
ZW
10061 inst.instruction |= inst.operands[0].reg << 12;
10062 switch (inst.operands[1].imm)
10063 {
10064 case 1: inst.instruction |= CP_T_X; break;
10065 case 2: inst.instruction |= CP_T_Y; break;
10066 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10067 case 4: break;
10068 default: abort ();
10069 }
b99bd4ef 10070
c19d1205
ZW
10071 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10072 {
10073 /* The instruction specified "ea" or "fd", so we can only accept
10074 [Rn]{!}. The instruction does not really support stacking or
10075 unstacking, so we have to emulate these by setting appropriate
10076 bits and offsets. */
e2b0ab59
AV
10077 constraint (inst.relocs[0].exp.X_op != O_constant
10078 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10079 _("this instruction does not support indexing"));
b99bd4ef 10080
c19d1205 10081 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10082 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10083
c19d1205 10084 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10085 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10086
c19d1205
ZW
10087 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10088 {
10089 inst.operands[2].preind = 0;
10090 inst.operands[2].postind = 1;
10091 }
10092 }
b99bd4ef 10093
c19d1205 10094 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10095}
c19d1205
ZW
10096\f
10097/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10098
c19d1205
ZW
10099static void
10100do_iwmmxt_tandorc (void)
10101{
10102 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10103}
b99bd4ef 10104
c19d1205
ZW
10105static void
10106do_iwmmxt_textrc (void)
10107{
10108 inst.instruction |= inst.operands[0].reg << 12;
10109 inst.instruction |= inst.operands[1].imm;
10110}
b99bd4ef
NC
10111
10112static void
c19d1205 10113do_iwmmxt_textrm (void)
b99bd4ef 10114{
c19d1205
ZW
10115 inst.instruction |= inst.operands[0].reg << 12;
10116 inst.instruction |= inst.operands[1].reg << 16;
10117 inst.instruction |= inst.operands[2].imm;
10118}
b99bd4ef 10119
c19d1205
ZW
10120static void
10121do_iwmmxt_tinsr (void)
10122{
10123 inst.instruction |= inst.operands[0].reg << 16;
10124 inst.instruction |= inst.operands[1].reg << 12;
10125 inst.instruction |= inst.operands[2].imm;
10126}
b99bd4ef 10127
c19d1205
ZW
10128static void
10129do_iwmmxt_tmia (void)
10130{
10131 inst.instruction |= inst.operands[0].reg << 5;
10132 inst.instruction |= inst.operands[1].reg;
10133 inst.instruction |= inst.operands[2].reg << 12;
10134}
b99bd4ef 10135
c19d1205
ZW
10136static void
10137do_iwmmxt_waligni (void)
10138{
10139 inst.instruction |= inst.operands[0].reg << 12;
10140 inst.instruction |= inst.operands[1].reg << 16;
10141 inst.instruction |= inst.operands[2].reg;
10142 inst.instruction |= inst.operands[3].imm << 20;
10143}
b99bd4ef 10144
2d447fca
JM
10145static void
10146do_iwmmxt_wmerge (void)
10147{
10148 inst.instruction |= inst.operands[0].reg << 12;
10149 inst.instruction |= inst.operands[1].reg << 16;
10150 inst.instruction |= inst.operands[2].reg;
10151 inst.instruction |= inst.operands[3].imm << 21;
10152}
10153
c19d1205
ZW
10154static void
10155do_iwmmxt_wmov (void)
10156{
10157 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10158 inst.instruction |= inst.operands[0].reg << 12;
10159 inst.instruction |= inst.operands[1].reg << 16;
10160 inst.instruction |= inst.operands[1].reg;
10161}
b99bd4ef 10162
c19d1205
ZW
10163static void
10164do_iwmmxt_wldstbh (void)
10165{
8f06b2d8 10166 int reloc;
c19d1205 10167 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10168 if (thumb_mode)
10169 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10170 else
10171 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10172 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10173}
10174
c19d1205
ZW
10175static void
10176do_iwmmxt_wldstw (void)
10177{
10178 /* RIWR_RIWC clears .isreg for a control register. */
10179 if (!inst.operands[0].isreg)
10180 {
10181 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10182 inst.instruction |= 0xf0000000;
10183 }
b99bd4ef 10184
c19d1205
ZW
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 encode_arm_cp_address (1, TRUE, TRUE, 0);
10187}
b99bd4ef
NC
10188
10189static void
c19d1205 10190do_iwmmxt_wldstd (void)
b99bd4ef 10191{
c19d1205 10192 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10193 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10194 && inst.operands[1].immisreg)
10195 {
10196 inst.instruction &= ~0x1a000ff;
eff0bc54 10197 inst.instruction |= (0xfU << 28);
2d447fca
JM
10198 if (inst.operands[1].preind)
10199 inst.instruction |= PRE_INDEX;
10200 if (!inst.operands[1].negative)
10201 inst.instruction |= INDEX_UP;
10202 if (inst.operands[1].writeback)
10203 inst.instruction |= WRITE_BACK;
10204 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10205 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10206 inst.instruction |= inst.operands[1].imm;
10207 }
10208 else
10209 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10210}
b99bd4ef 10211
c19d1205
ZW
10212static void
10213do_iwmmxt_wshufh (void)
10214{
10215 inst.instruction |= inst.operands[0].reg << 12;
10216 inst.instruction |= inst.operands[1].reg << 16;
10217 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10218 inst.instruction |= (inst.operands[2].imm & 0x0f);
10219}
b99bd4ef 10220
c19d1205
ZW
10221static void
10222do_iwmmxt_wzero (void)
10223{
10224 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10225 inst.instruction |= inst.operands[0].reg;
10226 inst.instruction |= inst.operands[0].reg << 12;
10227 inst.instruction |= inst.operands[0].reg << 16;
10228}
2d447fca
JM
10229
10230static void
10231do_iwmmxt_wrwrwr_or_imm5 (void)
10232{
10233 if (inst.operands[2].isreg)
10234 do_rd_rn_rm ();
10235 else {
10236 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10237 _("immediate operand requires iWMMXt2"));
10238 do_rd_rn ();
10239 if (inst.operands[2].imm == 0)
10240 {
10241 switch ((inst.instruction >> 20) & 0xf)
10242 {
10243 case 4:
10244 case 5:
10245 case 6:
5f4273c7 10246 case 7:
2d447fca
JM
10247 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10248 inst.operands[2].imm = 16;
10249 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10250 break;
10251 case 8:
10252 case 9:
10253 case 10:
10254 case 11:
10255 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10256 inst.operands[2].imm = 32;
10257 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10258 break;
10259 case 12:
10260 case 13:
10261 case 14:
10262 case 15:
10263 {
10264 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10265 unsigned long wrn;
10266 wrn = (inst.instruction >> 16) & 0xf;
10267 inst.instruction &= 0xff0fff0f;
10268 inst.instruction |= wrn;
10269 /* Bail out here; the instruction is now assembled. */
10270 return;
10271 }
10272 }
10273 }
10274 /* Map 32 -> 0, etc. */
10275 inst.operands[2].imm &= 0x1f;
eff0bc54 10276 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10277 }
10278}
c19d1205
ZW
10279\f
10280/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10281 operations first, then control, shift, and load/store. */
b99bd4ef 10282
c19d1205 10283/* Insns like "foo X,Y,Z". */
b99bd4ef 10284
c19d1205
ZW
10285static void
10286do_mav_triple (void)
10287{
10288 inst.instruction |= inst.operands[0].reg << 16;
10289 inst.instruction |= inst.operands[1].reg;
10290 inst.instruction |= inst.operands[2].reg << 12;
10291}
b99bd4ef 10292
c19d1205
ZW
10293/* Insns like "foo W,X,Y,Z".
10294 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10295
c19d1205
ZW
10296static void
10297do_mav_quad (void)
10298{
10299 inst.instruction |= inst.operands[0].reg << 5;
10300 inst.instruction |= inst.operands[1].reg << 12;
10301 inst.instruction |= inst.operands[2].reg << 16;
10302 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10303}
10304
c19d1205
ZW
10305/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10306static void
10307do_mav_dspsc (void)
a737bd4d 10308{
c19d1205
ZW
10309 inst.instruction |= inst.operands[1].reg << 12;
10310}
a737bd4d 10311
c19d1205
ZW
10312/* Maverick shift immediate instructions.
10313 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10314 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10315
c19d1205
ZW
10316static void
10317do_mav_shift (void)
10318{
10319 int imm = inst.operands[2].imm;
a737bd4d 10320
c19d1205
ZW
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10323
c19d1205
ZW
10324 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10325 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10326 Bit 4 should be 0. */
10327 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10328
c19d1205
ZW
10329 inst.instruction |= imm;
10330}
10331\f
10332/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10333
c19d1205
ZW
10334/* Xscale multiply-accumulate (argument parse)
10335 MIAcc acc0,Rm,Rs
10336 MIAPHcc acc0,Rm,Rs
10337 MIAxycc acc0,Rm,Rs. */
a737bd4d 10338
c19d1205
ZW
10339static void
10340do_xsc_mia (void)
10341{
10342 inst.instruction |= inst.operands[1].reg;
10343 inst.instruction |= inst.operands[2].reg << 12;
10344}
a737bd4d 10345
c19d1205 10346/* Xscale move-accumulator-register (argument parse)
a737bd4d 10347
c19d1205 10348 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10349
c19d1205
ZW
10350static void
10351do_xsc_mar (void)
10352{
10353 inst.instruction |= inst.operands[1].reg << 12;
10354 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10355}
10356
c19d1205 10357/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10358
c19d1205 10359 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10360
10361static void
c19d1205 10362do_xsc_mra (void)
b99bd4ef 10363{
c19d1205
ZW
10364 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10365 inst.instruction |= inst.operands[0].reg << 12;
10366 inst.instruction |= inst.operands[1].reg << 16;
10367}
10368\f
10369/* Encoding functions relevant only to Thumb. */
b99bd4ef 10370
c19d1205
ZW
10371/* inst.operands[i] is a shifted-register operand; encode
10372 it into inst.instruction in the format used by Thumb32. */
10373
10374static void
10375encode_thumb32_shifted_operand (int i)
10376{
e2b0ab59 10377 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10378 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10379
9c3c69f2
PB
10380 constraint (inst.operands[i].immisreg,
10381 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10382 inst.instruction |= inst.operands[i].reg;
10383 if (shift == SHIFT_RRX)
10384 inst.instruction |= SHIFT_ROR << 4;
10385 else
b99bd4ef 10386 {
e2b0ab59 10387 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10388 _("expression too complex"));
10389
10390 constraint (value > 32
10391 || (value == 32 && (shift == SHIFT_LSL
10392 || shift == SHIFT_ROR)),
10393 _("shift expression is too large"));
10394
10395 if (value == 0)
10396 shift = SHIFT_LSL;
10397 else if (value == 32)
10398 value = 0;
10399
10400 inst.instruction |= shift << 4;
10401 inst.instruction |= (value & 0x1c) << 10;
10402 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10403 }
c19d1205 10404}
b99bd4ef 10405
b99bd4ef 10406
c19d1205
ZW
10407/* inst.operands[i] was set up by parse_address. Encode it into a
10408 Thumb32 format load or store instruction. Reject forms that cannot
10409 be used with such instructions. If is_t is true, reject forms that
10410 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10411 that cannot be used with a D instruction. If it is a store insn,
10412 reject PC in Rn. */
b99bd4ef 10413
c19d1205
ZW
10414static void
10415encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10416{
5be8be5d 10417 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10418
10419 constraint (!inst.operands[i].isreg,
53365c0d 10420 _("Instruction does not support =N addresses"));
b99bd4ef 10421
c19d1205
ZW
10422 inst.instruction |= inst.operands[i].reg << 16;
10423 if (inst.operands[i].immisreg)
b99bd4ef 10424 {
5be8be5d 10425 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
10426 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10427 constraint (inst.operands[i].negative,
10428 _("Thumb does not support negative register indexing"));
10429 constraint (inst.operands[i].postind,
10430 _("Thumb does not support register post-indexing"));
10431 constraint (inst.operands[i].writeback,
10432 _("Thumb does not support register indexing with writeback"));
10433 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10434 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 10435
f40d1643 10436 inst.instruction |= inst.operands[i].imm;
c19d1205 10437 if (inst.operands[i].shifted)
b99bd4ef 10438 {
e2b0ab59 10439 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 10440 _("expression too complex"));
e2b0ab59
AV
10441 constraint (inst.relocs[0].exp.X_add_number < 0
10442 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 10443 _("shift out of range"));
e2b0ab59 10444 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 10445 }
e2b0ab59 10446 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
10447 }
10448 else if (inst.operands[i].preind)
10449 {
5be8be5d 10450 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 10451 constraint (is_t && inst.operands[i].writeback,
c19d1205 10452 _("cannot use writeback with this instruction"));
4755303e
WN
10453 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10454 BAD_PC_ADDRESSING);
c19d1205
ZW
10455
10456 if (is_d)
10457 {
10458 inst.instruction |= 0x01000000;
10459 if (inst.operands[i].writeback)
10460 inst.instruction |= 0x00200000;
b99bd4ef 10461 }
c19d1205 10462 else
b99bd4ef 10463 {
c19d1205
ZW
10464 inst.instruction |= 0x00000c00;
10465 if (inst.operands[i].writeback)
10466 inst.instruction |= 0x00000100;
b99bd4ef 10467 }
e2b0ab59 10468 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 10469 }
c19d1205 10470 else if (inst.operands[i].postind)
b99bd4ef 10471 {
9c2799c2 10472 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
10473 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10474 constraint (is_t, _("cannot use post-indexing with this instruction"));
10475
10476 if (is_d)
10477 inst.instruction |= 0x00200000;
10478 else
10479 inst.instruction |= 0x00000900;
e2b0ab59 10480 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
10481 }
10482 else /* unindexed - only for coprocessor */
10483 inst.error = _("instruction does not accept unindexed addressing");
10484}
10485
10486/* Table of Thumb instructions which exist in both 16- and 32-bit
10487 encodings (the latter only in post-V6T2 cores). The index is the
10488 value used in the insns table below. When there is more than one
10489 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
10490 holds variant (1).
10491 Also contains several pseudo-instructions used during relaxation. */
c19d1205 10492#define T16_32_TAB \
21d799b5
NC
10493 X(_adc, 4140, eb400000), \
10494 X(_adcs, 4140, eb500000), \
10495 X(_add, 1c00, eb000000), \
10496 X(_adds, 1c00, eb100000), \
10497 X(_addi, 0000, f1000000), \
10498 X(_addis, 0000, f1100000), \
10499 X(_add_pc,000f, f20f0000), \
10500 X(_add_sp,000d, f10d0000), \
10501 X(_adr, 000f, f20f0000), \
10502 X(_and, 4000, ea000000), \
10503 X(_ands, 4000, ea100000), \
10504 X(_asr, 1000, fa40f000), \
10505 X(_asrs, 1000, fa50f000), \
10506 X(_b, e000, f000b000), \
10507 X(_bcond, d000, f0008000), \
4389b29a 10508 X(_bf, 0000, f040e001), \
f1c7f421 10509 X(_bfx, 0000, f060e001), \
65d1bc05 10510 X(_bfl, 0000, f000c001), \
f1c7f421 10511 X(_bflx, 0000, f070e001), \
21d799b5
NC
10512 X(_bic, 4380, ea200000), \
10513 X(_bics, 4380, ea300000), \
10514 X(_cmn, 42c0, eb100f00), \
10515 X(_cmp, 2800, ebb00f00), \
10516 X(_cpsie, b660, f3af8400), \
10517 X(_cpsid, b670, f3af8600), \
10518 X(_cpy, 4600, ea4f0000), \
10519 X(_dec_sp,80dd, f1ad0d00), \
10520 X(_eor, 4040, ea800000), \
10521 X(_eors, 4040, ea900000), \
10522 X(_inc_sp,00dd, f10d0d00), \
10523 X(_ldmia, c800, e8900000), \
10524 X(_ldr, 6800, f8500000), \
10525 X(_ldrb, 7800, f8100000), \
10526 X(_ldrh, 8800, f8300000), \
10527 X(_ldrsb, 5600, f9100000), \
10528 X(_ldrsh, 5e00, f9300000), \
10529 X(_ldr_pc,4800, f85f0000), \
10530 X(_ldr_pc2,4800, f85f0000), \
10531 X(_ldr_sp,9800, f85d0000), \
10532 X(_lsl, 0000, fa00f000), \
10533 X(_lsls, 0000, fa10f000), \
10534 X(_lsr, 0800, fa20f000), \
10535 X(_lsrs, 0800, fa30f000), \
10536 X(_mov, 2000, ea4f0000), \
10537 X(_movs, 2000, ea5f0000), \
10538 X(_mul, 4340, fb00f000), \
10539 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10540 X(_mvn, 43c0, ea6f0000), \
10541 X(_mvns, 43c0, ea7f0000), \
10542 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10543 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10544 X(_orr, 4300, ea400000), \
10545 X(_orrs, 4300, ea500000), \
10546 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10547 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10548 X(_rev, ba00, fa90f080), \
10549 X(_rev16, ba40, fa90f090), \
10550 X(_revsh, bac0, fa90f0b0), \
10551 X(_ror, 41c0, fa60f000), \
10552 X(_rors, 41c0, fa70f000), \
10553 X(_sbc, 4180, eb600000), \
10554 X(_sbcs, 4180, eb700000), \
10555 X(_stmia, c000, e8800000), \
10556 X(_str, 6000, f8400000), \
10557 X(_strb, 7000, f8000000), \
10558 X(_strh, 8000, f8200000), \
10559 X(_str_sp,9000, f84d0000), \
10560 X(_sub, 1e00, eba00000), \
10561 X(_subs, 1e00, ebb00000), \
10562 X(_subi, 8000, f1a00000), \
10563 X(_subis, 8000, f1b00000), \
10564 X(_sxtb, b240, fa4ff080), \
10565 X(_sxth, b200, fa0ff080), \
10566 X(_tst, 4200, ea100f00), \
10567 X(_uxtb, b2c0, fa5ff080), \
10568 X(_uxth, b280, fa1ff080), \
10569 X(_nop, bf00, f3af8000), \
10570 X(_yield, bf10, f3af8001), \
10571 X(_wfe, bf20, f3af8002), \
10572 X(_wfi, bf30, f3af8003), \
53c4b28b 10573 X(_sev, bf40, f3af8004), \
74db7efb
NC
10574 X(_sevl, bf50, f3af8005), \
10575 X(_udf, de00, f7f0a000)
c19d1205
ZW
10576
10577/* To catch errors in encoding functions, the codes are all offset by
10578 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10579 as 16-bit instructions. */
21d799b5 10580#define X(a,b,c) T_MNEM##a
c19d1205
ZW
10581enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10582#undef X
10583
10584#define X(a,b,c) 0x##b
10585static const unsigned short thumb_op16[] = { T16_32_TAB };
10586#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10587#undef X
10588
10589#define X(a,b,c) 0x##c
10590static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
10591#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10592#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
10593#undef X
10594#undef T16_32_TAB
10595
10596/* Thumb instruction encoders, in alphabetical order. */
10597
92e90b6e 10598/* ADDW or SUBW. */
c921be7d 10599
92e90b6e
PB
10600static void
10601do_t_add_sub_w (void)
10602{
10603 int Rd, Rn;
10604
10605 Rd = inst.operands[0].reg;
10606 Rn = inst.operands[1].reg;
10607
539d4391
NC
10608 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10609 is the SP-{plus,minus}-immediate form of the instruction. */
10610 if (Rn == REG_SP)
10611 constraint (Rd == REG_PC, BAD_PC);
10612 else
10613 reject_bad_reg (Rd);
fdfde340 10614
92e90b6e 10615 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 10616 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
10617}
10618
c19d1205 10619/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 10620 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
10621
10622static void
10623do_t_add_sub (void)
10624{
10625 int Rd, Rs, Rn;
10626
10627 Rd = inst.operands[0].reg;
10628 Rs = (inst.operands[1].present
10629 ? inst.operands[1].reg /* Rd, Rs, foo */
10630 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10631
e07e6e58
NC
10632 if (Rd == REG_PC)
10633 set_it_insn_type_last ();
10634
c19d1205
ZW
10635 if (unified_syntax)
10636 {
0110f2b8
PB
10637 bfd_boolean flags;
10638 bfd_boolean narrow;
10639 int opcode;
10640
10641 flags = (inst.instruction == T_MNEM_adds
10642 || inst.instruction == T_MNEM_subs);
10643 if (flags)
e07e6e58 10644 narrow = !in_it_block ();
0110f2b8 10645 else
e07e6e58 10646 narrow = in_it_block ();
c19d1205 10647 if (!inst.operands[2].isreg)
b99bd4ef 10648 {
16805f35
PB
10649 int add;
10650
5c8ed6a4
JW
10651 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10652 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 10653
16805f35
PB
10654 add = (inst.instruction == T_MNEM_add
10655 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
10656 opcode = 0;
10657 if (inst.size_req != 4)
10658 {
0110f2b8 10659 /* Attempt to use a narrow opcode, with relaxation if
477330fc 10660 appropriate. */
0110f2b8
PB
10661 if (Rd == REG_SP && Rs == REG_SP && !flags)
10662 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10663 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10664 opcode = T_MNEM_add_sp;
10665 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10666 opcode = T_MNEM_add_pc;
10667 else if (Rd <= 7 && Rs <= 7 && narrow)
10668 {
10669 if (flags)
10670 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10671 else
10672 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10673 }
10674 if (opcode)
10675 {
10676 inst.instruction = THUMB_OP16(opcode);
10677 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
10678 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10679 || (inst.relocs[0].type
10680 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
10681 {
10682 if (inst.size_req == 2)
e2b0ab59 10683 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
10684 else
10685 inst.relax = opcode;
10686 }
0110f2b8
PB
10687 }
10688 else
10689 constraint (inst.size_req == 2, BAD_HIREG);
10690 }
10691 if (inst.size_req == 4
10692 || (inst.size_req != 2 && !opcode))
10693 {
e2b0ab59
AV
10694 constraint ((inst.relocs[0].type
10695 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
10696 && (inst.relocs[0].type
10697 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 10698 THUMB1_RELOC_ONLY);
efd81785
PB
10699 if (Rd == REG_PC)
10700 {
fdfde340 10701 constraint (add, BAD_PC);
efd81785
PB
10702 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10703 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 10704 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 10705 _("expression too complex"));
e2b0ab59
AV
10706 constraint (inst.relocs[0].exp.X_add_number < 0
10707 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
10708 _("immediate value out of range"));
10709 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
10710 | inst.relocs[0].exp.X_add_number;
10711 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
10712 return;
10713 }
10714 else if (Rs == REG_PC)
16805f35
PB
10715 {
10716 /* Always use addw/subw. */
10717 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 10718 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
10719 }
10720 else
10721 {
10722 inst.instruction = THUMB_OP32 (inst.instruction);
10723 inst.instruction = (inst.instruction & 0xe1ffffff)
10724 | 0x10000000;
10725 if (flags)
e2b0ab59 10726 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 10727 else
e2b0ab59 10728 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 10729 }
dc4503c6
PB
10730 inst.instruction |= Rd << 8;
10731 inst.instruction |= Rs << 16;
0110f2b8 10732 }
b99bd4ef 10733 }
c19d1205
ZW
10734 else
10735 {
e2b0ab59 10736 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
10737 unsigned int shift = inst.operands[2].shift_kind;
10738
c19d1205
ZW
10739 Rn = inst.operands[2].reg;
10740 /* See if we can do this with a 16-bit instruction. */
10741 if (!inst.operands[2].shifted && inst.size_req != 4)
10742 {
e27ec89e
PB
10743 if (Rd > 7 || Rs > 7 || Rn > 7)
10744 narrow = FALSE;
10745
10746 if (narrow)
c19d1205 10747 {
e27ec89e
PB
10748 inst.instruction = ((inst.instruction == T_MNEM_adds
10749 || inst.instruction == T_MNEM_add)
c19d1205
ZW
10750 ? T_OPCODE_ADD_R3
10751 : T_OPCODE_SUB_R3);
10752 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10753 return;
10754 }
b99bd4ef 10755
7e806470 10756 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 10757 {
7e806470
PB
10758 /* Thumb-1 cores (except v6-M) require at least one high
10759 register in a narrow non flag setting add. */
10760 if (Rd > 7 || Rn > 7
10761 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10762 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 10763 {
7e806470
PB
10764 if (Rd == Rn)
10765 {
10766 Rn = Rs;
10767 Rs = Rd;
10768 }
c19d1205
ZW
10769 inst.instruction = T_OPCODE_ADD_HI;
10770 inst.instruction |= (Rd & 8) << 4;
10771 inst.instruction |= (Rd & 7);
10772 inst.instruction |= Rn << 3;
10773 return;
10774 }
c19d1205
ZW
10775 }
10776 }
c921be7d 10777
fdfde340 10778 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
10779 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10780 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
10781 constraint (Rs == REG_PC, BAD_PC);
10782 reject_bad_reg (Rn);
10783
c19d1205
ZW
10784 /* If we get here, it can't be done in 16 bits. */
10785 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10786 _("shift must be constant"));
10787 inst.instruction = THUMB_OP32 (inst.instruction);
10788 inst.instruction |= Rd << 8;
10789 inst.instruction |= Rs << 16;
5f4cb198
NC
10790 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10791 _("shift value over 3 not allowed in thumb mode"));
10792 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10793 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
10794 encode_thumb32_shifted_operand (2);
10795 }
10796 }
10797 else
10798 {
10799 constraint (inst.instruction == T_MNEM_adds
10800 || inst.instruction == T_MNEM_subs,
10801 BAD_THUMB32);
b99bd4ef 10802
c19d1205 10803 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 10804 {
c19d1205
ZW
10805 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10806 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10807 BAD_HIREG);
10808
10809 inst.instruction = (inst.instruction == T_MNEM_add
10810 ? 0x0000 : 0x8000);
10811 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 10812 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
10813 return;
10814 }
10815
c19d1205
ZW
10816 Rn = inst.operands[2].reg;
10817 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 10818
c19d1205
ZW
10819 /* We now have Rd, Rs, and Rn set to registers. */
10820 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 10821 {
c19d1205
ZW
10822 /* Can't do this for SUB. */
10823 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10824 inst.instruction = T_OPCODE_ADD_HI;
10825 inst.instruction |= (Rd & 8) << 4;
10826 inst.instruction |= (Rd & 7);
10827 if (Rs == Rd)
10828 inst.instruction |= Rn << 3;
10829 else if (Rn == Rd)
10830 inst.instruction |= Rs << 3;
10831 else
10832 constraint (1, _("dest must overlap one source register"));
10833 }
10834 else
10835 {
10836 inst.instruction = (inst.instruction == T_MNEM_add
10837 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10838 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 10839 }
b99bd4ef 10840 }
b99bd4ef
NC
10841}
10842
c19d1205
ZW
10843static void
10844do_t_adr (void)
10845{
fdfde340
JM
10846 unsigned Rd;
10847
10848 Rd = inst.operands[0].reg;
10849 reject_bad_reg (Rd);
10850
10851 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
10852 {
10853 /* Defer to section relaxation. */
10854 inst.relax = inst.instruction;
10855 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10856 inst.instruction |= Rd << 4;
0110f2b8
PB
10857 }
10858 else if (unified_syntax && inst.size_req != 2)
e9f89963 10859 {
0110f2b8 10860 /* Generate a 32-bit opcode. */
e9f89963 10861 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10862 inst.instruction |= Rd << 8;
e2b0ab59
AV
10863 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
10864 inst.relocs[0].pc_rel = 1;
e9f89963
PB
10865 }
10866 else
10867 {
0110f2b8 10868 /* Generate a 16-bit opcode. */
e9f89963 10869 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
10870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10871 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
10872 inst.relocs[0].pc_rel = 1;
fdfde340 10873 inst.instruction |= Rd << 4;
e9f89963 10874 }
52a86f84 10875
e2b0ab59
AV
10876 if (inst.relocs[0].exp.X_op == O_symbol
10877 && inst.relocs[0].exp.X_add_symbol != NULL
10878 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
10879 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
10880 inst.relocs[0].exp.X_add_number += 1;
c19d1205 10881}
b99bd4ef 10882
c19d1205
ZW
10883/* Arithmetic instructions for which there is just one 16-bit
10884 instruction encoding, and it allows only two low registers.
10885 For maximal compatibility with ARM syntax, we allow three register
10886 operands even when Thumb-32 instructions are not available, as long
10887 as the first two are identical. For instance, both "sbc r0,r1" and
10888 "sbc r0,r0,r1" are allowed. */
b99bd4ef 10889static void
c19d1205 10890do_t_arit3 (void)
b99bd4ef 10891{
c19d1205 10892 int Rd, Rs, Rn;
b99bd4ef 10893
c19d1205
ZW
10894 Rd = inst.operands[0].reg;
10895 Rs = (inst.operands[1].present
10896 ? inst.operands[1].reg /* Rd, Rs, foo */
10897 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10898 Rn = inst.operands[2].reg;
b99bd4ef 10899
fdfde340
JM
10900 reject_bad_reg (Rd);
10901 reject_bad_reg (Rs);
10902 if (inst.operands[2].isreg)
10903 reject_bad_reg (Rn);
10904
c19d1205 10905 if (unified_syntax)
b99bd4ef 10906 {
c19d1205
ZW
10907 if (!inst.operands[2].isreg)
10908 {
10909 /* For an immediate, we always generate a 32-bit opcode;
10910 section relaxation will shrink it later if possible. */
10911 inst.instruction = THUMB_OP32 (inst.instruction);
10912 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10913 inst.instruction |= Rd << 8;
10914 inst.instruction |= Rs << 16;
e2b0ab59 10915 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
10916 }
10917 else
10918 {
e27ec89e
PB
10919 bfd_boolean narrow;
10920
c19d1205 10921 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10922 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10923 narrow = !in_it_block ();
e27ec89e 10924 else
e07e6e58 10925 narrow = in_it_block ();
e27ec89e
PB
10926
10927 if (Rd > 7 || Rn > 7 || Rs > 7)
10928 narrow = FALSE;
10929 if (inst.operands[2].shifted)
10930 narrow = FALSE;
10931 if (inst.size_req == 4)
10932 narrow = FALSE;
10933
10934 if (narrow
c19d1205
ZW
10935 && Rd == Rs)
10936 {
10937 inst.instruction = THUMB_OP16 (inst.instruction);
10938 inst.instruction |= Rd;
10939 inst.instruction |= Rn << 3;
10940 return;
10941 }
b99bd4ef 10942
c19d1205
ZW
10943 /* If we get here, it can't be done in 16 bits. */
10944 constraint (inst.operands[2].shifted
10945 && inst.operands[2].immisreg,
10946 _("shift must be constant"));
10947 inst.instruction = THUMB_OP32 (inst.instruction);
10948 inst.instruction |= Rd << 8;
10949 inst.instruction |= Rs << 16;
10950 encode_thumb32_shifted_operand (2);
10951 }
a737bd4d 10952 }
c19d1205 10953 else
b99bd4ef 10954 {
c19d1205
ZW
10955 /* On its face this is a lie - the instruction does set the
10956 flags. However, the only supported mnemonic in this mode
10957 says it doesn't. */
10958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10959
c19d1205
ZW
10960 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10961 _("unshifted register required"));
10962 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10963 constraint (Rd != Rs,
10964 _("dest and source1 must be the same register"));
a737bd4d 10965
c19d1205
ZW
10966 inst.instruction = THUMB_OP16 (inst.instruction);
10967 inst.instruction |= Rd;
10968 inst.instruction |= Rn << 3;
b99bd4ef 10969 }
a737bd4d 10970}
b99bd4ef 10971
c19d1205
ZW
10972/* Similarly, but for instructions where the arithmetic operation is
10973 commutative, so we can allow either of them to be different from
10974 the destination operand in a 16-bit instruction. For instance, all
10975 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10976 accepted. */
10977static void
10978do_t_arit3c (void)
a737bd4d 10979{
c19d1205 10980 int Rd, Rs, Rn;
b99bd4ef 10981
c19d1205
ZW
10982 Rd = inst.operands[0].reg;
10983 Rs = (inst.operands[1].present
10984 ? inst.operands[1].reg /* Rd, Rs, foo */
10985 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10986 Rn = inst.operands[2].reg;
c921be7d 10987
fdfde340
JM
10988 reject_bad_reg (Rd);
10989 reject_bad_reg (Rs);
10990 if (inst.operands[2].isreg)
10991 reject_bad_reg (Rn);
a737bd4d 10992
c19d1205 10993 if (unified_syntax)
a737bd4d 10994 {
c19d1205 10995 if (!inst.operands[2].isreg)
b99bd4ef 10996 {
c19d1205
ZW
10997 /* For an immediate, we always generate a 32-bit opcode;
10998 section relaxation will shrink it later if possible. */
10999 inst.instruction = THUMB_OP32 (inst.instruction);
11000 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11001 inst.instruction |= Rd << 8;
11002 inst.instruction |= Rs << 16;
e2b0ab59 11003 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11004 }
c19d1205 11005 else
a737bd4d 11006 {
e27ec89e
PB
11007 bfd_boolean narrow;
11008
c19d1205 11009 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11010 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11011 narrow = !in_it_block ();
e27ec89e 11012 else
e07e6e58 11013 narrow = in_it_block ();
e27ec89e
PB
11014
11015 if (Rd > 7 || Rn > 7 || Rs > 7)
11016 narrow = FALSE;
11017 if (inst.operands[2].shifted)
11018 narrow = FALSE;
11019 if (inst.size_req == 4)
11020 narrow = FALSE;
11021
11022 if (narrow)
a737bd4d 11023 {
c19d1205 11024 if (Rd == Rs)
a737bd4d 11025 {
c19d1205
ZW
11026 inst.instruction = THUMB_OP16 (inst.instruction);
11027 inst.instruction |= Rd;
11028 inst.instruction |= Rn << 3;
11029 return;
a737bd4d 11030 }
c19d1205 11031 if (Rd == Rn)
a737bd4d 11032 {
c19d1205
ZW
11033 inst.instruction = THUMB_OP16 (inst.instruction);
11034 inst.instruction |= Rd;
11035 inst.instruction |= Rs << 3;
11036 return;
a737bd4d
NC
11037 }
11038 }
c19d1205
ZW
11039
11040 /* If we get here, it can't be done in 16 bits. */
11041 constraint (inst.operands[2].shifted
11042 && inst.operands[2].immisreg,
11043 _("shift must be constant"));
11044 inst.instruction = THUMB_OP32 (inst.instruction);
11045 inst.instruction |= Rd << 8;
11046 inst.instruction |= Rs << 16;
11047 encode_thumb32_shifted_operand (2);
a737bd4d 11048 }
b99bd4ef 11049 }
c19d1205
ZW
11050 else
11051 {
11052 /* On its face this is a lie - the instruction does set the
11053 flags. However, the only supported mnemonic in this mode
11054 says it doesn't. */
11055 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11056
c19d1205
ZW
11057 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11058 _("unshifted register required"));
11059 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11060
11061 inst.instruction = THUMB_OP16 (inst.instruction);
11062 inst.instruction |= Rd;
11063
11064 if (Rd == Rs)
11065 inst.instruction |= Rn << 3;
11066 else if (Rd == Rn)
11067 inst.instruction |= Rs << 3;
11068 else
11069 constraint (1, _("dest must overlap one source register"));
11070 }
a737bd4d
NC
11071}
11072
c19d1205
ZW
11073static void
11074do_t_bfc (void)
a737bd4d 11075{
fdfde340 11076 unsigned Rd;
c19d1205
ZW
11077 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11078 constraint (msb > 32, _("bit-field extends past end of register"));
11079 /* The instruction encoding stores the LSB and MSB,
11080 not the LSB and width. */
fdfde340
JM
11081 Rd = inst.operands[0].reg;
11082 reject_bad_reg (Rd);
11083 inst.instruction |= Rd << 8;
c19d1205
ZW
11084 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11085 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11086 inst.instruction |= msb - 1;
b99bd4ef
NC
11087}
11088
c19d1205
ZW
11089static void
11090do_t_bfi (void)
b99bd4ef 11091{
fdfde340 11092 int Rd, Rn;
c19d1205 11093 unsigned int msb;
b99bd4ef 11094
fdfde340
JM
11095 Rd = inst.operands[0].reg;
11096 reject_bad_reg (Rd);
11097
c19d1205
ZW
11098 /* #0 in second position is alternative syntax for bfc, which is
11099 the same instruction but with REG_PC in the Rm field. */
11100 if (!inst.operands[1].isreg)
fdfde340
JM
11101 Rn = REG_PC;
11102 else
11103 {
11104 Rn = inst.operands[1].reg;
11105 reject_bad_reg (Rn);
11106 }
b99bd4ef 11107
c19d1205
ZW
11108 msb = inst.operands[2].imm + inst.operands[3].imm;
11109 constraint (msb > 32, _("bit-field extends past end of register"));
11110 /* The instruction encoding stores the LSB and MSB,
11111 not the LSB and width. */
fdfde340
JM
11112 inst.instruction |= Rd << 8;
11113 inst.instruction |= Rn << 16;
c19d1205
ZW
11114 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11115 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11116 inst.instruction |= msb - 1;
b99bd4ef
NC
11117}
11118
c19d1205
ZW
11119static void
11120do_t_bfx (void)
b99bd4ef 11121{
fdfde340
JM
11122 unsigned Rd, Rn;
11123
11124 Rd = inst.operands[0].reg;
11125 Rn = inst.operands[1].reg;
11126
11127 reject_bad_reg (Rd);
11128 reject_bad_reg (Rn);
11129
c19d1205
ZW
11130 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11131 _("bit-field extends past end of register"));
fdfde340
JM
11132 inst.instruction |= Rd << 8;
11133 inst.instruction |= Rn << 16;
c19d1205
ZW
11134 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11135 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11136 inst.instruction |= inst.operands[3].imm - 1;
11137}
b99bd4ef 11138
c19d1205
ZW
11139/* ARM V5 Thumb BLX (argument parse)
11140 BLX <target_addr> which is BLX(1)
11141 BLX <Rm> which is BLX(2)
11142 Unfortunately, there are two different opcodes for this mnemonic.
11143 So, the insns[].value is not used, and the code here zaps values
11144 into inst.instruction.
b99bd4ef 11145
c19d1205
ZW
11146 ??? How to take advantage of the additional two bits of displacement
11147 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11148
c19d1205
ZW
11149static void
11150do_t_blx (void)
11151{
e07e6e58
NC
11152 set_it_insn_type_last ();
11153
c19d1205 11154 if (inst.operands[0].isreg)
fdfde340
JM
11155 {
11156 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11157 /* We have a register, so this is BLX(2). */
11158 inst.instruction |= inst.operands[0].reg << 3;
11159 }
b99bd4ef
NC
11160 else
11161 {
c19d1205 11162 /* No register. This must be BLX(1). */
2fc8bdac 11163 inst.instruction = 0xf000e800;
0855e32b 11164 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11165 }
11166}
11167
c19d1205
ZW
11168static void
11169do_t_branch (void)
b99bd4ef 11170{
0110f2b8 11171 int opcode;
dfa9f0d5 11172 int cond;
2fe88214 11173 bfd_reloc_code_real_type reloc;
dfa9f0d5 11174
e07e6e58
NC
11175 cond = inst.cond;
11176 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11177
11178 if (in_it_block ())
dfa9f0d5
PB
11179 {
11180 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11181 branches. */
dfa9f0d5 11182 cond = COND_ALWAYS;
dfa9f0d5
PB
11183 }
11184 else
11185 cond = inst.cond;
11186
11187 if (cond != COND_ALWAYS)
0110f2b8
PB
11188 opcode = T_MNEM_bcond;
11189 else
11190 opcode = inst.instruction;
11191
12d6b0b7
RS
11192 if (unified_syntax
11193 && (inst.size_req == 4
10960bfb
PB
11194 || (inst.size_req != 2
11195 && (inst.operands[0].hasreloc
e2b0ab59 11196 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11197 {
0110f2b8 11198 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11199 if (cond == COND_ALWAYS)
9ae92b05 11200 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11201 else
11202 {
ff8646ee
TP
11203 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11204 _("selected architecture does not support "
11205 "wide conditional branch instruction"));
11206
9c2799c2 11207 gas_assert (cond != 0xF);
dfa9f0d5 11208 inst.instruction |= cond << 22;
9ae92b05 11209 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11210 }
11211 }
b99bd4ef
NC
11212 else
11213 {
0110f2b8 11214 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11215 if (cond == COND_ALWAYS)
9ae92b05 11216 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11217 else
b99bd4ef 11218 {
dfa9f0d5 11219 inst.instruction |= cond << 8;
9ae92b05 11220 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11221 }
0110f2b8
PB
11222 /* Allow section relaxation. */
11223 if (unified_syntax && inst.size_req != 2)
11224 inst.relax = opcode;
b99bd4ef 11225 }
e2b0ab59
AV
11226 inst.relocs[0].type = reloc;
11227 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11228}
11229
8884b720 11230/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11231 between the two is the maximum immediate allowed - which is passed in
8884b720 11232 RANGE. */
b99bd4ef 11233static void
8884b720 11234do_t_bkpt_hlt1 (int range)
b99bd4ef 11235{
dfa9f0d5
PB
11236 constraint (inst.cond != COND_ALWAYS,
11237 _("instruction is always unconditional"));
c19d1205 11238 if (inst.operands[0].present)
b99bd4ef 11239 {
8884b720 11240 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11241 _("immediate value out of range"));
11242 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11243 }
8884b720
MGD
11244
11245 set_it_insn_type (NEUTRAL_IT_INSN);
11246}
11247
11248static void
11249do_t_hlt (void)
11250{
11251 do_t_bkpt_hlt1 (63);
11252}
11253
11254static void
11255do_t_bkpt (void)
11256{
11257 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11258}
11259
11260static void
c19d1205 11261do_t_branch23 (void)
b99bd4ef 11262{
e07e6e58 11263 set_it_insn_type_last ();
0855e32b 11264 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11265
0855e32b
NS
11266 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11267 this file. We used to simply ignore the PLT reloc type here --
11268 the branch encoding is now needed to deal with TLSCALL relocs.
11269 So if we see a PLT reloc now, put it back to how it used to be to
11270 keep the preexisting behaviour. */
e2b0ab59
AV
11271 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11272 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11273
4343666d 11274#if defined(OBJ_COFF)
c19d1205
ZW
11275 /* If the destination of the branch is a defined symbol which does not have
11276 the THUMB_FUNC attribute, then we must be calling a function which has
11277 the (interfacearm) attribute. We look for the Thumb entry point to that
11278 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11279 if ( inst.relocs[0].exp.X_op == O_symbol
11280 && inst.relocs[0].exp.X_add_symbol != NULL
11281 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11282 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11283 inst.relocs[0].exp.X_add_symbol
11284 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11285#endif
90e4755a
RE
11286}
11287
11288static void
c19d1205 11289do_t_bx (void)
90e4755a 11290{
e07e6e58 11291 set_it_insn_type_last ();
c19d1205
ZW
11292 inst.instruction |= inst.operands[0].reg << 3;
11293 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11294 should cause the alignment to be checked once it is known. This is
11295 because BX PC only works if the instruction is word aligned. */
11296}
90e4755a 11297
c19d1205
ZW
11298static void
11299do_t_bxj (void)
11300{
fdfde340 11301 int Rm;
90e4755a 11302
e07e6e58 11303 set_it_insn_type_last ();
fdfde340
JM
11304 Rm = inst.operands[0].reg;
11305 reject_bad_reg (Rm);
11306 inst.instruction |= Rm << 16;
90e4755a
RE
11307}
11308
11309static void
c19d1205 11310do_t_clz (void)
90e4755a 11311{
fdfde340
JM
11312 unsigned Rd;
11313 unsigned Rm;
11314
11315 Rd = inst.operands[0].reg;
11316 Rm = inst.operands[1].reg;
11317
11318 reject_bad_reg (Rd);
11319 reject_bad_reg (Rm);
11320
11321 inst.instruction |= Rd << 8;
11322 inst.instruction |= Rm << 16;
11323 inst.instruction |= Rm;
c19d1205 11324}
90e4755a 11325
91d8b670
JG
11326static void
11327do_t_csdb (void)
11328{
11329 set_it_insn_type (OUTSIDE_IT_INSN);
11330}
11331
dfa9f0d5
PB
11332static void
11333do_t_cps (void)
11334{
e07e6e58 11335 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
11336 inst.instruction |= inst.operands[0].imm;
11337}
11338
c19d1205
ZW
11339static void
11340do_t_cpsi (void)
11341{
e07e6e58 11342 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 11343 if (unified_syntax
62b3e311
PB
11344 && (inst.operands[1].present || inst.size_req == 4)
11345 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11346 {
c19d1205
ZW
11347 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11348 inst.instruction = 0xf3af8000;
11349 inst.instruction |= imod << 9;
11350 inst.instruction |= inst.operands[0].imm << 5;
11351 if (inst.operands[1].present)
11352 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11353 }
c19d1205 11354 else
90e4755a 11355 {
62b3e311
PB
11356 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11357 && (inst.operands[0].imm & 4),
11358 _("selected processor does not support 'A' form "
11359 "of this instruction"));
11360 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11361 _("Thumb does not support the 2-argument "
11362 "form of this instruction"));
11363 inst.instruction |= inst.operands[0].imm;
90e4755a 11364 }
90e4755a
RE
11365}
11366
c19d1205
ZW
11367/* THUMB CPY instruction (argument parse). */
11368
90e4755a 11369static void
c19d1205 11370do_t_cpy (void)
90e4755a 11371{
c19d1205 11372 if (inst.size_req == 4)
90e4755a 11373 {
c19d1205
ZW
11374 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11375 inst.instruction |= inst.operands[0].reg << 8;
11376 inst.instruction |= inst.operands[1].reg;
90e4755a 11377 }
c19d1205 11378 else
90e4755a 11379 {
c19d1205
ZW
11380 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11381 inst.instruction |= (inst.operands[0].reg & 0x7);
11382 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11383 }
90e4755a
RE
11384}
11385
90e4755a 11386static void
25fe350b 11387do_t_cbz (void)
90e4755a 11388{
e07e6e58 11389 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11390 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11391 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11392 inst.relocs[0].pc_rel = 1;
11393 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11394}
90e4755a 11395
62b3e311
PB
11396static void
11397do_t_dbg (void)
11398{
11399 inst.instruction |= inst.operands[0].imm;
11400}
11401
11402static void
11403do_t_div (void)
11404{
fdfde340
JM
11405 unsigned Rd, Rn, Rm;
11406
11407 Rd = inst.operands[0].reg;
11408 Rn = (inst.operands[1].present
11409 ? inst.operands[1].reg : Rd);
11410 Rm = inst.operands[2].reg;
11411
11412 reject_bad_reg (Rd);
11413 reject_bad_reg (Rn);
11414 reject_bad_reg (Rm);
11415
11416 inst.instruction |= Rd << 8;
11417 inst.instruction |= Rn << 16;
11418 inst.instruction |= Rm;
62b3e311
PB
11419}
11420
c19d1205
ZW
11421static void
11422do_t_hint (void)
11423{
11424 if (unified_syntax && inst.size_req == 4)
11425 inst.instruction = THUMB_OP32 (inst.instruction);
11426 else
11427 inst.instruction = THUMB_OP16 (inst.instruction);
11428}
90e4755a 11429
c19d1205
ZW
11430static void
11431do_t_it (void)
11432{
11433 unsigned int cond = inst.operands[0].imm;
e27ec89e 11434
e07e6e58
NC
11435 set_it_insn_type (IT_INSN);
11436 now_it.mask = (inst.instruction & 0xf) | 0x10;
11437 now_it.cc = cond;
5a01bb1d 11438 now_it.warn_deprecated = FALSE;
e27ec89e
PB
11439
11440 /* If the condition is a negative condition, invert the mask. */
c19d1205 11441 if ((cond & 0x1) == 0x0)
90e4755a 11442 {
c19d1205 11443 unsigned int mask = inst.instruction & 0x000f;
90e4755a 11444
c19d1205 11445 if ((mask & 0x7) == 0)
5a01bb1d
MGD
11446 {
11447 /* No conversion needed. */
11448 now_it.block_length = 1;
11449 }
c19d1205 11450 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
11451 {
11452 mask ^= 0x8;
11453 now_it.block_length = 2;
11454 }
e27ec89e 11455 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
11456 {
11457 mask ^= 0xC;
11458 now_it.block_length = 3;
11459 }
c19d1205 11460 else
5a01bb1d
MGD
11461 {
11462 mask ^= 0xE;
11463 now_it.block_length = 4;
11464 }
90e4755a 11465
e27ec89e
PB
11466 inst.instruction &= 0xfff0;
11467 inst.instruction |= mask;
c19d1205 11468 }
90e4755a 11469
c19d1205
ZW
11470 inst.instruction |= cond << 4;
11471}
90e4755a 11472
3c707909
PB
11473/* Helper function used for both push/pop and ldm/stm. */
11474static void
11475encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11476{
11477 bfd_boolean load;
11478
11479 load = (inst.instruction & (1 << 20)) != 0;
11480
11481 if (mask & (1 << 13))
11482 inst.error = _("SP not allowed in register list");
1e5b0379
NC
11483
11484 if ((mask & (1 << base)) != 0
11485 && writeback)
11486 inst.error = _("having the base register in the register list when "
11487 "using write back is UNPREDICTABLE");
11488
3c707909
PB
11489 if (load)
11490 {
e07e6e58 11491 if (mask & (1 << 15))
477330fc
RM
11492 {
11493 if (mask & (1 << 14))
11494 inst.error = _("LR and PC should not both be in register list");
11495 else
11496 set_it_insn_type_last ();
11497 }
3c707909
PB
11498 }
11499 else
11500 {
11501 if (mask & (1 << 15))
11502 inst.error = _("PC not allowed in register list");
3c707909
PB
11503 }
11504
11505 if ((mask & (mask - 1)) == 0)
11506 {
11507 /* Single register transfers implemented as str/ldr. */
11508 if (writeback)
11509 {
11510 if (inst.instruction & (1 << 23))
11511 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11512 else
11513 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11514 }
11515 else
11516 {
11517 if (inst.instruction & (1 << 23))
11518 inst.instruction = 0x00800000; /* ia -> [base] */
11519 else
11520 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11521 }
11522
11523 inst.instruction |= 0xf8400000;
11524 if (load)
11525 inst.instruction |= 0x00100000;
11526
5f4273c7 11527 mask = ffs (mask) - 1;
3c707909
PB
11528 mask <<= 12;
11529 }
11530 else if (writeback)
11531 inst.instruction |= WRITE_BACK;
11532
11533 inst.instruction |= mask;
11534 inst.instruction |= base << 16;
11535}
11536
c19d1205
ZW
11537static void
11538do_t_ldmstm (void)
11539{
11540 /* This really doesn't seem worth it. */
e2b0ab59 11541 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
11542 _("expression too complex"));
11543 constraint (inst.operands[1].writeback,
11544 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 11545
c19d1205
ZW
11546 if (unified_syntax)
11547 {
3c707909
PB
11548 bfd_boolean narrow;
11549 unsigned mask;
11550
11551 narrow = FALSE;
c19d1205
ZW
11552 /* See if we can use a 16-bit instruction. */
11553 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11554 && inst.size_req != 4
3c707909 11555 && !(inst.operands[1].imm & ~0xff))
90e4755a 11556 {
3c707909 11557 mask = 1 << inst.operands[0].reg;
90e4755a 11558
eab4f823 11559 if (inst.operands[0].reg <= 7)
90e4755a 11560 {
3c707909 11561 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
11562 ? inst.operands[0].writeback
11563 : (inst.operands[0].writeback
11564 == !(inst.operands[1].imm & mask)))
477330fc 11565 {
eab4f823
MGD
11566 if (inst.instruction == T_MNEM_stmia
11567 && (inst.operands[1].imm & mask)
11568 && (inst.operands[1].imm & (mask - 1)))
11569 as_warn (_("value stored for r%d is UNKNOWN"),
11570 inst.operands[0].reg);
3c707909 11571
eab4f823
MGD
11572 inst.instruction = THUMB_OP16 (inst.instruction);
11573 inst.instruction |= inst.operands[0].reg << 8;
11574 inst.instruction |= inst.operands[1].imm;
11575 narrow = TRUE;
11576 }
11577 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11578 {
11579 /* This means 1 register in reg list one of 3 situations:
11580 1. Instruction is stmia, but without writeback.
11581 2. lmdia without writeback, but with Rn not in
477330fc 11582 reglist.
eab4f823
MGD
11583 3. ldmia with writeback, but with Rn in reglist.
11584 Case 3 is UNPREDICTABLE behaviour, so we handle
11585 case 1 and 2 which can be converted into a 16-bit
11586 str or ldr. The SP cases are handled below. */
11587 unsigned long opcode;
11588 /* First, record an error for Case 3. */
11589 if (inst.operands[1].imm & mask
11590 && inst.operands[0].writeback)
fa94de6b 11591 inst.error =
eab4f823
MGD
11592 _("having the base register in the register list when "
11593 "using write back is UNPREDICTABLE");
fa94de6b
RM
11594
11595 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
11596 : T_MNEM_ldr);
11597 inst.instruction = THUMB_OP16 (opcode);
11598 inst.instruction |= inst.operands[0].reg << 3;
11599 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11600 narrow = TRUE;
11601 }
90e4755a 11602 }
eab4f823 11603 else if (inst.operands[0] .reg == REG_SP)
90e4755a 11604 {
eab4f823
MGD
11605 if (inst.operands[0].writeback)
11606 {
fa94de6b 11607 inst.instruction =
eab4f823 11608 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11609 ? T_MNEM_push : T_MNEM_pop);
eab4f823 11610 inst.instruction |= inst.operands[1].imm;
477330fc 11611 narrow = TRUE;
eab4f823
MGD
11612 }
11613 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11614 {
fa94de6b 11615 inst.instruction =
eab4f823 11616 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11617 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 11618 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 11619 narrow = TRUE;
eab4f823 11620 }
90e4755a 11621 }
3c707909
PB
11622 }
11623
11624 if (!narrow)
11625 {
c19d1205
ZW
11626 if (inst.instruction < 0xffff)
11627 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 11628
5f4273c7
NC
11629 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11630 inst.operands[0].writeback);
90e4755a
RE
11631 }
11632 }
c19d1205 11633 else
90e4755a 11634 {
c19d1205
ZW
11635 constraint (inst.operands[0].reg > 7
11636 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
11637 constraint (inst.instruction != T_MNEM_ldmia
11638 && inst.instruction != T_MNEM_stmia,
11639 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 11640 if (inst.instruction == T_MNEM_stmia)
f03698e6 11641 {
c19d1205
ZW
11642 if (!inst.operands[0].writeback)
11643 as_warn (_("this instruction will write back the base register"));
11644 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11645 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 11646 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 11647 inst.operands[0].reg);
f03698e6 11648 }
c19d1205 11649 else
90e4755a 11650 {
c19d1205
ZW
11651 if (!inst.operands[0].writeback
11652 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11653 as_warn (_("this instruction will write back the base register"));
11654 else if (inst.operands[0].writeback
11655 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11656 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
11657 }
11658
c19d1205
ZW
11659 inst.instruction = THUMB_OP16 (inst.instruction);
11660 inst.instruction |= inst.operands[0].reg << 8;
11661 inst.instruction |= inst.operands[1].imm;
11662 }
11663}
e28cd48c 11664
c19d1205
ZW
11665static void
11666do_t_ldrex (void)
11667{
11668 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11669 || inst.operands[1].postind || inst.operands[1].writeback
11670 || inst.operands[1].immisreg || inst.operands[1].shifted
11671 || inst.operands[1].negative,
01cfc07f 11672 BAD_ADDR_MODE);
e28cd48c 11673
5be8be5d
DG
11674 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11675
c19d1205
ZW
11676 inst.instruction |= inst.operands[0].reg << 12;
11677 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 11678 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 11679}
e28cd48c 11680
c19d1205
ZW
11681static void
11682do_t_ldrexd (void)
11683{
11684 if (!inst.operands[1].present)
1cac9012 11685 {
c19d1205
ZW
11686 constraint (inst.operands[0].reg == REG_LR,
11687 _("r14 not allowed as first register "
11688 "when second register is omitted"));
11689 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 11690 }
c19d1205
ZW
11691 constraint (inst.operands[0].reg == inst.operands[1].reg,
11692 BAD_OVERLAP);
b99bd4ef 11693
c19d1205
ZW
11694 inst.instruction |= inst.operands[0].reg << 12;
11695 inst.instruction |= inst.operands[1].reg << 8;
11696 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
11697}
11698
11699static void
c19d1205 11700do_t_ldst (void)
b99bd4ef 11701{
0110f2b8
PB
11702 unsigned long opcode;
11703 int Rn;
11704
e07e6e58
NC
11705 if (inst.operands[0].isreg
11706 && !inst.operands[0].preind
11707 && inst.operands[0].reg == REG_PC)
11708 set_it_insn_type_last ();
11709
0110f2b8 11710 opcode = inst.instruction;
c19d1205 11711 if (unified_syntax)
b99bd4ef 11712 {
53365c0d
PB
11713 if (!inst.operands[1].isreg)
11714 {
11715 if (opcode <= 0xffff)
11716 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 11717 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
11718 return;
11719 }
0110f2b8
PB
11720 if (inst.operands[1].isreg
11721 && !inst.operands[1].writeback
c19d1205
ZW
11722 && !inst.operands[1].shifted && !inst.operands[1].postind
11723 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
11724 && opcode <= 0xffff
11725 && inst.size_req != 4)
c19d1205 11726 {
0110f2b8
PB
11727 /* Insn may have a 16-bit form. */
11728 Rn = inst.operands[1].reg;
11729 if (inst.operands[1].immisreg)
11730 {
11731 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 11732 /* [Rn, Rik] */
0110f2b8
PB
11733 if (Rn <= 7 && inst.operands[1].imm <= 7)
11734 goto op16;
5be8be5d
DG
11735 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11736 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
11737 }
11738 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11739 && opcode != T_MNEM_ldrsb)
11740 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11741 || (Rn == REG_SP && opcode == T_MNEM_str))
11742 {
11743 /* [Rn, #const] */
11744 if (Rn > 7)
11745 {
11746 if (Rn == REG_PC)
11747 {
e2b0ab59 11748 if (inst.relocs[0].pc_rel)
0110f2b8
PB
11749 opcode = T_MNEM_ldr_pc2;
11750 else
11751 opcode = T_MNEM_ldr_pc;
11752 }
11753 else
11754 {
11755 if (opcode == T_MNEM_ldr)
11756 opcode = T_MNEM_ldr_sp;
11757 else
11758 opcode = T_MNEM_str_sp;
11759 }
11760 inst.instruction = inst.operands[0].reg << 8;
11761 }
11762 else
11763 {
11764 inst.instruction = inst.operands[0].reg;
11765 inst.instruction |= inst.operands[1].reg << 3;
11766 }
11767 inst.instruction |= THUMB_OP16 (opcode);
11768 if (inst.size_req == 2)
e2b0ab59 11769 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
11770 else
11771 inst.relax = opcode;
11772 return;
11773 }
c19d1205 11774 }
0110f2b8 11775 /* Definitely a 32-bit variant. */
5be8be5d 11776
8d67f500
NC
11777 /* Warning for Erratum 752419. */
11778 if (opcode == T_MNEM_ldr
11779 && inst.operands[0].reg == REG_SP
11780 && inst.operands[1].writeback == 1
11781 && !inst.operands[1].immisreg)
11782 {
11783 if (no_cpu_selected ()
11784 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
11785 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11786 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
11787 as_warn (_("This instruction may be unpredictable "
11788 "if executed on M-profile cores "
11789 "with interrupts enabled."));
11790 }
11791
5be8be5d 11792 /* Do some validations regarding addressing modes. */
1be5fd2e 11793 if (inst.operands[1].immisreg)
5be8be5d
DG
11794 reject_bad_reg (inst.operands[1].imm);
11795
1be5fd2e
NC
11796 constraint (inst.operands[1].writeback == 1
11797 && inst.operands[0].reg == inst.operands[1].reg,
11798 BAD_OVERLAP);
11799
0110f2b8 11800 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
11801 inst.instruction |= inst.operands[0].reg << 12;
11802 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 11803 check_ldr_r15_aligned ();
b99bd4ef
NC
11804 return;
11805 }
11806
c19d1205
ZW
11807 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11808
11809 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 11810 {
c19d1205
ZW
11811 /* Only [Rn,Rm] is acceptable. */
11812 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11813 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11814 || inst.operands[1].postind || inst.operands[1].shifted
11815 || inst.operands[1].negative,
11816 _("Thumb does not support this addressing mode"));
11817 inst.instruction = THUMB_OP16 (inst.instruction);
11818 goto op16;
b99bd4ef 11819 }
5f4273c7 11820
c19d1205
ZW
11821 inst.instruction = THUMB_OP16 (inst.instruction);
11822 if (!inst.operands[1].isreg)
8335d6aa 11823 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 11824 return;
b99bd4ef 11825
c19d1205
ZW
11826 constraint (!inst.operands[1].preind
11827 || inst.operands[1].shifted
11828 || inst.operands[1].writeback,
11829 _("Thumb does not support this addressing mode"));
11830 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 11831 {
c19d1205
ZW
11832 constraint (inst.instruction & 0x0600,
11833 _("byte or halfword not valid for base register"));
11834 constraint (inst.operands[1].reg == REG_PC
11835 && !(inst.instruction & THUMB_LOAD_BIT),
11836 _("r15 based store not allowed"));
11837 constraint (inst.operands[1].immisreg,
11838 _("invalid base register for register offset"));
b99bd4ef 11839
c19d1205
ZW
11840 if (inst.operands[1].reg == REG_PC)
11841 inst.instruction = T_OPCODE_LDR_PC;
11842 else if (inst.instruction & THUMB_LOAD_BIT)
11843 inst.instruction = T_OPCODE_LDR_SP;
11844 else
11845 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 11846
c19d1205 11847 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 11848 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
11849 return;
11850 }
90e4755a 11851
c19d1205
ZW
11852 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11853 if (!inst.operands[1].immisreg)
11854 {
11855 /* Immediate offset. */
11856 inst.instruction |= inst.operands[0].reg;
11857 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 11858 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
11859 return;
11860 }
90e4755a 11861
c19d1205
ZW
11862 /* Register offset. */
11863 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11864 constraint (inst.operands[1].negative,
11865 _("Thumb does not support this addressing mode"));
90e4755a 11866
c19d1205
ZW
11867 op16:
11868 switch (inst.instruction)
11869 {
11870 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11871 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11872 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11873 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11874 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11875 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11876 case 0x5600 /* ldrsb */:
11877 case 0x5e00 /* ldrsh */: break;
11878 default: abort ();
11879 }
90e4755a 11880
c19d1205
ZW
11881 inst.instruction |= inst.operands[0].reg;
11882 inst.instruction |= inst.operands[1].reg << 3;
11883 inst.instruction |= inst.operands[1].imm << 6;
11884}
90e4755a 11885
c19d1205
ZW
11886static void
11887do_t_ldstd (void)
11888{
11889 if (!inst.operands[1].present)
b99bd4ef 11890 {
c19d1205
ZW
11891 inst.operands[1].reg = inst.operands[0].reg + 1;
11892 constraint (inst.operands[0].reg == REG_LR,
11893 _("r14 not allowed here"));
bd340a04 11894 constraint (inst.operands[0].reg == REG_R12,
477330fc 11895 _("r12 not allowed here"));
b99bd4ef 11896 }
bd340a04
MGD
11897
11898 if (inst.operands[2].writeback
11899 && (inst.operands[0].reg == inst.operands[2].reg
11900 || inst.operands[1].reg == inst.operands[2].reg))
11901 as_warn (_("base register written back, and overlaps "
477330fc 11902 "one of transfer registers"));
bd340a04 11903
c19d1205
ZW
11904 inst.instruction |= inst.operands[0].reg << 12;
11905 inst.instruction |= inst.operands[1].reg << 8;
11906 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
11907}
11908
c19d1205
ZW
11909static void
11910do_t_ldstt (void)
11911{
11912 inst.instruction |= inst.operands[0].reg << 12;
11913 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11914}
a737bd4d 11915
b99bd4ef 11916static void
c19d1205 11917do_t_mla (void)
b99bd4ef 11918{
fdfde340 11919 unsigned Rd, Rn, Rm, Ra;
c921be7d 11920
fdfde340
JM
11921 Rd = inst.operands[0].reg;
11922 Rn = inst.operands[1].reg;
11923 Rm = inst.operands[2].reg;
11924 Ra = inst.operands[3].reg;
11925
11926 reject_bad_reg (Rd);
11927 reject_bad_reg (Rn);
11928 reject_bad_reg (Rm);
11929 reject_bad_reg (Ra);
11930
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rn << 16;
11933 inst.instruction |= Rm;
11934 inst.instruction |= Ra << 12;
c19d1205 11935}
b99bd4ef 11936
c19d1205
ZW
11937static void
11938do_t_mlal (void)
11939{
fdfde340
JM
11940 unsigned RdLo, RdHi, Rn, Rm;
11941
11942 RdLo = inst.operands[0].reg;
11943 RdHi = inst.operands[1].reg;
11944 Rn = inst.operands[2].reg;
11945 Rm = inst.operands[3].reg;
11946
11947 reject_bad_reg (RdLo);
11948 reject_bad_reg (RdHi);
11949 reject_bad_reg (Rn);
11950 reject_bad_reg (Rm);
11951
11952 inst.instruction |= RdLo << 12;
11953 inst.instruction |= RdHi << 8;
11954 inst.instruction |= Rn << 16;
11955 inst.instruction |= Rm;
c19d1205 11956}
b99bd4ef 11957
c19d1205
ZW
11958static void
11959do_t_mov_cmp (void)
11960{
fdfde340
JM
11961 unsigned Rn, Rm;
11962
11963 Rn = inst.operands[0].reg;
11964 Rm = inst.operands[1].reg;
11965
e07e6e58
NC
11966 if (Rn == REG_PC)
11967 set_it_insn_type_last ();
11968
c19d1205 11969 if (unified_syntax)
b99bd4ef 11970 {
c19d1205
ZW
11971 int r0off = (inst.instruction == T_MNEM_mov
11972 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 11973 unsigned long opcode;
3d388997
PB
11974 bfd_boolean narrow;
11975 bfd_boolean low_regs;
11976
fdfde340 11977 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 11978 opcode = inst.instruction;
e07e6e58 11979 if (in_it_block ())
0110f2b8 11980 narrow = opcode != T_MNEM_movs;
3d388997 11981 else
0110f2b8 11982 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
11983 if (inst.size_req == 4
11984 || inst.operands[1].shifted)
11985 narrow = FALSE;
11986
efd81785
PB
11987 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11988 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11989 && !inst.operands[1].shifted
fdfde340
JM
11990 && Rn == REG_PC
11991 && Rm == REG_LR)
efd81785
PB
11992 {
11993 inst.instruction = T2_SUBS_PC_LR;
11994 return;
11995 }
11996
fdfde340
JM
11997 if (opcode == T_MNEM_cmp)
11998 {
11999 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12000 if (narrow)
12001 {
12002 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12003 but valid. */
12004 warn_deprecated_sp (Rm);
12005 /* R15 was documented as a valid choice for Rm in ARMv6,
12006 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12007 tools reject R15, so we do too. */
12008 constraint (Rm == REG_PC, BAD_PC);
12009 }
12010 else
12011 reject_bad_reg (Rm);
fdfde340
JM
12012 }
12013 else if (opcode == T_MNEM_mov
12014 || opcode == T_MNEM_movs)
12015 {
12016 if (inst.operands[1].isreg)
12017 {
12018 if (opcode == T_MNEM_movs)
12019 {
12020 reject_bad_reg (Rn);
12021 reject_bad_reg (Rm);
12022 }
76fa04a4
MGD
12023 else if (narrow)
12024 {
12025 /* This is mov.n. */
12026 if ((Rn == REG_SP || Rn == REG_PC)
12027 && (Rm == REG_SP || Rm == REG_PC))
12028 {
5c3696f8 12029 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12030 "deprecated when r%u is the destination "
12031 "register."), Rm, Rn);
12032 }
12033 }
12034 else
12035 {
12036 /* This is mov.w. */
12037 constraint (Rn == REG_PC, BAD_PC);
12038 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12039 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12040 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12041 }
fdfde340
JM
12042 }
12043 else
12044 reject_bad_reg (Rn);
12045 }
12046
c19d1205
ZW
12047 if (!inst.operands[1].isreg)
12048 {
0110f2b8 12049 /* Immediate operand. */
e07e6e58 12050 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12051 narrow = 0;
12052 if (low_regs && narrow)
12053 {
12054 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12055 inst.instruction |= Rn << 8;
e2b0ab59
AV
12056 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12057 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12058 {
a9f02af8 12059 if (inst.size_req == 2)
e2b0ab59 12060 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12061 else
12062 inst.relax = opcode;
72d98d16 12063 }
0110f2b8
PB
12064 }
12065 else
12066 {
e2b0ab59
AV
12067 constraint ((inst.relocs[0].type
12068 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12069 && (inst.relocs[0].type
12070 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12071 THUMB1_RELOC_ONLY);
12072
0110f2b8
PB
12073 inst.instruction = THUMB_OP32 (inst.instruction);
12074 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12075 inst.instruction |= Rn << r0off;
e2b0ab59 12076 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12077 }
c19d1205 12078 }
728ca7c9
PB
12079 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12080 && (inst.instruction == T_MNEM_mov
12081 || inst.instruction == T_MNEM_movs))
12082 {
12083 /* Register shifts are encoded as separate shift instructions. */
12084 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12085
e07e6e58 12086 if (in_it_block ())
728ca7c9
PB
12087 narrow = !flags;
12088 else
12089 narrow = flags;
12090
12091 if (inst.size_req == 4)
12092 narrow = FALSE;
12093
12094 if (!low_regs || inst.operands[1].imm > 7)
12095 narrow = FALSE;
12096
fdfde340 12097 if (Rn != Rm)
728ca7c9
PB
12098 narrow = FALSE;
12099
12100 switch (inst.operands[1].shift_kind)
12101 {
12102 case SHIFT_LSL:
12103 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12104 break;
12105 case SHIFT_ASR:
12106 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12107 break;
12108 case SHIFT_LSR:
12109 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12110 break;
12111 case SHIFT_ROR:
12112 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12113 break;
12114 default:
5f4273c7 12115 abort ();
728ca7c9
PB
12116 }
12117
12118 inst.instruction = opcode;
12119 if (narrow)
12120 {
fdfde340 12121 inst.instruction |= Rn;
728ca7c9
PB
12122 inst.instruction |= inst.operands[1].imm << 3;
12123 }
12124 else
12125 {
12126 if (flags)
12127 inst.instruction |= CONDS_BIT;
12128
fdfde340
JM
12129 inst.instruction |= Rn << 8;
12130 inst.instruction |= Rm << 16;
728ca7c9
PB
12131 inst.instruction |= inst.operands[1].imm;
12132 }
12133 }
3d388997 12134 else if (!narrow)
c19d1205 12135 {
728ca7c9
PB
12136 /* Some mov with immediate shift have narrow variants.
12137 Register shifts are handled above. */
12138 if (low_regs && inst.operands[1].shifted
12139 && (inst.instruction == T_MNEM_mov
12140 || inst.instruction == T_MNEM_movs))
12141 {
e07e6e58 12142 if (in_it_block ())
728ca7c9
PB
12143 narrow = (inst.instruction == T_MNEM_mov);
12144 else
12145 narrow = (inst.instruction == T_MNEM_movs);
12146 }
12147
12148 if (narrow)
12149 {
12150 switch (inst.operands[1].shift_kind)
12151 {
12152 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12153 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12154 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12155 default: narrow = FALSE; break;
12156 }
12157 }
12158
12159 if (narrow)
12160 {
fdfde340
JM
12161 inst.instruction |= Rn;
12162 inst.instruction |= Rm << 3;
e2b0ab59 12163 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12164 }
12165 else
12166 {
12167 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12168 inst.instruction |= Rn << r0off;
728ca7c9
PB
12169 encode_thumb32_shifted_operand (1);
12170 }
c19d1205
ZW
12171 }
12172 else
12173 switch (inst.instruction)
12174 {
12175 case T_MNEM_mov:
837b3435 12176 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12177 results. Don't allow this. */
12178 if (low_regs)
12179 {
12180 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12181 "MOV Rd, Rs with two low registers is not "
12182 "permitted on this architecture");
fa94de6b 12183 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12184 arm_ext_v6);
12185 }
12186
c19d1205 12187 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12188 inst.instruction |= (Rn & 0x8) << 4;
12189 inst.instruction |= (Rn & 0x7);
12190 inst.instruction |= Rm << 3;
c19d1205 12191 break;
b99bd4ef 12192
c19d1205
ZW
12193 case T_MNEM_movs:
12194 /* We know we have low registers at this point.
941a8a52
MGD
12195 Generate LSLS Rd, Rs, #0. */
12196 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12197 inst.instruction |= Rn;
12198 inst.instruction |= Rm << 3;
c19d1205
ZW
12199 break;
12200
12201 case T_MNEM_cmp:
3d388997 12202 if (low_regs)
c19d1205
ZW
12203 {
12204 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12205 inst.instruction |= Rn;
12206 inst.instruction |= Rm << 3;
c19d1205
ZW
12207 }
12208 else
12209 {
12210 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12211 inst.instruction |= (Rn & 0x8) << 4;
12212 inst.instruction |= (Rn & 0x7);
12213 inst.instruction |= Rm << 3;
c19d1205
ZW
12214 }
12215 break;
12216 }
b99bd4ef
NC
12217 return;
12218 }
12219
c19d1205 12220 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12221
12222 /* PR 10443: Do not silently ignore shifted operands. */
12223 constraint (inst.operands[1].shifted,
12224 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12225
c19d1205 12226 if (inst.operands[1].isreg)
b99bd4ef 12227 {
fdfde340 12228 if (Rn < 8 && Rm < 8)
b99bd4ef 12229 {
c19d1205
ZW
12230 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12231 since a MOV instruction produces unpredictable results. */
12232 if (inst.instruction == T_OPCODE_MOV_I8)
12233 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12234 else
c19d1205 12235 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12236
fdfde340
JM
12237 inst.instruction |= Rn;
12238 inst.instruction |= Rm << 3;
b99bd4ef
NC
12239 }
12240 else
12241 {
c19d1205
ZW
12242 if (inst.instruction == T_OPCODE_MOV_I8)
12243 inst.instruction = T_OPCODE_MOV_HR;
12244 else
12245 inst.instruction = T_OPCODE_CMP_HR;
12246 do_t_cpy ();
b99bd4ef
NC
12247 }
12248 }
c19d1205 12249 else
b99bd4ef 12250 {
fdfde340 12251 constraint (Rn > 7,
c19d1205 12252 _("only lo regs allowed with immediate"));
fdfde340 12253 inst.instruction |= Rn << 8;
e2b0ab59 12254 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12255 }
12256}
b99bd4ef 12257
c19d1205
ZW
12258static void
12259do_t_mov16 (void)
12260{
fdfde340 12261 unsigned Rd;
b6895b4f
PB
12262 bfd_vma imm;
12263 bfd_boolean top;
12264
12265 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12266 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12267 {
33eaf5de 12268 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12269 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12270 }
e2b0ab59 12271 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12272 {
33eaf5de 12273 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12274 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12275 }
12276
fdfde340
JM
12277 Rd = inst.operands[0].reg;
12278 reject_bad_reg (Rd);
12279
12280 inst.instruction |= Rd << 8;
e2b0ab59 12281 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12282 {
e2b0ab59 12283 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12284 inst.instruction |= (imm & 0xf000) << 4;
12285 inst.instruction |= (imm & 0x0800) << 15;
12286 inst.instruction |= (imm & 0x0700) << 4;
12287 inst.instruction |= (imm & 0x00ff);
12288 }
c19d1205 12289}
b99bd4ef 12290
c19d1205
ZW
12291static void
12292do_t_mvn_tst (void)
12293{
fdfde340 12294 unsigned Rn, Rm;
c921be7d 12295
fdfde340
JM
12296 Rn = inst.operands[0].reg;
12297 Rm = inst.operands[1].reg;
12298
12299 if (inst.instruction == T_MNEM_cmp
12300 || inst.instruction == T_MNEM_cmn)
12301 constraint (Rn == REG_PC, BAD_PC);
12302 else
12303 reject_bad_reg (Rn);
12304 reject_bad_reg (Rm);
12305
c19d1205
ZW
12306 if (unified_syntax)
12307 {
12308 int r0off = (inst.instruction == T_MNEM_mvn
12309 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12310 bfd_boolean narrow;
12311
12312 if (inst.size_req == 4
12313 || inst.instruction > 0xffff
12314 || inst.operands[1].shifted
fdfde340 12315 || Rn > 7 || Rm > 7)
3d388997 12316 narrow = FALSE;
fe8b4cc3
KT
12317 else if (inst.instruction == T_MNEM_cmn
12318 || inst.instruction == T_MNEM_tst)
3d388997
PB
12319 narrow = TRUE;
12320 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12321 narrow = !in_it_block ();
3d388997 12322 else
e07e6e58 12323 narrow = in_it_block ();
3d388997 12324
c19d1205 12325 if (!inst.operands[1].isreg)
b99bd4ef 12326 {
c19d1205
ZW
12327 /* For an immediate, we always generate a 32-bit opcode;
12328 section relaxation will shrink it later if possible. */
12329 if (inst.instruction < 0xffff)
12330 inst.instruction = THUMB_OP32 (inst.instruction);
12331 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12332 inst.instruction |= Rn << r0off;
e2b0ab59 12333 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12334 }
c19d1205 12335 else
b99bd4ef 12336 {
c19d1205 12337 /* See if we can do this with a 16-bit instruction. */
3d388997 12338 if (narrow)
b99bd4ef 12339 {
c19d1205 12340 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12341 inst.instruction |= Rn;
12342 inst.instruction |= Rm << 3;
b99bd4ef 12343 }
c19d1205 12344 else
b99bd4ef 12345 {
c19d1205
ZW
12346 constraint (inst.operands[1].shifted
12347 && inst.operands[1].immisreg,
12348 _("shift must be constant"));
12349 if (inst.instruction < 0xffff)
12350 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12351 inst.instruction |= Rn << r0off;
c19d1205 12352 encode_thumb32_shifted_operand (1);
b99bd4ef 12353 }
b99bd4ef
NC
12354 }
12355 }
12356 else
12357 {
c19d1205
ZW
12358 constraint (inst.instruction > 0xffff
12359 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12360 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12361 _("unshifted register required"));
fdfde340 12362 constraint (Rn > 7 || Rm > 7,
c19d1205 12363 BAD_HIREG);
b99bd4ef 12364
c19d1205 12365 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12366 inst.instruction |= Rn;
12367 inst.instruction |= Rm << 3;
b99bd4ef 12368 }
b99bd4ef
NC
12369}
12370
b05fe5cf 12371static void
c19d1205 12372do_t_mrs (void)
b05fe5cf 12373{
fdfde340 12374 unsigned Rd;
037e8744
JB
12375
12376 if (do_vfp_nsyn_mrs () == SUCCESS)
12377 return;
12378
90ec0d68
MGD
12379 Rd = inst.operands[0].reg;
12380 reject_bad_reg (Rd);
12381 inst.instruction |= Rd << 8;
12382
12383 if (inst.operands[1].isreg)
62b3e311 12384 {
90ec0d68
MGD
12385 unsigned br = inst.operands[1].reg;
12386 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12387 as_bad (_("bad register for mrs"));
12388
12389 inst.instruction |= br & (0xf << 16);
12390 inst.instruction |= (br & 0x300) >> 4;
12391 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12392 }
12393 else
12394 {
90ec0d68 12395 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12396
d2cd1205 12397 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12398 {
12399 /* PR gas/12698: The constraint is only applied for m_profile.
12400 If the user has specified -march=all, we want to ignore it as
12401 we are building for any CPU type, including non-m variants. */
823d2571
TG
12402 bfd_boolean m_profile =
12403 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12404 constraint ((flags != 0) && m_profile, _("selected processor does "
12405 "not support requested special purpose register"));
12406 }
90ec0d68 12407 else
d2cd1205
JB
12408 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12409 devices). */
12410 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12411 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 12412
90ec0d68
MGD
12413 inst.instruction |= (flags & SPSR_BIT) >> 2;
12414 inst.instruction |= inst.operands[1].imm & 0xff;
12415 inst.instruction |= 0xf0000;
12416 }
c19d1205 12417}
b05fe5cf 12418
c19d1205
ZW
12419static void
12420do_t_msr (void)
12421{
62b3e311 12422 int flags;
fdfde340 12423 unsigned Rn;
62b3e311 12424
037e8744
JB
12425 if (do_vfp_nsyn_msr () == SUCCESS)
12426 return;
12427
c19d1205
ZW
12428 constraint (!inst.operands[1].isreg,
12429 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
12430
12431 if (inst.operands[0].isreg)
12432 flags = (int)(inst.operands[0].reg);
12433 else
12434 flags = inst.operands[0].imm;
12435
d2cd1205 12436 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 12437 {
d2cd1205
JB
12438 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12439
1a43faaf 12440 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
12441 If the user has specified -march=all, we want to ignore it as
12442 we are building for any CPU type, including non-m variants. */
823d2571
TG
12443 bfd_boolean m_profile =
12444 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 12445 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
12446 && (bits & ~(PSR_s | PSR_f)) != 0)
12447 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12448 && bits != PSR_f)) && m_profile,
12449 _("selected processor does not support requested special "
12450 "purpose register"));
62b3e311
PB
12451 }
12452 else
d2cd1205
JB
12453 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12454 "requested special purpose register"));
c921be7d 12455
fdfde340
JM
12456 Rn = inst.operands[1].reg;
12457 reject_bad_reg (Rn);
12458
62b3e311 12459 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
12460 inst.instruction |= (flags & 0xf0000) >> 8;
12461 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 12462 inst.instruction |= (flags & 0xff);
fdfde340 12463 inst.instruction |= Rn << 16;
c19d1205 12464}
b05fe5cf 12465
c19d1205
ZW
12466static void
12467do_t_mul (void)
12468{
17828f45 12469 bfd_boolean narrow;
fdfde340 12470 unsigned Rd, Rn, Rm;
17828f45 12471
c19d1205
ZW
12472 if (!inst.operands[2].present)
12473 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 12474
fdfde340
JM
12475 Rd = inst.operands[0].reg;
12476 Rn = inst.operands[1].reg;
12477 Rm = inst.operands[2].reg;
12478
17828f45 12479 if (unified_syntax)
b05fe5cf 12480 {
17828f45 12481 if (inst.size_req == 4
fdfde340
JM
12482 || (Rd != Rn
12483 && Rd != Rm)
12484 || Rn > 7
12485 || Rm > 7)
17828f45
JM
12486 narrow = FALSE;
12487 else if (inst.instruction == T_MNEM_muls)
e07e6e58 12488 narrow = !in_it_block ();
17828f45 12489 else
e07e6e58 12490 narrow = in_it_block ();
b05fe5cf 12491 }
c19d1205 12492 else
b05fe5cf 12493 {
17828f45 12494 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 12495 constraint (Rn > 7 || Rm > 7,
c19d1205 12496 BAD_HIREG);
17828f45
JM
12497 narrow = TRUE;
12498 }
b05fe5cf 12499
17828f45
JM
12500 if (narrow)
12501 {
12502 /* 16-bit MULS/Conditional MUL. */
c19d1205 12503 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 12504 inst.instruction |= Rd;
b05fe5cf 12505
fdfde340
JM
12506 if (Rd == Rn)
12507 inst.instruction |= Rm << 3;
12508 else if (Rd == Rm)
12509 inst.instruction |= Rn << 3;
c19d1205
ZW
12510 else
12511 constraint (1, _("dest must overlap one source register"));
12512 }
17828f45
JM
12513 else
12514 {
e07e6e58
NC
12515 constraint (inst.instruction != T_MNEM_mul,
12516 _("Thumb-2 MUL must not set flags"));
17828f45
JM
12517 /* 32-bit MUL. */
12518 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12519 inst.instruction |= Rd << 8;
12520 inst.instruction |= Rn << 16;
12521 inst.instruction |= Rm << 0;
12522
12523 reject_bad_reg (Rd);
12524 reject_bad_reg (Rn);
12525 reject_bad_reg (Rm);
17828f45 12526 }
c19d1205 12527}
b05fe5cf 12528
c19d1205
ZW
12529static void
12530do_t_mull (void)
12531{
fdfde340 12532 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 12533
fdfde340
JM
12534 RdLo = inst.operands[0].reg;
12535 RdHi = inst.operands[1].reg;
12536 Rn = inst.operands[2].reg;
12537 Rm = inst.operands[3].reg;
12538
12539 reject_bad_reg (RdLo);
12540 reject_bad_reg (RdHi);
12541 reject_bad_reg (Rn);
12542 reject_bad_reg (Rm);
12543
12544 inst.instruction |= RdLo << 12;
12545 inst.instruction |= RdHi << 8;
12546 inst.instruction |= Rn << 16;
12547 inst.instruction |= Rm;
12548
12549 if (RdLo == RdHi)
c19d1205
ZW
12550 as_tsktsk (_("rdhi and rdlo must be different"));
12551}
b05fe5cf 12552
c19d1205
ZW
12553static void
12554do_t_nop (void)
12555{
e07e6e58
NC
12556 set_it_insn_type (NEUTRAL_IT_INSN);
12557
c19d1205
ZW
12558 if (unified_syntax)
12559 {
12560 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 12561 {
c19d1205
ZW
12562 inst.instruction = THUMB_OP32 (inst.instruction);
12563 inst.instruction |= inst.operands[0].imm;
12564 }
12565 else
12566 {
bc2d1808
NC
12567 /* PR9722: Check for Thumb2 availability before
12568 generating a thumb2 nop instruction. */
afa62d5e 12569 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
12570 {
12571 inst.instruction = THUMB_OP16 (inst.instruction);
12572 inst.instruction |= inst.operands[0].imm << 4;
12573 }
12574 else
12575 inst.instruction = 0x46c0;
c19d1205
ZW
12576 }
12577 }
12578 else
12579 {
12580 constraint (inst.operands[0].present,
12581 _("Thumb does not support NOP with hints"));
12582 inst.instruction = 0x46c0;
12583 }
12584}
b05fe5cf 12585
c19d1205
ZW
12586static void
12587do_t_neg (void)
12588{
12589 if (unified_syntax)
12590 {
3d388997
PB
12591 bfd_boolean narrow;
12592
12593 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12594 narrow = !in_it_block ();
3d388997 12595 else
e07e6e58 12596 narrow = in_it_block ();
3d388997
PB
12597 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12598 narrow = FALSE;
12599 if (inst.size_req == 4)
12600 narrow = FALSE;
12601
12602 if (!narrow)
c19d1205
ZW
12603 {
12604 inst.instruction = THUMB_OP32 (inst.instruction);
12605 inst.instruction |= inst.operands[0].reg << 8;
12606 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
12607 }
12608 else
12609 {
c19d1205
ZW
12610 inst.instruction = THUMB_OP16 (inst.instruction);
12611 inst.instruction |= inst.operands[0].reg;
12612 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
12613 }
12614 }
12615 else
12616 {
c19d1205
ZW
12617 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12618 BAD_HIREG);
12619 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12620
12621 inst.instruction = THUMB_OP16 (inst.instruction);
12622 inst.instruction |= inst.operands[0].reg;
12623 inst.instruction |= inst.operands[1].reg << 3;
12624 }
12625}
12626
1c444d06
JM
12627static void
12628do_t_orn (void)
12629{
12630 unsigned Rd, Rn;
12631
12632 Rd = inst.operands[0].reg;
12633 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12634
fdfde340
JM
12635 reject_bad_reg (Rd);
12636 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12637 reject_bad_reg (Rn);
12638
1c444d06
JM
12639 inst.instruction |= Rd << 8;
12640 inst.instruction |= Rn << 16;
12641
12642 if (!inst.operands[2].isreg)
12643 {
12644 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 12645 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
12646 }
12647 else
12648 {
12649 unsigned Rm;
12650
12651 Rm = inst.operands[2].reg;
fdfde340 12652 reject_bad_reg (Rm);
1c444d06
JM
12653
12654 constraint (inst.operands[2].shifted
12655 && inst.operands[2].immisreg,
12656 _("shift must be constant"));
12657 encode_thumb32_shifted_operand (2);
12658 }
12659}
12660
c19d1205
ZW
12661static void
12662do_t_pkhbt (void)
12663{
fdfde340
JM
12664 unsigned Rd, Rn, Rm;
12665
12666 Rd = inst.operands[0].reg;
12667 Rn = inst.operands[1].reg;
12668 Rm = inst.operands[2].reg;
12669
12670 reject_bad_reg (Rd);
12671 reject_bad_reg (Rn);
12672 reject_bad_reg (Rm);
12673
12674 inst.instruction |= Rd << 8;
12675 inst.instruction |= Rn << 16;
12676 inst.instruction |= Rm;
c19d1205
ZW
12677 if (inst.operands[3].present)
12678 {
e2b0ab59
AV
12679 unsigned int val = inst.relocs[0].exp.X_add_number;
12680 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
12681 _("expression too complex"));
12682 inst.instruction |= (val & 0x1c) << 10;
12683 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 12684 }
c19d1205 12685}
b05fe5cf 12686
c19d1205
ZW
12687static void
12688do_t_pkhtb (void)
12689{
12690 if (!inst.operands[3].present)
1ef52f49
NC
12691 {
12692 unsigned Rtmp;
12693
12694 inst.instruction &= ~0x00000020;
12695
12696 /* PR 10168. Swap the Rm and Rn registers. */
12697 Rtmp = inst.operands[1].reg;
12698 inst.operands[1].reg = inst.operands[2].reg;
12699 inst.operands[2].reg = Rtmp;
12700 }
c19d1205 12701 do_t_pkhbt ();
b05fe5cf
ZW
12702}
12703
c19d1205
ZW
12704static void
12705do_t_pld (void)
12706{
fdfde340
JM
12707 if (inst.operands[0].immisreg)
12708 reject_bad_reg (inst.operands[0].imm);
12709
c19d1205
ZW
12710 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12711}
b05fe5cf 12712
c19d1205
ZW
12713static void
12714do_t_push_pop (void)
b99bd4ef 12715{
e9f89963 12716 unsigned mask;
5f4273c7 12717
c19d1205
ZW
12718 constraint (inst.operands[0].writeback,
12719 _("push/pop do not support {reglist}^"));
e2b0ab59 12720 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 12721 _("expression too complex"));
b99bd4ef 12722
e9f89963 12723 mask = inst.operands[0].imm;
d3bfe16e 12724 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 12725 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 12726 else if (inst.size_req != 4
c6025a80 12727 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 12728 ? REG_LR : REG_PC)))
b99bd4ef 12729 {
c19d1205
ZW
12730 inst.instruction = THUMB_OP16 (inst.instruction);
12731 inst.instruction |= THUMB_PP_PC_LR;
3c707909 12732 inst.instruction |= mask & 0xff;
c19d1205
ZW
12733 }
12734 else if (unified_syntax)
12735 {
3c707909 12736 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 12737 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
12738 }
12739 else
12740 {
12741 inst.error = _("invalid register list to push/pop instruction");
12742 return;
12743 }
c19d1205 12744}
b99bd4ef 12745
c19d1205
ZW
12746static void
12747do_t_rbit (void)
12748{
fdfde340
JM
12749 unsigned Rd, Rm;
12750
12751 Rd = inst.operands[0].reg;
12752 Rm = inst.operands[1].reg;
12753
12754 reject_bad_reg (Rd);
12755 reject_bad_reg (Rm);
12756
12757 inst.instruction |= Rd << 8;
12758 inst.instruction |= Rm << 16;
12759 inst.instruction |= Rm;
c19d1205 12760}
b99bd4ef 12761
c19d1205
ZW
12762static void
12763do_t_rev (void)
12764{
fdfde340
JM
12765 unsigned Rd, Rm;
12766
12767 Rd = inst.operands[0].reg;
12768 Rm = inst.operands[1].reg;
12769
12770 reject_bad_reg (Rd);
12771 reject_bad_reg (Rm);
12772
12773 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
12774 && inst.size_req != 4)
12775 {
12776 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12777 inst.instruction |= Rd;
12778 inst.instruction |= Rm << 3;
c19d1205
ZW
12779 }
12780 else if (unified_syntax)
12781 {
12782 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12783 inst.instruction |= Rd << 8;
12784 inst.instruction |= Rm << 16;
12785 inst.instruction |= Rm;
c19d1205
ZW
12786 }
12787 else
12788 inst.error = BAD_HIREG;
12789}
b99bd4ef 12790
1c444d06
JM
12791static void
12792do_t_rrx (void)
12793{
12794 unsigned Rd, Rm;
12795
12796 Rd = inst.operands[0].reg;
12797 Rm = inst.operands[1].reg;
12798
fdfde340
JM
12799 reject_bad_reg (Rd);
12800 reject_bad_reg (Rm);
c921be7d 12801
1c444d06
JM
12802 inst.instruction |= Rd << 8;
12803 inst.instruction |= Rm;
12804}
12805
c19d1205
ZW
12806static void
12807do_t_rsb (void)
12808{
fdfde340 12809 unsigned Rd, Rs;
b99bd4ef 12810
c19d1205
ZW
12811 Rd = inst.operands[0].reg;
12812 Rs = (inst.operands[1].present
12813 ? inst.operands[1].reg /* Rd, Rs, foo */
12814 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 12815
fdfde340
JM
12816 reject_bad_reg (Rd);
12817 reject_bad_reg (Rs);
12818 if (inst.operands[2].isreg)
12819 reject_bad_reg (inst.operands[2].reg);
12820
c19d1205
ZW
12821 inst.instruction |= Rd << 8;
12822 inst.instruction |= Rs << 16;
12823 if (!inst.operands[2].isreg)
12824 {
026d3abb
PB
12825 bfd_boolean narrow;
12826
12827 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 12828 narrow = !in_it_block ();
026d3abb 12829 else
e07e6e58 12830 narrow = in_it_block ();
026d3abb
PB
12831
12832 if (Rd > 7 || Rs > 7)
12833 narrow = FALSE;
12834
12835 if (inst.size_req == 4 || !unified_syntax)
12836 narrow = FALSE;
12837
e2b0ab59
AV
12838 if (inst.relocs[0].exp.X_op != O_constant
12839 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
12840 narrow = FALSE;
12841
12842 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 12843 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
12844 if (narrow)
12845 {
e2b0ab59 12846 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
12847 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12848 inst.instruction |= Rs << 3;
12849 inst.instruction |= Rd;
12850 }
12851 else
12852 {
12853 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 12854 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 12855 }
c19d1205
ZW
12856 }
12857 else
12858 encode_thumb32_shifted_operand (2);
12859}
b99bd4ef 12860
c19d1205
ZW
12861static void
12862do_t_setend (void)
12863{
12e37cbc
MGD
12864 if (warn_on_deprecated
12865 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 12866 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 12867
e07e6e58 12868 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
12869 if (inst.operands[0].imm)
12870 inst.instruction |= 0x8;
12871}
b99bd4ef 12872
c19d1205
ZW
12873static void
12874do_t_shift (void)
12875{
12876 if (!inst.operands[1].present)
12877 inst.operands[1].reg = inst.operands[0].reg;
12878
12879 if (unified_syntax)
12880 {
3d388997
PB
12881 bfd_boolean narrow;
12882 int shift_kind;
12883
12884 switch (inst.instruction)
12885 {
12886 case T_MNEM_asr:
12887 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12888 case T_MNEM_lsl:
12889 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12890 case T_MNEM_lsr:
12891 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12892 case T_MNEM_ror:
12893 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12894 default: abort ();
12895 }
12896
12897 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12898 narrow = !in_it_block ();
3d388997 12899 else
e07e6e58 12900 narrow = in_it_block ();
3d388997
PB
12901 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12902 narrow = FALSE;
12903 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12904 narrow = FALSE;
12905 if (inst.operands[2].isreg
12906 && (inst.operands[1].reg != inst.operands[0].reg
12907 || inst.operands[2].reg > 7))
12908 narrow = FALSE;
12909 if (inst.size_req == 4)
12910 narrow = FALSE;
12911
fdfde340
JM
12912 reject_bad_reg (inst.operands[0].reg);
12913 reject_bad_reg (inst.operands[1].reg);
c921be7d 12914
3d388997 12915 if (!narrow)
c19d1205
ZW
12916 {
12917 if (inst.operands[2].isreg)
b99bd4ef 12918 {
fdfde340 12919 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
12920 inst.instruction = THUMB_OP32 (inst.instruction);
12921 inst.instruction |= inst.operands[0].reg << 8;
12922 inst.instruction |= inst.operands[1].reg << 16;
12923 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
12924
12925 /* PR 12854: Error on extraneous shifts. */
12926 constraint (inst.operands[2].shifted,
12927 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12928 }
12929 else
12930 {
12931 inst.operands[1].shifted = 1;
3d388997 12932 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
12933 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12934 ? T_MNEM_movs : T_MNEM_mov);
12935 inst.instruction |= inst.operands[0].reg << 8;
12936 encode_thumb32_shifted_operand (1);
12937 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 12938 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
12939 }
12940 }
12941 else
12942 {
c19d1205 12943 if (inst.operands[2].isreg)
b99bd4ef 12944 {
3d388997 12945 switch (shift_kind)
b99bd4ef 12946 {
3d388997
PB
12947 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12948 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12949 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12950 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 12951 default: abort ();
b99bd4ef 12952 }
5f4273c7 12953
c19d1205
ZW
12954 inst.instruction |= inst.operands[0].reg;
12955 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12956
12957 /* PR 12854: Error on extraneous shifts. */
12958 constraint (inst.operands[2].shifted,
12959 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
12960 }
12961 else
12962 {
3d388997 12963 switch (shift_kind)
b99bd4ef 12964 {
3d388997
PB
12965 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12966 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12967 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 12968 default: abort ();
b99bd4ef 12969 }
e2b0ab59 12970 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
12971 inst.instruction |= inst.operands[0].reg;
12972 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12973 }
12974 }
c19d1205
ZW
12975 }
12976 else
12977 {
12978 constraint (inst.operands[0].reg > 7
12979 || inst.operands[1].reg > 7, BAD_HIREG);
12980 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 12981
c19d1205
ZW
12982 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12983 {
12984 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12985 constraint (inst.operands[0].reg != inst.operands[1].reg,
12986 _("source1 and dest must be same register"));
b99bd4ef 12987
c19d1205
ZW
12988 switch (inst.instruction)
12989 {
12990 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12991 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12992 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12993 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12994 default: abort ();
12995 }
5f4273c7 12996
c19d1205
ZW
12997 inst.instruction |= inst.operands[0].reg;
12998 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12999
13000 /* PR 12854: Error on extraneous shifts. */
13001 constraint (inst.operands[2].shifted,
13002 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13003 }
13004 else
b99bd4ef 13005 {
c19d1205
ZW
13006 switch (inst.instruction)
13007 {
13008 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13009 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13010 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13011 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13012 default: abort ();
13013 }
e2b0ab59 13014 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13015 inst.instruction |= inst.operands[0].reg;
13016 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13017 }
13018 }
b99bd4ef
NC
13019}
13020
13021static void
c19d1205 13022do_t_simd (void)
b99bd4ef 13023{
fdfde340
JM
13024 unsigned Rd, Rn, Rm;
13025
13026 Rd = inst.operands[0].reg;
13027 Rn = inst.operands[1].reg;
13028 Rm = inst.operands[2].reg;
13029
13030 reject_bad_reg (Rd);
13031 reject_bad_reg (Rn);
13032 reject_bad_reg (Rm);
13033
13034 inst.instruction |= Rd << 8;
13035 inst.instruction |= Rn << 16;
13036 inst.instruction |= Rm;
c19d1205 13037}
b99bd4ef 13038
03ee1b7f
NC
13039static void
13040do_t_simd2 (void)
13041{
13042 unsigned Rd, Rn, Rm;
13043
13044 Rd = inst.operands[0].reg;
13045 Rm = inst.operands[1].reg;
13046 Rn = inst.operands[2].reg;
13047
13048 reject_bad_reg (Rd);
13049 reject_bad_reg (Rn);
13050 reject_bad_reg (Rm);
13051
13052 inst.instruction |= Rd << 8;
13053 inst.instruction |= Rn << 16;
13054 inst.instruction |= Rm;
13055}
13056
c19d1205 13057static void
3eb17e6b 13058do_t_smc (void)
c19d1205 13059{
e2b0ab59 13060 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13061 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13062 _("SMC is not permitted on this architecture"));
e2b0ab59 13063 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13064 _("expression too complex"));
e2b0ab59 13065 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13066 inst.instruction |= (value & 0xf000) >> 12;
13067 inst.instruction |= (value & 0x0ff0);
13068 inst.instruction |= (value & 0x000f) << 16;
24382199
NC
13069 /* PR gas/15623: SMC instructions must be last in an IT block. */
13070 set_it_insn_type_last ();
c19d1205 13071}
b99bd4ef 13072
90ec0d68
MGD
13073static void
13074do_t_hvc (void)
13075{
e2b0ab59 13076 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13077
e2b0ab59 13078 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13079 inst.instruction |= (value & 0x0fff);
13080 inst.instruction |= (value & 0xf000) << 4;
13081}
13082
c19d1205 13083static void
3a21c15a 13084do_t_ssat_usat (int bias)
c19d1205 13085{
fdfde340
JM
13086 unsigned Rd, Rn;
13087
13088 Rd = inst.operands[0].reg;
13089 Rn = inst.operands[2].reg;
13090
13091 reject_bad_reg (Rd);
13092 reject_bad_reg (Rn);
13093
13094 inst.instruction |= Rd << 8;
3a21c15a 13095 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13096 inst.instruction |= Rn << 16;
b99bd4ef 13097
c19d1205 13098 if (inst.operands[3].present)
b99bd4ef 13099 {
e2b0ab59 13100 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13101
e2b0ab59 13102 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13103
e2b0ab59 13104 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13105 _("expression too complex"));
b99bd4ef 13106
3a21c15a 13107 if (shift_amount != 0)
6189168b 13108 {
3a21c15a
NC
13109 constraint (shift_amount > 31,
13110 _("shift expression is too large"));
13111
c19d1205 13112 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13113 inst.instruction |= 0x00200000; /* sh bit. */
13114
13115 inst.instruction |= (shift_amount & 0x1c) << 10;
13116 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13117 }
13118 }
b99bd4ef 13119}
c921be7d 13120
3a21c15a
NC
13121static void
13122do_t_ssat (void)
13123{
13124 do_t_ssat_usat (1);
13125}
b99bd4ef 13126
0dd132b6 13127static void
c19d1205 13128do_t_ssat16 (void)
0dd132b6 13129{
fdfde340
JM
13130 unsigned Rd, Rn;
13131
13132 Rd = inst.operands[0].reg;
13133 Rn = inst.operands[2].reg;
13134
13135 reject_bad_reg (Rd);
13136 reject_bad_reg (Rn);
13137
13138 inst.instruction |= Rd << 8;
c19d1205 13139 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13140 inst.instruction |= Rn << 16;
c19d1205 13141}
0dd132b6 13142
c19d1205
ZW
13143static void
13144do_t_strex (void)
13145{
13146 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13147 || inst.operands[2].postind || inst.operands[2].writeback
13148 || inst.operands[2].immisreg || inst.operands[2].shifted
13149 || inst.operands[2].negative,
01cfc07f 13150 BAD_ADDR_MODE);
0dd132b6 13151
5be8be5d
DG
13152 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13153
c19d1205
ZW
13154 inst.instruction |= inst.operands[0].reg << 8;
13155 inst.instruction |= inst.operands[1].reg << 12;
13156 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13157 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13158}
13159
b99bd4ef 13160static void
c19d1205 13161do_t_strexd (void)
b99bd4ef 13162{
c19d1205
ZW
13163 if (!inst.operands[2].present)
13164 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13165
c19d1205
ZW
13166 constraint (inst.operands[0].reg == inst.operands[1].reg
13167 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13168 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13169 BAD_OVERLAP);
b99bd4ef 13170
c19d1205
ZW
13171 inst.instruction |= inst.operands[0].reg;
13172 inst.instruction |= inst.operands[1].reg << 12;
13173 inst.instruction |= inst.operands[2].reg << 8;
13174 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13175}
13176
13177static void
c19d1205 13178do_t_sxtah (void)
b99bd4ef 13179{
fdfde340
JM
13180 unsigned Rd, Rn, Rm;
13181
13182 Rd = inst.operands[0].reg;
13183 Rn = inst.operands[1].reg;
13184 Rm = inst.operands[2].reg;
13185
13186 reject_bad_reg (Rd);
13187 reject_bad_reg (Rn);
13188 reject_bad_reg (Rm);
13189
13190 inst.instruction |= Rd << 8;
13191 inst.instruction |= Rn << 16;
13192 inst.instruction |= Rm;
c19d1205
ZW
13193 inst.instruction |= inst.operands[3].imm << 4;
13194}
b99bd4ef 13195
c19d1205
ZW
13196static void
13197do_t_sxth (void)
13198{
fdfde340
JM
13199 unsigned Rd, Rm;
13200
13201 Rd = inst.operands[0].reg;
13202 Rm = inst.operands[1].reg;
13203
13204 reject_bad_reg (Rd);
13205 reject_bad_reg (Rm);
c921be7d
NC
13206
13207 if (inst.instruction <= 0xffff
13208 && inst.size_req != 4
fdfde340 13209 && Rd <= 7 && Rm <= 7
c19d1205 13210 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13211 {
c19d1205 13212 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13213 inst.instruction |= Rd;
13214 inst.instruction |= Rm << 3;
b99bd4ef 13215 }
c19d1205 13216 else if (unified_syntax)
b99bd4ef 13217 {
c19d1205
ZW
13218 if (inst.instruction <= 0xffff)
13219 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13220 inst.instruction |= Rd << 8;
13221 inst.instruction |= Rm;
c19d1205 13222 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13223 }
c19d1205 13224 else
b99bd4ef 13225 {
c19d1205
ZW
13226 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13227 _("Thumb encoding does not support rotation"));
13228 constraint (1, BAD_HIREG);
b99bd4ef 13229 }
c19d1205 13230}
b99bd4ef 13231
c19d1205
ZW
13232static void
13233do_t_swi (void)
13234{
e2b0ab59 13235 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13236}
b99bd4ef 13237
92e90b6e
PB
13238static void
13239do_t_tb (void)
13240{
fdfde340 13241 unsigned Rn, Rm;
92e90b6e
PB
13242 int half;
13243
13244 half = (inst.instruction & 0x10) != 0;
e07e6e58 13245 set_it_insn_type_last ();
dfa9f0d5
PB
13246 constraint (inst.operands[0].immisreg,
13247 _("instruction requires register index"));
fdfde340
JM
13248
13249 Rn = inst.operands[0].reg;
13250 Rm = inst.operands[0].imm;
c921be7d 13251
5c8ed6a4
JW
13252 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13253 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13254 reject_bad_reg (Rm);
13255
92e90b6e
PB
13256 constraint (!half && inst.operands[0].shifted,
13257 _("instruction does not allow shifted index"));
fdfde340 13258 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13259}
13260
74db7efb
NC
13261static void
13262do_t_udf (void)
13263{
13264 if (!inst.operands[0].present)
13265 inst.operands[0].imm = 0;
13266
13267 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13268 {
13269 constraint (inst.size_req == 2,
13270 _("immediate value out of range"));
13271 inst.instruction = THUMB_OP32 (inst.instruction);
13272 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13273 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13274 }
13275 else
13276 {
13277 inst.instruction = THUMB_OP16 (inst.instruction);
13278 inst.instruction |= inst.operands[0].imm;
13279 }
13280
13281 set_it_insn_type (NEUTRAL_IT_INSN);
13282}
13283
13284
c19d1205
ZW
13285static void
13286do_t_usat (void)
13287{
3a21c15a 13288 do_t_ssat_usat (0);
b99bd4ef
NC
13289}
13290
13291static void
c19d1205 13292do_t_usat16 (void)
b99bd4ef 13293{
fdfde340
JM
13294 unsigned Rd, Rn;
13295
13296 Rd = inst.operands[0].reg;
13297 Rn = inst.operands[2].reg;
13298
13299 reject_bad_reg (Rd);
13300 reject_bad_reg (Rn);
13301
13302 inst.instruction |= Rd << 8;
c19d1205 13303 inst.instruction |= inst.operands[1].imm;
fdfde340 13304 inst.instruction |= Rn << 16;
b99bd4ef 13305}
c19d1205 13306
e12437dc
AV
13307/* Checking the range of the branch offset (VAL) with NBITS bits
13308 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13309static int
13310v8_1_branch_value_check (int val, int nbits, int is_signed)
13311{
13312 gas_assert (nbits > 0 && nbits <= 32);
13313 if (is_signed)
13314 {
13315 int cmp = (1 << (nbits - 1));
13316 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13317 return FAIL;
13318 }
13319 else
13320 {
13321 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13322 return FAIL;
13323 }
13324 return SUCCESS;
13325}
13326
4389b29a
AV
13327/* For branches in Armv8.1-M Mainline. */
13328static void
13329do_t_branch_future (void)
13330{
13331 unsigned long insn = inst.instruction;
13332
13333 inst.instruction = THUMB_OP32 (inst.instruction);
13334 if (inst.operands[0].hasreloc == 0)
13335 {
13336 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13337 as_bad (BAD_BRANCH_OFF);
13338
13339 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13340 }
13341 else
13342 {
13343 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13344 inst.relocs[0].pc_rel = 1;
13345 }
13346
13347 switch (insn)
13348 {
13349 case T_MNEM_bf:
13350 if (inst.operands[1].hasreloc == 0)
13351 {
13352 int val = inst.operands[1].imm;
13353 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13354 as_bad (BAD_BRANCH_OFF);
13355
13356 int immA = (val & 0x0001f000) >> 12;
13357 int immB = (val & 0x00000ffc) >> 2;
13358 int immC = (val & 0x00000002) >> 1;
13359 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13360 }
13361 else
13362 {
13363 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13364 inst.relocs[1].pc_rel = 1;
13365 }
13366 break;
13367
65d1bc05
AV
13368 case T_MNEM_bfl:
13369 if (inst.operands[1].hasreloc == 0)
13370 {
13371 int val = inst.operands[1].imm;
13372 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13373 as_bad (BAD_BRANCH_OFF);
13374
13375 int immA = (val & 0x0007f000) >> 12;
13376 int immB = (val & 0x00000ffc) >> 2;
13377 int immC = (val & 0x00000002) >> 1;
13378 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13379 }
13380 else
13381 {
13382 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
13383 inst.relocs[1].pc_rel = 1;
13384 }
13385 break;
13386
f1c7f421
AV
13387 case T_MNEM_bfx:
13388 case T_MNEM_bflx:
13389 inst.instruction |= inst.operands[1].reg << 16;
13390 break;
13391
4389b29a
AV
13392 default: abort ();
13393 }
13394}
13395
5287ad62 13396/* Neon instruction encoder helpers. */
5f4273c7 13397
5287ad62 13398/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 13399
5287ad62
JB
13400/* An "invalid" code for the following tables. */
13401#define N_INV -1u
13402
13403struct neon_tab_entry
b99bd4ef 13404{
5287ad62
JB
13405 unsigned integer;
13406 unsigned float_or_poly;
13407 unsigned scalar_or_imm;
13408};
5f4273c7 13409
5287ad62
JB
13410/* Map overloaded Neon opcodes to their respective encodings. */
13411#define NEON_ENC_TAB \
13412 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13413 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13414 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13415 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13416 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13417 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13418 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13419 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13420 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13421 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13422 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13423 /* Register variants of the following two instructions are encoded as
e07e6e58 13424 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
13425 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13426 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
13427 X(vfma, N_INV, 0x0000c10, N_INV), \
13428 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
13429 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13430 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13431 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13432 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13433 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13434 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13435 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13436 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13437 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13438 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13439 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
13440 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13441 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
13442 X(vshl, 0x0000400, N_INV, 0x0800510), \
13443 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13444 X(vand, 0x0000110, N_INV, 0x0800030), \
13445 X(vbic, 0x0100110, N_INV, 0x0800030), \
13446 X(veor, 0x1000110, N_INV, N_INV), \
13447 X(vorn, 0x0300110, N_INV, 0x0800010), \
13448 X(vorr, 0x0200110, N_INV, 0x0800010), \
13449 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13450 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13451 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13452 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13453 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13454 X(vst1, 0x0000000, 0x0800000, N_INV), \
13455 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13456 X(vst2, 0x0000100, 0x0800100, N_INV), \
13457 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13458 X(vst3, 0x0000200, 0x0800200, N_INV), \
13459 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13460 X(vst4, 0x0000300, 0x0800300, N_INV), \
13461 X(vmovn, 0x1b20200, N_INV, N_INV), \
13462 X(vtrn, 0x1b20080, N_INV, N_INV), \
13463 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
13464 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13465 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
13466 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13467 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
13468 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13469 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
13470 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13471 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13472 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
13473 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13474 X(vseleq, 0xe000a00, N_INV, N_INV), \
13475 X(vselvs, 0xe100a00, N_INV, N_INV), \
13476 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
13477 X(vselgt, 0xe300a00, N_INV, N_INV), \
13478 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 13479 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
13480 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13481 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 13482 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 13483 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
13484 X(sha3op, 0x2000c00, N_INV, N_INV), \
13485 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13486 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
13487
13488enum neon_opc
13489{
13490#define X(OPC,I,F,S) N_MNEM_##OPC
13491NEON_ENC_TAB
13492#undef X
13493};
b99bd4ef 13494
5287ad62
JB
13495static const struct neon_tab_entry neon_enc_tab[] =
13496{
13497#define X(OPC,I,F,S) { (I), (F), (S) }
13498NEON_ENC_TAB
13499#undef X
13500};
b99bd4ef 13501
88714cb8
DG
13502/* Do not use these macros; instead, use NEON_ENCODE defined below. */
13503#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13504#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13505#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13506#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13507#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13508#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13509#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13510#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13511#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13512#define NEON_ENC_SINGLE_(X) \
037e8744 13513 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 13514#define NEON_ENC_DOUBLE_(X) \
037e8744 13515 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
13516#define NEON_ENC_FPV8_(X) \
13517 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 13518
88714cb8
DG
13519#define NEON_ENCODE(type, inst) \
13520 do \
13521 { \
13522 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13523 inst.is_neon = 1; \
13524 } \
13525 while (0)
13526
13527#define check_neon_suffixes \
13528 do \
13529 { \
13530 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13531 { \
13532 as_bad (_("invalid neon suffix for non neon instruction")); \
13533 return; \
13534 } \
13535 } \
13536 while (0)
13537
037e8744
JB
13538/* Define shapes for instruction operands. The following mnemonic characters
13539 are used in this table:
5287ad62 13540
037e8744 13541 F - VFP S<n> register
5287ad62
JB
13542 D - Neon D<n> register
13543 Q - Neon Q<n> register
13544 I - Immediate
13545 S - Scalar
13546 R - ARM register
13547 L - D<n> register list
5f4273c7 13548
037e8744
JB
13549 This table is used to generate various data:
13550 - enumerations of the form NS_DDR to be used as arguments to
13551 neon_select_shape.
13552 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 13553 - a table used to drive neon_select_shape. */
b99bd4ef 13554
037e8744
JB
13555#define NEON_SHAPE_DEF \
13556 X(3, (D, D, D), DOUBLE), \
13557 X(3, (Q, Q, Q), QUAD), \
13558 X(3, (D, D, I), DOUBLE), \
13559 X(3, (Q, Q, I), QUAD), \
13560 X(3, (D, D, S), DOUBLE), \
13561 X(3, (Q, Q, S), QUAD), \
13562 X(2, (D, D), DOUBLE), \
13563 X(2, (Q, Q), QUAD), \
13564 X(2, (D, S), DOUBLE), \
13565 X(2, (Q, S), QUAD), \
13566 X(2, (D, R), DOUBLE), \
13567 X(2, (Q, R), QUAD), \
13568 X(2, (D, I), DOUBLE), \
13569 X(2, (Q, I), QUAD), \
13570 X(3, (D, L, D), DOUBLE), \
13571 X(2, (D, Q), MIXED), \
13572 X(2, (Q, D), MIXED), \
13573 X(3, (D, Q, I), MIXED), \
13574 X(3, (Q, D, I), MIXED), \
13575 X(3, (Q, D, D), MIXED), \
13576 X(3, (D, Q, Q), MIXED), \
13577 X(3, (Q, Q, D), MIXED), \
13578 X(3, (Q, D, S), MIXED), \
13579 X(3, (D, Q, S), MIXED), \
13580 X(4, (D, D, D, I), DOUBLE), \
13581 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
13582 X(4, (D, D, S, I), DOUBLE), \
13583 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
13584 X(2, (F, F), SINGLE), \
13585 X(3, (F, F, F), SINGLE), \
13586 X(2, (F, I), SINGLE), \
13587 X(2, (F, D), MIXED), \
13588 X(2, (D, F), MIXED), \
13589 X(3, (F, F, I), MIXED), \
13590 X(4, (R, R, F, F), SINGLE), \
13591 X(4, (F, F, R, R), SINGLE), \
13592 X(3, (D, R, R), DOUBLE), \
13593 X(3, (R, R, D), DOUBLE), \
13594 X(2, (S, R), SINGLE), \
13595 X(2, (R, S), SINGLE), \
13596 X(2, (F, R), SINGLE), \
d54af2d0
RL
13597 X(2, (R, F), SINGLE), \
13598/* Half float shape supported so far. */\
13599 X (2, (H, D), MIXED), \
13600 X (2, (D, H), MIXED), \
13601 X (2, (H, F), MIXED), \
13602 X (2, (F, H), MIXED), \
13603 X (2, (H, H), HALF), \
13604 X (2, (H, R), HALF), \
13605 X (2, (R, H), HALF), \
13606 X (2, (H, I), HALF), \
13607 X (3, (H, H, H), HALF), \
13608 X (3, (H, F, I), MIXED), \
dec41383
JW
13609 X (3, (F, H, I), MIXED), \
13610 X (3, (D, H, H), MIXED), \
13611 X (3, (D, H, S), MIXED)
037e8744
JB
13612
13613#define S2(A,B) NS_##A##B
13614#define S3(A,B,C) NS_##A##B##C
13615#define S4(A,B,C,D) NS_##A##B##C##D
13616
13617#define X(N, L, C) S##N L
13618
5287ad62
JB
13619enum neon_shape
13620{
037e8744
JB
13621 NEON_SHAPE_DEF,
13622 NS_NULL
5287ad62 13623};
b99bd4ef 13624
037e8744
JB
13625#undef X
13626#undef S2
13627#undef S3
13628#undef S4
13629
13630enum neon_shape_class
13631{
d54af2d0 13632 SC_HALF,
037e8744
JB
13633 SC_SINGLE,
13634 SC_DOUBLE,
13635 SC_QUAD,
13636 SC_MIXED
13637};
13638
13639#define X(N, L, C) SC_##C
13640
13641static enum neon_shape_class neon_shape_class[] =
13642{
13643 NEON_SHAPE_DEF
13644};
13645
13646#undef X
13647
13648enum neon_shape_el
13649{
d54af2d0 13650 SE_H,
037e8744
JB
13651 SE_F,
13652 SE_D,
13653 SE_Q,
13654 SE_I,
13655 SE_S,
13656 SE_R,
13657 SE_L
13658};
13659
13660/* Register widths of above. */
13661static unsigned neon_shape_el_size[] =
13662{
d54af2d0 13663 16,
037e8744
JB
13664 32,
13665 64,
13666 128,
13667 0,
13668 32,
13669 32,
13670 0
13671};
13672
13673struct neon_shape_info
13674{
13675 unsigned els;
13676 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13677};
13678
13679#define S2(A,B) { SE_##A, SE_##B }
13680#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13681#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13682
13683#define X(N, L, C) { N, S##N L }
13684
13685static struct neon_shape_info neon_shape_tab[] =
13686{
13687 NEON_SHAPE_DEF
13688};
13689
13690#undef X
13691#undef S2
13692#undef S3
13693#undef S4
13694
5287ad62
JB
13695/* Bit masks used in type checking given instructions.
13696 'N_EQK' means the type must be the same as (or based on in some way) the key
13697 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13698 set, various other bits can be set as well in order to modify the meaning of
13699 the type constraint. */
13700
13701enum neon_type_mask
13702{
8e79c3df
CM
13703 N_S8 = 0x0000001,
13704 N_S16 = 0x0000002,
13705 N_S32 = 0x0000004,
13706 N_S64 = 0x0000008,
13707 N_U8 = 0x0000010,
13708 N_U16 = 0x0000020,
13709 N_U32 = 0x0000040,
13710 N_U64 = 0x0000080,
13711 N_I8 = 0x0000100,
13712 N_I16 = 0x0000200,
13713 N_I32 = 0x0000400,
13714 N_I64 = 0x0000800,
13715 N_8 = 0x0001000,
13716 N_16 = 0x0002000,
13717 N_32 = 0x0004000,
13718 N_64 = 0x0008000,
13719 N_P8 = 0x0010000,
13720 N_P16 = 0x0020000,
13721 N_F16 = 0x0040000,
13722 N_F32 = 0x0080000,
13723 N_F64 = 0x0100000,
4f51b4bd 13724 N_P64 = 0x0200000,
c921be7d
NC
13725 N_KEY = 0x1000000, /* Key element (main type specifier). */
13726 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 13727 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 13728 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
13729 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13730 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13731 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13732 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13733 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13734 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13735 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 13736 N_UTYP = 0,
4f51b4bd 13737 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
13738};
13739
dcbf9037
JB
13740#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13741
5287ad62
JB
13742#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13743#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13744#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
13745#define N_S_32 (N_S8 | N_S16 | N_S32)
13746#define N_F_16_32 (N_F16 | N_F32)
13747#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 13748#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 13749#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 13750#define N_F_ALL (N_F16 | N_F32 | N_F64)
5287ad62
JB
13751
13752/* Pass this as the first type argument to neon_check_type to ignore types
13753 altogether. */
13754#define N_IGNORE_TYPE (N_KEY | N_EQK)
13755
037e8744
JB
13756/* Select a "shape" for the current instruction (describing register types or
13757 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13758 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13759 function of operand parsing, so this function doesn't need to be called.
13760 Shapes should be listed in order of decreasing length. */
5287ad62
JB
13761
13762static enum neon_shape
037e8744 13763neon_select_shape (enum neon_shape shape, ...)
5287ad62 13764{
037e8744
JB
13765 va_list ap;
13766 enum neon_shape first_shape = shape;
5287ad62
JB
13767
13768 /* Fix missing optional operands. FIXME: we don't know at this point how
13769 many arguments we should have, so this makes the assumption that we have
13770 > 1. This is true of all current Neon opcodes, I think, but may not be
13771 true in the future. */
13772 if (!inst.operands[1].present)
13773 inst.operands[1] = inst.operands[0];
13774
037e8744 13775 va_start (ap, shape);
5f4273c7 13776
21d799b5 13777 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
13778 {
13779 unsigned j;
13780 int matches = 1;
13781
13782 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
13783 {
13784 if (!inst.operands[j].present)
13785 {
13786 matches = 0;
13787 break;
13788 }
13789
13790 switch (neon_shape_tab[shape].el[j])
13791 {
d54af2d0
RL
13792 /* If a .f16, .16, .u16, .s16 type specifier is given over
13793 a VFP single precision register operand, it's essentially
13794 means only half of the register is used.
13795
13796 If the type specifier is given after the mnemonics, the
13797 information is stored in inst.vectype. If the type specifier
13798 is given after register operand, the information is stored
13799 in inst.operands[].vectype.
13800
13801 When there is only one type specifier, and all the register
13802 operands are the same type of hardware register, the type
13803 specifier applies to all register operands.
13804
13805 If no type specifier is given, the shape is inferred from
13806 operand information.
13807
13808 for example:
13809 vadd.f16 s0, s1, s2: NS_HHH
13810 vabs.f16 s0, s1: NS_HH
13811 vmov.f16 s0, r1: NS_HR
13812 vmov.f16 r0, s1: NS_RH
13813 vcvt.f16 r0, s1: NS_RH
13814 vcvt.f16.s32 s2, s2, #29: NS_HFI
13815 vcvt.f16.s32 s2, s2: NS_HF
13816 */
13817 case SE_H:
13818 if (!(inst.operands[j].isreg
13819 && inst.operands[j].isvec
13820 && inst.operands[j].issingle
13821 && !inst.operands[j].isquad
13822 && ((inst.vectype.elems == 1
13823 && inst.vectype.el[0].size == 16)
13824 || (inst.vectype.elems > 1
13825 && inst.vectype.el[j].size == 16)
13826 || (inst.vectype.elems == 0
13827 && inst.operands[j].vectype.type != NT_invtype
13828 && inst.operands[j].vectype.size == 16))))
13829 matches = 0;
13830 break;
13831
477330fc
RM
13832 case SE_F:
13833 if (!(inst.operands[j].isreg
13834 && inst.operands[j].isvec
13835 && inst.operands[j].issingle
d54af2d0
RL
13836 && !inst.operands[j].isquad
13837 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13838 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13839 || (inst.vectype.elems == 0
13840 && (inst.operands[j].vectype.size == 32
13841 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
13842 matches = 0;
13843 break;
13844
13845 case SE_D:
13846 if (!(inst.operands[j].isreg
13847 && inst.operands[j].isvec
13848 && !inst.operands[j].isquad
13849 && !inst.operands[j].issingle))
13850 matches = 0;
13851 break;
13852
13853 case SE_R:
13854 if (!(inst.operands[j].isreg
13855 && !inst.operands[j].isvec))
13856 matches = 0;
13857 break;
13858
13859 case SE_Q:
13860 if (!(inst.operands[j].isreg
13861 && inst.operands[j].isvec
13862 && inst.operands[j].isquad
13863 && !inst.operands[j].issingle))
13864 matches = 0;
13865 break;
13866
13867 case SE_I:
13868 if (!(!inst.operands[j].isreg
13869 && !inst.operands[j].isscalar))
13870 matches = 0;
13871 break;
13872
13873 case SE_S:
13874 if (!(!inst.operands[j].isreg
13875 && inst.operands[j].isscalar))
13876 matches = 0;
13877 break;
13878
13879 case SE_L:
13880 break;
13881 }
3fde54a2
JZ
13882 if (!matches)
13883 break;
477330fc 13884 }
ad6cec43
MGD
13885 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13886 /* We've matched all the entries in the shape table, and we don't
13887 have any left over operands which have not been matched. */
477330fc 13888 break;
037e8744 13889 }
5f4273c7 13890
037e8744 13891 va_end (ap);
5287ad62 13892
037e8744
JB
13893 if (shape == NS_NULL && first_shape != NS_NULL)
13894 first_error (_("invalid instruction shape"));
5287ad62 13895
037e8744
JB
13896 return shape;
13897}
5287ad62 13898
037e8744
JB
13899/* True if SHAPE is predominantly a quadword operation (most of the time, this
13900 means the Q bit should be set). */
13901
13902static int
13903neon_quad (enum neon_shape shape)
13904{
13905 return neon_shape_class[shape] == SC_QUAD;
5287ad62 13906}
037e8744 13907
5287ad62
JB
13908static void
13909neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 13910 unsigned *g_size)
5287ad62
JB
13911{
13912 /* Allow modification to be made to types which are constrained to be
13913 based on the key element, based on bits set alongside N_EQK. */
13914 if ((typebits & N_EQK) != 0)
13915 {
13916 if ((typebits & N_HLF) != 0)
13917 *g_size /= 2;
13918 else if ((typebits & N_DBL) != 0)
13919 *g_size *= 2;
13920 if ((typebits & N_SGN) != 0)
13921 *g_type = NT_signed;
13922 else if ((typebits & N_UNS) != 0)
477330fc 13923 *g_type = NT_unsigned;
5287ad62 13924 else if ((typebits & N_INT) != 0)
477330fc 13925 *g_type = NT_integer;
5287ad62 13926 else if ((typebits & N_FLT) != 0)
477330fc 13927 *g_type = NT_float;
dcbf9037 13928 else if ((typebits & N_SIZ) != 0)
477330fc 13929 *g_type = NT_untyped;
5287ad62
JB
13930 }
13931}
5f4273c7 13932
5287ad62
JB
13933/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13934 operand type, i.e. the single type specified in a Neon instruction when it
13935 is the only one given. */
13936
13937static struct neon_type_el
13938neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13939{
13940 struct neon_type_el dest = *key;
5f4273c7 13941
9c2799c2 13942 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 13943
5287ad62
JB
13944 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13945
13946 return dest;
13947}
13948
13949/* Convert Neon type and size into compact bitmask representation. */
13950
13951static enum neon_type_mask
13952type_chk_of_el_type (enum neon_el_type type, unsigned size)
13953{
13954 switch (type)
13955 {
13956 case NT_untyped:
13957 switch (size)
477330fc
RM
13958 {
13959 case 8: return N_8;
13960 case 16: return N_16;
13961 case 32: return N_32;
13962 case 64: return N_64;
13963 default: ;
13964 }
5287ad62
JB
13965 break;
13966
13967 case NT_integer:
13968 switch (size)
477330fc
RM
13969 {
13970 case 8: return N_I8;
13971 case 16: return N_I16;
13972 case 32: return N_I32;
13973 case 64: return N_I64;
13974 default: ;
13975 }
5287ad62
JB
13976 break;
13977
13978 case NT_float:
037e8744 13979 switch (size)
477330fc 13980 {
8e79c3df 13981 case 16: return N_F16;
477330fc
RM
13982 case 32: return N_F32;
13983 case 64: return N_F64;
13984 default: ;
13985 }
5287ad62
JB
13986 break;
13987
13988 case NT_poly:
13989 switch (size)
477330fc
RM
13990 {
13991 case 8: return N_P8;
13992 case 16: return N_P16;
4f51b4bd 13993 case 64: return N_P64;
477330fc
RM
13994 default: ;
13995 }
5287ad62
JB
13996 break;
13997
13998 case NT_signed:
13999 switch (size)
477330fc
RM
14000 {
14001 case 8: return N_S8;
14002 case 16: return N_S16;
14003 case 32: return N_S32;
14004 case 64: return N_S64;
14005 default: ;
14006 }
5287ad62
JB
14007 break;
14008
14009 case NT_unsigned:
14010 switch (size)
477330fc
RM
14011 {
14012 case 8: return N_U8;
14013 case 16: return N_U16;
14014 case 32: return N_U32;
14015 case 64: return N_U64;
14016 default: ;
14017 }
5287ad62
JB
14018 break;
14019
14020 default: ;
14021 }
5f4273c7 14022
5287ad62
JB
14023 return N_UTYP;
14024}
14025
14026/* Convert compact Neon bitmask type representation to a type and size. Only
14027 handles the case where a single bit is set in the mask. */
14028
dcbf9037 14029static int
5287ad62 14030el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14031 enum neon_type_mask mask)
5287ad62 14032{
dcbf9037
JB
14033 if ((mask & N_EQK) != 0)
14034 return FAIL;
14035
5287ad62
JB
14036 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14037 *size = 8;
c70a8987 14038 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14039 *size = 16;
dcbf9037 14040 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14041 *size = 32;
4f51b4bd 14042 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14043 *size = 64;
dcbf9037
JB
14044 else
14045 return FAIL;
14046
5287ad62
JB
14047 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14048 *type = NT_signed;
dcbf9037 14049 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14050 *type = NT_unsigned;
dcbf9037 14051 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14052 *type = NT_integer;
dcbf9037 14053 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14054 *type = NT_untyped;
4f51b4bd 14055 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14056 *type = NT_poly;
d54af2d0 14057 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14058 *type = NT_float;
dcbf9037
JB
14059 else
14060 return FAIL;
5f4273c7 14061
dcbf9037 14062 return SUCCESS;
5287ad62
JB
14063}
14064
14065/* Modify a bitmask of allowed types. This is only needed for type
14066 relaxation. */
14067
14068static unsigned
14069modify_types_allowed (unsigned allowed, unsigned mods)
14070{
14071 unsigned size;
14072 enum neon_el_type type;
14073 unsigned destmask;
14074 int i;
5f4273c7 14075
5287ad62 14076 destmask = 0;
5f4273c7 14077
5287ad62
JB
14078 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14079 {
21d799b5 14080 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14081 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14082 {
14083 neon_modify_type_size (mods, &type, &size);
14084 destmask |= type_chk_of_el_type (type, size);
14085 }
5287ad62 14086 }
5f4273c7 14087
5287ad62
JB
14088 return destmask;
14089}
14090
14091/* Check type and return type classification.
14092 The manual states (paraphrase): If one datatype is given, it indicates the
14093 type given in:
14094 - the second operand, if there is one
14095 - the operand, if there is no second operand
14096 - the result, if there are no operands.
14097 This isn't quite good enough though, so we use a concept of a "key" datatype
14098 which is set on a per-instruction basis, which is the one which matters when
14099 only one data type is written.
14100 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14101 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14102
14103static struct neon_type_el
14104neon_check_type (unsigned els, enum neon_shape ns, ...)
14105{
14106 va_list ap;
14107 unsigned i, pass, key_el = 0;
14108 unsigned types[NEON_MAX_TYPE_ELS];
14109 enum neon_el_type k_type = NT_invtype;
14110 unsigned k_size = -1u;
14111 struct neon_type_el badtype = {NT_invtype, -1};
14112 unsigned key_allowed = 0;
14113
14114 /* Optional registers in Neon instructions are always (not) in operand 1.
14115 Fill in the missing operand here, if it was omitted. */
14116 if (els > 1 && !inst.operands[1].present)
14117 inst.operands[1] = inst.operands[0];
14118
14119 /* Suck up all the varargs. */
14120 va_start (ap, ns);
14121 for (i = 0; i < els; i++)
14122 {
14123 unsigned thisarg = va_arg (ap, unsigned);
14124 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14125 {
14126 va_end (ap);
14127 return badtype;
14128 }
5287ad62
JB
14129 types[i] = thisarg;
14130 if ((thisarg & N_KEY) != 0)
477330fc 14131 key_el = i;
5287ad62
JB
14132 }
14133 va_end (ap);
14134
dcbf9037
JB
14135 if (inst.vectype.elems > 0)
14136 for (i = 0; i < els; i++)
14137 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14138 {
14139 first_error (_("types specified in both the mnemonic and operands"));
14140 return badtype;
14141 }
dcbf9037 14142
5287ad62
JB
14143 /* Duplicate inst.vectype elements here as necessary.
14144 FIXME: No idea if this is exactly the same as the ARM assembler,
14145 particularly when an insn takes one register and one non-register
14146 operand. */
14147 if (inst.vectype.elems == 1 && els > 1)
14148 {
14149 unsigned j;
14150 inst.vectype.elems = els;
14151 inst.vectype.el[key_el] = inst.vectype.el[0];
14152 for (j = 0; j < els; j++)
477330fc
RM
14153 if (j != key_el)
14154 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14155 types[j]);
dcbf9037
JB
14156 }
14157 else if (inst.vectype.elems == 0 && els > 0)
14158 {
14159 unsigned j;
14160 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14161 after each operand. We allow some flexibility here; as long as the
14162 "key" operand has a type, we can infer the others. */
dcbf9037 14163 for (j = 0; j < els; j++)
477330fc
RM
14164 if (inst.operands[j].vectype.type != NT_invtype)
14165 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14166
14167 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14168 {
14169 for (j = 0; j < els; j++)
14170 if (inst.operands[j].vectype.type == NT_invtype)
14171 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14172 types[j]);
14173 }
dcbf9037 14174 else
477330fc
RM
14175 {
14176 first_error (_("operand types can't be inferred"));
14177 return badtype;
14178 }
5287ad62
JB
14179 }
14180 else if (inst.vectype.elems != els)
14181 {
dcbf9037 14182 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14183 return badtype;
14184 }
14185
14186 for (pass = 0; pass < 2; pass++)
14187 {
14188 for (i = 0; i < els; i++)
477330fc
RM
14189 {
14190 unsigned thisarg = types[i];
14191 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14192 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14193 enum neon_el_type g_type = inst.vectype.el[i].type;
14194 unsigned g_size = inst.vectype.el[i].size;
14195
14196 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14197 integer types if sign-specific variants are unavailable. */
477330fc 14198 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14199 && (types_allowed & N_SU_ALL) == 0)
14200 g_type = NT_integer;
14201
477330fc 14202 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14203 them. Some instructions only care about signs for some element
14204 sizes, so handle that properly. */
477330fc 14205 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14206 && ((g_size == 8 && (types_allowed & N_8) != 0)
14207 || (g_size == 16 && (types_allowed & N_16) != 0)
14208 || (g_size == 32 && (types_allowed & N_32) != 0)
14209 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14210 g_type = NT_untyped;
14211
477330fc
RM
14212 if (pass == 0)
14213 {
14214 if ((thisarg & N_KEY) != 0)
14215 {
14216 k_type = g_type;
14217 k_size = g_size;
14218 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14219
14220 /* Check architecture constraint on FP16 extension. */
14221 if (k_size == 16
14222 && k_type == NT_float
14223 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14224 {
14225 inst.error = _(BAD_FP16);
14226 return badtype;
14227 }
477330fc
RM
14228 }
14229 }
14230 else
14231 {
14232 if ((thisarg & N_VFP) != 0)
14233 {
14234 enum neon_shape_el regshape;
14235 unsigned regwidth, match;
99b253c5
NC
14236
14237 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14238 if (ns == NS_NULL)
14239 {
14240 first_error (_("invalid instruction shape"));
14241 return badtype;
14242 }
477330fc
RM
14243 regshape = neon_shape_tab[ns].el[i];
14244 regwidth = neon_shape_el_size[regshape];
14245
14246 /* In VFP mode, operands must match register widths. If we
14247 have a key operand, use its width, else use the width of
14248 the current operand. */
14249 if (k_size != -1u)
14250 match = k_size;
14251 else
14252 match = g_size;
14253
9db2f6b4
RL
14254 /* FP16 will use a single precision register. */
14255 if (regwidth == 32 && match == 16)
14256 {
14257 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14258 match = regwidth;
14259 else
14260 {
14261 inst.error = _(BAD_FP16);
14262 return badtype;
14263 }
14264 }
14265
477330fc
RM
14266 if (regwidth != match)
14267 {
14268 first_error (_("operand size must match register width"));
14269 return badtype;
14270 }
14271 }
14272
14273 if ((thisarg & N_EQK) == 0)
14274 {
14275 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14276
14277 if ((given_type & types_allowed) == 0)
14278 {
14279 first_error (_("bad type in Neon instruction"));
14280 return badtype;
14281 }
14282 }
14283 else
14284 {
14285 enum neon_el_type mod_k_type = k_type;
14286 unsigned mod_k_size = k_size;
14287 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14288 if (g_type != mod_k_type || g_size != mod_k_size)
14289 {
14290 first_error (_("inconsistent types in Neon instruction"));
14291 return badtype;
14292 }
14293 }
14294 }
14295 }
5287ad62
JB
14296 }
14297
14298 return inst.vectype.el[key_el];
14299}
14300
037e8744 14301/* Neon-style VFP instruction forwarding. */
5287ad62 14302
037e8744
JB
14303/* Thumb VFP instructions have 0xE in the condition field. */
14304
14305static void
14306do_vfp_cond_or_thumb (void)
5287ad62 14307{
88714cb8
DG
14308 inst.is_neon = 1;
14309
5287ad62 14310 if (thumb_mode)
037e8744 14311 inst.instruction |= 0xe0000000;
5287ad62 14312 else
037e8744 14313 inst.instruction |= inst.cond << 28;
5287ad62
JB
14314}
14315
037e8744
JB
14316/* Look up and encode a simple mnemonic, for use as a helper function for the
14317 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14318 etc. It is assumed that operand parsing has already been done, and that the
14319 operands are in the form expected by the given opcode (this isn't necessarily
14320 the same as the form in which they were parsed, hence some massaging must
14321 take place before this function is called).
14322 Checks current arch version against that in the looked-up opcode. */
5287ad62 14323
037e8744
JB
14324static void
14325do_vfp_nsyn_opcode (const char *opname)
5287ad62 14326{
037e8744 14327 const struct asm_opcode *opcode;
5f4273c7 14328
21d799b5 14329 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 14330
037e8744
JB
14331 if (!opcode)
14332 abort ();
5287ad62 14333
037e8744 14334 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
14335 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14336 _(BAD_FPU));
5287ad62 14337
88714cb8
DG
14338 inst.is_neon = 1;
14339
037e8744
JB
14340 if (thumb_mode)
14341 {
14342 inst.instruction = opcode->tvalue;
14343 opcode->tencode ();
14344 }
14345 else
14346 {
14347 inst.instruction = (inst.cond << 28) | opcode->avalue;
14348 opcode->aencode ();
14349 }
14350}
5287ad62
JB
14351
14352static void
037e8744 14353do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 14354{
037e8744
JB
14355 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14356
9db2f6b4 14357 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14358 {
14359 if (is_add)
477330fc 14360 do_vfp_nsyn_opcode ("fadds");
037e8744 14361 else
477330fc 14362 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
14363
14364 /* ARMv8.2 fp16 instruction. */
14365 if (rs == NS_HHH)
14366 do_scalar_fp16_v82_encode ();
037e8744
JB
14367 }
14368 else
14369 {
14370 if (is_add)
477330fc 14371 do_vfp_nsyn_opcode ("faddd");
037e8744 14372 else
477330fc 14373 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
14374 }
14375}
14376
14377/* Check operand types to see if this is a VFP instruction, and if so call
14378 PFN (). */
14379
14380static int
14381try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14382{
14383 enum neon_shape rs;
14384 struct neon_type_el et;
14385
14386 switch (args)
14387 {
14388 case 2:
9db2f6b4
RL
14389 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14390 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 14391 break;
5f4273c7 14392
037e8744 14393 case 3:
9db2f6b4
RL
14394 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14395 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14396 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
14397 break;
14398
14399 default:
14400 abort ();
14401 }
14402
14403 if (et.type != NT_invtype)
14404 {
14405 pfn (rs);
14406 return SUCCESS;
14407 }
037e8744 14408
99b253c5 14409 inst.error = NULL;
037e8744
JB
14410 return FAIL;
14411}
14412
14413static void
14414do_vfp_nsyn_mla_mls (enum neon_shape rs)
14415{
14416 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 14417
9db2f6b4 14418 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14419 {
14420 if (is_mla)
477330fc 14421 do_vfp_nsyn_opcode ("fmacs");
037e8744 14422 else
477330fc 14423 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
14424
14425 /* ARMv8.2 fp16 instruction. */
14426 if (rs == NS_HHH)
14427 do_scalar_fp16_v82_encode ();
037e8744
JB
14428 }
14429 else
14430 {
14431 if (is_mla)
477330fc 14432 do_vfp_nsyn_opcode ("fmacd");
037e8744 14433 else
477330fc 14434 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
14435 }
14436}
14437
62f3b8c8
PB
14438static void
14439do_vfp_nsyn_fma_fms (enum neon_shape rs)
14440{
14441 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14442
9db2f6b4 14443 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
14444 {
14445 if (is_fma)
477330fc 14446 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 14447 else
477330fc 14448 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
14449
14450 /* ARMv8.2 fp16 instruction. */
14451 if (rs == NS_HHH)
14452 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
14453 }
14454 else
14455 {
14456 if (is_fma)
477330fc 14457 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 14458 else
477330fc 14459 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
14460 }
14461}
14462
037e8744
JB
14463static void
14464do_vfp_nsyn_mul (enum neon_shape rs)
14465{
9db2f6b4
RL
14466 if (rs == NS_FFF || rs == NS_HHH)
14467 {
14468 do_vfp_nsyn_opcode ("fmuls");
14469
14470 /* ARMv8.2 fp16 instruction. */
14471 if (rs == NS_HHH)
14472 do_scalar_fp16_v82_encode ();
14473 }
037e8744
JB
14474 else
14475 do_vfp_nsyn_opcode ("fmuld");
14476}
14477
14478static void
14479do_vfp_nsyn_abs_neg (enum neon_shape rs)
14480{
14481 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 14482 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 14483
9db2f6b4 14484 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
14485 {
14486 if (is_neg)
477330fc 14487 do_vfp_nsyn_opcode ("fnegs");
037e8744 14488 else
477330fc 14489 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
14490
14491 /* ARMv8.2 fp16 instruction. */
14492 if (rs == NS_HH)
14493 do_scalar_fp16_v82_encode ();
037e8744
JB
14494 }
14495 else
14496 {
14497 if (is_neg)
477330fc 14498 do_vfp_nsyn_opcode ("fnegd");
037e8744 14499 else
477330fc 14500 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
14501 }
14502}
14503
14504/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14505 insns belong to Neon, and are handled elsewhere. */
14506
14507static void
14508do_vfp_nsyn_ldm_stm (int is_dbmode)
14509{
14510 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14511 if (is_ldm)
14512 {
14513 if (is_dbmode)
477330fc 14514 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 14515 else
477330fc 14516 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
14517 }
14518 else
14519 {
14520 if (is_dbmode)
477330fc 14521 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 14522 else
477330fc 14523 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
14524 }
14525}
14526
037e8744
JB
14527static void
14528do_vfp_nsyn_sqrt (void)
14529{
9db2f6b4
RL
14530 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14531 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14532
9db2f6b4
RL
14533 if (rs == NS_FF || rs == NS_HH)
14534 {
14535 do_vfp_nsyn_opcode ("fsqrts");
14536
14537 /* ARMv8.2 fp16 instruction. */
14538 if (rs == NS_HH)
14539 do_scalar_fp16_v82_encode ();
14540 }
037e8744
JB
14541 else
14542 do_vfp_nsyn_opcode ("fsqrtd");
14543}
14544
14545static void
14546do_vfp_nsyn_div (void)
14547{
9db2f6b4 14548 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14549 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14550 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14551
9db2f6b4
RL
14552 if (rs == NS_FFF || rs == NS_HHH)
14553 {
14554 do_vfp_nsyn_opcode ("fdivs");
14555
14556 /* ARMv8.2 fp16 instruction. */
14557 if (rs == NS_HHH)
14558 do_scalar_fp16_v82_encode ();
14559 }
037e8744
JB
14560 else
14561 do_vfp_nsyn_opcode ("fdivd");
14562}
14563
14564static void
14565do_vfp_nsyn_nmul (void)
14566{
9db2f6b4 14567 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14568 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14569 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14570
9db2f6b4 14571 if (rs == NS_FFF || rs == NS_HHH)
037e8744 14572 {
88714cb8 14573 NEON_ENCODE (SINGLE, inst);
037e8744 14574 do_vfp_sp_dyadic ();
9db2f6b4
RL
14575
14576 /* ARMv8.2 fp16 instruction. */
14577 if (rs == NS_HHH)
14578 do_scalar_fp16_v82_encode ();
037e8744
JB
14579 }
14580 else
14581 {
88714cb8 14582 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
14583 do_vfp_dp_rd_rn_rm ();
14584 }
14585 do_vfp_cond_or_thumb ();
9db2f6b4 14586
037e8744
JB
14587}
14588
14589static void
14590do_vfp_nsyn_cmp (void)
14591{
9db2f6b4 14592 enum neon_shape rs;
037e8744
JB
14593 if (inst.operands[1].isreg)
14594 {
9db2f6b4
RL
14595 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14596 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14597
9db2f6b4 14598 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
14599 {
14600 NEON_ENCODE (SINGLE, inst);
14601 do_vfp_sp_monadic ();
14602 }
037e8744 14603 else
477330fc
RM
14604 {
14605 NEON_ENCODE (DOUBLE, inst);
14606 do_vfp_dp_rd_rm ();
14607 }
037e8744
JB
14608 }
14609 else
14610 {
9db2f6b4
RL
14611 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14612 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
14613
14614 switch (inst.instruction & 0x0fffffff)
477330fc
RM
14615 {
14616 case N_MNEM_vcmp:
14617 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14618 break;
14619 case N_MNEM_vcmpe:
14620 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14621 break;
14622 default:
14623 abort ();
14624 }
5f4273c7 14625
9db2f6b4 14626 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
14627 {
14628 NEON_ENCODE (SINGLE, inst);
14629 do_vfp_sp_compare_z ();
14630 }
037e8744 14631 else
477330fc
RM
14632 {
14633 NEON_ENCODE (DOUBLE, inst);
14634 do_vfp_dp_rd ();
14635 }
037e8744
JB
14636 }
14637 do_vfp_cond_or_thumb ();
9db2f6b4
RL
14638
14639 /* ARMv8.2 fp16 instruction. */
14640 if (rs == NS_HI || rs == NS_HH)
14641 do_scalar_fp16_v82_encode ();
037e8744
JB
14642}
14643
14644static void
14645nsyn_insert_sp (void)
14646{
14647 inst.operands[1] = inst.operands[0];
14648 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 14649 inst.operands[0].reg = REG_SP;
037e8744
JB
14650 inst.operands[0].isreg = 1;
14651 inst.operands[0].writeback = 1;
14652 inst.operands[0].present = 1;
14653}
14654
14655static void
14656do_vfp_nsyn_push (void)
14657{
14658 nsyn_insert_sp ();
b126985e
NC
14659
14660 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14661 _("register list must contain at least 1 and at most 16 "
14662 "registers"));
14663
037e8744
JB
14664 if (inst.operands[1].issingle)
14665 do_vfp_nsyn_opcode ("fstmdbs");
14666 else
14667 do_vfp_nsyn_opcode ("fstmdbd");
14668}
14669
14670static void
14671do_vfp_nsyn_pop (void)
14672{
14673 nsyn_insert_sp ();
b126985e
NC
14674
14675 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14676 _("register list must contain at least 1 and at most 16 "
14677 "registers"));
14678
037e8744 14679 if (inst.operands[1].issingle)
22b5b651 14680 do_vfp_nsyn_opcode ("fldmias");
037e8744 14681 else
22b5b651 14682 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
14683}
14684
14685/* Fix up Neon data-processing instructions, ORing in the correct bits for
14686 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14687
88714cb8
DG
14688static void
14689neon_dp_fixup (struct arm_it* insn)
037e8744 14690{
88714cb8
DG
14691 unsigned int i = insn->instruction;
14692 insn->is_neon = 1;
14693
037e8744
JB
14694 if (thumb_mode)
14695 {
14696 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14697 if (i & (1 << 24))
477330fc 14698 i |= 1 << 28;
5f4273c7 14699
037e8744 14700 i &= ~(1 << 24);
5f4273c7 14701
037e8744
JB
14702 i |= 0xef000000;
14703 }
14704 else
14705 i |= 0xf2000000;
5f4273c7 14706
88714cb8 14707 insn->instruction = i;
037e8744
JB
14708}
14709
14710/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14711 (0, 1, 2, 3). */
14712
14713static unsigned
14714neon_logbits (unsigned x)
14715{
14716 return ffs (x) - 4;
14717}
14718
14719#define LOW4(R) ((R) & 0xf)
14720#define HI1(R) (((R) >> 4) & 1)
14721
14722/* Encode insns with bit pattern:
14723
14724 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14725 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 14726
037e8744
JB
14727 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14728 different meaning for some instruction. */
14729
14730static void
14731neon_three_same (int isquad, int ubit, int size)
14732{
14733 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14734 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14735 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14736 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14737 inst.instruction |= LOW4 (inst.operands[2].reg);
14738 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14739 inst.instruction |= (isquad != 0) << 6;
14740 inst.instruction |= (ubit != 0) << 24;
14741 if (size != -1)
14742 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14743
88714cb8 14744 neon_dp_fixup (&inst);
037e8744
JB
14745}
14746
14747/* Encode instructions of the form:
14748
14749 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14750 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
14751
14752 Don't write size if SIZE == -1. */
14753
14754static void
14755neon_two_same (int qbit, int ubit, int size)
14756{
14757 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14758 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14759 inst.instruction |= LOW4 (inst.operands[1].reg);
14760 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14761 inst.instruction |= (qbit != 0) << 6;
14762 inst.instruction |= (ubit != 0) << 24;
14763
14764 if (size != -1)
14765 inst.instruction |= neon_logbits (size) << 18;
14766
88714cb8 14767 neon_dp_fixup (&inst);
5287ad62
JB
14768}
14769
14770/* Neon instruction encoders, in approximate order of appearance. */
14771
14772static void
14773do_neon_dyadic_i_su (void)
14774{
037e8744 14775 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14776 struct neon_type_el et = neon_check_type (3, rs,
14777 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 14778 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14779}
14780
14781static void
14782do_neon_dyadic_i64_su (void)
14783{
037e8744 14784 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14785 struct neon_type_el et = neon_check_type (3, rs,
14786 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 14787 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14788}
14789
14790static void
14791neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 14792 unsigned immbits)
5287ad62
JB
14793{
14794 unsigned size = et.size >> 3;
14795 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14796 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14797 inst.instruction |= LOW4 (inst.operands[1].reg);
14798 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14799 inst.instruction |= (isquad != 0) << 6;
14800 inst.instruction |= immbits << 16;
14801 inst.instruction |= (size >> 3) << 7;
14802 inst.instruction |= (size & 0x7) << 19;
14803 if (write_ubit)
14804 inst.instruction |= (uval != 0) << 24;
14805
88714cb8 14806 neon_dp_fixup (&inst);
5287ad62
JB
14807}
14808
14809static void
14810do_neon_shl_imm (void)
14811{
14812 if (!inst.operands[2].isreg)
14813 {
037e8744 14814 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14815 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
14816 int imm = inst.operands[2].imm;
14817
14818 constraint (imm < 0 || (unsigned)imm >= et.size,
14819 _("immediate out of range for shift"));
88714cb8 14820 NEON_ENCODE (IMMED, inst);
cb3b1e65 14821 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14822 }
14823 else
14824 {
037e8744 14825 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14826 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14827 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14828 unsigned int tmp;
14829
14830 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
14831 vshl.xx Dd, Dm, Dn
14832 whereas other 3-register operations encoded by neon_three_same have
14833 syntax like:
14834 vadd.xx Dd, Dn, Dm
14835 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14836 here. */
627907b7
JB
14837 tmp = inst.operands[2].reg;
14838 inst.operands[2].reg = inst.operands[1].reg;
14839 inst.operands[1].reg = tmp;
88714cb8 14840 NEON_ENCODE (INTEGER, inst);
037e8744 14841 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14842 }
14843}
14844
14845static void
14846do_neon_qshl_imm (void)
14847{
14848 if (!inst.operands[2].isreg)
14849 {
037e8744 14850 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14851 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 14852 int imm = inst.operands[2].imm;
627907b7 14853
cb3b1e65
JB
14854 constraint (imm < 0 || (unsigned)imm >= et.size,
14855 _("immediate out of range for shift"));
88714cb8 14856 NEON_ENCODE (IMMED, inst);
cb3b1e65 14857 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
14858 }
14859 else
14860 {
037e8744 14861 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14862 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14863 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14864 unsigned int tmp;
14865
14866 /* See note in do_neon_shl_imm. */
14867 tmp = inst.operands[2].reg;
14868 inst.operands[2].reg = inst.operands[1].reg;
14869 inst.operands[1].reg = tmp;
88714cb8 14870 NEON_ENCODE (INTEGER, inst);
037e8744 14871 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14872 }
14873}
14874
627907b7
JB
14875static void
14876do_neon_rshl (void)
14877{
14878 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14879 struct neon_type_el et = neon_check_type (3, rs,
14880 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14881 unsigned int tmp;
14882
14883 tmp = inst.operands[2].reg;
14884 inst.operands[2].reg = inst.operands[1].reg;
14885 inst.operands[1].reg = tmp;
14886 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14887}
14888
5287ad62
JB
14889static int
14890neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14891{
036dc3f7
PB
14892 /* Handle .I8 pseudo-instructions. */
14893 if (size == 8)
5287ad62 14894 {
5287ad62 14895 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
14896 FIXME is this the intended semantics? There doesn't seem much point in
14897 accepting .I8 if so. */
5287ad62
JB
14898 immediate |= immediate << 8;
14899 size = 16;
036dc3f7
PB
14900 }
14901
14902 if (size >= 32)
14903 {
14904 if (immediate == (immediate & 0x000000ff))
14905 {
14906 *immbits = immediate;
14907 return 0x1;
14908 }
14909 else if (immediate == (immediate & 0x0000ff00))
14910 {
14911 *immbits = immediate >> 8;
14912 return 0x3;
14913 }
14914 else if (immediate == (immediate & 0x00ff0000))
14915 {
14916 *immbits = immediate >> 16;
14917 return 0x5;
14918 }
14919 else if (immediate == (immediate & 0xff000000))
14920 {
14921 *immbits = immediate >> 24;
14922 return 0x7;
14923 }
14924 if ((immediate & 0xffff) != (immediate >> 16))
14925 goto bad_immediate;
14926 immediate &= 0xffff;
5287ad62
JB
14927 }
14928
14929 if (immediate == (immediate & 0x000000ff))
14930 {
14931 *immbits = immediate;
036dc3f7 14932 return 0x9;
5287ad62
JB
14933 }
14934 else if (immediate == (immediate & 0x0000ff00))
14935 {
14936 *immbits = immediate >> 8;
036dc3f7 14937 return 0xb;
5287ad62
JB
14938 }
14939
14940 bad_immediate:
dcbf9037 14941 first_error (_("immediate value out of range"));
5287ad62
JB
14942 return FAIL;
14943}
14944
5287ad62
JB
14945static void
14946do_neon_logic (void)
14947{
14948 if (inst.operands[2].present && inst.operands[2].isreg)
14949 {
037e8744 14950 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14951 neon_check_type (3, rs, N_IGNORE_TYPE);
14952 /* U bit and size field were set as part of the bitmask. */
88714cb8 14953 NEON_ENCODE (INTEGER, inst);
037e8744 14954 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14955 }
14956 else
14957 {
4316f0d2
DG
14958 const int three_ops_form = (inst.operands[2].present
14959 && !inst.operands[2].isreg);
14960 const int immoperand = (three_ops_form ? 2 : 1);
14961 enum neon_shape rs = (three_ops_form
14962 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14963 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744 14964 struct neon_type_el et = neon_check_type (2, rs,
477330fc 14965 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 14966 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
14967 unsigned immbits;
14968 int cmode;
5f4273c7 14969
5287ad62 14970 if (et.type == NT_invtype)
477330fc 14971 return;
5f4273c7 14972
4316f0d2
DG
14973 if (three_ops_form)
14974 constraint (inst.operands[0].reg != inst.operands[1].reg,
14975 _("first and second operands shall be the same register"));
14976
88714cb8 14977 NEON_ENCODE (IMMED, inst);
5287ad62 14978
4316f0d2 14979 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
14980 if (et.size == 64)
14981 {
14982 /* .i64 is a pseudo-op, so the immediate must be a repeating
14983 pattern. */
4316f0d2
DG
14984 if (immbits != (inst.operands[immoperand].regisimm ?
14985 inst.operands[immoperand].reg : 0))
036dc3f7
PB
14986 {
14987 /* Set immbits to an invalid constant. */
14988 immbits = 0xdeadbeef;
14989 }
14990 }
14991
5287ad62 14992 switch (opcode)
477330fc
RM
14993 {
14994 case N_MNEM_vbic:
14995 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14996 break;
14997
14998 case N_MNEM_vorr:
14999 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
15000 break;
15001
15002 case N_MNEM_vand:
15003 /* Pseudo-instruction for VBIC. */
15004 neon_invert_size (&immbits, 0, et.size);
15005 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
15006 break;
15007
15008 case N_MNEM_vorn:
15009 /* Pseudo-instruction for VORR. */
15010 neon_invert_size (&immbits, 0, et.size);
15011 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
15012 break;
15013
15014 default:
15015 abort ();
15016 }
5287ad62
JB
15017
15018 if (cmode == FAIL)
477330fc 15019 return;
5287ad62 15020
037e8744 15021 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15022 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15023 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15024 inst.instruction |= cmode << 8;
15025 neon_write_immbits (immbits);
5f4273c7 15026
88714cb8 15027 neon_dp_fixup (&inst);
5287ad62
JB
15028 }
15029}
15030
15031static void
15032do_neon_bitfield (void)
15033{
037e8744 15034 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 15035 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 15036 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
15037}
15038
15039static void
dcbf9037 15040neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 15041 unsigned destbits)
5287ad62 15042{
037e8744 15043 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 15044 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 15045 types | N_KEY);
5287ad62
JB
15046 if (et.type == NT_float)
15047 {
88714cb8 15048 NEON_ENCODE (FLOAT, inst);
cc933301 15049 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15050 }
15051 else
15052 {
88714cb8 15053 NEON_ENCODE (INTEGER, inst);
037e8744 15054 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
15055 }
15056}
15057
15058static void
15059do_neon_dyadic_if_su (void)
15060{
dcbf9037 15061 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
15062}
15063
15064static void
15065do_neon_dyadic_if_su_d (void)
15066{
15067 /* This version only allow D registers, but that constraint is enforced during
15068 operand parsing so we don't need to do anything extra here. */
dcbf9037 15069 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
15070}
15071
5287ad62
JB
15072static void
15073do_neon_dyadic_if_i_d (void)
15074{
428e3f1f
PB
15075 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15076 affected if we specify unsigned args. */
15077 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
15078}
15079
037e8744
JB
15080enum vfp_or_neon_is_neon_bits
15081{
15082 NEON_CHECK_CC = 1,
73924fbc
MGD
15083 NEON_CHECK_ARCH = 2,
15084 NEON_CHECK_ARCH8 = 4
037e8744
JB
15085};
15086
15087/* Call this function if an instruction which may have belonged to the VFP or
15088 Neon instruction sets, but turned out to be a Neon instruction (due to the
15089 operand types involved, etc.). We have to check and/or fix-up a couple of
15090 things:
15091
15092 - Make sure the user hasn't attempted to make a Neon instruction
15093 conditional.
15094 - Alter the value in the condition code field if necessary.
15095 - Make sure that the arch supports Neon instructions.
15096
15097 Which of these operations take place depends on bits from enum
15098 vfp_or_neon_is_neon_bits.
15099
15100 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
15101 current instruction's condition is COND_ALWAYS, the condition field is
15102 changed to inst.uncond_value. This is necessary because instructions shared
15103 between VFP and Neon may be conditional for the VFP variants only, and the
15104 unconditional Neon version must have, e.g., 0xF in the condition field. */
15105
15106static int
15107vfp_or_neon_is_neon (unsigned check)
15108{
15109 /* Conditions are always legal in Thumb mode (IT blocks). */
15110 if (!thumb_mode && (check & NEON_CHECK_CC))
15111 {
15112 if (inst.cond != COND_ALWAYS)
477330fc
RM
15113 {
15114 first_error (_(BAD_COND));
15115 return FAIL;
15116 }
037e8744 15117 if (inst.uncond_value != -1)
477330fc 15118 inst.instruction |= inst.uncond_value << 28;
037e8744 15119 }
5f4273c7 15120
037e8744 15121 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
15122 && !mark_feature_used (&fpu_neon_ext_v1))
15123 {
15124 first_error (_(BAD_FPU));
15125 return FAIL;
15126 }
15127
15128 if ((check & NEON_CHECK_ARCH8)
15129 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
15130 {
15131 first_error (_(BAD_FPU));
15132 return FAIL;
15133 }
5f4273c7 15134
037e8744
JB
15135 return SUCCESS;
15136}
15137
5287ad62
JB
15138static void
15139do_neon_addsub_if_i (void)
15140{
037e8744
JB
15141 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15142 return;
15143
15144 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15145 return;
15146
5287ad62
JB
15147 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15148 affected if we specify unsigned args. */
dcbf9037 15149 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
15150}
15151
15152/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15153 result to be:
15154 V<op> A,B (A is operand 0, B is operand 2)
15155 to mean:
15156 V<op> A,B,A
15157 not:
15158 V<op> A,B,B
15159 so handle that case specially. */
15160
15161static void
15162neon_exchange_operands (void)
15163{
5287ad62
JB
15164 if (inst.operands[1].present)
15165 {
e1fa0163
NC
15166 void *scratch = xmalloc (sizeof (inst.operands[0]));
15167
5287ad62
JB
15168 /* Swap operands[1] and operands[2]. */
15169 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15170 inst.operands[1] = inst.operands[2];
15171 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 15172 free (scratch);
5287ad62
JB
15173 }
15174 else
15175 {
15176 inst.operands[1] = inst.operands[2];
15177 inst.operands[2] = inst.operands[0];
15178 }
15179}
15180
15181static void
15182neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15183{
15184 if (inst.operands[2].isreg)
15185 {
15186 if (invert)
477330fc 15187 neon_exchange_operands ();
dcbf9037 15188 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
15189 }
15190 else
15191 {
037e8744 15192 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 15193 struct neon_type_el et = neon_check_type (2, rs,
477330fc 15194 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 15195
88714cb8 15196 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15197 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15198 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15199 inst.instruction |= LOW4 (inst.operands[1].reg);
15200 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15201 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15202 inst.instruction |= (et.type == NT_float) << 10;
15203 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15204
88714cb8 15205 neon_dp_fixup (&inst);
5287ad62
JB
15206 }
15207}
15208
15209static void
15210do_neon_cmp (void)
15211{
cc933301 15212 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
15213}
15214
15215static void
15216do_neon_cmp_inv (void)
15217{
cc933301 15218 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
15219}
15220
15221static void
15222do_neon_ceq (void)
15223{
15224 neon_compare (N_IF_32, N_IF_32, FALSE);
15225}
15226
15227/* For multiply instructions, we have the possibility of 16-bit or 32-bit
15228 scalars, which are encoded in 5 bits, M : Rm.
15229 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15230 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
15231 index in M.
15232
15233 Dot Product instructions are similar to multiply instructions except elsize
15234 should always be 32.
15235
15236 This function translates SCALAR, which is GAS's internal encoding of indexed
15237 scalar register, to raw encoding. There is also register and index range
15238 check based on ELSIZE. */
5287ad62
JB
15239
15240static unsigned
15241neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15242{
dcbf9037
JB
15243 unsigned regno = NEON_SCALAR_REG (scalar);
15244 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
15245
15246 switch (elsize)
15247 {
15248 case 16:
15249 if (regno > 7 || elno > 3)
477330fc 15250 goto bad_scalar;
5287ad62 15251 return regno | (elno << 3);
5f4273c7 15252
5287ad62
JB
15253 case 32:
15254 if (regno > 15 || elno > 1)
477330fc 15255 goto bad_scalar;
5287ad62
JB
15256 return regno | (elno << 4);
15257
15258 default:
15259 bad_scalar:
dcbf9037 15260 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
15261 }
15262
15263 return 0;
15264}
15265
15266/* Encode multiply / multiply-accumulate scalar instructions. */
15267
15268static void
15269neon_mul_mac (struct neon_type_el et, int ubit)
15270{
dcbf9037
JB
15271 unsigned scalar;
15272
15273 /* Give a more helpful error message if we have an invalid type. */
15274 if (et.type == NT_invtype)
15275 return;
5f4273c7 15276
dcbf9037 15277 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
15278 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15279 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15280 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15281 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15282 inst.instruction |= LOW4 (scalar);
15283 inst.instruction |= HI1 (scalar) << 5;
15284 inst.instruction |= (et.type == NT_float) << 8;
15285 inst.instruction |= neon_logbits (et.size) << 20;
15286 inst.instruction |= (ubit != 0) << 24;
15287
88714cb8 15288 neon_dp_fixup (&inst);
5287ad62
JB
15289}
15290
15291static void
15292do_neon_mac_maybe_scalar (void)
15293{
037e8744
JB
15294 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15295 return;
15296
15297 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15298 return;
15299
5287ad62
JB
15300 if (inst.operands[2].isscalar)
15301 {
037e8744 15302 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15303 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 15304 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 15305 NEON_ENCODE (SCALAR, inst);
037e8744 15306 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15307 }
15308 else
428e3f1f
PB
15309 {
15310 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15311 affected if we specify unsigned args. */
15312 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15313 }
5287ad62
JB
15314}
15315
62f3b8c8
PB
15316static void
15317do_neon_fmac (void)
15318{
15319 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15320 return;
15321
15322 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15323 return;
15324
15325 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15326}
15327
5287ad62
JB
15328static void
15329do_neon_tst (void)
15330{
037e8744 15331 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15332 struct neon_type_el et = neon_check_type (3, rs,
15333 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 15334 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15335}
15336
15337/* VMUL with 3 registers allows the P8 type. The scalar version supports the
15338 same types as the MAC equivalents. The polynomial type for this instruction
15339 is encoded the same as the integer type. */
15340
15341static void
15342do_neon_mul (void)
15343{
037e8744
JB
15344 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15345 return;
15346
15347 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15348 return;
15349
5287ad62
JB
15350 if (inst.operands[2].isscalar)
15351 do_neon_mac_maybe_scalar ();
15352 else
cc933301 15353 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
15354}
15355
15356static void
15357do_neon_qdmulh (void)
15358{
15359 if (inst.operands[2].isscalar)
15360 {
037e8744 15361 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15362 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15363 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15364 NEON_ENCODE (SCALAR, inst);
037e8744 15365 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15366 }
15367 else
15368 {
037e8744 15369 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15370 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15371 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15372 NEON_ENCODE (INTEGER, inst);
5287ad62 15373 /* The U bit (rounding) comes from bit mask. */
037e8744 15374 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15375 }
15376}
15377
643afb90
MW
15378static void
15379do_neon_qrdmlah (void)
15380{
15381 /* Check we're on the correct architecture. */
15382 if (!mark_feature_used (&fpu_neon_ext_armv8))
15383 inst.error =
15384 _("instruction form not available on this architecture.");
15385 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15386 {
15387 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15388 record_feature_use (&fpu_neon_ext_v8_1);
15389 }
15390
15391 if (inst.operands[2].isscalar)
15392 {
15393 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15394 struct neon_type_el et = neon_check_type (3, rs,
15395 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15396 NEON_ENCODE (SCALAR, inst);
15397 neon_mul_mac (et, neon_quad (rs));
15398 }
15399 else
15400 {
15401 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15402 struct neon_type_el et = neon_check_type (3, rs,
15403 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15404 NEON_ENCODE (INTEGER, inst);
15405 /* The U bit (rounding) comes from bit mask. */
15406 neon_three_same (neon_quad (rs), 0, et.size);
15407 }
15408}
15409
5287ad62
JB
15410static void
15411do_neon_fcmp_absolute (void)
15412{
037e8744 15413 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15414 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15415 N_F_16_32 | N_KEY);
5287ad62 15416 /* Size field comes from bit mask. */
cc933301 15417 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15418}
15419
15420static void
15421do_neon_fcmp_absolute_inv (void)
15422{
15423 neon_exchange_operands ();
15424 do_neon_fcmp_absolute ();
15425}
15426
15427static void
15428do_neon_step (void)
15429{
037e8744 15430 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15431 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15432 N_F_16_32 | N_KEY);
15433 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15434}
15435
15436static void
15437do_neon_abs_neg (void)
15438{
037e8744
JB
15439 enum neon_shape rs;
15440 struct neon_type_el et;
5f4273c7 15441
037e8744
JB
15442 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15443 return;
15444
15445 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15446 return;
15447
15448 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 15449 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 15450
5287ad62
JB
15451 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15452 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15453 inst.instruction |= LOW4 (inst.operands[1].reg);
15454 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15455 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15456 inst.instruction |= (et.type == NT_float) << 10;
15457 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15458
88714cb8 15459 neon_dp_fixup (&inst);
5287ad62
JB
15460}
15461
15462static void
15463do_neon_sli (void)
15464{
037e8744 15465 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15466 struct neon_type_el et = neon_check_type (2, rs,
15467 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15468 int imm = inst.operands[2].imm;
15469 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15470 _("immediate out of range for insert"));
037e8744 15471 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15472}
15473
15474static void
15475do_neon_sri (void)
15476{
037e8744 15477 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15478 struct neon_type_el et = neon_check_type (2, rs,
15479 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15480 int imm = inst.operands[2].imm;
15481 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15482 _("immediate out of range for insert"));
037e8744 15483 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
15484}
15485
15486static void
15487do_neon_qshlu_imm (void)
15488{
037e8744 15489 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15490 struct neon_type_el et = neon_check_type (2, rs,
15491 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15492 int imm = inst.operands[2].imm;
15493 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15494 _("immediate out of range for shift"));
5287ad62
JB
15495 /* Only encodes the 'U present' variant of the instruction.
15496 In this case, signed types have OP (bit 8) set to 0.
15497 Unsigned types have OP set to 1. */
15498 inst.instruction |= (et.type == NT_unsigned) << 8;
15499 /* The rest of the bits are the same as other immediate shifts. */
037e8744 15500 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15501}
15502
15503static void
15504do_neon_qmovn (void)
15505{
15506 struct neon_type_el et = neon_check_type (2, NS_DQ,
15507 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15508 /* Saturating move where operands can be signed or unsigned, and the
15509 destination has the same signedness. */
88714cb8 15510 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15511 if (et.type == NT_unsigned)
15512 inst.instruction |= 0xc0;
15513 else
15514 inst.instruction |= 0x80;
15515 neon_two_same (0, 1, et.size / 2);
15516}
15517
15518static void
15519do_neon_qmovun (void)
15520{
15521 struct neon_type_el et = neon_check_type (2, NS_DQ,
15522 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15523 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 15524 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15525 neon_two_same (0, 1, et.size / 2);
15526}
15527
15528static void
15529do_neon_rshift_sat_narrow (void)
15530{
15531 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15532 or unsigned. If operands are unsigned, results must also be unsigned. */
15533 struct neon_type_el et = neon_check_type (2, NS_DQI,
15534 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15535 int imm = inst.operands[2].imm;
15536 /* This gets the bounds check, size encoding and immediate bits calculation
15537 right. */
15538 et.size /= 2;
5f4273c7 15539
5287ad62
JB
15540 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15541 VQMOVN.I<size> <Dd>, <Qm>. */
15542 if (imm == 0)
15543 {
15544 inst.operands[2].present = 0;
15545 inst.instruction = N_MNEM_vqmovn;
15546 do_neon_qmovn ();
15547 return;
15548 }
5f4273c7 15549
5287ad62 15550 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15551 _("immediate out of range"));
5287ad62
JB
15552 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15553}
15554
15555static void
15556do_neon_rshift_sat_narrow_u (void)
15557{
15558 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15559 or unsigned. If operands are unsigned, results must also be unsigned. */
15560 struct neon_type_el et = neon_check_type (2, NS_DQI,
15561 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15562 int imm = inst.operands[2].imm;
15563 /* This gets the bounds check, size encoding and immediate bits calculation
15564 right. */
15565 et.size /= 2;
15566
15567 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15568 VQMOVUN.I<size> <Dd>, <Qm>. */
15569 if (imm == 0)
15570 {
15571 inst.operands[2].present = 0;
15572 inst.instruction = N_MNEM_vqmovun;
15573 do_neon_qmovun ();
15574 return;
15575 }
15576
15577 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15578 _("immediate out of range"));
5287ad62
JB
15579 /* FIXME: The manual is kind of unclear about what value U should have in
15580 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15581 must be 1. */
15582 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15583}
15584
15585static void
15586do_neon_movn (void)
15587{
15588 struct neon_type_el et = neon_check_type (2, NS_DQ,
15589 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 15590 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15591 neon_two_same (0, 1, et.size / 2);
15592}
15593
15594static void
15595do_neon_rshift_narrow (void)
15596{
15597 struct neon_type_el et = neon_check_type (2, NS_DQI,
15598 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15599 int imm = inst.operands[2].imm;
15600 /* This gets the bounds check, size encoding and immediate bits calculation
15601 right. */
15602 et.size /= 2;
5f4273c7 15603
5287ad62
JB
15604 /* If immediate is zero then we are a pseudo-instruction for
15605 VMOVN.I<size> <Dd>, <Qm> */
15606 if (imm == 0)
15607 {
15608 inst.operands[2].present = 0;
15609 inst.instruction = N_MNEM_vmovn;
15610 do_neon_movn ();
15611 return;
15612 }
5f4273c7 15613
5287ad62 15614 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15615 _("immediate out of range for narrowing operation"));
5287ad62
JB
15616 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15617}
15618
15619static void
15620do_neon_shll (void)
15621{
15622 /* FIXME: Type checking when lengthening. */
15623 struct neon_type_el et = neon_check_type (2, NS_QDI,
15624 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15625 unsigned imm = inst.operands[2].imm;
15626
15627 if (imm == et.size)
15628 {
15629 /* Maximum shift variant. */
88714cb8 15630 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15631 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15632 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15633 inst.instruction |= LOW4 (inst.operands[1].reg);
15634 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15635 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15636
88714cb8 15637 neon_dp_fixup (&inst);
5287ad62
JB
15638 }
15639 else
15640 {
15641 /* A more-specific type check for non-max versions. */
15642 et = neon_check_type (2, NS_QDI,
477330fc 15643 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 15644 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15645 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15646 }
15647}
15648
037e8744 15649/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
15650 the current instruction is. */
15651
6b9a8b67
MGD
15652#define CVT_FLAVOUR_VAR \
15653 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15654 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15655 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15656 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15657 /* Half-precision conversions. */ \
cc933301
JW
15658 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15659 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15660 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15661 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
15662 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15663 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
15664 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15665 Compared with single/double precision variants, only the co-processor \
15666 field is different, so the encoding flow is reused here. */ \
15667 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15668 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15669 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15670 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
15671 /* VFP instructions. */ \
15672 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15673 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15674 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15675 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15676 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15677 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15678 /* VFP instructions with bitshift. */ \
15679 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15680 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15681 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15682 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15683 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15684 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15685 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15686 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15687
15688#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15689 neon_cvt_flavour_##C,
15690
15691/* The different types of conversions we can do. */
15692enum neon_cvt_flavour
15693{
15694 CVT_FLAVOUR_VAR
15695 neon_cvt_flavour_invalid,
15696 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15697};
15698
15699#undef CVT_VAR
15700
15701static enum neon_cvt_flavour
15702get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 15703{
6b9a8b67
MGD
15704#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15705 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15706 if (et.type != NT_invtype) \
15707 { \
15708 inst.error = NULL; \
15709 return (neon_cvt_flavour_##C); \
5287ad62 15710 }
6b9a8b67 15711
5287ad62 15712 struct neon_type_el et;
037e8744 15713 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 15714 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
15715 /* The instruction versions which take an immediate take one register
15716 argument, which is extended to the width of the full register. Thus the
15717 "source" and "destination" registers must have the same width. Hack that
15718 here by making the size equal to the key (wider, in this case) operand. */
15719 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 15720
6b9a8b67
MGD
15721 CVT_FLAVOUR_VAR;
15722
15723 return neon_cvt_flavour_invalid;
5287ad62
JB
15724#undef CVT_VAR
15725}
15726
7e8e6784
MGD
15727enum neon_cvt_mode
15728{
15729 neon_cvt_mode_a,
15730 neon_cvt_mode_n,
15731 neon_cvt_mode_p,
15732 neon_cvt_mode_m,
15733 neon_cvt_mode_z,
30bdf752
MGD
15734 neon_cvt_mode_x,
15735 neon_cvt_mode_r
7e8e6784
MGD
15736};
15737
037e8744
JB
15738/* Neon-syntax VFP conversions. */
15739
5287ad62 15740static void
6b9a8b67 15741do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 15742{
037e8744 15743 const char *opname = 0;
5f4273c7 15744
d54af2d0
RL
15745 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15746 || rs == NS_FHI || rs == NS_HFI)
5287ad62 15747 {
037e8744
JB
15748 /* Conversions with immediate bitshift. */
15749 const char *enc[] =
477330fc 15750 {
6b9a8b67
MGD
15751#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15752 CVT_FLAVOUR_VAR
15753 NULL
15754#undef CVT_VAR
477330fc 15755 };
037e8744 15756
6b9a8b67 15757 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
15758 {
15759 opname = enc[flavour];
15760 constraint (inst.operands[0].reg != inst.operands[1].reg,
15761 _("operands 0 and 1 must be the same register"));
15762 inst.operands[1] = inst.operands[2];
15763 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15764 }
5287ad62
JB
15765 }
15766 else
15767 {
037e8744
JB
15768 /* Conversions without bitshift. */
15769 const char *enc[] =
477330fc 15770 {
6b9a8b67
MGD
15771#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15772 CVT_FLAVOUR_VAR
15773 NULL
15774#undef CVT_VAR
477330fc 15775 };
037e8744 15776
6b9a8b67 15777 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 15778 opname = enc[flavour];
037e8744
JB
15779 }
15780
15781 if (opname)
15782 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
15783
15784 /* ARMv8.2 fp16 VCVT instruction. */
15785 if (flavour == neon_cvt_flavour_s32_f16
15786 || flavour == neon_cvt_flavour_u32_f16
15787 || flavour == neon_cvt_flavour_f16_u32
15788 || flavour == neon_cvt_flavour_f16_s32)
15789 do_scalar_fp16_v82_encode ();
037e8744
JB
15790}
15791
15792static void
15793do_vfp_nsyn_cvtz (void)
15794{
d54af2d0 15795 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 15796 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
15797 const char *enc[] =
15798 {
6b9a8b67
MGD
15799#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15800 CVT_FLAVOUR_VAR
15801 NULL
15802#undef CVT_VAR
037e8744
JB
15803 };
15804
6b9a8b67 15805 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
15806 do_vfp_nsyn_opcode (enc[flavour]);
15807}
f31fef98 15808
037e8744 15809static void
bacebabc 15810do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
15811 enum neon_cvt_mode mode)
15812{
15813 int sz, op;
15814 int rm;
15815
a715796b
TG
15816 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15817 D register operands. */
15818 if (flavour == neon_cvt_flavour_s32_f64
15819 || flavour == neon_cvt_flavour_u32_f64)
15820 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15821 _(BAD_FPU));
15822
9db2f6b4
RL
15823 if (flavour == neon_cvt_flavour_s32_f16
15824 || flavour == neon_cvt_flavour_u32_f16)
15825 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15826 _(BAD_FP16));
15827
7e8e6784
MGD
15828 set_it_insn_type (OUTSIDE_IT_INSN);
15829
15830 switch (flavour)
15831 {
15832 case neon_cvt_flavour_s32_f64:
15833 sz = 1;
827f64ff 15834 op = 1;
7e8e6784
MGD
15835 break;
15836 case neon_cvt_flavour_s32_f32:
15837 sz = 0;
15838 op = 1;
15839 break;
9db2f6b4
RL
15840 case neon_cvt_flavour_s32_f16:
15841 sz = 0;
15842 op = 1;
15843 break;
7e8e6784
MGD
15844 case neon_cvt_flavour_u32_f64:
15845 sz = 1;
15846 op = 0;
15847 break;
15848 case neon_cvt_flavour_u32_f32:
15849 sz = 0;
15850 op = 0;
15851 break;
9db2f6b4
RL
15852 case neon_cvt_flavour_u32_f16:
15853 sz = 0;
15854 op = 0;
15855 break;
7e8e6784
MGD
15856 default:
15857 first_error (_("invalid instruction shape"));
15858 return;
15859 }
15860
15861 switch (mode)
15862 {
15863 case neon_cvt_mode_a: rm = 0; break;
15864 case neon_cvt_mode_n: rm = 1; break;
15865 case neon_cvt_mode_p: rm = 2; break;
15866 case neon_cvt_mode_m: rm = 3; break;
15867 default: first_error (_("invalid rounding mode")); return;
15868 }
15869
15870 NEON_ENCODE (FPV8, inst);
15871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15872 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15873 inst.instruction |= sz << 8;
9db2f6b4
RL
15874
15875 /* ARMv8.2 fp16 VCVT instruction. */
15876 if (flavour == neon_cvt_flavour_s32_f16
15877 ||flavour == neon_cvt_flavour_u32_f16)
15878 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
15879 inst.instruction |= op << 7;
15880 inst.instruction |= rm << 16;
15881 inst.instruction |= 0xf0000000;
15882 inst.is_neon = TRUE;
15883}
15884
15885static void
15886do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
15887{
15888 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
15889 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15890 NS_FH, NS_HF, NS_FHI, NS_HFI,
15891 NS_NULL);
6b9a8b67 15892 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 15893
cc933301
JW
15894 if (flavour == neon_cvt_flavour_invalid)
15895 return;
15896
e3e535bc 15897 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 15898 if (mode == neon_cvt_mode_z
e3e535bc 15899 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
15900 && (flavour == neon_cvt_flavour_s16_f16
15901 || flavour == neon_cvt_flavour_u16_f16
15902 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
15903 || flavour == neon_cvt_flavour_u32_f32
15904 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 15905 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
15906 && (rs == NS_FD || rs == NS_FF))
15907 {
15908 do_vfp_nsyn_cvtz ();
15909 return;
15910 }
15911
9db2f6b4
RL
15912 /* ARMv8.2 fp16 VCVT conversions. */
15913 if (mode == neon_cvt_mode_z
15914 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15915 && (flavour == neon_cvt_flavour_s32_f16
15916 || flavour == neon_cvt_flavour_u32_f16)
15917 && (rs == NS_FH))
15918 {
15919 do_vfp_nsyn_cvtz ();
15920 do_scalar_fp16_v82_encode ();
15921 return;
15922 }
15923
037e8744 15924 /* VFP rather than Neon conversions. */
6b9a8b67 15925 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 15926 {
7e8e6784
MGD
15927 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15928 do_vfp_nsyn_cvt (rs, flavour);
15929 else
15930 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15931
037e8744
JB
15932 return;
15933 }
15934
15935 switch (rs)
15936 {
15937 case NS_DDI:
15938 case NS_QQI:
15939 {
477330fc 15940 unsigned immbits;
cc933301
JW
15941 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15942 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 15943
477330fc
RM
15944 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15945 return;
037e8744 15946
477330fc
RM
15947 /* Fixed-point conversion with #0 immediate is encoded as an
15948 integer conversion. */
15949 if (inst.operands[2].present && inst.operands[2].imm == 0)
15950 goto int_encode;
477330fc
RM
15951 NEON_ENCODE (IMMED, inst);
15952 if (flavour != neon_cvt_flavour_invalid)
15953 inst.instruction |= enctab[flavour];
15954 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15955 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15956 inst.instruction |= LOW4 (inst.operands[1].reg);
15957 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15958 inst.instruction |= neon_quad (rs) << 6;
15959 inst.instruction |= 1 << 21;
cc933301
JW
15960 if (flavour < neon_cvt_flavour_s16_f16)
15961 {
15962 inst.instruction |= 1 << 21;
15963 immbits = 32 - inst.operands[2].imm;
15964 inst.instruction |= immbits << 16;
15965 }
15966 else
15967 {
15968 inst.instruction |= 3 << 20;
15969 immbits = 16 - inst.operands[2].imm;
15970 inst.instruction |= immbits << 16;
15971 inst.instruction &= ~(1 << 9);
15972 }
477330fc
RM
15973
15974 neon_dp_fixup (&inst);
037e8744
JB
15975 }
15976 break;
15977
15978 case NS_DD:
15979 case NS_QQ:
7e8e6784
MGD
15980 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15981 {
15982 NEON_ENCODE (FLOAT, inst);
15983 set_it_insn_type (OUTSIDE_IT_INSN);
15984
15985 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15986 return;
15987
15988 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15989 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15990 inst.instruction |= LOW4 (inst.operands[1].reg);
15991 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15992 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15993 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15994 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 15995 inst.instruction |= mode << 8;
cc933301
JW
15996 if (flavour == neon_cvt_flavour_u16_f16
15997 || flavour == neon_cvt_flavour_s16_f16)
15998 /* Mask off the original size bits and reencode them. */
15999 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
16000
7e8e6784
MGD
16001 if (thumb_mode)
16002 inst.instruction |= 0xfc000000;
16003 else
16004 inst.instruction |= 0xf0000000;
16005 }
16006 else
16007 {
037e8744 16008 int_encode:
7e8e6784 16009 {
cc933301
JW
16010 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
16011 0x100, 0x180, 0x0, 0x080};
037e8744 16012
7e8e6784 16013 NEON_ENCODE (INTEGER, inst);
037e8744 16014
7e8e6784
MGD
16015 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16016 return;
037e8744 16017
7e8e6784
MGD
16018 if (flavour != neon_cvt_flavour_invalid)
16019 inst.instruction |= enctab[flavour];
037e8744 16020
7e8e6784
MGD
16021 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16022 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16023 inst.instruction |= LOW4 (inst.operands[1].reg);
16024 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16025 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
16026 if (flavour >= neon_cvt_flavour_s16_f16
16027 && flavour <= neon_cvt_flavour_f16_u16)
16028 /* Half precision. */
16029 inst.instruction |= 1 << 18;
16030 else
16031 inst.instruction |= 2 << 18;
037e8744 16032
7e8e6784
MGD
16033 neon_dp_fixup (&inst);
16034 }
16035 }
16036 break;
037e8744 16037
8e79c3df
CM
16038 /* Half-precision conversions for Advanced SIMD -- neon. */
16039 case NS_QD:
16040 case NS_DQ:
bc52d49c
MM
16041 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16042 return;
8e79c3df
CM
16043
16044 if ((rs == NS_DQ)
16045 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
16046 {
16047 as_bad (_("operand size must match register width"));
16048 break;
16049 }
16050
16051 if ((rs == NS_QD)
16052 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
16053 {
16054 as_bad (_("operand size must match register width"));
16055 break;
16056 }
16057
16058 if (rs == NS_DQ)
477330fc 16059 inst.instruction = 0x3b60600;
8e79c3df
CM
16060 else
16061 inst.instruction = 0x3b60700;
16062
16063 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16064 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16065 inst.instruction |= LOW4 (inst.operands[1].reg);
16066 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 16067 neon_dp_fixup (&inst);
8e79c3df
CM
16068 break;
16069
037e8744
JB
16070 default:
16071 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
16072 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
16073 do_vfp_nsyn_cvt (rs, flavour);
16074 else
16075 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 16076 }
5287ad62
JB
16077}
16078
e3e535bc
NC
16079static void
16080do_neon_cvtr (void)
16081{
7e8e6784 16082 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
16083}
16084
16085static void
16086do_neon_cvt (void)
16087{
7e8e6784
MGD
16088 do_neon_cvt_1 (neon_cvt_mode_z);
16089}
16090
16091static void
16092do_neon_cvta (void)
16093{
16094 do_neon_cvt_1 (neon_cvt_mode_a);
16095}
16096
16097static void
16098do_neon_cvtn (void)
16099{
16100 do_neon_cvt_1 (neon_cvt_mode_n);
16101}
16102
16103static void
16104do_neon_cvtp (void)
16105{
16106 do_neon_cvt_1 (neon_cvt_mode_p);
16107}
16108
16109static void
16110do_neon_cvtm (void)
16111{
16112 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
16113}
16114
8e79c3df 16115static void
c70a8987 16116do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 16117{
c70a8987
MGD
16118 if (is_double)
16119 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 16120
c70a8987
MGD
16121 encode_arm_vfp_reg (inst.operands[0].reg,
16122 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
16123 encode_arm_vfp_reg (inst.operands[1].reg,
16124 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
16125 inst.instruction |= to ? 0x10000 : 0;
16126 inst.instruction |= t ? 0x80 : 0;
16127 inst.instruction |= is_double ? 0x100 : 0;
16128 do_vfp_cond_or_thumb ();
16129}
8e79c3df 16130
c70a8987
MGD
16131static void
16132do_neon_cvttb_1 (bfd_boolean t)
16133{
d54af2d0
RL
16134 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
16135 NS_DF, NS_DH, NS_NULL);
8e79c3df 16136
c70a8987
MGD
16137 if (rs == NS_NULL)
16138 return;
16139 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
16140 {
16141 inst.error = NULL;
16142 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16143 }
16144 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16145 {
16146 inst.error = NULL;
16147 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16148 }
16149 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16150 {
a715796b
TG
16151 /* The VCVTB and VCVTT instructions with D-register operands
16152 don't work for SP only targets. */
16153 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16154 _(BAD_FPU));
16155
c70a8987
MGD
16156 inst.error = NULL;
16157 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16158 }
16159 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16160 {
a715796b
TG
16161 /* The VCVTB and VCVTT instructions with D-register operands
16162 don't work for SP only targets. */
16163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16164 _(BAD_FPU));
16165
c70a8987
MGD
16166 inst.error = NULL;
16167 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16168 }
16169 else
16170 return;
16171}
16172
16173static void
16174do_neon_cvtb (void)
16175{
16176 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
16177}
16178
16179
16180static void
16181do_neon_cvtt (void)
16182{
c70a8987 16183 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
16184}
16185
5287ad62
JB
16186static void
16187neon_move_immediate (void)
16188{
037e8744
JB
16189 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16190 struct neon_type_el et = neon_check_type (2, rs,
16191 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 16192 unsigned immlo, immhi = 0, immbits;
c96612cc 16193 int op, cmode, float_p;
5287ad62 16194
037e8744 16195 constraint (et.type == NT_invtype,
477330fc 16196 _("operand size must be specified for immediate VMOV"));
037e8744 16197
5287ad62
JB
16198 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16199 op = (inst.instruction & (1 << 5)) != 0;
16200
16201 immlo = inst.operands[1].imm;
16202 if (inst.operands[1].regisimm)
16203 immhi = inst.operands[1].reg;
16204
16205 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 16206 _("immediate has bits set outside the operand size"));
5287ad62 16207
c96612cc
JB
16208 float_p = inst.operands[1].immisfloat;
16209
16210 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 16211 et.size, et.type)) == FAIL)
5287ad62
JB
16212 {
16213 /* Invert relevant bits only. */
16214 neon_invert_size (&immlo, &immhi, et.size);
16215 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
16216 with one or the other; those cases are caught by
16217 neon_cmode_for_move_imm. */
5287ad62 16218 op = !op;
c96612cc
JB
16219 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16220 &op, et.size, et.type)) == FAIL)
477330fc
RM
16221 {
16222 first_error (_("immediate out of range"));
16223 return;
16224 }
5287ad62
JB
16225 }
16226
16227 inst.instruction &= ~(1 << 5);
16228 inst.instruction |= op << 5;
16229
16230 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16231 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 16232 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16233 inst.instruction |= cmode << 8;
16234
16235 neon_write_immbits (immbits);
16236}
16237
16238static void
16239do_neon_mvn (void)
16240{
16241 if (inst.operands[1].isreg)
16242 {
037e8744 16243 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 16244
88714cb8 16245 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16246 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16247 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16248 inst.instruction |= LOW4 (inst.operands[1].reg);
16249 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16250 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16251 }
16252 else
16253 {
88714cb8 16254 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16255 neon_move_immediate ();
16256 }
16257
88714cb8 16258 neon_dp_fixup (&inst);
5287ad62
JB
16259}
16260
16261/* Encode instructions of form:
16262
16263 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 16264 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
16265
16266static void
16267neon_mixed_length (struct neon_type_el et, unsigned size)
16268{
16269 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16270 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16271 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16272 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16273 inst.instruction |= LOW4 (inst.operands[2].reg);
16274 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16275 inst.instruction |= (et.type == NT_unsigned) << 24;
16276 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16277
88714cb8 16278 neon_dp_fixup (&inst);
5287ad62
JB
16279}
16280
16281static void
16282do_neon_dyadic_long (void)
16283{
16284 /* FIXME: Type checking for lengthening op. */
16285 struct neon_type_el et = neon_check_type (3, NS_QDD,
16286 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16287 neon_mixed_length (et, et.size);
16288}
16289
16290static void
16291do_neon_abal (void)
16292{
16293 struct neon_type_el et = neon_check_type (3, NS_QDD,
16294 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16295 neon_mixed_length (et, et.size);
16296}
16297
16298static void
16299neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16300{
16301 if (inst.operands[2].isscalar)
16302 {
dcbf9037 16303 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 16304 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 16305 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16306 neon_mul_mac (et, et.type == NT_unsigned);
16307 }
16308 else
16309 {
16310 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16311 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 16312 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16313 neon_mixed_length (et, et.size);
16314 }
16315}
16316
16317static void
16318do_neon_mac_maybe_scalar_long (void)
16319{
16320 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16321}
16322
dec41383
JW
16323/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16324 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16325
16326static unsigned
16327neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16328{
16329 unsigned regno = NEON_SCALAR_REG (scalar);
16330 unsigned elno = NEON_SCALAR_INDEX (scalar);
16331
16332 if (quad_p)
16333 {
16334 if (regno > 7 || elno > 3)
16335 goto bad_scalar;
16336
16337 return ((regno & 0x7)
16338 | ((elno & 0x1) << 3)
16339 | (((elno >> 1) & 0x1) << 5));
16340 }
16341 else
16342 {
16343 if (regno > 15 || elno > 1)
16344 goto bad_scalar;
16345
16346 return (((regno & 0x1) << 5)
16347 | ((regno >> 1) & 0x7)
16348 | ((elno & 0x1) << 3));
16349 }
16350
16351bad_scalar:
16352 first_error (_("scalar out of range for multiply instruction"));
16353 return 0;
16354}
16355
16356static void
16357do_neon_fmac_maybe_scalar_long (int subtype)
16358{
16359 enum neon_shape rs;
16360 int high8;
16361 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16362 field (bits[21:20]) has different meaning. For scalar index variant, it's
16363 used to differentiate add and subtract, otherwise it's with fixed value
16364 0x2. */
16365 int size = -1;
16366
16367 if (inst.cond != COND_ALWAYS)
16368 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16369 "behaviour is UNPREDICTABLE"));
16370
01f48020 16371 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
16372 _(BAD_FP16));
16373
16374 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16375 _(BAD_FPU));
16376
16377 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16378 be a scalar index register. */
16379 if (inst.operands[2].isscalar)
16380 {
16381 high8 = 0xfe000000;
16382 if (subtype)
16383 size = 16;
16384 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16385 }
16386 else
16387 {
16388 high8 = 0xfc000000;
16389 size = 32;
16390 if (subtype)
16391 inst.instruction |= (0x1 << 23);
16392 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16393 }
16394
16395 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16396
16397 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16398 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16399 so we simply pass -1 as size. */
16400 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16401 neon_three_same (quad_p, 0, size);
16402
16403 /* Undo neon_dp_fixup. Redo the high eight bits. */
16404 inst.instruction &= 0x00ffffff;
16405 inst.instruction |= high8;
16406
16407#define LOW1(R) ((R) & 0x1)
16408#define HI4(R) (((R) >> 1) & 0xf)
16409 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16410 whether the instruction is in Q form and whether Vm is a scalar indexed
16411 operand. */
16412 if (inst.operands[2].isscalar)
16413 {
16414 unsigned rm
16415 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16416 inst.instruction &= 0xffffffd0;
16417 inst.instruction |= rm;
16418
16419 if (!quad_p)
16420 {
16421 /* Redo Rn as well. */
16422 inst.instruction &= 0xfff0ff7f;
16423 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16424 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16425 }
16426 }
16427 else if (!quad_p)
16428 {
16429 /* Redo Rn and Rm. */
16430 inst.instruction &= 0xfff0ff50;
16431 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16432 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16433 inst.instruction |= HI4 (inst.operands[2].reg);
16434 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16435 }
16436}
16437
16438static void
16439do_neon_vfmal (void)
16440{
16441 return do_neon_fmac_maybe_scalar_long (0);
16442}
16443
16444static void
16445do_neon_vfmsl (void)
16446{
16447 return do_neon_fmac_maybe_scalar_long (1);
16448}
16449
5287ad62
JB
16450static void
16451do_neon_dyadic_wide (void)
16452{
16453 struct neon_type_el et = neon_check_type (3, NS_QQD,
16454 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16455 neon_mixed_length (et, et.size);
16456}
16457
16458static void
16459do_neon_dyadic_narrow (void)
16460{
16461 struct neon_type_el et = neon_check_type (3, NS_QDD,
16462 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
16463 /* Operand sign is unimportant, and the U bit is part of the opcode,
16464 so force the operand type to integer. */
16465 et.type = NT_integer;
5287ad62
JB
16466 neon_mixed_length (et, et.size / 2);
16467}
16468
16469static void
16470do_neon_mul_sat_scalar_long (void)
16471{
16472 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16473}
16474
16475static void
16476do_neon_vmull (void)
16477{
16478 if (inst.operands[2].isscalar)
16479 do_neon_mac_maybe_scalar_long ();
16480 else
16481 {
16482 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16483 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 16484
5287ad62 16485 if (et.type == NT_poly)
477330fc 16486 NEON_ENCODE (POLY, inst);
5287ad62 16487 else
477330fc 16488 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
16489
16490 /* For polynomial encoding the U bit must be zero, and the size must
16491 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16492 obviously, as 0b10). */
16493 if (et.size == 64)
16494 {
16495 /* Check we're on the correct architecture. */
16496 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16497 inst.error =
16498 _("Instruction form not available on this architecture.");
16499
16500 et.size = 32;
16501 }
16502
5287ad62
JB
16503 neon_mixed_length (et, et.size);
16504 }
16505}
16506
16507static void
16508do_neon_ext (void)
16509{
037e8744 16510 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
16511 struct neon_type_el et = neon_check_type (3, rs,
16512 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16513 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
16514
16515 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16516 _("shift out of range"));
5287ad62
JB
16517 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16518 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16519 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16520 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16521 inst.instruction |= LOW4 (inst.operands[2].reg);
16522 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 16523 inst.instruction |= neon_quad (rs) << 6;
5287ad62 16524 inst.instruction |= imm << 8;
5f4273c7 16525
88714cb8 16526 neon_dp_fixup (&inst);
5287ad62
JB
16527}
16528
16529static void
16530do_neon_rev (void)
16531{
037e8744 16532 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16533 struct neon_type_el et = neon_check_type (2, rs,
16534 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16535 unsigned op = (inst.instruction >> 7) & 3;
16536 /* N (width of reversed regions) is encoded as part of the bitmask. We
16537 extract it here to check the elements to be reversed are smaller.
16538 Otherwise we'd get a reserved instruction. */
16539 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 16540 gas_assert (elsize != 0);
5287ad62 16541 constraint (et.size >= elsize,
477330fc 16542 _("elements must be smaller than reversal region"));
037e8744 16543 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16544}
16545
16546static void
16547do_neon_dup (void)
16548{
16549 if (inst.operands[1].isscalar)
16550 {
037e8744 16551 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 16552 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16553 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 16554 unsigned sizebits = et.size >> 3;
dcbf9037 16555 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 16556 int logsize = neon_logbits (et.size);
dcbf9037 16557 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
16558
16559 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 16560 return;
037e8744 16561
88714cb8 16562 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16563 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16564 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16565 inst.instruction |= LOW4 (dm);
16566 inst.instruction |= HI1 (dm) << 5;
037e8744 16567 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16568 inst.instruction |= x << 17;
16569 inst.instruction |= sizebits << 16;
5f4273c7 16570
88714cb8 16571 neon_dp_fixup (&inst);
5287ad62
JB
16572 }
16573 else
16574 {
037e8744
JB
16575 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16576 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16577 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 16578 /* Duplicate ARM register to lanes of vector. */
88714cb8 16579 NEON_ENCODE (ARMREG, inst);
5287ad62 16580 switch (et.size)
477330fc
RM
16581 {
16582 case 8: inst.instruction |= 0x400000; break;
16583 case 16: inst.instruction |= 0x000020; break;
16584 case 32: inst.instruction |= 0x000000; break;
16585 default: break;
16586 }
5287ad62
JB
16587 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16588 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16589 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 16590 inst.instruction |= neon_quad (rs) << 21;
5287ad62 16591 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 16592 variants, except for the condition field. */
037e8744 16593 do_vfp_cond_or_thumb ();
5287ad62
JB
16594 }
16595}
16596
16597/* VMOV has particularly many variations. It can be one of:
16598 0. VMOV<c><q> <Qd>, <Qm>
16599 1. VMOV<c><q> <Dd>, <Dm>
16600 (Register operations, which are VORR with Rm = Rn.)
16601 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16602 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16603 (Immediate loads.)
16604 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16605 (ARM register to scalar.)
16606 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16607 (Two ARM registers to vector.)
16608 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16609 (Scalar to ARM register.)
16610 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16611 (Vector to two ARM registers.)
037e8744
JB
16612 8. VMOV.F32 <Sd>, <Sm>
16613 9. VMOV.F64 <Dd>, <Dm>
16614 (VFP register moves.)
16615 10. VMOV.F32 <Sd>, #imm
16616 11. VMOV.F64 <Dd>, #imm
16617 (VFP float immediate load.)
16618 12. VMOV <Rd>, <Sm>
16619 (VFP single to ARM reg.)
16620 13. VMOV <Sd>, <Rm>
16621 (ARM reg to VFP single.)
16622 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16623 (Two ARM regs to two VFP singles.)
16624 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16625 (Two VFP singles to two ARM regs.)
5f4273c7 16626
037e8744
JB
16627 These cases can be disambiguated using neon_select_shape, except cases 1/9
16628 and 3/11 which depend on the operand type too.
5f4273c7 16629
5287ad62 16630 All the encoded bits are hardcoded by this function.
5f4273c7 16631
b7fc2769
JB
16632 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16633 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 16634
5287ad62 16635 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 16636 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
16637
16638static void
16639do_neon_mov (void)
16640{
037e8744 16641 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
9db2f6b4
RL
16642 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16643 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16644 NS_HR, NS_RH, NS_HI, NS_NULL);
037e8744
JB
16645 struct neon_type_el et;
16646 const char *ldconst = 0;
5287ad62 16647
037e8744 16648 switch (rs)
5287ad62 16649 {
037e8744
JB
16650 case NS_DD: /* case 1/9. */
16651 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16652 /* It is not an error here if no type is given. */
16653 inst.error = NULL;
16654 if (et.type == NT_float && et.size == 64)
477330fc
RM
16655 {
16656 do_vfp_nsyn_opcode ("fcpyd");
16657 break;
16658 }
037e8744 16659 /* fall through. */
5287ad62 16660
037e8744
JB
16661 case NS_QQ: /* case 0/1. */
16662 {
477330fc
RM
16663 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16664 return;
16665 /* The architecture manual I have doesn't explicitly state which
16666 value the U bit should have for register->register moves, but
16667 the equivalent VORR instruction has U = 0, so do that. */
16668 inst.instruction = 0x0200110;
16669 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16670 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16671 inst.instruction |= LOW4 (inst.operands[1].reg);
16672 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16673 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16674 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16675 inst.instruction |= neon_quad (rs) << 6;
16676
16677 neon_dp_fixup (&inst);
037e8744
JB
16678 }
16679 break;
5f4273c7 16680
037e8744
JB
16681 case NS_DI: /* case 3/11. */
16682 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16683 inst.error = NULL;
16684 if (et.type == NT_float && et.size == 64)
477330fc
RM
16685 {
16686 /* case 11 (fconstd). */
16687 ldconst = "fconstd";
16688 goto encode_fconstd;
16689 }
037e8744
JB
16690 /* fall through. */
16691
16692 case NS_QI: /* case 2/3. */
16693 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
477330fc 16694 return;
037e8744
JB
16695 inst.instruction = 0x0800010;
16696 neon_move_immediate ();
88714cb8 16697 neon_dp_fixup (&inst);
5287ad62 16698 break;
5f4273c7 16699
037e8744
JB
16700 case NS_SR: /* case 4. */
16701 {
477330fc
RM
16702 unsigned bcdebits = 0;
16703 int logsize;
16704 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16705 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 16706
05ac0ffb
JB
16707 /* .<size> is optional here, defaulting to .32. */
16708 if (inst.vectype.elems == 0
16709 && inst.operands[0].vectype.type == NT_invtype
16710 && inst.operands[1].vectype.type == NT_invtype)
16711 {
16712 inst.vectype.el[0].type = NT_untyped;
16713 inst.vectype.el[0].size = 32;
16714 inst.vectype.elems = 1;
16715 }
16716
477330fc
RM
16717 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16718 logsize = neon_logbits (et.size);
16719
16720 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16721 _(BAD_FPU));
16722 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16723 && et.size != 32, _(BAD_FPU));
16724 constraint (et.type == NT_invtype, _("bad type for scalar"));
16725 constraint (x >= 64 / et.size, _("scalar index out of range"));
16726
16727 switch (et.size)
16728 {
16729 case 8: bcdebits = 0x8; break;
16730 case 16: bcdebits = 0x1; break;
16731 case 32: bcdebits = 0x0; break;
16732 default: ;
16733 }
16734
16735 bcdebits |= x << logsize;
16736
16737 inst.instruction = 0xe000b10;
16738 do_vfp_cond_or_thumb ();
16739 inst.instruction |= LOW4 (dn) << 16;
16740 inst.instruction |= HI1 (dn) << 7;
16741 inst.instruction |= inst.operands[1].reg << 12;
16742 inst.instruction |= (bcdebits & 3) << 5;
16743 inst.instruction |= (bcdebits >> 2) << 21;
037e8744
JB
16744 }
16745 break;
5f4273c7 16746
037e8744 16747 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 16748 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16749 _(BAD_FPU));
b7fc2769 16750
037e8744
JB
16751 inst.instruction = 0xc400b10;
16752 do_vfp_cond_or_thumb ();
16753 inst.instruction |= LOW4 (inst.operands[0].reg);
16754 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16755 inst.instruction |= inst.operands[1].reg << 12;
16756 inst.instruction |= inst.operands[2].reg << 16;
16757 break;
5f4273c7 16758
037e8744
JB
16759 case NS_RS: /* case 6. */
16760 {
477330fc
RM
16761 unsigned logsize;
16762 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16763 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16764 unsigned abcdebits = 0;
037e8744 16765
05ac0ffb
JB
16766 /* .<dt> is optional here, defaulting to .32. */
16767 if (inst.vectype.elems == 0
16768 && inst.operands[0].vectype.type == NT_invtype
16769 && inst.operands[1].vectype.type == NT_invtype)
16770 {
16771 inst.vectype.el[0].type = NT_untyped;
16772 inst.vectype.el[0].size = 32;
16773 inst.vectype.elems = 1;
16774 }
16775
91d6fa6a
NC
16776 et = neon_check_type (2, NS_NULL,
16777 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
16778 logsize = neon_logbits (et.size);
16779
16780 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16781 _(BAD_FPU));
16782 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16783 && et.size != 32, _(BAD_FPU));
16784 constraint (et.type == NT_invtype, _("bad type for scalar"));
16785 constraint (x >= 64 / et.size, _("scalar index out of range"));
16786
16787 switch (et.size)
16788 {
16789 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16790 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16791 case 32: abcdebits = 0x00; break;
16792 default: ;
16793 }
16794
16795 abcdebits |= x << logsize;
16796 inst.instruction = 0xe100b10;
16797 do_vfp_cond_or_thumb ();
16798 inst.instruction |= LOW4 (dn) << 16;
16799 inst.instruction |= HI1 (dn) << 7;
16800 inst.instruction |= inst.operands[0].reg << 12;
16801 inst.instruction |= (abcdebits & 3) << 5;
16802 inst.instruction |= (abcdebits >> 2) << 21;
037e8744
JB
16803 }
16804 break;
5f4273c7 16805
037e8744
JB
16806 case NS_RRD: /* case 7 (fmrrd). */
16807 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16808 _(BAD_FPU));
037e8744
JB
16809
16810 inst.instruction = 0xc500b10;
16811 do_vfp_cond_or_thumb ();
16812 inst.instruction |= inst.operands[0].reg << 12;
16813 inst.instruction |= inst.operands[1].reg << 16;
16814 inst.instruction |= LOW4 (inst.operands[2].reg);
16815 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16816 break;
5f4273c7 16817
037e8744
JB
16818 case NS_FF: /* case 8 (fcpys). */
16819 do_vfp_nsyn_opcode ("fcpys");
16820 break;
5f4273c7 16821
9db2f6b4 16822 case NS_HI:
037e8744
JB
16823 case NS_FI: /* case 10 (fconsts). */
16824 ldconst = "fconsts";
4ef4710f 16825 encode_fconstd:
58ed5c38
TC
16826 if (!inst.operands[1].immisfloat)
16827 {
4ef4710f 16828 unsigned new_imm;
58ed5c38 16829 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
16830 float imm = (float) inst.operands[1].imm;
16831 memcpy (&new_imm, &imm, sizeof (float));
16832 /* But the assembly may have been written to provide an integer
16833 bit pattern that equates to a float, so check that the
16834 conversion has worked. */
16835 if (is_quarter_float (new_imm))
16836 {
16837 if (is_quarter_float (inst.operands[1].imm))
16838 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
16839
16840 inst.operands[1].imm = new_imm;
16841 inst.operands[1].immisfloat = 1;
16842 }
58ed5c38
TC
16843 }
16844
037e8744 16845 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
16846 {
16847 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16848 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
16849
16850 /* ARMv8.2 fp16 vmov.f16 instruction. */
16851 if (rs == NS_HI)
16852 do_scalar_fp16_v82_encode ();
477330fc 16853 }
5287ad62 16854 else
477330fc 16855 first_error (_("immediate out of range"));
037e8744 16856 break;
5f4273c7 16857
9db2f6b4 16858 case NS_RH:
037e8744
JB
16859 case NS_RF: /* case 12 (fmrs). */
16860 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
16861 /* ARMv8.2 fp16 vmov.f16 instruction. */
16862 if (rs == NS_RH)
16863 do_scalar_fp16_v82_encode ();
037e8744 16864 break;
5f4273c7 16865
9db2f6b4 16866 case NS_HR:
037e8744
JB
16867 case NS_FR: /* case 13 (fmsr). */
16868 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
16869 /* ARMv8.2 fp16 vmov.f16 instruction. */
16870 if (rs == NS_HR)
16871 do_scalar_fp16_v82_encode ();
037e8744 16872 break;
5f4273c7 16873
037e8744
JB
16874 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16875 (one of which is a list), but we have parsed four. Do some fiddling to
16876 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16877 expect. */
16878 case NS_RRFF: /* case 14 (fmrrs). */
16879 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 16880 _("VFP registers must be adjacent"));
037e8744
JB
16881 inst.operands[2].imm = 2;
16882 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16883 do_vfp_nsyn_opcode ("fmrrs");
16884 break;
5f4273c7 16885
037e8744
JB
16886 case NS_FFRR: /* case 15 (fmsrr). */
16887 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 16888 _("VFP registers must be adjacent"));
037e8744
JB
16889 inst.operands[1] = inst.operands[2];
16890 inst.operands[2] = inst.operands[3];
16891 inst.operands[0].imm = 2;
16892 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16893 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 16894 break;
5f4273c7 16895
4c261dff
NC
16896 case NS_NULL:
16897 /* neon_select_shape has determined that the instruction
16898 shape is wrong and has already set the error message. */
16899 break;
16900
5287ad62
JB
16901 default:
16902 abort ();
16903 }
16904}
16905
16906static void
16907do_neon_rshift_round_imm (void)
16908{
037e8744 16909 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
16910 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16911 int imm = inst.operands[2].imm;
16912
16913 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16914 if (imm == 0)
16915 {
16916 inst.operands[2].present = 0;
16917 do_neon_mov ();
16918 return;
16919 }
16920
16921 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 16922 _("immediate out of range for shift"));
037e8744 16923 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 16924 et.size - imm);
5287ad62
JB
16925}
16926
9db2f6b4
RL
16927static void
16928do_neon_movhf (void)
16929{
16930 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16931 constraint (rs != NS_HH, _("invalid suffix"));
16932
7bdf778b
ASDV
16933 if (inst.cond != COND_ALWAYS)
16934 {
16935 if (thumb_mode)
16936 {
16937 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
16938 " the behaviour is UNPREDICTABLE"));
16939 }
16940 else
16941 {
16942 inst.error = BAD_COND;
16943 return;
16944 }
16945 }
16946
9db2f6b4
RL
16947 do_vfp_sp_monadic ();
16948
16949 inst.is_neon = 1;
16950 inst.instruction |= 0xf0000000;
16951}
16952
5287ad62
JB
16953static void
16954do_neon_movl (void)
16955{
16956 struct neon_type_el et = neon_check_type (2, NS_QD,
16957 N_EQK | N_DBL, N_SU_32 | N_KEY);
16958 unsigned sizebits = et.size >> 3;
16959 inst.instruction |= sizebits << 19;
16960 neon_two_same (0, et.type == NT_unsigned, -1);
16961}
16962
16963static void
16964do_neon_trn (void)
16965{
037e8744 16966 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16967 struct neon_type_el et = neon_check_type (2, rs,
16968 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 16969 NEON_ENCODE (INTEGER, inst);
037e8744 16970 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16971}
16972
16973static void
16974do_neon_zip_uzp (void)
16975{
037e8744 16976 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16977 struct neon_type_el et = neon_check_type (2, rs,
16978 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16979 if (rs == NS_DD && et.size == 32)
16980 {
16981 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16982 inst.instruction = N_MNEM_vtrn;
16983 do_neon_trn ();
16984 return;
16985 }
037e8744 16986 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16987}
16988
16989static void
16990do_neon_sat_abs_neg (void)
16991{
037e8744 16992 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16993 struct neon_type_el et = neon_check_type (2, rs,
16994 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16995 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16996}
16997
16998static void
16999do_neon_pair_long (void)
17000{
037e8744 17001 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
17002 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17003 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
17004 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 17005 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
17006}
17007
17008static void
17009do_neon_recip_est (void)
17010{
037e8744 17011 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 17012 struct neon_type_el et = neon_check_type (2, rs,
cc933301 17013 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 17014 inst.instruction |= (et.type == NT_float) << 8;
037e8744 17015 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
17016}
17017
17018static void
17019do_neon_cls (void)
17020{
037e8744 17021 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
17022 struct neon_type_el et = neon_check_type (2, rs,
17023 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 17024 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
17025}
17026
17027static void
17028do_neon_clz (void)
17029{
037e8744 17030 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
17031 struct neon_type_el et = neon_check_type (2, rs,
17032 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 17033 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
17034}
17035
17036static void
17037do_neon_cnt (void)
17038{
037e8744 17039 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
17040 struct neon_type_el et = neon_check_type (2, rs,
17041 N_EQK | N_INT, N_8 | N_KEY);
037e8744 17042 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
17043}
17044
17045static void
17046do_neon_swp (void)
17047{
037e8744
JB
17048 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17049 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
17050}
17051
17052static void
17053do_neon_tbl_tbx (void)
17054{
17055 unsigned listlenbits;
dcbf9037 17056 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 17057
5287ad62
JB
17058 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
17059 {
dcbf9037 17060 first_error (_("bad list length for table lookup"));
5287ad62
JB
17061 return;
17062 }
5f4273c7 17063
5287ad62
JB
17064 listlenbits = inst.operands[1].imm - 1;
17065 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17066 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17067 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17068 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17069 inst.instruction |= LOW4 (inst.operands[2].reg);
17070 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
17071 inst.instruction |= listlenbits << 8;
5f4273c7 17072
88714cb8 17073 neon_dp_fixup (&inst);
5287ad62
JB
17074}
17075
17076static void
17077do_neon_ldm_stm (void)
17078{
17079 /* P, U and L bits are part of bitmask. */
17080 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
17081 unsigned offsetbits = inst.operands[1].imm * 2;
17082
037e8744
JB
17083 if (inst.operands[1].issingle)
17084 {
17085 do_vfp_nsyn_ldm_stm (is_dbmode);
17086 return;
17087 }
17088
5287ad62 17089 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 17090 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
17091
17092 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
17093 _("register list must contain at least 1 and at most 16 "
17094 "registers"));
5287ad62
JB
17095
17096 inst.instruction |= inst.operands[0].reg << 16;
17097 inst.instruction |= inst.operands[0].writeback << 21;
17098 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
17099 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
17100
17101 inst.instruction |= offsetbits;
5f4273c7 17102
037e8744 17103 do_vfp_cond_or_thumb ();
5287ad62
JB
17104}
17105
17106static void
17107do_neon_ldr_str (void)
17108{
5287ad62 17109 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 17110
6844b2c2
MGD
17111 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
17112 And is UNPREDICTABLE in thumb mode. */
fa94de6b 17113 if (!is_ldr
6844b2c2 17114 && inst.operands[1].reg == REG_PC
ba86b375 17115 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 17116 {
94dcf8bf 17117 if (thumb_mode)
6844b2c2 17118 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 17119 else if (warn_on_deprecated)
5c3696f8 17120 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
17121 }
17122
037e8744
JB
17123 if (inst.operands[0].issingle)
17124 {
cd2f129f 17125 if (is_ldr)
477330fc 17126 do_vfp_nsyn_opcode ("flds");
cd2f129f 17127 else
477330fc 17128 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
17129
17130 /* ARMv8.2 vldr.16/vstr.16 instruction. */
17131 if (inst.vectype.el[0].size == 16)
17132 do_scalar_fp16_v82_encode ();
5287ad62
JB
17133 }
17134 else
5287ad62 17135 {
cd2f129f 17136 if (is_ldr)
477330fc 17137 do_vfp_nsyn_opcode ("fldd");
5287ad62 17138 else
477330fc 17139 do_vfp_nsyn_opcode ("fstd");
5287ad62 17140 }
5287ad62
JB
17141}
17142
17143/* "interleave" version also handles non-interleaving register VLD1/VST1
17144 instructions. */
17145
17146static void
17147do_neon_ld_st_interleave (void)
17148{
037e8744 17149 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 17150 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
17151 unsigned alignbits = 0;
17152 unsigned idx;
17153 /* The bits in this table go:
17154 0: register stride of one (0) or two (1)
17155 1,2: register list length, minus one (1, 2, 3, 4).
17156 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
17157 We use -1 for invalid entries. */
17158 const int typetable[] =
17159 {
17160 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
17161 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
17162 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
17163 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
17164 };
17165 int typebits;
17166
dcbf9037
JB
17167 if (et.type == NT_invtype)
17168 return;
17169
5287ad62
JB
17170 if (inst.operands[1].immisalign)
17171 switch (inst.operands[1].imm >> 8)
17172 {
17173 case 64: alignbits = 1; break;
17174 case 128:
477330fc 17175 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 17176 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
17177 goto bad_alignment;
17178 alignbits = 2;
17179 break;
5287ad62 17180 case 256:
477330fc
RM
17181 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17182 goto bad_alignment;
17183 alignbits = 3;
17184 break;
5287ad62
JB
17185 default:
17186 bad_alignment:
477330fc
RM
17187 first_error (_("bad alignment"));
17188 return;
5287ad62
JB
17189 }
17190
17191 inst.instruction |= alignbits << 4;
17192 inst.instruction |= neon_logbits (et.size) << 6;
17193
17194 /* Bits [4:6] of the immediate in a list specifier encode register stride
17195 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17196 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17197 up the right value for "type" in a table based on this value and the given
17198 list style, then stick it back. */
17199 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 17200 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
17201
17202 typebits = typetable[idx];
5f4273c7 17203
5287ad62 17204 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c
WN
17205 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17206 _("bad element type for instruction"));
5287ad62
JB
17207
17208 inst.instruction &= ~0xf00;
17209 inst.instruction |= typebits << 8;
17210}
17211
17212/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17213 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17214 otherwise. The variable arguments are a list of pairs of legal (size, align)
17215 values, terminated with -1. */
17216
17217static int
aa8a0863 17218neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
17219{
17220 va_list ap;
17221 int result = FAIL, thissize, thisalign;
5f4273c7 17222
5287ad62
JB
17223 if (!inst.operands[1].immisalign)
17224 {
aa8a0863 17225 *do_alignment = 0;
5287ad62
JB
17226 return SUCCESS;
17227 }
5f4273c7 17228
aa8a0863 17229 va_start (ap, do_alignment);
5287ad62
JB
17230
17231 do
17232 {
17233 thissize = va_arg (ap, int);
17234 if (thissize == -1)
477330fc 17235 break;
5287ad62
JB
17236 thisalign = va_arg (ap, int);
17237
17238 if (size == thissize && align == thisalign)
477330fc 17239 result = SUCCESS;
5287ad62
JB
17240 }
17241 while (result != SUCCESS);
17242
17243 va_end (ap);
17244
17245 if (result == SUCCESS)
aa8a0863 17246 *do_alignment = 1;
5287ad62 17247 else
dcbf9037 17248 first_error (_("unsupported alignment for instruction"));
5f4273c7 17249
5287ad62
JB
17250 return result;
17251}
17252
17253static void
17254do_neon_ld_st_lane (void)
17255{
037e8744 17256 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17257 int align_good, do_alignment = 0;
5287ad62
JB
17258 int logsize = neon_logbits (et.size);
17259 int align = inst.operands[1].imm >> 8;
17260 int n = (inst.instruction >> 8) & 3;
17261 int max_el = 64 / et.size;
5f4273c7 17262
dcbf9037
JB
17263 if (et.type == NT_invtype)
17264 return;
5f4273c7 17265
5287ad62 17266 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 17267 _("bad list length"));
5287ad62 17268 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 17269 _("scalar index out of range"));
5287ad62 17270 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
17271 && et.size == 8,
17272 _("stride of 2 unavailable when element size is 8"));
5f4273c7 17273
5287ad62
JB
17274 switch (n)
17275 {
17276 case 0: /* VLD1 / VST1. */
aa8a0863 17277 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 17278 32, 32, -1);
5287ad62 17279 if (align_good == FAIL)
477330fc 17280 return;
aa8a0863 17281 if (do_alignment)
477330fc
RM
17282 {
17283 unsigned alignbits = 0;
17284 switch (et.size)
17285 {
17286 case 16: alignbits = 0x1; break;
17287 case 32: alignbits = 0x3; break;
17288 default: ;
17289 }
17290 inst.instruction |= alignbits << 4;
17291 }
5287ad62
JB
17292 break;
17293
17294 case 1: /* VLD2 / VST2. */
aa8a0863
TS
17295 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17296 16, 32, 32, 64, -1);
5287ad62 17297 if (align_good == FAIL)
477330fc 17298 return;
aa8a0863 17299 if (do_alignment)
477330fc 17300 inst.instruction |= 1 << 4;
5287ad62
JB
17301 break;
17302
17303 case 2: /* VLD3 / VST3. */
17304 constraint (inst.operands[1].immisalign,
477330fc 17305 _("can't use alignment with this instruction"));
5287ad62
JB
17306 break;
17307
17308 case 3: /* VLD4 / VST4. */
aa8a0863 17309 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 17310 16, 64, 32, 64, 32, 128, -1);
5287ad62 17311 if (align_good == FAIL)
477330fc 17312 return;
aa8a0863 17313 if (do_alignment)
477330fc
RM
17314 {
17315 unsigned alignbits = 0;
17316 switch (et.size)
17317 {
17318 case 8: alignbits = 0x1; break;
17319 case 16: alignbits = 0x1; break;
17320 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17321 default: ;
17322 }
17323 inst.instruction |= alignbits << 4;
17324 }
5287ad62
JB
17325 break;
17326
17327 default: ;
17328 }
17329
17330 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17331 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17332 inst.instruction |= 1 << (4 + logsize);
5f4273c7 17333
5287ad62
JB
17334 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17335 inst.instruction |= logsize << 10;
17336}
17337
17338/* Encode single n-element structure to all lanes VLD<n> instructions. */
17339
17340static void
17341do_neon_ld_dup (void)
17342{
037e8744 17343 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17344 int align_good, do_alignment = 0;
5287ad62 17345
dcbf9037
JB
17346 if (et.type == NT_invtype)
17347 return;
17348
5287ad62
JB
17349 switch ((inst.instruction >> 8) & 3)
17350 {
17351 case 0: /* VLD1. */
9c2799c2 17352 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 17353 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 17354 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 17355 if (align_good == FAIL)
477330fc 17356 return;
5287ad62 17357 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
17358 {
17359 case 1: break;
17360 case 2: inst.instruction |= 1 << 5; break;
17361 default: first_error (_("bad list length")); return;
17362 }
5287ad62
JB
17363 inst.instruction |= neon_logbits (et.size) << 6;
17364 break;
17365
17366 case 1: /* VLD2. */
17367 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
17368 &do_alignment, 8, 16, 16, 32, 32, 64,
17369 -1);
5287ad62 17370 if (align_good == FAIL)
477330fc 17371 return;
5287ad62 17372 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 17373 _("bad list length"));
5287ad62 17374 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17375 inst.instruction |= 1 << 5;
5287ad62
JB
17376 inst.instruction |= neon_logbits (et.size) << 6;
17377 break;
17378
17379 case 2: /* VLD3. */
17380 constraint (inst.operands[1].immisalign,
477330fc 17381 _("can't use alignment with this instruction"));
5287ad62 17382 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 17383 _("bad list length"));
5287ad62 17384 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17385 inst.instruction |= 1 << 5;
5287ad62
JB
17386 inst.instruction |= neon_logbits (et.size) << 6;
17387 break;
17388
17389 case 3: /* VLD4. */
17390 {
477330fc 17391 int align = inst.operands[1].imm >> 8;
aa8a0863 17392 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
17393 16, 64, 32, 64, 32, 128, -1);
17394 if (align_good == FAIL)
17395 return;
17396 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17397 _("bad list length"));
17398 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17399 inst.instruction |= 1 << 5;
17400 if (et.size == 32 && align == 128)
17401 inst.instruction |= 0x3 << 6;
17402 else
17403 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
17404 }
17405 break;
17406
17407 default: ;
17408 }
17409
aa8a0863 17410 inst.instruction |= do_alignment << 4;
5287ad62
JB
17411}
17412
17413/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17414 apart from bits [11:4]. */
17415
17416static void
17417do_neon_ldx_stx (void)
17418{
b1a769ed
DG
17419 if (inst.operands[1].isreg)
17420 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17421
5287ad62
JB
17422 switch (NEON_LANE (inst.operands[0].imm))
17423 {
17424 case NEON_INTERLEAVE_LANES:
88714cb8 17425 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
17426 do_neon_ld_st_interleave ();
17427 break;
5f4273c7 17428
5287ad62 17429 case NEON_ALL_LANES:
88714cb8 17430 NEON_ENCODE (DUP, inst);
2d51fb74
JB
17431 if (inst.instruction == N_INV)
17432 {
17433 first_error ("only loads support such operands");
17434 break;
17435 }
5287ad62
JB
17436 do_neon_ld_dup ();
17437 break;
5f4273c7 17438
5287ad62 17439 default:
88714cb8 17440 NEON_ENCODE (LANE, inst);
5287ad62
JB
17441 do_neon_ld_st_lane ();
17442 }
17443
17444 /* L bit comes from bit mask. */
17445 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17446 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17447 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 17448
5287ad62
JB
17449 if (inst.operands[1].postind)
17450 {
17451 int postreg = inst.operands[1].imm & 0xf;
17452 constraint (!inst.operands[1].immisreg,
477330fc 17453 _("post-index must be a register"));
5287ad62 17454 constraint (postreg == 0xd || postreg == 0xf,
477330fc 17455 _("bad register for post-index"));
5287ad62
JB
17456 inst.instruction |= postreg;
17457 }
4f2374c7 17458 else
5287ad62 17459 {
4f2374c7 17460 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
17461 constraint (inst.relocs[0].exp.X_op != O_constant
17462 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
17463 BAD_ADDR_MODE);
17464
17465 if (inst.operands[1].writeback)
17466 {
17467 inst.instruction |= 0xd;
17468 }
17469 else
17470 inst.instruction |= 0xf;
5287ad62 17471 }
5f4273c7 17472
5287ad62
JB
17473 if (thumb_mode)
17474 inst.instruction |= 0xf9000000;
17475 else
17476 inst.instruction |= 0xf4000000;
17477}
33399f07
MGD
17478
17479/* FP v8. */
17480static void
17481do_vfp_nsyn_fpv8 (enum neon_shape rs)
17482{
a715796b
TG
17483 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17484 D register operands. */
17485 if (neon_shape_class[rs] == SC_DOUBLE)
17486 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17487 _(BAD_FPU));
17488
33399f07
MGD
17489 NEON_ENCODE (FPV8, inst);
17490
9db2f6b4
RL
17491 if (rs == NS_FFF || rs == NS_HHH)
17492 {
17493 do_vfp_sp_dyadic ();
17494
17495 /* ARMv8.2 fp16 instruction. */
17496 if (rs == NS_HHH)
17497 do_scalar_fp16_v82_encode ();
17498 }
33399f07
MGD
17499 else
17500 do_vfp_dp_rd_rn_rm ();
17501
17502 if (rs == NS_DDD)
17503 inst.instruction |= 0x100;
17504
17505 inst.instruction |= 0xf0000000;
17506}
17507
17508static void
17509do_vsel (void)
17510{
17511 set_it_insn_type (OUTSIDE_IT_INSN);
17512
17513 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17514 first_error (_("invalid instruction shape"));
17515}
17516
73924fbc
MGD
17517static void
17518do_vmaxnm (void)
17519{
17520 set_it_insn_type (OUTSIDE_IT_INSN);
17521
17522 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17523 return;
17524
17525 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17526 return;
17527
cc933301 17528 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
17529}
17530
30bdf752
MGD
17531static void
17532do_vrint_1 (enum neon_cvt_mode mode)
17533{
9db2f6b4 17534 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
17535 struct neon_type_el et;
17536
17537 if (rs == NS_NULL)
17538 return;
17539
a715796b
TG
17540 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17541 D register operands. */
17542 if (neon_shape_class[rs] == SC_DOUBLE)
17543 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17544 _(BAD_FPU));
17545
9db2f6b4
RL
17546 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17547 | N_VFP);
30bdf752
MGD
17548 if (et.type != NT_invtype)
17549 {
17550 /* VFP encodings. */
17551 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17552 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17553 set_it_insn_type (OUTSIDE_IT_INSN);
17554
17555 NEON_ENCODE (FPV8, inst);
9db2f6b4 17556 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
17557 do_vfp_sp_monadic ();
17558 else
17559 do_vfp_dp_rd_rm ();
17560
17561 switch (mode)
17562 {
17563 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17564 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17565 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17566 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17567 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17568 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17569 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17570 default: abort ();
17571 }
17572
17573 inst.instruction |= (rs == NS_DD) << 8;
17574 do_vfp_cond_or_thumb ();
9db2f6b4
RL
17575
17576 /* ARMv8.2 fp16 vrint instruction. */
17577 if (rs == NS_HH)
17578 do_scalar_fp16_v82_encode ();
30bdf752
MGD
17579 }
17580 else
17581 {
17582 /* Neon encodings (or something broken...). */
17583 inst.error = NULL;
cc933301 17584 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
17585
17586 if (et.type == NT_invtype)
17587 return;
17588
17589 set_it_insn_type (OUTSIDE_IT_INSN);
17590 NEON_ENCODE (FLOAT, inst);
17591
17592 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17593 return;
17594
17595 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17596 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17597 inst.instruction |= LOW4 (inst.operands[1].reg);
17598 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17599 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17600 /* Mask off the original size bits and reencode them. */
17601 inst.instruction = ((inst.instruction & 0xfff3ffff)
17602 | neon_logbits (et.size) << 18);
17603
30bdf752
MGD
17604 switch (mode)
17605 {
17606 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17607 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17608 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17609 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17610 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17611 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17612 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17613 default: abort ();
17614 }
17615
17616 if (thumb_mode)
17617 inst.instruction |= 0xfc000000;
17618 else
17619 inst.instruction |= 0xf0000000;
17620 }
17621}
17622
17623static void
17624do_vrintx (void)
17625{
17626 do_vrint_1 (neon_cvt_mode_x);
17627}
17628
17629static void
17630do_vrintz (void)
17631{
17632 do_vrint_1 (neon_cvt_mode_z);
17633}
17634
17635static void
17636do_vrintr (void)
17637{
17638 do_vrint_1 (neon_cvt_mode_r);
17639}
17640
17641static void
17642do_vrinta (void)
17643{
17644 do_vrint_1 (neon_cvt_mode_a);
17645}
17646
17647static void
17648do_vrintn (void)
17649{
17650 do_vrint_1 (neon_cvt_mode_n);
17651}
17652
17653static void
17654do_vrintp (void)
17655{
17656 do_vrint_1 (neon_cvt_mode_p);
17657}
17658
17659static void
17660do_vrintm (void)
17661{
17662 do_vrint_1 (neon_cvt_mode_m);
17663}
17664
c28eeff2
SN
17665static unsigned
17666neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17667{
17668 unsigned regno = NEON_SCALAR_REG (opnd);
17669 unsigned elno = NEON_SCALAR_INDEX (opnd);
17670
17671 if (elsize == 16 && elno < 2 && regno < 16)
17672 return regno | (elno << 4);
17673 else if (elsize == 32 && elno == 0)
17674 return regno;
17675
17676 first_error (_("scalar out of range"));
17677 return 0;
17678}
17679
17680static void
17681do_vcmla (void)
17682{
17683 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17684 _(BAD_FPU));
e2b0ab59
AV
17685 constraint (inst.relocs[0].exp.X_op != O_constant,
17686 _("expression too complex"));
17687 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
17688 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17689 _("immediate out of range"));
17690 rot /= 90;
17691 if (inst.operands[2].isscalar)
17692 {
17693 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17694 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17695 N_KEY | N_F16 | N_F32).size;
17696 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17697 inst.is_neon = 1;
17698 inst.instruction = 0xfe000800;
17699 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17700 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17701 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17702 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17703 inst.instruction |= LOW4 (m);
17704 inst.instruction |= HI1 (m) << 5;
17705 inst.instruction |= neon_quad (rs) << 6;
17706 inst.instruction |= rot << 20;
17707 inst.instruction |= (size == 32) << 23;
17708 }
17709 else
17710 {
17711 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17712 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17713 N_KEY | N_F16 | N_F32).size;
17714 neon_three_same (neon_quad (rs), 0, -1);
17715 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17716 inst.instruction |= 0xfc200800;
17717 inst.instruction |= rot << 23;
17718 inst.instruction |= (size == 32) << 20;
17719 }
17720}
17721
17722static void
17723do_vcadd (void)
17724{
17725 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17726 _(BAD_FPU));
e2b0ab59
AV
17727 constraint (inst.relocs[0].exp.X_op != O_constant,
17728 _("expression too complex"));
17729 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
17730 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17731 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17732 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17733 N_KEY | N_F16 | N_F32).size;
17734 neon_three_same (neon_quad (rs), 0, -1);
17735 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17736 inst.instruction |= 0xfc800800;
17737 inst.instruction |= (rot == 270) << 24;
17738 inst.instruction |= (size == 32) << 20;
17739}
17740
c604a79a
JW
17741/* Dot Product instructions encoding support. */
17742
17743static void
17744do_neon_dotproduct (int unsigned_p)
17745{
17746 enum neon_shape rs;
17747 unsigned scalar_oprd2 = 0;
17748 int high8;
17749
17750 if (inst.cond != COND_ALWAYS)
17751 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17752 "is UNPREDICTABLE"));
17753
17754 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17755 _(BAD_FPU));
17756
17757 /* Dot Product instructions are in three-same D/Q register format or the third
17758 operand can be a scalar index register. */
17759 if (inst.operands[2].isscalar)
17760 {
17761 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17762 high8 = 0xfe000000;
17763 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17764 }
17765 else
17766 {
17767 high8 = 0xfc000000;
17768 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17769 }
17770
17771 if (unsigned_p)
17772 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17773 else
17774 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17775
17776 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17777 Product instruction, so we pass 0 as the "ubit" parameter. And the
17778 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17779 neon_three_same (neon_quad (rs), 0, 32);
17780
17781 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17782 different NEON three-same encoding. */
17783 inst.instruction &= 0x00ffffff;
17784 inst.instruction |= high8;
17785 /* Encode 'U' bit which indicates signedness. */
17786 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17787 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17788 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17789 the instruction encoding. */
17790 if (inst.operands[2].isscalar)
17791 {
17792 inst.instruction &= 0xffffffd0;
17793 inst.instruction |= LOW4 (scalar_oprd2);
17794 inst.instruction |= HI1 (scalar_oprd2) << 5;
17795 }
17796}
17797
17798/* Dot Product instructions for signed integer. */
17799
17800static void
17801do_neon_dotproduct_s (void)
17802{
17803 return do_neon_dotproduct (0);
17804}
17805
17806/* Dot Product instructions for unsigned integer. */
17807
17808static void
17809do_neon_dotproduct_u (void)
17810{
17811 return do_neon_dotproduct (1);
17812}
17813
91ff7894
MGD
17814/* Crypto v1 instructions. */
17815static void
17816do_crypto_2op_1 (unsigned elttype, int op)
17817{
17818 set_it_insn_type (OUTSIDE_IT_INSN);
17819
17820 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17821 == NT_invtype)
17822 return;
17823
17824 inst.error = NULL;
17825
17826 NEON_ENCODE (INTEGER, inst);
17827 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17828 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17829 inst.instruction |= LOW4 (inst.operands[1].reg);
17830 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17831 if (op != -1)
17832 inst.instruction |= op << 6;
17833
17834 if (thumb_mode)
17835 inst.instruction |= 0xfc000000;
17836 else
17837 inst.instruction |= 0xf0000000;
17838}
17839
48adcd8e
MGD
17840static void
17841do_crypto_3op_1 (int u, int op)
17842{
17843 set_it_insn_type (OUTSIDE_IT_INSN);
17844
17845 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17846 N_32 | N_UNT | N_KEY).type == NT_invtype)
17847 return;
17848
17849 inst.error = NULL;
17850
17851 NEON_ENCODE (INTEGER, inst);
17852 neon_three_same (1, u, 8 << op);
17853}
17854
91ff7894
MGD
17855static void
17856do_aese (void)
17857{
17858 do_crypto_2op_1 (N_8, 0);
17859}
17860
17861static void
17862do_aesd (void)
17863{
17864 do_crypto_2op_1 (N_8, 1);
17865}
17866
17867static void
17868do_aesmc (void)
17869{
17870 do_crypto_2op_1 (N_8, 2);
17871}
17872
17873static void
17874do_aesimc (void)
17875{
17876 do_crypto_2op_1 (N_8, 3);
17877}
17878
48adcd8e
MGD
17879static void
17880do_sha1c (void)
17881{
17882 do_crypto_3op_1 (0, 0);
17883}
17884
17885static void
17886do_sha1p (void)
17887{
17888 do_crypto_3op_1 (0, 1);
17889}
17890
17891static void
17892do_sha1m (void)
17893{
17894 do_crypto_3op_1 (0, 2);
17895}
17896
17897static void
17898do_sha1su0 (void)
17899{
17900 do_crypto_3op_1 (0, 3);
17901}
91ff7894 17902
48adcd8e
MGD
17903static void
17904do_sha256h (void)
17905{
17906 do_crypto_3op_1 (1, 0);
17907}
17908
17909static void
17910do_sha256h2 (void)
17911{
17912 do_crypto_3op_1 (1, 1);
17913}
17914
17915static void
17916do_sha256su1 (void)
17917{
17918 do_crypto_3op_1 (1, 2);
17919}
3c9017d2
MGD
17920
17921static void
17922do_sha1h (void)
17923{
17924 do_crypto_2op_1 (N_32, -1);
17925}
17926
17927static void
17928do_sha1su1 (void)
17929{
17930 do_crypto_2op_1 (N_32, 0);
17931}
17932
17933static void
17934do_sha256su0 (void)
17935{
17936 do_crypto_2op_1 (N_32, 1);
17937}
dd5181d5
KT
17938
17939static void
17940do_crc32_1 (unsigned int poly, unsigned int sz)
17941{
17942 unsigned int Rd = inst.operands[0].reg;
17943 unsigned int Rn = inst.operands[1].reg;
17944 unsigned int Rm = inst.operands[2].reg;
17945
17946 set_it_insn_type (OUTSIDE_IT_INSN);
17947 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17948 inst.instruction |= LOW4 (Rn) << 16;
17949 inst.instruction |= LOW4 (Rm);
17950 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17951 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17952
17953 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17954 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
17955}
17956
17957static void
17958do_crc32b (void)
17959{
17960 do_crc32_1 (0, 0);
17961}
17962
17963static void
17964do_crc32h (void)
17965{
17966 do_crc32_1 (0, 1);
17967}
17968
17969static void
17970do_crc32w (void)
17971{
17972 do_crc32_1 (0, 2);
17973}
17974
17975static void
17976do_crc32cb (void)
17977{
17978 do_crc32_1 (1, 0);
17979}
17980
17981static void
17982do_crc32ch (void)
17983{
17984 do_crc32_1 (1, 1);
17985}
17986
17987static void
17988do_crc32cw (void)
17989{
17990 do_crc32_1 (1, 2);
17991}
17992
49e8a725
SN
17993static void
17994do_vjcvt (void)
17995{
17996 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17997 _(BAD_FPU));
17998 neon_check_type (2, NS_FD, N_S32, N_F64);
17999 do_vfp_sp_dp_cvt ();
18000 do_vfp_cond_or_thumb ();
18001}
18002
5287ad62
JB
18003\f
18004/* Overall per-instruction processing. */
18005
18006/* We need to be able to fix up arbitrary expressions in some statements.
18007 This is so that we can handle symbols that are an arbitrary distance from
18008 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
18009 which returns part of an address in a form which will be valid for
18010 a data instruction. We do this by pushing the expression into a symbol
18011 in the expr_section, and creating a fix for that. */
18012
18013static void
18014fix_new_arm (fragS * frag,
18015 int where,
18016 short int size,
18017 expressionS * exp,
18018 int pc_rel,
18019 int reloc)
18020{
18021 fixS * new_fix;
18022
18023 switch (exp->X_op)
18024 {
18025 case O_constant:
6e7ce2cd
PB
18026 if (pc_rel)
18027 {
18028 /* Create an absolute valued symbol, so we have something to
477330fc
RM
18029 refer to in the object file. Unfortunately for us, gas's
18030 generic expression parsing will already have folded out
18031 any use of .set foo/.type foo %function that may have
18032 been used to set type information of the target location,
18033 that's being specified symbolically. We have to presume
18034 the user knows what they are doing. */
6e7ce2cd
PB
18035 char name[16 + 8];
18036 symbolS *symbol;
18037
18038 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
18039
18040 symbol = symbol_find_or_make (name);
18041 S_SET_SEGMENT (symbol, absolute_section);
18042 symbol_set_frag (symbol, &zero_address_frag);
18043 S_SET_VALUE (symbol, exp->X_add_number);
18044 exp->X_op = O_symbol;
18045 exp->X_add_symbol = symbol;
18046 exp->X_add_number = 0;
18047 }
18048 /* FALLTHROUGH */
5287ad62
JB
18049 case O_symbol:
18050 case O_add:
18051 case O_subtract:
21d799b5 18052 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 18053 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
18054 break;
18055
18056 default:
21d799b5 18057 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 18058 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
18059 break;
18060 }
18061
18062 /* Mark whether the fix is to a THUMB instruction, or an ARM
18063 instruction. */
18064 new_fix->tc_fix_data = thumb_mode;
18065}
18066
18067/* Create a frg for an instruction requiring relaxation. */
18068static void
18069output_relax_insn (void)
18070{
18071 char * to;
18072 symbolS *sym;
0110f2b8
PB
18073 int offset;
18074
6e1cb1a6
PB
18075 /* The size of the instruction is unknown, so tie the debug info to the
18076 start of the instruction. */
18077 dwarf2_emit_insn (0);
6e1cb1a6 18078
e2b0ab59 18079 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
18080 {
18081 case O_symbol:
e2b0ab59
AV
18082 sym = inst.relocs[0].exp.X_add_symbol;
18083 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
18084 break;
18085 case O_constant:
18086 sym = NULL;
e2b0ab59 18087 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
18088 break;
18089 default:
e2b0ab59 18090 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
18091 offset = 0;
18092 break;
18093 }
18094 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
18095 inst.relax, sym, offset, NULL/*offset, opcode*/);
18096 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
18097}
18098
18099/* Write a 32-bit thumb instruction to buf. */
18100static void
18101put_thumb32_insn (char * buf, unsigned long insn)
18102{
18103 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
18104 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
18105}
18106
b99bd4ef 18107static void
c19d1205 18108output_inst (const char * str)
b99bd4ef 18109{
c19d1205 18110 char * to = NULL;
b99bd4ef 18111
c19d1205 18112 if (inst.error)
b99bd4ef 18113 {
c19d1205 18114 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
18115 return;
18116 }
5f4273c7
NC
18117 if (inst.relax)
18118 {
18119 output_relax_insn ();
0110f2b8 18120 return;
5f4273c7 18121 }
c19d1205
ZW
18122 if (inst.size == 0)
18123 return;
b99bd4ef 18124
c19d1205 18125 to = frag_more (inst.size);
8dc2430f
NC
18126 /* PR 9814: Record the thumb mode into the current frag so that we know
18127 what type of NOP padding to use, if necessary. We override any previous
18128 setting so that if the mode has changed then the NOPS that we use will
18129 match the encoding of the last instruction in the frag. */
cd000bff 18130 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
18131
18132 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 18133 {
9c2799c2 18134 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 18135 put_thumb32_insn (to, inst.instruction);
b99bd4ef 18136 }
c19d1205 18137 else if (inst.size > INSN_SIZE)
b99bd4ef 18138 {
9c2799c2 18139 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
18140 md_number_to_chars (to, inst.instruction, INSN_SIZE);
18141 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 18142 }
c19d1205
ZW
18143 else
18144 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 18145
e2b0ab59
AV
18146 int r;
18147 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18148 {
18149 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
18150 fix_new_arm (frag_now, to - frag_now->fr_literal,
18151 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
18152 inst.relocs[r].type);
18153 }
b99bd4ef 18154
c19d1205 18155 dwarf2_emit_insn (inst.size);
c19d1205 18156}
b99bd4ef 18157
e07e6e58
NC
18158static char *
18159output_it_inst (int cond, int mask, char * to)
18160{
18161 unsigned long instruction = 0xbf00;
18162
18163 mask &= 0xf;
18164 instruction |= mask;
18165 instruction |= cond << 4;
18166
18167 if (to == NULL)
18168 {
18169 to = frag_more (2);
18170#ifdef OBJ_ELF
18171 dwarf2_emit_insn (2);
18172#endif
18173 }
18174
18175 md_number_to_chars (to, instruction, 2);
18176
18177 return to;
18178}
18179
c19d1205
ZW
18180/* Tag values used in struct asm_opcode's tag field. */
18181enum opcode_tag
18182{
18183 OT_unconditional, /* Instruction cannot be conditionalized.
18184 The ARM condition field is still 0xE. */
18185 OT_unconditionalF, /* Instruction cannot be conditionalized
18186 and carries 0xF in its ARM condition field. */
18187 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744 18188 OT_csuffixF, /* Some forms of the instruction take a conditional
477330fc
RM
18189 suffix, others place 0xF where the condition field
18190 would be. */
c19d1205
ZW
18191 OT_cinfix3, /* Instruction takes a conditional infix,
18192 beginning at character index 3. (In
18193 unified mode, it becomes a suffix.) */
088fa78e
KH
18194 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18195 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
18196 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18197 character index 3, even in unified mode. Used for
18198 legacy instructions where suffix and infix forms
18199 may be ambiguous. */
c19d1205 18200 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 18201 suffix or an infix at character index 3. */
c19d1205
ZW
18202 OT_odd_infix_unc, /* This is the unconditional variant of an
18203 instruction that takes a conditional infix
18204 at an unusual position. In unified mode,
18205 this variant will accept a suffix. */
18206 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18207 are the conditional variants of instructions that
18208 take conditional infixes in unusual positions.
18209 The infix appears at character index
18210 (tag - OT_odd_infix_0). These are not accepted
18211 in unified mode. */
18212};
b99bd4ef 18213
c19d1205
ZW
18214/* Subroutine of md_assemble, responsible for looking up the primary
18215 opcode from the mnemonic the user wrote. STR points to the
18216 beginning of the mnemonic.
18217
18218 This is not simply a hash table lookup, because of conditional
18219 variants. Most instructions have conditional variants, which are
18220 expressed with a _conditional affix_ to the mnemonic. If we were
18221 to encode each conditional variant as a literal string in the opcode
18222 table, it would have approximately 20,000 entries.
18223
18224 Most mnemonics take this affix as a suffix, and in unified syntax,
18225 'most' is upgraded to 'all'. However, in the divided syntax, some
18226 instructions take the affix as an infix, notably the s-variants of
18227 the arithmetic instructions. Of those instructions, all but six
18228 have the infix appear after the third character of the mnemonic.
18229
18230 Accordingly, the algorithm for looking up primary opcodes given
18231 an identifier is:
18232
18233 1. Look up the identifier in the opcode table.
18234 If we find a match, go to step U.
18235
18236 2. Look up the last two characters of the identifier in the
18237 conditions table. If we find a match, look up the first N-2
18238 characters of the identifier in the opcode table. If we
18239 find a match, go to step CE.
18240
18241 3. Look up the fourth and fifth characters of the identifier in
18242 the conditions table. If we find a match, extract those
18243 characters from the identifier, and look up the remaining
18244 characters in the opcode table. If we find a match, go
18245 to step CM.
18246
18247 4. Fail.
18248
18249 U. Examine the tag field of the opcode structure, in case this is
18250 one of the six instructions with its conditional infix in an
18251 unusual place. If it is, the tag tells us where to find the
18252 infix; look it up in the conditions table and set inst.cond
18253 accordingly. Otherwise, this is an unconditional instruction.
18254 Again set inst.cond accordingly. Return the opcode structure.
18255
18256 CE. Examine the tag field to make sure this is an instruction that
18257 should receive a conditional suffix. If it is not, fail.
18258 Otherwise, set inst.cond from the suffix we already looked up,
18259 and return the opcode structure.
18260
18261 CM. Examine the tag field to make sure this is an instruction that
18262 should receive a conditional infix after the third character.
18263 If it is not, fail. Otherwise, undo the edits to the current
18264 line of input and proceed as for case CE. */
18265
18266static const struct asm_opcode *
18267opcode_lookup (char **str)
18268{
18269 char *end, *base;
18270 char *affix;
18271 const struct asm_opcode *opcode;
18272 const struct asm_cond *cond;
e3cb604e 18273 char save[2];
c19d1205
ZW
18274
18275 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 18276 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 18277 for (base = end = *str; *end != '\0'; end++)
721a8186 18278 if (*end == ' ' || *end == '.')
c19d1205 18279 break;
b99bd4ef 18280
c19d1205 18281 if (end == base)
c921be7d 18282 return NULL;
b99bd4ef 18283
5287ad62 18284 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 18285 if (end[0] == '.')
b99bd4ef 18286 {
5287ad62 18287 int offset = 2;
5f4273c7 18288
267d2029 18289 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 18290 use. */
267d2029 18291 if (unified_syntax && end[1] == 'w')
c19d1205 18292 inst.size_req = 4;
267d2029 18293 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
18294 inst.size_req = 2;
18295 else
477330fc 18296 offset = 0;
5287ad62
JB
18297
18298 inst.vectype.elems = 0;
18299
18300 *str = end + offset;
b99bd4ef 18301
5f4273c7 18302 if (end[offset] == '.')
5287ad62 18303 {
267d2029 18304 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
18305 non-unified ARM syntax mode). */
18306 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 18307 return NULL;
477330fc 18308 }
5287ad62 18309 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 18310 return NULL;
b99bd4ef 18311 }
c19d1205
ZW
18312 else
18313 *str = end;
b99bd4ef 18314
c19d1205 18315 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 18316 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18317 end - base);
c19d1205 18318 if (opcode)
b99bd4ef 18319 {
c19d1205
ZW
18320 /* step U */
18321 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 18322 {
c19d1205
ZW
18323 inst.cond = COND_ALWAYS;
18324 return opcode;
b99bd4ef 18325 }
b99bd4ef 18326
278df34e 18327 if (warn_on_deprecated && unified_syntax)
5c3696f8 18328 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 18329 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 18330 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 18331 gas_assert (cond);
b99bd4ef 18332
c19d1205
ZW
18333 inst.cond = cond->value;
18334 return opcode;
18335 }
b99bd4ef 18336
c19d1205
ZW
18337 /* Cannot have a conditional suffix on a mnemonic of less than two
18338 characters. */
18339 if (end - base < 3)
c921be7d 18340 return NULL;
b99bd4ef 18341
c19d1205
ZW
18342 /* Look for suffixed mnemonic. */
18343 affix = end - 2;
21d799b5
NC
18344 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18345 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18346 affix - base);
c19d1205
ZW
18347 if (opcode && cond)
18348 {
18349 /* step CE */
18350 switch (opcode->tag)
18351 {
e3cb604e
PB
18352 case OT_cinfix3_legacy:
18353 /* Ignore conditional suffixes matched on infix only mnemonics. */
18354 break;
18355
c19d1205 18356 case OT_cinfix3:
088fa78e 18357 case OT_cinfix3_deprecated:
c19d1205
ZW
18358 case OT_odd_infix_unc:
18359 if (!unified_syntax)
0198d5e6 18360 return NULL;
1a0670f3 18361 /* Fall through. */
c19d1205
ZW
18362
18363 case OT_csuffix:
477330fc 18364 case OT_csuffixF:
c19d1205
ZW
18365 case OT_csuf_or_in3:
18366 inst.cond = cond->value;
18367 return opcode;
18368
18369 case OT_unconditional:
18370 case OT_unconditionalF:
dfa9f0d5 18371 if (thumb_mode)
c921be7d 18372 inst.cond = cond->value;
dfa9f0d5
PB
18373 else
18374 {
c921be7d 18375 /* Delayed diagnostic. */
dfa9f0d5
PB
18376 inst.error = BAD_COND;
18377 inst.cond = COND_ALWAYS;
18378 }
c19d1205 18379 return opcode;
b99bd4ef 18380
c19d1205 18381 default:
c921be7d 18382 return NULL;
c19d1205
ZW
18383 }
18384 }
b99bd4ef 18385
c19d1205
ZW
18386 /* Cannot have a usual-position infix on a mnemonic of less than
18387 six characters (five would be a suffix). */
18388 if (end - base < 6)
c921be7d 18389 return NULL;
b99bd4ef 18390
c19d1205
ZW
18391 /* Look for infixed mnemonic in the usual position. */
18392 affix = base + 3;
21d799b5 18393 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 18394 if (!cond)
c921be7d 18395 return NULL;
e3cb604e
PB
18396
18397 memcpy (save, affix, 2);
18398 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 18399 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18400 (end - base) - 2);
e3cb604e
PB
18401 memmove (affix + 2, affix, (end - affix) - 2);
18402 memcpy (affix, save, 2);
18403
088fa78e
KH
18404 if (opcode
18405 && (opcode->tag == OT_cinfix3
18406 || opcode->tag == OT_cinfix3_deprecated
18407 || opcode->tag == OT_csuf_or_in3
18408 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 18409 {
c921be7d 18410 /* Step CM. */
278df34e 18411 if (warn_on_deprecated && unified_syntax
088fa78e
KH
18412 && (opcode->tag == OT_cinfix3
18413 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 18414 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
18415
18416 inst.cond = cond->value;
18417 return opcode;
b99bd4ef
NC
18418 }
18419
c921be7d 18420 return NULL;
b99bd4ef
NC
18421}
18422
e07e6e58
NC
18423/* This function generates an initial IT instruction, leaving its block
18424 virtually open for the new instructions. Eventually,
18425 the mask will be updated by now_it_add_mask () each time
18426 a new instruction needs to be included in the IT block.
18427 Finally, the block is closed with close_automatic_it_block ().
18428 The block closure can be requested either from md_assemble (),
18429 a tencode (), or due to a label hook. */
18430
18431static void
18432new_automatic_it_block (int cond)
18433{
18434 now_it.state = AUTOMATIC_IT_BLOCK;
18435 now_it.mask = 0x18;
18436 now_it.cc = cond;
18437 now_it.block_length = 1;
cd000bff 18438 mapping_state (MAP_THUMB);
e07e6e58 18439 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
18440 now_it.warn_deprecated = FALSE;
18441 now_it.insn_cond = TRUE;
e07e6e58
NC
18442}
18443
18444/* Close an automatic IT block.
18445 See comments in new_automatic_it_block (). */
18446
18447static void
18448close_automatic_it_block (void)
18449{
18450 now_it.mask = 0x10;
18451 now_it.block_length = 0;
18452}
18453
18454/* Update the mask of the current automatically-generated IT
18455 instruction. See comments in new_automatic_it_block (). */
18456
18457static void
18458now_it_add_mask (int cond)
18459{
18460#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18461#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 18462 | ((bitvalue) << (nbit)))
e07e6e58 18463 const int resulting_bit = (cond & 1);
c921be7d 18464
e07e6e58
NC
18465 now_it.mask &= 0xf;
18466 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18467 resulting_bit,
18468 (5 - now_it.block_length));
e07e6e58 18469 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18470 1,
18471 ((5 - now_it.block_length) - 1) );
e07e6e58
NC
18472 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18473
18474#undef CLEAR_BIT
18475#undef SET_BIT_VALUE
e07e6e58
NC
18476}
18477
18478/* The IT blocks handling machinery is accessed through the these functions:
18479 it_fsm_pre_encode () from md_assemble ()
18480 set_it_insn_type () optional, from the tencode functions
18481 set_it_insn_type_last () ditto
18482 in_it_block () ditto
18483 it_fsm_post_encode () from md_assemble ()
33eaf5de 18484 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
18485
18486 Rationale:
18487 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
18488 initializing the IT insn type with a generic initial value depending
18489 on the inst.condition.
e07e6e58 18490 2) During the tencode function, two things may happen:
477330fc
RM
18491 a) The tencode function overrides the IT insn type by
18492 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18493 b) The tencode function queries the IT block state by
18494 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18495
18496 Both set_it_insn_type and in_it_block run the internal FSM state
18497 handling function (handle_it_state), because: a) setting the IT insn
18498 type may incur in an invalid state (exiting the function),
18499 and b) querying the state requires the FSM to be updated.
18500 Specifically we want to avoid creating an IT block for conditional
18501 branches, so it_fsm_pre_encode is actually a guess and we can't
18502 determine whether an IT block is required until the tencode () routine
18503 has decided what type of instruction this actually it.
18504 Because of this, if set_it_insn_type and in_it_block have to be used,
18505 set_it_insn_type has to be called first.
18506
18507 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18508 determines the insn IT type depending on the inst.cond code.
18509 When a tencode () routine encodes an instruction that can be
18510 either outside an IT block, or, in the case of being inside, has to be
18511 the last one, set_it_insn_type_last () will determine the proper
18512 IT instruction type based on the inst.cond code. Otherwise,
18513 set_it_insn_type can be called for overriding that logic or
18514 for covering other cases.
18515
18516 Calling handle_it_state () may not transition the IT block state to
2b0f3761 18517 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
477330fc
RM
18518 still queried. Instead, if the FSM determines that the state should
18519 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18520 after the tencode () function: that's what it_fsm_post_encode () does.
18521
18522 Since in_it_block () calls the state handling function to get an
18523 updated state, an error may occur (due to invalid insns combination).
18524 In that case, inst.error is set.
18525 Therefore, inst.error has to be checked after the execution of
18526 the tencode () routine.
e07e6e58
NC
18527
18528 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc
RM
18529 any pending state change (if any) that didn't take place in
18530 handle_it_state () as explained above. */
e07e6e58
NC
18531
18532static void
18533it_fsm_pre_encode (void)
18534{
18535 if (inst.cond != COND_ALWAYS)
18536 inst.it_insn_type = INSIDE_IT_INSN;
18537 else
18538 inst.it_insn_type = OUTSIDE_IT_INSN;
18539
18540 now_it.state_handled = 0;
18541}
18542
18543/* IT state FSM handling function. */
18544
18545static int
18546handle_it_state (void)
18547{
18548 now_it.state_handled = 1;
5a01bb1d 18549 now_it.insn_cond = FALSE;
e07e6e58
NC
18550
18551 switch (now_it.state)
18552 {
18553 case OUTSIDE_IT_BLOCK:
18554 switch (inst.it_insn_type)
18555 {
18556 case OUTSIDE_IT_INSN:
18557 break;
18558
18559 case INSIDE_IT_INSN:
18560 case INSIDE_IT_LAST_INSN:
18561 if (thumb_mode == 0)
18562 {
c921be7d 18563 if (unified_syntax
e07e6e58
NC
18564 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18565 as_tsktsk (_("Warning: conditional outside an IT block"\
18566 " for Thumb."));
18567 }
18568 else
18569 {
18570 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
fc289b0a 18571 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
e07e6e58
NC
18572 {
18573 /* Automatically generate the IT instruction. */
18574 new_automatic_it_block (inst.cond);
18575 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18576 close_automatic_it_block ();
18577 }
18578 else
18579 {
18580 inst.error = BAD_OUT_IT;
18581 return FAIL;
18582 }
18583 }
18584 break;
18585
18586 case IF_INSIDE_IT_LAST_INSN:
18587 case NEUTRAL_IT_INSN:
18588 break;
18589
18590 case IT_INSN:
18591 now_it.state = MANUAL_IT_BLOCK;
18592 now_it.block_length = 0;
18593 break;
18594 }
18595 break;
18596
18597 case AUTOMATIC_IT_BLOCK:
18598 /* Three things may happen now:
18599 a) We should increment current it block size;
18600 b) We should close current it block (closing insn or 4 insns);
18601 c) We should close current it block and start a new one (due
18602 to incompatible conditions or
18603 4 insns-length block reached). */
18604
18605 switch (inst.it_insn_type)
18606 {
18607 case OUTSIDE_IT_INSN:
2b0f3761 18608 /* The closure of the block shall happen immediately,
e07e6e58
NC
18609 so any in_it_block () call reports the block as closed. */
18610 force_automatic_it_block_close ();
18611 break;
18612
18613 case INSIDE_IT_INSN:
18614 case INSIDE_IT_LAST_INSN:
18615 case IF_INSIDE_IT_LAST_INSN:
18616 now_it.block_length++;
18617
18618 if (now_it.block_length > 4
18619 || !now_it_compatible (inst.cond))
18620 {
18621 force_automatic_it_block_close ();
18622 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18623 new_automatic_it_block (inst.cond);
18624 }
18625 else
18626 {
5a01bb1d 18627 now_it.insn_cond = TRUE;
e07e6e58
NC
18628 now_it_add_mask (inst.cond);
18629 }
18630
18631 if (now_it.state == AUTOMATIC_IT_BLOCK
18632 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18633 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18634 close_automatic_it_block ();
18635 break;
18636
18637 case NEUTRAL_IT_INSN:
18638 now_it.block_length++;
5a01bb1d 18639 now_it.insn_cond = TRUE;
e07e6e58
NC
18640
18641 if (now_it.block_length > 4)
18642 force_automatic_it_block_close ();
18643 else
18644 now_it_add_mask (now_it.cc & 1);
18645 break;
18646
18647 case IT_INSN:
18648 close_automatic_it_block ();
18649 now_it.state = MANUAL_IT_BLOCK;
18650 break;
18651 }
18652 break;
18653
18654 case MANUAL_IT_BLOCK:
18655 {
18656 /* Check conditional suffixes. */
18657 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18658 int is_last;
18659 now_it.mask <<= 1;
18660 now_it.mask &= 0x1f;
18661 is_last = (now_it.mask == 0x10);
5a01bb1d 18662 now_it.insn_cond = TRUE;
e07e6e58
NC
18663
18664 switch (inst.it_insn_type)
18665 {
18666 case OUTSIDE_IT_INSN:
18667 inst.error = BAD_NOT_IT;
18668 return FAIL;
18669
18670 case INSIDE_IT_INSN:
18671 if (cond != inst.cond)
18672 {
18673 inst.error = BAD_IT_COND;
18674 return FAIL;
18675 }
18676 break;
18677
18678 case INSIDE_IT_LAST_INSN:
18679 case IF_INSIDE_IT_LAST_INSN:
18680 if (cond != inst.cond)
18681 {
18682 inst.error = BAD_IT_COND;
18683 return FAIL;
18684 }
18685 if (!is_last)
18686 {
18687 inst.error = BAD_BRANCH;
18688 return FAIL;
18689 }
18690 break;
18691
18692 case NEUTRAL_IT_INSN:
18693 /* The BKPT instruction is unconditional even in an IT block. */
18694 break;
18695
18696 case IT_INSN:
18697 inst.error = BAD_IT_IT;
18698 return FAIL;
18699 }
18700 }
18701 break;
18702 }
18703
18704 return SUCCESS;
18705}
18706
5a01bb1d
MGD
18707struct depr_insn_mask
18708{
18709 unsigned long pattern;
18710 unsigned long mask;
18711 const char* description;
18712};
18713
18714/* List of 16-bit instruction patterns deprecated in an IT block in
18715 ARMv8. */
18716static const struct depr_insn_mask depr_it_insns[] = {
18717 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18718 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18719 { 0xa000, 0xb800, N_("ADR") },
18720 { 0x4800, 0xf800, N_("Literal loads") },
18721 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18722 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
18723 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18724 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18725 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
18726 { 0, 0, NULL }
18727};
18728
e07e6e58
NC
18729static void
18730it_fsm_post_encode (void)
18731{
18732 int is_last;
18733
18734 if (!now_it.state_handled)
18735 handle_it_state ();
18736
5a01bb1d
MGD
18737 if (now_it.insn_cond
18738 && !now_it.warn_deprecated
18739 && warn_on_deprecated
df9909b8
TP
18740 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
18741 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
18742 {
18743 if (inst.instruction >= 0x10000)
18744 {
5c3696f8 18745 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 18746 "performance deprecated in ARMv8-A and ARMv8-R"));
5a01bb1d
MGD
18747 now_it.warn_deprecated = TRUE;
18748 }
18749 else
18750 {
18751 const struct depr_insn_mask *p = depr_it_insns;
18752
18753 while (p->mask != 0)
18754 {
18755 if ((inst.instruction & p->mask) == p->pattern)
18756 {
df9909b8
TP
18757 as_tsktsk (_("IT blocks containing 16-bit Thumb "
18758 "instructions of the following class are "
18759 "performance deprecated in ARMv8-A and "
18760 "ARMv8-R: %s"), p->description);
5a01bb1d
MGD
18761 now_it.warn_deprecated = TRUE;
18762 break;
18763 }
18764
18765 ++p;
18766 }
18767 }
18768
18769 if (now_it.block_length > 1)
18770 {
5c3696f8 18771 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
18772 "instruction are performance deprecated in ARMv8-A and "
18773 "ARMv8-R"));
5a01bb1d
MGD
18774 now_it.warn_deprecated = TRUE;
18775 }
18776 }
18777
e07e6e58
NC
18778 is_last = (now_it.mask == 0x10);
18779 if (is_last)
18780 {
18781 now_it.state = OUTSIDE_IT_BLOCK;
18782 now_it.mask = 0;
18783 }
18784}
18785
18786static void
18787force_automatic_it_block_close (void)
18788{
18789 if (now_it.state == AUTOMATIC_IT_BLOCK)
18790 {
18791 close_automatic_it_block ();
18792 now_it.state = OUTSIDE_IT_BLOCK;
18793 now_it.mask = 0;
18794 }
18795}
18796
18797static int
18798in_it_block (void)
18799{
18800 if (!now_it.state_handled)
18801 handle_it_state ();
18802
18803 return now_it.state != OUTSIDE_IT_BLOCK;
18804}
18805
ff8646ee
TP
18806/* Whether OPCODE only has T32 encoding. Since this function is only used by
18807 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18808 here, hence the "known" in the function name. */
fc289b0a
TP
18809
18810static bfd_boolean
ff8646ee 18811known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
18812{
18813 /* Original Thumb-1 wide instruction. */
18814 if (opcode->tencode == do_t_blx
18815 || opcode->tencode == do_t_branch23
18816 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18817 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18818 return TRUE;
18819
16a1fa25
TP
18820 /* Wide-only instruction added to ARMv8-M Baseline. */
18821 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
18822 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18823 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18824 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18825 return TRUE;
18826
18827 return FALSE;
18828}
18829
18830/* Whether wide instruction variant can be used if available for a valid OPCODE
18831 in ARCH. */
18832
18833static bfd_boolean
18834t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18835{
18836 if (known_t32_only_insn (opcode))
18837 return TRUE;
18838
18839 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18840 of variant T3 of B.W is checked in do_t_branch. */
18841 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18842 && opcode->tencode == do_t_branch)
18843 return TRUE;
18844
bada4342
JW
18845 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18846 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18847 && opcode->tencode == do_t_mov_cmp
18848 /* Make sure CMP instruction is not affected. */
18849 && opcode->aencode == do_mov)
18850 return TRUE;
18851
ff8646ee
TP
18852 /* Wide instruction variants of all instructions with narrow *and* wide
18853 variants become available with ARMv6t2. Other opcodes are either
18854 narrow-only or wide-only and are thus available if OPCODE is valid. */
18855 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18856 return TRUE;
18857
18858 /* OPCODE with narrow only instruction variant or wide variant not
18859 available. */
fc289b0a
TP
18860 return FALSE;
18861}
18862
c19d1205
ZW
18863void
18864md_assemble (char *str)
b99bd4ef 18865{
c19d1205
ZW
18866 char *p = str;
18867 const struct asm_opcode * opcode;
b99bd4ef 18868
c19d1205
ZW
18869 /* Align the previous label if needed. */
18870 if (last_label_seen != NULL)
b99bd4ef 18871 {
c19d1205
ZW
18872 symbol_set_frag (last_label_seen, frag_now);
18873 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18874 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
18875 }
18876
c19d1205 18877 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
18878 int r;
18879 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18880 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 18881
c19d1205
ZW
18882 opcode = opcode_lookup (&p);
18883 if (!opcode)
b99bd4ef 18884 {
c19d1205 18885 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 18886 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 18887 if (! create_register_alias (str, p)
477330fc 18888 && ! create_neon_reg_alias (str, p))
c19d1205 18889 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 18890
b99bd4ef
NC
18891 return;
18892 }
18893
278df34e 18894 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 18895 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 18896
037e8744
JB
18897 /* The value which unconditional instructions should have in place of the
18898 condition field. */
18899 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18900
c19d1205 18901 if (thumb_mode)
b99bd4ef 18902 {
e74cfd16 18903 arm_feature_set variant;
8f06b2d8
PB
18904
18905 variant = cpu_variant;
18906 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
18907 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18908 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 18909 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
18910 if (!opcode->tvariant
18911 || (thumb_mode == 1
18912 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 18913 {
173205ca
TP
18914 if (opcode->tencode == do_t_swi)
18915 as_bad (_("SVC is not permitted on this architecture"));
18916 else
18917 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
18918 return;
18919 }
c19d1205
ZW
18920 if (inst.cond != COND_ALWAYS && !unified_syntax
18921 && opcode->tencode != do_t_branch)
b99bd4ef 18922 {
c19d1205 18923 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
18924 return;
18925 }
18926
fc289b0a
TP
18927 /* Two things are addressed here:
18928 1) Implicit require narrow instructions on Thumb-1.
18929 This avoids relaxation accidentally introducing Thumb-2
18930 instructions.
18931 2) Reject wide instructions in non Thumb-2 cores.
18932
18933 Only instructions with narrow and wide variants need to be handled
18934 but selecting all non wide-only instructions is easier. */
18935 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 18936 && !t32_insn_ok (variant, opcode))
076d447c 18937 {
fc289b0a
TP
18938 if (inst.size_req == 0)
18939 inst.size_req = 2;
18940 else if (inst.size_req == 4)
752d5da4 18941 {
ff8646ee
TP
18942 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18943 as_bad (_("selected processor does not support 32bit wide "
18944 "variant of instruction `%s'"), str);
18945 else
18946 as_bad (_("selected processor does not support `%s' in "
18947 "Thumb-2 mode"), str);
fc289b0a 18948 return;
752d5da4 18949 }
076d447c
PB
18950 }
18951
c19d1205
ZW
18952 inst.instruction = opcode->tvalue;
18953
5be8be5d 18954 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc
RM
18955 {
18956 /* Prepare the it_insn_type for those encodings that don't set
18957 it. */
18958 it_fsm_pre_encode ();
c19d1205 18959
477330fc 18960 opcode->tencode ();
e07e6e58 18961
477330fc
RM
18962 it_fsm_post_encode ();
18963 }
e27ec89e 18964
0110f2b8 18965 if (!(inst.error || inst.relax))
b99bd4ef 18966 {
9c2799c2 18967 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
18968 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18969 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 18970 {
c19d1205 18971 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
18972 return;
18973 }
18974 }
076d447c
PB
18975
18976 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 18977 instruction. */
9c2799c2 18978 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 18979
e74cfd16
PB
18980 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18981 *opcode->tvariant);
ee065d83 18982 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
18983 set those bits when Thumb-2 32-bit instructions are seen. The impact
18984 of relaxable instructions will be considered later after we finish all
18985 relaxation. */
ff8646ee
TP
18986 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18987 variant = arm_arch_none;
18988 else
18989 variant = cpu_variant;
18990 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
18991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18992 arm_ext_v6t2);
cd000bff 18993
88714cb8
DG
18994 check_neon_suffixes;
18995
cd000bff 18996 if (!inst.error)
c877a2f2
NC
18997 {
18998 mapping_state (MAP_THUMB);
18999 }
c19d1205 19000 }
3e9e4fcf 19001 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 19002 {
845b51d6
PB
19003 bfd_boolean is_bx;
19004
19005 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
19006 is_bx = (opcode->aencode == do_bx);
19007
c19d1205 19008 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
19009 if (!(is_bx && fix_v4bx)
19010 && !(opcode->avariant &&
19011 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 19012 {
84b52b66 19013 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 19014 return;
b99bd4ef 19015 }
c19d1205 19016 if (inst.size_req)
b99bd4ef 19017 {
c19d1205
ZW
19018 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
19019 return;
b99bd4ef
NC
19020 }
19021
c19d1205
ZW
19022 inst.instruction = opcode->avalue;
19023 if (opcode->tag == OT_unconditionalF)
eff0bc54 19024 inst.instruction |= 0xFU << 28;
c19d1205
ZW
19025 else
19026 inst.instruction |= inst.cond << 28;
19027 inst.size = INSN_SIZE;
5be8be5d 19028 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
19029 {
19030 it_fsm_pre_encode ();
19031 opcode->aencode ();
19032 it_fsm_post_encode ();
19033 }
ee065d83 19034 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 19035 on a hypothetical non-thumb v5 core. */
845b51d6 19036 if (is_bx)
e74cfd16 19037 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 19038 else
e74cfd16
PB
19039 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
19040 *opcode->avariant);
88714cb8
DG
19041
19042 check_neon_suffixes;
19043
cd000bff 19044 if (!inst.error)
c877a2f2
NC
19045 {
19046 mapping_state (MAP_ARM);
19047 }
b99bd4ef 19048 }
3e9e4fcf
JB
19049 else
19050 {
19051 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
19052 "-- `%s'"), str);
19053 return;
19054 }
c19d1205
ZW
19055 output_inst (str);
19056}
b99bd4ef 19057
e07e6e58
NC
19058static void
19059check_it_blocks_finished (void)
19060{
19061#ifdef OBJ_ELF
19062 asection *sect;
19063
19064 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
19065 if (seg_info (sect)->tc_segment_info_data.current_it.state
19066 == MANUAL_IT_BLOCK)
19067 {
19068 as_warn (_("section '%s' finished with an open IT block."),
19069 sect->name);
19070 }
19071#else
19072 if (now_it.state == MANUAL_IT_BLOCK)
19073 as_warn (_("file finished with an open IT block."));
19074#endif
19075}
19076
c19d1205
ZW
19077/* Various frobbings of labels and their addresses. */
19078
19079void
19080arm_start_line_hook (void)
19081{
19082 last_label_seen = NULL;
b99bd4ef
NC
19083}
19084
c19d1205
ZW
19085void
19086arm_frob_label (symbolS * sym)
b99bd4ef 19087{
c19d1205 19088 last_label_seen = sym;
b99bd4ef 19089
c19d1205 19090 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 19091
c19d1205
ZW
19092#if defined OBJ_COFF || defined OBJ_ELF
19093 ARM_SET_INTERWORK (sym, support_interwork);
19094#endif
b99bd4ef 19095
e07e6e58
NC
19096 force_automatic_it_block_close ();
19097
5f4273c7 19098 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
19099 as Thumb functions. This is because these labels, whilst
19100 they exist inside Thumb code, are not the entry points for
19101 possible ARM->Thumb calls. Also, these labels can be used
19102 as part of a computed goto or switch statement. eg gcc
19103 can generate code that looks like this:
b99bd4ef 19104
c19d1205
ZW
19105 ldr r2, [pc, .Laaa]
19106 lsl r3, r3, #2
19107 ldr r2, [r3, r2]
19108 mov pc, r2
b99bd4ef 19109
c19d1205
ZW
19110 .Lbbb: .word .Lxxx
19111 .Lccc: .word .Lyyy
19112 ..etc...
19113 .Laaa: .word Lbbb
b99bd4ef 19114
c19d1205
ZW
19115 The first instruction loads the address of the jump table.
19116 The second instruction converts a table index into a byte offset.
19117 The third instruction gets the jump address out of the table.
19118 The fourth instruction performs the jump.
b99bd4ef 19119
c19d1205
ZW
19120 If the address stored at .Laaa is that of a symbol which has the
19121 Thumb_Func bit set, then the linker will arrange for this address
19122 to have the bottom bit set, which in turn would mean that the
19123 address computation performed by the third instruction would end
19124 up with the bottom bit set. Since the ARM is capable of unaligned
19125 word loads, the instruction would then load the incorrect address
19126 out of the jump table, and chaos would ensue. */
19127 if (label_is_thumb_function_name
19128 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
19129 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 19130 {
c19d1205
ZW
19131 /* When the address of a Thumb function is taken the bottom
19132 bit of that address should be set. This will allow
19133 interworking between Arm and Thumb functions to work
19134 correctly. */
b99bd4ef 19135
c19d1205 19136 THUMB_SET_FUNC (sym, 1);
b99bd4ef 19137
c19d1205 19138 label_is_thumb_function_name = FALSE;
b99bd4ef 19139 }
07a53e5c 19140
07a53e5c 19141 dwarf2_emit_label (sym);
b99bd4ef
NC
19142}
19143
c921be7d 19144bfd_boolean
c19d1205 19145arm_data_in_code (void)
b99bd4ef 19146{
c19d1205 19147 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 19148 {
c19d1205
ZW
19149 *input_line_pointer = '/';
19150 input_line_pointer += 5;
19151 *input_line_pointer = 0;
c921be7d 19152 return TRUE;
b99bd4ef
NC
19153 }
19154
c921be7d 19155 return FALSE;
b99bd4ef
NC
19156}
19157
c19d1205
ZW
19158char *
19159arm_canonicalize_symbol_name (char * name)
b99bd4ef 19160{
c19d1205 19161 int len;
b99bd4ef 19162
c19d1205
ZW
19163 if (thumb_mode && (len = strlen (name)) > 5
19164 && streq (name + len - 5, "/data"))
19165 *(name + len - 5) = 0;
b99bd4ef 19166
c19d1205 19167 return name;
b99bd4ef 19168}
c19d1205
ZW
19169\f
19170/* Table of all register names defined by default. The user can
19171 define additional names with .req. Note that all register names
19172 should appear in both upper and lowercase variants. Some registers
19173 also have mixed-case names. */
b99bd4ef 19174
dcbf9037 19175#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 19176#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 19177#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
19178#define REGSET(p,t) \
19179 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
19180 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
19181 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
19182 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
19183#define REGSETH(p,t) \
19184 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19185 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19186 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19187 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19188#define REGSET2(p,t) \
19189 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19190 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19191 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19192 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
19193#define SPLRBANK(base,bank,t) \
19194 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19195 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19196 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19197 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19198 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19199 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 19200
c19d1205 19201static const struct reg_entry reg_names[] =
7ed4c4c5 19202{
c19d1205
ZW
19203 /* ARM integer registers. */
19204 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 19205
c19d1205
ZW
19206 /* ATPCS synonyms. */
19207 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19208 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19209 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 19210
c19d1205
ZW
19211 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19212 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19213 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 19214
c19d1205
ZW
19215 /* Well-known aliases. */
19216 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19217 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19218
19219 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19220 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19221
19222 /* Coprocessor numbers. */
19223 REGSET(p, CP), REGSET(P, CP),
19224
19225 /* Coprocessor register numbers. The "cr" variants are for backward
19226 compatibility. */
19227 REGSET(c, CN), REGSET(C, CN),
19228 REGSET(cr, CN), REGSET(CR, CN),
19229
90ec0d68
MGD
19230 /* ARM banked registers. */
19231 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19232 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19233 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19234 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19235 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19236 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19237 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19238
19239 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19240 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19241 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19242 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19243 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 19244 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
19245 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19246 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19247
19248 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19249 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19250 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19251 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19252 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19253 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19254 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 19255 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
19256 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19257
c19d1205
ZW
19258 /* FPA registers. */
19259 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19260 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19261
19262 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19263 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19264
19265 /* VFP SP registers. */
5287ad62
JB
19266 REGSET(s,VFS), REGSET(S,VFS),
19267 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
19268
19269 /* VFP DP Registers. */
5287ad62
JB
19270 REGSET(d,VFD), REGSET(D,VFD),
19271 /* Extra Neon DP registers. */
19272 REGSETH(d,VFD), REGSETH(D,VFD),
19273
19274 /* Neon QP registers. */
19275 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
19276
19277 /* VFP control registers. */
19278 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19279 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
19280 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19281 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19282 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19283 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 19284 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
19285
19286 /* Maverick DSP coprocessor registers. */
19287 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19288 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19289
19290 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19291 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19292 REGDEF(dspsc,0,DSPSC),
19293
19294 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19295 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19296 REGDEF(DSPSC,0,DSPSC),
19297
19298 /* iWMMXt data registers - p0, c0-15. */
19299 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19300
19301 /* iWMMXt control registers - p1, c0-3. */
19302 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19303 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19304 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19305 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19306
19307 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19308 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19309 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19310 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19311 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19312
19313 /* XScale accumulator registers. */
19314 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19315};
19316#undef REGDEF
19317#undef REGNUM
19318#undef REGSET
7ed4c4c5 19319
c19d1205
ZW
19320/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19321 within psr_required_here. */
19322static const struct asm_psr psrs[] =
19323{
19324 /* Backward compatibility notation. Note that "all" is no longer
19325 truly all possible PSR bits. */
19326 {"all", PSR_c | PSR_f},
19327 {"flg", PSR_f},
19328 {"ctl", PSR_c},
19329
19330 /* Individual flags. */
19331 {"f", PSR_f},
19332 {"c", PSR_c},
19333 {"x", PSR_x},
19334 {"s", PSR_s},
59b42a0d 19335
c19d1205
ZW
19336 /* Combinations of flags. */
19337 {"fs", PSR_f | PSR_s},
19338 {"fx", PSR_f | PSR_x},
19339 {"fc", PSR_f | PSR_c},
19340 {"sf", PSR_s | PSR_f},
19341 {"sx", PSR_s | PSR_x},
19342 {"sc", PSR_s | PSR_c},
19343 {"xf", PSR_x | PSR_f},
19344 {"xs", PSR_x | PSR_s},
19345 {"xc", PSR_x | PSR_c},
19346 {"cf", PSR_c | PSR_f},
19347 {"cs", PSR_c | PSR_s},
19348 {"cx", PSR_c | PSR_x},
19349 {"fsx", PSR_f | PSR_s | PSR_x},
19350 {"fsc", PSR_f | PSR_s | PSR_c},
19351 {"fxs", PSR_f | PSR_x | PSR_s},
19352 {"fxc", PSR_f | PSR_x | PSR_c},
19353 {"fcs", PSR_f | PSR_c | PSR_s},
19354 {"fcx", PSR_f | PSR_c | PSR_x},
19355 {"sfx", PSR_s | PSR_f | PSR_x},
19356 {"sfc", PSR_s | PSR_f | PSR_c},
19357 {"sxf", PSR_s | PSR_x | PSR_f},
19358 {"sxc", PSR_s | PSR_x | PSR_c},
19359 {"scf", PSR_s | PSR_c | PSR_f},
19360 {"scx", PSR_s | PSR_c | PSR_x},
19361 {"xfs", PSR_x | PSR_f | PSR_s},
19362 {"xfc", PSR_x | PSR_f | PSR_c},
19363 {"xsf", PSR_x | PSR_s | PSR_f},
19364 {"xsc", PSR_x | PSR_s | PSR_c},
19365 {"xcf", PSR_x | PSR_c | PSR_f},
19366 {"xcs", PSR_x | PSR_c | PSR_s},
19367 {"cfs", PSR_c | PSR_f | PSR_s},
19368 {"cfx", PSR_c | PSR_f | PSR_x},
19369 {"csf", PSR_c | PSR_s | PSR_f},
19370 {"csx", PSR_c | PSR_s | PSR_x},
19371 {"cxf", PSR_c | PSR_x | PSR_f},
19372 {"cxs", PSR_c | PSR_x | PSR_s},
19373 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19374 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19375 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19376 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19377 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19378 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19379 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19380 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19381 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19382 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19383 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19384 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19385 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19386 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19387 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19388 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19389 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19390 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19391 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19392 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19393 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19394 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19395 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19396 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19397};
19398
62b3e311
PB
19399/* Table of V7M psr names. */
19400static const struct asm_psr v7m_psrs[] =
19401{
1a336194
TP
19402 {"apsr", 0x0 }, {"APSR", 0x0 },
19403 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19404 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19405 {"psr", 0x3 }, {"PSR", 0x3 },
19406 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19407 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19408 {"epsr", 0x6 }, {"EPSR", 0x6 },
19409 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19410 {"msp", 0x8 }, {"MSP", 0x8 },
19411 {"psp", 0x9 }, {"PSP", 0x9 },
19412 {"msplim", 0xa }, {"MSPLIM", 0xa },
19413 {"psplim", 0xb }, {"PSPLIM", 0xb },
19414 {"primask", 0x10}, {"PRIMASK", 0x10},
19415 {"basepri", 0x11}, {"BASEPRI", 0x11},
19416 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
19417 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19418 {"control", 0x14}, {"CONTROL", 0x14},
19419 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19420 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19421 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19422 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19423 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19424 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19425 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19426 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19427 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
19428};
19429
c19d1205
ZW
19430/* Table of all shift-in-operand names. */
19431static const struct asm_shift_name shift_names [] =
b99bd4ef 19432{
c19d1205
ZW
19433 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19434 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19435 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19436 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19437 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19438 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19439};
b99bd4ef 19440
c19d1205
ZW
19441/* Table of all explicit relocation names. */
19442#ifdef OBJ_ELF
19443static struct reloc_entry reloc_names[] =
19444{
19445 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19446 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19447 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19448 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19449 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19450 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19451 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19452 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19453 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19454 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 19455 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
19456 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19457 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 19458 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 19459 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 19460 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 19461 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
19462 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
19463 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
19464 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
19465 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19466 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19467 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
19468 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
19469 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
19470 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
19471 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
19472};
19473#endif
b99bd4ef 19474
c19d1205
ZW
19475/* Table of all conditional affixes. 0xF is not defined as a condition code. */
19476static const struct asm_cond conds[] =
19477{
19478 {"eq", 0x0},
19479 {"ne", 0x1},
19480 {"cs", 0x2}, {"hs", 0x2},
19481 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19482 {"mi", 0x4},
19483 {"pl", 0x5},
19484 {"vs", 0x6},
19485 {"vc", 0x7},
19486 {"hi", 0x8},
19487 {"ls", 0x9},
19488 {"ge", 0xa},
19489 {"lt", 0xb},
19490 {"gt", 0xc},
19491 {"le", 0xd},
19492 {"al", 0xe}
19493};
bfae80f2 19494
e797f7e0 19495#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
19496 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19497 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 19498
62b3e311
PB
19499static struct asm_barrier_opt barrier_opt_names[] =
19500{
e797f7e0
MGD
19501 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19502 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19503 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19504 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19505 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19506 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19507 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19508 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19509 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19510 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19511 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19512 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19513 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19514 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19515 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19516 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
19517};
19518
e797f7e0
MGD
19519#undef UL_BARRIER
19520
c19d1205
ZW
19521/* Table of ARM-format instructions. */
19522
19523/* Macros for gluing together operand strings. N.B. In all cases
19524 other than OPS0, the trailing OP_stop comes from default
19525 zero-initialization of the unspecified elements of the array. */
19526#define OPS0() { OP_stop, }
19527#define OPS1(a) { OP_##a, }
19528#define OPS2(a,b) { OP_##a,OP_##b, }
19529#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19530#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19531#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19532#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19533
5be8be5d
DG
19534/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19535 This is useful when mixing operands for ARM and THUMB, i.e. using the
19536 MIX_ARM_THUMB_OPERANDS macro.
19537 In order to use these macros, prefix the number of operands with _
19538 e.g. _3. */
19539#define OPS_1(a) { a, }
19540#define OPS_2(a,b) { a,b, }
19541#define OPS_3(a,b,c) { a,b,c, }
19542#define OPS_4(a,b,c,d) { a,b,c,d, }
19543#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19544#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19545
c19d1205
ZW
19546/* These macros abstract out the exact format of the mnemonic table and
19547 save some repeated characters. */
19548
19549/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19550#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19551 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 19552 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19553
19554/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19555 a T_MNEM_xyz enumerator. */
19556#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19557 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19558#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19559 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
19560
19561/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19562 infix after the third character. */
19563#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 19564 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 19565 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 19566#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 19567 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 19568 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19569#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19570 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 19571#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19572 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19573#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19574 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 19575#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19576 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 19577
c19d1205 19578/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
19579 field is still 0xE. Many of the Thumb variants can be executed
19580 conditionally, so this is checked separately. */
c19d1205 19581#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19582 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19583 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19584
dd5181d5
KT
19585/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19586 Used by mnemonics that have very minimal differences in the encoding for
19587 ARM and Thumb variants and can be handled in a common function. */
19588#define TUEc(mnem, op, top, nops, ops, en) \
19589 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19590 THUMB_VARIANT, do_##en, do_##en }
19591
c19d1205
ZW
19592/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19593 condition code field. */
19594#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 19595 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19596 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19597
19598/* ARM-only variants of all the above. */
6a86118a 19599#define CE(mnem, op, nops, ops, ae) \
21d799b5 19600 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
19601
19602#define C3(mnem, op, nops, ops, ae) \
19603 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19604
cf3cf39d
TP
19605/* Thumb-only variants of TCE and TUE. */
19606#define ToC(mnem, top, nops, ops, te) \
19607 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
19608 do_##te }
cf3cf39d
TP
19609
19610#define ToU(mnem, top, nops, ops, te) \
19611 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
19612 NULL, do_##te }
cf3cf39d 19613
4389b29a
AV
19614/* T_MNEM_xyz enumerator variants of ToC. */
19615#define toC(mnem, top, nops, ops, te) \
19616 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
19617 do_##te }
19618
e3cb604e
PB
19619/* Legacy mnemonics that always have conditional infix after the third
19620 character. */
19621#define CL(mnem, op, nops, ops, ae) \
21d799b5 19622 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19623 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19624
8f06b2d8
PB
19625/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19626#define cCE(mnem, op, nops, ops, ae) \
21d799b5 19627 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19628
e3cb604e
PB
19629/* Legacy coprocessor instructions where conditional infix and conditional
19630 suffix are ambiguous. For consistency this includes all FPA instructions,
19631 not just the potentially ambiguous ones. */
19632#define cCL(mnem, op, nops, ops, ae) \
21d799b5 19633 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19634 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19635
19636/* Coprocessor, takes either a suffix or a position-3 infix
19637 (for an FPA corner case). */
19638#define C3E(mnem, op, nops, ops, ae) \
21d799b5 19639 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 19640 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19641
6a86118a 19642#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
19643 { m1 #m2 m3, OPS##nops ops, \
19644 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
19645 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19646
19647#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
19648 xCM_ (m1, , m2, op, nops, ops, ae), \
19649 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19650 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19651 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19652 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19653 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19654 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19655 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19656 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19657 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19658 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19659 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19660 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19661 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19662 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19663 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19664 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19665 xCM_ (m1, le, m2, op, nops, ops, ae), \
19666 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
19667
19668#define UE(mnem, op, nops, ops, ae) \
19669 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19670
19671#define UF(mnem, op, nops, ops, ae) \
19672 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19673
5287ad62
JB
19674/* Neon data-processing. ARM versions are unconditional with cond=0xf.
19675 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19676 use the same encoding function for each. */
19677#define NUF(mnem, op, nops, ops, enc) \
19678 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19679 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19680
19681/* Neon data processing, version which indirects through neon_enc_tab for
19682 the various overloaded versions of opcodes. */
19683#define nUF(mnem, op, nops, ops, enc) \
21d799b5 19684 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19685 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19686
19687/* Neon insn with conditional suffix for the ARM version, non-overloaded
19688 version. */
037e8744
JB
19689#define NCE_tag(mnem, op, nops, ops, enc, tag) \
19690 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
19691 THUMB_VARIANT, do_##enc, do_##enc }
19692
037e8744 19693#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 19694 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19695
19696#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 19697 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19698
5287ad62 19699/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 19700#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 19701 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19702 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19703
037e8744 19704#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 19705 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19706
19707#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 19708 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19709
c19d1205
ZW
19710#define do_0 0
19711
c19d1205 19712static const struct asm_opcode insns[] =
bfae80f2 19713{
74db7efb
NC
19714#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19715#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
19716 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19717 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19718 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19719 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19720 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19721 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19722 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19723 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19724 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19725 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19726 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19727 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19728 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19729 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19730 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19731 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
19732
19733 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19734 for setting PSR flag bits. They are obsolete in V6 and do not
19735 have Thumb equivalents. */
21d799b5
NC
19736 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19737 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19738 CL("tstp", 110f000, 2, (RR, SH), cmp),
19739 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19740 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19741 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19742 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19743 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19744 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19745
19746 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 19747 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
19748 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19749 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19750
19751 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
19752 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19753 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19754 OP_RRnpc),
19755 OP_ADDRGLDR),ldst, t_ldst),
19756 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
19757
19758 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19759 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19760 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19761 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19762 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19763 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19764
21d799b5
NC
19765 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19766 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 19767
c19d1205 19768 /* Pseudo ops. */
21d799b5 19769 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 19770 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 19771 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 19772 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
19773
19774 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
19775 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19776 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19777 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19778 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19779 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19780 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19781 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19782 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19783 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19784 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19785 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19786 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 19787
16a4cf17 19788 /* These may simplify to neg. */
21d799b5
NC
19789 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19790 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 19791
173205ca
TP
19792#undef THUMB_VARIANT
19793#define THUMB_VARIANT & arm_ext_os
19794
19795 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19796 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19797
c921be7d
NC
19798#undef THUMB_VARIANT
19799#define THUMB_VARIANT & arm_ext_v6
19800
21d799b5 19801 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
19802
19803 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
19804#undef THUMB_VARIANT
19805#define THUMB_VARIANT & arm_ext_v6t2
19806
21d799b5
NC
19807 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19808 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19809 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 19810
5be8be5d
DG
19811 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19812 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19813 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19814 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 19815
21d799b5
NC
19816 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19817 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 19818
21d799b5
NC
19819 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19820 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
19821
19822 /* V1 instructions with no Thumb analogue at all. */
21d799b5 19823 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
19824 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19825
19826 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19827 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19828 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19829 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19830 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19831 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19832 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19833 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19834
c921be7d
NC
19835#undef ARM_VARIANT
19836#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19837#undef THUMB_VARIANT
19838#define THUMB_VARIANT & arm_ext_v4t
19839
21d799b5
NC
19840 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19841 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 19842
c921be7d
NC
19843#undef THUMB_VARIANT
19844#define THUMB_VARIANT & arm_ext_v6t2
19845
21d799b5 19846 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
19847 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19848
19849 /* Generic coprocessor instructions. */
21d799b5
NC
19850 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19851 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19852 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19853 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19854 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19855 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 19856 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19857
c921be7d
NC
19858#undef ARM_VARIANT
19859#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19860
21d799b5 19861 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
19862 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19863
c921be7d
NC
19864#undef ARM_VARIANT
19865#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19866#undef THUMB_VARIANT
19867#define THUMB_VARIANT & arm_ext_msr
19868
d2cd1205
JB
19869 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19870 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 19871
c921be7d
NC
19872#undef ARM_VARIANT
19873#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19874#undef THUMB_VARIANT
19875#define THUMB_VARIANT & arm_ext_v6t2
19876
21d799b5
NC
19877 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19878 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19879 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19880 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19881 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19882 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19883 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19884 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 19885
c921be7d
NC
19886#undef ARM_VARIANT
19887#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19888#undef THUMB_VARIANT
19889#define THUMB_VARIANT & arm_ext_v4t
19890
5be8be5d
DG
19891 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19892 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19893 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19894 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
19895 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19896 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 19897
c921be7d
NC
19898#undef ARM_VARIANT
19899#define ARM_VARIANT & arm_ext_v4t_5
19900
c19d1205
ZW
19901 /* ARM Architecture 4T. */
19902 /* Note: bx (and blx) are required on V5, even if the processor does
19903 not support Thumb. */
21d799b5 19904 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 19905
c921be7d
NC
19906#undef ARM_VARIANT
19907#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19908#undef THUMB_VARIANT
19909#define THUMB_VARIANT & arm_ext_v5t
19910
c19d1205
ZW
19911 /* Note: blx has 2 variants; the .value coded here is for
19912 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
19913 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19914 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 19915
c921be7d
NC
19916#undef THUMB_VARIANT
19917#define THUMB_VARIANT & arm_ext_v6t2
19918
21d799b5
NC
19919 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19920 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19921 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19922 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19923 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19924 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19925 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19926 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19927
c921be7d 19928#undef ARM_VARIANT
74db7efb
NC
19929#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19930#undef THUMB_VARIANT
19931#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 19932
21d799b5
NC
19933 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19934 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19935 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19936 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19937
21d799b5
NC
19938 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19939 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19940
21d799b5
NC
19941 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19942 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19943 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19944 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 19945
21d799b5
NC
19946 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19947 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19948 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19949 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19950
21d799b5
NC
19951 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19952 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19953
03ee1b7f
NC
19954 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19955 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19956 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19957 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 19958
c921be7d 19959#undef ARM_VARIANT
74db7efb
NC
19960#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19961#undef THUMB_VARIANT
19962#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19963
21d799b5 19964 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
19965 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19966 ldrd, t_ldstd),
19967 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19968 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 19969
21d799b5
NC
19970 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19971 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 19972
c921be7d
NC
19973#undef ARM_VARIANT
19974#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19975
21d799b5 19976 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 19977
c921be7d
NC
19978#undef ARM_VARIANT
19979#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19980#undef THUMB_VARIANT
19981#define THUMB_VARIANT & arm_ext_v6
19982
21d799b5
NC
19983 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19984 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19985 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19986 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19987 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19988 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19989 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19990 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19991 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19992 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 19993
c921be7d 19994#undef THUMB_VARIANT
ff8646ee 19995#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 19996
5be8be5d
DG
19997 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19998 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19999 strex, t_strex),
ff8646ee
TP
20000#undef THUMB_VARIANT
20001#define THUMB_VARIANT & arm_ext_v6t2
20002
21d799b5
NC
20003 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
20004 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 20005
21d799b5
NC
20006 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
20007 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 20008
9e3c6df6 20009/* ARM V6 not included in V7M. */
c921be7d
NC
20010#undef THUMB_VARIANT
20011#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 20012 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 20013 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
20014 UF(rfeib, 9900a00, 1, (RRw), rfe),
20015 UF(rfeda, 8100a00, 1, (RRw), rfe),
20016 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
20017 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
20018 UF(rfefa, 8100a00, 1, (RRw), rfe),
20019 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
20020 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 20021 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
20022 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
20023 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 20024 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 20025 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 20026 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 20027 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 20028 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 20029 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 20030 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 20031
9e3c6df6
PB
20032/* ARM V6 not included in V7M (eg. integer SIMD). */
20033#undef THUMB_VARIANT
20034#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
20035 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
20036 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
20037 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20038 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20039 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20040 /* Old name for QASX. */
74db7efb 20041 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 20042 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20043 /* Old name for QSAX. */
74db7efb 20044 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20045 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20046 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20047 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20048 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20049 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20050 /* Old name for SASX. */
74db7efb 20051 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20052 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20053 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20054 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20055 /* Old name for SHASX. */
21d799b5 20056 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20057 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20058 /* Old name for SHSAX. */
21d799b5
NC
20059 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20060 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20061 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20062 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20063 /* Old name for SSAX. */
74db7efb 20064 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20065 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20066 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20067 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20068 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20069 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20070 /* Old name for UASX. */
74db7efb 20071 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20072 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20073 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20074 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20075 /* Old name for UHASX. */
21d799b5
NC
20076 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20077 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20078 /* Old name for UHSAX. */
21d799b5
NC
20079 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20080 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20081 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20082 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20083 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20084 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20085 /* Old name for UQASX. */
21d799b5
NC
20086 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20087 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20088 /* Old name for UQSAX. */
21d799b5
NC
20089 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20090 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20091 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20092 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20093 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20094 /* Old name for USAX. */
74db7efb 20095 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 20096 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20097 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20098 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20099 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20100 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20101 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20102 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20103 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20104 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20105 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20106 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20107 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20108 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20109 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20110 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20111 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20112 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20113 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20114 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20115 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20116 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20117 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20118 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20119 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20120 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20121 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20122 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20123 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
20124 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
20125 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
20126 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20127 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20128 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 20129
c921be7d 20130#undef ARM_VARIANT
55e8aae7 20131#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 20132#undef THUMB_VARIANT
55e8aae7 20133#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 20134
21d799b5
NC
20135 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
20136 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
20137 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
20138 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 20139
c921be7d
NC
20140#undef THUMB_VARIANT
20141#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
20142 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
20143 ldrexd, t_ldrexd),
20144 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
20145 RRnpcb), strexd, t_strexd),
ebdca51a 20146
c921be7d 20147#undef THUMB_VARIANT
ff8646ee 20148#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
20149 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
20150 rd_rn, rd_rn),
20151 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
20152 rd_rn, rd_rn),
20153 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 20154 strex, t_strexbh),
5be8be5d 20155 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 20156 strex, t_strexbh),
21d799b5 20157 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 20158
c921be7d 20159#undef ARM_VARIANT
f4c65163 20160#define ARM_VARIANT & arm_ext_sec
74db7efb 20161#undef THUMB_VARIANT
f4c65163 20162#define THUMB_VARIANT & arm_ext_sec
c921be7d 20163
21d799b5 20164 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 20165
90ec0d68
MGD
20166#undef ARM_VARIANT
20167#define ARM_VARIANT & arm_ext_virt
20168#undef THUMB_VARIANT
20169#define THUMB_VARIANT & arm_ext_virt
20170
20171 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
20172 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
20173
ddfded2f
MW
20174#undef ARM_VARIANT
20175#define ARM_VARIANT & arm_ext_pan
20176#undef THUMB_VARIANT
20177#define THUMB_VARIANT & arm_ext_pan
20178
20179 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
20180
c921be7d 20181#undef ARM_VARIANT
74db7efb 20182#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
20183#undef THUMB_VARIANT
20184#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20185
21d799b5
NC
20186 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
20187 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
20188 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20189 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 20190
21d799b5 20191 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 20192 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 20193
5be8be5d
DG
20194 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20195 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20196 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20197 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 20198
91d8b670
JG
20199#undef ARM_VARIANT
20200#define ARM_VARIANT & arm_ext_v3
20201#undef THUMB_VARIANT
20202#define THUMB_VARIANT & arm_ext_v6t2
20203
20204 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
20205 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
20206 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
20207
20208#undef ARM_VARIANT
20209#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
20210#undef THUMB_VARIANT
20211#define THUMB_VARIANT & arm_ext_v6t2_v8m
20212 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20213 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20214
bf3eeda7 20215 /* Thumb-only instructions. */
74db7efb 20216#undef ARM_VARIANT
bf3eeda7
NS
20217#define ARM_VARIANT NULL
20218 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20219 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
20220
20221 /* ARM does not really have an IT instruction, so always allow it.
20222 The opcode is copied from Thumb in order to allow warnings in
20223 -mimplicit-it=[never | arm] modes. */
20224#undef ARM_VARIANT
20225#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
20226#undef THUMB_VARIANT
20227#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20228
21d799b5
NC
20229 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20230 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20231 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20232 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20233 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20234 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20235 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20236 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20237 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20238 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20239 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20240 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20241 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20242 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20243 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 20244 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
20245 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20246 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 20247
92e90b6e 20248 /* Thumb2 only instructions. */
c921be7d
NC
20249#undef ARM_VARIANT
20250#define ARM_VARIANT NULL
92e90b6e 20251
21d799b5
NC
20252 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20253 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20254 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20255 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20256 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20257 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 20258
eea54501
MGD
20259 /* Hardware division instructions. */
20260#undef ARM_VARIANT
20261#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
20262#undef THUMB_VARIANT
20263#define THUMB_VARIANT & arm_ext_div
20264
eea54501
MGD
20265 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20266 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 20267
7e806470 20268 /* ARM V6M/V7 instructions. */
c921be7d
NC
20269#undef ARM_VARIANT
20270#define ARM_VARIANT & arm_ext_barrier
20271#undef THUMB_VARIANT
20272#define THUMB_VARIANT & arm_ext_barrier
20273
ccb84d65
JB
20274 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20275 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20276 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 20277
62b3e311 20278 /* ARM V7 instructions. */
c921be7d
NC
20279#undef ARM_VARIANT
20280#define ARM_VARIANT & arm_ext_v7
20281#undef THUMB_VARIANT
20282#define THUMB_VARIANT & arm_ext_v7
20283
21d799b5
NC
20284 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20285 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 20286
74db7efb 20287#undef ARM_VARIANT
60e5ef9f 20288#define ARM_VARIANT & arm_ext_mp
74db7efb 20289#undef THUMB_VARIANT
60e5ef9f
MGD
20290#define THUMB_VARIANT & arm_ext_mp
20291
20292 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20293
53c4b28b
MGD
20294 /* AArchv8 instructions. */
20295#undef ARM_VARIANT
20296#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
20297
20298/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 20299#undef THUMB_VARIANT
4ed7ed8d 20300#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 20301
4ed7ed8d
TP
20302 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20303 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20304 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20305 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20306 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20307 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 20308 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
20309 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20310 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20311 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20312 stlex, t_stlex),
4b8c8c02
RE
20313 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20314 stlex, t_stlex),
20315 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20316 stlex, t_stlex),
4ed7ed8d
TP
20317#undef THUMB_VARIANT
20318#define THUMB_VARIANT & arm_ext_v8
53c4b28b 20319
4ed7ed8d 20320 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
20321 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20322 ldrexd, t_ldrexd),
20323 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20324 strexd, t_strexd),
f7dd2fb2
TC
20325
20326/* Defined in V8 but is in undefined encoding space for earlier
20327 architectures. However earlier architectures are required to treat
20328 this instuction as a semihosting trap as well. Hence while not explicitly
20329 defined as such, it is in fact correct to define the instruction for all
20330 architectures. */
20331#undef THUMB_VARIANT
20332#define THUMB_VARIANT & arm_ext_v1
20333#undef ARM_VARIANT
20334#define ARM_VARIANT & arm_ext_v1
20335 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20336
8884b720 20337 /* ARMv8 T32 only. */
74db7efb 20338#undef ARM_VARIANT
b79f7053
MGD
20339#define ARM_VARIANT NULL
20340 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20341 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20342 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20343
33399f07
MGD
20344 /* FP for ARMv8. */
20345#undef ARM_VARIANT
a715796b 20346#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 20347#undef THUMB_VARIANT
a715796b 20348#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
20349
20350 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20351 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20352 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20353 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
20354 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20355 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
7e8e6784
MGD
20356 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20357 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20358 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20359 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
30bdf752
MGD
20360 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20361 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20362 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20363 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20364 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20365 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20366 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 20367
91ff7894
MGD
20368 /* Crypto v1 extensions. */
20369#undef ARM_VARIANT
20370#define ARM_VARIANT & fpu_crypto_ext_armv8
20371#undef THUMB_VARIANT
20372#define THUMB_VARIANT & fpu_crypto_ext_armv8
20373
20374 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20375 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20376 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20377 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
20378 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20379 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20380 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20381 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20382 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20383 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20384 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
20385 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20386 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20387 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 20388
dd5181d5 20389#undef ARM_VARIANT
74db7efb 20390#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
20391#undef THUMB_VARIANT
20392#define THUMB_VARIANT & crc_ext_armv8
20393 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20394 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20395 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20396 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20397 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20398 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20399
105bde57
MW
20400 /* ARMv8.2 RAS extension. */
20401#undef ARM_VARIANT
4d1464f2 20402#define ARM_VARIANT & arm_ext_ras
105bde57 20403#undef THUMB_VARIANT
4d1464f2 20404#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
20405 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20406
49e8a725
SN
20407#undef ARM_VARIANT
20408#define ARM_VARIANT & arm_ext_v8_3
20409#undef THUMB_VARIANT
20410#define THUMB_VARIANT & arm_ext_v8_3
20411 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
c28eeff2
SN
20412 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20413 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
49e8a725 20414
c604a79a
JW
20415#undef ARM_VARIANT
20416#define ARM_VARIANT & fpu_neon_ext_dotprod
20417#undef THUMB_VARIANT
20418#define THUMB_VARIANT & fpu_neon_ext_dotprod
20419 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20420 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20421
c921be7d
NC
20422#undef ARM_VARIANT
20423#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
20424#undef THUMB_VARIANT
20425#define THUMB_VARIANT NULL
c921be7d 20426
21d799b5
NC
20427 cCE("wfs", e200110, 1, (RR), rd),
20428 cCE("rfs", e300110, 1, (RR), rd),
20429 cCE("wfc", e400110, 1, (RR), rd),
20430 cCE("rfc", e500110, 1, (RR), rd),
20431
20432 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20433 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20434 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20435 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20436
20437 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20438 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20439 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20440 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20441
20442 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20443 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20444 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20445 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20446 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20447 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20448 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20449 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20450 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20451 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20452 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20453 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20454
20455 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20456 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20457 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20458 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20459 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20460 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20461 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20462 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20463 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20464 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20465 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20466 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20467
20468 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20469 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20470 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20471 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20472 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20473 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20474 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20475 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20476 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20477 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20478 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20479 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20480
20481 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20482 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20483 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20484 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20485 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20486 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20487 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20488 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20489 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20490 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20491 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20492 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20493
20494 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20495 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20496 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20497 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20498 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20499 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20500 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20501 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20502 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20503 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20504 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20505 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20506
20507 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20508 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20509 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20510 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20511 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20512 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20513 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20514 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20515 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20516 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20517 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20518 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20519
20520 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20521 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20522 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20523 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20524 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20525 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20526 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20527 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20528 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20529 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20530 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20531 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20532
20533 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20534 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20535 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20536 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20537 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20538 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20539 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20540 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20541 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20542 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20543 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20544 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20545
20546 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20547 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20548 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20549 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20550 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20551 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20552 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20553 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20554 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20555 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20556 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20557 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20558
20559 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20560 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20561 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20562 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20563 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20564 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20565 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20566 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20567 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20568 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20569 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20570 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20571
20572 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20573 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20574 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20575 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20576 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20577 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20578 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20579 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20580 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20581 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20582 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20583 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20584
20585 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20586 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20587 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20588 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20589 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20590 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20591 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20592 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20593 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20594 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20595 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20596 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20597
20598 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20599 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20600 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20601 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20602 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20603 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20604 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20605 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20606 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20607 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20608 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20609 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20610
20611 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20612 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20613 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20614 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20615 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20616 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20617 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20618 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20619 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20620 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20621 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20622 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20623
20624 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20625 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20626 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20627 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20628 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20629 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20630 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20631 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20632 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20633 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20634 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20635 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20636
20637 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20638 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20639 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20640 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20641 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20642 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20643 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20644 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20645 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20646 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20647 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20648 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20649
20650 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20651 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20652 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20653 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20654 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20655 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20656 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20657 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20658 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20659 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20660 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20661 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20662
20663 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20664 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20665 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20666 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20667 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20668 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20669 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20670 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20671 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20672 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20673 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20674 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20675
20676 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20677 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20678 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20679 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20680 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20681 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20682 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20683 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20684 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20685 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20686 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20687 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20688
20689 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20690 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20691 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20692 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20693 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20694 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20695 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20696 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20697 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20698 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20699 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20700 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20701
20702 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20703 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20704 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20705 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20706 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20707 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20708 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20709 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20710 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20711 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20712 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20713 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20714
20715 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20716 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20717 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20718 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20719 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20720 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20721 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20722 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20723 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20724 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20725 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20726 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20727
20728 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20729 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20730 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20731 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20732 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20733 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20734 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20735 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20736 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20737 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20738 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20739 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20740
20741 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20742 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20743 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20744 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20745 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20746 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20747 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20748 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20749 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20750 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20751 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20752 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20753
20754 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20755 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20756 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20757 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20758 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20759 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20760 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20761 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20762 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20763 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20764 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20765 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20766
20767 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20768 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20769 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20770 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20771 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20772 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20773 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20774 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20775 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20776 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20777 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20778 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20779
20780 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20781 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20782 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20783 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20784 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20785 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20786 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20787 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20788 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20789 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20790 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20791 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20792
20793 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20794 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20795 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20796 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20797 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20798 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20799 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20800 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20801 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20802 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20803 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20804 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20805
20806 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20807 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20808 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20809 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20810 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20811 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20812 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20813 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20814 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20815 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20816 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20817 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20818
20819 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20820 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20821 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20822 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20823
20824 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20825 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20826 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20827 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20828 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20829 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20830 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20831 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20832 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20833 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20834 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20835 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 20836
c19d1205
ZW
20837 /* The implementation of the FIX instruction is broken on some
20838 assemblers, in that it accepts a precision specifier as well as a
20839 rounding specifier, despite the fact that this is meaningless.
20840 To be more compatible, we accept it as well, though of course it
20841 does not set any bits. */
21d799b5
NC
20842 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20843 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20844 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20845 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20846 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20847 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20848 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20849 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20850 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20851 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20852 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20853 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20854 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 20855
c19d1205 20856 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
20857#undef ARM_VARIANT
20858#define ARM_VARIANT & fpu_fpa_ext_v2
20859
21d799b5
NC
20860 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20861 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20862 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20863 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20864 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20865 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 20866
c921be7d
NC
20867#undef ARM_VARIANT
20868#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20869
c19d1205 20870 /* Moves and type conversions. */
21d799b5
NC
20871 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20872 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20873 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20874 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
20875 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20876 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
20877 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20878 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20879 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20880 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20881 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20882 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20883 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20884 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
20885
20886 /* Memory operations. */
21d799b5
NC
20887 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20888 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
20889 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20890 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20891 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20892 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20893 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20894 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20895 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20896 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20897 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20898 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20899 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20900 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20901 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20902 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20903 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20904 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 20905
c19d1205 20906 /* Monadic operations. */
21d799b5
NC
20907 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20908 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20909 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
20910
20911 /* Dyadic operations. */
21d799b5
NC
20912 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20913 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20914 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20915 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20916 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20917 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20918 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20919 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20920 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 20921
c19d1205 20922 /* Comparisons. */
21d799b5
NC
20923 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20924 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20925 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20926 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 20927
62f3b8c8
PB
20928 /* Double precision load/store are still present on single precision
20929 implementations. */
20930 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20931 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
20932 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20933 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20934 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20935 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20936 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20937 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20938 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20939 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 20940
c921be7d
NC
20941#undef ARM_VARIANT
20942#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20943
c19d1205 20944 /* Moves and type conversions. */
21d799b5
NC
20945 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20946 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20947 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20948 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20949 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20950 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20951 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20952 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20953 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20954 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20955 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20956 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20957 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 20958
c19d1205 20959 /* Monadic operations. */
21d799b5
NC
20960 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20961 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20962 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
20963
20964 /* Dyadic operations. */
21d799b5
NC
20965 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20966 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20967 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20968 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20969 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20970 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20971 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20972 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20973 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 20974
c19d1205 20975 /* Comparisons. */
21d799b5
NC
20976 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20977 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20978 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20979 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 20980
c921be7d
NC
20981#undef ARM_VARIANT
20982#define ARM_VARIANT & fpu_vfp_ext_v2
20983
21d799b5
NC
20984 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20985 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20986 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20987 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 20988
037e8744
JB
20989/* Instructions which may belong to either the Neon or VFP instruction sets.
20990 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
20991#undef ARM_VARIANT
20992#define ARM_VARIANT & fpu_vfp_ext_v1xd
20993#undef THUMB_VARIANT
20994#define THUMB_VARIANT & fpu_vfp_ext_v1xd
20995
037e8744
JB
20996 /* These mnemonics are unique to VFP. */
20997 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20998 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
20999 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21000 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21001 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
aacf0b33
KT
21002 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
21003 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
037e8744
JB
21004 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
21005 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
21006 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
21007
21008 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
21009 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
21010 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
21011 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 21012
21d799b5
NC
21013 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
21014 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
21015
21016 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
21017 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
21018
55881a11
MGD
21019 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21020 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21021 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21022 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21023 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21024 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
21025 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
21026 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 21027
5f1af56b 21028 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 21029 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
c70a8987
MGD
21030 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
21031 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
f31fef98 21032
037e8744
JB
21033
21034 /* NOTE: All VMOV encoding is special-cased! */
21035 NCE(vmov, 0, 1, (VMOV), neon_mov),
21036 NCE(vmovq, 0, 1, (VMOV), neon_mov),
21037
9db2f6b4
RL
21038#undef ARM_VARIANT
21039#define ARM_VARIANT & arm_ext_fp16
21040#undef THUMB_VARIANT
21041#define THUMB_VARIANT & arm_ext_fp16
21042 /* New instructions added from v8.2, allowing the extraction and insertion of
21043 the upper 16 bits of a 32-bit vector register. */
21044 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
21045 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
21046
dec41383
JW
21047 /* New backported fma/fms instructions optional in v8.2. */
21048 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
21049 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
21050
c921be7d
NC
21051#undef THUMB_VARIANT
21052#define THUMB_VARIANT & fpu_neon_ext_v1
21053#undef ARM_VARIANT
21054#define ARM_VARIANT & fpu_neon_ext_v1
21055
5287ad62
JB
21056 /* Data processing with three registers of the same length. */
21057 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
21058 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
21059 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
21060 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21061 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21062 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21063 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21064 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21065 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21066 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
21067 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
21068 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
21069 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
21070 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
21071 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
21072 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
21073 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
21074 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
21075 /* If not immediate, fall back to neon_dyadic_i64_su.
21076 shl_imm should accept I8 I16 I32 I64,
21077 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
21078 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
21079 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
21080 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
21081 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 21082 /* Logic ops, types optional & ignored. */
4316f0d2
DG
21083 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21084 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21085 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21086 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21087 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21088 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21089 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21090 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21091 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
21092 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
21093 /* Bitfield ops, untyped. */
21094 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21095 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21096 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21097 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21098 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21099 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 21100 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
21101 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21102 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21103 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21104 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21105 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21106 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
21107 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
21108 back to neon_dyadic_if_su. */
21d799b5
NC
21109 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21110 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21111 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21112 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21113 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21114 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
21115 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21116 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 21117 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
21118 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
21119 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 21120 /* As above, D registers only. */
21d799b5
NC
21121 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
21122 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 21123 /* Int and float variants, signedness unimportant. */
21d799b5
NC
21124 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21125 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21126 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 21127 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
21128 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
21129 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
21130 /* vtst takes sizes 8, 16, 32. */
21131 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
21132 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
21133 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 21134 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 21135 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
21136 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21137 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21138 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21139 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
21140 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21141 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
21142 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21143 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
21144 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21145 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
21146 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21147 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
21148 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21149 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
21150 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21151 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 21152 /* ARM v8.1 extension. */
643afb90
MW
21153 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21154 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
21155 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21156 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
21157
21158 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 21159 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
21160 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
21161
21162 /* Data processing with two registers and a shift amount. */
21163 /* Right shifts, and variants with rounding.
21164 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
21165 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21166 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21167 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21168 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21169 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21170 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21171 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21172 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21173 /* Shift and insert. Sizes accepted 8 16 32 64. */
21174 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
21175 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
21176 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
21177 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
21178 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
21179 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
21180 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
21181 /* Right shift immediate, saturating & narrowing, with rounding variants.
21182 Types accepted S16 S32 S64 U16 U32 U64. */
21183 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21184 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21185 /* As above, unsigned. Types accepted S16 S32 S64. */
21186 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21187 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21188 /* Right shift narrowing. Types accepted I16 I32 I64. */
21189 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21190 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21191 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 21192 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 21193 /* CVT with optional immediate for fixed-point variant. */
21d799b5 21194 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 21195
4316f0d2
DG
21196 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
21197 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
21198
21199 /* Data processing, three registers of different lengths. */
21200 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
21201 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
21202 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
21203 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
21204 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
21205 /* If not scalar, fall back to neon_dyadic_long.
21206 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
21207 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21208 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
21209 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
21210 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21211 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21212 /* Dyadic, narrowing insns. Types I16 I32 I64. */
21213 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21214 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21215 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21216 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21217 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
21218 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21219 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21220 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
21221 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21222 S16 S32 U16 U32. */
21d799b5 21223 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
21224
21225 /* Extract. Size 8. */
3b8d421e
PB
21226 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21227 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
21228
21229 /* Two registers, miscellaneous. */
21230 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21231 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21232 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21233 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21234 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21235 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21236 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21237 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
21238 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21239 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
21240 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21241 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21242 /* VMOVN. Types I16 I32 I64. */
21d799b5 21243 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 21244 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 21245 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 21246 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 21247 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
21248 /* VZIP / VUZP. Sizes 8 16 32. */
21249 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21250 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21251 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21252 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21253 /* VQABS / VQNEG. Types S8 S16 S32. */
21254 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21255 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21256 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21257 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21258 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21259 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21260 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21261 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21262 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 21263 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
21264 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21265 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21266 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21267 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21268 /* VCLS. Types S8 S16 S32. */
21269 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21270 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21271 /* VCLZ. Types I8 I16 I32. */
21272 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21273 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21274 /* VCNT. Size 8. */
21275 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21276 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21277 /* Two address, untyped. */
21278 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21279 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21280 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
21281 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21282 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
21283
21284 /* Table lookup. Size 8. */
21285 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21286 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21287
c921be7d
NC
21288#undef THUMB_VARIANT
21289#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21290#undef ARM_VARIANT
21291#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21292
5287ad62 21293 /* Neon element/structure load/store. */
21d799b5
NC
21294 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21295 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21296 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21297 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21298 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21299 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21300 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21301 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 21302
c921be7d 21303#undef THUMB_VARIANT
74db7efb
NC
21304#define THUMB_VARIANT & fpu_vfp_ext_v3xd
21305#undef ARM_VARIANT
21306#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
21307 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21308 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21309 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21310 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21311 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21312 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21313 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21314 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21315 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21316
74db7efb 21317#undef THUMB_VARIANT
c921be7d
NC
21318#define THUMB_VARIANT & fpu_vfp_ext_v3
21319#undef ARM_VARIANT
21320#define ARM_VARIANT & fpu_vfp_ext_v3
21321
21d799b5 21322 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 21323 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21324 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21325 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21326 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21327 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21328 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21329 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21330 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 21331
74db7efb
NC
21332#undef ARM_VARIANT
21333#define ARM_VARIANT & fpu_vfp_ext_fma
21334#undef THUMB_VARIANT
21335#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
21336 /* Mnemonics shared by Neon and VFP. These are included in the
21337 VFP FMA variant; NEON and VFP FMA always includes the NEON
21338 FMA instructions. */
21339 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21340 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21341 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21342 the v form should always be used. */
21343 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21344 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21345 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21346 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21347 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21348 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21349
5287ad62 21350#undef THUMB_VARIANT
c921be7d
NC
21351#undef ARM_VARIANT
21352#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21353
21d799b5
NC
21354 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21355 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21356 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21357 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21358 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21359 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21360 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21361 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 21362
c921be7d
NC
21363#undef ARM_VARIANT
21364#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21365
21d799b5
NC
21366 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21367 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21368 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21369 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21370 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21371 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21372 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21373 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21374 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
21375 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21376 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21377 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21378 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21379 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21380 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
21381 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21382 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21383 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21384 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21385 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21386 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21387 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21388 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21389 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21390 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21391 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
21392 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21393 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21394 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
21395 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21396 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21397 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21398 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21399 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21400 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21401 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21402 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21403 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21404 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21405 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21406 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21407 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21408 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21409 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21410 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21411 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21412 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
21413 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21414 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21415 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21416 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21417 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21418 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21419 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21420 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21421 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21422 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21423 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21424 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21425 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21426 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21427 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21428 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21429 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21430 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21431 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21432 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21433 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21434 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21435 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21436 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21437 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21438 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21439 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21440 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21441 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21442 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21443 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21444 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21445 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21446 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21447 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21448 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21449 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21450 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21451 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21452 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21453 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21454 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21455 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21456 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21457 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21458 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21459 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21460 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21461 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21462 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21463 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21464 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21465 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21466 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21467 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21468 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21469 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21470 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21471 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21472 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21473 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21474 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21475 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21476 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21477 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21478 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21479 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21480 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21481 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21482 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21483 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21484 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21485 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21486 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21487 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21488 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21489 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21490 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21491 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21492 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21493 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21494 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21495 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21496 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21497 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21498 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21499 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21500 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21501 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21502 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21503 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21504 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21505 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21506 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21507 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21508 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21509 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21510 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21511 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21512 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21513 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21514 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21515 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21516 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21517 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21518 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21519 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21520 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21521 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21522 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21523 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21524 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21525 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21526 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21527 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 21528
c921be7d
NC
21529#undef ARM_VARIANT
21530#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21531
21d799b5
NC
21532 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21533 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21534 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21535 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21536 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21537 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21538 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21539 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21540 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21541 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21542 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21543 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21544 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21545 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21546 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21547 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21548 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21549 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21550 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21551 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21552 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21553 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21554 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21555 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21556 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21557 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21558 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21559 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21560 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21561 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21562 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21563 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21564 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21565 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21566 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21567 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21568 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21569 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21570 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21571 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21572 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21573 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21574 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21575 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21576 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21577 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21578 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21579 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21580 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21581 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21582 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21583 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21584 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21585 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21586 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21587 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21588 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 21589
c921be7d
NC
21590#undef ARM_VARIANT
21591#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21592
21d799b5
NC
21593 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21594 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21595 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21596 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21597 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21598 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21599 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21600 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21601 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21602 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21603 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21604 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21605 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21606 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
21607 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21608 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21609 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21610 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21611 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21612 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21613 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21614 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21615 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21616 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
21617 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21618 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21619 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21620 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
21621 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21622 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
21623 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21624 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21625 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21626 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
21627 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21628 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21629 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21630 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21631 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21632 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
21633 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21634 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
21635 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21636 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
21637 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21638 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21639 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21640 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21641 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21642 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21643 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21644 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21645 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21646 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21647 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21648 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21649 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21650 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21651 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21652 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21653 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21654 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21655 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21656 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21657 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21658 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21659 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21660 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21661 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21662 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21663 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21664 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
21665 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21666 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
21667 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21668 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 21669
7fadb25d
SD
21670 /* ARMv8.5-A instructions. */
21671#undef ARM_VARIANT
21672#define ARM_VARIANT & arm_ext_sb
21673#undef THUMB_VARIANT
21674#define THUMB_VARIANT & arm_ext_sb
21675 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
21676
dad0c3bf
SD
21677#undef ARM_VARIANT
21678#define ARM_VARIANT & arm_ext_predres
21679#undef THUMB_VARIANT
21680#define THUMB_VARIANT & arm_ext_predres
21681 CE("cfprctx", e070f93, 1, (RRnpc), rd),
21682 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
21683 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
21684
16a1fa25 21685 /* ARMv8-M instructions. */
4ed7ed8d
TP
21686#undef ARM_VARIANT
21687#define ARM_VARIANT NULL
21688#undef THUMB_VARIANT
21689#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
21690 ToU("sg", e97fe97f, 0, (), noargs),
21691 ToC("blxns", 4784, 1, (RRnpc), t_blx),
21692 ToC("bxns", 4704, 1, (RRnpc), t_bx),
21693 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
21694 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
21695 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
21696 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
21697
21698 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21699 instructions behave as nop if no VFP is present. */
21700#undef THUMB_VARIANT
21701#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
21702 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
21703 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
21704
21705 /* Armv8.1-M Mainline instructions. */
21706#undef THUMB_VARIANT
21707#define THUMB_VARIANT & arm_ext_v8_1m_main
21708 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 21709 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 21710 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 21711 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
c19d1205
ZW
21712};
21713#undef ARM_VARIANT
21714#undef THUMB_VARIANT
21715#undef TCE
c19d1205
ZW
21716#undef TUE
21717#undef TUF
21718#undef TCC
8f06b2d8 21719#undef cCE
e3cb604e
PB
21720#undef cCL
21721#undef C3E
4389b29a 21722#undef C3
c19d1205
ZW
21723#undef CE
21724#undef CM
4389b29a 21725#undef CL
c19d1205
ZW
21726#undef UE
21727#undef UF
21728#undef UT
5287ad62
JB
21729#undef NUF
21730#undef nUF
21731#undef NCE
21732#undef nCE
c19d1205
ZW
21733#undef OPS0
21734#undef OPS1
21735#undef OPS2
21736#undef OPS3
21737#undef OPS4
21738#undef OPS5
21739#undef OPS6
21740#undef do_0
4389b29a
AV
21741#undef ToC
21742#undef toC
21743#undef ToU
c19d1205
ZW
21744\f
21745/* MD interface: bits in the object file. */
bfae80f2 21746
c19d1205
ZW
21747/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21748 for use in the a.out file, and stores them in the array pointed to by buf.
21749 This knows about the endian-ness of the target machine and does
21750 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21751 2 (short) and 4 (long) Floating numbers are put out as a series of
21752 LITTLENUMS (shorts, here at least). */
b99bd4ef 21753
c19d1205
ZW
21754void
21755md_number_to_chars (char * buf, valueT val, int n)
21756{
21757 if (target_big_endian)
21758 number_to_chars_bigendian (buf, val, n);
21759 else
21760 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
21761}
21762
c19d1205
ZW
21763static valueT
21764md_chars_to_number (char * buf, int n)
bfae80f2 21765{
c19d1205
ZW
21766 valueT result = 0;
21767 unsigned char * where = (unsigned char *) buf;
bfae80f2 21768
c19d1205 21769 if (target_big_endian)
b99bd4ef 21770 {
c19d1205
ZW
21771 while (n--)
21772 {
21773 result <<= 8;
21774 result |= (*where++ & 255);
21775 }
b99bd4ef 21776 }
c19d1205 21777 else
b99bd4ef 21778 {
c19d1205
ZW
21779 while (n--)
21780 {
21781 result <<= 8;
21782 result |= (where[n] & 255);
21783 }
bfae80f2 21784 }
b99bd4ef 21785
c19d1205 21786 return result;
bfae80f2 21787}
b99bd4ef 21788
c19d1205 21789/* MD interface: Sections. */
b99bd4ef 21790
fa94de6b
RM
21791/* Calculate the maximum variable size (i.e., excluding fr_fix)
21792 that an rs_machine_dependent frag may reach. */
21793
21794unsigned int
21795arm_frag_max_var (fragS *fragp)
21796{
21797 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21798 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21799
21800 Note that we generate relaxable instructions even for cases that don't
21801 really need it, like an immediate that's a trivial constant. So we're
21802 overestimating the instruction size for some of those cases. Rather
21803 than putting more intelligence here, it would probably be better to
21804 avoid generating a relaxation frag in the first place when it can be
21805 determined up front that a short instruction will suffice. */
21806
21807 gas_assert (fragp->fr_type == rs_machine_dependent);
21808 return INSN_SIZE;
21809}
21810
0110f2b8
PB
21811/* Estimate the size of a frag before relaxing. Assume everything fits in
21812 2 bytes. */
21813
c19d1205 21814int
0110f2b8 21815md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
21816 segT segtype ATTRIBUTE_UNUSED)
21817{
0110f2b8
PB
21818 fragp->fr_var = 2;
21819 return 2;
21820}
21821
21822/* Convert a machine dependent frag. */
21823
21824void
21825md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21826{
21827 unsigned long insn;
21828 unsigned long old_op;
21829 char *buf;
21830 expressionS exp;
21831 fixS *fixp;
21832 int reloc_type;
21833 int pc_rel;
21834 int opcode;
21835
21836 buf = fragp->fr_literal + fragp->fr_fix;
21837
21838 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
21839 if (fragp->fr_symbol)
21840 {
0110f2b8
PB
21841 exp.X_op = O_symbol;
21842 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
21843 }
21844 else
21845 {
0110f2b8 21846 exp.X_op = O_constant;
5f4273c7 21847 }
0110f2b8
PB
21848 exp.X_add_number = fragp->fr_offset;
21849 opcode = fragp->fr_subtype;
21850 switch (opcode)
21851 {
21852 case T_MNEM_ldr_pc:
21853 case T_MNEM_ldr_pc2:
21854 case T_MNEM_ldr_sp:
21855 case T_MNEM_str_sp:
21856 case T_MNEM_ldr:
21857 case T_MNEM_ldrb:
21858 case T_MNEM_ldrh:
21859 case T_MNEM_str:
21860 case T_MNEM_strb:
21861 case T_MNEM_strh:
21862 if (fragp->fr_var == 4)
21863 {
5f4273c7 21864 insn = THUMB_OP32 (opcode);
0110f2b8
PB
21865 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21866 {
21867 insn |= (old_op & 0x700) << 4;
21868 }
21869 else
21870 {
21871 insn |= (old_op & 7) << 12;
21872 insn |= (old_op & 0x38) << 13;
21873 }
21874 insn |= 0x00000c00;
21875 put_thumb32_insn (buf, insn);
21876 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21877 }
21878 else
21879 {
21880 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21881 }
21882 pc_rel = (opcode == T_MNEM_ldr_pc2);
21883 break;
21884 case T_MNEM_adr:
21885 if (fragp->fr_var == 4)
21886 {
21887 insn = THUMB_OP32 (opcode);
21888 insn |= (old_op & 0xf0) << 4;
21889 put_thumb32_insn (buf, insn);
21890 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21891 }
21892 else
21893 {
21894 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21895 exp.X_add_number -= 4;
21896 }
21897 pc_rel = 1;
21898 break;
21899 case T_MNEM_mov:
21900 case T_MNEM_movs:
21901 case T_MNEM_cmp:
21902 case T_MNEM_cmn:
21903 if (fragp->fr_var == 4)
21904 {
21905 int r0off = (opcode == T_MNEM_mov
21906 || opcode == T_MNEM_movs) ? 0 : 8;
21907 insn = THUMB_OP32 (opcode);
21908 insn = (insn & 0xe1ffffff) | 0x10000000;
21909 insn |= (old_op & 0x700) << r0off;
21910 put_thumb32_insn (buf, insn);
21911 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21912 }
21913 else
21914 {
21915 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21916 }
21917 pc_rel = 0;
21918 break;
21919 case T_MNEM_b:
21920 if (fragp->fr_var == 4)
21921 {
21922 insn = THUMB_OP32(opcode);
21923 put_thumb32_insn (buf, insn);
21924 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21925 }
21926 else
21927 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21928 pc_rel = 1;
21929 break;
21930 case T_MNEM_bcond:
21931 if (fragp->fr_var == 4)
21932 {
21933 insn = THUMB_OP32(opcode);
21934 insn |= (old_op & 0xf00) << 14;
21935 put_thumb32_insn (buf, insn);
21936 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21937 }
21938 else
21939 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21940 pc_rel = 1;
21941 break;
21942 case T_MNEM_add_sp:
21943 case T_MNEM_add_pc:
21944 case T_MNEM_inc_sp:
21945 case T_MNEM_dec_sp:
21946 if (fragp->fr_var == 4)
21947 {
21948 /* ??? Choose between add and addw. */
21949 insn = THUMB_OP32 (opcode);
21950 insn |= (old_op & 0xf0) << 4;
21951 put_thumb32_insn (buf, insn);
16805f35
PB
21952 if (opcode == T_MNEM_add_pc)
21953 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21954 else
21955 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
21956 }
21957 else
21958 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21959 pc_rel = 0;
21960 break;
21961
21962 case T_MNEM_addi:
21963 case T_MNEM_addis:
21964 case T_MNEM_subi:
21965 case T_MNEM_subis:
21966 if (fragp->fr_var == 4)
21967 {
21968 insn = THUMB_OP32 (opcode);
21969 insn |= (old_op & 0xf0) << 4;
21970 insn |= (old_op & 0xf) << 16;
21971 put_thumb32_insn (buf, insn);
16805f35
PB
21972 if (insn & (1 << 20))
21973 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21974 else
21975 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
21976 }
21977 else
21978 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21979 pc_rel = 0;
21980 break;
21981 default:
5f4273c7 21982 abort ();
0110f2b8
PB
21983 }
21984 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 21985 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
21986 fixp->fx_file = fragp->fr_file;
21987 fixp->fx_line = fragp->fr_line;
21988 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
21989
21990 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21991 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21992 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21993 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
21994}
21995
21996/* Return the size of a relaxable immediate operand instruction.
21997 SHIFT and SIZE specify the form of the allowable immediate. */
21998static int
21999relax_immediate (fragS *fragp, int size, int shift)
22000{
22001 offsetT offset;
22002 offsetT mask;
22003 offsetT low;
22004
22005 /* ??? Should be able to do better than this. */
22006 if (fragp->fr_symbol)
22007 return 4;
22008
22009 low = (1 << shift) - 1;
22010 mask = (1 << (shift + size)) - (1 << shift);
22011 offset = fragp->fr_offset;
22012 /* Force misaligned offsets to 32-bit variant. */
22013 if (offset & low)
5e77afaa 22014 return 4;
0110f2b8
PB
22015 if (offset & ~mask)
22016 return 4;
22017 return 2;
22018}
22019
5e77afaa
PB
22020/* Get the address of a symbol during relaxation. */
22021static addressT
5f4273c7 22022relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
22023{
22024 fragS *sym_frag;
22025 addressT addr;
22026 symbolS *sym;
22027
22028 sym = fragp->fr_symbol;
22029 sym_frag = symbol_get_frag (sym);
22030 know (S_GET_SEGMENT (sym) != absolute_section
22031 || sym_frag == &zero_address_frag);
22032 addr = S_GET_VALUE (sym) + fragp->fr_offset;
22033
22034 /* If frag has yet to be reached on this pass, assume it will
22035 move by STRETCH just as we did. If this is not so, it will
22036 be because some frag between grows, and that will force
22037 another pass. */
22038
22039 if (stretch != 0
22040 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
22041 {
22042 fragS *f;
22043
22044 /* Adjust stretch for any alignment frag. Note that if have
22045 been expanding the earlier code, the symbol may be
22046 defined in what appears to be an earlier frag. FIXME:
22047 This doesn't handle the fr_subtype field, which specifies
22048 a maximum number of bytes to skip when doing an
22049 alignment. */
22050 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
22051 {
22052 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
22053 {
22054 if (stretch < 0)
22055 stretch = - ((- stretch)
22056 & ~ ((1 << (int) f->fr_offset) - 1));
22057 else
22058 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
22059 if (stretch == 0)
22060 break;
22061 }
22062 }
22063 if (f != NULL)
22064 addr += stretch;
22065 }
5e77afaa
PB
22066
22067 return addr;
22068}
22069
0110f2b8
PB
22070/* Return the size of a relaxable adr pseudo-instruction or PC-relative
22071 load. */
22072static int
5e77afaa 22073relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
22074{
22075 addressT addr;
22076 offsetT val;
22077
22078 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
22079 if (fragp->fr_symbol == NULL
22080 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
22081 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22082 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
22083 return 4;
22084
5f4273c7 22085 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
22086 addr = fragp->fr_address + fragp->fr_fix;
22087 addr = (addr + 4) & ~3;
5e77afaa 22088 /* Force misaligned targets to 32-bit variant. */
0110f2b8 22089 if (val & 3)
5e77afaa 22090 return 4;
0110f2b8
PB
22091 val -= addr;
22092 if (val < 0 || val > 1020)
22093 return 4;
22094 return 2;
22095}
22096
22097/* Return the size of a relaxable add/sub immediate instruction. */
22098static int
22099relax_addsub (fragS *fragp, asection *sec)
22100{
22101 char *buf;
22102 int op;
22103
22104 buf = fragp->fr_literal + fragp->fr_fix;
22105 op = bfd_get_16(sec->owner, buf);
22106 if ((op & 0xf) == ((op >> 4) & 0xf))
22107 return relax_immediate (fragp, 8, 0);
22108 else
22109 return relax_immediate (fragp, 3, 0);
22110}
22111
e83a675f
RE
22112/* Return TRUE iff the definition of symbol S could be pre-empted
22113 (overridden) at link or load time. */
22114static bfd_boolean
22115symbol_preemptible (symbolS *s)
22116{
22117 /* Weak symbols can always be pre-empted. */
22118 if (S_IS_WEAK (s))
22119 return TRUE;
22120
22121 /* Non-global symbols cannot be pre-empted. */
22122 if (! S_IS_EXTERNAL (s))
22123 return FALSE;
22124
22125#ifdef OBJ_ELF
22126 /* In ELF, a global symbol can be marked protected, or private. In that
22127 case it can't be pre-empted (other definitions in the same link unit
22128 would violate the ODR). */
22129 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
22130 return FALSE;
22131#endif
22132
22133 /* Other global symbols might be pre-empted. */
22134 return TRUE;
22135}
0110f2b8
PB
22136
22137/* Return the size of a relaxable branch instruction. BITS is the
22138 size of the offset field in the narrow instruction. */
22139
22140static int
5e77afaa 22141relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
22142{
22143 addressT addr;
22144 offsetT val;
22145 offsetT limit;
22146
22147 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 22148 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
22149 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22150 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
22151 return 4;
22152
267bf995 22153#ifdef OBJ_ELF
e83a675f 22154 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
22155 if (S_IS_DEFINED (fragp->fr_symbol)
22156 && ARM_IS_FUNC (fragp->fr_symbol))
22157 return 4;
e83a675f 22158#endif
0d9b4b55 22159
e83a675f 22160 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 22161 return 4;
267bf995 22162
5f4273c7 22163 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
22164 addr = fragp->fr_address + fragp->fr_fix + 4;
22165 val -= addr;
22166
22167 /* Offset is a signed value *2 */
22168 limit = 1 << bits;
22169 if (val >= limit || val < -limit)
22170 return 4;
22171 return 2;
22172}
22173
22174
22175/* Relax a machine dependent frag. This returns the amount by which
22176 the current size of the frag should change. */
22177
22178int
5e77afaa 22179arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
22180{
22181 int oldsize;
22182 int newsize;
22183
22184 oldsize = fragp->fr_var;
22185 switch (fragp->fr_subtype)
22186 {
22187 case T_MNEM_ldr_pc2:
5f4273c7 22188 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
22189 break;
22190 case T_MNEM_ldr_pc:
22191 case T_MNEM_ldr_sp:
22192 case T_MNEM_str_sp:
5f4273c7 22193 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
22194 break;
22195 case T_MNEM_ldr:
22196 case T_MNEM_str:
5f4273c7 22197 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
22198 break;
22199 case T_MNEM_ldrh:
22200 case T_MNEM_strh:
5f4273c7 22201 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
22202 break;
22203 case T_MNEM_ldrb:
22204 case T_MNEM_strb:
5f4273c7 22205 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
22206 break;
22207 case T_MNEM_adr:
5f4273c7 22208 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
22209 break;
22210 case T_MNEM_mov:
22211 case T_MNEM_movs:
22212 case T_MNEM_cmp:
22213 case T_MNEM_cmn:
5f4273c7 22214 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
22215 break;
22216 case T_MNEM_b:
5f4273c7 22217 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
22218 break;
22219 case T_MNEM_bcond:
5f4273c7 22220 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
22221 break;
22222 case T_MNEM_add_sp:
22223 case T_MNEM_add_pc:
22224 newsize = relax_immediate (fragp, 8, 2);
22225 break;
22226 case T_MNEM_inc_sp:
22227 case T_MNEM_dec_sp:
22228 newsize = relax_immediate (fragp, 7, 2);
22229 break;
22230 case T_MNEM_addi:
22231 case T_MNEM_addis:
22232 case T_MNEM_subi:
22233 case T_MNEM_subis:
22234 newsize = relax_addsub (fragp, sec);
22235 break;
22236 default:
5f4273c7 22237 abort ();
0110f2b8 22238 }
5e77afaa
PB
22239
22240 fragp->fr_var = newsize;
22241 /* Freeze wide instructions that are at or before the same location as
22242 in the previous pass. This avoids infinite loops.
5f4273c7
NC
22243 Don't freeze them unconditionally because targets may be artificially
22244 misaligned by the expansion of preceding frags. */
5e77afaa 22245 if (stretch <= 0 && newsize > 2)
0110f2b8 22246 {
0110f2b8 22247 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 22248 frag_wane (fragp);
0110f2b8 22249 }
5e77afaa 22250
0110f2b8 22251 return newsize - oldsize;
c19d1205 22252}
b99bd4ef 22253
c19d1205 22254/* Round up a section size to the appropriate boundary. */
b99bd4ef 22255
c19d1205
ZW
22256valueT
22257md_section_align (segT segment ATTRIBUTE_UNUSED,
22258 valueT size)
22259{
6844c0cc 22260 return size;
bfae80f2 22261}
b99bd4ef 22262
c19d1205
ZW
22263/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22264 of an rs_align_code fragment. */
22265
22266void
22267arm_handle_align (fragS * fragP)
bfae80f2 22268{
d9235011 22269 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
22270 {
22271 { /* ARMv1 */
22272 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22273 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22274 },
22275 { /* ARMv6k */
22276 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22277 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22278 },
22279 };
d9235011 22280 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
22281 {
22282 { /* Thumb-1 */
22283 {0xc0, 0x46}, /* LE */
22284 {0x46, 0xc0}, /* BE */
22285 },
22286 { /* Thumb-2 */
22287 {0x00, 0xbf}, /* LE */
22288 {0xbf, 0x00} /* BE */
22289 }
22290 };
d9235011 22291 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
22292 { /* Wide Thumb-2 */
22293 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22294 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22295 };
c921be7d 22296
e7495e45 22297 unsigned bytes, fix, noop_size;
c19d1205 22298 char * p;
d9235011
TS
22299 const unsigned char * noop;
22300 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
22301#ifdef OBJ_ELF
22302 enum mstate state;
22303#endif
bfae80f2 22304
c19d1205 22305 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
22306 return;
22307
c19d1205
ZW
22308 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22309 p = fragP->fr_literal + fragP->fr_fix;
22310 fix = 0;
bfae80f2 22311
c19d1205
ZW
22312 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22313 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 22314
cd000bff 22315 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 22316
cd000bff 22317 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 22318 {
7f78eb34
JW
22319 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22320 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
22321 {
22322 narrow_noop = thumb_noop[1][target_big_endian];
22323 noop = wide_thumb_noop[target_big_endian];
22324 }
c19d1205 22325 else
e7495e45
NS
22326 noop = thumb_noop[0][target_big_endian];
22327 noop_size = 2;
cd000bff
DJ
22328#ifdef OBJ_ELF
22329 state = MAP_THUMB;
22330#endif
7ed4c4c5
NC
22331 }
22332 else
22333 {
7f78eb34
JW
22334 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22335 ? selected_cpu : arm_arch_none,
22336 arm_ext_v6k) != 0]
e7495e45
NS
22337 [target_big_endian];
22338 noop_size = 4;
cd000bff
DJ
22339#ifdef OBJ_ELF
22340 state = MAP_ARM;
22341#endif
7ed4c4c5 22342 }
c921be7d 22343
e7495e45 22344 fragP->fr_var = noop_size;
c921be7d 22345
c19d1205 22346 if (bytes & (noop_size - 1))
7ed4c4c5 22347 {
c19d1205 22348 fix = bytes & (noop_size - 1);
cd000bff
DJ
22349#ifdef OBJ_ELF
22350 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22351#endif
c19d1205
ZW
22352 memset (p, 0, fix);
22353 p += fix;
22354 bytes -= fix;
a737bd4d 22355 }
a737bd4d 22356
e7495e45
NS
22357 if (narrow_noop)
22358 {
22359 if (bytes & noop_size)
22360 {
22361 /* Insert a narrow noop. */
22362 memcpy (p, narrow_noop, noop_size);
22363 p += noop_size;
22364 bytes -= noop_size;
22365 fix += noop_size;
22366 }
22367
22368 /* Use wide noops for the remainder */
22369 noop_size = 4;
22370 }
22371
c19d1205 22372 while (bytes >= noop_size)
a737bd4d 22373 {
c19d1205
ZW
22374 memcpy (p, noop, noop_size);
22375 p += noop_size;
22376 bytes -= noop_size;
22377 fix += noop_size;
a737bd4d
NC
22378 }
22379
c19d1205 22380 fragP->fr_fix += fix;
a737bd4d
NC
22381}
22382
c19d1205
ZW
22383/* Called from md_do_align. Used to create an alignment
22384 frag in a code section. */
22385
22386void
22387arm_frag_align_code (int n, int max)
bfae80f2 22388{
c19d1205 22389 char * p;
7ed4c4c5 22390
c19d1205 22391 /* We assume that there will never be a requirement
6ec8e702 22392 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 22393 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
22394 {
22395 char err_msg[128];
22396
fa94de6b 22397 sprintf (err_msg,
477330fc
RM
22398 _("alignments greater than %d bytes not supported in .text sections."),
22399 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 22400 as_fatal ("%s", err_msg);
6ec8e702 22401 }
bfae80f2 22402
c19d1205
ZW
22403 p = frag_var (rs_align_code,
22404 MAX_MEM_FOR_RS_ALIGN_CODE,
22405 1,
22406 (relax_substateT) max,
22407 (symbolS *) NULL,
22408 (offsetT) n,
22409 (char *) NULL);
22410 *p = 0;
22411}
bfae80f2 22412
8dc2430f
NC
22413/* Perform target specific initialisation of a frag.
22414 Note - despite the name this initialisation is not done when the frag
22415 is created, but only when its type is assigned. A frag can be created
22416 and used a long time before its type is set, so beware of assuming that
33eaf5de 22417 this initialisation is performed first. */
bfae80f2 22418
cd000bff
DJ
22419#ifndef OBJ_ELF
22420void
22421arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22422{
22423 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 22424 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
22425}
22426
22427#else /* OBJ_ELF is defined. */
c19d1205 22428void
cd000bff 22429arm_init_frag (fragS * fragP, int max_chars)
c19d1205 22430{
e8d84ca1 22431 bfd_boolean frag_thumb_mode;
b968d18a 22432
8dc2430f
NC
22433 /* If the current ARM vs THUMB mode has not already
22434 been recorded into this frag then do so now. */
cd000bff 22435 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
22436 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22437
e8d84ca1
NC
22438 /* PR 21809: Do not set a mapping state for debug sections
22439 - it just confuses other tools. */
22440 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22441 return;
22442
b968d18a 22443 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 22444
f9c1b181
RL
22445 /* Record a mapping symbol for alignment frags. We will delete this
22446 later if the alignment ends up empty. */
22447 switch (fragP->fr_type)
22448 {
22449 case rs_align:
22450 case rs_align_test:
22451 case rs_fill:
22452 mapping_state_2 (MAP_DATA, max_chars);
22453 break;
22454 case rs_align_code:
b968d18a 22455 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
22456 break;
22457 default:
22458 break;
cd000bff 22459 }
bfae80f2
RE
22460}
22461
c19d1205
ZW
22462/* When we change sections we need to issue a new mapping symbol. */
22463
22464void
22465arm_elf_change_section (void)
bfae80f2 22466{
c19d1205
ZW
22467 /* Link an unlinked unwind index table section to the .text section. */
22468 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22469 && elf_linked_to_section (now_seg) == NULL)
22470 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
22471}
22472
c19d1205
ZW
22473int
22474arm_elf_section_type (const char * str, size_t len)
e45d0630 22475{
c19d1205
ZW
22476 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22477 return SHT_ARM_EXIDX;
e45d0630 22478
c19d1205
ZW
22479 return -1;
22480}
22481\f
22482/* Code to deal with unwinding tables. */
e45d0630 22483
c19d1205 22484static void add_unwind_adjustsp (offsetT);
e45d0630 22485
5f4273c7 22486/* Generate any deferred unwind frame offset. */
e45d0630 22487
bfae80f2 22488static void
c19d1205 22489flush_pending_unwind (void)
bfae80f2 22490{
c19d1205 22491 offsetT offset;
bfae80f2 22492
c19d1205
ZW
22493 offset = unwind.pending_offset;
22494 unwind.pending_offset = 0;
22495 if (offset != 0)
22496 add_unwind_adjustsp (offset);
bfae80f2
RE
22497}
22498
c19d1205
ZW
22499/* Add an opcode to this list for this function. Two-byte opcodes should
22500 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22501 order. */
22502
bfae80f2 22503static void
c19d1205 22504add_unwind_opcode (valueT op, int length)
bfae80f2 22505{
c19d1205
ZW
22506 /* Add any deferred stack adjustment. */
22507 if (unwind.pending_offset)
22508 flush_pending_unwind ();
bfae80f2 22509
c19d1205 22510 unwind.sp_restored = 0;
bfae80f2 22511
c19d1205 22512 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 22513 {
c19d1205
ZW
22514 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22515 if (unwind.opcodes)
325801bd
TS
22516 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22517 unwind.opcode_alloc);
c19d1205 22518 else
325801bd 22519 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 22520 }
c19d1205 22521 while (length > 0)
bfae80f2 22522 {
c19d1205
ZW
22523 length--;
22524 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22525 op >>= 8;
22526 unwind.opcode_count++;
bfae80f2 22527 }
bfae80f2
RE
22528}
22529
c19d1205
ZW
22530/* Add unwind opcodes to adjust the stack pointer. */
22531
bfae80f2 22532static void
c19d1205 22533add_unwind_adjustsp (offsetT offset)
bfae80f2 22534{
c19d1205 22535 valueT op;
bfae80f2 22536
c19d1205 22537 if (offset > 0x200)
bfae80f2 22538 {
c19d1205
ZW
22539 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22540 char bytes[5];
22541 int n;
22542 valueT o;
bfae80f2 22543
c19d1205
ZW
22544 /* Long form: 0xb2, uleb128. */
22545 /* This might not fit in a word so add the individual bytes,
22546 remembering the list is built in reverse order. */
22547 o = (valueT) ((offset - 0x204) >> 2);
22548 if (o == 0)
22549 add_unwind_opcode (0, 1);
bfae80f2 22550
c19d1205
ZW
22551 /* Calculate the uleb128 encoding of the offset. */
22552 n = 0;
22553 while (o)
22554 {
22555 bytes[n] = o & 0x7f;
22556 o >>= 7;
22557 if (o)
22558 bytes[n] |= 0x80;
22559 n++;
22560 }
22561 /* Add the insn. */
22562 for (; n; n--)
22563 add_unwind_opcode (bytes[n - 1], 1);
22564 add_unwind_opcode (0xb2, 1);
22565 }
22566 else if (offset > 0x100)
bfae80f2 22567 {
c19d1205
ZW
22568 /* Two short opcodes. */
22569 add_unwind_opcode (0x3f, 1);
22570 op = (offset - 0x104) >> 2;
22571 add_unwind_opcode (op, 1);
bfae80f2 22572 }
c19d1205
ZW
22573 else if (offset > 0)
22574 {
22575 /* Short opcode. */
22576 op = (offset - 4) >> 2;
22577 add_unwind_opcode (op, 1);
22578 }
22579 else if (offset < 0)
bfae80f2 22580 {
c19d1205
ZW
22581 offset = -offset;
22582 while (offset > 0x100)
bfae80f2 22583 {
c19d1205
ZW
22584 add_unwind_opcode (0x7f, 1);
22585 offset -= 0x100;
bfae80f2 22586 }
c19d1205
ZW
22587 op = ((offset - 4) >> 2) | 0x40;
22588 add_unwind_opcode (op, 1);
bfae80f2 22589 }
bfae80f2
RE
22590}
22591
c19d1205 22592/* Finish the list of unwind opcodes for this function. */
0198d5e6 22593
c19d1205
ZW
22594static void
22595finish_unwind_opcodes (void)
bfae80f2 22596{
c19d1205 22597 valueT op;
bfae80f2 22598
c19d1205 22599 if (unwind.fp_used)
bfae80f2 22600 {
708587a4 22601 /* Adjust sp as necessary. */
c19d1205
ZW
22602 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22603 flush_pending_unwind ();
bfae80f2 22604
c19d1205
ZW
22605 /* After restoring sp from the frame pointer. */
22606 op = 0x90 | unwind.fp_reg;
22607 add_unwind_opcode (op, 1);
22608 }
22609 else
22610 flush_pending_unwind ();
bfae80f2
RE
22611}
22612
bfae80f2 22613
c19d1205
ZW
22614/* Start an exception table entry. If idx is nonzero this is an index table
22615 entry. */
bfae80f2
RE
22616
22617static void
c19d1205 22618start_unwind_section (const segT text_seg, int idx)
bfae80f2 22619{
c19d1205
ZW
22620 const char * text_name;
22621 const char * prefix;
22622 const char * prefix_once;
22623 const char * group_name;
c19d1205 22624 char * sec_name;
c19d1205
ZW
22625 int type;
22626 int flags;
22627 int linkonce;
bfae80f2 22628
c19d1205 22629 if (idx)
bfae80f2 22630 {
c19d1205
ZW
22631 prefix = ELF_STRING_ARM_unwind;
22632 prefix_once = ELF_STRING_ARM_unwind_once;
22633 type = SHT_ARM_EXIDX;
bfae80f2 22634 }
c19d1205 22635 else
bfae80f2 22636 {
c19d1205
ZW
22637 prefix = ELF_STRING_ARM_unwind_info;
22638 prefix_once = ELF_STRING_ARM_unwind_info_once;
22639 type = SHT_PROGBITS;
bfae80f2
RE
22640 }
22641
c19d1205
ZW
22642 text_name = segment_name (text_seg);
22643 if (streq (text_name, ".text"))
22644 text_name = "";
22645
22646 if (strncmp (text_name, ".gnu.linkonce.t.",
22647 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 22648 {
c19d1205
ZW
22649 prefix = prefix_once;
22650 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
22651 }
22652
29a2809e 22653 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 22654
c19d1205
ZW
22655 flags = SHF_ALLOC;
22656 linkonce = 0;
22657 group_name = 0;
bfae80f2 22658
c19d1205
ZW
22659 /* Handle COMDAT group. */
22660 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 22661 {
c19d1205
ZW
22662 group_name = elf_group_name (text_seg);
22663 if (group_name == NULL)
22664 {
bd3ba5d1 22665 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
22666 segment_name (text_seg));
22667 ignore_rest_of_line ();
22668 return;
22669 }
22670 flags |= SHF_GROUP;
22671 linkonce = 1;
bfae80f2
RE
22672 }
22673
a91e1603
L
22674 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22675 linkonce, 0);
bfae80f2 22676
5f4273c7 22677 /* Set the section link for index tables. */
c19d1205
ZW
22678 if (idx)
22679 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
22680}
22681
bfae80f2 22682
c19d1205
ZW
22683/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22684 personality routine data. Returns zero, or the index table value for
cad0da33 22685 an inline entry. */
c19d1205
ZW
22686
22687static valueT
22688create_unwind_entry (int have_data)
bfae80f2 22689{
c19d1205
ZW
22690 int size;
22691 addressT where;
22692 char *ptr;
22693 /* The current word of data. */
22694 valueT data;
22695 /* The number of bytes left in this word. */
22696 int n;
bfae80f2 22697
c19d1205 22698 finish_unwind_opcodes ();
bfae80f2 22699
c19d1205
ZW
22700 /* Remember the current text section. */
22701 unwind.saved_seg = now_seg;
22702 unwind.saved_subseg = now_subseg;
bfae80f2 22703
c19d1205 22704 start_unwind_section (now_seg, 0);
bfae80f2 22705
c19d1205 22706 if (unwind.personality_routine == NULL)
bfae80f2 22707 {
c19d1205
ZW
22708 if (unwind.personality_index == -2)
22709 {
22710 if (have_data)
5f4273c7 22711 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
22712 return 1; /* EXIDX_CANTUNWIND. */
22713 }
bfae80f2 22714
c19d1205
ZW
22715 /* Use a default personality routine if none is specified. */
22716 if (unwind.personality_index == -1)
22717 {
22718 if (unwind.opcode_count > 3)
22719 unwind.personality_index = 1;
22720 else
22721 unwind.personality_index = 0;
22722 }
bfae80f2 22723
c19d1205
ZW
22724 /* Space for the personality routine entry. */
22725 if (unwind.personality_index == 0)
22726 {
22727 if (unwind.opcode_count > 3)
22728 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 22729
c19d1205
ZW
22730 if (!have_data)
22731 {
22732 /* All the data is inline in the index table. */
22733 data = 0x80;
22734 n = 3;
22735 while (unwind.opcode_count > 0)
22736 {
22737 unwind.opcode_count--;
22738 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22739 n--;
22740 }
bfae80f2 22741
c19d1205
ZW
22742 /* Pad with "finish" opcodes. */
22743 while (n--)
22744 data = (data << 8) | 0xb0;
bfae80f2 22745
c19d1205
ZW
22746 return data;
22747 }
22748 size = 0;
22749 }
22750 else
22751 /* We get two opcodes "free" in the first word. */
22752 size = unwind.opcode_count - 2;
22753 }
22754 else
5011093d 22755 {
cad0da33
NC
22756 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22757 if (unwind.personality_index != -1)
22758 {
22759 as_bad (_("attempt to recreate an unwind entry"));
22760 return 1;
22761 }
5011093d
NC
22762
22763 /* An extra byte is required for the opcode count. */
22764 size = unwind.opcode_count + 1;
22765 }
bfae80f2 22766
c19d1205
ZW
22767 size = (size + 3) >> 2;
22768 if (size > 0xff)
22769 as_bad (_("too many unwind opcodes"));
bfae80f2 22770
c19d1205
ZW
22771 frag_align (2, 0, 0);
22772 record_alignment (now_seg, 2);
22773 unwind.table_entry = expr_build_dot ();
22774
22775 /* Allocate the table entry. */
22776 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
22777 /* PR 13449: Zero the table entries in case some of them are not used. */
22778 memset (ptr, 0, (size << 2) + 4);
c19d1205 22779 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 22780
c19d1205 22781 switch (unwind.personality_index)
bfae80f2 22782 {
c19d1205
ZW
22783 case -1:
22784 /* ??? Should this be a PLT generating relocation? */
22785 /* Custom personality routine. */
22786 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22787 BFD_RELOC_ARM_PREL31);
bfae80f2 22788
c19d1205
ZW
22789 where += 4;
22790 ptr += 4;
bfae80f2 22791
c19d1205 22792 /* Set the first byte to the number of additional words. */
5011093d 22793 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
22794 n = 3;
22795 break;
bfae80f2 22796
c19d1205
ZW
22797 /* ABI defined personality routines. */
22798 case 0:
22799 /* Three opcodes bytes are packed into the first word. */
22800 data = 0x80;
22801 n = 3;
22802 break;
bfae80f2 22803
c19d1205
ZW
22804 case 1:
22805 case 2:
22806 /* The size and first two opcode bytes go in the first word. */
22807 data = ((0x80 + unwind.personality_index) << 8) | size;
22808 n = 2;
22809 break;
bfae80f2 22810
c19d1205
ZW
22811 default:
22812 /* Should never happen. */
22813 abort ();
22814 }
bfae80f2 22815
c19d1205
ZW
22816 /* Pack the opcodes into words (MSB first), reversing the list at the same
22817 time. */
22818 while (unwind.opcode_count > 0)
22819 {
22820 if (n == 0)
22821 {
22822 md_number_to_chars (ptr, data, 4);
22823 ptr += 4;
22824 n = 4;
22825 data = 0;
22826 }
22827 unwind.opcode_count--;
22828 n--;
22829 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22830 }
22831
22832 /* Finish off the last word. */
22833 if (n < 4)
22834 {
22835 /* Pad with "finish" opcodes. */
22836 while (n--)
22837 data = (data << 8) | 0xb0;
22838
22839 md_number_to_chars (ptr, data, 4);
22840 }
22841
22842 if (!have_data)
22843 {
22844 /* Add an empty descriptor if there is no user-specified data. */
22845 ptr = frag_more (4);
22846 md_number_to_chars (ptr, 0, 4);
22847 }
22848
22849 return 0;
bfae80f2
RE
22850}
22851
f0927246
NC
22852
22853/* Initialize the DWARF-2 unwind information for this procedure. */
22854
22855void
22856tc_arm_frame_initial_instructions (void)
22857{
22858 cfi_add_CFA_def_cfa (REG_SP, 0);
22859}
22860#endif /* OBJ_ELF */
22861
c19d1205
ZW
22862/* Convert REGNAME to a DWARF-2 register number. */
22863
22864int
1df69f4f 22865tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 22866{
1df69f4f 22867 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
22868 if (reg != FAIL)
22869 return reg;
c19d1205 22870
1f5afe1c
NC
22871 /* PR 16694: Allow VFP registers as well. */
22872 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22873 if (reg != FAIL)
22874 return 64 + reg;
c19d1205 22875
1f5afe1c
NC
22876 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22877 if (reg != FAIL)
22878 return reg + 256;
22879
0198d5e6 22880 return FAIL;
bfae80f2
RE
22881}
22882
f0927246 22883#ifdef TE_PE
c19d1205 22884void
f0927246 22885tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 22886{
91d6fa6a 22887 expressionS exp;
bfae80f2 22888
91d6fa6a
NC
22889 exp.X_op = O_secrel;
22890 exp.X_add_symbol = symbol;
22891 exp.X_add_number = 0;
22892 emit_expr (&exp, size);
f0927246
NC
22893}
22894#endif
bfae80f2 22895
c19d1205 22896/* MD interface: Symbol and relocation handling. */
bfae80f2 22897
2fc8bdac
ZW
22898/* Return the address within the segment that a PC-relative fixup is
22899 relative to. For ARM, PC-relative fixups applied to instructions
22900 are generally relative to the location of the fixup plus 8 bytes.
22901 Thumb branches are offset by 4, and Thumb loads relative to PC
22902 require special handling. */
bfae80f2 22903
c19d1205 22904long
2fc8bdac 22905md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 22906{
2fc8bdac
ZW
22907 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22908
22909 /* If this is pc-relative and we are going to emit a relocation
22910 then we just want to put out any pipeline compensation that the linker
53baae48
NC
22911 will need. Otherwise we want to use the calculated base.
22912 For WinCE we skip the bias for externals as well, since this
22913 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 22914 if (fixP->fx_pcrel
2fc8bdac 22915 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
22916 || (arm_force_relocation (fixP)
22917#ifdef TE_WINCE
22918 && !S_IS_EXTERNAL (fixP->fx_addsy)
22919#endif
22920 )))
2fc8bdac 22921 base = 0;
bfae80f2 22922
267bf995 22923
c19d1205 22924 switch (fixP->fx_r_type)
bfae80f2 22925 {
2fc8bdac
ZW
22926 /* PC relative addressing on the Thumb is slightly odd as the
22927 bottom two bits of the PC are forced to zero for the
22928 calculation. This happens *after* application of the
22929 pipeline offset. However, Thumb adrl already adjusts for
22930 this, so we need not do it again. */
c19d1205 22931 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 22932 return base & ~3;
c19d1205
ZW
22933
22934 case BFD_RELOC_ARM_THUMB_OFFSET:
22935 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 22936 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 22937 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 22938 return (base + 4) & ~3;
c19d1205 22939
2fc8bdac 22940 /* Thumb branches are simply offset by +4. */
e12437dc 22941 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
22942 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22943 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22944 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22945 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 22946 case BFD_RELOC_THUMB_PCREL_BRANCH25:
e5d6e09e 22947 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 22948 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 22949 case BFD_RELOC_ARM_THUMB_BF13:
2fc8bdac 22950 return base + 4;
bfae80f2 22951
267bf995 22952 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
22953 if (fixP->fx_addsy
22954 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22955 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 22956 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
22957 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22958 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
22959 return base + 4;
22960
00adf2d4
JB
22961 /* BLX is like branches above, but forces the low two bits of PC to
22962 zero. */
486499d0
CL
22963 case BFD_RELOC_THUMB_PCREL_BLX:
22964 if (fixP->fx_addsy
22965 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22966 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22967 && THUMB_IS_FUNC (fixP->fx_addsy)
22968 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22969 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
22970 return (base + 4) & ~3;
22971
2fc8bdac
ZW
22972 /* ARM mode branches are offset by +8. However, the Windows CE
22973 loader expects the relocation not to take this into account. */
267bf995 22974 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
22975 if (fixP->fx_addsy
22976 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22977 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22978 && ARM_IS_FUNC (fixP->fx_addsy)
22979 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22980 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22981 return base + 8;
267bf995 22982
486499d0
CL
22983 case BFD_RELOC_ARM_PCREL_CALL:
22984 if (fixP->fx_addsy
22985 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22986 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22987 && THUMB_IS_FUNC (fixP->fx_addsy)
22988 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22989 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22990 return base + 8;
267bf995 22991
2fc8bdac 22992 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 22993 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 22994 case BFD_RELOC_ARM_PLT32:
c19d1205 22995#ifdef TE_WINCE
5f4273c7 22996 /* When handling fixups immediately, because we have already
477330fc 22997 discovered the value of a symbol, or the address of the frag involved
53baae48 22998 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
22999 see fixup_segment() in write.c
23000 The S_IS_EXTERNAL test handles the case of global symbols.
23001 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
23002 if (fixP->fx_pcrel
23003 && fixP->fx_addsy != NULL
23004 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23005 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
23006 return base + 8;
2fc8bdac 23007 return base;
c19d1205 23008#else
2fc8bdac 23009 return base + 8;
c19d1205 23010#endif
2fc8bdac 23011
267bf995 23012
2fc8bdac
ZW
23013 /* ARM mode loads relative to PC are also offset by +8. Unlike
23014 branches, the Windows CE loader *does* expect the relocation
23015 to take this into account. */
23016 case BFD_RELOC_ARM_OFFSET_IMM:
23017 case BFD_RELOC_ARM_OFFSET_IMM8:
23018 case BFD_RELOC_ARM_HWLITERAL:
23019 case BFD_RELOC_ARM_LITERAL:
23020 case BFD_RELOC_ARM_CP_OFF_IMM:
23021 return base + 8;
23022
23023
23024 /* Other PC-relative relocations are un-offset. */
23025 default:
23026 return base;
23027 }
bfae80f2
RE
23028}
23029
8b2d793c
NC
23030static bfd_boolean flag_warn_syms = TRUE;
23031
ae8714c2
NC
23032bfd_boolean
23033arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 23034{
8b2d793c
NC
23035 /* PR 18347 - Warn if the user attempts to create a symbol with the same
23036 name as an ARM instruction. Whilst strictly speaking it is allowed, it
23037 does mean that the resulting code might be very confusing to the reader.
23038 Also this warning can be triggered if the user omits an operand before
23039 an immediate address, eg:
23040
23041 LDR =foo
23042
23043 GAS treats this as an assignment of the value of the symbol foo to a
23044 symbol LDR, and so (without this code) it will not issue any kind of
23045 warning or error message.
23046
23047 Note - ARM instructions are case-insensitive but the strings in the hash
23048 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
23049 lower case too. */
23050 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
23051 {
23052 char * nbuf = strdup (name);
23053 char * p;
23054
23055 for (p = nbuf; *p; p++)
23056 *p = TOLOWER (*p);
23057 if (hash_find (arm_ops_hsh, nbuf) != NULL)
23058 {
23059 static struct hash_control * already_warned = NULL;
23060
23061 if (already_warned == NULL)
23062 already_warned = hash_new ();
23063 /* Only warn about the symbol once. To keep the code
23064 simple we let hash_insert do the lookup for us. */
23065 if (hash_insert (already_warned, name, NULL) == NULL)
ae8714c2 23066 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
23067 }
23068 else
23069 free (nbuf);
23070 }
3739860c 23071
ae8714c2
NC
23072 return FALSE;
23073}
23074
23075/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
23076 Otherwise we have no need to default values of symbols. */
23077
23078symbolS *
23079md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
23080{
23081#ifdef OBJ_ELF
23082 if (name[0] == '_' && name[1] == 'G'
23083 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
23084 {
23085 if (!GOT_symbol)
23086 {
23087 if (symbol_find (name))
23088 as_bad (_("GOT already in the symbol table"));
23089
23090 GOT_symbol = symbol_new (name, undefined_section,
23091 (valueT) 0, & zero_address_frag);
23092 }
23093
23094 return GOT_symbol;
23095 }
23096#endif
23097
c921be7d 23098 return NULL;
bfae80f2
RE
23099}
23100
55cf6793 23101/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
23102 computed as two separate immediate values, added together. We
23103 already know that this value cannot be computed by just one ARM
23104 instruction. */
23105
23106static unsigned int
23107validate_immediate_twopart (unsigned int val,
23108 unsigned int * highpart)
bfae80f2 23109{
c19d1205
ZW
23110 unsigned int a;
23111 unsigned int i;
bfae80f2 23112
c19d1205
ZW
23113 for (i = 0; i < 32; i += 2)
23114 if (((a = rotate_left (val, i)) & 0xff) != 0)
23115 {
23116 if (a & 0xff00)
23117 {
23118 if (a & ~ 0xffff)
23119 continue;
23120 * highpart = (a >> 8) | ((i + 24) << 7);
23121 }
23122 else if (a & 0xff0000)
23123 {
23124 if (a & 0xff000000)
23125 continue;
23126 * highpart = (a >> 16) | ((i + 16) << 7);
23127 }
23128 else
23129 {
9c2799c2 23130 gas_assert (a & 0xff000000);
c19d1205
ZW
23131 * highpart = (a >> 24) | ((i + 8) << 7);
23132 }
bfae80f2 23133
c19d1205
ZW
23134 return (a & 0xff) | (i << 7);
23135 }
bfae80f2 23136
c19d1205 23137 return FAIL;
bfae80f2
RE
23138}
23139
c19d1205
ZW
23140static int
23141validate_offset_imm (unsigned int val, int hwse)
23142{
23143 if ((hwse && val > 255) || val > 4095)
23144 return FAIL;
23145 return val;
23146}
bfae80f2 23147
55cf6793 23148/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
23149 negative immediate constant by altering the instruction. A bit of
23150 a hack really.
23151 MOV <-> MVN
23152 AND <-> BIC
23153 ADC <-> SBC
23154 by inverting the second operand, and
23155 ADD <-> SUB
23156 CMP <-> CMN
23157 by negating the second operand. */
bfae80f2 23158
c19d1205
ZW
23159static int
23160negate_data_op (unsigned long * instruction,
23161 unsigned long value)
bfae80f2 23162{
c19d1205
ZW
23163 int op, new_inst;
23164 unsigned long negated, inverted;
bfae80f2 23165
c19d1205
ZW
23166 negated = encode_arm_immediate (-value);
23167 inverted = encode_arm_immediate (~value);
bfae80f2 23168
c19d1205
ZW
23169 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
23170 switch (op)
bfae80f2 23171 {
c19d1205
ZW
23172 /* First negates. */
23173 case OPCODE_SUB: /* ADD <-> SUB */
23174 new_inst = OPCODE_ADD;
23175 value = negated;
23176 break;
bfae80f2 23177
c19d1205
ZW
23178 case OPCODE_ADD:
23179 new_inst = OPCODE_SUB;
23180 value = negated;
23181 break;
bfae80f2 23182
c19d1205
ZW
23183 case OPCODE_CMP: /* CMP <-> CMN */
23184 new_inst = OPCODE_CMN;
23185 value = negated;
23186 break;
bfae80f2 23187
c19d1205
ZW
23188 case OPCODE_CMN:
23189 new_inst = OPCODE_CMP;
23190 value = negated;
23191 break;
bfae80f2 23192
c19d1205
ZW
23193 /* Now Inverted ops. */
23194 case OPCODE_MOV: /* MOV <-> MVN */
23195 new_inst = OPCODE_MVN;
23196 value = inverted;
23197 break;
bfae80f2 23198
c19d1205
ZW
23199 case OPCODE_MVN:
23200 new_inst = OPCODE_MOV;
23201 value = inverted;
23202 break;
bfae80f2 23203
c19d1205
ZW
23204 case OPCODE_AND: /* AND <-> BIC */
23205 new_inst = OPCODE_BIC;
23206 value = inverted;
23207 break;
bfae80f2 23208
c19d1205
ZW
23209 case OPCODE_BIC:
23210 new_inst = OPCODE_AND;
23211 value = inverted;
23212 break;
bfae80f2 23213
c19d1205
ZW
23214 case OPCODE_ADC: /* ADC <-> SBC */
23215 new_inst = OPCODE_SBC;
23216 value = inverted;
23217 break;
bfae80f2 23218
c19d1205
ZW
23219 case OPCODE_SBC:
23220 new_inst = OPCODE_ADC;
23221 value = inverted;
23222 break;
bfae80f2 23223
c19d1205
ZW
23224 /* We cannot do anything. */
23225 default:
23226 return FAIL;
b99bd4ef
NC
23227 }
23228
c19d1205
ZW
23229 if (value == (unsigned) FAIL)
23230 return FAIL;
23231
23232 *instruction &= OPCODE_MASK;
23233 *instruction |= new_inst << DATA_OP_SHIFT;
23234 return value;
b99bd4ef
NC
23235}
23236
ef8d22e6
PB
23237/* Like negate_data_op, but for Thumb-2. */
23238
23239static unsigned int
16dd5e42 23240thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
23241{
23242 int op, new_inst;
23243 int rd;
16dd5e42 23244 unsigned int negated, inverted;
ef8d22e6
PB
23245
23246 negated = encode_thumb32_immediate (-value);
23247 inverted = encode_thumb32_immediate (~value);
23248
23249 rd = (*instruction >> 8) & 0xf;
23250 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23251 switch (op)
23252 {
23253 /* ADD <-> SUB. Includes CMP <-> CMN. */
23254 case T2_OPCODE_SUB:
23255 new_inst = T2_OPCODE_ADD;
23256 value = negated;
23257 break;
23258
23259 case T2_OPCODE_ADD:
23260 new_inst = T2_OPCODE_SUB;
23261 value = negated;
23262 break;
23263
23264 /* ORR <-> ORN. Includes MOV <-> MVN. */
23265 case T2_OPCODE_ORR:
23266 new_inst = T2_OPCODE_ORN;
23267 value = inverted;
23268 break;
23269
23270 case T2_OPCODE_ORN:
23271 new_inst = T2_OPCODE_ORR;
23272 value = inverted;
23273 break;
23274
23275 /* AND <-> BIC. TST has no inverted equivalent. */
23276 case T2_OPCODE_AND:
23277 new_inst = T2_OPCODE_BIC;
23278 if (rd == 15)
23279 value = FAIL;
23280 else
23281 value = inverted;
23282 break;
23283
23284 case T2_OPCODE_BIC:
23285 new_inst = T2_OPCODE_AND;
23286 value = inverted;
23287 break;
23288
23289 /* ADC <-> SBC */
23290 case T2_OPCODE_ADC:
23291 new_inst = T2_OPCODE_SBC;
23292 value = inverted;
23293 break;
23294
23295 case T2_OPCODE_SBC:
23296 new_inst = T2_OPCODE_ADC;
23297 value = inverted;
23298 break;
23299
23300 /* We cannot do anything. */
23301 default:
23302 return FAIL;
23303 }
23304
16dd5e42 23305 if (value == (unsigned int)FAIL)
ef8d22e6
PB
23306 return FAIL;
23307
23308 *instruction &= T2_OPCODE_MASK;
23309 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23310 return value;
23311}
23312
8f06b2d8 23313/* Read a 32-bit thumb instruction from buf. */
0198d5e6 23314
8f06b2d8
PB
23315static unsigned long
23316get_thumb32_insn (char * buf)
23317{
23318 unsigned long insn;
23319 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23320 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23321
23322 return insn;
23323}
23324
a8bc6c78
PB
23325/* We usually want to set the low bit on the address of thumb function
23326 symbols. In particular .word foo - . should have the low bit set.
23327 Generic code tries to fold the difference of two symbols to
23328 a constant. Prevent this and force a relocation when the first symbols
23329 is a thumb function. */
c921be7d
NC
23330
23331bfd_boolean
a8bc6c78
PB
23332arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23333{
23334 if (op == O_subtract
23335 && l->X_op == O_symbol
23336 && r->X_op == O_symbol
23337 && THUMB_IS_FUNC (l->X_add_symbol))
23338 {
23339 l->X_op = O_subtract;
23340 l->X_op_symbol = r->X_add_symbol;
23341 l->X_add_number -= r->X_add_number;
c921be7d 23342 return TRUE;
a8bc6c78 23343 }
c921be7d 23344
a8bc6c78 23345 /* Process as normal. */
c921be7d 23346 return FALSE;
a8bc6c78
PB
23347}
23348
4a42ebbc
RR
23349/* Encode Thumb2 unconditional branches and calls. The encoding
23350 for the 2 are identical for the immediate values. */
23351
23352static void
23353encode_thumb2_b_bl_offset (char * buf, offsetT value)
23354{
23355#define T2I1I2MASK ((1 << 13) | (1 << 11))
23356 offsetT newval;
23357 offsetT newval2;
23358 addressT S, I1, I2, lo, hi;
23359
23360 S = (value >> 24) & 0x01;
23361 I1 = (value >> 23) & 0x01;
23362 I2 = (value >> 22) & 0x01;
23363 hi = (value >> 12) & 0x3ff;
fa94de6b 23364 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
23365 newval = md_chars_to_number (buf, THUMB_SIZE);
23366 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23367 newval |= (S << 10) | hi;
23368 newval2 &= ~T2I1I2MASK;
23369 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23370 md_number_to_chars (buf, newval, THUMB_SIZE);
23371 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23372}
23373
c19d1205 23374void
55cf6793 23375md_apply_fix (fixS * fixP,
c19d1205
ZW
23376 valueT * valP,
23377 segT seg)
23378{
23379 offsetT value = * valP;
23380 offsetT newval;
23381 unsigned int newimm;
23382 unsigned long temp;
23383 int sign;
23384 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 23385
9c2799c2 23386 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 23387
c19d1205 23388 /* Note whether this will delete the relocation. */
4962c51a 23389
c19d1205
ZW
23390 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23391 fixP->fx_done = 1;
b99bd4ef 23392
adbaf948 23393 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 23394 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
23395 for emit_reloc. */
23396 value &= 0xffffffff;
23397 value ^= 0x80000000;
5f4273c7 23398 value -= 0x80000000;
adbaf948
ZW
23399
23400 *valP = value;
c19d1205 23401 fixP->fx_addnumber = value;
b99bd4ef 23402
adbaf948
ZW
23403 /* Same treatment for fixP->fx_offset. */
23404 fixP->fx_offset &= 0xffffffff;
23405 fixP->fx_offset ^= 0x80000000;
23406 fixP->fx_offset -= 0x80000000;
23407
c19d1205 23408 switch (fixP->fx_r_type)
b99bd4ef 23409 {
c19d1205
ZW
23410 case BFD_RELOC_NONE:
23411 /* This will need to go in the object file. */
23412 fixP->fx_done = 0;
23413 break;
b99bd4ef 23414
c19d1205
ZW
23415 case BFD_RELOC_ARM_IMMEDIATE:
23416 /* We claim that this fixup has been processed here,
23417 even if in fact we generate an error because we do
23418 not have a reloc for it, so tc_gen_reloc will reject it. */
23419 fixP->fx_done = 1;
b99bd4ef 23420
77db8e2e 23421 if (fixP->fx_addsy)
b99bd4ef 23422 {
77db8e2e 23423 const char *msg = 0;
b99bd4ef 23424
77db8e2e
NC
23425 if (! S_IS_DEFINED (fixP->fx_addsy))
23426 msg = _("undefined symbol %s used as an immediate value");
23427 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23428 msg = _("symbol %s is in a different section");
23429 else if (S_IS_WEAK (fixP->fx_addsy))
23430 msg = _("symbol %s is weak and may be overridden later");
23431
23432 if (msg)
23433 {
23434 as_bad_where (fixP->fx_file, fixP->fx_line,
23435 msg, S_GET_NAME (fixP->fx_addsy));
23436 break;
23437 }
42e5fcbf
AS
23438 }
23439
c19d1205
ZW
23440 temp = md_chars_to_number (buf, INSN_SIZE);
23441
5e73442d
SL
23442 /* If the offset is negative, we should use encoding A2 for ADR. */
23443 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23444 newimm = negate_data_op (&temp, value);
23445 else
23446 {
23447 newimm = encode_arm_immediate (value);
23448
23449 /* If the instruction will fail, see if we can fix things up by
23450 changing the opcode. */
23451 if (newimm == (unsigned int) FAIL)
23452 newimm = negate_data_op (&temp, value);
bada4342
JW
23453 /* MOV accepts both ARM modified immediate (A1 encoding) and
23454 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23455 When disassembling, MOV is preferred when there is no encoding
23456 overlap. */
23457 if (newimm == (unsigned int) FAIL
23458 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23459 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23460 && !((temp >> SBIT_SHIFT) & 0x1)
23461 && value >= 0 && value <= 0xffff)
23462 {
23463 /* Clear bits[23:20] to change encoding from A1 to A2. */
23464 temp &= 0xff0fffff;
23465 /* Encoding high 4bits imm. Code below will encode the remaining
23466 low 12bits. */
23467 temp |= (value & 0x0000f000) << 4;
23468 newimm = value & 0x00000fff;
23469 }
5e73442d
SL
23470 }
23471
23472 if (newimm == (unsigned int) FAIL)
b99bd4ef 23473 {
c19d1205
ZW
23474 as_bad_where (fixP->fx_file, fixP->fx_line,
23475 _("invalid constant (%lx) after fixup"),
23476 (unsigned long) value);
23477 break;
b99bd4ef 23478 }
b99bd4ef 23479
c19d1205
ZW
23480 newimm |= (temp & 0xfffff000);
23481 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23482 break;
b99bd4ef 23483
c19d1205
ZW
23484 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23485 {
23486 unsigned int highpart = 0;
23487 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 23488
77db8e2e 23489 if (fixP->fx_addsy)
42e5fcbf 23490 {
77db8e2e 23491 const char *msg = 0;
42e5fcbf 23492
77db8e2e
NC
23493 if (! S_IS_DEFINED (fixP->fx_addsy))
23494 msg = _("undefined symbol %s used as an immediate value");
23495 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23496 msg = _("symbol %s is in a different section");
23497 else if (S_IS_WEAK (fixP->fx_addsy))
23498 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 23499
77db8e2e
NC
23500 if (msg)
23501 {
23502 as_bad_where (fixP->fx_file, fixP->fx_line,
23503 msg, S_GET_NAME (fixP->fx_addsy));
23504 break;
23505 }
23506 }
fa94de6b 23507
c19d1205
ZW
23508 newimm = encode_arm_immediate (value);
23509 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 23510
c19d1205
ZW
23511 /* If the instruction will fail, see if we can fix things up by
23512 changing the opcode. */
23513 if (newimm == (unsigned int) FAIL
23514 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23515 {
23516 /* No ? OK - try using two ADD instructions to generate
23517 the value. */
23518 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 23519
c19d1205
ZW
23520 /* Yes - then make sure that the second instruction is
23521 also an add. */
23522 if (newimm != (unsigned int) FAIL)
23523 newinsn = temp;
23524 /* Still No ? Try using a negated value. */
23525 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23526 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23527 /* Otherwise - give up. */
23528 else
23529 {
23530 as_bad_where (fixP->fx_file, fixP->fx_line,
23531 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23532 (long) value);
23533 break;
23534 }
b99bd4ef 23535
c19d1205
ZW
23536 /* Replace the first operand in the 2nd instruction (which
23537 is the PC) with the destination register. We have
23538 already added in the PC in the first instruction and we
23539 do not want to do it again. */
23540 newinsn &= ~ 0xf0000;
23541 newinsn |= ((newinsn & 0x0f000) << 4);
23542 }
b99bd4ef 23543
c19d1205
ZW
23544 newimm |= (temp & 0xfffff000);
23545 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 23546
c19d1205
ZW
23547 highpart |= (newinsn & 0xfffff000);
23548 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23549 }
23550 break;
b99bd4ef 23551
c19d1205 23552 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
23553 if (!fixP->fx_done && seg->use_rela_p)
23554 value = 0;
1a0670f3 23555 /* Fall through. */
00a97672 23556
c19d1205 23557 case BFD_RELOC_ARM_LITERAL:
26d97720 23558 sign = value > 0;
b99bd4ef 23559
c19d1205
ZW
23560 if (value < 0)
23561 value = - value;
b99bd4ef 23562
c19d1205 23563 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 23564 {
c19d1205
ZW
23565 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23566 as_bad_where (fixP->fx_file, fixP->fx_line,
23567 _("invalid literal constant: pool needs to be closer"));
23568 else
23569 as_bad_where (fixP->fx_file, fixP->fx_line,
23570 _("bad immediate value for offset (%ld)"),
23571 (long) value);
23572 break;
f03698e6
RE
23573 }
23574
c19d1205 23575 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23576 if (value == 0)
23577 newval &= 0xfffff000;
23578 else
23579 {
23580 newval &= 0xff7ff000;
23581 newval |= value | (sign ? INDEX_UP : 0);
23582 }
c19d1205
ZW
23583 md_number_to_chars (buf, newval, INSN_SIZE);
23584 break;
b99bd4ef 23585
c19d1205
ZW
23586 case BFD_RELOC_ARM_OFFSET_IMM8:
23587 case BFD_RELOC_ARM_HWLITERAL:
26d97720 23588 sign = value > 0;
b99bd4ef 23589
c19d1205
ZW
23590 if (value < 0)
23591 value = - value;
b99bd4ef 23592
c19d1205 23593 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 23594 {
c19d1205
ZW
23595 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23596 as_bad_where (fixP->fx_file, fixP->fx_line,
23597 _("invalid literal constant: pool needs to be closer"));
23598 else
427d0db6
RM
23599 as_bad_where (fixP->fx_file, fixP->fx_line,
23600 _("bad immediate value for 8-bit offset (%ld)"),
23601 (long) value);
c19d1205 23602 break;
b99bd4ef
NC
23603 }
23604
c19d1205 23605 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23606 if (value == 0)
23607 newval &= 0xfffff0f0;
23608 else
23609 {
23610 newval &= 0xff7ff0f0;
23611 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23612 }
c19d1205
ZW
23613 md_number_to_chars (buf, newval, INSN_SIZE);
23614 break;
b99bd4ef 23615
c19d1205
ZW
23616 case BFD_RELOC_ARM_T32_OFFSET_U8:
23617 if (value < 0 || value > 1020 || value % 4 != 0)
23618 as_bad_where (fixP->fx_file, fixP->fx_line,
23619 _("bad immediate value for offset (%ld)"), (long) value);
23620 value /= 4;
b99bd4ef 23621
c19d1205 23622 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
23623 newval |= value;
23624 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23625 break;
b99bd4ef 23626
c19d1205
ZW
23627 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23628 /* This is a complicated relocation used for all varieties of Thumb32
23629 load/store instruction with immediate offset:
23630
23631 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 23632 *4, optional writeback(W)
c19d1205
ZW
23633 (doubleword load/store)
23634
23635 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23636 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23637 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23638 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23639 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23640
23641 Uppercase letters indicate bits that are already encoded at
23642 this point. Lowercase letters are our problem. For the
23643 second block of instructions, the secondary opcode nybble
23644 (bits 8..11) is present, and bit 23 is zero, even if this is
23645 a PC-relative operation. */
23646 newval = md_chars_to_number (buf, THUMB_SIZE);
23647 newval <<= 16;
23648 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 23649
c19d1205 23650 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 23651 {
c19d1205
ZW
23652 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23653 if (value >= 0)
23654 newval |= (1 << 23);
23655 else
23656 value = -value;
23657 if (value % 4 != 0)
23658 {
23659 as_bad_where (fixP->fx_file, fixP->fx_line,
23660 _("offset not a multiple of 4"));
23661 break;
23662 }
23663 value /= 4;
216d22bc 23664 if (value > 0xff)
c19d1205
ZW
23665 {
23666 as_bad_where (fixP->fx_file, fixP->fx_line,
23667 _("offset out of range"));
23668 break;
23669 }
23670 newval &= ~0xff;
b99bd4ef 23671 }
c19d1205 23672 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 23673 {
c19d1205
ZW
23674 /* PC-relative, 12-bit offset. */
23675 if (value >= 0)
23676 newval |= (1 << 23);
23677 else
23678 value = -value;
216d22bc 23679 if (value > 0xfff)
c19d1205
ZW
23680 {
23681 as_bad_where (fixP->fx_file, fixP->fx_line,
23682 _("offset out of range"));
23683 break;
23684 }
23685 newval &= ~0xfff;
b99bd4ef 23686 }
c19d1205 23687 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 23688 {
c19d1205
ZW
23689 /* Writeback: 8-bit, +/- offset. */
23690 if (value >= 0)
23691 newval |= (1 << 9);
23692 else
23693 value = -value;
216d22bc 23694 if (value > 0xff)
c19d1205
ZW
23695 {
23696 as_bad_where (fixP->fx_file, fixP->fx_line,
23697 _("offset out of range"));
23698 break;
23699 }
23700 newval &= ~0xff;
b99bd4ef 23701 }
c19d1205 23702 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 23703 {
c19d1205 23704 /* T-instruction: positive 8-bit offset. */
216d22bc 23705 if (value < 0 || value > 0xff)
b99bd4ef 23706 {
c19d1205
ZW
23707 as_bad_where (fixP->fx_file, fixP->fx_line,
23708 _("offset out of range"));
23709 break;
b99bd4ef 23710 }
c19d1205
ZW
23711 newval &= ~0xff;
23712 newval |= value;
b99bd4ef
NC
23713 }
23714 else
b99bd4ef 23715 {
c19d1205
ZW
23716 /* Positive 12-bit or negative 8-bit offset. */
23717 int limit;
23718 if (value >= 0)
b99bd4ef 23719 {
c19d1205
ZW
23720 newval |= (1 << 23);
23721 limit = 0xfff;
23722 }
23723 else
23724 {
23725 value = -value;
23726 limit = 0xff;
23727 }
23728 if (value > limit)
23729 {
23730 as_bad_where (fixP->fx_file, fixP->fx_line,
23731 _("offset out of range"));
23732 break;
b99bd4ef 23733 }
c19d1205 23734 newval &= ~limit;
b99bd4ef 23735 }
b99bd4ef 23736
c19d1205
ZW
23737 newval |= value;
23738 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23739 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23740 break;
404ff6b5 23741
c19d1205
ZW
23742 case BFD_RELOC_ARM_SHIFT_IMM:
23743 newval = md_chars_to_number (buf, INSN_SIZE);
23744 if (((unsigned long) value) > 32
23745 || (value == 32
23746 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23747 {
23748 as_bad_where (fixP->fx_file, fixP->fx_line,
23749 _("shift expression is too large"));
23750 break;
23751 }
404ff6b5 23752
c19d1205
ZW
23753 if (value == 0)
23754 /* Shifts of zero must be done as lsl. */
23755 newval &= ~0x60;
23756 else if (value == 32)
23757 value = 0;
23758 newval &= 0xfffff07f;
23759 newval |= (value & 0x1f) << 7;
23760 md_number_to_chars (buf, newval, INSN_SIZE);
23761 break;
404ff6b5 23762
c19d1205 23763 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 23764 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 23765 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 23766 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
23767 /* We claim that this fixup has been processed here,
23768 even if in fact we generate an error because we do
23769 not have a reloc for it, so tc_gen_reloc will reject it. */
23770 fixP->fx_done = 1;
404ff6b5 23771
c19d1205
ZW
23772 if (fixP->fx_addsy
23773 && ! S_IS_DEFINED (fixP->fx_addsy))
23774 {
23775 as_bad_where (fixP->fx_file, fixP->fx_line,
23776 _("undefined symbol %s used as an immediate value"),
23777 S_GET_NAME (fixP->fx_addsy));
23778 break;
23779 }
404ff6b5 23780
c19d1205
ZW
23781 newval = md_chars_to_number (buf, THUMB_SIZE);
23782 newval <<= 16;
23783 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 23784
16805f35 23785 newimm = FAIL;
bada4342
JW
23786 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23787 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23788 Thumb2 modified immediate encoding (T2). */
23789 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 23790 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
23791 {
23792 newimm = encode_thumb32_immediate (value);
23793 if (newimm == (unsigned int) FAIL)
23794 newimm = thumb32_negate_data_op (&newval, value);
23795 }
bada4342 23796 if (newimm == (unsigned int) FAIL)
92e90b6e 23797 {
bada4342 23798 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 23799 {
bada4342
JW
23800 /* Turn add/sum into addw/subw. */
23801 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23802 newval = (newval & 0xfeffffff) | 0x02000000;
23803 /* No flat 12-bit imm encoding for addsw/subsw. */
23804 if ((newval & 0x00100000) == 0)
40f246e3 23805 {
bada4342
JW
23806 /* 12 bit immediate for addw/subw. */
23807 if (value < 0)
23808 {
23809 value = -value;
23810 newval ^= 0x00a00000;
23811 }
23812 if (value > 0xfff)
23813 newimm = (unsigned int) FAIL;
23814 else
23815 newimm = value;
23816 }
23817 }
23818 else
23819 {
23820 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23821 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23822 disassembling, MOV is preferred when there is no encoding
db7bf105 23823 overlap. */
bada4342 23824 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
23825 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
23826 but with the Rn field [19:16] set to 1111. */
23827 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
23828 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23829 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 23830 && value >= 0 && value <= 0xffff)
bada4342
JW
23831 {
23832 /* Toggle bit[25] to change encoding from T2 to T3. */
23833 newval ^= 1 << 25;
23834 /* Clear bits[19:16]. */
23835 newval &= 0xfff0ffff;
23836 /* Encoding high 4bits imm. Code below will encode the
23837 remaining low 12bits. */
23838 newval |= (value & 0x0000f000) << 4;
23839 newimm = value & 0x00000fff;
40f246e3 23840 }
e9f89963 23841 }
92e90b6e 23842 }
cc8a6dd0 23843
c19d1205 23844 if (newimm == (unsigned int)FAIL)
3631a3c8 23845 {
c19d1205
ZW
23846 as_bad_where (fixP->fx_file, fixP->fx_line,
23847 _("invalid constant (%lx) after fixup"),
23848 (unsigned long) value);
23849 break;
3631a3c8
NC
23850 }
23851
c19d1205
ZW
23852 newval |= (newimm & 0x800) << 15;
23853 newval |= (newimm & 0x700) << 4;
23854 newval |= (newimm & 0x0ff);
cc8a6dd0 23855
c19d1205
ZW
23856 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23857 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23858 break;
a737bd4d 23859
3eb17e6b 23860 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
23861 if (((unsigned long) value) > 0xffff)
23862 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 23863 _("invalid smc expression"));
2fc8bdac 23864 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23865 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23866 md_number_to_chars (buf, newval, INSN_SIZE);
23867 break;
a737bd4d 23868
90ec0d68
MGD
23869 case BFD_RELOC_ARM_HVC:
23870 if (((unsigned long) value) > 0xffff)
23871 as_bad_where (fixP->fx_file, fixP->fx_line,
23872 _("invalid hvc expression"));
23873 newval = md_chars_to_number (buf, INSN_SIZE);
23874 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23875 md_number_to_chars (buf, newval, INSN_SIZE);
23876 break;
23877
c19d1205 23878 case BFD_RELOC_ARM_SWI:
adbaf948 23879 if (fixP->tc_fix_data != 0)
c19d1205
ZW
23880 {
23881 if (((unsigned long) value) > 0xff)
23882 as_bad_where (fixP->fx_file, fixP->fx_line,
23883 _("invalid swi expression"));
2fc8bdac 23884 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
23885 newval |= value;
23886 md_number_to_chars (buf, newval, THUMB_SIZE);
23887 }
23888 else
23889 {
23890 if (((unsigned long) value) > 0x00ffffff)
23891 as_bad_where (fixP->fx_file, fixP->fx_line,
23892 _("invalid swi expression"));
2fc8bdac 23893 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23894 newval |= value;
23895 md_number_to_chars (buf, newval, INSN_SIZE);
23896 }
23897 break;
a737bd4d 23898
c19d1205
ZW
23899 case BFD_RELOC_ARM_MULTI:
23900 if (((unsigned long) value) > 0xffff)
23901 as_bad_where (fixP->fx_file, fixP->fx_line,
23902 _("invalid expression in load/store multiple"));
23903 newval = value | md_chars_to_number (buf, INSN_SIZE);
23904 md_number_to_chars (buf, newval, INSN_SIZE);
23905 break;
a737bd4d 23906
c19d1205 23907#ifdef OBJ_ELF
39b41c9c 23908 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
23909
23910 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23911 && fixP->fx_addsy
34e77a92 23912 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23913 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23914 && THUMB_IS_FUNC (fixP->fx_addsy))
23915 /* Flip the bl to blx. This is a simple flip
23916 bit here because we generate PCREL_CALL for
23917 unconditional bls. */
23918 {
23919 newval = md_chars_to_number (buf, INSN_SIZE);
23920 newval = newval | 0x10000000;
23921 md_number_to_chars (buf, newval, INSN_SIZE);
23922 temp = 1;
23923 fixP->fx_done = 1;
23924 }
39b41c9c
PB
23925 else
23926 temp = 3;
23927 goto arm_branch_common;
23928
23929 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
23930 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23931 && fixP->fx_addsy
34e77a92 23932 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23933 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23934 && THUMB_IS_FUNC (fixP->fx_addsy))
23935 {
23936 /* This would map to a bl<cond>, b<cond>,
23937 b<always> to a Thumb function. We
23938 need to force a relocation for this particular
23939 case. */
23940 newval = md_chars_to_number (buf, INSN_SIZE);
23941 fixP->fx_done = 0;
23942 }
1a0670f3 23943 /* Fall through. */
267bf995 23944
2fc8bdac 23945 case BFD_RELOC_ARM_PLT32:
c19d1205 23946#endif
39b41c9c
PB
23947 case BFD_RELOC_ARM_PCREL_BRANCH:
23948 temp = 3;
23949 goto arm_branch_common;
a737bd4d 23950
39b41c9c 23951 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 23952
39b41c9c 23953 temp = 1;
267bf995
RR
23954 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23955 && fixP->fx_addsy
34e77a92 23956 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23957 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23958 && ARM_IS_FUNC (fixP->fx_addsy))
23959 {
23960 /* Flip the blx to a bl and warn. */
23961 const char *name = S_GET_NAME (fixP->fx_addsy);
23962 newval = 0xeb000000;
23963 as_warn_where (fixP->fx_file, fixP->fx_line,
23964 _("blx to '%s' an ARM ISA state function changed to bl"),
23965 name);
23966 md_number_to_chars (buf, newval, INSN_SIZE);
23967 temp = 3;
23968 fixP->fx_done = 1;
23969 }
23970
23971#ifdef OBJ_ELF
23972 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 23973 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
23974#endif
23975
39b41c9c 23976 arm_branch_common:
c19d1205 23977 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
23978 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23979 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 23980 also be clear. */
39b41c9c 23981 if (value & temp)
c19d1205 23982 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
23983 _("misaligned branch destination"));
23984 if ((value & (offsetT)0xfe000000) != (offsetT)0
23985 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 23986 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23987
2fc8bdac 23988 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 23989 {
2fc8bdac
ZW
23990 newval = md_chars_to_number (buf, INSN_SIZE);
23991 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
23992 /* Set the H bit on BLX instructions. */
23993 if (temp == 1)
23994 {
23995 if (value & 2)
23996 newval |= 0x01000000;
23997 else
23998 newval &= ~0x01000000;
23999 }
2fc8bdac 24000 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 24001 }
c19d1205 24002 break;
a737bd4d 24003
25fe350b
MS
24004 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
24005 /* CBZ can only branch forward. */
a737bd4d 24006
738755b0 24007 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
24008 (which, strictly speaking, are prohibited) will be turned into
24009 no-ops.
738755b0
MS
24010
24011 FIXME: It may be better to remove the instruction completely and
24012 perform relaxation. */
24013 if (value == -2)
2fc8bdac
ZW
24014 {
24015 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 24016 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
24017 md_number_to_chars (buf, newval, THUMB_SIZE);
24018 }
738755b0
MS
24019 else
24020 {
24021 if (value & ~0x7e)
08f10d51 24022 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 24023
477330fc 24024 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
24025 {
24026 newval = md_chars_to_number (buf, THUMB_SIZE);
24027 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
24028 md_number_to_chars (buf, newval, THUMB_SIZE);
24029 }
24030 }
c19d1205 24031 break;
a737bd4d 24032
c19d1205 24033 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 24034 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 24035 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 24036
2fc8bdac
ZW
24037 if (fixP->fx_done || !seg->use_rela_p)
24038 {
24039 newval = md_chars_to_number (buf, THUMB_SIZE);
24040 newval |= (value & 0x1ff) >> 1;
24041 md_number_to_chars (buf, newval, THUMB_SIZE);
24042 }
c19d1205 24043 break;
a737bd4d 24044
c19d1205 24045 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 24046 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 24047 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 24048
2fc8bdac
ZW
24049 if (fixP->fx_done || !seg->use_rela_p)
24050 {
24051 newval = md_chars_to_number (buf, THUMB_SIZE);
24052 newval |= (value & 0xfff) >> 1;
24053 md_number_to_chars (buf, newval, THUMB_SIZE);
24054 }
c19d1205 24055 break;
a737bd4d 24056
c19d1205 24057 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
24058 if (fixP->fx_addsy
24059 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 24060 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
24061 && ARM_IS_FUNC (fixP->fx_addsy)
24062 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24063 {
24064 /* Force a relocation for a branch 20 bits wide. */
24065 fixP->fx_done = 0;
24066 }
08f10d51 24067 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
24068 as_bad_where (fixP->fx_file, fixP->fx_line,
24069 _("conditional branch out of range"));
404ff6b5 24070
2fc8bdac
ZW
24071 if (fixP->fx_done || !seg->use_rela_p)
24072 {
24073 offsetT newval2;
24074 addressT S, J1, J2, lo, hi;
404ff6b5 24075
2fc8bdac
ZW
24076 S = (value & 0x00100000) >> 20;
24077 J2 = (value & 0x00080000) >> 19;
24078 J1 = (value & 0x00040000) >> 18;
24079 hi = (value & 0x0003f000) >> 12;
24080 lo = (value & 0x00000ffe) >> 1;
6c43fab6 24081
2fc8bdac
ZW
24082 newval = md_chars_to_number (buf, THUMB_SIZE);
24083 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24084 newval |= (S << 10) | hi;
24085 newval2 |= (J1 << 13) | (J2 << 11) | lo;
24086 md_number_to_chars (buf, newval, THUMB_SIZE);
24087 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24088 }
c19d1205 24089 break;
6c43fab6 24090
c19d1205 24091 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
24092 /* If there is a blx from a thumb state function to
24093 another thumb function flip this to a bl and warn
24094 about it. */
24095
24096 if (fixP->fx_addsy
34e77a92 24097 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
24098 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24099 && THUMB_IS_FUNC (fixP->fx_addsy))
24100 {
24101 const char *name = S_GET_NAME (fixP->fx_addsy);
24102 as_warn_where (fixP->fx_file, fixP->fx_line,
24103 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
24104 name);
24105 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24106 newval = newval | 0x1000;
24107 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24108 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24109 fixP->fx_done = 1;
24110 }
24111
24112
24113 goto thumb_bl_common;
24114
c19d1205 24115 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
24116 /* A bl from Thumb state ISA to an internal ARM state function
24117 is converted to a blx. */
24118 if (fixP->fx_addsy
24119 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 24120 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
24121 && ARM_IS_FUNC (fixP->fx_addsy)
24122 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24123 {
24124 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24125 newval = newval & ~0x1000;
24126 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24127 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
24128 fixP->fx_done = 1;
24129 }
24130
24131 thumb_bl_common:
24132
2fc8bdac
ZW
24133 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24134 /* For a BLX instruction, make sure that the relocation is rounded up
24135 to a word boundary. This follows the semantics of the instruction
24136 which specifies that bit 1 of the target address will come from bit
24137 1 of the base address. */
d406f3e4
JB
24138 value = (value + 3) & ~ 3;
24139
24140#ifdef OBJ_ELF
24141 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
24142 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24143 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24144#endif
404ff6b5 24145
2b2f5df9
NC
24146 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
24147 {
fc289b0a 24148 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
24149 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24150 else if ((value & ~0x1ffffff)
24151 && ((value & ~0x1ffffff) != ~0x1ffffff))
24152 as_bad_where (fixP->fx_file, fixP->fx_line,
24153 _("Thumb2 branch out of range"));
24154 }
4a42ebbc
RR
24155
24156 if (fixP->fx_done || !seg->use_rela_p)
24157 encode_thumb2_b_bl_offset (buf, value);
24158
c19d1205 24159 break;
404ff6b5 24160
c19d1205 24161 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
24162 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
24163 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 24164
2fc8bdac 24165 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 24166 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 24167
2fc8bdac 24168 break;
a737bd4d 24169
2fc8bdac
ZW
24170 case BFD_RELOC_8:
24171 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 24172 *buf = value;
c19d1205 24173 break;
a737bd4d 24174
c19d1205 24175 case BFD_RELOC_16:
2fc8bdac 24176 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 24177 md_number_to_chars (buf, value, 2);
c19d1205 24178 break;
a737bd4d 24179
c19d1205 24180#ifdef OBJ_ELF
0855e32b
NS
24181 case BFD_RELOC_ARM_TLS_CALL:
24182 case BFD_RELOC_ARM_THM_TLS_CALL:
24183 case BFD_RELOC_ARM_TLS_DESCSEQ:
24184 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 24185 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
24186 case BFD_RELOC_ARM_TLS_GD32:
24187 case BFD_RELOC_ARM_TLS_LE32:
24188 case BFD_RELOC_ARM_TLS_IE32:
24189 case BFD_RELOC_ARM_TLS_LDM32:
24190 case BFD_RELOC_ARM_TLS_LDO32:
24191 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 24192 break;
6c43fab6 24193
5c5a4843
CL
24194 /* Same handling as above, but with the arm_fdpic guard. */
24195 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
24196 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
24197 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
24198 if (arm_fdpic)
24199 {
24200 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24201 }
24202 else
24203 {
24204 as_bad_where (fixP->fx_file, fixP->fx_line,
24205 _("Relocation supported only in FDPIC mode"));
24206 }
24207 break;
24208
c19d1205
ZW
24209 case BFD_RELOC_ARM_GOT32:
24210 case BFD_RELOC_ARM_GOTOFF:
c19d1205 24211 break;
b43420e6
NC
24212
24213 case BFD_RELOC_ARM_GOT_PREL:
24214 if (fixP->fx_done || !seg->use_rela_p)
477330fc 24215 md_number_to_chars (buf, value, 4);
b43420e6
NC
24216 break;
24217
9a6f4e97
NS
24218 case BFD_RELOC_ARM_TARGET2:
24219 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
24220 addend here for REL targets, because it won't be written out
24221 during reloc processing later. */
9a6f4e97
NS
24222 if (fixP->fx_done || !seg->use_rela_p)
24223 md_number_to_chars (buf, fixP->fx_offset, 4);
24224 break;
188fd7ae
CL
24225
24226 /* Relocations for FDPIC. */
24227 case BFD_RELOC_ARM_GOTFUNCDESC:
24228 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24229 case BFD_RELOC_ARM_FUNCDESC:
24230 if (arm_fdpic)
24231 {
24232 if (fixP->fx_done || !seg->use_rela_p)
24233 md_number_to_chars (buf, 0, 4);
24234 }
24235 else
24236 {
24237 as_bad_where (fixP->fx_file, fixP->fx_line,
24238 _("Relocation supported only in FDPIC mode"));
24239 }
24240 break;
c19d1205 24241#endif
6c43fab6 24242
c19d1205
ZW
24243 case BFD_RELOC_RVA:
24244 case BFD_RELOC_32:
24245 case BFD_RELOC_ARM_TARGET1:
24246 case BFD_RELOC_ARM_ROSEGREL32:
24247 case BFD_RELOC_ARM_SBREL32:
24248 case BFD_RELOC_32_PCREL:
f0927246
NC
24249#ifdef TE_PE
24250 case BFD_RELOC_32_SECREL:
24251#endif
2fc8bdac 24252 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
24253#ifdef TE_WINCE
24254 /* For WinCE we only do this for pcrel fixups. */
24255 if (fixP->fx_done || fixP->fx_pcrel)
24256#endif
24257 md_number_to_chars (buf, value, 4);
c19d1205 24258 break;
6c43fab6 24259
c19d1205
ZW
24260#ifdef OBJ_ELF
24261 case BFD_RELOC_ARM_PREL31:
2fc8bdac 24262 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
24263 {
24264 newval = md_chars_to_number (buf, 4) & 0x80000000;
24265 if ((value ^ (value >> 1)) & 0x40000000)
24266 {
24267 as_bad_where (fixP->fx_file, fixP->fx_line,
24268 _("rel31 relocation overflow"));
24269 }
24270 newval |= value & 0x7fffffff;
24271 md_number_to_chars (buf, newval, 4);
24272 }
24273 break;
c19d1205 24274#endif
a737bd4d 24275
c19d1205 24276 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 24277 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
9db2f6b4
RL
24278 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24279 newval = md_chars_to_number (buf, INSN_SIZE);
24280 else
24281 newval = get_thumb32_insn (buf);
24282 if ((newval & 0x0f200f00) == 0x0d000900)
24283 {
24284 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24285 has permitted values that are multiples of 2, in the range 0
24286 to 510. */
24287 if (value < -510 || value > 510 || (value & 1))
24288 as_bad_where (fixP->fx_file, fixP->fx_line,
24289 _("co-processor offset out of range"));
24290 }
24291 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
24292 as_bad_where (fixP->fx_file, fixP->fx_line,
24293 _("co-processor offset out of range"));
24294 cp_off_common:
26d97720 24295 sign = value > 0;
c19d1205
ZW
24296 if (value < 0)
24297 value = -value;
8f06b2d8
PB
24298 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24299 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24300 newval = md_chars_to_number (buf, INSN_SIZE);
24301 else
24302 newval = get_thumb32_insn (buf);
26d97720
NS
24303 if (value == 0)
24304 newval &= 0xffffff00;
24305 else
24306 {
24307 newval &= 0xff7fff00;
9db2f6b4
RL
24308 if ((newval & 0x0f200f00) == 0x0d000900)
24309 {
24310 /* This is a fp16 vstr/vldr.
24311
24312 It requires the immediate offset in the instruction is shifted
24313 left by 1 to be a half-word offset.
24314
24315 Here, left shift by 1 first, and later right shift by 2
24316 should get the right offset. */
24317 value <<= 1;
24318 }
26d97720
NS
24319 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24320 }
8f06b2d8
PB
24321 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24322 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24323 md_number_to_chars (buf, newval, INSN_SIZE);
24324 else
24325 put_thumb32_insn (buf, newval);
c19d1205 24326 break;
a737bd4d 24327
c19d1205 24328 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 24329 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
24330 if (value < -255 || value > 255)
24331 as_bad_where (fixP->fx_file, fixP->fx_line,
24332 _("co-processor offset out of range"));
df7849c5 24333 value *= 4;
c19d1205 24334 goto cp_off_common;
6c43fab6 24335
c19d1205
ZW
24336 case BFD_RELOC_ARM_THUMB_OFFSET:
24337 newval = md_chars_to_number (buf, THUMB_SIZE);
24338 /* Exactly what ranges, and where the offset is inserted depends
24339 on the type of instruction, we can establish this from the
24340 top 4 bits. */
24341 switch (newval >> 12)
24342 {
24343 case 4: /* PC load. */
24344 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24345 forced to zero for these loads; md_pcrel_from has already
24346 compensated for this. */
24347 if (value & 3)
24348 as_bad_where (fixP->fx_file, fixP->fx_line,
24349 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
24350 (((unsigned long) fixP->fx_frag->fr_address
24351 + (unsigned long) fixP->fx_where) & ~3)
24352 + (unsigned long) value);
a737bd4d 24353
c19d1205
ZW
24354 if (value & ~0x3fc)
24355 as_bad_where (fixP->fx_file, fixP->fx_line,
24356 _("invalid offset, value too big (0x%08lX)"),
24357 (long) value);
a737bd4d 24358
c19d1205
ZW
24359 newval |= value >> 2;
24360 break;
a737bd4d 24361
c19d1205
ZW
24362 case 9: /* SP load/store. */
24363 if (value & ~0x3fc)
24364 as_bad_where (fixP->fx_file, fixP->fx_line,
24365 _("invalid offset, value too big (0x%08lX)"),
24366 (long) value);
24367 newval |= value >> 2;
24368 break;
6c43fab6 24369
c19d1205
ZW
24370 case 6: /* Word load/store. */
24371 if (value & ~0x7c)
24372 as_bad_where (fixP->fx_file, fixP->fx_line,
24373 _("invalid offset, value too big (0x%08lX)"),
24374 (long) value);
24375 newval |= value << 4; /* 6 - 2. */
24376 break;
a737bd4d 24377
c19d1205
ZW
24378 case 7: /* Byte load/store. */
24379 if (value & ~0x1f)
24380 as_bad_where (fixP->fx_file, fixP->fx_line,
24381 _("invalid offset, value too big (0x%08lX)"),
24382 (long) value);
24383 newval |= value << 6;
24384 break;
a737bd4d 24385
c19d1205
ZW
24386 case 8: /* Halfword load/store. */
24387 if (value & ~0x3e)
24388 as_bad_where (fixP->fx_file, fixP->fx_line,
24389 _("invalid offset, value too big (0x%08lX)"),
24390 (long) value);
24391 newval |= value << 5; /* 6 - 1. */
24392 break;
a737bd4d 24393
c19d1205
ZW
24394 default:
24395 as_bad_where (fixP->fx_file, fixP->fx_line,
24396 "Unable to process relocation for thumb opcode: %lx",
24397 (unsigned long) newval);
24398 break;
24399 }
24400 md_number_to_chars (buf, newval, THUMB_SIZE);
24401 break;
a737bd4d 24402
c19d1205
ZW
24403 case BFD_RELOC_ARM_THUMB_ADD:
24404 /* This is a complicated relocation, since we use it for all of
24405 the following immediate relocations:
a737bd4d 24406
c19d1205
ZW
24407 3bit ADD/SUB
24408 8bit ADD/SUB
24409 9bit ADD/SUB SP word-aligned
24410 10bit ADD PC/SP word-aligned
a737bd4d 24411
c19d1205
ZW
24412 The type of instruction being processed is encoded in the
24413 instruction field:
a737bd4d 24414
c19d1205
ZW
24415 0x8000 SUB
24416 0x00F0 Rd
24417 0x000F Rs
24418 */
24419 newval = md_chars_to_number (buf, THUMB_SIZE);
24420 {
24421 int rd = (newval >> 4) & 0xf;
24422 int rs = newval & 0xf;
24423 int subtract = !!(newval & 0x8000);
a737bd4d 24424
c19d1205
ZW
24425 /* Check for HI regs, only very restricted cases allowed:
24426 Adjusting SP, and using PC or SP to get an address. */
24427 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24428 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24429 as_bad_where (fixP->fx_file, fixP->fx_line,
24430 _("invalid Hi register with immediate"));
a737bd4d 24431
c19d1205
ZW
24432 /* If value is negative, choose the opposite instruction. */
24433 if (value < 0)
24434 {
24435 value = -value;
24436 subtract = !subtract;
24437 if (value < 0)
24438 as_bad_where (fixP->fx_file, fixP->fx_line,
24439 _("immediate value out of range"));
24440 }
a737bd4d 24441
c19d1205
ZW
24442 if (rd == REG_SP)
24443 {
75c11999 24444 if (value & ~0x1fc)
c19d1205
ZW
24445 as_bad_where (fixP->fx_file, fixP->fx_line,
24446 _("invalid immediate for stack address calculation"));
24447 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24448 newval |= value >> 2;
24449 }
24450 else if (rs == REG_PC || rs == REG_SP)
24451 {
c12d2c9d
NC
24452 /* PR gas/18541. If the addition is for a defined symbol
24453 within range of an ADR instruction then accept it. */
24454 if (subtract
24455 && value == 4
24456 && fixP->fx_addsy != NULL)
24457 {
24458 subtract = 0;
24459
24460 if (! S_IS_DEFINED (fixP->fx_addsy)
24461 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24462 || S_IS_WEAK (fixP->fx_addsy))
24463 {
24464 as_bad_where (fixP->fx_file, fixP->fx_line,
24465 _("address calculation needs a strongly defined nearby symbol"));
24466 }
24467 else
24468 {
24469 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24470
24471 /* Round up to the next 4-byte boundary. */
24472 if (v & 3)
24473 v = (v + 3) & ~ 3;
24474 else
24475 v += 4;
24476 v = S_GET_VALUE (fixP->fx_addsy) - v;
24477
24478 if (v & ~0x3fc)
24479 {
24480 as_bad_where (fixP->fx_file, fixP->fx_line,
24481 _("symbol too far away"));
24482 }
24483 else
24484 {
24485 fixP->fx_done = 1;
24486 value = v;
24487 }
24488 }
24489 }
24490
c19d1205
ZW
24491 if (subtract || value & ~0x3fc)
24492 as_bad_where (fixP->fx_file, fixP->fx_line,
24493 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 24494 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
24495 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24496 newval |= rd << 8;
24497 newval |= value >> 2;
24498 }
24499 else if (rs == rd)
24500 {
24501 if (value & ~0xff)
24502 as_bad_where (fixP->fx_file, fixP->fx_line,
24503 _("immediate value out of range"));
24504 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24505 newval |= (rd << 8) | value;
24506 }
24507 else
24508 {
24509 if (value & ~0x7)
24510 as_bad_where (fixP->fx_file, fixP->fx_line,
24511 _("immediate value out of range"));
24512 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24513 newval |= rd | (rs << 3) | (value << 6);
24514 }
24515 }
24516 md_number_to_chars (buf, newval, THUMB_SIZE);
24517 break;
a737bd4d 24518
c19d1205
ZW
24519 case BFD_RELOC_ARM_THUMB_IMM:
24520 newval = md_chars_to_number (buf, THUMB_SIZE);
24521 if (value < 0 || value > 255)
24522 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 24523 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
24524 (long) value);
24525 newval |= value;
24526 md_number_to_chars (buf, newval, THUMB_SIZE);
24527 break;
a737bd4d 24528
c19d1205
ZW
24529 case BFD_RELOC_ARM_THUMB_SHIFT:
24530 /* 5bit shift value (0..32). LSL cannot take 32. */
24531 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24532 temp = newval & 0xf800;
24533 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24534 as_bad_where (fixP->fx_file, fixP->fx_line,
24535 _("invalid shift value: %ld"), (long) value);
24536 /* Shifts of zero must be encoded as LSL. */
24537 if (value == 0)
24538 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24539 /* Shifts of 32 are encoded as zero. */
24540 else if (value == 32)
24541 value = 0;
24542 newval |= value << 6;
24543 md_number_to_chars (buf, newval, THUMB_SIZE);
24544 break;
a737bd4d 24545
c19d1205
ZW
24546 case BFD_RELOC_VTABLE_INHERIT:
24547 case BFD_RELOC_VTABLE_ENTRY:
24548 fixP->fx_done = 0;
24549 return;
6c43fab6 24550
b6895b4f
PB
24551 case BFD_RELOC_ARM_MOVW:
24552 case BFD_RELOC_ARM_MOVT:
24553 case BFD_RELOC_ARM_THUMB_MOVW:
24554 case BFD_RELOC_ARM_THUMB_MOVT:
24555 if (fixP->fx_done || !seg->use_rela_p)
24556 {
24557 /* REL format relocations are limited to a 16-bit addend. */
24558 if (!fixP->fx_done)
24559 {
39623e12 24560 if (value < -0x8000 || value > 0x7fff)
b6895b4f 24561 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 24562 _("offset out of range"));
b6895b4f
PB
24563 }
24564 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24565 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24566 {
24567 value >>= 16;
24568 }
24569
24570 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24571 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24572 {
24573 newval = get_thumb32_insn (buf);
24574 newval &= 0xfbf08f00;
24575 newval |= (value & 0xf000) << 4;
24576 newval |= (value & 0x0800) << 15;
24577 newval |= (value & 0x0700) << 4;
24578 newval |= (value & 0x00ff);
24579 put_thumb32_insn (buf, newval);
24580 }
24581 else
24582 {
24583 newval = md_chars_to_number (buf, 4);
24584 newval &= 0xfff0f000;
24585 newval |= value & 0x0fff;
24586 newval |= (value & 0xf000) << 4;
24587 md_number_to_chars (buf, newval, 4);
24588 }
24589 }
24590 return;
24591
72d98d16
MG
24592 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24593 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24594 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24595 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24596 gas_assert (!fixP->fx_done);
24597 {
24598 bfd_vma insn;
24599 bfd_boolean is_mov;
24600 bfd_vma encoded_addend = value;
24601
24602 /* Check that addend can be encoded in instruction. */
24603 if (!seg->use_rela_p && (value < 0 || value > 255))
24604 as_bad_where (fixP->fx_file, fixP->fx_line,
24605 _("the offset 0x%08lX is not representable"),
24606 (unsigned long) encoded_addend);
24607
24608 /* Extract the instruction. */
24609 insn = md_chars_to_number (buf, THUMB_SIZE);
24610 is_mov = (insn & 0xf800) == 0x2000;
24611
24612 /* Encode insn. */
24613 if (is_mov)
24614 {
24615 if (!seg->use_rela_p)
24616 insn |= encoded_addend;
24617 }
24618 else
24619 {
24620 int rd, rs;
24621
24622 /* Extract the instruction. */
24623 /* Encoding is the following
24624 0x8000 SUB
24625 0x00F0 Rd
24626 0x000F Rs
24627 */
24628 /* The following conditions must be true :
24629 - ADD
24630 - Rd == Rs
24631 - Rd <= 7
24632 */
24633 rd = (insn >> 4) & 0xf;
24634 rs = insn & 0xf;
24635 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24636 as_bad_where (fixP->fx_file, fixP->fx_line,
24637 _("Unable to process relocation for thumb opcode: %lx"),
24638 (unsigned long) insn);
24639
24640 /* Encode as ADD immediate8 thumb 1 code. */
24641 insn = 0x3000 | (rd << 8);
24642
24643 /* Place the encoded addend into the first 8 bits of the
24644 instruction. */
24645 if (!seg->use_rela_p)
24646 insn |= encoded_addend;
24647 }
24648
24649 /* Update the instruction. */
24650 md_number_to_chars (buf, insn, THUMB_SIZE);
24651 }
24652 break;
24653
4962c51a
MS
24654 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24655 case BFD_RELOC_ARM_ALU_PC_G0:
24656 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24657 case BFD_RELOC_ARM_ALU_PC_G1:
24658 case BFD_RELOC_ARM_ALU_PC_G2:
24659 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24660 case BFD_RELOC_ARM_ALU_SB_G0:
24661 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24662 case BFD_RELOC_ARM_ALU_SB_G1:
24663 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 24664 gas_assert (!fixP->fx_done);
4962c51a
MS
24665 if (!seg->use_rela_p)
24666 {
477330fc
RM
24667 bfd_vma insn;
24668 bfd_vma encoded_addend;
3ca4a8ec 24669 bfd_vma addend_abs = llabs (value);
477330fc
RM
24670
24671 /* Check that the absolute value of the addend can be
24672 expressed as an 8-bit constant plus a rotation. */
24673 encoded_addend = encode_arm_immediate (addend_abs);
24674 if (encoded_addend == (unsigned int) FAIL)
4962c51a 24675 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24676 _("the offset 0x%08lX is not representable"),
24677 (unsigned long) addend_abs);
24678
24679 /* Extract the instruction. */
24680 insn = md_chars_to_number (buf, INSN_SIZE);
24681
24682 /* If the addend is positive, use an ADD instruction.
24683 Otherwise use a SUB. Take care not to destroy the S bit. */
24684 insn &= 0xff1fffff;
24685 if (value < 0)
24686 insn |= 1 << 22;
24687 else
24688 insn |= 1 << 23;
24689
24690 /* Place the encoded addend into the first 12 bits of the
24691 instruction. */
24692 insn &= 0xfffff000;
24693 insn |= encoded_addend;
24694
24695 /* Update the instruction. */
24696 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
24697 }
24698 break;
24699
24700 case BFD_RELOC_ARM_LDR_PC_G0:
24701 case BFD_RELOC_ARM_LDR_PC_G1:
24702 case BFD_RELOC_ARM_LDR_PC_G2:
24703 case BFD_RELOC_ARM_LDR_SB_G0:
24704 case BFD_RELOC_ARM_LDR_SB_G1:
24705 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 24706 gas_assert (!fixP->fx_done);
4962c51a 24707 if (!seg->use_rela_p)
477330fc
RM
24708 {
24709 bfd_vma insn;
3ca4a8ec 24710 bfd_vma addend_abs = llabs (value);
4962c51a 24711
477330fc
RM
24712 /* Check that the absolute value of the addend can be
24713 encoded in 12 bits. */
24714 if (addend_abs >= 0x1000)
4962c51a 24715 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24716 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24717 (unsigned long) addend_abs);
24718
24719 /* Extract the instruction. */
24720 insn = md_chars_to_number (buf, INSN_SIZE);
24721
24722 /* If the addend is negative, clear bit 23 of the instruction.
24723 Otherwise set it. */
24724 if (value < 0)
24725 insn &= ~(1 << 23);
24726 else
24727 insn |= 1 << 23;
24728
24729 /* Place the absolute value of the addend into the first 12 bits
24730 of the instruction. */
24731 insn &= 0xfffff000;
24732 insn |= addend_abs;
24733
24734 /* Update the instruction. */
24735 md_number_to_chars (buf, insn, INSN_SIZE);
24736 }
4962c51a
MS
24737 break;
24738
24739 case BFD_RELOC_ARM_LDRS_PC_G0:
24740 case BFD_RELOC_ARM_LDRS_PC_G1:
24741 case BFD_RELOC_ARM_LDRS_PC_G2:
24742 case BFD_RELOC_ARM_LDRS_SB_G0:
24743 case BFD_RELOC_ARM_LDRS_SB_G1:
24744 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 24745 gas_assert (!fixP->fx_done);
4962c51a 24746 if (!seg->use_rela_p)
477330fc
RM
24747 {
24748 bfd_vma insn;
3ca4a8ec 24749 bfd_vma addend_abs = llabs (value);
4962c51a 24750
477330fc
RM
24751 /* Check that the absolute value of the addend can be
24752 encoded in 8 bits. */
24753 if (addend_abs >= 0x100)
4962c51a 24754 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24755 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24756 (unsigned long) addend_abs);
24757
24758 /* Extract the instruction. */
24759 insn = md_chars_to_number (buf, INSN_SIZE);
24760
24761 /* If the addend is negative, clear bit 23 of the instruction.
24762 Otherwise set it. */
24763 if (value < 0)
24764 insn &= ~(1 << 23);
24765 else
24766 insn |= 1 << 23;
24767
24768 /* Place the first four bits of the absolute value of the addend
24769 into the first 4 bits of the instruction, and the remaining
24770 four into bits 8 .. 11. */
24771 insn &= 0xfffff0f0;
24772 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24773
24774 /* Update the instruction. */
24775 md_number_to_chars (buf, insn, INSN_SIZE);
24776 }
4962c51a
MS
24777 break;
24778
24779 case BFD_RELOC_ARM_LDC_PC_G0:
24780 case BFD_RELOC_ARM_LDC_PC_G1:
24781 case BFD_RELOC_ARM_LDC_PC_G2:
24782 case BFD_RELOC_ARM_LDC_SB_G0:
24783 case BFD_RELOC_ARM_LDC_SB_G1:
24784 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 24785 gas_assert (!fixP->fx_done);
4962c51a 24786 if (!seg->use_rela_p)
477330fc
RM
24787 {
24788 bfd_vma insn;
3ca4a8ec 24789 bfd_vma addend_abs = llabs (value);
4962c51a 24790
477330fc
RM
24791 /* Check that the absolute value of the addend is a multiple of
24792 four and, when divided by four, fits in 8 bits. */
24793 if (addend_abs & 0x3)
4962c51a 24794 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24795 _("bad offset 0x%08lX (must be word-aligned)"),
24796 (unsigned long) addend_abs);
4962c51a 24797
477330fc 24798 if ((addend_abs >> 2) > 0xff)
4962c51a 24799 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24800 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24801 (unsigned long) addend_abs);
24802
24803 /* Extract the instruction. */
24804 insn = md_chars_to_number (buf, INSN_SIZE);
24805
24806 /* If the addend is negative, clear bit 23 of the instruction.
24807 Otherwise set it. */
24808 if (value < 0)
24809 insn &= ~(1 << 23);
24810 else
24811 insn |= 1 << 23;
24812
24813 /* Place the addend (divided by four) into the first eight
24814 bits of the instruction. */
24815 insn &= 0xfffffff0;
24816 insn |= addend_abs >> 2;
24817
24818 /* Update the instruction. */
24819 md_number_to_chars (buf, insn, INSN_SIZE);
24820 }
4962c51a
MS
24821 break;
24822
e12437dc
AV
24823 case BFD_RELOC_THUMB_PCREL_BRANCH5:
24824 if (fixP->fx_addsy
24825 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24826 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24827 && ARM_IS_FUNC (fixP->fx_addsy)
24828 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24829 {
24830 /* Force a relocation for a branch 5 bits wide. */
24831 fixP->fx_done = 0;
24832 }
24833 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
24834 as_bad_where (fixP->fx_file, fixP->fx_line,
24835 BAD_BRANCH_OFF);
24836
24837 if (fixP->fx_done || !seg->use_rela_p)
24838 {
24839 addressT boff = value >> 1;
24840
24841 newval = md_chars_to_number (buf, THUMB_SIZE);
24842 newval |= (boff << 7);
24843 md_number_to_chars (buf, newval, THUMB_SIZE);
24844 }
24845 break;
24846
e5d6e09e
AV
24847 case BFD_RELOC_ARM_THUMB_BF17:
24848 if (fixP->fx_addsy
24849 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24850 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24851 && ARM_IS_FUNC (fixP->fx_addsy)
24852 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24853 {
24854 /* Force a relocation for a branch 17 bits wide. */
24855 fixP->fx_done = 0;
24856 }
24857
24858 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
24859 as_bad_where (fixP->fx_file, fixP->fx_line,
24860 BAD_BRANCH_OFF);
24861
24862 if (fixP->fx_done || !seg->use_rela_p)
24863 {
24864 offsetT newval2;
24865 addressT immA, immB, immC;
24866
24867 immA = (value & 0x0001f000) >> 12;
24868 immB = (value & 0x00000ffc) >> 2;
24869 immC = (value & 0x00000002) >> 1;
24870
24871 newval = md_chars_to_number (buf, THUMB_SIZE);
24872 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24873 newval |= immA;
24874 newval2 |= (immC << 11) | (immB << 1);
24875 md_number_to_chars (buf, newval, THUMB_SIZE);
24876 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24877 }
24878 break;
24879
1caf72a5
AV
24880 case BFD_RELOC_ARM_THUMB_BF19:
24881 if (fixP->fx_addsy
24882 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24883 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24884 && ARM_IS_FUNC (fixP->fx_addsy)
24885 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24886 {
24887 /* Force a relocation for a branch 19 bits wide. */
24888 fixP->fx_done = 0;
24889 }
24890
24891 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
24892 as_bad_where (fixP->fx_file, fixP->fx_line,
24893 BAD_BRANCH_OFF);
24894
24895 if (fixP->fx_done || !seg->use_rela_p)
24896 {
24897 offsetT newval2;
24898 addressT immA, immB, immC;
24899
24900 immA = (value & 0x0007f000) >> 12;
24901 immB = (value & 0x00000ffc) >> 2;
24902 immC = (value & 0x00000002) >> 1;
24903
24904 newval = md_chars_to_number (buf, THUMB_SIZE);
24905 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24906 newval |= immA;
24907 newval2 |= (immC << 11) | (immB << 1);
24908 md_number_to_chars (buf, newval, THUMB_SIZE);
24909 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24910 }
24911 break;
24912
1889da70
AV
24913 case BFD_RELOC_ARM_THUMB_BF13:
24914 if (fixP->fx_addsy
24915 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24916 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24917 && ARM_IS_FUNC (fixP->fx_addsy)
24918 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24919 {
24920 /* Force a relocation for a branch 13 bits wide. */
24921 fixP->fx_done = 0;
24922 }
24923
24924 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
24925 as_bad_where (fixP->fx_file, fixP->fx_line,
24926 BAD_BRANCH_OFF);
24927
24928 if (fixP->fx_done || !seg->use_rela_p)
24929 {
24930 offsetT newval2;
24931 addressT immA, immB, immC;
24932
24933 immA = (value & 0x00001000) >> 12;
24934 immB = (value & 0x00000ffc) >> 2;
24935 immC = (value & 0x00000002) >> 1;
24936
24937 newval = md_chars_to_number (buf, THUMB_SIZE);
24938 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24939 newval |= immA;
24940 newval2 |= (immC << 11) | (immB << 1);
24941 md_number_to_chars (buf, newval, THUMB_SIZE);
24942 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24943 }
24944 break;
24945
845b51d6
PB
24946 case BFD_RELOC_ARM_V4BX:
24947 /* This will need to go in the object file. */
24948 fixP->fx_done = 0;
24949 break;
24950
c19d1205
ZW
24951 case BFD_RELOC_UNUSED:
24952 default:
24953 as_bad_where (fixP->fx_file, fixP->fx_line,
24954 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24955 }
6c43fab6
RE
24956}
24957
c19d1205
ZW
24958/* Translate internal representation of relocation info to BFD target
24959 format. */
a737bd4d 24960
c19d1205 24961arelent *
00a97672 24962tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 24963{
c19d1205
ZW
24964 arelent * reloc;
24965 bfd_reloc_code_real_type code;
a737bd4d 24966
325801bd 24967 reloc = XNEW (arelent);
a737bd4d 24968
325801bd 24969 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
24970 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24971 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 24972
2fc8bdac 24973 if (fixp->fx_pcrel)
00a97672
RS
24974 {
24975 if (section->use_rela_p)
24976 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24977 else
24978 fixp->fx_offset = reloc->address;
24979 }
c19d1205 24980 reloc->addend = fixp->fx_offset;
a737bd4d 24981
c19d1205 24982 switch (fixp->fx_r_type)
a737bd4d 24983 {
c19d1205
ZW
24984 case BFD_RELOC_8:
24985 if (fixp->fx_pcrel)
24986 {
24987 code = BFD_RELOC_8_PCREL;
24988 break;
24989 }
1a0670f3 24990 /* Fall through. */
a737bd4d 24991
c19d1205
ZW
24992 case BFD_RELOC_16:
24993 if (fixp->fx_pcrel)
24994 {
24995 code = BFD_RELOC_16_PCREL;
24996 break;
24997 }
1a0670f3 24998 /* Fall through. */
6c43fab6 24999
c19d1205
ZW
25000 case BFD_RELOC_32:
25001 if (fixp->fx_pcrel)
25002 {
25003 code = BFD_RELOC_32_PCREL;
25004 break;
25005 }
1a0670f3 25006 /* Fall through. */
a737bd4d 25007
b6895b4f
PB
25008 case BFD_RELOC_ARM_MOVW:
25009 if (fixp->fx_pcrel)
25010 {
25011 code = BFD_RELOC_ARM_MOVW_PCREL;
25012 break;
25013 }
1a0670f3 25014 /* Fall through. */
b6895b4f
PB
25015
25016 case BFD_RELOC_ARM_MOVT:
25017 if (fixp->fx_pcrel)
25018 {
25019 code = BFD_RELOC_ARM_MOVT_PCREL;
25020 break;
25021 }
1a0670f3 25022 /* Fall through. */
b6895b4f
PB
25023
25024 case BFD_RELOC_ARM_THUMB_MOVW:
25025 if (fixp->fx_pcrel)
25026 {
25027 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
25028 break;
25029 }
1a0670f3 25030 /* Fall through. */
b6895b4f
PB
25031
25032 case BFD_RELOC_ARM_THUMB_MOVT:
25033 if (fixp->fx_pcrel)
25034 {
25035 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
25036 break;
25037 }
1a0670f3 25038 /* Fall through. */
b6895b4f 25039
c19d1205
ZW
25040 case BFD_RELOC_NONE:
25041 case BFD_RELOC_ARM_PCREL_BRANCH:
25042 case BFD_RELOC_ARM_PCREL_BLX:
25043 case BFD_RELOC_RVA:
25044 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25045 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25046 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25047 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25048 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25049 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
25050 case BFD_RELOC_VTABLE_ENTRY:
25051 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
25052#ifdef TE_PE
25053 case BFD_RELOC_32_SECREL:
25054#endif
c19d1205
ZW
25055 code = fixp->fx_r_type;
25056 break;
a737bd4d 25057
00adf2d4
JB
25058 case BFD_RELOC_THUMB_PCREL_BLX:
25059#ifdef OBJ_ELF
25060 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
25061 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
25062 else
25063#endif
25064 code = BFD_RELOC_THUMB_PCREL_BLX;
25065 break;
25066
c19d1205
ZW
25067 case BFD_RELOC_ARM_LITERAL:
25068 case BFD_RELOC_ARM_HWLITERAL:
25069 /* If this is called then the a literal has
25070 been referenced across a section boundary. */
25071 as_bad_where (fixp->fx_file, fixp->fx_line,
25072 _("literal referenced across section boundary"));
25073 return NULL;
a737bd4d 25074
c19d1205 25075#ifdef OBJ_ELF
0855e32b
NS
25076 case BFD_RELOC_ARM_TLS_CALL:
25077 case BFD_RELOC_ARM_THM_TLS_CALL:
25078 case BFD_RELOC_ARM_TLS_DESCSEQ:
25079 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
25080 case BFD_RELOC_ARM_GOT32:
25081 case BFD_RELOC_ARM_GOTOFF:
b43420e6 25082 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
25083 case BFD_RELOC_ARM_PLT32:
25084 case BFD_RELOC_ARM_TARGET1:
25085 case BFD_RELOC_ARM_ROSEGREL32:
25086 case BFD_RELOC_ARM_SBREL32:
25087 case BFD_RELOC_ARM_PREL31:
25088 case BFD_RELOC_ARM_TARGET2:
c19d1205 25089 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
25090 case BFD_RELOC_ARM_PCREL_CALL:
25091 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
25092 case BFD_RELOC_ARM_ALU_PC_G0_NC:
25093 case BFD_RELOC_ARM_ALU_PC_G0:
25094 case BFD_RELOC_ARM_ALU_PC_G1_NC:
25095 case BFD_RELOC_ARM_ALU_PC_G1:
25096 case BFD_RELOC_ARM_ALU_PC_G2:
25097 case BFD_RELOC_ARM_LDR_PC_G0:
25098 case BFD_RELOC_ARM_LDR_PC_G1:
25099 case BFD_RELOC_ARM_LDR_PC_G2:
25100 case BFD_RELOC_ARM_LDRS_PC_G0:
25101 case BFD_RELOC_ARM_LDRS_PC_G1:
25102 case BFD_RELOC_ARM_LDRS_PC_G2:
25103 case BFD_RELOC_ARM_LDC_PC_G0:
25104 case BFD_RELOC_ARM_LDC_PC_G1:
25105 case BFD_RELOC_ARM_LDC_PC_G2:
25106 case BFD_RELOC_ARM_ALU_SB_G0_NC:
25107 case BFD_RELOC_ARM_ALU_SB_G0:
25108 case BFD_RELOC_ARM_ALU_SB_G1_NC:
25109 case BFD_RELOC_ARM_ALU_SB_G1:
25110 case BFD_RELOC_ARM_ALU_SB_G2:
25111 case BFD_RELOC_ARM_LDR_SB_G0:
25112 case BFD_RELOC_ARM_LDR_SB_G1:
25113 case BFD_RELOC_ARM_LDR_SB_G2:
25114 case BFD_RELOC_ARM_LDRS_SB_G0:
25115 case BFD_RELOC_ARM_LDRS_SB_G1:
25116 case BFD_RELOC_ARM_LDRS_SB_G2:
25117 case BFD_RELOC_ARM_LDC_SB_G0:
25118 case BFD_RELOC_ARM_LDC_SB_G1:
25119 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 25120 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
25121 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
25122 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
25123 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
25124 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
25125 case BFD_RELOC_ARM_GOTFUNCDESC:
25126 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
25127 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 25128 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 25129 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 25130 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
25131 code = fixp->fx_r_type;
25132 break;
a737bd4d 25133
0855e32b 25134 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 25135 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 25136 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 25137 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 25138 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 25139 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 25140 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 25141 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
25142 /* BFD will include the symbol's address in the addend.
25143 But we don't want that, so subtract it out again here. */
25144 if (!S_IS_COMMON (fixp->fx_addsy))
25145 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
25146 code = fixp->fx_r_type;
25147 break;
25148#endif
a737bd4d 25149
c19d1205
ZW
25150 case BFD_RELOC_ARM_IMMEDIATE:
25151 as_bad_where (fixp->fx_file, fixp->fx_line,
25152 _("internal relocation (type: IMMEDIATE) not fixed up"));
25153 return NULL;
a737bd4d 25154
c19d1205
ZW
25155 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
25156 as_bad_where (fixp->fx_file, fixp->fx_line,
25157 _("ADRL used for a symbol not defined in the same file"));
25158 return NULL;
a737bd4d 25159
e12437dc
AV
25160 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25161 as_bad_where (fixp->fx_file, fixp->fx_line,
25162 _("%s used for a symbol not defined in the same file"),
25163 bfd_get_reloc_code_name (fixp->fx_r_type));
25164 return NULL;
25165
c19d1205 25166 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
25167 if (section->use_rela_p)
25168 {
25169 code = fixp->fx_r_type;
25170 break;
25171 }
25172
c19d1205
ZW
25173 if (fixp->fx_addsy != NULL
25174 && !S_IS_DEFINED (fixp->fx_addsy)
25175 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 25176 {
c19d1205
ZW
25177 as_bad_where (fixp->fx_file, fixp->fx_line,
25178 _("undefined local label `%s'"),
25179 S_GET_NAME (fixp->fx_addsy));
25180 return NULL;
a737bd4d
NC
25181 }
25182
c19d1205
ZW
25183 as_bad_where (fixp->fx_file, fixp->fx_line,
25184 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
25185 return NULL;
a737bd4d 25186
c19d1205
ZW
25187 default:
25188 {
e0471c16 25189 const char * type;
6c43fab6 25190
c19d1205
ZW
25191 switch (fixp->fx_r_type)
25192 {
25193 case BFD_RELOC_NONE: type = "NONE"; break;
25194 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
25195 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 25196 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
25197 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
25198 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
25199 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 25200 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 25201 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
25202 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
25203 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
25204 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
25205 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
25206 default: type = _("<unknown>"); break;
25207 }
25208 as_bad_where (fixp->fx_file, fixp->fx_line,
25209 _("cannot represent %s relocation in this object file format"),
25210 type);
25211 return NULL;
25212 }
a737bd4d 25213 }
6c43fab6 25214
c19d1205
ZW
25215#ifdef OBJ_ELF
25216 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
25217 && GOT_symbol
25218 && fixp->fx_addsy == GOT_symbol)
25219 {
25220 code = BFD_RELOC_ARM_GOTPC;
25221 reloc->addend = fixp->fx_offset = reloc->address;
25222 }
25223#endif
6c43fab6 25224
c19d1205 25225 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 25226
c19d1205
ZW
25227 if (reloc->howto == NULL)
25228 {
25229 as_bad_where (fixp->fx_file, fixp->fx_line,
25230 _("cannot represent %s relocation in this object file format"),
25231 bfd_get_reloc_code_name (code));
25232 return NULL;
25233 }
6c43fab6 25234
c19d1205
ZW
25235 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
25236 vtable entry to be used in the relocation's section offset. */
25237 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
25238 reloc->address = fixp->fx_offset;
6c43fab6 25239
c19d1205 25240 return reloc;
6c43fab6
RE
25241}
25242
c19d1205 25243/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 25244
c19d1205
ZW
25245void
25246cons_fix_new_arm (fragS * frag,
25247 int where,
25248 int size,
62ebcb5c
AM
25249 expressionS * exp,
25250 bfd_reloc_code_real_type reloc)
6c43fab6 25251{
c19d1205 25252 int pcrel = 0;
6c43fab6 25253
c19d1205
ZW
25254 /* Pick a reloc.
25255 FIXME: @@ Should look at CPU word size. */
25256 switch (size)
25257 {
25258 case 1:
62ebcb5c 25259 reloc = BFD_RELOC_8;
c19d1205
ZW
25260 break;
25261 case 2:
62ebcb5c 25262 reloc = BFD_RELOC_16;
c19d1205
ZW
25263 break;
25264 case 4:
25265 default:
62ebcb5c 25266 reloc = BFD_RELOC_32;
c19d1205
ZW
25267 break;
25268 case 8:
62ebcb5c 25269 reloc = BFD_RELOC_64;
c19d1205
ZW
25270 break;
25271 }
6c43fab6 25272
f0927246
NC
25273#ifdef TE_PE
25274 if (exp->X_op == O_secrel)
25275 {
25276 exp->X_op = O_symbol;
62ebcb5c 25277 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
25278 }
25279#endif
25280
62ebcb5c 25281 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 25282}
6c43fab6 25283
4343666d 25284#if defined (OBJ_COFF)
c19d1205
ZW
25285void
25286arm_validate_fix (fixS * fixP)
6c43fab6 25287{
c19d1205
ZW
25288 /* If the destination of the branch is a defined symbol which does not have
25289 the THUMB_FUNC attribute, then we must be calling a function which has
25290 the (interfacearm) attribute. We look for the Thumb entry point to that
25291 function and change the branch to refer to that function instead. */
25292 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
25293 && fixP->fx_addsy != NULL
25294 && S_IS_DEFINED (fixP->fx_addsy)
25295 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 25296 {
c19d1205 25297 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 25298 }
c19d1205
ZW
25299}
25300#endif
6c43fab6 25301
267bf995 25302
c19d1205
ZW
25303int
25304arm_force_relocation (struct fix * fixp)
25305{
25306#if defined (OBJ_COFF) && defined (TE_PE)
25307 if (fixp->fx_r_type == BFD_RELOC_RVA)
25308 return 1;
25309#endif
6c43fab6 25310
267bf995
RR
25311 /* In case we have a call or a branch to a function in ARM ISA mode from
25312 a thumb function or vice-versa force the relocation. These relocations
25313 are cleared off for some cores that might have blx and simple transformations
25314 are possible. */
25315
25316#ifdef OBJ_ELF
25317 switch (fixp->fx_r_type)
25318 {
25319 case BFD_RELOC_ARM_PCREL_JUMP:
25320 case BFD_RELOC_ARM_PCREL_CALL:
25321 case BFD_RELOC_THUMB_PCREL_BLX:
25322 if (THUMB_IS_FUNC (fixp->fx_addsy))
25323 return 1;
25324 break;
25325
25326 case BFD_RELOC_ARM_PCREL_BLX:
25327 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25328 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25329 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25330 if (ARM_IS_FUNC (fixp->fx_addsy))
25331 return 1;
25332 break;
25333
25334 default:
25335 break;
25336 }
25337#endif
25338
b5884301
PB
25339 /* Resolve these relocations even if the symbol is extern or weak.
25340 Technically this is probably wrong due to symbol preemption.
25341 In practice these relocations do not have enough range to be useful
25342 at dynamic link time, and some code (e.g. in the Linux kernel)
25343 expects these references to be resolved. */
c19d1205
ZW
25344 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
25345 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 25346 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 25347 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
25348 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
25349 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
25350 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 25351 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
25352 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
25353 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
25354 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
25355 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
25356 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
25357 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 25358 return 0;
a737bd4d 25359
4962c51a
MS
25360 /* Always leave these relocations for the linker. */
25361 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25362 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25363 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25364 return 1;
25365
f0291e4c
PB
25366 /* Always generate relocations against function symbols. */
25367 if (fixp->fx_r_type == BFD_RELOC_32
25368 && fixp->fx_addsy
25369 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
25370 return 1;
25371
c19d1205 25372 return generic_force_reloc (fixp);
404ff6b5
AH
25373}
25374
0ffdc86c 25375#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
25376/* Relocations against function names must be left unadjusted,
25377 so that the linker can use this information to generate interworking
25378 stubs. The MIPS version of this function
c19d1205
ZW
25379 also prevents relocations that are mips-16 specific, but I do not
25380 know why it does this.
404ff6b5 25381
c19d1205
ZW
25382 FIXME:
25383 There is one other problem that ought to be addressed here, but
25384 which currently is not: Taking the address of a label (rather
25385 than a function) and then later jumping to that address. Such
25386 addresses also ought to have their bottom bit set (assuming that
25387 they reside in Thumb code), but at the moment they will not. */
404ff6b5 25388
c19d1205
ZW
25389bfd_boolean
25390arm_fix_adjustable (fixS * fixP)
404ff6b5 25391{
c19d1205
ZW
25392 if (fixP->fx_addsy == NULL)
25393 return 1;
404ff6b5 25394
e28387c3
PB
25395 /* Preserve relocations against symbols with function type. */
25396 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 25397 return FALSE;
e28387c3 25398
c19d1205
ZW
25399 if (THUMB_IS_FUNC (fixP->fx_addsy)
25400 && fixP->fx_subsy == NULL)
c921be7d 25401 return FALSE;
a737bd4d 25402
c19d1205
ZW
25403 /* We need the symbol name for the VTABLE entries. */
25404 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
25405 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 25406 return FALSE;
404ff6b5 25407
c19d1205
ZW
25408 /* Don't allow symbols to be discarded on GOT related relocs. */
25409 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25410 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25411 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25412 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 25413 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
25414 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25415 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 25416 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 25417 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 25418 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 25419 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
25420 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25421 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25422 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25423 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25424 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 25425 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 25426 return FALSE;
a737bd4d 25427
4962c51a
MS
25428 /* Similarly for group relocations. */
25429 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25430 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25431 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 25432 return FALSE;
4962c51a 25433
79947c54
CD
25434 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25435 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25436 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25437 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25438 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25439 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25440 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25441 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25442 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 25443 return FALSE;
79947c54 25444
72d98d16
MG
25445 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25446 offsets, so keep these symbols. */
25447 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25448 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25449 return FALSE;
25450
c921be7d 25451 return TRUE;
a737bd4d 25452}
0ffdc86c
NC
25453#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25454
25455#ifdef OBJ_ELF
c19d1205
ZW
25456const char *
25457elf32_arm_target_format (void)
404ff6b5 25458{
c19d1205
ZW
25459#ifdef TE_SYMBIAN
25460 return (target_big_endian
25461 ? "elf32-bigarm-symbian"
25462 : "elf32-littlearm-symbian");
25463#elif defined (TE_VXWORKS)
25464 return (target_big_endian
25465 ? "elf32-bigarm-vxworks"
25466 : "elf32-littlearm-vxworks");
b38cadfb
NC
25467#elif defined (TE_NACL)
25468 return (target_big_endian
25469 ? "elf32-bigarm-nacl"
25470 : "elf32-littlearm-nacl");
c19d1205 25471#else
18a20338
CL
25472 if (arm_fdpic)
25473 {
25474 if (target_big_endian)
25475 return "elf32-bigarm-fdpic";
25476 else
25477 return "elf32-littlearm-fdpic";
25478 }
c19d1205 25479 else
18a20338
CL
25480 {
25481 if (target_big_endian)
25482 return "elf32-bigarm";
25483 else
25484 return "elf32-littlearm";
25485 }
c19d1205 25486#endif
404ff6b5
AH
25487}
25488
c19d1205
ZW
25489void
25490armelf_frob_symbol (symbolS * symp,
25491 int * puntp)
404ff6b5 25492{
c19d1205
ZW
25493 elf_frob_symbol (symp, puntp);
25494}
25495#endif
404ff6b5 25496
c19d1205 25497/* MD interface: Finalization. */
a737bd4d 25498
c19d1205
ZW
25499void
25500arm_cleanup (void)
25501{
25502 literal_pool * pool;
a737bd4d 25503
e07e6e58
NC
25504 /* Ensure that all the IT blocks are properly closed. */
25505 check_it_blocks_finished ();
25506
c19d1205
ZW
25507 for (pool = list_of_pools; pool; pool = pool->next)
25508 {
5f4273c7 25509 /* Put it at the end of the relevant section. */
c19d1205
ZW
25510 subseg_set (pool->section, pool->sub_section);
25511#ifdef OBJ_ELF
25512 arm_elf_change_section ();
25513#endif
25514 s_ltorg (0);
25515 }
404ff6b5
AH
25516}
25517
cd000bff
DJ
25518#ifdef OBJ_ELF
25519/* Remove any excess mapping symbols generated for alignment frags in
25520 SEC. We may have created a mapping symbol before a zero byte
25521 alignment; remove it if there's a mapping symbol after the
25522 alignment. */
25523static void
25524check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25525 void *dummy ATTRIBUTE_UNUSED)
25526{
25527 segment_info_type *seginfo = seg_info (sec);
25528 fragS *fragp;
25529
25530 if (seginfo == NULL || seginfo->frchainP == NULL)
25531 return;
25532
25533 for (fragp = seginfo->frchainP->frch_root;
25534 fragp != NULL;
25535 fragp = fragp->fr_next)
25536 {
25537 symbolS *sym = fragp->tc_frag_data.last_map;
25538 fragS *next = fragp->fr_next;
25539
25540 /* Variable-sized frags have been converted to fixed size by
25541 this point. But if this was variable-sized to start with,
25542 there will be a fixed-size frag after it. So don't handle
25543 next == NULL. */
25544 if (sym == NULL || next == NULL)
25545 continue;
25546
25547 if (S_GET_VALUE (sym) < next->fr_address)
25548 /* Not at the end of this frag. */
25549 continue;
25550 know (S_GET_VALUE (sym) == next->fr_address);
25551
25552 do
25553 {
25554 if (next->tc_frag_data.first_map != NULL)
25555 {
25556 /* Next frag starts with a mapping symbol. Discard this
25557 one. */
25558 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25559 break;
25560 }
25561
25562 if (next->fr_next == NULL)
25563 {
25564 /* This mapping symbol is at the end of the section. Discard
25565 it. */
25566 know (next->fr_fix == 0 && next->fr_var == 0);
25567 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25568 break;
25569 }
25570
25571 /* As long as we have empty frags without any mapping symbols,
25572 keep looking. */
25573 /* If the next frag is non-empty and does not start with a
25574 mapping symbol, then this mapping symbol is required. */
25575 if (next->fr_address != next->fr_next->fr_address)
25576 break;
25577
25578 next = next->fr_next;
25579 }
25580 while (next != NULL);
25581 }
25582}
25583#endif
25584
c19d1205
ZW
25585/* Adjust the symbol table. This marks Thumb symbols as distinct from
25586 ARM ones. */
404ff6b5 25587
c19d1205
ZW
25588void
25589arm_adjust_symtab (void)
404ff6b5 25590{
c19d1205
ZW
25591#ifdef OBJ_COFF
25592 symbolS * sym;
404ff6b5 25593
c19d1205
ZW
25594 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25595 {
25596 if (ARM_IS_THUMB (sym))
25597 {
25598 if (THUMB_IS_FUNC (sym))
25599 {
25600 /* Mark the symbol as a Thumb function. */
25601 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25602 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25603 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 25604
c19d1205
ZW
25605 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25606 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25607 else
25608 as_bad (_("%s: unexpected function type: %d"),
25609 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25610 }
25611 else switch (S_GET_STORAGE_CLASS (sym))
25612 {
25613 case C_EXT:
25614 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25615 break;
25616 case C_STAT:
25617 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25618 break;
25619 case C_LABEL:
25620 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25621 break;
25622 default:
25623 /* Do nothing. */
25624 break;
25625 }
25626 }
a737bd4d 25627
c19d1205
ZW
25628 if (ARM_IS_INTERWORK (sym))
25629 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 25630 }
c19d1205
ZW
25631#endif
25632#ifdef OBJ_ELF
25633 symbolS * sym;
25634 char bind;
404ff6b5 25635
c19d1205 25636 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 25637 {
c19d1205
ZW
25638 if (ARM_IS_THUMB (sym))
25639 {
25640 elf_symbol_type * elf_sym;
404ff6b5 25641
c19d1205
ZW
25642 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25643 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 25644
b0796911
PB
25645 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25646 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
25647 {
25648 /* If it's a .thumb_func, declare it as so,
25649 otherwise tag label as .code 16. */
25650 if (THUMB_IS_FUNC (sym))
39d911fc
TP
25651 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25652 ST_BRANCH_TO_THUMB);
3ba67470 25653 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
25654 elf_sym->internal_elf_sym.st_info =
25655 ELF_ST_INFO (bind, STT_ARM_16BIT);
25656 }
25657 }
25658 }
cd000bff
DJ
25659
25660 /* Remove any overlapping mapping symbols generated by alignment frags. */
25661 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
25662 /* Now do generic ELF adjustments. */
25663 elf_adjust_symtab ();
c19d1205 25664#endif
404ff6b5
AH
25665}
25666
c19d1205 25667/* MD interface: Initialization. */
404ff6b5 25668
a737bd4d 25669static void
c19d1205 25670set_constant_flonums (void)
a737bd4d 25671{
c19d1205 25672 int i;
404ff6b5 25673
c19d1205
ZW
25674 for (i = 0; i < NUM_FLOAT_VALS; i++)
25675 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25676 abort ();
a737bd4d 25677}
404ff6b5 25678
3e9e4fcf
JB
25679/* Auto-select Thumb mode if it's the only available instruction set for the
25680 given architecture. */
25681
25682static void
25683autoselect_thumb_from_cpu_variant (void)
25684{
25685 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25686 opcode_select (16);
25687}
25688
c19d1205
ZW
25689void
25690md_begin (void)
a737bd4d 25691{
c19d1205
ZW
25692 unsigned mach;
25693 unsigned int i;
404ff6b5 25694
c19d1205
ZW
25695 if ( (arm_ops_hsh = hash_new ()) == NULL
25696 || (arm_cond_hsh = hash_new ()) == NULL
25697 || (arm_shift_hsh = hash_new ()) == NULL
25698 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 25699 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 25700 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
25701 || (arm_reloc_hsh = hash_new ()) == NULL
25702 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
25703 as_fatal (_("virtual memory exhausted"));
25704
25705 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 25706 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 25707 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 25708 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 25709 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 25710 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 25711 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25712 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 25713 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25714 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 25715 (void *) (v7m_psrs + i));
c19d1205 25716 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 25717 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
25718 for (i = 0;
25719 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25720 i++)
d3ce72d0 25721 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 25722 (void *) (barrier_opt_names + i));
c19d1205 25723#ifdef OBJ_ELF
3da1d841
NC
25724 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25725 {
25726 struct reloc_entry * entry = reloc_names + i;
25727
25728 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25729 /* This makes encode_branch() use the EABI versions of this relocation. */
25730 entry->reloc = BFD_RELOC_UNUSED;
25731
25732 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25733 }
c19d1205
ZW
25734#endif
25735
25736 set_constant_flonums ();
404ff6b5 25737
c19d1205
ZW
25738 /* Set the cpu variant based on the command-line options. We prefer
25739 -mcpu= over -march= if both are set (as for GCC); and we prefer
25740 -mfpu= over any other way of setting the floating point unit.
25741 Use of legacy options with new options are faulted. */
e74cfd16 25742 if (legacy_cpu)
404ff6b5 25743 {
e74cfd16 25744 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
25745 as_bad (_("use of old and new-style options to set CPU type"));
25746
4d354d8b 25747 selected_arch = *legacy_cpu;
404ff6b5 25748 }
4d354d8b
TP
25749 else if (mcpu_cpu_opt)
25750 {
25751 selected_arch = *mcpu_cpu_opt;
25752 selected_ext = *mcpu_ext_opt;
25753 }
25754 else if (march_cpu_opt)
c168ce07 25755 {
4d354d8b
TP
25756 selected_arch = *march_cpu_opt;
25757 selected_ext = *march_ext_opt;
c168ce07 25758 }
4d354d8b 25759 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 25760
e74cfd16 25761 if (legacy_fpu)
c19d1205 25762 {
e74cfd16 25763 if (mfpu_opt)
c19d1205 25764 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 25765
4d354d8b 25766 selected_fpu = *legacy_fpu;
03b1477f 25767 }
4d354d8b
TP
25768 else if (mfpu_opt)
25769 selected_fpu = *mfpu_opt;
25770 else
03b1477f 25771 {
45eb4c1b
NS
25772#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25773 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
25774 /* Some environments specify a default FPU. If they don't, infer it
25775 from the processor. */
e74cfd16 25776 if (mcpu_fpu_opt)
4d354d8b 25777 selected_fpu = *mcpu_fpu_opt;
e7da50fa 25778 else if (march_fpu_opt)
4d354d8b 25779 selected_fpu = *march_fpu_opt;
39c2da32 25780#else
4d354d8b 25781 selected_fpu = fpu_default;
39c2da32 25782#endif
03b1477f
RE
25783 }
25784
4d354d8b 25785 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 25786 {
4d354d8b
TP
25787 if (!no_cpu_selected ())
25788 selected_fpu = fpu_default;
03b1477f 25789 else
4d354d8b 25790 selected_fpu = fpu_arch_fpa;
03b1477f
RE
25791 }
25792
ee065d83 25793#ifdef CPU_DEFAULT
4d354d8b 25794 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 25795 {
4d354d8b
TP
25796 selected_arch = cpu_default;
25797 selected_cpu = selected_arch;
ee065d83 25798 }
4d354d8b 25799 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 25800#else
4d354d8b
TP
25801 /* Autodection of feature mode: allow all features in cpu_variant but leave
25802 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
25803 after all instruction have been processed and we can decide what CPU
25804 should be selected. */
25805 if (ARM_FEATURE_ZERO (selected_arch))
25806 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 25807 else
4d354d8b 25808 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 25809#endif
03b1477f 25810
3e9e4fcf
JB
25811 autoselect_thumb_from_cpu_variant ();
25812
e74cfd16 25813 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 25814
f17c130b 25815#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 25816 {
7cc69913
NC
25817 unsigned int flags = 0;
25818
25819#if defined OBJ_ELF
25820 flags = meabi_flags;
d507cf36
PB
25821
25822 switch (meabi_flags)
33a392fb 25823 {
d507cf36 25824 case EF_ARM_EABI_UNKNOWN:
7cc69913 25825#endif
d507cf36
PB
25826 /* Set the flags in the private structure. */
25827 if (uses_apcs_26) flags |= F_APCS26;
25828 if (support_interwork) flags |= F_INTERWORK;
25829 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 25830 if (pic_code) flags |= F_PIC;
e74cfd16 25831 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
25832 flags |= F_SOFT_FLOAT;
25833
d507cf36
PB
25834 switch (mfloat_abi_opt)
25835 {
25836 case ARM_FLOAT_ABI_SOFT:
25837 case ARM_FLOAT_ABI_SOFTFP:
25838 flags |= F_SOFT_FLOAT;
25839 break;
33a392fb 25840
d507cf36
PB
25841 case ARM_FLOAT_ABI_HARD:
25842 if (flags & F_SOFT_FLOAT)
25843 as_bad (_("hard-float conflicts with specified fpu"));
25844 break;
25845 }
03b1477f 25846
e74cfd16
PB
25847 /* Using pure-endian doubles (even if soft-float). */
25848 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 25849 flags |= F_VFP_FLOAT;
f17c130b 25850
fde78edd 25851#if defined OBJ_ELF
e74cfd16 25852 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 25853 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
25854 break;
25855
8cb51566 25856 case EF_ARM_EABI_VER4:
3a4a14e9 25857 case EF_ARM_EABI_VER5:
c19d1205 25858 /* No additional flags to set. */
d507cf36
PB
25859 break;
25860
25861 default:
25862 abort ();
25863 }
7cc69913 25864#endif
b99bd4ef
NC
25865 bfd_set_private_flags (stdoutput, flags);
25866
25867 /* We have run out flags in the COFF header to encode the
25868 status of ATPCS support, so instead we create a dummy,
c19d1205 25869 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
25870 if (atpcs)
25871 {
25872 asection * sec;
25873
25874 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25875
25876 if (sec != NULL)
25877 {
25878 bfd_set_section_flags
25879 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25880 bfd_set_section_size (stdoutput, sec, 0);
25881 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25882 }
25883 }
7cc69913 25884 }
f17c130b 25885#endif
b99bd4ef
NC
25886
25887 /* Record the CPU type as well. */
2d447fca
JM
25888 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25889 mach = bfd_mach_arm_iWMMXt2;
25890 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 25891 mach = bfd_mach_arm_iWMMXt;
e74cfd16 25892 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 25893 mach = bfd_mach_arm_XScale;
e74cfd16 25894 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 25895 mach = bfd_mach_arm_ep9312;
e74cfd16 25896 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 25897 mach = bfd_mach_arm_5TE;
e74cfd16 25898 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 25899 {
e74cfd16 25900 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25901 mach = bfd_mach_arm_5T;
25902 else
25903 mach = bfd_mach_arm_5;
25904 }
e74cfd16 25905 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 25906 {
e74cfd16 25907 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25908 mach = bfd_mach_arm_4T;
25909 else
25910 mach = bfd_mach_arm_4;
25911 }
e74cfd16 25912 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 25913 mach = bfd_mach_arm_3M;
e74cfd16
PB
25914 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25915 mach = bfd_mach_arm_3;
25916 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25917 mach = bfd_mach_arm_2a;
25918 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25919 mach = bfd_mach_arm_2;
25920 else
25921 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
25922
25923 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25924}
25925
c19d1205 25926/* Command line processing. */
b99bd4ef 25927
c19d1205
ZW
25928/* md_parse_option
25929 Invocation line includes a switch not recognized by the base assembler.
25930 See if it's a processor-specific option.
b99bd4ef 25931
c19d1205
ZW
25932 This routine is somewhat complicated by the need for backwards
25933 compatibility (since older releases of gcc can't be changed).
25934 The new options try to make the interface as compatible as
25935 possible with GCC.
b99bd4ef 25936
c19d1205 25937 New options (supported) are:
b99bd4ef 25938
c19d1205
ZW
25939 -mcpu=<cpu name> Assemble for selected processor
25940 -march=<architecture name> Assemble for selected architecture
25941 -mfpu=<fpu architecture> Assemble for selected FPU.
25942 -EB/-mbig-endian Big-endian
25943 -EL/-mlittle-endian Little-endian
25944 -k Generate PIC code
25945 -mthumb Start in Thumb mode
25946 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 25947
278df34e 25948 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 25949 -m[no-]warn-syms Warn when symbols match instructions
267bf995 25950
c19d1205 25951 For now we will also provide support for:
b99bd4ef 25952
c19d1205
ZW
25953 -mapcs-32 32-bit Program counter
25954 -mapcs-26 26-bit Program counter
25955 -macps-float Floats passed in FP registers
25956 -mapcs-reentrant Reentrant code
25957 -matpcs
25958 (sometime these will probably be replaced with -mapcs=<list of options>
25959 and -matpcs=<list of options>)
b99bd4ef 25960
c19d1205
ZW
25961 The remaining options are only supported for back-wards compatibility.
25962 Cpu variants, the arm part is optional:
25963 -m[arm]1 Currently not supported.
25964 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25965 -m[arm]3 Arm 3 processor
25966 -m[arm]6[xx], Arm 6 processors
25967 -m[arm]7[xx][t][[d]m] Arm 7 processors
25968 -m[arm]8[10] Arm 8 processors
25969 -m[arm]9[20][tdmi] Arm 9 processors
25970 -mstrongarm[110[0]] StrongARM processors
25971 -mxscale XScale processors
25972 -m[arm]v[2345[t[e]]] Arm architectures
25973 -mall All (except the ARM1)
25974 FP variants:
25975 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25976 -mfpe-old (No float load/store multiples)
25977 -mvfpxd VFP Single precision
25978 -mvfp All VFP
25979 -mno-fpu Disable all floating point instructions
b99bd4ef 25980
c19d1205
ZW
25981 The following CPU names are recognized:
25982 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25983 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25984 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25985 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25986 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25987 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25988 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 25989
c19d1205 25990 */
b99bd4ef 25991
c19d1205 25992const char * md_shortopts = "m:k";
b99bd4ef 25993
c19d1205
ZW
25994#ifdef ARM_BI_ENDIAN
25995#define OPTION_EB (OPTION_MD_BASE + 0)
25996#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 25997#else
c19d1205
ZW
25998#if TARGET_BYTES_BIG_ENDIAN
25999#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 26000#else
c19d1205
ZW
26001#define OPTION_EL (OPTION_MD_BASE + 1)
26002#endif
b99bd4ef 26003#endif
845b51d6 26004#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 26005#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 26006
c19d1205 26007struct option md_longopts[] =
b99bd4ef 26008{
c19d1205
ZW
26009#ifdef OPTION_EB
26010 {"EB", no_argument, NULL, OPTION_EB},
26011#endif
26012#ifdef OPTION_EL
26013 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 26014#endif
845b51d6 26015 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
26016#ifdef OBJ_ELF
26017 {"fdpic", no_argument, NULL, OPTION_FDPIC},
26018#endif
c19d1205
ZW
26019 {NULL, no_argument, NULL, 0}
26020};
b99bd4ef 26021
c19d1205 26022size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 26023
c19d1205 26024struct arm_option_table
b99bd4ef 26025{
0198d5e6
TC
26026 const char * option; /* Option name to match. */
26027 const char * help; /* Help information. */
26028 int * var; /* Variable to change. */
26029 int value; /* What to change it to. */
26030 const char * deprecated; /* If non-null, print this message. */
c19d1205 26031};
b99bd4ef 26032
c19d1205
ZW
26033struct arm_option_table arm_opts[] =
26034{
26035 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
26036 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
26037 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
26038 &support_interwork, 1, NULL},
26039 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
26040 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
26041 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
26042 1, NULL},
26043 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
26044 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
26045 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
26046 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
26047 NULL},
b99bd4ef 26048
c19d1205
ZW
26049 /* These are recognized by the assembler, but have no affect on code. */
26050 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
26051 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
26052
26053 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
26054 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
26055 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
26056 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
26057 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
26058 {NULL, NULL, NULL, 0, NULL}
26059};
26060
26061struct arm_legacy_option_table
26062{
0198d5e6
TC
26063 const char * option; /* Option name to match. */
26064 const arm_feature_set ** var; /* Variable to change. */
26065 const arm_feature_set value; /* What to change it to. */
26066 const char * deprecated; /* If non-null, print this message. */
e74cfd16 26067};
b99bd4ef 26068
e74cfd16
PB
26069const struct arm_legacy_option_table arm_legacy_opts[] =
26070{
c19d1205
ZW
26071 /* DON'T add any new processors to this list -- we want the whole list
26072 to go away... Add them to the processors table instead. */
e74cfd16
PB
26073 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
26074 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
26075 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
26076 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
26077 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
26078 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
26079 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
26080 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
26081 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
26082 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
26083 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
26084 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
26085 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
26086 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
26087 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
26088 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
26089 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
26090 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
26091 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
26092 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
26093 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
26094 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
26095 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
26096 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
26097 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
26098 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
26099 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
26100 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
26101 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
26102 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
26103 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
26104 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
26105 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
26106 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
26107 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
26108 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
26109 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
26110 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
26111 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
26112 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
26113 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
26114 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
26115 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
26116 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
26117 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
26118 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
26119 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26120 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26121 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26122 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26123 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
26124 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
26125 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
26126 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
26127 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
26128 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
26129 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
26130 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
26131 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
26132 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
26133 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
26134 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
26135 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
26136 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
26137 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
26138 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
26139 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
26140 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
26141 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
26142 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 26143 N_("use -mcpu=strongarm110")},
e74cfd16 26144 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 26145 N_("use -mcpu=strongarm1100")},
e74cfd16 26146 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 26147 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
26148 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
26149 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
26150 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 26151
c19d1205 26152 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
26153 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
26154 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
26155 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
26156 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
26157 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
26158 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
26159 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
26160 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
26161 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
26162 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
26163 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
26164 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
26165 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
26166 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
26167 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
26168 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
26169 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
26170 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 26171
c19d1205 26172 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
26173 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
26174 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
26175 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
26176 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 26177 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 26178
e74cfd16 26179 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 26180};
7ed4c4c5 26181
c19d1205 26182struct arm_cpu_option_table
7ed4c4c5 26183{
0198d5e6
TC
26184 const char * name;
26185 size_t name_len;
26186 const arm_feature_set value;
26187 const arm_feature_set ext;
c19d1205
ZW
26188 /* For some CPUs we assume an FPU unless the user explicitly sets
26189 -mfpu=... */
0198d5e6 26190 const arm_feature_set default_fpu;
ee065d83
PB
26191 /* The canonical name of the CPU, or NULL to use NAME converted to upper
26192 case. */
0198d5e6 26193 const char * canonical_name;
c19d1205 26194};
7ed4c4c5 26195
c19d1205
ZW
26196/* This list should, at a minimum, contain all the cpu names
26197 recognized by GCC. */
996b5569 26198#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 26199
e74cfd16 26200static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 26201{
996b5569
TP
26202 ARM_CPU_OPT ("all", NULL, ARM_ANY,
26203 ARM_ARCH_NONE,
26204 FPU_ARCH_FPA),
26205 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
26206 ARM_ARCH_NONE,
26207 FPU_ARCH_FPA),
26208 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
26209 ARM_ARCH_NONE,
26210 FPU_ARCH_FPA),
26211 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
26212 ARM_ARCH_NONE,
26213 FPU_ARCH_FPA),
26214 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
26215 ARM_ARCH_NONE,
26216 FPU_ARCH_FPA),
26217 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
26218 ARM_ARCH_NONE,
26219 FPU_ARCH_FPA),
26220 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
26221 ARM_ARCH_NONE,
26222 FPU_ARCH_FPA),
26223 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
26224 ARM_ARCH_NONE,
26225 FPU_ARCH_FPA),
26226 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
26227 ARM_ARCH_NONE,
26228 FPU_ARCH_FPA),
26229 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
26230 ARM_ARCH_NONE,
26231 FPU_ARCH_FPA),
26232 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
26233 ARM_ARCH_NONE,
26234 FPU_ARCH_FPA),
26235 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
26236 ARM_ARCH_NONE,
26237 FPU_ARCH_FPA),
26238 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
26239 ARM_ARCH_NONE,
26240 FPU_ARCH_FPA),
26241 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
26242 ARM_ARCH_NONE,
26243 FPU_ARCH_FPA),
26244 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
26245 ARM_ARCH_NONE,
26246 FPU_ARCH_FPA),
26247 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
26248 ARM_ARCH_NONE,
26249 FPU_ARCH_FPA),
26250 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
26251 ARM_ARCH_NONE,
26252 FPU_ARCH_FPA),
26253 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
26254 ARM_ARCH_NONE,
26255 FPU_ARCH_FPA),
26256 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
26257 ARM_ARCH_NONE,
26258 FPU_ARCH_FPA),
26259 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
26260 ARM_ARCH_NONE,
26261 FPU_ARCH_FPA),
26262 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
26263 ARM_ARCH_NONE,
26264 FPU_ARCH_FPA),
26265 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
26266 ARM_ARCH_NONE,
26267 FPU_ARCH_FPA),
26268 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
26269 ARM_ARCH_NONE,
26270 FPU_ARCH_FPA),
26271 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
26272 ARM_ARCH_NONE,
26273 FPU_ARCH_FPA),
26274 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
26275 ARM_ARCH_NONE,
26276 FPU_ARCH_FPA),
26277 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
26278 ARM_ARCH_NONE,
26279 FPU_ARCH_FPA),
26280 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
26281 ARM_ARCH_NONE,
26282 FPU_ARCH_FPA),
26283 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
26284 ARM_ARCH_NONE,
26285 FPU_ARCH_FPA),
26286 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
26287 ARM_ARCH_NONE,
26288 FPU_ARCH_FPA),
26289 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
26290 ARM_ARCH_NONE,
26291 FPU_ARCH_FPA),
26292 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
26293 ARM_ARCH_NONE,
26294 FPU_ARCH_FPA),
26295 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
26296 ARM_ARCH_NONE,
26297 FPU_ARCH_FPA),
26298 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
26299 ARM_ARCH_NONE,
26300 FPU_ARCH_FPA),
26301 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
26302 ARM_ARCH_NONE,
26303 FPU_ARCH_FPA),
26304 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
26305 ARM_ARCH_NONE,
26306 FPU_ARCH_FPA),
26307 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
26308 ARM_ARCH_NONE,
26309 FPU_ARCH_FPA),
26310 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
26311 ARM_ARCH_NONE,
26312 FPU_ARCH_FPA),
26313 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
26314 ARM_ARCH_NONE,
26315 FPU_ARCH_FPA),
26316 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
26317 ARM_ARCH_NONE,
26318 FPU_ARCH_FPA),
26319 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
26320 ARM_ARCH_NONE,
26321 FPU_ARCH_FPA),
26322 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
26323 ARM_ARCH_NONE,
26324 FPU_ARCH_FPA),
26325 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
26326 ARM_ARCH_NONE,
26327 FPU_ARCH_FPA),
26328 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
26329 ARM_ARCH_NONE,
26330 FPU_ARCH_FPA),
26331 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
26332 ARM_ARCH_NONE,
26333 FPU_ARCH_FPA),
26334 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
26335 ARM_ARCH_NONE,
26336 FPU_ARCH_FPA),
26337 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
26338 ARM_ARCH_NONE,
26339 FPU_ARCH_FPA),
26340
c19d1205
ZW
26341 /* For V5 or later processors we default to using VFP; but the user
26342 should really set the FPU type explicitly. */
996b5569
TP
26343 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
26344 ARM_ARCH_NONE,
26345 FPU_ARCH_VFP_V2),
26346 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
26347 ARM_ARCH_NONE,
26348 FPU_ARCH_VFP_V2),
26349 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26350 ARM_ARCH_NONE,
26351 FPU_ARCH_VFP_V2),
26352 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26353 ARM_ARCH_NONE,
26354 FPU_ARCH_VFP_V2),
26355 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
26356 ARM_ARCH_NONE,
26357 FPU_ARCH_VFP_V2),
26358 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
26359 ARM_ARCH_NONE,
26360 FPU_ARCH_VFP_V2),
26361 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
26362 ARM_ARCH_NONE,
26363 FPU_ARCH_VFP_V2),
26364 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
26365 ARM_ARCH_NONE,
26366 FPU_ARCH_VFP_V2),
26367 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
26368 ARM_ARCH_NONE,
26369 FPU_ARCH_VFP_V2),
26370 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
26371 ARM_ARCH_NONE,
26372 FPU_ARCH_VFP_V2),
26373 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
26374 ARM_ARCH_NONE,
26375 FPU_ARCH_VFP_V2),
26376 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
26377 ARM_ARCH_NONE,
26378 FPU_ARCH_VFP_V2),
26379 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
26380 ARM_ARCH_NONE,
26381 FPU_ARCH_VFP_V1),
26382 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
26383 ARM_ARCH_NONE,
26384 FPU_ARCH_VFP_V1),
26385 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
26386 ARM_ARCH_NONE,
26387 FPU_ARCH_VFP_V2),
26388 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
26389 ARM_ARCH_NONE,
26390 FPU_ARCH_VFP_V2),
26391 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
26392 ARM_ARCH_NONE,
26393 FPU_ARCH_VFP_V1),
26394 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
26395 ARM_ARCH_NONE,
26396 FPU_ARCH_VFP_V2),
26397 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
26398 ARM_ARCH_NONE,
26399 FPU_ARCH_VFP_V2),
26400 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
26401 ARM_ARCH_NONE,
26402 FPU_ARCH_VFP_V2),
26403 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
26404 ARM_ARCH_NONE,
26405 FPU_ARCH_VFP_V2),
26406 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
26407 ARM_ARCH_NONE,
26408 FPU_ARCH_VFP_V2),
26409 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
26410 ARM_ARCH_NONE,
26411 FPU_ARCH_VFP_V2),
26412 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
26413 ARM_ARCH_NONE,
26414 FPU_ARCH_VFP_V2),
26415 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
26416 ARM_ARCH_NONE,
26417 FPU_ARCH_VFP_V2),
26418 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
26419 ARM_ARCH_NONE,
26420 FPU_ARCH_VFP_V2),
26421 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
26422 ARM_ARCH_NONE,
26423 FPU_NONE),
26424 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26425 ARM_ARCH_NONE,
26426 FPU_NONE),
26427 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26428 ARM_ARCH_NONE,
26429 FPU_ARCH_VFP_V2),
26430 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26431 ARM_ARCH_NONE,
26432 FPU_ARCH_VFP_V2),
26433 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26434 ARM_ARCH_NONE,
26435 FPU_ARCH_VFP_V2),
26436 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26437 ARM_ARCH_NONE,
26438 FPU_NONE),
26439 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26440 ARM_ARCH_NONE,
26441 FPU_NONE),
26442 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26443 ARM_ARCH_NONE,
26444 FPU_ARCH_VFP_V2),
26445 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26446 ARM_ARCH_NONE,
26447 FPU_NONE),
26448 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26449 ARM_ARCH_NONE,
26450 FPU_ARCH_VFP_V2),
26451 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26452 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26453 FPU_NONE),
26454 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26455 ARM_ARCH_NONE,
26456 FPU_ARCH_NEON_VFP_V4),
26457 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26458 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26459 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26460 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26461 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26462 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26463 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26464 ARM_ARCH_NONE,
26465 FPU_ARCH_NEON_VFP_V4),
26466 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26467 ARM_ARCH_NONE,
26468 FPU_ARCH_NEON_VFP_V4),
26469 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26470 ARM_ARCH_NONE,
26471 FPU_ARCH_NEON_VFP_V4),
26472 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26473 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26474 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26475 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26476 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26477 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26478 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26479 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26480 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26481 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26482 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26483 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26484 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26485 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26486 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26487 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26488 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26489 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26490 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26491 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26492 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26493 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26494 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26495 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 26496 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
26497 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26498 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
26499 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
26500 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26501 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26502 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26503 ARM_ARCH_NONE,
26504 FPU_NONE),
26505 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26506 ARM_ARCH_NONE,
26507 FPU_ARCH_VFP_V3D16),
26508 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26509 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26510 FPU_NONE),
26511 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26512 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26513 FPU_ARCH_VFP_V3D16),
26514 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26515 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26516 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
26517 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26518 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26519 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
26520 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26521 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26522 FPU_NONE),
26523 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26524 ARM_ARCH_NONE,
26525 FPU_NONE),
26526 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26527 ARM_ARCH_NONE,
26528 FPU_NONE),
26529 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26530 ARM_ARCH_NONE,
26531 FPU_NONE),
26532 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26533 ARM_ARCH_NONE,
26534 FPU_NONE),
26535 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26536 ARM_ARCH_NONE,
26537 FPU_NONE),
26538 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26539 ARM_ARCH_NONE,
26540 FPU_NONE),
26541 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26542 ARM_ARCH_NONE,
26543 FPU_NONE),
26544 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26545 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26546 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
26547 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
26548 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26549 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 26550 /* ??? XSCALE is really an architecture. */
996b5569
TP
26551 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26552 ARM_ARCH_NONE,
26553 FPU_ARCH_VFP_V2),
26554
c19d1205 26555 /* ??? iwmmxt is not a processor. */
996b5569
TP
26556 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26557 ARM_ARCH_NONE,
26558 FPU_ARCH_VFP_V2),
26559 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26560 ARM_ARCH_NONE,
26561 FPU_ARCH_VFP_V2),
26562 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26563 ARM_ARCH_NONE,
26564 FPU_ARCH_VFP_V2),
26565
0198d5e6 26566 /* Maverick. */
996b5569
TP
26567 ARM_CPU_OPT ("ep9312", "ARM920T",
26568 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26569 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26570
da4339ed 26571 /* Marvell processors. */
996b5569
TP
26572 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26573 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26574 FPU_ARCH_VFP_V3D16),
26575 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26576 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26577 FPU_ARCH_NEON_VFP_V4),
da4339ed 26578
996b5569
TP
26579 /* APM X-Gene family. */
26580 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26581 ARM_ARCH_NONE,
26582 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26583 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26584 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26585 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26586
26587 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 26588};
f3bad469 26589#undef ARM_CPU_OPT
7ed4c4c5 26590
34ef62f4
AV
26591struct arm_ext_table
26592{
26593 const char * name;
26594 size_t name_len;
26595 const arm_feature_set merge;
26596 const arm_feature_set clear;
26597};
26598
c19d1205 26599struct arm_arch_option_table
7ed4c4c5 26600{
34ef62f4
AV
26601 const char * name;
26602 size_t name_len;
26603 const arm_feature_set value;
26604 const arm_feature_set default_fpu;
26605 const struct arm_ext_table * ext_table;
26606};
26607
26608/* Used to add support for +E and +noE extension. */
26609#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
26610/* Used to add support for a +E extension. */
26611#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
26612/* Used to add support for a +noE extension. */
26613#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
26614
26615#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
26616 ~0 & ~FPU_ENDIAN_PURE)
26617
26618static const struct arm_ext_table armv5te_ext_table[] =
26619{
26620 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
26621 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26622};
26623
26624static const struct arm_ext_table armv7_ext_table[] =
26625{
26626 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26627 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26628};
26629
26630static const struct arm_ext_table armv7ve_ext_table[] =
26631{
26632 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
26633 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
26634 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26635 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26636 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26637 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
26638 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26639
26640 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
26641 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26642
26643 /* Aliases for +simd. */
26644 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26645
26646 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26647 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26648 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26649
26650 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26651};
26652
26653static const struct arm_ext_table armv7a_ext_table[] =
26654{
26655 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26656 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26657 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26658 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26659 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26660 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
26661 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26662
26663 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
26664 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26665
26666 /* Aliases for +simd. */
26667 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26668 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26669
26670 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26671 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26672
26673 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
26674 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
26675 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26676};
26677
26678static const struct arm_ext_table armv7r_ext_table[] =
26679{
26680 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
26681 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
26682 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26683 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26684 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
26685 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26686 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26687 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
26688 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26689};
26690
26691static const struct arm_ext_table armv7em_ext_table[] =
26692{
26693 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
26694 /* Alias for +fp, used to be known as fpv4-sp-d16. */
26695 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
26696 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
26697 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26698 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
26699 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26700};
26701
26702static const struct arm_ext_table armv8a_ext_table[] =
26703{
26704 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26705 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26706 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26707 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26708
26709 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26710 should use the +simd option to turn on FP. */
26711 ARM_REMOVE ("fp", ALL_FP),
26712 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26713 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26714 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26715};
26716
26717
26718static const struct arm_ext_table armv81a_ext_table[] =
26719{
26720 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26721 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26722 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26723
26724 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26725 should use the +simd option to turn on FP. */
26726 ARM_REMOVE ("fp", ALL_FP),
26727 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26728 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26729 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26730};
26731
26732static const struct arm_ext_table armv82a_ext_table[] =
26733{
26734 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26735 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
26736 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
26737 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26738 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26739 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26740
26741 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26742 should use the +simd option to turn on FP. */
26743 ARM_REMOVE ("fp", ALL_FP),
26744 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26745 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26746 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26747};
26748
26749static const struct arm_ext_table armv84a_ext_table[] =
26750{
26751 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26752 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26753 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26754 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26755
26756 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26757 should use the +simd option to turn on FP. */
26758 ARM_REMOVE ("fp", ALL_FP),
26759 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26760 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26761 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26762};
26763
26764static const struct arm_ext_table armv85a_ext_table[] =
26765{
26766 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26767 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26768 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26769 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26770
26771 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26772 should use the +simd option to turn on FP. */
26773 ARM_REMOVE ("fp", ALL_FP),
26774 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26775};
26776
26777static const struct arm_ext_table armv8m_main_ext_table[] =
26778{
26779 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26780 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26781 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
26782 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26783 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26784};
26785
e0991585
AV
26786static const struct arm_ext_table armv8_1m_main_ext_table[] =
26787{
26788 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26789 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26790 ARM_EXT ("fp",
26791 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26792 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
26793 ALL_FP),
26794 ARM_ADD ("fp.dp",
26795 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26796 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
26797 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26798};
26799
34ef62f4
AV
26800static const struct arm_ext_table armv8r_ext_table[] =
26801{
26802 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26803 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26804 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26805 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26806 ARM_REMOVE ("fp", ALL_FP),
26807 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
26808 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 26809};
7ed4c4c5 26810
c19d1205
ZW
26811/* This list should, at a minimum, contain all the architecture names
26812 recognized by GCC. */
34ef62f4
AV
26813#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
26814#define ARM_ARCH_OPT2(N, V, DF, ext) \
26815 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 26816
e74cfd16 26817static const struct arm_arch_option_table arm_archs[] =
c19d1205 26818{
497d849d
TP
26819 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26820 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26821 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26822 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26823 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26824 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26825 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26826 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26827 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26828 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26829 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26830 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26831 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26832 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
26833 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
26834 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
26835 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
26836 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26837 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26838 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
26839 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
26840 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26841 kept to preserve existing behaviour. */
34ef62f4
AV
26842 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26843 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26844 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
26845 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
26846 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
26847 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26848 kept to preserve existing behaviour. */
34ef62f4
AV
26849 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
26850 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
26851 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26852 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 26853 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
26854 /* The official spelling of the ARMv7 profile variants is the dashed form.
26855 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
26856 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26857 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
26858 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 26859 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
26860 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26861 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 26862 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 26863 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 26864 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
26865 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
26866 armv8m_main),
e0991585
AV
26867 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
26868 armv8_1m_main),
34ef62f4
AV
26869 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
26870 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
26871 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
26872 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
26873 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
26874 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
26875 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
26876 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26877 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26878 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 26879 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 26880};
f3bad469 26881#undef ARM_ARCH_OPT
7ed4c4c5 26882
69133863 26883/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 26884
69133863 26885struct arm_option_extension_value_table
c19d1205 26886{
0198d5e6
TC
26887 const char * name;
26888 size_t name_len;
26889 const arm_feature_set merge_value;
26890 const arm_feature_set clear_value;
d942732e
TP
26891 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26892 indicates that an extension is available for all architectures while
26893 ARM_ANY marks an empty entry. */
0198d5e6 26894 const arm_feature_set allowed_archs[2];
c19d1205 26895};
7ed4c4c5 26896
0198d5e6
TC
26897/* The following table must be in alphabetical order with a NULL last entry. */
26898
d942732e
TP
26899#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26900#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 26901
34ef62f4
AV
26902/* DEPRECATED: Refrain from using this table to add any new extensions, instead
26903 use the context sensitive approach using arm_ext_table's. */
69133863 26904static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 26905{
823d2571
TG
26906 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26907 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 26908 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
26909 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26910 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
26911 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26912 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26913 ARM_ARCH_V8_2A),
15afaa63
TP
26914 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26915 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26916 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
26917 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26918 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
26919 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26920 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26921 ARM_ARCH_V8_2A),
01f48020
TC
26922 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26923 | ARM_EXT2_FP16_FML),
26924 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26925 | ARM_EXT2_FP16_FML),
26926 ARM_ARCH_V8_2A),
d942732e 26927 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 26928 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
26929 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26930 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
26931 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26932 Thumb divide instruction. Due to this having the same name as the
26933 previous entry, this will be ignored when doing command-line parsing and
26934 only considered by build attribute selection code. */
26935 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26936 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26937 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 26938 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 26939 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 26940 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 26941 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 26942 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
26943 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26944 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 26945 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
26946 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26947 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
26948 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26949 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26950 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
26951 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26952 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 26953 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
26954 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26955 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26956 ARM_ARCH_V8A),
4d1464f2
MW
26957 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26958 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 26959 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
26960 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26961 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 26962 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
26963 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26964 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26965 ARM_ARCH_V8A),
d942732e 26966 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 26967 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
26968 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26969 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
26970 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26971 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26972 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
26973 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26974 | ARM_EXT_DIV),
26975 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26976 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26977 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
26978 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26979 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 26980};
f3bad469 26981#undef ARM_EXT_OPT
69133863
MGD
26982
26983/* ISA floating-point and Advanced SIMD extensions. */
26984struct arm_option_fpu_value_table
26985{
0198d5e6
TC
26986 const char * name;
26987 const arm_feature_set value;
c19d1205 26988};
7ed4c4c5 26989
c19d1205
ZW
26990/* This list should, at a minimum, contain all the fpu names
26991 recognized by GCC. */
69133863 26992static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
26993{
26994 {"softfpa", FPU_NONE},
26995 {"fpe", FPU_ARCH_FPE},
26996 {"fpe2", FPU_ARCH_FPE},
26997 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26998 {"fpa", FPU_ARCH_FPA},
26999 {"fpa10", FPU_ARCH_FPA},
27000 {"fpa11", FPU_ARCH_FPA},
27001 {"arm7500fe", FPU_ARCH_FPA},
27002 {"softvfp", FPU_ARCH_VFP},
27003 {"softvfp+vfp", FPU_ARCH_VFP_V2},
27004 {"vfp", FPU_ARCH_VFP_V2},
27005 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 27006 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
27007 {"vfp10", FPU_ARCH_VFP_V2},
27008 {"vfp10-r0", FPU_ARCH_VFP_V1},
27009 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
27010 {"vfpv2", FPU_ARCH_VFP_V2},
27011 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 27012 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 27013 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
27014 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
27015 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
27016 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
27017 {"arm1020t", FPU_ARCH_VFP_V1},
27018 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 27019 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
27020 {"arm1136jf-s", FPU_ARCH_VFP_V2},
27021 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 27022 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 27023 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 27024 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
27025 {"vfpv4", FPU_ARCH_VFP_V4},
27026 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 27027 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
27028 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
27029 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 27030 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
27031 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
27032 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
27033 {"crypto-neon-fp-armv8",
27034 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 27035 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
27036 {"crypto-neon-fp-armv8.1",
27037 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
27038 {NULL, ARM_ARCH_NONE}
27039};
27040
27041struct arm_option_value_table
27042{
e0471c16 27043 const char *name;
e74cfd16 27044 long value;
c19d1205 27045};
7ed4c4c5 27046
e74cfd16 27047static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
27048{
27049 {"hard", ARM_FLOAT_ABI_HARD},
27050 {"softfp", ARM_FLOAT_ABI_SOFTFP},
27051 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 27052 {NULL, 0}
c19d1205 27053};
7ed4c4c5 27054
c19d1205 27055#ifdef OBJ_ELF
3a4a14e9 27056/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 27057static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
27058{
27059 {"gnu", EF_ARM_EABI_UNKNOWN},
27060 {"4", EF_ARM_EABI_VER4},
3a4a14e9 27061 {"5", EF_ARM_EABI_VER5},
e74cfd16 27062 {NULL, 0}
c19d1205
ZW
27063};
27064#endif
7ed4c4c5 27065
c19d1205
ZW
27066struct arm_long_option_table
27067{
0198d5e6 27068 const char * option; /* Substring to match. */
e0471c16 27069 const char * help; /* Help information. */
17b9d67d 27070 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 27071 const char * deprecated; /* If non-null, print this message. */
c19d1205 27072};
7ed4c4c5 27073
c921be7d 27074static bfd_boolean
c168ce07 27075arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
27076 arm_feature_set *ext_set,
27077 const struct arm_ext_table *ext_table)
7ed4c4c5 27078{
69133863 27079 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
27080 extensions being added before being removed. We achieve this by having
27081 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 27082 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 27083 or removing it (0) and only allowing it to change in the order
69133863
MGD
27084 -1 -> 1 -> 0. */
27085 const struct arm_option_extension_value_table * opt = NULL;
d942732e 27086 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
27087 int adding_value = -1;
27088
c19d1205 27089 while (str != NULL && *str != 0)
7ed4c4c5 27090 {
82b8a785 27091 const char *ext;
f3bad469 27092 size_t len;
7ed4c4c5 27093
c19d1205
ZW
27094 if (*str != '+')
27095 {
27096 as_bad (_("invalid architectural extension"));
c921be7d 27097 return FALSE;
c19d1205 27098 }
7ed4c4c5 27099
c19d1205
ZW
27100 str++;
27101 ext = strchr (str, '+');
7ed4c4c5 27102
c19d1205 27103 if (ext != NULL)
f3bad469 27104 len = ext - str;
c19d1205 27105 else
f3bad469 27106 len = strlen (str);
7ed4c4c5 27107
f3bad469 27108 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
27109 {
27110 if (adding_value != 0)
27111 {
27112 adding_value = 0;
27113 opt = arm_extensions;
27114 }
27115
f3bad469 27116 len -= 2;
69133863
MGD
27117 str += 2;
27118 }
f3bad469 27119 else if (len > 0)
69133863
MGD
27120 {
27121 if (adding_value == -1)
27122 {
27123 adding_value = 1;
27124 opt = arm_extensions;
27125 }
27126 else if (adding_value != 1)
27127 {
27128 as_bad (_("must specify extensions to add before specifying "
27129 "those to remove"));
27130 return FALSE;
27131 }
27132 }
27133
f3bad469 27134 if (len == 0)
c19d1205
ZW
27135 {
27136 as_bad (_("missing architectural extension"));
c921be7d 27137 return FALSE;
c19d1205 27138 }
7ed4c4c5 27139
69133863
MGD
27140 gas_assert (adding_value != -1);
27141 gas_assert (opt != NULL);
27142
34ef62f4
AV
27143 if (ext_table != NULL)
27144 {
27145 const struct arm_ext_table * ext_opt = ext_table;
27146 bfd_boolean found = FALSE;
27147 for (; ext_opt->name != NULL; ext_opt++)
27148 if (ext_opt->name_len == len
27149 && strncmp (ext_opt->name, str, len) == 0)
27150 {
27151 if (adding_value)
27152 {
27153 if (ARM_FEATURE_ZERO (ext_opt->merge))
27154 /* TODO: Option not supported. When we remove the
27155 legacy table this case should error out. */
27156 continue;
27157
27158 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
27159 }
27160 else
27161 {
27162 if (ARM_FEATURE_ZERO (ext_opt->clear))
27163 /* TODO: Option not supported. When we remove the
27164 legacy table this case should error out. */
27165 continue;
27166 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
27167 }
27168 found = TRUE;
27169 break;
27170 }
27171 if (found)
27172 {
27173 str = ext;
27174 continue;
27175 }
27176 }
27177
69133863
MGD
27178 /* Scan over the options table trying to find an exact match. */
27179 for (; opt->name != NULL; opt++)
f3bad469 27180 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 27181 {
d942732e
TP
27182 int i, nb_allowed_archs =
27183 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 27184 /* Check we can apply the extension to this architecture. */
d942732e
TP
27185 for (i = 0; i < nb_allowed_archs; i++)
27186 {
27187 /* Empty entry. */
27188 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27189 continue;
c168ce07 27190 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
27191 break;
27192 }
27193 if (i == nb_allowed_archs)
69133863
MGD
27194 {
27195 as_bad (_("extension does not apply to the base architecture"));
27196 return FALSE;
27197 }
27198
27199 /* Add or remove the extension. */
27200 if (adding_value)
4d354d8b 27201 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 27202 else
4d354d8b 27203 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 27204
3d030cdb
TP
27205 /* Allowing Thumb division instructions for ARMv7 in autodetection
27206 rely on this break so that duplicate extensions (extensions
27207 with the same name as a previous extension in the list) are not
27208 considered for command-line parsing. */
c19d1205
ZW
27209 break;
27210 }
7ed4c4c5 27211
c19d1205
ZW
27212 if (opt->name == NULL)
27213 {
69133863
MGD
27214 /* Did we fail to find an extension because it wasn't specified in
27215 alphabetical order, or because it does not exist? */
27216
27217 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 27218 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
27219 break;
27220
27221 if (opt->name == NULL)
27222 as_bad (_("unknown architectural extension `%s'"), str);
27223 else
27224 as_bad (_("architectural extensions must be specified in "
27225 "alphabetical order"));
27226
c921be7d 27227 return FALSE;
c19d1205 27228 }
69133863
MGD
27229 else
27230 {
27231 /* We should skip the extension we've just matched the next time
27232 round. */
27233 opt++;
27234 }
7ed4c4c5 27235
c19d1205
ZW
27236 str = ext;
27237 };
7ed4c4c5 27238
c921be7d 27239 return TRUE;
c19d1205 27240}
7ed4c4c5 27241
c921be7d 27242static bfd_boolean
17b9d67d 27243arm_parse_cpu (const char *str)
7ed4c4c5 27244{
f3bad469 27245 const struct arm_cpu_option_table *opt;
82b8a785 27246 const char *ext = strchr (str, '+');
f3bad469 27247 size_t len;
7ed4c4c5 27248
c19d1205 27249 if (ext != NULL)
f3bad469 27250 len = ext - str;
7ed4c4c5 27251 else
f3bad469 27252 len = strlen (str);
7ed4c4c5 27253
f3bad469 27254 if (len == 0)
7ed4c4c5 27255 {
c19d1205 27256 as_bad (_("missing cpu name `%s'"), str);
c921be7d 27257 return FALSE;
7ed4c4c5
NC
27258 }
27259
c19d1205 27260 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 27261 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 27262 {
c168ce07 27263 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
27264 if (mcpu_ext_opt == NULL)
27265 mcpu_ext_opt = XNEW (arm_feature_set);
27266 *mcpu_ext_opt = opt->ext;
e74cfd16 27267 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 27268 if (opt->canonical_name)
ef8e6722
JW
27269 {
27270 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
27271 strcpy (selected_cpu_name, opt->canonical_name);
27272 }
ee065d83
PB
27273 else
27274 {
f3bad469 27275 size_t i;
c921be7d 27276
ef8e6722
JW
27277 if (len >= sizeof selected_cpu_name)
27278 len = (sizeof selected_cpu_name) - 1;
27279
f3bad469 27280 for (i = 0; i < len; i++)
ee065d83
PB
27281 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27282 selected_cpu_name[i] = 0;
27283 }
7ed4c4c5 27284
c19d1205 27285 if (ext != NULL)
34ef62f4 27286 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 27287
c921be7d 27288 return TRUE;
c19d1205 27289 }
7ed4c4c5 27290
c19d1205 27291 as_bad (_("unknown cpu `%s'"), str);
c921be7d 27292 return FALSE;
7ed4c4c5
NC
27293}
27294
c921be7d 27295static bfd_boolean
17b9d67d 27296arm_parse_arch (const char *str)
7ed4c4c5 27297{
e74cfd16 27298 const struct arm_arch_option_table *opt;
82b8a785 27299 const char *ext = strchr (str, '+');
f3bad469 27300 size_t len;
7ed4c4c5 27301
c19d1205 27302 if (ext != NULL)
f3bad469 27303 len = ext - str;
7ed4c4c5 27304 else
f3bad469 27305 len = strlen (str);
7ed4c4c5 27306
f3bad469 27307 if (len == 0)
7ed4c4c5 27308 {
c19d1205 27309 as_bad (_("missing architecture name `%s'"), str);
c921be7d 27310 return FALSE;
7ed4c4c5
NC
27311 }
27312
c19d1205 27313 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 27314 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 27315 {
e74cfd16 27316 march_cpu_opt = &opt->value;
4d354d8b
TP
27317 if (march_ext_opt == NULL)
27318 march_ext_opt = XNEW (arm_feature_set);
27319 *march_ext_opt = arm_arch_none;
e74cfd16 27320 march_fpu_opt = &opt->default_fpu;
5f4273c7 27321 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 27322
c19d1205 27323 if (ext != NULL)
34ef62f4
AV
27324 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
27325 opt->ext_table);
7ed4c4c5 27326
c921be7d 27327 return TRUE;
c19d1205
ZW
27328 }
27329
27330 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 27331 return FALSE;
7ed4c4c5 27332}
eb043451 27333
c921be7d 27334static bfd_boolean
17b9d67d 27335arm_parse_fpu (const char * str)
c19d1205 27336{
69133863 27337 const struct arm_option_fpu_value_table * opt;
b99bd4ef 27338
c19d1205
ZW
27339 for (opt = arm_fpus; opt->name != NULL; opt++)
27340 if (streq (opt->name, str))
27341 {
e74cfd16 27342 mfpu_opt = &opt->value;
c921be7d 27343 return TRUE;
c19d1205 27344 }
b99bd4ef 27345
c19d1205 27346 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 27347 return FALSE;
c19d1205
ZW
27348}
27349
c921be7d 27350static bfd_boolean
17b9d67d 27351arm_parse_float_abi (const char * str)
b99bd4ef 27352{
e74cfd16 27353 const struct arm_option_value_table * opt;
b99bd4ef 27354
c19d1205
ZW
27355 for (opt = arm_float_abis; opt->name != NULL; opt++)
27356 if (streq (opt->name, str))
27357 {
27358 mfloat_abi_opt = opt->value;
c921be7d 27359 return TRUE;
c19d1205 27360 }
cc8a6dd0 27361
c19d1205 27362 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 27363 return FALSE;
c19d1205 27364}
b99bd4ef 27365
c19d1205 27366#ifdef OBJ_ELF
c921be7d 27367static bfd_boolean
17b9d67d 27368arm_parse_eabi (const char * str)
c19d1205 27369{
e74cfd16 27370 const struct arm_option_value_table *opt;
cc8a6dd0 27371
c19d1205
ZW
27372 for (opt = arm_eabis; opt->name != NULL; opt++)
27373 if (streq (opt->name, str))
27374 {
27375 meabi_flags = opt->value;
c921be7d 27376 return TRUE;
c19d1205
ZW
27377 }
27378 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 27379 return FALSE;
c19d1205
ZW
27380}
27381#endif
cc8a6dd0 27382
c921be7d 27383static bfd_boolean
17b9d67d 27384arm_parse_it_mode (const char * str)
e07e6e58 27385{
c921be7d 27386 bfd_boolean ret = TRUE;
e07e6e58
NC
27387
27388 if (streq ("arm", str))
27389 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
27390 else if (streq ("thumb", str))
27391 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
27392 else if (streq ("always", str))
27393 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
27394 else if (streq ("never", str))
27395 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
27396 else
27397 {
27398 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 27399 "arm, thumb, always, or never."), str);
c921be7d 27400 ret = FALSE;
e07e6e58
NC
27401 }
27402
27403 return ret;
27404}
27405
2e6976a8 27406static bfd_boolean
17b9d67d 27407arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
27408{
27409 codecomposer_syntax = TRUE;
27410 arm_comment_chars[0] = ';';
27411 arm_line_separator_chars[0] = 0;
27412 return TRUE;
27413}
27414
c19d1205
ZW
27415struct arm_long_option_table arm_long_opts[] =
27416{
27417 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
27418 arm_parse_cpu, NULL},
27419 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
27420 arm_parse_arch, NULL},
27421 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
27422 arm_parse_fpu, NULL},
27423 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
27424 arm_parse_float_abi, NULL},
27425#ifdef OBJ_ELF
7fac0536 27426 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
27427 arm_parse_eabi, NULL},
27428#endif
e07e6e58
NC
27429 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
27430 arm_parse_it_mode, NULL},
2e6976a8
DG
27431 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
27432 arm_ccs_mode, NULL},
c19d1205
ZW
27433 {NULL, NULL, 0, NULL}
27434};
cc8a6dd0 27435
c19d1205 27436int
17b9d67d 27437md_parse_option (int c, const char * arg)
c19d1205
ZW
27438{
27439 struct arm_option_table *opt;
e74cfd16 27440 const struct arm_legacy_option_table *fopt;
c19d1205 27441 struct arm_long_option_table *lopt;
b99bd4ef 27442
c19d1205 27443 switch (c)
b99bd4ef 27444 {
c19d1205
ZW
27445#ifdef OPTION_EB
27446 case OPTION_EB:
27447 target_big_endian = 1;
27448 break;
27449#endif
cc8a6dd0 27450
c19d1205
ZW
27451#ifdef OPTION_EL
27452 case OPTION_EL:
27453 target_big_endian = 0;
27454 break;
27455#endif
b99bd4ef 27456
845b51d6
PB
27457 case OPTION_FIX_V4BX:
27458 fix_v4bx = TRUE;
27459 break;
27460
18a20338
CL
27461#ifdef OBJ_ELF
27462 case OPTION_FDPIC:
27463 arm_fdpic = TRUE;
27464 break;
27465#endif /* OBJ_ELF */
27466
c19d1205
ZW
27467 case 'a':
27468 /* Listing option. Just ignore these, we don't support additional
27469 ones. */
27470 return 0;
b99bd4ef 27471
c19d1205
ZW
27472 default:
27473 for (opt = arm_opts; opt->option != NULL; opt++)
27474 {
27475 if (c == opt->option[0]
27476 && ((arg == NULL && opt->option[1] == 0)
27477 || streq (arg, opt->option + 1)))
27478 {
c19d1205 27479 /* If the option is deprecated, tell the user. */
278df34e 27480 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
27481 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27482 arg ? arg : "", _(opt->deprecated));
b99bd4ef 27483
c19d1205
ZW
27484 if (opt->var != NULL)
27485 *opt->var = opt->value;
cc8a6dd0 27486
c19d1205
ZW
27487 return 1;
27488 }
27489 }
b99bd4ef 27490
e74cfd16
PB
27491 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
27492 {
27493 if (c == fopt->option[0]
27494 && ((arg == NULL && fopt->option[1] == 0)
27495 || streq (arg, fopt->option + 1)))
27496 {
e74cfd16 27497 /* If the option is deprecated, tell the user. */
278df34e 27498 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
27499 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27500 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
27501
27502 if (fopt->var != NULL)
27503 *fopt->var = &fopt->value;
27504
27505 return 1;
27506 }
27507 }
27508
c19d1205
ZW
27509 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27510 {
27511 /* These options are expected to have an argument. */
27512 if (c == lopt->option[0]
27513 && arg != NULL
27514 && strncmp (arg, lopt->option + 1,
27515 strlen (lopt->option + 1)) == 0)
27516 {
c19d1205 27517 /* If the option is deprecated, tell the user. */
278df34e 27518 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
27519 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
27520 _(lopt->deprecated));
b99bd4ef 27521
c19d1205
ZW
27522 /* Call the sup-option parser. */
27523 return lopt->func (arg + strlen (lopt->option) - 1);
27524 }
27525 }
a737bd4d 27526
c19d1205
ZW
27527 return 0;
27528 }
a394c00f 27529
c19d1205
ZW
27530 return 1;
27531}
a394c00f 27532
c19d1205
ZW
27533void
27534md_show_usage (FILE * fp)
a394c00f 27535{
c19d1205
ZW
27536 struct arm_option_table *opt;
27537 struct arm_long_option_table *lopt;
a394c00f 27538
c19d1205 27539 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 27540
c19d1205
ZW
27541 for (opt = arm_opts; opt->option != NULL; opt++)
27542 if (opt->help != NULL)
27543 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 27544
c19d1205
ZW
27545 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27546 if (lopt->help != NULL)
27547 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 27548
c19d1205
ZW
27549#ifdef OPTION_EB
27550 fprintf (fp, _("\
27551 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
27552#endif
27553
c19d1205
ZW
27554#ifdef OPTION_EL
27555 fprintf (fp, _("\
27556 -EL assemble code for a little-endian cpu\n"));
a737bd4d 27557#endif
845b51d6
PB
27558
27559 fprintf (fp, _("\
27560 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
27561
27562#ifdef OBJ_ELF
27563 fprintf (fp, _("\
27564 --fdpic generate an FDPIC object file\n"));
27565#endif /* OBJ_ELF */
c19d1205 27566}
ee065d83 27567
ee065d83 27568#ifdef OBJ_ELF
0198d5e6 27569
62b3e311
PB
27570typedef struct
27571{
27572 int val;
27573 arm_feature_set flags;
27574} cpu_arch_ver_table;
27575
2c6b98ea
TP
27576/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
27577 chronologically for architectures, with an exception for ARMv6-M and
27578 ARMv6S-M due to legacy reasons. No new architecture should have a
27579 special case. This allows for build attribute selection results to be
27580 stable when new architectures are added. */
62b3e311
PB
27581static const cpu_arch_ver_table cpu_arch_ver[] =
27582{
031254f2
AV
27583 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
27584 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
27585 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
27586 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
27587 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
27588 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
27589 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
27590 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
27591 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
27592 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
27593 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
27594 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
27595 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
27596 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
27597 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
27598 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
27599 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
27600 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
27601 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
27602 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
27603 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
27604 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
27605 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
27606 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
27607
27608 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
27609 always selected build attributes to match those of ARMv6-M
27610 (resp. ARMv6S-M). However, due to these architectures being a strict
27611 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
27612 would be selected when fully respecting chronology of architectures.
27613 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
27614 move them before ARMv7 architectures. */
031254f2
AV
27615 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
27616 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
27617
27618 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
27619 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
27620 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
27621 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
27622 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
27623 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
27624 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
27625 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
27626 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
27627 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
27628 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
27629 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
27630 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
27631 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
27632 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
27633 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
27634 {-1, ARM_ARCH_NONE}
62b3e311
PB
27635};
27636
ee3c0378 27637/* Set an attribute if it has not already been set by the user. */
0198d5e6 27638
ee3c0378
AS
27639static void
27640aeabi_set_attribute_int (int tag, int value)
27641{
27642 if (tag < 1
27643 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27644 || !attributes_set_explicitly[tag])
27645 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
27646}
27647
27648static void
27649aeabi_set_attribute_string (int tag, const char *value)
27650{
27651 if (tag < 1
27652 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27653 || !attributes_set_explicitly[tag])
27654 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
27655}
27656
2c6b98ea
TP
27657/* Return whether features in the *NEEDED feature set are available via
27658 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 27659
2c6b98ea
TP
27660static bfd_boolean
27661have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
27662 const arm_feature_set *needed)
27663{
27664 int i, nb_allowed_archs;
27665 arm_feature_set ext_fset;
27666 const struct arm_option_extension_value_table *opt;
27667
27668 ext_fset = arm_arch_none;
27669 for (opt = arm_extensions; opt->name != NULL; opt++)
27670 {
27671 /* Extension does not provide any feature we need. */
27672 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
27673 continue;
27674
27675 nb_allowed_archs =
27676 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27677 for (i = 0; i < nb_allowed_archs; i++)
27678 {
27679 /* Empty entry. */
27680 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
27681 break;
27682
27683 /* Extension is available, add it. */
27684 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
27685 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
27686 }
27687 }
27688
27689 /* Can we enable all features in *needed? */
27690 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
27691}
27692
27693/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
27694 a given architecture feature set *ARCH_EXT_FSET including extension feature
27695 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
27696 - if true, check for an exact match of the architecture modulo extensions;
27697 - otherwise, select build attribute value of the first superset
27698 architecture released so that results remains stable when new architectures
27699 are added.
27700 For -march/-mcpu=all the build attribute value of the most featureful
27701 architecture is returned. Tag_CPU_arch_profile result is returned in
27702 PROFILE. */
0198d5e6 27703
2c6b98ea
TP
27704static int
27705get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27706 const arm_feature_set *ext_fset,
27707 char *profile, int exact_match)
27708{
27709 arm_feature_set arch_fset;
27710 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27711
27712 /* Select most featureful architecture with all its extensions if building
27713 for -march=all as the feature sets used to set build attributes. */
27714 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27715 {
27716 /* Force revisiting of decision for each new architecture. */
031254f2 27717 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
27718 *profile = 'A';
27719 return TAG_CPU_ARCH_V8;
27720 }
27721
27722 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27723
27724 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27725 {
27726 arm_feature_set known_arch_fset;
27727
27728 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27729 if (exact_match)
27730 {
27731 /* Base architecture match user-specified architecture and
27732 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27733 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27734 {
27735 p_ver_ret = p_ver;
27736 goto found;
27737 }
27738 /* Base architecture match user-specified architecture only
27739 (eg. ARMv6-M in the same case as above). Record it in case we
27740 find a match with above condition. */
27741 else if (p_ver_ret == NULL
27742 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27743 p_ver_ret = p_ver;
27744 }
27745 else
27746 {
27747
27748 /* Architecture has all features wanted. */
27749 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27750 {
27751 arm_feature_set added_fset;
27752
27753 /* Compute features added by this architecture over the one
27754 recorded in p_ver_ret. */
27755 if (p_ver_ret != NULL)
27756 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27757 p_ver_ret->flags);
27758 /* First architecture that match incl. with extensions, or the
27759 only difference in features over the recorded match is
27760 features that were optional and are now mandatory. */
27761 if (p_ver_ret == NULL
27762 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27763 {
27764 p_ver_ret = p_ver;
27765 goto found;
27766 }
27767 }
27768 else if (p_ver_ret == NULL)
27769 {
27770 arm_feature_set needed_ext_fset;
27771
27772 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27773
27774 /* Architecture has all features needed when using some
27775 extensions. Record it and continue searching in case there
27776 exist an architecture providing all needed features without
27777 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27778 OS extension). */
27779 if (have_ext_for_needed_feat_p (&known_arch_fset,
27780 &needed_ext_fset))
27781 p_ver_ret = p_ver;
27782 }
27783 }
27784 }
27785
27786 if (p_ver_ret == NULL)
27787 return -1;
27788
27789found:
27790 /* Tag_CPU_arch_profile. */
27791 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27792 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27793 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27794 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27795 *profile = 'A';
27796 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27797 *profile = 'R';
27798 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27799 *profile = 'M';
27800 else
27801 *profile = '\0';
27802 return p_ver_ret->val;
27803}
27804
ee065d83 27805/* Set the public EABI object attributes. */
0198d5e6 27806
c168ce07 27807static void
ee065d83
PB
27808aeabi_set_public_attributes (void)
27809{
b90d5ba0 27810 char profile = '\0';
2c6b98ea 27811 int arch = -1;
90ec0d68 27812 int virt_sec = 0;
bca38921 27813 int fp16_optional = 0;
2c6b98ea
TP
27814 int skip_exact_match = 0;
27815 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 27816
54bab281
TP
27817 /* Autodetection mode, choose the architecture based the instructions
27818 actually used. */
27819 if (no_cpu_selected ())
27820 {
27821 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 27822
54bab281
TP
27823 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27824 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 27825
54bab281
TP
27826 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27827 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 27828
54bab281 27829 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
27830 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27831 flags_ext = arm_arch_none;
27832 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
27833 selected_ext = flags_ext;
54bab281
TP
27834 selected_cpu = flags;
27835 }
27836 /* Otherwise, choose the architecture based on the capabilities of the
27837 requested cpu. */
27838 else
4d354d8b
TP
27839 {
27840 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
27841 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
27842 flags_ext = selected_ext;
27843 flags = selected_cpu;
27844 }
27845 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 27846
ddd7f988 27847 /* Allow the user to override the reported architecture. */
4d354d8b 27848 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 27849 {
4d354d8b 27850 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 27851 flags_ext = arm_arch_none;
7a1d4c38 27852 }
2c6b98ea 27853 else
4d354d8b 27854 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
27855
27856 /* When this function is run again after relaxation has happened there is no
27857 way to determine whether an architecture or CPU was specified by the user:
27858 - selected_cpu is set above for relaxation to work;
27859 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27860 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27861 Therefore, if not in -march=all case we first try an exact match and fall
27862 back to autodetection. */
27863 if (!skip_exact_match)
27864 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27865 if (arch == -1)
27866 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27867 if (arch == -1)
27868 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 27869
ee065d83
PB
27870 /* Tag_CPU_name. */
27871 if (selected_cpu_name[0])
27872 {
91d6fa6a 27873 char *q;
ee065d83 27874
91d6fa6a
NC
27875 q = selected_cpu_name;
27876 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
27877 {
27878 int i;
5f4273c7 27879
91d6fa6a
NC
27880 q += 4;
27881 for (i = 0; q[i]; i++)
27882 q[i] = TOUPPER (q[i]);
ee065d83 27883 }
91d6fa6a 27884 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 27885 }
62f3b8c8 27886
ee065d83 27887 /* Tag_CPU_arch. */
ee3c0378 27888 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 27889
62b3e311 27890 /* Tag_CPU_arch_profile. */
69239280
MGD
27891 if (profile != '\0')
27892 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 27893
15afaa63 27894 /* Tag_DSP_extension. */
4d354d8b 27895 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 27896 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 27897
2c6b98ea 27898 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 27899 /* Tag_ARM_ISA_use. */
ee3c0378 27900 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 27901 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 27902 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 27903
ee065d83 27904 /* Tag_THUMB_ISA_use. */
ee3c0378 27905 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 27906 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
27907 {
27908 int thumb_isa_use;
27909
27910 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 27911 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
27912 thumb_isa_use = 3;
27913 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27914 thumb_isa_use = 2;
27915 else
27916 thumb_isa_use = 1;
27917 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27918 }
62f3b8c8 27919
ee065d83 27920 /* Tag_VFP_arch. */
a715796b
TG
27921 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27922 aeabi_set_attribute_int (Tag_VFP_arch,
27923 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27924 ? 7 : 8);
bca38921 27925 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
27926 aeabi_set_attribute_int (Tag_VFP_arch,
27927 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27928 ? 5 : 6);
27929 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
27930 {
27931 fp16_optional = 1;
27932 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27933 }
ada65aa3 27934 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
27935 {
27936 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27937 fp16_optional = 1;
27938 }
ee3c0378
AS
27939 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27940 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27941 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 27942 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 27943 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 27944
4547cb56
NC
27945 /* Tag_ABI_HardFP_use. */
27946 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27947 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27948 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27949
ee065d83 27950 /* Tag_WMMX_arch. */
ee3c0378
AS
27951 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27952 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27953 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27954 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 27955
ee3c0378 27956 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
27957 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27958 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27959 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
27960 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27961 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27962 {
27963 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27964 {
27965 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27966 }
27967 else
27968 {
27969 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27970 fp16_optional = 1;
27971 }
27972 }
fa94de6b 27973
ee3c0378 27974 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 27975 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 27976 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 27977
69239280
MGD
27978 /* Tag_DIV_use.
27979
27980 We set Tag_DIV_use to two when integer divide instructions have been used
27981 in ARM state, or when Thumb integer divide instructions have been used,
27982 but we have no architecture profile set, nor have we any ARM instructions.
27983
4ed7ed8d
TP
27984 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27985 by the base architecture.
bca38921 27986
69239280 27987 For new architectures we will have to check these tests. */
031254f2 27988 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
27989 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27990 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
27991 aeabi_set_attribute_int (Tag_DIV_use, 0);
27992 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27993 || (profile == '\0'
27994 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27995 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 27996 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
27997
27998 /* Tag_MP_extension_use. */
27999 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
28000 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
28001
28002 /* Tag Virtualization_use. */
28003 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
28004 virt_sec |= 1;
28005 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
28006 virt_sec |= 2;
28007 if (virt_sec != 0)
28008 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
28009}
28010
c168ce07
TP
28011/* Post relaxation hook. Recompute ARM attributes now that relaxation is
28012 finished and free extension feature bits which will not be used anymore. */
0198d5e6 28013
c168ce07
TP
28014void
28015arm_md_post_relax (void)
28016{
28017 aeabi_set_public_attributes ();
4d354d8b
TP
28018 XDELETE (mcpu_ext_opt);
28019 mcpu_ext_opt = NULL;
28020 XDELETE (march_ext_opt);
28021 march_ext_opt = NULL;
c168ce07
TP
28022}
28023
104d59d1 28024/* Add the default contents for the .ARM.attributes section. */
0198d5e6 28025
ee065d83
PB
28026void
28027arm_md_end (void)
28028{
ee065d83
PB
28029 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28030 return;
28031
28032 aeabi_set_public_attributes ();
ee065d83 28033}
8463be01 28034#endif /* OBJ_ELF */
ee065d83 28035
ee065d83
PB
28036/* Parse a .cpu directive. */
28037
28038static void
28039s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
28040{
e74cfd16 28041 const struct arm_cpu_option_table *opt;
ee065d83
PB
28042 char *name;
28043 char saved_char;
28044
28045 name = input_line_pointer;
5f4273c7 28046 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
28047 input_line_pointer++;
28048 saved_char = *input_line_pointer;
28049 *input_line_pointer = 0;
28050
28051 /* Skip the first "all" entry. */
28052 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
28053 if (streq (opt->name, name))
28054 {
4d354d8b
TP
28055 selected_arch = opt->value;
28056 selected_ext = opt->ext;
28057 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 28058 if (opt->canonical_name)
5f4273c7 28059 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
28060 else
28061 {
28062 int i;
28063 for (i = 0; opt->name[i]; i++)
28064 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 28065
ee065d83
PB
28066 selected_cpu_name[i] = 0;
28067 }
4d354d8b
TP
28068 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28069
ee065d83
PB
28070 *input_line_pointer = saved_char;
28071 demand_empty_rest_of_line ();
28072 return;
28073 }
28074 as_bad (_("unknown cpu `%s'"), name);
28075 *input_line_pointer = saved_char;
28076 ignore_rest_of_line ();
28077}
28078
ee065d83
PB
28079/* Parse a .arch directive. */
28080
28081static void
28082s_arm_arch (int ignored ATTRIBUTE_UNUSED)
28083{
e74cfd16 28084 const struct arm_arch_option_table *opt;
ee065d83
PB
28085 char saved_char;
28086 char *name;
28087
28088 name = input_line_pointer;
5f4273c7 28089 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
28090 input_line_pointer++;
28091 saved_char = *input_line_pointer;
28092 *input_line_pointer = 0;
28093
28094 /* Skip the first "all" entry. */
28095 for (opt = arm_archs + 1; opt->name != NULL; opt++)
28096 if (streq (opt->name, name))
28097 {
4d354d8b
TP
28098 selected_arch = opt->value;
28099 selected_ext = arm_arch_none;
28100 selected_cpu = selected_arch;
5f4273c7 28101 strcpy (selected_cpu_name, opt->name);
4d354d8b 28102 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
28103 *input_line_pointer = saved_char;
28104 demand_empty_rest_of_line ();
28105 return;
28106 }
28107
28108 as_bad (_("unknown architecture `%s'\n"), name);
28109 *input_line_pointer = saved_char;
28110 ignore_rest_of_line ();
28111}
28112
7a1d4c38
PB
28113/* Parse a .object_arch directive. */
28114
28115static void
28116s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
28117{
28118 const struct arm_arch_option_table *opt;
28119 char saved_char;
28120 char *name;
28121
28122 name = input_line_pointer;
5f4273c7 28123 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
28124 input_line_pointer++;
28125 saved_char = *input_line_pointer;
28126 *input_line_pointer = 0;
28127
28128 /* Skip the first "all" entry. */
28129 for (opt = arm_archs + 1; opt->name != NULL; opt++)
28130 if (streq (opt->name, name))
28131 {
4d354d8b 28132 selected_object_arch = opt->value;
7a1d4c38
PB
28133 *input_line_pointer = saved_char;
28134 demand_empty_rest_of_line ();
28135 return;
28136 }
28137
28138 as_bad (_("unknown architecture `%s'\n"), name);
28139 *input_line_pointer = saved_char;
28140 ignore_rest_of_line ();
28141}
28142
69133863
MGD
28143/* Parse a .arch_extension directive. */
28144
28145static void
28146s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
28147{
28148 const struct arm_option_extension_value_table *opt;
28149 char saved_char;
28150 char *name;
28151 int adding_value = 1;
28152
28153 name = input_line_pointer;
28154 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28155 input_line_pointer++;
28156 saved_char = *input_line_pointer;
28157 *input_line_pointer = 0;
28158
28159 if (strlen (name) >= 2
28160 && strncmp (name, "no", 2) == 0)
28161 {
28162 adding_value = 0;
28163 name += 2;
28164 }
28165
28166 for (opt = arm_extensions; opt->name != NULL; opt++)
28167 if (streq (opt->name, name))
28168 {
d942732e
TP
28169 int i, nb_allowed_archs =
28170 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
28171 for (i = 0; i < nb_allowed_archs; i++)
28172 {
28173 /* Empty entry. */
4d354d8b 28174 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 28175 continue;
4d354d8b 28176 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
28177 break;
28178 }
28179
28180 if (i == nb_allowed_archs)
69133863
MGD
28181 {
28182 as_bad (_("architectural extension `%s' is not allowed for the "
28183 "current base architecture"), name);
28184 break;
28185 }
28186
28187 if (adding_value)
4d354d8b 28188 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 28189 opt->merge_value);
69133863 28190 else
4d354d8b 28191 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 28192
4d354d8b
TP
28193 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28194 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
28195 *input_line_pointer = saved_char;
28196 demand_empty_rest_of_line ();
3d030cdb
TP
28197 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
28198 on this return so that duplicate extensions (extensions with the
28199 same name as a previous extension in the list) are not considered
28200 for command-line parsing. */
69133863
MGD
28201 return;
28202 }
28203
28204 if (opt->name == NULL)
e673710a 28205 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
28206
28207 *input_line_pointer = saved_char;
28208 ignore_rest_of_line ();
28209}
28210
ee065d83
PB
28211/* Parse a .fpu directive. */
28212
28213static void
28214s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
28215{
69133863 28216 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
28217 char saved_char;
28218 char *name;
28219
28220 name = input_line_pointer;
5f4273c7 28221 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
28222 input_line_pointer++;
28223 saved_char = *input_line_pointer;
28224 *input_line_pointer = 0;
5f4273c7 28225
ee065d83
PB
28226 for (opt = arm_fpus; opt->name != NULL; opt++)
28227 if (streq (opt->name, name))
28228 {
4d354d8b
TP
28229 selected_fpu = opt->value;
28230#ifndef CPU_DEFAULT
28231 if (no_cpu_selected ())
28232 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28233 else
28234#endif
28235 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
28236 *input_line_pointer = saved_char;
28237 demand_empty_rest_of_line ();
28238 return;
28239 }
28240
28241 as_bad (_("unknown floating point format `%s'\n"), name);
28242 *input_line_pointer = saved_char;
28243 ignore_rest_of_line ();
28244}
ee065d83 28245
794ba86a 28246/* Copy symbol information. */
f31fef98 28247
794ba86a
DJ
28248void
28249arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
28250{
28251 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
28252}
e04befd0 28253
f31fef98 28254#ifdef OBJ_ELF
e04befd0
AS
28255/* Given a symbolic attribute NAME, return the proper integer value.
28256 Returns -1 if the attribute is not known. */
f31fef98 28257
e04befd0
AS
28258int
28259arm_convert_symbolic_attribute (const char *name)
28260{
f31fef98
NC
28261 static const struct
28262 {
28263 const char * name;
28264 const int tag;
28265 }
28266 attribute_table[] =
28267 {
28268 /* When you modify this table you should
28269 also modify the list in doc/c-arm.texi. */
e04befd0 28270#define T(tag) {#tag, tag}
f31fef98
NC
28271 T (Tag_CPU_raw_name),
28272 T (Tag_CPU_name),
28273 T (Tag_CPU_arch),
28274 T (Tag_CPU_arch_profile),
28275 T (Tag_ARM_ISA_use),
28276 T (Tag_THUMB_ISA_use),
75375b3e 28277 T (Tag_FP_arch),
f31fef98
NC
28278 T (Tag_VFP_arch),
28279 T (Tag_WMMX_arch),
28280 T (Tag_Advanced_SIMD_arch),
28281 T (Tag_PCS_config),
28282 T (Tag_ABI_PCS_R9_use),
28283 T (Tag_ABI_PCS_RW_data),
28284 T (Tag_ABI_PCS_RO_data),
28285 T (Tag_ABI_PCS_GOT_use),
28286 T (Tag_ABI_PCS_wchar_t),
28287 T (Tag_ABI_FP_rounding),
28288 T (Tag_ABI_FP_denormal),
28289 T (Tag_ABI_FP_exceptions),
28290 T (Tag_ABI_FP_user_exceptions),
28291 T (Tag_ABI_FP_number_model),
75375b3e 28292 T (Tag_ABI_align_needed),
f31fef98 28293 T (Tag_ABI_align8_needed),
75375b3e 28294 T (Tag_ABI_align_preserved),
f31fef98
NC
28295 T (Tag_ABI_align8_preserved),
28296 T (Tag_ABI_enum_size),
28297 T (Tag_ABI_HardFP_use),
28298 T (Tag_ABI_VFP_args),
28299 T (Tag_ABI_WMMX_args),
28300 T (Tag_ABI_optimization_goals),
28301 T (Tag_ABI_FP_optimization_goals),
28302 T (Tag_compatibility),
28303 T (Tag_CPU_unaligned_access),
75375b3e 28304 T (Tag_FP_HP_extension),
f31fef98
NC
28305 T (Tag_VFP_HP_extension),
28306 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
28307 T (Tag_MPextension_use),
28308 T (Tag_DIV_use),
f31fef98
NC
28309 T (Tag_nodefaults),
28310 T (Tag_also_compatible_with),
28311 T (Tag_conformance),
28312 T (Tag_T2EE_use),
28313 T (Tag_Virtualization_use),
15afaa63 28314 T (Tag_DSP_extension),
cd21e546 28315 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 28316#undef T
f31fef98 28317 };
e04befd0
AS
28318 unsigned int i;
28319
28320 if (name == NULL)
28321 return -1;
28322
f31fef98 28323 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 28324 if (streq (name, attribute_table[i].name))
e04befd0
AS
28325 return attribute_table[i].tag;
28326
28327 return -1;
28328}
267bf995 28329
93ef582d
NC
28330/* Apply sym value for relocations only in the case that they are for
28331 local symbols in the same segment as the fixup and you have the
28332 respective architectural feature for blx and simple switches. */
0198d5e6 28333
267bf995 28334int
93ef582d 28335arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
28336{
28337 if (fixP->fx_addsy
28338 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
28339 /* PR 17444: If the local symbol is in a different section then a reloc
28340 will always be generated for it, so applying the symbol value now
28341 will result in a double offset being stored in the relocation. */
28342 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 28343 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
28344 {
28345 switch (fixP->fx_r_type)
28346 {
28347 case BFD_RELOC_ARM_PCREL_BLX:
28348 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28349 if (ARM_IS_FUNC (fixP->fx_addsy))
28350 return 1;
28351 break;
28352
28353 case BFD_RELOC_ARM_PCREL_CALL:
28354 case BFD_RELOC_THUMB_PCREL_BLX:
28355 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 28356 return 1;
267bf995
RR
28357 break;
28358
28359 default:
28360 break;
28361 }
28362
28363 }
28364 return 0;
28365}
f31fef98 28366#endif /* OBJ_ELF */
This page took 3.935012 seconds and 4 git commands to generate.