* gas/config/tc-arm.c (parse_neon_mov): Update which_operand
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4a58c4bd 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
3da1d841 35#include "libiberty.h"
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 210static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 211
2d447fca
JM
212static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
214static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 226static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 227static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
228static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
230static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
233static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 236
33a392fb 237static int mfloat_abi_opt = -1;
e74cfd16
PB
238/* Record user cpu selection for object attributes. */
239static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
240/* Must be long enough to hold any of the names in arm_cpus. */
241static char selected_cpu_name[16];
8d67f500
NC
242
243/* Return if no cpu was selected on command-line. */
244static bfd_boolean
245no_cpu_selected (void)
246{
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249}
250
7cc69913 251#ifdef OBJ_ELF
deeaaff8
DJ
252# ifdef EABI_DEFAULT
253static int meabi_flags = EABI_DEFAULT;
254# else
d507cf36 255static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 256# endif
e1da3f5b 257
ee3c0378
AS
258static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
e1da3f5b 260bfd_boolean
5f4273c7 261arm_is_eabi (void)
e1da3f5b
PB
262{
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264}
7cc69913 265#endif
b99bd4ef 266
b99bd4ef 267#ifdef OBJ_ELF
c19d1205 268/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
269symbolS * GOT_symbol;
270#endif
271
b99bd4ef
NC
272/* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276static int thumb_mode = 0;
8dc2430f
NC
277/* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280#define MODE_RECORDED (1 << 4)
b99bd4ef 281
e07e6e58
NC
282/* Specifies the intrinsic IT insn behavior mode. */
283enum implicit_it_mode
284{
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289};
290static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
c19d1205
ZW
292/* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315static bfd_boolean unified_syntax = FALSE;
b99bd4ef 316
5287ad62
JB
317enum neon_el_type
318{
dcbf9037 319 NT_invtype,
5287ad62
JB
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
dcbf9037 325 NT_unsigned
5287ad62
JB
326};
327
328struct neon_type_el
329{
330 enum neon_el_type type;
331 unsigned size;
332};
333
334#define NEON_MAX_TYPE_ELS 4
335
336struct neon_type
337{
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340};
341
e07e6e58
NC
342enum it_instruction_type
343{
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352};
353
b99bd4ef
NC
354struct arm_it
355{
c19d1205 356 const char * error;
b99bd4ef 357 unsigned long instruction;
c19d1205
ZW
358 int size;
359 int size_req;
360 int cond;
037e8744
JB
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
5287ad62 365 struct neon_type vectype;
88714cb8
DG
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
0110f2b8
PB
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
b99bd4ef
NC
372 struct
373 {
374 bfd_reloc_code_real_type type;
c19d1205
ZW
375 expressionS exp;
376 int pc_rel;
b99bd4ef 377 } reloc;
b99bd4ef 378
e07e6e58
NC
379 enum it_instruction_type it_insn_type;
380
c19d1205
ZW
381 struct
382 {
383 unsigned reg;
ca3f61f7 384 signed int imm;
dcbf9037 385 struct neon_type_el vectype;
ca3f61f7
NC
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 405 } operands[6];
b99bd4ef
NC
406};
407
c19d1205 408static struct arm_it inst;
b99bd4ef
NC
409
410#define NUM_FLOAT_VALS 8
411
05d2d07e 412const char * fp_const[] =
b99bd4ef
NC
413{
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415};
416
c19d1205 417/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
418#define MAX_LITTLENUMS 6
419
420LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422#define FAIL (-1)
423#define SUCCESS (0)
424
425#define SUFF_S 1
426#define SUFF_D 2
427#define SUFF_E 3
428#define SUFF_P 4
429
c19d1205
ZW
430#define CP_T_X 0x00008000
431#define CP_T_Y 0x00400000
b99bd4ef 432
c19d1205
ZW
433#define CONDS_BIT 0x00100000
434#define LOAD_BIT 0x00100000
b99bd4ef
NC
435
436#define DOUBLE_LOAD_FLAG 0x00000001
437
438struct asm_cond
439{
d3ce72d0 440 const char * template_name;
c921be7d 441 unsigned long value;
b99bd4ef
NC
442};
443
c19d1205 444#define COND_ALWAYS 0xE
b99bd4ef 445
b99bd4ef
NC
446struct asm_psr
447{
d3ce72d0 448 const char * template_name;
c921be7d 449 unsigned long field;
b99bd4ef
NC
450};
451
62b3e311
PB
452struct asm_barrier_opt
453{
d3ce72d0 454 const char * template_name;
c921be7d 455 unsigned long value;
62b3e311
PB
456};
457
2d2255b5 458/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
459#define SPSR_BIT (1 << 22)
460
c19d1205
ZW
461/* The individual PSR flag bits. */
462#define PSR_c (1 << 16)
463#define PSR_x (1 << 17)
464#define PSR_s (1 << 18)
465#define PSR_f (1 << 19)
b99bd4ef 466
c19d1205 467struct reloc_entry
bfae80f2 468{
c921be7d
NC
469 char * name;
470 bfd_reloc_code_real_type reloc;
bfae80f2
RE
471};
472
5287ad62 473enum vfp_reg_pos
bfae80f2 474{
5287ad62
JB
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
477};
478
479enum vfp_ldstm_type
480{
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482};
483
dcbf9037
JB
484/* Bits for DEFINED field in neon_typed_alias. */
485#define NTA_HASTYPE 1
486#define NTA_HASINDEX 2
487
488struct neon_typed_alias
489{
c921be7d
NC
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
dcbf9037
JB
493};
494
c19d1205
ZW
495/* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497enum arm_reg_type
bfae80f2 498{
c19d1205
ZW
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
5287ad62 505 REG_TYPE_NQ,
037e8744 506 REG_TYPE_VFSD,
5287ad62 507 REG_TYPE_NDQ,
037e8744 508 REG_TYPE_NSDQ,
c19d1205
ZW
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
90ec0d68 520 REG_TYPE_RNB
bfae80f2
RE
521};
522
dcbf9037
JB
523/* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
527struct reg_entry
528{
c921be7d 529 const char * name;
90ec0d68 530 unsigned int number;
c921be7d
NC
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
6c43fab6
RE
534};
535
c19d1205 536/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 537const char * const reg_expected_msgs[] =
c19d1205
ZW
538{
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
5287ad62
JB
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
037e8744 546 N_("VFP single or double precision register expected"),
5287ad62 547 N_("Neon double or quad precision register expected"),
037e8744 548 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
6c43fab6
RE
560};
561
c19d1205
ZW
562/* Some well known registers that we refer to directly elsewhere. */
563#define REG_SP 13
564#define REG_LR 14
565#define REG_PC 15
404ff6b5 566
b99bd4ef
NC
567/* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
c19d1205 569#define INSN_SIZE 4
b99bd4ef
NC
570
571struct asm_opcode
572{
573 /* Basic string to match. */
d3ce72d0 574 const char * template_name;
c19d1205
ZW
575
576 /* Parameters to instruction. */
5be8be5d 577 unsigned int operands[8];
c19d1205
ZW
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
b99bd4ef
NC
581
582 /* Basic instruction code. */
c19d1205 583 unsigned int avalue : 28;
b99bd4ef 584
c19d1205
ZW
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
b99bd4ef 587
90e4755a 588 /* Which architecture variant provides this instruction. */
c921be7d
NC
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
c19d1205
ZW
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
b99bd4ef 594
c19d1205
ZW
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
b99bd4ef
NC
597};
598
a737bd4d
NC
599/* Defines for various bits that we will want to toggle. */
600#define INST_IMMEDIATE 0x02000000
601#define OFFSET_REG 0x02000000
c19d1205 602#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
603#define SHIFT_BY_REG 0x00000010
604#define PRE_INDEX 0x01000000
605#define INDEX_UP 0x00800000
606#define WRITE_BACK 0x00200000
607#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 608#define CPSI_MMOD 0x00020000
90e4755a 609
a737bd4d
NC
610#define LITERAL_MASK 0xf000f000
611#define OPCODE_MASK 0xfe1fffff
612#define V4_STR_BIT 0x00000020
90e4755a 613
efd81785
PB
614#define T2_SUBS_PC_LR 0xf3de8f00
615
a737bd4d 616#define DATA_OP_SHIFT 21
90e4755a 617
ef8d22e6
PB
618#define T2_OPCODE_MASK 0xfe1fffff
619#define T2_DATA_OP_SHIFT 21
620
a737bd4d
NC
621/* Codes to distinguish the arithmetic instructions. */
622#define OPCODE_AND 0
623#define OPCODE_EOR 1
624#define OPCODE_SUB 2
625#define OPCODE_RSB 3
626#define OPCODE_ADD 4
627#define OPCODE_ADC 5
628#define OPCODE_SBC 6
629#define OPCODE_RSC 7
630#define OPCODE_TST 8
631#define OPCODE_TEQ 9
632#define OPCODE_CMP 10
633#define OPCODE_CMN 11
634#define OPCODE_ORR 12
635#define OPCODE_MOV 13
636#define OPCODE_BIC 14
637#define OPCODE_MVN 15
90e4755a 638
ef8d22e6
PB
639#define T2_OPCODE_AND 0
640#define T2_OPCODE_BIC 1
641#define T2_OPCODE_ORR 2
642#define T2_OPCODE_ORN 3
643#define T2_OPCODE_EOR 4
644#define T2_OPCODE_ADD 8
645#define T2_OPCODE_ADC 10
646#define T2_OPCODE_SBC 11
647#define T2_OPCODE_SUB 13
648#define T2_OPCODE_RSB 14
649
a737bd4d
NC
650#define T_OPCODE_MUL 0x4340
651#define T_OPCODE_TST 0x4200
652#define T_OPCODE_CMN 0x42c0
653#define T_OPCODE_NEG 0x4240
654#define T_OPCODE_MVN 0x43c0
90e4755a 655
a737bd4d
NC
656#define T_OPCODE_ADD_R3 0x1800
657#define T_OPCODE_SUB_R3 0x1a00
658#define T_OPCODE_ADD_HI 0x4400
659#define T_OPCODE_ADD_ST 0xb000
660#define T_OPCODE_SUB_ST 0xb080
661#define T_OPCODE_ADD_SP 0xa800
662#define T_OPCODE_ADD_PC 0xa000
663#define T_OPCODE_ADD_I8 0x3000
664#define T_OPCODE_SUB_I8 0x3800
665#define T_OPCODE_ADD_I3 0x1c00
666#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 667
a737bd4d
NC
668#define T_OPCODE_ASR_R 0x4100
669#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
670#define T_OPCODE_LSR_R 0x40c0
671#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
672#define T_OPCODE_ASR_I 0x1000
673#define T_OPCODE_LSL_I 0x0000
674#define T_OPCODE_LSR_I 0x0800
b99bd4ef 675
a737bd4d
NC
676#define T_OPCODE_MOV_I8 0x2000
677#define T_OPCODE_CMP_I8 0x2800
678#define T_OPCODE_CMP_LR 0x4280
679#define T_OPCODE_MOV_HR 0x4600
680#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 681
a737bd4d
NC
682#define T_OPCODE_LDR_PC 0x4800
683#define T_OPCODE_LDR_SP 0x9800
684#define T_OPCODE_STR_SP 0x9000
685#define T_OPCODE_LDR_IW 0x6800
686#define T_OPCODE_STR_IW 0x6000
687#define T_OPCODE_LDR_IH 0x8800
688#define T_OPCODE_STR_IH 0x8000
689#define T_OPCODE_LDR_IB 0x7800
690#define T_OPCODE_STR_IB 0x7000
691#define T_OPCODE_LDR_RW 0x5800
692#define T_OPCODE_STR_RW 0x5000
693#define T_OPCODE_LDR_RH 0x5a00
694#define T_OPCODE_STR_RH 0x5200
695#define T_OPCODE_LDR_RB 0x5c00
696#define T_OPCODE_STR_RB 0x5400
c9b604bd 697
a737bd4d
NC
698#define T_OPCODE_PUSH 0xb400
699#define T_OPCODE_POP 0xbc00
b99bd4ef 700
2fc8bdac 701#define T_OPCODE_BRANCH 0xe000
b99bd4ef 702
a737bd4d 703#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 704#define THUMB_PP_PC_LR 0x0100
c19d1205 705#define THUMB_LOAD_BIT 0x0800
53365c0d 706#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
707
708#define BAD_ARGS _("bad arguments to instruction")
fdfde340 709#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
710#define BAD_PC _("r15 not allowed here")
711#define BAD_COND _("instruction cannot be conditional")
712#define BAD_OVERLAP _("registers may not be the same")
713#define BAD_HIREG _("lo register required")
714#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 715#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
716#define BAD_BRANCH _("branch must be last instruction in IT block")
717#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 718#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
719#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720#define BAD_IT_COND _("incorrect condition in IT block")
721#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 722#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
723#define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725#define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
08f10d51 727#define BAD_RANGE _("branch out of range")
c19d1205 728
c921be7d
NC
729static struct hash_control * arm_ops_hsh;
730static struct hash_control * arm_cond_hsh;
731static struct hash_control * arm_shift_hsh;
732static struct hash_control * arm_psr_hsh;
733static struct hash_control * arm_v7m_psr_hsh;
734static struct hash_control * arm_reg_hsh;
735static struct hash_control * arm_reloc_hsh;
736static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 737
b99bd4ef
NC
738/* Stuff needed to resolve the label ambiguity
739 As:
740 ...
741 label: <insn>
742 may differ from:
743 ...
744 label:
5f4273c7 745 <insn> */
b99bd4ef
NC
746
747symbolS * last_label_seen;
b34976b6 748static int label_is_thumb_function_name = FALSE;
e07e6e58 749
3d0c9500
NC
750/* Literal pool structure. Held on a per-section
751 and per-sub-section basis. */
a737bd4d 752
c19d1205 753#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 754typedef struct literal_pool
b99bd4ef 755{
c921be7d
NC
756 expressionS literals [MAX_LITERAL_POOL_SIZE];
757 unsigned int next_free_entry;
758 unsigned int id;
759 symbolS * symbol;
760 segT section;
761 subsegT sub_section;
a8040cf2
NC
762#ifdef OBJ_ELF
763 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
764#endif
c921be7d 765 struct literal_pool * next;
3d0c9500 766} literal_pool;
b99bd4ef 767
3d0c9500
NC
768/* Pointer to a linked list of literal pools. */
769literal_pool * list_of_pools = NULL;
e27ec89e 770
e07e6e58
NC
771#ifdef OBJ_ELF
772# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
773#else
774static struct current_it now_it;
775#endif
776
777static inline int
778now_it_compatible (int cond)
779{
780 return (cond & ~1) == (now_it.cc & ~1);
781}
782
783static inline int
784conditional_insn (void)
785{
786 return inst.cond != COND_ALWAYS;
787}
788
789static int in_it_block (void);
790
791static int handle_it_state (void);
792
793static void force_automatic_it_block_close (void);
794
c921be7d
NC
795static void it_fsm_post_encode (void);
796
e07e6e58
NC
797#define set_it_insn_type(type) \
798 do \
799 { \
800 inst.it_insn_type = type; \
801 if (handle_it_state () == FAIL) \
802 return; \
803 } \
804 while (0)
805
c921be7d
NC
806#define set_it_insn_type_nonvoid(type, failret) \
807 do \
808 { \
809 inst.it_insn_type = type; \
810 if (handle_it_state () == FAIL) \
811 return failret; \
812 } \
813 while(0)
814
e07e6e58
NC
815#define set_it_insn_type_last() \
816 do \
817 { \
818 if (inst.cond == COND_ALWAYS) \
819 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
820 else \
821 set_it_insn_type (INSIDE_IT_LAST_INSN); \
822 } \
823 while (0)
824
c19d1205 825/* Pure syntax. */
b99bd4ef 826
c19d1205
ZW
827/* This array holds the chars that always start a comment. If the
828 pre-processor is disabled, these aren't very useful. */
829const char comment_chars[] = "@";
3d0c9500 830
c19d1205
ZW
831/* This array holds the chars that only start a comment at the beginning of
832 a line. If the line seems to have the form '# 123 filename'
833 .line and .file directives will appear in the pre-processed output. */
834/* Note that input_file.c hand checks for '#' at the beginning of the
835 first line of the input file. This is because the compiler outputs
836 #NO_APP at the beginning of its output. */
837/* Also note that comments like this one will always work. */
838const char line_comment_chars[] = "#";
3d0c9500 839
c19d1205 840const char line_separator_chars[] = ";";
b99bd4ef 841
c19d1205
ZW
842/* Chars that can be used to separate mant
843 from exp in floating point numbers. */
844const char EXP_CHARS[] = "eE";
3d0c9500 845
c19d1205
ZW
846/* Chars that mean this number is a floating point constant. */
847/* As in 0f12.456 */
848/* or 0d1.2345e12 */
b99bd4ef 849
c19d1205 850const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 851
c19d1205
ZW
852/* Prefix characters that indicate the start of an immediate
853 value. */
854#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 855
c19d1205
ZW
856/* Separator character handling. */
857
858#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
859
860static inline int
861skip_past_char (char ** str, char c)
862{
863 if (**str == c)
864 {
865 (*str)++;
866 return SUCCESS;
3d0c9500 867 }
c19d1205
ZW
868 else
869 return FAIL;
870}
c921be7d 871
c19d1205 872#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 873
c19d1205
ZW
874/* Arithmetic expressions (possibly involving symbols). */
875
876/* Return TRUE if anything in the expression is a bignum. */
877
878static int
879walk_no_bignums (symbolS * sp)
880{
881 if (symbol_get_value_expression (sp)->X_op == O_big)
882 return 1;
883
884 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 885 {
c19d1205
ZW
886 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
887 || (symbol_get_value_expression (sp)->X_op_symbol
888 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
889 }
890
c19d1205 891 return 0;
3d0c9500
NC
892}
893
c19d1205
ZW
894static int in_my_get_expression = 0;
895
896/* Third argument to my_get_expression. */
897#define GE_NO_PREFIX 0
898#define GE_IMM_PREFIX 1
899#define GE_OPT_PREFIX 2
5287ad62
JB
900/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
901 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
902#define GE_OPT_PREFIX_BIG 3
a737bd4d 903
b99bd4ef 904static int
c19d1205 905my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 906{
c19d1205
ZW
907 char * save_in;
908 segT seg;
b99bd4ef 909
c19d1205
ZW
910 /* In unified syntax, all prefixes are optional. */
911 if (unified_syntax)
5287ad62
JB
912 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
913 : GE_OPT_PREFIX;
b99bd4ef 914
c19d1205 915 switch (prefix_mode)
b99bd4ef 916 {
c19d1205
ZW
917 case GE_NO_PREFIX: break;
918 case GE_IMM_PREFIX:
919 if (!is_immediate_prefix (**str))
920 {
921 inst.error = _("immediate expression requires a # prefix");
922 return FAIL;
923 }
924 (*str)++;
925 break;
926 case GE_OPT_PREFIX:
5287ad62 927 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
928 if (is_immediate_prefix (**str))
929 (*str)++;
930 break;
931 default: abort ();
932 }
b99bd4ef 933
c19d1205 934 memset (ep, 0, sizeof (expressionS));
b99bd4ef 935
c19d1205
ZW
936 save_in = input_line_pointer;
937 input_line_pointer = *str;
938 in_my_get_expression = 1;
939 seg = expression (ep);
940 in_my_get_expression = 0;
941
f86adc07 942 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 943 {
f86adc07 944 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
945 *str = input_line_pointer;
946 input_line_pointer = save_in;
947 if (inst.error == NULL)
f86adc07
NS
948 inst.error = (ep->X_op == O_absent
949 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
950 return 1;
951 }
b99bd4ef 952
c19d1205
ZW
953#ifdef OBJ_AOUT
954 if (seg != absolute_section
955 && seg != text_section
956 && seg != data_section
957 && seg != bss_section
958 && seg != undefined_section)
959 {
960 inst.error = _("bad segment");
961 *str = input_line_pointer;
962 input_line_pointer = save_in;
963 return 1;
b99bd4ef 964 }
87975d2a
AM
965#else
966 (void) seg;
c19d1205 967#endif
b99bd4ef 968
c19d1205
ZW
969 /* Get rid of any bignums now, so that we don't generate an error for which
970 we can't establish a line number later on. Big numbers are never valid
971 in instructions, which is where this routine is always called. */
5287ad62
JB
972 if (prefix_mode != GE_OPT_PREFIX_BIG
973 && (ep->X_op == O_big
974 || (ep->X_add_symbol
975 && (walk_no_bignums (ep->X_add_symbol)
976 || (ep->X_op_symbol
977 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
978 {
979 inst.error = _("invalid constant");
980 *str = input_line_pointer;
981 input_line_pointer = save_in;
982 return 1;
983 }
b99bd4ef 984
c19d1205
ZW
985 *str = input_line_pointer;
986 input_line_pointer = save_in;
987 return 0;
b99bd4ef
NC
988}
989
c19d1205
ZW
990/* Turn a string in input_line_pointer into a floating point constant
991 of type TYPE, and store the appropriate bytes in *LITP. The number
992 of LITTLENUMS emitted is stored in *SIZEP. An error message is
993 returned, or NULL on OK.
b99bd4ef 994
c19d1205
ZW
995 Note that fp constants aren't represent in the normal way on the ARM.
996 In big endian mode, things are as expected. However, in little endian
997 mode fp constants are big-endian word-wise, and little-endian byte-wise
998 within the words. For example, (double) 1.1 in big endian mode is
999 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1000 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1001
c19d1205 1002 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1003
c19d1205
ZW
1004char *
1005md_atof (int type, char * litP, int * sizeP)
1006{
1007 int prec;
1008 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1009 char *t;
1010 int i;
b99bd4ef 1011
c19d1205
ZW
1012 switch (type)
1013 {
1014 case 'f':
1015 case 'F':
1016 case 's':
1017 case 'S':
1018 prec = 2;
1019 break;
b99bd4ef 1020
c19d1205
ZW
1021 case 'd':
1022 case 'D':
1023 case 'r':
1024 case 'R':
1025 prec = 4;
1026 break;
b99bd4ef 1027
c19d1205
ZW
1028 case 'x':
1029 case 'X':
499ac353 1030 prec = 5;
c19d1205 1031 break;
b99bd4ef 1032
c19d1205
ZW
1033 case 'p':
1034 case 'P':
499ac353 1035 prec = 5;
c19d1205 1036 break;
a737bd4d 1037
c19d1205
ZW
1038 default:
1039 *sizeP = 0;
499ac353 1040 return _("Unrecognized or unsupported floating point constant");
c19d1205 1041 }
b99bd4ef 1042
c19d1205
ZW
1043 t = atof_ieee (input_line_pointer, type, words);
1044 if (t)
1045 input_line_pointer = t;
499ac353 1046 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1047
c19d1205
ZW
1048 if (target_big_endian)
1049 {
1050 for (i = 0; i < prec; i++)
1051 {
499ac353
NC
1052 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1053 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1054 }
1055 }
1056 else
1057 {
e74cfd16 1058 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1059 for (i = prec - 1; i >= 0; i--)
1060 {
499ac353
NC
1061 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1062 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1063 }
1064 else
1065 /* For a 4 byte float the order of elements in `words' is 1 0.
1066 For an 8 byte float the order is 1 0 3 2. */
1067 for (i = 0; i < prec; i += 2)
1068 {
499ac353
NC
1069 md_number_to_chars (litP, (valueT) words[i + 1],
1070 sizeof (LITTLENUM_TYPE));
1071 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1072 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1074 }
1075 }
b99bd4ef 1076
499ac353 1077 return NULL;
c19d1205 1078}
b99bd4ef 1079
c19d1205
ZW
1080/* We handle all bad expressions here, so that we can report the faulty
1081 instruction in the error message. */
1082void
91d6fa6a 1083md_operand (expressionS * exp)
c19d1205
ZW
1084{
1085 if (in_my_get_expression)
91d6fa6a 1086 exp->X_op = O_illegal;
b99bd4ef
NC
1087}
1088
c19d1205 1089/* Immediate values. */
b99bd4ef 1090
c19d1205
ZW
1091/* Generic immediate-value read function for use in directives.
1092 Accepts anything that 'expression' can fold to a constant.
1093 *val receives the number. */
1094#ifdef OBJ_ELF
1095static int
1096immediate_for_directive (int *val)
b99bd4ef 1097{
c19d1205
ZW
1098 expressionS exp;
1099 exp.X_op = O_illegal;
b99bd4ef 1100
c19d1205
ZW
1101 if (is_immediate_prefix (*input_line_pointer))
1102 {
1103 input_line_pointer++;
1104 expression (&exp);
1105 }
b99bd4ef 1106
c19d1205
ZW
1107 if (exp.X_op != O_constant)
1108 {
1109 as_bad (_("expected #constant"));
1110 ignore_rest_of_line ();
1111 return FAIL;
1112 }
1113 *val = exp.X_add_number;
1114 return SUCCESS;
b99bd4ef 1115}
c19d1205 1116#endif
b99bd4ef 1117
c19d1205 1118/* Register parsing. */
b99bd4ef 1119
c19d1205
ZW
1120/* Generic register parser. CCP points to what should be the
1121 beginning of a register name. If it is indeed a valid register
1122 name, advance CCP over it and return the reg_entry structure;
1123 otherwise return NULL. Does not issue diagnostics. */
1124
1125static struct reg_entry *
1126arm_reg_parse_multi (char **ccp)
b99bd4ef 1127{
c19d1205
ZW
1128 char *start = *ccp;
1129 char *p;
1130 struct reg_entry *reg;
b99bd4ef 1131
c19d1205
ZW
1132#ifdef REGISTER_PREFIX
1133 if (*start != REGISTER_PREFIX)
01cfc07f 1134 return NULL;
c19d1205
ZW
1135 start++;
1136#endif
1137#ifdef OPTIONAL_REGISTER_PREFIX
1138 if (*start == OPTIONAL_REGISTER_PREFIX)
1139 start++;
1140#endif
b99bd4ef 1141
c19d1205
ZW
1142 p = start;
1143 if (!ISALPHA (*p) || !is_name_beginner (*p))
1144 return NULL;
b99bd4ef 1145
c19d1205
ZW
1146 do
1147 p++;
1148 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1149
1150 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1151
1152 if (!reg)
1153 return NULL;
1154
1155 *ccp = p;
1156 return reg;
b99bd4ef
NC
1157}
1158
1159static int
dcbf9037
JB
1160arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1161 enum arm_reg_type type)
b99bd4ef 1162{
c19d1205
ZW
1163 /* Alternative syntaxes are accepted for a few register classes. */
1164 switch (type)
1165 {
1166 case REG_TYPE_MVF:
1167 case REG_TYPE_MVD:
1168 case REG_TYPE_MVFX:
1169 case REG_TYPE_MVDX:
1170 /* Generic coprocessor register names are allowed for these. */
79134647 1171 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1172 return reg->number;
1173 break;
69b97547 1174
c19d1205
ZW
1175 case REG_TYPE_CP:
1176 /* For backward compatibility, a bare number is valid here. */
1177 {
1178 unsigned long processor = strtoul (start, ccp, 10);
1179 if (*ccp != start && processor <= 15)
1180 return processor;
1181 }
6057a28f 1182
c19d1205
ZW
1183 case REG_TYPE_MMXWC:
1184 /* WC includes WCG. ??? I'm not sure this is true for all
1185 instructions that take WC registers. */
79134647 1186 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1187 return reg->number;
6057a28f 1188 break;
c19d1205 1189
6057a28f 1190 default:
c19d1205 1191 break;
6057a28f
NC
1192 }
1193
dcbf9037
JB
1194 return FAIL;
1195}
1196
1197/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1198 return value is the register number or FAIL. */
1199
1200static int
1201arm_reg_parse (char **ccp, enum arm_reg_type type)
1202{
1203 char *start = *ccp;
1204 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1205 int ret;
1206
1207 /* Do not allow a scalar (reg+index) to parse as a register. */
1208 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1209 return FAIL;
1210
1211 if (reg && reg->type == type)
1212 return reg->number;
1213
1214 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1215 return ret;
1216
c19d1205
ZW
1217 *ccp = start;
1218 return FAIL;
1219}
69b97547 1220
dcbf9037
JB
1221/* Parse a Neon type specifier. *STR should point at the leading '.'
1222 character. Does no verification at this stage that the type fits the opcode
1223 properly. E.g.,
1224
1225 .i32.i32.s16
1226 .s32.f32
1227 .u16
1228
1229 Can all be legally parsed by this function.
1230
1231 Fills in neon_type struct pointer with parsed information, and updates STR
1232 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1233 type, FAIL if not. */
1234
1235static int
1236parse_neon_type (struct neon_type *type, char **str)
1237{
1238 char *ptr = *str;
1239
1240 if (type)
1241 type->elems = 0;
1242
1243 while (type->elems < NEON_MAX_TYPE_ELS)
1244 {
1245 enum neon_el_type thistype = NT_untyped;
1246 unsigned thissize = -1u;
1247
1248 if (*ptr != '.')
1249 break;
1250
1251 ptr++;
1252
1253 /* Just a size without an explicit type. */
1254 if (ISDIGIT (*ptr))
1255 goto parsesize;
1256
1257 switch (TOLOWER (*ptr))
1258 {
1259 case 'i': thistype = NT_integer; break;
1260 case 'f': thistype = NT_float; break;
1261 case 'p': thistype = NT_poly; break;
1262 case 's': thistype = NT_signed; break;
1263 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1264 case 'd':
1265 thistype = NT_float;
1266 thissize = 64;
1267 ptr++;
1268 goto done;
dcbf9037
JB
1269 default:
1270 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1271 return FAIL;
1272 }
1273
1274 ptr++;
1275
1276 /* .f is an abbreviation for .f32. */
1277 if (thistype == NT_float && !ISDIGIT (*ptr))
1278 thissize = 32;
1279 else
1280 {
1281 parsesize:
1282 thissize = strtoul (ptr, &ptr, 10);
1283
1284 if (thissize != 8 && thissize != 16 && thissize != 32
1285 && thissize != 64)
1286 {
1287 as_bad (_("bad size %d in type specifier"), thissize);
1288 return FAIL;
1289 }
1290 }
1291
037e8744 1292 done:
dcbf9037
JB
1293 if (type)
1294 {
1295 type->el[type->elems].type = thistype;
1296 type->el[type->elems].size = thissize;
1297 type->elems++;
1298 }
1299 }
1300
1301 /* Empty/missing type is not a successful parse. */
1302 if (type->elems == 0)
1303 return FAIL;
1304
1305 *str = ptr;
1306
1307 return SUCCESS;
1308}
1309
1310/* Errors may be set multiple times during parsing or bit encoding
1311 (particularly in the Neon bits), but usually the earliest error which is set
1312 will be the most meaningful. Avoid overwriting it with later (cascading)
1313 errors by calling this function. */
1314
1315static void
1316first_error (const char *err)
1317{
1318 if (!inst.error)
1319 inst.error = err;
1320}
1321
1322/* Parse a single type, e.g. ".s32", leading period included. */
1323static int
1324parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1325{
1326 char *str = *ccp;
1327 struct neon_type optype;
1328
1329 if (*str == '.')
1330 {
1331 if (parse_neon_type (&optype, &str) == SUCCESS)
1332 {
1333 if (optype.elems == 1)
1334 *vectype = optype.el[0];
1335 else
1336 {
1337 first_error (_("only one type should be specified for operand"));
1338 return FAIL;
1339 }
1340 }
1341 else
1342 {
1343 first_error (_("vector type expected"));
1344 return FAIL;
1345 }
1346 }
1347 else
1348 return FAIL;
5f4273c7 1349
dcbf9037 1350 *ccp = str;
5f4273c7 1351
dcbf9037
JB
1352 return SUCCESS;
1353}
1354
1355/* Special meanings for indices (which have a range of 0-7), which will fit into
1356 a 4-bit integer. */
1357
1358#define NEON_ALL_LANES 15
1359#define NEON_INTERLEAVE_LANES 14
1360
1361/* Parse either a register or a scalar, with an optional type. Return the
1362 register number, and optionally fill in the actual type of the register
1363 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1364 type/index information in *TYPEINFO. */
1365
1366static int
1367parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1368 enum arm_reg_type *rtype,
1369 struct neon_typed_alias *typeinfo)
1370{
1371 char *str = *ccp;
1372 struct reg_entry *reg = arm_reg_parse_multi (&str);
1373 struct neon_typed_alias atype;
1374 struct neon_type_el parsetype;
1375
1376 atype.defined = 0;
1377 atype.index = -1;
1378 atype.eltype.type = NT_invtype;
1379 atype.eltype.size = -1;
1380
1381 /* Try alternate syntax for some types of register. Note these are mutually
1382 exclusive with the Neon syntax extensions. */
1383 if (reg == NULL)
1384 {
1385 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1386 if (altreg != FAIL)
1387 *ccp = str;
1388 if (typeinfo)
1389 *typeinfo = atype;
1390 return altreg;
1391 }
1392
037e8744
JB
1393 /* Undo polymorphism when a set of register types may be accepted. */
1394 if ((type == REG_TYPE_NDQ
1395 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1396 || (type == REG_TYPE_VFSD
1397 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1398 || (type == REG_TYPE_NSDQ
1399 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1400 || reg->type == REG_TYPE_NQ))
1401 || (type == REG_TYPE_MMXWC
1402 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1403 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1404
1405 if (type != reg->type)
1406 return FAIL;
1407
1408 if (reg->neon)
1409 atype = *reg->neon;
5f4273c7 1410
dcbf9037
JB
1411 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1412 {
1413 if ((atype.defined & NTA_HASTYPE) != 0)
1414 {
1415 first_error (_("can't redefine type for operand"));
1416 return FAIL;
1417 }
1418 atype.defined |= NTA_HASTYPE;
1419 atype.eltype = parsetype;
1420 }
5f4273c7 1421
dcbf9037
JB
1422 if (skip_past_char (&str, '[') == SUCCESS)
1423 {
1424 if (type != REG_TYPE_VFD)
1425 {
1426 first_error (_("only D registers may be indexed"));
1427 return FAIL;
1428 }
5f4273c7 1429
dcbf9037
JB
1430 if ((atype.defined & NTA_HASINDEX) != 0)
1431 {
1432 first_error (_("can't change index for operand"));
1433 return FAIL;
1434 }
1435
1436 atype.defined |= NTA_HASINDEX;
1437
1438 if (skip_past_char (&str, ']') == SUCCESS)
1439 atype.index = NEON_ALL_LANES;
1440 else
1441 {
1442 expressionS exp;
1443
1444 my_get_expression (&exp, &str, GE_NO_PREFIX);
1445
1446 if (exp.X_op != O_constant)
1447 {
1448 first_error (_("constant expression required"));
1449 return FAIL;
1450 }
1451
1452 if (skip_past_char (&str, ']') == FAIL)
1453 return FAIL;
1454
1455 atype.index = exp.X_add_number;
1456 }
1457 }
5f4273c7 1458
dcbf9037
JB
1459 if (typeinfo)
1460 *typeinfo = atype;
5f4273c7 1461
dcbf9037
JB
1462 if (rtype)
1463 *rtype = type;
5f4273c7 1464
dcbf9037 1465 *ccp = str;
5f4273c7 1466
dcbf9037
JB
1467 return reg->number;
1468}
1469
1470/* Like arm_reg_parse, but allow allow the following extra features:
1471 - If RTYPE is non-zero, return the (possibly restricted) type of the
1472 register (e.g. Neon double or quad reg when either has been requested).
1473 - If this is a Neon vector type with additional type information, fill
1474 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1475 This function will fault on encountering a scalar. */
dcbf9037
JB
1476
1477static int
1478arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1479 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1480{
1481 struct neon_typed_alias atype;
1482 char *str = *ccp;
1483 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1484
1485 if (reg == FAIL)
1486 return FAIL;
1487
0855e32b
NS
1488 /* Do not allow regname(... to parse as a register. */
1489 if (*str == '(')
1490 return FAIL;
1491
dcbf9037
JB
1492 /* Do not allow a scalar (reg+index) to parse as a register. */
1493 if ((atype.defined & NTA_HASINDEX) != 0)
1494 {
1495 first_error (_("register operand expected, but got scalar"));
1496 return FAIL;
1497 }
1498
1499 if (vectype)
1500 *vectype = atype.eltype;
1501
1502 *ccp = str;
1503
1504 return reg;
1505}
1506
1507#define NEON_SCALAR_REG(X) ((X) >> 4)
1508#define NEON_SCALAR_INDEX(X) ((X) & 15)
1509
5287ad62
JB
1510/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1511 have enough information to be able to do a good job bounds-checking. So, we
1512 just do easy checks here, and do further checks later. */
1513
1514static int
dcbf9037 1515parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1516{
dcbf9037 1517 int reg;
5287ad62 1518 char *str = *ccp;
dcbf9037 1519 struct neon_typed_alias atype;
5f4273c7 1520
dcbf9037 1521 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1522
dcbf9037 1523 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1524 return FAIL;
5f4273c7 1525
dcbf9037 1526 if (atype.index == NEON_ALL_LANES)
5287ad62 1527 {
dcbf9037 1528 first_error (_("scalar must have an index"));
5287ad62
JB
1529 return FAIL;
1530 }
dcbf9037 1531 else if (atype.index >= 64 / elsize)
5287ad62 1532 {
dcbf9037 1533 first_error (_("scalar index out of range"));
5287ad62
JB
1534 return FAIL;
1535 }
5f4273c7 1536
dcbf9037
JB
1537 if (type)
1538 *type = atype.eltype;
5f4273c7 1539
5287ad62 1540 *ccp = str;
5f4273c7 1541
dcbf9037 1542 return reg * 16 + atype.index;
5287ad62
JB
1543}
1544
c19d1205 1545/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1546
c19d1205
ZW
1547static long
1548parse_reg_list (char ** strp)
1549{
1550 char * str = * strp;
1551 long range = 0;
1552 int another_range;
a737bd4d 1553
c19d1205
ZW
1554 /* We come back here if we get ranges concatenated by '+' or '|'. */
1555 do
6057a28f 1556 {
c19d1205 1557 another_range = 0;
a737bd4d 1558
c19d1205
ZW
1559 if (*str == '{')
1560 {
1561 int in_range = 0;
1562 int cur_reg = -1;
a737bd4d 1563
c19d1205
ZW
1564 str++;
1565 do
1566 {
1567 int reg;
6057a28f 1568
dcbf9037 1569 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1570 {
dcbf9037 1571 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1572 return FAIL;
1573 }
a737bd4d 1574
c19d1205
ZW
1575 if (in_range)
1576 {
1577 int i;
a737bd4d 1578
c19d1205
ZW
1579 if (reg <= cur_reg)
1580 {
dcbf9037 1581 first_error (_("bad range in register list"));
c19d1205
ZW
1582 return FAIL;
1583 }
40a18ebd 1584
c19d1205
ZW
1585 for (i = cur_reg + 1; i < reg; i++)
1586 {
1587 if (range & (1 << i))
1588 as_tsktsk
1589 (_("Warning: duplicated register (r%d) in register list"),
1590 i);
1591 else
1592 range |= 1 << i;
1593 }
1594 in_range = 0;
1595 }
a737bd4d 1596
c19d1205
ZW
1597 if (range & (1 << reg))
1598 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1599 reg);
1600 else if (reg <= cur_reg)
1601 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1602
c19d1205
ZW
1603 range |= 1 << reg;
1604 cur_reg = reg;
1605 }
1606 while (skip_past_comma (&str) != FAIL
1607 || (in_range = 1, *str++ == '-'));
1608 str--;
a737bd4d 1609
c19d1205
ZW
1610 if (*str++ != '}')
1611 {
dcbf9037 1612 first_error (_("missing `}'"));
c19d1205
ZW
1613 return FAIL;
1614 }
1615 }
1616 else
1617 {
91d6fa6a 1618 expressionS exp;
40a18ebd 1619
91d6fa6a 1620 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1621 return FAIL;
40a18ebd 1622
91d6fa6a 1623 if (exp.X_op == O_constant)
c19d1205 1624 {
91d6fa6a
NC
1625 if (exp.X_add_number
1626 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1627 {
1628 inst.error = _("invalid register mask");
1629 return FAIL;
1630 }
a737bd4d 1631
91d6fa6a 1632 if ((range & exp.X_add_number) != 0)
c19d1205 1633 {
91d6fa6a 1634 int regno = range & exp.X_add_number;
a737bd4d 1635
c19d1205
ZW
1636 regno &= -regno;
1637 regno = (1 << regno) - 1;
1638 as_tsktsk
1639 (_("Warning: duplicated register (r%d) in register list"),
1640 regno);
1641 }
a737bd4d 1642
91d6fa6a 1643 range |= exp.X_add_number;
c19d1205
ZW
1644 }
1645 else
1646 {
1647 if (inst.reloc.type != 0)
1648 {
1649 inst.error = _("expression too complex");
1650 return FAIL;
1651 }
a737bd4d 1652
91d6fa6a 1653 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1654 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1655 inst.reloc.pc_rel = 0;
1656 }
1657 }
a737bd4d 1658
c19d1205
ZW
1659 if (*str == '|' || *str == '+')
1660 {
1661 str++;
1662 another_range = 1;
1663 }
a737bd4d 1664 }
c19d1205 1665 while (another_range);
a737bd4d 1666
c19d1205
ZW
1667 *strp = str;
1668 return range;
a737bd4d
NC
1669}
1670
5287ad62
JB
1671/* Types of registers in a list. */
1672
1673enum reg_list_els
1674{
1675 REGLIST_VFP_S,
1676 REGLIST_VFP_D,
1677 REGLIST_NEON_D
1678};
1679
c19d1205
ZW
1680/* Parse a VFP register list. If the string is invalid return FAIL.
1681 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1682 register. Parses registers of type ETYPE.
1683 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1684 - Q registers can be used to specify pairs of D registers
1685 - { } can be omitted from around a singleton register list
1686 FIXME: This is not implemented, as it would require backtracking in
1687 some cases, e.g.:
1688 vtbl.8 d3,d4,d5
1689 This could be done (the meaning isn't really ambiguous), but doesn't
1690 fit in well with the current parsing framework.
dcbf9037
JB
1691 - 32 D registers may be used (also true for VFPv3).
1692 FIXME: Types are ignored in these register lists, which is probably a
1693 bug. */
6057a28f 1694
c19d1205 1695static int
037e8744 1696parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1697{
037e8744 1698 char *str = *ccp;
c19d1205
ZW
1699 int base_reg;
1700 int new_base;
21d799b5 1701 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1702 int max_regs = 0;
c19d1205
ZW
1703 int count = 0;
1704 int warned = 0;
1705 unsigned long mask = 0;
a737bd4d 1706 int i;
6057a28f 1707
037e8744 1708 if (*str != '{')
5287ad62
JB
1709 {
1710 inst.error = _("expecting {");
1711 return FAIL;
1712 }
6057a28f 1713
037e8744 1714 str++;
6057a28f 1715
5287ad62 1716 switch (etype)
c19d1205 1717 {
5287ad62 1718 case REGLIST_VFP_S:
c19d1205
ZW
1719 regtype = REG_TYPE_VFS;
1720 max_regs = 32;
5287ad62 1721 break;
5f4273c7 1722
5287ad62
JB
1723 case REGLIST_VFP_D:
1724 regtype = REG_TYPE_VFD;
b7fc2769 1725 break;
5f4273c7 1726
b7fc2769
JB
1727 case REGLIST_NEON_D:
1728 regtype = REG_TYPE_NDQ;
1729 break;
1730 }
1731
1732 if (etype != REGLIST_VFP_S)
1733 {
b1cc4aeb
PB
1734 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1735 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1736 {
1737 max_regs = 32;
1738 if (thumb_mode)
1739 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1740 fpu_vfp_ext_d32);
5287ad62
JB
1741 else
1742 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1743 fpu_vfp_ext_d32);
5287ad62
JB
1744 }
1745 else
1746 max_regs = 16;
c19d1205 1747 }
6057a28f 1748
c19d1205 1749 base_reg = max_regs;
a737bd4d 1750
c19d1205
ZW
1751 do
1752 {
5287ad62 1753 int setmask = 1, addregs = 1;
dcbf9037 1754
037e8744 1755 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1756
c19d1205 1757 if (new_base == FAIL)
a737bd4d 1758 {
dcbf9037 1759 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1760 return FAIL;
1761 }
5f4273c7 1762
b7fc2769
JB
1763 if (new_base >= max_regs)
1764 {
1765 first_error (_("register out of range in list"));
1766 return FAIL;
1767 }
5f4273c7 1768
5287ad62
JB
1769 /* Note: a value of 2 * n is returned for the register Q<n>. */
1770 if (regtype == REG_TYPE_NQ)
1771 {
1772 setmask = 3;
1773 addregs = 2;
1774 }
1775
c19d1205
ZW
1776 if (new_base < base_reg)
1777 base_reg = new_base;
a737bd4d 1778
5287ad62 1779 if (mask & (setmask << new_base))
c19d1205 1780 {
dcbf9037 1781 first_error (_("invalid register list"));
c19d1205 1782 return FAIL;
a737bd4d 1783 }
a737bd4d 1784
c19d1205
ZW
1785 if ((mask >> new_base) != 0 && ! warned)
1786 {
1787 as_tsktsk (_("register list not in ascending order"));
1788 warned = 1;
1789 }
0bbf2aa4 1790
5287ad62
JB
1791 mask |= setmask << new_base;
1792 count += addregs;
0bbf2aa4 1793
037e8744 1794 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1795 {
1796 int high_range;
0bbf2aa4 1797
037e8744 1798 str++;
0bbf2aa4 1799
037e8744 1800 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1801 == FAIL)
c19d1205
ZW
1802 {
1803 inst.error = gettext (reg_expected_msgs[regtype]);
1804 return FAIL;
1805 }
0bbf2aa4 1806
b7fc2769
JB
1807 if (high_range >= max_regs)
1808 {
1809 first_error (_("register out of range in list"));
1810 return FAIL;
1811 }
1812
5287ad62
JB
1813 if (regtype == REG_TYPE_NQ)
1814 high_range = high_range + 1;
1815
c19d1205
ZW
1816 if (high_range <= new_base)
1817 {
1818 inst.error = _("register range not in ascending order");
1819 return FAIL;
1820 }
0bbf2aa4 1821
5287ad62 1822 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1823 {
5287ad62 1824 if (mask & (setmask << new_base))
0bbf2aa4 1825 {
c19d1205
ZW
1826 inst.error = _("invalid register list");
1827 return FAIL;
0bbf2aa4 1828 }
c19d1205 1829
5287ad62
JB
1830 mask |= setmask << new_base;
1831 count += addregs;
0bbf2aa4 1832 }
0bbf2aa4 1833 }
0bbf2aa4 1834 }
037e8744 1835 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1836
037e8744 1837 str++;
0bbf2aa4 1838
c19d1205
ZW
1839 /* Sanity check -- should have raised a parse error above. */
1840 if (count == 0 || count > max_regs)
1841 abort ();
1842
1843 *pbase = base_reg;
1844
1845 /* Final test -- the registers must be consecutive. */
1846 mask >>= base_reg;
1847 for (i = 0; i < count; i++)
1848 {
1849 if ((mask & (1u << i)) == 0)
1850 {
1851 inst.error = _("non-contiguous register range");
1852 return FAIL;
1853 }
1854 }
1855
037e8744
JB
1856 *ccp = str;
1857
c19d1205 1858 return count;
b99bd4ef
NC
1859}
1860
dcbf9037
JB
1861/* True if two alias types are the same. */
1862
c921be7d 1863static bfd_boolean
dcbf9037
JB
1864neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1865{
1866 if (!a && !b)
c921be7d 1867 return TRUE;
5f4273c7 1868
dcbf9037 1869 if (!a || !b)
c921be7d 1870 return FALSE;
dcbf9037
JB
1871
1872 if (a->defined != b->defined)
c921be7d 1873 return FALSE;
5f4273c7 1874
dcbf9037
JB
1875 if ((a->defined & NTA_HASTYPE) != 0
1876 && (a->eltype.type != b->eltype.type
1877 || a->eltype.size != b->eltype.size))
c921be7d 1878 return FALSE;
dcbf9037
JB
1879
1880 if ((a->defined & NTA_HASINDEX) != 0
1881 && (a->index != b->index))
c921be7d 1882 return FALSE;
5f4273c7 1883
c921be7d 1884 return TRUE;
dcbf9037
JB
1885}
1886
5287ad62
JB
1887/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1888 The base register is put in *PBASE.
dcbf9037 1889 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1890 the return value.
1891 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1892 Bits [6:5] encode the list length (minus one).
1893 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1894
5287ad62 1895#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1896#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1897#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1898
1899static int
dcbf9037
JB
1900parse_neon_el_struct_list (char **str, unsigned *pbase,
1901 struct neon_type_el *eltype)
5287ad62
JB
1902{
1903 char *ptr = *str;
1904 int base_reg = -1;
1905 int reg_incr = -1;
1906 int count = 0;
1907 int lane = -1;
1908 int leading_brace = 0;
1909 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1910 const char *const incr_error = _("register stride must be 1 or 2");
1911 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1912 struct neon_typed_alias firsttype;
5f4273c7 1913
5287ad62
JB
1914 if (skip_past_char (&ptr, '{') == SUCCESS)
1915 leading_brace = 1;
5f4273c7 1916
5287ad62
JB
1917 do
1918 {
dcbf9037
JB
1919 struct neon_typed_alias atype;
1920 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1921
5287ad62
JB
1922 if (getreg == FAIL)
1923 {
dcbf9037 1924 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1925 return FAIL;
1926 }
5f4273c7 1927
5287ad62
JB
1928 if (base_reg == -1)
1929 {
1930 base_reg = getreg;
1931 if (rtype == REG_TYPE_NQ)
1932 {
1933 reg_incr = 1;
5287ad62 1934 }
dcbf9037 1935 firsttype = atype;
5287ad62
JB
1936 }
1937 else if (reg_incr == -1)
1938 {
1939 reg_incr = getreg - base_reg;
1940 if (reg_incr < 1 || reg_incr > 2)
1941 {
dcbf9037 1942 first_error (_(incr_error));
5287ad62
JB
1943 return FAIL;
1944 }
1945 }
1946 else if (getreg != base_reg + reg_incr * count)
1947 {
dcbf9037
JB
1948 first_error (_(incr_error));
1949 return FAIL;
1950 }
1951
c921be7d 1952 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1953 {
1954 first_error (_(type_error));
5287ad62
JB
1955 return FAIL;
1956 }
5f4273c7 1957
5287ad62
JB
1958 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1959 modes. */
1960 if (ptr[0] == '-')
1961 {
dcbf9037 1962 struct neon_typed_alias htype;
5287ad62
JB
1963 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1964 if (lane == -1)
1965 lane = NEON_INTERLEAVE_LANES;
1966 else if (lane != NEON_INTERLEAVE_LANES)
1967 {
dcbf9037 1968 first_error (_(type_error));
5287ad62
JB
1969 return FAIL;
1970 }
1971 if (reg_incr == -1)
1972 reg_incr = 1;
1973 else if (reg_incr != 1)
1974 {
dcbf9037 1975 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1976 return FAIL;
1977 }
1978 ptr++;
dcbf9037 1979 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1980 if (hireg == FAIL)
1981 {
dcbf9037
JB
1982 first_error (_(reg_expected_msgs[rtype]));
1983 return FAIL;
1984 }
c921be7d 1985 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1986 {
1987 first_error (_(type_error));
5287ad62
JB
1988 return FAIL;
1989 }
1990 count += hireg + dregs - getreg;
1991 continue;
1992 }
5f4273c7 1993
5287ad62
JB
1994 /* If we're using Q registers, we can't use [] or [n] syntax. */
1995 if (rtype == REG_TYPE_NQ)
1996 {
1997 count += 2;
1998 continue;
1999 }
5f4273c7 2000
dcbf9037 2001 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 2002 {
dcbf9037
JB
2003 if (lane == -1)
2004 lane = atype.index;
2005 else if (lane != atype.index)
5287ad62 2006 {
dcbf9037
JB
2007 first_error (_(type_error));
2008 return FAIL;
5287ad62
JB
2009 }
2010 }
2011 else if (lane == -1)
2012 lane = NEON_INTERLEAVE_LANES;
2013 else if (lane != NEON_INTERLEAVE_LANES)
2014 {
dcbf9037 2015 first_error (_(type_error));
5287ad62
JB
2016 return FAIL;
2017 }
2018 count++;
2019 }
2020 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2021
5287ad62
JB
2022 /* No lane set by [x]. We must be interleaving structures. */
2023 if (lane == -1)
2024 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2025
5287ad62
JB
2026 /* Sanity check. */
2027 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2028 || (count > 1 && reg_incr == -1))
2029 {
dcbf9037 2030 first_error (_("error parsing element/structure list"));
5287ad62
JB
2031 return FAIL;
2032 }
2033
2034 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2035 {
dcbf9037 2036 first_error (_("expected }"));
5287ad62
JB
2037 return FAIL;
2038 }
5f4273c7 2039
5287ad62
JB
2040 if (reg_incr == -1)
2041 reg_incr = 1;
2042
dcbf9037
JB
2043 if (eltype)
2044 *eltype = firsttype.eltype;
2045
5287ad62
JB
2046 *pbase = base_reg;
2047 *str = ptr;
5f4273c7 2048
5287ad62
JB
2049 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2050}
2051
c19d1205
ZW
2052/* Parse an explicit relocation suffix on an expression. This is
2053 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2054 arm_reloc_hsh contains no entries, so this function can only
2055 succeed if there is no () after the word. Returns -1 on error,
2056 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2057
c19d1205
ZW
2058static int
2059parse_reloc (char **str)
b99bd4ef 2060{
c19d1205
ZW
2061 struct reloc_entry *r;
2062 char *p, *q;
b99bd4ef 2063
c19d1205
ZW
2064 if (**str != '(')
2065 return BFD_RELOC_UNUSED;
b99bd4ef 2066
c19d1205
ZW
2067 p = *str + 1;
2068 q = p;
2069
2070 while (*q && *q != ')' && *q != ',')
2071 q++;
2072 if (*q != ')')
2073 return -1;
2074
21d799b5
NC
2075 if ((r = (struct reloc_entry *)
2076 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2077 return -1;
2078
2079 *str = q + 1;
2080 return r->reloc;
b99bd4ef
NC
2081}
2082
c19d1205
ZW
2083/* Directives: register aliases. */
2084
dcbf9037 2085static struct reg_entry *
90ec0d68 2086insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2087{
d3ce72d0 2088 struct reg_entry *new_reg;
c19d1205 2089 const char *name;
b99bd4ef 2090
d3ce72d0 2091 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2092 {
d3ce72d0 2093 if (new_reg->builtin)
c19d1205 2094 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2095
c19d1205
ZW
2096 /* Only warn about a redefinition if it's not defined as the
2097 same register. */
d3ce72d0 2098 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2099 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2100
d929913e 2101 return NULL;
c19d1205 2102 }
b99bd4ef 2103
c19d1205 2104 name = xstrdup (str);
d3ce72d0 2105 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2106
d3ce72d0
NC
2107 new_reg->name = name;
2108 new_reg->number = number;
2109 new_reg->type = type;
2110 new_reg->builtin = FALSE;
2111 new_reg->neon = NULL;
b99bd4ef 2112
d3ce72d0 2113 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2114 abort ();
5f4273c7 2115
d3ce72d0 2116 return new_reg;
dcbf9037
JB
2117}
2118
2119static void
2120insert_neon_reg_alias (char *str, int number, int type,
2121 struct neon_typed_alias *atype)
2122{
2123 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2124
dcbf9037
JB
2125 if (!reg)
2126 {
2127 first_error (_("attempt to redefine typed alias"));
2128 return;
2129 }
5f4273c7 2130
dcbf9037
JB
2131 if (atype)
2132 {
21d799b5
NC
2133 reg->neon = (struct neon_typed_alias *)
2134 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2135 *reg->neon = *atype;
2136 }
c19d1205 2137}
b99bd4ef 2138
c19d1205 2139/* Look for the .req directive. This is of the form:
b99bd4ef 2140
c19d1205 2141 new_register_name .req existing_register_name
b99bd4ef 2142
c19d1205 2143 If we find one, or if it looks sufficiently like one that we want to
d929913e 2144 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2145
d929913e 2146static bfd_boolean
c19d1205
ZW
2147create_register_alias (char * newname, char *p)
2148{
2149 struct reg_entry *old;
2150 char *oldname, *nbuf;
2151 size_t nlen;
b99bd4ef 2152
c19d1205
ZW
2153 /* The input scrubber ensures that whitespace after the mnemonic is
2154 collapsed to single spaces. */
2155 oldname = p;
2156 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2157 return FALSE;
b99bd4ef 2158
c19d1205
ZW
2159 oldname += 6;
2160 if (*oldname == '\0')
d929913e 2161 return FALSE;
b99bd4ef 2162
21d799b5 2163 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2164 if (!old)
b99bd4ef 2165 {
c19d1205 2166 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2167 return TRUE;
b99bd4ef
NC
2168 }
2169
c19d1205
ZW
2170 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2171 the desired alias name, and p points to its end. If not, then
2172 the desired alias name is in the global original_case_string. */
2173#ifdef TC_CASE_SENSITIVE
2174 nlen = p - newname;
2175#else
2176 newname = original_case_string;
2177 nlen = strlen (newname);
2178#endif
b99bd4ef 2179
21d799b5 2180 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2181 memcpy (nbuf, newname, nlen);
2182 nbuf[nlen] = '\0';
b99bd4ef 2183
c19d1205
ZW
2184 /* Create aliases under the new name as stated; an all-lowercase
2185 version of the new name; and an all-uppercase version of the new
2186 name. */
d929913e
NC
2187 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2188 {
2189 for (p = nbuf; *p; p++)
2190 *p = TOUPPER (*p);
c19d1205 2191
d929913e
NC
2192 if (strncmp (nbuf, newname, nlen))
2193 {
2194 /* If this attempt to create an additional alias fails, do not bother
2195 trying to create the all-lower case alias. We will fail and issue
2196 a second, duplicate error message. This situation arises when the
2197 programmer does something like:
2198 foo .req r0
2199 Foo .req r1
2200 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2201 the artificial FOO alias because it has already been created by the
d929913e
NC
2202 first .req. */
2203 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2204 return TRUE;
2205 }
c19d1205 2206
d929913e
NC
2207 for (p = nbuf; *p; p++)
2208 *p = TOLOWER (*p);
c19d1205 2209
d929913e
NC
2210 if (strncmp (nbuf, newname, nlen))
2211 insert_reg_alias (nbuf, old->number, old->type);
2212 }
c19d1205 2213
d929913e 2214 return TRUE;
b99bd4ef
NC
2215}
2216
dcbf9037
JB
2217/* Create a Neon typed/indexed register alias using directives, e.g.:
2218 X .dn d5.s32[1]
2219 Y .qn 6.s16
2220 Z .dn d7
2221 T .dn Z[0]
2222 These typed registers can be used instead of the types specified after the
2223 Neon mnemonic, so long as all operands given have types. Types can also be
2224 specified directly, e.g.:
5f4273c7 2225 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2226
c921be7d 2227static bfd_boolean
dcbf9037
JB
2228create_neon_reg_alias (char *newname, char *p)
2229{
2230 enum arm_reg_type basetype;
2231 struct reg_entry *basereg;
2232 struct reg_entry mybasereg;
2233 struct neon_type ntype;
2234 struct neon_typed_alias typeinfo;
12d6b0b7 2235 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2236 int namelen;
5f4273c7 2237
dcbf9037
JB
2238 typeinfo.defined = 0;
2239 typeinfo.eltype.type = NT_invtype;
2240 typeinfo.eltype.size = -1;
2241 typeinfo.index = -1;
5f4273c7 2242
dcbf9037 2243 nameend = p;
5f4273c7 2244
dcbf9037
JB
2245 if (strncmp (p, " .dn ", 5) == 0)
2246 basetype = REG_TYPE_VFD;
2247 else if (strncmp (p, " .qn ", 5) == 0)
2248 basetype = REG_TYPE_NQ;
2249 else
c921be7d 2250 return FALSE;
5f4273c7 2251
dcbf9037 2252 p += 5;
5f4273c7 2253
dcbf9037 2254 if (*p == '\0')
c921be7d 2255 return FALSE;
5f4273c7 2256
dcbf9037
JB
2257 basereg = arm_reg_parse_multi (&p);
2258
2259 if (basereg && basereg->type != basetype)
2260 {
2261 as_bad (_("bad type for register"));
c921be7d 2262 return FALSE;
dcbf9037
JB
2263 }
2264
2265 if (basereg == NULL)
2266 {
2267 expressionS exp;
2268 /* Try parsing as an integer. */
2269 my_get_expression (&exp, &p, GE_NO_PREFIX);
2270 if (exp.X_op != O_constant)
2271 {
2272 as_bad (_("expression must be constant"));
c921be7d 2273 return FALSE;
dcbf9037
JB
2274 }
2275 basereg = &mybasereg;
2276 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2277 : exp.X_add_number;
2278 basereg->neon = 0;
2279 }
2280
2281 if (basereg->neon)
2282 typeinfo = *basereg->neon;
2283
2284 if (parse_neon_type (&ntype, &p) == SUCCESS)
2285 {
2286 /* We got a type. */
2287 if (typeinfo.defined & NTA_HASTYPE)
2288 {
2289 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2290 return FALSE;
dcbf9037 2291 }
5f4273c7 2292
dcbf9037
JB
2293 typeinfo.defined |= NTA_HASTYPE;
2294 if (ntype.elems != 1)
2295 {
2296 as_bad (_("you must specify a single type only"));
c921be7d 2297 return FALSE;
dcbf9037
JB
2298 }
2299 typeinfo.eltype = ntype.el[0];
2300 }
5f4273c7 2301
dcbf9037
JB
2302 if (skip_past_char (&p, '[') == SUCCESS)
2303 {
2304 expressionS exp;
2305 /* We got a scalar index. */
5f4273c7 2306
dcbf9037
JB
2307 if (typeinfo.defined & NTA_HASINDEX)
2308 {
2309 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2310 return FALSE;
dcbf9037 2311 }
5f4273c7 2312
dcbf9037 2313 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2314
dcbf9037
JB
2315 if (exp.X_op != O_constant)
2316 {
2317 as_bad (_("scalar index must be constant"));
c921be7d 2318 return FALSE;
dcbf9037 2319 }
5f4273c7 2320
dcbf9037
JB
2321 typeinfo.defined |= NTA_HASINDEX;
2322 typeinfo.index = exp.X_add_number;
5f4273c7 2323
dcbf9037
JB
2324 if (skip_past_char (&p, ']') == FAIL)
2325 {
2326 as_bad (_("expecting ]"));
c921be7d 2327 return FALSE;
dcbf9037
JB
2328 }
2329 }
2330
15735687
NS
2331 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2332 the desired alias name, and p points to its end. If not, then
2333 the desired alias name is in the global original_case_string. */
2334#ifdef TC_CASE_SENSITIVE
dcbf9037 2335 namelen = nameend - newname;
15735687
NS
2336#else
2337 newname = original_case_string;
2338 namelen = strlen (newname);
2339#endif
2340
21d799b5 2341 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2342 strncpy (namebuf, newname, namelen);
2343 namebuf[namelen] = '\0';
5f4273c7 2344
dcbf9037
JB
2345 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2346 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2347
dcbf9037
JB
2348 /* Insert name in all uppercase. */
2349 for (p = namebuf; *p; p++)
2350 *p = TOUPPER (*p);
5f4273c7 2351
dcbf9037
JB
2352 if (strncmp (namebuf, newname, namelen))
2353 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2354 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2355
dcbf9037
JB
2356 /* Insert name in all lowercase. */
2357 for (p = namebuf; *p; p++)
2358 *p = TOLOWER (*p);
5f4273c7 2359
dcbf9037
JB
2360 if (strncmp (namebuf, newname, namelen))
2361 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2362 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2363
c921be7d 2364 return TRUE;
dcbf9037
JB
2365}
2366
c19d1205
ZW
2367/* Should never be called, as .req goes between the alias and the
2368 register name, not at the beginning of the line. */
c921be7d 2369
b99bd4ef 2370static void
c19d1205 2371s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2372{
c19d1205
ZW
2373 as_bad (_("invalid syntax for .req directive"));
2374}
b99bd4ef 2375
dcbf9037
JB
2376static void
2377s_dn (int a ATTRIBUTE_UNUSED)
2378{
2379 as_bad (_("invalid syntax for .dn directive"));
2380}
2381
2382static void
2383s_qn (int a ATTRIBUTE_UNUSED)
2384{
2385 as_bad (_("invalid syntax for .qn directive"));
2386}
2387
c19d1205
ZW
2388/* The .unreq directive deletes an alias which was previously defined
2389 by .req. For example:
b99bd4ef 2390
c19d1205
ZW
2391 my_alias .req r11
2392 .unreq my_alias */
b99bd4ef
NC
2393
2394static void
c19d1205 2395s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2396{
c19d1205
ZW
2397 char * name;
2398 char saved_char;
b99bd4ef 2399
c19d1205
ZW
2400 name = input_line_pointer;
2401
2402 while (*input_line_pointer != 0
2403 && *input_line_pointer != ' '
2404 && *input_line_pointer != '\n')
2405 ++input_line_pointer;
2406
2407 saved_char = *input_line_pointer;
2408 *input_line_pointer = 0;
2409
2410 if (!*name)
2411 as_bad (_("invalid syntax for .unreq directive"));
2412 else
2413 {
21d799b5
NC
2414 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2415 name);
c19d1205
ZW
2416
2417 if (!reg)
2418 as_bad (_("unknown register alias '%s'"), name);
2419 else if (reg->builtin)
a1727c1a 2420 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2421 name);
2422 else
2423 {
d929913e
NC
2424 char * p;
2425 char * nbuf;
2426
db0bc284 2427 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2428 free ((char *) reg->name);
dcbf9037
JB
2429 if (reg->neon)
2430 free (reg->neon);
c19d1205 2431 free (reg);
d929913e
NC
2432
2433 /* Also locate the all upper case and all lower case versions.
2434 Do not complain if we cannot find one or the other as it
2435 was probably deleted above. */
5f4273c7 2436
d929913e
NC
2437 nbuf = strdup (name);
2438 for (p = nbuf; *p; p++)
2439 *p = TOUPPER (*p);
21d799b5 2440 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2441 if (reg)
2442 {
db0bc284 2443 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2444 free ((char *) reg->name);
2445 if (reg->neon)
2446 free (reg->neon);
2447 free (reg);
2448 }
2449
2450 for (p = nbuf; *p; p++)
2451 *p = TOLOWER (*p);
21d799b5 2452 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2453 if (reg)
2454 {
db0bc284 2455 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2456 free ((char *) reg->name);
2457 if (reg->neon)
2458 free (reg->neon);
2459 free (reg);
2460 }
2461
2462 free (nbuf);
c19d1205
ZW
2463 }
2464 }
b99bd4ef 2465
c19d1205 2466 *input_line_pointer = saved_char;
b99bd4ef
NC
2467 demand_empty_rest_of_line ();
2468}
2469
c19d1205
ZW
2470/* Directives: Instruction set selection. */
2471
2472#ifdef OBJ_ELF
2473/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2474 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2475 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2476 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2477
cd000bff
DJ
2478/* Create a new mapping symbol for the transition to STATE. */
2479
2480static void
2481make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2482{
a737bd4d 2483 symbolS * symbolP;
c19d1205
ZW
2484 const char * symname;
2485 int type;
b99bd4ef 2486
c19d1205 2487 switch (state)
b99bd4ef 2488 {
c19d1205
ZW
2489 case MAP_DATA:
2490 symname = "$d";
2491 type = BSF_NO_FLAGS;
2492 break;
2493 case MAP_ARM:
2494 symname = "$a";
2495 type = BSF_NO_FLAGS;
2496 break;
2497 case MAP_THUMB:
2498 symname = "$t";
2499 type = BSF_NO_FLAGS;
2500 break;
c19d1205
ZW
2501 default:
2502 abort ();
2503 }
2504
cd000bff 2505 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2506 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2507
2508 switch (state)
2509 {
2510 case MAP_ARM:
2511 THUMB_SET_FUNC (symbolP, 0);
2512 ARM_SET_THUMB (symbolP, 0);
2513 ARM_SET_INTERWORK (symbolP, support_interwork);
2514 break;
2515
2516 case MAP_THUMB:
2517 THUMB_SET_FUNC (symbolP, 1);
2518 ARM_SET_THUMB (symbolP, 1);
2519 ARM_SET_INTERWORK (symbolP, support_interwork);
2520 break;
2521
2522 case MAP_DATA:
2523 default:
cd000bff
DJ
2524 break;
2525 }
2526
2527 /* Save the mapping symbols for future reference. Also check that
2528 we do not place two mapping symbols at the same offset within a
2529 frag. We'll handle overlap between frags in
2de7820f
JZ
2530 check_mapping_symbols.
2531
2532 If .fill or other data filling directive generates zero sized data,
2533 the mapping symbol for the following code will have the same value
2534 as the one generated for the data filling directive. In this case,
2535 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2536 if (value == 0)
2537 {
2de7820f
JZ
2538 if (frag->tc_frag_data.first_map != NULL)
2539 {
2540 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2541 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2542 }
cd000bff
DJ
2543 frag->tc_frag_data.first_map = symbolP;
2544 }
2545 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2546 {
2547 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2548 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2549 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2550 }
cd000bff
DJ
2551 frag->tc_frag_data.last_map = symbolP;
2552}
2553
2554/* We must sometimes convert a region marked as code to data during
2555 code alignment, if an odd number of bytes have to be padded. The
2556 code mapping symbol is pushed to an aligned address. */
2557
2558static void
2559insert_data_mapping_symbol (enum mstate state,
2560 valueT value, fragS *frag, offsetT bytes)
2561{
2562 /* If there was already a mapping symbol, remove it. */
2563 if (frag->tc_frag_data.last_map != NULL
2564 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2565 {
2566 symbolS *symp = frag->tc_frag_data.last_map;
2567
2568 if (value == 0)
2569 {
2570 know (frag->tc_frag_data.first_map == symp);
2571 frag->tc_frag_data.first_map = NULL;
2572 }
2573 frag->tc_frag_data.last_map = NULL;
2574 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2575 }
cd000bff
DJ
2576
2577 make_mapping_symbol (MAP_DATA, value, frag);
2578 make_mapping_symbol (state, value + bytes, frag);
2579}
2580
2581static void mapping_state_2 (enum mstate state, int max_chars);
2582
2583/* Set the mapping state to STATE. Only call this when about to
2584 emit some STATE bytes to the file. */
2585
2586void
2587mapping_state (enum mstate state)
2588{
940b5ce0
DJ
2589 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2590
cd000bff
DJ
2591#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2592
2593 if (mapstate == state)
2594 /* The mapping symbol has already been emitted.
2595 There is nothing else to do. */
2596 return;
49c62a33
NC
2597
2598 if (state == MAP_ARM || state == MAP_THUMB)
2599 /* PR gas/12931
2600 All ARM instructions require 4-byte alignment.
2601 (Almost) all Thumb instructions require 2-byte alignment.
2602
2603 When emitting instructions into any section, mark the section
2604 appropriately.
2605
2606 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2607 but themselves require 2-byte alignment; this applies to some
2608 PC- relative forms. However, these cases will invovle implicit
2609 literal pool generation or an explicit .align >=2, both of
2610 which will cause the section to me marked with sufficient
2611 alignment. Thus, we don't handle those cases here. */
2612 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2613
2614 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
cd000bff
DJ
2615 /* This case will be evaluated later in the next else. */
2616 return;
2617 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2618 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2619 {
2620 /* Only add the symbol if the offset is > 0:
2621 if we're at the first frag, check it's size > 0;
2622 if we're not at the first frag, then for sure
2623 the offset is > 0. */
2624 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2625 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2626
2627 if (add_symbol)
2628 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2629 }
2630
2631 mapping_state_2 (state, 0);
2632#undef TRANSITION
2633}
2634
2635/* Same as mapping_state, but MAX_CHARS bytes have already been
2636 allocated. Put the mapping symbol that far back. */
2637
2638static void
2639mapping_state_2 (enum mstate state, int max_chars)
2640{
940b5ce0
DJ
2641 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2642
2643 if (!SEG_NORMAL (now_seg))
2644 return;
2645
cd000bff
DJ
2646 if (mapstate == state)
2647 /* The mapping symbol has already been emitted.
2648 There is nothing else to do. */
2649 return;
2650
cd000bff
DJ
2651 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2652 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2653}
2654#else
d3106081
NS
2655#define mapping_state(x) ((void)0)
2656#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2657#endif
2658
2659/* Find the real, Thumb encoded start of a Thumb function. */
2660
4343666d 2661#ifdef OBJ_COFF
c19d1205
ZW
2662static symbolS *
2663find_real_start (symbolS * symbolP)
2664{
2665 char * real_start;
2666 const char * name = S_GET_NAME (symbolP);
2667 symbolS * new_target;
2668
2669 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2670#define STUB_NAME ".real_start_of"
2671
2672 if (name == NULL)
2673 abort ();
2674
37f6032b
ZW
2675 /* The compiler may generate BL instructions to local labels because
2676 it needs to perform a branch to a far away location. These labels
2677 do not have a corresponding ".real_start_of" label. We check
2678 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2679 the ".real_start_of" convention for nonlocal branches. */
2680 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2681 return symbolP;
2682
37f6032b 2683 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2684 new_target = symbol_find (real_start);
2685
2686 if (new_target == NULL)
2687 {
bd3ba5d1 2688 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2689 new_target = symbolP;
2690 }
2691
c19d1205
ZW
2692 return new_target;
2693}
4343666d 2694#endif
c19d1205
ZW
2695
2696static void
2697opcode_select (int width)
2698{
2699 switch (width)
2700 {
2701 case 16:
2702 if (! thumb_mode)
2703 {
e74cfd16 2704 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2705 as_bad (_("selected processor does not support THUMB opcodes"));
2706
2707 thumb_mode = 1;
2708 /* No need to force the alignment, since we will have been
2709 coming from ARM mode, which is word-aligned. */
2710 record_alignment (now_seg, 1);
2711 }
c19d1205
ZW
2712 break;
2713
2714 case 32:
2715 if (thumb_mode)
2716 {
e74cfd16 2717 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2718 as_bad (_("selected processor does not support ARM opcodes"));
2719
2720 thumb_mode = 0;
2721
2722 if (!need_pass_2)
2723 frag_align (2, 0, 0);
2724
2725 record_alignment (now_seg, 1);
2726 }
c19d1205
ZW
2727 break;
2728
2729 default:
2730 as_bad (_("invalid instruction size selected (%d)"), width);
2731 }
2732}
2733
2734static void
2735s_arm (int ignore ATTRIBUTE_UNUSED)
2736{
2737 opcode_select (32);
2738 demand_empty_rest_of_line ();
2739}
2740
2741static void
2742s_thumb (int ignore ATTRIBUTE_UNUSED)
2743{
2744 opcode_select (16);
2745 demand_empty_rest_of_line ();
2746}
2747
2748static void
2749s_code (int unused ATTRIBUTE_UNUSED)
2750{
2751 int temp;
2752
2753 temp = get_absolute_expression ();
2754 switch (temp)
2755 {
2756 case 16:
2757 case 32:
2758 opcode_select (temp);
2759 break;
2760
2761 default:
2762 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2763 }
2764}
2765
2766static void
2767s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2768{
2769 /* If we are not already in thumb mode go into it, EVEN if
2770 the target processor does not support thumb instructions.
2771 This is used by gcc/config/arm/lib1funcs.asm for example
2772 to compile interworking support functions even if the
2773 target processor should not support interworking. */
2774 if (! thumb_mode)
2775 {
2776 thumb_mode = 2;
2777 record_alignment (now_seg, 1);
2778 }
2779
2780 demand_empty_rest_of_line ();
2781}
2782
2783static void
2784s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2785{
2786 s_thumb (0);
2787
2788 /* The following label is the name/address of the start of a Thumb function.
2789 We need to know this for the interworking support. */
2790 label_is_thumb_function_name = TRUE;
2791}
2792
2793/* Perform a .set directive, but also mark the alias as
2794 being a thumb function. */
2795
2796static void
2797s_thumb_set (int equiv)
2798{
2799 /* XXX the following is a duplicate of the code for s_set() in read.c
2800 We cannot just call that code as we need to get at the symbol that
2801 is created. */
2802 char * name;
2803 char delim;
2804 char * end_name;
2805 symbolS * symbolP;
2806
2807 /* Especial apologies for the random logic:
2808 This just grew, and could be parsed much more simply!
2809 Dean - in haste. */
2810 name = input_line_pointer;
2811 delim = get_symbol_end ();
2812 end_name = input_line_pointer;
2813 *end_name = delim;
2814
2815 if (*input_line_pointer != ',')
2816 {
2817 *end_name = 0;
2818 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2819 *end_name = delim;
2820 ignore_rest_of_line ();
2821 return;
2822 }
2823
2824 input_line_pointer++;
2825 *end_name = 0;
2826
2827 if (name[0] == '.' && name[1] == '\0')
2828 {
2829 /* XXX - this should not happen to .thumb_set. */
2830 abort ();
2831 }
2832
2833 if ((symbolP = symbol_find (name)) == NULL
2834 && (symbolP = md_undefined_symbol (name)) == NULL)
2835 {
2836#ifndef NO_LISTING
2837 /* When doing symbol listings, play games with dummy fragments living
2838 outside the normal fragment chain to record the file and line info
c19d1205 2839 for this symbol. */
b99bd4ef
NC
2840 if (listing & LISTING_SYMBOLS)
2841 {
2842 extern struct list_info_struct * listing_tail;
21d799b5 2843 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2844
2845 memset (dummy_frag, 0, sizeof (fragS));
2846 dummy_frag->fr_type = rs_fill;
2847 dummy_frag->line = listing_tail;
2848 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2849 dummy_frag->fr_symbol = symbolP;
2850 }
2851 else
2852#endif
2853 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2854
2855#ifdef OBJ_COFF
2856 /* "set" symbols are local unless otherwise specified. */
2857 SF_SET_LOCAL (symbolP);
2858#endif /* OBJ_COFF */
2859 } /* Make a new symbol. */
2860
2861 symbol_table_insert (symbolP);
2862
2863 * end_name = delim;
2864
2865 if (equiv
2866 && S_IS_DEFINED (symbolP)
2867 && S_GET_SEGMENT (symbolP) != reg_section)
2868 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2869
2870 pseudo_set (symbolP);
2871
2872 demand_empty_rest_of_line ();
2873
c19d1205 2874 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2875
2876 THUMB_SET_FUNC (symbolP, 1);
2877 ARM_SET_THUMB (symbolP, 1);
2878#if defined OBJ_ELF || defined OBJ_COFF
2879 ARM_SET_INTERWORK (symbolP, support_interwork);
2880#endif
2881}
2882
c19d1205 2883/* Directives: Mode selection. */
b99bd4ef 2884
c19d1205
ZW
2885/* .syntax [unified|divided] - choose the new unified syntax
2886 (same for Arm and Thumb encoding, modulo slight differences in what
2887 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2888static void
c19d1205 2889s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2890{
c19d1205
ZW
2891 char *name, delim;
2892
2893 name = input_line_pointer;
2894 delim = get_symbol_end ();
2895
2896 if (!strcasecmp (name, "unified"))
2897 unified_syntax = TRUE;
2898 else if (!strcasecmp (name, "divided"))
2899 unified_syntax = FALSE;
2900 else
2901 {
2902 as_bad (_("unrecognized syntax mode \"%s\""), name);
2903 return;
2904 }
2905 *input_line_pointer = delim;
b99bd4ef
NC
2906 demand_empty_rest_of_line ();
2907}
2908
c19d1205
ZW
2909/* Directives: sectioning and alignment. */
2910
2911/* Same as s_align_ptwo but align 0 => align 2. */
2912
b99bd4ef 2913static void
c19d1205 2914s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2915{
a737bd4d 2916 int temp;
dce323d1 2917 bfd_boolean fill_p;
c19d1205
ZW
2918 long temp_fill;
2919 long max_alignment = 15;
b99bd4ef
NC
2920
2921 temp = get_absolute_expression ();
c19d1205
ZW
2922 if (temp > max_alignment)
2923 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2924 else if (temp < 0)
b99bd4ef 2925 {
c19d1205
ZW
2926 as_bad (_("alignment negative. 0 assumed."));
2927 temp = 0;
2928 }
b99bd4ef 2929
c19d1205
ZW
2930 if (*input_line_pointer == ',')
2931 {
2932 input_line_pointer++;
2933 temp_fill = get_absolute_expression ();
dce323d1 2934 fill_p = TRUE;
b99bd4ef 2935 }
c19d1205 2936 else
dce323d1
PB
2937 {
2938 fill_p = FALSE;
2939 temp_fill = 0;
2940 }
b99bd4ef 2941
c19d1205
ZW
2942 if (!temp)
2943 temp = 2;
b99bd4ef 2944
c19d1205
ZW
2945 /* Only make a frag if we HAVE to. */
2946 if (temp && !need_pass_2)
dce323d1
PB
2947 {
2948 if (!fill_p && subseg_text_p (now_seg))
2949 frag_align_code (temp, 0);
2950 else
2951 frag_align (temp, (int) temp_fill, 0);
2952 }
c19d1205
ZW
2953 demand_empty_rest_of_line ();
2954
2955 record_alignment (now_seg, temp);
b99bd4ef
NC
2956}
2957
c19d1205
ZW
2958static void
2959s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2960{
c19d1205
ZW
2961 /* We don't support putting frags in the BSS segment, we fake it by
2962 marking in_bss, then looking at s_skip for clues. */
2963 subseg_set (bss_section, 0);
2964 demand_empty_rest_of_line ();
cd000bff
DJ
2965
2966#ifdef md_elf_section_change_hook
2967 md_elf_section_change_hook ();
2968#endif
c19d1205 2969}
b99bd4ef 2970
c19d1205
ZW
2971static void
2972s_even (int ignore ATTRIBUTE_UNUSED)
2973{
2974 /* Never make frag if expect extra pass. */
2975 if (!need_pass_2)
2976 frag_align (1, 0, 0);
b99bd4ef 2977
c19d1205 2978 record_alignment (now_seg, 1);
b99bd4ef 2979
c19d1205 2980 demand_empty_rest_of_line ();
b99bd4ef
NC
2981}
2982
c19d1205 2983/* Directives: Literal pools. */
a737bd4d 2984
c19d1205
ZW
2985static literal_pool *
2986find_literal_pool (void)
a737bd4d 2987{
c19d1205 2988 literal_pool * pool;
a737bd4d 2989
c19d1205 2990 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2991 {
c19d1205
ZW
2992 if (pool->section == now_seg
2993 && pool->sub_section == now_subseg)
2994 break;
a737bd4d
NC
2995 }
2996
c19d1205 2997 return pool;
a737bd4d
NC
2998}
2999
c19d1205
ZW
3000static literal_pool *
3001find_or_make_literal_pool (void)
a737bd4d 3002{
c19d1205
ZW
3003 /* Next literal pool ID number. */
3004 static unsigned int latest_pool_num = 1;
3005 literal_pool * pool;
a737bd4d 3006
c19d1205 3007 pool = find_literal_pool ();
a737bd4d 3008
c19d1205 3009 if (pool == NULL)
a737bd4d 3010 {
c19d1205 3011 /* Create a new pool. */
21d799b5 3012 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
3013 if (! pool)
3014 return NULL;
a737bd4d 3015
c19d1205
ZW
3016 pool->next_free_entry = 0;
3017 pool->section = now_seg;
3018 pool->sub_section = now_subseg;
3019 pool->next = list_of_pools;
3020 pool->symbol = NULL;
3021
3022 /* Add it to the list. */
3023 list_of_pools = pool;
a737bd4d 3024 }
a737bd4d 3025
c19d1205
ZW
3026 /* New pools, and emptied pools, will have a NULL symbol. */
3027 if (pool->symbol == NULL)
a737bd4d 3028 {
c19d1205
ZW
3029 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3030 (valueT) 0, &zero_address_frag);
3031 pool->id = latest_pool_num ++;
a737bd4d
NC
3032 }
3033
c19d1205
ZW
3034 /* Done. */
3035 return pool;
a737bd4d
NC
3036}
3037
c19d1205 3038/* Add the literal in the global 'inst'
5f4273c7 3039 structure to the relevant literal pool. */
b99bd4ef
NC
3040
3041static int
c19d1205 3042add_to_lit_pool (void)
b99bd4ef 3043{
c19d1205
ZW
3044 literal_pool * pool;
3045 unsigned int entry;
b99bd4ef 3046
c19d1205
ZW
3047 pool = find_or_make_literal_pool ();
3048
3049 /* Check if this literal value is already in the pool. */
3050 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3051 {
c19d1205
ZW
3052 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3053 && (inst.reloc.exp.X_op == O_constant)
3054 && (pool->literals[entry].X_add_number
3055 == inst.reloc.exp.X_add_number)
3056 && (pool->literals[entry].X_unsigned
3057 == inst.reloc.exp.X_unsigned))
3058 break;
3059
3060 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3061 && (inst.reloc.exp.X_op == O_symbol)
3062 && (pool->literals[entry].X_add_number
3063 == inst.reloc.exp.X_add_number)
3064 && (pool->literals[entry].X_add_symbol
3065 == inst.reloc.exp.X_add_symbol)
3066 && (pool->literals[entry].X_op_symbol
3067 == inst.reloc.exp.X_op_symbol))
3068 break;
b99bd4ef
NC
3069 }
3070
c19d1205
ZW
3071 /* Do we need to create a new entry? */
3072 if (entry == pool->next_free_entry)
3073 {
3074 if (entry >= MAX_LITERAL_POOL_SIZE)
3075 {
3076 inst.error = _("literal pool overflow");
3077 return FAIL;
3078 }
3079
3080 pool->literals[entry] = inst.reloc.exp;
a8040cf2
NC
3081#ifdef OBJ_ELF
3082 /* PR ld/12974: Record the location of the first source line to reference
3083 this entry in the literal pool. If it turns out during linking that the
3084 symbol does not exist we will be able to give an accurate line number for
3085 the (first use of the) missing reference. */
3086 if (debug_type == DEBUG_DWARF2)
3087 dwarf2_where (pool->locs + entry);
3088#endif
c19d1205
ZW
3089 pool->next_free_entry += 1;
3090 }
b99bd4ef 3091
c19d1205
ZW
3092 inst.reloc.exp.X_op = O_symbol;
3093 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3094 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3095
c19d1205 3096 return SUCCESS;
b99bd4ef
NC
3097}
3098
c19d1205
ZW
3099/* Can't use symbol_new here, so have to create a symbol and then at
3100 a later date assign it a value. Thats what these functions do. */
e16bb312 3101
c19d1205
ZW
3102static void
3103symbol_locate (symbolS * symbolP,
3104 const char * name, /* It is copied, the caller can modify. */
3105 segT segment, /* Segment identifier (SEG_<something>). */
3106 valueT valu, /* Symbol value. */
3107 fragS * frag) /* Associated fragment. */
3108{
3109 unsigned int name_length;
3110 char * preserved_copy_of_name;
e16bb312 3111
c19d1205
ZW
3112 name_length = strlen (name) + 1; /* +1 for \0. */
3113 obstack_grow (&notes, name, name_length);
21d799b5 3114 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3115
c19d1205
ZW
3116#ifdef tc_canonicalize_symbol_name
3117 preserved_copy_of_name =
3118 tc_canonicalize_symbol_name (preserved_copy_of_name);
3119#endif
b99bd4ef 3120
c19d1205 3121 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3122
c19d1205
ZW
3123 S_SET_SEGMENT (symbolP, segment);
3124 S_SET_VALUE (symbolP, valu);
3125 symbol_clear_list_pointers (symbolP);
b99bd4ef 3126
c19d1205 3127 symbol_set_frag (symbolP, frag);
b99bd4ef 3128
c19d1205
ZW
3129 /* Link to end of symbol chain. */
3130 {
3131 extern int symbol_table_frozen;
b99bd4ef 3132
c19d1205
ZW
3133 if (symbol_table_frozen)
3134 abort ();
3135 }
b99bd4ef 3136
c19d1205 3137 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3138
c19d1205 3139 obj_symbol_new_hook (symbolP);
b99bd4ef 3140
c19d1205
ZW
3141#ifdef tc_symbol_new_hook
3142 tc_symbol_new_hook (symbolP);
3143#endif
3144
3145#ifdef DEBUG_SYMS
3146 verify_symbol_chain (symbol_rootP, symbol_lastP);
3147#endif /* DEBUG_SYMS */
b99bd4ef
NC
3148}
3149
b99bd4ef 3150
c19d1205
ZW
3151static void
3152s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3153{
c19d1205
ZW
3154 unsigned int entry;
3155 literal_pool * pool;
3156 char sym_name[20];
b99bd4ef 3157
c19d1205
ZW
3158 pool = find_literal_pool ();
3159 if (pool == NULL
3160 || pool->symbol == NULL
3161 || pool->next_free_entry == 0)
3162 return;
b99bd4ef 3163
c19d1205 3164 mapping_state (MAP_DATA);
b99bd4ef 3165
c19d1205
ZW
3166 /* Align pool as you have word accesses.
3167 Only make a frag if we have to. */
3168 if (!need_pass_2)
3169 frag_align (2, 0, 0);
b99bd4ef 3170
c19d1205 3171 record_alignment (now_seg, 2);
b99bd4ef 3172
c19d1205 3173 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3174
c19d1205
ZW
3175 symbol_locate (pool->symbol, sym_name, now_seg,
3176 (valueT) frag_now_fix (), frag_now);
3177 symbol_table_insert (pool->symbol);
b99bd4ef 3178
c19d1205 3179 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3180
c19d1205
ZW
3181#if defined OBJ_COFF || defined OBJ_ELF
3182 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3183#endif
6c43fab6 3184
c19d1205 3185 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3186 {
3187#ifdef OBJ_ELF
3188 if (debug_type == DEBUG_DWARF2)
3189 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3190#endif
3191 /* First output the expression in the instruction to the pool. */
3192 emit_expr (&(pool->literals[entry]), 4); /* .word */
3193 }
b99bd4ef 3194
c19d1205
ZW
3195 /* Mark the pool as empty. */
3196 pool->next_free_entry = 0;
3197 pool->symbol = NULL;
b99bd4ef
NC
3198}
3199
c19d1205
ZW
3200#ifdef OBJ_ELF
3201/* Forward declarations for functions below, in the MD interface
3202 section. */
3203static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3204static valueT create_unwind_entry (int);
3205static void start_unwind_section (const segT, int);
3206static void add_unwind_opcode (valueT, int);
3207static void flush_pending_unwind (void);
b99bd4ef 3208
c19d1205 3209/* Directives: Data. */
b99bd4ef 3210
c19d1205
ZW
3211static void
3212s_arm_elf_cons (int nbytes)
3213{
3214 expressionS exp;
b99bd4ef 3215
c19d1205
ZW
3216#ifdef md_flush_pending_output
3217 md_flush_pending_output ();
3218#endif
b99bd4ef 3219
c19d1205 3220 if (is_it_end_of_statement ())
b99bd4ef 3221 {
c19d1205
ZW
3222 demand_empty_rest_of_line ();
3223 return;
b99bd4ef
NC
3224 }
3225
c19d1205
ZW
3226#ifdef md_cons_align
3227 md_cons_align (nbytes);
3228#endif
b99bd4ef 3229
c19d1205
ZW
3230 mapping_state (MAP_DATA);
3231 do
b99bd4ef 3232 {
c19d1205
ZW
3233 int reloc;
3234 char *base = input_line_pointer;
b99bd4ef 3235
c19d1205 3236 expression (& exp);
b99bd4ef 3237
c19d1205
ZW
3238 if (exp.X_op != O_symbol)
3239 emit_expr (&exp, (unsigned int) nbytes);
3240 else
3241 {
3242 char *before_reloc = input_line_pointer;
3243 reloc = parse_reloc (&input_line_pointer);
3244 if (reloc == -1)
3245 {
3246 as_bad (_("unrecognized relocation suffix"));
3247 ignore_rest_of_line ();
3248 return;
3249 }
3250 else if (reloc == BFD_RELOC_UNUSED)
3251 emit_expr (&exp, (unsigned int) nbytes);
3252 else
3253 {
21d799b5
NC
3254 reloc_howto_type *howto = (reloc_howto_type *)
3255 bfd_reloc_type_lookup (stdoutput,
3256 (bfd_reloc_code_real_type) reloc);
c19d1205 3257 int size = bfd_get_reloc_size (howto);
b99bd4ef 3258
2fc8bdac
ZW
3259 if (reloc == BFD_RELOC_ARM_PLT32)
3260 {
3261 as_bad (_("(plt) is only valid on branch targets"));
3262 reloc = BFD_RELOC_UNUSED;
3263 size = 0;
3264 }
3265
c19d1205 3266 if (size > nbytes)
2fc8bdac 3267 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3268 howto->name, nbytes);
3269 else
3270 {
3271 /* We've parsed an expression stopping at O_symbol.
3272 But there may be more expression left now that we
3273 have parsed the relocation marker. Parse it again.
3274 XXX Surely there is a cleaner way to do this. */
3275 char *p = input_line_pointer;
3276 int offset;
21d799b5 3277 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3278 memcpy (save_buf, base, input_line_pointer - base);
3279 memmove (base + (input_line_pointer - before_reloc),
3280 base, before_reloc - base);
3281
3282 input_line_pointer = base + (input_line_pointer-before_reloc);
3283 expression (&exp);
3284 memcpy (base, save_buf, p - base);
3285
3286 offset = nbytes - size;
3287 p = frag_more ((int) nbytes);
3288 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3289 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3290 }
3291 }
3292 }
b99bd4ef 3293 }
c19d1205 3294 while (*input_line_pointer++ == ',');
b99bd4ef 3295
c19d1205
ZW
3296 /* Put terminator back into stream. */
3297 input_line_pointer --;
3298 demand_empty_rest_of_line ();
b99bd4ef
NC
3299}
3300
c921be7d
NC
3301/* Emit an expression containing a 32-bit thumb instruction.
3302 Implementation based on put_thumb32_insn. */
3303
3304static void
3305emit_thumb32_expr (expressionS * exp)
3306{
3307 expressionS exp_high = *exp;
3308
3309 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3310 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3311 exp->X_add_number &= 0xffff;
3312 emit_expr (exp, (unsigned int) THUMB_SIZE);
3313}
3314
3315/* Guess the instruction size based on the opcode. */
3316
3317static int
3318thumb_insn_size (int opcode)
3319{
3320 if ((unsigned int) opcode < 0xe800u)
3321 return 2;
3322 else if ((unsigned int) opcode >= 0xe8000000u)
3323 return 4;
3324 else
3325 return 0;
3326}
3327
3328static bfd_boolean
3329emit_insn (expressionS *exp, int nbytes)
3330{
3331 int size = 0;
3332
3333 if (exp->X_op == O_constant)
3334 {
3335 size = nbytes;
3336
3337 if (size == 0)
3338 size = thumb_insn_size (exp->X_add_number);
3339
3340 if (size != 0)
3341 {
3342 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3343 {
3344 as_bad (_(".inst.n operand too big. "\
3345 "Use .inst.w instead"));
3346 size = 0;
3347 }
3348 else
3349 {
3350 if (now_it.state == AUTOMATIC_IT_BLOCK)
3351 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3352 else
3353 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3354
3355 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3356 emit_thumb32_expr (exp);
3357 else
3358 emit_expr (exp, (unsigned int) size);
3359
3360 it_fsm_post_encode ();
3361 }
3362 }
3363 else
3364 as_bad (_("cannot determine Thumb instruction size. " \
3365 "Use .inst.n/.inst.w instead"));
3366 }
3367 else
3368 as_bad (_("constant expression required"));
3369
3370 return (size != 0);
3371}
3372
3373/* Like s_arm_elf_cons but do not use md_cons_align and
3374 set the mapping state to MAP_ARM/MAP_THUMB. */
3375
3376static void
3377s_arm_elf_inst (int nbytes)
3378{
3379 if (is_it_end_of_statement ())
3380 {
3381 demand_empty_rest_of_line ();
3382 return;
3383 }
3384
3385 /* Calling mapping_state () here will not change ARM/THUMB,
3386 but will ensure not to be in DATA state. */
3387
3388 if (thumb_mode)
3389 mapping_state (MAP_THUMB);
3390 else
3391 {
3392 if (nbytes != 0)
3393 {
3394 as_bad (_("width suffixes are invalid in ARM mode"));
3395 ignore_rest_of_line ();
3396 return;
3397 }
3398
3399 nbytes = 4;
3400
3401 mapping_state (MAP_ARM);
3402 }
3403
3404 do
3405 {
3406 expressionS exp;
3407
3408 expression (& exp);
3409
3410 if (! emit_insn (& exp, nbytes))
3411 {
3412 ignore_rest_of_line ();
3413 return;
3414 }
3415 }
3416 while (*input_line_pointer++ == ',');
3417
3418 /* Put terminator back into stream. */
3419 input_line_pointer --;
3420 demand_empty_rest_of_line ();
3421}
b99bd4ef 3422
c19d1205 3423/* Parse a .rel31 directive. */
b99bd4ef 3424
c19d1205
ZW
3425static void
3426s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3427{
3428 expressionS exp;
3429 char *p;
3430 valueT highbit;
b99bd4ef 3431
c19d1205
ZW
3432 highbit = 0;
3433 if (*input_line_pointer == '1')
3434 highbit = 0x80000000;
3435 else if (*input_line_pointer != '0')
3436 as_bad (_("expected 0 or 1"));
b99bd4ef 3437
c19d1205
ZW
3438 input_line_pointer++;
3439 if (*input_line_pointer != ',')
3440 as_bad (_("missing comma"));
3441 input_line_pointer++;
b99bd4ef 3442
c19d1205
ZW
3443#ifdef md_flush_pending_output
3444 md_flush_pending_output ();
3445#endif
b99bd4ef 3446
c19d1205
ZW
3447#ifdef md_cons_align
3448 md_cons_align (4);
3449#endif
b99bd4ef 3450
c19d1205 3451 mapping_state (MAP_DATA);
b99bd4ef 3452
c19d1205 3453 expression (&exp);
b99bd4ef 3454
c19d1205
ZW
3455 p = frag_more (4);
3456 md_number_to_chars (p, highbit, 4);
3457 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3458 BFD_RELOC_ARM_PREL31);
b99bd4ef 3459
c19d1205 3460 demand_empty_rest_of_line ();
b99bd4ef
NC
3461}
3462
c19d1205 3463/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3464
c19d1205 3465/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3466
c19d1205
ZW
3467static void
3468s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3469{
3470 demand_empty_rest_of_line ();
921e5f0a
PB
3471 if (unwind.proc_start)
3472 {
c921be7d 3473 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3474 return;
3475 }
3476
c19d1205
ZW
3477 /* Mark the start of the function. */
3478 unwind.proc_start = expr_build_dot ();
b99bd4ef 3479
c19d1205
ZW
3480 /* Reset the rest of the unwind info. */
3481 unwind.opcode_count = 0;
3482 unwind.table_entry = NULL;
3483 unwind.personality_routine = NULL;
3484 unwind.personality_index = -1;
3485 unwind.frame_size = 0;
3486 unwind.fp_offset = 0;
fdfde340 3487 unwind.fp_reg = REG_SP;
c19d1205
ZW
3488 unwind.fp_used = 0;
3489 unwind.sp_restored = 0;
3490}
b99bd4ef 3491
b99bd4ef 3492
c19d1205
ZW
3493/* Parse a handlerdata directive. Creates the exception handling table entry
3494 for the function. */
b99bd4ef 3495
c19d1205
ZW
3496static void
3497s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3498{
3499 demand_empty_rest_of_line ();
921e5f0a 3500 if (!unwind.proc_start)
c921be7d 3501 as_bad (MISSING_FNSTART);
921e5f0a 3502
c19d1205 3503 if (unwind.table_entry)
6decc662 3504 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3505
c19d1205
ZW
3506 create_unwind_entry (1);
3507}
a737bd4d 3508
c19d1205 3509/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3510
c19d1205
ZW
3511static void
3512s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3513{
3514 long where;
3515 char *ptr;
3516 valueT val;
940b5ce0 3517 unsigned int marked_pr_dependency;
f02232aa 3518
c19d1205 3519 demand_empty_rest_of_line ();
f02232aa 3520
921e5f0a
PB
3521 if (!unwind.proc_start)
3522 {
c921be7d 3523 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3524 return;
3525 }
3526
c19d1205
ZW
3527 /* Add eh table entry. */
3528 if (unwind.table_entry == NULL)
3529 val = create_unwind_entry (0);
3530 else
3531 val = 0;
f02232aa 3532
c19d1205
ZW
3533 /* Add index table entry. This is two words. */
3534 start_unwind_section (unwind.saved_seg, 1);
3535 frag_align (2, 0, 0);
3536 record_alignment (now_seg, 2);
b99bd4ef 3537
c19d1205
ZW
3538 ptr = frag_more (8);
3539 where = frag_now_fix () - 8;
f02232aa 3540
c19d1205
ZW
3541 /* Self relative offset of the function start. */
3542 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3543 BFD_RELOC_ARM_PREL31);
f02232aa 3544
c19d1205
ZW
3545 /* Indicate dependency on EHABI-defined personality routines to the
3546 linker, if it hasn't been done already. */
940b5ce0
DJ
3547 marked_pr_dependency
3548 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3549 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3550 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3551 {
5f4273c7
NC
3552 static const char *const name[] =
3553 {
3554 "__aeabi_unwind_cpp_pr0",
3555 "__aeabi_unwind_cpp_pr1",
3556 "__aeabi_unwind_cpp_pr2"
3557 };
c19d1205
ZW
3558 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3559 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3560 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3561 |= 1 << unwind.personality_index;
c19d1205 3562 }
f02232aa 3563
c19d1205
ZW
3564 if (val)
3565 /* Inline exception table entry. */
3566 md_number_to_chars (ptr + 4, val, 4);
3567 else
3568 /* Self relative offset of the table entry. */
3569 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3570 BFD_RELOC_ARM_PREL31);
f02232aa 3571
c19d1205
ZW
3572 /* Restore the original section. */
3573 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3574
3575 unwind.proc_start = NULL;
c19d1205 3576}
f02232aa 3577
f02232aa 3578
c19d1205 3579/* Parse an unwind_cantunwind directive. */
b99bd4ef 3580
c19d1205
ZW
3581static void
3582s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3583{
3584 demand_empty_rest_of_line ();
921e5f0a 3585 if (!unwind.proc_start)
c921be7d 3586 as_bad (MISSING_FNSTART);
921e5f0a 3587
c19d1205
ZW
3588 if (unwind.personality_routine || unwind.personality_index != -1)
3589 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3590
c19d1205
ZW
3591 unwind.personality_index = -2;
3592}
b99bd4ef 3593
b99bd4ef 3594
c19d1205 3595/* Parse a personalityindex directive. */
b99bd4ef 3596
c19d1205
ZW
3597static void
3598s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3599{
3600 expressionS exp;
b99bd4ef 3601
921e5f0a 3602 if (!unwind.proc_start)
c921be7d 3603 as_bad (MISSING_FNSTART);
921e5f0a 3604
c19d1205
ZW
3605 if (unwind.personality_routine || unwind.personality_index != -1)
3606 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3607
c19d1205 3608 expression (&exp);
b99bd4ef 3609
c19d1205
ZW
3610 if (exp.X_op != O_constant
3611 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3612 {
c19d1205
ZW
3613 as_bad (_("bad personality routine number"));
3614 ignore_rest_of_line ();
3615 return;
b99bd4ef
NC
3616 }
3617
c19d1205 3618 unwind.personality_index = exp.X_add_number;
b99bd4ef 3619
c19d1205
ZW
3620 demand_empty_rest_of_line ();
3621}
e16bb312 3622
e16bb312 3623
c19d1205 3624/* Parse a personality directive. */
e16bb312 3625
c19d1205
ZW
3626static void
3627s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3628{
3629 char *name, *p, c;
a737bd4d 3630
921e5f0a 3631 if (!unwind.proc_start)
c921be7d 3632 as_bad (MISSING_FNSTART);
921e5f0a 3633
c19d1205
ZW
3634 if (unwind.personality_routine || unwind.personality_index != -1)
3635 as_bad (_("duplicate .personality directive"));
a737bd4d 3636
c19d1205
ZW
3637 name = input_line_pointer;
3638 c = get_symbol_end ();
3639 p = input_line_pointer;
3640 unwind.personality_routine = symbol_find_or_make (name);
3641 *p = c;
3642 demand_empty_rest_of_line ();
3643}
e16bb312 3644
e16bb312 3645
c19d1205 3646/* Parse a directive saving core registers. */
e16bb312 3647
c19d1205
ZW
3648static void
3649s_arm_unwind_save_core (void)
e16bb312 3650{
c19d1205
ZW
3651 valueT op;
3652 long range;
3653 int n;
e16bb312 3654
c19d1205
ZW
3655 range = parse_reg_list (&input_line_pointer);
3656 if (range == FAIL)
e16bb312 3657 {
c19d1205
ZW
3658 as_bad (_("expected register list"));
3659 ignore_rest_of_line ();
3660 return;
3661 }
e16bb312 3662
c19d1205 3663 demand_empty_rest_of_line ();
e16bb312 3664
c19d1205
ZW
3665 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3666 into .unwind_save {..., sp...}. We aren't bothered about the value of
3667 ip because it is clobbered by calls. */
3668 if (unwind.sp_restored && unwind.fp_reg == 12
3669 && (range & 0x3000) == 0x1000)
3670 {
3671 unwind.opcode_count--;
3672 unwind.sp_restored = 0;
3673 range = (range | 0x2000) & ~0x1000;
3674 unwind.pending_offset = 0;
3675 }
e16bb312 3676
01ae4198
DJ
3677 /* Pop r4-r15. */
3678 if (range & 0xfff0)
c19d1205 3679 {
01ae4198
DJ
3680 /* See if we can use the short opcodes. These pop a block of up to 8
3681 registers starting with r4, plus maybe r14. */
3682 for (n = 0; n < 8; n++)
3683 {
3684 /* Break at the first non-saved register. */
3685 if ((range & (1 << (n + 4))) == 0)
3686 break;
3687 }
3688 /* See if there are any other bits set. */
3689 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3690 {
3691 /* Use the long form. */
3692 op = 0x8000 | ((range >> 4) & 0xfff);
3693 add_unwind_opcode (op, 2);
3694 }
0dd132b6 3695 else
01ae4198
DJ
3696 {
3697 /* Use the short form. */
3698 if (range & 0x4000)
3699 op = 0xa8; /* Pop r14. */
3700 else
3701 op = 0xa0; /* Do not pop r14. */
3702 op |= (n - 1);
3703 add_unwind_opcode (op, 1);
3704 }
c19d1205 3705 }
0dd132b6 3706
c19d1205
ZW
3707 /* Pop r0-r3. */
3708 if (range & 0xf)
3709 {
3710 op = 0xb100 | (range & 0xf);
3711 add_unwind_opcode (op, 2);
0dd132b6
NC
3712 }
3713
c19d1205
ZW
3714 /* Record the number of bytes pushed. */
3715 for (n = 0; n < 16; n++)
3716 {
3717 if (range & (1 << n))
3718 unwind.frame_size += 4;
3719 }
0dd132b6
NC
3720}
3721
c19d1205
ZW
3722
3723/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3724
3725static void
c19d1205 3726s_arm_unwind_save_fpa (int reg)
b99bd4ef 3727{
c19d1205
ZW
3728 expressionS exp;
3729 int num_regs;
3730 valueT op;
b99bd4ef 3731
c19d1205
ZW
3732 /* Get Number of registers to transfer. */
3733 if (skip_past_comma (&input_line_pointer) != FAIL)
3734 expression (&exp);
3735 else
3736 exp.X_op = O_illegal;
b99bd4ef 3737
c19d1205 3738 if (exp.X_op != O_constant)
b99bd4ef 3739 {
c19d1205
ZW
3740 as_bad (_("expected , <constant>"));
3741 ignore_rest_of_line ();
b99bd4ef
NC
3742 return;
3743 }
3744
c19d1205
ZW
3745 num_regs = exp.X_add_number;
3746
3747 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3748 {
c19d1205
ZW
3749 as_bad (_("number of registers must be in the range [1:4]"));
3750 ignore_rest_of_line ();
b99bd4ef
NC
3751 return;
3752 }
3753
c19d1205 3754 demand_empty_rest_of_line ();
b99bd4ef 3755
c19d1205
ZW
3756 if (reg == 4)
3757 {
3758 /* Short form. */
3759 op = 0xb4 | (num_regs - 1);
3760 add_unwind_opcode (op, 1);
3761 }
b99bd4ef
NC
3762 else
3763 {
c19d1205
ZW
3764 /* Long form. */
3765 op = 0xc800 | (reg << 4) | (num_regs - 1);
3766 add_unwind_opcode (op, 2);
b99bd4ef 3767 }
c19d1205 3768 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3769}
3770
c19d1205 3771
fa073d69
MS
3772/* Parse a directive saving VFP registers for ARMv6 and above. */
3773
3774static void
3775s_arm_unwind_save_vfp_armv6 (void)
3776{
3777 int count;
3778 unsigned int start;
3779 valueT op;
3780 int num_vfpv3_regs = 0;
3781 int num_regs_below_16;
3782
3783 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3784 if (count == FAIL)
3785 {
3786 as_bad (_("expected register list"));
3787 ignore_rest_of_line ();
3788 return;
3789 }
3790
3791 demand_empty_rest_of_line ();
3792
3793 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3794 than FSTMX/FLDMX-style ones). */
3795
3796 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3797 if (start >= 16)
3798 num_vfpv3_regs = count;
3799 else if (start + count > 16)
3800 num_vfpv3_regs = start + count - 16;
3801
3802 if (num_vfpv3_regs > 0)
3803 {
3804 int start_offset = start > 16 ? start - 16 : 0;
3805 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3806 add_unwind_opcode (op, 2);
3807 }
3808
3809 /* Generate opcode for registers numbered in the range 0 .. 15. */
3810 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3811 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3812 if (num_regs_below_16 > 0)
3813 {
3814 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3815 add_unwind_opcode (op, 2);
3816 }
3817
3818 unwind.frame_size += count * 8;
3819}
3820
3821
3822/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3823
3824static void
c19d1205 3825s_arm_unwind_save_vfp (void)
b99bd4ef 3826{
c19d1205 3827 int count;
ca3f61f7 3828 unsigned int reg;
c19d1205 3829 valueT op;
b99bd4ef 3830
5287ad62 3831 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3832 if (count == FAIL)
b99bd4ef 3833 {
c19d1205
ZW
3834 as_bad (_("expected register list"));
3835 ignore_rest_of_line ();
b99bd4ef
NC
3836 return;
3837 }
3838
c19d1205 3839 demand_empty_rest_of_line ();
b99bd4ef 3840
c19d1205 3841 if (reg == 8)
b99bd4ef 3842 {
c19d1205
ZW
3843 /* Short form. */
3844 op = 0xb8 | (count - 1);
3845 add_unwind_opcode (op, 1);
b99bd4ef 3846 }
c19d1205 3847 else
b99bd4ef 3848 {
c19d1205
ZW
3849 /* Long form. */
3850 op = 0xb300 | (reg << 4) | (count - 1);
3851 add_unwind_opcode (op, 2);
b99bd4ef 3852 }
c19d1205
ZW
3853 unwind.frame_size += count * 8 + 4;
3854}
b99bd4ef 3855
b99bd4ef 3856
c19d1205
ZW
3857/* Parse a directive saving iWMMXt data registers. */
3858
3859static void
3860s_arm_unwind_save_mmxwr (void)
3861{
3862 int reg;
3863 int hi_reg;
3864 int i;
3865 unsigned mask = 0;
3866 valueT op;
b99bd4ef 3867
c19d1205
ZW
3868 if (*input_line_pointer == '{')
3869 input_line_pointer++;
b99bd4ef 3870
c19d1205 3871 do
b99bd4ef 3872 {
dcbf9037 3873 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3874
c19d1205 3875 if (reg == FAIL)
b99bd4ef 3876 {
9b7132d3 3877 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3878 goto error;
b99bd4ef
NC
3879 }
3880
c19d1205
ZW
3881 if (mask >> reg)
3882 as_tsktsk (_("register list not in ascending order"));
3883 mask |= 1 << reg;
b99bd4ef 3884
c19d1205
ZW
3885 if (*input_line_pointer == '-')
3886 {
3887 input_line_pointer++;
dcbf9037 3888 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3889 if (hi_reg == FAIL)
3890 {
9b7132d3 3891 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3892 goto error;
3893 }
3894 else if (reg >= hi_reg)
3895 {
3896 as_bad (_("bad register range"));
3897 goto error;
3898 }
3899 for (; reg < hi_reg; reg++)
3900 mask |= 1 << reg;
3901 }
3902 }
3903 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3904
c19d1205
ZW
3905 if (*input_line_pointer == '}')
3906 input_line_pointer++;
b99bd4ef 3907
c19d1205 3908 demand_empty_rest_of_line ();
b99bd4ef 3909
708587a4 3910 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3911 the list. */
3912 flush_pending_unwind ();
b99bd4ef 3913
c19d1205 3914 for (i = 0; i < 16; i++)
b99bd4ef 3915 {
c19d1205
ZW
3916 if (mask & (1 << i))
3917 unwind.frame_size += 8;
b99bd4ef
NC
3918 }
3919
c19d1205
ZW
3920 /* Attempt to combine with a previous opcode. We do this because gcc
3921 likes to output separate unwind directives for a single block of
3922 registers. */
3923 if (unwind.opcode_count > 0)
b99bd4ef 3924 {
c19d1205
ZW
3925 i = unwind.opcodes[unwind.opcode_count - 1];
3926 if ((i & 0xf8) == 0xc0)
3927 {
3928 i &= 7;
3929 /* Only merge if the blocks are contiguous. */
3930 if (i < 6)
3931 {
3932 if ((mask & 0xfe00) == (1 << 9))
3933 {
3934 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3935 unwind.opcode_count--;
3936 }
3937 }
3938 else if (i == 6 && unwind.opcode_count >= 2)
3939 {
3940 i = unwind.opcodes[unwind.opcode_count - 2];
3941 reg = i >> 4;
3942 i &= 0xf;
b99bd4ef 3943
c19d1205
ZW
3944 op = 0xffff << (reg - 1);
3945 if (reg > 0
87a1fd79 3946 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3947 {
3948 op = (1 << (reg + i + 1)) - 1;
3949 op &= ~((1 << reg) - 1);
3950 mask |= op;
3951 unwind.opcode_count -= 2;
3952 }
3953 }
3954 }
b99bd4ef
NC
3955 }
3956
c19d1205
ZW
3957 hi_reg = 15;
3958 /* We want to generate opcodes in the order the registers have been
3959 saved, ie. descending order. */
3960 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3961 {
c19d1205
ZW
3962 /* Save registers in blocks. */
3963 if (reg < 0
3964 || !(mask & (1 << reg)))
3965 {
3966 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3967 preceding block. */
c19d1205
ZW
3968 if (reg != hi_reg)
3969 {
3970 if (reg == 9)
3971 {
3972 /* Short form. */
3973 op = 0xc0 | (hi_reg - 10);
3974 add_unwind_opcode (op, 1);
3975 }
3976 else
3977 {
3978 /* Long form. */
3979 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3980 add_unwind_opcode (op, 2);
3981 }
3982 }
3983 hi_reg = reg - 1;
3984 }
b99bd4ef
NC
3985 }
3986
c19d1205
ZW
3987 return;
3988error:
3989 ignore_rest_of_line ();
b99bd4ef
NC
3990}
3991
3992static void
c19d1205 3993s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3994{
c19d1205
ZW
3995 int reg;
3996 int hi_reg;
3997 unsigned mask = 0;
3998 valueT op;
b99bd4ef 3999
c19d1205
ZW
4000 if (*input_line_pointer == '{')
4001 input_line_pointer++;
b99bd4ef 4002
c19d1205 4003 do
b99bd4ef 4004 {
dcbf9037 4005 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4006
c19d1205
ZW
4007 if (reg == FAIL)
4008 {
9b7132d3 4009 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4010 goto error;
4011 }
b99bd4ef 4012
c19d1205
ZW
4013 reg -= 8;
4014 if (mask >> reg)
4015 as_tsktsk (_("register list not in ascending order"));
4016 mask |= 1 << reg;
b99bd4ef 4017
c19d1205
ZW
4018 if (*input_line_pointer == '-')
4019 {
4020 input_line_pointer++;
dcbf9037 4021 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4022 if (hi_reg == FAIL)
4023 {
9b7132d3 4024 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4025 goto error;
4026 }
4027 else if (reg >= hi_reg)
4028 {
4029 as_bad (_("bad register range"));
4030 goto error;
4031 }
4032 for (; reg < hi_reg; reg++)
4033 mask |= 1 << reg;
4034 }
b99bd4ef 4035 }
c19d1205 4036 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4037
c19d1205
ZW
4038 if (*input_line_pointer == '}')
4039 input_line_pointer++;
b99bd4ef 4040
c19d1205
ZW
4041 demand_empty_rest_of_line ();
4042
708587a4 4043 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4044 the list. */
4045 flush_pending_unwind ();
b99bd4ef 4046
c19d1205 4047 for (reg = 0; reg < 16; reg++)
b99bd4ef 4048 {
c19d1205
ZW
4049 if (mask & (1 << reg))
4050 unwind.frame_size += 4;
b99bd4ef 4051 }
c19d1205
ZW
4052 op = 0xc700 | mask;
4053 add_unwind_opcode (op, 2);
4054 return;
4055error:
4056 ignore_rest_of_line ();
b99bd4ef
NC
4057}
4058
c19d1205 4059
fa073d69
MS
4060/* Parse an unwind_save directive.
4061 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4062
b99bd4ef 4063static void
fa073d69 4064s_arm_unwind_save (int arch_v6)
b99bd4ef 4065{
c19d1205
ZW
4066 char *peek;
4067 struct reg_entry *reg;
4068 bfd_boolean had_brace = FALSE;
b99bd4ef 4069
921e5f0a 4070 if (!unwind.proc_start)
c921be7d 4071 as_bad (MISSING_FNSTART);
921e5f0a 4072
c19d1205
ZW
4073 /* Figure out what sort of save we have. */
4074 peek = input_line_pointer;
b99bd4ef 4075
c19d1205 4076 if (*peek == '{')
b99bd4ef 4077 {
c19d1205
ZW
4078 had_brace = TRUE;
4079 peek++;
b99bd4ef
NC
4080 }
4081
c19d1205 4082 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4083
c19d1205 4084 if (!reg)
b99bd4ef 4085 {
c19d1205
ZW
4086 as_bad (_("register expected"));
4087 ignore_rest_of_line ();
b99bd4ef
NC
4088 return;
4089 }
4090
c19d1205 4091 switch (reg->type)
b99bd4ef 4092 {
c19d1205
ZW
4093 case REG_TYPE_FN:
4094 if (had_brace)
4095 {
4096 as_bad (_("FPA .unwind_save does not take a register list"));
4097 ignore_rest_of_line ();
4098 return;
4099 }
93ac2687 4100 input_line_pointer = peek;
c19d1205 4101 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4102 return;
c19d1205
ZW
4103
4104 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4105 case REG_TYPE_VFD:
4106 if (arch_v6)
4107 s_arm_unwind_save_vfp_armv6 ();
4108 else
4109 s_arm_unwind_save_vfp ();
4110 return;
c19d1205
ZW
4111 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4112 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4113
4114 default:
4115 as_bad (_(".unwind_save does not support this kind of register"));
4116 ignore_rest_of_line ();
b99bd4ef 4117 }
c19d1205 4118}
b99bd4ef 4119
b99bd4ef 4120
c19d1205
ZW
4121/* Parse an unwind_movsp directive. */
4122
4123static void
4124s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4125{
4126 int reg;
4127 valueT op;
4fa3602b 4128 int offset;
c19d1205 4129
921e5f0a 4130 if (!unwind.proc_start)
c921be7d 4131 as_bad (MISSING_FNSTART);
921e5f0a 4132
dcbf9037 4133 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4134 if (reg == FAIL)
b99bd4ef 4135 {
9b7132d3 4136 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4137 ignore_rest_of_line ();
b99bd4ef
NC
4138 return;
4139 }
4fa3602b
PB
4140
4141 /* Optional constant. */
4142 if (skip_past_comma (&input_line_pointer) != FAIL)
4143 {
4144 if (immediate_for_directive (&offset) == FAIL)
4145 return;
4146 }
4147 else
4148 offset = 0;
4149
c19d1205 4150 demand_empty_rest_of_line ();
b99bd4ef 4151
c19d1205 4152 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4153 {
c19d1205 4154 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4155 return;
4156 }
4157
c19d1205
ZW
4158 if (unwind.fp_reg != REG_SP)
4159 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4160
c19d1205
ZW
4161 /* Generate opcode to restore the value. */
4162 op = 0x90 | reg;
4163 add_unwind_opcode (op, 1);
4164
4165 /* Record the information for later. */
4166 unwind.fp_reg = reg;
4fa3602b 4167 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4168 unwind.sp_restored = 1;
b05fe5cf
ZW
4169}
4170
c19d1205
ZW
4171/* Parse an unwind_pad directive. */
4172
b05fe5cf 4173static void
c19d1205 4174s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4175{
c19d1205 4176 int offset;
b05fe5cf 4177
921e5f0a 4178 if (!unwind.proc_start)
c921be7d 4179 as_bad (MISSING_FNSTART);
921e5f0a 4180
c19d1205
ZW
4181 if (immediate_for_directive (&offset) == FAIL)
4182 return;
b99bd4ef 4183
c19d1205
ZW
4184 if (offset & 3)
4185 {
4186 as_bad (_("stack increment must be multiple of 4"));
4187 ignore_rest_of_line ();
4188 return;
4189 }
b99bd4ef 4190
c19d1205
ZW
4191 /* Don't generate any opcodes, just record the details for later. */
4192 unwind.frame_size += offset;
4193 unwind.pending_offset += offset;
4194
4195 demand_empty_rest_of_line ();
4196}
4197
4198/* Parse an unwind_setfp directive. */
4199
4200static void
4201s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4202{
c19d1205
ZW
4203 int sp_reg;
4204 int fp_reg;
4205 int offset;
4206
921e5f0a 4207 if (!unwind.proc_start)
c921be7d 4208 as_bad (MISSING_FNSTART);
921e5f0a 4209
dcbf9037 4210 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4211 if (skip_past_comma (&input_line_pointer) == FAIL)
4212 sp_reg = FAIL;
4213 else
dcbf9037 4214 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4215
c19d1205
ZW
4216 if (fp_reg == FAIL || sp_reg == FAIL)
4217 {
4218 as_bad (_("expected <reg>, <reg>"));
4219 ignore_rest_of_line ();
4220 return;
4221 }
b99bd4ef 4222
c19d1205
ZW
4223 /* Optional constant. */
4224 if (skip_past_comma (&input_line_pointer) != FAIL)
4225 {
4226 if (immediate_for_directive (&offset) == FAIL)
4227 return;
4228 }
4229 else
4230 offset = 0;
a737bd4d 4231
c19d1205 4232 demand_empty_rest_of_line ();
a737bd4d 4233
fdfde340 4234 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4235 {
c19d1205
ZW
4236 as_bad (_("register must be either sp or set by a previous"
4237 "unwind_movsp directive"));
4238 return;
a737bd4d
NC
4239 }
4240
c19d1205
ZW
4241 /* Don't generate any opcodes, just record the information for later. */
4242 unwind.fp_reg = fp_reg;
4243 unwind.fp_used = 1;
fdfde340 4244 if (sp_reg == REG_SP)
c19d1205
ZW
4245 unwind.fp_offset = unwind.frame_size - offset;
4246 else
4247 unwind.fp_offset -= offset;
a737bd4d
NC
4248}
4249
c19d1205
ZW
4250/* Parse an unwind_raw directive. */
4251
4252static void
4253s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4254{
c19d1205 4255 expressionS exp;
708587a4 4256 /* This is an arbitrary limit. */
c19d1205
ZW
4257 unsigned char op[16];
4258 int count;
a737bd4d 4259
921e5f0a 4260 if (!unwind.proc_start)
c921be7d 4261 as_bad (MISSING_FNSTART);
921e5f0a 4262
c19d1205
ZW
4263 expression (&exp);
4264 if (exp.X_op == O_constant
4265 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4266 {
c19d1205
ZW
4267 unwind.frame_size += exp.X_add_number;
4268 expression (&exp);
4269 }
4270 else
4271 exp.X_op = O_illegal;
a737bd4d 4272
c19d1205
ZW
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected <offset>, <opcode>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
a737bd4d 4279
c19d1205 4280 count = 0;
a737bd4d 4281
c19d1205
ZW
4282 /* Parse the opcode. */
4283 for (;;)
4284 {
4285 if (count >= 16)
4286 {
4287 as_bad (_("unwind opcode too long"));
4288 ignore_rest_of_line ();
a737bd4d 4289 }
c19d1205 4290 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4291 {
c19d1205
ZW
4292 as_bad (_("invalid unwind opcode"));
4293 ignore_rest_of_line ();
4294 return;
a737bd4d 4295 }
c19d1205 4296 op[count++] = exp.X_add_number;
a737bd4d 4297
c19d1205
ZW
4298 /* Parse the next byte. */
4299 if (skip_past_comma (&input_line_pointer) == FAIL)
4300 break;
a737bd4d 4301
c19d1205
ZW
4302 expression (&exp);
4303 }
b99bd4ef 4304
c19d1205
ZW
4305 /* Add the opcode bytes in reverse order. */
4306 while (count--)
4307 add_unwind_opcode (op[count], 1);
b99bd4ef 4308
c19d1205 4309 demand_empty_rest_of_line ();
b99bd4ef 4310}
ee065d83
PB
4311
4312
4313/* Parse a .eabi_attribute directive. */
4314
4315static void
4316s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4317{
ee3c0378
AS
4318 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4319
4320 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4321 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4322}
4323
0855e32b
NS
4324/* Emit a tls fix for the symbol. */
4325
4326static void
4327s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4328{
4329 char *p;
4330 expressionS exp;
4331#ifdef md_flush_pending_output
4332 md_flush_pending_output ();
4333#endif
4334
4335#ifdef md_cons_align
4336 md_cons_align (4);
4337#endif
4338
4339 /* Since we're just labelling the code, there's no need to define a
4340 mapping symbol. */
4341 expression (&exp);
4342 p = obstack_next_free (&frchain_now->frch_obstack);
4343 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4344 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4345 : BFD_RELOC_ARM_TLS_DESCSEQ);
4346}
cdf9ccec 4347#endif /* OBJ_ELF */
0855e32b 4348
ee065d83 4349static void s_arm_arch (int);
7a1d4c38 4350static void s_arm_object_arch (int);
ee065d83
PB
4351static void s_arm_cpu (int);
4352static void s_arm_fpu (int);
69133863 4353static void s_arm_arch_extension (int);
b99bd4ef 4354
f0927246
NC
4355#ifdef TE_PE
4356
4357static void
5f4273c7 4358pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4359{
4360 expressionS exp;
4361
4362 do
4363 {
4364 expression (&exp);
4365 if (exp.X_op == O_symbol)
4366 exp.X_op = O_secrel;
4367
4368 emit_expr (&exp, 4);
4369 }
4370 while (*input_line_pointer++ == ',');
4371
4372 input_line_pointer--;
4373 demand_empty_rest_of_line ();
4374}
4375#endif /* TE_PE */
4376
c19d1205
ZW
4377/* This table describes all the machine specific pseudo-ops the assembler
4378 has to support. The fields are:
4379 pseudo-op name without dot
4380 function to call to execute this pseudo-op
4381 Integer arg to pass to the function. */
b99bd4ef 4382
c19d1205 4383const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4384{
c19d1205
ZW
4385 /* Never called because '.req' does not start a line. */
4386 { "req", s_req, 0 },
dcbf9037
JB
4387 /* Following two are likewise never called. */
4388 { "dn", s_dn, 0 },
4389 { "qn", s_qn, 0 },
c19d1205
ZW
4390 { "unreq", s_unreq, 0 },
4391 { "bss", s_bss, 0 },
4392 { "align", s_align, 0 },
4393 { "arm", s_arm, 0 },
4394 { "thumb", s_thumb, 0 },
4395 { "code", s_code, 0 },
4396 { "force_thumb", s_force_thumb, 0 },
4397 { "thumb_func", s_thumb_func, 0 },
4398 { "thumb_set", s_thumb_set, 0 },
4399 { "even", s_even, 0 },
4400 { "ltorg", s_ltorg, 0 },
4401 { "pool", s_ltorg, 0 },
4402 { "syntax", s_syntax, 0 },
8463be01
PB
4403 { "cpu", s_arm_cpu, 0 },
4404 { "arch", s_arm_arch, 0 },
7a1d4c38 4405 { "object_arch", s_arm_object_arch, 0 },
8463be01 4406 { "fpu", s_arm_fpu, 0 },
69133863 4407 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4408#ifdef OBJ_ELF
c921be7d
NC
4409 { "word", s_arm_elf_cons, 4 },
4410 { "long", s_arm_elf_cons, 4 },
4411 { "inst.n", s_arm_elf_inst, 2 },
4412 { "inst.w", s_arm_elf_inst, 4 },
4413 { "inst", s_arm_elf_inst, 0 },
4414 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4415 { "fnstart", s_arm_unwind_fnstart, 0 },
4416 { "fnend", s_arm_unwind_fnend, 0 },
4417 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4418 { "personality", s_arm_unwind_personality, 0 },
4419 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4420 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4421 { "save", s_arm_unwind_save, 0 },
fa073d69 4422 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4423 { "movsp", s_arm_unwind_movsp, 0 },
4424 { "pad", s_arm_unwind_pad, 0 },
4425 { "setfp", s_arm_unwind_setfp, 0 },
4426 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4427 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4428 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4429#else
4430 { "word", cons, 4},
f0927246
NC
4431
4432 /* These are used for dwarf. */
4433 {"2byte", cons, 2},
4434 {"4byte", cons, 4},
4435 {"8byte", cons, 8},
4436 /* These are used for dwarf2. */
4437 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4438 { "loc", dwarf2_directive_loc, 0 },
4439 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4440#endif
4441 { "extend", float_cons, 'x' },
4442 { "ldouble", float_cons, 'x' },
4443 { "packed", float_cons, 'p' },
f0927246
NC
4444#ifdef TE_PE
4445 {"secrel32", pe_directive_secrel, 0},
4446#endif
c19d1205
ZW
4447 { 0, 0, 0 }
4448};
4449\f
4450/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4451
c19d1205
ZW
4452/* Generic immediate-value read function for use in insn parsing.
4453 STR points to the beginning of the immediate (the leading #);
4454 VAL receives the value; if the value is outside [MIN, MAX]
4455 issue an error. PREFIX_OPT is true if the immediate prefix is
4456 optional. */
b99bd4ef 4457
c19d1205
ZW
4458static int
4459parse_immediate (char **str, int *val, int min, int max,
4460 bfd_boolean prefix_opt)
4461{
4462 expressionS exp;
4463 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4464 if (exp.X_op != O_constant)
b99bd4ef 4465 {
c19d1205
ZW
4466 inst.error = _("constant expression required");
4467 return FAIL;
4468 }
b99bd4ef 4469
c19d1205
ZW
4470 if (exp.X_add_number < min || exp.X_add_number > max)
4471 {
4472 inst.error = _("immediate value out of range");
4473 return FAIL;
4474 }
b99bd4ef 4475
c19d1205
ZW
4476 *val = exp.X_add_number;
4477 return SUCCESS;
4478}
b99bd4ef 4479
5287ad62 4480/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4481 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4482 instructions. Puts the result directly in inst.operands[i]. */
4483
4484static int
4485parse_big_immediate (char **str, int i)
4486{
4487 expressionS exp;
4488 char *ptr = *str;
4489
4490 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4491
4492 if (exp.X_op == O_constant)
036dc3f7
PB
4493 {
4494 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4495 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4496 O_constant. We have to be careful not to break compilation for
4497 32-bit X_add_number, though. */
58ad575f 4498 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4499 {
4500 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4501 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4502 inst.operands[i].regisimm = 1;
4503 }
4504 }
5287ad62 4505 else if (exp.X_op == O_big
95b75c01 4506 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4507 {
4508 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4509
5287ad62
JB
4510 /* Bignums have their least significant bits in
4511 generic_bignum[0]. Make sure we put 32 bits in imm and
4512 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4513 gas_assert (parts != 0);
95b75c01
NC
4514
4515 /* Make sure that the number is not too big.
4516 PR 11972: Bignums can now be sign-extended to the
4517 size of a .octa so check that the out of range bits
4518 are all zero or all one. */
4519 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4520 {
4521 LITTLENUM_TYPE m = -1;
4522
4523 if (generic_bignum[parts * 2] != 0
4524 && generic_bignum[parts * 2] != m)
4525 return FAIL;
4526
4527 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4528 if (generic_bignum[j] != generic_bignum[j-1])
4529 return FAIL;
4530 }
4531
5287ad62
JB
4532 inst.operands[i].imm = 0;
4533 for (j = 0; j < parts; j++, idx++)
4534 inst.operands[i].imm |= generic_bignum[idx]
4535 << (LITTLENUM_NUMBER_OF_BITS * j);
4536 inst.operands[i].reg = 0;
4537 for (j = 0; j < parts; j++, idx++)
4538 inst.operands[i].reg |= generic_bignum[idx]
4539 << (LITTLENUM_NUMBER_OF_BITS * j);
4540 inst.operands[i].regisimm = 1;
4541 }
4542 else
4543 return FAIL;
5f4273c7 4544
5287ad62
JB
4545 *str = ptr;
4546
4547 return SUCCESS;
4548}
4549
c19d1205
ZW
4550/* Returns the pseudo-register number of an FPA immediate constant,
4551 or FAIL if there isn't a valid constant here. */
b99bd4ef 4552
c19d1205
ZW
4553static int
4554parse_fpa_immediate (char ** str)
4555{
4556 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4557 char * save_in;
4558 expressionS exp;
4559 int i;
4560 int j;
b99bd4ef 4561
c19d1205
ZW
4562 /* First try and match exact strings, this is to guarantee
4563 that some formats will work even for cross assembly. */
b99bd4ef 4564
c19d1205
ZW
4565 for (i = 0; fp_const[i]; i++)
4566 {
4567 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4568 {
c19d1205 4569 char *start = *str;
b99bd4ef 4570
c19d1205
ZW
4571 *str += strlen (fp_const[i]);
4572 if (is_end_of_line[(unsigned char) **str])
4573 return i + 8;
4574 *str = start;
4575 }
4576 }
b99bd4ef 4577
c19d1205
ZW
4578 /* Just because we didn't get a match doesn't mean that the constant
4579 isn't valid, just that it is in a format that we don't
4580 automatically recognize. Try parsing it with the standard
4581 expression routines. */
b99bd4ef 4582
c19d1205 4583 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4584
c19d1205
ZW
4585 /* Look for a raw floating point number. */
4586 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4587 && is_end_of_line[(unsigned char) *save_in])
4588 {
4589 for (i = 0; i < NUM_FLOAT_VALS; i++)
4590 {
4591 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4592 {
c19d1205
ZW
4593 if (words[j] != fp_values[i][j])
4594 break;
b99bd4ef
NC
4595 }
4596
c19d1205 4597 if (j == MAX_LITTLENUMS)
b99bd4ef 4598 {
c19d1205
ZW
4599 *str = save_in;
4600 return i + 8;
b99bd4ef
NC
4601 }
4602 }
4603 }
b99bd4ef 4604
c19d1205
ZW
4605 /* Try and parse a more complex expression, this will probably fail
4606 unless the code uses a floating point prefix (eg "0f"). */
4607 save_in = input_line_pointer;
4608 input_line_pointer = *str;
4609 if (expression (&exp) == absolute_section
4610 && exp.X_op == O_big
4611 && exp.X_add_number < 0)
4612 {
4613 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4614 Ditto for 15. */
4615 if (gen_to_words (words, 5, (long) 15) == 0)
4616 {
4617 for (i = 0; i < NUM_FLOAT_VALS; i++)
4618 {
4619 for (j = 0; j < MAX_LITTLENUMS; j++)
4620 {
4621 if (words[j] != fp_values[i][j])
4622 break;
4623 }
b99bd4ef 4624
c19d1205
ZW
4625 if (j == MAX_LITTLENUMS)
4626 {
4627 *str = input_line_pointer;
4628 input_line_pointer = save_in;
4629 return i + 8;
4630 }
4631 }
4632 }
b99bd4ef
NC
4633 }
4634
c19d1205
ZW
4635 *str = input_line_pointer;
4636 input_line_pointer = save_in;
4637 inst.error = _("invalid FPA immediate expression");
4638 return FAIL;
b99bd4ef
NC
4639}
4640
136da414
JB
4641/* Returns 1 if a number has "quarter-precision" float format
4642 0baBbbbbbc defgh000 00000000 00000000. */
4643
4644static int
4645is_quarter_float (unsigned imm)
4646{
4647 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4648 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4649}
4650
4651/* Parse an 8-bit "quarter-precision" floating point number of the form:
4652 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4653 The zero and minus-zero cases need special handling, since they can't be
4654 encoded in the "quarter-precision" float format, but can nonetheless be
4655 loaded as integer constants. */
136da414
JB
4656
4657static unsigned
4658parse_qfloat_immediate (char **ccp, int *immed)
4659{
4660 char *str = *ccp;
c96612cc 4661 char *fpnum;
136da414 4662 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4663 int found_fpchar = 0;
5f4273c7 4664
136da414 4665 skip_past_char (&str, '#');
5f4273c7 4666
c96612cc
JB
4667 /* We must not accidentally parse an integer as a floating-point number. Make
4668 sure that the value we parse is not an integer by checking for special
4669 characters '.' or 'e'.
4670 FIXME: This is a horrible hack, but doing better is tricky because type
4671 information isn't in a very usable state at parse time. */
4672 fpnum = str;
4673 skip_whitespace (fpnum);
4674
4675 if (strncmp (fpnum, "0x", 2) == 0)
4676 return FAIL;
4677 else
4678 {
4679 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4680 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4681 {
4682 found_fpchar = 1;
4683 break;
4684 }
4685
4686 if (!found_fpchar)
4687 return FAIL;
4688 }
5f4273c7 4689
136da414
JB
4690 if ((str = atof_ieee (str, 's', words)) != NULL)
4691 {
4692 unsigned fpword = 0;
4693 int i;
5f4273c7 4694
136da414
JB
4695 /* Our FP word must be 32 bits (single-precision FP). */
4696 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4697 {
4698 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4699 fpword |= words[i];
4700 }
5f4273c7 4701
c96612cc 4702 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4703 *immed = fpword;
4704 else
4705 return FAIL;
4706
4707 *ccp = str;
5f4273c7 4708
136da414
JB
4709 return SUCCESS;
4710 }
5f4273c7 4711
136da414
JB
4712 return FAIL;
4713}
4714
c19d1205
ZW
4715/* Shift operands. */
4716enum shift_kind
b99bd4ef 4717{
c19d1205
ZW
4718 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4719};
b99bd4ef 4720
c19d1205
ZW
4721struct asm_shift_name
4722{
4723 const char *name;
4724 enum shift_kind kind;
4725};
b99bd4ef 4726
c19d1205
ZW
4727/* Third argument to parse_shift. */
4728enum parse_shift_mode
4729{
4730 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4731 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4732 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4733 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4734 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4735};
b99bd4ef 4736
c19d1205
ZW
4737/* Parse a <shift> specifier on an ARM data processing instruction.
4738 This has three forms:
b99bd4ef 4739
c19d1205
ZW
4740 (LSL|LSR|ASL|ASR|ROR) Rs
4741 (LSL|LSR|ASL|ASR|ROR) #imm
4742 RRX
b99bd4ef 4743
c19d1205
ZW
4744 Note that ASL is assimilated to LSL in the instruction encoding, and
4745 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4746
c19d1205
ZW
4747static int
4748parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4749{
c19d1205
ZW
4750 const struct asm_shift_name *shift_name;
4751 enum shift_kind shift;
4752 char *s = *str;
4753 char *p = s;
4754 int reg;
b99bd4ef 4755
c19d1205
ZW
4756 for (p = *str; ISALPHA (*p); p++)
4757 ;
b99bd4ef 4758
c19d1205 4759 if (p == *str)
b99bd4ef 4760 {
c19d1205
ZW
4761 inst.error = _("shift expression expected");
4762 return FAIL;
b99bd4ef
NC
4763 }
4764
21d799b5
NC
4765 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4766 p - *str);
c19d1205
ZW
4767
4768 if (shift_name == NULL)
b99bd4ef 4769 {
c19d1205
ZW
4770 inst.error = _("shift expression expected");
4771 return FAIL;
b99bd4ef
NC
4772 }
4773
c19d1205 4774 shift = shift_name->kind;
b99bd4ef 4775
c19d1205
ZW
4776 switch (mode)
4777 {
4778 case NO_SHIFT_RESTRICT:
4779 case SHIFT_IMMEDIATE: break;
b99bd4ef 4780
c19d1205
ZW
4781 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4782 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4783 {
4784 inst.error = _("'LSL' or 'ASR' required");
4785 return FAIL;
4786 }
4787 break;
b99bd4ef 4788
c19d1205
ZW
4789 case SHIFT_LSL_IMMEDIATE:
4790 if (shift != SHIFT_LSL)
4791 {
4792 inst.error = _("'LSL' required");
4793 return FAIL;
4794 }
4795 break;
b99bd4ef 4796
c19d1205
ZW
4797 case SHIFT_ASR_IMMEDIATE:
4798 if (shift != SHIFT_ASR)
4799 {
4800 inst.error = _("'ASR' required");
4801 return FAIL;
4802 }
4803 break;
b99bd4ef 4804
c19d1205
ZW
4805 default: abort ();
4806 }
b99bd4ef 4807
c19d1205
ZW
4808 if (shift != SHIFT_RRX)
4809 {
4810 /* Whitespace can appear here if the next thing is a bare digit. */
4811 skip_whitespace (p);
b99bd4ef 4812
c19d1205 4813 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4814 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4815 {
4816 inst.operands[i].imm = reg;
4817 inst.operands[i].immisreg = 1;
4818 }
4819 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4820 return FAIL;
4821 }
4822 inst.operands[i].shift_kind = shift;
4823 inst.operands[i].shifted = 1;
4824 *str = p;
4825 return SUCCESS;
b99bd4ef
NC
4826}
4827
c19d1205 4828/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4829
c19d1205
ZW
4830 #<immediate>
4831 #<immediate>, <rotate>
4832 <Rm>
4833 <Rm>, <shift>
b99bd4ef 4834
c19d1205
ZW
4835 where <shift> is defined by parse_shift above, and <rotate> is a
4836 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4837 is deferred to md_apply_fix. */
b99bd4ef 4838
c19d1205
ZW
4839static int
4840parse_shifter_operand (char **str, int i)
4841{
4842 int value;
91d6fa6a 4843 expressionS exp;
b99bd4ef 4844
dcbf9037 4845 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4846 {
4847 inst.operands[i].reg = value;
4848 inst.operands[i].isreg = 1;
b99bd4ef 4849
c19d1205
ZW
4850 /* parse_shift will override this if appropriate */
4851 inst.reloc.exp.X_op = O_constant;
4852 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4853
c19d1205
ZW
4854 if (skip_past_comma (str) == FAIL)
4855 return SUCCESS;
b99bd4ef 4856
c19d1205
ZW
4857 /* Shift operation on register. */
4858 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4859 }
4860
c19d1205
ZW
4861 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4862 return FAIL;
b99bd4ef 4863
c19d1205 4864 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4865 {
c19d1205 4866 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4867 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4868 return FAIL;
b99bd4ef 4869
91d6fa6a 4870 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4871 {
4872 inst.error = _("constant expression expected");
4873 return FAIL;
4874 }
b99bd4ef 4875
91d6fa6a 4876 value = exp.X_add_number;
c19d1205
ZW
4877 if (value < 0 || value > 30 || value % 2 != 0)
4878 {
4879 inst.error = _("invalid rotation");
4880 return FAIL;
4881 }
4882 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4883 {
4884 inst.error = _("invalid constant");
4885 return FAIL;
4886 }
09d92015 4887
a415b1cd
JB
4888 /* Encode as specified. */
4889 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4890 return SUCCESS;
09d92015
MM
4891 }
4892
c19d1205
ZW
4893 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4894 inst.reloc.pc_rel = 0;
4895 return SUCCESS;
09d92015
MM
4896}
4897
4962c51a
MS
4898/* Group relocation information. Each entry in the table contains the
4899 textual name of the relocation as may appear in assembler source
4900 and must end with a colon.
4901 Along with this textual name are the relocation codes to be used if
4902 the corresponding instruction is an ALU instruction (ADD or SUB only),
4903 an LDR, an LDRS, or an LDC. */
4904
4905struct group_reloc_table_entry
4906{
4907 const char *name;
4908 int alu_code;
4909 int ldr_code;
4910 int ldrs_code;
4911 int ldc_code;
4912};
4913
4914typedef enum
4915{
4916 /* Varieties of non-ALU group relocation. */
4917
4918 GROUP_LDR,
4919 GROUP_LDRS,
4920 GROUP_LDC
4921} group_reloc_type;
4922
4923static struct group_reloc_table_entry group_reloc_table[] =
4924 { /* Program counter relative: */
4925 { "pc_g0_nc",
4926 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4927 0, /* LDR */
4928 0, /* LDRS */
4929 0 }, /* LDC */
4930 { "pc_g0",
4931 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4932 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4933 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4934 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4935 { "pc_g1_nc",
4936 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4937 0, /* LDR */
4938 0, /* LDRS */
4939 0 }, /* LDC */
4940 { "pc_g1",
4941 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4942 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4943 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4944 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4945 { "pc_g2",
4946 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4947 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4948 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4949 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4950 /* Section base relative */
4951 { "sb_g0_nc",
4952 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4953 0, /* LDR */
4954 0, /* LDRS */
4955 0 }, /* LDC */
4956 { "sb_g0",
4957 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4958 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4959 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4960 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4961 { "sb_g1_nc",
4962 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4963 0, /* LDR */
4964 0, /* LDRS */
4965 0 }, /* LDC */
4966 { "sb_g1",
4967 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4968 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4969 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4970 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4971 { "sb_g2",
4972 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4973 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4974 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4975 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4976
4977/* Given the address of a pointer pointing to the textual name of a group
4978 relocation as may appear in assembler source, attempt to find its details
4979 in group_reloc_table. The pointer will be updated to the character after
4980 the trailing colon. On failure, FAIL will be returned; SUCCESS
4981 otherwise. On success, *entry will be updated to point at the relevant
4982 group_reloc_table entry. */
4983
4984static int
4985find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4986{
4987 unsigned int i;
4988 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4989 {
4990 int length = strlen (group_reloc_table[i].name);
4991
5f4273c7
NC
4992 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4993 && (*str)[length] == ':')
4962c51a
MS
4994 {
4995 *out = &group_reloc_table[i];
4996 *str += (length + 1);
4997 return SUCCESS;
4998 }
4999 }
5000
5001 return FAIL;
5002}
5003
5004/* Parse a <shifter_operand> for an ARM data processing instruction
5005 (as for parse_shifter_operand) where group relocations are allowed:
5006
5007 #<immediate>
5008 #<immediate>, <rotate>
5009 #:<group_reloc>:<expression>
5010 <Rm>
5011 <Rm>, <shift>
5012
5013 where <group_reloc> is one of the strings defined in group_reloc_table.
5014 The hashes are optional.
5015
5016 Everything else is as for parse_shifter_operand. */
5017
5018static parse_operand_result
5019parse_shifter_operand_group_reloc (char **str, int i)
5020{
5021 /* Determine if we have the sequence of characters #: or just :
5022 coming next. If we do, then we check for a group relocation.
5023 If we don't, punt the whole lot to parse_shifter_operand. */
5024
5025 if (((*str)[0] == '#' && (*str)[1] == ':')
5026 || (*str)[0] == ':')
5027 {
5028 struct group_reloc_table_entry *entry;
5029
5030 if ((*str)[0] == '#')
5031 (*str) += 2;
5032 else
5033 (*str)++;
5034
5035 /* Try to parse a group relocation. Anything else is an error. */
5036 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5037 {
5038 inst.error = _("unknown group relocation");
5039 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5040 }
5041
5042 /* We now have the group relocation table entry corresponding to
5043 the name in the assembler source. Next, we parse the expression. */
5044 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5045 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5046
5047 /* Record the relocation type (always the ALU variant here). */
21d799b5 5048 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5049 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5050
5051 return PARSE_OPERAND_SUCCESS;
5052 }
5053 else
5054 return parse_shifter_operand (str, i) == SUCCESS
5055 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5056
5057 /* Never reached. */
5058}
5059
8e560766
MGD
5060/* Parse a Neon alignment expression. Information is written to
5061 inst.operands[i]. We assume the initial ':' has been skipped.
5062
5063 align .imm = align << 8, .immisalign=1, .preind=0 */
5064static parse_operand_result
5065parse_neon_alignment (char **str, int i)
5066{
5067 char *p = *str;
5068 expressionS exp;
5069
5070 my_get_expression (&exp, &p, GE_NO_PREFIX);
5071
5072 if (exp.X_op != O_constant)
5073 {
5074 inst.error = _("alignment must be constant");
5075 return PARSE_OPERAND_FAIL;
5076 }
5077
5078 inst.operands[i].imm = exp.X_add_number << 8;
5079 inst.operands[i].immisalign = 1;
5080 /* Alignments are not pre-indexes. */
5081 inst.operands[i].preind = 0;
5082
5083 *str = p;
5084 return PARSE_OPERAND_SUCCESS;
5085}
5086
c19d1205
ZW
5087/* Parse all forms of an ARM address expression. Information is written
5088 to inst.operands[i] and/or inst.reloc.
09d92015 5089
c19d1205 5090 Preindexed addressing (.preind=1):
09d92015 5091
c19d1205
ZW
5092 [Rn, #offset] .reg=Rn .reloc.exp=offset
5093 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5094 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5095 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5096
c19d1205 5097 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5098
c19d1205 5099 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5100
c19d1205
ZW
5101 [Rn], #offset .reg=Rn .reloc.exp=offset
5102 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5103 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5104 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5105
c19d1205 5106 Unindexed addressing (.preind=0, .postind=0):
09d92015 5107
c19d1205 5108 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5109
c19d1205 5110 Other:
09d92015 5111
c19d1205
ZW
5112 [Rn]{!} shorthand for [Rn,#0]{!}
5113 =immediate .isreg=0 .reloc.exp=immediate
5114 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5115
c19d1205
ZW
5116 It is the caller's responsibility to check for addressing modes not
5117 supported by the instruction, and to set inst.reloc.type. */
5118
4962c51a
MS
5119static parse_operand_result
5120parse_address_main (char **str, int i, int group_relocations,
5121 group_reloc_type group_type)
09d92015 5122{
c19d1205
ZW
5123 char *p = *str;
5124 int reg;
09d92015 5125
c19d1205 5126 if (skip_past_char (&p, '[') == FAIL)
09d92015 5127 {
c19d1205
ZW
5128 if (skip_past_char (&p, '=') == FAIL)
5129 {
974da60d 5130 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5131 inst.reloc.pc_rel = 1;
5132 inst.operands[i].reg = REG_PC;
5133 inst.operands[i].isreg = 1;
5134 inst.operands[i].preind = 1;
5135 }
974da60d 5136 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5137
c19d1205 5138 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5139 return PARSE_OPERAND_FAIL;
09d92015 5140
c19d1205 5141 *str = p;
4962c51a 5142 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5143 }
5144
dcbf9037 5145 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5146 {
c19d1205 5147 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5148 return PARSE_OPERAND_FAIL;
09d92015 5149 }
c19d1205
ZW
5150 inst.operands[i].reg = reg;
5151 inst.operands[i].isreg = 1;
09d92015 5152
c19d1205 5153 if (skip_past_comma (&p) == SUCCESS)
09d92015 5154 {
c19d1205 5155 inst.operands[i].preind = 1;
09d92015 5156
c19d1205
ZW
5157 if (*p == '+') p++;
5158 else if (*p == '-') p++, inst.operands[i].negative = 1;
5159
dcbf9037 5160 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5161 {
c19d1205
ZW
5162 inst.operands[i].imm = reg;
5163 inst.operands[i].immisreg = 1;
5164
5165 if (skip_past_comma (&p) == SUCCESS)
5166 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5167 return PARSE_OPERAND_FAIL;
c19d1205 5168 }
5287ad62 5169 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5170 {
5171 /* FIXME: '@' should be used here, but it's filtered out by generic
5172 code before we get to see it here. This may be subject to
5173 change. */
5174 parse_operand_result result = parse_neon_alignment (&p, i);
5175
5176 if (result != PARSE_OPERAND_SUCCESS)
5177 return result;
5178 }
c19d1205
ZW
5179 else
5180 {
5181 if (inst.operands[i].negative)
5182 {
5183 inst.operands[i].negative = 0;
5184 p--;
5185 }
4962c51a 5186
5f4273c7
NC
5187 if (group_relocations
5188 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5189 {
5190 struct group_reloc_table_entry *entry;
5191
5192 /* Skip over the #: or : sequence. */
5193 if (*p == '#')
5194 p += 2;
5195 else
5196 p++;
5197
5198 /* Try to parse a group relocation. Anything else is an
5199 error. */
5200 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5201 {
5202 inst.error = _("unknown group relocation");
5203 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5204 }
5205
5206 /* We now have the group relocation table entry corresponding to
5207 the name in the assembler source. Next, we parse the
5208 expression. */
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5210 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5211
5212 /* Record the relocation type. */
5213 switch (group_type)
5214 {
5215 case GROUP_LDR:
21d799b5 5216 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5217 break;
5218
5219 case GROUP_LDRS:
21d799b5 5220 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5221 break;
5222
5223 case GROUP_LDC:
21d799b5 5224 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5225 break;
5226
5227 default:
9c2799c2 5228 gas_assert (0);
4962c51a
MS
5229 }
5230
5231 if (inst.reloc.type == 0)
5232 {
5233 inst.error = _("this group relocation is not allowed on this instruction");
5234 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5235 }
5236 }
5237 else
26d97720
NS
5238 {
5239 char *q = p;
5240 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5241 return PARSE_OPERAND_FAIL;
5242 /* If the offset is 0, find out if it's a +0 or -0. */
5243 if (inst.reloc.exp.X_op == O_constant
5244 && inst.reloc.exp.X_add_number == 0)
5245 {
5246 skip_whitespace (q);
5247 if (*q == '#')
5248 {
5249 q++;
5250 skip_whitespace (q);
5251 }
5252 if (*q == '-')
5253 inst.operands[i].negative = 1;
5254 }
5255 }
09d92015
MM
5256 }
5257 }
8e560766
MGD
5258 else if (skip_past_char (&p, ':') == SUCCESS)
5259 {
5260 /* FIXME: '@' should be used here, but it's filtered out by generic code
5261 before we get to see it here. This may be subject to change. */
5262 parse_operand_result result = parse_neon_alignment (&p, i);
5263
5264 if (result != PARSE_OPERAND_SUCCESS)
5265 return result;
5266 }
09d92015 5267
c19d1205 5268 if (skip_past_char (&p, ']') == FAIL)
09d92015 5269 {
c19d1205 5270 inst.error = _("']' expected");
4962c51a 5271 return PARSE_OPERAND_FAIL;
09d92015
MM
5272 }
5273
c19d1205
ZW
5274 if (skip_past_char (&p, '!') == SUCCESS)
5275 inst.operands[i].writeback = 1;
09d92015 5276
c19d1205 5277 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5278 {
c19d1205
ZW
5279 if (skip_past_char (&p, '{') == SUCCESS)
5280 {
5281 /* [Rn], {expr} - unindexed, with option */
5282 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5283 0, 255, TRUE) == FAIL)
4962c51a 5284 return PARSE_OPERAND_FAIL;
09d92015 5285
c19d1205
ZW
5286 if (skip_past_char (&p, '}') == FAIL)
5287 {
5288 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5289 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5290 }
5291 if (inst.operands[i].preind)
5292 {
5293 inst.error = _("cannot combine index with option");
4962c51a 5294 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5295 }
5296 *str = p;
4962c51a 5297 return PARSE_OPERAND_SUCCESS;
09d92015 5298 }
c19d1205
ZW
5299 else
5300 {
5301 inst.operands[i].postind = 1;
5302 inst.operands[i].writeback = 1;
09d92015 5303
c19d1205
ZW
5304 if (inst.operands[i].preind)
5305 {
5306 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5307 return PARSE_OPERAND_FAIL;
c19d1205 5308 }
09d92015 5309
c19d1205
ZW
5310 if (*p == '+') p++;
5311 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5312
dcbf9037 5313 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5314 {
5287ad62
JB
5315 /* We might be using the immediate for alignment already. If we
5316 are, OR the register number into the low-order bits. */
5317 if (inst.operands[i].immisalign)
5318 inst.operands[i].imm |= reg;
5319 else
5320 inst.operands[i].imm = reg;
c19d1205 5321 inst.operands[i].immisreg = 1;
a737bd4d 5322
c19d1205
ZW
5323 if (skip_past_comma (&p) == SUCCESS)
5324 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5325 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5326 }
5327 else
5328 {
26d97720 5329 char *q = p;
c19d1205
ZW
5330 if (inst.operands[i].negative)
5331 {
5332 inst.operands[i].negative = 0;
5333 p--;
5334 }
5335 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5336 return PARSE_OPERAND_FAIL;
26d97720
NS
5337 /* If the offset is 0, find out if it's a +0 or -0. */
5338 if (inst.reloc.exp.X_op == O_constant
5339 && inst.reloc.exp.X_add_number == 0)
5340 {
5341 skip_whitespace (q);
5342 if (*q == '#')
5343 {
5344 q++;
5345 skip_whitespace (q);
5346 }
5347 if (*q == '-')
5348 inst.operands[i].negative = 1;
5349 }
c19d1205
ZW
5350 }
5351 }
a737bd4d
NC
5352 }
5353
c19d1205
ZW
5354 /* If at this point neither .preind nor .postind is set, we have a
5355 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5356 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5357 {
5358 inst.operands[i].preind = 1;
5359 inst.reloc.exp.X_op = O_constant;
5360 inst.reloc.exp.X_add_number = 0;
5361 }
5362 *str = p;
4962c51a
MS
5363 return PARSE_OPERAND_SUCCESS;
5364}
5365
5366static int
5367parse_address (char **str, int i)
5368{
21d799b5 5369 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5370 ? SUCCESS : FAIL;
5371}
5372
5373static parse_operand_result
5374parse_address_group_reloc (char **str, int i, group_reloc_type type)
5375{
5376 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5377}
5378
b6895b4f
PB
5379/* Parse an operand for a MOVW or MOVT instruction. */
5380static int
5381parse_half (char **str)
5382{
5383 char * p;
5f4273c7 5384
b6895b4f
PB
5385 p = *str;
5386 skip_past_char (&p, '#');
5f4273c7 5387 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5388 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5389 else if (strncasecmp (p, ":upper16:", 9) == 0)
5390 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5391
5392 if (inst.reloc.type != BFD_RELOC_UNUSED)
5393 {
5394 p += 9;
5f4273c7 5395 skip_whitespace (p);
b6895b4f
PB
5396 }
5397
5398 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5399 return FAIL;
5400
5401 if (inst.reloc.type == BFD_RELOC_UNUSED)
5402 {
5403 if (inst.reloc.exp.X_op != O_constant)
5404 {
5405 inst.error = _("constant expression expected");
5406 return FAIL;
5407 }
5408 if (inst.reloc.exp.X_add_number < 0
5409 || inst.reloc.exp.X_add_number > 0xffff)
5410 {
5411 inst.error = _("immediate value out of range");
5412 return FAIL;
5413 }
5414 }
5415 *str = p;
5416 return SUCCESS;
5417}
5418
c19d1205 5419/* Miscellaneous. */
a737bd4d 5420
c19d1205
ZW
5421/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5422 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5423static int
d2cd1205 5424parse_psr (char **str, bfd_boolean lhs)
09d92015 5425{
c19d1205
ZW
5426 char *p;
5427 unsigned long psr_field;
62b3e311
PB
5428 const struct asm_psr *psr;
5429 char *start;
d2cd1205 5430 bfd_boolean is_apsr = FALSE;
ac7f631b 5431 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5432
a4482bb6
NC
5433 /* PR gas/12698: If the user has specified -march=all then m_profile will
5434 be TRUE, but we want to ignore it in this case as we are building for any
5435 CPU type, including non-m variants. */
5436 if (selected_cpu.core == arm_arch_any.core)
5437 m_profile = FALSE;
5438
c19d1205
ZW
5439 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5440 feature for ease of use and backwards compatibility. */
5441 p = *str;
62b3e311 5442 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5443 {
5444 if (m_profile)
5445 goto unsupported_psr;
5446
5447 psr_field = SPSR_BIT;
5448 }
5449 else if (strncasecmp (p, "CPSR", 4) == 0)
5450 {
5451 if (m_profile)
5452 goto unsupported_psr;
5453
5454 psr_field = 0;
5455 }
5456 else if (strncasecmp (p, "APSR", 4) == 0)
5457 {
5458 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5459 and ARMv7-R architecture CPUs. */
5460 is_apsr = TRUE;
5461 psr_field = 0;
5462 }
5463 else if (m_profile)
62b3e311
PB
5464 {
5465 start = p;
5466 do
5467 p++;
5468 while (ISALNUM (*p) || *p == '_');
5469
d2cd1205
JB
5470 if (strncasecmp (start, "iapsr", 5) == 0
5471 || strncasecmp (start, "eapsr", 5) == 0
5472 || strncasecmp (start, "xpsr", 4) == 0
5473 || strncasecmp (start, "psr", 3) == 0)
5474 p = start + strcspn (start, "rR") + 1;
5475
21d799b5
NC
5476 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5477 p - start);
d2cd1205 5478
62b3e311
PB
5479 if (!psr)
5480 return FAIL;
09d92015 5481
d2cd1205
JB
5482 /* If APSR is being written, a bitfield may be specified. Note that
5483 APSR itself is handled above. */
5484 if (psr->field <= 3)
5485 {
5486 psr_field = psr->field;
5487 is_apsr = TRUE;
5488 goto check_suffix;
5489 }
5490
62b3e311 5491 *str = p;
d2cd1205
JB
5492 /* M-profile MSR instructions have the mask field set to "10", except
5493 *PSR variants which modify APSR, which may use a different mask (and
5494 have been handled already). Do that by setting the PSR_f field
5495 here. */
5496 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5497 }
d2cd1205
JB
5498 else
5499 goto unsupported_psr;
09d92015 5500
62b3e311 5501 p += 4;
d2cd1205 5502check_suffix:
c19d1205
ZW
5503 if (*p == '_')
5504 {
5505 /* A suffix follows. */
c19d1205
ZW
5506 p++;
5507 start = p;
a737bd4d 5508
c19d1205
ZW
5509 do
5510 p++;
5511 while (ISALNUM (*p) || *p == '_');
a737bd4d 5512
d2cd1205
JB
5513 if (is_apsr)
5514 {
5515 /* APSR uses a notation for bits, rather than fields. */
5516 unsigned int nzcvq_bits = 0;
5517 unsigned int g_bit = 0;
5518 char *bit;
5519
5520 for (bit = start; bit != p; bit++)
5521 {
5522 switch (TOLOWER (*bit))
5523 {
5524 case 'n':
5525 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5526 break;
5527
5528 case 'z':
5529 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5530 break;
5531
5532 case 'c':
5533 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5534 break;
5535
5536 case 'v':
5537 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5538 break;
5539
5540 case 'q':
5541 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5542 break;
5543
5544 case 'g':
5545 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5546 break;
5547
5548 default:
5549 inst.error = _("unexpected bit specified after APSR");
5550 return FAIL;
5551 }
5552 }
5553
5554 if (nzcvq_bits == 0x1f)
5555 psr_field |= PSR_f;
5556
5557 if (g_bit == 0x1)
5558 {
5559 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5560 {
5561 inst.error = _("selected processor does not "
5562 "support DSP extension");
5563 return FAIL;
5564 }
5565
5566 psr_field |= PSR_s;
5567 }
5568
5569 if ((nzcvq_bits & 0x20) != 0
5570 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5571 || (g_bit & 0x2) != 0)
5572 {
5573 inst.error = _("bad bitmask specified after APSR");
5574 return FAIL;
5575 }
5576 }
5577 else
5578 {
5579 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5580 p - start);
5581 if (!psr)
5582 goto error;
a737bd4d 5583
d2cd1205
JB
5584 psr_field |= psr->field;
5585 }
a737bd4d 5586 }
c19d1205 5587 else
a737bd4d 5588 {
c19d1205
ZW
5589 if (ISALNUM (*p))
5590 goto error; /* Garbage after "[CS]PSR". */
5591
d2cd1205
JB
5592 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5593 is deprecated, but allow it anyway. */
5594 if (is_apsr && lhs)
5595 {
5596 psr_field |= PSR_f;
5597 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5598 "deprecated"));
5599 }
5600 else if (!m_profile)
5601 /* These bits are never right for M-profile devices: don't set them
5602 (only code paths which read/write APSR reach here). */
5603 psr_field |= (PSR_c | PSR_f);
a737bd4d 5604 }
c19d1205
ZW
5605 *str = p;
5606 return psr_field;
a737bd4d 5607
d2cd1205
JB
5608 unsupported_psr:
5609 inst.error = _("selected processor does not support requested special "
5610 "purpose register");
5611 return FAIL;
5612
c19d1205
ZW
5613 error:
5614 inst.error = _("flag for {c}psr instruction expected");
5615 return FAIL;
a737bd4d
NC
5616}
5617
c19d1205
ZW
5618/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5619 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5620
c19d1205
ZW
5621static int
5622parse_cps_flags (char **str)
a737bd4d 5623{
c19d1205
ZW
5624 int val = 0;
5625 int saw_a_flag = 0;
5626 char *s = *str;
a737bd4d 5627
c19d1205
ZW
5628 for (;;)
5629 switch (*s++)
5630 {
5631 case '\0': case ',':
5632 goto done;
a737bd4d 5633
c19d1205
ZW
5634 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5635 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5636 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5637
c19d1205
ZW
5638 default:
5639 inst.error = _("unrecognized CPS flag");
5640 return FAIL;
5641 }
a737bd4d 5642
c19d1205
ZW
5643 done:
5644 if (saw_a_flag == 0)
a737bd4d 5645 {
c19d1205
ZW
5646 inst.error = _("missing CPS flags");
5647 return FAIL;
a737bd4d 5648 }
a737bd4d 5649
c19d1205
ZW
5650 *str = s - 1;
5651 return val;
a737bd4d
NC
5652}
5653
c19d1205
ZW
5654/* Parse an endian specifier ("BE" or "LE", case insensitive);
5655 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5656
5657static int
c19d1205 5658parse_endian_specifier (char **str)
a737bd4d 5659{
c19d1205
ZW
5660 int little_endian;
5661 char *s = *str;
a737bd4d 5662
c19d1205
ZW
5663 if (strncasecmp (s, "BE", 2))
5664 little_endian = 0;
5665 else if (strncasecmp (s, "LE", 2))
5666 little_endian = 1;
5667 else
a737bd4d 5668 {
c19d1205 5669 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5670 return FAIL;
5671 }
5672
c19d1205 5673 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5674 {
c19d1205 5675 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5676 return FAIL;
5677 }
5678
c19d1205
ZW
5679 *str = s + 2;
5680 return little_endian;
5681}
a737bd4d 5682
c19d1205
ZW
5683/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5684 value suitable for poking into the rotate field of an sxt or sxta
5685 instruction, or FAIL on error. */
5686
5687static int
5688parse_ror (char **str)
5689{
5690 int rot;
5691 char *s = *str;
5692
5693 if (strncasecmp (s, "ROR", 3) == 0)
5694 s += 3;
5695 else
a737bd4d 5696 {
c19d1205 5697 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5698 return FAIL;
5699 }
c19d1205
ZW
5700
5701 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5702 return FAIL;
5703
5704 switch (rot)
a737bd4d 5705 {
c19d1205
ZW
5706 case 0: *str = s; return 0x0;
5707 case 8: *str = s; return 0x1;
5708 case 16: *str = s; return 0x2;
5709 case 24: *str = s; return 0x3;
5710
5711 default:
5712 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5713 return FAIL;
5714 }
c19d1205 5715}
a737bd4d 5716
c19d1205
ZW
5717/* Parse a conditional code (from conds[] below). The value returned is in the
5718 range 0 .. 14, or FAIL. */
5719static int
5720parse_cond (char **str)
5721{
c462b453 5722 char *q;
c19d1205 5723 const struct asm_cond *c;
c462b453
PB
5724 int n;
5725 /* Condition codes are always 2 characters, so matching up to
5726 3 characters is sufficient. */
5727 char cond[3];
a737bd4d 5728
c462b453
PB
5729 q = *str;
5730 n = 0;
5731 while (ISALPHA (*q) && n < 3)
5732 {
e07e6e58 5733 cond[n] = TOLOWER (*q);
c462b453
PB
5734 q++;
5735 n++;
5736 }
a737bd4d 5737
21d799b5 5738 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5739 if (!c)
a737bd4d 5740 {
c19d1205 5741 inst.error = _("condition required");
a737bd4d
NC
5742 return FAIL;
5743 }
5744
c19d1205
ZW
5745 *str = q;
5746 return c->value;
5747}
5748
62b3e311
PB
5749/* Parse an option for a barrier instruction. Returns the encoding for the
5750 option, or FAIL. */
5751static int
5752parse_barrier (char **str)
5753{
5754 char *p, *q;
5755 const struct asm_barrier_opt *o;
5756
5757 p = q = *str;
5758 while (ISALPHA (*q))
5759 q++;
5760
21d799b5
NC
5761 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5762 q - p);
62b3e311
PB
5763 if (!o)
5764 return FAIL;
5765
5766 *str = q;
5767 return o->value;
5768}
5769
92e90b6e
PB
5770/* Parse the operands of a table branch instruction. Similar to a memory
5771 operand. */
5772static int
5773parse_tb (char **str)
5774{
5775 char * p = *str;
5776 int reg;
5777
5778 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5779 {
5780 inst.error = _("'[' expected");
5781 return FAIL;
5782 }
92e90b6e 5783
dcbf9037 5784 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5785 {
5786 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5787 return FAIL;
5788 }
5789 inst.operands[0].reg = reg;
5790
5791 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5792 {
5793 inst.error = _("',' expected");
5794 return FAIL;
5795 }
5f4273c7 5796
dcbf9037 5797 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5798 {
5799 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5800 return FAIL;
5801 }
5802 inst.operands[0].imm = reg;
5803
5804 if (skip_past_comma (&p) == SUCCESS)
5805 {
5806 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5807 return FAIL;
5808 if (inst.reloc.exp.X_add_number != 1)
5809 {
5810 inst.error = _("invalid shift");
5811 return FAIL;
5812 }
5813 inst.operands[0].shifted = 1;
5814 }
5815
5816 if (skip_past_char (&p, ']') == FAIL)
5817 {
5818 inst.error = _("']' expected");
5819 return FAIL;
5820 }
5821 *str = p;
5822 return SUCCESS;
5823}
5824
5287ad62
JB
5825/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5826 information on the types the operands can take and how they are encoded.
037e8744
JB
5827 Up to four operands may be read; this function handles setting the
5828 ".present" field for each read operand itself.
5287ad62
JB
5829 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5830 else returns FAIL. */
5831
5832static int
5833parse_neon_mov (char **str, int *which_operand)
5834{
5835 int i = *which_operand, val;
5836 enum arm_reg_type rtype;
5837 char *ptr = *str;
dcbf9037 5838 struct neon_type_el optype;
5f4273c7 5839
dcbf9037 5840 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5841 {
5842 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5843 inst.operands[i].reg = val;
5844 inst.operands[i].isscalar = 1;
dcbf9037 5845 inst.operands[i].vectype = optype;
5287ad62
JB
5846 inst.operands[i++].present = 1;
5847
5848 if (skip_past_comma (&ptr) == FAIL)
5849 goto wanted_comma;
5f4273c7 5850
dcbf9037 5851 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5852 goto wanted_arm;
5f4273c7 5853
5287ad62
JB
5854 inst.operands[i].reg = val;
5855 inst.operands[i].isreg = 1;
5856 inst.operands[i].present = 1;
5857 }
037e8744 5858 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5859 != FAIL)
5287ad62
JB
5860 {
5861 /* Cases 0, 1, 2, 3, 5 (D only). */
5862 if (skip_past_comma (&ptr) == FAIL)
5863 goto wanted_comma;
5f4273c7 5864
5287ad62
JB
5865 inst.operands[i].reg = val;
5866 inst.operands[i].isreg = 1;
5867 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5868 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5869 inst.operands[i].isvec = 1;
dcbf9037 5870 inst.operands[i].vectype = optype;
5287ad62
JB
5871 inst.operands[i++].present = 1;
5872
dcbf9037 5873 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5874 {
037e8744
JB
5875 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5876 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5877 inst.operands[i].reg = val;
5878 inst.operands[i].isreg = 1;
037e8744 5879 inst.operands[i].present = 1;
5287ad62
JB
5880
5881 if (rtype == REG_TYPE_NQ)
5882 {
dcbf9037 5883 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5884 return FAIL;
5885 }
037e8744
JB
5886 else if (rtype != REG_TYPE_VFS)
5887 {
5888 i++;
5889 if (skip_past_comma (&ptr) == FAIL)
5890 goto wanted_comma;
5891 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5892 goto wanted_arm;
5893 inst.operands[i].reg = val;
5894 inst.operands[i].isreg = 1;
5895 inst.operands[i].present = 1;
5896 }
5287ad62 5897 }
037e8744
JB
5898 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5899 &optype)) != FAIL)
5287ad62
JB
5900 {
5901 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5902 Case 1: VMOV<c><q> <Dd>, <Dm>
5903 Case 8: VMOV.F32 <Sd>, <Sm>
5904 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5905
5906 inst.operands[i].reg = val;
5907 inst.operands[i].isreg = 1;
5908 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5909 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5910 inst.operands[i].isvec = 1;
dcbf9037 5911 inst.operands[i].vectype = optype;
5287ad62 5912 inst.operands[i].present = 1;
5f4273c7 5913
037e8744
JB
5914 if (skip_past_comma (&ptr) == SUCCESS)
5915 {
5916 /* Case 15. */
5917 i++;
5918
5919 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5920 goto wanted_arm;
5921
5922 inst.operands[i].reg = val;
5923 inst.operands[i].isreg = 1;
5924 inst.operands[i++].present = 1;
5f4273c7 5925
037e8744
JB
5926 if (skip_past_comma (&ptr) == FAIL)
5927 goto wanted_comma;
5f4273c7 5928
037e8744
JB
5929 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5930 goto wanted_arm;
5f4273c7 5931
037e8744
JB
5932 inst.operands[i].reg = val;
5933 inst.operands[i].isreg = 1;
1b11b49f 5934 inst.operands[i].present = 1;
037e8744 5935 }
5287ad62 5936 }
4641781c
PB
5937 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5938 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5939 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5940 Case 10: VMOV.F32 <Sd>, #<imm>
5941 Case 11: VMOV.F64 <Dd>, #<imm> */
5942 inst.operands[i].immisfloat = 1;
5943 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5944 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5945 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5946 ;
5287ad62
JB
5947 else
5948 {
dcbf9037 5949 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5950 return FAIL;
5951 }
5952 }
dcbf9037 5953 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5954 {
5955 /* Cases 6, 7. */
5956 inst.operands[i].reg = val;
5957 inst.operands[i].isreg = 1;
5958 inst.operands[i++].present = 1;
5f4273c7 5959
5287ad62
JB
5960 if (skip_past_comma (&ptr) == FAIL)
5961 goto wanted_comma;
5f4273c7 5962
dcbf9037 5963 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5964 {
5965 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5966 inst.operands[i].reg = val;
5967 inst.operands[i].isscalar = 1;
5968 inst.operands[i].present = 1;
dcbf9037 5969 inst.operands[i].vectype = optype;
5287ad62 5970 }
dcbf9037 5971 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5972 {
5973 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5974 inst.operands[i].reg = val;
5975 inst.operands[i].isreg = 1;
5976 inst.operands[i++].present = 1;
5f4273c7 5977
5287ad62
JB
5978 if (skip_past_comma (&ptr) == FAIL)
5979 goto wanted_comma;
5f4273c7 5980
037e8744 5981 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5982 == FAIL)
5287ad62 5983 {
037e8744 5984 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5985 return FAIL;
5986 }
5987
5988 inst.operands[i].reg = val;
5989 inst.operands[i].isreg = 1;
037e8744
JB
5990 inst.operands[i].isvec = 1;
5991 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5992 inst.operands[i].vectype = optype;
5287ad62 5993 inst.operands[i].present = 1;
5f4273c7 5994
037e8744
JB
5995 if (rtype == REG_TYPE_VFS)
5996 {
5997 /* Case 14. */
5998 i++;
5999 if (skip_past_comma (&ptr) == FAIL)
6000 goto wanted_comma;
6001 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6002 &optype)) == FAIL)
6003 {
6004 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6005 return FAIL;
6006 }
6007 inst.operands[i].reg = val;
6008 inst.operands[i].isreg = 1;
6009 inst.operands[i].isvec = 1;
6010 inst.operands[i].issingle = 1;
6011 inst.operands[i].vectype = optype;
6012 inst.operands[i].present = 1;
6013 }
6014 }
6015 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6016 != FAIL)
6017 {
6018 /* Case 13. */
6019 inst.operands[i].reg = val;
6020 inst.operands[i].isreg = 1;
6021 inst.operands[i].isvec = 1;
6022 inst.operands[i].issingle = 1;
6023 inst.operands[i].vectype = optype;
1b11b49f 6024 inst.operands[i].present = 1;
5287ad62
JB
6025 }
6026 }
6027 else
6028 {
dcbf9037 6029 first_error (_("parse error"));
5287ad62
JB
6030 return FAIL;
6031 }
6032
6033 /* Successfully parsed the operands. Update args. */
6034 *which_operand = i;
6035 *str = ptr;
6036 return SUCCESS;
6037
5f4273c7 6038 wanted_comma:
dcbf9037 6039 first_error (_("expected comma"));
5287ad62 6040 return FAIL;
5f4273c7
NC
6041
6042 wanted_arm:
dcbf9037 6043 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6044 return FAIL;
5287ad62
JB
6045}
6046
5be8be5d
DG
6047/* Use this macro when the operand constraints are different
6048 for ARM and THUMB (e.g. ldrd). */
6049#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6050 ((arm_operand) | ((thumb_operand) << 16))
6051
c19d1205
ZW
6052/* Matcher codes for parse_operands. */
6053enum operand_parse_code
6054{
6055 OP_stop, /* end of line */
6056
6057 OP_RR, /* ARM register */
6058 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6059 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6060 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
6061 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6062 optional trailing ! */
c19d1205
ZW
6063 OP_RRw, /* ARM register, not r15, optional trailing ! */
6064 OP_RCP, /* Coprocessor number */
6065 OP_RCN, /* Coprocessor register */
6066 OP_RF, /* FPA register */
6067 OP_RVS, /* VFP single precision register */
5287ad62
JB
6068 OP_RVD, /* VFP double precision register (0..15) */
6069 OP_RND, /* Neon double precision register (0..31) */
6070 OP_RNQ, /* Neon quad precision register */
037e8744 6071 OP_RVSD, /* VFP single or double precision register */
5287ad62 6072 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6073 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6074 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6075 OP_RVC, /* VFP control register */
6076 OP_RMF, /* Maverick F register */
6077 OP_RMD, /* Maverick D register */
6078 OP_RMFX, /* Maverick FX register */
6079 OP_RMDX, /* Maverick DX register */
6080 OP_RMAX, /* Maverick AX register */
6081 OP_RMDS, /* Maverick DSPSC register */
6082 OP_RIWR, /* iWMMXt wR register */
6083 OP_RIWC, /* iWMMXt wC register */
6084 OP_RIWG, /* iWMMXt wCG register */
6085 OP_RXA, /* XScale accumulator register */
6086
6087 OP_REGLST, /* ARM register list */
6088 OP_VRSLST, /* VFP single-precision register list */
6089 OP_VRDLST, /* VFP double-precision register list */
037e8744 6090 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6091 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6092 OP_NSTRLST, /* Neon element/structure list */
6093
5287ad62 6094 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6095 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6096 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6097 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6098 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6099 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6100 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6101 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6102 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6103 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6104
6105 OP_I0, /* immediate zero */
c19d1205
ZW
6106 OP_I7, /* immediate value 0 .. 7 */
6107 OP_I15, /* 0 .. 15 */
6108 OP_I16, /* 1 .. 16 */
5287ad62 6109 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6110 OP_I31, /* 0 .. 31 */
6111 OP_I31w, /* 0 .. 31, optional trailing ! */
6112 OP_I32, /* 1 .. 32 */
5287ad62
JB
6113 OP_I32z, /* 0 .. 32 */
6114 OP_I63, /* 0 .. 63 */
c19d1205 6115 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6116 OP_I64, /* 1 .. 64 */
6117 OP_I64z, /* 0 .. 64 */
c19d1205 6118 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6119
6120 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6121 OP_I7b, /* 0 .. 7 */
6122 OP_I15b, /* 0 .. 15 */
6123 OP_I31b, /* 0 .. 31 */
6124
6125 OP_SH, /* shifter operand */
4962c51a 6126 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6127 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6128 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6129 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6130 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6131 OP_EXP, /* arbitrary expression */
6132 OP_EXPi, /* same, with optional immediate prefix */
6133 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6134 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6135
6136 OP_CPSF, /* CPS flags */
6137 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6138 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6139 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6140 OP_COND, /* conditional code */
92e90b6e 6141 OP_TB, /* Table branch. */
c19d1205 6142
037e8744
JB
6143 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6144
c19d1205
ZW
6145 OP_RRnpc_I0, /* ARM register or literal 0 */
6146 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6147 OP_RR_EXi, /* ARM register or expression with imm prefix */
6148 OP_RF_IF, /* FPA register or immediate */
6149 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6150 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6151
6152 /* Optional operands. */
6153 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6154 OP_oI31b, /* 0 .. 31 */
5287ad62 6155 OP_oI32b, /* 1 .. 32 */
5f1af56b 6156 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6157 OP_oIffffb, /* 0 .. 65535 */
6158 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6159
6160 OP_oRR, /* ARM register */
6161 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6162 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6163 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6164 OP_oRND, /* Optional Neon double precision register */
6165 OP_oRNQ, /* Optional Neon quad precision register */
6166 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6167 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6168 OP_oSHll, /* LSL immediate */
6169 OP_oSHar, /* ASR immediate */
6170 OP_oSHllar, /* LSL or ASR immediate */
6171 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6172 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6173
5be8be5d
DG
6174 /* Some pre-defined mixed (ARM/THUMB) operands. */
6175 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6176 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6177 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6178
c19d1205
ZW
6179 OP_FIRST_OPTIONAL = OP_oI7b
6180};
a737bd4d 6181
c19d1205
ZW
6182/* Generic instruction operand parser. This does no encoding and no
6183 semantic validation; it merely squirrels values away in the inst
6184 structure. Returns SUCCESS or FAIL depending on whether the
6185 specified grammar matched. */
6186static int
5be8be5d 6187parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6188{
5be8be5d 6189 unsigned const int *upat = pattern;
c19d1205
ZW
6190 char *backtrack_pos = 0;
6191 const char *backtrack_error = 0;
6192 int i, val, backtrack_index = 0;
5287ad62 6193 enum arm_reg_type rtype;
4962c51a 6194 parse_operand_result result;
5be8be5d 6195 unsigned int op_parse_code;
c19d1205 6196
e07e6e58
NC
6197#define po_char_or_fail(chr) \
6198 do \
6199 { \
6200 if (skip_past_char (&str, chr) == FAIL) \
6201 goto bad_args; \
6202 } \
6203 while (0)
c19d1205 6204
e07e6e58
NC
6205#define po_reg_or_fail(regtype) \
6206 do \
dcbf9037 6207 { \
e07e6e58
NC
6208 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6209 & inst.operands[i].vectype); \
6210 if (val == FAIL) \
6211 { \
6212 first_error (_(reg_expected_msgs[regtype])); \
6213 goto failure; \
6214 } \
6215 inst.operands[i].reg = val; \
6216 inst.operands[i].isreg = 1; \
6217 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6218 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6219 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6220 || rtype == REG_TYPE_VFD \
6221 || rtype == REG_TYPE_NQ); \
dcbf9037 6222 } \
e07e6e58
NC
6223 while (0)
6224
6225#define po_reg_or_goto(regtype, label) \
6226 do \
6227 { \
6228 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6229 & inst.operands[i].vectype); \
6230 if (val == FAIL) \
6231 goto label; \
dcbf9037 6232 \
e07e6e58
NC
6233 inst.operands[i].reg = val; \
6234 inst.operands[i].isreg = 1; \
6235 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6236 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6237 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6238 || rtype == REG_TYPE_VFD \
6239 || rtype == REG_TYPE_NQ); \
6240 } \
6241 while (0)
6242
6243#define po_imm_or_fail(min, max, popt) \
6244 do \
6245 { \
6246 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6247 goto failure; \
6248 inst.operands[i].imm = val; \
6249 } \
6250 while (0)
6251
6252#define po_scalar_or_goto(elsz, label) \
6253 do \
6254 { \
6255 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6256 if (val == FAIL) \
6257 goto label; \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isscalar = 1; \
6260 } \
6261 while (0)
6262
6263#define po_misc_or_fail(expr) \
6264 do \
6265 { \
6266 if (expr) \
6267 goto failure; \
6268 } \
6269 while (0)
6270
6271#define po_misc_or_fail_no_backtrack(expr) \
6272 do \
6273 { \
6274 result = expr; \
6275 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6276 backtrack_pos = 0; \
6277 if (result != PARSE_OPERAND_SUCCESS) \
6278 goto failure; \
6279 } \
6280 while (0)
4962c51a 6281
52e7f43d
RE
6282#define po_barrier_or_imm(str) \
6283 do \
6284 { \
6285 val = parse_barrier (&str); \
6286 if (val == FAIL) \
6287 { \
6288 if (ISALPHA (*str)) \
6289 goto failure; \
6290 else \
6291 goto immediate; \
6292 } \
6293 else \
6294 { \
6295 if ((inst.instruction & 0xf0) == 0x60 \
6296 && val != 0xf) \
6297 { \
6298 /* ISB can only take SY as an option. */ \
6299 inst.error = _("invalid barrier type"); \
6300 goto failure; \
6301 } \
6302 } \
6303 } \
6304 while (0)
6305
c19d1205
ZW
6306 skip_whitespace (str);
6307
6308 for (i = 0; upat[i] != OP_stop; i++)
6309 {
5be8be5d
DG
6310 op_parse_code = upat[i];
6311 if (op_parse_code >= 1<<16)
6312 op_parse_code = thumb ? (op_parse_code >> 16)
6313 : (op_parse_code & ((1<<16)-1));
6314
6315 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6316 {
6317 /* Remember where we are in case we need to backtrack. */
9c2799c2 6318 gas_assert (!backtrack_pos);
c19d1205
ZW
6319 backtrack_pos = str;
6320 backtrack_error = inst.error;
6321 backtrack_index = i;
6322 }
6323
b6702015 6324 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6325 po_char_or_fail (',');
6326
5be8be5d 6327 switch (op_parse_code)
c19d1205
ZW
6328 {
6329 /* Registers */
6330 case OP_oRRnpc:
5be8be5d 6331 case OP_oRRnpcsp:
c19d1205 6332 case OP_RRnpc:
5be8be5d 6333 case OP_RRnpcsp:
c19d1205
ZW
6334 case OP_oRR:
6335 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6336 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6337 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6338 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6339 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6340 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6341 case OP_oRND:
6342 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6343 case OP_RVC:
6344 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6345 break;
6346 /* Also accept generic coprocessor regs for unknown registers. */
6347 coproc_reg:
6348 po_reg_or_fail (REG_TYPE_CN);
6349 break;
c19d1205
ZW
6350 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6351 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6352 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6353 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6354 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6355 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6356 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6357 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6358 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6359 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6360 case OP_oRNQ:
6361 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6362 case OP_oRNDQ:
6363 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6364 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6365 case OP_oRNSDQ:
6366 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6367
6368 /* Neon scalar. Using an element size of 8 means that some invalid
6369 scalars are accepted here, so deal with those in later code. */
6370 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6371
5287ad62
JB
6372 case OP_RNDQ_I0:
6373 {
6374 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6375 break;
6376 try_imm0:
6377 po_imm_or_fail (0, 0, TRUE);
6378 }
6379 break;
6380
037e8744
JB
6381 case OP_RVSD_I0:
6382 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6383 break;
6384
5287ad62
JB
6385 case OP_RR_RNSC:
6386 {
6387 po_scalar_or_goto (8, try_rr);
6388 break;
6389 try_rr:
6390 po_reg_or_fail (REG_TYPE_RN);
6391 }
6392 break;
6393
037e8744
JB
6394 case OP_RNSDQ_RNSC:
6395 {
6396 po_scalar_or_goto (8, try_nsdq);
6397 break;
6398 try_nsdq:
6399 po_reg_or_fail (REG_TYPE_NSDQ);
6400 }
6401 break;
6402
5287ad62
JB
6403 case OP_RNDQ_RNSC:
6404 {
6405 po_scalar_or_goto (8, try_ndq);
6406 break;
6407 try_ndq:
6408 po_reg_or_fail (REG_TYPE_NDQ);
6409 }
6410 break;
6411
6412 case OP_RND_RNSC:
6413 {
6414 po_scalar_or_goto (8, try_vfd);
6415 break;
6416 try_vfd:
6417 po_reg_or_fail (REG_TYPE_VFD);
6418 }
6419 break;
6420
6421 case OP_VMOV:
6422 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6423 not careful then bad things might happen. */
6424 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6425 break;
6426
4316f0d2 6427 case OP_RNDQ_Ibig:
5287ad62 6428 {
4316f0d2 6429 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6430 break;
4316f0d2 6431 try_immbig:
5287ad62
JB
6432 /* There's a possibility of getting a 64-bit immediate here, so
6433 we need special handling. */
6434 if (parse_big_immediate (&str, i) == FAIL)
6435 {
6436 inst.error = _("immediate value is out of range");
6437 goto failure;
6438 }
6439 }
6440 break;
6441
6442 case OP_RNDQ_I63b:
6443 {
6444 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6445 break;
6446 try_shimm:
6447 po_imm_or_fail (0, 63, TRUE);
6448 }
6449 break;
c19d1205
ZW
6450
6451 case OP_RRnpcb:
6452 po_char_or_fail ('[');
6453 po_reg_or_fail (REG_TYPE_RN);
6454 po_char_or_fail (']');
6455 break;
a737bd4d 6456
55881a11 6457 case OP_RRnpctw:
c19d1205 6458 case OP_RRw:
b6702015 6459 case OP_oRRw:
c19d1205
ZW
6460 po_reg_or_fail (REG_TYPE_RN);
6461 if (skip_past_char (&str, '!') == SUCCESS)
6462 inst.operands[i].writeback = 1;
6463 break;
6464
6465 /* Immediates */
6466 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6467 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6468 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6469 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6470 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6471 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6472 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6473 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6474 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6475 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6476 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6477 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6478
6479 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6480 case OP_oI7b:
6481 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6482 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6483 case OP_oI31b:
6484 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6485 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5f1af56b 6486 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6487 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6488
6489 /* Immediate variants */
6490 case OP_oI255c:
6491 po_char_or_fail ('{');
6492 po_imm_or_fail (0, 255, TRUE);
6493 po_char_or_fail ('}');
6494 break;
6495
6496 case OP_I31w:
6497 /* The expression parser chokes on a trailing !, so we have
6498 to find it first and zap it. */
6499 {
6500 char *s = str;
6501 while (*s && *s != ',')
6502 s++;
6503 if (s[-1] == '!')
6504 {
6505 s[-1] = '\0';
6506 inst.operands[i].writeback = 1;
6507 }
6508 po_imm_or_fail (0, 31, TRUE);
6509 if (str == s - 1)
6510 str = s;
6511 }
6512 break;
6513
6514 /* Expressions */
6515 case OP_EXPi: EXPi:
6516 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6517 GE_OPT_PREFIX));
6518 break;
6519
6520 case OP_EXP:
6521 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6522 GE_NO_PREFIX));
6523 break;
6524
6525 case OP_EXPr: EXPr:
6526 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6527 GE_NO_PREFIX));
6528 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6529 {
c19d1205
ZW
6530 val = parse_reloc (&str);
6531 if (val == -1)
6532 {
6533 inst.error = _("unrecognized relocation suffix");
6534 goto failure;
6535 }
6536 else if (val != BFD_RELOC_UNUSED)
6537 {
6538 inst.operands[i].imm = val;
6539 inst.operands[i].hasreloc = 1;
6540 }
a737bd4d 6541 }
c19d1205 6542 break;
a737bd4d 6543
b6895b4f
PB
6544 /* Operand for MOVW or MOVT. */
6545 case OP_HALF:
6546 po_misc_or_fail (parse_half (&str));
6547 break;
6548
e07e6e58 6549 /* Register or expression. */
c19d1205
ZW
6550 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6551 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6552
e07e6e58 6553 /* Register or immediate. */
c19d1205
ZW
6554 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6555 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6556
c19d1205
ZW
6557 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6558 IF:
6559 if (!is_immediate_prefix (*str))
6560 goto bad_args;
6561 str++;
6562 val = parse_fpa_immediate (&str);
6563 if (val == FAIL)
6564 goto failure;
6565 /* FPA immediates are encoded as registers 8-15.
6566 parse_fpa_immediate has already applied the offset. */
6567 inst.operands[i].reg = val;
6568 inst.operands[i].isreg = 1;
6569 break;
09d92015 6570
2d447fca
JM
6571 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6572 I32z: po_imm_or_fail (0, 32, FALSE); break;
6573
e07e6e58 6574 /* Two kinds of register. */
c19d1205
ZW
6575 case OP_RIWR_RIWC:
6576 {
6577 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6578 if (!rege
6579 || (rege->type != REG_TYPE_MMXWR
6580 && rege->type != REG_TYPE_MMXWC
6581 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6582 {
6583 inst.error = _("iWMMXt data or control register expected");
6584 goto failure;
6585 }
6586 inst.operands[i].reg = rege->number;
6587 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6588 }
6589 break;
09d92015 6590
41adaa5c
JM
6591 case OP_RIWC_RIWG:
6592 {
6593 struct reg_entry *rege = arm_reg_parse_multi (&str);
6594 if (!rege
6595 || (rege->type != REG_TYPE_MMXWC
6596 && rege->type != REG_TYPE_MMXWCG))
6597 {
6598 inst.error = _("iWMMXt control register expected");
6599 goto failure;
6600 }
6601 inst.operands[i].reg = rege->number;
6602 inst.operands[i].isreg = 1;
6603 }
6604 break;
6605
c19d1205
ZW
6606 /* Misc */
6607 case OP_CPSF: val = parse_cps_flags (&str); break;
6608 case OP_ENDI: val = parse_endian_specifier (&str); break;
6609 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6610 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6611 case OP_oBARRIER_I15:
6612 po_barrier_or_imm (str); break;
6613 immediate:
6614 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6615 goto failure;
6616 break;
c19d1205 6617
d2cd1205
JB
6618 case OP_wPSR:
6619 case OP_rPSR:
90ec0d68
MGD
6620 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6621 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6622 {
6623 inst.error = _("Banked registers are not available with this "
6624 "architecture.");
6625 goto failure;
6626 }
6627 break;
d2cd1205
JB
6628 try_psr:
6629 val = parse_psr (&str, op_parse_code == OP_wPSR);
6630 break;
037e8744
JB
6631
6632 case OP_APSR_RR:
6633 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6634 break;
6635 try_apsr:
6636 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6637 instruction). */
6638 if (strncasecmp (str, "APSR_", 5) == 0)
6639 {
6640 unsigned found = 0;
6641 str += 5;
6642 while (found < 15)
6643 switch (*str++)
6644 {
6645 case 'c': found = (found & 1) ? 16 : found | 1; break;
6646 case 'n': found = (found & 2) ? 16 : found | 2; break;
6647 case 'z': found = (found & 4) ? 16 : found | 4; break;
6648 case 'v': found = (found & 8) ? 16 : found | 8; break;
6649 default: found = 16;
6650 }
6651 if (found != 15)
6652 goto failure;
6653 inst.operands[i].isvec = 1;
f7c21dc7
NC
6654 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6655 inst.operands[i].reg = REG_PC;
037e8744
JB
6656 }
6657 else
6658 goto failure;
6659 break;
6660
92e90b6e
PB
6661 case OP_TB:
6662 po_misc_or_fail (parse_tb (&str));
6663 break;
6664
e07e6e58 6665 /* Register lists. */
c19d1205
ZW
6666 case OP_REGLST:
6667 val = parse_reg_list (&str);
6668 if (*str == '^')
6669 {
6670 inst.operands[1].writeback = 1;
6671 str++;
6672 }
6673 break;
09d92015 6674
c19d1205 6675 case OP_VRSLST:
5287ad62 6676 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6677 break;
09d92015 6678
c19d1205 6679 case OP_VRDLST:
5287ad62 6680 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6681 break;
a737bd4d 6682
037e8744
JB
6683 case OP_VRSDLST:
6684 /* Allow Q registers too. */
6685 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6686 REGLIST_NEON_D);
6687 if (val == FAIL)
6688 {
6689 inst.error = NULL;
6690 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6691 REGLIST_VFP_S);
6692 inst.operands[i].issingle = 1;
6693 }
6694 break;
6695
5287ad62
JB
6696 case OP_NRDLST:
6697 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6698 REGLIST_NEON_D);
6699 break;
6700
6701 case OP_NSTRLST:
dcbf9037
JB
6702 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6703 &inst.operands[i].vectype);
5287ad62
JB
6704 break;
6705
c19d1205
ZW
6706 /* Addressing modes */
6707 case OP_ADDR:
6708 po_misc_or_fail (parse_address (&str, i));
6709 break;
09d92015 6710
4962c51a
MS
6711 case OP_ADDRGLDR:
6712 po_misc_or_fail_no_backtrack (
6713 parse_address_group_reloc (&str, i, GROUP_LDR));
6714 break;
6715
6716 case OP_ADDRGLDRS:
6717 po_misc_or_fail_no_backtrack (
6718 parse_address_group_reloc (&str, i, GROUP_LDRS));
6719 break;
6720
6721 case OP_ADDRGLDC:
6722 po_misc_or_fail_no_backtrack (
6723 parse_address_group_reloc (&str, i, GROUP_LDC));
6724 break;
6725
c19d1205
ZW
6726 case OP_SH:
6727 po_misc_or_fail (parse_shifter_operand (&str, i));
6728 break;
09d92015 6729
4962c51a
MS
6730 case OP_SHG:
6731 po_misc_or_fail_no_backtrack (
6732 parse_shifter_operand_group_reloc (&str, i));
6733 break;
6734
c19d1205
ZW
6735 case OP_oSHll:
6736 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6737 break;
09d92015 6738
c19d1205
ZW
6739 case OP_oSHar:
6740 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6741 break;
09d92015 6742
c19d1205
ZW
6743 case OP_oSHllar:
6744 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6745 break;
09d92015 6746
c19d1205 6747 default:
5be8be5d 6748 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6749 }
09d92015 6750
c19d1205
ZW
6751 /* Various value-based sanity checks and shared operations. We
6752 do not signal immediate failures for the register constraints;
6753 this allows a syntax error to take precedence. */
5be8be5d 6754 switch (op_parse_code)
c19d1205
ZW
6755 {
6756 case OP_oRRnpc:
6757 case OP_RRnpc:
6758 case OP_RRnpcb:
6759 case OP_RRw:
b6702015 6760 case OP_oRRw:
c19d1205
ZW
6761 case OP_RRnpc_I0:
6762 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6763 inst.error = BAD_PC;
6764 break;
09d92015 6765
5be8be5d
DG
6766 case OP_oRRnpcsp:
6767 case OP_RRnpcsp:
6768 if (inst.operands[i].isreg)
6769 {
6770 if (inst.operands[i].reg == REG_PC)
6771 inst.error = BAD_PC;
6772 else if (inst.operands[i].reg == REG_SP)
6773 inst.error = BAD_SP;
6774 }
6775 break;
6776
55881a11
MGD
6777 case OP_RRnpctw:
6778 if (inst.operands[i].isreg
6779 && inst.operands[i].reg == REG_PC
6780 && (inst.operands[i].writeback || thumb))
6781 inst.error = BAD_PC;
6782 break;
6783
c19d1205
ZW
6784 case OP_CPSF:
6785 case OP_ENDI:
6786 case OP_oROR:
d2cd1205
JB
6787 case OP_wPSR:
6788 case OP_rPSR:
c19d1205 6789 case OP_COND:
52e7f43d 6790 case OP_oBARRIER_I15:
c19d1205
ZW
6791 case OP_REGLST:
6792 case OP_VRSLST:
6793 case OP_VRDLST:
037e8744 6794 case OP_VRSDLST:
5287ad62
JB
6795 case OP_NRDLST:
6796 case OP_NSTRLST:
c19d1205
ZW
6797 if (val == FAIL)
6798 goto failure;
6799 inst.operands[i].imm = val;
6800 break;
a737bd4d 6801
c19d1205
ZW
6802 default:
6803 break;
6804 }
09d92015 6805
c19d1205
ZW
6806 /* If we get here, this operand was successfully parsed. */
6807 inst.operands[i].present = 1;
6808 continue;
09d92015 6809
c19d1205 6810 bad_args:
09d92015 6811 inst.error = BAD_ARGS;
c19d1205
ZW
6812
6813 failure:
6814 if (!backtrack_pos)
d252fdde
PB
6815 {
6816 /* The parse routine should already have set inst.error, but set a
5f4273c7 6817 default here just in case. */
d252fdde
PB
6818 if (!inst.error)
6819 inst.error = _("syntax error");
6820 return FAIL;
6821 }
c19d1205
ZW
6822
6823 /* Do not backtrack over a trailing optional argument that
6824 absorbed some text. We will only fail again, with the
6825 'garbage following instruction' error message, which is
6826 probably less helpful than the current one. */
6827 if (backtrack_index == i && backtrack_pos != str
6828 && upat[i+1] == OP_stop)
d252fdde
PB
6829 {
6830 if (!inst.error)
6831 inst.error = _("syntax error");
6832 return FAIL;
6833 }
c19d1205
ZW
6834
6835 /* Try again, skipping the optional argument at backtrack_pos. */
6836 str = backtrack_pos;
6837 inst.error = backtrack_error;
6838 inst.operands[backtrack_index].present = 0;
6839 i = backtrack_index;
6840 backtrack_pos = 0;
09d92015 6841 }
09d92015 6842
c19d1205
ZW
6843 /* Check that we have parsed all the arguments. */
6844 if (*str != '\0' && !inst.error)
6845 inst.error = _("garbage following instruction");
09d92015 6846
c19d1205 6847 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6848}
6849
c19d1205
ZW
6850#undef po_char_or_fail
6851#undef po_reg_or_fail
6852#undef po_reg_or_goto
6853#undef po_imm_or_fail
5287ad62 6854#undef po_scalar_or_fail
52e7f43d 6855#undef po_barrier_or_imm
e07e6e58 6856
c19d1205 6857/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6858#define constraint(expr, err) \
6859 do \
c19d1205 6860 { \
e07e6e58
NC
6861 if (expr) \
6862 { \
6863 inst.error = err; \
6864 return; \
6865 } \
c19d1205 6866 } \
e07e6e58 6867 while (0)
c19d1205 6868
fdfde340
JM
6869/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6870 instructions are unpredictable if these registers are used. This
6871 is the BadReg predicate in ARM's Thumb-2 documentation. */
6872#define reject_bad_reg(reg) \
6873 do \
6874 if (reg == REG_SP || reg == REG_PC) \
6875 { \
6876 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6877 return; \
6878 } \
6879 while (0)
6880
94206790
MM
6881/* If REG is R13 (the stack pointer), warn that its use is
6882 deprecated. */
6883#define warn_deprecated_sp(reg) \
6884 do \
6885 if (warn_on_deprecated && reg == REG_SP) \
6886 as_warn (_("use of r13 is deprecated")); \
6887 while (0)
6888
c19d1205
ZW
6889/* Functions for operand encoding. ARM, then Thumb. */
6890
6891#define rotate_left(v, n) (v << n | v >> (32 - n))
6892
6893/* If VAL can be encoded in the immediate field of an ARM instruction,
6894 return the encoded form. Otherwise, return FAIL. */
6895
6896static unsigned int
6897encode_arm_immediate (unsigned int val)
09d92015 6898{
c19d1205
ZW
6899 unsigned int a, i;
6900
6901 for (i = 0; i < 32; i += 2)
6902 if ((a = rotate_left (val, i)) <= 0xff)
6903 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6904
6905 return FAIL;
09d92015
MM
6906}
6907
c19d1205
ZW
6908/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6909 return the encoded form. Otherwise, return FAIL. */
6910static unsigned int
6911encode_thumb32_immediate (unsigned int val)
09d92015 6912{
c19d1205 6913 unsigned int a, i;
09d92015 6914
9c3c69f2 6915 if (val <= 0xff)
c19d1205 6916 return val;
a737bd4d 6917
9c3c69f2 6918 for (i = 1; i <= 24; i++)
09d92015 6919 {
9c3c69f2
PB
6920 a = val >> i;
6921 if ((val & ~(0xff << i)) == 0)
6922 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6923 }
a737bd4d 6924
c19d1205
ZW
6925 a = val & 0xff;
6926 if (val == ((a << 16) | a))
6927 return 0x100 | a;
6928 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6929 return 0x300 | a;
09d92015 6930
c19d1205
ZW
6931 a = val & 0xff00;
6932 if (val == ((a << 16) | a))
6933 return 0x200 | (a >> 8);
a737bd4d 6934
c19d1205 6935 return FAIL;
09d92015 6936}
5287ad62 6937/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6938
6939static void
5287ad62
JB
6940encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6941{
6942 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6943 && reg > 15)
6944 {
b1cc4aeb 6945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6946 {
6947 if (thumb_mode)
6948 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6949 fpu_vfp_ext_d32);
5287ad62
JB
6950 else
6951 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6952 fpu_vfp_ext_d32);
5287ad62
JB
6953 }
6954 else
6955 {
dcbf9037 6956 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6957 return;
6958 }
6959 }
6960
c19d1205 6961 switch (pos)
09d92015 6962 {
c19d1205
ZW
6963 case VFP_REG_Sd:
6964 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6965 break;
6966
6967 case VFP_REG_Sn:
6968 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6969 break;
6970
6971 case VFP_REG_Sm:
6972 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6973 break;
6974
5287ad62
JB
6975 case VFP_REG_Dd:
6976 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6977 break;
5f4273c7 6978
5287ad62
JB
6979 case VFP_REG_Dn:
6980 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6981 break;
5f4273c7 6982
5287ad62
JB
6983 case VFP_REG_Dm:
6984 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6985 break;
6986
c19d1205
ZW
6987 default:
6988 abort ();
09d92015 6989 }
09d92015
MM
6990}
6991
c19d1205 6992/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6993 if any, is handled by md_apply_fix. */
09d92015 6994static void
c19d1205 6995encode_arm_shift (int i)
09d92015 6996{
c19d1205
ZW
6997 if (inst.operands[i].shift_kind == SHIFT_RRX)
6998 inst.instruction |= SHIFT_ROR << 5;
6999 else
09d92015 7000 {
c19d1205
ZW
7001 inst.instruction |= inst.operands[i].shift_kind << 5;
7002 if (inst.operands[i].immisreg)
7003 {
7004 inst.instruction |= SHIFT_BY_REG;
7005 inst.instruction |= inst.operands[i].imm << 8;
7006 }
7007 else
7008 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7009 }
c19d1205 7010}
09d92015 7011
c19d1205
ZW
7012static void
7013encode_arm_shifter_operand (int i)
7014{
7015 if (inst.operands[i].isreg)
09d92015 7016 {
c19d1205
ZW
7017 inst.instruction |= inst.operands[i].reg;
7018 encode_arm_shift (i);
09d92015 7019 }
c19d1205 7020 else
a415b1cd
JB
7021 {
7022 inst.instruction |= INST_IMMEDIATE;
7023 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7024 inst.instruction |= inst.operands[i].imm;
7025 }
09d92015
MM
7026}
7027
c19d1205 7028/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7029static void
c19d1205 7030encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7031{
9c2799c2 7032 gas_assert (inst.operands[i].isreg);
c19d1205 7033 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7034
c19d1205 7035 if (inst.operands[i].preind)
09d92015 7036 {
c19d1205
ZW
7037 if (is_t)
7038 {
7039 inst.error = _("instruction does not accept preindexed addressing");
7040 return;
7041 }
7042 inst.instruction |= PRE_INDEX;
7043 if (inst.operands[i].writeback)
7044 inst.instruction |= WRITE_BACK;
09d92015 7045
c19d1205
ZW
7046 }
7047 else if (inst.operands[i].postind)
7048 {
9c2799c2 7049 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7050 if (is_t)
7051 inst.instruction |= WRITE_BACK;
7052 }
7053 else /* unindexed - only for coprocessor */
09d92015 7054 {
c19d1205 7055 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7056 return;
7057 }
7058
c19d1205
ZW
7059 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7060 && (((inst.instruction & 0x000f0000) >> 16)
7061 == ((inst.instruction & 0x0000f000) >> 12)))
7062 as_warn ((inst.instruction & LOAD_BIT)
7063 ? _("destination register same as write-back base")
7064 : _("source register same as write-back base"));
09d92015
MM
7065}
7066
c19d1205
ZW
7067/* inst.operands[i] was set up by parse_address. Encode it into an
7068 ARM-format mode 2 load or store instruction. If is_t is true,
7069 reject forms that cannot be used with a T instruction (i.e. not
7070 post-indexed). */
a737bd4d 7071static void
c19d1205 7072encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7073{
5be8be5d
DG
7074 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7075
c19d1205 7076 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7077
c19d1205 7078 if (inst.operands[i].immisreg)
09d92015 7079 {
5be8be5d
DG
7080 constraint ((inst.operands[i].imm == REG_PC
7081 || (is_pc && inst.operands[i].writeback)),
7082 BAD_PC_ADDRESSING);
c19d1205
ZW
7083 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7084 inst.instruction |= inst.operands[i].imm;
7085 if (!inst.operands[i].negative)
7086 inst.instruction |= INDEX_UP;
7087 if (inst.operands[i].shifted)
7088 {
7089 if (inst.operands[i].shift_kind == SHIFT_RRX)
7090 inst.instruction |= SHIFT_ROR << 5;
7091 else
7092 {
7093 inst.instruction |= inst.operands[i].shift_kind << 5;
7094 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7095 }
7096 }
09d92015 7097 }
c19d1205 7098 else /* immediate offset in inst.reloc */
09d92015 7099 {
5be8be5d
DG
7100 if (is_pc && !inst.reloc.pc_rel)
7101 {
7102 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7103
7104 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7105 cannot use PC in addressing.
7106 PC cannot be used in writeback addressing, either. */
7107 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7108 BAD_PC_ADDRESSING);
23a10334 7109
dc5ec521 7110 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7111 if (warn_on_deprecated
7112 && !is_load
7113 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7114 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7115 }
7116
c19d1205 7117 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7118 {
7119 /* Prefer + for zero encoded value. */
7120 if (!inst.operands[i].negative)
7121 inst.instruction |= INDEX_UP;
7122 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7123 }
09d92015 7124 }
09d92015
MM
7125}
7126
c19d1205
ZW
7127/* inst.operands[i] was set up by parse_address. Encode it into an
7128 ARM-format mode 3 load or store instruction. Reject forms that
7129 cannot be used with such instructions. If is_t is true, reject
7130 forms that cannot be used with a T instruction (i.e. not
7131 post-indexed). */
7132static void
7133encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7134{
c19d1205 7135 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7136 {
c19d1205
ZW
7137 inst.error = _("instruction does not accept scaled register index");
7138 return;
09d92015 7139 }
a737bd4d 7140
c19d1205 7141 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7142
c19d1205
ZW
7143 if (inst.operands[i].immisreg)
7144 {
5be8be5d
DG
7145 constraint ((inst.operands[i].imm == REG_PC
7146 || inst.operands[i].reg == REG_PC),
7147 BAD_PC_ADDRESSING);
c19d1205
ZW
7148 inst.instruction |= inst.operands[i].imm;
7149 if (!inst.operands[i].negative)
7150 inst.instruction |= INDEX_UP;
7151 }
7152 else /* immediate offset in inst.reloc */
7153 {
5be8be5d
DG
7154 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7155 && inst.operands[i].writeback),
7156 BAD_PC_WRITEBACK);
c19d1205
ZW
7157 inst.instruction |= HWOFFSET_IMM;
7158 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7159 {
7160 /* Prefer + for zero encoded value. */
7161 if (!inst.operands[i].negative)
7162 inst.instruction |= INDEX_UP;
7163
7164 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7165 }
c19d1205 7166 }
a737bd4d
NC
7167}
7168
c19d1205
ZW
7169/* inst.operands[i] was set up by parse_address. Encode it into an
7170 ARM-format instruction. Reject all forms which cannot be encoded
7171 into a coprocessor load/store instruction. If wb_ok is false,
7172 reject use of writeback; if unind_ok is false, reject use of
7173 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7174 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7175 (in which case it is preserved). */
09d92015 7176
c19d1205
ZW
7177static int
7178encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7179{
c19d1205 7180 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7181
9c2799c2 7182 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7183
c19d1205 7184 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7185 {
9c2799c2 7186 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7187 if (!unind_ok)
7188 {
7189 inst.error = _("instruction does not support unindexed addressing");
7190 return FAIL;
7191 }
7192 inst.instruction |= inst.operands[i].imm;
7193 inst.instruction |= INDEX_UP;
7194 return SUCCESS;
09d92015 7195 }
a737bd4d 7196
c19d1205
ZW
7197 if (inst.operands[i].preind)
7198 inst.instruction |= PRE_INDEX;
a737bd4d 7199
c19d1205 7200 if (inst.operands[i].writeback)
09d92015 7201 {
c19d1205
ZW
7202 if (inst.operands[i].reg == REG_PC)
7203 {
7204 inst.error = _("pc may not be used with write-back");
7205 return FAIL;
7206 }
7207 if (!wb_ok)
7208 {
7209 inst.error = _("instruction does not support writeback");
7210 return FAIL;
7211 }
7212 inst.instruction |= WRITE_BACK;
09d92015 7213 }
a737bd4d 7214
c19d1205 7215 if (reloc_override)
21d799b5 7216 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7217 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7218 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7219 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7220 {
7221 if (thumb_mode)
7222 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7223 else
7224 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7225 }
7226
26d97720
NS
7227 /* Prefer + for zero encoded value. */
7228 if (!inst.operands[i].negative)
7229 inst.instruction |= INDEX_UP;
7230
c19d1205
ZW
7231 return SUCCESS;
7232}
a737bd4d 7233
c19d1205
ZW
7234/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7235 Determine whether it can be performed with a move instruction; if
7236 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7237 return TRUE; if it can't, convert inst.instruction to a literal-pool
7238 load and return FALSE. If this is not a valid thing to do in the
7239 current context, set inst.error and return TRUE.
a737bd4d 7240
c19d1205
ZW
7241 inst.operands[i] describes the destination register. */
7242
c921be7d 7243static bfd_boolean
c19d1205
ZW
7244move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7245{
53365c0d
PB
7246 unsigned long tbit;
7247
7248 if (thumb_p)
7249 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7250 else
7251 tbit = LOAD_BIT;
7252
7253 if ((inst.instruction & tbit) == 0)
09d92015 7254 {
c19d1205 7255 inst.error = _("invalid pseudo operation");
c921be7d 7256 return TRUE;
09d92015 7257 }
c19d1205 7258 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7259 {
7260 inst.error = _("constant expression expected");
c921be7d 7261 return TRUE;
09d92015 7262 }
c19d1205 7263 if (inst.reloc.exp.X_op == O_constant)
09d92015 7264 {
c19d1205
ZW
7265 if (thumb_p)
7266 {
53365c0d 7267 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7268 {
7269 /* This can be done with a mov(1) instruction. */
7270 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7271 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7272 return TRUE;
c19d1205
ZW
7273 }
7274 }
7275 else
7276 {
7277 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7278 if (value != FAIL)
7279 {
7280 /* This can be done with a mov instruction. */
7281 inst.instruction &= LITERAL_MASK;
7282 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7283 inst.instruction |= value & 0xfff;
c921be7d 7284 return TRUE;
c19d1205 7285 }
09d92015 7286
c19d1205
ZW
7287 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7288 if (value != FAIL)
7289 {
7290 /* This can be done with a mvn instruction. */
7291 inst.instruction &= LITERAL_MASK;
7292 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7293 inst.instruction |= value & 0xfff;
c921be7d 7294 return TRUE;
c19d1205
ZW
7295 }
7296 }
09d92015
MM
7297 }
7298
c19d1205
ZW
7299 if (add_to_lit_pool () == FAIL)
7300 {
7301 inst.error = _("literal pool insertion failed");
c921be7d 7302 return TRUE;
c19d1205
ZW
7303 }
7304 inst.operands[1].reg = REG_PC;
7305 inst.operands[1].isreg = 1;
7306 inst.operands[1].preind = 1;
7307 inst.reloc.pc_rel = 1;
7308 inst.reloc.type = (thumb_p
7309 ? BFD_RELOC_ARM_THUMB_OFFSET
7310 : (mode_3
7311 ? BFD_RELOC_ARM_HWLITERAL
7312 : BFD_RELOC_ARM_LITERAL));
c921be7d 7313 return FALSE;
09d92015
MM
7314}
7315
5f4273c7 7316/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7317 First some generics; their names are taken from the conventional
7318 bit positions for register arguments in ARM format instructions. */
09d92015 7319
a737bd4d 7320static void
c19d1205 7321do_noargs (void)
09d92015 7322{
c19d1205 7323}
a737bd4d 7324
c19d1205
ZW
7325static void
7326do_rd (void)
7327{
7328 inst.instruction |= inst.operands[0].reg << 12;
7329}
a737bd4d 7330
c19d1205
ZW
7331static void
7332do_rd_rm (void)
7333{
7334 inst.instruction |= inst.operands[0].reg << 12;
7335 inst.instruction |= inst.operands[1].reg;
7336}
09d92015 7337
c19d1205
ZW
7338static void
7339do_rd_rn (void)
7340{
7341 inst.instruction |= inst.operands[0].reg << 12;
7342 inst.instruction |= inst.operands[1].reg << 16;
7343}
a737bd4d 7344
c19d1205
ZW
7345static void
7346do_rn_rd (void)
7347{
7348 inst.instruction |= inst.operands[0].reg << 16;
7349 inst.instruction |= inst.operands[1].reg << 12;
7350}
09d92015 7351
c19d1205
ZW
7352static void
7353do_rd_rm_rn (void)
7354{
9a64e435 7355 unsigned Rn = inst.operands[2].reg;
708587a4 7356 /* Enforce restrictions on SWP instruction. */
9a64e435 7357 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7358 {
7359 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7360 _("Rn must not overlap other operands"));
7361
7362 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7363 if (warn_on_deprecated
7364 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7365 as_warn (_("swp{b} use is deprecated for this architecture"));
7366
7367 }
c19d1205
ZW
7368 inst.instruction |= inst.operands[0].reg << 12;
7369 inst.instruction |= inst.operands[1].reg;
9a64e435 7370 inst.instruction |= Rn << 16;
c19d1205 7371}
09d92015 7372
c19d1205
ZW
7373static void
7374do_rd_rn_rm (void)
7375{
7376 inst.instruction |= inst.operands[0].reg << 12;
7377 inst.instruction |= inst.operands[1].reg << 16;
7378 inst.instruction |= inst.operands[2].reg;
7379}
a737bd4d 7380
c19d1205
ZW
7381static void
7382do_rm_rd_rn (void)
7383{
5be8be5d
DG
7384 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7385 constraint (((inst.reloc.exp.X_op != O_constant
7386 && inst.reloc.exp.X_op != O_illegal)
7387 || inst.reloc.exp.X_add_number != 0),
7388 BAD_ADDR_MODE);
c19d1205
ZW
7389 inst.instruction |= inst.operands[0].reg;
7390 inst.instruction |= inst.operands[1].reg << 12;
7391 inst.instruction |= inst.operands[2].reg << 16;
7392}
09d92015 7393
c19d1205
ZW
7394static void
7395do_imm0 (void)
7396{
7397 inst.instruction |= inst.operands[0].imm;
7398}
09d92015 7399
c19d1205
ZW
7400static void
7401do_rd_cpaddr (void)
7402{
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7405}
a737bd4d 7406
c19d1205
ZW
7407/* ARM instructions, in alphabetical order by function name (except
7408 that wrapper functions appear immediately after the function they
7409 wrap). */
09d92015 7410
c19d1205
ZW
7411/* This is a pseudo-op of the form "adr rd, label" to be converted
7412 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7413
7414static void
c19d1205 7415do_adr (void)
09d92015 7416{
c19d1205 7417 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7418
c19d1205
ZW
7419 /* Frag hacking will turn this into a sub instruction if the offset turns
7420 out to be negative. */
7421 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7422 inst.reloc.pc_rel = 1;
2fc8bdac 7423 inst.reloc.exp.X_add_number -= 8;
c19d1205 7424}
b99bd4ef 7425
c19d1205
ZW
7426/* This is a pseudo-op of the form "adrl rd, label" to be converted
7427 into a relative address of the form:
7428 add rd, pc, #low(label-.-8)"
7429 add rd, rd, #high(label-.-8)" */
b99bd4ef 7430
c19d1205
ZW
7431static void
7432do_adrl (void)
7433{
7434 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7435
c19d1205
ZW
7436 /* Frag hacking will turn this into a sub instruction if the offset turns
7437 out to be negative. */
7438 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7439 inst.reloc.pc_rel = 1;
7440 inst.size = INSN_SIZE * 2;
2fc8bdac 7441 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7442}
7443
b99bd4ef 7444static void
c19d1205 7445do_arit (void)
b99bd4ef 7446{
c19d1205
ZW
7447 if (!inst.operands[1].present)
7448 inst.operands[1].reg = inst.operands[0].reg;
7449 inst.instruction |= inst.operands[0].reg << 12;
7450 inst.instruction |= inst.operands[1].reg << 16;
7451 encode_arm_shifter_operand (2);
7452}
b99bd4ef 7453
62b3e311
PB
7454static void
7455do_barrier (void)
7456{
7457 if (inst.operands[0].present)
7458 {
7459 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7460 && inst.operands[0].imm > 0xf
7461 && inst.operands[0].imm < 0x0,
bd3ba5d1 7462 _("bad barrier type"));
62b3e311
PB
7463 inst.instruction |= inst.operands[0].imm;
7464 }
7465 else
7466 inst.instruction |= 0xf;
7467}
7468
c19d1205
ZW
7469static void
7470do_bfc (void)
7471{
7472 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7473 constraint (msb > 32, _("bit-field extends past end of register"));
7474 /* The instruction encoding stores the LSB and MSB,
7475 not the LSB and width. */
7476 inst.instruction |= inst.operands[0].reg << 12;
7477 inst.instruction |= inst.operands[1].imm << 7;
7478 inst.instruction |= (msb - 1) << 16;
7479}
b99bd4ef 7480
c19d1205
ZW
7481static void
7482do_bfi (void)
7483{
7484 unsigned int msb;
b99bd4ef 7485
c19d1205
ZW
7486 /* #0 in second position is alternative syntax for bfc, which is
7487 the same instruction but with REG_PC in the Rm field. */
7488 if (!inst.operands[1].isreg)
7489 inst.operands[1].reg = REG_PC;
b99bd4ef 7490
c19d1205
ZW
7491 msb = inst.operands[2].imm + inst.operands[3].imm;
7492 constraint (msb > 32, _("bit-field extends past end of register"));
7493 /* The instruction encoding stores the LSB and MSB,
7494 not the LSB and width. */
7495 inst.instruction |= inst.operands[0].reg << 12;
7496 inst.instruction |= inst.operands[1].reg;
7497 inst.instruction |= inst.operands[2].imm << 7;
7498 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7499}
7500
b99bd4ef 7501static void
c19d1205 7502do_bfx (void)
b99bd4ef 7503{
c19d1205
ZW
7504 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7505 _("bit-field extends past end of register"));
7506 inst.instruction |= inst.operands[0].reg << 12;
7507 inst.instruction |= inst.operands[1].reg;
7508 inst.instruction |= inst.operands[2].imm << 7;
7509 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7510}
09d92015 7511
c19d1205
ZW
7512/* ARM V5 breakpoint instruction (argument parse)
7513 BKPT <16 bit unsigned immediate>
7514 Instruction is not conditional.
7515 The bit pattern given in insns[] has the COND_ALWAYS condition,
7516 and it is an error if the caller tried to override that. */
b99bd4ef 7517
c19d1205
ZW
7518static void
7519do_bkpt (void)
7520{
7521 /* Top 12 of 16 bits to bits 19:8. */
7522 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7523
c19d1205
ZW
7524 /* Bottom 4 of 16 bits to bits 3:0. */
7525 inst.instruction |= inst.operands[0].imm & 0xf;
7526}
09d92015 7527
c19d1205
ZW
7528static void
7529encode_branch (int default_reloc)
7530{
7531 if (inst.operands[0].hasreloc)
7532 {
0855e32b
NS
7533 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7534 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7535 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7536 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7537 ? BFD_RELOC_ARM_PLT32
7538 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7539 }
b99bd4ef 7540 else
9ae92b05 7541 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7542 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7543}
7544
b99bd4ef 7545static void
c19d1205 7546do_branch (void)
b99bd4ef 7547{
39b41c9c
PB
7548#ifdef OBJ_ELF
7549 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7550 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7551 else
7552#endif
7553 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7554}
7555
7556static void
7557do_bl (void)
7558{
7559#ifdef OBJ_ELF
7560 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7561 {
7562 if (inst.cond == COND_ALWAYS)
7563 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7564 else
7565 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7566 }
7567 else
7568#endif
7569 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7570}
b99bd4ef 7571
c19d1205
ZW
7572/* ARM V5 branch-link-exchange instruction (argument parse)
7573 BLX <target_addr> ie BLX(1)
7574 BLX{<condition>} <Rm> ie BLX(2)
7575 Unfortunately, there are two different opcodes for this mnemonic.
7576 So, the insns[].value is not used, and the code here zaps values
7577 into inst.instruction.
7578 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7579
c19d1205
ZW
7580static void
7581do_blx (void)
7582{
7583 if (inst.operands[0].isreg)
b99bd4ef 7584 {
c19d1205
ZW
7585 /* Arg is a register; the opcode provided by insns[] is correct.
7586 It is not illegal to do "blx pc", just useless. */
7587 if (inst.operands[0].reg == REG_PC)
7588 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7589
c19d1205
ZW
7590 inst.instruction |= inst.operands[0].reg;
7591 }
7592 else
b99bd4ef 7593 {
c19d1205 7594 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7595 conditionally, and the opcode must be adjusted.
7596 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7597 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7598 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7599 inst.instruction = 0xfa000000;
267bf995 7600 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7601 }
c19d1205
ZW
7602}
7603
7604static void
7605do_bx (void)
7606{
845b51d6
PB
7607 bfd_boolean want_reloc;
7608
c19d1205
ZW
7609 if (inst.operands[0].reg == REG_PC)
7610 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7611
c19d1205 7612 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7613 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7614 it is for ARMv4t or earlier. */
7615 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7616 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7617 want_reloc = TRUE;
7618
5ad34203 7619#ifdef OBJ_ELF
845b51d6 7620 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7621#endif
584206db 7622 want_reloc = FALSE;
845b51d6
PB
7623
7624 if (want_reloc)
7625 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7626}
7627
c19d1205
ZW
7628
7629/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7630
7631static void
c19d1205 7632do_bxj (void)
a737bd4d 7633{
c19d1205
ZW
7634 if (inst.operands[0].reg == REG_PC)
7635 as_tsktsk (_("use of r15 in bxj is not really useful"));
7636
7637 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7638}
7639
c19d1205
ZW
7640/* Co-processor data operation:
7641 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7642 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7643static void
7644do_cdp (void)
7645{
7646 inst.instruction |= inst.operands[0].reg << 8;
7647 inst.instruction |= inst.operands[1].imm << 20;
7648 inst.instruction |= inst.operands[2].reg << 12;
7649 inst.instruction |= inst.operands[3].reg << 16;
7650 inst.instruction |= inst.operands[4].reg;
7651 inst.instruction |= inst.operands[5].imm << 5;
7652}
a737bd4d
NC
7653
7654static void
c19d1205 7655do_cmp (void)
a737bd4d 7656{
c19d1205
ZW
7657 inst.instruction |= inst.operands[0].reg << 16;
7658 encode_arm_shifter_operand (1);
a737bd4d
NC
7659}
7660
c19d1205
ZW
7661/* Transfer between coprocessor and ARM registers.
7662 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7663 MRC2
7664 MCR{cond}
7665 MCR2
7666
7667 No special properties. */
09d92015
MM
7668
7669static void
c19d1205 7670do_co_reg (void)
09d92015 7671{
fdfde340
JM
7672 unsigned Rd;
7673
7674 Rd = inst.operands[2].reg;
7675 if (thumb_mode)
7676 {
7677 if (inst.instruction == 0xee000010
7678 || inst.instruction == 0xfe000010)
7679 /* MCR, MCR2 */
7680 reject_bad_reg (Rd);
7681 else
7682 /* MRC, MRC2 */
7683 constraint (Rd == REG_SP, BAD_SP);
7684 }
7685 else
7686 {
7687 /* MCR */
7688 if (inst.instruction == 0xe000010)
7689 constraint (Rd == REG_PC, BAD_PC);
7690 }
7691
7692
c19d1205
ZW
7693 inst.instruction |= inst.operands[0].reg << 8;
7694 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7695 inst.instruction |= Rd << 12;
c19d1205
ZW
7696 inst.instruction |= inst.operands[3].reg << 16;
7697 inst.instruction |= inst.operands[4].reg;
7698 inst.instruction |= inst.operands[5].imm << 5;
7699}
09d92015 7700
c19d1205
ZW
7701/* Transfer between coprocessor register and pair of ARM registers.
7702 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7703 MCRR2
7704 MRRC{cond}
7705 MRRC2
b99bd4ef 7706
c19d1205 7707 Two XScale instructions are special cases of these:
09d92015 7708
c19d1205
ZW
7709 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7710 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7711
5f4273c7 7712 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7713
c19d1205
ZW
7714static void
7715do_co_reg2c (void)
7716{
fdfde340
JM
7717 unsigned Rd, Rn;
7718
7719 Rd = inst.operands[2].reg;
7720 Rn = inst.operands[3].reg;
7721
7722 if (thumb_mode)
7723 {
7724 reject_bad_reg (Rd);
7725 reject_bad_reg (Rn);
7726 }
7727 else
7728 {
7729 constraint (Rd == REG_PC, BAD_PC);
7730 constraint (Rn == REG_PC, BAD_PC);
7731 }
7732
c19d1205
ZW
7733 inst.instruction |= inst.operands[0].reg << 8;
7734 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7735 inst.instruction |= Rd << 12;
7736 inst.instruction |= Rn << 16;
c19d1205 7737 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7738}
7739
c19d1205
ZW
7740static void
7741do_cpsi (void)
7742{
7743 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7744 if (inst.operands[1].present)
7745 {
7746 inst.instruction |= CPSI_MMOD;
7747 inst.instruction |= inst.operands[1].imm;
7748 }
c19d1205 7749}
b99bd4ef 7750
62b3e311
PB
7751static void
7752do_dbg (void)
7753{
7754 inst.instruction |= inst.operands[0].imm;
7755}
7756
eea54501
MGD
7757static void
7758do_div (void)
7759{
7760 unsigned Rd, Rn, Rm;
7761
7762 Rd = inst.operands[0].reg;
7763 Rn = (inst.operands[1].present
7764 ? inst.operands[1].reg : Rd);
7765 Rm = inst.operands[2].reg;
7766
7767 constraint ((Rd == REG_PC), BAD_PC);
7768 constraint ((Rn == REG_PC), BAD_PC);
7769 constraint ((Rm == REG_PC), BAD_PC);
7770
7771 inst.instruction |= Rd << 16;
7772 inst.instruction |= Rn << 0;
7773 inst.instruction |= Rm << 8;
7774}
7775
b99bd4ef 7776static void
c19d1205 7777do_it (void)
b99bd4ef 7778{
c19d1205 7779 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7780 process it to do the validation as if in
7781 thumb mode, just in case the code gets
7782 assembled for thumb using the unified syntax. */
7783
c19d1205 7784 inst.size = 0;
e07e6e58
NC
7785 if (unified_syntax)
7786 {
7787 set_it_insn_type (IT_INSN);
7788 now_it.mask = (inst.instruction & 0xf) | 0x10;
7789 now_it.cc = inst.operands[0].imm;
7790 }
09d92015 7791}
b99bd4ef 7792
09d92015 7793static void
c19d1205 7794do_ldmstm (void)
ea6ef066 7795{
c19d1205
ZW
7796 int base_reg = inst.operands[0].reg;
7797 int range = inst.operands[1].imm;
ea6ef066 7798
c19d1205
ZW
7799 inst.instruction |= base_reg << 16;
7800 inst.instruction |= range;
ea6ef066 7801
c19d1205
ZW
7802 if (inst.operands[1].writeback)
7803 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7804
c19d1205 7805 if (inst.operands[0].writeback)
ea6ef066 7806 {
c19d1205
ZW
7807 inst.instruction |= WRITE_BACK;
7808 /* Check for unpredictable uses of writeback. */
7809 if (inst.instruction & LOAD_BIT)
09d92015 7810 {
c19d1205
ZW
7811 /* Not allowed in LDM type 2. */
7812 if ((inst.instruction & LDM_TYPE_2_OR_3)
7813 && ((range & (1 << REG_PC)) == 0))
7814 as_warn (_("writeback of base register is UNPREDICTABLE"));
7815 /* Only allowed if base reg not in list for other types. */
7816 else if (range & (1 << base_reg))
7817 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7818 }
7819 else /* STM. */
7820 {
7821 /* Not allowed for type 2. */
7822 if (inst.instruction & LDM_TYPE_2_OR_3)
7823 as_warn (_("writeback of base register is UNPREDICTABLE"));
7824 /* Only allowed if base reg not in list, or first in list. */
7825 else if ((range & (1 << base_reg))
7826 && (range & ((1 << base_reg) - 1)))
7827 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7828 }
ea6ef066 7829 }
a737bd4d
NC
7830}
7831
c19d1205
ZW
7832/* ARMv5TE load-consecutive (argument parse)
7833 Mode is like LDRH.
7834
7835 LDRccD R, mode
7836 STRccD R, mode. */
7837
a737bd4d 7838static void
c19d1205 7839do_ldrd (void)
a737bd4d 7840{
c19d1205 7841 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 7842 _("first transfer register must be even"));
c19d1205
ZW
7843 constraint (inst.operands[1].present
7844 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 7845 _("can only transfer two consecutive registers"));
c19d1205
ZW
7846 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7847 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7848
c19d1205
ZW
7849 if (!inst.operands[1].present)
7850 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7851
c56791bb
RE
7852 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7853 register and the first register written; we have to diagnose
7854 overlap between the base and the second register written here. */
ea6ef066 7855
c56791bb
RE
7856 if (inst.operands[2].reg == inst.operands[1].reg
7857 && (inst.operands[2].writeback || inst.operands[2].postind))
7858 as_warn (_("base register written back, and overlaps "
7859 "second transfer register"));
b05fe5cf 7860
c56791bb
RE
7861 if (!(inst.instruction & V4_STR_BIT))
7862 {
c19d1205 7863 /* For an index-register load, the index register must not overlap the
c56791bb
RE
7864 destination (even if not write-back). */
7865 if (inst.operands[2].immisreg
7866 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7867 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7868 as_warn (_("index register overlaps transfer register"));
b05fe5cf 7869 }
c19d1205
ZW
7870 inst.instruction |= inst.operands[0].reg << 12;
7871 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7872}
7873
7874static void
c19d1205 7875do_ldrex (void)
b05fe5cf 7876{
c19d1205
ZW
7877 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7878 || inst.operands[1].postind || inst.operands[1].writeback
7879 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7880 || inst.operands[1].negative
7881 /* This can arise if the programmer has written
7882 strex rN, rM, foo
7883 or if they have mistakenly used a register name as the last
7884 operand, eg:
7885 strex rN, rM, rX
7886 It is very difficult to distinguish between these two cases
7887 because "rX" might actually be a label. ie the register
7888 name has been occluded by a symbol of the same name. So we
7889 just generate a general 'bad addressing mode' type error
7890 message and leave it up to the programmer to discover the
7891 true cause and fix their mistake. */
7892 || (inst.operands[1].reg == REG_PC),
7893 BAD_ADDR_MODE);
b05fe5cf 7894
c19d1205
ZW
7895 constraint (inst.reloc.exp.X_op != O_constant
7896 || inst.reloc.exp.X_add_number != 0,
7897 _("offset must be zero in ARM encoding"));
b05fe5cf 7898
5be8be5d
DG
7899 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7900
c19d1205
ZW
7901 inst.instruction |= inst.operands[0].reg << 12;
7902 inst.instruction |= inst.operands[1].reg << 16;
7903 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7904}
7905
7906static void
c19d1205 7907do_ldrexd (void)
b05fe5cf 7908{
c19d1205
ZW
7909 constraint (inst.operands[0].reg % 2 != 0,
7910 _("even register required"));
7911 constraint (inst.operands[1].present
7912 && inst.operands[1].reg != inst.operands[0].reg + 1,
7913 _("can only load two consecutive registers"));
7914 /* If op 1 were present and equal to PC, this function wouldn't
7915 have been called in the first place. */
7916 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7917
c19d1205
ZW
7918 inst.instruction |= inst.operands[0].reg << 12;
7919 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7920}
7921
1be5fd2e
NC
7922/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
7923 which is not a multiple of four is UNPREDICTABLE. */
7924static void
7925check_ldr_r15_aligned (void)
7926{
7927 constraint (!(inst.operands[1].immisreg)
7928 && (inst.operands[0].reg == REG_PC
7929 && inst.operands[1].reg == REG_PC
7930 && (inst.reloc.exp.X_add_number & 0x3)),
7931 _("ldr to register 15 must be 4-byte alligned"));
7932}
7933
b05fe5cf 7934static void
c19d1205 7935do_ldst (void)
b05fe5cf 7936{
c19d1205
ZW
7937 inst.instruction |= inst.operands[0].reg << 12;
7938 if (!inst.operands[1].isreg)
7939 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7940 return;
c19d1205 7941 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 7942 check_ldr_r15_aligned ();
b05fe5cf
ZW
7943}
7944
7945static void
c19d1205 7946do_ldstt (void)
b05fe5cf 7947{
c19d1205
ZW
7948 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7949 reject [Rn,...]. */
7950 if (inst.operands[1].preind)
b05fe5cf 7951 {
bd3ba5d1
NC
7952 constraint (inst.reloc.exp.X_op != O_constant
7953 || inst.reloc.exp.X_add_number != 0,
c19d1205 7954 _("this instruction requires a post-indexed address"));
b05fe5cf 7955
c19d1205
ZW
7956 inst.operands[1].preind = 0;
7957 inst.operands[1].postind = 1;
7958 inst.operands[1].writeback = 1;
b05fe5cf 7959 }
c19d1205
ZW
7960 inst.instruction |= inst.operands[0].reg << 12;
7961 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7962}
b05fe5cf 7963
c19d1205 7964/* Halfword and signed-byte load/store operations. */
b05fe5cf 7965
c19d1205
ZW
7966static void
7967do_ldstv4 (void)
7968{
ff4a8d2b 7969 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7970 inst.instruction |= inst.operands[0].reg << 12;
7971 if (!inst.operands[1].isreg)
7972 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7973 return;
c19d1205 7974 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7975}
7976
7977static void
c19d1205 7978do_ldsttv4 (void)
b05fe5cf 7979{
c19d1205
ZW
7980 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7981 reject [Rn,...]. */
7982 if (inst.operands[1].preind)
b05fe5cf 7983 {
bd3ba5d1
NC
7984 constraint (inst.reloc.exp.X_op != O_constant
7985 || inst.reloc.exp.X_add_number != 0,
c19d1205 7986 _("this instruction requires a post-indexed address"));
b05fe5cf 7987
c19d1205
ZW
7988 inst.operands[1].preind = 0;
7989 inst.operands[1].postind = 1;
7990 inst.operands[1].writeback = 1;
b05fe5cf 7991 }
c19d1205
ZW
7992 inst.instruction |= inst.operands[0].reg << 12;
7993 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7994}
b05fe5cf 7995
c19d1205
ZW
7996/* Co-processor register load/store.
7997 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7998static void
7999do_lstc (void)
8000{
8001 inst.instruction |= inst.operands[0].reg << 8;
8002 inst.instruction |= inst.operands[1].reg << 12;
8003 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
8004}
8005
b05fe5cf 8006static void
c19d1205 8007do_mlas (void)
b05fe5cf 8008{
8fb9d7b9 8009 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 8010 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 8011 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 8012 && !(inst.instruction & 0x00400000))
8fb9d7b9 8013 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 8014
c19d1205
ZW
8015 inst.instruction |= inst.operands[0].reg << 16;
8016 inst.instruction |= inst.operands[1].reg;
8017 inst.instruction |= inst.operands[2].reg << 8;
8018 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 8019}
b05fe5cf 8020
c19d1205
ZW
8021static void
8022do_mov (void)
8023{
8024 inst.instruction |= inst.operands[0].reg << 12;
8025 encode_arm_shifter_operand (1);
8026}
b05fe5cf 8027
c19d1205
ZW
8028/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8029static void
8030do_mov16 (void)
8031{
b6895b4f
PB
8032 bfd_vma imm;
8033 bfd_boolean top;
8034
8035 top = (inst.instruction & 0x00400000) != 0;
8036 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8037 _(":lower16: not allowed this instruction"));
8038 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8039 _(":upper16: not allowed instruction"));
c19d1205 8040 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
8041 if (inst.reloc.type == BFD_RELOC_UNUSED)
8042 {
8043 imm = inst.reloc.exp.X_add_number;
8044 /* The value is in two pieces: 0:11, 16:19. */
8045 inst.instruction |= (imm & 0x00000fff);
8046 inst.instruction |= (imm & 0x0000f000) << 4;
8047 }
b05fe5cf 8048}
b99bd4ef 8049
037e8744
JB
8050static void do_vfp_nsyn_opcode (const char *);
8051
8052static int
8053do_vfp_nsyn_mrs (void)
8054{
8055 if (inst.operands[0].isvec)
8056 {
8057 if (inst.operands[1].reg != 1)
8058 first_error (_("operand 1 must be FPSCR"));
8059 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8060 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8061 do_vfp_nsyn_opcode ("fmstat");
8062 }
8063 else if (inst.operands[1].isvec)
8064 do_vfp_nsyn_opcode ("fmrx");
8065 else
8066 return FAIL;
5f4273c7 8067
037e8744
JB
8068 return SUCCESS;
8069}
8070
8071static int
8072do_vfp_nsyn_msr (void)
8073{
8074 if (inst.operands[0].isvec)
8075 do_vfp_nsyn_opcode ("fmxr");
8076 else
8077 return FAIL;
8078
8079 return SUCCESS;
8080}
8081
f7c21dc7
NC
8082static void
8083do_vmrs (void)
8084{
8085 unsigned Rt = inst.operands[0].reg;
8086
8087 if (thumb_mode && inst.operands[0].reg == REG_SP)
8088 {
8089 inst.error = BAD_SP;
8090 return;
8091 }
8092
8093 /* APSR_ sets isvec. All other refs to PC are illegal. */
8094 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8095 {
8096 inst.error = BAD_PC;
8097 return;
8098 }
8099
8100 if (inst.operands[1].reg != 1)
8101 first_error (_("operand 1 must be FPSCR"));
8102
8103 inst.instruction |= (Rt << 12);
8104}
8105
8106static void
8107do_vmsr (void)
8108{
8109 unsigned Rt = inst.operands[1].reg;
8110
8111 if (thumb_mode)
8112 reject_bad_reg (Rt);
8113 else if (Rt == REG_PC)
8114 {
8115 inst.error = BAD_PC;
8116 return;
8117 }
8118
8119 if (inst.operands[0].reg != 1)
8120 first_error (_("operand 0 must be FPSCR"));
8121
8122 inst.instruction |= (Rt << 12);
8123}
8124
b99bd4ef 8125static void
c19d1205 8126do_mrs (void)
b99bd4ef 8127{
90ec0d68
MGD
8128 unsigned br;
8129
037e8744
JB
8130 if (do_vfp_nsyn_mrs () == SUCCESS)
8131 return;
8132
ff4a8d2b 8133 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8134 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8135
8136 if (inst.operands[1].isreg)
8137 {
8138 br = inst.operands[1].reg;
8139 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8140 as_bad (_("bad register for mrs"));
8141 }
8142 else
8143 {
8144 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8145 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8146 != (PSR_c|PSR_f),
d2cd1205 8147 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8148 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8149 }
8150
8151 inst.instruction |= br;
c19d1205 8152}
b99bd4ef 8153
c19d1205
ZW
8154/* Two possible forms:
8155 "{C|S}PSR_<field>, Rm",
8156 "{C|S}PSR_f, #expression". */
b99bd4ef 8157
c19d1205
ZW
8158static void
8159do_msr (void)
8160{
037e8744
JB
8161 if (do_vfp_nsyn_msr () == SUCCESS)
8162 return;
8163
c19d1205
ZW
8164 inst.instruction |= inst.operands[0].imm;
8165 if (inst.operands[1].isreg)
8166 inst.instruction |= inst.operands[1].reg;
8167 else
b99bd4ef 8168 {
c19d1205
ZW
8169 inst.instruction |= INST_IMMEDIATE;
8170 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8171 inst.reloc.pc_rel = 0;
b99bd4ef 8172 }
b99bd4ef
NC
8173}
8174
c19d1205
ZW
8175static void
8176do_mul (void)
a737bd4d 8177{
ff4a8d2b
NC
8178 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8179
c19d1205
ZW
8180 if (!inst.operands[2].present)
8181 inst.operands[2].reg = inst.operands[0].reg;
8182 inst.instruction |= inst.operands[0].reg << 16;
8183 inst.instruction |= inst.operands[1].reg;
8184 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8185
8fb9d7b9
MS
8186 if (inst.operands[0].reg == inst.operands[1].reg
8187 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8188 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8189}
8190
c19d1205
ZW
8191/* Long Multiply Parser
8192 UMULL RdLo, RdHi, Rm, Rs
8193 SMULL RdLo, RdHi, Rm, Rs
8194 UMLAL RdLo, RdHi, Rm, Rs
8195 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8196
8197static void
c19d1205 8198do_mull (void)
b99bd4ef 8199{
c19d1205
ZW
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 inst.instruction |= inst.operands[1].reg << 16;
8202 inst.instruction |= inst.operands[2].reg;
8203 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8204
682b27ad
PB
8205 /* rdhi and rdlo must be different. */
8206 if (inst.operands[0].reg == inst.operands[1].reg)
8207 as_tsktsk (_("rdhi and rdlo must be different"));
8208
8209 /* rdhi, rdlo and rm must all be different before armv6. */
8210 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8211 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8212 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8213 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8214}
b99bd4ef 8215
c19d1205
ZW
8216static void
8217do_nop (void)
8218{
e7495e45
NS
8219 if (inst.operands[0].present
8220 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8221 {
8222 /* Architectural NOP hints are CPSR sets with no bits selected. */
8223 inst.instruction &= 0xf0000000;
e7495e45
NS
8224 inst.instruction |= 0x0320f000;
8225 if (inst.operands[0].present)
8226 inst.instruction |= inst.operands[0].imm;
c19d1205 8227 }
b99bd4ef
NC
8228}
8229
c19d1205
ZW
8230/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8231 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8232 Condition defaults to COND_ALWAYS.
8233 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8234
8235static void
c19d1205 8236do_pkhbt (void)
b99bd4ef 8237{
c19d1205
ZW
8238 inst.instruction |= inst.operands[0].reg << 12;
8239 inst.instruction |= inst.operands[1].reg << 16;
8240 inst.instruction |= inst.operands[2].reg;
8241 if (inst.operands[3].present)
8242 encode_arm_shift (3);
8243}
b99bd4ef 8244
c19d1205 8245/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8246
c19d1205
ZW
8247static void
8248do_pkhtb (void)
8249{
8250 if (!inst.operands[3].present)
b99bd4ef 8251 {
c19d1205
ZW
8252 /* If the shift specifier is omitted, turn the instruction
8253 into pkhbt rd, rm, rn. */
8254 inst.instruction &= 0xfff00010;
8255 inst.instruction |= inst.operands[0].reg << 12;
8256 inst.instruction |= inst.operands[1].reg;
8257 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8258 }
8259 else
8260 {
c19d1205
ZW
8261 inst.instruction |= inst.operands[0].reg << 12;
8262 inst.instruction |= inst.operands[1].reg << 16;
8263 inst.instruction |= inst.operands[2].reg;
8264 encode_arm_shift (3);
b99bd4ef
NC
8265 }
8266}
8267
c19d1205 8268/* ARMv5TE: Preload-Cache
60e5ef9f 8269 MP Extensions: Preload for write
c19d1205 8270
60e5ef9f 8271 PLD(W) <addr_mode>
c19d1205
ZW
8272
8273 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8274
8275static void
c19d1205 8276do_pld (void)
b99bd4ef 8277{
c19d1205
ZW
8278 constraint (!inst.operands[0].isreg,
8279 _("'[' expected after PLD mnemonic"));
8280 constraint (inst.operands[0].postind,
8281 _("post-indexed expression used in preload instruction"));
8282 constraint (inst.operands[0].writeback,
8283 _("writeback used in preload instruction"));
8284 constraint (!inst.operands[0].preind,
8285 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8286 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8287}
b99bd4ef 8288
62b3e311
PB
8289/* ARMv7: PLI <addr_mode> */
8290static void
8291do_pli (void)
8292{
8293 constraint (!inst.operands[0].isreg,
8294 _("'[' expected after PLI mnemonic"));
8295 constraint (inst.operands[0].postind,
8296 _("post-indexed expression used in preload instruction"));
8297 constraint (inst.operands[0].writeback,
8298 _("writeback used in preload instruction"));
8299 constraint (!inst.operands[0].preind,
8300 _("unindexed addressing used in preload instruction"));
8301 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8302 inst.instruction &= ~PRE_INDEX;
8303}
8304
c19d1205
ZW
8305static void
8306do_push_pop (void)
8307{
8308 inst.operands[1] = inst.operands[0];
8309 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8310 inst.operands[0].isreg = 1;
8311 inst.operands[0].writeback = 1;
8312 inst.operands[0].reg = REG_SP;
8313 do_ldmstm ();
8314}
b99bd4ef 8315
c19d1205
ZW
8316/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8317 word at the specified address and the following word
8318 respectively.
8319 Unconditionally executed.
8320 Error if Rn is R15. */
b99bd4ef 8321
c19d1205
ZW
8322static void
8323do_rfe (void)
8324{
8325 inst.instruction |= inst.operands[0].reg << 16;
8326 if (inst.operands[0].writeback)
8327 inst.instruction |= WRITE_BACK;
8328}
b99bd4ef 8329
c19d1205 8330/* ARM V6 ssat (argument parse). */
b99bd4ef 8331
c19d1205
ZW
8332static void
8333do_ssat (void)
8334{
8335 inst.instruction |= inst.operands[0].reg << 12;
8336 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8337 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8338
c19d1205
ZW
8339 if (inst.operands[3].present)
8340 encode_arm_shift (3);
b99bd4ef
NC
8341}
8342
c19d1205 8343/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8344
8345static void
c19d1205 8346do_usat (void)
b99bd4ef 8347{
c19d1205
ZW
8348 inst.instruction |= inst.operands[0].reg << 12;
8349 inst.instruction |= inst.operands[1].imm << 16;
8350 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8351
c19d1205
ZW
8352 if (inst.operands[3].present)
8353 encode_arm_shift (3);
b99bd4ef
NC
8354}
8355
c19d1205 8356/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8357
8358static void
c19d1205 8359do_ssat16 (void)
09d92015 8360{
c19d1205
ZW
8361 inst.instruction |= inst.operands[0].reg << 12;
8362 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8363 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8364}
8365
c19d1205
ZW
8366static void
8367do_usat16 (void)
a737bd4d 8368{
c19d1205
ZW
8369 inst.instruction |= inst.operands[0].reg << 12;
8370 inst.instruction |= inst.operands[1].imm << 16;
8371 inst.instruction |= inst.operands[2].reg;
8372}
a737bd4d 8373
c19d1205
ZW
8374/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8375 preserving the other bits.
a737bd4d 8376
c19d1205
ZW
8377 setend <endian_specifier>, where <endian_specifier> is either
8378 BE or LE. */
a737bd4d 8379
c19d1205
ZW
8380static void
8381do_setend (void)
8382{
8383 if (inst.operands[0].imm)
8384 inst.instruction |= 0x200;
a737bd4d
NC
8385}
8386
8387static void
c19d1205 8388do_shift (void)
a737bd4d 8389{
c19d1205
ZW
8390 unsigned int Rm = (inst.operands[1].present
8391 ? inst.operands[1].reg
8392 : inst.operands[0].reg);
a737bd4d 8393
c19d1205
ZW
8394 inst.instruction |= inst.operands[0].reg << 12;
8395 inst.instruction |= Rm;
8396 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8397 {
c19d1205
ZW
8398 inst.instruction |= inst.operands[2].reg << 8;
8399 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
8400 /* PR 12854: Error on extraneous shifts. */
8401 constraint (inst.operands[2].shifted,
8402 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
8403 }
8404 else
c19d1205 8405 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8406}
8407
09d92015 8408static void
3eb17e6b 8409do_smc (void)
09d92015 8410{
3eb17e6b 8411 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8412 inst.reloc.pc_rel = 0;
09d92015
MM
8413}
8414
90ec0d68
MGD
8415static void
8416do_hvc (void)
8417{
8418 inst.reloc.type = BFD_RELOC_ARM_HVC;
8419 inst.reloc.pc_rel = 0;
8420}
8421
09d92015 8422static void
c19d1205 8423do_swi (void)
09d92015 8424{
c19d1205
ZW
8425 inst.reloc.type = BFD_RELOC_ARM_SWI;
8426 inst.reloc.pc_rel = 0;
09d92015
MM
8427}
8428
c19d1205
ZW
8429/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8430 SMLAxy{cond} Rd,Rm,Rs,Rn
8431 SMLAWy{cond} Rd,Rm,Rs,Rn
8432 Error if any register is R15. */
e16bb312 8433
c19d1205
ZW
8434static void
8435do_smla (void)
e16bb312 8436{
c19d1205
ZW
8437 inst.instruction |= inst.operands[0].reg << 16;
8438 inst.instruction |= inst.operands[1].reg;
8439 inst.instruction |= inst.operands[2].reg << 8;
8440 inst.instruction |= inst.operands[3].reg << 12;
8441}
a737bd4d 8442
c19d1205
ZW
8443/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8444 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8445 Error if any register is R15.
8446 Warning if Rdlo == Rdhi. */
a737bd4d 8447
c19d1205
ZW
8448static void
8449do_smlal (void)
8450{
8451 inst.instruction |= inst.operands[0].reg << 12;
8452 inst.instruction |= inst.operands[1].reg << 16;
8453 inst.instruction |= inst.operands[2].reg;
8454 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8455
c19d1205
ZW
8456 if (inst.operands[0].reg == inst.operands[1].reg)
8457 as_tsktsk (_("rdhi and rdlo must be different"));
8458}
a737bd4d 8459
c19d1205
ZW
8460/* ARM V5E (El Segundo) signed-multiply (argument parse)
8461 SMULxy{cond} Rd,Rm,Rs
8462 Error if any register is R15. */
a737bd4d 8463
c19d1205
ZW
8464static void
8465do_smul (void)
8466{
8467 inst.instruction |= inst.operands[0].reg << 16;
8468 inst.instruction |= inst.operands[1].reg;
8469 inst.instruction |= inst.operands[2].reg << 8;
8470}
a737bd4d 8471
b6702015
PB
8472/* ARM V6 srs (argument parse). The variable fields in the encoding are
8473 the same for both ARM and Thumb-2. */
a737bd4d 8474
c19d1205
ZW
8475static void
8476do_srs (void)
8477{
b6702015
PB
8478 int reg;
8479
8480 if (inst.operands[0].present)
8481 {
8482 reg = inst.operands[0].reg;
fdfde340 8483 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8484 }
8485 else
fdfde340 8486 reg = REG_SP;
b6702015
PB
8487
8488 inst.instruction |= reg << 16;
8489 inst.instruction |= inst.operands[1].imm;
8490 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8491 inst.instruction |= WRITE_BACK;
8492}
a737bd4d 8493
c19d1205 8494/* ARM V6 strex (argument parse). */
a737bd4d 8495
c19d1205
ZW
8496static void
8497do_strex (void)
8498{
8499 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8500 || inst.operands[2].postind || inst.operands[2].writeback
8501 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8502 || inst.operands[2].negative
8503 /* See comment in do_ldrex(). */
8504 || (inst.operands[2].reg == REG_PC),
8505 BAD_ADDR_MODE);
a737bd4d 8506
c19d1205
ZW
8507 constraint (inst.operands[0].reg == inst.operands[1].reg
8508 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8509
c19d1205
ZW
8510 constraint (inst.reloc.exp.X_op != O_constant
8511 || inst.reloc.exp.X_add_number != 0,
8512 _("offset must be zero in ARM encoding"));
a737bd4d 8513
c19d1205
ZW
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].reg;
8516 inst.instruction |= inst.operands[2].reg << 16;
8517 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8518}
8519
877807f8
NC
8520static void
8521do_t_strexbh (void)
8522{
8523 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8524 || inst.operands[2].postind || inst.operands[2].writeback
8525 || inst.operands[2].immisreg || inst.operands[2].shifted
8526 || inst.operands[2].negative,
8527 BAD_ADDR_MODE);
8528
8529 constraint (inst.operands[0].reg == inst.operands[1].reg
8530 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8531
8532 do_rm_rd_rn ();
8533}
8534
e16bb312 8535static void
c19d1205 8536do_strexd (void)
e16bb312 8537{
c19d1205
ZW
8538 constraint (inst.operands[1].reg % 2 != 0,
8539 _("even register required"));
8540 constraint (inst.operands[2].present
8541 && inst.operands[2].reg != inst.operands[1].reg + 1,
8542 _("can only store two consecutive registers"));
8543 /* If op 2 were present and equal to PC, this function wouldn't
8544 have been called in the first place. */
8545 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8546
c19d1205
ZW
8547 constraint (inst.operands[0].reg == inst.operands[1].reg
8548 || inst.operands[0].reg == inst.operands[1].reg + 1
8549 || inst.operands[0].reg == inst.operands[3].reg,
8550 BAD_OVERLAP);
e16bb312 8551
c19d1205
ZW
8552 inst.instruction |= inst.operands[0].reg << 12;
8553 inst.instruction |= inst.operands[1].reg;
8554 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8555}
8556
c19d1205
ZW
8557/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8558 extends it to 32-bits, and adds the result to a value in another
8559 register. You can specify a rotation by 0, 8, 16, or 24 bits
8560 before extracting the 16-bit value.
8561 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8562 Condition defaults to COND_ALWAYS.
8563 Error if any register uses R15. */
8564
e16bb312 8565static void
c19d1205 8566do_sxtah (void)
e16bb312 8567{
c19d1205
ZW
8568 inst.instruction |= inst.operands[0].reg << 12;
8569 inst.instruction |= inst.operands[1].reg << 16;
8570 inst.instruction |= inst.operands[2].reg;
8571 inst.instruction |= inst.operands[3].imm << 10;
8572}
e16bb312 8573
c19d1205 8574/* ARM V6 SXTH.
e16bb312 8575
c19d1205
ZW
8576 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8577 Condition defaults to COND_ALWAYS.
8578 Error if any register uses R15. */
e16bb312
NC
8579
8580static void
c19d1205 8581do_sxth (void)
e16bb312 8582{
c19d1205
ZW
8583 inst.instruction |= inst.operands[0].reg << 12;
8584 inst.instruction |= inst.operands[1].reg;
8585 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8586}
c19d1205
ZW
8587\f
8588/* VFP instructions. In a logical order: SP variant first, monad
8589 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8590
8591static void
c19d1205 8592do_vfp_sp_monadic (void)
e16bb312 8593{
5287ad62
JB
8594 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8595 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8596}
8597
8598static void
c19d1205 8599do_vfp_sp_dyadic (void)
e16bb312 8600{
5287ad62
JB
8601 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8602 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8603 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8604}
8605
8606static void
c19d1205 8607do_vfp_sp_compare_z (void)
e16bb312 8608{
5287ad62 8609 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8610}
8611
8612static void
c19d1205 8613do_vfp_dp_sp_cvt (void)
e16bb312 8614{
5287ad62
JB
8615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8616 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8617}
8618
8619static void
c19d1205 8620do_vfp_sp_dp_cvt (void)
e16bb312 8621{
5287ad62
JB
8622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8623 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8624}
8625
8626static void
c19d1205 8627do_vfp_reg_from_sp (void)
e16bb312 8628{
c19d1205 8629 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8630 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8631}
8632
8633static void
c19d1205 8634do_vfp_reg2_from_sp2 (void)
e16bb312 8635{
c19d1205
ZW
8636 constraint (inst.operands[2].imm != 2,
8637 _("only two consecutive VFP SP registers allowed here"));
8638 inst.instruction |= inst.operands[0].reg << 12;
8639 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8640 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8641}
8642
8643static void
c19d1205 8644do_vfp_sp_from_reg (void)
e16bb312 8645{
5287ad62 8646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8647 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8648}
8649
8650static void
c19d1205 8651do_vfp_sp2_from_reg2 (void)
e16bb312 8652{
c19d1205
ZW
8653 constraint (inst.operands[0].imm != 2,
8654 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8656 inst.instruction |= inst.operands[1].reg << 12;
8657 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8658}
8659
8660static void
c19d1205 8661do_vfp_sp_ldst (void)
e16bb312 8662{
5287ad62 8663 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8664 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8665}
8666
8667static void
c19d1205 8668do_vfp_dp_ldst (void)
e16bb312 8669{
5287ad62 8670 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8671 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8672}
8673
c19d1205 8674
e16bb312 8675static void
c19d1205 8676vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8677{
c19d1205
ZW
8678 if (inst.operands[0].writeback)
8679 inst.instruction |= WRITE_BACK;
8680 else
8681 constraint (ldstm_type != VFP_LDSTMIA,
8682 _("this addressing mode requires base-register writeback"));
8683 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8684 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8685 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8686}
8687
8688static void
c19d1205 8689vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8690{
c19d1205 8691 int count;
e16bb312 8692
c19d1205
ZW
8693 if (inst.operands[0].writeback)
8694 inst.instruction |= WRITE_BACK;
8695 else
8696 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8697 _("this addressing mode requires base-register writeback"));
e16bb312 8698
c19d1205 8699 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8700 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8701
c19d1205
ZW
8702 count = inst.operands[1].imm << 1;
8703 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8704 count += 1;
e16bb312 8705
c19d1205 8706 inst.instruction |= count;
e16bb312
NC
8707}
8708
8709static void
c19d1205 8710do_vfp_sp_ldstmia (void)
e16bb312 8711{
c19d1205 8712 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8713}
8714
8715static void
c19d1205 8716do_vfp_sp_ldstmdb (void)
e16bb312 8717{
c19d1205 8718 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8719}
8720
8721static void
c19d1205 8722do_vfp_dp_ldstmia (void)
e16bb312 8723{
c19d1205 8724 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8725}
8726
8727static void
c19d1205 8728do_vfp_dp_ldstmdb (void)
e16bb312 8729{
c19d1205 8730 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8731}
8732
8733static void
c19d1205 8734do_vfp_xp_ldstmia (void)
e16bb312 8735{
c19d1205
ZW
8736 vfp_dp_ldstm (VFP_LDSTMIAX);
8737}
e16bb312 8738
c19d1205
ZW
8739static void
8740do_vfp_xp_ldstmdb (void)
8741{
8742 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8743}
5287ad62
JB
8744
8745static void
8746do_vfp_dp_rd_rm (void)
8747{
8748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8749 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8750}
8751
8752static void
8753do_vfp_dp_rn_rd (void)
8754{
8755 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8756 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8757}
8758
8759static void
8760do_vfp_dp_rd_rn (void)
8761{
8762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8763 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8764}
8765
8766static void
8767do_vfp_dp_rd_rn_rm (void)
8768{
8769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8770 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8771 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8772}
8773
8774static void
8775do_vfp_dp_rd (void)
8776{
8777 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8778}
8779
8780static void
8781do_vfp_dp_rm_rd_rn (void)
8782{
8783 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8784 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8785 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8786}
8787
8788/* VFPv3 instructions. */
8789static void
8790do_vfp_sp_const (void)
8791{
8792 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8793 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8794 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8795}
8796
8797static void
8798do_vfp_dp_const (void)
8799{
8800 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8801 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8802 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8803}
8804
8805static void
8806vfp_conv (int srcsize)
8807{
5f1af56b
MGD
8808 int immbits = srcsize - inst.operands[1].imm;
8809
8810 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8811 {
8812 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8813 i.e. immbits must be in range 0 - 16. */
8814 inst.error = _("immediate value out of range, expected range [0, 16]");
8815 return;
8816 }
8817 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8818 {
8819 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8820 i.e. immbits must be in range 0 - 31. */
8821 inst.error = _("immediate value out of range, expected range [1, 32]");
8822 return;
8823 }
8824
5287ad62
JB
8825 inst.instruction |= (immbits & 1) << 5;
8826 inst.instruction |= (immbits >> 1);
8827}
8828
8829static void
8830do_vfp_sp_conv_16 (void)
8831{
8832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8833 vfp_conv (16);
8834}
8835
8836static void
8837do_vfp_dp_conv_16 (void)
8838{
8839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8840 vfp_conv (16);
8841}
8842
8843static void
8844do_vfp_sp_conv_32 (void)
8845{
8846 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8847 vfp_conv (32);
8848}
8849
8850static void
8851do_vfp_dp_conv_32 (void)
8852{
8853 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8854 vfp_conv (32);
8855}
c19d1205
ZW
8856\f
8857/* FPA instructions. Also in a logical order. */
e16bb312 8858
c19d1205
ZW
8859static void
8860do_fpa_cmp (void)
8861{
8862 inst.instruction |= inst.operands[0].reg << 16;
8863 inst.instruction |= inst.operands[1].reg;
8864}
b99bd4ef
NC
8865
8866static void
c19d1205 8867do_fpa_ldmstm (void)
b99bd4ef 8868{
c19d1205
ZW
8869 inst.instruction |= inst.operands[0].reg << 12;
8870 switch (inst.operands[1].imm)
8871 {
8872 case 1: inst.instruction |= CP_T_X; break;
8873 case 2: inst.instruction |= CP_T_Y; break;
8874 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8875 case 4: break;
8876 default: abort ();
8877 }
b99bd4ef 8878
c19d1205
ZW
8879 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8880 {
8881 /* The instruction specified "ea" or "fd", so we can only accept
8882 [Rn]{!}. The instruction does not really support stacking or
8883 unstacking, so we have to emulate these by setting appropriate
8884 bits and offsets. */
8885 constraint (inst.reloc.exp.X_op != O_constant
8886 || inst.reloc.exp.X_add_number != 0,
8887 _("this instruction does not support indexing"));
b99bd4ef 8888
c19d1205
ZW
8889 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8890 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8891
c19d1205
ZW
8892 if (!(inst.instruction & INDEX_UP))
8893 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8894
c19d1205
ZW
8895 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8896 {
8897 inst.operands[2].preind = 0;
8898 inst.operands[2].postind = 1;
8899 }
8900 }
b99bd4ef 8901
c19d1205 8902 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8903}
c19d1205
ZW
8904\f
8905/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8906
c19d1205
ZW
8907static void
8908do_iwmmxt_tandorc (void)
8909{
8910 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8911}
b99bd4ef 8912
c19d1205
ZW
8913static void
8914do_iwmmxt_textrc (void)
8915{
8916 inst.instruction |= inst.operands[0].reg << 12;
8917 inst.instruction |= inst.operands[1].imm;
8918}
b99bd4ef
NC
8919
8920static void
c19d1205 8921do_iwmmxt_textrm (void)
b99bd4ef 8922{
c19d1205
ZW
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925 inst.instruction |= inst.operands[2].imm;
8926}
b99bd4ef 8927
c19d1205
ZW
8928static void
8929do_iwmmxt_tinsr (void)
8930{
8931 inst.instruction |= inst.operands[0].reg << 16;
8932 inst.instruction |= inst.operands[1].reg << 12;
8933 inst.instruction |= inst.operands[2].imm;
8934}
b99bd4ef 8935
c19d1205
ZW
8936static void
8937do_iwmmxt_tmia (void)
8938{
8939 inst.instruction |= inst.operands[0].reg << 5;
8940 inst.instruction |= inst.operands[1].reg;
8941 inst.instruction |= inst.operands[2].reg << 12;
8942}
b99bd4ef 8943
c19d1205
ZW
8944static void
8945do_iwmmxt_waligni (void)
8946{
8947 inst.instruction |= inst.operands[0].reg << 12;
8948 inst.instruction |= inst.operands[1].reg << 16;
8949 inst.instruction |= inst.operands[2].reg;
8950 inst.instruction |= inst.operands[3].imm << 20;
8951}
b99bd4ef 8952
2d447fca
JM
8953static void
8954do_iwmmxt_wmerge (void)
8955{
8956 inst.instruction |= inst.operands[0].reg << 12;
8957 inst.instruction |= inst.operands[1].reg << 16;
8958 inst.instruction |= inst.operands[2].reg;
8959 inst.instruction |= inst.operands[3].imm << 21;
8960}
8961
c19d1205
ZW
8962static void
8963do_iwmmxt_wmov (void)
8964{
8965 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8966 inst.instruction |= inst.operands[0].reg << 12;
8967 inst.instruction |= inst.operands[1].reg << 16;
8968 inst.instruction |= inst.operands[1].reg;
8969}
b99bd4ef 8970
c19d1205
ZW
8971static void
8972do_iwmmxt_wldstbh (void)
8973{
8f06b2d8 8974 int reloc;
c19d1205 8975 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8976 if (thumb_mode)
8977 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8978 else
8979 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8980 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8981}
8982
c19d1205
ZW
8983static void
8984do_iwmmxt_wldstw (void)
8985{
8986 /* RIWR_RIWC clears .isreg for a control register. */
8987 if (!inst.operands[0].isreg)
8988 {
8989 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8990 inst.instruction |= 0xf0000000;
8991 }
b99bd4ef 8992
c19d1205
ZW
8993 inst.instruction |= inst.operands[0].reg << 12;
8994 encode_arm_cp_address (1, TRUE, TRUE, 0);
8995}
b99bd4ef
NC
8996
8997static void
c19d1205 8998do_iwmmxt_wldstd (void)
b99bd4ef 8999{
c19d1205 9000 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
9001 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9002 && inst.operands[1].immisreg)
9003 {
9004 inst.instruction &= ~0x1a000ff;
9005 inst.instruction |= (0xf << 28);
9006 if (inst.operands[1].preind)
9007 inst.instruction |= PRE_INDEX;
9008 if (!inst.operands[1].negative)
9009 inst.instruction |= INDEX_UP;
9010 if (inst.operands[1].writeback)
9011 inst.instruction |= WRITE_BACK;
9012 inst.instruction |= inst.operands[1].reg << 16;
9013 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9014 inst.instruction |= inst.operands[1].imm;
9015 }
9016 else
9017 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 9018}
b99bd4ef 9019
c19d1205
ZW
9020static void
9021do_iwmmxt_wshufh (void)
9022{
9023 inst.instruction |= inst.operands[0].reg << 12;
9024 inst.instruction |= inst.operands[1].reg << 16;
9025 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9026 inst.instruction |= (inst.operands[2].imm & 0x0f);
9027}
b99bd4ef 9028
c19d1205
ZW
9029static void
9030do_iwmmxt_wzero (void)
9031{
9032 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9033 inst.instruction |= inst.operands[0].reg;
9034 inst.instruction |= inst.operands[0].reg << 12;
9035 inst.instruction |= inst.operands[0].reg << 16;
9036}
2d447fca
JM
9037
9038static void
9039do_iwmmxt_wrwrwr_or_imm5 (void)
9040{
9041 if (inst.operands[2].isreg)
9042 do_rd_rn_rm ();
9043 else {
9044 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9045 _("immediate operand requires iWMMXt2"));
9046 do_rd_rn ();
9047 if (inst.operands[2].imm == 0)
9048 {
9049 switch ((inst.instruction >> 20) & 0xf)
9050 {
9051 case 4:
9052 case 5:
9053 case 6:
5f4273c7 9054 case 7:
2d447fca
JM
9055 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9056 inst.operands[2].imm = 16;
9057 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9058 break;
9059 case 8:
9060 case 9:
9061 case 10:
9062 case 11:
9063 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9064 inst.operands[2].imm = 32;
9065 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9066 break;
9067 case 12:
9068 case 13:
9069 case 14:
9070 case 15:
9071 {
9072 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9073 unsigned long wrn;
9074 wrn = (inst.instruction >> 16) & 0xf;
9075 inst.instruction &= 0xff0fff0f;
9076 inst.instruction |= wrn;
9077 /* Bail out here; the instruction is now assembled. */
9078 return;
9079 }
9080 }
9081 }
9082 /* Map 32 -> 0, etc. */
9083 inst.operands[2].imm &= 0x1f;
9084 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9085 }
9086}
c19d1205
ZW
9087\f
9088/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9089 operations first, then control, shift, and load/store. */
b99bd4ef 9090
c19d1205 9091/* Insns like "foo X,Y,Z". */
b99bd4ef 9092
c19d1205
ZW
9093static void
9094do_mav_triple (void)
9095{
9096 inst.instruction |= inst.operands[0].reg << 16;
9097 inst.instruction |= inst.operands[1].reg;
9098 inst.instruction |= inst.operands[2].reg << 12;
9099}
b99bd4ef 9100
c19d1205
ZW
9101/* Insns like "foo W,X,Y,Z".
9102 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9103
c19d1205
ZW
9104static void
9105do_mav_quad (void)
9106{
9107 inst.instruction |= inst.operands[0].reg << 5;
9108 inst.instruction |= inst.operands[1].reg << 12;
9109 inst.instruction |= inst.operands[2].reg << 16;
9110 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9111}
9112
c19d1205
ZW
9113/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9114static void
9115do_mav_dspsc (void)
a737bd4d 9116{
c19d1205
ZW
9117 inst.instruction |= inst.operands[1].reg << 12;
9118}
a737bd4d 9119
c19d1205
ZW
9120/* Maverick shift immediate instructions.
9121 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9122 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9123
c19d1205
ZW
9124static void
9125do_mav_shift (void)
9126{
9127 int imm = inst.operands[2].imm;
a737bd4d 9128
c19d1205
ZW
9129 inst.instruction |= inst.operands[0].reg << 12;
9130 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9131
c19d1205
ZW
9132 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9133 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9134 Bit 4 should be 0. */
9135 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9136
c19d1205
ZW
9137 inst.instruction |= imm;
9138}
9139\f
9140/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9141
c19d1205
ZW
9142/* Xscale multiply-accumulate (argument parse)
9143 MIAcc acc0,Rm,Rs
9144 MIAPHcc acc0,Rm,Rs
9145 MIAxycc acc0,Rm,Rs. */
a737bd4d 9146
c19d1205
ZW
9147static void
9148do_xsc_mia (void)
9149{
9150 inst.instruction |= inst.operands[1].reg;
9151 inst.instruction |= inst.operands[2].reg << 12;
9152}
a737bd4d 9153
c19d1205 9154/* Xscale move-accumulator-register (argument parse)
a737bd4d 9155
c19d1205 9156 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9157
c19d1205
ZW
9158static void
9159do_xsc_mar (void)
9160{
9161 inst.instruction |= inst.operands[1].reg << 12;
9162 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9163}
9164
c19d1205 9165/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9166
c19d1205 9167 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9168
9169static void
c19d1205 9170do_xsc_mra (void)
b99bd4ef 9171{
c19d1205
ZW
9172 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9173 inst.instruction |= inst.operands[0].reg << 12;
9174 inst.instruction |= inst.operands[1].reg << 16;
9175}
9176\f
9177/* Encoding functions relevant only to Thumb. */
b99bd4ef 9178
c19d1205
ZW
9179/* inst.operands[i] is a shifted-register operand; encode
9180 it into inst.instruction in the format used by Thumb32. */
9181
9182static void
9183encode_thumb32_shifted_operand (int i)
9184{
9185 unsigned int value = inst.reloc.exp.X_add_number;
9186 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9187
9c3c69f2
PB
9188 constraint (inst.operands[i].immisreg,
9189 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9190 inst.instruction |= inst.operands[i].reg;
9191 if (shift == SHIFT_RRX)
9192 inst.instruction |= SHIFT_ROR << 4;
9193 else
b99bd4ef 9194 {
c19d1205
ZW
9195 constraint (inst.reloc.exp.X_op != O_constant,
9196 _("expression too complex"));
9197
9198 constraint (value > 32
9199 || (value == 32 && (shift == SHIFT_LSL
9200 || shift == SHIFT_ROR)),
9201 _("shift expression is too large"));
9202
9203 if (value == 0)
9204 shift = SHIFT_LSL;
9205 else if (value == 32)
9206 value = 0;
9207
9208 inst.instruction |= shift << 4;
9209 inst.instruction |= (value & 0x1c) << 10;
9210 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9211 }
c19d1205 9212}
b99bd4ef 9213
b99bd4ef 9214
c19d1205
ZW
9215/* inst.operands[i] was set up by parse_address. Encode it into a
9216 Thumb32 format load or store instruction. Reject forms that cannot
9217 be used with such instructions. If is_t is true, reject forms that
9218 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9219 that cannot be used with a D instruction. If it is a store insn,
9220 reject PC in Rn. */
b99bd4ef 9221
c19d1205
ZW
9222static void
9223encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9224{
5be8be5d 9225 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9226
9227 constraint (!inst.operands[i].isreg,
53365c0d 9228 _("Instruction does not support =N addresses"));
b99bd4ef 9229
c19d1205
ZW
9230 inst.instruction |= inst.operands[i].reg << 16;
9231 if (inst.operands[i].immisreg)
b99bd4ef 9232 {
5be8be5d 9233 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9234 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9235 constraint (inst.operands[i].negative,
9236 _("Thumb does not support negative register indexing"));
9237 constraint (inst.operands[i].postind,
9238 _("Thumb does not support register post-indexing"));
9239 constraint (inst.operands[i].writeback,
9240 _("Thumb does not support register indexing with writeback"));
9241 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9242 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9243
f40d1643 9244 inst.instruction |= inst.operands[i].imm;
c19d1205 9245 if (inst.operands[i].shifted)
b99bd4ef 9246 {
c19d1205
ZW
9247 constraint (inst.reloc.exp.X_op != O_constant,
9248 _("expression too complex"));
9c3c69f2
PB
9249 constraint (inst.reloc.exp.X_add_number < 0
9250 || inst.reloc.exp.X_add_number > 3,
c19d1205 9251 _("shift out of range"));
9c3c69f2 9252 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9253 }
9254 inst.reloc.type = BFD_RELOC_UNUSED;
9255 }
9256 else if (inst.operands[i].preind)
9257 {
5be8be5d 9258 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9259 constraint (is_t && inst.operands[i].writeback,
c19d1205 9260 _("cannot use writeback with this instruction"));
5be8be5d
DG
9261 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9262 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9263
9264 if (is_d)
9265 {
9266 inst.instruction |= 0x01000000;
9267 if (inst.operands[i].writeback)
9268 inst.instruction |= 0x00200000;
b99bd4ef 9269 }
c19d1205 9270 else
b99bd4ef 9271 {
c19d1205
ZW
9272 inst.instruction |= 0x00000c00;
9273 if (inst.operands[i].writeback)
9274 inst.instruction |= 0x00000100;
b99bd4ef 9275 }
c19d1205 9276 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9277 }
c19d1205 9278 else if (inst.operands[i].postind)
b99bd4ef 9279 {
9c2799c2 9280 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9281 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9282 constraint (is_t, _("cannot use post-indexing with this instruction"));
9283
9284 if (is_d)
9285 inst.instruction |= 0x00200000;
9286 else
9287 inst.instruction |= 0x00000900;
9288 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9289 }
9290 else /* unindexed - only for coprocessor */
9291 inst.error = _("instruction does not accept unindexed addressing");
9292}
9293
9294/* Table of Thumb instructions which exist in both 16- and 32-bit
9295 encodings (the latter only in post-V6T2 cores). The index is the
9296 value used in the insns table below. When there is more than one
9297 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9298 holds variant (1).
9299 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9300#define T16_32_TAB \
21d799b5
NC
9301 X(_adc, 4140, eb400000), \
9302 X(_adcs, 4140, eb500000), \
9303 X(_add, 1c00, eb000000), \
9304 X(_adds, 1c00, eb100000), \
9305 X(_addi, 0000, f1000000), \
9306 X(_addis, 0000, f1100000), \
9307 X(_add_pc,000f, f20f0000), \
9308 X(_add_sp,000d, f10d0000), \
9309 X(_adr, 000f, f20f0000), \
9310 X(_and, 4000, ea000000), \
9311 X(_ands, 4000, ea100000), \
9312 X(_asr, 1000, fa40f000), \
9313 X(_asrs, 1000, fa50f000), \
9314 X(_b, e000, f000b000), \
9315 X(_bcond, d000, f0008000), \
9316 X(_bic, 4380, ea200000), \
9317 X(_bics, 4380, ea300000), \
9318 X(_cmn, 42c0, eb100f00), \
9319 X(_cmp, 2800, ebb00f00), \
9320 X(_cpsie, b660, f3af8400), \
9321 X(_cpsid, b670, f3af8600), \
9322 X(_cpy, 4600, ea4f0000), \
9323 X(_dec_sp,80dd, f1ad0d00), \
9324 X(_eor, 4040, ea800000), \
9325 X(_eors, 4040, ea900000), \
9326 X(_inc_sp,00dd, f10d0d00), \
9327 X(_ldmia, c800, e8900000), \
9328 X(_ldr, 6800, f8500000), \
9329 X(_ldrb, 7800, f8100000), \
9330 X(_ldrh, 8800, f8300000), \
9331 X(_ldrsb, 5600, f9100000), \
9332 X(_ldrsh, 5e00, f9300000), \
9333 X(_ldr_pc,4800, f85f0000), \
9334 X(_ldr_pc2,4800, f85f0000), \
9335 X(_ldr_sp,9800, f85d0000), \
9336 X(_lsl, 0000, fa00f000), \
9337 X(_lsls, 0000, fa10f000), \
9338 X(_lsr, 0800, fa20f000), \
9339 X(_lsrs, 0800, fa30f000), \
9340 X(_mov, 2000, ea4f0000), \
9341 X(_movs, 2000, ea5f0000), \
9342 X(_mul, 4340, fb00f000), \
9343 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9344 X(_mvn, 43c0, ea6f0000), \
9345 X(_mvns, 43c0, ea7f0000), \
9346 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9347 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9348 X(_orr, 4300, ea400000), \
9349 X(_orrs, 4300, ea500000), \
9350 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9351 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9352 X(_rev, ba00, fa90f080), \
9353 X(_rev16, ba40, fa90f090), \
9354 X(_revsh, bac0, fa90f0b0), \
9355 X(_ror, 41c0, fa60f000), \
9356 X(_rors, 41c0, fa70f000), \
9357 X(_sbc, 4180, eb600000), \
9358 X(_sbcs, 4180, eb700000), \
9359 X(_stmia, c000, e8800000), \
9360 X(_str, 6000, f8400000), \
9361 X(_strb, 7000, f8000000), \
9362 X(_strh, 8000, f8200000), \
9363 X(_str_sp,9000, f84d0000), \
9364 X(_sub, 1e00, eba00000), \
9365 X(_subs, 1e00, ebb00000), \
9366 X(_subi, 8000, f1a00000), \
9367 X(_subis, 8000, f1b00000), \
9368 X(_sxtb, b240, fa4ff080), \
9369 X(_sxth, b200, fa0ff080), \
9370 X(_tst, 4200, ea100f00), \
9371 X(_uxtb, b2c0, fa5ff080), \
9372 X(_uxth, b280, fa1ff080), \
9373 X(_nop, bf00, f3af8000), \
9374 X(_yield, bf10, f3af8001), \
9375 X(_wfe, bf20, f3af8002), \
9376 X(_wfi, bf30, f3af8003), \
9377 X(_sev, bf40, f3af8004),
c19d1205
ZW
9378
9379/* To catch errors in encoding functions, the codes are all offset by
9380 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9381 as 16-bit instructions. */
21d799b5 9382#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9383enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9384#undef X
9385
9386#define X(a,b,c) 0x##b
9387static const unsigned short thumb_op16[] = { T16_32_TAB };
9388#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9389#undef X
9390
9391#define X(a,b,c) 0x##c
9392static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9393#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9394#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9395#undef X
9396#undef T16_32_TAB
9397
9398/* Thumb instruction encoders, in alphabetical order. */
9399
92e90b6e 9400/* ADDW or SUBW. */
c921be7d 9401
92e90b6e
PB
9402static void
9403do_t_add_sub_w (void)
9404{
9405 int Rd, Rn;
9406
9407 Rd = inst.operands[0].reg;
9408 Rn = inst.operands[1].reg;
9409
539d4391
NC
9410 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9411 is the SP-{plus,minus}-immediate form of the instruction. */
9412 if (Rn == REG_SP)
9413 constraint (Rd == REG_PC, BAD_PC);
9414 else
9415 reject_bad_reg (Rd);
fdfde340 9416
92e90b6e
PB
9417 inst.instruction |= (Rn << 16) | (Rd << 8);
9418 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9419}
9420
c19d1205
ZW
9421/* Parse an add or subtract instruction. We get here with inst.instruction
9422 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9423
9424static void
9425do_t_add_sub (void)
9426{
9427 int Rd, Rs, Rn;
9428
9429 Rd = inst.operands[0].reg;
9430 Rs = (inst.operands[1].present
9431 ? inst.operands[1].reg /* Rd, Rs, foo */
9432 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9433
e07e6e58
NC
9434 if (Rd == REG_PC)
9435 set_it_insn_type_last ();
9436
c19d1205
ZW
9437 if (unified_syntax)
9438 {
0110f2b8
PB
9439 bfd_boolean flags;
9440 bfd_boolean narrow;
9441 int opcode;
9442
9443 flags = (inst.instruction == T_MNEM_adds
9444 || inst.instruction == T_MNEM_subs);
9445 if (flags)
e07e6e58 9446 narrow = !in_it_block ();
0110f2b8 9447 else
e07e6e58 9448 narrow = in_it_block ();
c19d1205 9449 if (!inst.operands[2].isreg)
b99bd4ef 9450 {
16805f35
PB
9451 int add;
9452
fdfde340
JM
9453 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9454
16805f35
PB
9455 add = (inst.instruction == T_MNEM_add
9456 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9457 opcode = 0;
9458 if (inst.size_req != 4)
9459 {
0110f2b8
PB
9460 /* Attempt to use a narrow opcode, with relaxation if
9461 appropriate. */
9462 if (Rd == REG_SP && Rs == REG_SP && !flags)
9463 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9464 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9465 opcode = T_MNEM_add_sp;
9466 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9467 opcode = T_MNEM_add_pc;
9468 else if (Rd <= 7 && Rs <= 7 && narrow)
9469 {
9470 if (flags)
9471 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9472 else
9473 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9474 }
9475 if (opcode)
9476 {
9477 inst.instruction = THUMB_OP16(opcode);
9478 inst.instruction |= (Rd << 4) | Rs;
9479 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9480 if (inst.size_req != 2)
9481 inst.relax = opcode;
9482 }
9483 else
9484 constraint (inst.size_req == 2, BAD_HIREG);
9485 }
9486 if (inst.size_req == 4
9487 || (inst.size_req != 2 && !opcode))
9488 {
efd81785
PB
9489 if (Rd == REG_PC)
9490 {
fdfde340 9491 constraint (add, BAD_PC);
efd81785
PB
9492 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9493 _("only SUBS PC, LR, #const allowed"));
9494 constraint (inst.reloc.exp.X_op != O_constant,
9495 _("expression too complex"));
9496 constraint (inst.reloc.exp.X_add_number < 0
9497 || inst.reloc.exp.X_add_number > 0xff,
9498 _("immediate value out of range"));
9499 inst.instruction = T2_SUBS_PC_LR
9500 | inst.reloc.exp.X_add_number;
9501 inst.reloc.type = BFD_RELOC_UNUSED;
9502 return;
9503 }
9504 else if (Rs == REG_PC)
16805f35
PB
9505 {
9506 /* Always use addw/subw. */
9507 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9508 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9509 }
9510 else
9511 {
9512 inst.instruction = THUMB_OP32 (inst.instruction);
9513 inst.instruction = (inst.instruction & 0xe1ffffff)
9514 | 0x10000000;
9515 if (flags)
9516 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9517 else
9518 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9519 }
dc4503c6
PB
9520 inst.instruction |= Rd << 8;
9521 inst.instruction |= Rs << 16;
0110f2b8 9522 }
b99bd4ef 9523 }
c19d1205
ZW
9524 else
9525 {
5f4cb198
NC
9526 unsigned int value = inst.reloc.exp.X_add_number;
9527 unsigned int shift = inst.operands[2].shift_kind;
9528
c19d1205
ZW
9529 Rn = inst.operands[2].reg;
9530 /* See if we can do this with a 16-bit instruction. */
9531 if (!inst.operands[2].shifted && inst.size_req != 4)
9532 {
e27ec89e
PB
9533 if (Rd > 7 || Rs > 7 || Rn > 7)
9534 narrow = FALSE;
9535
9536 if (narrow)
c19d1205 9537 {
e27ec89e
PB
9538 inst.instruction = ((inst.instruction == T_MNEM_adds
9539 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9540 ? T_OPCODE_ADD_R3
9541 : T_OPCODE_SUB_R3);
9542 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9543 return;
9544 }
b99bd4ef 9545
7e806470 9546 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9547 {
7e806470
PB
9548 /* Thumb-1 cores (except v6-M) require at least one high
9549 register in a narrow non flag setting add. */
9550 if (Rd > 7 || Rn > 7
9551 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9552 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9553 {
7e806470
PB
9554 if (Rd == Rn)
9555 {
9556 Rn = Rs;
9557 Rs = Rd;
9558 }
c19d1205
ZW
9559 inst.instruction = T_OPCODE_ADD_HI;
9560 inst.instruction |= (Rd & 8) << 4;
9561 inst.instruction |= (Rd & 7);
9562 inst.instruction |= Rn << 3;
9563 return;
9564 }
c19d1205
ZW
9565 }
9566 }
c921be7d 9567
fdfde340
JM
9568 constraint (Rd == REG_PC, BAD_PC);
9569 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9570 constraint (Rs == REG_PC, BAD_PC);
9571 reject_bad_reg (Rn);
9572
c19d1205
ZW
9573 /* If we get here, it can't be done in 16 bits. */
9574 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9575 _("shift must be constant"));
9576 inst.instruction = THUMB_OP32 (inst.instruction);
9577 inst.instruction |= Rd << 8;
9578 inst.instruction |= Rs << 16;
5f4cb198
NC
9579 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9580 _("shift value over 3 not allowed in thumb mode"));
9581 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9582 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
9583 encode_thumb32_shifted_operand (2);
9584 }
9585 }
9586 else
9587 {
9588 constraint (inst.instruction == T_MNEM_adds
9589 || inst.instruction == T_MNEM_subs,
9590 BAD_THUMB32);
b99bd4ef 9591
c19d1205 9592 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9593 {
c19d1205
ZW
9594 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9595 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9596 BAD_HIREG);
9597
9598 inst.instruction = (inst.instruction == T_MNEM_add
9599 ? 0x0000 : 0x8000);
9600 inst.instruction |= (Rd << 4) | Rs;
9601 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9602 return;
9603 }
9604
c19d1205
ZW
9605 Rn = inst.operands[2].reg;
9606 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9607
c19d1205
ZW
9608 /* We now have Rd, Rs, and Rn set to registers. */
9609 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9610 {
c19d1205
ZW
9611 /* Can't do this for SUB. */
9612 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9613 inst.instruction = T_OPCODE_ADD_HI;
9614 inst.instruction |= (Rd & 8) << 4;
9615 inst.instruction |= (Rd & 7);
9616 if (Rs == Rd)
9617 inst.instruction |= Rn << 3;
9618 else if (Rn == Rd)
9619 inst.instruction |= Rs << 3;
9620 else
9621 constraint (1, _("dest must overlap one source register"));
9622 }
9623 else
9624 {
9625 inst.instruction = (inst.instruction == T_MNEM_add
9626 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9627 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9628 }
b99bd4ef 9629 }
b99bd4ef
NC
9630}
9631
c19d1205
ZW
9632static void
9633do_t_adr (void)
9634{
fdfde340
JM
9635 unsigned Rd;
9636
9637 Rd = inst.operands[0].reg;
9638 reject_bad_reg (Rd);
9639
9640 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9641 {
9642 /* Defer to section relaxation. */
9643 inst.relax = inst.instruction;
9644 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9645 inst.instruction |= Rd << 4;
0110f2b8
PB
9646 }
9647 else if (unified_syntax && inst.size_req != 2)
e9f89963 9648 {
0110f2b8 9649 /* Generate a 32-bit opcode. */
e9f89963 9650 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9651 inst.instruction |= Rd << 8;
e9f89963
PB
9652 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9653 inst.reloc.pc_rel = 1;
9654 }
9655 else
9656 {
0110f2b8 9657 /* Generate a 16-bit opcode. */
e9f89963
PB
9658 inst.instruction = THUMB_OP16 (inst.instruction);
9659 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9660 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9661 inst.reloc.pc_rel = 1;
b99bd4ef 9662
fdfde340 9663 inst.instruction |= Rd << 4;
e9f89963 9664 }
c19d1205 9665}
b99bd4ef 9666
c19d1205
ZW
9667/* Arithmetic instructions for which there is just one 16-bit
9668 instruction encoding, and it allows only two low registers.
9669 For maximal compatibility with ARM syntax, we allow three register
9670 operands even when Thumb-32 instructions are not available, as long
9671 as the first two are identical. For instance, both "sbc r0,r1" and
9672 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9673static void
c19d1205 9674do_t_arit3 (void)
b99bd4ef 9675{
c19d1205 9676 int Rd, Rs, Rn;
b99bd4ef 9677
c19d1205
ZW
9678 Rd = inst.operands[0].reg;
9679 Rs = (inst.operands[1].present
9680 ? inst.operands[1].reg /* Rd, Rs, foo */
9681 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9682 Rn = inst.operands[2].reg;
b99bd4ef 9683
fdfde340
JM
9684 reject_bad_reg (Rd);
9685 reject_bad_reg (Rs);
9686 if (inst.operands[2].isreg)
9687 reject_bad_reg (Rn);
9688
c19d1205 9689 if (unified_syntax)
b99bd4ef 9690 {
c19d1205
ZW
9691 if (!inst.operands[2].isreg)
9692 {
9693 /* For an immediate, we always generate a 32-bit opcode;
9694 section relaxation will shrink it later if possible. */
9695 inst.instruction = THUMB_OP32 (inst.instruction);
9696 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9697 inst.instruction |= Rd << 8;
9698 inst.instruction |= Rs << 16;
9699 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9700 }
9701 else
9702 {
e27ec89e
PB
9703 bfd_boolean narrow;
9704
c19d1205 9705 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9706 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9707 narrow = !in_it_block ();
e27ec89e 9708 else
e07e6e58 9709 narrow = in_it_block ();
e27ec89e
PB
9710
9711 if (Rd > 7 || Rn > 7 || Rs > 7)
9712 narrow = FALSE;
9713 if (inst.operands[2].shifted)
9714 narrow = FALSE;
9715 if (inst.size_req == 4)
9716 narrow = FALSE;
9717
9718 if (narrow
c19d1205
ZW
9719 && Rd == Rs)
9720 {
9721 inst.instruction = THUMB_OP16 (inst.instruction);
9722 inst.instruction |= Rd;
9723 inst.instruction |= Rn << 3;
9724 return;
9725 }
b99bd4ef 9726
c19d1205
ZW
9727 /* If we get here, it can't be done in 16 bits. */
9728 constraint (inst.operands[2].shifted
9729 && inst.operands[2].immisreg,
9730 _("shift must be constant"));
9731 inst.instruction = THUMB_OP32 (inst.instruction);
9732 inst.instruction |= Rd << 8;
9733 inst.instruction |= Rs << 16;
9734 encode_thumb32_shifted_operand (2);
9735 }
a737bd4d 9736 }
c19d1205 9737 else
b99bd4ef 9738 {
c19d1205
ZW
9739 /* On its face this is a lie - the instruction does set the
9740 flags. However, the only supported mnemonic in this mode
9741 says it doesn't. */
9742 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9743
c19d1205
ZW
9744 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9745 _("unshifted register required"));
9746 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9747 constraint (Rd != Rs,
9748 _("dest and source1 must be the same register"));
a737bd4d 9749
c19d1205
ZW
9750 inst.instruction = THUMB_OP16 (inst.instruction);
9751 inst.instruction |= Rd;
9752 inst.instruction |= Rn << 3;
b99bd4ef 9753 }
a737bd4d 9754}
b99bd4ef 9755
c19d1205
ZW
9756/* Similarly, but for instructions where the arithmetic operation is
9757 commutative, so we can allow either of them to be different from
9758 the destination operand in a 16-bit instruction. For instance, all
9759 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9760 accepted. */
9761static void
9762do_t_arit3c (void)
a737bd4d 9763{
c19d1205 9764 int Rd, Rs, Rn;
b99bd4ef 9765
c19d1205
ZW
9766 Rd = inst.operands[0].reg;
9767 Rs = (inst.operands[1].present
9768 ? inst.operands[1].reg /* Rd, Rs, foo */
9769 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9770 Rn = inst.operands[2].reg;
c921be7d 9771
fdfde340
JM
9772 reject_bad_reg (Rd);
9773 reject_bad_reg (Rs);
9774 if (inst.operands[2].isreg)
9775 reject_bad_reg (Rn);
a737bd4d 9776
c19d1205 9777 if (unified_syntax)
a737bd4d 9778 {
c19d1205 9779 if (!inst.operands[2].isreg)
b99bd4ef 9780 {
c19d1205
ZW
9781 /* For an immediate, we always generate a 32-bit opcode;
9782 section relaxation will shrink it later if possible. */
9783 inst.instruction = THUMB_OP32 (inst.instruction);
9784 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9785 inst.instruction |= Rd << 8;
9786 inst.instruction |= Rs << 16;
9787 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9788 }
c19d1205 9789 else
a737bd4d 9790 {
e27ec89e
PB
9791 bfd_boolean narrow;
9792
c19d1205 9793 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9794 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9795 narrow = !in_it_block ();
e27ec89e 9796 else
e07e6e58 9797 narrow = in_it_block ();
e27ec89e
PB
9798
9799 if (Rd > 7 || Rn > 7 || Rs > 7)
9800 narrow = FALSE;
9801 if (inst.operands[2].shifted)
9802 narrow = FALSE;
9803 if (inst.size_req == 4)
9804 narrow = FALSE;
9805
9806 if (narrow)
a737bd4d 9807 {
c19d1205 9808 if (Rd == Rs)
a737bd4d 9809 {
c19d1205
ZW
9810 inst.instruction = THUMB_OP16 (inst.instruction);
9811 inst.instruction |= Rd;
9812 inst.instruction |= Rn << 3;
9813 return;
a737bd4d 9814 }
c19d1205 9815 if (Rd == Rn)
a737bd4d 9816 {
c19d1205
ZW
9817 inst.instruction = THUMB_OP16 (inst.instruction);
9818 inst.instruction |= Rd;
9819 inst.instruction |= Rs << 3;
9820 return;
a737bd4d
NC
9821 }
9822 }
c19d1205
ZW
9823
9824 /* If we get here, it can't be done in 16 bits. */
9825 constraint (inst.operands[2].shifted
9826 && inst.operands[2].immisreg,
9827 _("shift must be constant"));
9828 inst.instruction = THUMB_OP32 (inst.instruction);
9829 inst.instruction |= Rd << 8;
9830 inst.instruction |= Rs << 16;
9831 encode_thumb32_shifted_operand (2);
a737bd4d 9832 }
b99bd4ef 9833 }
c19d1205
ZW
9834 else
9835 {
9836 /* On its face this is a lie - the instruction does set the
9837 flags. However, the only supported mnemonic in this mode
9838 says it doesn't. */
9839 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9840
c19d1205
ZW
9841 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9842 _("unshifted register required"));
9843 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9844
9845 inst.instruction = THUMB_OP16 (inst.instruction);
9846 inst.instruction |= Rd;
9847
9848 if (Rd == Rs)
9849 inst.instruction |= Rn << 3;
9850 else if (Rd == Rn)
9851 inst.instruction |= Rs << 3;
9852 else
9853 constraint (1, _("dest must overlap one source register"));
9854 }
a737bd4d
NC
9855}
9856
62b3e311
PB
9857static void
9858do_t_barrier (void)
9859{
9860 if (inst.operands[0].present)
9861 {
9862 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9863 && inst.operands[0].imm > 0xf
9864 && inst.operands[0].imm < 0x0,
bd3ba5d1 9865 _("bad barrier type"));
62b3e311
PB
9866 inst.instruction |= inst.operands[0].imm;
9867 }
9868 else
9869 inst.instruction |= 0xf;
9870}
9871
c19d1205
ZW
9872static void
9873do_t_bfc (void)
a737bd4d 9874{
fdfde340 9875 unsigned Rd;
c19d1205
ZW
9876 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9877 constraint (msb > 32, _("bit-field extends past end of register"));
9878 /* The instruction encoding stores the LSB and MSB,
9879 not the LSB and width. */
fdfde340
JM
9880 Rd = inst.operands[0].reg;
9881 reject_bad_reg (Rd);
9882 inst.instruction |= Rd << 8;
c19d1205
ZW
9883 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9884 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9885 inst.instruction |= msb - 1;
b99bd4ef
NC
9886}
9887
c19d1205
ZW
9888static void
9889do_t_bfi (void)
b99bd4ef 9890{
fdfde340 9891 int Rd, Rn;
c19d1205 9892 unsigned int msb;
b99bd4ef 9893
fdfde340
JM
9894 Rd = inst.operands[0].reg;
9895 reject_bad_reg (Rd);
9896
c19d1205
ZW
9897 /* #0 in second position is alternative syntax for bfc, which is
9898 the same instruction but with REG_PC in the Rm field. */
9899 if (!inst.operands[1].isreg)
fdfde340
JM
9900 Rn = REG_PC;
9901 else
9902 {
9903 Rn = inst.operands[1].reg;
9904 reject_bad_reg (Rn);
9905 }
b99bd4ef 9906
c19d1205
ZW
9907 msb = inst.operands[2].imm + inst.operands[3].imm;
9908 constraint (msb > 32, _("bit-field extends past end of register"));
9909 /* The instruction encoding stores the LSB and MSB,
9910 not the LSB and width. */
fdfde340
JM
9911 inst.instruction |= Rd << 8;
9912 inst.instruction |= Rn << 16;
c19d1205
ZW
9913 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9914 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9915 inst.instruction |= msb - 1;
b99bd4ef
NC
9916}
9917
c19d1205
ZW
9918static void
9919do_t_bfx (void)
b99bd4ef 9920{
fdfde340
JM
9921 unsigned Rd, Rn;
9922
9923 Rd = inst.operands[0].reg;
9924 Rn = inst.operands[1].reg;
9925
9926 reject_bad_reg (Rd);
9927 reject_bad_reg (Rn);
9928
c19d1205
ZW
9929 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9930 _("bit-field extends past end of register"));
fdfde340
JM
9931 inst.instruction |= Rd << 8;
9932 inst.instruction |= Rn << 16;
c19d1205
ZW
9933 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9934 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9935 inst.instruction |= inst.operands[3].imm - 1;
9936}
b99bd4ef 9937
c19d1205
ZW
9938/* ARM V5 Thumb BLX (argument parse)
9939 BLX <target_addr> which is BLX(1)
9940 BLX <Rm> which is BLX(2)
9941 Unfortunately, there are two different opcodes for this mnemonic.
9942 So, the insns[].value is not used, and the code here zaps values
9943 into inst.instruction.
b99bd4ef 9944
c19d1205
ZW
9945 ??? How to take advantage of the additional two bits of displacement
9946 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9947
c19d1205
ZW
9948static void
9949do_t_blx (void)
9950{
e07e6e58
NC
9951 set_it_insn_type_last ();
9952
c19d1205 9953 if (inst.operands[0].isreg)
fdfde340
JM
9954 {
9955 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9956 /* We have a register, so this is BLX(2). */
9957 inst.instruction |= inst.operands[0].reg << 3;
9958 }
b99bd4ef
NC
9959 else
9960 {
c19d1205 9961 /* No register. This must be BLX(1). */
2fc8bdac 9962 inst.instruction = 0xf000e800;
0855e32b 9963 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
9964 }
9965}
9966
c19d1205
ZW
9967static void
9968do_t_branch (void)
b99bd4ef 9969{
0110f2b8 9970 int opcode;
dfa9f0d5 9971 int cond;
9ae92b05 9972 int reloc;
dfa9f0d5 9973
e07e6e58
NC
9974 cond = inst.cond;
9975 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9976
9977 if (in_it_block ())
dfa9f0d5
PB
9978 {
9979 /* Conditional branches inside IT blocks are encoded as unconditional
9980 branches. */
9981 cond = COND_ALWAYS;
dfa9f0d5
PB
9982 }
9983 else
9984 cond = inst.cond;
9985
9986 if (cond != COND_ALWAYS)
0110f2b8
PB
9987 opcode = T_MNEM_bcond;
9988 else
9989 opcode = inst.instruction;
9990
12d6b0b7
RS
9991 if (unified_syntax
9992 && (inst.size_req == 4
10960bfb
PB
9993 || (inst.size_req != 2
9994 && (inst.operands[0].hasreloc
9995 || inst.reloc.exp.X_op == O_constant))))
c19d1205 9996 {
0110f2b8 9997 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9998 if (cond == COND_ALWAYS)
9ae92b05 9999 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
10000 else
10001 {
9c2799c2 10002 gas_assert (cond != 0xF);
dfa9f0d5 10003 inst.instruction |= cond << 22;
9ae92b05 10004 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
10005 }
10006 }
b99bd4ef
NC
10007 else
10008 {
0110f2b8 10009 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 10010 if (cond == COND_ALWAYS)
9ae92b05 10011 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 10012 else
b99bd4ef 10013 {
dfa9f0d5 10014 inst.instruction |= cond << 8;
9ae92b05 10015 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 10016 }
0110f2b8
PB
10017 /* Allow section relaxation. */
10018 if (unified_syntax && inst.size_req != 2)
10019 inst.relax = opcode;
b99bd4ef 10020 }
9ae92b05 10021 inst.reloc.type = reloc;
c19d1205 10022 inst.reloc.pc_rel = 1;
b99bd4ef
NC
10023}
10024
10025static void
c19d1205 10026do_t_bkpt (void)
b99bd4ef 10027{
dfa9f0d5
PB
10028 constraint (inst.cond != COND_ALWAYS,
10029 _("instruction is always unconditional"));
c19d1205 10030 if (inst.operands[0].present)
b99bd4ef 10031 {
c19d1205
ZW
10032 constraint (inst.operands[0].imm > 255,
10033 _("immediate value out of range"));
10034 inst.instruction |= inst.operands[0].imm;
e07e6e58 10035 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 10036 }
b99bd4ef
NC
10037}
10038
10039static void
c19d1205 10040do_t_branch23 (void)
b99bd4ef 10041{
e07e6e58 10042 set_it_insn_type_last ();
0855e32b
NS
10043 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10044
10045 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10046 this file. We used to simply ignore the PLT reloc type here --
10047 the branch encoding is now needed to deal with TLSCALL relocs.
10048 So if we see a PLT reloc now, put it back to how it used to be to
10049 keep the preexisting behaviour. */
10050 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10051 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 10052
4343666d 10053#if defined(OBJ_COFF)
c19d1205
ZW
10054 /* If the destination of the branch is a defined symbol which does not have
10055 the THUMB_FUNC attribute, then we must be calling a function which has
10056 the (interfacearm) attribute. We look for the Thumb entry point to that
10057 function and change the branch to refer to that function instead. */
10058 if ( inst.reloc.exp.X_op == O_symbol
10059 && inst.reloc.exp.X_add_symbol != NULL
10060 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10061 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10062 inst.reloc.exp.X_add_symbol =
10063 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 10064#endif
90e4755a
RE
10065}
10066
10067static void
c19d1205 10068do_t_bx (void)
90e4755a 10069{
e07e6e58 10070 set_it_insn_type_last ();
c19d1205
ZW
10071 inst.instruction |= inst.operands[0].reg << 3;
10072 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10073 should cause the alignment to be checked once it is known. This is
10074 because BX PC only works if the instruction is word aligned. */
10075}
90e4755a 10076
c19d1205
ZW
10077static void
10078do_t_bxj (void)
10079{
fdfde340 10080 int Rm;
90e4755a 10081
e07e6e58 10082 set_it_insn_type_last ();
fdfde340
JM
10083 Rm = inst.operands[0].reg;
10084 reject_bad_reg (Rm);
10085 inst.instruction |= Rm << 16;
90e4755a
RE
10086}
10087
10088static void
c19d1205 10089do_t_clz (void)
90e4755a 10090{
fdfde340
JM
10091 unsigned Rd;
10092 unsigned Rm;
10093
10094 Rd = inst.operands[0].reg;
10095 Rm = inst.operands[1].reg;
10096
10097 reject_bad_reg (Rd);
10098 reject_bad_reg (Rm);
10099
10100 inst.instruction |= Rd << 8;
10101 inst.instruction |= Rm << 16;
10102 inst.instruction |= Rm;
c19d1205 10103}
90e4755a 10104
dfa9f0d5
PB
10105static void
10106do_t_cps (void)
10107{
e07e6e58 10108 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10109 inst.instruction |= inst.operands[0].imm;
10110}
10111
c19d1205
ZW
10112static void
10113do_t_cpsi (void)
10114{
e07e6e58 10115 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10116 if (unified_syntax
62b3e311
PB
10117 && (inst.operands[1].present || inst.size_req == 4)
10118 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10119 {
c19d1205
ZW
10120 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10121 inst.instruction = 0xf3af8000;
10122 inst.instruction |= imod << 9;
10123 inst.instruction |= inst.operands[0].imm << 5;
10124 if (inst.operands[1].present)
10125 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10126 }
c19d1205 10127 else
90e4755a 10128 {
62b3e311
PB
10129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10130 && (inst.operands[0].imm & 4),
10131 _("selected processor does not support 'A' form "
10132 "of this instruction"));
10133 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10134 _("Thumb does not support the 2-argument "
10135 "form of this instruction"));
10136 inst.instruction |= inst.operands[0].imm;
90e4755a 10137 }
90e4755a
RE
10138}
10139
c19d1205
ZW
10140/* THUMB CPY instruction (argument parse). */
10141
90e4755a 10142static void
c19d1205 10143do_t_cpy (void)
90e4755a 10144{
c19d1205 10145 if (inst.size_req == 4)
90e4755a 10146 {
c19d1205
ZW
10147 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10148 inst.instruction |= inst.operands[0].reg << 8;
10149 inst.instruction |= inst.operands[1].reg;
90e4755a 10150 }
c19d1205 10151 else
90e4755a 10152 {
c19d1205
ZW
10153 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10154 inst.instruction |= (inst.operands[0].reg & 0x7);
10155 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10156 }
90e4755a
RE
10157}
10158
90e4755a 10159static void
25fe350b 10160do_t_cbz (void)
90e4755a 10161{
e07e6e58 10162 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10163 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10164 inst.instruction |= inst.operands[0].reg;
10165 inst.reloc.pc_rel = 1;
10166 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10167}
90e4755a 10168
62b3e311
PB
10169static void
10170do_t_dbg (void)
10171{
10172 inst.instruction |= inst.operands[0].imm;
10173}
10174
10175static void
10176do_t_div (void)
10177{
fdfde340
JM
10178 unsigned Rd, Rn, Rm;
10179
10180 Rd = inst.operands[0].reg;
10181 Rn = (inst.operands[1].present
10182 ? inst.operands[1].reg : Rd);
10183 Rm = inst.operands[2].reg;
10184
10185 reject_bad_reg (Rd);
10186 reject_bad_reg (Rn);
10187 reject_bad_reg (Rm);
10188
10189 inst.instruction |= Rd << 8;
10190 inst.instruction |= Rn << 16;
10191 inst.instruction |= Rm;
62b3e311
PB
10192}
10193
c19d1205
ZW
10194static void
10195do_t_hint (void)
10196{
10197 if (unified_syntax && inst.size_req == 4)
10198 inst.instruction = THUMB_OP32 (inst.instruction);
10199 else
10200 inst.instruction = THUMB_OP16 (inst.instruction);
10201}
90e4755a 10202
c19d1205
ZW
10203static void
10204do_t_it (void)
10205{
10206 unsigned int cond = inst.operands[0].imm;
e27ec89e 10207
e07e6e58
NC
10208 set_it_insn_type (IT_INSN);
10209 now_it.mask = (inst.instruction & 0xf) | 0x10;
10210 now_it.cc = cond;
e27ec89e
PB
10211
10212 /* If the condition is a negative condition, invert the mask. */
c19d1205 10213 if ((cond & 0x1) == 0x0)
90e4755a 10214 {
c19d1205 10215 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10216
c19d1205
ZW
10217 if ((mask & 0x7) == 0)
10218 /* no conversion needed */;
10219 else if ((mask & 0x3) == 0)
e27ec89e
PB
10220 mask ^= 0x8;
10221 else if ((mask & 0x1) == 0)
10222 mask ^= 0xC;
c19d1205 10223 else
e27ec89e 10224 mask ^= 0xE;
90e4755a 10225
e27ec89e
PB
10226 inst.instruction &= 0xfff0;
10227 inst.instruction |= mask;
c19d1205 10228 }
90e4755a 10229
c19d1205
ZW
10230 inst.instruction |= cond << 4;
10231}
90e4755a 10232
3c707909
PB
10233/* Helper function used for both push/pop and ldm/stm. */
10234static void
10235encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10236{
10237 bfd_boolean load;
10238
10239 load = (inst.instruction & (1 << 20)) != 0;
10240
10241 if (mask & (1 << 13))
10242 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10243
10244 if ((mask & (1 << base)) != 0
10245 && writeback)
10246 inst.error = _("having the base register in the register list when "
10247 "using write back is UNPREDICTABLE");
10248
3c707909
PB
10249 if (load)
10250 {
e07e6e58
NC
10251 if (mask & (1 << 15))
10252 {
10253 if (mask & (1 << 14))
10254 inst.error = _("LR and PC should not both be in register list");
10255 else
10256 set_it_insn_type_last ();
10257 }
3c707909
PB
10258 }
10259 else
10260 {
10261 if (mask & (1 << 15))
10262 inst.error = _("PC not allowed in register list");
3c707909
PB
10263 }
10264
10265 if ((mask & (mask - 1)) == 0)
10266 {
10267 /* Single register transfers implemented as str/ldr. */
10268 if (writeback)
10269 {
10270 if (inst.instruction & (1 << 23))
10271 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10272 else
10273 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10274 }
10275 else
10276 {
10277 if (inst.instruction & (1 << 23))
10278 inst.instruction = 0x00800000; /* ia -> [base] */
10279 else
10280 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10281 }
10282
10283 inst.instruction |= 0xf8400000;
10284 if (load)
10285 inst.instruction |= 0x00100000;
10286
5f4273c7 10287 mask = ffs (mask) - 1;
3c707909
PB
10288 mask <<= 12;
10289 }
10290 else if (writeback)
10291 inst.instruction |= WRITE_BACK;
10292
10293 inst.instruction |= mask;
10294 inst.instruction |= base << 16;
10295}
10296
c19d1205
ZW
10297static void
10298do_t_ldmstm (void)
10299{
10300 /* This really doesn't seem worth it. */
10301 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10302 _("expression too complex"));
10303 constraint (inst.operands[1].writeback,
10304 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10305
c19d1205
ZW
10306 if (unified_syntax)
10307 {
3c707909
PB
10308 bfd_boolean narrow;
10309 unsigned mask;
10310
10311 narrow = FALSE;
c19d1205
ZW
10312 /* See if we can use a 16-bit instruction. */
10313 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10314 && inst.size_req != 4
3c707909 10315 && !(inst.operands[1].imm & ~0xff))
90e4755a 10316 {
3c707909 10317 mask = 1 << inst.operands[0].reg;
90e4755a 10318
eab4f823 10319 if (inst.operands[0].reg <= 7)
90e4755a 10320 {
3c707909 10321 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10322 ? inst.operands[0].writeback
10323 : (inst.operands[0].writeback
10324 == !(inst.operands[1].imm & mask)))
10325 {
10326 if (inst.instruction == T_MNEM_stmia
10327 && (inst.operands[1].imm & mask)
10328 && (inst.operands[1].imm & (mask - 1)))
10329 as_warn (_("value stored for r%d is UNKNOWN"),
10330 inst.operands[0].reg);
3c707909 10331
eab4f823
MGD
10332 inst.instruction = THUMB_OP16 (inst.instruction);
10333 inst.instruction |= inst.operands[0].reg << 8;
10334 inst.instruction |= inst.operands[1].imm;
10335 narrow = TRUE;
10336 }
10337 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10338 {
10339 /* This means 1 register in reg list one of 3 situations:
10340 1. Instruction is stmia, but without writeback.
10341 2. lmdia without writeback, but with Rn not in
10342 reglist.
10343 3. ldmia with writeback, but with Rn in reglist.
10344 Case 3 is UNPREDICTABLE behaviour, so we handle
10345 case 1 and 2 which can be converted into a 16-bit
10346 str or ldr. The SP cases are handled below. */
10347 unsigned long opcode;
10348 /* First, record an error for Case 3. */
10349 if (inst.operands[1].imm & mask
10350 && inst.operands[0].writeback)
10351 inst.error =
10352 _("having the base register in the register list when "
10353 "using write back is UNPREDICTABLE");
10354
10355 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10356 : T_MNEM_ldr);
10357 inst.instruction = THUMB_OP16 (opcode);
10358 inst.instruction |= inst.operands[0].reg << 3;
10359 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10360 narrow = TRUE;
10361 }
90e4755a 10362 }
eab4f823 10363 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10364 {
eab4f823
MGD
10365 if (inst.operands[0].writeback)
10366 {
10367 inst.instruction =
10368 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10369 ? T_MNEM_push : T_MNEM_pop);
10370 inst.instruction |= inst.operands[1].imm;
10371 narrow = TRUE;
10372 }
10373 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10374 {
10375 inst.instruction =
10376 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10377 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10378 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10379 narrow = TRUE;
10380 }
90e4755a 10381 }
3c707909
PB
10382 }
10383
10384 if (!narrow)
10385 {
c19d1205
ZW
10386 if (inst.instruction < 0xffff)
10387 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10388
5f4273c7
NC
10389 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10390 inst.operands[0].writeback);
90e4755a
RE
10391 }
10392 }
c19d1205 10393 else
90e4755a 10394 {
c19d1205
ZW
10395 constraint (inst.operands[0].reg > 7
10396 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10397 constraint (inst.instruction != T_MNEM_ldmia
10398 && inst.instruction != T_MNEM_stmia,
10399 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10400 if (inst.instruction == T_MNEM_stmia)
f03698e6 10401 {
c19d1205
ZW
10402 if (!inst.operands[0].writeback)
10403 as_warn (_("this instruction will write back the base register"));
10404 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10405 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10406 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10407 inst.operands[0].reg);
f03698e6 10408 }
c19d1205 10409 else
90e4755a 10410 {
c19d1205
ZW
10411 if (!inst.operands[0].writeback
10412 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10413 as_warn (_("this instruction will write back the base register"));
10414 else if (inst.operands[0].writeback
10415 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10416 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10417 }
10418
c19d1205
ZW
10419 inst.instruction = THUMB_OP16 (inst.instruction);
10420 inst.instruction |= inst.operands[0].reg << 8;
10421 inst.instruction |= inst.operands[1].imm;
10422 }
10423}
e28cd48c 10424
c19d1205
ZW
10425static void
10426do_t_ldrex (void)
10427{
10428 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10429 || inst.operands[1].postind || inst.operands[1].writeback
10430 || inst.operands[1].immisreg || inst.operands[1].shifted
10431 || inst.operands[1].negative,
01cfc07f 10432 BAD_ADDR_MODE);
e28cd48c 10433
5be8be5d
DG
10434 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10435
c19d1205
ZW
10436 inst.instruction |= inst.operands[0].reg << 12;
10437 inst.instruction |= inst.operands[1].reg << 16;
10438 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10439}
e28cd48c 10440
c19d1205
ZW
10441static void
10442do_t_ldrexd (void)
10443{
10444 if (!inst.operands[1].present)
1cac9012 10445 {
c19d1205
ZW
10446 constraint (inst.operands[0].reg == REG_LR,
10447 _("r14 not allowed as first register "
10448 "when second register is omitted"));
10449 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10450 }
c19d1205
ZW
10451 constraint (inst.operands[0].reg == inst.operands[1].reg,
10452 BAD_OVERLAP);
b99bd4ef 10453
c19d1205
ZW
10454 inst.instruction |= inst.operands[0].reg << 12;
10455 inst.instruction |= inst.operands[1].reg << 8;
10456 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10457}
10458
10459static void
c19d1205 10460do_t_ldst (void)
b99bd4ef 10461{
0110f2b8
PB
10462 unsigned long opcode;
10463 int Rn;
10464
e07e6e58
NC
10465 if (inst.operands[0].isreg
10466 && !inst.operands[0].preind
10467 && inst.operands[0].reg == REG_PC)
10468 set_it_insn_type_last ();
10469
0110f2b8 10470 opcode = inst.instruction;
c19d1205 10471 if (unified_syntax)
b99bd4ef 10472 {
53365c0d
PB
10473 if (!inst.operands[1].isreg)
10474 {
10475 if (opcode <= 0xffff)
10476 inst.instruction = THUMB_OP32 (opcode);
10477 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10478 return;
10479 }
0110f2b8
PB
10480 if (inst.operands[1].isreg
10481 && !inst.operands[1].writeback
c19d1205
ZW
10482 && !inst.operands[1].shifted && !inst.operands[1].postind
10483 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10484 && opcode <= 0xffff
10485 && inst.size_req != 4)
c19d1205 10486 {
0110f2b8
PB
10487 /* Insn may have a 16-bit form. */
10488 Rn = inst.operands[1].reg;
10489 if (inst.operands[1].immisreg)
10490 {
10491 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10492 /* [Rn, Rik] */
0110f2b8
PB
10493 if (Rn <= 7 && inst.operands[1].imm <= 7)
10494 goto op16;
5be8be5d
DG
10495 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10496 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10497 }
10498 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10499 && opcode != T_MNEM_ldrsb)
10500 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10501 || (Rn == REG_SP && opcode == T_MNEM_str))
10502 {
10503 /* [Rn, #const] */
10504 if (Rn > 7)
10505 {
10506 if (Rn == REG_PC)
10507 {
10508 if (inst.reloc.pc_rel)
10509 opcode = T_MNEM_ldr_pc2;
10510 else
10511 opcode = T_MNEM_ldr_pc;
10512 }
10513 else
10514 {
10515 if (opcode == T_MNEM_ldr)
10516 opcode = T_MNEM_ldr_sp;
10517 else
10518 opcode = T_MNEM_str_sp;
10519 }
10520 inst.instruction = inst.operands[0].reg << 8;
10521 }
10522 else
10523 {
10524 inst.instruction = inst.operands[0].reg;
10525 inst.instruction |= inst.operands[1].reg << 3;
10526 }
10527 inst.instruction |= THUMB_OP16 (opcode);
10528 if (inst.size_req == 2)
10529 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10530 else
10531 inst.relax = opcode;
10532 return;
10533 }
c19d1205 10534 }
0110f2b8 10535 /* Definitely a 32-bit variant. */
5be8be5d 10536
8d67f500
NC
10537 /* Warning for Erratum 752419. */
10538 if (opcode == T_MNEM_ldr
10539 && inst.operands[0].reg == REG_SP
10540 && inst.operands[1].writeback == 1
10541 && !inst.operands[1].immisreg)
10542 {
10543 if (no_cpu_selected ()
10544 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10545 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10546 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10547 as_warn (_("This instruction may be unpredictable "
10548 "if executed on M-profile cores "
10549 "with interrupts enabled."));
10550 }
10551
5be8be5d 10552 /* Do some validations regarding addressing modes. */
1be5fd2e 10553 if (inst.operands[1].immisreg)
5be8be5d
DG
10554 reject_bad_reg (inst.operands[1].imm);
10555
1be5fd2e
NC
10556 constraint (inst.operands[1].writeback == 1
10557 && inst.operands[0].reg == inst.operands[1].reg,
10558 BAD_OVERLAP);
10559
0110f2b8 10560 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10561 inst.instruction |= inst.operands[0].reg << 12;
10562 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 10563 check_ldr_r15_aligned ();
b99bd4ef
NC
10564 return;
10565 }
10566
c19d1205
ZW
10567 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10568
10569 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10570 {
c19d1205
ZW
10571 /* Only [Rn,Rm] is acceptable. */
10572 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10573 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10574 || inst.operands[1].postind || inst.operands[1].shifted
10575 || inst.operands[1].negative,
10576 _("Thumb does not support this addressing mode"));
10577 inst.instruction = THUMB_OP16 (inst.instruction);
10578 goto op16;
b99bd4ef 10579 }
5f4273c7 10580
c19d1205
ZW
10581 inst.instruction = THUMB_OP16 (inst.instruction);
10582 if (!inst.operands[1].isreg)
10583 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10584 return;
b99bd4ef 10585
c19d1205
ZW
10586 constraint (!inst.operands[1].preind
10587 || inst.operands[1].shifted
10588 || inst.operands[1].writeback,
10589 _("Thumb does not support this addressing mode"));
10590 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10591 {
c19d1205
ZW
10592 constraint (inst.instruction & 0x0600,
10593 _("byte or halfword not valid for base register"));
10594 constraint (inst.operands[1].reg == REG_PC
10595 && !(inst.instruction & THUMB_LOAD_BIT),
10596 _("r15 based store not allowed"));
10597 constraint (inst.operands[1].immisreg,
10598 _("invalid base register for register offset"));
b99bd4ef 10599
c19d1205
ZW
10600 if (inst.operands[1].reg == REG_PC)
10601 inst.instruction = T_OPCODE_LDR_PC;
10602 else if (inst.instruction & THUMB_LOAD_BIT)
10603 inst.instruction = T_OPCODE_LDR_SP;
10604 else
10605 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10606
c19d1205
ZW
10607 inst.instruction |= inst.operands[0].reg << 8;
10608 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10609 return;
10610 }
90e4755a 10611
c19d1205
ZW
10612 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10613 if (!inst.operands[1].immisreg)
10614 {
10615 /* Immediate offset. */
10616 inst.instruction |= inst.operands[0].reg;
10617 inst.instruction |= inst.operands[1].reg << 3;
10618 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10619 return;
10620 }
90e4755a 10621
c19d1205
ZW
10622 /* Register offset. */
10623 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10624 constraint (inst.operands[1].negative,
10625 _("Thumb does not support this addressing mode"));
90e4755a 10626
c19d1205
ZW
10627 op16:
10628 switch (inst.instruction)
10629 {
10630 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10631 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10632 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10633 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10634 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10635 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10636 case 0x5600 /* ldrsb */:
10637 case 0x5e00 /* ldrsh */: break;
10638 default: abort ();
10639 }
90e4755a 10640
c19d1205
ZW
10641 inst.instruction |= inst.operands[0].reg;
10642 inst.instruction |= inst.operands[1].reg << 3;
10643 inst.instruction |= inst.operands[1].imm << 6;
10644}
90e4755a 10645
c19d1205
ZW
10646static void
10647do_t_ldstd (void)
10648{
10649 if (!inst.operands[1].present)
b99bd4ef 10650 {
c19d1205
ZW
10651 inst.operands[1].reg = inst.operands[0].reg + 1;
10652 constraint (inst.operands[0].reg == REG_LR,
10653 _("r14 not allowed here"));
b99bd4ef 10654 }
c19d1205
ZW
10655 inst.instruction |= inst.operands[0].reg << 12;
10656 inst.instruction |= inst.operands[1].reg << 8;
10657 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10658}
10659
c19d1205
ZW
10660static void
10661do_t_ldstt (void)
10662{
10663 inst.instruction |= inst.operands[0].reg << 12;
10664 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10665}
a737bd4d 10666
b99bd4ef 10667static void
c19d1205 10668do_t_mla (void)
b99bd4ef 10669{
fdfde340 10670 unsigned Rd, Rn, Rm, Ra;
c921be7d 10671
fdfde340
JM
10672 Rd = inst.operands[0].reg;
10673 Rn = inst.operands[1].reg;
10674 Rm = inst.operands[2].reg;
10675 Ra = inst.operands[3].reg;
10676
10677 reject_bad_reg (Rd);
10678 reject_bad_reg (Rn);
10679 reject_bad_reg (Rm);
10680 reject_bad_reg (Ra);
10681
10682 inst.instruction |= Rd << 8;
10683 inst.instruction |= Rn << 16;
10684 inst.instruction |= Rm;
10685 inst.instruction |= Ra << 12;
c19d1205 10686}
b99bd4ef 10687
c19d1205
ZW
10688static void
10689do_t_mlal (void)
10690{
fdfde340
JM
10691 unsigned RdLo, RdHi, Rn, Rm;
10692
10693 RdLo = inst.operands[0].reg;
10694 RdHi = inst.operands[1].reg;
10695 Rn = inst.operands[2].reg;
10696 Rm = inst.operands[3].reg;
10697
10698 reject_bad_reg (RdLo);
10699 reject_bad_reg (RdHi);
10700 reject_bad_reg (Rn);
10701 reject_bad_reg (Rm);
10702
10703 inst.instruction |= RdLo << 12;
10704 inst.instruction |= RdHi << 8;
10705 inst.instruction |= Rn << 16;
10706 inst.instruction |= Rm;
c19d1205 10707}
b99bd4ef 10708
c19d1205
ZW
10709static void
10710do_t_mov_cmp (void)
10711{
fdfde340
JM
10712 unsigned Rn, Rm;
10713
10714 Rn = inst.operands[0].reg;
10715 Rm = inst.operands[1].reg;
10716
e07e6e58
NC
10717 if (Rn == REG_PC)
10718 set_it_insn_type_last ();
10719
c19d1205 10720 if (unified_syntax)
b99bd4ef 10721 {
c19d1205
ZW
10722 int r0off = (inst.instruction == T_MNEM_mov
10723 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10724 unsigned long opcode;
3d388997
PB
10725 bfd_boolean narrow;
10726 bfd_boolean low_regs;
10727
fdfde340 10728 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10729 opcode = inst.instruction;
e07e6e58 10730 if (in_it_block ())
0110f2b8 10731 narrow = opcode != T_MNEM_movs;
3d388997 10732 else
0110f2b8 10733 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10734 if (inst.size_req == 4
10735 || inst.operands[1].shifted)
10736 narrow = FALSE;
10737
efd81785
PB
10738 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10739 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10740 && !inst.operands[1].shifted
fdfde340
JM
10741 && Rn == REG_PC
10742 && Rm == REG_LR)
efd81785
PB
10743 {
10744 inst.instruction = T2_SUBS_PC_LR;
10745 return;
10746 }
10747
fdfde340
JM
10748 if (opcode == T_MNEM_cmp)
10749 {
10750 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10751 if (narrow)
10752 {
10753 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10754 but valid. */
10755 warn_deprecated_sp (Rm);
10756 /* R15 was documented as a valid choice for Rm in ARMv6,
10757 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10758 tools reject R15, so we do too. */
10759 constraint (Rm == REG_PC, BAD_PC);
10760 }
10761 else
10762 reject_bad_reg (Rm);
fdfde340
JM
10763 }
10764 else if (opcode == T_MNEM_mov
10765 || opcode == T_MNEM_movs)
10766 {
10767 if (inst.operands[1].isreg)
10768 {
10769 if (opcode == T_MNEM_movs)
10770 {
10771 reject_bad_reg (Rn);
10772 reject_bad_reg (Rm);
10773 }
76fa04a4
MGD
10774 else if (narrow)
10775 {
10776 /* This is mov.n. */
10777 if ((Rn == REG_SP || Rn == REG_PC)
10778 && (Rm == REG_SP || Rm == REG_PC))
10779 {
10780 as_warn (_("Use of r%u as a source register is "
10781 "deprecated when r%u is the destination "
10782 "register."), Rm, Rn);
10783 }
10784 }
10785 else
10786 {
10787 /* This is mov.w. */
10788 constraint (Rn == REG_PC, BAD_PC);
10789 constraint (Rm == REG_PC, BAD_PC);
10790 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10791 }
fdfde340
JM
10792 }
10793 else
10794 reject_bad_reg (Rn);
10795 }
10796
c19d1205
ZW
10797 if (!inst.operands[1].isreg)
10798 {
0110f2b8 10799 /* Immediate operand. */
e07e6e58 10800 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10801 narrow = 0;
10802 if (low_regs && narrow)
10803 {
10804 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10805 inst.instruction |= Rn << 8;
0110f2b8
PB
10806 if (inst.size_req == 2)
10807 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10808 else
10809 inst.relax = opcode;
10810 }
10811 else
10812 {
10813 inst.instruction = THUMB_OP32 (inst.instruction);
10814 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10815 inst.instruction |= Rn << r0off;
0110f2b8
PB
10816 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10817 }
c19d1205 10818 }
728ca7c9
PB
10819 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10820 && (inst.instruction == T_MNEM_mov
10821 || inst.instruction == T_MNEM_movs))
10822 {
10823 /* Register shifts are encoded as separate shift instructions. */
10824 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10825
e07e6e58 10826 if (in_it_block ())
728ca7c9
PB
10827 narrow = !flags;
10828 else
10829 narrow = flags;
10830
10831 if (inst.size_req == 4)
10832 narrow = FALSE;
10833
10834 if (!low_regs || inst.operands[1].imm > 7)
10835 narrow = FALSE;
10836
fdfde340 10837 if (Rn != Rm)
728ca7c9
PB
10838 narrow = FALSE;
10839
10840 switch (inst.operands[1].shift_kind)
10841 {
10842 case SHIFT_LSL:
10843 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10844 break;
10845 case SHIFT_ASR:
10846 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10847 break;
10848 case SHIFT_LSR:
10849 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10850 break;
10851 case SHIFT_ROR:
10852 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10853 break;
10854 default:
5f4273c7 10855 abort ();
728ca7c9
PB
10856 }
10857
10858 inst.instruction = opcode;
10859 if (narrow)
10860 {
fdfde340 10861 inst.instruction |= Rn;
728ca7c9
PB
10862 inst.instruction |= inst.operands[1].imm << 3;
10863 }
10864 else
10865 {
10866 if (flags)
10867 inst.instruction |= CONDS_BIT;
10868
fdfde340
JM
10869 inst.instruction |= Rn << 8;
10870 inst.instruction |= Rm << 16;
728ca7c9
PB
10871 inst.instruction |= inst.operands[1].imm;
10872 }
10873 }
3d388997 10874 else if (!narrow)
c19d1205 10875 {
728ca7c9
PB
10876 /* Some mov with immediate shift have narrow variants.
10877 Register shifts are handled above. */
10878 if (low_regs && inst.operands[1].shifted
10879 && (inst.instruction == T_MNEM_mov
10880 || inst.instruction == T_MNEM_movs))
10881 {
e07e6e58 10882 if (in_it_block ())
728ca7c9
PB
10883 narrow = (inst.instruction == T_MNEM_mov);
10884 else
10885 narrow = (inst.instruction == T_MNEM_movs);
10886 }
10887
10888 if (narrow)
10889 {
10890 switch (inst.operands[1].shift_kind)
10891 {
10892 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10893 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10894 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10895 default: narrow = FALSE; break;
10896 }
10897 }
10898
10899 if (narrow)
10900 {
fdfde340
JM
10901 inst.instruction |= Rn;
10902 inst.instruction |= Rm << 3;
728ca7c9
PB
10903 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10904 }
10905 else
10906 {
10907 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10908 inst.instruction |= Rn << r0off;
728ca7c9
PB
10909 encode_thumb32_shifted_operand (1);
10910 }
c19d1205
ZW
10911 }
10912 else
10913 switch (inst.instruction)
10914 {
10915 case T_MNEM_mov:
837b3435 10916 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
10917 results. Don't allow this. */
10918 if (low_regs)
10919 {
10920 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
10921 "MOV Rd, Rs with two low registers is not "
10922 "permitted on this architecture");
10923 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
10924 arm_ext_v6);
10925 }
10926
c19d1205 10927 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10928 inst.instruction |= (Rn & 0x8) << 4;
10929 inst.instruction |= (Rn & 0x7);
10930 inst.instruction |= Rm << 3;
c19d1205 10931 break;
b99bd4ef 10932
c19d1205
ZW
10933 case T_MNEM_movs:
10934 /* We know we have low registers at this point.
941a8a52
MGD
10935 Generate LSLS Rd, Rs, #0. */
10936 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10937 inst.instruction |= Rn;
10938 inst.instruction |= Rm << 3;
c19d1205
ZW
10939 break;
10940
10941 case T_MNEM_cmp:
3d388997 10942 if (low_regs)
c19d1205
ZW
10943 {
10944 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10945 inst.instruction |= Rn;
10946 inst.instruction |= Rm << 3;
c19d1205
ZW
10947 }
10948 else
10949 {
10950 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10951 inst.instruction |= (Rn & 0x8) << 4;
10952 inst.instruction |= (Rn & 0x7);
10953 inst.instruction |= Rm << 3;
c19d1205
ZW
10954 }
10955 break;
10956 }
b99bd4ef
NC
10957 return;
10958 }
10959
c19d1205 10960 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10961
10962 /* PR 10443: Do not silently ignore shifted operands. */
10963 constraint (inst.operands[1].shifted,
10964 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10965
c19d1205 10966 if (inst.operands[1].isreg)
b99bd4ef 10967 {
fdfde340 10968 if (Rn < 8 && Rm < 8)
b99bd4ef 10969 {
c19d1205
ZW
10970 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10971 since a MOV instruction produces unpredictable results. */
10972 if (inst.instruction == T_OPCODE_MOV_I8)
10973 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10974 else
c19d1205 10975 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10976
fdfde340
JM
10977 inst.instruction |= Rn;
10978 inst.instruction |= Rm << 3;
b99bd4ef
NC
10979 }
10980 else
10981 {
c19d1205
ZW
10982 if (inst.instruction == T_OPCODE_MOV_I8)
10983 inst.instruction = T_OPCODE_MOV_HR;
10984 else
10985 inst.instruction = T_OPCODE_CMP_HR;
10986 do_t_cpy ();
b99bd4ef
NC
10987 }
10988 }
c19d1205 10989 else
b99bd4ef 10990 {
fdfde340 10991 constraint (Rn > 7,
c19d1205 10992 _("only lo regs allowed with immediate"));
fdfde340 10993 inst.instruction |= Rn << 8;
c19d1205
ZW
10994 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10995 }
10996}
b99bd4ef 10997
c19d1205
ZW
10998static void
10999do_t_mov16 (void)
11000{
fdfde340 11001 unsigned Rd;
b6895b4f
PB
11002 bfd_vma imm;
11003 bfd_boolean top;
11004
11005 top = (inst.instruction & 0x00800000) != 0;
11006 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11007 {
11008 constraint (top, _(":lower16: not allowed this instruction"));
11009 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11010 }
11011 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11012 {
11013 constraint (!top, _(":upper16: not allowed this instruction"));
11014 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11015 }
11016
fdfde340
JM
11017 Rd = inst.operands[0].reg;
11018 reject_bad_reg (Rd);
11019
11020 inst.instruction |= Rd << 8;
b6895b4f
PB
11021 if (inst.reloc.type == BFD_RELOC_UNUSED)
11022 {
11023 imm = inst.reloc.exp.X_add_number;
11024 inst.instruction |= (imm & 0xf000) << 4;
11025 inst.instruction |= (imm & 0x0800) << 15;
11026 inst.instruction |= (imm & 0x0700) << 4;
11027 inst.instruction |= (imm & 0x00ff);
11028 }
c19d1205 11029}
b99bd4ef 11030
c19d1205
ZW
11031static void
11032do_t_mvn_tst (void)
11033{
fdfde340 11034 unsigned Rn, Rm;
c921be7d 11035
fdfde340
JM
11036 Rn = inst.operands[0].reg;
11037 Rm = inst.operands[1].reg;
11038
11039 if (inst.instruction == T_MNEM_cmp
11040 || inst.instruction == T_MNEM_cmn)
11041 constraint (Rn == REG_PC, BAD_PC);
11042 else
11043 reject_bad_reg (Rn);
11044 reject_bad_reg (Rm);
11045
c19d1205
ZW
11046 if (unified_syntax)
11047 {
11048 int r0off = (inst.instruction == T_MNEM_mvn
11049 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
11050 bfd_boolean narrow;
11051
11052 if (inst.size_req == 4
11053 || inst.instruction > 0xffff
11054 || inst.operands[1].shifted
fdfde340 11055 || Rn > 7 || Rm > 7)
3d388997
PB
11056 narrow = FALSE;
11057 else if (inst.instruction == T_MNEM_cmn)
11058 narrow = TRUE;
11059 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11060 narrow = !in_it_block ();
3d388997 11061 else
e07e6e58 11062 narrow = in_it_block ();
3d388997 11063
c19d1205 11064 if (!inst.operands[1].isreg)
b99bd4ef 11065 {
c19d1205
ZW
11066 /* For an immediate, we always generate a 32-bit opcode;
11067 section relaxation will shrink it later if possible. */
11068 if (inst.instruction < 0xffff)
11069 inst.instruction = THUMB_OP32 (inst.instruction);
11070 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11071 inst.instruction |= Rn << r0off;
c19d1205 11072 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11073 }
c19d1205 11074 else
b99bd4ef 11075 {
c19d1205 11076 /* See if we can do this with a 16-bit instruction. */
3d388997 11077 if (narrow)
b99bd4ef 11078 {
c19d1205 11079 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11080 inst.instruction |= Rn;
11081 inst.instruction |= Rm << 3;
b99bd4ef 11082 }
c19d1205 11083 else
b99bd4ef 11084 {
c19d1205
ZW
11085 constraint (inst.operands[1].shifted
11086 && inst.operands[1].immisreg,
11087 _("shift must be constant"));
11088 if (inst.instruction < 0xffff)
11089 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11090 inst.instruction |= Rn << r0off;
c19d1205 11091 encode_thumb32_shifted_operand (1);
b99bd4ef 11092 }
b99bd4ef
NC
11093 }
11094 }
11095 else
11096 {
c19d1205
ZW
11097 constraint (inst.instruction > 0xffff
11098 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11099 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11100 _("unshifted register required"));
fdfde340 11101 constraint (Rn > 7 || Rm > 7,
c19d1205 11102 BAD_HIREG);
b99bd4ef 11103
c19d1205 11104 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11105 inst.instruction |= Rn;
11106 inst.instruction |= Rm << 3;
b99bd4ef 11107 }
b99bd4ef
NC
11108}
11109
b05fe5cf 11110static void
c19d1205 11111do_t_mrs (void)
b05fe5cf 11112{
fdfde340 11113 unsigned Rd;
037e8744
JB
11114
11115 if (do_vfp_nsyn_mrs () == SUCCESS)
11116 return;
11117
90ec0d68
MGD
11118 Rd = inst.operands[0].reg;
11119 reject_bad_reg (Rd);
11120 inst.instruction |= Rd << 8;
11121
11122 if (inst.operands[1].isreg)
62b3e311 11123 {
90ec0d68
MGD
11124 unsigned br = inst.operands[1].reg;
11125 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11126 as_bad (_("bad register for mrs"));
11127
11128 inst.instruction |= br & (0xf << 16);
11129 inst.instruction |= (br & 0x300) >> 4;
11130 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11131 }
11132 else
11133 {
90ec0d68 11134 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11135
d2cd1205
JB
11136 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11137 constraint (flags != 0, _("selected processor does not support "
11138 "requested special purpose register"));
90ec0d68 11139 else
d2cd1205
JB
11140 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11141 devices). */
11142 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11143 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11144
90ec0d68
MGD
11145 inst.instruction |= (flags & SPSR_BIT) >> 2;
11146 inst.instruction |= inst.operands[1].imm & 0xff;
11147 inst.instruction |= 0xf0000;
11148 }
c19d1205 11149}
b05fe5cf 11150
c19d1205
ZW
11151static void
11152do_t_msr (void)
11153{
62b3e311 11154 int flags;
fdfde340 11155 unsigned Rn;
62b3e311 11156
037e8744
JB
11157 if (do_vfp_nsyn_msr () == SUCCESS)
11158 return;
11159
c19d1205
ZW
11160 constraint (!inst.operands[1].isreg,
11161 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11162
11163 if (inst.operands[0].isreg)
11164 flags = (int)(inst.operands[0].reg);
11165 else
11166 flags = inst.operands[0].imm;
11167
d2cd1205 11168 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11169 {
d2cd1205
JB
11170 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11171
11172 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11173 && (bits & ~(PSR_s | PSR_f)) != 0)
11174 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11175 && bits != PSR_f),
11176 _("selected processor does not support requested special "
11177 "purpose register"));
62b3e311
PB
11178 }
11179 else
d2cd1205
JB
11180 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11181 "requested special purpose register"));
c921be7d 11182
fdfde340
JM
11183 Rn = inst.operands[1].reg;
11184 reject_bad_reg (Rn);
11185
62b3e311 11186 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11187 inst.instruction |= (flags & 0xf0000) >> 8;
11188 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11189 inst.instruction |= (flags & 0xff);
fdfde340 11190 inst.instruction |= Rn << 16;
c19d1205 11191}
b05fe5cf 11192
c19d1205
ZW
11193static void
11194do_t_mul (void)
11195{
17828f45 11196 bfd_boolean narrow;
fdfde340 11197 unsigned Rd, Rn, Rm;
17828f45 11198
c19d1205
ZW
11199 if (!inst.operands[2].present)
11200 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11201
fdfde340
JM
11202 Rd = inst.operands[0].reg;
11203 Rn = inst.operands[1].reg;
11204 Rm = inst.operands[2].reg;
11205
17828f45 11206 if (unified_syntax)
b05fe5cf 11207 {
17828f45 11208 if (inst.size_req == 4
fdfde340
JM
11209 || (Rd != Rn
11210 && Rd != Rm)
11211 || Rn > 7
11212 || Rm > 7)
17828f45
JM
11213 narrow = FALSE;
11214 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11215 narrow = !in_it_block ();
17828f45 11216 else
e07e6e58 11217 narrow = in_it_block ();
b05fe5cf 11218 }
c19d1205 11219 else
b05fe5cf 11220 {
17828f45 11221 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11222 constraint (Rn > 7 || Rm > 7,
c19d1205 11223 BAD_HIREG);
17828f45
JM
11224 narrow = TRUE;
11225 }
b05fe5cf 11226
17828f45
JM
11227 if (narrow)
11228 {
11229 /* 16-bit MULS/Conditional MUL. */
c19d1205 11230 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11231 inst.instruction |= Rd;
b05fe5cf 11232
fdfde340
JM
11233 if (Rd == Rn)
11234 inst.instruction |= Rm << 3;
11235 else if (Rd == Rm)
11236 inst.instruction |= Rn << 3;
c19d1205
ZW
11237 else
11238 constraint (1, _("dest must overlap one source register"));
11239 }
17828f45
JM
11240 else
11241 {
e07e6e58
NC
11242 constraint (inst.instruction != T_MNEM_mul,
11243 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11244 /* 32-bit MUL. */
11245 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11246 inst.instruction |= Rd << 8;
11247 inst.instruction |= Rn << 16;
11248 inst.instruction |= Rm << 0;
11249
11250 reject_bad_reg (Rd);
11251 reject_bad_reg (Rn);
11252 reject_bad_reg (Rm);
17828f45 11253 }
c19d1205 11254}
b05fe5cf 11255
c19d1205
ZW
11256static void
11257do_t_mull (void)
11258{
fdfde340 11259 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11260
fdfde340
JM
11261 RdLo = inst.operands[0].reg;
11262 RdHi = inst.operands[1].reg;
11263 Rn = inst.operands[2].reg;
11264 Rm = inst.operands[3].reg;
11265
11266 reject_bad_reg (RdLo);
11267 reject_bad_reg (RdHi);
11268 reject_bad_reg (Rn);
11269 reject_bad_reg (Rm);
11270
11271 inst.instruction |= RdLo << 12;
11272 inst.instruction |= RdHi << 8;
11273 inst.instruction |= Rn << 16;
11274 inst.instruction |= Rm;
11275
11276 if (RdLo == RdHi)
c19d1205
ZW
11277 as_tsktsk (_("rdhi and rdlo must be different"));
11278}
b05fe5cf 11279
c19d1205
ZW
11280static void
11281do_t_nop (void)
11282{
e07e6e58
NC
11283 set_it_insn_type (NEUTRAL_IT_INSN);
11284
c19d1205
ZW
11285 if (unified_syntax)
11286 {
11287 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11288 {
c19d1205
ZW
11289 inst.instruction = THUMB_OP32 (inst.instruction);
11290 inst.instruction |= inst.operands[0].imm;
11291 }
11292 else
11293 {
bc2d1808
NC
11294 /* PR9722: Check for Thumb2 availability before
11295 generating a thumb2 nop instruction. */
afa62d5e 11296 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11297 {
11298 inst.instruction = THUMB_OP16 (inst.instruction);
11299 inst.instruction |= inst.operands[0].imm << 4;
11300 }
11301 else
11302 inst.instruction = 0x46c0;
c19d1205
ZW
11303 }
11304 }
11305 else
11306 {
11307 constraint (inst.operands[0].present,
11308 _("Thumb does not support NOP with hints"));
11309 inst.instruction = 0x46c0;
11310 }
11311}
b05fe5cf 11312
c19d1205
ZW
11313static void
11314do_t_neg (void)
11315{
11316 if (unified_syntax)
11317 {
3d388997
PB
11318 bfd_boolean narrow;
11319
11320 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11321 narrow = !in_it_block ();
3d388997 11322 else
e07e6e58 11323 narrow = in_it_block ();
3d388997
PB
11324 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11325 narrow = FALSE;
11326 if (inst.size_req == 4)
11327 narrow = FALSE;
11328
11329 if (!narrow)
c19d1205
ZW
11330 {
11331 inst.instruction = THUMB_OP32 (inst.instruction);
11332 inst.instruction |= inst.operands[0].reg << 8;
11333 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11334 }
11335 else
11336 {
c19d1205
ZW
11337 inst.instruction = THUMB_OP16 (inst.instruction);
11338 inst.instruction |= inst.operands[0].reg;
11339 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11340 }
11341 }
11342 else
11343 {
c19d1205
ZW
11344 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11345 BAD_HIREG);
11346 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11347
11348 inst.instruction = THUMB_OP16 (inst.instruction);
11349 inst.instruction |= inst.operands[0].reg;
11350 inst.instruction |= inst.operands[1].reg << 3;
11351 }
11352}
11353
1c444d06
JM
11354static void
11355do_t_orn (void)
11356{
11357 unsigned Rd, Rn;
11358
11359 Rd = inst.operands[0].reg;
11360 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11361
fdfde340
JM
11362 reject_bad_reg (Rd);
11363 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11364 reject_bad_reg (Rn);
11365
1c444d06
JM
11366 inst.instruction |= Rd << 8;
11367 inst.instruction |= Rn << 16;
11368
11369 if (!inst.operands[2].isreg)
11370 {
11371 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11372 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11373 }
11374 else
11375 {
11376 unsigned Rm;
11377
11378 Rm = inst.operands[2].reg;
fdfde340 11379 reject_bad_reg (Rm);
1c444d06
JM
11380
11381 constraint (inst.operands[2].shifted
11382 && inst.operands[2].immisreg,
11383 _("shift must be constant"));
11384 encode_thumb32_shifted_operand (2);
11385 }
11386}
11387
c19d1205
ZW
11388static void
11389do_t_pkhbt (void)
11390{
fdfde340
JM
11391 unsigned Rd, Rn, Rm;
11392
11393 Rd = inst.operands[0].reg;
11394 Rn = inst.operands[1].reg;
11395 Rm = inst.operands[2].reg;
11396
11397 reject_bad_reg (Rd);
11398 reject_bad_reg (Rn);
11399 reject_bad_reg (Rm);
11400
11401 inst.instruction |= Rd << 8;
11402 inst.instruction |= Rn << 16;
11403 inst.instruction |= Rm;
c19d1205
ZW
11404 if (inst.operands[3].present)
11405 {
11406 unsigned int val = inst.reloc.exp.X_add_number;
11407 constraint (inst.reloc.exp.X_op != O_constant,
11408 _("expression too complex"));
11409 inst.instruction |= (val & 0x1c) << 10;
11410 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11411 }
c19d1205 11412}
b05fe5cf 11413
c19d1205
ZW
11414static void
11415do_t_pkhtb (void)
11416{
11417 if (!inst.operands[3].present)
1ef52f49
NC
11418 {
11419 unsigned Rtmp;
11420
11421 inst.instruction &= ~0x00000020;
11422
11423 /* PR 10168. Swap the Rm and Rn registers. */
11424 Rtmp = inst.operands[1].reg;
11425 inst.operands[1].reg = inst.operands[2].reg;
11426 inst.operands[2].reg = Rtmp;
11427 }
c19d1205 11428 do_t_pkhbt ();
b05fe5cf
ZW
11429}
11430
c19d1205
ZW
11431static void
11432do_t_pld (void)
11433{
fdfde340
JM
11434 if (inst.operands[0].immisreg)
11435 reject_bad_reg (inst.operands[0].imm);
11436
c19d1205
ZW
11437 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11438}
b05fe5cf 11439
c19d1205
ZW
11440static void
11441do_t_push_pop (void)
b99bd4ef 11442{
e9f89963 11443 unsigned mask;
5f4273c7 11444
c19d1205
ZW
11445 constraint (inst.operands[0].writeback,
11446 _("push/pop do not support {reglist}^"));
11447 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11448 _("expression too complex"));
b99bd4ef 11449
e9f89963
PB
11450 mask = inst.operands[0].imm;
11451 if ((mask & ~0xff) == 0)
3c707909 11452 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11453 else if ((inst.instruction == T_MNEM_push
e9f89963 11454 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11455 || (inst.instruction == T_MNEM_pop
e9f89963 11456 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11457 {
c19d1205
ZW
11458 inst.instruction = THUMB_OP16 (inst.instruction);
11459 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11460 inst.instruction |= mask & 0xff;
c19d1205
ZW
11461 }
11462 else if (unified_syntax)
11463 {
3c707909 11464 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11465 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11466 }
11467 else
11468 {
11469 inst.error = _("invalid register list to push/pop instruction");
11470 return;
11471 }
c19d1205 11472}
b99bd4ef 11473
c19d1205
ZW
11474static void
11475do_t_rbit (void)
11476{
fdfde340
JM
11477 unsigned Rd, Rm;
11478
11479 Rd = inst.operands[0].reg;
11480 Rm = inst.operands[1].reg;
11481
11482 reject_bad_reg (Rd);
11483 reject_bad_reg (Rm);
11484
11485 inst.instruction |= Rd << 8;
11486 inst.instruction |= Rm << 16;
11487 inst.instruction |= Rm;
c19d1205 11488}
b99bd4ef 11489
c19d1205
ZW
11490static void
11491do_t_rev (void)
11492{
fdfde340
JM
11493 unsigned Rd, Rm;
11494
11495 Rd = inst.operands[0].reg;
11496 Rm = inst.operands[1].reg;
11497
11498 reject_bad_reg (Rd);
11499 reject_bad_reg (Rm);
11500
11501 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11502 && inst.size_req != 4)
11503 {
11504 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11505 inst.instruction |= Rd;
11506 inst.instruction |= Rm << 3;
c19d1205
ZW
11507 }
11508 else if (unified_syntax)
11509 {
11510 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11511 inst.instruction |= Rd << 8;
11512 inst.instruction |= Rm << 16;
11513 inst.instruction |= Rm;
c19d1205
ZW
11514 }
11515 else
11516 inst.error = BAD_HIREG;
11517}
b99bd4ef 11518
1c444d06
JM
11519static void
11520do_t_rrx (void)
11521{
11522 unsigned Rd, Rm;
11523
11524 Rd = inst.operands[0].reg;
11525 Rm = inst.operands[1].reg;
11526
fdfde340
JM
11527 reject_bad_reg (Rd);
11528 reject_bad_reg (Rm);
c921be7d 11529
1c444d06
JM
11530 inst.instruction |= Rd << 8;
11531 inst.instruction |= Rm;
11532}
11533
c19d1205
ZW
11534static void
11535do_t_rsb (void)
11536{
fdfde340 11537 unsigned Rd, Rs;
b99bd4ef 11538
c19d1205
ZW
11539 Rd = inst.operands[0].reg;
11540 Rs = (inst.operands[1].present
11541 ? inst.operands[1].reg /* Rd, Rs, foo */
11542 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11543
fdfde340
JM
11544 reject_bad_reg (Rd);
11545 reject_bad_reg (Rs);
11546 if (inst.operands[2].isreg)
11547 reject_bad_reg (inst.operands[2].reg);
11548
c19d1205
ZW
11549 inst.instruction |= Rd << 8;
11550 inst.instruction |= Rs << 16;
11551 if (!inst.operands[2].isreg)
11552 {
026d3abb
PB
11553 bfd_boolean narrow;
11554
11555 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11556 narrow = !in_it_block ();
026d3abb 11557 else
e07e6e58 11558 narrow = in_it_block ();
026d3abb
PB
11559
11560 if (Rd > 7 || Rs > 7)
11561 narrow = FALSE;
11562
11563 if (inst.size_req == 4 || !unified_syntax)
11564 narrow = FALSE;
11565
11566 if (inst.reloc.exp.X_op != O_constant
11567 || inst.reloc.exp.X_add_number != 0)
11568 narrow = FALSE;
11569
11570 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11571 relaxation, but it doesn't seem worth the hassle. */
11572 if (narrow)
11573 {
11574 inst.reloc.type = BFD_RELOC_UNUSED;
11575 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11576 inst.instruction |= Rs << 3;
11577 inst.instruction |= Rd;
11578 }
11579 else
11580 {
11581 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11582 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11583 }
c19d1205
ZW
11584 }
11585 else
11586 encode_thumb32_shifted_operand (2);
11587}
b99bd4ef 11588
c19d1205
ZW
11589static void
11590do_t_setend (void)
11591{
e07e6e58 11592 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11593 if (inst.operands[0].imm)
11594 inst.instruction |= 0x8;
11595}
b99bd4ef 11596
c19d1205
ZW
11597static void
11598do_t_shift (void)
11599{
11600 if (!inst.operands[1].present)
11601 inst.operands[1].reg = inst.operands[0].reg;
11602
11603 if (unified_syntax)
11604 {
3d388997
PB
11605 bfd_boolean narrow;
11606 int shift_kind;
11607
11608 switch (inst.instruction)
11609 {
11610 case T_MNEM_asr:
11611 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11612 case T_MNEM_lsl:
11613 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11614 case T_MNEM_lsr:
11615 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11616 case T_MNEM_ror:
11617 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11618 default: abort ();
11619 }
11620
11621 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11622 narrow = !in_it_block ();
3d388997 11623 else
e07e6e58 11624 narrow = in_it_block ();
3d388997
PB
11625 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11626 narrow = FALSE;
11627 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11628 narrow = FALSE;
11629 if (inst.operands[2].isreg
11630 && (inst.operands[1].reg != inst.operands[0].reg
11631 || inst.operands[2].reg > 7))
11632 narrow = FALSE;
11633 if (inst.size_req == 4)
11634 narrow = FALSE;
11635
fdfde340
JM
11636 reject_bad_reg (inst.operands[0].reg);
11637 reject_bad_reg (inst.operands[1].reg);
c921be7d 11638
3d388997 11639 if (!narrow)
c19d1205
ZW
11640 {
11641 if (inst.operands[2].isreg)
b99bd4ef 11642 {
fdfde340 11643 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11644 inst.instruction = THUMB_OP32 (inst.instruction);
11645 inst.instruction |= inst.operands[0].reg << 8;
11646 inst.instruction |= inst.operands[1].reg << 16;
11647 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
11648
11649 /* PR 12854: Error on extraneous shifts. */
11650 constraint (inst.operands[2].shifted,
11651 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11652 }
11653 else
11654 {
11655 inst.operands[1].shifted = 1;
3d388997 11656 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11657 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11658 ? T_MNEM_movs : T_MNEM_mov);
11659 inst.instruction |= inst.operands[0].reg << 8;
11660 encode_thumb32_shifted_operand (1);
11661 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11662 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11663 }
11664 }
11665 else
11666 {
c19d1205 11667 if (inst.operands[2].isreg)
b99bd4ef 11668 {
3d388997 11669 switch (shift_kind)
b99bd4ef 11670 {
3d388997
PB
11671 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11672 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11673 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11674 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11675 default: abort ();
b99bd4ef 11676 }
5f4273c7 11677
c19d1205
ZW
11678 inst.instruction |= inst.operands[0].reg;
11679 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11680
11681 /* PR 12854: Error on extraneous shifts. */
11682 constraint (inst.operands[2].shifted,
11683 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
11684 }
11685 else
11686 {
3d388997 11687 switch (shift_kind)
b99bd4ef 11688 {
3d388997
PB
11689 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11690 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11691 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11692 default: abort ();
b99bd4ef 11693 }
c19d1205
ZW
11694 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11695 inst.instruction |= inst.operands[0].reg;
11696 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11697 }
11698 }
c19d1205
ZW
11699 }
11700 else
11701 {
11702 constraint (inst.operands[0].reg > 7
11703 || inst.operands[1].reg > 7, BAD_HIREG);
11704 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11705
c19d1205
ZW
11706 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11707 {
11708 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11709 constraint (inst.operands[0].reg != inst.operands[1].reg,
11710 _("source1 and dest must be same register"));
b99bd4ef 11711
c19d1205
ZW
11712 switch (inst.instruction)
11713 {
11714 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11715 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11716 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11717 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11718 default: abort ();
11719 }
5f4273c7 11720
c19d1205
ZW
11721 inst.instruction |= inst.operands[0].reg;
11722 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11723
11724 /* PR 12854: Error on extraneous shifts. */
11725 constraint (inst.operands[2].shifted,
11726 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11727 }
11728 else
b99bd4ef 11729 {
c19d1205
ZW
11730 switch (inst.instruction)
11731 {
11732 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11733 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11734 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11735 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11736 default: abort ();
11737 }
11738 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11739 inst.instruction |= inst.operands[0].reg;
11740 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11741 }
11742 }
b99bd4ef
NC
11743}
11744
11745static void
c19d1205 11746do_t_simd (void)
b99bd4ef 11747{
fdfde340
JM
11748 unsigned Rd, Rn, Rm;
11749
11750 Rd = inst.operands[0].reg;
11751 Rn = inst.operands[1].reg;
11752 Rm = inst.operands[2].reg;
11753
11754 reject_bad_reg (Rd);
11755 reject_bad_reg (Rn);
11756 reject_bad_reg (Rm);
11757
11758 inst.instruction |= Rd << 8;
11759 inst.instruction |= Rn << 16;
11760 inst.instruction |= Rm;
c19d1205 11761}
b99bd4ef 11762
03ee1b7f
NC
11763static void
11764do_t_simd2 (void)
11765{
11766 unsigned Rd, Rn, Rm;
11767
11768 Rd = inst.operands[0].reg;
11769 Rm = inst.operands[1].reg;
11770 Rn = inst.operands[2].reg;
11771
11772 reject_bad_reg (Rd);
11773 reject_bad_reg (Rn);
11774 reject_bad_reg (Rm);
11775
11776 inst.instruction |= Rd << 8;
11777 inst.instruction |= Rn << 16;
11778 inst.instruction |= Rm;
11779}
11780
c19d1205 11781static void
3eb17e6b 11782do_t_smc (void)
c19d1205
ZW
11783{
11784 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11785 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11786 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11787 constraint (inst.reloc.exp.X_op != O_constant,
11788 _("expression too complex"));
11789 inst.reloc.type = BFD_RELOC_UNUSED;
11790 inst.instruction |= (value & 0xf000) >> 12;
11791 inst.instruction |= (value & 0x0ff0);
11792 inst.instruction |= (value & 0x000f) << 16;
11793}
b99bd4ef 11794
90ec0d68
MGD
11795static void
11796do_t_hvc (void)
11797{
11798 unsigned int value = inst.reloc.exp.X_add_number;
11799
11800 inst.reloc.type = BFD_RELOC_UNUSED;
11801 inst.instruction |= (value & 0x0fff);
11802 inst.instruction |= (value & 0xf000) << 4;
11803}
11804
c19d1205 11805static void
3a21c15a 11806do_t_ssat_usat (int bias)
c19d1205 11807{
fdfde340
JM
11808 unsigned Rd, Rn;
11809
11810 Rd = inst.operands[0].reg;
11811 Rn = inst.operands[2].reg;
11812
11813 reject_bad_reg (Rd);
11814 reject_bad_reg (Rn);
11815
11816 inst.instruction |= Rd << 8;
3a21c15a 11817 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11818 inst.instruction |= Rn << 16;
b99bd4ef 11819
c19d1205 11820 if (inst.operands[3].present)
b99bd4ef 11821 {
3a21c15a
NC
11822 offsetT shift_amount = inst.reloc.exp.X_add_number;
11823
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825
c19d1205
ZW
11826 constraint (inst.reloc.exp.X_op != O_constant,
11827 _("expression too complex"));
b99bd4ef 11828
3a21c15a 11829 if (shift_amount != 0)
6189168b 11830 {
3a21c15a
NC
11831 constraint (shift_amount > 31,
11832 _("shift expression is too large"));
11833
c19d1205 11834 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11835 inst.instruction |= 0x00200000; /* sh bit. */
11836
11837 inst.instruction |= (shift_amount & 0x1c) << 10;
11838 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11839 }
11840 }
b99bd4ef 11841}
c921be7d 11842
3a21c15a
NC
11843static void
11844do_t_ssat (void)
11845{
11846 do_t_ssat_usat (1);
11847}
b99bd4ef 11848
0dd132b6 11849static void
c19d1205 11850do_t_ssat16 (void)
0dd132b6 11851{
fdfde340
JM
11852 unsigned Rd, Rn;
11853
11854 Rd = inst.operands[0].reg;
11855 Rn = inst.operands[2].reg;
11856
11857 reject_bad_reg (Rd);
11858 reject_bad_reg (Rn);
11859
11860 inst.instruction |= Rd << 8;
c19d1205 11861 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11862 inst.instruction |= Rn << 16;
c19d1205 11863}
0dd132b6 11864
c19d1205
ZW
11865static void
11866do_t_strex (void)
11867{
11868 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11869 || inst.operands[2].postind || inst.operands[2].writeback
11870 || inst.operands[2].immisreg || inst.operands[2].shifted
11871 || inst.operands[2].negative,
01cfc07f 11872 BAD_ADDR_MODE);
0dd132b6 11873
5be8be5d
DG
11874 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11875
c19d1205
ZW
11876 inst.instruction |= inst.operands[0].reg << 8;
11877 inst.instruction |= inst.operands[1].reg << 12;
11878 inst.instruction |= inst.operands[2].reg << 16;
11879 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11880}
11881
b99bd4ef 11882static void
c19d1205 11883do_t_strexd (void)
b99bd4ef 11884{
c19d1205
ZW
11885 if (!inst.operands[2].present)
11886 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11887
c19d1205
ZW
11888 constraint (inst.operands[0].reg == inst.operands[1].reg
11889 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11890 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11891 BAD_OVERLAP);
b99bd4ef 11892
c19d1205
ZW
11893 inst.instruction |= inst.operands[0].reg;
11894 inst.instruction |= inst.operands[1].reg << 12;
11895 inst.instruction |= inst.operands[2].reg << 8;
11896 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11897}
11898
11899static void
c19d1205 11900do_t_sxtah (void)
b99bd4ef 11901{
fdfde340
JM
11902 unsigned Rd, Rn, Rm;
11903
11904 Rd = inst.operands[0].reg;
11905 Rn = inst.operands[1].reg;
11906 Rm = inst.operands[2].reg;
11907
11908 reject_bad_reg (Rd);
11909 reject_bad_reg (Rn);
11910 reject_bad_reg (Rm);
11911
11912 inst.instruction |= Rd << 8;
11913 inst.instruction |= Rn << 16;
11914 inst.instruction |= Rm;
c19d1205
ZW
11915 inst.instruction |= inst.operands[3].imm << 4;
11916}
b99bd4ef 11917
c19d1205
ZW
11918static void
11919do_t_sxth (void)
11920{
fdfde340
JM
11921 unsigned Rd, Rm;
11922
11923 Rd = inst.operands[0].reg;
11924 Rm = inst.operands[1].reg;
11925
11926 reject_bad_reg (Rd);
11927 reject_bad_reg (Rm);
c921be7d
NC
11928
11929 if (inst.instruction <= 0xffff
11930 && inst.size_req != 4
fdfde340 11931 && Rd <= 7 && Rm <= 7
c19d1205 11932 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11933 {
c19d1205 11934 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11935 inst.instruction |= Rd;
11936 inst.instruction |= Rm << 3;
b99bd4ef 11937 }
c19d1205 11938 else if (unified_syntax)
b99bd4ef 11939 {
c19d1205
ZW
11940 if (inst.instruction <= 0xffff)
11941 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11942 inst.instruction |= Rd << 8;
11943 inst.instruction |= Rm;
c19d1205 11944 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11945 }
c19d1205 11946 else
b99bd4ef 11947 {
c19d1205
ZW
11948 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11949 _("Thumb encoding does not support rotation"));
11950 constraint (1, BAD_HIREG);
b99bd4ef 11951 }
c19d1205 11952}
b99bd4ef 11953
c19d1205
ZW
11954static void
11955do_t_swi (void)
11956{
b2a5fbdc
MGD
11957 /* We have to do the following check manually as ARM_EXT_OS only applies
11958 to ARM_EXT_V6M. */
11959 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11960 {
ac7f631b
NC
11961 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11962 /* This only applies to the v6m howver, not later architectures. */
11963 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
11964 as_bad (_("SVC is not permitted on this architecture"));
11965 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11966 }
11967
c19d1205
ZW
11968 inst.reloc.type = BFD_RELOC_ARM_SWI;
11969}
b99bd4ef 11970
92e90b6e
PB
11971static void
11972do_t_tb (void)
11973{
fdfde340 11974 unsigned Rn, Rm;
92e90b6e
PB
11975 int half;
11976
11977 half = (inst.instruction & 0x10) != 0;
e07e6e58 11978 set_it_insn_type_last ();
dfa9f0d5
PB
11979 constraint (inst.operands[0].immisreg,
11980 _("instruction requires register index"));
fdfde340
JM
11981
11982 Rn = inst.operands[0].reg;
11983 Rm = inst.operands[0].imm;
c921be7d 11984
fdfde340
JM
11985 constraint (Rn == REG_SP, BAD_SP);
11986 reject_bad_reg (Rm);
11987
92e90b6e
PB
11988 constraint (!half && inst.operands[0].shifted,
11989 _("instruction does not allow shifted index"));
fdfde340 11990 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11991}
11992
c19d1205
ZW
11993static void
11994do_t_usat (void)
11995{
3a21c15a 11996 do_t_ssat_usat (0);
b99bd4ef
NC
11997}
11998
11999static void
c19d1205 12000do_t_usat16 (void)
b99bd4ef 12001{
fdfde340
JM
12002 unsigned Rd, Rn;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[2].reg;
12006
12007 reject_bad_reg (Rd);
12008 reject_bad_reg (Rn);
12009
12010 inst.instruction |= Rd << 8;
c19d1205 12011 inst.instruction |= inst.operands[1].imm;
fdfde340 12012 inst.instruction |= Rn << 16;
b99bd4ef 12013}
c19d1205 12014
5287ad62 12015/* Neon instruction encoder helpers. */
5f4273c7 12016
5287ad62 12017/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 12018
5287ad62
JB
12019/* An "invalid" code for the following tables. */
12020#define N_INV -1u
12021
12022struct neon_tab_entry
b99bd4ef 12023{
5287ad62
JB
12024 unsigned integer;
12025 unsigned float_or_poly;
12026 unsigned scalar_or_imm;
12027};
5f4273c7 12028
5287ad62
JB
12029/* Map overloaded Neon opcodes to their respective encodings. */
12030#define NEON_ENC_TAB \
12031 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12032 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12033 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12034 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12035 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12036 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12037 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12038 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12039 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12040 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12041 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12042 /* Register variants of the following two instructions are encoded as
e07e6e58 12043 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
12044 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12045 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
12046 X(vfma, N_INV, 0x0000c10, N_INV), \
12047 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
12048 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12049 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12050 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12051 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12052 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12053 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12054 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12055 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12056 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12057 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12058 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12059 X(vshl, 0x0000400, N_INV, 0x0800510), \
12060 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12061 X(vand, 0x0000110, N_INV, 0x0800030), \
12062 X(vbic, 0x0100110, N_INV, 0x0800030), \
12063 X(veor, 0x1000110, N_INV, N_INV), \
12064 X(vorn, 0x0300110, N_INV, 0x0800010), \
12065 X(vorr, 0x0200110, N_INV, 0x0800010), \
12066 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12067 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12068 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12069 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12070 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12071 X(vst1, 0x0000000, 0x0800000, N_INV), \
12072 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12073 X(vst2, 0x0000100, 0x0800100, N_INV), \
12074 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12075 X(vst3, 0x0000200, 0x0800200, N_INV), \
12076 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12077 X(vst4, 0x0000300, 0x0800300, N_INV), \
12078 X(vmovn, 0x1b20200, N_INV, N_INV), \
12079 X(vtrn, 0x1b20080, N_INV, N_INV), \
12080 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
12081 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12082 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
12083 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12084 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
12085 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12086 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
12087 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12088 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12089 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12090 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
12091
12092enum neon_opc
12093{
12094#define X(OPC,I,F,S) N_MNEM_##OPC
12095NEON_ENC_TAB
12096#undef X
12097};
b99bd4ef 12098
5287ad62
JB
12099static const struct neon_tab_entry neon_enc_tab[] =
12100{
12101#define X(OPC,I,F,S) { (I), (F), (S) }
12102NEON_ENC_TAB
12103#undef X
12104};
b99bd4ef 12105
88714cb8
DG
12106/* Do not use these macros; instead, use NEON_ENCODE defined below. */
12107#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12108#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12109#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12110#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12111#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12112#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12113#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12114#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12115#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12116#define NEON_ENC_SINGLE_(X) \
037e8744 12117 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 12118#define NEON_ENC_DOUBLE_(X) \
037e8744 12119 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 12120
88714cb8
DG
12121#define NEON_ENCODE(type, inst) \
12122 do \
12123 { \
12124 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12125 inst.is_neon = 1; \
12126 } \
12127 while (0)
12128
12129#define check_neon_suffixes \
12130 do \
12131 { \
12132 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12133 { \
12134 as_bad (_("invalid neon suffix for non neon instruction")); \
12135 return; \
12136 } \
12137 } \
12138 while (0)
12139
037e8744
JB
12140/* Define shapes for instruction operands. The following mnemonic characters
12141 are used in this table:
5287ad62 12142
037e8744 12143 F - VFP S<n> register
5287ad62
JB
12144 D - Neon D<n> register
12145 Q - Neon Q<n> register
12146 I - Immediate
12147 S - Scalar
12148 R - ARM register
12149 L - D<n> register list
5f4273c7 12150
037e8744
JB
12151 This table is used to generate various data:
12152 - enumerations of the form NS_DDR to be used as arguments to
12153 neon_select_shape.
12154 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12155 - a table used to drive neon_select_shape. */
b99bd4ef 12156
037e8744
JB
12157#define NEON_SHAPE_DEF \
12158 X(3, (D, D, D), DOUBLE), \
12159 X(3, (Q, Q, Q), QUAD), \
12160 X(3, (D, D, I), DOUBLE), \
12161 X(3, (Q, Q, I), QUAD), \
12162 X(3, (D, D, S), DOUBLE), \
12163 X(3, (Q, Q, S), QUAD), \
12164 X(2, (D, D), DOUBLE), \
12165 X(2, (Q, Q), QUAD), \
12166 X(2, (D, S), DOUBLE), \
12167 X(2, (Q, S), QUAD), \
12168 X(2, (D, R), DOUBLE), \
12169 X(2, (Q, R), QUAD), \
12170 X(2, (D, I), DOUBLE), \
12171 X(2, (Q, I), QUAD), \
12172 X(3, (D, L, D), DOUBLE), \
12173 X(2, (D, Q), MIXED), \
12174 X(2, (Q, D), MIXED), \
12175 X(3, (D, Q, I), MIXED), \
12176 X(3, (Q, D, I), MIXED), \
12177 X(3, (Q, D, D), MIXED), \
12178 X(3, (D, Q, Q), MIXED), \
12179 X(3, (Q, Q, D), MIXED), \
12180 X(3, (Q, D, S), MIXED), \
12181 X(3, (D, Q, S), MIXED), \
12182 X(4, (D, D, D, I), DOUBLE), \
12183 X(4, (Q, Q, Q, I), QUAD), \
12184 X(2, (F, F), SINGLE), \
12185 X(3, (F, F, F), SINGLE), \
12186 X(2, (F, I), SINGLE), \
12187 X(2, (F, D), MIXED), \
12188 X(2, (D, F), MIXED), \
12189 X(3, (F, F, I), MIXED), \
12190 X(4, (R, R, F, F), SINGLE), \
12191 X(4, (F, F, R, R), SINGLE), \
12192 X(3, (D, R, R), DOUBLE), \
12193 X(3, (R, R, D), DOUBLE), \
12194 X(2, (S, R), SINGLE), \
12195 X(2, (R, S), SINGLE), \
12196 X(2, (F, R), SINGLE), \
12197 X(2, (R, F), SINGLE)
12198
12199#define S2(A,B) NS_##A##B
12200#define S3(A,B,C) NS_##A##B##C
12201#define S4(A,B,C,D) NS_##A##B##C##D
12202
12203#define X(N, L, C) S##N L
12204
5287ad62
JB
12205enum neon_shape
12206{
037e8744
JB
12207 NEON_SHAPE_DEF,
12208 NS_NULL
5287ad62 12209};
b99bd4ef 12210
037e8744
JB
12211#undef X
12212#undef S2
12213#undef S3
12214#undef S4
12215
12216enum neon_shape_class
12217{
12218 SC_SINGLE,
12219 SC_DOUBLE,
12220 SC_QUAD,
12221 SC_MIXED
12222};
12223
12224#define X(N, L, C) SC_##C
12225
12226static enum neon_shape_class neon_shape_class[] =
12227{
12228 NEON_SHAPE_DEF
12229};
12230
12231#undef X
12232
12233enum neon_shape_el
12234{
12235 SE_F,
12236 SE_D,
12237 SE_Q,
12238 SE_I,
12239 SE_S,
12240 SE_R,
12241 SE_L
12242};
12243
12244/* Register widths of above. */
12245static unsigned neon_shape_el_size[] =
12246{
12247 32,
12248 64,
12249 128,
12250 0,
12251 32,
12252 32,
12253 0
12254};
12255
12256struct neon_shape_info
12257{
12258 unsigned els;
12259 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12260};
12261
12262#define S2(A,B) { SE_##A, SE_##B }
12263#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12264#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12265
12266#define X(N, L, C) { N, S##N L }
12267
12268static struct neon_shape_info neon_shape_tab[] =
12269{
12270 NEON_SHAPE_DEF
12271};
12272
12273#undef X
12274#undef S2
12275#undef S3
12276#undef S4
12277
5287ad62
JB
12278/* Bit masks used in type checking given instructions.
12279 'N_EQK' means the type must be the same as (or based on in some way) the key
12280 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12281 set, various other bits can be set as well in order to modify the meaning of
12282 the type constraint. */
12283
12284enum neon_type_mask
12285{
8e79c3df
CM
12286 N_S8 = 0x0000001,
12287 N_S16 = 0x0000002,
12288 N_S32 = 0x0000004,
12289 N_S64 = 0x0000008,
12290 N_U8 = 0x0000010,
12291 N_U16 = 0x0000020,
12292 N_U32 = 0x0000040,
12293 N_U64 = 0x0000080,
12294 N_I8 = 0x0000100,
12295 N_I16 = 0x0000200,
12296 N_I32 = 0x0000400,
12297 N_I64 = 0x0000800,
12298 N_8 = 0x0001000,
12299 N_16 = 0x0002000,
12300 N_32 = 0x0004000,
12301 N_64 = 0x0008000,
12302 N_P8 = 0x0010000,
12303 N_P16 = 0x0020000,
12304 N_F16 = 0x0040000,
12305 N_F32 = 0x0080000,
12306 N_F64 = 0x0100000,
c921be7d
NC
12307 N_KEY = 0x1000000, /* Key element (main type specifier). */
12308 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12309 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12310 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12311 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12312 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12313 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12314 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12315 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12316 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12317 N_UTYP = 0,
037e8744 12318 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12319};
12320
dcbf9037
JB
12321#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12322
5287ad62
JB
12323#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12324#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12325#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12326#define N_SUF_32 (N_SU_32 | N_F32)
12327#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12328#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12329
12330/* Pass this as the first type argument to neon_check_type to ignore types
12331 altogether. */
12332#define N_IGNORE_TYPE (N_KEY | N_EQK)
12333
037e8744
JB
12334/* Select a "shape" for the current instruction (describing register types or
12335 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12336 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12337 function of operand parsing, so this function doesn't need to be called.
12338 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12339
12340static enum neon_shape
037e8744 12341neon_select_shape (enum neon_shape shape, ...)
5287ad62 12342{
037e8744
JB
12343 va_list ap;
12344 enum neon_shape first_shape = shape;
5287ad62
JB
12345
12346 /* Fix missing optional operands. FIXME: we don't know at this point how
12347 many arguments we should have, so this makes the assumption that we have
12348 > 1. This is true of all current Neon opcodes, I think, but may not be
12349 true in the future. */
12350 if (!inst.operands[1].present)
12351 inst.operands[1] = inst.operands[0];
12352
037e8744 12353 va_start (ap, shape);
5f4273c7 12354
21d799b5 12355 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12356 {
12357 unsigned j;
12358 int matches = 1;
12359
12360 for (j = 0; j < neon_shape_tab[shape].els; j++)
12361 {
12362 if (!inst.operands[j].present)
12363 {
12364 matches = 0;
12365 break;
12366 }
12367
12368 switch (neon_shape_tab[shape].el[j])
12369 {
12370 case SE_F:
12371 if (!(inst.operands[j].isreg
12372 && inst.operands[j].isvec
12373 && inst.operands[j].issingle
12374 && !inst.operands[j].isquad))
12375 matches = 0;
12376 break;
12377
12378 case SE_D:
12379 if (!(inst.operands[j].isreg
12380 && inst.operands[j].isvec
12381 && !inst.operands[j].isquad
12382 && !inst.operands[j].issingle))
12383 matches = 0;
12384 break;
12385
12386 case SE_R:
12387 if (!(inst.operands[j].isreg
12388 && !inst.operands[j].isvec))
12389 matches = 0;
12390 break;
12391
12392 case SE_Q:
12393 if (!(inst.operands[j].isreg
12394 && inst.operands[j].isvec
12395 && inst.operands[j].isquad
12396 && !inst.operands[j].issingle))
12397 matches = 0;
12398 break;
12399
12400 case SE_I:
12401 if (!(!inst.operands[j].isreg
12402 && !inst.operands[j].isscalar))
12403 matches = 0;
12404 break;
12405
12406 case SE_S:
12407 if (!(!inst.operands[j].isreg
12408 && inst.operands[j].isscalar))
12409 matches = 0;
12410 break;
12411
12412 case SE_L:
12413 break;
12414 }
3fde54a2
JZ
12415 if (!matches)
12416 break;
037e8744
JB
12417 }
12418 if (matches)
5287ad62 12419 break;
037e8744 12420 }
5f4273c7 12421
037e8744 12422 va_end (ap);
5287ad62 12423
037e8744
JB
12424 if (shape == NS_NULL && first_shape != NS_NULL)
12425 first_error (_("invalid instruction shape"));
5287ad62 12426
037e8744
JB
12427 return shape;
12428}
5287ad62 12429
037e8744
JB
12430/* True if SHAPE is predominantly a quadword operation (most of the time, this
12431 means the Q bit should be set). */
12432
12433static int
12434neon_quad (enum neon_shape shape)
12435{
12436 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12437}
037e8744 12438
5287ad62
JB
12439static void
12440neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12441 unsigned *g_size)
12442{
12443 /* Allow modification to be made to types which are constrained to be
12444 based on the key element, based on bits set alongside N_EQK. */
12445 if ((typebits & N_EQK) != 0)
12446 {
12447 if ((typebits & N_HLF) != 0)
12448 *g_size /= 2;
12449 else if ((typebits & N_DBL) != 0)
12450 *g_size *= 2;
12451 if ((typebits & N_SGN) != 0)
12452 *g_type = NT_signed;
12453 else if ((typebits & N_UNS) != 0)
12454 *g_type = NT_unsigned;
12455 else if ((typebits & N_INT) != 0)
12456 *g_type = NT_integer;
12457 else if ((typebits & N_FLT) != 0)
12458 *g_type = NT_float;
dcbf9037
JB
12459 else if ((typebits & N_SIZ) != 0)
12460 *g_type = NT_untyped;
5287ad62
JB
12461 }
12462}
5f4273c7 12463
5287ad62
JB
12464/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12465 operand type, i.e. the single type specified in a Neon instruction when it
12466 is the only one given. */
12467
12468static struct neon_type_el
12469neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12470{
12471 struct neon_type_el dest = *key;
5f4273c7 12472
9c2799c2 12473 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12474
5287ad62
JB
12475 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12476
12477 return dest;
12478}
12479
12480/* Convert Neon type and size into compact bitmask representation. */
12481
12482static enum neon_type_mask
12483type_chk_of_el_type (enum neon_el_type type, unsigned size)
12484{
12485 switch (type)
12486 {
12487 case NT_untyped:
12488 switch (size)
12489 {
12490 case 8: return N_8;
12491 case 16: return N_16;
12492 case 32: return N_32;
12493 case 64: return N_64;
12494 default: ;
12495 }
12496 break;
12497
12498 case NT_integer:
12499 switch (size)
12500 {
12501 case 8: return N_I8;
12502 case 16: return N_I16;
12503 case 32: return N_I32;
12504 case 64: return N_I64;
12505 default: ;
12506 }
12507 break;
12508
12509 case NT_float:
037e8744
JB
12510 switch (size)
12511 {
8e79c3df 12512 case 16: return N_F16;
037e8744
JB
12513 case 32: return N_F32;
12514 case 64: return N_F64;
12515 default: ;
12516 }
5287ad62
JB
12517 break;
12518
12519 case NT_poly:
12520 switch (size)
12521 {
12522 case 8: return N_P8;
12523 case 16: return N_P16;
12524 default: ;
12525 }
12526 break;
12527
12528 case NT_signed:
12529 switch (size)
12530 {
12531 case 8: return N_S8;
12532 case 16: return N_S16;
12533 case 32: return N_S32;
12534 case 64: return N_S64;
12535 default: ;
12536 }
12537 break;
12538
12539 case NT_unsigned:
12540 switch (size)
12541 {
12542 case 8: return N_U8;
12543 case 16: return N_U16;
12544 case 32: return N_U32;
12545 case 64: return N_U64;
12546 default: ;
12547 }
12548 break;
12549
12550 default: ;
12551 }
5f4273c7 12552
5287ad62
JB
12553 return N_UTYP;
12554}
12555
12556/* Convert compact Neon bitmask type representation to a type and size. Only
12557 handles the case where a single bit is set in the mask. */
12558
dcbf9037 12559static int
5287ad62
JB
12560el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12561 enum neon_type_mask mask)
12562{
dcbf9037
JB
12563 if ((mask & N_EQK) != 0)
12564 return FAIL;
12565
5287ad62
JB
12566 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12567 *size = 8;
dcbf9037 12568 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12569 *size = 16;
dcbf9037 12570 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12571 *size = 32;
037e8744 12572 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12573 *size = 64;
dcbf9037
JB
12574 else
12575 return FAIL;
12576
5287ad62
JB
12577 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12578 *type = NT_signed;
dcbf9037 12579 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12580 *type = NT_unsigned;
dcbf9037 12581 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12582 *type = NT_integer;
dcbf9037 12583 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12584 *type = NT_untyped;
dcbf9037 12585 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12586 *type = NT_poly;
037e8744 12587 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12588 *type = NT_float;
dcbf9037
JB
12589 else
12590 return FAIL;
5f4273c7 12591
dcbf9037 12592 return SUCCESS;
5287ad62
JB
12593}
12594
12595/* Modify a bitmask of allowed types. This is only needed for type
12596 relaxation. */
12597
12598static unsigned
12599modify_types_allowed (unsigned allowed, unsigned mods)
12600{
12601 unsigned size;
12602 enum neon_el_type type;
12603 unsigned destmask;
12604 int i;
5f4273c7 12605
5287ad62 12606 destmask = 0;
5f4273c7 12607
5287ad62
JB
12608 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12609 {
21d799b5
NC
12610 if (el_type_of_type_chk (&type, &size,
12611 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12612 {
12613 neon_modify_type_size (mods, &type, &size);
12614 destmask |= type_chk_of_el_type (type, size);
12615 }
5287ad62 12616 }
5f4273c7 12617
5287ad62
JB
12618 return destmask;
12619}
12620
12621/* Check type and return type classification.
12622 The manual states (paraphrase): If one datatype is given, it indicates the
12623 type given in:
12624 - the second operand, if there is one
12625 - the operand, if there is no second operand
12626 - the result, if there are no operands.
12627 This isn't quite good enough though, so we use a concept of a "key" datatype
12628 which is set on a per-instruction basis, which is the one which matters when
12629 only one data type is written.
12630 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12631 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12632
12633static struct neon_type_el
12634neon_check_type (unsigned els, enum neon_shape ns, ...)
12635{
12636 va_list ap;
12637 unsigned i, pass, key_el = 0;
12638 unsigned types[NEON_MAX_TYPE_ELS];
12639 enum neon_el_type k_type = NT_invtype;
12640 unsigned k_size = -1u;
12641 struct neon_type_el badtype = {NT_invtype, -1};
12642 unsigned key_allowed = 0;
12643
12644 /* Optional registers in Neon instructions are always (not) in operand 1.
12645 Fill in the missing operand here, if it was omitted. */
12646 if (els > 1 && !inst.operands[1].present)
12647 inst.operands[1] = inst.operands[0];
12648
12649 /* Suck up all the varargs. */
12650 va_start (ap, ns);
12651 for (i = 0; i < els; i++)
12652 {
12653 unsigned thisarg = va_arg (ap, unsigned);
12654 if (thisarg == N_IGNORE_TYPE)
12655 {
12656 va_end (ap);
12657 return badtype;
12658 }
12659 types[i] = thisarg;
12660 if ((thisarg & N_KEY) != 0)
12661 key_el = i;
12662 }
12663 va_end (ap);
12664
dcbf9037
JB
12665 if (inst.vectype.elems > 0)
12666 for (i = 0; i < els; i++)
12667 if (inst.operands[i].vectype.type != NT_invtype)
12668 {
12669 first_error (_("types specified in both the mnemonic and operands"));
12670 return badtype;
12671 }
12672
5287ad62
JB
12673 /* Duplicate inst.vectype elements here as necessary.
12674 FIXME: No idea if this is exactly the same as the ARM assembler,
12675 particularly when an insn takes one register and one non-register
12676 operand. */
12677 if (inst.vectype.elems == 1 && els > 1)
12678 {
12679 unsigned j;
12680 inst.vectype.elems = els;
12681 inst.vectype.el[key_el] = inst.vectype.el[0];
12682 for (j = 0; j < els; j++)
dcbf9037
JB
12683 if (j != key_el)
12684 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12685 types[j]);
12686 }
12687 else if (inst.vectype.elems == 0 && els > 0)
12688 {
12689 unsigned j;
12690 /* No types were given after the mnemonic, so look for types specified
12691 after each operand. We allow some flexibility here; as long as the
12692 "key" operand has a type, we can infer the others. */
12693 for (j = 0; j < els; j++)
12694 if (inst.operands[j].vectype.type != NT_invtype)
12695 inst.vectype.el[j] = inst.operands[j].vectype;
12696
12697 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12698 {
dcbf9037
JB
12699 for (j = 0; j < els; j++)
12700 if (inst.operands[j].vectype.type == NT_invtype)
12701 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12702 types[j]);
12703 }
12704 else
12705 {
12706 first_error (_("operand types can't be inferred"));
12707 return badtype;
5287ad62
JB
12708 }
12709 }
12710 else if (inst.vectype.elems != els)
12711 {
dcbf9037 12712 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12713 return badtype;
12714 }
12715
12716 for (pass = 0; pass < 2; pass++)
12717 {
12718 for (i = 0; i < els; i++)
12719 {
12720 unsigned thisarg = types[i];
12721 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12722 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12723 enum neon_el_type g_type = inst.vectype.el[i].type;
12724 unsigned g_size = inst.vectype.el[i].size;
12725
12726 /* Decay more-specific signed & unsigned types to sign-insensitive
12727 integer types if sign-specific variants are unavailable. */
12728 if ((g_type == NT_signed || g_type == NT_unsigned)
12729 && (types_allowed & N_SU_ALL) == 0)
12730 g_type = NT_integer;
12731
12732 /* If only untyped args are allowed, decay any more specific types to
12733 them. Some instructions only care about signs for some element
12734 sizes, so handle that properly. */
12735 if ((g_size == 8 && (types_allowed & N_8) != 0)
12736 || (g_size == 16 && (types_allowed & N_16) != 0)
12737 || (g_size == 32 && (types_allowed & N_32) != 0)
12738 || (g_size == 64 && (types_allowed & N_64) != 0))
12739 g_type = NT_untyped;
12740
12741 if (pass == 0)
12742 {
12743 if ((thisarg & N_KEY) != 0)
12744 {
12745 k_type = g_type;
12746 k_size = g_size;
12747 key_allowed = thisarg & ~N_KEY;
12748 }
12749 }
12750 else
12751 {
037e8744
JB
12752 if ((thisarg & N_VFP) != 0)
12753 {
99b253c5
NC
12754 enum neon_shape_el regshape;
12755 unsigned regwidth, match;
12756
12757 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12758 if (ns == NS_NULL)
12759 {
12760 first_error (_("invalid instruction shape"));
12761 return badtype;
12762 }
12763 regshape = neon_shape_tab[ns].el[i];
12764 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12765
12766 /* In VFP mode, operands must match register widths. If we
12767 have a key operand, use its width, else use the width of
12768 the current operand. */
12769 if (k_size != -1u)
12770 match = k_size;
12771 else
12772 match = g_size;
12773
12774 if (regwidth != match)
12775 {
12776 first_error (_("operand size must match register width"));
12777 return badtype;
12778 }
12779 }
5f4273c7 12780
5287ad62
JB
12781 if ((thisarg & N_EQK) == 0)
12782 {
12783 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12784
12785 if ((given_type & types_allowed) == 0)
12786 {
dcbf9037 12787 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12788 return badtype;
12789 }
12790 }
12791 else
12792 {
12793 enum neon_el_type mod_k_type = k_type;
12794 unsigned mod_k_size = k_size;
12795 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12796 if (g_type != mod_k_type || g_size != mod_k_size)
12797 {
dcbf9037 12798 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12799 return badtype;
12800 }
12801 }
12802 }
12803 }
12804 }
12805
12806 return inst.vectype.el[key_el];
12807}
12808
037e8744 12809/* Neon-style VFP instruction forwarding. */
5287ad62 12810
037e8744
JB
12811/* Thumb VFP instructions have 0xE in the condition field. */
12812
12813static void
12814do_vfp_cond_or_thumb (void)
5287ad62 12815{
88714cb8
DG
12816 inst.is_neon = 1;
12817
5287ad62 12818 if (thumb_mode)
037e8744 12819 inst.instruction |= 0xe0000000;
5287ad62 12820 else
037e8744 12821 inst.instruction |= inst.cond << 28;
5287ad62
JB
12822}
12823
037e8744
JB
12824/* Look up and encode a simple mnemonic, for use as a helper function for the
12825 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12826 etc. It is assumed that operand parsing has already been done, and that the
12827 operands are in the form expected by the given opcode (this isn't necessarily
12828 the same as the form in which they were parsed, hence some massaging must
12829 take place before this function is called).
12830 Checks current arch version against that in the looked-up opcode. */
5287ad62 12831
037e8744
JB
12832static void
12833do_vfp_nsyn_opcode (const char *opname)
5287ad62 12834{
037e8744 12835 const struct asm_opcode *opcode;
5f4273c7 12836
21d799b5 12837 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12838
037e8744
JB
12839 if (!opcode)
12840 abort ();
5287ad62 12841
037e8744
JB
12842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12843 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12844 _(BAD_FPU));
5287ad62 12845
88714cb8
DG
12846 inst.is_neon = 1;
12847
037e8744
JB
12848 if (thumb_mode)
12849 {
12850 inst.instruction = opcode->tvalue;
12851 opcode->tencode ();
12852 }
12853 else
12854 {
12855 inst.instruction = (inst.cond << 28) | opcode->avalue;
12856 opcode->aencode ();
12857 }
12858}
5287ad62
JB
12859
12860static void
037e8744 12861do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12862{
037e8744
JB
12863 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12864
12865 if (rs == NS_FFF)
12866 {
12867 if (is_add)
12868 do_vfp_nsyn_opcode ("fadds");
12869 else
12870 do_vfp_nsyn_opcode ("fsubs");
12871 }
12872 else
12873 {
12874 if (is_add)
12875 do_vfp_nsyn_opcode ("faddd");
12876 else
12877 do_vfp_nsyn_opcode ("fsubd");
12878 }
12879}
12880
12881/* Check operand types to see if this is a VFP instruction, and if so call
12882 PFN (). */
12883
12884static int
12885try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12886{
12887 enum neon_shape rs;
12888 struct neon_type_el et;
12889
12890 switch (args)
12891 {
12892 case 2:
12893 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12894 et = neon_check_type (2, rs,
12895 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12896 break;
5f4273c7 12897
037e8744
JB
12898 case 3:
12899 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12900 et = neon_check_type (3, rs,
12901 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12902 break;
12903
12904 default:
12905 abort ();
12906 }
12907
12908 if (et.type != NT_invtype)
12909 {
12910 pfn (rs);
12911 return SUCCESS;
12912 }
037e8744 12913
99b253c5 12914 inst.error = NULL;
037e8744
JB
12915 return FAIL;
12916}
12917
12918static void
12919do_vfp_nsyn_mla_mls (enum neon_shape rs)
12920{
12921 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12922
037e8744
JB
12923 if (rs == NS_FFF)
12924 {
12925 if (is_mla)
12926 do_vfp_nsyn_opcode ("fmacs");
12927 else
1ee69515 12928 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12929 }
12930 else
12931 {
12932 if (is_mla)
12933 do_vfp_nsyn_opcode ("fmacd");
12934 else
1ee69515 12935 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12936 }
12937}
12938
62f3b8c8
PB
12939static void
12940do_vfp_nsyn_fma_fms (enum neon_shape rs)
12941{
12942 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12943
12944 if (rs == NS_FFF)
12945 {
12946 if (is_fma)
12947 do_vfp_nsyn_opcode ("ffmas");
12948 else
12949 do_vfp_nsyn_opcode ("ffnmas");
12950 }
12951 else
12952 {
12953 if (is_fma)
12954 do_vfp_nsyn_opcode ("ffmad");
12955 else
12956 do_vfp_nsyn_opcode ("ffnmad");
12957 }
12958}
12959
037e8744
JB
12960static void
12961do_vfp_nsyn_mul (enum neon_shape rs)
12962{
12963 if (rs == NS_FFF)
12964 do_vfp_nsyn_opcode ("fmuls");
12965 else
12966 do_vfp_nsyn_opcode ("fmuld");
12967}
12968
12969static void
12970do_vfp_nsyn_abs_neg (enum neon_shape rs)
12971{
12972 int is_neg = (inst.instruction & 0x80) != 0;
12973 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12974
12975 if (rs == NS_FF)
12976 {
12977 if (is_neg)
12978 do_vfp_nsyn_opcode ("fnegs");
12979 else
12980 do_vfp_nsyn_opcode ("fabss");
12981 }
12982 else
12983 {
12984 if (is_neg)
12985 do_vfp_nsyn_opcode ("fnegd");
12986 else
12987 do_vfp_nsyn_opcode ("fabsd");
12988 }
12989}
12990
12991/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12992 insns belong to Neon, and are handled elsewhere. */
12993
12994static void
12995do_vfp_nsyn_ldm_stm (int is_dbmode)
12996{
12997 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12998 if (is_ldm)
12999 {
13000 if (is_dbmode)
13001 do_vfp_nsyn_opcode ("fldmdbs");
13002 else
13003 do_vfp_nsyn_opcode ("fldmias");
13004 }
13005 else
13006 {
13007 if (is_dbmode)
13008 do_vfp_nsyn_opcode ("fstmdbs");
13009 else
13010 do_vfp_nsyn_opcode ("fstmias");
13011 }
13012}
13013
037e8744
JB
13014static void
13015do_vfp_nsyn_sqrt (void)
13016{
13017 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13018 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13019
037e8744
JB
13020 if (rs == NS_FF)
13021 do_vfp_nsyn_opcode ("fsqrts");
13022 else
13023 do_vfp_nsyn_opcode ("fsqrtd");
13024}
13025
13026static void
13027do_vfp_nsyn_div (void)
13028{
13029 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13030 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13031 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13032
037e8744
JB
13033 if (rs == NS_FFF)
13034 do_vfp_nsyn_opcode ("fdivs");
13035 else
13036 do_vfp_nsyn_opcode ("fdivd");
13037}
13038
13039static void
13040do_vfp_nsyn_nmul (void)
13041{
13042 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13043 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13044 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13045
037e8744
JB
13046 if (rs == NS_FFF)
13047 {
88714cb8 13048 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13049 do_vfp_sp_dyadic ();
13050 }
13051 else
13052 {
88714cb8 13053 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13054 do_vfp_dp_rd_rn_rm ();
13055 }
13056 do_vfp_cond_or_thumb ();
13057}
13058
13059static void
13060do_vfp_nsyn_cmp (void)
13061{
13062 if (inst.operands[1].isreg)
13063 {
13064 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13065 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13066
037e8744
JB
13067 if (rs == NS_FF)
13068 {
88714cb8 13069 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13070 do_vfp_sp_monadic ();
13071 }
13072 else
13073 {
88714cb8 13074 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13075 do_vfp_dp_rd_rm ();
13076 }
13077 }
13078 else
13079 {
13080 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13081 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13082
13083 switch (inst.instruction & 0x0fffffff)
13084 {
13085 case N_MNEM_vcmp:
13086 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13087 break;
13088 case N_MNEM_vcmpe:
13089 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13090 break;
13091 default:
13092 abort ();
13093 }
5f4273c7 13094
037e8744
JB
13095 if (rs == NS_FI)
13096 {
88714cb8 13097 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13098 do_vfp_sp_compare_z ();
13099 }
13100 else
13101 {
88714cb8 13102 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13103 do_vfp_dp_rd ();
13104 }
13105 }
13106 do_vfp_cond_or_thumb ();
13107}
13108
13109static void
13110nsyn_insert_sp (void)
13111{
13112 inst.operands[1] = inst.operands[0];
13113 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 13114 inst.operands[0].reg = REG_SP;
037e8744
JB
13115 inst.operands[0].isreg = 1;
13116 inst.operands[0].writeback = 1;
13117 inst.operands[0].present = 1;
13118}
13119
13120static void
13121do_vfp_nsyn_push (void)
13122{
13123 nsyn_insert_sp ();
13124 if (inst.operands[1].issingle)
13125 do_vfp_nsyn_opcode ("fstmdbs");
13126 else
13127 do_vfp_nsyn_opcode ("fstmdbd");
13128}
13129
13130static void
13131do_vfp_nsyn_pop (void)
13132{
13133 nsyn_insert_sp ();
13134 if (inst.operands[1].issingle)
22b5b651 13135 do_vfp_nsyn_opcode ("fldmias");
037e8744 13136 else
22b5b651 13137 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13138}
13139
13140/* Fix up Neon data-processing instructions, ORing in the correct bits for
13141 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13142
88714cb8
DG
13143static void
13144neon_dp_fixup (struct arm_it* insn)
037e8744 13145{
88714cb8
DG
13146 unsigned int i = insn->instruction;
13147 insn->is_neon = 1;
13148
037e8744
JB
13149 if (thumb_mode)
13150 {
13151 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13152 if (i & (1 << 24))
13153 i |= 1 << 28;
5f4273c7 13154
037e8744 13155 i &= ~(1 << 24);
5f4273c7 13156
037e8744
JB
13157 i |= 0xef000000;
13158 }
13159 else
13160 i |= 0xf2000000;
5f4273c7 13161
88714cb8 13162 insn->instruction = i;
037e8744
JB
13163}
13164
13165/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13166 (0, 1, 2, 3). */
13167
13168static unsigned
13169neon_logbits (unsigned x)
13170{
13171 return ffs (x) - 4;
13172}
13173
13174#define LOW4(R) ((R) & 0xf)
13175#define HI1(R) (((R) >> 4) & 1)
13176
13177/* Encode insns with bit pattern:
13178
13179 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13180 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13181
037e8744
JB
13182 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13183 different meaning for some instruction. */
13184
13185static void
13186neon_three_same (int isquad, int ubit, int size)
13187{
13188 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13189 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13190 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13191 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13192 inst.instruction |= LOW4 (inst.operands[2].reg);
13193 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13194 inst.instruction |= (isquad != 0) << 6;
13195 inst.instruction |= (ubit != 0) << 24;
13196 if (size != -1)
13197 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13198
88714cb8 13199 neon_dp_fixup (&inst);
037e8744
JB
13200}
13201
13202/* Encode instructions of the form:
13203
13204 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13205 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13206
13207 Don't write size if SIZE == -1. */
13208
13209static void
13210neon_two_same (int qbit, int ubit, int size)
13211{
13212 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13213 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13214 inst.instruction |= LOW4 (inst.operands[1].reg);
13215 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13216 inst.instruction |= (qbit != 0) << 6;
13217 inst.instruction |= (ubit != 0) << 24;
13218
13219 if (size != -1)
13220 inst.instruction |= neon_logbits (size) << 18;
13221
88714cb8 13222 neon_dp_fixup (&inst);
5287ad62
JB
13223}
13224
13225/* Neon instruction encoders, in approximate order of appearance. */
13226
13227static void
13228do_neon_dyadic_i_su (void)
13229{
037e8744 13230 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13231 struct neon_type_el et = neon_check_type (3, rs,
13232 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13233 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13234}
13235
13236static void
13237do_neon_dyadic_i64_su (void)
13238{
037e8744 13239 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13240 struct neon_type_el et = neon_check_type (3, rs,
13241 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13242 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13243}
13244
13245static void
13246neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13247 unsigned immbits)
13248{
13249 unsigned size = et.size >> 3;
13250 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13251 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13252 inst.instruction |= LOW4 (inst.operands[1].reg);
13253 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13254 inst.instruction |= (isquad != 0) << 6;
13255 inst.instruction |= immbits << 16;
13256 inst.instruction |= (size >> 3) << 7;
13257 inst.instruction |= (size & 0x7) << 19;
13258 if (write_ubit)
13259 inst.instruction |= (uval != 0) << 24;
13260
88714cb8 13261 neon_dp_fixup (&inst);
5287ad62
JB
13262}
13263
13264static void
13265do_neon_shl_imm (void)
13266{
13267 if (!inst.operands[2].isreg)
13268 {
037e8744 13269 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13270 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13271 NEON_ENCODE (IMMED, inst);
037e8744 13272 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13273 }
13274 else
13275 {
037e8744 13276 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13277 struct neon_type_el et = neon_check_type (3, rs,
13278 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13279 unsigned int tmp;
13280
13281 /* VSHL/VQSHL 3-register variants have syntax such as:
13282 vshl.xx Dd, Dm, Dn
13283 whereas other 3-register operations encoded by neon_three_same have
13284 syntax like:
13285 vadd.xx Dd, Dn, Dm
13286 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13287 here. */
13288 tmp = inst.operands[2].reg;
13289 inst.operands[2].reg = inst.operands[1].reg;
13290 inst.operands[1].reg = tmp;
88714cb8 13291 NEON_ENCODE (INTEGER, inst);
037e8744 13292 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13293 }
13294}
13295
13296static void
13297do_neon_qshl_imm (void)
13298{
13299 if (!inst.operands[2].isreg)
13300 {
037e8744 13301 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13302 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13303
88714cb8 13304 NEON_ENCODE (IMMED, inst);
037e8744 13305 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13306 inst.operands[2].imm);
13307 }
13308 else
13309 {
037e8744 13310 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13311 struct neon_type_el et = neon_check_type (3, rs,
13312 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13313 unsigned int tmp;
13314
13315 /* See note in do_neon_shl_imm. */
13316 tmp = inst.operands[2].reg;
13317 inst.operands[2].reg = inst.operands[1].reg;
13318 inst.operands[1].reg = tmp;
88714cb8 13319 NEON_ENCODE (INTEGER, inst);
037e8744 13320 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13321 }
13322}
13323
627907b7
JB
13324static void
13325do_neon_rshl (void)
13326{
13327 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13328 struct neon_type_el et = neon_check_type (3, rs,
13329 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13330 unsigned int tmp;
13331
13332 tmp = inst.operands[2].reg;
13333 inst.operands[2].reg = inst.operands[1].reg;
13334 inst.operands[1].reg = tmp;
13335 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13336}
13337
5287ad62
JB
13338static int
13339neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13340{
036dc3f7
PB
13341 /* Handle .I8 pseudo-instructions. */
13342 if (size == 8)
5287ad62 13343 {
5287ad62
JB
13344 /* Unfortunately, this will make everything apart from zero out-of-range.
13345 FIXME is this the intended semantics? There doesn't seem much point in
13346 accepting .I8 if so. */
13347 immediate |= immediate << 8;
13348 size = 16;
036dc3f7
PB
13349 }
13350
13351 if (size >= 32)
13352 {
13353 if (immediate == (immediate & 0x000000ff))
13354 {
13355 *immbits = immediate;
13356 return 0x1;
13357 }
13358 else if (immediate == (immediate & 0x0000ff00))
13359 {
13360 *immbits = immediate >> 8;
13361 return 0x3;
13362 }
13363 else if (immediate == (immediate & 0x00ff0000))
13364 {
13365 *immbits = immediate >> 16;
13366 return 0x5;
13367 }
13368 else if (immediate == (immediate & 0xff000000))
13369 {
13370 *immbits = immediate >> 24;
13371 return 0x7;
13372 }
13373 if ((immediate & 0xffff) != (immediate >> 16))
13374 goto bad_immediate;
13375 immediate &= 0xffff;
5287ad62
JB
13376 }
13377
13378 if (immediate == (immediate & 0x000000ff))
13379 {
13380 *immbits = immediate;
036dc3f7 13381 return 0x9;
5287ad62
JB
13382 }
13383 else if (immediate == (immediate & 0x0000ff00))
13384 {
13385 *immbits = immediate >> 8;
036dc3f7 13386 return 0xb;
5287ad62
JB
13387 }
13388
13389 bad_immediate:
dcbf9037 13390 first_error (_("immediate value out of range"));
5287ad62
JB
13391 return FAIL;
13392}
13393
13394/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13395 A, B, C, D. */
13396
13397static int
13398neon_bits_same_in_bytes (unsigned imm)
13399{
13400 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13401 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13402 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13403 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13404}
13405
13406/* For immediate of above form, return 0bABCD. */
13407
13408static unsigned
13409neon_squash_bits (unsigned imm)
13410{
13411 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13412 | ((imm & 0x01000000) >> 21);
13413}
13414
136da414 13415/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13416
13417static unsigned
13418neon_qfloat_bits (unsigned imm)
13419{
136da414 13420 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13421}
13422
13423/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13424 the instruction. *OP is passed as the initial value of the op field, and
13425 may be set to a different value depending on the constant (i.e.
13426 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13427 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13428 try smaller element sizes. */
5287ad62
JB
13429
13430static int
c96612cc
JB
13431neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13432 unsigned *immbits, int *op, int size,
13433 enum neon_el_type type)
5287ad62 13434{
c96612cc
JB
13435 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13436 float. */
13437 if (type == NT_float && !float_p)
13438 return FAIL;
13439
136da414
JB
13440 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13441 {
13442 if (size != 32 || *op == 1)
13443 return FAIL;
13444 *immbits = neon_qfloat_bits (immlo);
13445 return 0xf;
13446 }
036dc3f7
PB
13447
13448 if (size == 64)
5287ad62 13449 {
036dc3f7
PB
13450 if (neon_bits_same_in_bytes (immhi)
13451 && neon_bits_same_in_bytes (immlo))
13452 {
13453 if (*op == 1)
13454 return FAIL;
13455 *immbits = (neon_squash_bits (immhi) << 4)
13456 | neon_squash_bits (immlo);
13457 *op = 1;
13458 return 0xe;
13459 }
13460
13461 if (immhi != immlo)
13462 return FAIL;
5287ad62 13463 }
036dc3f7
PB
13464
13465 if (size >= 32)
5287ad62 13466 {
036dc3f7
PB
13467 if (immlo == (immlo & 0x000000ff))
13468 {
13469 *immbits = immlo;
13470 return 0x0;
13471 }
13472 else if (immlo == (immlo & 0x0000ff00))
13473 {
13474 *immbits = immlo >> 8;
13475 return 0x2;
13476 }
13477 else if (immlo == (immlo & 0x00ff0000))
13478 {
13479 *immbits = immlo >> 16;
13480 return 0x4;
13481 }
13482 else if (immlo == (immlo & 0xff000000))
13483 {
13484 *immbits = immlo >> 24;
13485 return 0x6;
13486 }
13487 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13488 {
13489 *immbits = (immlo >> 8) & 0xff;
13490 return 0xc;
13491 }
13492 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13493 {
13494 *immbits = (immlo >> 16) & 0xff;
13495 return 0xd;
13496 }
13497
13498 if ((immlo & 0xffff) != (immlo >> 16))
13499 return FAIL;
13500 immlo &= 0xffff;
5287ad62 13501 }
036dc3f7
PB
13502
13503 if (size >= 16)
5287ad62 13504 {
036dc3f7
PB
13505 if (immlo == (immlo & 0x000000ff))
13506 {
13507 *immbits = immlo;
13508 return 0x8;
13509 }
13510 else if (immlo == (immlo & 0x0000ff00))
13511 {
13512 *immbits = immlo >> 8;
13513 return 0xa;
13514 }
13515
13516 if ((immlo & 0xff) != (immlo >> 8))
13517 return FAIL;
13518 immlo &= 0xff;
5287ad62 13519 }
036dc3f7
PB
13520
13521 if (immlo == (immlo & 0x000000ff))
5287ad62 13522 {
036dc3f7
PB
13523 /* Don't allow MVN with 8-bit immediate. */
13524 if (*op == 1)
13525 return FAIL;
13526 *immbits = immlo;
13527 return 0xe;
5287ad62 13528 }
5287ad62
JB
13529
13530 return FAIL;
13531}
13532
13533/* Write immediate bits [7:0] to the following locations:
13534
13535 |28/24|23 19|18 16|15 4|3 0|
13536 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13537
13538 This function is used by VMOV/VMVN/VORR/VBIC. */
13539
13540static void
13541neon_write_immbits (unsigned immbits)
13542{
13543 inst.instruction |= immbits & 0xf;
13544 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13545 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13546}
13547
13548/* Invert low-order SIZE bits of XHI:XLO. */
13549
13550static void
13551neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13552{
13553 unsigned immlo = xlo ? *xlo : 0;
13554 unsigned immhi = xhi ? *xhi : 0;
13555
13556 switch (size)
13557 {
13558 case 8:
13559 immlo = (~immlo) & 0xff;
13560 break;
13561
13562 case 16:
13563 immlo = (~immlo) & 0xffff;
13564 break;
13565
13566 case 64:
13567 immhi = (~immhi) & 0xffffffff;
13568 /* fall through. */
13569
13570 case 32:
13571 immlo = (~immlo) & 0xffffffff;
13572 break;
13573
13574 default:
13575 abort ();
13576 }
13577
13578 if (xlo)
13579 *xlo = immlo;
13580
13581 if (xhi)
13582 *xhi = immhi;
13583}
13584
13585static void
13586do_neon_logic (void)
13587{
13588 if (inst.operands[2].present && inst.operands[2].isreg)
13589 {
037e8744 13590 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13591 neon_check_type (3, rs, N_IGNORE_TYPE);
13592 /* U bit and size field were set as part of the bitmask. */
88714cb8 13593 NEON_ENCODE (INTEGER, inst);
037e8744 13594 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13595 }
13596 else
13597 {
4316f0d2
DG
13598 const int three_ops_form = (inst.operands[2].present
13599 && !inst.operands[2].isreg);
13600 const int immoperand = (three_ops_form ? 2 : 1);
13601 enum neon_shape rs = (three_ops_form
13602 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13603 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13604 struct neon_type_el et = neon_check_type (2, rs,
13605 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13606 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13607 unsigned immbits;
13608 int cmode;
5f4273c7 13609
5287ad62
JB
13610 if (et.type == NT_invtype)
13611 return;
5f4273c7 13612
4316f0d2
DG
13613 if (three_ops_form)
13614 constraint (inst.operands[0].reg != inst.operands[1].reg,
13615 _("first and second operands shall be the same register"));
13616
88714cb8 13617 NEON_ENCODE (IMMED, inst);
5287ad62 13618
4316f0d2 13619 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13620 if (et.size == 64)
13621 {
13622 /* .i64 is a pseudo-op, so the immediate must be a repeating
13623 pattern. */
4316f0d2
DG
13624 if (immbits != (inst.operands[immoperand].regisimm ?
13625 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13626 {
13627 /* Set immbits to an invalid constant. */
13628 immbits = 0xdeadbeef;
13629 }
13630 }
13631
5287ad62
JB
13632 switch (opcode)
13633 {
13634 case N_MNEM_vbic:
036dc3f7 13635 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13636 break;
5f4273c7 13637
5287ad62 13638 case N_MNEM_vorr:
036dc3f7 13639 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13640 break;
5f4273c7 13641
5287ad62
JB
13642 case N_MNEM_vand:
13643 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13644 neon_invert_size (&immbits, 0, et.size);
13645 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13646 break;
5f4273c7 13647
5287ad62
JB
13648 case N_MNEM_vorn:
13649 /* Pseudo-instruction for VORR. */
5287ad62
JB
13650 neon_invert_size (&immbits, 0, et.size);
13651 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13652 break;
5f4273c7 13653
5287ad62
JB
13654 default:
13655 abort ();
13656 }
13657
13658 if (cmode == FAIL)
13659 return;
13660
037e8744 13661 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13662 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13663 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13664 inst.instruction |= cmode << 8;
13665 neon_write_immbits (immbits);
5f4273c7 13666
88714cb8 13667 neon_dp_fixup (&inst);
5287ad62
JB
13668 }
13669}
13670
13671static void
13672do_neon_bitfield (void)
13673{
037e8744 13674 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13675 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13676 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13677}
13678
13679static void
dcbf9037
JB
13680neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13681 unsigned destbits)
5287ad62 13682{
037e8744 13683 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13684 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13685 types | N_KEY);
5287ad62
JB
13686 if (et.type == NT_float)
13687 {
88714cb8 13688 NEON_ENCODE (FLOAT, inst);
037e8744 13689 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13690 }
13691 else
13692 {
88714cb8 13693 NEON_ENCODE (INTEGER, inst);
037e8744 13694 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13695 }
13696}
13697
13698static void
13699do_neon_dyadic_if_su (void)
13700{
dcbf9037 13701 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13702}
13703
13704static void
13705do_neon_dyadic_if_su_d (void)
13706{
13707 /* This version only allow D registers, but that constraint is enforced during
13708 operand parsing so we don't need to do anything extra here. */
dcbf9037 13709 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13710}
13711
5287ad62
JB
13712static void
13713do_neon_dyadic_if_i_d (void)
13714{
428e3f1f
PB
13715 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13716 affected if we specify unsigned args. */
13717 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13718}
13719
037e8744
JB
13720enum vfp_or_neon_is_neon_bits
13721{
13722 NEON_CHECK_CC = 1,
13723 NEON_CHECK_ARCH = 2
13724};
13725
13726/* Call this function if an instruction which may have belonged to the VFP or
13727 Neon instruction sets, but turned out to be a Neon instruction (due to the
13728 operand types involved, etc.). We have to check and/or fix-up a couple of
13729 things:
13730
13731 - Make sure the user hasn't attempted to make a Neon instruction
13732 conditional.
13733 - Alter the value in the condition code field if necessary.
13734 - Make sure that the arch supports Neon instructions.
13735
13736 Which of these operations take place depends on bits from enum
13737 vfp_or_neon_is_neon_bits.
13738
13739 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13740 current instruction's condition is COND_ALWAYS, the condition field is
13741 changed to inst.uncond_value. This is necessary because instructions shared
13742 between VFP and Neon may be conditional for the VFP variants only, and the
13743 unconditional Neon version must have, e.g., 0xF in the condition field. */
13744
13745static int
13746vfp_or_neon_is_neon (unsigned check)
13747{
13748 /* Conditions are always legal in Thumb mode (IT blocks). */
13749 if (!thumb_mode && (check & NEON_CHECK_CC))
13750 {
13751 if (inst.cond != COND_ALWAYS)
13752 {
13753 first_error (_(BAD_COND));
13754 return FAIL;
13755 }
13756 if (inst.uncond_value != -1)
13757 inst.instruction |= inst.uncond_value << 28;
13758 }
5f4273c7 13759
037e8744
JB
13760 if ((check & NEON_CHECK_ARCH)
13761 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13762 {
13763 first_error (_(BAD_FPU));
13764 return FAIL;
13765 }
5f4273c7 13766
037e8744
JB
13767 return SUCCESS;
13768}
13769
5287ad62
JB
13770static void
13771do_neon_addsub_if_i (void)
13772{
037e8744
JB
13773 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13774 return;
13775
13776 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13777 return;
13778
5287ad62
JB
13779 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13780 affected if we specify unsigned args. */
dcbf9037 13781 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13782}
13783
13784/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13785 result to be:
13786 V<op> A,B (A is operand 0, B is operand 2)
13787 to mean:
13788 V<op> A,B,A
13789 not:
13790 V<op> A,B,B
13791 so handle that case specially. */
13792
13793static void
13794neon_exchange_operands (void)
13795{
13796 void *scratch = alloca (sizeof (inst.operands[0]));
13797 if (inst.operands[1].present)
13798 {
13799 /* Swap operands[1] and operands[2]. */
13800 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13801 inst.operands[1] = inst.operands[2];
13802 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13803 }
13804 else
13805 {
13806 inst.operands[1] = inst.operands[2];
13807 inst.operands[2] = inst.operands[0];
13808 }
13809}
13810
13811static void
13812neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13813{
13814 if (inst.operands[2].isreg)
13815 {
13816 if (invert)
13817 neon_exchange_operands ();
dcbf9037 13818 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13819 }
13820 else
13821 {
037e8744 13822 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13823 struct neon_type_el et = neon_check_type (2, rs,
13824 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13825
88714cb8 13826 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13827 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13828 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13829 inst.instruction |= LOW4 (inst.operands[1].reg);
13830 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13831 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13832 inst.instruction |= (et.type == NT_float) << 10;
13833 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13834
88714cb8 13835 neon_dp_fixup (&inst);
5287ad62
JB
13836 }
13837}
13838
13839static void
13840do_neon_cmp (void)
13841{
13842 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13843}
13844
13845static void
13846do_neon_cmp_inv (void)
13847{
13848 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13849}
13850
13851static void
13852do_neon_ceq (void)
13853{
13854 neon_compare (N_IF_32, N_IF_32, FALSE);
13855}
13856
13857/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13858 scalars, which are encoded in 5 bits, M : Rm.
13859 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13860 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13861 index in M. */
13862
13863static unsigned
13864neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13865{
dcbf9037
JB
13866 unsigned regno = NEON_SCALAR_REG (scalar);
13867 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13868
13869 switch (elsize)
13870 {
13871 case 16:
13872 if (regno > 7 || elno > 3)
13873 goto bad_scalar;
13874 return regno | (elno << 3);
5f4273c7 13875
5287ad62
JB
13876 case 32:
13877 if (regno > 15 || elno > 1)
13878 goto bad_scalar;
13879 return regno | (elno << 4);
13880
13881 default:
13882 bad_scalar:
dcbf9037 13883 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13884 }
13885
13886 return 0;
13887}
13888
13889/* Encode multiply / multiply-accumulate scalar instructions. */
13890
13891static void
13892neon_mul_mac (struct neon_type_el et, int ubit)
13893{
dcbf9037
JB
13894 unsigned scalar;
13895
13896 /* Give a more helpful error message if we have an invalid type. */
13897 if (et.type == NT_invtype)
13898 return;
5f4273c7 13899
dcbf9037 13900 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13901 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13902 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13903 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13904 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13905 inst.instruction |= LOW4 (scalar);
13906 inst.instruction |= HI1 (scalar) << 5;
13907 inst.instruction |= (et.type == NT_float) << 8;
13908 inst.instruction |= neon_logbits (et.size) << 20;
13909 inst.instruction |= (ubit != 0) << 24;
13910
88714cb8 13911 neon_dp_fixup (&inst);
5287ad62
JB
13912}
13913
13914static void
13915do_neon_mac_maybe_scalar (void)
13916{
037e8744
JB
13917 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13918 return;
13919
13920 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13921 return;
13922
5287ad62
JB
13923 if (inst.operands[2].isscalar)
13924 {
037e8744 13925 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13926 struct neon_type_el et = neon_check_type (3, rs,
13927 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13928 NEON_ENCODE (SCALAR, inst);
037e8744 13929 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13930 }
13931 else
428e3f1f
PB
13932 {
13933 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13934 affected if we specify unsigned args. */
13935 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13936 }
5287ad62
JB
13937}
13938
62f3b8c8
PB
13939static void
13940do_neon_fmac (void)
13941{
13942 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13943 return;
13944
13945 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13946 return;
13947
13948 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13949}
13950
5287ad62
JB
13951static void
13952do_neon_tst (void)
13953{
037e8744 13954 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13955 struct neon_type_el et = neon_check_type (3, rs,
13956 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13957 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13958}
13959
13960/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13961 same types as the MAC equivalents. The polynomial type for this instruction
13962 is encoded the same as the integer type. */
13963
13964static void
13965do_neon_mul (void)
13966{
037e8744
JB
13967 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13968 return;
13969
13970 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13971 return;
13972
5287ad62
JB
13973 if (inst.operands[2].isscalar)
13974 do_neon_mac_maybe_scalar ();
13975 else
dcbf9037 13976 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13977}
13978
13979static void
13980do_neon_qdmulh (void)
13981{
13982 if (inst.operands[2].isscalar)
13983 {
037e8744 13984 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13985 struct neon_type_el et = neon_check_type (3, rs,
13986 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13987 NEON_ENCODE (SCALAR, inst);
037e8744 13988 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13989 }
13990 else
13991 {
037e8744 13992 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13993 struct neon_type_el et = neon_check_type (3, rs,
13994 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13995 NEON_ENCODE (INTEGER, inst);
5287ad62 13996 /* The U bit (rounding) comes from bit mask. */
037e8744 13997 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13998 }
13999}
14000
14001static void
14002do_neon_fcmp_absolute (void)
14003{
037e8744 14004 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14005 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14006 /* Size field comes from bit mask. */
037e8744 14007 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
14008}
14009
14010static void
14011do_neon_fcmp_absolute_inv (void)
14012{
14013 neon_exchange_operands ();
14014 do_neon_fcmp_absolute ();
14015}
14016
14017static void
14018do_neon_step (void)
14019{
037e8744 14020 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14021 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 14022 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14023}
14024
14025static void
14026do_neon_abs_neg (void)
14027{
037e8744
JB
14028 enum neon_shape rs;
14029 struct neon_type_el et;
5f4273c7 14030
037e8744
JB
14031 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14032 return;
14033
14034 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14035 return;
14036
14037 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14038 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 14039
5287ad62
JB
14040 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14041 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14042 inst.instruction |= LOW4 (inst.operands[1].reg);
14043 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14044 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14045 inst.instruction |= (et.type == NT_float) << 10;
14046 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14047
88714cb8 14048 neon_dp_fixup (&inst);
5287ad62
JB
14049}
14050
14051static void
14052do_neon_sli (void)
14053{
037e8744 14054 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14055 struct neon_type_el et = neon_check_type (2, rs,
14056 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14057 int imm = inst.operands[2].imm;
14058 constraint (imm < 0 || (unsigned)imm >= et.size,
14059 _("immediate out of range for insert"));
037e8744 14060 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14061}
14062
14063static void
14064do_neon_sri (void)
14065{
037e8744 14066 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14067 struct neon_type_el et = neon_check_type (2, rs,
14068 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14069 int imm = inst.operands[2].imm;
14070 constraint (imm < 1 || (unsigned)imm > et.size,
14071 _("immediate out of range for insert"));
037e8744 14072 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
14073}
14074
14075static void
14076do_neon_qshlu_imm (void)
14077{
037e8744 14078 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14079 struct neon_type_el et = neon_check_type (2, rs,
14080 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14081 int imm = inst.operands[2].imm;
14082 constraint (imm < 0 || (unsigned)imm >= et.size,
14083 _("immediate out of range for shift"));
14084 /* Only encodes the 'U present' variant of the instruction.
14085 In this case, signed types have OP (bit 8) set to 0.
14086 Unsigned types have OP set to 1. */
14087 inst.instruction |= (et.type == NT_unsigned) << 8;
14088 /* The rest of the bits are the same as other immediate shifts. */
037e8744 14089 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14090}
14091
14092static void
14093do_neon_qmovn (void)
14094{
14095 struct neon_type_el et = neon_check_type (2, NS_DQ,
14096 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14097 /* Saturating move where operands can be signed or unsigned, and the
14098 destination has the same signedness. */
88714cb8 14099 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14100 if (et.type == NT_unsigned)
14101 inst.instruction |= 0xc0;
14102 else
14103 inst.instruction |= 0x80;
14104 neon_two_same (0, 1, et.size / 2);
14105}
14106
14107static void
14108do_neon_qmovun (void)
14109{
14110 struct neon_type_el et = neon_check_type (2, NS_DQ,
14111 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14112 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 14113 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14114 neon_two_same (0, 1, et.size / 2);
14115}
14116
14117static void
14118do_neon_rshift_sat_narrow (void)
14119{
14120 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14121 or unsigned. If operands are unsigned, results must also be unsigned. */
14122 struct neon_type_el et = neon_check_type (2, NS_DQI,
14123 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14124 int imm = inst.operands[2].imm;
14125 /* This gets the bounds check, size encoding and immediate bits calculation
14126 right. */
14127 et.size /= 2;
5f4273c7 14128
5287ad62
JB
14129 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14130 VQMOVN.I<size> <Dd>, <Qm>. */
14131 if (imm == 0)
14132 {
14133 inst.operands[2].present = 0;
14134 inst.instruction = N_MNEM_vqmovn;
14135 do_neon_qmovn ();
14136 return;
14137 }
5f4273c7 14138
5287ad62
JB
14139 constraint (imm < 1 || (unsigned)imm > et.size,
14140 _("immediate out of range"));
14141 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14142}
14143
14144static void
14145do_neon_rshift_sat_narrow_u (void)
14146{
14147 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14148 or unsigned. If operands are unsigned, results must also be unsigned. */
14149 struct neon_type_el et = neon_check_type (2, NS_DQI,
14150 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14151 int imm = inst.operands[2].imm;
14152 /* This gets the bounds check, size encoding and immediate bits calculation
14153 right. */
14154 et.size /= 2;
14155
14156 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14157 VQMOVUN.I<size> <Dd>, <Qm>. */
14158 if (imm == 0)
14159 {
14160 inst.operands[2].present = 0;
14161 inst.instruction = N_MNEM_vqmovun;
14162 do_neon_qmovun ();
14163 return;
14164 }
14165
14166 constraint (imm < 1 || (unsigned)imm > et.size,
14167 _("immediate out of range"));
14168 /* FIXME: The manual is kind of unclear about what value U should have in
14169 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14170 must be 1. */
14171 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14172}
14173
14174static void
14175do_neon_movn (void)
14176{
14177 struct neon_type_el et = neon_check_type (2, NS_DQ,
14178 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14179 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14180 neon_two_same (0, 1, et.size / 2);
14181}
14182
14183static void
14184do_neon_rshift_narrow (void)
14185{
14186 struct neon_type_el et = neon_check_type (2, NS_DQI,
14187 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14188 int imm = inst.operands[2].imm;
14189 /* This gets the bounds check, size encoding and immediate bits calculation
14190 right. */
14191 et.size /= 2;
5f4273c7 14192
5287ad62
JB
14193 /* If immediate is zero then we are a pseudo-instruction for
14194 VMOVN.I<size> <Dd>, <Qm> */
14195 if (imm == 0)
14196 {
14197 inst.operands[2].present = 0;
14198 inst.instruction = N_MNEM_vmovn;
14199 do_neon_movn ();
14200 return;
14201 }
5f4273c7 14202
5287ad62
JB
14203 constraint (imm < 1 || (unsigned)imm > et.size,
14204 _("immediate out of range for narrowing operation"));
14205 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14206}
14207
14208static void
14209do_neon_shll (void)
14210{
14211 /* FIXME: Type checking when lengthening. */
14212 struct neon_type_el et = neon_check_type (2, NS_QDI,
14213 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14214 unsigned imm = inst.operands[2].imm;
14215
14216 if (imm == et.size)
14217 {
14218 /* Maximum shift variant. */
88714cb8 14219 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14220 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14221 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14222 inst.instruction |= LOW4 (inst.operands[1].reg);
14223 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14224 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14225
88714cb8 14226 neon_dp_fixup (&inst);
5287ad62
JB
14227 }
14228 else
14229 {
14230 /* A more-specific type check for non-max versions. */
14231 et = neon_check_type (2, NS_QDI,
14232 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14233 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14234 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14235 }
14236}
14237
037e8744 14238/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14239 the current instruction is. */
14240
14241static int
14242neon_cvt_flavour (enum neon_shape rs)
14243{
037e8744
JB
14244#define CVT_VAR(C,X,Y) \
14245 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14246 if (et.type != NT_invtype) \
14247 { \
14248 inst.error = NULL; \
14249 return (C); \
5287ad62
JB
14250 }
14251 struct neon_type_el et;
037e8744
JB
14252 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14253 || rs == NS_FF) ? N_VFP : 0;
14254 /* The instruction versions which take an immediate take one register
14255 argument, which is extended to the width of the full register. Thus the
14256 "source" and "destination" registers must have the same width. Hack that
14257 here by making the size equal to the key (wider, in this case) operand. */
14258 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14259
5287ad62
JB
14260 CVT_VAR (0, N_S32, N_F32);
14261 CVT_VAR (1, N_U32, N_F32);
14262 CVT_VAR (2, N_F32, N_S32);
14263 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14264 /* Half-precision conversions. */
14265 CVT_VAR (4, N_F32, N_F16);
14266 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14267
037e8744 14268 whole_reg = N_VFP;
5f4273c7 14269
037e8744 14270 /* VFP instructions. */
8e79c3df
CM
14271 CVT_VAR (6, N_F32, N_F64);
14272 CVT_VAR (7, N_F64, N_F32);
14273 CVT_VAR (8, N_S32, N_F64 | key);
14274 CVT_VAR (9, N_U32, N_F64 | key);
14275 CVT_VAR (10, N_F64 | key, N_S32);
14276 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14277 /* VFP instructions with bitshift. */
8e79c3df
CM
14278 CVT_VAR (12, N_F32 | key, N_S16);
14279 CVT_VAR (13, N_F32 | key, N_U16);
14280 CVT_VAR (14, N_F64 | key, N_S16);
14281 CVT_VAR (15, N_F64 | key, N_U16);
14282 CVT_VAR (16, N_S16, N_F32 | key);
14283 CVT_VAR (17, N_U16, N_F32 | key);
14284 CVT_VAR (18, N_S16, N_F64 | key);
14285 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14286
5287ad62
JB
14287 return -1;
14288#undef CVT_VAR
14289}
14290
037e8744
JB
14291/* Neon-syntax VFP conversions. */
14292
5287ad62 14293static void
037e8744 14294do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14295{
037e8744 14296 const char *opname = 0;
5f4273c7 14297
037e8744 14298 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14299 {
037e8744
JB
14300 /* Conversions with immediate bitshift. */
14301 const char *enc[] =
14302 {
14303 "ftosls",
14304 "ftouls",
14305 "fsltos",
14306 "fultos",
14307 NULL,
14308 NULL,
8e79c3df
CM
14309 NULL,
14310 NULL,
037e8744
JB
14311 "ftosld",
14312 "ftould",
14313 "fsltod",
14314 "fultod",
14315 "fshtos",
14316 "fuhtos",
14317 "fshtod",
14318 "fuhtod",
14319 "ftoshs",
14320 "ftouhs",
14321 "ftoshd",
14322 "ftouhd"
14323 };
14324
14325 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14326 {
14327 opname = enc[flavour];
14328 constraint (inst.operands[0].reg != inst.operands[1].reg,
14329 _("operands 0 and 1 must be the same register"));
14330 inst.operands[1] = inst.operands[2];
14331 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14332 }
5287ad62
JB
14333 }
14334 else
14335 {
037e8744
JB
14336 /* Conversions without bitshift. */
14337 const char *enc[] =
14338 {
14339 "ftosis",
14340 "ftouis",
14341 "fsitos",
14342 "fuitos",
8e79c3df
CM
14343 "NULL",
14344 "NULL",
037e8744
JB
14345 "fcvtsd",
14346 "fcvtds",
14347 "ftosid",
14348 "ftouid",
14349 "fsitod",
14350 "fuitod"
14351 };
14352
14353 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14354 opname = enc[flavour];
14355 }
14356
14357 if (opname)
14358 do_vfp_nsyn_opcode (opname);
14359}
14360
14361static void
14362do_vfp_nsyn_cvtz (void)
14363{
14364 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14365 int flavour = neon_cvt_flavour (rs);
14366 const char *enc[] =
14367 {
14368 "ftosizs",
14369 "ftouizs",
14370 NULL,
14371 NULL,
14372 NULL,
14373 NULL,
8e79c3df
CM
14374 NULL,
14375 NULL,
037e8744
JB
14376 "ftosizd",
14377 "ftouizd"
14378 };
14379
14380 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14381 do_vfp_nsyn_opcode (enc[flavour]);
14382}
f31fef98 14383
037e8744 14384static void
e3e535bc 14385do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14386{
14387 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14388 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14389 int flavour = neon_cvt_flavour (rs);
14390
e3e535bc
NC
14391 /* PR11109: Handle round-to-zero for VCVT conversions. */
14392 if (round_to_zero
14393 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14394 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14395 && (rs == NS_FD || rs == NS_FF))
14396 {
14397 do_vfp_nsyn_cvtz ();
14398 return;
14399 }
14400
037e8744 14401 /* VFP rather than Neon conversions. */
8e79c3df 14402 if (flavour >= 6)
037e8744
JB
14403 {
14404 do_vfp_nsyn_cvt (rs, flavour);
14405 return;
14406 }
14407
14408 switch (rs)
14409 {
14410 case NS_DDI:
14411 case NS_QQI:
14412 {
35997600
NC
14413 unsigned immbits;
14414 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14415
037e8744
JB
14416 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14417 return;
14418
14419 /* Fixed-point conversion with #0 immediate is encoded as an
14420 integer conversion. */
14421 if (inst.operands[2].present && inst.operands[2].imm == 0)
14422 goto int_encode;
35997600 14423 immbits = 32 - inst.operands[2].imm;
88714cb8 14424 NEON_ENCODE (IMMED, inst);
037e8744
JB
14425 if (flavour != -1)
14426 inst.instruction |= enctab[flavour];
14427 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14428 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14429 inst.instruction |= LOW4 (inst.operands[1].reg);
14430 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14431 inst.instruction |= neon_quad (rs) << 6;
14432 inst.instruction |= 1 << 21;
14433 inst.instruction |= immbits << 16;
14434
88714cb8 14435 neon_dp_fixup (&inst);
037e8744
JB
14436 }
14437 break;
14438
14439 case NS_DD:
14440 case NS_QQ:
14441 int_encode:
14442 {
14443 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14444
88714cb8 14445 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14446
14447 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14448 return;
14449
14450 if (flavour != -1)
14451 inst.instruction |= enctab[flavour];
14452
14453 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14454 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14455 inst.instruction |= LOW4 (inst.operands[1].reg);
14456 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14457 inst.instruction |= neon_quad (rs) << 6;
14458 inst.instruction |= 2 << 18;
14459
88714cb8 14460 neon_dp_fixup (&inst);
037e8744
JB
14461 }
14462 break;
14463
8e79c3df
CM
14464 /* Half-precision conversions for Advanced SIMD -- neon. */
14465 case NS_QD:
14466 case NS_DQ:
14467
14468 if ((rs == NS_DQ)
14469 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14470 {
14471 as_bad (_("operand size must match register width"));
14472 break;
14473 }
14474
14475 if ((rs == NS_QD)
14476 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14477 {
14478 as_bad (_("operand size must match register width"));
14479 break;
14480 }
14481
14482 if (rs == NS_DQ)
14483 inst.instruction = 0x3b60600;
14484 else
14485 inst.instruction = 0x3b60700;
14486
14487 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14488 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14489 inst.instruction |= LOW4 (inst.operands[1].reg);
14490 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14491 neon_dp_fixup (&inst);
8e79c3df
CM
14492 break;
14493
037e8744
JB
14494 default:
14495 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14496 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14497 }
5287ad62
JB
14498}
14499
e3e535bc
NC
14500static void
14501do_neon_cvtr (void)
14502{
14503 do_neon_cvt_1 (FALSE);
14504}
14505
14506static void
14507do_neon_cvt (void)
14508{
14509 do_neon_cvt_1 (TRUE);
14510}
14511
8e79c3df
CM
14512static void
14513do_neon_cvtb (void)
14514{
14515 inst.instruction = 0xeb20a40;
14516
14517 /* The sizes are attached to the mnemonic. */
14518 if (inst.vectype.el[0].type != NT_invtype
14519 && inst.vectype.el[0].size == 16)
14520 inst.instruction |= 0x00010000;
14521
14522 /* Programmer's syntax: the sizes are attached to the operands. */
14523 else if (inst.operands[0].vectype.type != NT_invtype
14524 && inst.operands[0].vectype.size == 16)
14525 inst.instruction |= 0x00010000;
14526
14527 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14528 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14529 do_vfp_cond_or_thumb ();
14530}
14531
14532
14533static void
14534do_neon_cvtt (void)
14535{
14536 do_neon_cvtb ();
14537 inst.instruction |= 0x80;
14538}
14539
5287ad62
JB
14540static void
14541neon_move_immediate (void)
14542{
037e8744
JB
14543 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14544 struct neon_type_el et = neon_check_type (2, rs,
14545 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14546 unsigned immlo, immhi = 0, immbits;
c96612cc 14547 int op, cmode, float_p;
5287ad62 14548
037e8744
JB
14549 constraint (et.type == NT_invtype,
14550 _("operand size must be specified for immediate VMOV"));
14551
5287ad62
JB
14552 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14553 op = (inst.instruction & (1 << 5)) != 0;
14554
14555 immlo = inst.operands[1].imm;
14556 if (inst.operands[1].regisimm)
14557 immhi = inst.operands[1].reg;
14558
14559 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14560 _("immediate has bits set outside the operand size"));
14561
c96612cc
JB
14562 float_p = inst.operands[1].immisfloat;
14563
14564 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14565 et.size, et.type)) == FAIL)
5287ad62
JB
14566 {
14567 /* Invert relevant bits only. */
14568 neon_invert_size (&immlo, &immhi, et.size);
14569 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14570 with one or the other; those cases are caught by
14571 neon_cmode_for_move_imm. */
14572 op = !op;
c96612cc
JB
14573 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14574 &op, et.size, et.type)) == FAIL)
5287ad62 14575 {
dcbf9037 14576 first_error (_("immediate out of range"));
5287ad62
JB
14577 return;
14578 }
14579 }
14580
14581 inst.instruction &= ~(1 << 5);
14582 inst.instruction |= op << 5;
14583
14584 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14585 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14586 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14587 inst.instruction |= cmode << 8;
14588
14589 neon_write_immbits (immbits);
14590}
14591
14592static void
14593do_neon_mvn (void)
14594{
14595 if (inst.operands[1].isreg)
14596 {
037e8744 14597 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14598
88714cb8 14599 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14600 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14601 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14602 inst.instruction |= LOW4 (inst.operands[1].reg);
14603 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14604 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14605 }
14606 else
14607 {
88714cb8 14608 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14609 neon_move_immediate ();
14610 }
14611
88714cb8 14612 neon_dp_fixup (&inst);
5287ad62
JB
14613}
14614
14615/* Encode instructions of form:
14616
14617 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14618 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14619
14620static void
14621neon_mixed_length (struct neon_type_el et, unsigned size)
14622{
14623 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14624 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14625 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14626 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14627 inst.instruction |= LOW4 (inst.operands[2].reg);
14628 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14629 inst.instruction |= (et.type == NT_unsigned) << 24;
14630 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14631
88714cb8 14632 neon_dp_fixup (&inst);
5287ad62
JB
14633}
14634
14635static void
14636do_neon_dyadic_long (void)
14637{
14638 /* FIXME: Type checking for lengthening op. */
14639 struct neon_type_el et = neon_check_type (3, NS_QDD,
14640 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14641 neon_mixed_length (et, et.size);
14642}
14643
14644static void
14645do_neon_abal (void)
14646{
14647 struct neon_type_el et = neon_check_type (3, NS_QDD,
14648 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14649 neon_mixed_length (et, et.size);
14650}
14651
14652static void
14653neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14654{
14655 if (inst.operands[2].isscalar)
14656 {
dcbf9037
JB
14657 struct neon_type_el et = neon_check_type (3, NS_QDS,
14658 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14659 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14660 neon_mul_mac (et, et.type == NT_unsigned);
14661 }
14662 else
14663 {
14664 struct neon_type_el et = neon_check_type (3, NS_QDD,
14665 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14666 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14667 neon_mixed_length (et, et.size);
14668 }
14669}
14670
14671static void
14672do_neon_mac_maybe_scalar_long (void)
14673{
14674 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14675}
14676
14677static void
14678do_neon_dyadic_wide (void)
14679{
14680 struct neon_type_el et = neon_check_type (3, NS_QQD,
14681 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14682 neon_mixed_length (et, et.size);
14683}
14684
14685static void
14686do_neon_dyadic_narrow (void)
14687{
14688 struct neon_type_el et = neon_check_type (3, NS_QDD,
14689 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14690 /* Operand sign is unimportant, and the U bit is part of the opcode,
14691 so force the operand type to integer. */
14692 et.type = NT_integer;
5287ad62
JB
14693 neon_mixed_length (et, et.size / 2);
14694}
14695
14696static void
14697do_neon_mul_sat_scalar_long (void)
14698{
14699 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14700}
14701
14702static void
14703do_neon_vmull (void)
14704{
14705 if (inst.operands[2].isscalar)
14706 do_neon_mac_maybe_scalar_long ();
14707 else
14708 {
14709 struct neon_type_el et = neon_check_type (3, NS_QDD,
14710 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14711 if (et.type == NT_poly)
88714cb8 14712 NEON_ENCODE (POLY, inst);
5287ad62 14713 else
88714cb8 14714 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14715 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14716 zero. Should be OK as-is. */
14717 neon_mixed_length (et, et.size);
14718 }
14719}
14720
14721static void
14722do_neon_ext (void)
14723{
037e8744 14724 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14725 struct neon_type_el et = neon_check_type (3, rs,
14726 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14727 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14728
14729 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14730 _("shift out of range"));
5287ad62
JB
14731 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14732 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14733 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14734 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14735 inst.instruction |= LOW4 (inst.operands[2].reg);
14736 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14737 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14738 inst.instruction |= imm << 8;
5f4273c7 14739
88714cb8 14740 neon_dp_fixup (&inst);
5287ad62
JB
14741}
14742
14743static void
14744do_neon_rev (void)
14745{
037e8744 14746 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14747 struct neon_type_el et = neon_check_type (2, rs,
14748 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14749 unsigned op = (inst.instruction >> 7) & 3;
14750 /* N (width of reversed regions) is encoded as part of the bitmask. We
14751 extract it here to check the elements to be reversed are smaller.
14752 Otherwise we'd get a reserved instruction. */
14753 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14754 gas_assert (elsize != 0);
5287ad62
JB
14755 constraint (et.size >= elsize,
14756 _("elements must be smaller than reversal region"));
037e8744 14757 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14758}
14759
14760static void
14761do_neon_dup (void)
14762{
14763 if (inst.operands[1].isscalar)
14764 {
037e8744 14765 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14766 struct neon_type_el et = neon_check_type (2, rs,
14767 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14768 unsigned sizebits = et.size >> 3;
dcbf9037 14769 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14770 int logsize = neon_logbits (et.size);
dcbf9037 14771 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14772
14773 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14774 return;
14775
88714cb8 14776 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14777 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14778 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14779 inst.instruction |= LOW4 (dm);
14780 inst.instruction |= HI1 (dm) << 5;
037e8744 14781 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14782 inst.instruction |= x << 17;
14783 inst.instruction |= sizebits << 16;
5f4273c7 14784
88714cb8 14785 neon_dp_fixup (&inst);
5287ad62
JB
14786 }
14787 else
14788 {
037e8744
JB
14789 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14790 struct neon_type_el et = neon_check_type (2, rs,
14791 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14792 /* Duplicate ARM register to lanes of vector. */
88714cb8 14793 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14794 switch (et.size)
14795 {
14796 case 8: inst.instruction |= 0x400000; break;
14797 case 16: inst.instruction |= 0x000020; break;
14798 case 32: inst.instruction |= 0x000000; break;
14799 default: break;
14800 }
14801 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14802 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14803 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14804 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14805 /* The encoding for this instruction is identical for the ARM and Thumb
14806 variants, except for the condition field. */
037e8744 14807 do_vfp_cond_or_thumb ();
5287ad62
JB
14808 }
14809}
14810
14811/* VMOV has particularly many variations. It can be one of:
14812 0. VMOV<c><q> <Qd>, <Qm>
14813 1. VMOV<c><q> <Dd>, <Dm>
14814 (Register operations, which are VORR with Rm = Rn.)
14815 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14816 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14817 (Immediate loads.)
14818 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14819 (ARM register to scalar.)
14820 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14821 (Two ARM registers to vector.)
14822 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14823 (Scalar to ARM register.)
14824 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14825 (Vector to two ARM registers.)
037e8744
JB
14826 8. VMOV.F32 <Sd>, <Sm>
14827 9. VMOV.F64 <Dd>, <Dm>
14828 (VFP register moves.)
14829 10. VMOV.F32 <Sd>, #imm
14830 11. VMOV.F64 <Dd>, #imm
14831 (VFP float immediate load.)
14832 12. VMOV <Rd>, <Sm>
14833 (VFP single to ARM reg.)
14834 13. VMOV <Sd>, <Rm>
14835 (ARM reg to VFP single.)
14836 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14837 (Two ARM regs to two VFP singles.)
14838 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14839 (Two VFP singles to two ARM regs.)
5f4273c7 14840
037e8744
JB
14841 These cases can be disambiguated using neon_select_shape, except cases 1/9
14842 and 3/11 which depend on the operand type too.
5f4273c7 14843
5287ad62 14844 All the encoded bits are hardcoded by this function.
5f4273c7 14845
b7fc2769
JB
14846 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14847 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14848
5287ad62 14849 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14850 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14851
14852static void
14853do_neon_mov (void)
14854{
037e8744
JB
14855 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14856 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14857 NS_NULL);
14858 struct neon_type_el et;
14859 const char *ldconst = 0;
5287ad62 14860
037e8744 14861 switch (rs)
5287ad62 14862 {
037e8744
JB
14863 case NS_DD: /* case 1/9. */
14864 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14865 /* It is not an error here if no type is given. */
14866 inst.error = NULL;
14867 if (et.type == NT_float && et.size == 64)
5287ad62 14868 {
037e8744
JB
14869 do_vfp_nsyn_opcode ("fcpyd");
14870 break;
5287ad62 14871 }
037e8744 14872 /* fall through. */
5287ad62 14873
037e8744
JB
14874 case NS_QQ: /* case 0/1. */
14875 {
14876 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14877 return;
14878 /* The architecture manual I have doesn't explicitly state which
14879 value the U bit should have for register->register moves, but
14880 the equivalent VORR instruction has U = 0, so do that. */
14881 inst.instruction = 0x0200110;
14882 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14884 inst.instruction |= LOW4 (inst.operands[1].reg);
14885 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14886 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14887 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14888 inst.instruction |= neon_quad (rs) << 6;
14889
88714cb8 14890 neon_dp_fixup (&inst);
037e8744
JB
14891 }
14892 break;
5f4273c7 14893
037e8744
JB
14894 case NS_DI: /* case 3/11. */
14895 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14896 inst.error = NULL;
14897 if (et.type == NT_float && et.size == 64)
5287ad62 14898 {
037e8744
JB
14899 /* case 11 (fconstd). */
14900 ldconst = "fconstd";
14901 goto encode_fconstd;
5287ad62 14902 }
037e8744
JB
14903 /* fall through. */
14904
14905 case NS_QI: /* case 2/3. */
14906 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14907 return;
14908 inst.instruction = 0x0800010;
14909 neon_move_immediate ();
88714cb8 14910 neon_dp_fixup (&inst);
5287ad62 14911 break;
5f4273c7 14912
037e8744
JB
14913 case NS_SR: /* case 4. */
14914 {
14915 unsigned bcdebits = 0;
91d6fa6a 14916 int logsize;
037e8744
JB
14917 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14918 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14919
91d6fa6a
NC
14920 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14921 logsize = neon_logbits (et.size);
14922
037e8744
JB
14923 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14924 _(BAD_FPU));
14925 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14926 && et.size != 32, _(BAD_FPU));
14927 constraint (et.type == NT_invtype, _("bad type for scalar"));
14928 constraint (x >= 64 / et.size, _("scalar index out of range"));
14929
14930 switch (et.size)
14931 {
14932 case 8: bcdebits = 0x8; break;
14933 case 16: bcdebits = 0x1; break;
14934 case 32: bcdebits = 0x0; break;
14935 default: ;
14936 }
14937
14938 bcdebits |= x << logsize;
14939
14940 inst.instruction = 0xe000b10;
14941 do_vfp_cond_or_thumb ();
14942 inst.instruction |= LOW4 (dn) << 16;
14943 inst.instruction |= HI1 (dn) << 7;
14944 inst.instruction |= inst.operands[1].reg << 12;
14945 inst.instruction |= (bcdebits & 3) << 5;
14946 inst.instruction |= (bcdebits >> 2) << 21;
14947 }
14948 break;
5f4273c7 14949
037e8744 14950 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14951 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14952 _(BAD_FPU));
b7fc2769 14953
037e8744
JB
14954 inst.instruction = 0xc400b10;
14955 do_vfp_cond_or_thumb ();
14956 inst.instruction |= LOW4 (inst.operands[0].reg);
14957 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14958 inst.instruction |= inst.operands[1].reg << 12;
14959 inst.instruction |= inst.operands[2].reg << 16;
14960 break;
5f4273c7 14961
037e8744
JB
14962 case NS_RS: /* case 6. */
14963 {
91d6fa6a 14964 unsigned logsize;
037e8744
JB
14965 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14966 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14967 unsigned abcdebits = 0;
14968
91d6fa6a
NC
14969 et = neon_check_type (2, NS_NULL,
14970 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14971 logsize = neon_logbits (et.size);
14972
037e8744
JB
14973 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14974 _(BAD_FPU));
14975 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14976 && et.size != 32, _(BAD_FPU));
14977 constraint (et.type == NT_invtype, _("bad type for scalar"));
14978 constraint (x >= 64 / et.size, _("scalar index out of range"));
14979
14980 switch (et.size)
14981 {
14982 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14983 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14984 case 32: abcdebits = 0x00; break;
14985 default: ;
14986 }
14987
14988 abcdebits |= x << logsize;
14989 inst.instruction = 0xe100b10;
14990 do_vfp_cond_or_thumb ();
14991 inst.instruction |= LOW4 (dn) << 16;
14992 inst.instruction |= HI1 (dn) << 7;
14993 inst.instruction |= inst.operands[0].reg << 12;
14994 inst.instruction |= (abcdebits & 3) << 5;
14995 inst.instruction |= (abcdebits >> 2) << 21;
14996 }
14997 break;
5f4273c7 14998
037e8744
JB
14999 case NS_RRD: /* case 7 (fmrrd). */
15000 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15001 _(BAD_FPU));
15002
15003 inst.instruction = 0xc500b10;
15004 do_vfp_cond_or_thumb ();
15005 inst.instruction |= inst.operands[0].reg << 12;
15006 inst.instruction |= inst.operands[1].reg << 16;
15007 inst.instruction |= LOW4 (inst.operands[2].reg);
15008 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15009 break;
5f4273c7 15010
037e8744
JB
15011 case NS_FF: /* case 8 (fcpys). */
15012 do_vfp_nsyn_opcode ("fcpys");
15013 break;
5f4273c7 15014
037e8744
JB
15015 case NS_FI: /* case 10 (fconsts). */
15016 ldconst = "fconsts";
15017 encode_fconstd:
15018 if (is_quarter_float (inst.operands[1].imm))
5287ad62 15019 {
037e8744
JB
15020 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15021 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
15022 }
15023 else
037e8744
JB
15024 first_error (_("immediate out of range"));
15025 break;
5f4273c7 15026
037e8744
JB
15027 case NS_RF: /* case 12 (fmrs). */
15028 do_vfp_nsyn_opcode ("fmrs");
15029 break;
5f4273c7 15030
037e8744
JB
15031 case NS_FR: /* case 13 (fmsr). */
15032 do_vfp_nsyn_opcode ("fmsr");
15033 break;
5f4273c7 15034
037e8744
JB
15035 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15036 (one of which is a list), but we have parsed four. Do some fiddling to
15037 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15038 expect. */
15039 case NS_RRFF: /* case 14 (fmrrs). */
15040 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15041 _("VFP registers must be adjacent"));
15042 inst.operands[2].imm = 2;
15043 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15044 do_vfp_nsyn_opcode ("fmrrs");
15045 break;
5f4273c7 15046
037e8744
JB
15047 case NS_FFRR: /* case 15 (fmsrr). */
15048 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15049 _("VFP registers must be adjacent"));
15050 inst.operands[1] = inst.operands[2];
15051 inst.operands[2] = inst.operands[3];
15052 inst.operands[0].imm = 2;
15053 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15054 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 15055 break;
5f4273c7 15056
5287ad62
JB
15057 default:
15058 abort ();
15059 }
15060}
15061
15062static void
15063do_neon_rshift_round_imm (void)
15064{
037e8744 15065 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15066 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15067 int imm = inst.operands[2].imm;
15068
15069 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15070 if (imm == 0)
15071 {
15072 inst.operands[2].present = 0;
15073 do_neon_mov ();
15074 return;
15075 }
15076
15077 constraint (imm < 1 || (unsigned)imm > et.size,
15078 _("immediate out of range for shift"));
037e8744 15079 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
15080 et.size - imm);
15081}
15082
15083static void
15084do_neon_movl (void)
15085{
15086 struct neon_type_el et = neon_check_type (2, NS_QD,
15087 N_EQK | N_DBL, N_SU_32 | N_KEY);
15088 unsigned sizebits = et.size >> 3;
15089 inst.instruction |= sizebits << 19;
15090 neon_two_same (0, et.type == NT_unsigned, -1);
15091}
15092
15093static void
15094do_neon_trn (void)
15095{
037e8744 15096 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15097 struct neon_type_el et = neon_check_type (2, rs,
15098 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 15099 NEON_ENCODE (INTEGER, inst);
037e8744 15100 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15101}
15102
15103static void
15104do_neon_zip_uzp (void)
15105{
037e8744 15106 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15107 struct neon_type_el et = neon_check_type (2, rs,
15108 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15109 if (rs == NS_DD && et.size == 32)
15110 {
15111 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15112 inst.instruction = N_MNEM_vtrn;
15113 do_neon_trn ();
15114 return;
15115 }
037e8744 15116 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15117}
15118
15119static void
15120do_neon_sat_abs_neg (void)
15121{
037e8744 15122 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15123 struct neon_type_el et = neon_check_type (2, rs,
15124 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15125 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15126}
15127
15128static void
15129do_neon_pair_long (void)
15130{
037e8744 15131 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15132 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15133 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15134 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15135 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15136}
15137
15138static void
15139do_neon_recip_est (void)
15140{
037e8744 15141 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15142 struct neon_type_el et = neon_check_type (2, rs,
15143 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15144 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15145 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15146}
15147
15148static void
15149do_neon_cls (void)
15150{
037e8744 15151 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15152 struct neon_type_el et = neon_check_type (2, rs,
15153 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15154 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15155}
15156
15157static void
15158do_neon_clz (void)
15159{
037e8744 15160 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15161 struct neon_type_el et = neon_check_type (2, rs,
15162 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15163 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15164}
15165
15166static void
15167do_neon_cnt (void)
15168{
037e8744 15169 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15170 struct neon_type_el et = neon_check_type (2, rs,
15171 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15172 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15173}
15174
15175static void
15176do_neon_swp (void)
15177{
037e8744
JB
15178 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15179 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15180}
15181
15182static void
15183do_neon_tbl_tbx (void)
15184{
15185 unsigned listlenbits;
dcbf9037 15186 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15187
5287ad62
JB
15188 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15189 {
dcbf9037 15190 first_error (_("bad list length for table lookup"));
5287ad62
JB
15191 return;
15192 }
5f4273c7 15193
5287ad62
JB
15194 listlenbits = inst.operands[1].imm - 1;
15195 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15196 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15197 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15198 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15199 inst.instruction |= LOW4 (inst.operands[2].reg);
15200 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15201 inst.instruction |= listlenbits << 8;
5f4273c7 15202
88714cb8 15203 neon_dp_fixup (&inst);
5287ad62
JB
15204}
15205
15206static void
15207do_neon_ldm_stm (void)
15208{
15209 /* P, U and L bits are part of bitmask. */
15210 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15211 unsigned offsetbits = inst.operands[1].imm * 2;
15212
037e8744
JB
15213 if (inst.operands[1].issingle)
15214 {
15215 do_vfp_nsyn_ldm_stm (is_dbmode);
15216 return;
15217 }
15218
5287ad62
JB
15219 constraint (is_dbmode && !inst.operands[0].writeback,
15220 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15221
15222 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15223 _("register list must contain at least 1 and at most 16 "
15224 "registers"));
15225
15226 inst.instruction |= inst.operands[0].reg << 16;
15227 inst.instruction |= inst.operands[0].writeback << 21;
15228 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15229 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15230
15231 inst.instruction |= offsetbits;
5f4273c7 15232
037e8744 15233 do_vfp_cond_or_thumb ();
5287ad62
JB
15234}
15235
15236static void
15237do_neon_ldr_str (void)
15238{
5287ad62 15239 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15240
6844b2c2
MGD
15241 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15242 And is UNPREDICTABLE in thumb mode. */
15243 if (!is_ldr
15244 && inst.operands[1].reg == REG_PC
15245 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15246 {
15247 if (!thumb_mode && warn_on_deprecated)
15248 as_warn (_("Use of PC here is deprecated"));
15249 else
15250 inst.error = _("Use of PC here is UNPREDICTABLE");
15251 }
15252
037e8744
JB
15253 if (inst.operands[0].issingle)
15254 {
cd2f129f
JB
15255 if (is_ldr)
15256 do_vfp_nsyn_opcode ("flds");
15257 else
15258 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15259 }
15260 else
5287ad62 15261 {
cd2f129f
JB
15262 if (is_ldr)
15263 do_vfp_nsyn_opcode ("fldd");
5287ad62 15264 else
cd2f129f 15265 do_vfp_nsyn_opcode ("fstd");
5287ad62 15266 }
5287ad62
JB
15267}
15268
15269/* "interleave" version also handles non-interleaving register VLD1/VST1
15270 instructions. */
15271
15272static void
15273do_neon_ld_st_interleave (void)
15274{
037e8744 15275 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15276 N_8 | N_16 | N_32 | N_64);
15277 unsigned alignbits = 0;
15278 unsigned idx;
15279 /* The bits in this table go:
15280 0: register stride of one (0) or two (1)
15281 1,2: register list length, minus one (1, 2, 3, 4).
15282 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15283 We use -1 for invalid entries. */
15284 const int typetable[] =
15285 {
15286 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15287 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15288 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15289 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15290 };
15291 int typebits;
15292
dcbf9037
JB
15293 if (et.type == NT_invtype)
15294 return;
15295
5287ad62
JB
15296 if (inst.operands[1].immisalign)
15297 switch (inst.operands[1].imm >> 8)
15298 {
15299 case 64: alignbits = 1; break;
15300 case 128:
e23c0ad8
JZ
15301 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15302 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15303 goto bad_alignment;
15304 alignbits = 2;
15305 break;
15306 case 256:
e23c0ad8 15307 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15308 goto bad_alignment;
15309 alignbits = 3;
15310 break;
15311 default:
15312 bad_alignment:
dcbf9037 15313 first_error (_("bad alignment"));
5287ad62
JB
15314 return;
15315 }
15316
15317 inst.instruction |= alignbits << 4;
15318 inst.instruction |= neon_logbits (et.size) << 6;
15319
15320 /* Bits [4:6] of the immediate in a list specifier encode register stride
15321 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15322 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15323 up the right value for "type" in a table based on this value and the given
15324 list style, then stick it back. */
15325 idx = ((inst.operands[0].imm >> 4) & 7)
15326 | (((inst.instruction >> 8) & 3) << 3);
15327
15328 typebits = typetable[idx];
5f4273c7 15329
5287ad62
JB
15330 constraint (typebits == -1, _("bad list type for instruction"));
15331
15332 inst.instruction &= ~0xf00;
15333 inst.instruction |= typebits << 8;
15334}
15335
15336/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15337 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15338 otherwise. The variable arguments are a list of pairs of legal (size, align)
15339 values, terminated with -1. */
15340
15341static int
15342neon_alignment_bit (int size, int align, int *do_align, ...)
15343{
15344 va_list ap;
15345 int result = FAIL, thissize, thisalign;
5f4273c7 15346
5287ad62
JB
15347 if (!inst.operands[1].immisalign)
15348 {
15349 *do_align = 0;
15350 return SUCCESS;
15351 }
5f4273c7 15352
5287ad62
JB
15353 va_start (ap, do_align);
15354
15355 do
15356 {
15357 thissize = va_arg (ap, int);
15358 if (thissize == -1)
15359 break;
15360 thisalign = va_arg (ap, int);
15361
15362 if (size == thissize && align == thisalign)
15363 result = SUCCESS;
15364 }
15365 while (result != SUCCESS);
15366
15367 va_end (ap);
15368
15369 if (result == SUCCESS)
15370 *do_align = 1;
15371 else
dcbf9037 15372 first_error (_("unsupported alignment for instruction"));
5f4273c7 15373
5287ad62
JB
15374 return result;
15375}
15376
15377static void
15378do_neon_ld_st_lane (void)
15379{
037e8744 15380 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15381 int align_good, do_align = 0;
15382 int logsize = neon_logbits (et.size);
15383 int align = inst.operands[1].imm >> 8;
15384 int n = (inst.instruction >> 8) & 3;
15385 int max_el = 64 / et.size;
5f4273c7 15386
dcbf9037
JB
15387 if (et.type == NT_invtype)
15388 return;
5f4273c7 15389
5287ad62
JB
15390 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15391 _("bad list length"));
15392 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15393 _("scalar index out of range"));
15394 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15395 && et.size == 8,
15396 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15397
5287ad62
JB
15398 switch (n)
15399 {
15400 case 0: /* VLD1 / VST1. */
15401 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15402 32, 32, -1);
15403 if (align_good == FAIL)
15404 return;
15405 if (do_align)
15406 {
15407 unsigned alignbits = 0;
15408 switch (et.size)
15409 {
15410 case 16: alignbits = 0x1; break;
15411 case 32: alignbits = 0x3; break;
15412 default: ;
15413 }
15414 inst.instruction |= alignbits << 4;
15415 }
15416 break;
15417
15418 case 1: /* VLD2 / VST2. */
15419 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15420 32, 64, -1);
15421 if (align_good == FAIL)
15422 return;
15423 if (do_align)
15424 inst.instruction |= 1 << 4;
15425 break;
15426
15427 case 2: /* VLD3 / VST3. */
15428 constraint (inst.operands[1].immisalign,
15429 _("can't use alignment with this instruction"));
15430 break;
15431
15432 case 3: /* VLD4 / VST4. */
15433 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15434 16, 64, 32, 64, 32, 128, -1);
15435 if (align_good == FAIL)
15436 return;
15437 if (do_align)
15438 {
15439 unsigned alignbits = 0;
15440 switch (et.size)
15441 {
15442 case 8: alignbits = 0x1; break;
15443 case 16: alignbits = 0x1; break;
15444 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15445 default: ;
15446 }
15447 inst.instruction |= alignbits << 4;
15448 }
15449 break;
15450
15451 default: ;
15452 }
15453
15454 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15455 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15456 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15457
5287ad62
JB
15458 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15459 inst.instruction |= logsize << 10;
15460}
15461
15462/* Encode single n-element structure to all lanes VLD<n> instructions. */
15463
15464static void
15465do_neon_ld_dup (void)
15466{
037e8744 15467 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15468 int align_good, do_align = 0;
15469
dcbf9037
JB
15470 if (et.type == NT_invtype)
15471 return;
15472
5287ad62
JB
15473 switch ((inst.instruction >> 8) & 3)
15474 {
15475 case 0: /* VLD1. */
9c2799c2 15476 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15477 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15478 &do_align, 16, 16, 32, 32, -1);
15479 if (align_good == FAIL)
15480 return;
15481 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15482 {
15483 case 1: break;
15484 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15485 default: first_error (_("bad list length")); return;
5287ad62
JB
15486 }
15487 inst.instruction |= neon_logbits (et.size) << 6;
15488 break;
15489
15490 case 1: /* VLD2. */
15491 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15492 &do_align, 8, 16, 16, 32, 32, 64, -1);
15493 if (align_good == FAIL)
15494 return;
15495 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15496 _("bad list length"));
15497 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15498 inst.instruction |= 1 << 5;
15499 inst.instruction |= neon_logbits (et.size) << 6;
15500 break;
15501
15502 case 2: /* VLD3. */
15503 constraint (inst.operands[1].immisalign,
15504 _("can't use alignment with this instruction"));
15505 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15506 _("bad list length"));
15507 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15508 inst.instruction |= 1 << 5;
15509 inst.instruction |= neon_logbits (et.size) << 6;
15510 break;
15511
15512 case 3: /* VLD4. */
15513 {
15514 int align = inst.operands[1].imm >> 8;
15515 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15516 16, 64, 32, 64, 32, 128, -1);
15517 if (align_good == FAIL)
15518 return;
15519 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15520 _("bad list length"));
15521 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15522 inst.instruction |= 1 << 5;
15523 if (et.size == 32 && align == 128)
15524 inst.instruction |= 0x3 << 6;
15525 else
15526 inst.instruction |= neon_logbits (et.size) << 6;
15527 }
15528 break;
15529
15530 default: ;
15531 }
15532
15533 inst.instruction |= do_align << 4;
15534}
15535
15536/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15537 apart from bits [11:4]. */
15538
15539static void
15540do_neon_ldx_stx (void)
15541{
b1a769ed
DG
15542 if (inst.operands[1].isreg)
15543 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15544
5287ad62
JB
15545 switch (NEON_LANE (inst.operands[0].imm))
15546 {
15547 case NEON_INTERLEAVE_LANES:
88714cb8 15548 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15549 do_neon_ld_st_interleave ();
15550 break;
5f4273c7 15551
5287ad62 15552 case NEON_ALL_LANES:
88714cb8 15553 NEON_ENCODE (DUP, inst);
5287ad62
JB
15554 do_neon_ld_dup ();
15555 break;
5f4273c7 15556
5287ad62 15557 default:
88714cb8 15558 NEON_ENCODE (LANE, inst);
5287ad62
JB
15559 do_neon_ld_st_lane ();
15560 }
15561
15562 /* L bit comes from bit mask. */
15563 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15564 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15565 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15566
5287ad62
JB
15567 if (inst.operands[1].postind)
15568 {
15569 int postreg = inst.operands[1].imm & 0xf;
15570 constraint (!inst.operands[1].immisreg,
15571 _("post-index must be a register"));
15572 constraint (postreg == 0xd || postreg == 0xf,
15573 _("bad register for post-index"));
15574 inst.instruction |= postreg;
15575 }
15576 else if (inst.operands[1].writeback)
15577 {
15578 inst.instruction |= 0xd;
15579 }
15580 else
5f4273c7
NC
15581 inst.instruction |= 0xf;
15582
5287ad62
JB
15583 if (thumb_mode)
15584 inst.instruction |= 0xf9000000;
15585 else
15586 inst.instruction |= 0xf4000000;
15587}
5287ad62
JB
15588\f
15589/* Overall per-instruction processing. */
15590
15591/* We need to be able to fix up arbitrary expressions in some statements.
15592 This is so that we can handle symbols that are an arbitrary distance from
15593 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15594 which returns part of an address in a form which will be valid for
15595 a data instruction. We do this by pushing the expression into a symbol
15596 in the expr_section, and creating a fix for that. */
15597
15598static void
15599fix_new_arm (fragS * frag,
15600 int where,
15601 short int size,
15602 expressionS * exp,
15603 int pc_rel,
15604 int reloc)
15605{
15606 fixS * new_fix;
15607
15608 switch (exp->X_op)
15609 {
15610 case O_constant:
6e7ce2cd
PB
15611 if (pc_rel)
15612 {
15613 /* Create an absolute valued symbol, so we have something to
15614 refer to in the object file. Unfortunately for us, gas's
15615 generic expression parsing will already have folded out
15616 any use of .set foo/.type foo %function that may have
15617 been used to set type information of the target location,
15618 that's being specified symbolically. We have to presume
15619 the user knows what they are doing. */
15620 char name[16 + 8];
15621 symbolS *symbol;
15622
15623 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15624
15625 symbol = symbol_find_or_make (name);
15626 S_SET_SEGMENT (symbol, absolute_section);
15627 symbol_set_frag (symbol, &zero_address_frag);
15628 S_SET_VALUE (symbol, exp->X_add_number);
15629 exp->X_op = O_symbol;
15630 exp->X_add_symbol = symbol;
15631 exp->X_add_number = 0;
15632 }
15633 /* FALLTHROUGH */
5287ad62
JB
15634 case O_symbol:
15635 case O_add:
15636 case O_subtract:
21d799b5
NC
15637 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15638 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15639 break;
15640
15641 default:
21d799b5
NC
15642 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15643 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15644 break;
15645 }
15646
15647 /* Mark whether the fix is to a THUMB instruction, or an ARM
15648 instruction. */
15649 new_fix->tc_fix_data = thumb_mode;
15650}
15651
15652/* Create a frg for an instruction requiring relaxation. */
15653static void
15654output_relax_insn (void)
15655{
15656 char * to;
15657 symbolS *sym;
0110f2b8
PB
15658 int offset;
15659
6e1cb1a6
PB
15660 /* The size of the instruction is unknown, so tie the debug info to the
15661 start of the instruction. */
15662 dwarf2_emit_insn (0);
6e1cb1a6 15663
0110f2b8
PB
15664 switch (inst.reloc.exp.X_op)
15665 {
15666 case O_symbol:
15667 sym = inst.reloc.exp.X_add_symbol;
15668 offset = inst.reloc.exp.X_add_number;
15669 break;
15670 case O_constant:
15671 sym = NULL;
15672 offset = inst.reloc.exp.X_add_number;
15673 break;
15674 default:
15675 sym = make_expr_symbol (&inst.reloc.exp);
15676 offset = 0;
15677 break;
15678 }
15679 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15680 inst.relax, sym, offset, NULL/*offset, opcode*/);
15681 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15682}
15683
15684/* Write a 32-bit thumb instruction to buf. */
15685static void
15686put_thumb32_insn (char * buf, unsigned long insn)
15687{
15688 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15689 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15690}
15691
b99bd4ef 15692static void
c19d1205 15693output_inst (const char * str)
b99bd4ef 15694{
c19d1205 15695 char * to = NULL;
b99bd4ef 15696
c19d1205 15697 if (inst.error)
b99bd4ef 15698 {
c19d1205 15699 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15700 return;
15701 }
5f4273c7
NC
15702 if (inst.relax)
15703 {
15704 output_relax_insn ();
0110f2b8 15705 return;
5f4273c7 15706 }
c19d1205
ZW
15707 if (inst.size == 0)
15708 return;
b99bd4ef 15709
c19d1205 15710 to = frag_more (inst.size);
8dc2430f
NC
15711 /* PR 9814: Record the thumb mode into the current frag so that we know
15712 what type of NOP padding to use, if necessary. We override any previous
15713 setting so that if the mode has changed then the NOPS that we use will
15714 match the encoding of the last instruction in the frag. */
cd000bff 15715 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15716
15717 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15718 {
9c2799c2 15719 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15720 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15721 }
c19d1205 15722 else if (inst.size > INSN_SIZE)
b99bd4ef 15723 {
9c2799c2 15724 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15725 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15726 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15727 }
c19d1205
ZW
15728 else
15729 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15730
c19d1205
ZW
15731 if (inst.reloc.type != BFD_RELOC_UNUSED)
15732 fix_new_arm (frag_now, to - frag_now->fr_literal,
15733 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15734 inst.reloc.type);
b99bd4ef 15735
c19d1205 15736 dwarf2_emit_insn (inst.size);
c19d1205 15737}
b99bd4ef 15738
e07e6e58
NC
15739static char *
15740output_it_inst (int cond, int mask, char * to)
15741{
15742 unsigned long instruction = 0xbf00;
15743
15744 mask &= 0xf;
15745 instruction |= mask;
15746 instruction |= cond << 4;
15747
15748 if (to == NULL)
15749 {
15750 to = frag_more (2);
15751#ifdef OBJ_ELF
15752 dwarf2_emit_insn (2);
15753#endif
15754 }
15755
15756 md_number_to_chars (to, instruction, 2);
15757
15758 return to;
15759}
15760
c19d1205
ZW
15761/* Tag values used in struct asm_opcode's tag field. */
15762enum opcode_tag
15763{
15764 OT_unconditional, /* Instruction cannot be conditionalized.
15765 The ARM condition field is still 0xE. */
15766 OT_unconditionalF, /* Instruction cannot be conditionalized
15767 and carries 0xF in its ARM condition field. */
15768 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15769 OT_csuffixF, /* Some forms of the instruction take a conditional
15770 suffix, others place 0xF where the condition field
15771 would be. */
c19d1205
ZW
15772 OT_cinfix3, /* Instruction takes a conditional infix,
15773 beginning at character index 3. (In
15774 unified mode, it becomes a suffix.) */
088fa78e
KH
15775 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15776 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15777 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15778 character index 3, even in unified mode. Used for
15779 legacy instructions where suffix and infix forms
15780 may be ambiguous. */
c19d1205 15781 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15782 suffix or an infix at character index 3. */
c19d1205
ZW
15783 OT_odd_infix_unc, /* This is the unconditional variant of an
15784 instruction that takes a conditional infix
15785 at an unusual position. In unified mode,
15786 this variant will accept a suffix. */
15787 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15788 are the conditional variants of instructions that
15789 take conditional infixes in unusual positions.
15790 The infix appears at character index
15791 (tag - OT_odd_infix_0). These are not accepted
15792 in unified mode. */
15793};
b99bd4ef 15794
c19d1205
ZW
15795/* Subroutine of md_assemble, responsible for looking up the primary
15796 opcode from the mnemonic the user wrote. STR points to the
15797 beginning of the mnemonic.
15798
15799 This is not simply a hash table lookup, because of conditional
15800 variants. Most instructions have conditional variants, which are
15801 expressed with a _conditional affix_ to the mnemonic. If we were
15802 to encode each conditional variant as a literal string in the opcode
15803 table, it would have approximately 20,000 entries.
15804
15805 Most mnemonics take this affix as a suffix, and in unified syntax,
15806 'most' is upgraded to 'all'. However, in the divided syntax, some
15807 instructions take the affix as an infix, notably the s-variants of
15808 the arithmetic instructions. Of those instructions, all but six
15809 have the infix appear after the third character of the mnemonic.
15810
15811 Accordingly, the algorithm for looking up primary opcodes given
15812 an identifier is:
15813
15814 1. Look up the identifier in the opcode table.
15815 If we find a match, go to step U.
15816
15817 2. Look up the last two characters of the identifier in the
15818 conditions table. If we find a match, look up the first N-2
15819 characters of the identifier in the opcode table. If we
15820 find a match, go to step CE.
15821
15822 3. Look up the fourth and fifth characters of the identifier in
15823 the conditions table. If we find a match, extract those
15824 characters from the identifier, and look up the remaining
15825 characters in the opcode table. If we find a match, go
15826 to step CM.
15827
15828 4. Fail.
15829
15830 U. Examine the tag field of the opcode structure, in case this is
15831 one of the six instructions with its conditional infix in an
15832 unusual place. If it is, the tag tells us where to find the
15833 infix; look it up in the conditions table and set inst.cond
15834 accordingly. Otherwise, this is an unconditional instruction.
15835 Again set inst.cond accordingly. Return the opcode structure.
15836
15837 CE. Examine the tag field to make sure this is an instruction that
15838 should receive a conditional suffix. If it is not, fail.
15839 Otherwise, set inst.cond from the suffix we already looked up,
15840 and return the opcode structure.
15841
15842 CM. Examine the tag field to make sure this is an instruction that
15843 should receive a conditional infix after the third character.
15844 If it is not, fail. Otherwise, undo the edits to the current
15845 line of input and proceed as for case CE. */
15846
15847static const struct asm_opcode *
15848opcode_lookup (char **str)
15849{
15850 char *end, *base;
15851 char *affix;
15852 const struct asm_opcode *opcode;
15853 const struct asm_cond *cond;
e3cb604e 15854 char save[2];
c19d1205
ZW
15855
15856 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15857 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15858 for (base = end = *str; *end != '\0'; end++)
721a8186 15859 if (*end == ' ' || *end == '.')
c19d1205 15860 break;
b99bd4ef 15861
c19d1205 15862 if (end == base)
c921be7d 15863 return NULL;
b99bd4ef 15864
5287ad62 15865 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15866 if (end[0] == '.')
b99bd4ef 15867 {
5287ad62 15868 int offset = 2;
5f4273c7 15869
267d2029
JB
15870 /* The .w and .n suffixes are only valid if the unified syntax is in
15871 use. */
15872 if (unified_syntax && end[1] == 'w')
c19d1205 15873 inst.size_req = 4;
267d2029 15874 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15875 inst.size_req = 2;
15876 else
5287ad62
JB
15877 offset = 0;
15878
15879 inst.vectype.elems = 0;
15880
15881 *str = end + offset;
b99bd4ef 15882
5f4273c7 15883 if (end[offset] == '.')
5287ad62 15884 {
267d2029
JB
15885 /* See if we have a Neon type suffix (possible in either unified or
15886 non-unified ARM syntax mode). */
dcbf9037 15887 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15888 return NULL;
5287ad62
JB
15889 }
15890 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15891 return NULL;
b99bd4ef 15892 }
c19d1205
ZW
15893 else
15894 *str = end;
b99bd4ef 15895
c19d1205 15896 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15897 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15898 end - base);
c19d1205 15899 if (opcode)
b99bd4ef 15900 {
c19d1205
ZW
15901 /* step U */
15902 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15903 {
c19d1205
ZW
15904 inst.cond = COND_ALWAYS;
15905 return opcode;
b99bd4ef 15906 }
b99bd4ef 15907
278df34e 15908 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15909 as_warn (_("conditional infixes are deprecated in unified syntax"));
15910 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15911 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15912 gas_assert (cond);
b99bd4ef 15913
c19d1205
ZW
15914 inst.cond = cond->value;
15915 return opcode;
15916 }
b99bd4ef 15917
c19d1205
ZW
15918 /* Cannot have a conditional suffix on a mnemonic of less than two
15919 characters. */
15920 if (end - base < 3)
c921be7d 15921 return NULL;
b99bd4ef 15922
c19d1205
ZW
15923 /* Look for suffixed mnemonic. */
15924 affix = end - 2;
21d799b5
NC
15925 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15926 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15927 affix - base);
c19d1205
ZW
15928 if (opcode && cond)
15929 {
15930 /* step CE */
15931 switch (opcode->tag)
15932 {
e3cb604e
PB
15933 case OT_cinfix3_legacy:
15934 /* Ignore conditional suffixes matched on infix only mnemonics. */
15935 break;
15936
c19d1205 15937 case OT_cinfix3:
088fa78e 15938 case OT_cinfix3_deprecated:
c19d1205
ZW
15939 case OT_odd_infix_unc:
15940 if (!unified_syntax)
e3cb604e 15941 return 0;
c19d1205
ZW
15942 /* else fall through */
15943
15944 case OT_csuffix:
037e8744 15945 case OT_csuffixF:
c19d1205
ZW
15946 case OT_csuf_or_in3:
15947 inst.cond = cond->value;
15948 return opcode;
15949
15950 case OT_unconditional:
15951 case OT_unconditionalF:
dfa9f0d5 15952 if (thumb_mode)
c921be7d 15953 inst.cond = cond->value;
dfa9f0d5
PB
15954 else
15955 {
c921be7d 15956 /* Delayed diagnostic. */
dfa9f0d5
PB
15957 inst.error = BAD_COND;
15958 inst.cond = COND_ALWAYS;
15959 }
c19d1205 15960 return opcode;
b99bd4ef 15961
c19d1205 15962 default:
c921be7d 15963 return NULL;
c19d1205
ZW
15964 }
15965 }
b99bd4ef 15966
c19d1205
ZW
15967 /* Cannot have a usual-position infix on a mnemonic of less than
15968 six characters (five would be a suffix). */
15969 if (end - base < 6)
c921be7d 15970 return NULL;
b99bd4ef 15971
c19d1205
ZW
15972 /* Look for infixed mnemonic in the usual position. */
15973 affix = base + 3;
21d799b5 15974 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15975 if (!cond)
c921be7d 15976 return NULL;
e3cb604e
PB
15977
15978 memcpy (save, affix, 2);
15979 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15980 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15981 (end - base) - 2);
e3cb604e
PB
15982 memmove (affix + 2, affix, (end - affix) - 2);
15983 memcpy (affix, save, 2);
15984
088fa78e
KH
15985 if (opcode
15986 && (opcode->tag == OT_cinfix3
15987 || opcode->tag == OT_cinfix3_deprecated
15988 || opcode->tag == OT_csuf_or_in3
15989 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15990 {
c921be7d 15991 /* Step CM. */
278df34e 15992 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15993 && (opcode->tag == OT_cinfix3
15994 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15995 as_warn (_("conditional infixes are deprecated in unified syntax"));
15996
15997 inst.cond = cond->value;
15998 return opcode;
b99bd4ef
NC
15999 }
16000
c921be7d 16001 return NULL;
b99bd4ef
NC
16002}
16003
e07e6e58
NC
16004/* This function generates an initial IT instruction, leaving its block
16005 virtually open for the new instructions. Eventually,
16006 the mask will be updated by now_it_add_mask () each time
16007 a new instruction needs to be included in the IT block.
16008 Finally, the block is closed with close_automatic_it_block ().
16009 The block closure can be requested either from md_assemble (),
16010 a tencode (), or due to a label hook. */
16011
16012static void
16013new_automatic_it_block (int cond)
16014{
16015 now_it.state = AUTOMATIC_IT_BLOCK;
16016 now_it.mask = 0x18;
16017 now_it.cc = cond;
16018 now_it.block_length = 1;
cd000bff 16019 mapping_state (MAP_THUMB);
e07e6e58
NC
16020 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16021}
16022
16023/* Close an automatic IT block.
16024 See comments in new_automatic_it_block (). */
16025
16026static void
16027close_automatic_it_block (void)
16028{
16029 now_it.mask = 0x10;
16030 now_it.block_length = 0;
16031}
16032
16033/* Update the mask of the current automatically-generated IT
16034 instruction. See comments in new_automatic_it_block (). */
16035
16036static void
16037now_it_add_mask (int cond)
16038{
16039#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16040#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16041 | ((bitvalue) << (nbit)))
e07e6e58 16042 const int resulting_bit = (cond & 1);
c921be7d 16043
e07e6e58
NC
16044 now_it.mask &= 0xf;
16045 now_it.mask = SET_BIT_VALUE (now_it.mask,
16046 resulting_bit,
16047 (5 - now_it.block_length));
16048 now_it.mask = SET_BIT_VALUE (now_it.mask,
16049 1,
16050 ((5 - now_it.block_length) - 1) );
16051 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16052
16053#undef CLEAR_BIT
16054#undef SET_BIT_VALUE
e07e6e58
NC
16055}
16056
16057/* The IT blocks handling machinery is accessed through the these functions:
16058 it_fsm_pre_encode () from md_assemble ()
16059 set_it_insn_type () optional, from the tencode functions
16060 set_it_insn_type_last () ditto
16061 in_it_block () ditto
16062 it_fsm_post_encode () from md_assemble ()
16063 force_automatic_it_block_close () from label habdling functions
16064
16065 Rationale:
16066 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16067 initializing the IT insn type with a generic initial value depending
16068 on the inst.condition.
16069 2) During the tencode function, two things may happen:
16070 a) The tencode function overrides the IT insn type by
16071 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16072 b) The tencode function queries the IT block state by
16073 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16074
16075 Both set_it_insn_type and in_it_block run the internal FSM state
16076 handling function (handle_it_state), because: a) setting the IT insn
16077 type may incur in an invalid state (exiting the function),
16078 and b) querying the state requires the FSM to be updated.
16079 Specifically we want to avoid creating an IT block for conditional
16080 branches, so it_fsm_pre_encode is actually a guess and we can't
16081 determine whether an IT block is required until the tencode () routine
16082 has decided what type of instruction this actually it.
16083 Because of this, if set_it_insn_type and in_it_block have to be used,
16084 set_it_insn_type has to be called first.
16085
16086 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16087 determines the insn IT type depending on the inst.cond code.
16088 When a tencode () routine encodes an instruction that can be
16089 either outside an IT block, or, in the case of being inside, has to be
16090 the last one, set_it_insn_type_last () will determine the proper
16091 IT instruction type based on the inst.cond code. Otherwise,
16092 set_it_insn_type can be called for overriding that logic or
16093 for covering other cases.
16094
16095 Calling handle_it_state () may not transition the IT block state to
16096 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16097 still queried. Instead, if the FSM determines that the state should
16098 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16099 after the tencode () function: that's what it_fsm_post_encode () does.
16100
16101 Since in_it_block () calls the state handling function to get an
16102 updated state, an error may occur (due to invalid insns combination).
16103 In that case, inst.error is set.
16104 Therefore, inst.error has to be checked after the execution of
16105 the tencode () routine.
16106
16107 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16108 any pending state change (if any) that didn't take place in
16109 handle_it_state () as explained above. */
16110
16111static void
16112it_fsm_pre_encode (void)
16113{
16114 if (inst.cond != COND_ALWAYS)
16115 inst.it_insn_type = INSIDE_IT_INSN;
16116 else
16117 inst.it_insn_type = OUTSIDE_IT_INSN;
16118
16119 now_it.state_handled = 0;
16120}
16121
16122/* IT state FSM handling function. */
16123
16124static int
16125handle_it_state (void)
16126{
16127 now_it.state_handled = 1;
16128
16129 switch (now_it.state)
16130 {
16131 case OUTSIDE_IT_BLOCK:
16132 switch (inst.it_insn_type)
16133 {
16134 case OUTSIDE_IT_INSN:
16135 break;
16136
16137 case INSIDE_IT_INSN:
16138 case INSIDE_IT_LAST_INSN:
16139 if (thumb_mode == 0)
16140 {
c921be7d 16141 if (unified_syntax
e07e6e58
NC
16142 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16143 as_tsktsk (_("Warning: conditional outside an IT block"\
16144 " for Thumb."));
16145 }
16146 else
16147 {
16148 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16149 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16150 {
16151 /* Automatically generate the IT instruction. */
16152 new_automatic_it_block (inst.cond);
16153 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16154 close_automatic_it_block ();
16155 }
16156 else
16157 {
16158 inst.error = BAD_OUT_IT;
16159 return FAIL;
16160 }
16161 }
16162 break;
16163
16164 case IF_INSIDE_IT_LAST_INSN:
16165 case NEUTRAL_IT_INSN:
16166 break;
16167
16168 case IT_INSN:
16169 now_it.state = MANUAL_IT_BLOCK;
16170 now_it.block_length = 0;
16171 break;
16172 }
16173 break;
16174
16175 case AUTOMATIC_IT_BLOCK:
16176 /* Three things may happen now:
16177 a) We should increment current it block size;
16178 b) We should close current it block (closing insn or 4 insns);
16179 c) We should close current it block and start a new one (due
16180 to incompatible conditions or
16181 4 insns-length block reached). */
16182
16183 switch (inst.it_insn_type)
16184 {
16185 case OUTSIDE_IT_INSN:
16186 /* The closure of the block shall happen immediatelly,
16187 so any in_it_block () call reports the block as closed. */
16188 force_automatic_it_block_close ();
16189 break;
16190
16191 case INSIDE_IT_INSN:
16192 case INSIDE_IT_LAST_INSN:
16193 case IF_INSIDE_IT_LAST_INSN:
16194 now_it.block_length++;
16195
16196 if (now_it.block_length > 4
16197 || !now_it_compatible (inst.cond))
16198 {
16199 force_automatic_it_block_close ();
16200 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16201 new_automatic_it_block (inst.cond);
16202 }
16203 else
16204 {
16205 now_it_add_mask (inst.cond);
16206 }
16207
16208 if (now_it.state == AUTOMATIC_IT_BLOCK
16209 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16210 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16211 close_automatic_it_block ();
16212 break;
16213
16214 case NEUTRAL_IT_INSN:
16215 now_it.block_length++;
16216
16217 if (now_it.block_length > 4)
16218 force_automatic_it_block_close ();
16219 else
16220 now_it_add_mask (now_it.cc & 1);
16221 break;
16222
16223 case IT_INSN:
16224 close_automatic_it_block ();
16225 now_it.state = MANUAL_IT_BLOCK;
16226 break;
16227 }
16228 break;
16229
16230 case MANUAL_IT_BLOCK:
16231 {
16232 /* Check conditional suffixes. */
16233 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16234 int is_last;
16235 now_it.mask <<= 1;
16236 now_it.mask &= 0x1f;
16237 is_last = (now_it.mask == 0x10);
16238
16239 switch (inst.it_insn_type)
16240 {
16241 case OUTSIDE_IT_INSN:
16242 inst.error = BAD_NOT_IT;
16243 return FAIL;
16244
16245 case INSIDE_IT_INSN:
16246 if (cond != inst.cond)
16247 {
16248 inst.error = BAD_IT_COND;
16249 return FAIL;
16250 }
16251 break;
16252
16253 case INSIDE_IT_LAST_INSN:
16254 case IF_INSIDE_IT_LAST_INSN:
16255 if (cond != inst.cond)
16256 {
16257 inst.error = BAD_IT_COND;
16258 return FAIL;
16259 }
16260 if (!is_last)
16261 {
16262 inst.error = BAD_BRANCH;
16263 return FAIL;
16264 }
16265 break;
16266
16267 case NEUTRAL_IT_INSN:
16268 /* The BKPT instruction is unconditional even in an IT block. */
16269 break;
16270
16271 case IT_INSN:
16272 inst.error = BAD_IT_IT;
16273 return FAIL;
16274 }
16275 }
16276 break;
16277 }
16278
16279 return SUCCESS;
16280}
16281
16282static void
16283it_fsm_post_encode (void)
16284{
16285 int is_last;
16286
16287 if (!now_it.state_handled)
16288 handle_it_state ();
16289
16290 is_last = (now_it.mask == 0x10);
16291 if (is_last)
16292 {
16293 now_it.state = OUTSIDE_IT_BLOCK;
16294 now_it.mask = 0;
16295 }
16296}
16297
16298static void
16299force_automatic_it_block_close (void)
16300{
16301 if (now_it.state == AUTOMATIC_IT_BLOCK)
16302 {
16303 close_automatic_it_block ();
16304 now_it.state = OUTSIDE_IT_BLOCK;
16305 now_it.mask = 0;
16306 }
16307}
16308
16309static int
16310in_it_block (void)
16311{
16312 if (!now_it.state_handled)
16313 handle_it_state ();
16314
16315 return now_it.state != OUTSIDE_IT_BLOCK;
16316}
16317
c19d1205
ZW
16318void
16319md_assemble (char *str)
b99bd4ef 16320{
c19d1205
ZW
16321 char *p = str;
16322 const struct asm_opcode * opcode;
b99bd4ef 16323
c19d1205
ZW
16324 /* Align the previous label if needed. */
16325 if (last_label_seen != NULL)
b99bd4ef 16326 {
c19d1205
ZW
16327 symbol_set_frag (last_label_seen, frag_now);
16328 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16329 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16330 }
16331
c19d1205
ZW
16332 memset (&inst, '\0', sizeof (inst));
16333 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16334
c19d1205
ZW
16335 opcode = opcode_lookup (&p);
16336 if (!opcode)
b99bd4ef 16337 {
c19d1205 16338 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16339 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16340 if (! create_register_alias (str, p)
16341 && ! create_neon_reg_alias (str, p))
c19d1205 16342 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16343
b99bd4ef
NC
16344 return;
16345 }
16346
278df34e 16347 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16348 as_warn (_("s suffix on comparison instruction is deprecated"));
16349
037e8744
JB
16350 /* The value which unconditional instructions should have in place of the
16351 condition field. */
16352 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16353
c19d1205 16354 if (thumb_mode)
b99bd4ef 16355 {
e74cfd16 16356 arm_feature_set variant;
8f06b2d8
PB
16357
16358 variant = cpu_variant;
16359 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16360 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16361 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16362 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16363 if (!opcode->tvariant
16364 || (thumb_mode == 1
16365 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16366 {
bf3eeda7 16367 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16368 return;
16369 }
c19d1205
ZW
16370 if (inst.cond != COND_ALWAYS && !unified_syntax
16371 && opcode->tencode != do_t_branch)
b99bd4ef 16372 {
c19d1205 16373 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16374 return;
16375 }
16376
752d5da4 16377 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16378 {
7e806470 16379 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16380 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16381 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16382 {
16383 /* Two things are addressed here.
16384 1) Implicit require narrow instructions on Thumb-1.
16385 This avoids relaxation accidentally introducing Thumb-2
16386 instructions.
16387 2) Reject wide instructions in non Thumb-2 cores. */
16388 if (inst.size_req == 0)
16389 inst.size_req = 2;
16390 else if (inst.size_req == 4)
16391 {
bf3eeda7 16392 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16393 return;
16394 }
16395 }
076d447c
PB
16396 }
16397
c19d1205
ZW
16398 inst.instruction = opcode->tvalue;
16399
5be8be5d 16400 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16401 {
16402 /* Prepare the it_insn_type for those encodings that don't set
16403 it. */
16404 it_fsm_pre_encode ();
c19d1205 16405
e07e6e58
NC
16406 opcode->tencode ();
16407
16408 it_fsm_post_encode ();
16409 }
e27ec89e 16410
0110f2b8 16411 if (!(inst.error || inst.relax))
b99bd4ef 16412 {
9c2799c2 16413 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16414 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16415 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16416 {
c19d1205 16417 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16418 return;
16419 }
16420 }
076d447c
PB
16421
16422 /* Something has gone badly wrong if we try to relax a fixed size
16423 instruction. */
9c2799c2 16424 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16425
e74cfd16
PB
16426 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16427 *opcode->tvariant);
ee065d83 16428 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16429 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16430 anything other than bl/blx and v6-M instructions.
ee065d83 16431 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16432 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16433 || inst.relax)
e07e6e58
NC
16434 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16435 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16436 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16437 arm_ext_v6t2);
cd000bff 16438
88714cb8
DG
16439 check_neon_suffixes;
16440
cd000bff 16441 if (!inst.error)
c877a2f2
NC
16442 {
16443 mapping_state (MAP_THUMB);
16444 }
c19d1205 16445 }
3e9e4fcf 16446 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16447 {
845b51d6
PB
16448 bfd_boolean is_bx;
16449
16450 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16451 is_bx = (opcode->aencode == do_bx);
16452
c19d1205 16453 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16454 if (!(is_bx && fix_v4bx)
16455 && !(opcode->avariant &&
16456 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16457 {
bf3eeda7 16458 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16459 return;
b99bd4ef 16460 }
c19d1205 16461 if (inst.size_req)
b99bd4ef 16462 {
c19d1205
ZW
16463 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16464 return;
b99bd4ef
NC
16465 }
16466
c19d1205
ZW
16467 inst.instruction = opcode->avalue;
16468 if (opcode->tag == OT_unconditionalF)
16469 inst.instruction |= 0xF << 28;
16470 else
16471 inst.instruction |= inst.cond << 28;
16472 inst.size = INSN_SIZE;
5be8be5d 16473 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16474 {
16475 it_fsm_pre_encode ();
16476 opcode->aencode ();
16477 it_fsm_post_encode ();
16478 }
ee065d83
PB
16479 /* Arm mode bx is marked as both v4T and v5 because it's still required
16480 on a hypothetical non-thumb v5 core. */
845b51d6 16481 if (is_bx)
e74cfd16 16482 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16483 else
e74cfd16
PB
16484 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16485 *opcode->avariant);
88714cb8
DG
16486
16487 check_neon_suffixes;
16488
cd000bff 16489 if (!inst.error)
c877a2f2
NC
16490 {
16491 mapping_state (MAP_ARM);
16492 }
b99bd4ef 16493 }
3e9e4fcf
JB
16494 else
16495 {
16496 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16497 "-- `%s'"), str);
16498 return;
16499 }
c19d1205
ZW
16500 output_inst (str);
16501}
b99bd4ef 16502
e07e6e58
NC
16503static void
16504check_it_blocks_finished (void)
16505{
16506#ifdef OBJ_ELF
16507 asection *sect;
16508
16509 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16510 if (seg_info (sect)->tc_segment_info_data.current_it.state
16511 == MANUAL_IT_BLOCK)
16512 {
16513 as_warn (_("section '%s' finished with an open IT block."),
16514 sect->name);
16515 }
16516#else
16517 if (now_it.state == MANUAL_IT_BLOCK)
16518 as_warn (_("file finished with an open IT block."));
16519#endif
16520}
16521
c19d1205
ZW
16522/* Various frobbings of labels and their addresses. */
16523
16524void
16525arm_start_line_hook (void)
16526{
16527 last_label_seen = NULL;
b99bd4ef
NC
16528}
16529
c19d1205
ZW
16530void
16531arm_frob_label (symbolS * sym)
b99bd4ef 16532{
c19d1205 16533 last_label_seen = sym;
b99bd4ef 16534
c19d1205 16535 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16536
c19d1205
ZW
16537#if defined OBJ_COFF || defined OBJ_ELF
16538 ARM_SET_INTERWORK (sym, support_interwork);
16539#endif
b99bd4ef 16540
e07e6e58
NC
16541 force_automatic_it_block_close ();
16542
5f4273c7 16543 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16544 as Thumb functions. This is because these labels, whilst
16545 they exist inside Thumb code, are not the entry points for
16546 possible ARM->Thumb calls. Also, these labels can be used
16547 as part of a computed goto or switch statement. eg gcc
16548 can generate code that looks like this:
b99bd4ef 16549
c19d1205
ZW
16550 ldr r2, [pc, .Laaa]
16551 lsl r3, r3, #2
16552 ldr r2, [r3, r2]
16553 mov pc, r2
b99bd4ef 16554
c19d1205
ZW
16555 .Lbbb: .word .Lxxx
16556 .Lccc: .word .Lyyy
16557 ..etc...
16558 .Laaa: .word Lbbb
b99bd4ef 16559
c19d1205
ZW
16560 The first instruction loads the address of the jump table.
16561 The second instruction converts a table index into a byte offset.
16562 The third instruction gets the jump address out of the table.
16563 The fourth instruction performs the jump.
b99bd4ef 16564
c19d1205
ZW
16565 If the address stored at .Laaa is that of a symbol which has the
16566 Thumb_Func bit set, then the linker will arrange for this address
16567 to have the bottom bit set, which in turn would mean that the
16568 address computation performed by the third instruction would end
16569 up with the bottom bit set. Since the ARM is capable of unaligned
16570 word loads, the instruction would then load the incorrect address
16571 out of the jump table, and chaos would ensue. */
16572 if (label_is_thumb_function_name
16573 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16574 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16575 {
c19d1205
ZW
16576 /* When the address of a Thumb function is taken the bottom
16577 bit of that address should be set. This will allow
16578 interworking between Arm and Thumb functions to work
16579 correctly. */
b99bd4ef 16580
c19d1205 16581 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16582
c19d1205 16583 label_is_thumb_function_name = FALSE;
b99bd4ef 16584 }
07a53e5c 16585
07a53e5c 16586 dwarf2_emit_label (sym);
b99bd4ef
NC
16587}
16588
c921be7d 16589bfd_boolean
c19d1205 16590arm_data_in_code (void)
b99bd4ef 16591{
c19d1205 16592 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16593 {
c19d1205
ZW
16594 *input_line_pointer = '/';
16595 input_line_pointer += 5;
16596 *input_line_pointer = 0;
c921be7d 16597 return TRUE;
b99bd4ef
NC
16598 }
16599
c921be7d 16600 return FALSE;
b99bd4ef
NC
16601}
16602
c19d1205
ZW
16603char *
16604arm_canonicalize_symbol_name (char * name)
b99bd4ef 16605{
c19d1205 16606 int len;
b99bd4ef 16607
c19d1205
ZW
16608 if (thumb_mode && (len = strlen (name)) > 5
16609 && streq (name + len - 5, "/data"))
16610 *(name + len - 5) = 0;
b99bd4ef 16611
c19d1205 16612 return name;
b99bd4ef 16613}
c19d1205
ZW
16614\f
16615/* Table of all register names defined by default. The user can
16616 define additional names with .req. Note that all register names
16617 should appear in both upper and lowercase variants. Some registers
16618 also have mixed-case names. */
b99bd4ef 16619
dcbf9037 16620#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16621#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16622#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16623#define REGSET(p,t) \
16624 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16625 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16626 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16627 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16628#define REGSETH(p,t) \
16629 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16630 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16631 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16632 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16633#define REGSET2(p,t) \
16634 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16635 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16636 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16637 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16638#define SPLRBANK(base,bank,t) \
16639 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16640 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16641 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16642 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16643 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16644 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16645
c19d1205 16646static const struct reg_entry reg_names[] =
7ed4c4c5 16647{
c19d1205
ZW
16648 /* ARM integer registers. */
16649 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16650
c19d1205
ZW
16651 /* ATPCS synonyms. */
16652 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16653 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16654 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16655
c19d1205
ZW
16656 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16657 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16658 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16659
c19d1205
ZW
16660 /* Well-known aliases. */
16661 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16662 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16663
16664 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16665 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16666
16667 /* Coprocessor numbers. */
16668 REGSET(p, CP), REGSET(P, CP),
16669
16670 /* Coprocessor register numbers. The "cr" variants are for backward
16671 compatibility. */
16672 REGSET(c, CN), REGSET(C, CN),
16673 REGSET(cr, CN), REGSET(CR, CN),
16674
90ec0d68
MGD
16675 /* ARM banked registers. */
16676 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16677 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16678 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16679 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16680 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16681 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16682 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16683
16684 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16685 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16686 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16687 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16688 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16689 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16690 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16691 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16692
16693 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16694 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16695 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16696 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16697 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16698 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16699 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16700 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16701 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16702
c19d1205
ZW
16703 /* FPA registers. */
16704 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16705 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16706
16707 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16708 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16709
16710 /* VFP SP registers. */
5287ad62
JB
16711 REGSET(s,VFS), REGSET(S,VFS),
16712 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16713
16714 /* VFP DP Registers. */
5287ad62
JB
16715 REGSET(d,VFD), REGSET(D,VFD),
16716 /* Extra Neon DP registers. */
16717 REGSETH(d,VFD), REGSETH(D,VFD),
16718
16719 /* Neon QP registers. */
16720 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16721
16722 /* VFP control registers. */
16723 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16724 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16725 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16726 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16727 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16728 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16729
16730 /* Maverick DSP coprocessor registers. */
16731 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16732 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16733
16734 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16735 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16736 REGDEF(dspsc,0,DSPSC),
16737
16738 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16739 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16740 REGDEF(DSPSC,0,DSPSC),
16741
16742 /* iWMMXt data registers - p0, c0-15. */
16743 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16744
16745 /* iWMMXt control registers - p1, c0-3. */
16746 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16747 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16748 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16749 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16750
16751 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16752 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16753 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16754 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16755 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16756
16757 /* XScale accumulator registers. */
16758 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16759};
16760#undef REGDEF
16761#undef REGNUM
16762#undef REGSET
7ed4c4c5 16763
c19d1205
ZW
16764/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16765 within psr_required_here. */
16766static const struct asm_psr psrs[] =
16767{
16768 /* Backward compatibility notation. Note that "all" is no longer
16769 truly all possible PSR bits. */
16770 {"all", PSR_c | PSR_f},
16771 {"flg", PSR_f},
16772 {"ctl", PSR_c},
16773
16774 /* Individual flags. */
16775 {"f", PSR_f},
16776 {"c", PSR_c},
16777 {"x", PSR_x},
16778 {"s", PSR_s},
59b42a0d 16779
c19d1205
ZW
16780 /* Combinations of flags. */
16781 {"fs", PSR_f | PSR_s},
16782 {"fx", PSR_f | PSR_x},
16783 {"fc", PSR_f | PSR_c},
16784 {"sf", PSR_s | PSR_f},
16785 {"sx", PSR_s | PSR_x},
16786 {"sc", PSR_s | PSR_c},
16787 {"xf", PSR_x | PSR_f},
16788 {"xs", PSR_x | PSR_s},
16789 {"xc", PSR_x | PSR_c},
16790 {"cf", PSR_c | PSR_f},
16791 {"cs", PSR_c | PSR_s},
16792 {"cx", PSR_c | PSR_x},
16793 {"fsx", PSR_f | PSR_s | PSR_x},
16794 {"fsc", PSR_f | PSR_s | PSR_c},
16795 {"fxs", PSR_f | PSR_x | PSR_s},
16796 {"fxc", PSR_f | PSR_x | PSR_c},
16797 {"fcs", PSR_f | PSR_c | PSR_s},
16798 {"fcx", PSR_f | PSR_c | PSR_x},
16799 {"sfx", PSR_s | PSR_f | PSR_x},
16800 {"sfc", PSR_s | PSR_f | PSR_c},
16801 {"sxf", PSR_s | PSR_x | PSR_f},
16802 {"sxc", PSR_s | PSR_x | PSR_c},
16803 {"scf", PSR_s | PSR_c | PSR_f},
16804 {"scx", PSR_s | PSR_c | PSR_x},
16805 {"xfs", PSR_x | PSR_f | PSR_s},
16806 {"xfc", PSR_x | PSR_f | PSR_c},
16807 {"xsf", PSR_x | PSR_s | PSR_f},
16808 {"xsc", PSR_x | PSR_s | PSR_c},
16809 {"xcf", PSR_x | PSR_c | PSR_f},
16810 {"xcs", PSR_x | PSR_c | PSR_s},
16811 {"cfs", PSR_c | PSR_f | PSR_s},
16812 {"cfx", PSR_c | PSR_f | PSR_x},
16813 {"csf", PSR_c | PSR_s | PSR_f},
16814 {"csx", PSR_c | PSR_s | PSR_x},
16815 {"cxf", PSR_c | PSR_x | PSR_f},
16816 {"cxs", PSR_c | PSR_x | PSR_s},
16817 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16818 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16819 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16820 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16821 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16822 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16823 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16824 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16825 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16826 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16827 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16828 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16829 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16830 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16831 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16832 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16833 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16834 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16835 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16836 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16837 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16838 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16839 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16840 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16841};
16842
62b3e311
PB
16843/* Table of V7M psr names. */
16844static const struct asm_psr v7m_psrs[] =
16845{
2b744c99
PB
16846 {"apsr", 0 }, {"APSR", 0 },
16847 {"iapsr", 1 }, {"IAPSR", 1 },
16848 {"eapsr", 2 }, {"EAPSR", 2 },
16849 {"psr", 3 }, {"PSR", 3 },
16850 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16851 {"ipsr", 5 }, {"IPSR", 5 },
16852 {"epsr", 6 }, {"EPSR", 6 },
16853 {"iepsr", 7 }, {"IEPSR", 7 },
16854 {"msp", 8 }, {"MSP", 8 },
16855 {"psp", 9 }, {"PSP", 9 },
16856 {"primask", 16}, {"PRIMASK", 16},
16857 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
16858 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16859 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
16860 {"faultmask", 19}, {"FAULTMASK", 19},
16861 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16862};
16863
c19d1205
ZW
16864/* Table of all shift-in-operand names. */
16865static const struct asm_shift_name shift_names [] =
b99bd4ef 16866{
c19d1205
ZW
16867 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16868 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16869 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16870 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16871 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16872 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16873};
b99bd4ef 16874
c19d1205
ZW
16875/* Table of all explicit relocation names. */
16876#ifdef OBJ_ELF
16877static struct reloc_entry reloc_names[] =
16878{
16879 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16880 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16881 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16882 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16883 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16884 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16885 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16886 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16887 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16888 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 16889 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
16890 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16891 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16892 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16893 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16894 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16895 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16896 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
16897};
16898#endif
b99bd4ef 16899
c19d1205
ZW
16900/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16901static const struct asm_cond conds[] =
16902{
16903 {"eq", 0x0},
16904 {"ne", 0x1},
16905 {"cs", 0x2}, {"hs", 0x2},
16906 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16907 {"mi", 0x4},
16908 {"pl", 0x5},
16909 {"vs", 0x6},
16910 {"vc", 0x7},
16911 {"hi", 0x8},
16912 {"ls", 0x9},
16913 {"ge", 0xa},
16914 {"lt", 0xb},
16915 {"gt", 0xc},
16916 {"le", 0xd},
16917 {"al", 0xe}
16918};
bfae80f2 16919
62b3e311
PB
16920static struct asm_barrier_opt barrier_opt_names[] =
16921{
52e7f43d
RE
16922 { "sy", 0xf }, { "SY", 0xf },
16923 { "un", 0x7 }, { "UN", 0x7 },
16924 { "st", 0xe }, { "ST", 0xe },
16925 { "unst", 0x6 }, { "UNST", 0x6 },
16926 { "ish", 0xb }, { "ISH", 0xb },
16927 { "sh", 0xb }, { "SH", 0xb },
16928 { "ishst", 0xa }, { "ISHST", 0xa },
16929 { "shst", 0xa }, { "SHST", 0xa },
16930 { "nsh", 0x7 }, { "NSH", 0x7 },
16931 { "nshst", 0x6 }, { "NSHST", 0x6 },
16932 { "osh", 0x3 }, { "OSH", 0x3 },
16933 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16934};
16935
c19d1205
ZW
16936/* Table of ARM-format instructions. */
16937
16938/* Macros for gluing together operand strings. N.B. In all cases
16939 other than OPS0, the trailing OP_stop comes from default
16940 zero-initialization of the unspecified elements of the array. */
16941#define OPS0() { OP_stop, }
16942#define OPS1(a) { OP_##a, }
16943#define OPS2(a,b) { OP_##a,OP_##b, }
16944#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16945#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16946#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16947#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16948
5be8be5d
DG
16949/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16950 This is useful when mixing operands for ARM and THUMB, i.e. using the
16951 MIX_ARM_THUMB_OPERANDS macro.
16952 In order to use these macros, prefix the number of operands with _
16953 e.g. _3. */
16954#define OPS_1(a) { a, }
16955#define OPS_2(a,b) { a,b, }
16956#define OPS_3(a,b,c) { a,b,c, }
16957#define OPS_4(a,b,c,d) { a,b,c,d, }
16958#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16959#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16960
c19d1205
ZW
16961/* These macros abstract out the exact format of the mnemonic table and
16962 save some repeated characters. */
16963
16964/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16965#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16966 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16967 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16968
16969/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16970 a T_MNEM_xyz enumerator. */
16971#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16972 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16973#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16974 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16975
16976/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16977 infix after the third character. */
16978#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16979 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16980 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16981#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16982 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16983 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16984#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16985 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16986#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16987 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16988#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16989 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16990#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16991 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16992
16993/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16994 appear in the condition table. */
16995#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16996 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16997 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16998
16999#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
17000 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17001 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17002 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17003 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17004 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17005 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17006 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17007 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17008 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17009 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17010 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17011 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17012 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17013 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17014 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17015 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17016 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17017 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17018 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
17019
17020#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
17021 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17022#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 17023 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17024
17025/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
17026 field is still 0xE. Many of the Thumb variants can be executed
17027 conditionally, so this is checked separately. */
c19d1205 17028#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17029 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17030 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17031
17032/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17033 condition code field. */
17034#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 17035 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17036 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17037
17038/* ARM-only variants of all the above. */
6a86118a 17039#define CE(mnem, op, nops, ops, ae) \
21d799b5 17040 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
17041
17042#define C3(mnem, op, nops, ops, ae) \
17043 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17044
e3cb604e
PB
17045/* Legacy mnemonics that always have conditional infix after the third
17046 character. */
17047#define CL(mnem, op, nops, ops, ae) \
21d799b5 17048 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17049 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17050
8f06b2d8
PB
17051/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17052#define cCE(mnem, op, nops, ops, ae) \
21d799b5 17053 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17054
e3cb604e
PB
17055/* Legacy coprocessor instructions where conditional infix and conditional
17056 suffix are ambiguous. For consistency this includes all FPA instructions,
17057 not just the potentially ambiguous ones. */
17058#define cCL(mnem, op, nops, ops, ae) \
21d799b5 17059 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17060 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17061
17062/* Coprocessor, takes either a suffix or a position-3 infix
17063 (for an FPA corner case). */
17064#define C3E(mnem, op, nops, ops, ae) \
21d799b5 17065 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 17066 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17067
6a86118a 17068#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
17069 { m1 #m2 m3, OPS##nops ops, \
17070 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
17071 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17072
17073#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
17074 xCM_ (m1, , m2, op, nops, ops, ae), \
17075 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17076 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17077 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17078 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17079 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17080 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17081 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17082 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17083 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17084 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17085 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17086 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17087 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17088 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17089 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17090 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17091 xCM_ (m1, le, m2, op, nops, ops, ae), \
17092 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
17093
17094#define UE(mnem, op, nops, ops, ae) \
17095 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17096
17097#define UF(mnem, op, nops, ops, ae) \
17098 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17099
5287ad62
JB
17100/* Neon data-processing. ARM versions are unconditional with cond=0xf.
17101 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17102 use the same encoding function for each. */
17103#define NUF(mnem, op, nops, ops, enc) \
17104 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17105 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17106
17107/* Neon data processing, version which indirects through neon_enc_tab for
17108 the various overloaded versions of opcodes. */
17109#define nUF(mnem, op, nops, ops, enc) \
21d799b5 17110 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17111 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17112
17113/* Neon insn with conditional suffix for the ARM version, non-overloaded
17114 version. */
037e8744
JB
17115#define NCE_tag(mnem, op, nops, ops, enc, tag) \
17116 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
17117 THUMB_VARIANT, do_##enc, do_##enc }
17118
037e8744 17119#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 17120 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17121
17122#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17123 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17124
5287ad62 17125/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17126#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17127 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17128 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17129
037e8744 17130#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17131 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17132
17133#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17134 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17135
c19d1205
ZW
17136#define do_0 0
17137
c19d1205 17138static const struct asm_opcode insns[] =
bfae80f2 17139{
e74cfd16
PB
17140#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17141#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17142 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17143 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17144 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17145 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17146 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17147 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17148 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17149 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17150 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17151 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17152 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17153 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17154 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17155 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17156 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17157 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17158
17159 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17160 for setting PSR flag bits. They are obsolete in V6 and do not
17161 have Thumb equivalents. */
21d799b5
NC
17162 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17163 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17164 CL("tstp", 110f000, 2, (RR, SH), cmp),
17165 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17166 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17167 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17168 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17169 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17170 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17171
17172 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17173 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17174 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17175 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17176
17177 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17178 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17179 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17180 OP_RRnpc),
17181 OP_ADDRGLDR),ldst, t_ldst),
17182 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17183
17184 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17185 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17186 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17187 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17188 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17189 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17190
17191 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17192 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17193 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17194 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17195
c19d1205 17196 /* Pseudo ops. */
21d799b5 17197 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17198 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17199 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17200
17201 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17202 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17203 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17204 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17205 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17206 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17207 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17208 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17209 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17210 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17211 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17212 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17213 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17214
16a4cf17 17215 /* These may simplify to neg. */
21d799b5
NC
17216 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17217 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17218
c921be7d
NC
17219#undef THUMB_VARIANT
17220#define THUMB_VARIANT & arm_ext_v6
17221
21d799b5 17222 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17223
17224 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17225#undef THUMB_VARIANT
17226#define THUMB_VARIANT & arm_ext_v6t2
17227
21d799b5
NC
17228 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17229 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17230 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17231
5be8be5d
DG
17232 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17233 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17234 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17235 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17236
21d799b5
NC
17237 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17238 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17239
21d799b5
NC
17240 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17241 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17242
17243 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17244 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17245 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17246
17247 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17248 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17249 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17250 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17251 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17252 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17253 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17254 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17255
c921be7d
NC
17256#undef ARM_VARIANT
17257#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17258#undef THUMB_VARIANT
17259#define THUMB_VARIANT & arm_ext_v4t
17260
21d799b5
NC
17261 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17262 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17263
c921be7d
NC
17264#undef THUMB_VARIANT
17265#define THUMB_VARIANT & arm_ext_v6t2
17266
21d799b5 17267 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17268 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17269
17270 /* Generic coprocessor instructions. */
21d799b5
NC
17271 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17272 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17273 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17274 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17275 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17276 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17277 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17278
c921be7d
NC
17279#undef ARM_VARIANT
17280#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17281
21d799b5 17282 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17283 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17284
c921be7d
NC
17285#undef ARM_VARIANT
17286#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17287#undef THUMB_VARIANT
17288#define THUMB_VARIANT & arm_ext_msr
17289
d2cd1205
JB
17290 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17291 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17292
c921be7d
NC
17293#undef ARM_VARIANT
17294#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17295#undef THUMB_VARIANT
17296#define THUMB_VARIANT & arm_ext_v6t2
17297
21d799b5
NC
17298 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17299 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17300 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17301 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17302 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17303 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17304 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17305 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17306
c921be7d
NC
17307#undef ARM_VARIANT
17308#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17309#undef THUMB_VARIANT
17310#define THUMB_VARIANT & arm_ext_v4t
17311
5be8be5d
DG
17312 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17313 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17314 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17315 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17316 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17317 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17318
c921be7d
NC
17319#undef ARM_VARIANT
17320#define ARM_VARIANT & arm_ext_v4t_5
17321
c19d1205
ZW
17322 /* ARM Architecture 4T. */
17323 /* Note: bx (and blx) are required on V5, even if the processor does
17324 not support Thumb. */
21d799b5 17325 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17326
c921be7d
NC
17327#undef ARM_VARIANT
17328#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17329#undef THUMB_VARIANT
17330#define THUMB_VARIANT & arm_ext_v5t
17331
c19d1205
ZW
17332 /* Note: blx has 2 variants; the .value coded here is for
17333 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17334 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17335 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17336
c921be7d
NC
17337#undef THUMB_VARIANT
17338#define THUMB_VARIANT & arm_ext_v6t2
17339
21d799b5
NC
17340 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17341 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17342 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17343 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17344 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17345 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17346 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17347 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17348
c921be7d
NC
17349#undef ARM_VARIANT
17350#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17351#undef THUMB_VARIANT
17352#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17353
21d799b5
NC
17354 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17355 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17356 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17357 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17358
21d799b5
NC
17359 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17360 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17361
21d799b5
NC
17362 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17363 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17364 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17365 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17366
21d799b5
NC
17367 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17368 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17369 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17370 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17371
21d799b5
NC
17372 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17373 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17374
03ee1b7f
NC
17375 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17376 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17377 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17378 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17379
c921be7d
NC
17380#undef ARM_VARIANT
17381#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17382#undef THUMB_VARIANT
17383#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17384
21d799b5 17385 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17386 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17387 ldrd, t_ldstd),
17388 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17389 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17390
21d799b5
NC
17391 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17392 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17393
c921be7d
NC
17394#undef ARM_VARIANT
17395#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17396
21d799b5 17397 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17398
c921be7d
NC
17399#undef ARM_VARIANT
17400#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17401#undef THUMB_VARIANT
17402#define THUMB_VARIANT & arm_ext_v6
17403
21d799b5
NC
17404 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17405 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17406 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17407 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17408 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17409 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17410 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17411 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17412 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17413 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17414
c921be7d
NC
17415#undef THUMB_VARIANT
17416#define THUMB_VARIANT & arm_ext_v6t2
17417
5be8be5d
DG
17418 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17419 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17420 strex, t_strex),
21d799b5
NC
17421 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17422 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17423
21d799b5
NC
17424 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17425 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17426
9e3c6df6 17427/* ARM V6 not included in V7M. */
c921be7d
NC
17428#undef THUMB_VARIANT
17429#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17430 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17431 UF(rfeib, 9900a00, 1, (RRw), rfe),
17432 UF(rfeda, 8100a00, 1, (RRw), rfe),
17433 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17434 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17435 UF(rfefa, 9900a00, 1, (RRw), rfe),
17436 UF(rfeea, 8100a00, 1, (RRw), rfe),
17437 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17438 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17439 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17440 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17441 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17442
9e3c6df6
PB
17443/* ARM V6 not included in V7M (eg. integer SIMD). */
17444#undef THUMB_VARIANT
17445#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17446 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17447 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17448 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17449 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17450 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17451 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17452 /* Old name for QASX. */
21d799b5
NC
17453 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17454 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17455 /* Old name for QSAX. */
21d799b5
NC
17456 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17457 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17458 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17459 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17460 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17461 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17462 /* Old name for SASX. */
21d799b5
NC
17463 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17464 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17465 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17466 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17467 /* Old name for SHASX. */
21d799b5
NC
17468 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17469 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17470 /* Old name for SHSAX. */
21d799b5
NC
17471 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17472 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17473 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17474 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17475 /* Old name for SSAX. */
21d799b5
NC
17476 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17477 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17478 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17479 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17480 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17481 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17482 /* Old name for UASX. */
21d799b5
NC
17483 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17484 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17485 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17486 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17487 /* Old name for UHASX. */
21d799b5
NC
17488 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17489 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17490 /* Old name for UHSAX. */
21d799b5
NC
17491 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17492 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17493 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17494 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17495 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17496 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17497 /* Old name for UQASX. */
21d799b5
NC
17498 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17499 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17500 /* Old name for UQSAX. */
21d799b5
NC
17501 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17502 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17503 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17504 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17505 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17506 /* Old name for USAX. */
21d799b5
NC
17507 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17508 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17509 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17510 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17511 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17512 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17513 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17514 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17515 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17516 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17517 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17518 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17519 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17520 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17521 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17522 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17523 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17524 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17525 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17526 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17527 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17528 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17529 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17530 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17531 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17532 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17533 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17534 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17535 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17536 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17537 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17538 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17539 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17540 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17541
c921be7d
NC
17542#undef ARM_VARIANT
17543#define ARM_VARIANT & arm_ext_v6k
17544#undef THUMB_VARIANT
17545#define THUMB_VARIANT & arm_ext_v6k
17546
21d799b5
NC
17547 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17548 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17549 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17550 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17551
c921be7d
NC
17552#undef THUMB_VARIANT
17553#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17554 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17555 ldrexd, t_ldrexd),
17556 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17557 RRnpcb), strexd, t_strexd),
ebdca51a 17558
c921be7d
NC
17559#undef THUMB_VARIANT
17560#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17561 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17562 rd_rn, rd_rn),
17563 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17564 rd_rn, rd_rn),
17565 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17566 strex, t_strexbh),
5be8be5d 17567 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17568 strex, t_strexbh),
21d799b5 17569 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17570
c921be7d 17571#undef ARM_VARIANT
f4c65163
MGD
17572#define ARM_VARIANT & arm_ext_sec
17573#undef THUMB_VARIANT
17574#define THUMB_VARIANT & arm_ext_sec
c921be7d 17575
21d799b5 17576 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17577
90ec0d68
MGD
17578#undef ARM_VARIANT
17579#define ARM_VARIANT & arm_ext_virt
17580#undef THUMB_VARIANT
17581#define THUMB_VARIANT & arm_ext_virt
17582
17583 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17584 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17585
c921be7d
NC
17586#undef ARM_VARIANT
17587#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17588#undef THUMB_VARIANT
17589#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17590
21d799b5
NC
17591 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17592 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17593 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17594 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17595
21d799b5
NC
17596 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17597 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17598 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17599 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17600
5be8be5d
DG
17601 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17602 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17603 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17604 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17605
bf3eeda7
NS
17606 /* Thumb-only instructions. */
17607#undef ARM_VARIANT
17608#define ARM_VARIANT NULL
17609 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17610 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17611
17612 /* ARM does not really have an IT instruction, so always allow it.
17613 The opcode is copied from Thumb in order to allow warnings in
17614 -mimplicit-it=[never | arm] modes. */
17615#undef ARM_VARIANT
17616#define ARM_VARIANT & arm_ext_v1
17617
21d799b5
NC
17618 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17619 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17620 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17621 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17622 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17623 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17624 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17625 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17626 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17627 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17628 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17629 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17630 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17631 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17632 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17633 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17634 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17635 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17636
92e90b6e 17637 /* Thumb2 only instructions. */
c921be7d
NC
17638#undef ARM_VARIANT
17639#define ARM_VARIANT NULL
92e90b6e 17640
21d799b5
NC
17641 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17642 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17643 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17644 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17645 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17646 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17647
eea54501
MGD
17648 /* Hardware division instructions. */
17649#undef ARM_VARIANT
17650#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17651#undef THUMB_VARIANT
17652#define THUMB_VARIANT & arm_ext_div
17653
eea54501
MGD
17654 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17655 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17656
7e806470 17657 /* ARM V6M/V7 instructions. */
c921be7d
NC
17658#undef ARM_VARIANT
17659#define ARM_VARIANT & arm_ext_barrier
17660#undef THUMB_VARIANT
17661#define THUMB_VARIANT & arm_ext_barrier
17662
52e7f43d
RE
17663 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17664 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17665 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17666
62b3e311 17667 /* ARM V7 instructions. */
c921be7d
NC
17668#undef ARM_VARIANT
17669#define ARM_VARIANT & arm_ext_v7
17670#undef THUMB_VARIANT
17671#define THUMB_VARIANT & arm_ext_v7
17672
21d799b5
NC
17673 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17674 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17675
60e5ef9f
MGD
17676#undef ARM_VARIANT
17677#define ARM_VARIANT & arm_ext_mp
17678#undef THUMB_VARIANT
17679#define THUMB_VARIANT & arm_ext_mp
17680
17681 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17682
c921be7d
NC
17683#undef ARM_VARIANT
17684#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17685
21d799b5
NC
17686 cCE("wfs", e200110, 1, (RR), rd),
17687 cCE("rfs", e300110, 1, (RR), rd),
17688 cCE("wfc", e400110, 1, (RR), rd),
17689 cCE("rfc", e500110, 1, (RR), rd),
17690
17691 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17692 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17693 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17694 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17695
17696 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17697 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17698 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17699 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17700
17701 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17702 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17703 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17704 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17705 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17706 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17707 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17708 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17709 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17710 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17711 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17712 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17713
17714 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17715 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17716 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17717 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17718 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17719 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17720 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17721 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17722 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17723 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17724 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17725 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17726
17727 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17728 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17729 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17730 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17731 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17732 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17733 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17734 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17735 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17736 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17737 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17738 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17739
17740 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17741 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17742 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17743 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17744 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17745 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17746 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17747 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17748 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17749 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17750 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17751 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17752
17753 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17754 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17755 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17756 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17757 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17758 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17759 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17760 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17761 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17762 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17763 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17764 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17765
17766 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17767 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17768 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17769 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17770 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17771 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17772 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17773 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17774 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17775 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17776 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17777 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17778
17779 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17780 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17781 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17782 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17783 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17784 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17785 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17786 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17787 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17788 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17789 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17790 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17791
17792 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17793 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17794 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17795 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17796 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17797 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17798 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17799 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17800 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17801 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17802 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17803 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17804
17805 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17806 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17807 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17808 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17809 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17810 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17811 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17812 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17813 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17814 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17815 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17816 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17817
17818 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17819 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17820 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17821 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17822 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17823 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17824 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17825 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17826 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17827 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17828 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17829 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17830
17831 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17832 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17833 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17834 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17835 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17836 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17837 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17838 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17839 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17840 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17841 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17842 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17843
17844 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17845 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17846 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17847 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17848 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17849 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17850 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17851 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17852 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17853 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17854 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17855 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17856
17857 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17858 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17859 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17860 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17861 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17862 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17863 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17864 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17865 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17866 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17867 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17868 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17869
17870 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17871 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17872 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17873 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17874 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17875 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17876 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17877 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17878 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17879 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17880 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17881 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17882
17883 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17884 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17885 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17886 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17887 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17888 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17889 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17890 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17891 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17892 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17893 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17894 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17895
17896 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17897 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17898 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17899 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17900 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17901 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17902 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17903 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17904 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17905 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17906 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17907 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17908
17909 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17910 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17911 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17912 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17915 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17916 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17917 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17918 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17921
17922 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17924 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17928 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17929 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17930 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17931 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17934
17935 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17937 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17941 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17942 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17943 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17944 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17947
17948 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17950 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17952 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17953 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17954 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17955 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17956 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17957 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17958 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17959 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17960
17961 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17962 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17963 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17964 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17965 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17966 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17967 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17968 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17969 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17970 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17971 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17972 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17973
17974 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17975 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17976 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17977 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17978 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17979 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17980 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17981 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17982 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17983 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17984 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17985 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17986
17987 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17988 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17989 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17990 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17991 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17992 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17993 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17994 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17995 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17996 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17997 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17998 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17999
18000 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18001 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18002 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18003 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18004 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18005 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18006 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18007 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18008 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18009 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18010 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18011 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18012
18013 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18014 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18015 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18016 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18017 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18018 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18019 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18020 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18021 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18022 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18023 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18024 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18025
18026 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18027 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18028 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18029 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18030 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18031 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18032 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18033 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18034 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18035 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18036 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18037 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18038
18039 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18040 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18041 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18042 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18043 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18044 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18045 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18046 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18047 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18048 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18049 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18050 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18051
18052 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18053 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18054 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18055 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18056 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18057 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18058 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18059 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18060 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18061 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18062 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18063 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18064
18065 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18066 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18067 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18068 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18069 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18070 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18071 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18072 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18073 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18074 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18075 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18076 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18077
18078 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18079 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18080 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18081 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18082
18083 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18084 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18085 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18086 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18087 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18088 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18089 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18090 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18091 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18092 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18093 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18094 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 18095
c19d1205
ZW
18096 /* The implementation of the FIX instruction is broken on some
18097 assemblers, in that it accepts a precision specifier as well as a
18098 rounding specifier, despite the fact that this is meaningless.
18099 To be more compatible, we accept it as well, though of course it
18100 does not set any bits. */
21d799b5
NC
18101 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18102 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18103 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18104 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18105 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18106 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18107 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18108 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18109 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18110 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18111 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18112 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18113 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 18114
c19d1205 18115 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
18116#undef ARM_VARIANT
18117#define ARM_VARIANT & fpu_fpa_ext_v2
18118
21d799b5
NC
18119 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18120 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18121 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18122 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18123 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18124 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18125
c921be7d
NC
18126#undef ARM_VARIANT
18127#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18128
c19d1205 18129 /* Moves and type conversions. */
21d799b5
NC
18130 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18131 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18132 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18133 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
18134 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18135 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18136 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18137 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18138 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18139 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18140 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18141 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18142 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18143 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18144
18145 /* Memory operations. */
21d799b5
NC
18146 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18147 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18148 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18149 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18150 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18151 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18152 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18153 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18154 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18155 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18156 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18157 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18158 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18159 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18160 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18161 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18162 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18163 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18164
c19d1205 18165 /* Monadic operations. */
21d799b5
NC
18166 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18167 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18168 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18169
18170 /* Dyadic operations. */
21d799b5
NC
18171 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18172 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18173 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18174 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18175 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18176 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18177 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18178 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18179 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18180
c19d1205 18181 /* Comparisons. */
21d799b5
NC
18182 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18183 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18184 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18185 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18186
62f3b8c8
PB
18187 /* Double precision load/store are still present on single precision
18188 implementations. */
18189 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18190 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18191 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18192 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18193 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18194 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18195 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18196 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18197 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18198 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18199
c921be7d
NC
18200#undef ARM_VARIANT
18201#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18202
c19d1205 18203 /* Moves and type conversions. */
21d799b5
NC
18204 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18205 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18206 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18207 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18208 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18209 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18210 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18211 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18212 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18213 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18214 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18215 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18216 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18217
c19d1205 18218 /* Monadic operations. */
21d799b5
NC
18219 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18220 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18221 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18222
18223 /* Dyadic operations. */
21d799b5
NC
18224 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18225 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18226 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18227 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18228 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18229 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18230 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18231 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18232 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18233
c19d1205 18234 /* Comparisons. */
21d799b5
NC
18235 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18236 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18237 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18238 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18239
c921be7d
NC
18240#undef ARM_VARIANT
18241#define ARM_VARIANT & fpu_vfp_ext_v2
18242
21d799b5
NC
18243 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18244 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18245 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18246 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18247
037e8744
JB
18248/* Instructions which may belong to either the Neon or VFP instruction sets.
18249 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18250#undef ARM_VARIANT
18251#define ARM_VARIANT & fpu_vfp_ext_v1xd
18252#undef THUMB_VARIANT
18253#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18254
037e8744
JB
18255 /* These mnemonics are unique to VFP. */
18256 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18257 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18258 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18259 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18260 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18261 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18262 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18263 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18264 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18265 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18266
18267 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18268 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18269 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18270 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18271
21d799b5
NC
18272 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18273 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18274
18275 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18276 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18277
55881a11
MGD
18278 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18279 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18280 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18281 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18282 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18283 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18284 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18285 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18286
5f1af56b 18287 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 18288 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18289 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18290 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18291
037e8744
JB
18292
18293 /* NOTE: All VMOV encoding is special-cased! */
18294 NCE(vmov, 0, 1, (VMOV), neon_mov),
18295 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18296
c921be7d
NC
18297#undef THUMB_VARIANT
18298#define THUMB_VARIANT & fpu_neon_ext_v1
18299#undef ARM_VARIANT
18300#define ARM_VARIANT & fpu_neon_ext_v1
18301
5287ad62
JB
18302 /* Data processing with three registers of the same length. */
18303 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18304 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18305 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18306 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18307 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18308 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18309 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18310 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18311 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18312 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18313 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18314 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18315 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18316 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18317 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18318 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18319 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18320 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18321 /* If not immediate, fall back to neon_dyadic_i64_su.
18322 shl_imm should accept I8 I16 I32 I64,
18323 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18324 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18325 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18326 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18327 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18328 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18329 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18330 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18331 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18332 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18333 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18334 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18335 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18336 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18337 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18338 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18339 /* Bitfield ops, untyped. */
18340 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18341 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18342 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18343 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18344 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18345 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18346 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18347 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18348 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18349 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18350 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18351 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18352 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18353 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18354 back to neon_dyadic_if_su. */
21d799b5
NC
18355 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18356 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18357 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18358 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18359 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18360 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18361 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18362 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18363 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18364 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18365 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18366 /* As above, D registers only. */
21d799b5
NC
18367 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18368 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18369 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18370 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18371 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18372 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18373 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18374 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18375 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18376 /* vtst takes sizes 8, 16, 32. */
18377 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18378 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18379 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18380 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18381 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18382 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18383 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18384 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18385 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18386 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18387 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18388 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18389 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18390 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18391 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18392 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18393 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18394 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18395 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18396 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18397 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18398
18399 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18400 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18401 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18402
18403 /* Data processing with two registers and a shift amount. */
18404 /* Right shifts, and variants with rounding.
18405 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18406 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18407 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18408 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18409 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18410 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18411 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18412 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18413 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18414 /* Shift and insert. Sizes accepted 8 16 32 64. */
18415 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18416 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18417 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18418 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18419 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18420 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18421 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18422 /* Right shift immediate, saturating & narrowing, with rounding variants.
18423 Types accepted S16 S32 S64 U16 U32 U64. */
18424 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18425 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18426 /* As above, unsigned. Types accepted S16 S32 S64. */
18427 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18428 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18429 /* Right shift narrowing. Types accepted I16 I32 I64. */
18430 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18431 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18432 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18433 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18434 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18435 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18436
4316f0d2
DG
18437 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18438 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18439
18440 /* Data processing, three registers of different lengths. */
18441 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18442 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18443 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18444 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18445 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18446 /* If not scalar, fall back to neon_dyadic_long.
18447 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18448 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18449 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18450 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18451 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18452 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18453 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18454 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18455 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18456 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18457 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18458 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18459 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18460 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18461 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18462 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18463 S16 S32 U16 U32. */
21d799b5 18464 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18465
18466 /* Extract. Size 8. */
3b8d421e
PB
18467 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18468 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18469
18470 /* Two registers, miscellaneous. */
18471 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18472 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18473 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18474 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18475 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18476 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18477 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18478 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18479 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18480 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18481 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18482 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18483 /* VMOVN. Types I16 I32 I64. */
21d799b5 18484 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18485 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18486 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18487 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18488 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18489 /* VZIP / VUZP. Sizes 8 16 32. */
18490 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18491 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18492 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18493 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18494 /* VQABS / VQNEG. Types S8 S16 S32. */
18495 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18496 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18497 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18498 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18499 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18500 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18501 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18502 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18503 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18504 /* Reciprocal estimates. Types U32 F32. */
18505 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18506 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18507 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18508 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18509 /* VCLS. Types S8 S16 S32. */
18510 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18511 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18512 /* VCLZ. Types I8 I16 I32. */
18513 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18514 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18515 /* VCNT. Size 8. */
18516 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18517 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18518 /* Two address, untyped. */
18519 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18520 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18521 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18522 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18523 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18524
18525 /* Table lookup. Size 8. */
18526 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18527 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18528
c921be7d
NC
18529#undef THUMB_VARIANT
18530#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18531#undef ARM_VARIANT
18532#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18533
5287ad62 18534 /* Neon element/structure load/store. */
21d799b5
NC
18535 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18536 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18537 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18538 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18539 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18540 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18541 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18542 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18543
c921be7d 18544#undef THUMB_VARIANT
62f3b8c8
PB
18545#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18546#undef ARM_VARIANT
18547#define ARM_VARIANT &fpu_vfp_ext_v3xd
18548 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18549 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18550 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18551 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18552 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18553 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18554 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18555 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18556 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18557
18558#undef THUMB_VARIANT
c921be7d
NC
18559#define THUMB_VARIANT & fpu_vfp_ext_v3
18560#undef ARM_VARIANT
18561#define ARM_VARIANT & fpu_vfp_ext_v3
18562
21d799b5 18563 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18564 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18565 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18566 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18567 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18568 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18569 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18570 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18571 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18572
62f3b8c8
PB
18573#undef ARM_VARIANT
18574#define ARM_VARIANT &fpu_vfp_ext_fma
18575#undef THUMB_VARIANT
18576#define THUMB_VARIANT &fpu_vfp_ext_fma
18577 /* Mnemonics shared by Neon and VFP. These are included in the
18578 VFP FMA variant; NEON and VFP FMA always includes the NEON
18579 FMA instructions. */
18580 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18581 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18582 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18583 the v form should always be used. */
18584 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18585 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18586 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18587 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18588 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18589 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18590
5287ad62 18591#undef THUMB_VARIANT
c921be7d
NC
18592#undef ARM_VARIANT
18593#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18594
21d799b5
NC
18595 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18596 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18597 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18598 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18599 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18600 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18601 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18602 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18603
c921be7d
NC
18604#undef ARM_VARIANT
18605#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18606
21d799b5
NC
18607 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18608 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18609 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18610 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18611 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18612 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18613 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18614 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18615 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18616 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18617 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18618 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18619 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18620 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18621 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18622 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18623 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18624 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18625 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18626 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18627 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18628 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18629 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18630 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18631 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18632 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18633 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18634 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18635 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18636 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18637 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18638 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18639 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18640 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18641 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18642 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18643 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18644 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18645 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18647 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18648 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18649 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18652 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18654 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18657 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18663 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18664 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18665 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18666 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18667 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18668 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18669 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18670 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18671 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18672 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18674 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18675 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18676 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18677 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18679 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18680 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18681 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18687 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18690 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18696 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18697 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18698 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18699 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18700 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18701 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18702 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18703 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18704 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18705 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18706 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18707 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18708 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18709 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18710 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18711 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18712 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18713 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18714 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18715 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18716 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18717 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18718 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18719 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18720 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18721 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18722 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18723 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18724 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18725 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18726 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18727 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18728 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18729 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18730 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18731 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18732 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18733 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18734 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18735 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18736 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18737 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18738 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18739 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18740 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18741 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18742 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18743 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18744 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18745 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18746 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18747 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18748 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18749 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18750 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18751 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18752 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18753 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18754 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18755 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18756 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18757 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18758 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18759 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18760 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18761 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18762 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18763 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18764 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18765 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18766 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18767 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18768 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18769
c921be7d
NC
18770#undef ARM_VARIANT
18771#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18772
21d799b5
NC
18773 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18774 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18775 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18776 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18777 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18778 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18779 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18780 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18781 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18782 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18783 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18784 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18785 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18786 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18787 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18788 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18789 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18790 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18791 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18792 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18793 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18794 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18795 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18796 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18797 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18798 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18799 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18800 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18801 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18802 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18803 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18804 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18805 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18806 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18807 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18808 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18809 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18810 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18811 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18812 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18813 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18814 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18815 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18816 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18817 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18818 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18819 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18820 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18821 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18822 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18823 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18824 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18825 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18826 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18827 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18828 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18829 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18830
c921be7d
NC
18831#undef ARM_VARIANT
18832#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18833
21d799b5
NC
18834 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18835 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18836 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18837 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18838 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18839 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18840 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18841 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18842 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18843 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18844 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18845 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18846 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18847 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18848 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18849 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18850 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18851 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18852 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18853 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18854 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18855 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18856 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18857 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18858 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18859 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18860 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18861 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18862 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18863 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18864 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18865 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18866 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18867 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18868 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18869 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18870 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18871 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18872 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18873 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18874 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18875 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18876 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18877 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18878 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18879 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18880 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18881 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18882 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18883 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18884 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18885 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18886 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18887 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18888 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18889 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18890 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18891 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18892 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18893 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18894 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18895 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18896 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18897 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18898 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18899 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18900 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18901 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18902 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18903 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18904 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18905 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18906 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18907 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18908 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18909 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18910};
18911#undef ARM_VARIANT
18912#undef THUMB_VARIANT
18913#undef TCE
18914#undef TCM
18915#undef TUE
18916#undef TUF
18917#undef TCC
8f06b2d8 18918#undef cCE
e3cb604e
PB
18919#undef cCL
18920#undef C3E
c19d1205
ZW
18921#undef CE
18922#undef CM
18923#undef UE
18924#undef UF
18925#undef UT
5287ad62
JB
18926#undef NUF
18927#undef nUF
18928#undef NCE
18929#undef nCE
c19d1205
ZW
18930#undef OPS0
18931#undef OPS1
18932#undef OPS2
18933#undef OPS3
18934#undef OPS4
18935#undef OPS5
18936#undef OPS6
18937#undef do_0
18938\f
18939/* MD interface: bits in the object file. */
bfae80f2 18940
c19d1205
ZW
18941/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18942 for use in the a.out file, and stores them in the array pointed to by buf.
18943 This knows about the endian-ness of the target machine and does
18944 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18945 2 (short) and 4 (long) Floating numbers are put out as a series of
18946 LITTLENUMS (shorts, here at least). */
b99bd4ef 18947
c19d1205
ZW
18948void
18949md_number_to_chars (char * buf, valueT val, int n)
18950{
18951 if (target_big_endian)
18952 number_to_chars_bigendian (buf, val, n);
18953 else
18954 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18955}
18956
c19d1205
ZW
18957static valueT
18958md_chars_to_number (char * buf, int n)
bfae80f2 18959{
c19d1205
ZW
18960 valueT result = 0;
18961 unsigned char * where = (unsigned char *) buf;
bfae80f2 18962
c19d1205 18963 if (target_big_endian)
b99bd4ef 18964 {
c19d1205
ZW
18965 while (n--)
18966 {
18967 result <<= 8;
18968 result |= (*where++ & 255);
18969 }
b99bd4ef 18970 }
c19d1205 18971 else
b99bd4ef 18972 {
c19d1205
ZW
18973 while (n--)
18974 {
18975 result <<= 8;
18976 result |= (where[n] & 255);
18977 }
bfae80f2 18978 }
b99bd4ef 18979
c19d1205 18980 return result;
bfae80f2 18981}
b99bd4ef 18982
c19d1205 18983/* MD interface: Sections. */
b99bd4ef 18984
0110f2b8
PB
18985/* Estimate the size of a frag before relaxing. Assume everything fits in
18986 2 bytes. */
18987
c19d1205 18988int
0110f2b8 18989md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18990 segT segtype ATTRIBUTE_UNUSED)
18991{
0110f2b8
PB
18992 fragp->fr_var = 2;
18993 return 2;
18994}
18995
18996/* Convert a machine dependent frag. */
18997
18998void
18999md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19000{
19001 unsigned long insn;
19002 unsigned long old_op;
19003 char *buf;
19004 expressionS exp;
19005 fixS *fixp;
19006 int reloc_type;
19007 int pc_rel;
19008 int opcode;
19009
19010 buf = fragp->fr_literal + fragp->fr_fix;
19011
19012 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
19013 if (fragp->fr_symbol)
19014 {
0110f2b8
PB
19015 exp.X_op = O_symbol;
19016 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
19017 }
19018 else
19019 {
0110f2b8 19020 exp.X_op = O_constant;
5f4273c7 19021 }
0110f2b8
PB
19022 exp.X_add_number = fragp->fr_offset;
19023 opcode = fragp->fr_subtype;
19024 switch (opcode)
19025 {
19026 case T_MNEM_ldr_pc:
19027 case T_MNEM_ldr_pc2:
19028 case T_MNEM_ldr_sp:
19029 case T_MNEM_str_sp:
19030 case T_MNEM_ldr:
19031 case T_MNEM_ldrb:
19032 case T_MNEM_ldrh:
19033 case T_MNEM_str:
19034 case T_MNEM_strb:
19035 case T_MNEM_strh:
19036 if (fragp->fr_var == 4)
19037 {
5f4273c7 19038 insn = THUMB_OP32 (opcode);
0110f2b8
PB
19039 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19040 {
19041 insn |= (old_op & 0x700) << 4;
19042 }
19043 else
19044 {
19045 insn |= (old_op & 7) << 12;
19046 insn |= (old_op & 0x38) << 13;
19047 }
19048 insn |= 0x00000c00;
19049 put_thumb32_insn (buf, insn);
19050 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19051 }
19052 else
19053 {
19054 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19055 }
19056 pc_rel = (opcode == T_MNEM_ldr_pc2);
19057 break;
19058 case T_MNEM_adr:
19059 if (fragp->fr_var == 4)
19060 {
19061 insn = THUMB_OP32 (opcode);
19062 insn |= (old_op & 0xf0) << 4;
19063 put_thumb32_insn (buf, insn);
19064 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19065 }
19066 else
19067 {
19068 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19069 exp.X_add_number -= 4;
19070 }
19071 pc_rel = 1;
19072 break;
19073 case T_MNEM_mov:
19074 case T_MNEM_movs:
19075 case T_MNEM_cmp:
19076 case T_MNEM_cmn:
19077 if (fragp->fr_var == 4)
19078 {
19079 int r0off = (opcode == T_MNEM_mov
19080 || opcode == T_MNEM_movs) ? 0 : 8;
19081 insn = THUMB_OP32 (opcode);
19082 insn = (insn & 0xe1ffffff) | 0x10000000;
19083 insn |= (old_op & 0x700) << r0off;
19084 put_thumb32_insn (buf, insn);
19085 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19086 }
19087 else
19088 {
19089 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19090 }
19091 pc_rel = 0;
19092 break;
19093 case T_MNEM_b:
19094 if (fragp->fr_var == 4)
19095 {
19096 insn = THUMB_OP32(opcode);
19097 put_thumb32_insn (buf, insn);
19098 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19099 }
19100 else
19101 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19102 pc_rel = 1;
19103 break;
19104 case T_MNEM_bcond:
19105 if (fragp->fr_var == 4)
19106 {
19107 insn = THUMB_OP32(opcode);
19108 insn |= (old_op & 0xf00) << 14;
19109 put_thumb32_insn (buf, insn);
19110 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19111 }
19112 else
19113 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19114 pc_rel = 1;
19115 break;
19116 case T_MNEM_add_sp:
19117 case T_MNEM_add_pc:
19118 case T_MNEM_inc_sp:
19119 case T_MNEM_dec_sp:
19120 if (fragp->fr_var == 4)
19121 {
19122 /* ??? Choose between add and addw. */
19123 insn = THUMB_OP32 (opcode);
19124 insn |= (old_op & 0xf0) << 4;
19125 put_thumb32_insn (buf, insn);
16805f35
PB
19126 if (opcode == T_MNEM_add_pc)
19127 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19128 else
19129 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19130 }
19131 else
19132 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19133 pc_rel = 0;
19134 break;
19135
19136 case T_MNEM_addi:
19137 case T_MNEM_addis:
19138 case T_MNEM_subi:
19139 case T_MNEM_subis:
19140 if (fragp->fr_var == 4)
19141 {
19142 insn = THUMB_OP32 (opcode);
19143 insn |= (old_op & 0xf0) << 4;
19144 insn |= (old_op & 0xf) << 16;
19145 put_thumb32_insn (buf, insn);
16805f35
PB
19146 if (insn & (1 << 20))
19147 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19148 else
19149 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19150 }
19151 else
19152 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19153 pc_rel = 0;
19154 break;
19155 default:
5f4273c7 19156 abort ();
0110f2b8
PB
19157 }
19158 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19159 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19160 fixp->fx_file = fragp->fr_file;
19161 fixp->fx_line = fragp->fr_line;
19162 fragp->fr_fix += fragp->fr_var;
19163}
19164
19165/* Return the size of a relaxable immediate operand instruction.
19166 SHIFT and SIZE specify the form of the allowable immediate. */
19167static int
19168relax_immediate (fragS *fragp, int size, int shift)
19169{
19170 offsetT offset;
19171 offsetT mask;
19172 offsetT low;
19173
19174 /* ??? Should be able to do better than this. */
19175 if (fragp->fr_symbol)
19176 return 4;
19177
19178 low = (1 << shift) - 1;
19179 mask = (1 << (shift + size)) - (1 << shift);
19180 offset = fragp->fr_offset;
19181 /* Force misaligned offsets to 32-bit variant. */
19182 if (offset & low)
5e77afaa 19183 return 4;
0110f2b8
PB
19184 if (offset & ~mask)
19185 return 4;
19186 return 2;
19187}
19188
5e77afaa
PB
19189/* Get the address of a symbol during relaxation. */
19190static addressT
5f4273c7 19191relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19192{
19193 fragS *sym_frag;
19194 addressT addr;
19195 symbolS *sym;
19196
19197 sym = fragp->fr_symbol;
19198 sym_frag = symbol_get_frag (sym);
19199 know (S_GET_SEGMENT (sym) != absolute_section
19200 || sym_frag == &zero_address_frag);
19201 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19202
19203 /* If frag has yet to be reached on this pass, assume it will
19204 move by STRETCH just as we did. If this is not so, it will
19205 be because some frag between grows, and that will force
19206 another pass. */
19207
19208 if (stretch != 0
19209 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19210 {
19211 fragS *f;
19212
19213 /* Adjust stretch for any alignment frag. Note that if have
19214 been expanding the earlier code, the symbol may be
19215 defined in what appears to be an earlier frag. FIXME:
19216 This doesn't handle the fr_subtype field, which specifies
19217 a maximum number of bytes to skip when doing an
19218 alignment. */
19219 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19220 {
19221 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19222 {
19223 if (stretch < 0)
19224 stretch = - ((- stretch)
19225 & ~ ((1 << (int) f->fr_offset) - 1));
19226 else
19227 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19228 if (stretch == 0)
19229 break;
19230 }
19231 }
19232 if (f != NULL)
19233 addr += stretch;
19234 }
5e77afaa
PB
19235
19236 return addr;
19237}
19238
0110f2b8
PB
19239/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19240 load. */
19241static int
5e77afaa 19242relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19243{
19244 addressT addr;
19245 offsetT val;
19246
19247 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19248 if (fragp->fr_symbol == NULL
19249 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19250 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19251 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19252 return 4;
19253
5f4273c7 19254 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19255 addr = fragp->fr_address + fragp->fr_fix;
19256 addr = (addr + 4) & ~3;
5e77afaa 19257 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19258 if (val & 3)
5e77afaa 19259 return 4;
0110f2b8
PB
19260 val -= addr;
19261 if (val < 0 || val > 1020)
19262 return 4;
19263 return 2;
19264}
19265
19266/* Return the size of a relaxable add/sub immediate instruction. */
19267static int
19268relax_addsub (fragS *fragp, asection *sec)
19269{
19270 char *buf;
19271 int op;
19272
19273 buf = fragp->fr_literal + fragp->fr_fix;
19274 op = bfd_get_16(sec->owner, buf);
19275 if ((op & 0xf) == ((op >> 4) & 0xf))
19276 return relax_immediate (fragp, 8, 0);
19277 else
19278 return relax_immediate (fragp, 3, 0);
19279}
19280
19281
19282/* Return the size of a relaxable branch instruction. BITS is the
19283 size of the offset field in the narrow instruction. */
19284
19285static int
5e77afaa 19286relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19287{
19288 addressT addr;
19289 offsetT val;
19290 offsetT limit;
19291
19292 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19293 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19294 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19295 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19296 return 4;
19297
267bf995
RR
19298#ifdef OBJ_ELF
19299 if (S_IS_DEFINED (fragp->fr_symbol)
19300 && ARM_IS_FUNC (fragp->fr_symbol))
19301 return 4;
0d9b4b55
NC
19302
19303 /* PR 12532. Global symbols with default visibility might
19304 be preempted, so do not relax relocations to them. */
19305 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19306 && (! S_IS_LOCAL (fragp->fr_symbol)))
19307 return 4;
267bf995
RR
19308#endif
19309
5f4273c7 19310 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19311 addr = fragp->fr_address + fragp->fr_fix + 4;
19312 val -= addr;
19313
19314 /* Offset is a signed value *2 */
19315 limit = 1 << bits;
19316 if (val >= limit || val < -limit)
19317 return 4;
19318 return 2;
19319}
19320
19321
19322/* Relax a machine dependent frag. This returns the amount by which
19323 the current size of the frag should change. */
19324
19325int
5e77afaa 19326arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19327{
19328 int oldsize;
19329 int newsize;
19330
19331 oldsize = fragp->fr_var;
19332 switch (fragp->fr_subtype)
19333 {
19334 case T_MNEM_ldr_pc2:
5f4273c7 19335 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19336 break;
19337 case T_MNEM_ldr_pc:
19338 case T_MNEM_ldr_sp:
19339 case T_MNEM_str_sp:
5f4273c7 19340 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19341 break;
19342 case T_MNEM_ldr:
19343 case T_MNEM_str:
5f4273c7 19344 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19345 break;
19346 case T_MNEM_ldrh:
19347 case T_MNEM_strh:
5f4273c7 19348 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19349 break;
19350 case T_MNEM_ldrb:
19351 case T_MNEM_strb:
5f4273c7 19352 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19353 break;
19354 case T_MNEM_adr:
5f4273c7 19355 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19356 break;
19357 case T_MNEM_mov:
19358 case T_MNEM_movs:
19359 case T_MNEM_cmp:
19360 case T_MNEM_cmn:
5f4273c7 19361 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19362 break;
19363 case T_MNEM_b:
5f4273c7 19364 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19365 break;
19366 case T_MNEM_bcond:
5f4273c7 19367 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19368 break;
19369 case T_MNEM_add_sp:
19370 case T_MNEM_add_pc:
19371 newsize = relax_immediate (fragp, 8, 2);
19372 break;
19373 case T_MNEM_inc_sp:
19374 case T_MNEM_dec_sp:
19375 newsize = relax_immediate (fragp, 7, 2);
19376 break;
19377 case T_MNEM_addi:
19378 case T_MNEM_addis:
19379 case T_MNEM_subi:
19380 case T_MNEM_subis:
19381 newsize = relax_addsub (fragp, sec);
19382 break;
19383 default:
5f4273c7 19384 abort ();
0110f2b8 19385 }
5e77afaa
PB
19386
19387 fragp->fr_var = newsize;
19388 /* Freeze wide instructions that are at or before the same location as
19389 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19390 Don't freeze them unconditionally because targets may be artificially
19391 misaligned by the expansion of preceding frags. */
5e77afaa 19392 if (stretch <= 0 && newsize > 2)
0110f2b8 19393 {
0110f2b8 19394 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19395 frag_wane (fragp);
0110f2b8 19396 }
5e77afaa 19397
0110f2b8 19398 return newsize - oldsize;
c19d1205 19399}
b99bd4ef 19400
c19d1205 19401/* Round up a section size to the appropriate boundary. */
b99bd4ef 19402
c19d1205
ZW
19403valueT
19404md_section_align (segT segment ATTRIBUTE_UNUSED,
19405 valueT size)
19406{
f0927246
NC
19407#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19408 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19409 {
19410 /* For a.out, force the section size to be aligned. If we don't do
19411 this, BFD will align it for us, but it will not write out the
19412 final bytes of the section. This may be a bug in BFD, but it is
19413 easier to fix it here since that is how the other a.out targets
19414 work. */
19415 int align;
19416
19417 align = bfd_get_section_alignment (stdoutput, segment);
19418 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19419 }
c19d1205 19420#endif
f0927246
NC
19421
19422 return size;
bfae80f2 19423}
b99bd4ef 19424
c19d1205
ZW
19425/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19426 of an rs_align_code fragment. */
19427
19428void
19429arm_handle_align (fragS * fragP)
bfae80f2 19430{
e7495e45
NS
19431 static char const arm_noop[2][2][4] =
19432 {
19433 { /* ARMv1 */
19434 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19435 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19436 },
19437 { /* ARMv6k */
19438 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19439 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19440 },
19441 };
19442 static char const thumb_noop[2][2][2] =
19443 {
19444 { /* Thumb-1 */
19445 {0xc0, 0x46}, /* LE */
19446 {0x46, 0xc0}, /* BE */
19447 },
19448 { /* Thumb-2 */
19449 {0x00, 0xbf}, /* LE */
19450 {0xbf, 0x00} /* BE */
19451 }
19452 };
19453 static char const wide_thumb_noop[2][4] =
19454 { /* Wide Thumb-2 */
19455 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19456 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19457 };
c921be7d 19458
e7495e45 19459 unsigned bytes, fix, noop_size;
c19d1205
ZW
19460 char * p;
19461 const char * noop;
e7495e45 19462 const char *narrow_noop = NULL;
cd000bff
DJ
19463#ifdef OBJ_ELF
19464 enum mstate state;
19465#endif
bfae80f2 19466
c19d1205 19467 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19468 return;
19469
c19d1205
ZW
19470 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19471 p = fragP->fr_literal + fragP->fr_fix;
19472 fix = 0;
bfae80f2 19473
c19d1205
ZW
19474 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19475 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19476
cd000bff 19477 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19478
cd000bff 19479 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19480 {
e7495e45
NS
19481 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19482 {
19483 narrow_noop = thumb_noop[1][target_big_endian];
19484 noop = wide_thumb_noop[target_big_endian];
19485 }
c19d1205 19486 else
e7495e45
NS
19487 noop = thumb_noop[0][target_big_endian];
19488 noop_size = 2;
cd000bff
DJ
19489#ifdef OBJ_ELF
19490 state = MAP_THUMB;
19491#endif
7ed4c4c5
NC
19492 }
19493 else
19494 {
e7495e45
NS
19495 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19496 [target_big_endian];
19497 noop_size = 4;
cd000bff
DJ
19498#ifdef OBJ_ELF
19499 state = MAP_ARM;
19500#endif
7ed4c4c5 19501 }
c921be7d 19502
e7495e45 19503 fragP->fr_var = noop_size;
c921be7d 19504
c19d1205 19505 if (bytes & (noop_size - 1))
7ed4c4c5 19506 {
c19d1205 19507 fix = bytes & (noop_size - 1);
cd000bff
DJ
19508#ifdef OBJ_ELF
19509 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19510#endif
c19d1205
ZW
19511 memset (p, 0, fix);
19512 p += fix;
19513 bytes -= fix;
a737bd4d 19514 }
a737bd4d 19515
e7495e45
NS
19516 if (narrow_noop)
19517 {
19518 if (bytes & noop_size)
19519 {
19520 /* Insert a narrow noop. */
19521 memcpy (p, narrow_noop, noop_size);
19522 p += noop_size;
19523 bytes -= noop_size;
19524 fix += noop_size;
19525 }
19526
19527 /* Use wide noops for the remainder */
19528 noop_size = 4;
19529 }
19530
c19d1205 19531 while (bytes >= noop_size)
a737bd4d 19532 {
c19d1205
ZW
19533 memcpy (p, noop, noop_size);
19534 p += noop_size;
19535 bytes -= noop_size;
19536 fix += noop_size;
a737bd4d
NC
19537 }
19538
c19d1205 19539 fragP->fr_fix += fix;
a737bd4d
NC
19540}
19541
c19d1205
ZW
19542/* Called from md_do_align. Used to create an alignment
19543 frag in a code section. */
19544
19545void
19546arm_frag_align_code (int n, int max)
bfae80f2 19547{
c19d1205 19548 char * p;
7ed4c4c5 19549
c19d1205 19550 /* We assume that there will never be a requirement
6ec8e702 19551 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19552 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19553 {
19554 char err_msg[128];
19555
19556 sprintf (err_msg,
19557 _("alignments greater than %d bytes not supported in .text sections."),
19558 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19559 as_fatal ("%s", err_msg);
6ec8e702 19560 }
bfae80f2 19561
c19d1205
ZW
19562 p = frag_var (rs_align_code,
19563 MAX_MEM_FOR_RS_ALIGN_CODE,
19564 1,
19565 (relax_substateT) max,
19566 (symbolS *) NULL,
19567 (offsetT) n,
19568 (char *) NULL);
19569 *p = 0;
19570}
bfae80f2 19571
8dc2430f
NC
19572/* Perform target specific initialisation of a frag.
19573 Note - despite the name this initialisation is not done when the frag
19574 is created, but only when its type is assigned. A frag can be created
19575 and used a long time before its type is set, so beware of assuming that
19576 this initialisationis performed first. */
bfae80f2 19577
cd000bff
DJ
19578#ifndef OBJ_ELF
19579void
19580arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19581{
19582 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19583 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19584}
19585
19586#else /* OBJ_ELF is defined. */
c19d1205 19587void
cd000bff 19588arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19589{
8dc2430f
NC
19590 /* If the current ARM vs THUMB mode has not already
19591 been recorded into this frag then do so now. */
cd000bff
DJ
19592 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19593 {
19594 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19595
19596 /* Record a mapping symbol for alignment frags. We will delete this
19597 later if the alignment ends up empty. */
19598 switch (fragP->fr_type)
19599 {
19600 case rs_align:
19601 case rs_align_test:
19602 case rs_fill:
19603 mapping_state_2 (MAP_DATA, max_chars);
19604 break;
19605 case rs_align_code:
19606 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19607 break;
19608 default:
19609 break;
19610 }
19611 }
bfae80f2
RE
19612}
19613
c19d1205
ZW
19614/* When we change sections we need to issue a new mapping symbol. */
19615
19616void
19617arm_elf_change_section (void)
bfae80f2 19618{
c19d1205
ZW
19619 /* Link an unlinked unwind index table section to the .text section. */
19620 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19621 && elf_linked_to_section (now_seg) == NULL)
19622 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19623}
19624
c19d1205
ZW
19625int
19626arm_elf_section_type (const char * str, size_t len)
e45d0630 19627{
c19d1205
ZW
19628 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19629 return SHT_ARM_EXIDX;
e45d0630 19630
c19d1205
ZW
19631 return -1;
19632}
19633\f
19634/* Code to deal with unwinding tables. */
e45d0630 19635
c19d1205 19636static void add_unwind_adjustsp (offsetT);
e45d0630 19637
5f4273c7 19638/* Generate any deferred unwind frame offset. */
e45d0630 19639
bfae80f2 19640static void
c19d1205 19641flush_pending_unwind (void)
bfae80f2 19642{
c19d1205 19643 offsetT offset;
bfae80f2 19644
c19d1205
ZW
19645 offset = unwind.pending_offset;
19646 unwind.pending_offset = 0;
19647 if (offset != 0)
19648 add_unwind_adjustsp (offset);
bfae80f2
RE
19649}
19650
c19d1205
ZW
19651/* Add an opcode to this list for this function. Two-byte opcodes should
19652 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19653 order. */
19654
bfae80f2 19655static void
c19d1205 19656add_unwind_opcode (valueT op, int length)
bfae80f2 19657{
c19d1205
ZW
19658 /* Add any deferred stack adjustment. */
19659 if (unwind.pending_offset)
19660 flush_pending_unwind ();
bfae80f2 19661
c19d1205 19662 unwind.sp_restored = 0;
bfae80f2 19663
c19d1205 19664 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19665 {
c19d1205
ZW
19666 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19667 if (unwind.opcodes)
21d799b5
NC
19668 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19669 unwind.opcode_alloc);
c19d1205 19670 else
21d799b5 19671 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19672 }
c19d1205 19673 while (length > 0)
bfae80f2 19674 {
c19d1205
ZW
19675 length--;
19676 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19677 op >>= 8;
19678 unwind.opcode_count++;
bfae80f2 19679 }
bfae80f2
RE
19680}
19681
c19d1205
ZW
19682/* Add unwind opcodes to adjust the stack pointer. */
19683
bfae80f2 19684static void
c19d1205 19685add_unwind_adjustsp (offsetT offset)
bfae80f2 19686{
c19d1205 19687 valueT op;
bfae80f2 19688
c19d1205 19689 if (offset > 0x200)
bfae80f2 19690 {
c19d1205
ZW
19691 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19692 char bytes[5];
19693 int n;
19694 valueT o;
bfae80f2 19695
c19d1205
ZW
19696 /* Long form: 0xb2, uleb128. */
19697 /* This might not fit in a word so add the individual bytes,
19698 remembering the list is built in reverse order. */
19699 o = (valueT) ((offset - 0x204) >> 2);
19700 if (o == 0)
19701 add_unwind_opcode (0, 1);
bfae80f2 19702
c19d1205
ZW
19703 /* Calculate the uleb128 encoding of the offset. */
19704 n = 0;
19705 while (o)
19706 {
19707 bytes[n] = o & 0x7f;
19708 o >>= 7;
19709 if (o)
19710 bytes[n] |= 0x80;
19711 n++;
19712 }
19713 /* Add the insn. */
19714 for (; n; n--)
19715 add_unwind_opcode (bytes[n - 1], 1);
19716 add_unwind_opcode (0xb2, 1);
19717 }
19718 else if (offset > 0x100)
bfae80f2 19719 {
c19d1205
ZW
19720 /* Two short opcodes. */
19721 add_unwind_opcode (0x3f, 1);
19722 op = (offset - 0x104) >> 2;
19723 add_unwind_opcode (op, 1);
bfae80f2 19724 }
c19d1205
ZW
19725 else if (offset > 0)
19726 {
19727 /* Short opcode. */
19728 op = (offset - 4) >> 2;
19729 add_unwind_opcode (op, 1);
19730 }
19731 else if (offset < 0)
bfae80f2 19732 {
c19d1205
ZW
19733 offset = -offset;
19734 while (offset > 0x100)
bfae80f2 19735 {
c19d1205
ZW
19736 add_unwind_opcode (0x7f, 1);
19737 offset -= 0x100;
bfae80f2 19738 }
c19d1205
ZW
19739 op = ((offset - 4) >> 2) | 0x40;
19740 add_unwind_opcode (op, 1);
bfae80f2 19741 }
bfae80f2
RE
19742}
19743
c19d1205
ZW
19744/* Finish the list of unwind opcodes for this function. */
19745static void
19746finish_unwind_opcodes (void)
bfae80f2 19747{
c19d1205 19748 valueT op;
bfae80f2 19749
c19d1205 19750 if (unwind.fp_used)
bfae80f2 19751 {
708587a4 19752 /* Adjust sp as necessary. */
c19d1205
ZW
19753 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19754 flush_pending_unwind ();
bfae80f2 19755
c19d1205
ZW
19756 /* After restoring sp from the frame pointer. */
19757 op = 0x90 | unwind.fp_reg;
19758 add_unwind_opcode (op, 1);
19759 }
19760 else
19761 flush_pending_unwind ();
bfae80f2
RE
19762}
19763
bfae80f2 19764
c19d1205
ZW
19765/* Start an exception table entry. If idx is nonzero this is an index table
19766 entry. */
bfae80f2
RE
19767
19768static void
c19d1205 19769start_unwind_section (const segT text_seg, int idx)
bfae80f2 19770{
c19d1205
ZW
19771 const char * text_name;
19772 const char * prefix;
19773 const char * prefix_once;
19774 const char * group_name;
19775 size_t prefix_len;
19776 size_t text_len;
19777 char * sec_name;
19778 size_t sec_name_len;
19779 int type;
19780 int flags;
19781 int linkonce;
bfae80f2 19782
c19d1205 19783 if (idx)
bfae80f2 19784 {
c19d1205
ZW
19785 prefix = ELF_STRING_ARM_unwind;
19786 prefix_once = ELF_STRING_ARM_unwind_once;
19787 type = SHT_ARM_EXIDX;
bfae80f2 19788 }
c19d1205 19789 else
bfae80f2 19790 {
c19d1205
ZW
19791 prefix = ELF_STRING_ARM_unwind_info;
19792 prefix_once = ELF_STRING_ARM_unwind_info_once;
19793 type = SHT_PROGBITS;
bfae80f2
RE
19794 }
19795
c19d1205
ZW
19796 text_name = segment_name (text_seg);
19797 if (streq (text_name, ".text"))
19798 text_name = "";
19799
19800 if (strncmp (text_name, ".gnu.linkonce.t.",
19801 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19802 {
c19d1205
ZW
19803 prefix = prefix_once;
19804 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19805 }
19806
c19d1205
ZW
19807 prefix_len = strlen (prefix);
19808 text_len = strlen (text_name);
19809 sec_name_len = prefix_len + text_len;
21d799b5 19810 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19811 memcpy (sec_name, prefix, prefix_len);
19812 memcpy (sec_name + prefix_len, text_name, text_len);
19813 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19814
c19d1205
ZW
19815 flags = SHF_ALLOC;
19816 linkonce = 0;
19817 group_name = 0;
bfae80f2 19818
c19d1205
ZW
19819 /* Handle COMDAT group. */
19820 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19821 {
c19d1205
ZW
19822 group_name = elf_group_name (text_seg);
19823 if (group_name == NULL)
19824 {
bd3ba5d1 19825 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19826 segment_name (text_seg));
19827 ignore_rest_of_line ();
19828 return;
19829 }
19830 flags |= SHF_GROUP;
19831 linkonce = 1;
bfae80f2
RE
19832 }
19833
c19d1205 19834 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19835
5f4273c7 19836 /* Set the section link for index tables. */
c19d1205
ZW
19837 if (idx)
19838 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19839}
19840
bfae80f2 19841
c19d1205
ZW
19842/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19843 personality routine data. Returns zero, or the index table value for
19844 and inline entry. */
19845
19846static valueT
19847create_unwind_entry (int have_data)
bfae80f2 19848{
c19d1205
ZW
19849 int size;
19850 addressT where;
19851 char *ptr;
19852 /* The current word of data. */
19853 valueT data;
19854 /* The number of bytes left in this word. */
19855 int n;
bfae80f2 19856
c19d1205 19857 finish_unwind_opcodes ();
bfae80f2 19858
c19d1205
ZW
19859 /* Remember the current text section. */
19860 unwind.saved_seg = now_seg;
19861 unwind.saved_subseg = now_subseg;
bfae80f2 19862
c19d1205 19863 start_unwind_section (now_seg, 0);
bfae80f2 19864
c19d1205 19865 if (unwind.personality_routine == NULL)
bfae80f2 19866 {
c19d1205
ZW
19867 if (unwind.personality_index == -2)
19868 {
19869 if (have_data)
5f4273c7 19870 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19871 return 1; /* EXIDX_CANTUNWIND. */
19872 }
bfae80f2 19873
c19d1205
ZW
19874 /* Use a default personality routine if none is specified. */
19875 if (unwind.personality_index == -1)
19876 {
19877 if (unwind.opcode_count > 3)
19878 unwind.personality_index = 1;
19879 else
19880 unwind.personality_index = 0;
19881 }
bfae80f2 19882
c19d1205
ZW
19883 /* Space for the personality routine entry. */
19884 if (unwind.personality_index == 0)
19885 {
19886 if (unwind.opcode_count > 3)
19887 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19888
c19d1205
ZW
19889 if (!have_data)
19890 {
19891 /* All the data is inline in the index table. */
19892 data = 0x80;
19893 n = 3;
19894 while (unwind.opcode_count > 0)
19895 {
19896 unwind.opcode_count--;
19897 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19898 n--;
19899 }
bfae80f2 19900
c19d1205
ZW
19901 /* Pad with "finish" opcodes. */
19902 while (n--)
19903 data = (data << 8) | 0xb0;
bfae80f2 19904
c19d1205
ZW
19905 return data;
19906 }
19907 size = 0;
19908 }
19909 else
19910 /* We get two opcodes "free" in the first word. */
19911 size = unwind.opcode_count - 2;
19912 }
19913 else
19914 /* An extra byte is required for the opcode count. */
19915 size = unwind.opcode_count + 1;
bfae80f2 19916
c19d1205
ZW
19917 size = (size + 3) >> 2;
19918 if (size > 0xff)
19919 as_bad (_("too many unwind opcodes"));
bfae80f2 19920
c19d1205
ZW
19921 frag_align (2, 0, 0);
19922 record_alignment (now_seg, 2);
19923 unwind.table_entry = expr_build_dot ();
19924
19925 /* Allocate the table entry. */
19926 ptr = frag_more ((size << 2) + 4);
19927 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19928
c19d1205 19929 switch (unwind.personality_index)
bfae80f2 19930 {
c19d1205
ZW
19931 case -1:
19932 /* ??? Should this be a PLT generating relocation? */
19933 /* Custom personality routine. */
19934 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19935 BFD_RELOC_ARM_PREL31);
bfae80f2 19936
c19d1205
ZW
19937 where += 4;
19938 ptr += 4;
bfae80f2 19939
c19d1205
ZW
19940 /* Set the first byte to the number of additional words. */
19941 data = size - 1;
19942 n = 3;
19943 break;
bfae80f2 19944
c19d1205
ZW
19945 /* ABI defined personality routines. */
19946 case 0:
19947 /* Three opcodes bytes are packed into the first word. */
19948 data = 0x80;
19949 n = 3;
19950 break;
bfae80f2 19951
c19d1205
ZW
19952 case 1:
19953 case 2:
19954 /* The size and first two opcode bytes go in the first word. */
19955 data = ((0x80 + unwind.personality_index) << 8) | size;
19956 n = 2;
19957 break;
bfae80f2 19958
c19d1205
ZW
19959 default:
19960 /* Should never happen. */
19961 abort ();
19962 }
bfae80f2 19963
c19d1205
ZW
19964 /* Pack the opcodes into words (MSB first), reversing the list at the same
19965 time. */
19966 while (unwind.opcode_count > 0)
19967 {
19968 if (n == 0)
19969 {
19970 md_number_to_chars (ptr, data, 4);
19971 ptr += 4;
19972 n = 4;
19973 data = 0;
19974 }
19975 unwind.opcode_count--;
19976 n--;
19977 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19978 }
19979
19980 /* Finish off the last word. */
19981 if (n < 4)
19982 {
19983 /* Pad with "finish" opcodes. */
19984 while (n--)
19985 data = (data << 8) | 0xb0;
19986
19987 md_number_to_chars (ptr, data, 4);
19988 }
19989
19990 if (!have_data)
19991 {
19992 /* Add an empty descriptor if there is no user-specified data. */
19993 ptr = frag_more (4);
19994 md_number_to_chars (ptr, 0, 4);
19995 }
19996
19997 return 0;
bfae80f2
RE
19998}
19999
f0927246
NC
20000
20001/* Initialize the DWARF-2 unwind information for this procedure. */
20002
20003void
20004tc_arm_frame_initial_instructions (void)
20005{
20006 cfi_add_CFA_def_cfa (REG_SP, 0);
20007}
20008#endif /* OBJ_ELF */
20009
c19d1205
ZW
20010/* Convert REGNAME to a DWARF-2 register number. */
20011
20012int
1df69f4f 20013tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 20014{
1df69f4f 20015 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
20016
20017 if (reg == FAIL)
20018 return -1;
20019
20020 return reg;
bfae80f2
RE
20021}
20022
f0927246 20023#ifdef TE_PE
c19d1205 20024void
f0927246 20025tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 20026{
91d6fa6a 20027 expressionS exp;
bfae80f2 20028
91d6fa6a
NC
20029 exp.X_op = O_secrel;
20030 exp.X_add_symbol = symbol;
20031 exp.X_add_number = 0;
20032 emit_expr (&exp, size);
f0927246
NC
20033}
20034#endif
bfae80f2 20035
c19d1205 20036/* MD interface: Symbol and relocation handling. */
bfae80f2 20037
2fc8bdac
ZW
20038/* Return the address within the segment that a PC-relative fixup is
20039 relative to. For ARM, PC-relative fixups applied to instructions
20040 are generally relative to the location of the fixup plus 8 bytes.
20041 Thumb branches are offset by 4, and Thumb loads relative to PC
20042 require special handling. */
bfae80f2 20043
c19d1205 20044long
2fc8bdac 20045md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 20046{
2fc8bdac
ZW
20047 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20048
20049 /* If this is pc-relative and we are going to emit a relocation
20050 then we just want to put out any pipeline compensation that the linker
53baae48
NC
20051 will need. Otherwise we want to use the calculated base.
20052 For WinCE we skip the bias for externals as well, since this
20053 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 20054 if (fixP->fx_pcrel
2fc8bdac 20055 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
20056 || (arm_force_relocation (fixP)
20057#ifdef TE_WINCE
20058 && !S_IS_EXTERNAL (fixP->fx_addsy)
20059#endif
20060 )))
2fc8bdac 20061 base = 0;
bfae80f2 20062
267bf995 20063
c19d1205 20064 switch (fixP->fx_r_type)
bfae80f2 20065 {
2fc8bdac
ZW
20066 /* PC relative addressing on the Thumb is slightly odd as the
20067 bottom two bits of the PC are forced to zero for the
20068 calculation. This happens *after* application of the
20069 pipeline offset. However, Thumb adrl already adjusts for
20070 this, so we need not do it again. */
c19d1205 20071 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 20072 return base & ~3;
c19d1205
ZW
20073
20074 case BFD_RELOC_ARM_THUMB_OFFSET:
20075 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 20076 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 20077 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 20078 return (base + 4) & ~3;
c19d1205 20079
2fc8bdac
ZW
20080 /* Thumb branches are simply offset by +4. */
20081 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20082 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20083 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20084 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 20085 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 20086 return base + 4;
bfae80f2 20087
267bf995 20088 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
20089 if (fixP->fx_addsy
20090 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20091 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20092 && ARM_IS_FUNC (fixP->fx_addsy)
20093 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20094 base = fixP->fx_where + fixP->fx_frag->fr_address;
20095 return base + 4;
20096
00adf2d4
JB
20097 /* BLX is like branches above, but forces the low two bits of PC to
20098 zero. */
486499d0
CL
20099 case BFD_RELOC_THUMB_PCREL_BLX:
20100 if (fixP->fx_addsy
20101 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20102 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20103 && THUMB_IS_FUNC (fixP->fx_addsy)
20104 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20105 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
20106 return (base + 4) & ~3;
20107
2fc8bdac
ZW
20108 /* ARM mode branches are offset by +8. However, the Windows CE
20109 loader expects the relocation not to take this into account. */
267bf995 20110 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
20111 if (fixP->fx_addsy
20112 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20113 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20114 && ARM_IS_FUNC (fixP->fx_addsy)
20115 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20116 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20117 return base + 8;
267bf995 20118
486499d0
CL
20119 case BFD_RELOC_ARM_PCREL_CALL:
20120 if (fixP->fx_addsy
20121 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20122 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20123 && THUMB_IS_FUNC (fixP->fx_addsy)
20124 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20125 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20126 return base + 8;
267bf995 20127
2fc8bdac 20128 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20129 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20130 case BFD_RELOC_ARM_PLT32:
c19d1205 20131#ifdef TE_WINCE
5f4273c7 20132 /* When handling fixups immediately, because we have already
53baae48
NC
20133 discovered the value of a symbol, or the address of the frag involved
20134 we must account for the offset by +8, as the OS loader will never see the reloc.
20135 see fixup_segment() in write.c
20136 The S_IS_EXTERNAL test handles the case of global symbols.
20137 Those need the calculated base, not just the pipe compensation the linker will need. */
20138 if (fixP->fx_pcrel
20139 && fixP->fx_addsy != NULL
20140 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20141 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20142 return base + 8;
2fc8bdac 20143 return base;
c19d1205 20144#else
2fc8bdac 20145 return base + 8;
c19d1205 20146#endif
2fc8bdac 20147
267bf995 20148
2fc8bdac
ZW
20149 /* ARM mode loads relative to PC are also offset by +8. Unlike
20150 branches, the Windows CE loader *does* expect the relocation
20151 to take this into account. */
20152 case BFD_RELOC_ARM_OFFSET_IMM:
20153 case BFD_RELOC_ARM_OFFSET_IMM8:
20154 case BFD_RELOC_ARM_HWLITERAL:
20155 case BFD_RELOC_ARM_LITERAL:
20156 case BFD_RELOC_ARM_CP_OFF_IMM:
20157 return base + 8;
20158
20159
20160 /* Other PC-relative relocations are un-offset. */
20161 default:
20162 return base;
20163 }
bfae80f2
RE
20164}
20165
c19d1205
ZW
20166/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20167 Otherwise we have no need to default values of symbols. */
20168
20169symbolS *
20170md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20171{
c19d1205
ZW
20172#ifdef OBJ_ELF
20173 if (name[0] == '_' && name[1] == 'G'
20174 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20175 {
20176 if (!GOT_symbol)
20177 {
20178 if (symbol_find (name))
bd3ba5d1 20179 as_bad (_("GOT already in the symbol table"));
bfae80f2 20180
c19d1205
ZW
20181 GOT_symbol = symbol_new (name, undefined_section,
20182 (valueT) 0, & zero_address_frag);
20183 }
bfae80f2 20184
c19d1205 20185 return GOT_symbol;
bfae80f2 20186 }
c19d1205 20187#endif
bfae80f2 20188
c921be7d 20189 return NULL;
bfae80f2
RE
20190}
20191
55cf6793 20192/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20193 computed as two separate immediate values, added together. We
20194 already know that this value cannot be computed by just one ARM
20195 instruction. */
20196
20197static unsigned int
20198validate_immediate_twopart (unsigned int val,
20199 unsigned int * highpart)
bfae80f2 20200{
c19d1205
ZW
20201 unsigned int a;
20202 unsigned int i;
bfae80f2 20203
c19d1205
ZW
20204 for (i = 0; i < 32; i += 2)
20205 if (((a = rotate_left (val, i)) & 0xff) != 0)
20206 {
20207 if (a & 0xff00)
20208 {
20209 if (a & ~ 0xffff)
20210 continue;
20211 * highpart = (a >> 8) | ((i + 24) << 7);
20212 }
20213 else if (a & 0xff0000)
20214 {
20215 if (a & 0xff000000)
20216 continue;
20217 * highpart = (a >> 16) | ((i + 16) << 7);
20218 }
20219 else
20220 {
9c2799c2 20221 gas_assert (a & 0xff000000);
c19d1205
ZW
20222 * highpart = (a >> 24) | ((i + 8) << 7);
20223 }
bfae80f2 20224
c19d1205
ZW
20225 return (a & 0xff) | (i << 7);
20226 }
bfae80f2 20227
c19d1205 20228 return FAIL;
bfae80f2
RE
20229}
20230
c19d1205
ZW
20231static int
20232validate_offset_imm (unsigned int val, int hwse)
20233{
20234 if ((hwse && val > 255) || val > 4095)
20235 return FAIL;
20236 return val;
20237}
bfae80f2 20238
55cf6793 20239/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20240 negative immediate constant by altering the instruction. A bit of
20241 a hack really.
20242 MOV <-> MVN
20243 AND <-> BIC
20244 ADC <-> SBC
20245 by inverting the second operand, and
20246 ADD <-> SUB
20247 CMP <-> CMN
20248 by negating the second operand. */
bfae80f2 20249
c19d1205
ZW
20250static int
20251negate_data_op (unsigned long * instruction,
20252 unsigned long value)
bfae80f2 20253{
c19d1205
ZW
20254 int op, new_inst;
20255 unsigned long negated, inverted;
bfae80f2 20256
c19d1205
ZW
20257 negated = encode_arm_immediate (-value);
20258 inverted = encode_arm_immediate (~value);
bfae80f2 20259
c19d1205
ZW
20260 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20261 switch (op)
bfae80f2 20262 {
c19d1205
ZW
20263 /* First negates. */
20264 case OPCODE_SUB: /* ADD <-> SUB */
20265 new_inst = OPCODE_ADD;
20266 value = negated;
20267 break;
bfae80f2 20268
c19d1205
ZW
20269 case OPCODE_ADD:
20270 new_inst = OPCODE_SUB;
20271 value = negated;
20272 break;
bfae80f2 20273
c19d1205
ZW
20274 case OPCODE_CMP: /* CMP <-> CMN */
20275 new_inst = OPCODE_CMN;
20276 value = negated;
20277 break;
bfae80f2 20278
c19d1205
ZW
20279 case OPCODE_CMN:
20280 new_inst = OPCODE_CMP;
20281 value = negated;
20282 break;
bfae80f2 20283
c19d1205
ZW
20284 /* Now Inverted ops. */
20285 case OPCODE_MOV: /* MOV <-> MVN */
20286 new_inst = OPCODE_MVN;
20287 value = inverted;
20288 break;
bfae80f2 20289
c19d1205
ZW
20290 case OPCODE_MVN:
20291 new_inst = OPCODE_MOV;
20292 value = inverted;
20293 break;
bfae80f2 20294
c19d1205
ZW
20295 case OPCODE_AND: /* AND <-> BIC */
20296 new_inst = OPCODE_BIC;
20297 value = inverted;
20298 break;
bfae80f2 20299
c19d1205
ZW
20300 case OPCODE_BIC:
20301 new_inst = OPCODE_AND;
20302 value = inverted;
20303 break;
bfae80f2 20304
c19d1205
ZW
20305 case OPCODE_ADC: /* ADC <-> SBC */
20306 new_inst = OPCODE_SBC;
20307 value = inverted;
20308 break;
bfae80f2 20309
c19d1205
ZW
20310 case OPCODE_SBC:
20311 new_inst = OPCODE_ADC;
20312 value = inverted;
20313 break;
bfae80f2 20314
c19d1205
ZW
20315 /* We cannot do anything. */
20316 default:
20317 return FAIL;
b99bd4ef
NC
20318 }
20319
c19d1205
ZW
20320 if (value == (unsigned) FAIL)
20321 return FAIL;
20322
20323 *instruction &= OPCODE_MASK;
20324 *instruction |= new_inst << DATA_OP_SHIFT;
20325 return value;
b99bd4ef
NC
20326}
20327
ef8d22e6
PB
20328/* Like negate_data_op, but for Thumb-2. */
20329
20330static unsigned int
16dd5e42 20331thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20332{
20333 int op, new_inst;
20334 int rd;
16dd5e42 20335 unsigned int negated, inverted;
ef8d22e6
PB
20336
20337 negated = encode_thumb32_immediate (-value);
20338 inverted = encode_thumb32_immediate (~value);
20339
20340 rd = (*instruction >> 8) & 0xf;
20341 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20342 switch (op)
20343 {
20344 /* ADD <-> SUB. Includes CMP <-> CMN. */
20345 case T2_OPCODE_SUB:
20346 new_inst = T2_OPCODE_ADD;
20347 value = negated;
20348 break;
20349
20350 case T2_OPCODE_ADD:
20351 new_inst = T2_OPCODE_SUB;
20352 value = negated;
20353 break;
20354
20355 /* ORR <-> ORN. Includes MOV <-> MVN. */
20356 case T2_OPCODE_ORR:
20357 new_inst = T2_OPCODE_ORN;
20358 value = inverted;
20359 break;
20360
20361 case T2_OPCODE_ORN:
20362 new_inst = T2_OPCODE_ORR;
20363 value = inverted;
20364 break;
20365
20366 /* AND <-> BIC. TST has no inverted equivalent. */
20367 case T2_OPCODE_AND:
20368 new_inst = T2_OPCODE_BIC;
20369 if (rd == 15)
20370 value = FAIL;
20371 else
20372 value = inverted;
20373 break;
20374
20375 case T2_OPCODE_BIC:
20376 new_inst = T2_OPCODE_AND;
20377 value = inverted;
20378 break;
20379
20380 /* ADC <-> SBC */
20381 case T2_OPCODE_ADC:
20382 new_inst = T2_OPCODE_SBC;
20383 value = inverted;
20384 break;
20385
20386 case T2_OPCODE_SBC:
20387 new_inst = T2_OPCODE_ADC;
20388 value = inverted;
20389 break;
20390
20391 /* We cannot do anything. */
20392 default:
20393 return FAIL;
20394 }
20395
16dd5e42 20396 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20397 return FAIL;
20398
20399 *instruction &= T2_OPCODE_MASK;
20400 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20401 return value;
20402}
20403
8f06b2d8
PB
20404/* Read a 32-bit thumb instruction from buf. */
20405static unsigned long
20406get_thumb32_insn (char * buf)
20407{
20408 unsigned long insn;
20409 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20410 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20411
20412 return insn;
20413}
20414
a8bc6c78
PB
20415
20416/* We usually want to set the low bit on the address of thumb function
20417 symbols. In particular .word foo - . should have the low bit set.
20418 Generic code tries to fold the difference of two symbols to
20419 a constant. Prevent this and force a relocation when the first symbols
20420 is a thumb function. */
c921be7d
NC
20421
20422bfd_boolean
a8bc6c78
PB
20423arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20424{
20425 if (op == O_subtract
20426 && l->X_op == O_symbol
20427 && r->X_op == O_symbol
20428 && THUMB_IS_FUNC (l->X_add_symbol))
20429 {
20430 l->X_op = O_subtract;
20431 l->X_op_symbol = r->X_add_symbol;
20432 l->X_add_number -= r->X_add_number;
c921be7d 20433 return TRUE;
a8bc6c78 20434 }
c921be7d 20435
a8bc6c78 20436 /* Process as normal. */
c921be7d 20437 return FALSE;
a8bc6c78
PB
20438}
20439
4a42ebbc
RR
20440/* Encode Thumb2 unconditional branches and calls. The encoding
20441 for the 2 are identical for the immediate values. */
20442
20443static void
20444encode_thumb2_b_bl_offset (char * buf, offsetT value)
20445{
20446#define T2I1I2MASK ((1 << 13) | (1 << 11))
20447 offsetT newval;
20448 offsetT newval2;
20449 addressT S, I1, I2, lo, hi;
20450
20451 S = (value >> 24) & 0x01;
20452 I1 = (value >> 23) & 0x01;
20453 I2 = (value >> 22) & 0x01;
20454 hi = (value >> 12) & 0x3ff;
20455 lo = (value >> 1) & 0x7ff;
20456 newval = md_chars_to_number (buf, THUMB_SIZE);
20457 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20458 newval |= (S << 10) | hi;
20459 newval2 &= ~T2I1I2MASK;
20460 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20461 md_number_to_chars (buf, newval, THUMB_SIZE);
20462 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20463}
20464
c19d1205 20465void
55cf6793 20466md_apply_fix (fixS * fixP,
c19d1205
ZW
20467 valueT * valP,
20468 segT seg)
20469{
20470 offsetT value = * valP;
20471 offsetT newval;
20472 unsigned int newimm;
20473 unsigned long temp;
20474 int sign;
20475 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20476
9c2799c2 20477 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20478
c19d1205 20479 /* Note whether this will delete the relocation. */
4962c51a 20480
c19d1205
ZW
20481 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20482 fixP->fx_done = 1;
b99bd4ef 20483
adbaf948 20484 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20485 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20486 for emit_reloc. */
20487 value &= 0xffffffff;
20488 value ^= 0x80000000;
5f4273c7 20489 value -= 0x80000000;
adbaf948
ZW
20490
20491 *valP = value;
c19d1205 20492 fixP->fx_addnumber = value;
b99bd4ef 20493
adbaf948
ZW
20494 /* Same treatment for fixP->fx_offset. */
20495 fixP->fx_offset &= 0xffffffff;
20496 fixP->fx_offset ^= 0x80000000;
20497 fixP->fx_offset -= 0x80000000;
20498
c19d1205 20499 switch (fixP->fx_r_type)
b99bd4ef 20500 {
c19d1205
ZW
20501 case BFD_RELOC_NONE:
20502 /* This will need to go in the object file. */
20503 fixP->fx_done = 0;
20504 break;
b99bd4ef 20505
c19d1205
ZW
20506 case BFD_RELOC_ARM_IMMEDIATE:
20507 /* We claim that this fixup has been processed here,
20508 even if in fact we generate an error because we do
20509 not have a reloc for it, so tc_gen_reloc will reject it. */
20510 fixP->fx_done = 1;
b99bd4ef 20511
77db8e2e 20512 if (fixP->fx_addsy)
b99bd4ef 20513 {
77db8e2e 20514 const char *msg = 0;
b99bd4ef 20515
77db8e2e
NC
20516 if (! S_IS_DEFINED (fixP->fx_addsy))
20517 msg = _("undefined symbol %s used as an immediate value");
20518 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20519 msg = _("symbol %s is in a different section");
20520 else if (S_IS_WEAK (fixP->fx_addsy))
20521 msg = _("symbol %s is weak and may be overridden later");
20522
20523 if (msg)
20524 {
20525 as_bad_where (fixP->fx_file, fixP->fx_line,
20526 msg, S_GET_NAME (fixP->fx_addsy));
20527 break;
20528 }
42e5fcbf
AS
20529 }
20530
c19d1205
ZW
20531 newimm = encode_arm_immediate (value);
20532 temp = md_chars_to_number (buf, INSN_SIZE);
20533
20534 /* If the instruction will fail, see if we can fix things up by
20535 changing the opcode. */
20536 if (newimm == (unsigned int) FAIL
20537 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20538 {
c19d1205
ZW
20539 as_bad_where (fixP->fx_file, fixP->fx_line,
20540 _("invalid constant (%lx) after fixup"),
20541 (unsigned long) value);
20542 break;
b99bd4ef 20543 }
b99bd4ef 20544
c19d1205
ZW
20545 newimm |= (temp & 0xfffff000);
20546 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20547 break;
b99bd4ef 20548
c19d1205
ZW
20549 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20550 {
20551 unsigned int highpart = 0;
20552 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20553
77db8e2e 20554 if (fixP->fx_addsy)
42e5fcbf 20555 {
77db8e2e 20556 const char *msg = 0;
42e5fcbf 20557
77db8e2e
NC
20558 if (! S_IS_DEFINED (fixP->fx_addsy))
20559 msg = _("undefined symbol %s used as an immediate value");
20560 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20561 msg = _("symbol %s is in a different section");
20562 else if (S_IS_WEAK (fixP->fx_addsy))
20563 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20564
77db8e2e
NC
20565 if (msg)
20566 {
20567 as_bad_where (fixP->fx_file, fixP->fx_line,
20568 msg, S_GET_NAME (fixP->fx_addsy));
20569 break;
20570 }
20571 }
20572
c19d1205
ZW
20573 newimm = encode_arm_immediate (value);
20574 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20575
c19d1205
ZW
20576 /* If the instruction will fail, see if we can fix things up by
20577 changing the opcode. */
20578 if (newimm == (unsigned int) FAIL
20579 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20580 {
20581 /* No ? OK - try using two ADD instructions to generate
20582 the value. */
20583 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20584
c19d1205
ZW
20585 /* Yes - then make sure that the second instruction is
20586 also an add. */
20587 if (newimm != (unsigned int) FAIL)
20588 newinsn = temp;
20589 /* Still No ? Try using a negated value. */
20590 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20591 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20592 /* Otherwise - give up. */
20593 else
20594 {
20595 as_bad_where (fixP->fx_file, fixP->fx_line,
20596 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20597 (long) value);
20598 break;
20599 }
b99bd4ef 20600
c19d1205
ZW
20601 /* Replace the first operand in the 2nd instruction (which
20602 is the PC) with the destination register. We have
20603 already added in the PC in the first instruction and we
20604 do not want to do it again. */
20605 newinsn &= ~ 0xf0000;
20606 newinsn |= ((newinsn & 0x0f000) << 4);
20607 }
b99bd4ef 20608
c19d1205
ZW
20609 newimm |= (temp & 0xfffff000);
20610 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20611
c19d1205
ZW
20612 highpart |= (newinsn & 0xfffff000);
20613 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20614 }
20615 break;
b99bd4ef 20616
c19d1205 20617 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20618 if (!fixP->fx_done && seg->use_rela_p)
20619 value = 0;
20620
c19d1205 20621 case BFD_RELOC_ARM_LITERAL:
26d97720 20622 sign = value > 0;
b99bd4ef 20623
c19d1205
ZW
20624 if (value < 0)
20625 value = - value;
b99bd4ef 20626
c19d1205 20627 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20628 {
c19d1205
ZW
20629 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20630 as_bad_where (fixP->fx_file, fixP->fx_line,
20631 _("invalid literal constant: pool needs to be closer"));
20632 else
20633 as_bad_where (fixP->fx_file, fixP->fx_line,
20634 _("bad immediate value for offset (%ld)"),
20635 (long) value);
20636 break;
f03698e6
RE
20637 }
20638
c19d1205 20639 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20640 if (value == 0)
20641 newval &= 0xfffff000;
20642 else
20643 {
20644 newval &= 0xff7ff000;
20645 newval |= value | (sign ? INDEX_UP : 0);
20646 }
c19d1205
ZW
20647 md_number_to_chars (buf, newval, INSN_SIZE);
20648 break;
b99bd4ef 20649
c19d1205
ZW
20650 case BFD_RELOC_ARM_OFFSET_IMM8:
20651 case BFD_RELOC_ARM_HWLITERAL:
26d97720 20652 sign = value > 0;
b99bd4ef 20653
c19d1205
ZW
20654 if (value < 0)
20655 value = - value;
b99bd4ef 20656
c19d1205 20657 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20658 {
c19d1205
ZW
20659 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20660 as_bad_where (fixP->fx_file, fixP->fx_line,
20661 _("invalid literal constant: pool needs to be closer"));
20662 else
f9d4405b 20663 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20664 (long) value);
20665 break;
b99bd4ef
NC
20666 }
20667
c19d1205 20668 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20669 if (value == 0)
20670 newval &= 0xfffff0f0;
20671 else
20672 {
20673 newval &= 0xff7ff0f0;
20674 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20675 }
c19d1205
ZW
20676 md_number_to_chars (buf, newval, INSN_SIZE);
20677 break;
b99bd4ef 20678
c19d1205
ZW
20679 case BFD_RELOC_ARM_T32_OFFSET_U8:
20680 if (value < 0 || value > 1020 || value % 4 != 0)
20681 as_bad_where (fixP->fx_file, fixP->fx_line,
20682 _("bad immediate value for offset (%ld)"), (long) value);
20683 value /= 4;
b99bd4ef 20684
c19d1205 20685 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20686 newval |= value;
20687 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20688 break;
b99bd4ef 20689
c19d1205
ZW
20690 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20691 /* This is a complicated relocation used for all varieties of Thumb32
20692 load/store instruction with immediate offset:
20693
20694 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20695 *4, optional writeback(W)
20696 (doubleword load/store)
20697
20698 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20699 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20700 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20701 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20702 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20703
20704 Uppercase letters indicate bits that are already encoded at
20705 this point. Lowercase letters are our problem. For the
20706 second block of instructions, the secondary opcode nybble
20707 (bits 8..11) is present, and bit 23 is zero, even if this is
20708 a PC-relative operation. */
20709 newval = md_chars_to_number (buf, THUMB_SIZE);
20710 newval <<= 16;
20711 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20712
c19d1205 20713 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20714 {
c19d1205
ZW
20715 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20716 if (value >= 0)
20717 newval |= (1 << 23);
20718 else
20719 value = -value;
20720 if (value % 4 != 0)
20721 {
20722 as_bad_where (fixP->fx_file, fixP->fx_line,
20723 _("offset not a multiple of 4"));
20724 break;
20725 }
20726 value /= 4;
216d22bc 20727 if (value > 0xff)
c19d1205
ZW
20728 {
20729 as_bad_where (fixP->fx_file, fixP->fx_line,
20730 _("offset out of range"));
20731 break;
20732 }
20733 newval &= ~0xff;
b99bd4ef 20734 }
c19d1205 20735 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20736 {
c19d1205
ZW
20737 /* PC-relative, 12-bit offset. */
20738 if (value >= 0)
20739 newval |= (1 << 23);
20740 else
20741 value = -value;
216d22bc 20742 if (value > 0xfff)
c19d1205
ZW
20743 {
20744 as_bad_where (fixP->fx_file, fixP->fx_line,
20745 _("offset out of range"));
20746 break;
20747 }
20748 newval &= ~0xfff;
b99bd4ef 20749 }
c19d1205 20750 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20751 {
c19d1205
ZW
20752 /* Writeback: 8-bit, +/- offset. */
20753 if (value >= 0)
20754 newval |= (1 << 9);
20755 else
20756 value = -value;
216d22bc 20757 if (value > 0xff)
c19d1205
ZW
20758 {
20759 as_bad_where (fixP->fx_file, fixP->fx_line,
20760 _("offset out of range"));
20761 break;
20762 }
20763 newval &= ~0xff;
b99bd4ef 20764 }
c19d1205 20765 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20766 {
c19d1205 20767 /* T-instruction: positive 8-bit offset. */
216d22bc 20768 if (value < 0 || value > 0xff)
b99bd4ef 20769 {
c19d1205
ZW
20770 as_bad_where (fixP->fx_file, fixP->fx_line,
20771 _("offset out of range"));
20772 break;
b99bd4ef 20773 }
c19d1205
ZW
20774 newval &= ~0xff;
20775 newval |= value;
b99bd4ef
NC
20776 }
20777 else
b99bd4ef 20778 {
c19d1205
ZW
20779 /* Positive 12-bit or negative 8-bit offset. */
20780 int limit;
20781 if (value >= 0)
b99bd4ef 20782 {
c19d1205
ZW
20783 newval |= (1 << 23);
20784 limit = 0xfff;
20785 }
20786 else
20787 {
20788 value = -value;
20789 limit = 0xff;
20790 }
20791 if (value > limit)
20792 {
20793 as_bad_where (fixP->fx_file, fixP->fx_line,
20794 _("offset out of range"));
20795 break;
b99bd4ef 20796 }
c19d1205 20797 newval &= ~limit;
b99bd4ef 20798 }
b99bd4ef 20799
c19d1205
ZW
20800 newval |= value;
20801 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20802 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20803 break;
404ff6b5 20804
c19d1205
ZW
20805 case BFD_RELOC_ARM_SHIFT_IMM:
20806 newval = md_chars_to_number (buf, INSN_SIZE);
20807 if (((unsigned long) value) > 32
20808 || (value == 32
20809 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20810 {
20811 as_bad_where (fixP->fx_file, fixP->fx_line,
20812 _("shift expression is too large"));
20813 break;
20814 }
404ff6b5 20815
c19d1205
ZW
20816 if (value == 0)
20817 /* Shifts of zero must be done as lsl. */
20818 newval &= ~0x60;
20819 else if (value == 32)
20820 value = 0;
20821 newval &= 0xfffff07f;
20822 newval |= (value & 0x1f) << 7;
20823 md_number_to_chars (buf, newval, INSN_SIZE);
20824 break;
404ff6b5 20825
c19d1205 20826 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20827 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20828 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20829 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20830 /* We claim that this fixup has been processed here,
20831 even if in fact we generate an error because we do
20832 not have a reloc for it, so tc_gen_reloc will reject it. */
20833 fixP->fx_done = 1;
404ff6b5 20834
c19d1205
ZW
20835 if (fixP->fx_addsy
20836 && ! S_IS_DEFINED (fixP->fx_addsy))
20837 {
20838 as_bad_where (fixP->fx_file, fixP->fx_line,
20839 _("undefined symbol %s used as an immediate value"),
20840 S_GET_NAME (fixP->fx_addsy));
20841 break;
20842 }
404ff6b5 20843
c19d1205
ZW
20844 newval = md_chars_to_number (buf, THUMB_SIZE);
20845 newval <<= 16;
20846 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20847
16805f35
PB
20848 newimm = FAIL;
20849 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20850 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20851 {
20852 newimm = encode_thumb32_immediate (value);
20853 if (newimm == (unsigned int) FAIL)
20854 newimm = thumb32_negate_data_op (&newval, value);
20855 }
16805f35
PB
20856 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20857 && newimm == (unsigned int) FAIL)
92e90b6e 20858 {
16805f35
PB
20859 /* Turn add/sum into addw/subw. */
20860 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20861 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20862 /* No flat 12-bit imm encoding for addsw/subsw. */
20863 if ((newval & 0x00100000) == 0)
e9f89963 20864 {
40f246e3
NC
20865 /* 12 bit immediate for addw/subw. */
20866 if (value < 0)
20867 {
20868 value = -value;
20869 newval ^= 0x00a00000;
20870 }
20871 if (value > 0xfff)
20872 newimm = (unsigned int) FAIL;
20873 else
20874 newimm = value;
e9f89963 20875 }
92e90b6e 20876 }
cc8a6dd0 20877
c19d1205 20878 if (newimm == (unsigned int)FAIL)
3631a3c8 20879 {
c19d1205
ZW
20880 as_bad_where (fixP->fx_file, fixP->fx_line,
20881 _("invalid constant (%lx) after fixup"),
20882 (unsigned long) value);
20883 break;
3631a3c8
NC
20884 }
20885
c19d1205
ZW
20886 newval |= (newimm & 0x800) << 15;
20887 newval |= (newimm & 0x700) << 4;
20888 newval |= (newimm & 0x0ff);
cc8a6dd0 20889
c19d1205
ZW
20890 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20891 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20892 break;
a737bd4d 20893
3eb17e6b 20894 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20895 if (((unsigned long) value) > 0xffff)
20896 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20897 _("invalid smc expression"));
2fc8bdac 20898 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20899 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20900 md_number_to_chars (buf, newval, INSN_SIZE);
20901 break;
a737bd4d 20902
90ec0d68
MGD
20903 case BFD_RELOC_ARM_HVC:
20904 if (((unsigned long) value) > 0xffff)
20905 as_bad_where (fixP->fx_file, fixP->fx_line,
20906 _("invalid hvc expression"));
20907 newval = md_chars_to_number (buf, INSN_SIZE);
20908 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20909 md_number_to_chars (buf, newval, INSN_SIZE);
20910 break;
20911
c19d1205 20912 case BFD_RELOC_ARM_SWI:
adbaf948 20913 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20914 {
20915 if (((unsigned long) value) > 0xff)
20916 as_bad_where (fixP->fx_file, fixP->fx_line,
20917 _("invalid swi expression"));
2fc8bdac 20918 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20919 newval |= value;
20920 md_number_to_chars (buf, newval, THUMB_SIZE);
20921 }
20922 else
20923 {
20924 if (((unsigned long) value) > 0x00ffffff)
20925 as_bad_where (fixP->fx_file, fixP->fx_line,
20926 _("invalid swi expression"));
2fc8bdac 20927 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20928 newval |= value;
20929 md_number_to_chars (buf, newval, INSN_SIZE);
20930 }
20931 break;
a737bd4d 20932
c19d1205
ZW
20933 case BFD_RELOC_ARM_MULTI:
20934 if (((unsigned long) value) > 0xffff)
20935 as_bad_where (fixP->fx_file, fixP->fx_line,
20936 _("invalid expression in load/store multiple"));
20937 newval = value | md_chars_to_number (buf, INSN_SIZE);
20938 md_number_to_chars (buf, newval, INSN_SIZE);
20939 break;
a737bd4d 20940
c19d1205 20941#ifdef OBJ_ELF
39b41c9c 20942 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20943
20944 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20945 && fixP->fx_addsy
34e77a92 20946 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20947 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20948 && THUMB_IS_FUNC (fixP->fx_addsy))
20949 /* Flip the bl to blx. This is a simple flip
20950 bit here because we generate PCREL_CALL for
20951 unconditional bls. */
20952 {
20953 newval = md_chars_to_number (buf, INSN_SIZE);
20954 newval = newval | 0x10000000;
20955 md_number_to_chars (buf, newval, INSN_SIZE);
20956 temp = 1;
20957 fixP->fx_done = 1;
20958 }
39b41c9c
PB
20959 else
20960 temp = 3;
20961 goto arm_branch_common;
20962
20963 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20964 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20965 && fixP->fx_addsy
34e77a92 20966 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20967 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20968 && THUMB_IS_FUNC (fixP->fx_addsy))
20969 {
20970 /* This would map to a bl<cond>, b<cond>,
20971 b<always> to a Thumb function. We
20972 need to force a relocation for this particular
20973 case. */
20974 newval = md_chars_to_number (buf, INSN_SIZE);
20975 fixP->fx_done = 0;
20976 }
20977
2fc8bdac 20978 case BFD_RELOC_ARM_PLT32:
c19d1205 20979#endif
39b41c9c
PB
20980 case BFD_RELOC_ARM_PCREL_BRANCH:
20981 temp = 3;
20982 goto arm_branch_common;
a737bd4d 20983
39b41c9c 20984 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20985
39b41c9c 20986 temp = 1;
267bf995
RR
20987 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20988 && fixP->fx_addsy
34e77a92 20989 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20990 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20991 && ARM_IS_FUNC (fixP->fx_addsy))
20992 {
20993 /* Flip the blx to a bl and warn. */
20994 const char *name = S_GET_NAME (fixP->fx_addsy);
20995 newval = 0xeb000000;
20996 as_warn_where (fixP->fx_file, fixP->fx_line,
20997 _("blx to '%s' an ARM ISA state function changed to bl"),
20998 name);
20999 md_number_to_chars (buf, newval, INSN_SIZE);
21000 temp = 3;
21001 fixP->fx_done = 1;
21002 }
21003
21004#ifdef OBJ_ELF
21005 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21006 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21007#endif
21008
39b41c9c 21009 arm_branch_common:
c19d1205 21010 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
21011 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21012 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21013 also be be clear. */
21014 if (value & temp)
c19d1205 21015 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
21016 _("misaligned branch destination"));
21017 if ((value & (offsetT)0xfe000000) != (offsetT)0
21018 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 21019 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21020
2fc8bdac 21021 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21022 {
2fc8bdac
ZW
21023 newval = md_chars_to_number (buf, INSN_SIZE);
21024 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
21025 /* Set the H bit on BLX instructions. */
21026 if (temp == 1)
21027 {
21028 if (value & 2)
21029 newval |= 0x01000000;
21030 else
21031 newval &= ~0x01000000;
21032 }
2fc8bdac 21033 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 21034 }
c19d1205 21035 break;
a737bd4d 21036
25fe350b
MS
21037 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21038 /* CBZ can only branch forward. */
a737bd4d 21039
738755b0
MS
21040 /* Attempts to use CBZ to branch to the next instruction
21041 (which, strictly speaking, are prohibited) will be turned into
21042 no-ops.
21043
21044 FIXME: It may be better to remove the instruction completely and
21045 perform relaxation. */
21046 if (value == -2)
2fc8bdac
ZW
21047 {
21048 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 21049 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
21050 md_number_to_chars (buf, newval, THUMB_SIZE);
21051 }
738755b0
MS
21052 else
21053 {
21054 if (value & ~0x7e)
08f10d51 21055 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0
MS
21056
21057 if (fixP->fx_done || !seg->use_rela_p)
21058 {
21059 newval = md_chars_to_number (buf, THUMB_SIZE);
21060 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21061 md_number_to_chars (buf, newval, THUMB_SIZE);
21062 }
21063 }
c19d1205 21064 break;
a737bd4d 21065
c19d1205 21066 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 21067 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 21068 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21069
2fc8bdac
ZW
21070 if (fixP->fx_done || !seg->use_rela_p)
21071 {
21072 newval = md_chars_to_number (buf, THUMB_SIZE);
21073 newval |= (value & 0x1ff) >> 1;
21074 md_number_to_chars (buf, newval, THUMB_SIZE);
21075 }
c19d1205 21076 break;
a737bd4d 21077
c19d1205 21078 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 21079 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 21080 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21081
2fc8bdac
ZW
21082 if (fixP->fx_done || !seg->use_rela_p)
21083 {
21084 newval = md_chars_to_number (buf, THUMB_SIZE);
21085 newval |= (value & 0xfff) >> 1;
21086 md_number_to_chars (buf, newval, THUMB_SIZE);
21087 }
c19d1205 21088 break;
a737bd4d 21089
c19d1205 21090 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
21091 if (fixP->fx_addsy
21092 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21093 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21094 && ARM_IS_FUNC (fixP->fx_addsy)
21095 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21096 {
21097 /* Force a relocation for a branch 20 bits wide. */
21098 fixP->fx_done = 0;
21099 }
08f10d51 21100 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
21101 as_bad_where (fixP->fx_file, fixP->fx_line,
21102 _("conditional branch out of range"));
404ff6b5 21103
2fc8bdac
ZW
21104 if (fixP->fx_done || !seg->use_rela_p)
21105 {
21106 offsetT newval2;
21107 addressT S, J1, J2, lo, hi;
404ff6b5 21108
2fc8bdac
ZW
21109 S = (value & 0x00100000) >> 20;
21110 J2 = (value & 0x00080000) >> 19;
21111 J1 = (value & 0x00040000) >> 18;
21112 hi = (value & 0x0003f000) >> 12;
21113 lo = (value & 0x00000ffe) >> 1;
6c43fab6 21114
2fc8bdac
ZW
21115 newval = md_chars_to_number (buf, THUMB_SIZE);
21116 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21117 newval |= (S << 10) | hi;
21118 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21119 md_number_to_chars (buf, newval, THUMB_SIZE);
21120 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21121 }
c19d1205 21122 break;
6c43fab6 21123
c19d1205 21124 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21125 /* If there is a blx from a thumb state function to
21126 another thumb function flip this to a bl and warn
21127 about it. */
21128
21129 if (fixP->fx_addsy
34e77a92 21130 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21131 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21132 && THUMB_IS_FUNC (fixP->fx_addsy))
21133 {
21134 const char *name = S_GET_NAME (fixP->fx_addsy);
21135 as_warn_where (fixP->fx_file, fixP->fx_line,
21136 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21137 name);
21138 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21139 newval = newval | 0x1000;
21140 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21141 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21142 fixP->fx_done = 1;
21143 }
21144
21145
21146 goto thumb_bl_common;
21147
c19d1205 21148 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21149 /* A bl from Thumb state ISA to an internal ARM state function
21150 is converted to a blx. */
21151 if (fixP->fx_addsy
21152 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21153 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21154 && ARM_IS_FUNC (fixP->fx_addsy)
21155 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21156 {
21157 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21158 newval = newval & ~0x1000;
21159 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21160 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21161 fixP->fx_done = 1;
21162 }
21163
21164 thumb_bl_common:
21165
21166#ifdef OBJ_ELF
21167 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21168 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21169 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21170#endif
21171
2fc8bdac
ZW
21172 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21173 /* For a BLX instruction, make sure that the relocation is rounded up
21174 to a word boundary. This follows the semantics of the instruction
21175 which specifies that bit 1 of the target address will come from bit
21176 1 of the base address. */
21177 value = (value + 1) & ~ 1;
404ff6b5 21178
4a42ebbc 21179 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
08f10d51
NC
21180 {
21181 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21182 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21183 else if ((value & ~0x1ffffff)
21184 && ((value & ~0x1ffffff) != ~0x1ffffff))
21185 as_bad_where (fixP->fx_file, fixP->fx_line,
21186 _("Thumb2 branch out of range"));
21187 }
4a42ebbc
RR
21188
21189 if (fixP->fx_done || !seg->use_rela_p)
21190 encode_thumb2_b_bl_offset (buf, value);
21191
c19d1205 21192 break;
404ff6b5 21193
c19d1205 21194 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
21195 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21196 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 21197
2fc8bdac 21198 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21199 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21200
2fc8bdac 21201 break;
a737bd4d 21202
2fc8bdac
ZW
21203 case BFD_RELOC_8:
21204 if (fixP->fx_done || !seg->use_rela_p)
21205 md_number_to_chars (buf, value, 1);
c19d1205 21206 break;
a737bd4d 21207
c19d1205 21208 case BFD_RELOC_16:
2fc8bdac 21209 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21210 md_number_to_chars (buf, value, 2);
c19d1205 21211 break;
a737bd4d 21212
c19d1205 21213#ifdef OBJ_ELF
0855e32b
NS
21214 case BFD_RELOC_ARM_TLS_CALL:
21215 case BFD_RELOC_ARM_THM_TLS_CALL:
21216 case BFD_RELOC_ARM_TLS_DESCSEQ:
21217 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21218 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21219 break;
21220
21221 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21222 case BFD_RELOC_ARM_TLS_GD32:
21223 case BFD_RELOC_ARM_TLS_LE32:
21224 case BFD_RELOC_ARM_TLS_IE32:
21225 case BFD_RELOC_ARM_TLS_LDM32:
21226 case BFD_RELOC_ARM_TLS_LDO32:
21227 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21228 /* fall through */
6c43fab6 21229
c19d1205
ZW
21230 case BFD_RELOC_ARM_GOT32:
21231 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21232 if (fixP->fx_done || !seg->use_rela_p)
21233 md_number_to_chars (buf, 0, 4);
c19d1205 21234 break;
b43420e6
NC
21235
21236 case BFD_RELOC_ARM_GOT_PREL:
21237 if (fixP->fx_done || !seg->use_rela_p)
21238 md_number_to_chars (buf, value, 4);
21239 break;
21240
9a6f4e97
NS
21241 case BFD_RELOC_ARM_TARGET2:
21242 /* TARGET2 is not partial-inplace, so we need to write the
21243 addend here for REL targets, because it won't be written out
21244 during reloc processing later. */
21245 if (fixP->fx_done || !seg->use_rela_p)
21246 md_number_to_chars (buf, fixP->fx_offset, 4);
21247 break;
c19d1205 21248#endif
6c43fab6 21249
c19d1205
ZW
21250 case BFD_RELOC_RVA:
21251 case BFD_RELOC_32:
21252 case BFD_RELOC_ARM_TARGET1:
21253 case BFD_RELOC_ARM_ROSEGREL32:
21254 case BFD_RELOC_ARM_SBREL32:
21255 case BFD_RELOC_32_PCREL:
f0927246
NC
21256#ifdef TE_PE
21257 case BFD_RELOC_32_SECREL:
21258#endif
2fc8bdac 21259 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21260#ifdef TE_WINCE
21261 /* For WinCE we only do this for pcrel fixups. */
21262 if (fixP->fx_done || fixP->fx_pcrel)
21263#endif
21264 md_number_to_chars (buf, value, 4);
c19d1205 21265 break;
6c43fab6 21266
c19d1205
ZW
21267#ifdef OBJ_ELF
21268 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21269 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21270 {
21271 newval = md_chars_to_number (buf, 4) & 0x80000000;
21272 if ((value ^ (value >> 1)) & 0x40000000)
21273 {
21274 as_bad_where (fixP->fx_file, fixP->fx_line,
21275 _("rel31 relocation overflow"));
21276 }
21277 newval |= value & 0x7fffffff;
21278 md_number_to_chars (buf, newval, 4);
21279 }
21280 break;
c19d1205 21281#endif
a737bd4d 21282
c19d1205 21283 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21284 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21285 if (value < -1023 || value > 1023 || (value & 3))
21286 as_bad_where (fixP->fx_file, fixP->fx_line,
21287 _("co-processor offset out of range"));
21288 cp_off_common:
26d97720 21289 sign = value > 0;
c19d1205
ZW
21290 if (value < 0)
21291 value = -value;
8f06b2d8
PB
21292 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21293 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21294 newval = md_chars_to_number (buf, INSN_SIZE);
21295 else
21296 newval = get_thumb32_insn (buf);
26d97720
NS
21297 if (value == 0)
21298 newval &= 0xffffff00;
21299 else
21300 {
21301 newval &= 0xff7fff00;
21302 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21303 }
8f06b2d8
PB
21304 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21305 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21306 md_number_to_chars (buf, newval, INSN_SIZE);
21307 else
21308 put_thumb32_insn (buf, newval);
c19d1205 21309 break;
a737bd4d 21310
c19d1205 21311 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21312 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21313 if (value < -255 || value > 255)
21314 as_bad_where (fixP->fx_file, fixP->fx_line,
21315 _("co-processor offset out of range"));
df7849c5 21316 value *= 4;
c19d1205 21317 goto cp_off_common;
6c43fab6 21318
c19d1205
ZW
21319 case BFD_RELOC_ARM_THUMB_OFFSET:
21320 newval = md_chars_to_number (buf, THUMB_SIZE);
21321 /* Exactly what ranges, and where the offset is inserted depends
21322 on the type of instruction, we can establish this from the
21323 top 4 bits. */
21324 switch (newval >> 12)
21325 {
21326 case 4: /* PC load. */
21327 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21328 forced to zero for these loads; md_pcrel_from has already
21329 compensated for this. */
21330 if (value & 3)
21331 as_bad_where (fixP->fx_file, fixP->fx_line,
21332 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21333 (((unsigned long) fixP->fx_frag->fr_address
21334 + (unsigned long) fixP->fx_where) & ~3)
21335 + (unsigned long) value);
a737bd4d 21336
c19d1205
ZW
21337 if (value & ~0x3fc)
21338 as_bad_where (fixP->fx_file, fixP->fx_line,
21339 _("invalid offset, value too big (0x%08lX)"),
21340 (long) value);
a737bd4d 21341
c19d1205
ZW
21342 newval |= value >> 2;
21343 break;
a737bd4d 21344
c19d1205
ZW
21345 case 9: /* SP load/store. */
21346 if (value & ~0x3fc)
21347 as_bad_where (fixP->fx_file, fixP->fx_line,
21348 _("invalid offset, value too big (0x%08lX)"),
21349 (long) value);
21350 newval |= value >> 2;
21351 break;
6c43fab6 21352
c19d1205
ZW
21353 case 6: /* Word load/store. */
21354 if (value & ~0x7c)
21355 as_bad_where (fixP->fx_file, fixP->fx_line,
21356 _("invalid offset, value too big (0x%08lX)"),
21357 (long) value);
21358 newval |= value << 4; /* 6 - 2. */
21359 break;
a737bd4d 21360
c19d1205
ZW
21361 case 7: /* Byte load/store. */
21362 if (value & ~0x1f)
21363 as_bad_where (fixP->fx_file, fixP->fx_line,
21364 _("invalid offset, value too big (0x%08lX)"),
21365 (long) value);
21366 newval |= value << 6;
21367 break;
a737bd4d 21368
c19d1205
ZW
21369 case 8: /* Halfword load/store. */
21370 if (value & ~0x3e)
21371 as_bad_where (fixP->fx_file, fixP->fx_line,
21372 _("invalid offset, value too big (0x%08lX)"),
21373 (long) value);
21374 newval |= value << 5; /* 6 - 1. */
21375 break;
a737bd4d 21376
c19d1205
ZW
21377 default:
21378 as_bad_where (fixP->fx_file, fixP->fx_line,
21379 "Unable to process relocation for thumb opcode: %lx",
21380 (unsigned long) newval);
21381 break;
21382 }
21383 md_number_to_chars (buf, newval, THUMB_SIZE);
21384 break;
a737bd4d 21385
c19d1205
ZW
21386 case BFD_RELOC_ARM_THUMB_ADD:
21387 /* This is a complicated relocation, since we use it for all of
21388 the following immediate relocations:
a737bd4d 21389
c19d1205
ZW
21390 3bit ADD/SUB
21391 8bit ADD/SUB
21392 9bit ADD/SUB SP word-aligned
21393 10bit ADD PC/SP word-aligned
a737bd4d 21394
c19d1205
ZW
21395 The type of instruction being processed is encoded in the
21396 instruction field:
a737bd4d 21397
c19d1205
ZW
21398 0x8000 SUB
21399 0x00F0 Rd
21400 0x000F Rs
21401 */
21402 newval = md_chars_to_number (buf, THUMB_SIZE);
21403 {
21404 int rd = (newval >> 4) & 0xf;
21405 int rs = newval & 0xf;
21406 int subtract = !!(newval & 0x8000);
a737bd4d 21407
c19d1205
ZW
21408 /* Check for HI regs, only very restricted cases allowed:
21409 Adjusting SP, and using PC or SP to get an address. */
21410 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21411 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21412 as_bad_where (fixP->fx_file, fixP->fx_line,
21413 _("invalid Hi register with immediate"));
a737bd4d 21414
c19d1205
ZW
21415 /* If value is negative, choose the opposite instruction. */
21416 if (value < 0)
21417 {
21418 value = -value;
21419 subtract = !subtract;
21420 if (value < 0)
21421 as_bad_where (fixP->fx_file, fixP->fx_line,
21422 _("immediate value out of range"));
21423 }
a737bd4d 21424
c19d1205
ZW
21425 if (rd == REG_SP)
21426 {
21427 if (value & ~0x1fc)
21428 as_bad_where (fixP->fx_file, fixP->fx_line,
21429 _("invalid immediate for stack address calculation"));
21430 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21431 newval |= value >> 2;
21432 }
21433 else if (rs == REG_PC || rs == REG_SP)
21434 {
21435 if (subtract || value & ~0x3fc)
21436 as_bad_where (fixP->fx_file, fixP->fx_line,
21437 _("invalid immediate for address calculation (value = 0x%08lX)"),
21438 (unsigned long) value);
21439 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21440 newval |= rd << 8;
21441 newval |= value >> 2;
21442 }
21443 else if (rs == rd)
21444 {
21445 if (value & ~0xff)
21446 as_bad_where (fixP->fx_file, fixP->fx_line,
21447 _("immediate value out of range"));
21448 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21449 newval |= (rd << 8) | value;
21450 }
21451 else
21452 {
21453 if (value & ~0x7)
21454 as_bad_where (fixP->fx_file, fixP->fx_line,
21455 _("immediate value out of range"));
21456 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21457 newval |= rd | (rs << 3) | (value << 6);
21458 }
21459 }
21460 md_number_to_chars (buf, newval, THUMB_SIZE);
21461 break;
a737bd4d 21462
c19d1205
ZW
21463 case BFD_RELOC_ARM_THUMB_IMM:
21464 newval = md_chars_to_number (buf, THUMB_SIZE);
21465 if (value < 0 || value > 255)
21466 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21467 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21468 (long) value);
21469 newval |= value;
21470 md_number_to_chars (buf, newval, THUMB_SIZE);
21471 break;
a737bd4d 21472
c19d1205
ZW
21473 case BFD_RELOC_ARM_THUMB_SHIFT:
21474 /* 5bit shift value (0..32). LSL cannot take 32. */
21475 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21476 temp = newval & 0xf800;
21477 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21478 as_bad_where (fixP->fx_file, fixP->fx_line,
21479 _("invalid shift value: %ld"), (long) value);
21480 /* Shifts of zero must be encoded as LSL. */
21481 if (value == 0)
21482 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21483 /* Shifts of 32 are encoded as zero. */
21484 else if (value == 32)
21485 value = 0;
21486 newval |= value << 6;
21487 md_number_to_chars (buf, newval, THUMB_SIZE);
21488 break;
a737bd4d 21489
c19d1205
ZW
21490 case BFD_RELOC_VTABLE_INHERIT:
21491 case BFD_RELOC_VTABLE_ENTRY:
21492 fixP->fx_done = 0;
21493 return;
6c43fab6 21494
b6895b4f
PB
21495 case BFD_RELOC_ARM_MOVW:
21496 case BFD_RELOC_ARM_MOVT:
21497 case BFD_RELOC_ARM_THUMB_MOVW:
21498 case BFD_RELOC_ARM_THUMB_MOVT:
21499 if (fixP->fx_done || !seg->use_rela_p)
21500 {
21501 /* REL format relocations are limited to a 16-bit addend. */
21502 if (!fixP->fx_done)
21503 {
39623e12 21504 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21505 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21506 _("offset out of range"));
b6895b4f
PB
21507 }
21508 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21509 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21510 {
21511 value >>= 16;
21512 }
21513
21514 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21515 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21516 {
21517 newval = get_thumb32_insn (buf);
21518 newval &= 0xfbf08f00;
21519 newval |= (value & 0xf000) << 4;
21520 newval |= (value & 0x0800) << 15;
21521 newval |= (value & 0x0700) << 4;
21522 newval |= (value & 0x00ff);
21523 put_thumb32_insn (buf, newval);
21524 }
21525 else
21526 {
21527 newval = md_chars_to_number (buf, 4);
21528 newval &= 0xfff0f000;
21529 newval |= value & 0x0fff;
21530 newval |= (value & 0xf000) << 4;
21531 md_number_to_chars (buf, newval, 4);
21532 }
21533 }
21534 return;
21535
4962c51a
MS
21536 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21537 case BFD_RELOC_ARM_ALU_PC_G0:
21538 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21539 case BFD_RELOC_ARM_ALU_PC_G1:
21540 case BFD_RELOC_ARM_ALU_PC_G2:
21541 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21542 case BFD_RELOC_ARM_ALU_SB_G0:
21543 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21544 case BFD_RELOC_ARM_ALU_SB_G1:
21545 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21546 gas_assert (!fixP->fx_done);
4962c51a
MS
21547 if (!seg->use_rela_p)
21548 {
21549 bfd_vma insn;
21550 bfd_vma encoded_addend;
21551 bfd_vma addend_abs = abs (value);
21552
21553 /* Check that the absolute value of the addend can be
21554 expressed as an 8-bit constant plus a rotation. */
21555 encoded_addend = encode_arm_immediate (addend_abs);
21556 if (encoded_addend == (unsigned int) FAIL)
21557 as_bad_where (fixP->fx_file, fixP->fx_line,
21558 _("the offset 0x%08lX is not representable"),
495bde8e 21559 (unsigned long) addend_abs);
4962c51a
MS
21560
21561 /* Extract the instruction. */
21562 insn = md_chars_to_number (buf, INSN_SIZE);
21563
21564 /* If the addend is positive, use an ADD instruction.
21565 Otherwise use a SUB. Take care not to destroy the S bit. */
21566 insn &= 0xff1fffff;
21567 if (value < 0)
21568 insn |= 1 << 22;
21569 else
21570 insn |= 1 << 23;
21571
21572 /* Place the encoded addend into the first 12 bits of the
21573 instruction. */
21574 insn &= 0xfffff000;
21575 insn |= encoded_addend;
5f4273c7
NC
21576
21577 /* Update the instruction. */
4962c51a
MS
21578 md_number_to_chars (buf, insn, INSN_SIZE);
21579 }
21580 break;
21581
21582 case BFD_RELOC_ARM_LDR_PC_G0:
21583 case BFD_RELOC_ARM_LDR_PC_G1:
21584 case BFD_RELOC_ARM_LDR_PC_G2:
21585 case BFD_RELOC_ARM_LDR_SB_G0:
21586 case BFD_RELOC_ARM_LDR_SB_G1:
21587 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21588 gas_assert (!fixP->fx_done);
4962c51a
MS
21589 if (!seg->use_rela_p)
21590 {
21591 bfd_vma insn;
21592 bfd_vma addend_abs = abs (value);
21593
21594 /* Check that the absolute value of the addend can be
21595 encoded in 12 bits. */
21596 if (addend_abs >= 0x1000)
21597 as_bad_where (fixP->fx_file, fixP->fx_line,
21598 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21599 (unsigned long) addend_abs);
4962c51a
MS
21600
21601 /* Extract the instruction. */
21602 insn = md_chars_to_number (buf, INSN_SIZE);
21603
21604 /* If the addend is negative, clear bit 23 of the instruction.
21605 Otherwise set it. */
21606 if (value < 0)
21607 insn &= ~(1 << 23);
21608 else
21609 insn |= 1 << 23;
21610
21611 /* Place the absolute value of the addend into the first 12 bits
21612 of the instruction. */
21613 insn &= 0xfffff000;
21614 insn |= addend_abs;
5f4273c7
NC
21615
21616 /* Update the instruction. */
4962c51a
MS
21617 md_number_to_chars (buf, insn, INSN_SIZE);
21618 }
21619 break;
21620
21621 case BFD_RELOC_ARM_LDRS_PC_G0:
21622 case BFD_RELOC_ARM_LDRS_PC_G1:
21623 case BFD_RELOC_ARM_LDRS_PC_G2:
21624 case BFD_RELOC_ARM_LDRS_SB_G0:
21625 case BFD_RELOC_ARM_LDRS_SB_G1:
21626 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21627 gas_assert (!fixP->fx_done);
4962c51a
MS
21628 if (!seg->use_rela_p)
21629 {
21630 bfd_vma insn;
21631 bfd_vma addend_abs = abs (value);
21632
21633 /* Check that the absolute value of the addend can be
21634 encoded in 8 bits. */
21635 if (addend_abs >= 0x100)
21636 as_bad_where (fixP->fx_file, fixP->fx_line,
21637 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21638 (unsigned long) addend_abs);
4962c51a
MS
21639
21640 /* Extract the instruction. */
21641 insn = md_chars_to_number (buf, INSN_SIZE);
21642
21643 /* If the addend is negative, clear bit 23 of the instruction.
21644 Otherwise set it. */
21645 if (value < 0)
21646 insn &= ~(1 << 23);
21647 else
21648 insn |= 1 << 23;
21649
21650 /* Place the first four bits of the absolute value of the addend
21651 into the first 4 bits of the instruction, and the remaining
21652 four into bits 8 .. 11. */
21653 insn &= 0xfffff0f0;
21654 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21655
21656 /* Update the instruction. */
4962c51a
MS
21657 md_number_to_chars (buf, insn, INSN_SIZE);
21658 }
21659 break;
21660
21661 case BFD_RELOC_ARM_LDC_PC_G0:
21662 case BFD_RELOC_ARM_LDC_PC_G1:
21663 case BFD_RELOC_ARM_LDC_PC_G2:
21664 case BFD_RELOC_ARM_LDC_SB_G0:
21665 case BFD_RELOC_ARM_LDC_SB_G1:
21666 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21667 gas_assert (!fixP->fx_done);
4962c51a
MS
21668 if (!seg->use_rela_p)
21669 {
21670 bfd_vma insn;
21671 bfd_vma addend_abs = abs (value);
21672
21673 /* Check that the absolute value of the addend is a multiple of
21674 four and, when divided by four, fits in 8 bits. */
21675 if (addend_abs & 0x3)
21676 as_bad_where (fixP->fx_file, fixP->fx_line,
21677 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21678 (unsigned long) addend_abs);
4962c51a
MS
21679
21680 if ((addend_abs >> 2) > 0xff)
21681 as_bad_where (fixP->fx_file, fixP->fx_line,
21682 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21683 (unsigned long) addend_abs);
4962c51a
MS
21684
21685 /* Extract the instruction. */
21686 insn = md_chars_to_number (buf, INSN_SIZE);
21687
21688 /* If the addend is negative, clear bit 23 of the instruction.
21689 Otherwise set it. */
21690 if (value < 0)
21691 insn &= ~(1 << 23);
21692 else
21693 insn |= 1 << 23;
21694
21695 /* Place the addend (divided by four) into the first eight
21696 bits of the instruction. */
21697 insn &= 0xfffffff0;
21698 insn |= addend_abs >> 2;
5f4273c7
NC
21699
21700 /* Update the instruction. */
4962c51a
MS
21701 md_number_to_chars (buf, insn, INSN_SIZE);
21702 }
21703 break;
21704
845b51d6
PB
21705 case BFD_RELOC_ARM_V4BX:
21706 /* This will need to go in the object file. */
21707 fixP->fx_done = 0;
21708 break;
21709
c19d1205
ZW
21710 case BFD_RELOC_UNUSED:
21711 default:
21712 as_bad_where (fixP->fx_file, fixP->fx_line,
21713 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21714 }
6c43fab6
RE
21715}
21716
c19d1205
ZW
21717/* Translate internal representation of relocation info to BFD target
21718 format. */
a737bd4d 21719
c19d1205 21720arelent *
00a97672 21721tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21722{
c19d1205
ZW
21723 arelent * reloc;
21724 bfd_reloc_code_real_type code;
a737bd4d 21725
21d799b5 21726 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21727
21d799b5 21728 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21729 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21730 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21731
2fc8bdac 21732 if (fixp->fx_pcrel)
00a97672
RS
21733 {
21734 if (section->use_rela_p)
21735 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21736 else
21737 fixp->fx_offset = reloc->address;
21738 }
c19d1205 21739 reloc->addend = fixp->fx_offset;
a737bd4d 21740
c19d1205 21741 switch (fixp->fx_r_type)
a737bd4d 21742 {
c19d1205
ZW
21743 case BFD_RELOC_8:
21744 if (fixp->fx_pcrel)
21745 {
21746 code = BFD_RELOC_8_PCREL;
21747 break;
21748 }
a737bd4d 21749
c19d1205
ZW
21750 case BFD_RELOC_16:
21751 if (fixp->fx_pcrel)
21752 {
21753 code = BFD_RELOC_16_PCREL;
21754 break;
21755 }
6c43fab6 21756
c19d1205
ZW
21757 case BFD_RELOC_32:
21758 if (fixp->fx_pcrel)
21759 {
21760 code = BFD_RELOC_32_PCREL;
21761 break;
21762 }
a737bd4d 21763
b6895b4f
PB
21764 case BFD_RELOC_ARM_MOVW:
21765 if (fixp->fx_pcrel)
21766 {
21767 code = BFD_RELOC_ARM_MOVW_PCREL;
21768 break;
21769 }
21770
21771 case BFD_RELOC_ARM_MOVT:
21772 if (fixp->fx_pcrel)
21773 {
21774 code = BFD_RELOC_ARM_MOVT_PCREL;
21775 break;
21776 }
21777
21778 case BFD_RELOC_ARM_THUMB_MOVW:
21779 if (fixp->fx_pcrel)
21780 {
21781 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21782 break;
21783 }
21784
21785 case BFD_RELOC_ARM_THUMB_MOVT:
21786 if (fixp->fx_pcrel)
21787 {
21788 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21789 break;
21790 }
21791
c19d1205
ZW
21792 case BFD_RELOC_NONE:
21793 case BFD_RELOC_ARM_PCREL_BRANCH:
21794 case BFD_RELOC_ARM_PCREL_BLX:
21795 case BFD_RELOC_RVA:
21796 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21797 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21798 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21799 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21800 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21801 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21802 case BFD_RELOC_VTABLE_ENTRY:
21803 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21804#ifdef TE_PE
21805 case BFD_RELOC_32_SECREL:
21806#endif
c19d1205
ZW
21807 code = fixp->fx_r_type;
21808 break;
a737bd4d 21809
00adf2d4
JB
21810 case BFD_RELOC_THUMB_PCREL_BLX:
21811#ifdef OBJ_ELF
21812 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21813 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21814 else
21815#endif
21816 code = BFD_RELOC_THUMB_PCREL_BLX;
21817 break;
21818
c19d1205
ZW
21819 case BFD_RELOC_ARM_LITERAL:
21820 case BFD_RELOC_ARM_HWLITERAL:
21821 /* If this is called then the a literal has
21822 been referenced across a section boundary. */
21823 as_bad_where (fixp->fx_file, fixp->fx_line,
21824 _("literal referenced across section boundary"));
21825 return NULL;
a737bd4d 21826
c19d1205 21827#ifdef OBJ_ELF
0855e32b
NS
21828 case BFD_RELOC_ARM_TLS_CALL:
21829 case BFD_RELOC_ARM_THM_TLS_CALL:
21830 case BFD_RELOC_ARM_TLS_DESCSEQ:
21831 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
21832 case BFD_RELOC_ARM_GOT32:
21833 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21834 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21835 case BFD_RELOC_ARM_PLT32:
21836 case BFD_RELOC_ARM_TARGET1:
21837 case BFD_RELOC_ARM_ROSEGREL32:
21838 case BFD_RELOC_ARM_SBREL32:
21839 case BFD_RELOC_ARM_PREL31:
21840 case BFD_RELOC_ARM_TARGET2:
21841 case BFD_RELOC_ARM_TLS_LE32:
21842 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21843 case BFD_RELOC_ARM_PCREL_CALL:
21844 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21845 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21846 case BFD_RELOC_ARM_ALU_PC_G0:
21847 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21848 case BFD_RELOC_ARM_ALU_PC_G1:
21849 case BFD_RELOC_ARM_ALU_PC_G2:
21850 case BFD_RELOC_ARM_LDR_PC_G0:
21851 case BFD_RELOC_ARM_LDR_PC_G1:
21852 case BFD_RELOC_ARM_LDR_PC_G2:
21853 case BFD_RELOC_ARM_LDRS_PC_G0:
21854 case BFD_RELOC_ARM_LDRS_PC_G1:
21855 case BFD_RELOC_ARM_LDRS_PC_G2:
21856 case BFD_RELOC_ARM_LDC_PC_G0:
21857 case BFD_RELOC_ARM_LDC_PC_G1:
21858 case BFD_RELOC_ARM_LDC_PC_G2:
21859 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21860 case BFD_RELOC_ARM_ALU_SB_G0:
21861 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21862 case BFD_RELOC_ARM_ALU_SB_G1:
21863 case BFD_RELOC_ARM_ALU_SB_G2:
21864 case BFD_RELOC_ARM_LDR_SB_G0:
21865 case BFD_RELOC_ARM_LDR_SB_G1:
21866 case BFD_RELOC_ARM_LDR_SB_G2:
21867 case BFD_RELOC_ARM_LDRS_SB_G0:
21868 case BFD_RELOC_ARM_LDRS_SB_G1:
21869 case BFD_RELOC_ARM_LDRS_SB_G2:
21870 case BFD_RELOC_ARM_LDC_SB_G0:
21871 case BFD_RELOC_ARM_LDC_SB_G1:
21872 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21873 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21874 code = fixp->fx_r_type;
21875 break;
a737bd4d 21876
0855e32b 21877 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21878 case BFD_RELOC_ARM_TLS_GD32:
21879 case BFD_RELOC_ARM_TLS_IE32:
21880 case BFD_RELOC_ARM_TLS_LDM32:
21881 /* BFD will include the symbol's address in the addend.
21882 But we don't want that, so subtract it out again here. */
21883 if (!S_IS_COMMON (fixp->fx_addsy))
21884 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21885 code = fixp->fx_r_type;
21886 break;
21887#endif
a737bd4d 21888
c19d1205
ZW
21889 case BFD_RELOC_ARM_IMMEDIATE:
21890 as_bad_where (fixp->fx_file, fixp->fx_line,
21891 _("internal relocation (type: IMMEDIATE) not fixed up"));
21892 return NULL;
a737bd4d 21893
c19d1205
ZW
21894 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21895 as_bad_where (fixp->fx_file, fixp->fx_line,
21896 _("ADRL used for a symbol not defined in the same file"));
21897 return NULL;
a737bd4d 21898
c19d1205 21899 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21900 if (section->use_rela_p)
21901 {
21902 code = fixp->fx_r_type;
21903 break;
21904 }
21905
c19d1205
ZW
21906 if (fixp->fx_addsy != NULL
21907 && !S_IS_DEFINED (fixp->fx_addsy)
21908 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21909 {
c19d1205
ZW
21910 as_bad_where (fixp->fx_file, fixp->fx_line,
21911 _("undefined local label `%s'"),
21912 S_GET_NAME (fixp->fx_addsy));
21913 return NULL;
a737bd4d
NC
21914 }
21915
c19d1205
ZW
21916 as_bad_where (fixp->fx_file, fixp->fx_line,
21917 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21918 return NULL;
a737bd4d 21919
c19d1205
ZW
21920 default:
21921 {
21922 char * type;
6c43fab6 21923
c19d1205
ZW
21924 switch (fixp->fx_r_type)
21925 {
21926 case BFD_RELOC_NONE: type = "NONE"; break;
21927 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21928 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21929 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21930 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21931 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21932 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21933 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21934 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21935 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21936 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21937 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21938 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21939 default: type = _("<unknown>"); break;
21940 }
21941 as_bad_where (fixp->fx_file, fixp->fx_line,
21942 _("cannot represent %s relocation in this object file format"),
21943 type);
21944 return NULL;
21945 }
a737bd4d 21946 }
6c43fab6 21947
c19d1205
ZW
21948#ifdef OBJ_ELF
21949 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21950 && GOT_symbol
21951 && fixp->fx_addsy == GOT_symbol)
21952 {
21953 code = BFD_RELOC_ARM_GOTPC;
21954 reloc->addend = fixp->fx_offset = reloc->address;
21955 }
21956#endif
6c43fab6 21957
c19d1205 21958 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21959
c19d1205
ZW
21960 if (reloc->howto == NULL)
21961 {
21962 as_bad_where (fixp->fx_file, fixp->fx_line,
21963 _("cannot represent %s relocation in this object file format"),
21964 bfd_get_reloc_code_name (code));
21965 return NULL;
21966 }
6c43fab6 21967
c19d1205
ZW
21968 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21969 vtable entry to be used in the relocation's section offset. */
21970 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21971 reloc->address = fixp->fx_offset;
6c43fab6 21972
c19d1205 21973 return reloc;
6c43fab6
RE
21974}
21975
c19d1205 21976/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21977
c19d1205
ZW
21978void
21979cons_fix_new_arm (fragS * frag,
21980 int where,
21981 int size,
21982 expressionS * exp)
6c43fab6 21983{
c19d1205
ZW
21984 bfd_reloc_code_real_type type;
21985 int pcrel = 0;
6c43fab6 21986
c19d1205
ZW
21987 /* Pick a reloc.
21988 FIXME: @@ Should look at CPU word size. */
21989 switch (size)
21990 {
21991 case 1:
21992 type = BFD_RELOC_8;
21993 break;
21994 case 2:
21995 type = BFD_RELOC_16;
21996 break;
21997 case 4:
21998 default:
21999 type = BFD_RELOC_32;
22000 break;
22001 case 8:
22002 type = BFD_RELOC_64;
22003 break;
22004 }
6c43fab6 22005
f0927246
NC
22006#ifdef TE_PE
22007 if (exp->X_op == O_secrel)
22008 {
22009 exp->X_op = O_symbol;
22010 type = BFD_RELOC_32_SECREL;
22011 }
22012#endif
22013
c19d1205
ZW
22014 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22015}
6c43fab6 22016
4343666d 22017#if defined (OBJ_COFF)
c19d1205
ZW
22018void
22019arm_validate_fix (fixS * fixP)
6c43fab6 22020{
c19d1205
ZW
22021 /* If the destination of the branch is a defined symbol which does not have
22022 the THUMB_FUNC attribute, then we must be calling a function which has
22023 the (interfacearm) attribute. We look for the Thumb entry point to that
22024 function and change the branch to refer to that function instead. */
22025 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22026 && fixP->fx_addsy != NULL
22027 && S_IS_DEFINED (fixP->fx_addsy)
22028 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 22029 {
c19d1205 22030 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 22031 }
c19d1205
ZW
22032}
22033#endif
6c43fab6 22034
267bf995 22035
c19d1205
ZW
22036int
22037arm_force_relocation (struct fix * fixp)
22038{
22039#if defined (OBJ_COFF) && defined (TE_PE)
22040 if (fixp->fx_r_type == BFD_RELOC_RVA)
22041 return 1;
22042#endif
6c43fab6 22043
267bf995
RR
22044 /* In case we have a call or a branch to a function in ARM ISA mode from
22045 a thumb function or vice-versa force the relocation. These relocations
22046 are cleared off for some cores that might have blx and simple transformations
22047 are possible. */
22048
22049#ifdef OBJ_ELF
22050 switch (fixp->fx_r_type)
22051 {
22052 case BFD_RELOC_ARM_PCREL_JUMP:
22053 case BFD_RELOC_ARM_PCREL_CALL:
22054 case BFD_RELOC_THUMB_PCREL_BLX:
22055 if (THUMB_IS_FUNC (fixp->fx_addsy))
22056 return 1;
22057 break;
22058
22059 case BFD_RELOC_ARM_PCREL_BLX:
22060 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22061 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22062 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22063 if (ARM_IS_FUNC (fixp->fx_addsy))
22064 return 1;
22065 break;
22066
22067 default:
22068 break;
22069 }
22070#endif
22071
b5884301
PB
22072 /* Resolve these relocations even if the symbol is extern or weak.
22073 Technically this is probably wrong due to symbol preemption.
22074 In practice these relocations do not have enough range to be useful
22075 at dynamic link time, and some code (e.g. in the Linux kernel)
22076 expects these references to be resolved. */
c19d1205
ZW
22077 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22078 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 22079 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 22080 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
22081 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22082 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22083 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 22084 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
22085 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22086 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
22087 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22088 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22089 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22090 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 22091 return 0;
a737bd4d 22092
4962c51a
MS
22093 /* Always leave these relocations for the linker. */
22094 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22095 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22096 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22097 return 1;
22098
f0291e4c
PB
22099 /* Always generate relocations against function symbols. */
22100 if (fixp->fx_r_type == BFD_RELOC_32
22101 && fixp->fx_addsy
22102 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22103 return 1;
22104
c19d1205 22105 return generic_force_reloc (fixp);
404ff6b5
AH
22106}
22107
0ffdc86c 22108#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
22109/* Relocations against function names must be left unadjusted,
22110 so that the linker can use this information to generate interworking
22111 stubs. The MIPS version of this function
c19d1205
ZW
22112 also prevents relocations that are mips-16 specific, but I do not
22113 know why it does this.
404ff6b5 22114
c19d1205
ZW
22115 FIXME:
22116 There is one other problem that ought to be addressed here, but
22117 which currently is not: Taking the address of a label (rather
22118 than a function) and then later jumping to that address. Such
22119 addresses also ought to have their bottom bit set (assuming that
22120 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22121
c19d1205
ZW
22122bfd_boolean
22123arm_fix_adjustable (fixS * fixP)
404ff6b5 22124{
c19d1205
ZW
22125 if (fixP->fx_addsy == NULL)
22126 return 1;
404ff6b5 22127
e28387c3
PB
22128 /* Preserve relocations against symbols with function type. */
22129 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22130 return FALSE;
e28387c3 22131
c19d1205
ZW
22132 if (THUMB_IS_FUNC (fixP->fx_addsy)
22133 && fixP->fx_subsy == NULL)
c921be7d 22134 return FALSE;
a737bd4d 22135
c19d1205
ZW
22136 /* We need the symbol name for the VTABLE entries. */
22137 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22138 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22139 return FALSE;
404ff6b5 22140
c19d1205
ZW
22141 /* Don't allow symbols to be discarded on GOT related relocs. */
22142 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22143 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22144 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22145 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22146 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22147 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22148 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22149 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22150 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22151 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22152 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22153 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22154 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22155 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22156 return FALSE;
a737bd4d 22157
4962c51a
MS
22158 /* Similarly for group relocations. */
22159 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22160 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22161 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22162 return FALSE;
4962c51a 22163
79947c54
CD
22164 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22165 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22166 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22167 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22168 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22169 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22170 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22171 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22172 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22173 return FALSE;
79947c54 22174
c921be7d 22175 return TRUE;
a737bd4d 22176}
0ffdc86c
NC
22177#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22178
22179#ifdef OBJ_ELF
404ff6b5 22180
c19d1205
ZW
22181const char *
22182elf32_arm_target_format (void)
404ff6b5 22183{
c19d1205
ZW
22184#ifdef TE_SYMBIAN
22185 return (target_big_endian
22186 ? "elf32-bigarm-symbian"
22187 : "elf32-littlearm-symbian");
22188#elif defined (TE_VXWORKS)
22189 return (target_big_endian
22190 ? "elf32-bigarm-vxworks"
22191 : "elf32-littlearm-vxworks");
22192#else
22193 if (target_big_endian)
22194 return "elf32-bigarm";
22195 else
22196 return "elf32-littlearm";
22197#endif
404ff6b5
AH
22198}
22199
c19d1205
ZW
22200void
22201armelf_frob_symbol (symbolS * symp,
22202 int * puntp)
404ff6b5 22203{
c19d1205
ZW
22204 elf_frob_symbol (symp, puntp);
22205}
22206#endif
404ff6b5 22207
c19d1205 22208/* MD interface: Finalization. */
a737bd4d 22209
c19d1205
ZW
22210void
22211arm_cleanup (void)
22212{
22213 literal_pool * pool;
a737bd4d 22214
e07e6e58
NC
22215 /* Ensure that all the IT blocks are properly closed. */
22216 check_it_blocks_finished ();
22217
c19d1205
ZW
22218 for (pool = list_of_pools; pool; pool = pool->next)
22219 {
5f4273c7 22220 /* Put it at the end of the relevant section. */
c19d1205
ZW
22221 subseg_set (pool->section, pool->sub_section);
22222#ifdef OBJ_ELF
22223 arm_elf_change_section ();
22224#endif
22225 s_ltorg (0);
22226 }
404ff6b5
AH
22227}
22228
cd000bff
DJ
22229#ifdef OBJ_ELF
22230/* Remove any excess mapping symbols generated for alignment frags in
22231 SEC. We may have created a mapping symbol before a zero byte
22232 alignment; remove it if there's a mapping symbol after the
22233 alignment. */
22234static void
22235check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22236 void *dummy ATTRIBUTE_UNUSED)
22237{
22238 segment_info_type *seginfo = seg_info (sec);
22239 fragS *fragp;
22240
22241 if (seginfo == NULL || seginfo->frchainP == NULL)
22242 return;
22243
22244 for (fragp = seginfo->frchainP->frch_root;
22245 fragp != NULL;
22246 fragp = fragp->fr_next)
22247 {
22248 symbolS *sym = fragp->tc_frag_data.last_map;
22249 fragS *next = fragp->fr_next;
22250
22251 /* Variable-sized frags have been converted to fixed size by
22252 this point. But if this was variable-sized to start with,
22253 there will be a fixed-size frag after it. So don't handle
22254 next == NULL. */
22255 if (sym == NULL || next == NULL)
22256 continue;
22257
22258 if (S_GET_VALUE (sym) < next->fr_address)
22259 /* Not at the end of this frag. */
22260 continue;
22261 know (S_GET_VALUE (sym) == next->fr_address);
22262
22263 do
22264 {
22265 if (next->tc_frag_data.first_map != NULL)
22266 {
22267 /* Next frag starts with a mapping symbol. Discard this
22268 one. */
22269 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22270 break;
22271 }
22272
22273 if (next->fr_next == NULL)
22274 {
22275 /* This mapping symbol is at the end of the section. Discard
22276 it. */
22277 know (next->fr_fix == 0 && next->fr_var == 0);
22278 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22279 break;
22280 }
22281
22282 /* As long as we have empty frags without any mapping symbols,
22283 keep looking. */
22284 /* If the next frag is non-empty and does not start with a
22285 mapping symbol, then this mapping symbol is required. */
22286 if (next->fr_address != next->fr_next->fr_address)
22287 break;
22288
22289 next = next->fr_next;
22290 }
22291 while (next != NULL);
22292 }
22293}
22294#endif
22295
c19d1205
ZW
22296/* Adjust the symbol table. This marks Thumb symbols as distinct from
22297 ARM ones. */
404ff6b5 22298
c19d1205
ZW
22299void
22300arm_adjust_symtab (void)
404ff6b5 22301{
c19d1205
ZW
22302#ifdef OBJ_COFF
22303 symbolS * sym;
404ff6b5 22304
c19d1205
ZW
22305 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22306 {
22307 if (ARM_IS_THUMB (sym))
22308 {
22309 if (THUMB_IS_FUNC (sym))
22310 {
22311 /* Mark the symbol as a Thumb function. */
22312 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22313 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22314 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22315
c19d1205
ZW
22316 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22317 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22318 else
22319 as_bad (_("%s: unexpected function type: %d"),
22320 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22321 }
22322 else switch (S_GET_STORAGE_CLASS (sym))
22323 {
22324 case C_EXT:
22325 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22326 break;
22327 case C_STAT:
22328 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22329 break;
22330 case C_LABEL:
22331 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22332 break;
22333 default:
22334 /* Do nothing. */
22335 break;
22336 }
22337 }
a737bd4d 22338
c19d1205
ZW
22339 if (ARM_IS_INTERWORK (sym))
22340 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22341 }
c19d1205
ZW
22342#endif
22343#ifdef OBJ_ELF
22344 symbolS * sym;
22345 char bind;
404ff6b5 22346
c19d1205 22347 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22348 {
c19d1205
ZW
22349 if (ARM_IS_THUMB (sym))
22350 {
22351 elf_symbol_type * elf_sym;
404ff6b5 22352
c19d1205
ZW
22353 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22354 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22355
b0796911
PB
22356 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22357 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22358 {
22359 /* If it's a .thumb_func, declare it as so,
22360 otherwise tag label as .code 16. */
22361 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22362 elf_sym->internal_elf_sym.st_target_internal
22363 = ST_BRANCH_TO_THUMB;
3ba67470 22364 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22365 elf_sym->internal_elf_sym.st_info =
22366 ELF_ST_INFO (bind, STT_ARM_16BIT);
22367 }
22368 }
22369 }
cd000bff
DJ
22370
22371 /* Remove any overlapping mapping symbols generated by alignment frags. */
22372 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22373 /* Now do generic ELF adjustments. */
22374 elf_adjust_symtab ();
c19d1205 22375#endif
404ff6b5
AH
22376}
22377
c19d1205 22378/* MD interface: Initialization. */
404ff6b5 22379
a737bd4d 22380static void
c19d1205 22381set_constant_flonums (void)
a737bd4d 22382{
c19d1205 22383 int i;
404ff6b5 22384
c19d1205
ZW
22385 for (i = 0; i < NUM_FLOAT_VALS; i++)
22386 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22387 abort ();
a737bd4d 22388}
404ff6b5 22389
3e9e4fcf
JB
22390/* Auto-select Thumb mode if it's the only available instruction set for the
22391 given architecture. */
22392
22393static void
22394autoselect_thumb_from_cpu_variant (void)
22395{
22396 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22397 opcode_select (16);
22398}
22399
c19d1205
ZW
22400void
22401md_begin (void)
a737bd4d 22402{
c19d1205
ZW
22403 unsigned mach;
22404 unsigned int i;
404ff6b5 22405
c19d1205
ZW
22406 if ( (arm_ops_hsh = hash_new ()) == NULL
22407 || (arm_cond_hsh = hash_new ()) == NULL
22408 || (arm_shift_hsh = hash_new ()) == NULL
22409 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22410 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22411 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22412 || (arm_reloc_hsh = hash_new ()) == NULL
22413 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22414 as_fatal (_("virtual memory exhausted"));
22415
22416 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22417 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22418 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22419 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22420 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22421 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22422 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22423 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22424 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22425 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22426 (void *) (v7m_psrs + i));
c19d1205 22427 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22428 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22429 for (i = 0;
22430 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22431 i++)
d3ce72d0 22432 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22433 (void *) (barrier_opt_names + i));
c19d1205 22434#ifdef OBJ_ELF
3da1d841
NC
22435 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22436 {
22437 struct reloc_entry * entry = reloc_names + i;
22438
22439 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22440 /* This makes encode_branch() use the EABI versions of this relocation. */
22441 entry->reloc = BFD_RELOC_UNUSED;
22442
22443 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22444 }
c19d1205
ZW
22445#endif
22446
22447 set_constant_flonums ();
404ff6b5 22448
c19d1205
ZW
22449 /* Set the cpu variant based on the command-line options. We prefer
22450 -mcpu= over -march= if both are set (as for GCC); and we prefer
22451 -mfpu= over any other way of setting the floating point unit.
22452 Use of legacy options with new options are faulted. */
e74cfd16 22453 if (legacy_cpu)
404ff6b5 22454 {
e74cfd16 22455 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22456 as_bad (_("use of old and new-style options to set CPU type"));
22457
22458 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22459 }
e74cfd16 22460 else if (!mcpu_cpu_opt)
c19d1205 22461 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22462
e74cfd16 22463 if (legacy_fpu)
c19d1205 22464 {
e74cfd16 22465 if (mfpu_opt)
c19d1205 22466 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22467
22468 mfpu_opt = legacy_fpu;
22469 }
e74cfd16 22470 else if (!mfpu_opt)
03b1477f 22471 {
45eb4c1b
NS
22472#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22473 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22474 /* Some environments specify a default FPU. If they don't, infer it
22475 from the processor. */
e74cfd16 22476 if (mcpu_fpu_opt)
03b1477f
RE
22477 mfpu_opt = mcpu_fpu_opt;
22478 else
22479 mfpu_opt = march_fpu_opt;
39c2da32 22480#else
e74cfd16 22481 mfpu_opt = &fpu_default;
39c2da32 22482#endif
03b1477f
RE
22483 }
22484
e74cfd16 22485 if (!mfpu_opt)
03b1477f 22486 {
493cb6ef 22487 if (mcpu_cpu_opt != NULL)
e74cfd16 22488 mfpu_opt = &fpu_default;
493cb6ef 22489 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22490 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22491 else
e74cfd16 22492 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22493 }
22494
ee065d83 22495#ifdef CPU_DEFAULT
e74cfd16 22496 if (!mcpu_cpu_opt)
ee065d83 22497 {
e74cfd16
PB
22498 mcpu_cpu_opt = &cpu_default;
22499 selected_cpu = cpu_default;
ee065d83 22500 }
e74cfd16
PB
22501#else
22502 if (mcpu_cpu_opt)
22503 selected_cpu = *mcpu_cpu_opt;
ee065d83 22504 else
e74cfd16 22505 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22506#endif
03b1477f 22507
e74cfd16 22508 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22509
3e9e4fcf
JB
22510 autoselect_thumb_from_cpu_variant ();
22511
e74cfd16 22512 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22513
f17c130b 22514#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22515 {
7cc69913
NC
22516 unsigned int flags = 0;
22517
22518#if defined OBJ_ELF
22519 flags = meabi_flags;
d507cf36
PB
22520
22521 switch (meabi_flags)
33a392fb 22522 {
d507cf36 22523 case EF_ARM_EABI_UNKNOWN:
7cc69913 22524#endif
d507cf36
PB
22525 /* Set the flags in the private structure. */
22526 if (uses_apcs_26) flags |= F_APCS26;
22527 if (support_interwork) flags |= F_INTERWORK;
22528 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22529 if (pic_code) flags |= F_PIC;
e74cfd16 22530 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22531 flags |= F_SOFT_FLOAT;
22532
d507cf36
PB
22533 switch (mfloat_abi_opt)
22534 {
22535 case ARM_FLOAT_ABI_SOFT:
22536 case ARM_FLOAT_ABI_SOFTFP:
22537 flags |= F_SOFT_FLOAT;
22538 break;
33a392fb 22539
d507cf36
PB
22540 case ARM_FLOAT_ABI_HARD:
22541 if (flags & F_SOFT_FLOAT)
22542 as_bad (_("hard-float conflicts with specified fpu"));
22543 break;
22544 }
03b1477f 22545
e74cfd16
PB
22546 /* Using pure-endian doubles (even if soft-float). */
22547 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22548 flags |= F_VFP_FLOAT;
f17c130b 22549
fde78edd 22550#if defined OBJ_ELF
e74cfd16 22551 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22552 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22553 break;
22554
8cb51566 22555 case EF_ARM_EABI_VER4:
3a4a14e9 22556 case EF_ARM_EABI_VER5:
c19d1205 22557 /* No additional flags to set. */
d507cf36
PB
22558 break;
22559
22560 default:
22561 abort ();
22562 }
7cc69913 22563#endif
b99bd4ef
NC
22564 bfd_set_private_flags (stdoutput, flags);
22565
22566 /* We have run out flags in the COFF header to encode the
22567 status of ATPCS support, so instead we create a dummy,
c19d1205 22568 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22569 if (atpcs)
22570 {
22571 asection * sec;
22572
22573 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22574
22575 if (sec != NULL)
22576 {
22577 bfd_set_section_flags
22578 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22579 bfd_set_section_size (stdoutput, sec, 0);
22580 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22581 }
22582 }
7cc69913 22583 }
f17c130b 22584#endif
b99bd4ef
NC
22585
22586 /* Record the CPU type as well. */
2d447fca
JM
22587 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22588 mach = bfd_mach_arm_iWMMXt2;
22589 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22590 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22591 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22592 mach = bfd_mach_arm_XScale;
e74cfd16 22593 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22594 mach = bfd_mach_arm_ep9312;
e74cfd16 22595 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22596 mach = bfd_mach_arm_5TE;
e74cfd16 22597 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22598 {
e74cfd16 22599 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22600 mach = bfd_mach_arm_5T;
22601 else
22602 mach = bfd_mach_arm_5;
22603 }
e74cfd16 22604 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22605 {
e74cfd16 22606 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22607 mach = bfd_mach_arm_4T;
22608 else
22609 mach = bfd_mach_arm_4;
22610 }
e74cfd16 22611 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22612 mach = bfd_mach_arm_3M;
e74cfd16
PB
22613 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22614 mach = bfd_mach_arm_3;
22615 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22616 mach = bfd_mach_arm_2a;
22617 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22618 mach = bfd_mach_arm_2;
22619 else
22620 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22621
22622 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22623}
22624
c19d1205 22625/* Command line processing. */
b99bd4ef 22626
c19d1205
ZW
22627/* md_parse_option
22628 Invocation line includes a switch not recognized by the base assembler.
22629 See if it's a processor-specific option.
b99bd4ef 22630
c19d1205
ZW
22631 This routine is somewhat complicated by the need for backwards
22632 compatibility (since older releases of gcc can't be changed).
22633 The new options try to make the interface as compatible as
22634 possible with GCC.
b99bd4ef 22635
c19d1205 22636 New options (supported) are:
b99bd4ef 22637
c19d1205
ZW
22638 -mcpu=<cpu name> Assemble for selected processor
22639 -march=<architecture name> Assemble for selected architecture
22640 -mfpu=<fpu architecture> Assemble for selected FPU.
22641 -EB/-mbig-endian Big-endian
22642 -EL/-mlittle-endian Little-endian
22643 -k Generate PIC code
22644 -mthumb Start in Thumb mode
22645 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22646
278df34e 22647 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22648
c19d1205 22649 For now we will also provide support for:
b99bd4ef 22650
c19d1205
ZW
22651 -mapcs-32 32-bit Program counter
22652 -mapcs-26 26-bit Program counter
22653 -macps-float Floats passed in FP registers
22654 -mapcs-reentrant Reentrant code
22655 -matpcs
22656 (sometime these will probably be replaced with -mapcs=<list of options>
22657 and -matpcs=<list of options>)
b99bd4ef 22658
c19d1205
ZW
22659 The remaining options are only supported for back-wards compatibility.
22660 Cpu variants, the arm part is optional:
22661 -m[arm]1 Currently not supported.
22662 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22663 -m[arm]3 Arm 3 processor
22664 -m[arm]6[xx], Arm 6 processors
22665 -m[arm]7[xx][t][[d]m] Arm 7 processors
22666 -m[arm]8[10] Arm 8 processors
22667 -m[arm]9[20][tdmi] Arm 9 processors
22668 -mstrongarm[110[0]] StrongARM processors
22669 -mxscale XScale processors
22670 -m[arm]v[2345[t[e]]] Arm architectures
22671 -mall All (except the ARM1)
22672 FP variants:
22673 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22674 -mfpe-old (No float load/store multiples)
22675 -mvfpxd VFP Single precision
22676 -mvfp All VFP
22677 -mno-fpu Disable all floating point instructions
b99bd4ef 22678
c19d1205
ZW
22679 The following CPU names are recognized:
22680 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22681 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22682 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22683 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22684 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22685 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22686 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22687
c19d1205 22688 */
b99bd4ef 22689
c19d1205 22690const char * md_shortopts = "m:k";
b99bd4ef 22691
c19d1205
ZW
22692#ifdef ARM_BI_ENDIAN
22693#define OPTION_EB (OPTION_MD_BASE + 0)
22694#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22695#else
c19d1205
ZW
22696#if TARGET_BYTES_BIG_ENDIAN
22697#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22698#else
c19d1205
ZW
22699#define OPTION_EL (OPTION_MD_BASE + 1)
22700#endif
b99bd4ef 22701#endif
845b51d6 22702#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22703
c19d1205 22704struct option md_longopts[] =
b99bd4ef 22705{
c19d1205
ZW
22706#ifdef OPTION_EB
22707 {"EB", no_argument, NULL, OPTION_EB},
22708#endif
22709#ifdef OPTION_EL
22710 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22711#endif
845b51d6 22712 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22713 {NULL, no_argument, NULL, 0}
22714};
b99bd4ef 22715
c19d1205 22716size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22717
c19d1205 22718struct arm_option_table
b99bd4ef 22719{
c19d1205
ZW
22720 char *option; /* Option name to match. */
22721 char *help; /* Help information. */
22722 int *var; /* Variable to change. */
22723 int value; /* What to change it to. */
22724 char *deprecated; /* If non-null, print this message. */
22725};
b99bd4ef 22726
c19d1205
ZW
22727struct arm_option_table arm_opts[] =
22728{
22729 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22730 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22731 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22732 &support_interwork, 1, NULL},
22733 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22734 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22735 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22736 1, NULL},
22737 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22738 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22739 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22740 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22741 NULL},
b99bd4ef 22742
c19d1205
ZW
22743 /* These are recognized by the assembler, but have no affect on code. */
22744 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22745 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22746
22747 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22748 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22749 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22750 {NULL, NULL, NULL, 0, NULL}
22751};
22752
22753struct arm_legacy_option_table
22754{
22755 char *option; /* Option name to match. */
22756 const arm_feature_set **var; /* Variable to change. */
22757 const arm_feature_set value; /* What to change it to. */
22758 char *deprecated; /* If non-null, print this message. */
22759};
b99bd4ef 22760
e74cfd16
PB
22761const struct arm_legacy_option_table arm_legacy_opts[] =
22762{
c19d1205
ZW
22763 /* DON'T add any new processors to this list -- we want the whole list
22764 to go away... Add them to the processors table instead. */
e74cfd16
PB
22765 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22766 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22767 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22768 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22769 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22770 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22771 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22772 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22773 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22774 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22775 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22776 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22777 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22778 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22779 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22780 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22781 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22782 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22783 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22784 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22785 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22786 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22787 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22788 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22789 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22790 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22791 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22792 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22793 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22794 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22795 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22796 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22797 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22798 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22799 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22800 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22801 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22802 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22803 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22804 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22805 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22806 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22807 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22808 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22809 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22810 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22811 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22812 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22813 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22814 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22815 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22816 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22817 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22818 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22819 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22820 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22821 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22822 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22823 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22824 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22825 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22826 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22827 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22828 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22829 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22830 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22831 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22832 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22833 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22834 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22835 N_("use -mcpu=strongarm110")},
e74cfd16 22836 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22837 N_("use -mcpu=strongarm1100")},
e74cfd16 22838 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22839 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22840 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22841 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22842 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22843
c19d1205 22844 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22845 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22846 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22847 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22848 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22849 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22850 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22851 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22852 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22853 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22854 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22855 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22856 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22857 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22858 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22859 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22860 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22861 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22862 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22863
c19d1205 22864 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22865 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22866 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22867 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22868 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22869 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22870
e74cfd16 22871 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22872};
7ed4c4c5 22873
c19d1205 22874struct arm_cpu_option_table
7ed4c4c5 22875{
c19d1205 22876 char *name;
f3bad469 22877 size_t name_len;
e74cfd16 22878 const arm_feature_set value;
c19d1205
ZW
22879 /* For some CPUs we assume an FPU unless the user explicitly sets
22880 -mfpu=... */
e74cfd16 22881 const arm_feature_set default_fpu;
ee065d83
PB
22882 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22883 case. */
22884 const char *canonical_name;
c19d1205 22885};
7ed4c4c5 22886
c19d1205
ZW
22887/* This list should, at a minimum, contain all the cpu names
22888 recognized by GCC. */
f3bad469 22889#define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
e74cfd16 22890static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22891{
f3bad469
MGD
22892 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
22893 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
22894 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
22895 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
22896 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
22897 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22898 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22899 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22900 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22901 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22902 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22903 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22904 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22905 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22906 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22907 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22908 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22909 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22910 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22911 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22912 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22913 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22914 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22915 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22916 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22917 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22918 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22919 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22920 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22921 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22922 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22923 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22924 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22925 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22926 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22927 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22928 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22929 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22930 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22931 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
22932 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22933 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22934 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22935 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22936 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22937 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
c19d1205
ZW
22938 /* For V5 or later processors we default to using VFP; but the user
22939 should really set the FPU type explicitly. */
f3bad469
MGD
22940 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22941 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22942 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
22943 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
22944 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
22945 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22946 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
22947 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22948 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22949 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
22950 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22951 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22952 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22953 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22954 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22955 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
22956 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22957 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22958 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22959 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
22960 "ARM1026EJ-S"),
22961 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
22962 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22963 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22964 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22965 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22966 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22967 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
22968 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
22969 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
22970 "ARM1136JF-S"),
22971 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
22972 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
22973 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
22974 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
22975 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
22976 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
22977 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
22978 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
22979 FPU_NONE, "Cortex-A5"),
22980 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22981 FPU_ARCH_NEON_VFP_V4,
22982 "Cortex-A7"),
22983 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
22984 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22985 | FPU_NEON_EXT_V1),
f3bad469
MGD
22986 "Cortex-A8"),
22987 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
22988 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22989 | FPU_NEON_EXT_V1),
f3bad469
MGD
22990 "Cortex-A9"),
22991 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22992 FPU_ARCH_NEON_VFP_V4,
22993 "Cortex-A15"),
22994 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
22995 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22996 "Cortex-R4F"),
22997 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
22998 FPU_NONE, "Cortex-R5"),
22999 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23000 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23001 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23002 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
c19d1205 23003 /* ??? XSCALE is really an architecture. */
f3bad469 23004 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23005 /* ??? iwmmxt is not a processor. */
f3bad469
MGD
23006 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23007 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23008 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23009 /* Maverick */
f3bad469
MGD
23010 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23011 FPU_ARCH_MAVERICK,
23012 "ARM920T"),
23013 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 23014};
f3bad469 23015#undef ARM_CPU_OPT
7ed4c4c5 23016
c19d1205 23017struct arm_arch_option_table
7ed4c4c5 23018{
c19d1205 23019 char *name;
f3bad469 23020 size_t name_len;
e74cfd16
PB
23021 const arm_feature_set value;
23022 const arm_feature_set default_fpu;
c19d1205 23023};
7ed4c4c5 23024
c19d1205
ZW
23025/* This list should, at a minimum, contain all the architecture names
23026 recognized by GCC. */
f3bad469 23027#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
e74cfd16 23028static const struct arm_arch_option_table arm_archs[] =
c19d1205 23029{
f3bad469
MGD
23030 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23031 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23032 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23033 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23034 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23035 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23036 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23037 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23038 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23039 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23040 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23041 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23042 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23043 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23044 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23045 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23046 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23047 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23048 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23049 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23050 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23051 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23052 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23053 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23054 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23055 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23056 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23057 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23058 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
23059 /* The official spelling of the ARMv7 profile variants is the dashed form.
23060 Accept the non-dashed form for compatibility with old toolchains. */
f3bad469
MGD
23061 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23062 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23063 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23064 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23065 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23066 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23067 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23068 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23069 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23070 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23071 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 23072};
f3bad469 23073#undef ARM_ARCH_OPT
7ed4c4c5 23074
69133863
MGD
23075/* ISA extensions in the co-processor and main instruction set space. */
23076struct arm_option_extension_value_table
c19d1205
ZW
23077{
23078 char *name;
f3bad469 23079 size_t name_len;
e74cfd16 23080 const arm_feature_set value;
69133863 23081 const arm_feature_set allowed_archs;
c19d1205 23082};
7ed4c4c5 23083
69133863
MGD
23084/* The following table must be in alphabetical order with a NULL last entry.
23085 */
f3bad469 23086#define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
69133863 23087static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 23088{
f3bad469
MGD
23089 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23090 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23091 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23092 ARM_EXT_OPT ("iwmmxt2",
23093 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23094 ARM_EXT_OPT ("maverick",
23095 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23096 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23097 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23098 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23099 ARM_FEATURE (ARM_EXT_V6M, 0)),
23100 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23101 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23102 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23103 | ARM_EXT_DIV, 0),
23104 ARM_FEATURE (ARM_EXT_V7A, 0)),
23105 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23106 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
69133863 23107};
f3bad469 23108#undef ARM_EXT_OPT
69133863
MGD
23109
23110/* ISA floating-point and Advanced SIMD extensions. */
23111struct arm_option_fpu_value_table
23112{
23113 char *name;
23114 const arm_feature_set value;
c19d1205 23115};
7ed4c4c5 23116
c19d1205
ZW
23117/* This list should, at a minimum, contain all the fpu names
23118 recognized by GCC. */
69133863 23119static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
23120{
23121 {"softfpa", FPU_NONE},
23122 {"fpe", FPU_ARCH_FPE},
23123 {"fpe2", FPU_ARCH_FPE},
23124 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23125 {"fpa", FPU_ARCH_FPA},
23126 {"fpa10", FPU_ARCH_FPA},
23127 {"fpa11", FPU_ARCH_FPA},
23128 {"arm7500fe", FPU_ARCH_FPA},
23129 {"softvfp", FPU_ARCH_VFP},
23130 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23131 {"vfp", FPU_ARCH_VFP_V2},
23132 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 23133 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
23134 {"vfp10", FPU_ARCH_VFP_V2},
23135 {"vfp10-r0", FPU_ARCH_VFP_V1},
23136 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
23137 {"vfpv2", FPU_ARCH_VFP_V2},
23138 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 23139 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 23140 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23141 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23142 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23143 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23144 {"arm1020t", FPU_ARCH_VFP_V1},
23145 {"arm1020e", FPU_ARCH_VFP_V2},
23146 {"arm1136jfs", FPU_ARCH_VFP_V2},
23147 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23148 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23149 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23150 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23151 {"vfpv4", FPU_ARCH_VFP_V4},
23152 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23153 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23154 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
23155 {NULL, ARM_ARCH_NONE}
23156};
23157
23158struct arm_option_value_table
23159{
23160 char *name;
23161 long value;
c19d1205 23162};
7ed4c4c5 23163
e74cfd16 23164static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
23165{
23166 {"hard", ARM_FLOAT_ABI_HARD},
23167 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23168 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 23169 {NULL, 0}
c19d1205 23170};
7ed4c4c5 23171
c19d1205 23172#ifdef OBJ_ELF
3a4a14e9 23173/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 23174static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
23175{
23176 {"gnu", EF_ARM_EABI_UNKNOWN},
23177 {"4", EF_ARM_EABI_VER4},
3a4a14e9 23178 {"5", EF_ARM_EABI_VER5},
e74cfd16 23179 {NULL, 0}
c19d1205
ZW
23180};
23181#endif
7ed4c4c5 23182
c19d1205
ZW
23183struct arm_long_option_table
23184{
23185 char * option; /* Substring to match. */
23186 char * help; /* Help information. */
23187 int (* func) (char * subopt); /* Function to decode sub-option. */
23188 char * deprecated; /* If non-null, print this message. */
23189};
7ed4c4c5 23190
c921be7d 23191static bfd_boolean
f3bad469 23192arm_parse_extension (char *str, const arm_feature_set **opt_p)
7ed4c4c5 23193{
21d799b5
NC
23194 arm_feature_set *ext_set = (arm_feature_set *)
23195 xmalloc (sizeof (arm_feature_set));
e74cfd16 23196
69133863
MGD
23197 /* We insist on extensions being specified in alphabetical order, and with
23198 extensions being added before being removed. We achieve this by having
23199 the global ARM_EXTENSIONS table in alphabetical order, and using the
23200 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23201 or removing it (0) and only allowing it to change in the order
23202 -1 -> 1 -> 0. */
23203 const struct arm_option_extension_value_table * opt = NULL;
23204 int adding_value = -1;
23205
e74cfd16
PB
23206 /* Copy the feature set, so that we can modify it. */
23207 *ext_set = **opt_p;
23208 *opt_p = ext_set;
23209
c19d1205 23210 while (str != NULL && *str != 0)
7ed4c4c5 23211 {
f3bad469
MGD
23212 char *ext;
23213 size_t len;
7ed4c4c5 23214
c19d1205
ZW
23215 if (*str != '+')
23216 {
23217 as_bad (_("invalid architectural extension"));
c921be7d 23218 return FALSE;
c19d1205 23219 }
7ed4c4c5 23220
c19d1205
ZW
23221 str++;
23222 ext = strchr (str, '+');
7ed4c4c5 23223
c19d1205 23224 if (ext != NULL)
f3bad469 23225 len = ext - str;
c19d1205 23226 else
f3bad469 23227 len = strlen (str);
7ed4c4c5 23228
f3bad469 23229 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
23230 {
23231 if (adding_value != 0)
23232 {
23233 adding_value = 0;
23234 opt = arm_extensions;
23235 }
23236
f3bad469 23237 len -= 2;
69133863
MGD
23238 str += 2;
23239 }
f3bad469 23240 else if (len > 0)
69133863
MGD
23241 {
23242 if (adding_value == -1)
23243 {
23244 adding_value = 1;
23245 opt = arm_extensions;
23246 }
23247 else if (adding_value != 1)
23248 {
23249 as_bad (_("must specify extensions to add before specifying "
23250 "those to remove"));
23251 return FALSE;
23252 }
23253 }
23254
f3bad469 23255 if (len == 0)
c19d1205
ZW
23256 {
23257 as_bad (_("missing architectural extension"));
c921be7d 23258 return FALSE;
c19d1205 23259 }
7ed4c4c5 23260
69133863
MGD
23261 gas_assert (adding_value != -1);
23262 gas_assert (opt != NULL);
23263
23264 /* Scan over the options table trying to find an exact match. */
23265 for (; opt->name != NULL; opt++)
f3bad469 23266 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23267 {
69133863
MGD
23268 /* Check we can apply the extension to this architecture. */
23269 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23270 {
23271 as_bad (_("extension does not apply to the base architecture"));
23272 return FALSE;
23273 }
23274
23275 /* Add or remove the extension. */
23276 if (adding_value)
23277 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23278 else
23279 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23280
c19d1205
ZW
23281 break;
23282 }
7ed4c4c5 23283
c19d1205
ZW
23284 if (opt->name == NULL)
23285 {
69133863
MGD
23286 /* Did we fail to find an extension because it wasn't specified in
23287 alphabetical order, or because it does not exist? */
23288
23289 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 23290 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
23291 break;
23292
23293 if (opt->name == NULL)
23294 as_bad (_("unknown architectural extension `%s'"), str);
23295 else
23296 as_bad (_("architectural extensions must be specified in "
23297 "alphabetical order"));
23298
c921be7d 23299 return FALSE;
c19d1205 23300 }
69133863
MGD
23301 else
23302 {
23303 /* We should skip the extension we've just matched the next time
23304 round. */
23305 opt++;
23306 }
7ed4c4c5 23307
c19d1205
ZW
23308 str = ext;
23309 };
7ed4c4c5 23310
c921be7d 23311 return TRUE;
c19d1205 23312}
7ed4c4c5 23313
c921be7d 23314static bfd_boolean
f3bad469 23315arm_parse_cpu (char *str)
7ed4c4c5 23316{
f3bad469
MGD
23317 const struct arm_cpu_option_table *opt;
23318 char *ext = strchr (str, '+');
23319 size_t len;
7ed4c4c5 23320
c19d1205 23321 if (ext != NULL)
f3bad469 23322 len = ext - str;
7ed4c4c5 23323 else
f3bad469 23324 len = strlen (str);
7ed4c4c5 23325
f3bad469 23326 if (len == 0)
7ed4c4c5 23327 {
c19d1205 23328 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23329 return FALSE;
7ed4c4c5
NC
23330 }
23331
c19d1205 23332 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 23333 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23334 {
e74cfd16
PB
23335 mcpu_cpu_opt = &opt->value;
23336 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23337 if (opt->canonical_name)
5f4273c7 23338 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23339 else
23340 {
f3bad469 23341 size_t i;
c921be7d 23342
f3bad469 23343 for (i = 0; i < len; i++)
ee065d83
PB
23344 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23345 selected_cpu_name[i] = 0;
23346 }
7ed4c4c5 23347
c19d1205
ZW
23348 if (ext != NULL)
23349 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23350
c921be7d 23351 return TRUE;
c19d1205 23352 }
7ed4c4c5 23353
c19d1205 23354 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23355 return FALSE;
7ed4c4c5
NC
23356}
23357
c921be7d 23358static bfd_boolean
f3bad469 23359arm_parse_arch (char *str)
7ed4c4c5 23360{
e74cfd16 23361 const struct arm_arch_option_table *opt;
c19d1205 23362 char *ext = strchr (str, '+');
f3bad469 23363 size_t len;
7ed4c4c5 23364
c19d1205 23365 if (ext != NULL)
f3bad469 23366 len = ext - str;
7ed4c4c5 23367 else
f3bad469 23368 len = strlen (str);
7ed4c4c5 23369
f3bad469 23370 if (len == 0)
7ed4c4c5 23371 {
c19d1205 23372 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23373 return FALSE;
7ed4c4c5
NC
23374 }
23375
c19d1205 23376 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 23377 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23378 {
e74cfd16
PB
23379 march_cpu_opt = &opt->value;
23380 march_fpu_opt = &opt->default_fpu;
5f4273c7 23381 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23382
c19d1205
ZW
23383 if (ext != NULL)
23384 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23385
c921be7d 23386 return TRUE;
c19d1205
ZW
23387 }
23388
23389 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23390 return FALSE;
7ed4c4c5 23391}
eb043451 23392
c921be7d 23393static bfd_boolean
c19d1205
ZW
23394arm_parse_fpu (char * str)
23395{
69133863 23396 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23397
c19d1205
ZW
23398 for (opt = arm_fpus; opt->name != NULL; opt++)
23399 if (streq (opt->name, str))
23400 {
e74cfd16 23401 mfpu_opt = &opt->value;
c921be7d 23402 return TRUE;
c19d1205 23403 }
b99bd4ef 23404
c19d1205 23405 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23406 return FALSE;
c19d1205
ZW
23407}
23408
c921be7d 23409static bfd_boolean
c19d1205 23410arm_parse_float_abi (char * str)
b99bd4ef 23411{
e74cfd16 23412 const struct arm_option_value_table * opt;
b99bd4ef 23413
c19d1205
ZW
23414 for (opt = arm_float_abis; opt->name != NULL; opt++)
23415 if (streq (opt->name, str))
23416 {
23417 mfloat_abi_opt = opt->value;
c921be7d 23418 return TRUE;
c19d1205 23419 }
cc8a6dd0 23420
c19d1205 23421 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23422 return FALSE;
c19d1205 23423}
b99bd4ef 23424
c19d1205 23425#ifdef OBJ_ELF
c921be7d 23426static bfd_boolean
c19d1205
ZW
23427arm_parse_eabi (char * str)
23428{
e74cfd16 23429 const struct arm_option_value_table *opt;
cc8a6dd0 23430
c19d1205
ZW
23431 for (opt = arm_eabis; opt->name != NULL; opt++)
23432 if (streq (opt->name, str))
23433 {
23434 meabi_flags = opt->value;
c921be7d 23435 return TRUE;
c19d1205
ZW
23436 }
23437 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23438 return FALSE;
c19d1205
ZW
23439}
23440#endif
cc8a6dd0 23441
c921be7d 23442static bfd_boolean
e07e6e58
NC
23443arm_parse_it_mode (char * str)
23444{
c921be7d 23445 bfd_boolean ret = TRUE;
e07e6e58
NC
23446
23447 if (streq ("arm", str))
23448 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23449 else if (streq ("thumb", str))
23450 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23451 else if (streq ("always", str))
23452 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23453 else if (streq ("never", str))
23454 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23455 else
23456 {
23457 as_bad (_("unknown implicit IT mode `%s', should be "\
23458 "arm, thumb, always, or never."), str);
c921be7d 23459 ret = FALSE;
e07e6e58
NC
23460 }
23461
23462 return ret;
23463}
23464
c19d1205
ZW
23465struct arm_long_option_table arm_long_opts[] =
23466{
23467 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23468 arm_parse_cpu, NULL},
23469 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23470 arm_parse_arch, NULL},
23471 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23472 arm_parse_fpu, NULL},
23473 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23474 arm_parse_float_abi, NULL},
23475#ifdef OBJ_ELF
7fac0536 23476 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23477 arm_parse_eabi, NULL},
23478#endif
e07e6e58
NC
23479 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23480 arm_parse_it_mode, NULL},
c19d1205
ZW
23481 {NULL, NULL, 0, NULL}
23482};
cc8a6dd0 23483
c19d1205
ZW
23484int
23485md_parse_option (int c, char * arg)
23486{
23487 struct arm_option_table *opt;
e74cfd16 23488 const struct arm_legacy_option_table *fopt;
c19d1205 23489 struct arm_long_option_table *lopt;
b99bd4ef 23490
c19d1205 23491 switch (c)
b99bd4ef 23492 {
c19d1205
ZW
23493#ifdef OPTION_EB
23494 case OPTION_EB:
23495 target_big_endian = 1;
23496 break;
23497#endif
cc8a6dd0 23498
c19d1205
ZW
23499#ifdef OPTION_EL
23500 case OPTION_EL:
23501 target_big_endian = 0;
23502 break;
23503#endif
b99bd4ef 23504
845b51d6
PB
23505 case OPTION_FIX_V4BX:
23506 fix_v4bx = TRUE;
23507 break;
23508
c19d1205
ZW
23509 case 'a':
23510 /* Listing option. Just ignore these, we don't support additional
23511 ones. */
23512 return 0;
b99bd4ef 23513
c19d1205
ZW
23514 default:
23515 for (opt = arm_opts; opt->option != NULL; opt++)
23516 {
23517 if (c == opt->option[0]
23518 && ((arg == NULL && opt->option[1] == 0)
23519 || streq (arg, opt->option + 1)))
23520 {
c19d1205 23521 /* If the option is deprecated, tell the user. */
278df34e 23522 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23523 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23524 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23525
c19d1205
ZW
23526 if (opt->var != NULL)
23527 *opt->var = opt->value;
cc8a6dd0 23528
c19d1205
ZW
23529 return 1;
23530 }
23531 }
b99bd4ef 23532
e74cfd16
PB
23533 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23534 {
23535 if (c == fopt->option[0]
23536 && ((arg == NULL && fopt->option[1] == 0)
23537 || streq (arg, fopt->option + 1)))
23538 {
e74cfd16 23539 /* If the option is deprecated, tell the user. */
278df34e 23540 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23541 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23542 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23543
23544 if (fopt->var != NULL)
23545 *fopt->var = &fopt->value;
23546
23547 return 1;
23548 }
23549 }
23550
c19d1205
ZW
23551 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23552 {
23553 /* These options are expected to have an argument. */
23554 if (c == lopt->option[0]
23555 && arg != NULL
23556 && strncmp (arg, lopt->option + 1,
23557 strlen (lopt->option + 1)) == 0)
23558 {
c19d1205 23559 /* If the option is deprecated, tell the user. */
278df34e 23560 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23561 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23562 _(lopt->deprecated));
b99bd4ef 23563
c19d1205
ZW
23564 /* Call the sup-option parser. */
23565 return lopt->func (arg + strlen (lopt->option) - 1);
23566 }
23567 }
a737bd4d 23568
c19d1205
ZW
23569 return 0;
23570 }
a394c00f 23571
c19d1205
ZW
23572 return 1;
23573}
a394c00f 23574
c19d1205
ZW
23575void
23576md_show_usage (FILE * fp)
a394c00f 23577{
c19d1205
ZW
23578 struct arm_option_table *opt;
23579 struct arm_long_option_table *lopt;
a394c00f 23580
c19d1205 23581 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23582
c19d1205
ZW
23583 for (opt = arm_opts; opt->option != NULL; opt++)
23584 if (opt->help != NULL)
23585 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23586
c19d1205
ZW
23587 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23588 if (lopt->help != NULL)
23589 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23590
c19d1205
ZW
23591#ifdef OPTION_EB
23592 fprintf (fp, _("\
23593 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23594#endif
23595
c19d1205
ZW
23596#ifdef OPTION_EL
23597 fprintf (fp, _("\
23598 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23599#endif
845b51d6
PB
23600
23601 fprintf (fp, _("\
23602 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23603}
ee065d83
PB
23604
23605
23606#ifdef OBJ_ELF
62b3e311
PB
23607typedef struct
23608{
23609 int val;
23610 arm_feature_set flags;
23611} cpu_arch_ver_table;
23612
23613/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23614 least features first. */
23615static const cpu_arch_ver_table cpu_arch_ver[] =
23616{
23617 {1, ARM_ARCH_V4},
23618 {2, ARM_ARCH_V4T},
23619 {3, ARM_ARCH_V5},
ee3c0378 23620 {3, ARM_ARCH_V5T},
62b3e311
PB
23621 {4, ARM_ARCH_V5TE},
23622 {5, ARM_ARCH_V5TEJ},
23623 {6, ARM_ARCH_V6},
7e806470 23624 {9, ARM_ARCH_V6K},
f4c65163 23625 {7, ARM_ARCH_V6Z},
91e22acd 23626 {11, ARM_ARCH_V6M},
b2a5fbdc 23627 {12, ARM_ARCH_V6SM},
7e806470 23628 {8, ARM_ARCH_V6T2},
62b3e311
PB
23629 {10, ARM_ARCH_V7A},
23630 {10, ARM_ARCH_V7R},
23631 {10, ARM_ARCH_V7M},
23632 {0, ARM_ARCH_NONE}
23633};
23634
ee3c0378
AS
23635/* Set an attribute if it has not already been set by the user. */
23636static void
23637aeabi_set_attribute_int (int tag, int value)
23638{
23639 if (tag < 1
23640 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23641 || !attributes_set_explicitly[tag])
23642 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23643}
23644
23645static void
23646aeabi_set_attribute_string (int tag, const char *value)
23647{
23648 if (tag < 1
23649 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23650 || !attributes_set_explicitly[tag])
23651 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23652}
23653
ee065d83
PB
23654/* Set the public EABI object attributes. */
23655static void
23656aeabi_set_public_attributes (void)
23657{
23658 int arch;
90ec0d68 23659 int virt_sec = 0;
e74cfd16 23660 arm_feature_set flags;
62b3e311
PB
23661 arm_feature_set tmp;
23662 const cpu_arch_ver_table *p;
ee065d83
PB
23663
23664 /* Choose the architecture based on the capabilities of the requested cpu
23665 (if any) and/or the instructions actually used. */
e74cfd16
PB
23666 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23667 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23668 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
ddd7f988
RE
23669
23670 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
23671 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
23672
23673 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
23674 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
23675
23676 /* Allow the user to override the reported architecture. */
7a1d4c38
PB
23677 if (object_arch)
23678 {
23679 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23680 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23681 }
23682
251665fc
MGD
23683 /* We need to make sure that the attributes do not identify us as v6S-M
23684 when the only v6S-M feature in use is the Operating System Extensions. */
23685 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23686 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23687 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23688
62b3e311
PB
23689 tmp = flags;
23690 arch = 0;
23691 for (p = cpu_arch_ver; p->val; p++)
23692 {
23693 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23694 {
23695 arch = p->val;
23696 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23697 }
23698 }
ee065d83 23699
9e3c6df6
PB
23700 /* The table lookup above finds the last architecture to contribute
23701 a new feature. Unfortunately, Tag13 is a subset of the union of
23702 v6T2 and v7-M, so it is never seen as contributing a new feature.
23703 We can not search for the last entry which is entirely used,
23704 because if no CPU is specified we build up only those flags
23705 actually used. Perhaps we should separate out the specified
23706 and implicit cases. Avoid taking this path for -march=all by
23707 checking for contradictory v7-A / v7-M features. */
23708 if (arch == 10
23709 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23710 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23711 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23712 arch = 13;
23713
ee065d83
PB
23714 /* Tag_CPU_name. */
23715 if (selected_cpu_name[0])
23716 {
91d6fa6a 23717 char *q;
ee065d83 23718
91d6fa6a
NC
23719 q = selected_cpu_name;
23720 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23721 {
23722 int i;
5f4273c7 23723
91d6fa6a
NC
23724 q += 4;
23725 for (i = 0; q[i]; i++)
23726 q[i] = TOUPPER (q[i]);
ee065d83 23727 }
91d6fa6a 23728 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23729 }
62f3b8c8 23730
ee065d83 23731 /* Tag_CPU_arch. */
ee3c0378 23732 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23733
62b3e311
PB
23734 /* Tag_CPU_arch_profile. */
23735 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23736 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23737 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23738 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23739 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23740 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23741
ee065d83 23742 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23743 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23744 || arch == 0)
23745 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23746
ee065d83 23747 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23748 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23749 || arch == 0)
23750 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23751 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23752
ee065d83 23753 /* Tag_VFP_arch. */
62f3b8c8
PB
23754 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23755 aeabi_set_attribute_int (Tag_VFP_arch,
23756 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23757 ? 5 : 6);
23758 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23759 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23760 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23761 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23762 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23763 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23764 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23765 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23766 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23767
4547cb56
NC
23768 /* Tag_ABI_HardFP_use. */
23769 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23770 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23771 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23772
ee065d83 23773 /* Tag_WMMX_arch. */
ee3c0378
AS
23774 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23775 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23776 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23777 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23778
ee3c0378 23779 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23780 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23781 aeabi_set_attribute_int
23782 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23783 ? 2 : 1));
23784
ee3c0378 23785 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23786 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23787 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23788
23789 /* Tag_DIV_use. */
eea54501
MGD
23790 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23791 aeabi_set_attribute_int (Tag_DIV_use, 2);
23792 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23793 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23794 else
23795 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23796
23797 /* Tag_MP_extension_use. */
23798 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23799 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23800
23801 /* Tag Virtualization_use. */
23802 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23803 virt_sec |= 1;
23804 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23805 virt_sec |= 2;
23806 if (virt_sec != 0)
23807 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23808}
23809
104d59d1 23810/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23811void
23812arm_md_end (void)
23813{
ee065d83
PB
23814 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23815 return;
23816
23817 aeabi_set_public_attributes ();
ee065d83 23818}
8463be01 23819#endif /* OBJ_ELF */
ee065d83
PB
23820
23821
23822/* Parse a .cpu directive. */
23823
23824static void
23825s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23826{
e74cfd16 23827 const struct arm_cpu_option_table *opt;
ee065d83
PB
23828 char *name;
23829 char saved_char;
23830
23831 name = input_line_pointer;
5f4273c7 23832 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23833 input_line_pointer++;
23834 saved_char = *input_line_pointer;
23835 *input_line_pointer = 0;
23836
23837 /* Skip the first "all" entry. */
23838 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23839 if (streq (opt->name, name))
23840 {
e74cfd16
PB
23841 mcpu_cpu_opt = &opt->value;
23842 selected_cpu = opt->value;
ee065d83 23843 if (opt->canonical_name)
5f4273c7 23844 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23845 else
23846 {
23847 int i;
23848 for (i = 0; opt->name[i]; i++)
23849 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 23850
ee065d83
PB
23851 selected_cpu_name[i] = 0;
23852 }
e74cfd16 23853 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23854 *input_line_pointer = saved_char;
23855 demand_empty_rest_of_line ();
23856 return;
23857 }
23858 as_bad (_("unknown cpu `%s'"), name);
23859 *input_line_pointer = saved_char;
23860 ignore_rest_of_line ();
23861}
23862
23863
23864/* Parse a .arch directive. */
23865
23866static void
23867s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23868{
e74cfd16 23869 const struct arm_arch_option_table *opt;
ee065d83
PB
23870 char saved_char;
23871 char *name;
23872
23873 name = input_line_pointer;
5f4273c7 23874 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23875 input_line_pointer++;
23876 saved_char = *input_line_pointer;
23877 *input_line_pointer = 0;
23878
23879 /* Skip the first "all" entry. */
23880 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23881 if (streq (opt->name, name))
23882 {
e74cfd16
PB
23883 mcpu_cpu_opt = &opt->value;
23884 selected_cpu = opt->value;
5f4273c7 23885 strcpy (selected_cpu_name, opt->name);
e74cfd16 23886 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23887 *input_line_pointer = saved_char;
23888 demand_empty_rest_of_line ();
23889 return;
23890 }
23891
23892 as_bad (_("unknown architecture `%s'\n"), name);
23893 *input_line_pointer = saved_char;
23894 ignore_rest_of_line ();
23895}
23896
23897
7a1d4c38
PB
23898/* Parse a .object_arch directive. */
23899
23900static void
23901s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23902{
23903 const struct arm_arch_option_table *opt;
23904 char saved_char;
23905 char *name;
23906
23907 name = input_line_pointer;
5f4273c7 23908 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23909 input_line_pointer++;
23910 saved_char = *input_line_pointer;
23911 *input_line_pointer = 0;
23912
23913 /* Skip the first "all" entry. */
23914 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23915 if (streq (opt->name, name))
23916 {
23917 object_arch = &opt->value;
23918 *input_line_pointer = saved_char;
23919 demand_empty_rest_of_line ();
23920 return;
23921 }
23922
23923 as_bad (_("unknown architecture `%s'\n"), name);
23924 *input_line_pointer = saved_char;
23925 ignore_rest_of_line ();
23926}
23927
69133863
MGD
23928/* Parse a .arch_extension directive. */
23929
23930static void
23931s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23932{
23933 const struct arm_option_extension_value_table *opt;
23934 char saved_char;
23935 char *name;
23936 int adding_value = 1;
23937
23938 name = input_line_pointer;
23939 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23940 input_line_pointer++;
23941 saved_char = *input_line_pointer;
23942 *input_line_pointer = 0;
23943
23944 if (strlen (name) >= 2
23945 && strncmp (name, "no", 2) == 0)
23946 {
23947 adding_value = 0;
23948 name += 2;
23949 }
23950
23951 for (opt = arm_extensions; opt->name != NULL; opt++)
23952 if (streq (opt->name, name))
23953 {
23954 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23955 {
23956 as_bad (_("architectural extension `%s' is not allowed for the "
23957 "current base architecture"), name);
23958 break;
23959 }
23960
23961 if (adding_value)
23962 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23963 else
23964 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23965
23966 mcpu_cpu_opt = &selected_cpu;
23967 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23968 *input_line_pointer = saved_char;
23969 demand_empty_rest_of_line ();
23970 return;
23971 }
23972
23973 if (opt->name == NULL)
23974 as_bad (_("unknown architecture `%s'\n"), name);
23975
23976 *input_line_pointer = saved_char;
23977 ignore_rest_of_line ();
23978}
23979
ee065d83
PB
23980/* Parse a .fpu directive. */
23981
23982static void
23983s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23984{
69133863 23985 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23986 char saved_char;
23987 char *name;
23988
23989 name = input_line_pointer;
5f4273c7 23990 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23991 input_line_pointer++;
23992 saved_char = *input_line_pointer;
23993 *input_line_pointer = 0;
5f4273c7 23994
ee065d83
PB
23995 for (opt = arm_fpus; opt->name != NULL; opt++)
23996 if (streq (opt->name, name))
23997 {
e74cfd16
PB
23998 mfpu_opt = &opt->value;
23999 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24000 *input_line_pointer = saved_char;
24001 demand_empty_rest_of_line ();
24002 return;
24003 }
24004
24005 as_bad (_("unknown floating point format `%s'\n"), name);
24006 *input_line_pointer = saved_char;
24007 ignore_rest_of_line ();
24008}
ee065d83 24009
794ba86a 24010/* Copy symbol information. */
f31fef98 24011
794ba86a
DJ
24012void
24013arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24014{
24015 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24016}
e04befd0 24017
f31fef98 24018#ifdef OBJ_ELF
e04befd0
AS
24019/* Given a symbolic attribute NAME, return the proper integer value.
24020 Returns -1 if the attribute is not known. */
f31fef98 24021
e04befd0
AS
24022int
24023arm_convert_symbolic_attribute (const char *name)
24024{
f31fef98
NC
24025 static const struct
24026 {
24027 const char * name;
24028 const int tag;
24029 }
24030 attribute_table[] =
24031 {
24032 /* When you modify this table you should
24033 also modify the list in doc/c-arm.texi. */
e04befd0 24034#define T(tag) {#tag, tag}
f31fef98
NC
24035 T (Tag_CPU_raw_name),
24036 T (Tag_CPU_name),
24037 T (Tag_CPU_arch),
24038 T (Tag_CPU_arch_profile),
24039 T (Tag_ARM_ISA_use),
24040 T (Tag_THUMB_ISA_use),
75375b3e 24041 T (Tag_FP_arch),
f31fef98
NC
24042 T (Tag_VFP_arch),
24043 T (Tag_WMMX_arch),
24044 T (Tag_Advanced_SIMD_arch),
24045 T (Tag_PCS_config),
24046 T (Tag_ABI_PCS_R9_use),
24047 T (Tag_ABI_PCS_RW_data),
24048 T (Tag_ABI_PCS_RO_data),
24049 T (Tag_ABI_PCS_GOT_use),
24050 T (Tag_ABI_PCS_wchar_t),
24051 T (Tag_ABI_FP_rounding),
24052 T (Tag_ABI_FP_denormal),
24053 T (Tag_ABI_FP_exceptions),
24054 T (Tag_ABI_FP_user_exceptions),
24055 T (Tag_ABI_FP_number_model),
75375b3e 24056 T (Tag_ABI_align_needed),
f31fef98 24057 T (Tag_ABI_align8_needed),
75375b3e 24058 T (Tag_ABI_align_preserved),
f31fef98
NC
24059 T (Tag_ABI_align8_preserved),
24060 T (Tag_ABI_enum_size),
24061 T (Tag_ABI_HardFP_use),
24062 T (Tag_ABI_VFP_args),
24063 T (Tag_ABI_WMMX_args),
24064 T (Tag_ABI_optimization_goals),
24065 T (Tag_ABI_FP_optimization_goals),
24066 T (Tag_compatibility),
24067 T (Tag_CPU_unaligned_access),
75375b3e 24068 T (Tag_FP_HP_extension),
f31fef98
NC
24069 T (Tag_VFP_HP_extension),
24070 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
24071 T (Tag_MPextension_use),
24072 T (Tag_DIV_use),
f31fef98
NC
24073 T (Tag_nodefaults),
24074 T (Tag_also_compatible_with),
24075 T (Tag_conformance),
24076 T (Tag_T2EE_use),
24077 T (Tag_Virtualization_use),
cd21e546 24078 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 24079#undef T
f31fef98 24080 };
e04befd0
AS
24081 unsigned int i;
24082
24083 if (name == NULL)
24084 return -1;
24085
f31fef98 24086 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 24087 if (streq (name, attribute_table[i].name))
e04befd0
AS
24088 return attribute_table[i].tag;
24089
24090 return -1;
24091}
267bf995
RR
24092
24093
24094/* Apply sym value for relocations only in the case that
24095 they are for local symbols and you have the respective
24096 architectural feature for blx and simple switches. */
24097int
24098arm_apply_sym_value (struct fix * fixP)
24099{
24100 if (fixP->fx_addsy
24101 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 24102 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
24103 {
24104 switch (fixP->fx_r_type)
24105 {
24106 case BFD_RELOC_ARM_PCREL_BLX:
24107 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24108 if (ARM_IS_FUNC (fixP->fx_addsy))
24109 return 1;
24110 break;
24111
24112 case BFD_RELOC_ARM_PCREL_CALL:
24113 case BFD_RELOC_THUMB_PCREL_BLX:
24114 if (THUMB_IS_FUNC (fixP->fx_addsy))
24115 return 1;
24116 break;
24117
24118 default:
24119 break;
24120 }
24121
24122 }
24123 return 0;
24124}
f31fef98 24125#endif /* OBJ_ELF */
This page took 2.712657 seconds and 4 git commands to generate.