[PATCH 30/57][Arm][GAS] Add support for MVE instructions: vqmovnt, vqmovnb, vqmovunt...
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
35d1cfc2 6926 OP_RMQRR, /* MVE vector or ARM register. */
a302e574 6927
60f993ce
AV
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
a302e574
AV
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
c19d1205 6934 OP_REGLST, /* ARM register list */
4b5a202f 6935 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
037e8744 6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6944
5287ad62 6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
5287ad62 6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
a8465a06
AV
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
5287ad62 6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
42b16635
AV
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
5d281bf0 6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
5287ad62 6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6968 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6969 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6970
6971 OP_I0, /* immediate zero */
c19d1205
ZW
6972 OP_I7, /* immediate value 0 .. 7 */
6973 OP_I15, /* 0 .. 15 */
6974 OP_I16, /* 1 .. 16 */
5287ad62 6975 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6976 OP_I31, /* 0 .. 31 */
6977 OP_I31w, /* 0 .. 31, optional trailing ! */
6978 OP_I32, /* 1 .. 32 */
5287ad62
JB
6979 OP_I32z, /* 0 .. 32 */
6980 OP_I63, /* 0 .. 63 */
c19d1205 6981 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6982 OP_I64, /* 1 .. 64 */
6983 OP_I64z, /* 0 .. 64 */
c19d1205 6984 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6985
6986 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6987 OP_I7b, /* 0 .. 7 */
6988 OP_I15b, /* 0 .. 15 */
6989 OP_I31b, /* 0 .. 31 */
6990
6991 OP_SH, /* shifter operand */
4962c51a 6992 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6993 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6994 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6995 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6996 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6997 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6998 OP_EXP, /* arbitrary expression */
6999 OP_EXPi, /* same, with optional immediate prefix */
7000 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 7001 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 7002 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
7003 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7004 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
7005
7006 OP_CPSF, /* CPS flags */
7007 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7008 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7009 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7010 OP_COND, /* conditional code */
92e90b6e 7011 OP_TB, /* Table branch. */
c19d1205 7012
037e8744
JB
7013 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7014
c19d1205 7015 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7016 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7017 OP_RR_EXi, /* ARM register or expression with imm prefix */
7018 OP_RF_IF, /* FPA register or immediate */
7019 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7020 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7021
7022 /* Optional operands. */
7023 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7024 OP_oI31b, /* 0 .. 31 */
5287ad62 7025 OP_oI32b, /* 1 .. 32 */
5f1af56b 7026 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7027 OP_oIffffb, /* 0 .. 65535 */
7028 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7029
7030 OP_oRR, /* ARM register */
60f993ce 7031 OP_oLR, /* ARM LR register */
c19d1205 7032 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7033 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7034 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7035 OP_oRND, /* Optional Neon double precision register */
7036 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7037 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7038 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7039 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7040 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7041 register. */
c19d1205
ZW
7042 OP_oSHll, /* LSL immediate */
7043 OP_oSHar, /* ASR immediate */
7044 OP_oSHllar, /* LSL or ASR immediate */
7045 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7046 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7047
1b883319
AV
7048 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7049
5be8be5d
DG
7050 /* Some pre-defined mixed (ARM/THUMB) operands. */
7051 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7052 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7053 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7054
c19d1205
ZW
7055 OP_FIRST_OPTIONAL = OP_oI7b
7056};
a737bd4d 7057
c19d1205
ZW
7058/* Generic instruction operand parser. This does no encoding and no
7059 semantic validation; it merely squirrels values away in the inst
7060 structure. Returns SUCCESS or FAIL depending on whether the
7061 specified grammar matched. */
7062static int
5be8be5d 7063parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7064{
5be8be5d 7065 unsigned const int *upat = pattern;
c19d1205
ZW
7066 char *backtrack_pos = 0;
7067 const char *backtrack_error = 0;
99aad254 7068 int i, val = 0, backtrack_index = 0;
5287ad62 7069 enum arm_reg_type rtype;
4962c51a 7070 parse_operand_result result;
5be8be5d 7071 unsigned int op_parse_code;
efd6b359 7072 bfd_boolean partial_match;
c19d1205 7073
e07e6e58
NC
7074#define po_char_or_fail(chr) \
7075 do \
7076 { \
7077 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7078 goto bad_args; \
e07e6e58
NC
7079 } \
7080 while (0)
c19d1205 7081
e07e6e58
NC
7082#define po_reg_or_fail(regtype) \
7083 do \
dcbf9037 7084 { \
e07e6e58 7085 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7086 & inst.operands[i].vectype); \
e07e6e58 7087 if (val == FAIL) \
477330fc
RM
7088 { \
7089 first_error (_(reg_expected_msgs[regtype])); \
7090 goto failure; \
7091 } \
e07e6e58
NC
7092 inst.operands[i].reg = val; \
7093 inst.operands[i].isreg = 1; \
7094 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7095 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7096 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7097 || rtype == REG_TYPE_VFD \
7098 || rtype == REG_TYPE_NQ); \
1b883319 7099 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7100 } \
e07e6e58
NC
7101 while (0)
7102
7103#define po_reg_or_goto(regtype, label) \
7104 do \
7105 { \
7106 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7107 & inst.operands[i].vectype); \
7108 if (val == FAIL) \
7109 goto label; \
dcbf9037 7110 \
e07e6e58
NC
7111 inst.operands[i].reg = val; \
7112 inst.operands[i].isreg = 1; \
7113 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7114 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7115 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7116 || rtype == REG_TYPE_VFD \
e07e6e58 7117 || rtype == REG_TYPE_NQ); \
1b883319 7118 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7119 } \
7120 while (0)
7121
7122#define po_imm_or_fail(min, max, popt) \
7123 do \
7124 { \
7125 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7126 goto failure; \
7127 inst.operands[i].imm = val; \
7128 } \
7129 while (0)
7130
57785aa2 7131#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7132 do \
7133 { \
57785aa2
AV
7134 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7135 reg_type); \
e07e6e58
NC
7136 if (val == FAIL) \
7137 goto label; \
7138 inst.operands[i].reg = val; \
7139 inst.operands[i].isscalar = 1; \
7140 } \
7141 while (0)
7142
7143#define po_misc_or_fail(expr) \
7144 do \
7145 { \
7146 if (expr) \
7147 goto failure; \
7148 } \
7149 while (0)
7150
7151#define po_misc_or_fail_no_backtrack(expr) \
7152 do \
7153 { \
7154 result = expr; \
7155 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7156 backtrack_pos = 0; \
7157 if (result != PARSE_OPERAND_SUCCESS) \
7158 goto failure; \
7159 } \
7160 while (0)
4962c51a 7161
52e7f43d
RE
7162#define po_barrier_or_imm(str) \
7163 do \
7164 { \
7165 val = parse_barrier (&str); \
ccb84d65
JB
7166 if (val == FAIL && ! ISALPHA (*str)) \
7167 goto immediate; \
7168 if (val == FAIL \
7169 /* ISB can only take SY as an option. */ \
7170 || ((inst.instruction & 0xf0) == 0x60 \
7171 && val != 0xf)) \
52e7f43d 7172 { \
ccb84d65
JB
7173 inst.error = _("invalid barrier type"); \
7174 backtrack_pos = 0; \
7175 goto failure; \
52e7f43d
RE
7176 } \
7177 } \
7178 while (0)
7179
c19d1205
ZW
7180 skip_whitespace (str);
7181
7182 for (i = 0; upat[i] != OP_stop; i++)
7183 {
5be8be5d
DG
7184 op_parse_code = upat[i];
7185 if (op_parse_code >= 1<<16)
7186 op_parse_code = thumb ? (op_parse_code >> 16)
7187 : (op_parse_code & ((1<<16)-1));
7188
7189 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7190 {
7191 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7192 backtrack_pos = str;
7193 backtrack_error = inst.error;
7194 backtrack_index = i;
7195 }
7196
b6702015 7197 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7198 po_char_or_fail (',');
7199
5be8be5d 7200 switch (op_parse_code)
c19d1205
ZW
7201 {
7202 /* Registers */
7203 case OP_oRRnpc:
5be8be5d 7204 case OP_oRRnpcsp:
c19d1205 7205 case OP_RRnpc:
5be8be5d 7206 case OP_RRnpcsp:
c19d1205 7207 case OP_oRR:
a302e574
AV
7208 case OP_RRe:
7209 case OP_RRo:
60f993ce
AV
7210 case OP_LR:
7211 case OP_oLR:
c19d1205
ZW
7212 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7213 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7214 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7215 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7216 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7217 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7218 case OP_oRND:
5ee91343
AV
7219 case OP_RNDMQR:
7220 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7221 break;
7222 try_rndmq:
7223 case OP_RNDMQ:
7224 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7225 break;
7226 try_rnd:
5287ad62 7227 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7228 case OP_RVC:
7229 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7230 break;
7231 /* Also accept generic coprocessor regs for unknown registers. */
7232 coproc_reg:
7233 po_reg_or_fail (REG_TYPE_CN);
7234 break;
c19d1205
ZW
7235 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7236 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7237 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7238 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7239 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7240 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7241 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7242 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7243 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7244 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7245 case OP_oRNQ:
5ee91343
AV
7246 case OP_RNQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7248 break;
7249 try_nq:
5287ad62 7250 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7251 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7252 case OP_RNDQMQR:
7253 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7254 break;
7255 try_rndqmq:
5ee91343
AV
7256 case OP_oRNDQMQ:
7257 case OP_RNDQMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7259 break;
7260 try_rndq:
477330fc 7261 case OP_oRNDQ:
5287ad62 7262 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7263 case OP_RVSDMQ:
7264 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7265 break;
7266 try_rvsd:
477330fc 7267 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7268 case OP_RVSD_COND:
7269 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7270 break;
477330fc
RM
7271 case OP_oRNSDQ:
7272 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7273 case OP_RNSDQMQR:
7274 po_reg_or_goto (REG_TYPE_RN, try_mq);
7275 break;
7276 try_mq:
7277 case OP_oRNSDQMQ:
7278 case OP_RNSDQMQ:
7279 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7280 break;
7281 try_nsdq2:
7282 po_reg_or_fail (REG_TYPE_NSDQ);
7283 inst.error = 0;
7284 break;
35d1cfc2
AV
7285 case OP_RMQRR:
7286 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7287 break;
7288 try_rmq:
a302e574
AV
7289 case OP_RMQ:
7290 po_reg_or_fail (REG_TYPE_MQ);
7291 break;
477330fc
RM
7292 /* Neon scalar. Using an element size of 8 means that some invalid
7293 scalars are accepted here, so deal with those in later code. */
57785aa2 7294 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7295
7296 case OP_RNDQ_I0:
7297 {
7298 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7299 break;
7300 try_imm0:
7301 po_imm_or_fail (0, 0, TRUE);
7302 }
7303 break;
7304
7305 case OP_RVSD_I0:
7306 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7307 break;
7308
1b883319
AV
7309 case OP_RSVDMQ_FI0:
7310 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7311 break;
7312 try_rsvd_fi0:
aacf0b33
KT
7313 case OP_RSVD_FI0:
7314 {
7315 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7316 break;
7317 try_ifimm0:
7318 if (parse_ifimm_zero (&str))
7319 inst.operands[i].imm = 0;
7320 else
7321 {
7322 inst.error
7323 = _("only floating point zero is allowed as immediate value");
7324 goto failure;
7325 }
7326 }
7327 break;
7328
477330fc
RM
7329 case OP_RR_RNSC:
7330 {
57785aa2 7331 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7332 break;
7333 try_rr:
7334 po_reg_or_fail (REG_TYPE_RN);
7335 }
7336 break;
7337
a8465a06
AV
7338 case OP_RNSDQ_RNSC_MQ_RR:
7339 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7340 break;
7341 try_rnsdq_rnsc_mq:
886e1c73
AV
7342 case OP_RNSDQ_RNSC_MQ:
7343 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7344 break;
7345 try_rnsdq_rnsc:
477330fc
RM
7346 case OP_RNSDQ_RNSC:
7347 {
57785aa2
AV
7348 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7349 inst.error = 0;
477330fc
RM
7350 break;
7351 try_nsdq:
7352 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7353 inst.error = 0;
477330fc
RM
7354 }
7355 break;
7356
dec41383
JW
7357 case OP_RNSD_RNSC:
7358 {
57785aa2 7359 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7360 break;
7361 try_s_scalar:
57785aa2 7362 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7363 break;
7364 try_nsd:
7365 po_reg_or_fail (REG_TYPE_NSD);
7366 }
7367 break;
7368
42b16635
AV
7369 case OP_RNDQMQ_RNSC_RR:
7370 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7371 break;
7372 try_rndq_rnsc_rr:
7373 case OP_RNDQ_RNSC_RR:
7374 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7375 break;
5d281bf0
AV
7376 case OP_RNDQMQ_RNSC:
7377 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7378 break;
7379 try_rndq_rnsc:
477330fc
RM
7380 case OP_RNDQ_RNSC:
7381 {
57785aa2 7382 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7383 break;
7384 try_ndq:
7385 po_reg_or_fail (REG_TYPE_NDQ);
7386 }
7387 break;
7388
7389 case OP_RND_RNSC:
7390 {
57785aa2 7391 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7392 break;
7393 try_vfd:
7394 po_reg_or_fail (REG_TYPE_VFD);
7395 }
7396 break;
7397
7398 case OP_VMOV:
7399 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7400 not careful then bad things might happen. */
7401 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7402 break;
7403
f601a00c
AV
7404 case OP_RNDQMQ_Ibig:
7405 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7406 break;
7407 try_rndq_ibig:
477330fc
RM
7408 case OP_RNDQ_Ibig:
7409 {
7410 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7411 break;
7412 try_immbig:
7413 /* There's a possibility of getting a 64-bit immediate here, so
7414 we need special handling. */
8335d6aa
JW
7415 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7416 == FAIL)
477330fc
RM
7417 {
7418 inst.error = _("immediate value is out of range");
7419 goto failure;
7420 }
7421 }
7422 break;
7423
7424 case OP_RNDQ_I63b:
7425 {
7426 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7427 break;
7428 try_shimm:
7429 po_imm_or_fail (0, 63, TRUE);
7430 }
7431 break;
c19d1205
ZW
7432
7433 case OP_RRnpcb:
7434 po_char_or_fail ('[');
7435 po_reg_or_fail (REG_TYPE_RN);
7436 po_char_or_fail (']');
7437 break;
a737bd4d 7438
55881a11 7439 case OP_RRnpctw:
c19d1205 7440 case OP_RRw:
b6702015 7441 case OP_oRRw:
c19d1205
ZW
7442 po_reg_or_fail (REG_TYPE_RN);
7443 if (skip_past_char (&str, '!') == SUCCESS)
7444 inst.operands[i].writeback = 1;
7445 break;
7446
7447 /* Immediates */
7448 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7449 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7450 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7451 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7452 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7453 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7454 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7455 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7456 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7457 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7458 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7459 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7460
7461 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7462 case OP_oI7b:
7463 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7464 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7465 case OP_oI31b:
7466 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7467 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7468 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7469 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7470
7471 /* Immediate variants */
7472 case OP_oI255c:
7473 po_char_or_fail ('{');
7474 po_imm_or_fail (0, 255, TRUE);
7475 po_char_or_fail ('}');
7476 break;
7477
7478 case OP_I31w:
7479 /* The expression parser chokes on a trailing !, so we have
7480 to find it first and zap it. */
7481 {
7482 char *s = str;
7483 while (*s && *s != ',')
7484 s++;
7485 if (s[-1] == '!')
7486 {
7487 s[-1] = '\0';
7488 inst.operands[i].writeback = 1;
7489 }
7490 po_imm_or_fail (0, 31, TRUE);
7491 if (str == s - 1)
7492 str = s;
7493 }
7494 break;
7495
7496 /* Expressions */
7497 case OP_EXPi: EXPi:
e2b0ab59 7498 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7499 GE_OPT_PREFIX));
7500 break;
7501
7502 case OP_EXP:
e2b0ab59 7503 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7504 GE_NO_PREFIX));
7505 break;
7506
7507 case OP_EXPr: EXPr:
e2b0ab59 7508 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7509 GE_NO_PREFIX));
e2b0ab59 7510 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7511 {
c19d1205
ZW
7512 val = parse_reloc (&str);
7513 if (val == -1)
7514 {
7515 inst.error = _("unrecognized relocation suffix");
7516 goto failure;
7517 }
7518 else if (val != BFD_RELOC_UNUSED)
7519 {
7520 inst.operands[i].imm = val;
7521 inst.operands[i].hasreloc = 1;
7522 }
a737bd4d 7523 }
c19d1205 7524 break;
a737bd4d 7525
e2b0ab59
AV
7526 case OP_EXPs:
7527 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7528 GE_NO_PREFIX));
7529 if (inst.relocs[i].exp.X_op == O_symbol)
7530 {
7531 inst.operands[i].hasreloc = 1;
7532 }
7533 else if (inst.relocs[i].exp.X_op == O_constant)
7534 {
7535 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7536 inst.operands[i].hasreloc = 0;
7537 }
7538 break;
7539
b6895b4f
PB
7540 /* Operand for MOVW or MOVT. */
7541 case OP_HALF:
7542 po_misc_or_fail (parse_half (&str));
7543 break;
7544
e07e6e58 7545 /* Register or expression. */
c19d1205
ZW
7546 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7547 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7548
e07e6e58 7549 /* Register or immediate. */
c19d1205
ZW
7550 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7551 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7552
c19d1205
ZW
7553 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7554 IF:
7555 if (!is_immediate_prefix (*str))
7556 goto bad_args;
7557 str++;
7558 val = parse_fpa_immediate (&str);
7559 if (val == FAIL)
7560 goto failure;
7561 /* FPA immediates are encoded as registers 8-15.
7562 parse_fpa_immediate has already applied the offset. */
7563 inst.operands[i].reg = val;
7564 inst.operands[i].isreg = 1;
7565 break;
09d92015 7566
2d447fca
JM
7567 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7568 I32z: po_imm_or_fail (0, 32, FALSE); break;
7569
e07e6e58 7570 /* Two kinds of register. */
c19d1205
ZW
7571 case OP_RIWR_RIWC:
7572 {
7573 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7574 if (!rege
7575 || (rege->type != REG_TYPE_MMXWR
7576 && rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7578 {
7579 inst.error = _("iWMMXt data or control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7584 }
7585 break;
09d92015 7586
41adaa5c
JM
7587 case OP_RIWC_RIWG:
7588 {
7589 struct reg_entry *rege = arm_reg_parse_multi (&str);
7590 if (!rege
7591 || (rege->type != REG_TYPE_MMXWC
7592 && rege->type != REG_TYPE_MMXWCG))
7593 {
7594 inst.error = _("iWMMXt control register expected");
7595 goto failure;
7596 }
7597 inst.operands[i].reg = rege->number;
7598 inst.operands[i].isreg = 1;
7599 }
7600 break;
7601
c19d1205
ZW
7602 /* Misc */
7603 case OP_CPSF: val = parse_cps_flags (&str); break;
7604 case OP_ENDI: val = parse_endian_specifier (&str); break;
7605 case OP_oROR: val = parse_ror (&str); break;
1b883319 7606 try_cond:
c19d1205 7607 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7608 case OP_oBARRIER_I15:
7609 po_barrier_or_imm (str); break;
7610 immediate:
7611 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7612 goto failure;
52e7f43d 7613 break;
c19d1205 7614
fa94de6b 7615 case OP_wPSR:
d2cd1205 7616 case OP_rPSR:
90ec0d68
MGD
7617 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7619 {
7620 inst.error = _("Banked registers are not available with this "
7621 "architecture.");
7622 goto failure;
7623 }
7624 break;
d2cd1205
JB
7625 try_psr:
7626 val = parse_psr (&str, op_parse_code == OP_wPSR);
7627 break;
037e8744 7628
32c36c3c
AV
7629 case OP_VLDR:
7630 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7631 break;
7632 try_sysreg:
7633 val = parse_sys_vldr_vstr (&str);
7634 break;
7635
477330fc
RM
7636 case OP_APSR_RR:
7637 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7638 break;
7639 try_apsr:
7640 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7641 instruction). */
7642 if (strncasecmp (str, "APSR_", 5) == 0)
7643 {
7644 unsigned found = 0;
7645 str += 5;
7646 while (found < 15)
7647 switch (*str++)
7648 {
7649 case 'c': found = (found & 1) ? 16 : found | 1; break;
7650 case 'n': found = (found & 2) ? 16 : found | 2; break;
7651 case 'z': found = (found & 4) ? 16 : found | 4; break;
7652 case 'v': found = (found & 8) ? 16 : found | 8; break;
7653 default: found = 16;
7654 }
7655 if (found != 15)
7656 goto failure;
7657 inst.operands[i].isvec = 1;
f7c21dc7
NC
7658 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7659 inst.operands[i].reg = REG_PC;
477330fc
RM
7660 }
7661 else
7662 goto failure;
7663 break;
037e8744 7664
92e90b6e
PB
7665 case OP_TB:
7666 po_misc_or_fail (parse_tb (&str));
7667 break;
7668
e07e6e58 7669 /* Register lists. */
c19d1205 7670 case OP_REGLST:
4b5a202f 7671 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7672 if (*str == '^')
7673 {
5e0d7f77 7674 inst.operands[i].writeback = 1;
c19d1205
ZW
7675 str++;
7676 }
7677 break;
09d92015 7678
4b5a202f
AV
7679 case OP_CLRMLST:
7680 val = parse_reg_list (&str, REGLIST_CLRM);
7681 break;
7682
c19d1205 7683 case OP_VRSLST:
efd6b359
AV
7684 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7685 &partial_match);
c19d1205 7686 break;
09d92015 7687
c19d1205 7688 case OP_VRDLST:
efd6b359
AV
7689 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7690 &partial_match);
c19d1205 7691 break;
a737bd4d 7692
477330fc
RM
7693 case OP_VRSDLST:
7694 /* Allow Q registers too. */
7695 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7696 REGLIST_NEON_D, &partial_match);
477330fc
RM
7697 if (val == FAIL)
7698 {
7699 inst.error = NULL;
7700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7701 REGLIST_VFP_S, &partial_match);
7702 inst.operands[i].issingle = 1;
7703 }
7704 break;
7705
7706 case OP_VRSDVLST:
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_VFP_D_VPR, &partial_match);
7709 if (val == FAIL && !partial_match)
7710 {
7711 inst.error = NULL;
7712 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7713 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7714 inst.operands[i].issingle = 1;
7715 }
7716 break;
7717
7718 case OP_NRDLST:
7719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7720 REGLIST_NEON_D, &partial_match);
477330fc 7721 break;
5287ad62 7722
35c228db
AV
7723 case OP_MSTRLST4:
7724 case OP_MSTRLST2:
7725 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7726 1, &inst.operands[i].vectype);
7727 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7728 goto failure;
7729 break;
5287ad62 7730 case OP_NSTRLST:
477330fc 7731 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7732 0, &inst.operands[i].vectype);
477330fc 7733 break;
5287ad62 7734
c19d1205 7735 /* Addressing modes */
35c228db
AV
7736 case OP_ADDRMVE:
7737 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7738 break;
7739
c19d1205
ZW
7740 case OP_ADDR:
7741 po_misc_or_fail (parse_address (&str, i));
7742 break;
09d92015 7743
4962c51a
MS
7744 case OP_ADDRGLDR:
7745 po_misc_or_fail_no_backtrack (
477330fc 7746 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7747 break;
7748
7749 case OP_ADDRGLDRS:
7750 po_misc_or_fail_no_backtrack (
477330fc 7751 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7752 break;
7753
7754 case OP_ADDRGLDC:
7755 po_misc_or_fail_no_backtrack (
477330fc 7756 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7757 break;
7758
c19d1205
ZW
7759 case OP_SH:
7760 po_misc_or_fail (parse_shifter_operand (&str, i));
7761 break;
09d92015 7762
4962c51a
MS
7763 case OP_SHG:
7764 po_misc_or_fail_no_backtrack (
477330fc 7765 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7766 break;
7767
c19d1205
ZW
7768 case OP_oSHll:
7769 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7770 break;
09d92015 7771
c19d1205
ZW
7772 case OP_oSHar:
7773 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7774 break;
09d92015 7775
c19d1205
ZW
7776 case OP_oSHllar:
7777 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7778 break;
09d92015 7779
1b883319
AV
7780 case OP_RMQRZ:
7781 case OP_oRMQRZ:
7782 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7783 break;
7784 try_rr_zr:
7785 po_reg_or_goto (REG_TYPE_RN, ZR);
7786 break;
7787 ZR:
7788 po_reg_or_fail (REG_TYPE_ZR);
7789 break;
7790
c19d1205 7791 default:
5be8be5d 7792 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7793 }
09d92015 7794
c19d1205
ZW
7795 /* Various value-based sanity checks and shared operations. We
7796 do not signal immediate failures for the register constraints;
7797 this allows a syntax error to take precedence. */
5be8be5d 7798 switch (op_parse_code)
c19d1205
ZW
7799 {
7800 case OP_oRRnpc:
7801 case OP_RRnpc:
7802 case OP_RRnpcb:
7803 case OP_RRw:
b6702015 7804 case OP_oRRw:
c19d1205
ZW
7805 case OP_RRnpc_I0:
7806 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7807 inst.error = BAD_PC;
7808 break;
09d92015 7809
5be8be5d
DG
7810 case OP_oRRnpcsp:
7811 case OP_RRnpcsp:
7812 if (inst.operands[i].isreg)
7813 {
7814 if (inst.operands[i].reg == REG_PC)
7815 inst.error = BAD_PC;
5c8ed6a4
JW
7816 else if (inst.operands[i].reg == REG_SP
7817 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7818 relaxed since ARMv8-A. */
7819 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7820 {
7821 gas_assert (thumb);
7822 inst.error = BAD_SP;
7823 }
5be8be5d
DG
7824 }
7825 break;
7826
55881a11 7827 case OP_RRnpctw:
fa94de6b
RM
7828 if (inst.operands[i].isreg
7829 && inst.operands[i].reg == REG_PC
55881a11
MGD
7830 && (inst.operands[i].writeback || thumb))
7831 inst.error = BAD_PC;
7832 break;
7833
1b883319 7834 case OP_RVSD_COND:
32c36c3c
AV
7835 case OP_VLDR:
7836 if (inst.operands[i].isreg)
7837 break;
7838 /* fall through. */
1b883319 7839
c19d1205
ZW
7840 case OP_CPSF:
7841 case OP_ENDI:
7842 case OP_oROR:
d2cd1205
JB
7843 case OP_wPSR:
7844 case OP_rPSR:
c19d1205 7845 case OP_COND:
52e7f43d 7846 case OP_oBARRIER_I15:
c19d1205 7847 case OP_REGLST:
4b5a202f 7848 case OP_CLRMLST:
c19d1205
ZW
7849 case OP_VRSLST:
7850 case OP_VRDLST:
477330fc 7851 case OP_VRSDLST:
efd6b359 7852 case OP_VRSDVLST:
477330fc
RM
7853 case OP_NRDLST:
7854 case OP_NSTRLST:
35c228db
AV
7855 case OP_MSTRLST2:
7856 case OP_MSTRLST4:
c19d1205
ZW
7857 if (val == FAIL)
7858 goto failure;
7859 inst.operands[i].imm = val;
7860 break;
a737bd4d 7861
60f993ce
AV
7862 case OP_LR:
7863 case OP_oLR:
7864 if (inst.operands[i].reg != REG_LR)
7865 inst.error = _("operand must be LR register");
7866 break;
7867
1b883319
AV
7868 case OP_RMQRZ:
7869 case OP_oRMQRZ:
7870 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7871 inst.error = BAD_PC;
7872 break;
7873
a302e574
AV
7874 case OP_RRe:
7875 if (inst.operands[i].isreg
7876 && (inst.operands[i].reg & 0x00000001) != 0)
7877 inst.error = BAD_ODD;
7878 break;
7879
7880 case OP_RRo:
7881 if (inst.operands[i].isreg)
7882 {
7883 if ((inst.operands[i].reg & 0x00000001) != 1)
7884 inst.error = BAD_EVEN;
7885 else if (inst.operands[i].reg == REG_SP)
7886 as_tsktsk (MVE_BAD_SP);
7887 else if (inst.operands[i].reg == REG_PC)
7888 inst.error = BAD_PC;
7889 }
7890 break;
7891
c19d1205
ZW
7892 default:
7893 break;
7894 }
09d92015 7895
c19d1205
ZW
7896 /* If we get here, this operand was successfully parsed. */
7897 inst.operands[i].present = 1;
7898 continue;
09d92015 7899
c19d1205 7900 bad_args:
09d92015 7901 inst.error = BAD_ARGS;
c19d1205
ZW
7902
7903 failure:
7904 if (!backtrack_pos)
d252fdde
PB
7905 {
7906 /* The parse routine should already have set inst.error, but set a
5f4273c7 7907 default here just in case. */
d252fdde 7908 if (!inst.error)
5ee91343 7909 inst.error = BAD_SYNTAX;
d252fdde
PB
7910 return FAIL;
7911 }
c19d1205
ZW
7912
7913 /* Do not backtrack over a trailing optional argument that
7914 absorbed some text. We will only fail again, with the
7915 'garbage following instruction' error message, which is
7916 probably less helpful than the current one. */
7917 if (backtrack_index == i && backtrack_pos != str
7918 && upat[i+1] == OP_stop)
d252fdde
PB
7919 {
7920 if (!inst.error)
5ee91343 7921 inst.error = BAD_SYNTAX;
d252fdde
PB
7922 return FAIL;
7923 }
c19d1205
ZW
7924
7925 /* Try again, skipping the optional argument at backtrack_pos. */
7926 str = backtrack_pos;
7927 inst.error = backtrack_error;
7928 inst.operands[backtrack_index].present = 0;
7929 i = backtrack_index;
7930 backtrack_pos = 0;
09d92015 7931 }
09d92015 7932
c19d1205
ZW
7933 /* Check that we have parsed all the arguments. */
7934 if (*str != '\0' && !inst.error)
7935 inst.error = _("garbage following instruction");
09d92015 7936
c19d1205 7937 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7938}
7939
c19d1205
ZW
7940#undef po_char_or_fail
7941#undef po_reg_or_fail
7942#undef po_reg_or_goto
7943#undef po_imm_or_fail
5287ad62 7944#undef po_scalar_or_fail
52e7f43d 7945#undef po_barrier_or_imm
e07e6e58 7946
c19d1205 7947/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7948#define constraint(expr, err) \
7949 do \
c19d1205 7950 { \
e07e6e58
NC
7951 if (expr) \
7952 { \
7953 inst.error = err; \
7954 return; \
7955 } \
c19d1205 7956 } \
e07e6e58 7957 while (0)
c19d1205 7958
fdfde340
JM
7959/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7960 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7961 is the BadReg predicate in ARM's Thumb-2 documentation.
7962
7963 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7964 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7965#define reject_bad_reg(reg) \
7966 do \
7967 if (reg == REG_PC) \
7968 { \
7969 inst.error = BAD_PC; \
7970 return; \
7971 } \
7972 else if (reg == REG_SP \
7973 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7974 { \
7975 inst.error = BAD_SP; \
7976 return; \
7977 } \
fdfde340
JM
7978 while (0)
7979
94206790
MM
7980/* If REG is R13 (the stack pointer), warn that its use is
7981 deprecated. */
7982#define warn_deprecated_sp(reg) \
7983 do \
7984 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7985 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7986 while (0)
7987
c19d1205
ZW
7988/* Functions for operand encoding. ARM, then Thumb. */
7989
d840c081 7990#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7991
9db2f6b4
RL
7992/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7993
7994 The only binary encoding difference is the Coprocessor number. Coprocessor
7995 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7996 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7997 exists for Single-Precision operation. */
7998
7999static void
8000do_scalar_fp16_v82_encode (void)
8001{
5ee91343 8002 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
8003 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8004 " the behaviour is UNPREDICTABLE"));
8005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8006 _(BAD_FP16));
8007
8008 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8009 mark_feature_used (&arm_ext_fp16);
8010}
8011
c19d1205
ZW
8012/* If VAL can be encoded in the immediate field of an ARM instruction,
8013 return the encoded form. Otherwise, return FAIL. */
8014
8015static unsigned int
8016encode_arm_immediate (unsigned int val)
09d92015 8017{
c19d1205
ZW
8018 unsigned int a, i;
8019
4f1d6205
L
8020 if (val <= 0xff)
8021 return val;
8022
8023 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8024 if ((a = rotate_left (val, i)) <= 0xff)
8025 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8026
8027 return FAIL;
09d92015
MM
8028}
8029
c19d1205
ZW
8030/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8031 return the encoded form. Otherwise, return FAIL. */
8032static unsigned int
8033encode_thumb32_immediate (unsigned int val)
09d92015 8034{
c19d1205 8035 unsigned int a, i;
09d92015 8036
9c3c69f2 8037 if (val <= 0xff)
c19d1205 8038 return val;
a737bd4d 8039
9c3c69f2 8040 for (i = 1; i <= 24; i++)
09d92015 8041 {
9c3c69f2
PB
8042 a = val >> i;
8043 if ((val & ~(0xff << i)) == 0)
8044 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8045 }
a737bd4d 8046
c19d1205
ZW
8047 a = val & 0xff;
8048 if (val == ((a << 16) | a))
8049 return 0x100 | a;
8050 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8051 return 0x300 | a;
09d92015 8052
c19d1205
ZW
8053 a = val & 0xff00;
8054 if (val == ((a << 16) | a))
8055 return 0x200 | (a >> 8);
a737bd4d 8056
c19d1205 8057 return FAIL;
09d92015 8058}
5287ad62 8059/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8060
8061static void
5287ad62
JB
8062encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8063{
8064 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8065 && reg > 15)
8066 {
b1cc4aeb 8067 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8068 {
8069 if (thumb_mode)
8070 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8071 fpu_vfp_ext_d32);
8072 else
8073 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8074 fpu_vfp_ext_d32);
8075 }
5287ad62 8076 else
477330fc
RM
8077 {
8078 first_error (_("D register out of range for selected VFP version"));
8079 return;
8080 }
5287ad62
JB
8081 }
8082
c19d1205 8083 switch (pos)
09d92015 8084 {
c19d1205
ZW
8085 case VFP_REG_Sd:
8086 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8087 break;
8088
8089 case VFP_REG_Sn:
8090 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8091 break;
8092
8093 case VFP_REG_Sm:
8094 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8095 break;
8096
5287ad62
JB
8097 case VFP_REG_Dd:
8098 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8099 break;
5f4273c7 8100
5287ad62
JB
8101 case VFP_REG_Dn:
8102 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8103 break;
5f4273c7 8104
5287ad62
JB
8105 case VFP_REG_Dm:
8106 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8107 break;
8108
c19d1205
ZW
8109 default:
8110 abort ();
09d92015 8111 }
09d92015
MM
8112}
8113
c19d1205 8114/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8115 if any, is handled by md_apply_fix. */
09d92015 8116static void
c19d1205 8117encode_arm_shift (int i)
09d92015 8118{
008a97ef
RL
8119 /* register-shifted register. */
8120 if (inst.operands[i].immisreg)
8121 {
bf355b69
MR
8122 int op_index;
8123 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8124 {
5689c942
RL
8125 /* Check the operand only when it's presented. In pre-UAL syntax,
8126 if the destination register is the same as the first operand, two
8127 register form of the instruction can be used. */
bf355b69
MR
8128 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8129 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8130 as_warn (UNPRED_REG ("r15"));
8131 }
8132
8133 if (inst.operands[i].imm == REG_PC)
8134 as_warn (UNPRED_REG ("r15"));
8135 }
8136
c19d1205
ZW
8137 if (inst.operands[i].shift_kind == SHIFT_RRX)
8138 inst.instruction |= SHIFT_ROR << 5;
8139 else
09d92015 8140 {
c19d1205
ZW
8141 inst.instruction |= inst.operands[i].shift_kind << 5;
8142 if (inst.operands[i].immisreg)
8143 {
8144 inst.instruction |= SHIFT_BY_REG;
8145 inst.instruction |= inst.operands[i].imm << 8;
8146 }
8147 else
e2b0ab59 8148 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8149 }
c19d1205 8150}
09d92015 8151
c19d1205
ZW
8152static void
8153encode_arm_shifter_operand (int i)
8154{
8155 if (inst.operands[i].isreg)
09d92015 8156 {
c19d1205
ZW
8157 inst.instruction |= inst.operands[i].reg;
8158 encode_arm_shift (i);
09d92015 8159 }
c19d1205 8160 else
a415b1cd
JB
8161 {
8162 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8163 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8164 inst.instruction |= inst.operands[i].imm;
8165 }
09d92015
MM
8166}
8167
c19d1205 8168/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8169static void
c19d1205 8170encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8171{
2b2f5df9
NC
8172 /* PR 14260:
8173 Generate an error if the operand is not a register. */
8174 constraint (!inst.operands[i].isreg,
8175 _("Instruction does not support =N addresses"));
8176
c19d1205 8177 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8178
c19d1205 8179 if (inst.operands[i].preind)
09d92015 8180 {
c19d1205
ZW
8181 if (is_t)
8182 {
8183 inst.error = _("instruction does not accept preindexed addressing");
8184 return;
8185 }
8186 inst.instruction |= PRE_INDEX;
8187 if (inst.operands[i].writeback)
8188 inst.instruction |= WRITE_BACK;
09d92015 8189
c19d1205
ZW
8190 }
8191 else if (inst.operands[i].postind)
8192 {
9c2799c2 8193 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8194 if (is_t)
8195 inst.instruction |= WRITE_BACK;
8196 }
8197 else /* unindexed - only for coprocessor */
09d92015 8198 {
c19d1205 8199 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8200 return;
8201 }
8202
c19d1205
ZW
8203 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8204 && (((inst.instruction & 0x000f0000) >> 16)
8205 == ((inst.instruction & 0x0000f000) >> 12)))
8206 as_warn ((inst.instruction & LOAD_BIT)
8207 ? _("destination register same as write-back base")
8208 : _("source register same as write-back base"));
09d92015
MM
8209}
8210
c19d1205
ZW
8211/* inst.operands[i] was set up by parse_address. Encode it into an
8212 ARM-format mode 2 load or store instruction. If is_t is true,
8213 reject forms that cannot be used with a T instruction (i.e. not
8214 post-indexed). */
a737bd4d 8215static void
c19d1205 8216encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8217{
5be8be5d
DG
8218 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8219
c19d1205 8220 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8221
c19d1205 8222 if (inst.operands[i].immisreg)
09d92015 8223 {
5be8be5d
DG
8224 constraint ((inst.operands[i].imm == REG_PC
8225 || (is_pc && inst.operands[i].writeback)),
8226 BAD_PC_ADDRESSING);
c19d1205
ZW
8227 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8228 inst.instruction |= inst.operands[i].imm;
8229 if (!inst.operands[i].negative)
8230 inst.instruction |= INDEX_UP;
8231 if (inst.operands[i].shifted)
8232 {
8233 if (inst.operands[i].shift_kind == SHIFT_RRX)
8234 inst.instruction |= SHIFT_ROR << 5;
8235 else
8236 {
8237 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8238 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8239 }
8240 }
09d92015 8241 }
e2b0ab59 8242 else /* immediate offset in inst.relocs[0] */
09d92015 8243 {
e2b0ab59 8244 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8245 {
8246 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8247
8248 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8249 cannot use PC in addressing.
8250 PC cannot be used in writeback addressing, either. */
8251 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8252 BAD_PC_ADDRESSING);
23a10334 8253
dc5ec521 8254 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8255 if (warn_on_deprecated
8256 && !is_load
8257 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8258 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8259 }
8260
e2b0ab59 8261 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8262 {
8263 /* Prefer + for zero encoded value. */
8264 if (!inst.operands[i].negative)
8265 inst.instruction |= INDEX_UP;
e2b0ab59 8266 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8267 }
09d92015 8268 }
09d92015
MM
8269}
8270
c19d1205
ZW
8271/* inst.operands[i] was set up by parse_address. Encode it into an
8272 ARM-format mode 3 load or store instruction. Reject forms that
8273 cannot be used with such instructions. If is_t is true, reject
8274 forms that cannot be used with a T instruction (i.e. not
8275 post-indexed). */
8276static void
8277encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8278{
c19d1205 8279 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8280 {
c19d1205
ZW
8281 inst.error = _("instruction does not accept scaled register index");
8282 return;
09d92015 8283 }
a737bd4d 8284
c19d1205 8285 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8286
c19d1205
ZW
8287 if (inst.operands[i].immisreg)
8288 {
5be8be5d 8289 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8290 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8291 BAD_PC_ADDRESSING);
eb9f3f00
JB
8292 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8293 BAD_PC_WRITEBACK);
c19d1205
ZW
8294 inst.instruction |= inst.operands[i].imm;
8295 if (!inst.operands[i].negative)
8296 inst.instruction |= INDEX_UP;
8297 }
e2b0ab59 8298 else /* immediate offset in inst.relocs[0] */
c19d1205 8299 {
e2b0ab59 8300 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8301 && inst.operands[i].writeback),
8302 BAD_PC_WRITEBACK);
c19d1205 8303 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8304 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8305 {
8306 /* Prefer + for zero encoded value. */
8307 if (!inst.operands[i].negative)
8308 inst.instruction |= INDEX_UP;
8309
e2b0ab59 8310 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8311 }
c19d1205 8312 }
a737bd4d
NC
8313}
8314
8335d6aa
JW
8315/* Write immediate bits [7:0] to the following locations:
8316
8317 |28/24|23 19|18 16|15 4|3 0|
8318 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8319
8320 This function is used by VMOV/VMVN/VORR/VBIC. */
8321
8322static void
8323neon_write_immbits (unsigned immbits)
8324{
8325 inst.instruction |= immbits & 0xf;
8326 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8327 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8328}
8329
8330/* Invert low-order SIZE bits of XHI:XLO. */
8331
8332static void
8333neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8334{
8335 unsigned immlo = xlo ? *xlo : 0;
8336 unsigned immhi = xhi ? *xhi : 0;
8337
8338 switch (size)
8339 {
8340 case 8:
8341 immlo = (~immlo) & 0xff;
8342 break;
8343
8344 case 16:
8345 immlo = (~immlo) & 0xffff;
8346 break;
8347
8348 case 64:
8349 immhi = (~immhi) & 0xffffffff;
8350 /* fall through. */
8351
8352 case 32:
8353 immlo = (~immlo) & 0xffffffff;
8354 break;
8355
8356 default:
8357 abort ();
8358 }
8359
8360 if (xlo)
8361 *xlo = immlo;
8362
8363 if (xhi)
8364 *xhi = immhi;
8365}
8366
8367/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8368 A, B, C, D. */
09d92015 8369
c19d1205 8370static int
8335d6aa 8371neon_bits_same_in_bytes (unsigned imm)
09d92015 8372{
8335d6aa
JW
8373 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8374 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8375 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8376 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8377}
a737bd4d 8378
8335d6aa 8379/* For immediate of above form, return 0bABCD. */
09d92015 8380
8335d6aa
JW
8381static unsigned
8382neon_squash_bits (unsigned imm)
8383{
8384 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8385 | ((imm & 0x01000000) >> 21);
8386}
8387
8388/* Compress quarter-float representation to 0b...000 abcdefgh. */
8389
8390static unsigned
8391neon_qfloat_bits (unsigned imm)
8392{
8393 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8394}
8395
8396/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8397 the instruction. *OP is passed as the initial value of the op field, and
8398 may be set to a different value depending on the constant (i.e.
8399 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8400 MVN). If the immediate looks like a repeated pattern then also
8401 try smaller element sizes. */
8402
8403static int
8404neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8405 unsigned *immbits, int *op, int size,
8406 enum neon_el_type type)
8407{
8408 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8409 float. */
8410 if (type == NT_float && !float_p)
8411 return FAIL;
8412
8413 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8414 {
8335d6aa
JW
8415 if (size != 32 || *op == 1)
8416 return FAIL;
8417 *immbits = neon_qfloat_bits (immlo);
8418 return 0xf;
8419 }
8420
8421 if (size == 64)
8422 {
8423 if (neon_bits_same_in_bytes (immhi)
8424 && neon_bits_same_in_bytes (immlo))
c19d1205 8425 {
8335d6aa
JW
8426 if (*op == 1)
8427 return FAIL;
8428 *immbits = (neon_squash_bits (immhi) << 4)
8429 | neon_squash_bits (immlo);
8430 *op = 1;
8431 return 0xe;
c19d1205 8432 }
a737bd4d 8433
8335d6aa
JW
8434 if (immhi != immlo)
8435 return FAIL;
8436 }
a737bd4d 8437
8335d6aa 8438 if (size >= 32)
09d92015 8439 {
8335d6aa 8440 if (immlo == (immlo & 0x000000ff))
c19d1205 8441 {
8335d6aa
JW
8442 *immbits = immlo;
8443 return 0x0;
c19d1205 8444 }
8335d6aa 8445 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8446 {
8335d6aa
JW
8447 *immbits = immlo >> 8;
8448 return 0x2;
c19d1205 8449 }
8335d6aa
JW
8450 else if (immlo == (immlo & 0x00ff0000))
8451 {
8452 *immbits = immlo >> 16;
8453 return 0x4;
8454 }
8455 else if (immlo == (immlo & 0xff000000))
8456 {
8457 *immbits = immlo >> 24;
8458 return 0x6;
8459 }
8460 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8461 {
8462 *immbits = (immlo >> 8) & 0xff;
8463 return 0xc;
8464 }
8465 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8466 {
8467 *immbits = (immlo >> 16) & 0xff;
8468 return 0xd;
8469 }
8470
8471 if ((immlo & 0xffff) != (immlo >> 16))
8472 return FAIL;
8473 immlo &= 0xffff;
09d92015 8474 }
a737bd4d 8475
8335d6aa 8476 if (size >= 16)
4962c51a 8477 {
8335d6aa
JW
8478 if (immlo == (immlo & 0x000000ff))
8479 {
8480 *immbits = immlo;
8481 return 0x8;
8482 }
8483 else if (immlo == (immlo & 0x0000ff00))
8484 {
8485 *immbits = immlo >> 8;
8486 return 0xa;
8487 }
8488
8489 if ((immlo & 0xff) != (immlo >> 8))
8490 return FAIL;
8491 immlo &= 0xff;
4962c51a
MS
8492 }
8493
8335d6aa
JW
8494 if (immlo == (immlo & 0x000000ff))
8495 {
8496 /* Don't allow MVN with 8-bit immediate. */
8497 if (*op == 1)
8498 return FAIL;
8499 *immbits = immlo;
8500 return 0xe;
8501 }
26d97720 8502
8335d6aa 8503 return FAIL;
c19d1205 8504}
a737bd4d 8505
5fc177c8 8506#if defined BFD_HOST_64_BIT
ba592044
AM
8507/* Returns TRUE if double precision value V may be cast
8508 to single precision without loss of accuracy. */
8509
8510static bfd_boolean
5fc177c8 8511is_double_a_single (bfd_int64_t v)
ba592044 8512{
5fc177c8 8513 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8515
8516 return (exp == 0 || exp == 0x7FF
8517 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8518 && (mantissa & 0x1FFFFFFFl) == 0;
8519}
8520
3739860c 8521/* Returns a double precision value casted to single precision
ba592044
AM
8522 (ignoring the least significant bits in exponent and mantissa). */
8523
8524static int
5fc177c8 8525double_to_single (bfd_int64_t v)
ba592044
AM
8526{
8527 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8528 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8529 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8530
8531 if (exp == 0x7FF)
8532 exp = 0xFF;
8533 else
8534 {
8535 exp = exp - 1023 + 127;
8536 if (exp >= 0xFF)
8537 {
8538 /* Infinity. */
8539 exp = 0x7F;
8540 mantissa = 0;
8541 }
8542 else if (exp < 0)
8543 {
8544 /* No denormalized numbers. */
8545 exp = 0;
8546 mantissa = 0;
8547 }
8548 }
8549 mantissa >>= 29;
8550 return (sign << 31) | (exp << 23) | mantissa;
8551}
5fc177c8 8552#endif /* BFD_HOST_64_BIT */
ba592044 8553
8335d6aa
JW
8554enum lit_type
8555{
8556 CONST_THUMB,
8557 CONST_ARM,
8558 CONST_VEC
8559};
8560
ba592044
AM
8561static void do_vfp_nsyn_opcode (const char *);
8562
e2b0ab59 8563/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8564 Determine whether it can be performed with a move instruction; if
8565 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8566 return TRUE; if it can't, convert inst.instruction to a literal-pool
8567 load and return FALSE. If this is not a valid thing to do in the
8568 current context, set inst.error and return TRUE.
a737bd4d 8569
c19d1205
ZW
8570 inst.operands[i] describes the destination register. */
8571
c921be7d 8572static bfd_boolean
8335d6aa 8573move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8574{
53365c0d 8575 unsigned long tbit;
8335d6aa
JW
8576 bfd_boolean thumb_p = (t == CONST_THUMB);
8577 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8578
8579 if (thumb_p)
8580 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8581 else
8582 tbit = LOAD_BIT;
8583
8584 if ((inst.instruction & tbit) == 0)
09d92015 8585 {
c19d1205 8586 inst.error = _("invalid pseudo operation");
c921be7d 8587 return TRUE;
09d92015 8588 }
ba592044 8589
e2b0ab59
AV
8590 if (inst.relocs[0].exp.X_op != O_constant
8591 && inst.relocs[0].exp.X_op != O_symbol
8592 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8593 {
8594 inst.error = _("constant expression expected");
c921be7d 8595 return TRUE;
09d92015 8596 }
ba592044 8597
e2b0ab59
AV
8598 if (inst.relocs[0].exp.X_op == O_constant
8599 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8600 {
5fc177c8
NC
8601#if defined BFD_HOST_64_BIT
8602 bfd_int64_t v;
8603#else
ba592044 8604 offsetT v;
5fc177c8 8605#endif
e2b0ab59 8606 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8607 {
ba592044
AM
8608 LITTLENUM_TYPE w[X_PRECISION];
8609 LITTLENUM_TYPE * l;
8610
e2b0ab59 8611 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8612 {
ba592044
AM
8613 gen_to_words (w, X_PRECISION, E_PRECISION);
8614 l = w;
8615 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8616 }
ba592044
AM
8617 else
8618 l = generic_bignum;
3739860c 8619
5fc177c8
NC
8620#if defined BFD_HOST_64_BIT
8621 v =
8622 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8623 << LITTLENUM_NUMBER_OF_BITS)
8624 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8625 << LITTLENUM_NUMBER_OF_BITS)
8626 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8627 << LITTLENUM_NUMBER_OF_BITS)
8628 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8629#else
ba592044
AM
8630 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8631 | (l[0] & LITTLENUM_MASK);
5fc177c8 8632#endif
8335d6aa 8633 }
ba592044 8634 else
e2b0ab59 8635 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8636
8637 if (!inst.operands[i].issingle)
8335d6aa 8638 {
12569877 8639 if (thumb_p)
8335d6aa 8640 {
53445554
TP
8641 /* LDR should not use lead in a flag-setting instruction being
8642 chosen so we do not check whether movs can be used. */
12569877 8643
53445554 8644 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8645 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8646 && inst.operands[i].reg != 13
8647 && inst.operands[i].reg != 15)
12569877 8648 {
fc289b0a
TP
8649 /* Check if on thumb2 it can be done with a mov.w, mvn or
8650 movw instruction. */
12569877
AM
8651 unsigned int newimm;
8652 bfd_boolean isNegated;
8653
8654 newimm = encode_thumb32_immediate (v);
8655 if (newimm != (unsigned int) FAIL)
8656 isNegated = FALSE;
8657 else
8658 {
582cfe03 8659 newimm = encode_thumb32_immediate (~v);
12569877
AM
8660 if (newimm != (unsigned int) FAIL)
8661 isNegated = TRUE;
8662 }
8663
fc289b0a
TP
8664 /* The number can be loaded with a mov.w or mvn
8665 instruction. */
ff8646ee
TP
8666 if (newimm != (unsigned int) FAIL
8667 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8668 {
fc289b0a 8669 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8670 | (inst.operands[i].reg << 8));
fc289b0a 8671 /* Change to MOVN. */
582cfe03 8672 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8673 inst.instruction |= (newimm & 0x800) << 15;
8674 inst.instruction |= (newimm & 0x700) << 4;
8675 inst.instruction |= (newimm & 0x0ff);
8676 return TRUE;
8677 }
fc289b0a 8678 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8679 else if ((v & ~0xFFFF) == 0
8680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8681 {
582cfe03 8682 int imm = v & 0xFFFF;
12569877 8683
582cfe03 8684 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8685 inst.instruction |= (inst.operands[i].reg << 8);
8686 inst.instruction |= (imm & 0xf000) << 4;
8687 inst.instruction |= (imm & 0x0800) << 15;
8688 inst.instruction |= (imm & 0x0700) << 4;
8689 inst.instruction |= (imm & 0x00ff);
8690 return TRUE;
8691 }
8692 }
8335d6aa 8693 }
12569877 8694 else if (arm_p)
ba592044
AM
8695 {
8696 int value = encode_arm_immediate (v);
12569877 8697
ba592044
AM
8698 if (value != FAIL)
8699 {
8700 /* This can be done with a mov instruction. */
8701 inst.instruction &= LITERAL_MASK;
8702 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8703 inst.instruction |= value & 0xfff;
8704 return TRUE;
8705 }
8335d6aa 8706
ba592044
AM
8707 value = encode_arm_immediate (~ v);
8708 if (value != FAIL)
8709 {
8710 /* This can be done with a mvn instruction. */
8711 inst.instruction &= LITERAL_MASK;
8712 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8713 inst.instruction |= value & 0xfff;
8714 return TRUE;
8715 }
8716 }
934c2632 8717 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8718 {
ba592044
AM
8719 int op = 0;
8720 unsigned immbits = 0;
8721 unsigned immlo = inst.operands[1].imm;
8722 unsigned immhi = inst.operands[1].regisimm
8723 ? inst.operands[1].reg
e2b0ab59 8724 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8725 ? 0
8726 : ((bfd_int64_t)((int) immlo)) >> 32;
8727 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8728 &op, 64, NT_invtype);
8729
8730 if (cmode == FAIL)
8731 {
8732 neon_invert_size (&immlo, &immhi, 64);
8733 op = !op;
8734 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8735 &op, 64, NT_invtype);
8736 }
8737
8738 if (cmode != FAIL)
8739 {
8740 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8741 | (1 << 23)
8742 | (cmode << 8)
8743 | (op << 5)
8744 | (1 << 4);
8745
8746 /* Fill other bits in vmov encoding for both thumb and arm. */
8747 if (thumb_mode)
eff0bc54 8748 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8749 else
eff0bc54 8750 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8751 neon_write_immbits (immbits);
8752 return TRUE;
8753 }
8335d6aa
JW
8754 }
8755 }
8335d6aa 8756
ba592044
AM
8757 if (t == CONST_VEC)
8758 {
8759 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8760 if (inst.operands[i].issingle
8761 && is_quarter_float (inst.operands[1].imm)
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8763 {
ba592044
AM
8764 inst.operands[1].imm =
8765 neon_qfloat_bits (v);
8766 do_vfp_nsyn_opcode ("fconsts");
8767 return TRUE;
8335d6aa 8768 }
5fc177c8
NC
8769
8770 /* If our host does not support a 64-bit type then we cannot perform
8771 the following optimization. This mean that there will be a
8772 discrepancy between the output produced by an assembler built for
8773 a 32-bit-only host and the output produced from a 64-bit host, but
8774 this cannot be helped. */
8775#if defined BFD_HOST_64_BIT
ba592044
AM
8776 else if (!inst.operands[1].issingle
8777 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8778 {
ba592044
AM
8779 if (is_double_a_single (v)
8780 && is_quarter_float (double_to_single (v)))
8781 {
8782 inst.operands[1].imm =
8783 neon_qfloat_bits (double_to_single (v));
8784 do_vfp_nsyn_opcode ("fconstd");
8785 return TRUE;
8786 }
8335d6aa 8787 }
5fc177c8 8788#endif
8335d6aa
JW
8789 }
8790 }
8791
8792 if (add_to_lit_pool ((!inst.operands[i].isvec
8793 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8794 return TRUE;
8795
8796 inst.operands[1].reg = REG_PC;
8797 inst.operands[1].isreg = 1;
8798 inst.operands[1].preind = 1;
e2b0ab59
AV
8799 inst.relocs[0].pc_rel = 1;
8800 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8801 ? BFD_RELOC_ARM_THUMB_OFFSET
8802 : (mode_3
8803 ? BFD_RELOC_ARM_HWLITERAL
8804 : BFD_RELOC_ARM_LITERAL));
8805 return FALSE;
8806}
8807
8808/* inst.operands[i] was set up by parse_address. Encode it into an
8809 ARM-format instruction. Reject all forms which cannot be encoded
8810 into a coprocessor load/store instruction. If wb_ok is false,
8811 reject use of writeback; if unind_ok is false, reject use of
8812 unindexed addressing. If reloc_override is not 0, use it instead
8813 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8814 (in which case it is preserved). */
8815
8816static int
8817encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8818{
8819 if (!inst.operands[i].isreg)
8820 {
99b2a2dd
NC
8821 /* PR 18256 */
8822 if (! inst.operands[0].isvec)
8823 {
8824 inst.error = _("invalid co-processor operand");
8825 return FAIL;
8826 }
8335d6aa
JW
8827 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8828 return SUCCESS;
8829 }
8830
8831 inst.instruction |= inst.operands[i].reg << 16;
8832
8833 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8834
8835 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8836 {
8837 gas_assert (!inst.operands[i].writeback);
8838 if (!unind_ok)
8839 {
8840 inst.error = _("instruction does not support unindexed addressing");
8841 return FAIL;
8842 }
8843 inst.instruction |= inst.operands[i].imm;
8844 inst.instruction |= INDEX_UP;
8845 return SUCCESS;
8846 }
8847
8848 if (inst.operands[i].preind)
8849 inst.instruction |= PRE_INDEX;
8850
8851 if (inst.operands[i].writeback)
09d92015 8852 {
8335d6aa 8853 if (inst.operands[i].reg == REG_PC)
c19d1205 8854 {
8335d6aa
JW
8855 inst.error = _("pc may not be used with write-back");
8856 return FAIL;
c19d1205 8857 }
8335d6aa 8858 if (!wb_ok)
c19d1205 8859 {
8335d6aa
JW
8860 inst.error = _("instruction does not support writeback");
8861 return FAIL;
c19d1205 8862 }
8335d6aa 8863 inst.instruction |= WRITE_BACK;
09d92015
MM
8864 }
8865
8335d6aa 8866 if (reloc_override)
e2b0ab59
AV
8867 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8868 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8869 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8870 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8871 {
8335d6aa 8872 if (thumb_mode)
e2b0ab59 8873 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8874 else
e2b0ab59 8875 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8876 }
8335d6aa
JW
8877
8878 /* Prefer + for zero encoded value. */
8879 if (!inst.operands[i].negative)
8880 inst.instruction |= INDEX_UP;
8881
8882 return SUCCESS;
09d92015
MM
8883}
8884
5f4273c7 8885/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8886 First some generics; their names are taken from the conventional
8887 bit positions for register arguments in ARM format instructions. */
09d92015 8888
a737bd4d 8889static void
c19d1205 8890do_noargs (void)
09d92015 8891{
c19d1205 8892}
a737bd4d 8893
c19d1205
ZW
8894static void
8895do_rd (void)
8896{
8897 inst.instruction |= inst.operands[0].reg << 12;
8898}
a737bd4d 8899
16a1fa25
TP
8900static void
8901do_rn (void)
8902{
8903 inst.instruction |= inst.operands[0].reg << 16;
8904}
8905
c19d1205
ZW
8906static void
8907do_rd_rm (void)
8908{
8909 inst.instruction |= inst.operands[0].reg << 12;
8910 inst.instruction |= inst.operands[1].reg;
8911}
09d92015 8912
9eb6c0f1
MGD
8913static void
8914do_rm_rn (void)
8915{
8916 inst.instruction |= inst.operands[0].reg;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918}
8919
c19d1205
ZW
8920static void
8921do_rd_rn (void)
8922{
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925}
a737bd4d 8926
c19d1205
ZW
8927static void
8928do_rn_rd (void)
8929{
8930 inst.instruction |= inst.operands[0].reg << 16;
8931 inst.instruction |= inst.operands[1].reg << 12;
8932}
09d92015 8933
4ed7ed8d
TP
8934static void
8935do_tt (void)
8936{
8937 inst.instruction |= inst.operands[0].reg << 8;
8938 inst.instruction |= inst.operands[1].reg << 16;
8939}
8940
59d09be6
MGD
8941static bfd_boolean
8942check_obsolete (const arm_feature_set *feature, const char *msg)
8943{
8944 if (ARM_CPU_IS_ANY (cpu_variant))
8945 {
5c3696f8 8946 as_tsktsk ("%s", msg);
59d09be6
MGD
8947 return TRUE;
8948 }
8949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8950 {
8951 as_bad ("%s", msg);
8952 return TRUE;
8953 }
8954
8955 return FALSE;
8956}
8957
c19d1205
ZW
8958static void
8959do_rd_rm_rn (void)
8960{
9a64e435 8961 unsigned Rn = inst.operands[2].reg;
708587a4 8962 /* Enforce restrictions on SWP instruction. */
9a64e435 8963 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8964 {
8965 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8966 _("Rn must not overlap other operands"));
8967
59d09be6
MGD
8968 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8969 */
8970 if (!check_obsolete (&arm_ext_v8,
8971 _("swp{b} use is obsoleted for ARMv8 and later"))
8972 && warn_on_deprecated
8973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8974 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8975 }
59d09be6 8976
c19d1205
ZW
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg;
9a64e435 8979 inst.instruction |= Rn << 16;
c19d1205 8980}
09d92015 8981
c19d1205
ZW
8982static void
8983do_rd_rn_rm (void)
8984{
8985 inst.instruction |= inst.operands[0].reg << 12;
8986 inst.instruction |= inst.operands[1].reg << 16;
8987 inst.instruction |= inst.operands[2].reg;
8988}
a737bd4d 8989
c19d1205
ZW
8990static void
8991do_rm_rd_rn (void)
8992{
5be8be5d 8993 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8994 constraint (((inst.relocs[0].exp.X_op != O_constant
8995 && inst.relocs[0].exp.X_op != O_illegal)
8996 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8997 BAD_ADDR_MODE);
c19d1205
ZW
8998 inst.instruction |= inst.operands[0].reg;
8999 inst.instruction |= inst.operands[1].reg << 12;
9000 inst.instruction |= inst.operands[2].reg << 16;
9001}
09d92015 9002
c19d1205
ZW
9003static void
9004do_imm0 (void)
9005{
9006 inst.instruction |= inst.operands[0].imm;
9007}
09d92015 9008
c19d1205
ZW
9009static void
9010do_rd_cpaddr (void)
9011{
9012 inst.instruction |= inst.operands[0].reg << 12;
9013 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 9014}
a737bd4d 9015
c19d1205
ZW
9016/* ARM instructions, in alphabetical order by function name (except
9017 that wrapper functions appear immediately after the function they
9018 wrap). */
09d92015 9019
c19d1205
ZW
9020/* This is a pseudo-op of the form "adr rd, label" to be converted
9021 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9022
9023static void
c19d1205 9024do_adr (void)
09d92015 9025{
c19d1205 9026 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9027
c19d1205
ZW
9028 /* Frag hacking will turn this into a sub instruction if the offset turns
9029 out to be negative. */
e2b0ab59
AV
9030 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9031 inst.relocs[0].pc_rel = 1;
9032 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9033
fc6141f0 9034 if (support_interwork
e2b0ab59
AV
9035 && inst.relocs[0].exp.X_op == O_symbol
9036 && inst.relocs[0].exp.X_add_symbol != NULL
9037 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9038 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9039 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9040}
b99bd4ef 9041
c19d1205
ZW
9042/* This is a pseudo-op of the form "adrl rd, label" to be converted
9043 into a relative address of the form:
9044 add rd, pc, #low(label-.-8)"
9045 add rd, rd, #high(label-.-8)" */
b99bd4ef 9046
c19d1205
ZW
9047static void
9048do_adrl (void)
9049{
9050 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9051
c19d1205
ZW
9052 /* Frag hacking will turn this into a sub instruction if the offset turns
9053 out to be negative. */
e2b0ab59
AV
9054 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9055 inst.relocs[0].pc_rel = 1;
c19d1205 9056 inst.size = INSN_SIZE * 2;
e2b0ab59 9057 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9058
fc6141f0 9059 if (support_interwork
e2b0ab59
AV
9060 && inst.relocs[0].exp.X_op == O_symbol
9061 && inst.relocs[0].exp.X_add_symbol != NULL
9062 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9063 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9064 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9065}
9066
b99bd4ef 9067static void
c19d1205 9068do_arit (void)
b99bd4ef 9069{
e2b0ab59
AV
9070 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9071 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9072 THUMB1_RELOC_ONLY);
c19d1205
ZW
9073 if (!inst.operands[1].present)
9074 inst.operands[1].reg = inst.operands[0].reg;
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].reg << 16;
9077 encode_arm_shifter_operand (2);
9078}
b99bd4ef 9079
62b3e311
PB
9080static void
9081do_barrier (void)
9082{
9083 if (inst.operands[0].present)
ccb84d65 9084 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9085 else
9086 inst.instruction |= 0xf;
9087}
9088
c19d1205
ZW
9089static void
9090do_bfc (void)
9091{
9092 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9093 constraint (msb > 32, _("bit-field extends past end of register"));
9094 /* The instruction encoding stores the LSB and MSB,
9095 not the LSB and width. */
9096 inst.instruction |= inst.operands[0].reg << 12;
9097 inst.instruction |= inst.operands[1].imm << 7;
9098 inst.instruction |= (msb - 1) << 16;
9099}
b99bd4ef 9100
c19d1205
ZW
9101static void
9102do_bfi (void)
9103{
9104 unsigned int msb;
b99bd4ef 9105
c19d1205
ZW
9106 /* #0 in second position is alternative syntax for bfc, which is
9107 the same instruction but with REG_PC in the Rm field. */
9108 if (!inst.operands[1].isreg)
9109 inst.operands[1].reg = REG_PC;
b99bd4ef 9110
c19d1205
ZW
9111 msb = inst.operands[2].imm + inst.operands[3].imm;
9112 constraint (msb > 32, _("bit-field extends past end of register"));
9113 /* The instruction encoding stores the LSB and MSB,
9114 not the LSB and width. */
9115 inst.instruction |= inst.operands[0].reg << 12;
9116 inst.instruction |= inst.operands[1].reg;
9117 inst.instruction |= inst.operands[2].imm << 7;
9118 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9119}
9120
b99bd4ef 9121static void
c19d1205 9122do_bfx (void)
b99bd4ef 9123{
c19d1205
ZW
9124 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9125 _("bit-field extends past end of register"));
9126 inst.instruction |= inst.operands[0].reg << 12;
9127 inst.instruction |= inst.operands[1].reg;
9128 inst.instruction |= inst.operands[2].imm << 7;
9129 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9130}
09d92015 9131
c19d1205
ZW
9132/* ARM V5 breakpoint instruction (argument parse)
9133 BKPT <16 bit unsigned immediate>
9134 Instruction is not conditional.
9135 The bit pattern given in insns[] has the COND_ALWAYS condition,
9136 and it is an error if the caller tried to override that. */
b99bd4ef 9137
c19d1205
ZW
9138static void
9139do_bkpt (void)
9140{
9141 /* Top 12 of 16 bits to bits 19:8. */
9142 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9143
c19d1205
ZW
9144 /* Bottom 4 of 16 bits to bits 3:0. */
9145 inst.instruction |= inst.operands[0].imm & 0xf;
9146}
09d92015 9147
c19d1205
ZW
9148static void
9149encode_branch (int default_reloc)
9150{
9151 if (inst.operands[0].hasreloc)
9152 {
0855e32b
NS
9153 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9154 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9155 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9156 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9157 ? BFD_RELOC_ARM_PLT32
9158 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9159 }
b99bd4ef 9160 else
e2b0ab59
AV
9161 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9162 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9163}
9164
b99bd4ef 9165static void
c19d1205 9166do_branch (void)
b99bd4ef 9167{
39b41c9c
PB
9168#ifdef OBJ_ELF
9169 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 else
9172#endif
9173 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9174}
9175
9176static void
9177do_bl (void)
9178{
9179#ifdef OBJ_ELF
9180 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9181 {
9182 if (inst.cond == COND_ALWAYS)
9183 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9184 else
9185 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9186 }
9187 else
9188#endif
9189 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9190}
b99bd4ef 9191
c19d1205
ZW
9192/* ARM V5 branch-link-exchange instruction (argument parse)
9193 BLX <target_addr> ie BLX(1)
9194 BLX{<condition>} <Rm> ie BLX(2)
9195 Unfortunately, there are two different opcodes for this mnemonic.
9196 So, the insns[].value is not used, and the code here zaps values
9197 into inst.instruction.
9198 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9199
c19d1205
ZW
9200static void
9201do_blx (void)
9202{
9203 if (inst.operands[0].isreg)
b99bd4ef 9204 {
c19d1205
ZW
9205 /* Arg is a register; the opcode provided by insns[] is correct.
9206 It is not illegal to do "blx pc", just useless. */
9207 if (inst.operands[0].reg == REG_PC)
9208 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9209
c19d1205
ZW
9210 inst.instruction |= inst.operands[0].reg;
9211 }
9212 else
b99bd4ef 9213 {
c19d1205 9214 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9215 conditionally, and the opcode must be adjusted.
9216 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9217 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9218 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9219 inst.instruction = 0xfa000000;
267bf995 9220 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9221 }
c19d1205
ZW
9222}
9223
9224static void
9225do_bx (void)
9226{
845b51d6
PB
9227 bfd_boolean want_reloc;
9228
c19d1205
ZW
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9231
c19d1205 9232 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9233 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9234 it is for ARMv4t or earlier. */
9235 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9236 if (!ARM_FEATURE_ZERO (selected_object_arch)
9237 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9238 want_reloc = TRUE;
9239
5ad34203 9240#ifdef OBJ_ELF
845b51d6 9241 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9242#endif
584206db 9243 want_reloc = FALSE;
845b51d6
PB
9244
9245 if (want_reloc)
e2b0ab59 9246 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9247}
9248
c19d1205
ZW
9249
9250/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9251
9252static void
c19d1205 9253do_bxj (void)
a737bd4d 9254{
c19d1205
ZW
9255 if (inst.operands[0].reg == REG_PC)
9256 as_tsktsk (_("use of r15 in bxj is not really useful"));
9257
9258 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9259}
9260
c19d1205
ZW
9261/* Co-processor data operation:
9262 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9263 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9264static void
9265do_cdp (void)
9266{
9267 inst.instruction |= inst.operands[0].reg << 8;
9268 inst.instruction |= inst.operands[1].imm << 20;
9269 inst.instruction |= inst.operands[2].reg << 12;
9270 inst.instruction |= inst.operands[3].reg << 16;
9271 inst.instruction |= inst.operands[4].reg;
9272 inst.instruction |= inst.operands[5].imm << 5;
9273}
a737bd4d
NC
9274
9275static void
c19d1205 9276do_cmp (void)
a737bd4d 9277{
c19d1205
ZW
9278 inst.instruction |= inst.operands[0].reg << 16;
9279 encode_arm_shifter_operand (1);
a737bd4d
NC
9280}
9281
c19d1205
ZW
9282/* Transfer between coprocessor and ARM registers.
9283 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9284 MRC2
9285 MCR{cond}
9286 MCR2
9287
9288 No special properties. */
09d92015 9289
dcbd0d71
MGD
9290struct deprecated_coproc_regs_s
9291{
9292 unsigned cp;
9293 int opc1;
9294 unsigned crn;
9295 unsigned crm;
9296 int opc2;
9297 arm_feature_set deprecated;
9298 arm_feature_set obsoleted;
9299 const char *dep_msg;
9300 const char *obs_msg;
9301};
9302
9303#define DEPR_ACCESS_V8 \
9304 N_("This coprocessor register access is deprecated in ARMv8")
9305
9306/* Table of all deprecated coprocessor registers. */
9307static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9308{
9309 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9310 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9311 DEPR_ACCESS_V8, NULL},
9312 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9313 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9314 DEPR_ACCESS_V8, NULL},
9315 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9316 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9317 DEPR_ACCESS_V8, NULL},
9318 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9320 DEPR_ACCESS_V8, NULL},
9321 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9323 DEPR_ACCESS_V8, NULL},
9324};
9325
9326#undef DEPR_ACCESS_V8
9327
9328static const size_t deprecated_coproc_reg_count =
9329 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9330
09d92015 9331static void
c19d1205 9332do_co_reg (void)
09d92015 9333{
fdfde340 9334 unsigned Rd;
dcbd0d71 9335 size_t i;
fdfde340
JM
9336
9337 Rd = inst.operands[2].reg;
9338 if (thumb_mode)
9339 {
9340 if (inst.instruction == 0xee000010
9341 || inst.instruction == 0xfe000010)
9342 /* MCR, MCR2 */
9343 reject_bad_reg (Rd);
5c8ed6a4 9344 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9345 /* MRC, MRC2 */
9346 constraint (Rd == REG_SP, BAD_SP);
9347 }
9348 else
9349 {
9350 /* MCR */
9351 if (inst.instruction == 0xe000010)
9352 constraint (Rd == REG_PC, BAD_PC);
9353 }
9354
dcbd0d71
MGD
9355 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9356 {
9357 const struct deprecated_coproc_regs_s *r =
9358 deprecated_coproc_regs + i;
9359
9360 if (inst.operands[0].reg == r->cp
9361 && inst.operands[1].imm == r->opc1
9362 && inst.operands[3].reg == r->crn
9363 && inst.operands[4].reg == r->crm
9364 && inst.operands[5].imm == r->opc2)
9365 {
b10bf8c5 9366 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9367 && warn_on_deprecated
dcbd0d71 9368 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9369 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9370 }
9371 }
fdfde340 9372
c19d1205
ZW
9373 inst.instruction |= inst.operands[0].reg << 8;
9374 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9375 inst.instruction |= Rd << 12;
c19d1205
ZW
9376 inst.instruction |= inst.operands[3].reg << 16;
9377 inst.instruction |= inst.operands[4].reg;
9378 inst.instruction |= inst.operands[5].imm << 5;
9379}
09d92015 9380
c19d1205
ZW
9381/* Transfer between coprocessor register and pair of ARM registers.
9382 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9383 MCRR2
9384 MRRC{cond}
9385 MRRC2
b99bd4ef 9386
c19d1205 9387 Two XScale instructions are special cases of these:
09d92015 9388
c19d1205
ZW
9389 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9390 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9391
5f4273c7 9392 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9393
c19d1205
ZW
9394static void
9395do_co_reg2c (void)
9396{
fdfde340
JM
9397 unsigned Rd, Rn;
9398
9399 Rd = inst.operands[2].reg;
9400 Rn = inst.operands[3].reg;
9401
9402 if (thumb_mode)
9403 {
9404 reject_bad_reg (Rd);
9405 reject_bad_reg (Rn);
9406 }
9407 else
9408 {
9409 constraint (Rd == REG_PC, BAD_PC);
9410 constraint (Rn == REG_PC, BAD_PC);
9411 }
9412
873f10f0
TC
9413 /* Only check the MRRC{2} variants. */
9414 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9415 {
9416 /* If Rd == Rn, error that the operation is
9417 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9418 constraint (Rd == Rn, BAD_OVERLAP);
9419 }
9420
c19d1205
ZW
9421 inst.instruction |= inst.operands[0].reg << 8;
9422 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9423 inst.instruction |= Rd << 12;
9424 inst.instruction |= Rn << 16;
c19d1205 9425 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9426}
9427
c19d1205
ZW
9428static void
9429do_cpsi (void)
9430{
9431 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9432 if (inst.operands[1].present)
9433 {
9434 inst.instruction |= CPSI_MMOD;
9435 inst.instruction |= inst.operands[1].imm;
9436 }
c19d1205 9437}
b99bd4ef 9438
62b3e311
PB
9439static void
9440do_dbg (void)
9441{
9442 inst.instruction |= inst.operands[0].imm;
9443}
9444
eea54501
MGD
9445static void
9446do_div (void)
9447{
9448 unsigned Rd, Rn, Rm;
9449
9450 Rd = inst.operands[0].reg;
9451 Rn = (inst.operands[1].present
9452 ? inst.operands[1].reg : Rd);
9453 Rm = inst.operands[2].reg;
9454
9455 constraint ((Rd == REG_PC), BAD_PC);
9456 constraint ((Rn == REG_PC), BAD_PC);
9457 constraint ((Rm == REG_PC), BAD_PC);
9458
9459 inst.instruction |= Rd << 16;
9460 inst.instruction |= Rn << 0;
9461 inst.instruction |= Rm << 8;
9462}
9463
b99bd4ef 9464static void
c19d1205 9465do_it (void)
b99bd4ef 9466{
c19d1205 9467 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9468 process it to do the validation as if in
9469 thumb mode, just in case the code gets
9470 assembled for thumb using the unified syntax. */
9471
c19d1205 9472 inst.size = 0;
e07e6e58
NC
9473 if (unified_syntax)
9474 {
5ee91343
AV
9475 set_pred_insn_type (IT_INSN);
9476 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9477 now_pred.cc = inst.operands[0].imm;
e07e6e58 9478 }
09d92015 9479}
b99bd4ef 9480
6530b175
NC
9481/* If there is only one register in the register list,
9482 then return its register number. Otherwise return -1. */
9483static int
9484only_one_reg_in_list (int range)
9485{
9486 int i = ffs (range) - 1;
9487 return (i > 15 || range != (1 << i)) ? -1 : i;
9488}
9489
09d92015 9490static void
6530b175 9491encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9492{
c19d1205
ZW
9493 int base_reg = inst.operands[0].reg;
9494 int range = inst.operands[1].imm;
6530b175 9495 int one_reg;
ea6ef066 9496
c19d1205
ZW
9497 inst.instruction |= base_reg << 16;
9498 inst.instruction |= range;
ea6ef066 9499
c19d1205
ZW
9500 if (inst.operands[1].writeback)
9501 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9502
c19d1205 9503 if (inst.operands[0].writeback)
ea6ef066 9504 {
c19d1205
ZW
9505 inst.instruction |= WRITE_BACK;
9506 /* Check for unpredictable uses of writeback. */
9507 if (inst.instruction & LOAD_BIT)
09d92015 9508 {
c19d1205
ZW
9509 /* Not allowed in LDM type 2. */
9510 if ((inst.instruction & LDM_TYPE_2_OR_3)
9511 && ((range & (1 << REG_PC)) == 0))
9512 as_warn (_("writeback of base register is UNPREDICTABLE"));
9513 /* Only allowed if base reg not in list for other types. */
9514 else if (range & (1 << base_reg))
9515 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9516 }
9517 else /* STM. */
9518 {
9519 /* Not allowed for type 2. */
9520 if (inst.instruction & LDM_TYPE_2_OR_3)
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list, or first in list. */
9523 else if ((range & (1 << base_reg))
9524 && (range & ((1 << base_reg) - 1)))
9525 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9526 }
ea6ef066 9527 }
6530b175
NC
9528
9529 /* If PUSH/POP has only one register, then use the A2 encoding. */
9530 one_reg = only_one_reg_in_list (range);
9531 if (from_push_pop_mnem && one_reg >= 0)
9532 {
9533 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9534
4f588891
NC
9535 if (is_push && one_reg == 13 /* SP */)
9536 /* PR 22483: The A2 encoding cannot be used when
9537 pushing the stack pointer as this is UNPREDICTABLE. */
9538 return;
9539
6530b175
NC
9540 inst.instruction &= A_COND_MASK;
9541 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9542 inst.instruction |= one_reg << 12;
9543 }
9544}
9545
9546static void
9547do_ldmstm (void)
9548{
9549 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9550}
9551
c19d1205
ZW
9552/* ARMv5TE load-consecutive (argument parse)
9553 Mode is like LDRH.
9554
9555 LDRccD R, mode
9556 STRccD R, mode. */
9557
a737bd4d 9558static void
c19d1205 9559do_ldrd (void)
a737bd4d 9560{
c19d1205 9561 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9562 _("first transfer register must be even"));
c19d1205
ZW
9563 constraint (inst.operands[1].present
9564 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9565 _("can only transfer two consecutive registers"));
c19d1205
ZW
9566 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9567 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9568
c19d1205
ZW
9569 if (!inst.operands[1].present)
9570 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9571
c56791bb
RE
9572 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9573 register and the first register written; we have to diagnose
9574 overlap between the base and the second register written here. */
ea6ef066 9575
c56791bb
RE
9576 if (inst.operands[2].reg == inst.operands[1].reg
9577 && (inst.operands[2].writeback || inst.operands[2].postind))
9578 as_warn (_("base register written back, and overlaps "
9579 "second transfer register"));
b05fe5cf 9580
c56791bb
RE
9581 if (!(inst.instruction & V4_STR_BIT))
9582 {
c19d1205 9583 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9584 destination (even if not write-back). */
9585 if (inst.operands[2].immisreg
9586 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9587 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9588 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9589 }
c19d1205
ZW
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9592}
9593
9594static void
c19d1205 9595do_ldrex (void)
b05fe5cf 9596{
c19d1205
ZW
9597 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9598 || inst.operands[1].postind || inst.operands[1].writeback
9599 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9600 || inst.operands[1].negative
9601 /* This can arise if the programmer has written
9602 strex rN, rM, foo
9603 or if they have mistakenly used a register name as the last
9604 operand, eg:
9605 strex rN, rM, rX
9606 It is very difficult to distinguish between these two cases
9607 because "rX" might actually be a label. ie the register
9608 name has been occluded by a symbol of the same name. So we
9609 just generate a general 'bad addressing mode' type error
9610 message and leave it up to the programmer to discover the
9611 true cause and fix their mistake. */
9612 || (inst.operands[1].reg == REG_PC),
9613 BAD_ADDR_MODE);
b05fe5cf 9614
e2b0ab59
AV
9615 constraint (inst.relocs[0].exp.X_op != O_constant
9616 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9617 _("offset must be zero in ARM encoding"));
b05fe5cf 9618
5be8be5d
DG
9619 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9620
c19d1205
ZW
9621 inst.instruction |= inst.operands[0].reg << 12;
9622 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9623 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9624}
9625
9626static void
c19d1205 9627do_ldrexd (void)
b05fe5cf 9628{
c19d1205
ZW
9629 constraint (inst.operands[0].reg % 2 != 0,
9630 _("even register required"));
9631 constraint (inst.operands[1].present
9632 && inst.operands[1].reg != inst.operands[0].reg + 1,
9633 _("can only load two consecutive registers"));
9634 /* If op 1 were present and equal to PC, this function wouldn't
9635 have been called in the first place. */
9636 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9637
c19d1205
ZW
9638 inst.instruction |= inst.operands[0].reg << 12;
9639 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9640}
9641
1be5fd2e
NC
9642/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9643 which is not a multiple of four is UNPREDICTABLE. */
9644static void
9645check_ldr_r15_aligned (void)
9646{
9647 constraint (!(inst.operands[1].immisreg)
9648 && (inst.operands[0].reg == REG_PC
9649 && inst.operands[1].reg == REG_PC
e2b0ab59 9650 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9651 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9652}
9653
b05fe5cf 9654static void
c19d1205 9655do_ldst (void)
b05fe5cf 9656{
c19d1205
ZW
9657 inst.instruction |= inst.operands[0].reg << 12;
9658 if (!inst.operands[1].isreg)
8335d6aa 9659 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9660 return;
c19d1205 9661 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9662 check_ldr_r15_aligned ();
b05fe5cf
ZW
9663}
9664
9665static void
c19d1205 9666do_ldstt (void)
b05fe5cf 9667{
c19d1205
ZW
9668 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9669 reject [Rn,...]. */
9670 if (inst.operands[1].preind)
b05fe5cf 9671 {
e2b0ab59
AV
9672 constraint (inst.relocs[0].exp.X_op != O_constant
9673 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9674 _("this instruction requires a post-indexed address"));
b05fe5cf 9675
c19d1205
ZW
9676 inst.operands[1].preind = 0;
9677 inst.operands[1].postind = 1;
9678 inst.operands[1].writeback = 1;
b05fe5cf 9679 }
c19d1205
ZW
9680 inst.instruction |= inst.operands[0].reg << 12;
9681 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9682}
b05fe5cf 9683
c19d1205 9684/* Halfword and signed-byte load/store operations. */
b05fe5cf 9685
c19d1205
ZW
9686static void
9687do_ldstv4 (void)
9688{
ff4a8d2b 9689 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9690 inst.instruction |= inst.operands[0].reg << 12;
9691 if (!inst.operands[1].isreg)
8335d6aa 9692 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9693 return;
c19d1205 9694 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9695}
9696
9697static void
c19d1205 9698do_ldsttv4 (void)
b05fe5cf 9699{
c19d1205
ZW
9700 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9701 reject [Rn,...]. */
9702 if (inst.operands[1].preind)
b05fe5cf 9703 {
e2b0ab59
AV
9704 constraint (inst.relocs[0].exp.X_op != O_constant
9705 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9706 _("this instruction requires a post-indexed address"));
b05fe5cf 9707
c19d1205
ZW
9708 inst.operands[1].preind = 0;
9709 inst.operands[1].postind = 1;
9710 inst.operands[1].writeback = 1;
b05fe5cf 9711 }
c19d1205
ZW
9712 inst.instruction |= inst.operands[0].reg << 12;
9713 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9714}
b05fe5cf 9715
c19d1205
ZW
9716/* Co-processor register load/store.
9717 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9718static void
9719do_lstc (void)
9720{
9721 inst.instruction |= inst.operands[0].reg << 8;
9722 inst.instruction |= inst.operands[1].reg << 12;
9723 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9724}
9725
b05fe5cf 9726static void
c19d1205 9727do_mlas (void)
b05fe5cf 9728{
8fb9d7b9 9729 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9730 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9731 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9732 && !(inst.instruction & 0x00400000))
8fb9d7b9 9733 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9734
c19d1205
ZW
9735 inst.instruction |= inst.operands[0].reg << 16;
9736 inst.instruction |= inst.operands[1].reg;
9737 inst.instruction |= inst.operands[2].reg << 8;
9738 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9739}
b05fe5cf 9740
c19d1205
ZW
9741static void
9742do_mov (void)
9743{
e2b0ab59
AV
9744 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9745 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9746 THUMB1_RELOC_ONLY);
c19d1205
ZW
9747 inst.instruction |= inst.operands[0].reg << 12;
9748 encode_arm_shifter_operand (1);
9749}
b05fe5cf 9750
c19d1205
ZW
9751/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9752static void
9753do_mov16 (void)
9754{
b6895b4f
PB
9755 bfd_vma imm;
9756 bfd_boolean top;
9757
9758 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9759 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9760 _(":lower16: not allowed in this instruction"));
e2b0ab59 9761 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9762 _(":upper16: not allowed in this instruction"));
c19d1205 9763 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9764 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9765 {
e2b0ab59 9766 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9767 /* The value is in two pieces: 0:11, 16:19. */
9768 inst.instruction |= (imm & 0x00000fff);
9769 inst.instruction |= (imm & 0x0000f000) << 4;
9770 }
b05fe5cf 9771}
b99bd4ef 9772
037e8744
JB
9773static int
9774do_vfp_nsyn_mrs (void)
9775{
9776 if (inst.operands[0].isvec)
9777 {
9778 if (inst.operands[1].reg != 1)
477330fc 9779 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9780 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9781 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9782 do_vfp_nsyn_opcode ("fmstat");
9783 }
9784 else if (inst.operands[1].isvec)
9785 do_vfp_nsyn_opcode ("fmrx");
9786 else
9787 return FAIL;
5f4273c7 9788
037e8744
JB
9789 return SUCCESS;
9790}
9791
9792static int
9793do_vfp_nsyn_msr (void)
9794{
9795 if (inst.operands[0].isvec)
9796 do_vfp_nsyn_opcode ("fmxr");
9797 else
9798 return FAIL;
9799
9800 return SUCCESS;
9801}
9802
f7c21dc7
NC
9803static void
9804do_vmrs (void)
9805{
9806 unsigned Rt = inst.operands[0].reg;
fa94de6b 9807
16d02dc9 9808 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9809 {
9810 inst.error = BAD_SP;
9811 return;
9812 }
9813
40c7d507
RR
9814 /* MVFR2 is only valid at ARMv8-A. */
9815 if (inst.operands[1].reg == 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9817 _(BAD_FPU));
9818
f7c21dc7 9819 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9820 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9821 {
9822 inst.error = BAD_PC;
9823 return;
9824 }
9825
16d02dc9
JB
9826 /* If we get through parsing the register name, we just insert the number
9827 generated into the instruction without further validation. */
9828 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9829 inst.instruction |= (Rt << 12);
9830}
9831
9832static void
9833do_vmsr (void)
9834{
9835 unsigned Rt = inst.operands[1].reg;
fa94de6b 9836
f7c21dc7
NC
9837 if (thumb_mode)
9838 reject_bad_reg (Rt);
9839 else if (Rt == REG_PC)
9840 {
9841 inst.error = BAD_PC;
9842 return;
9843 }
9844
40c7d507
RR
9845 /* MVFR2 is only valid for ARMv8-A. */
9846 if (inst.operands[0].reg == 5)
9847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9848 _(BAD_FPU));
9849
16d02dc9
JB
9850 /* If we get through parsing the register name, we just insert the number
9851 generated into the instruction without further validation. */
9852 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9853 inst.instruction |= (Rt << 12);
9854}
9855
b99bd4ef 9856static void
c19d1205 9857do_mrs (void)
b99bd4ef 9858{
90ec0d68
MGD
9859 unsigned br;
9860
037e8744
JB
9861 if (do_vfp_nsyn_mrs () == SUCCESS)
9862 return;
9863
ff4a8d2b 9864 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9865 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9866
9867 if (inst.operands[1].isreg)
9868 {
9869 br = inst.operands[1].reg;
806ab1c0 9870 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9871 as_bad (_("bad register for mrs"));
9872 }
9873 else
9874 {
9875 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9876 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9877 != (PSR_c|PSR_f),
d2cd1205 9878 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9879 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9880 }
9881
9882 inst.instruction |= br;
c19d1205 9883}
b99bd4ef 9884
c19d1205
ZW
9885/* Two possible forms:
9886 "{C|S}PSR_<field>, Rm",
9887 "{C|S}PSR_f, #expression". */
b99bd4ef 9888
c19d1205
ZW
9889static void
9890do_msr (void)
9891{
037e8744
JB
9892 if (do_vfp_nsyn_msr () == SUCCESS)
9893 return;
9894
c19d1205
ZW
9895 inst.instruction |= inst.operands[0].imm;
9896 if (inst.operands[1].isreg)
9897 inst.instruction |= inst.operands[1].reg;
9898 else
b99bd4ef 9899 {
c19d1205 9900 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9901 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9902 inst.relocs[0].pc_rel = 0;
b99bd4ef 9903 }
b99bd4ef
NC
9904}
9905
c19d1205
ZW
9906static void
9907do_mul (void)
a737bd4d 9908{
ff4a8d2b
NC
9909 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9910
c19d1205
ZW
9911 if (!inst.operands[2].present)
9912 inst.operands[2].reg = inst.operands[0].reg;
9913 inst.instruction |= inst.operands[0].reg << 16;
9914 inst.instruction |= inst.operands[1].reg;
9915 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9916
8fb9d7b9
MS
9917 if (inst.operands[0].reg == inst.operands[1].reg
9918 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9919 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9920}
9921
c19d1205
ZW
9922/* Long Multiply Parser
9923 UMULL RdLo, RdHi, Rm, Rs
9924 SMULL RdLo, RdHi, Rm, Rs
9925 UMLAL RdLo, RdHi, Rm, Rs
9926 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9927
9928static void
c19d1205 9929do_mull (void)
b99bd4ef 9930{
c19d1205
ZW
9931 inst.instruction |= inst.operands[0].reg << 12;
9932 inst.instruction |= inst.operands[1].reg << 16;
9933 inst.instruction |= inst.operands[2].reg;
9934 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9935
682b27ad
PB
9936 /* rdhi and rdlo must be different. */
9937 if (inst.operands[0].reg == inst.operands[1].reg)
9938 as_tsktsk (_("rdhi and rdlo must be different"));
9939
9940 /* rdhi, rdlo and rm must all be different before armv6. */
9941 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9942 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9943 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9944 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9945}
b99bd4ef 9946
c19d1205
ZW
9947static void
9948do_nop (void)
9949{
e7495e45
NS
9950 if (inst.operands[0].present
9951 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9952 {
9953 /* Architectural NOP hints are CPSR sets with no bits selected. */
9954 inst.instruction &= 0xf0000000;
e7495e45
NS
9955 inst.instruction |= 0x0320f000;
9956 if (inst.operands[0].present)
9957 inst.instruction |= inst.operands[0].imm;
c19d1205 9958 }
b99bd4ef
NC
9959}
9960
c19d1205
ZW
9961/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9962 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9963 Condition defaults to COND_ALWAYS.
9964 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9965
9966static void
c19d1205 9967do_pkhbt (void)
b99bd4ef 9968{
c19d1205
ZW
9969 inst.instruction |= inst.operands[0].reg << 12;
9970 inst.instruction |= inst.operands[1].reg << 16;
9971 inst.instruction |= inst.operands[2].reg;
9972 if (inst.operands[3].present)
9973 encode_arm_shift (3);
9974}
b99bd4ef 9975
c19d1205 9976/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9977
c19d1205
ZW
9978static void
9979do_pkhtb (void)
9980{
9981 if (!inst.operands[3].present)
b99bd4ef 9982 {
c19d1205
ZW
9983 /* If the shift specifier is omitted, turn the instruction
9984 into pkhbt rd, rm, rn. */
9985 inst.instruction &= 0xfff00010;
9986 inst.instruction |= inst.operands[0].reg << 12;
9987 inst.instruction |= inst.operands[1].reg;
9988 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9989 }
9990 else
9991 {
c19d1205
ZW
9992 inst.instruction |= inst.operands[0].reg << 12;
9993 inst.instruction |= inst.operands[1].reg << 16;
9994 inst.instruction |= inst.operands[2].reg;
9995 encode_arm_shift (3);
b99bd4ef
NC
9996 }
9997}
9998
c19d1205 9999/* ARMv5TE: Preload-Cache
60e5ef9f 10000 MP Extensions: Preload for write
c19d1205 10001
60e5ef9f 10002 PLD(W) <addr_mode>
c19d1205
ZW
10003
10004 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
10005
10006static void
c19d1205 10007do_pld (void)
b99bd4ef 10008{
c19d1205
ZW
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLD mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018}
b99bd4ef 10019
62b3e311
PB
10020/* ARMv7: PLI <addr_mode> */
10021static void
10022do_pli (void)
10023{
10024 constraint (!inst.operands[0].isreg,
10025 _("'[' expected after PLI mnemonic"));
10026 constraint (inst.operands[0].postind,
10027 _("post-indexed expression used in preload instruction"));
10028 constraint (inst.operands[0].writeback,
10029 _("writeback used in preload instruction"));
10030 constraint (!inst.operands[0].preind,
10031 _("unindexed addressing used in preload instruction"));
10032 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10033 inst.instruction &= ~PRE_INDEX;
10034}
10035
c19d1205
ZW
10036static void
10037do_push_pop (void)
10038{
5e0d7f77
MP
10039 constraint (inst.operands[0].writeback,
10040 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10041 inst.operands[1] = inst.operands[0];
10042 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10043 inst.operands[0].isreg = 1;
10044 inst.operands[0].writeback = 1;
10045 inst.operands[0].reg = REG_SP;
6530b175 10046 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10047}
b99bd4ef 10048
c19d1205
ZW
10049/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10050 word at the specified address and the following word
10051 respectively.
10052 Unconditionally executed.
10053 Error if Rn is R15. */
b99bd4ef 10054
c19d1205
ZW
10055static void
10056do_rfe (void)
10057{
10058 inst.instruction |= inst.operands[0].reg << 16;
10059 if (inst.operands[0].writeback)
10060 inst.instruction |= WRITE_BACK;
10061}
b99bd4ef 10062
c19d1205 10063/* ARM V6 ssat (argument parse). */
b99bd4ef 10064
c19d1205
ZW
10065static void
10066do_ssat (void)
10067{
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10070 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10071
c19d1205
ZW
10072 if (inst.operands[3].present)
10073 encode_arm_shift (3);
b99bd4ef
NC
10074}
10075
c19d1205 10076/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10077
10078static void
c19d1205 10079do_usat (void)
b99bd4ef 10080{
c19d1205
ZW
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10084
c19d1205
ZW
10085 if (inst.operands[3].present)
10086 encode_arm_shift (3);
b99bd4ef
NC
10087}
10088
c19d1205 10089/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10090
10091static void
c19d1205 10092do_ssat16 (void)
09d92015 10093{
c19d1205
ZW
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10096 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10097}
10098
c19d1205
ZW
10099static void
10100do_usat16 (void)
a737bd4d 10101{
c19d1205
ZW
10102 inst.instruction |= inst.operands[0].reg << 12;
10103 inst.instruction |= inst.operands[1].imm << 16;
10104 inst.instruction |= inst.operands[2].reg;
10105}
a737bd4d 10106
c19d1205
ZW
10107/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10108 preserving the other bits.
a737bd4d 10109
c19d1205
ZW
10110 setend <endian_specifier>, where <endian_specifier> is either
10111 BE or LE. */
a737bd4d 10112
c19d1205
ZW
10113static void
10114do_setend (void)
10115{
12e37cbc
MGD
10116 if (warn_on_deprecated
10117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10118 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10119
c19d1205
ZW
10120 if (inst.operands[0].imm)
10121 inst.instruction |= 0x200;
a737bd4d
NC
10122}
10123
10124static void
c19d1205 10125do_shift (void)
a737bd4d 10126{
c19d1205
ZW
10127 unsigned int Rm = (inst.operands[1].present
10128 ? inst.operands[1].reg
10129 : inst.operands[0].reg);
a737bd4d 10130
c19d1205
ZW
10131 inst.instruction |= inst.operands[0].reg << 12;
10132 inst.instruction |= Rm;
10133 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10134 {
c19d1205
ZW
10135 inst.instruction |= inst.operands[2].reg << 8;
10136 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10137 /* PR 12854: Error on extraneous shifts. */
10138 constraint (inst.operands[2].shifted,
10139 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10140 }
10141 else
e2b0ab59 10142 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10143}
10144
09d92015 10145static void
3eb17e6b 10146do_smc (void)
09d92015 10147{
e2b0ab59
AV
10148 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10149 inst.relocs[0].pc_rel = 0;
09d92015
MM
10150}
10151
90ec0d68
MGD
10152static void
10153do_hvc (void)
10154{
e2b0ab59
AV
10155 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10156 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10157}
10158
09d92015 10159static void
c19d1205 10160do_swi (void)
09d92015 10161{
e2b0ab59
AV
10162 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10163 inst.relocs[0].pc_rel = 0;
09d92015
MM
10164}
10165
ddfded2f
MW
10166static void
10167do_setpan (void)
10168{
10169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10170 _("selected processor does not support SETPAN instruction"));
10171
10172 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10173}
10174
10175static void
10176do_t_setpan (void)
10177{
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10179 _("selected processor does not support SETPAN instruction"));
10180
10181 inst.instruction |= (inst.operands[0].imm << 3);
10182}
10183
c19d1205
ZW
10184/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10185 SMLAxy{cond} Rd,Rm,Rs,Rn
10186 SMLAWy{cond} Rd,Rm,Rs,Rn
10187 Error if any register is R15. */
e16bb312 10188
c19d1205
ZW
10189static void
10190do_smla (void)
e16bb312 10191{
c19d1205
ZW
10192 inst.instruction |= inst.operands[0].reg << 16;
10193 inst.instruction |= inst.operands[1].reg;
10194 inst.instruction |= inst.operands[2].reg << 8;
10195 inst.instruction |= inst.operands[3].reg << 12;
10196}
a737bd4d 10197
c19d1205
ZW
10198/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10199 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10200 Error if any register is R15.
10201 Warning if Rdlo == Rdhi. */
a737bd4d 10202
c19d1205
ZW
10203static void
10204do_smlal (void)
10205{
10206 inst.instruction |= inst.operands[0].reg << 12;
10207 inst.instruction |= inst.operands[1].reg << 16;
10208 inst.instruction |= inst.operands[2].reg;
10209 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10210
c19d1205
ZW
10211 if (inst.operands[0].reg == inst.operands[1].reg)
10212 as_tsktsk (_("rdhi and rdlo must be different"));
10213}
a737bd4d 10214
c19d1205
ZW
10215/* ARM V5E (El Segundo) signed-multiply (argument parse)
10216 SMULxy{cond} Rd,Rm,Rs
10217 Error if any register is R15. */
a737bd4d 10218
c19d1205
ZW
10219static void
10220do_smul (void)
10221{
10222 inst.instruction |= inst.operands[0].reg << 16;
10223 inst.instruction |= inst.operands[1].reg;
10224 inst.instruction |= inst.operands[2].reg << 8;
10225}
a737bd4d 10226
b6702015
PB
10227/* ARM V6 srs (argument parse). The variable fields in the encoding are
10228 the same for both ARM and Thumb-2. */
a737bd4d 10229
c19d1205
ZW
10230static void
10231do_srs (void)
10232{
b6702015
PB
10233 int reg;
10234
10235 if (inst.operands[0].present)
10236 {
10237 reg = inst.operands[0].reg;
fdfde340 10238 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10239 }
10240 else
fdfde340 10241 reg = REG_SP;
b6702015
PB
10242
10243 inst.instruction |= reg << 16;
10244 inst.instruction |= inst.operands[1].imm;
10245 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10246 inst.instruction |= WRITE_BACK;
10247}
a737bd4d 10248
c19d1205 10249/* ARM V6 strex (argument parse). */
a737bd4d 10250
c19d1205
ZW
10251static void
10252do_strex (void)
10253{
10254 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10255 || inst.operands[2].postind || inst.operands[2].writeback
10256 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10257 || inst.operands[2].negative
10258 /* See comment in do_ldrex(). */
10259 || (inst.operands[2].reg == REG_PC),
10260 BAD_ADDR_MODE);
a737bd4d 10261
c19d1205
ZW
10262 constraint (inst.operands[0].reg == inst.operands[1].reg
10263 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10264
e2b0ab59
AV
10265 constraint (inst.relocs[0].exp.X_op != O_constant
10266 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10267 _("offset must be zero in ARM encoding"));
a737bd4d 10268
c19d1205
ZW
10269 inst.instruction |= inst.operands[0].reg << 12;
10270 inst.instruction |= inst.operands[1].reg;
10271 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10272 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10273}
10274
877807f8
NC
10275static void
10276do_t_strexbh (void)
10277{
10278 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10279 || inst.operands[2].postind || inst.operands[2].writeback
10280 || inst.operands[2].immisreg || inst.operands[2].shifted
10281 || inst.operands[2].negative,
10282 BAD_ADDR_MODE);
10283
10284 constraint (inst.operands[0].reg == inst.operands[1].reg
10285 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10286
10287 do_rm_rd_rn ();
10288}
10289
e16bb312 10290static void
c19d1205 10291do_strexd (void)
e16bb312 10292{
c19d1205
ZW
10293 constraint (inst.operands[1].reg % 2 != 0,
10294 _("even register required"));
10295 constraint (inst.operands[2].present
10296 && inst.operands[2].reg != inst.operands[1].reg + 1,
10297 _("can only store two consecutive registers"));
10298 /* If op 2 were present and equal to PC, this function wouldn't
10299 have been called in the first place. */
10300 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10301
c19d1205
ZW
10302 constraint (inst.operands[0].reg == inst.operands[1].reg
10303 || inst.operands[0].reg == inst.operands[1].reg + 1
10304 || inst.operands[0].reg == inst.operands[3].reg,
10305 BAD_OVERLAP);
e16bb312 10306
c19d1205
ZW
10307 inst.instruction |= inst.operands[0].reg << 12;
10308 inst.instruction |= inst.operands[1].reg;
10309 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10310}
10311
9eb6c0f1
MGD
10312/* ARM V8 STRL. */
10313static void
4b8c8c02 10314do_stlex (void)
9eb6c0f1
MGD
10315{
10316 constraint (inst.operands[0].reg == inst.operands[1].reg
10317 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10318
10319 do_rd_rm_rn ();
10320}
10321
10322static void
4b8c8c02 10323do_t_stlex (void)
9eb6c0f1
MGD
10324{
10325 constraint (inst.operands[0].reg == inst.operands[1].reg
10326 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10327
10328 do_rm_rd_rn ();
10329}
10330
c19d1205
ZW
10331/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10332 extends it to 32-bits, and adds the result to a value in another
10333 register. You can specify a rotation by 0, 8, 16, or 24 bits
10334 before extracting the 16-bit value.
10335 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10338
e16bb312 10339static void
c19d1205 10340do_sxtah (void)
e16bb312 10341{
c19d1205
ZW
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg << 16;
10344 inst.instruction |= inst.operands[2].reg;
10345 inst.instruction |= inst.operands[3].imm << 10;
10346}
e16bb312 10347
c19d1205 10348/* ARM V6 SXTH.
e16bb312 10349
c19d1205
ZW
10350 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10351 Condition defaults to COND_ALWAYS.
10352 Error if any register uses R15. */
e16bb312
NC
10353
10354static void
c19d1205 10355do_sxth (void)
e16bb312 10356{
c19d1205
ZW
10357 inst.instruction |= inst.operands[0].reg << 12;
10358 inst.instruction |= inst.operands[1].reg;
10359 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10360}
c19d1205
ZW
10361\f
10362/* VFP instructions. In a logical order: SP variant first, monad
10363 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10364
10365static void
c19d1205 10366do_vfp_sp_monadic (void)
e16bb312 10367{
57785aa2
AV
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10369 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10370 _(BAD_FPU));
10371
5287ad62
JB
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10374}
10375
10376static void
c19d1205 10377do_vfp_sp_dyadic (void)
e16bb312 10378{
5287ad62
JB
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10381 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10382}
10383
10384static void
c19d1205 10385do_vfp_sp_compare_z (void)
e16bb312 10386{
5287ad62 10387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10388}
10389
10390static void
c19d1205 10391do_vfp_dp_sp_cvt (void)
e16bb312 10392{
5287ad62
JB
10393 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10394 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10395}
10396
10397static void
c19d1205 10398do_vfp_sp_dp_cvt (void)
e16bb312 10399{
5287ad62
JB
10400 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10402}
10403
10404static void
c19d1205 10405do_vfp_reg_from_sp (void)
e16bb312 10406{
57785aa2
AV
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
c19d1205 10411 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10412 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10413}
10414
10415static void
c19d1205 10416do_vfp_reg2_from_sp2 (void)
e16bb312 10417{
c19d1205
ZW
10418 constraint (inst.operands[2].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 inst.instruction |= inst.operands[0].reg << 12;
10421 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10422 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10423}
10424
10425static void
c19d1205 10426do_vfp_sp_from_reg (void)
e16bb312 10427{
57785aa2
AV
10428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10429 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10430 _(BAD_FPU));
10431
5287ad62 10432 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10433 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10434}
10435
10436static void
c19d1205 10437do_vfp_sp2_from_reg2 (void)
e16bb312 10438{
c19d1205
ZW
10439 constraint (inst.operands[0].imm != 2,
10440 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10442 inst.instruction |= inst.operands[1].reg << 12;
10443 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10444}
10445
10446static void
c19d1205 10447do_vfp_sp_ldst (void)
e16bb312 10448{
5287ad62 10449 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10450 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10451}
10452
10453static void
c19d1205 10454do_vfp_dp_ldst (void)
e16bb312 10455{
5287ad62 10456 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10457 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10458}
10459
c19d1205 10460
e16bb312 10461static void
c19d1205 10462vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10463{
c19d1205
ZW
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA,
10468 _("this addressing mode requires base-register writeback"));
10469 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10470 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10471 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10472}
10473
10474static void
c19d1205 10475vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10476{
c19d1205 10477 int count;
e16bb312 10478
c19d1205
ZW
10479 if (inst.operands[0].writeback)
10480 inst.instruction |= WRITE_BACK;
10481 else
10482 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10483 _("this addressing mode requires base-register writeback"));
e16bb312 10484
c19d1205 10485 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10486 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10487
c19d1205
ZW
10488 count = inst.operands[1].imm << 1;
10489 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10490 count += 1;
e16bb312 10491
c19d1205 10492 inst.instruction |= count;
e16bb312
NC
10493}
10494
10495static void
c19d1205 10496do_vfp_sp_ldstmia (void)
e16bb312 10497{
c19d1205 10498 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10499}
10500
10501static void
c19d1205 10502do_vfp_sp_ldstmdb (void)
e16bb312 10503{
c19d1205 10504 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10505}
10506
10507static void
c19d1205 10508do_vfp_dp_ldstmia (void)
e16bb312 10509{
c19d1205 10510 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10511}
10512
10513static void
c19d1205 10514do_vfp_dp_ldstmdb (void)
e16bb312 10515{
c19d1205 10516 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10517}
10518
10519static void
c19d1205 10520do_vfp_xp_ldstmia (void)
e16bb312 10521{
c19d1205
ZW
10522 vfp_dp_ldstm (VFP_LDSTMIAX);
10523}
e16bb312 10524
c19d1205
ZW
10525static void
10526do_vfp_xp_ldstmdb (void)
10527{
10528 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10529}
5287ad62
JB
10530
10531static void
10532do_vfp_dp_rd_rm (void)
10533{
57785aa2
AV
10534 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10535 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10536 _(BAD_FPU));
10537
5287ad62
JB
10538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10540}
10541
10542static void
10543do_vfp_dp_rn_rd (void)
10544{
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10547}
10548
10549static void
10550do_vfp_dp_rd_rn (void)
10551{
10552 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10554}
10555
10556static void
10557do_vfp_dp_rd_rn_rm (void)
10558{
57785aa2
AV
10559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10560 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10561 _(BAD_FPU));
10562
5287ad62
JB
10563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10564 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10565 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10566}
10567
10568static void
10569do_vfp_dp_rd (void)
10570{
10571 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10572}
10573
10574static void
10575do_vfp_dp_rm_rd_rn (void)
10576{
57785aa2
AV
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10579 _(BAD_FPU));
10580
5287ad62
JB
10581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10582 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10583 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10584}
10585
10586/* VFPv3 instructions. */
10587static void
10588do_vfp_sp_const (void)
10589{
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10591 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10592 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10593}
10594
10595static void
10596do_vfp_dp_const (void)
10597{
10598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10599 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10600 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10601}
10602
10603static void
10604vfp_conv (int srcsize)
10605{
5f1af56b
MGD
10606 int immbits = srcsize - inst.operands[1].imm;
10607
fa94de6b
RM
10608 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10609 {
5f1af56b 10610 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10611 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10612 inst.error = _("immediate value out of range, expected range [0, 16]");
10613 return;
10614 }
fa94de6b 10615 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10616 {
10617 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10618 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10619 inst.error = _("immediate value out of range, expected range [1, 32]");
10620 return;
10621 }
10622
5287ad62
JB
10623 inst.instruction |= (immbits & 1) << 5;
10624 inst.instruction |= (immbits >> 1);
10625}
10626
10627static void
10628do_vfp_sp_conv_16 (void)
10629{
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10631 vfp_conv (16);
10632}
10633
10634static void
10635do_vfp_dp_conv_16 (void)
10636{
10637 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10638 vfp_conv (16);
10639}
10640
10641static void
10642do_vfp_sp_conv_32 (void)
10643{
10644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10645 vfp_conv (32);
10646}
10647
10648static void
10649do_vfp_dp_conv_32 (void)
10650{
10651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10652 vfp_conv (32);
10653}
c19d1205
ZW
10654\f
10655/* FPA instructions. Also in a logical order. */
e16bb312 10656
c19d1205
ZW
10657static void
10658do_fpa_cmp (void)
10659{
10660 inst.instruction |= inst.operands[0].reg << 16;
10661 inst.instruction |= inst.operands[1].reg;
10662}
b99bd4ef
NC
10663
10664static void
c19d1205 10665do_fpa_ldmstm (void)
b99bd4ef 10666{
c19d1205
ZW
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 switch (inst.operands[1].imm)
10669 {
10670 case 1: inst.instruction |= CP_T_X; break;
10671 case 2: inst.instruction |= CP_T_Y; break;
10672 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10673 case 4: break;
10674 default: abort ();
10675 }
b99bd4ef 10676
c19d1205
ZW
10677 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10678 {
10679 /* The instruction specified "ea" or "fd", so we can only accept
10680 [Rn]{!}. The instruction does not really support stacking or
10681 unstacking, so we have to emulate these by setting appropriate
10682 bits and offsets. */
e2b0ab59
AV
10683 constraint (inst.relocs[0].exp.X_op != O_constant
10684 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10685 _("this instruction does not support indexing"));
b99bd4ef 10686
c19d1205 10687 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10688 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10689
c19d1205 10690 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10691 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10692
c19d1205
ZW
10693 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10694 {
10695 inst.operands[2].preind = 0;
10696 inst.operands[2].postind = 1;
10697 }
10698 }
b99bd4ef 10699
c19d1205 10700 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10701}
c19d1205
ZW
10702\f
10703/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10704
c19d1205
ZW
10705static void
10706do_iwmmxt_tandorc (void)
10707{
10708 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10709}
b99bd4ef 10710
c19d1205
ZW
10711static void
10712do_iwmmxt_textrc (void)
10713{
10714 inst.instruction |= inst.operands[0].reg << 12;
10715 inst.instruction |= inst.operands[1].imm;
10716}
b99bd4ef
NC
10717
10718static void
c19d1205 10719do_iwmmxt_textrm (void)
b99bd4ef 10720{
c19d1205
ZW
10721 inst.instruction |= inst.operands[0].reg << 12;
10722 inst.instruction |= inst.operands[1].reg << 16;
10723 inst.instruction |= inst.operands[2].imm;
10724}
b99bd4ef 10725
c19d1205
ZW
10726static void
10727do_iwmmxt_tinsr (void)
10728{
10729 inst.instruction |= inst.operands[0].reg << 16;
10730 inst.instruction |= inst.operands[1].reg << 12;
10731 inst.instruction |= inst.operands[2].imm;
10732}
b99bd4ef 10733
c19d1205
ZW
10734static void
10735do_iwmmxt_tmia (void)
10736{
10737 inst.instruction |= inst.operands[0].reg << 5;
10738 inst.instruction |= inst.operands[1].reg;
10739 inst.instruction |= inst.operands[2].reg << 12;
10740}
b99bd4ef 10741
c19d1205
ZW
10742static void
10743do_iwmmxt_waligni (void)
10744{
10745 inst.instruction |= inst.operands[0].reg << 12;
10746 inst.instruction |= inst.operands[1].reg << 16;
10747 inst.instruction |= inst.operands[2].reg;
10748 inst.instruction |= inst.operands[3].imm << 20;
10749}
b99bd4ef 10750
2d447fca
JM
10751static void
10752do_iwmmxt_wmerge (void)
10753{
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 inst.instruction |= inst.operands[1].reg << 16;
10756 inst.instruction |= inst.operands[2].reg;
10757 inst.instruction |= inst.operands[3].imm << 21;
10758}
10759
c19d1205
ZW
10760static void
10761do_iwmmxt_wmov (void)
10762{
10763 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10764 inst.instruction |= inst.operands[0].reg << 12;
10765 inst.instruction |= inst.operands[1].reg << 16;
10766 inst.instruction |= inst.operands[1].reg;
10767}
b99bd4ef 10768
c19d1205
ZW
10769static void
10770do_iwmmxt_wldstbh (void)
10771{
8f06b2d8 10772 int reloc;
c19d1205 10773 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10774 if (thumb_mode)
10775 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10776 else
10777 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10778 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10779}
10780
c19d1205
ZW
10781static void
10782do_iwmmxt_wldstw (void)
10783{
10784 /* RIWR_RIWC clears .isreg for a control register. */
10785 if (!inst.operands[0].isreg)
10786 {
10787 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10788 inst.instruction |= 0xf0000000;
10789 }
b99bd4ef 10790
c19d1205
ZW
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 encode_arm_cp_address (1, TRUE, TRUE, 0);
10793}
b99bd4ef
NC
10794
10795static void
c19d1205 10796do_iwmmxt_wldstd (void)
b99bd4ef 10797{
c19d1205 10798 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10799 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10800 && inst.operands[1].immisreg)
10801 {
10802 inst.instruction &= ~0x1a000ff;
eff0bc54 10803 inst.instruction |= (0xfU << 28);
2d447fca
JM
10804 if (inst.operands[1].preind)
10805 inst.instruction |= PRE_INDEX;
10806 if (!inst.operands[1].negative)
10807 inst.instruction |= INDEX_UP;
10808 if (inst.operands[1].writeback)
10809 inst.instruction |= WRITE_BACK;
10810 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10811 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10812 inst.instruction |= inst.operands[1].imm;
10813 }
10814 else
10815 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10816}
b99bd4ef 10817
c19d1205
ZW
10818static void
10819do_iwmmxt_wshufh (void)
10820{
10821 inst.instruction |= inst.operands[0].reg << 12;
10822 inst.instruction |= inst.operands[1].reg << 16;
10823 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10824 inst.instruction |= (inst.operands[2].imm & 0x0f);
10825}
b99bd4ef 10826
c19d1205
ZW
10827static void
10828do_iwmmxt_wzero (void)
10829{
10830 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10831 inst.instruction |= inst.operands[0].reg;
10832 inst.instruction |= inst.operands[0].reg << 12;
10833 inst.instruction |= inst.operands[0].reg << 16;
10834}
2d447fca
JM
10835
10836static void
10837do_iwmmxt_wrwrwr_or_imm5 (void)
10838{
10839 if (inst.operands[2].isreg)
10840 do_rd_rn_rm ();
10841 else {
10842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10843 _("immediate operand requires iWMMXt2"));
10844 do_rd_rn ();
10845 if (inst.operands[2].imm == 0)
10846 {
10847 switch ((inst.instruction >> 20) & 0xf)
10848 {
10849 case 4:
10850 case 5:
10851 case 6:
5f4273c7 10852 case 7:
2d447fca
JM
10853 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10854 inst.operands[2].imm = 16;
10855 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10856 break;
10857 case 8:
10858 case 9:
10859 case 10:
10860 case 11:
10861 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10862 inst.operands[2].imm = 32;
10863 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10864 break;
10865 case 12:
10866 case 13:
10867 case 14:
10868 case 15:
10869 {
10870 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10871 unsigned long wrn;
10872 wrn = (inst.instruction >> 16) & 0xf;
10873 inst.instruction &= 0xff0fff0f;
10874 inst.instruction |= wrn;
10875 /* Bail out here; the instruction is now assembled. */
10876 return;
10877 }
10878 }
10879 }
10880 /* Map 32 -> 0, etc. */
10881 inst.operands[2].imm &= 0x1f;
eff0bc54 10882 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10883 }
10884}
c19d1205
ZW
10885\f
10886/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10887 operations first, then control, shift, and load/store. */
b99bd4ef 10888
c19d1205 10889/* Insns like "foo X,Y,Z". */
b99bd4ef 10890
c19d1205
ZW
10891static void
10892do_mav_triple (void)
10893{
10894 inst.instruction |= inst.operands[0].reg << 16;
10895 inst.instruction |= inst.operands[1].reg;
10896 inst.instruction |= inst.operands[2].reg << 12;
10897}
b99bd4ef 10898
c19d1205
ZW
10899/* Insns like "foo W,X,Y,Z".
10900 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10901
c19d1205
ZW
10902static void
10903do_mav_quad (void)
10904{
10905 inst.instruction |= inst.operands[0].reg << 5;
10906 inst.instruction |= inst.operands[1].reg << 12;
10907 inst.instruction |= inst.operands[2].reg << 16;
10908 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10909}
10910
c19d1205
ZW
10911/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10912static void
10913do_mav_dspsc (void)
a737bd4d 10914{
c19d1205
ZW
10915 inst.instruction |= inst.operands[1].reg << 12;
10916}
a737bd4d 10917
c19d1205
ZW
10918/* Maverick shift immediate instructions.
10919 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10920 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10921
c19d1205
ZW
10922static void
10923do_mav_shift (void)
10924{
10925 int imm = inst.operands[2].imm;
a737bd4d 10926
c19d1205
ZW
10927 inst.instruction |= inst.operands[0].reg << 12;
10928 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10929
c19d1205
ZW
10930 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10931 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10932 Bit 4 should be 0. */
10933 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10934
c19d1205
ZW
10935 inst.instruction |= imm;
10936}
10937\f
10938/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10939
c19d1205
ZW
10940/* Xscale multiply-accumulate (argument parse)
10941 MIAcc acc0,Rm,Rs
10942 MIAPHcc acc0,Rm,Rs
10943 MIAxycc acc0,Rm,Rs. */
a737bd4d 10944
c19d1205
ZW
10945static void
10946do_xsc_mia (void)
10947{
10948 inst.instruction |= inst.operands[1].reg;
10949 inst.instruction |= inst.operands[2].reg << 12;
10950}
a737bd4d 10951
c19d1205 10952/* Xscale move-accumulator-register (argument parse)
a737bd4d 10953
c19d1205 10954 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10955
c19d1205
ZW
10956static void
10957do_xsc_mar (void)
10958{
10959 inst.instruction |= inst.operands[1].reg << 12;
10960 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10961}
10962
c19d1205 10963/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10964
c19d1205 10965 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10966
10967static void
c19d1205 10968do_xsc_mra (void)
b99bd4ef 10969{
c19d1205
ZW
10970 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10971 inst.instruction |= inst.operands[0].reg << 12;
10972 inst.instruction |= inst.operands[1].reg << 16;
10973}
10974\f
10975/* Encoding functions relevant only to Thumb. */
b99bd4ef 10976
c19d1205
ZW
10977/* inst.operands[i] is a shifted-register operand; encode
10978 it into inst.instruction in the format used by Thumb32. */
10979
10980static void
10981encode_thumb32_shifted_operand (int i)
10982{
e2b0ab59 10983 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10984 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10985
9c3c69f2
PB
10986 constraint (inst.operands[i].immisreg,
10987 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10988 inst.instruction |= inst.operands[i].reg;
10989 if (shift == SHIFT_RRX)
10990 inst.instruction |= SHIFT_ROR << 4;
10991 else
b99bd4ef 10992 {
e2b0ab59 10993 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10994 _("expression too complex"));
10995
10996 constraint (value > 32
10997 || (value == 32 && (shift == SHIFT_LSL
10998 || shift == SHIFT_ROR)),
10999 _("shift expression is too large"));
11000
11001 if (value == 0)
11002 shift = SHIFT_LSL;
11003 else if (value == 32)
11004 value = 0;
11005
11006 inst.instruction |= shift << 4;
11007 inst.instruction |= (value & 0x1c) << 10;
11008 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 11009 }
c19d1205 11010}
b99bd4ef 11011
b99bd4ef 11012
c19d1205
ZW
11013/* inst.operands[i] was set up by parse_address. Encode it into a
11014 Thumb32 format load or store instruction. Reject forms that cannot
11015 be used with such instructions. If is_t is true, reject forms that
11016 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
11017 that cannot be used with a D instruction. If it is a store insn,
11018 reject PC in Rn. */
b99bd4ef 11019
c19d1205
ZW
11020static void
11021encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11022{
5be8be5d 11023 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11024
11025 constraint (!inst.operands[i].isreg,
53365c0d 11026 _("Instruction does not support =N addresses"));
b99bd4ef 11027
c19d1205
ZW
11028 inst.instruction |= inst.operands[i].reg << 16;
11029 if (inst.operands[i].immisreg)
b99bd4ef 11030 {
5be8be5d 11031 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11032 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11033 constraint (inst.operands[i].negative,
11034 _("Thumb does not support negative register indexing"));
11035 constraint (inst.operands[i].postind,
11036 _("Thumb does not support register post-indexing"));
11037 constraint (inst.operands[i].writeback,
11038 _("Thumb does not support register indexing with writeback"));
11039 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11040 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11041
f40d1643 11042 inst.instruction |= inst.operands[i].imm;
c19d1205 11043 if (inst.operands[i].shifted)
b99bd4ef 11044 {
e2b0ab59 11045 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11046 _("expression too complex"));
e2b0ab59
AV
11047 constraint (inst.relocs[0].exp.X_add_number < 0
11048 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11049 _("shift out of range"));
e2b0ab59 11050 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11051 }
e2b0ab59 11052 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11053 }
11054 else if (inst.operands[i].preind)
11055 {
5be8be5d 11056 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11057 constraint (is_t && inst.operands[i].writeback,
c19d1205 11058 _("cannot use writeback with this instruction"));
4755303e
WN
11059 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11060 BAD_PC_ADDRESSING);
c19d1205
ZW
11061
11062 if (is_d)
11063 {
11064 inst.instruction |= 0x01000000;
11065 if (inst.operands[i].writeback)
11066 inst.instruction |= 0x00200000;
b99bd4ef 11067 }
c19d1205 11068 else
b99bd4ef 11069 {
c19d1205
ZW
11070 inst.instruction |= 0x00000c00;
11071 if (inst.operands[i].writeback)
11072 inst.instruction |= 0x00000100;
b99bd4ef 11073 }
e2b0ab59 11074 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11075 }
c19d1205 11076 else if (inst.operands[i].postind)
b99bd4ef 11077 {
9c2799c2 11078 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11079 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11080 constraint (is_t, _("cannot use post-indexing with this instruction"));
11081
11082 if (is_d)
11083 inst.instruction |= 0x00200000;
11084 else
11085 inst.instruction |= 0x00000900;
e2b0ab59 11086 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11087 }
11088 else /* unindexed - only for coprocessor */
11089 inst.error = _("instruction does not accept unindexed addressing");
11090}
11091
11092/* Table of Thumb instructions which exist in both 16- and 32-bit
11093 encodings (the latter only in post-V6T2 cores). The index is the
11094 value used in the insns table below. When there is more than one
11095 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11096 holds variant (1).
11097 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11098#define T16_32_TAB \
21d799b5
NC
11099 X(_adc, 4140, eb400000), \
11100 X(_adcs, 4140, eb500000), \
11101 X(_add, 1c00, eb000000), \
11102 X(_adds, 1c00, eb100000), \
11103 X(_addi, 0000, f1000000), \
11104 X(_addis, 0000, f1100000), \
11105 X(_add_pc,000f, f20f0000), \
11106 X(_add_sp,000d, f10d0000), \
11107 X(_adr, 000f, f20f0000), \
11108 X(_and, 4000, ea000000), \
11109 X(_ands, 4000, ea100000), \
11110 X(_asr, 1000, fa40f000), \
11111 X(_asrs, 1000, fa50f000), \
11112 X(_b, e000, f000b000), \
11113 X(_bcond, d000, f0008000), \
4389b29a 11114 X(_bf, 0000, f040e001), \
f6b2b12d 11115 X(_bfcsel,0000, f000e001), \
f1c7f421 11116 X(_bfx, 0000, f060e001), \
65d1bc05 11117 X(_bfl, 0000, f000c001), \
f1c7f421 11118 X(_bflx, 0000, f070e001), \
21d799b5
NC
11119 X(_bic, 4380, ea200000), \
11120 X(_bics, 4380, ea300000), \
11121 X(_cmn, 42c0, eb100f00), \
11122 X(_cmp, 2800, ebb00f00), \
11123 X(_cpsie, b660, f3af8400), \
11124 X(_cpsid, b670, f3af8600), \
11125 X(_cpy, 4600, ea4f0000), \
11126 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11127 X(_dls, 0000, f040e001), \
21d799b5
NC
11128 X(_eor, 4040, ea800000), \
11129 X(_eors, 4040, ea900000), \
11130 X(_inc_sp,00dd, f10d0d00), \
11131 X(_ldmia, c800, e8900000), \
11132 X(_ldr, 6800, f8500000), \
11133 X(_ldrb, 7800, f8100000), \
11134 X(_ldrh, 8800, f8300000), \
11135 X(_ldrsb, 5600, f9100000), \
11136 X(_ldrsh, 5e00, f9300000), \
11137 X(_ldr_pc,4800, f85f0000), \
11138 X(_ldr_pc2,4800, f85f0000), \
11139 X(_ldr_sp,9800, f85d0000), \
60f993ce 11140 X(_le, 0000, f00fc001), \
21d799b5
NC
11141 X(_lsl, 0000, fa00f000), \
11142 X(_lsls, 0000, fa10f000), \
11143 X(_lsr, 0800, fa20f000), \
11144 X(_lsrs, 0800, fa30f000), \
11145 X(_mov, 2000, ea4f0000), \
11146 X(_movs, 2000, ea5f0000), \
11147 X(_mul, 4340, fb00f000), \
11148 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11149 X(_mvn, 43c0, ea6f0000), \
11150 X(_mvns, 43c0, ea7f0000), \
11151 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11152 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11153 X(_orr, 4300, ea400000), \
11154 X(_orrs, 4300, ea500000), \
11155 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11156 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11157 X(_rev, ba00, fa90f080), \
11158 X(_rev16, ba40, fa90f090), \
11159 X(_revsh, bac0, fa90f0b0), \
11160 X(_ror, 41c0, fa60f000), \
11161 X(_rors, 41c0, fa70f000), \
11162 X(_sbc, 4180, eb600000), \
11163 X(_sbcs, 4180, eb700000), \
11164 X(_stmia, c000, e8800000), \
11165 X(_str, 6000, f8400000), \
11166 X(_strb, 7000, f8000000), \
11167 X(_strh, 8000, f8200000), \
11168 X(_str_sp,9000, f84d0000), \
11169 X(_sub, 1e00, eba00000), \
11170 X(_subs, 1e00, ebb00000), \
11171 X(_subi, 8000, f1a00000), \
11172 X(_subis, 8000, f1b00000), \
11173 X(_sxtb, b240, fa4ff080), \
11174 X(_sxth, b200, fa0ff080), \
11175 X(_tst, 4200, ea100f00), \
11176 X(_uxtb, b2c0, fa5ff080), \
11177 X(_uxth, b280, fa1ff080), \
11178 X(_nop, bf00, f3af8000), \
11179 X(_yield, bf10, f3af8001), \
11180 X(_wfe, bf20, f3af8002), \
11181 X(_wfi, bf30, f3af8003), \
60f993ce 11182 X(_wls, 0000, f040c001), \
53c4b28b 11183 X(_sev, bf40, f3af8004), \
74db7efb
NC
11184 X(_sevl, bf50, f3af8005), \
11185 X(_udf, de00, f7f0a000)
c19d1205
ZW
11186
11187/* To catch errors in encoding functions, the codes are all offset by
11188 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11189 as 16-bit instructions. */
21d799b5 11190#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11191enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11192#undef X
11193
11194#define X(a,b,c) 0x##b
11195static const unsigned short thumb_op16[] = { T16_32_TAB };
11196#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11197#undef X
11198
11199#define X(a,b,c) 0x##c
11200static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11201#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11202#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11203#undef X
11204#undef T16_32_TAB
11205
11206/* Thumb instruction encoders, in alphabetical order. */
11207
92e90b6e 11208/* ADDW or SUBW. */
c921be7d 11209
92e90b6e
PB
11210static void
11211do_t_add_sub_w (void)
11212{
11213 int Rd, Rn;
11214
11215 Rd = inst.operands[0].reg;
11216 Rn = inst.operands[1].reg;
11217
539d4391
NC
11218 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11219 is the SP-{plus,minus}-immediate form of the instruction. */
11220 if (Rn == REG_SP)
11221 constraint (Rd == REG_PC, BAD_PC);
11222 else
11223 reject_bad_reg (Rd);
fdfde340 11224
92e90b6e 11225 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11226 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11227}
11228
c19d1205 11229/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11230 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11231
11232static void
11233do_t_add_sub (void)
11234{
11235 int Rd, Rs, Rn;
11236
11237 Rd = inst.operands[0].reg;
11238 Rs = (inst.operands[1].present
11239 ? inst.operands[1].reg /* Rd, Rs, foo */
11240 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11241
e07e6e58 11242 if (Rd == REG_PC)
5ee91343 11243 set_pred_insn_type_last ();
e07e6e58 11244
c19d1205
ZW
11245 if (unified_syntax)
11246 {
0110f2b8
PB
11247 bfd_boolean flags;
11248 bfd_boolean narrow;
11249 int opcode;
11250
11251 flags = (inst.instruction == T_MNEM_adds
11252 || inst.instruction == T_MNEM_subs);
11253 if (flags)
5ee91343 11254 narrow = !in_pred_block ();
0110f2b8 11255 else
5ee91343 11256 narrow = in_pred_block ();
c19d1205 11257 if (!inst.operands[2].isreg)
b99bd4ef 11258 {
16805f35
PB
11259 int add;
11260
5c8ed6a4
JW
11261 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11262 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11263
16805f35
PB
11264 add = (inst.instruction == T_MNEM_add
11265 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11266 opcode = 0;
11267 if (inst.size_req != 4)
11268 {
0110f2b8 11269 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11270 appropriate. */
0110f2b8
PB
11271 if (Rd == REG_SP && Rs == REG_SP && !flags)
11272 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11273 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11274 opcode = T_MNEM_add_sp;
11275 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11276 opcode = T_MNEM_add_pc;
11277 else if (Rd <= 7 && Rs <= 7 && narrow)
11278 {
11279 if (flags)
11280 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11281 else
11282 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11283 }
11284 if (opcode)
11285 {
11286 inst.instruction = THUMB_OP16(opcode);
11287 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11288 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11289 || (inst.relocs[0].type
11290 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11291 {
11292 if (inst.size_req == 2)
e2b0ab59 11293 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11294 else
11295 inst.relax = opcode;
11296 }
0110f2b8
PB
11297 }
11298 else
11299 constraint (inst.size_req == 2, BAD_HIREG);
11300 }
11301 if (inst.size_req == 4
11302 || (inst.size_req != 2 && !opcode))
11303 {
e2b0ab59
AV
11304 constraint ((inst.relocs[0].type
11305 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11306 && (inst.relocs[0].type
11307 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11308 THUMB1_RELOC_ONLY);
efd81785
PB
11309 if (Rd == REG_PC)
11310 {
fdfde340 11311 constraint (add, BAD_PC);
efd81785
PB
11312 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11313 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11314 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11315 _("expression too complex"));
e2b0ab59
AV
11316 constraint (inst.relocs[0].exp.X_add_number < 0
11317 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11318 _("immediate value out of range"));
11319 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11320 | inst.relocs[0].exp.X_add_number;
11321 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11322 return;
11323 }
11324 else if (Rs == REG_PC)
16805f35
PB
11325 {
11326 /* Always use addw/subw. */
11327 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11328 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11329 }
11330 else
11331 {
11332 inst.instruction = THUMB_OP32 (inst.instruction);
11333 inst.instruction = (inst.instruction & 0xe1ffffff)
11334 | 0x10000000;
11335 if (flags)
e2b0ab59 11336 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11337 else
e2b0ab59 11338 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11339 }
dc4503c6
PB
11340 inst.instruction |= Rd << 8;
11341 inst.instruction |= Rs << 16;
0110f2b8 11342 }
b99bd4ef 11343 }
c19d1205
ZW
11344 else
11345 {
e2b0ab59 11346 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11347 unsigned int shift = inst.operands[2].shift_kind;
11348
c19d1205
ZW
11349 Rn = inst.operands[2].reg;
11350 /* See if we can do this with a 16-bit instruction. */
11351 if (!inst.operands[2].shifted && inst.size_req != 4)
11352 {
e27ec89e
PB
11353 if (Rd > 7 || Rs > 7 || Rn > 7)
11354 narrow = FALSE;
11355
11356 if (narrow)
c19d1205 11357 {
e27ec89e
PB
11358 inst.instruction = ((inst.instruction == T_MNEM_adds
11359 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11360 ? T_OPCODE_ADD_R3
11361 : T_OPCODE_SUB_R3);
11362 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11363 return;
11364 }
b99bd4ef 11365
7e806470 11366 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11367 {
7e806470
PB
11368 /* Thumb-1 cores (except v6-M) require at least one high
11369 register in a narrow non flag setting add. */
11370 if (Rd > 7 || Rn > 7
11371 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11372 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11373 {
7e806470
PB
11374 if (Rd == Rn)
11375 {
11376 Rn = Rs;
11377 Rs = Rd;
11378 }
c19d1205
ZW
11379 inst.instruction = T_OPCODE_ADD_HI;
11380 inst.instruction |= (Rd & 8) << 4;
11381 inst.instruction |= (Rd & 7);
11382 inst.instruction |= Rn << 3;
11383 return;
11384 }
c19d1205
ZW
11385 }
11386 }
c921be7d 11387
fdfde340 11388 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11389 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11390 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11391 constraint (Rs == REG_PC, BAD_PC);
11392 reject_bad_reg (Rn);
11393
c19d1205
ZW
11394 /* If we get here, it can't be done in 16 bits. */
11395 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11396 _("shift must be constant"));
11397 inst.instruction = THUMB_OP32 (inst.instruction);
11398 inst.instruction |= Rd << 8;
11399 inst.instruction |= Rs << 16;
5f4cb198
NC
11400 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11401 _("shift value over 3 not allowed in thumb mode"));
11402 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11403 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11404 encode_thumb32_shifted_operand (2);
11405 }
11406 }
11407 else
11408 {
11409 constraint (inst.instruction == T_MNEM_adds
11410 || inst.instruction == T_MNEM_subs,
11411 BAD_THUMB32);
b99bd4ef 11412
c19d1205 11413 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11414 {
c19d1205
ZW
11415 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11416 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11417 BAD_HIREG);
11418
11419 inst.instruction = (inst.instruction == T_MNEM_add
11420 ? 0x0000 : 0x8000);
11421 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11422 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11423 return;
11424 }
11425
c19d1205
ZW
11426 Rn = inst.operands[2].reg;
11427 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11428
c19d1205
ZW
11429 /* We now have Rd, Rs, and Rn set to registers. */
11430 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11431 {
c19d1205
ZW
11432 /* Can't do this for SUB. */
11433 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11434 inst.instruction = T_OPCODE_ADD_HI;
11435 inst.instruction |= (Rd & 8) << 4;
11436 inst.instruction |= (Rd & 7);
11437 if (Rs == Rd)
11438 inst.instruction |= Rn << 3;
11439 else if (Rn == Rd)
11440 inst.instruction |= Rs << 3;
11441 else
11442 constraint (1, _("dest must overlap one source register"));
11443 }
11444 else
11445 {
11446 inst.instruction = (inst.instruction == T_MNEM_add
11447 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11448 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11449 }
b99bd4ef 11450 }
b99bd4ef
NC
11451}
11452
c19d1205
ZW
11453static void
11454do_t_adr (void)
11455{
fdfde340
JM
11456 unsigned Rd;
11457
11458 Rd = inst.operands[0].reg;
11459 reject_bad_reg (Rd);
11460
11461 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11462 {
11463 /* Defer to section relaxation. */
11464 inst.relax = inst.instruction;
11465 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11466 inst.instruction |= Rd << 4;
0110f2b8
PB
11467 }
11468 else if (unified_syntax && inst.size_req != 2)
e9f89963 11469 {
0110f2b8 11470 /* Generate a 32-bit opcode. */
e9f89963 11471 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11472 inst.instruction |= Rd << 8;
e2b0ab59
AV
11473 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11474 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11475 }
11476 else
11477 {
0110f2b8 11478 /* Generate a 16-bit opcode. */
e9f89963 11479 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11480 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11481 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11482 inst.relocs[0].pc_rel = 1;
fdfde340 11483 inst.instruction |= Rd << 4;
e9f89963 11484 }
52a86f84 11485
e2b0ab59
AV
11486 if (inst.relocs[0].exp.X_op == O_symbol
11487 && inst.relocs[0].exp.X_add_symbol != NULL
11488 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11489 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11490 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11491}
b99bd4ef 11492
c19d1205
ZW
11493/* Arithmetic instructions for which there is just one 16-bit
11494 instruction encoding, and it allows only two low registers.
11495 For maximal compatibility with ARM syntax, we allow three register
11496 operands even when Thumb-32 instructions are not available, as long
11497 as the first two are identical. For instance, both "sbc r0,r1" and
11498 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11499static void
c19d1205 11500do_t_arit3 (void)
b99bd4ef 11501{
c19d1205 11502 int Rd, Rs, Rn;
b99bd4ef 11503
c19d1205
ZW
11504 Rd = inst.operands[0].reg;
11505 Rs = (inst.operands[1].present
11506 ? inst.operands[1].reg /* Rd, Rs, foo */
11507 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11508 Rn = inst.operands[2].reg;
b99bd4ef 11509
fdfde340
JM
11510 reject_bad_reg (Rd);
11511 reject_bad_reg (Rs);
11512 if (inst.operands[2].isreg)
11513 reject_bad_reg (Rn);
11514
c19d1205 11515 if (unified_syntax)
b99bd4ef 11516 {
c19d1205
ZW
11517 if (!inst.operands[2].isreg)
11518 {
11519 /* For an immediate, we always generate a 32-bit opcode;
11520 section relaxation will shrink it later if possible. */
11521 inst.instruction = THUMB_OP32 (inst.instruction);
11522 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11523 inst.instruction |= Rd << 8;
11524 inst.instruction |= Rs << 16;
e2b0ab59 11525 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11526 }
11527 else
11528 {
e27ec89e
PB
11529 bfd_boolean narrow;
11530
c19d1205 11531 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11532 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11533 narrow = !in_pred_block ();
e27ec89e 11534 else
5ee91343 11535 narrow = in_pred_block ();
e27ec89e
PB
11536
11537 if (Rd > 7 || Rn > 7 || Rs > 7)
11538 narrow = FALSE;
11539 if (inst.operands[2].shifted)
11540 narrow = FALSE;
11541 if (inst.size_req == 4)
11542 narrow = FALSE;
11543
11544 if (narrow
c19d1205
ZW
11545 && Rd == Rs)
11546 {
11547 inst.instruction = THUMB_OP16 (inst.instruction);
11548 inst.instruction |= Rd;
11549 inst.instruction |= Rn << 3;
11550 return;
11551 }
b99bd4ef 11552
c19d1205
ZW
11553 /* If we get here, it can't be done in 16 bits. */
11554 constraint (inst.operands[2].shifted
11555 && inst.operands[2].immisreg,
11556 _("shift must be constant"));
11557 inst.instruction = THUMB_OP32 (inst.instruction);
11558 inst.instruction |= Rd << 8;
11559 inst.instruction |= Rs << 16;
11560 encode_thumb32_shifted_operand (2);
11561 }
a737bd4d 11562 }
c19d1205 11563 else
b99bd4ef 11564 {
c19d1205
ZW
11565 /* On its face this is a lie - the instruction does set the
11566 flags. However, the only supported mnemonic in this mode
11567 says it doesn't. */
11568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11569
c19d1205
ZW
11570 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11571 _("unshifted register required"));
11572 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11573 constraint (Rd != Rs,
11574 _("dest and source1 must be the same register"));
a737bd4d 11575
c19d1205
ZW
11576 inst.instruction = THUMB_OP16 (inst.instruction);
11577 inst.instruction |= Rd;
11578 inst.instruction |= Rn << 3;
b99bd4ef 11579 }
a737bd4d 11580}
b99bd4ef 11581
c19d1205
ZW
11582/* Similarly, but for instructions where the arithmetic operation is
11583 commutative, so we can allow either of them to be different from
11584 the destination operand in a 16-bit instruction. For instance, all
11585 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11586 accepted. */
11587static void
11588do_t_arit3c (void)
a737bd4d 11589{
c19d1205 11590 int Rd, Rs, Rn;
b99bd4ef 11591
c19d1205
ZW
11592 Rd = inst.operands[0].reg;
11593 Rs = (inst.operands[1].present
11594 ? inst.operands[1].reg /* Rd, Rs, foo */
11595 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11596 Rn = inst.operands[2].reg;
c921be7d 11597
fdfde340
JM
11598 reject_bad_reg (Rd);
11599 reject_bad_reg (Rs);
11600 if (inst.operands[2].isreg)
11601 reject_bad_reg (Rn);
a737bd4d 11602
c19d1205 11603 if (unified_syntax)
a737bd4d 11604 {
c19d1205 11605 if (!inst.operands[2].isreg)
b99bd4ef 11606 {
c19d1205
ZW
11607 /* For an immediate, we always generate a 32-bit opcode;
11608 section relaxation will shrink it later if possible. */
11609 inst.instruction = THUMB_OP32 (inst.instruction);
11610 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11611 inst.instruction |= Rd << 8;
11612 inst.instruction |= Rs << 16;
e2b0ab59 11613 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11614 }
c19d1205 11615 else
a737bd4d 11616 {
e27ec89e
PB
11617 bfd_boolean narrow;
11618
c19d1205 11619 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11620 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11621 narrow = !in_pred_block ();
e27ec89e 11622 else
5ee91343 11623 narrow = in_pred_block ();
e27ec89e
PB
11624
11625 if (Rd > 7 || Rn > 7 || Rs > 7)
11626 narrow = FALSE;
11627 if (inst.operands[2].shifted)
11628 narrow = FALSE;
11629 if (inst.size_req == 4)
11630 narrow = FALSE;
11631
11632 if (narrow)
a737bd4d 11633 {
c19d1205 11634 if (Rd == Rs)
a737bd4d 11635 {
c19d1205
ZW
11636 inst.instruction = THUMB_OP16 (inst.instruction);
11637 inst.instruction |= Rd;
11638 inst.instruction |= Rn << 3;
11639 return;
a737bd4d 11640 }
c19d1205 11641 if (Rd == Rn)
a737bd4d 11642 {
c19d1205
ZW
11643 inst.instruction = THUMB_OP16 (inst.instruction);
11644 inst.instruction |= Rd;
11645 inst.instruction |= Rs << 3;
11646 return;
a737bd4d
NC
11647 }
11648 }
c19d1205
ZW
11649
11650 /* If we get here, it can't be done in 16 bits. */
11651 constraint (inst.operands[2].shifted
11652 && inst.operands[2].immisreg,
11653 _("shift must be constant"));
11654 inst.instruction = THUMB_OP32 (inst.instruction);
11655 inst.instruction |= Rd << 8;
11656 inst.instruction |= Rs << 16;
11657 encode_thumb32_shifted_operand (2);
a737bd4d 11658 }
b99bd4ef 11659 }
c19d1205
ZW
11660 else
11661 {
11662 /* On its face this is a lie - the instruction does set the
11663 flags. However, the only supported mnemonic in this mode
11664 says it doesn't. */
11665 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11666
c19d1205
ZW
11667 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11668 _("unshifted register required"));
11669 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11670
11671 inst.instruction = THUMB_OP16 (inst.instruction);
11672 inst.instruction |= Rd;
11673
11674 if (Rd == Rs)
11675 inst.instruction |= Rn << 3;
11676 else if (Rd == Rn)
11677 inst.instruction |= Rs << 3;
11678 else
11679 constraint (1, _("dest must overlap one source register"));
11680 }
a737bd4d
NC
11681}
11682
c19d1205
ZW
11683static void
11684do_t_bfc (void)
a737bd4d 11685{
fdfde340 11686 unsigned Rd;
c19d1205
ZW
11687 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11688 constraint (msb > 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
fdfde340
JM
11691 Rd = inst.operands[0].reg;
11692 reject_bad_reg (Rd);
11693 inst.instruction |= Rd << 8;
c19d1205
ZW
11694 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11695 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11696 inst.instruction |= msb - 1;
b99bd4ef
NC
11697}
11698
c19d1205
ZW
11699static void
11700do_t_bfi (void)
b99bd4ef 11701{
fdfde340 11702 int Rd, Rn;
c19d1205 11703 unsigned int msb;
b99bd4ef 11704
fdfde340
JM
11705 Rd = inst.operands[0].reg;
11706 reject_bad_reg (Rd);
11707
c19d1205
ZW
11708 /* #0 in second position is alternative syntax for bfc, which is
11709 the same instruction but with REG_PC in the Rm field. */
11710 if (!inst.operands[1].isreg)
fdfde340
JM
11711 Rn = REG_PC;
11712 else
11713 {
11714 Rn = inst.operands[1].reg;
11715 reject_bad_reg (Rn);
11716 }
b99bd4ef 11717
c19d1205
ZW
11718 msb = inst.operands[2].imm + inst.operands[3].imm;
11719 constraint (msb > 32, _("bit-field extends past end of register"));
11720 /* The instruction encoding stores the LSB and MSB,
11721 not the LSB and width. */
fdfde340
JM
11722 inst.instruction |= Rd << 8;
11723 inst.instruction |= Rn << 16;
c19d1205
ZW
11724 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11725 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11726 inst.instruction |= msb - 1;
b99bd4ef
NC
11727}
11728
c19d1205
ZW
11729static void
11730do_t_bfx (void)
b99bd4ef 11731{
fdfde340
JM
11732 unsigned Rd, Rn;
11733
11734 Rd = inst.operands[0].reg;
11735 Rn = inst.operands[1].reg;
11736
11737 reject_bad_reg (Rd);
11738 reject_bad_reg (Rn);
11739
c19d1205
ZW
11740 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11741 _("bit-field extends past end of register"));
fdfde340
JM
11742 inst.instruction |= Rd << 8;
11743 inst.instruction |= Rn << 16;
c19d1205
ZW
11744 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11745 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11746 inst.instruction |= inst.operands[3].imm - 1;
11747}
b99bd4ef 11748
c19d1205
ZW
11749/* ARM V5 Thumb BLX (argument parse)
11750 BLX <target_addr> which is BLX(1)
11751 BLX <Rm> which is BLX(2)
11752 Unfortunately, there are two different opcodes for this mnemonic.
11753 So, the insns[].value is not used, and the code here zaps values
11754 into inst.instruction.
b99bd4ef 11755
c19d1205
ZW
11756 ??? How to take advantage of the additional two bits of displacement
11757 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11758
c19d1205
ZW
11759static void
11760do_t_blx (void)
11761{
5ee91343 11762 set_pred_insn_type_last ();
e07e6e58 11763
c19d1205 11764 if (inst.operands[0].isreg)
fdfde340
JM
11765 {
11766 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11767 /* We have a register, so this is BLX(2). */
11768 inst.instruction |= inst.operands[0].reg << 3;
11769 }
b99bd4ef
NC
11770 else
11771 {
c19d1205 11772 /* No register. This must be BLX(1). */
2fc8bdac 11773 inst.instruction = 0xf000e800;
0855e32b 11774 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11775 }
11776}
11777
c19d1205
ZW
11778static void
11779do_t_branch (void)
b99bd4ef 11780{
0110f2b8 11781 int opcode;
dfa9f0d5 11782 int cond;
2fe88214 11783 bfd_reloc_code_real_type reloc;
dfa9f0d5 11784
e07e6e58 11785 cond = inst.cond;
5ee91343 11786 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11787
5ee91343 11788 if (in_pred_block ())
dfa9f0d5
PB
11789 {
11790 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11791 branches. */
dfa9f0d5 11792 cond = COND_ALWAYS;
dfa9f0d5
PB
11793 }
11794 else
11795 cond = inst.cond;
11796
11797 if (cond != COND_ALWAYS)
0110f2b8
PB
11798 opcode = T_MNEM_bcond;
11799 else
11800 opcode = inst.instruction;
11801
12d6b0b7
RS
11802 if (unified_syntax
11803 && (inst.size_req == 4
10960bfb
PB
11804 || (inst.size_req != 2
11805 && (inst.operands[0].hasreloc
e2b0ab59 11806 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11807 {
0110f2b8 11808 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11809 if (cond == COND_ALWAYS)
9ae92b05 11810 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11811 else
11812 {
ff8646ee
TP
11813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11814 _("selected architecture does not support "
11815 "wide conditional branch instruction"));
11816
9c2799c2 11817 gas_assert (cond != 0xF);
dfa9f0d5 11818 inst.instruction |= cond << 22;
9ae92b05 11819 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11820 }
11821 }
b99bd4ef
NC
11822 else
11823 {
0110f2b8 11824 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11825 if (cond == COND_ALWAYS)
9ae92b05 11826 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11827 else
b99bd4ef 11828 {
dfa9f0d5 11829 inst.instruction |= cond << 8;
9ae92b05 11830 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11831 }
0110f2b8
PB
11832 /* Allow section relaxation. */
11833 if (unified_syntax && inst.size_req != 2)
11834 inst.relax = opcode;
b99bd4ef 11835 }
e2b0ab59
AV
11836 inst.relocs[0].type = reloc;
11837 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11838}
11839
8884b720 11840/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11841 between the two is the maximum immediate allowed - which is passed in
8884b720 11842 RANGE. */
b99bd4ef 11843static void
8884b720 11844do_t_bkpt_hlt1 (int range)
b99bd4ef 11845{
dfa9f0d5
PB
11846 constraint (inst.cond != COND_ALWAYS,
11847 _("instruction is always unconditional"));
c19d1205 11848 if (inst.operands[0].present)
b99bd4ef 11849 {
8884b720 11850 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11851 _("immediate value out of range"));
11852 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11853 }
8884b720 11854
5ee91343 11855 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11856}
11857
11858static void
11859do_t_hlt (void)
11860{
11861 do_t_bkpt_hlt1 (63);
11862}
11863
11864static void
11865do_t_bkpt (void)
11866{
11867 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11868}
11869
11870static void
c19d1205 11871do_t_branch23 (void)
b99bd4ef 11872{
5ee91343 11873 set_pred_insn_type_last ();
0855e32b 11874 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11875
0855e32b
NS
11876 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11877 this file. We used to simply ignore the PLT reloc type here --
11878 the branch encoding is now needed to deal with TLSCALL relocs.
11879 So if we see a PLT reloc now, put it back to how it used to be to
11880 keep the preexisting behaviour. */
e2b0ab59
AV
11881 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11882 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11883
4343666d 11884#if defined(OBJ_COFF)
c19d1205
ZW
11885 /* If the destination of the branch is a defined symbol which does not have
11886 the THUMB_FUNC attribute, then we must be calling a function which has
11887 the (interfacearm) attribute. We look for the Thumb entry point to that
11888 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11889 if ( inst.relocs[0].exp.X_op == O_symbol
11890 && inst.relocs[0].exp.X_add_symbol != NULL
11891 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11892 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11893 inst.relocs[0].exp.X_add_symbol
11894 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11895#endif
90e4755a
RE
11896}
11897
11898static void
c19d1205 11899do_t_bx (void)
90e4755a 11900{
5ee91343 11901 set_pred_insn_type_last ();
c19d1205
ZW
11902 inst.instruction |= inst.operands[0].reg << 3;
11903 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11904 should cause the alignment to be checked once it is known. This is
11905 because BX PC only works if the instruction is word aligned. */
11906}
90e4755a 11907
c19d1205
ZW
11908static void
11909do_t_bxj (void)
11910{
fdfde340 11911 int Rm;
90e4755a 11912
5ee91343 11913 set_pred_insn_type_last ();
fdfde340
JM
11914 Rm = inst.operands[0].reg;
11915 reject_bad_reg (Rm);
11916 inst.instruction |= Rm << 16;
90e4755a
RE
11917}
11918
11919static void
c19d1205 11920do_t_clz (void)
90e4755a 11921{
fdfde340
JM
11922 unsigned Rd;
11923 unsigned Rm;
11924
11925 Rd = inst.operands[0].reg;
11926 Rm = inst.operands[1].reg;
11927
11928 reject_bad_reg (Rd);
11929 reject_bad_reg (Rm);
11930
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rm << 16;
11933 inst.instruction |= Rm;
c19d1205 11934}
90e4755a 11935
91d8b670
JG
11936static void
11937do_t_csdb (void)
11938{
5ee91343 11939 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11940}
11941
dfa9f0d5
PB
11942static void
11943do_t_cps (void)
11944{
5ee91343 11945 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11946 inst.instruction |= inst.operands[0].imm;
11947}
11948
c19d1205
ZW
11949static void
11950do_t_cpsi (void)
11951{
5ee91343 11952 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11953 if (unified_syntax
62b3e311
PB
11954 && (inst.operands[1].present || inst.size_req == 4)
11955 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11956 {
c19d1205
ZW
11957 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11958 inst.instruction = 0xf3af8000;
11959 inst.instruction |= imod << 9;
11960 inst.instruction |= inst.operands[0].imm << 5;
11961 if (inst.operands[1].present)
11962 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11963 }
c19d1205 11964 else
90e4755a 11965 {
62b3e311
PB
11966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11967 && (inst.operands[0].imm & 4),
11968 _("selected processor does not support 'A' form "
11969 "of this instruction"));
11970 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11971 _("Thumb does not support the 2-argument "
11972 "form of this instruction"));
11973 inst.instruction |= inst.operands[0].imm;
90e4755a 11974 }
90e4755a
RE
11975}
11976
c19d1205
ZW
11977/* THUMB CPY instruction (argument parse). */
11978
90e4755a 11979static void
c19d1205 11980do_t_cpy (void)
90e4755a 11981{
c19d1205 11982 if (inst.size_req == 4)
90e4755a 11983 {
c19d1205
ZW
11984 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11985 inst.instruction |= inst.operands[0].reg << 8;
11986 inst.instruction |= inst.operands[1].reg;
90e4755a 11987 }
c19d1205 11988 else
90e4755a 11989 {
c19d1205
ZW
11990 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11991 inst.instruction |= (inst.operands[0].reg & 0x7);
11992 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11993 }
90e4755a
RE
11994}
11995
90e4755a 11996static void
25fe350b 11997do_t_cbz (void)
90e4755a 11998{
5ee91343 11999 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
12000 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12001 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
12002 inst.relocs[0].pc_rel = 1;
12003 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 12004}
90e4755a 12005
62b3e311
PB
12006static void
12007do_t_dbg (void)
12008{
12009 inst.instruction |= inst.operands[0].imm;
12010}
12011
12012static void
12013do_t_div (void)
12014{
fdfde340
JM
12015 unsigned Rd, Rn, Rm;
12016
12017 Rd = inst.operands[0].reg;
12018 Rn = (inst.operands[1].present
12019 ? inst.operands[1].reg : Rd);
12020 Rm = inst.operands[2].reg;
12021
12022 reject_bad_reg (Rd);
12023 reject_bad_reg (Rn);
12024 reject_bad_reg (Rm);
12025
12026 inst.instruction |= Rd << 8;
12027 inst.instruction |= Rn << 16;
12028 inst.instruction |= Rm;
62b3e311
PB
12029}
12030
c19d1205
ZW
12031static void
12032do_t_hint (void)
12033{
12034 if (unified_syntax && inst.size_req == 4)
12035 inst.instruction = THUMB_OP32 (inst.instruction);
12036 else
12037 inst.instruction = THUMB_OP16 (inst.instruction);
12038}
90e4755a 12039
c19d1205
ZW
12040static void
12041do_t_it (void)
12042{
12043 unsigned int cond = inst.operands[0].imm;
e27ec89e 12044
5ee91343
AV
12045 set_pred_insn_type (IT_INSN);
12046 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12047 now_pred.cc = cond;
12048 now_pred.warn_deprecated = FALSE;
12049 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12050
12051 /* If the condition is a negative condition, invert the mask. */
c19d1205 12052 if ((cond & 0x1) == 0x0)
90e4755a 12053 {
c19d1205 12054 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12055
c19d1205 12056 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12057 {
12058 /* No conversion needed. */
5ee91343 12059 now_pred.block_length = 1;
5a01bb1d 12060 }
c19d1205 12061 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12062 {
12063 mask ^= 0x8;
5ee91343 12064 now_pred.block_length = 2;
5a01bb1d 12065 }
e27ec89e 12066 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12067 {
12068 mask ^= 0xC;
5ee91343 12069 now_pred.block_length = 3;
5a01bb1d 12070 }
c19d1205 12071 else
5a01bb1d
MGD
12072 {
12073 mask ^= 0xE;
5ee91343 12074 now_pred.block_length = 4;
5a01bb1d 12075 }
90e4755a 12076
e27ec89e
PB
12077 inst.instruction &= 0xfff0;
12078 inst.instruction |= mask;
c19d1205 12079 }
90e4755a 12080
c19d1205
ZW
12081 inst.instruction |= cond << 4;
12082}
90e4755a 12083
3c707909
PB
12084/* Helper function used for both push/pop and ldm/stm. */
12085static void
4b5a202f
AV
12086encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12087 bfd_boolean writeback)
3c707909 12088{
4b5a202f 12089 bfd_boolean load, store;
3c707909 12090
4b5a202f
AV
12091 gas_assert (base != -1 || !do_io);
12092 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12093 store = do_io && !load;
3c707909
PB
12094
12095 if (mask & (1 << 13))
12096 inst.error = _("SP not allowed in register list");
1e5b0379 12097
4b5a202f 12098 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12099 && writeback)
12100 inst.error = _("having the base register in the register list when "
12101 "using write back is UNPREDICTABLE");
12102
3c707909
PB
12103 if (load)
12104 {
e07e6e58 12105 if (mask & (1 << 15))
477330fc
RM
12106 {
12107 if (mask & (1 << 14))
12108 inst.error = _("LR and PC should not both be in register list");
12109 else
5ee91343 12110 set_pred_insn_type_last ();
477330fc 12111 }
3c707909 12112 }
4b5a202f 12113 else if (store)
3c707909
PB
12114 {
12115 if (mask & (1 << 15))
12116 inst.error = _("PC not allowed in register list");
3c707909
PB
12117 }
12118
4b5a202f 12119 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12120 {
12121 /* Single register transfers implemented as str/ldr. */
12122 if (writeback)
12123 {
12124 if (inst.instruction & (1 << 23))
12125 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12126 else
12127 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12128 }
12129 else
12130 {
12131 if (inst.instruction & (1 << 23))
12132 inst.instruction = 0x00800000; /* ia -> [base] */
12133 else
12134 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12135 }
12136
12137 inst.instruction |= 0xf8400000;
12138 if (load)
12139 inst.instruction |= 0x00100000;
12140
5f4273c7 12141 mask = ffs (mask) - 1;
3c707909
PB
12142 mask <<= 12;
12143 }
12144 else if (writeback)
12145 inst.instruction |= WRITE_BACK;
12146
12147 inst.instruction |= mask;
4b5a202f
AV
12148 if (do_io)
12149 inst.instruction |= base << 16;
3c707909
PB
12150}
12151
c19d1205
ZW
12152static void
12153do_t_ldmstm (void)
12154{
12155 /* This really doesn't seem worth it. */
e2b0ab59 12156 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12157 _("expression too complex"));
12158 constraint (inst.operands[1].writeback,
12159 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12160
c19d1205
ZW
12161 if (unified_syntax)
12162 {
3c707909
PB
12163 bfd_boolean narrow;
12164 unsigned mask;
12165
12166 narrow = FALSE;
c19d1205
ZW
12167 /* See if we can use a 16-bit instruction. */
12168 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12169 && inst.size_req != 4
3c707909 12170 && !(inst.operands[1].imm & ~0xff))
90e4755a 12171 {
3c707909 12172 mask = 1 << inst.operands[0].reg;
90e4755a 12173
eab4f823 12174 if (inst.operands[0].reg <= 7)
90e4755a 12175 {
3c707909 12176 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12177 ? inst.operands[0].writeback
12178 : (inst.operands[0].writeback
12179 == !(inst.operands[1].imm & mask)))
477330fc 12180 {
eab4f823
MGD
12181 if (inst.instruction == T_MNEM_stmia
12182 && (inst.operands[1].imm & mask)
12183 && (inst.operands[1].imm & (mask - 1)))
12184 as_warn (_("value stored for r%d is UNKNOWN"),
12185 inst.operands[0].reg);
3c707909 12186
eab4f823
MGD
12187 inst.instruction = THUMB_OP16 (inst.instruction);
12188 inst.instruction |= inst.operands[0].reg << 8;
12189 inst.instruction |= inst.operands[1].imm;
12190 narrow = TRUE;
12191 }
12192 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12193 {
12194 /* This means 1 register in reg list one of 3 situations:
12195 1. Instruction is stmia, but without writeback.
12196 2. lmdia without writeback, but with Rn not in
477330fc 12197 reglist.
eab4f823
MGD
12198 3. ldmia with writeback, but with Rn in reglist.
12199 Case 3 is UNPREDICTABLE behaviour, so we handle
12200 case 1 and 2 which can be converted into a 16-bit
12201 str or ldr. The SP cases are handled below. */
12202 unsigned long opcode;
12203 /* First, record an error for Case 3. */
12204 if (inst.operands[1].imm & mask
12205 && inst.operands[0].writeback)
fa94de6b 12206 inst.error =
eab4f823
MGD
12207 _("having the base register in the register list when "
12208 "using write back is UNPREDICTABLE");
fa94de6b
RM
12209
12210 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12211 : T_MNEM_ldr);
12212 inst.instruction = THUMB_OP16 (opcode);
12213 inst.instruction |= inst.operands[0].reg << 3;
12214 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12215 narrow = TRUE;
12216 }
90e4755a 12217 }
eab4f823 12218 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12219 {
eab4f823
MGD
12220 if (inst.operands[0].writeback)
12221 {
fa94de6b 12222 inst.instruction =
eab4f823 12223 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12224 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12225 inst.instruction |= inst.operands[1].imm;
477330fc 12226 narrow = TRUE;
eab4f823
MGD
12227 }
12228 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12229 {
fa94de6b 12230 inst.instruction =
eab4f823 12231 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12232 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12233 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12234 narrow = TRUE;
eab4f823 12235 }
90e4755a 12236 }
3c707909
PB
12237 }
12238
12239 if (!narrow)
12240 {
c19d1205
ZW
12241 if (inst.instruction < 0xffff)
12242 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12243
4b5a202f
AV
12244 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12245 inst.operands[1].imm,
12246 inst.operands[0].writeback);
90e4755a
RE
12247 }
12248 }
c19d1205 12249 else
90e4755a 12250 {
c19d1205
ZW
12251 constraint (inst.operands[0].reg > 7
12252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12253 constraint (inst.instruction != T_MNEM_ldmia
12254 && inst.instruction != T_MNEM_stmia,
12255 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12256 if (inst.instruction == T_MNEM_stmia)
f03698e6 12257 {
c19d1205
ZW
12258 if (!inst.operands[0].writeback)
12259 as_warn (_("this instruction will write back the base register"));
12260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12262 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12263 inst.operands[0].reg);
f03698e6 12264 }
c19d1205 12265 else
90e4755a 12266 {
c19d1205
ZW
12267 if (!inst.operands[0].writeback
12268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12269 as_warn (_("this instruction will write back the base register"));
12270 else if (inst.operands[0].writeback
12271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12272 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12273 }
12274
c19d1205
ZW
12275 inst.instruction = THUMB_OP16 (inst.instruction);
12276 inst.instruction |= inst.operands[0].reg << 8;
12277 inst.instruction |= inst.operands[1].imm;
12278 }
12279}
e28cd48c 12280
c19d1205
ZW
12281static void
12282do_t_ldrex (void)
12283{
12284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12285 || inst.operands[1].postind || inst.operands[1].writeback
12286 || inst.operands[1].immisreg || inst.operands[1].shifted
12287 || inst.operands[1].negative,
01cfc07f 12288 BAD_ADDR_MODE);
e28cd48c 12289
5be8be5d
DG
12290 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12291
c19d1205
ZW
12292 inst.instruction |= inst.operands[0].reg << 12;
12293 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12294 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12295}
e28cd48c 12296
c19d1205
ZW
12297static void
12298do_t_ldrexd (void)
12299{
12300 if (!inst.operands[1].present)
1cac9012 12301 {
c19d1205
ZW
12302 constraint (inst.operands[0].reg == REG_LR,
12303 _("r14 not allowed as first register "
12304 "when second register is omitted"));
12305 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12306 }
c19d1205
ZW
12307 constraint (inst.operands[0].reg == inst.operands[1].reg,
12308 BAD_OVERLAP);
b99bd4ef 12309
c19d1205
ZW
12310 inst.instruction |= inst.operands[0].reg << 12;
12311 inst.instruction |= inst.operands[1].reg << 8;
12312 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12313}
12314
12315static void
c19d1205 12316do_t_ldst (void)
b99bd4ef 12317{
0110f2b8
PB
12318 unsigned long opcode;
12319 int Rn;
12320
e07e6e58
NC
12321 if (inst.operands[0].isreg
12322 && !inst.operands[0].preind
12323 && inst.operands[0].reg == REG_PC)
5ee91343 12324 set_pred_insn_type_last ();
e07e6e58 12325
0110f2b8 12326 opcode = inst.instruction;
c19d1205 12327 if (unified_syntax)
b99bd4ef 12328 {
53365c0d
PB
12329 if (!inst.operands[1].isreg)
12330 {
12331 if (opcode <= 0xffff)
12332 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12333 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12334 return;
12335 }
0110f2b8
PB
12336 if (inst.operands[1].isreg
12337 && !inst.operands[1].writeback
c19d1205
ZW
12338 && !inst.operands[1].shifted && !inst.operands[1].postind
12339 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12340 && opcode <= 0xffff
12341 && inst.size_req != 4)
c19d1205 12342 {
0110f2b8
PB
12343 /* Insn may have a 16-bit form. */
12344 Rn = inst.operands[1].reg;
12345 if (inst.operands[1].immisreg)
12346 {
12347 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12348 /* [Rn, Rik] */
0110f2b8
PB
12349 if (Rn <= 7 && inst.operands[1].imm <= 7)
12350 goto op16;
5be8be5d
DG
12351 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12352 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12353 }
12354 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12355 && opcode != T_MNEM_ldrsb)
12356 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12357 || (Rn == REG_SP && opcode == T_MNEM_str))
12358 {
12359 /* [Rn, #const] */
12360 if (Rn > 7)
12361 {
12362 if (Rn == REG_PC)
12363 {
e2b0ab59 12364 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12365 opcode = T_MNEM_ldr_pc2;
12366 else
12367 opcode = T_MNEM_ldr_pc;
12368 }
12369 else
12370 {
12371 if (opcode == T_MNEM_ldr)
12372 opcode = T_MNEM_ldr_sp;
12373 else
12374 opcode = T_MNEM_str_sp;
12375 }
12376 inst.instruction = inst.operands[0].reg << 8;
12377 }
12378 else
12379 {
12380 inst.instruction = inst.operands[0].reg;
12381 inst.instruction |= inst.operands[1].reg << 3;
12382 }
12383 inst.instruction |= THUMB_OP16 (opcode);
12384 if (inst.size_req == 2)
e2b0ab59 12385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12386 else
12387 inst.relax = opcode;
12388 return;
12389 }
c19d1205 12390 }
0110f2b8 12391 /* Definitely a 32-bit variant. */
5be8be5d 12392
8d67f500
NC
12393 /* Warning for Erratum 752419. */
12394 if (opcode == T_MNEM_ldr
12395 && inst.operands[0].reg == REG_SP
12396 && inst.operands[1].writeback == 1
12397 && !inst.operands[1].immisreg)
12398 {
12399 if (no_cpu_selected ()
12400 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12401 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12402 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12403 as_warn (_("This instruction may be unpredictable "
12404 "if executed on M-profile cores "
12405 "with interrupts enabled."));
12406 }
12407
5be8be5d 12408 /* Do some validations regarding addressing modes. */
1be5fd2e 12409 if (inst.operands[1].immisreg)
5be8be5d
DG
12410 reject_bad_reg (inst.operands[1].imm);
12411
1be5fd2e
NC
12412 constraint (inst.operands[1].writeback == 1
12413 && inst.operands[0].reg == inst.operands[1].reg,
12414 BAD_OVERLAP);
12415
0110f2b8 12416 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12417 inst.instruction |= inst.operands[0].reg << 12;
12418 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12419 check_ldr_r15_aligned ();
b99bd4ef
NC
12420 return;
12421 }
12422
c19d1205
ZW
12423 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12424
12425 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12426 {
c19d1205
ZW
12427 /* Only [Rn,Rm] is acceptable. */
12428 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12429 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12430 || inst.operands[1].postind || inst.operands[1].shifted
12431 || inst.operands[1].negative,
12432 _("Thumb does not support this addressing mode"));
12433 inst.instruction = THUMB_OP16 (inst.instruction);
12434 goto op16;
b99bd4ef 12435 }
5f4273c7 12436
c19d1205
ZW
12437 inst.instruction = THUMB_OP16 (inst.instruction);
12438 if (!inst.operands[1].isreg)
8335d6aa 12439 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12440 return;
b99bd4ef 12441
c19d1205
ZW
12442 constraint (!inst.operands[1].preind
12443 || inst.operands[1].shifted
12444 || inst.operands[1].writeback,
12445 _("Thumb does not support this addressing mode"));
12446 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12447 {
c19d1205
ZW
12448 constraint (inst.instruction & 0x0600,
12449 _("byte or halfword not valid for base register"));
12450 constraint (inst.operands[1].reg == REG_PC
12451 && !(inst.instruction & THUMB_LOAD_BIT),
12452 _("r15 based store not allowed"));
12453 constraint (inst.operands[1].immisreg,
12454 _("invalid base register for register offset"));
b99bd4ef 12455
c19d1205
ZW
12456 if (inst.operands[1].reg == REG_PC)
12457 inst.instruction = T_OPCODE_LDR_PC;
12458 else if (inst.instruction & THUMB_LOAD_BIT)
12459 inst.instruction = T_OPCODE_LDR_SP;
12460 else
12461 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12462
c19d1205 12463 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12464 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12465 return;
12466 }
90e4755a 12467
c19d1205
ZW
12468 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12469 if (!inst.operands[1].immisreg)
12470 {
12471 /* Immediate offset. */
12472 inst.instruction |= inst.operands[0].reg;
12473 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12474 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12475 return;
12476 }
90e4755a 12477
c19d1205
ZW
12478 /* Register offset. */
12479 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12480 constraint (inst.operands[1].negative,
12481 _("Thumb does not support this addressing mode"));
90e4755a 12482
c19d1205
ZW
12483 op16:
12484 switch (inst.instruction)
12485 {
12486 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12487 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12488 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12489 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12490 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12491 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12492 case 0x5600 /* ldrsb */:
12493 case 0x5e00 /* ldrsh */: break;
12494 default: abort ();
12495 }
90e4755a 12496
c19d1205
ZW
12497 inst.instruction |= inst.operands[0].reg;
12498 inst.instruction |= inst.operands[1].reg << 3;
12499 inst.instruction |= inst.operands[1].imm << 6;
12500}
90e4755a 12501
c19d1205
ZW
12502static void
12503do_t_ldstd (void)
12504{
12505 if (!inst.operands[1].present)
b99bd4ef 12506 {
c19d1205
ZW
12507 inst.operands[1].reg = inst.operands[0].reg + 1;
12508 constraint (inst.operands[0].reg == REG_LR,
12509 _("r14 not allowed here"));
bd340a04 12510 constraint (inst.operands[0].reg == REG_R12,
477330fc 12511 _("r12 not allowed here"));
b99bd4ef 12512 }
bd340a04
MGD
12513
12514 if (inst.operands[2].writeback
12515 && (inst.operands[0].reg == inst.operands[2].reg
12516 || inst.operands[1].reg == inst.operands[2].reg))
12517 as_warn (_("base register written back, and overlaps "
477330fc 12518 "one of transfer registers"));
bd340a04 12519
c19d1205
ZW
12520 inst.instruction |= inst.operands[0].reg << 12;
12521 inst.instruction |= inst.operands[1].reg << 8;
12522 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12523}
12524
c19d1205
ZW
12525static void
12526do_t_ldstt (void)
12527{
12528 inst.instruction |= inst.operands[0].reg << 12;
12529 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12530}
a737bd4d 12531
b99bd4ef 12532static void
c19d1205 12533do_t_mla (void)
b99bd4ef 12534{
fdfde340 12535 unsigned Rd, Rn, Rm, Ra;
c921be7d 12536
fdfde340
JM
12537 Rd = inst.operands[0].reg;
12538 Rn = inst.operands[1].reg;
12539 Rm = inst.operands[2].reg;
12540 Ra = inst.operands[3].reg;
12541
12542 reject_bad_reg (Rd);
12543 reject_bad_reg (Rn);
12544 reject_bad_reg (Rm);
12545 reject_bad_reg (Ra);
12546
12547 inst.instruction |= Rd << 8;
12548 inst.instruction |= Rn << 16;
12549 inst.instruction |= Rm;
12550 inst.instruction |= Ra << 12;
c19d1205 12551}
b99bd4ef 12552
c19d1205
ZW
12553static void
12554do_t_mlal (void)
12555{
fdfde340
JM
12556 unsigned RdLo, RdHi, Rn, Rm;
12557
12558 RdLo = inst.operands[0].reg;
12559 RdHi = inst.operands[1].reg;
12560 Rn = inst.operands[2].reg;
12561 Rm = inst.operands[3].reg;
12562
12563 reject_bad_reg (RdLo);
12564 reject_bad_reg (RdHi);
12565 reject_bad_reg (Rn);
12566 reject_bad_reg (Rm);
12567
12568 inst.instruction |= RdLo << 12;
12569 inst.instruction |= RdHi << 8;
12570 inst.instruction |= Rn << 16;
12571 inst.instruction |= Rm;
c19d1205 12572}
b99bd4ef 12573
c19d1205
ZW
12574static void
12575do_t_mov_cmp (void)
12576{
fdfde340
JM
12577 unsigned Rn, Rm;
12578
12579 Rn = inst.operands[0].reg;
12580 Rm = inst.operands[1].reg;
12581
e07e6e58 12582 if (Rn == REG_PC)
5ee91343 12583 set_pred_insn_type_last ();
e07e6e58 12584
c19d1205 12585 if (unified_syntax)
b99bd4ef 12586 {
c19d1205
ZW
12587 int r0off = (inst.instruction == T_MNEM_mov
12588 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12589 unsigned long opcode;
3d388997
PB
12590 bfd_boolean narrow;
12591 bfd_boolean low_regs;
12592
fdfde340 12593 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12594 opcode = inst.instruction;
5ee91343 12595 if (in_pred_block ())
0110f2b8 12596 narrow = opcode != T_MNEM_movs;
3d388997 12597 else
0110f2b8 12598 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12599 if (inst.size_req == 4
12600 || inst.operands[1].shifted)
12601 narrow = FALSE;
12602
efd81785
PB
12603 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12604 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12605 && !inst.operands[1].shifted
fdfde340
JM
12606 && Rn == REG_PC
12607 && Rm == REG_LR)
efd81785
PB
12608 {
12609 inst.instruction = T2_SUBS_PC_LR;
12610 return;
12611 }
12612
fdfde340
JM
12613 if (opcode == T_MNEM_cmp)
12614 {
12615 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12616 if (narrow)
12617 {
12618 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12619 but valid. */
12620 warn_deprecated_sp (Rm);
12621 /* R15 was documented as a valid choice for Rm in ARMv6,
12622 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12623 tools reject R15, so we do too. */
12624 constraint (Rm == REG_PC, BAD_PC);
12625 }
12626 else
12627 reject_bad_reg (Rm);
fdfde340
JM
12628 }
12629 else if (opcode == T_MNEM_mov
12630 || opcode == T_MNEM_movs)
12631 {
12632 if (inst.operands[1].isreg)
12633 {
12634 if (opcode == T_MNEM_movs)
12635 {
12636 reject_bad_reg (Rn);
12637 reject_bad_reg (Rm);
12638 }
76fa04a4
MGD
12639 else if (narrow)
12640 {
12641 /* This is mov.n. */
12642 if ((Rn == REG_SP || Rn == REG_PC)
12643 && (Rm == REG_SP || Rm == REG_PC))
12644 {
5c3696f8 12645 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12646 "deprecated when r%u is the destination "
12647 "register."), Rm, Rn);
12648 }
12649 }
12650 else
12651 {
12652 /* This is mov.w. */
12653 constraint (Rn == REG_PC, BAD_PC);
12654 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12655 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12656 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12657 }
fdfde340
JM
12658 }
12659 else
12660 reject_bad_reg (Rn);
12661 }
12662
c19d1205
ZW
12663 if (!inst.operands[1].isreg)
12664 {
0110f2b8 12665 /* Immediate operand. */
5ee91343 12666 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12667 narrow = 0;
12668 if (low_regs && narrow)
12669 {
12670 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12671 inst.instruction |= Rn << 8;
e2b0ab59
AV
12672 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12673 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12674 {
a9f02af8 12675 if (inst.size_req == 2)
e2b0ab59 12676 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12677 else
12678 inst.relax = opcode;
72d98d16 12679 }
0110f2b8
PB
12680 }
12681 else
12682 {
e2b0ab59
AV
12683 constraint ((inst.relocs[0].type
12684 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12685 && (inst.relocs[0].type
12686 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12687 THUMB1_RELOC_ONLY);
12688
0110f2b8
PB
12689 inst.instruction = THUMB_OP32 (inst.instruction);
12690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12691 inst.instruction |= Rn << r0off;
e2b0ab59 12692 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12693 }
c19d1205 12694 }
728ca7c9
PB
12695 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12696 && (inst.instruction == T_MNEM_mov
12697 || inst.instruction == T_MNEM_movs))
12698 {
12699 /* Register shifts are encoded as separate shift instructions. */
12700 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12701
5ee91343 12702 if (in_pred_block ())
728ca7c9
PB
12703 narrow = !flags;
12704 else
12705 narrow = flags;
12706
12707 if (inst.size_req == 4)
12708 narrow = FALSE;
12709
12710 if (!low_regs || inst.operands[1].imm > 7)
12711 narrow = FALSE;
12712
fdfde340 12713 if (Rn != Rm)
728ca7c9
PB
12714 narrow = FALSE;
12715
12716 switch (inst.operands[1].shift_kind)
12717 {
12718 case SHIFT_LSL:
12719 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12720 break;
12721 case SHIFT_ASR:
12722 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12723 break;
12724 case SHIFT_LSR:
12725 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12726 break;
12727 case SHIFT_ROR:
12728 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12729 break;
12730 default:
5f4273c7 12731 abort ();
728ca7c9
PB
12732 }
12733
12734 inst.instruction = opcode;
12735 if (narrow)
12736 {
fdfde340 12737 inst.instruction |= Rn;
728ca7c9
PB
12738 inst.instruction |= inst.operands[1].imm << 3;
12739 }
12740 else
12741 {
12742 if (flags)
12743 inst.instruction |= CONDS_BIT;
12744
fdfde340
JM
12745 inst.instruction |= Rn << 8;
12746 inst.instruction |= Rm << 16;
728ca7c9
PB
12747 inst.instruction |= inst.operands[1].imm;
12748 }
12749 }
3d388997 12750 else if (!narrow)
c19d1205 12751 {
728ca7c9
PB
12752 /* Some mov with immediate shift have narrow variants.
12753 Register shifts are handled above. */
12754 if (low_regs && inst.operands[1].shifted
12755 && (inst.instruction == T_MNEM_mov
12756 || inst.instruction == T_MNEM_movs))
12757 {
5ee91343 12758 if (in_pred_block ())
728ca7c9
PB
12759 narrow = (inst.instruction == T_MNEM_mov);
12760 else
12761 narrow = (inst.instruction == T_MNEM_movs);
12762 }
12763
12764 if (narrow)
12765 {
12766 switch (inst.operands[1].shift_kind)
12767 {
12768 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12769 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12770 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12771 default: narrow = FALSE; break;
12772 }
12773 }
12774
12775 if (narrow)
12776 {
fdfde340
JM
12777 inst.instruction |= Rn;
12778 inst.instruction |= Rm << 3;
e2b0ab59 12779 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12780 }
12781 else
12782 {
12783 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12784 inst.instruction |= Rn << r0off;
728ca7c9
PB
12785 encode_thumb32_shifted_operand (1);
12786 }
c19d1205
ZW
12787 }
12788 else
12789 switch (inst.instruction)
12790 {
12791 case T_MNEM_mov:
837b3435 12792 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12793 results. Don't allow this. */
12794 if (low_regs)
12795 {
12796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12797 "MOV Rd, Rs with two low registers is not "
12798 "permitted on this architecture");
fa94de6b 12799 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12800 arm_ext_v6);
12801 }
12802
c19d1205 12803 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12804 inst.instruction |= (Rn & 0x8) << 4;
12805 inst.instruction |= (Rn & 0x7);
12806 inst.instruction |= Rm << 3;
c19d1205 12807 break;
b99bd4ef 12808
c19d1205
ZW
12809 case T_MNEM_movs:
12810 /* We know we have low registers at this point.
941a8a52
MGD
12811 Generate LSLS Rd, Rs, #0. */
12812 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12813 inst.instruction |= Rn;
12814 inst.instruction |= Rm << 3;
c19d1205
ZW
12815 break;
12816
12817 case T_MNEM_cmp:
3d388997 12818 if (low_regs)
c19d1205
ZW
12819 {
12820 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12821 inst.instruction |= Rn;
12822 inst.instruction |= Rm << 3;
c19d1205
ZW
12823 }
12824 else
12825 {
12826 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12827 inst.instruction |= (Rn & 0x8) << 4;
12828 inst.instruction |= (Rn & 0x7);
12829 inst.instruction |= Rm << 3;
c19d1205
ZW
12830 }
12831 break;
12832 }
b99bd4ef
NC
12833 return;
12834 }
12835
c19d1205 12836 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12837
12838 /* PR 10443: Do not silently ignore shifted operands. */
12839 constraint (inst.operands[1].shifted,
12840 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12841
c19d1205 12842 if (inst.operands[1].isreg)
b99bd4ef 12843 {
fdfde340 12844 if (Rn < 8 && Rm < 8)
b99bd4ef 12845 {
c19d1205
ZW
12846 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12847 since a MOV instruction produces unpredictable results. */
12848 if (inst.instruction == T_OPCODE_MOV_I8)
12849 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12850 else
c19d1205 12851 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12852
fdfde340
JM
12853 inst.instruction |= Rn;
12854 inst.instruction |= Rm << 3;
b99bd4ef
NC
12855 }
12856 else
12857 {
c19d1205
ZW
12858 if (inst.instruction == T_OPCODE_MOV_I8)
12859 inst.instruction = T_OPCODE_MOV_HR;
12860 else
12861 inst.instruction = T_OPCODE_CMP_HR;
12862 do_t_cpy ();
b99bd4ef
NC
12863 }
12864 }
c19d1205 12865 else
b99bd4ef 12866 {
fdfde340 12867 constraint (Rn > 7,
c19d1205 12868 _("only lo regs allowed with immediate"));
fdfde340 12869 inst.instruction |= Rn << 8;
e2b0ab59 12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12871 }
12872}
b99bd4ef 12873
c19d1205
ZW
12874static void
12875do_t_mov16 (void)
12876{
fdfde340 12877 unsigned Rd;
b6895b4f
PB
12878 bfd_vma imm;
12879 bfd_boolean top;
12880
12881 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12882 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12883 {
33eaf5de 12884 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12885 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12886 }
e2b0ab59 12887 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12888 {
33eaf5de 12889 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12890 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12891 }
12892
fdfde340
JM
12893 Rd = inst.operands[0].reg;
12894 reject_bad_reg (Rd);
12895
12896 inst.instruction |= Rd << 8;
e2b0ab59 12897 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12898 {
e2b0ab59 12899 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12900 inst.instruction |= (imm & 0xf000) << 4;
12901 inst.instruction |= (imm & 0x0800) << 15;
12902 inst.instruction |= (imm & 0x0700) << 4;
12903 inst.instruction |= (imm & 0x00ff);
12904 }
c19d1205 12905}
b99bd4ef 12906
c19d1205
ZW
12907static void
12908do_t_mvn_tst (void)
12909{
fdfde340 12910 unsigned Rn, Rm;
c921be7d 12911
fdfde340
JM
12912 Rn = inst.operands[0].reg;
12913 Rm = inst.operands[1].reg;
12914
12915 if (inst.instruction == T_MNEM_cmp
12916 || inst.instruction == T_MNEM_cmn)
12917 constraint (Rn == REG_PC, BAD_PC);
12918 else
12919 reject_bad_reg (Rn);
12920 reject_bad_reg (Rm);
12921
c19d1205
ZW
12922 if (unified_syntax)
12923 {
12924 int r0off = (inst.instruction == T_MNEM_mvn
12925 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12926 bfd_boolean narrow;
12927
12928 if (inst.size_req == 4
12929 || inst.instruction > 0xffff
12930 || inst.operands[1].shifted
fdfde340 12931 || Rn > 7 || Rm > 7)
3d388997 12932 narrow = FALSE;
fe8b4cc3
KT
12933 else if (inst.instruction == T_MNEM_cmn
12934 || inst.instruction == T_MNEM_tst)
3d388997
PB
12935 narrow = TRUE;
12936 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12937 narrow = !in_pred_block ();
3d388997 12938 else
5ee91343 12939 narrow = in_pred_block ();
3d388997 12940
c19d1205 12941 if (!inst.operands[1].isreg)
b99bd4ef 12942 {
c19d1205
ZW
12943 /* For an immediate, we always generate a 32-bit opcode;
12944 section relaxation will shrink it later if possible. */
12945 if (inst.instruction < 0xffff)
12946 inst.instruction = THUMB_OP32 (inst.instruction);
12947 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12948 inst.instruction |= Rn << r0off;
e2b0ab59 12949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12950 }
c19d1205 12951 else
b99bd4ef 12952 {
c19d1205 12953 /* See if we can do this with a 16-bit instruction. */
3d388997 12954 if (narrow)
b99bd4ef 12955 {
c19d1205 12956 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12957 inst.instruction |= Rn;
12958 inst.instruction |= Rm << 3;
b99bd4ef 12959 }
c19d1205 12960 else
b99bd4ef 12961 {
c19d1205
ZW
12962 constraint (inst.operands[1].shifted
12963 && inst.operands[1].immisreg,
12964 _("shift must be constant"));
12965 if (inst.instruction < 0xffff)
12966 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12967 inst.instruction |= Rn << r0off;
c19d1205 12968 encode_thumb32_shifted_operand (1);
b99bd4ef 12969 }
b99bd4ef
NC
12970 }
12971 }
12972 else
12973 {
c19d1205
ZW
12974 constraint (inst.instruction > 0xffff
12975 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12976 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12977 _("unshifted register required"));
fdfde340 12978 constraint (Rn > 7 || Rm > 7,
c19d1205 12979 BAD_HIREG);
b99bd4ef 12980
c19d1205 12981 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12982 inst.instruction |= Rn;
12983 inst.instruction |= Rm << 3;
b99bd4ef 12984 }
b99bd4ef
NC
12985}
12986
b05fe5cf 12987static void
c19d1205 12988do_t_mrs (void)
b05fe5cf 12989{
fdfde340 12990 unsigned Rd;
037e8744
JB
12991
12992 if (do_vfp_nsyn_mrs () == SUCCESS)
12993 return;
12994
90ec0d68
MGD
12995 Rd = inst.operands[0].reg;
12996 reject_bad_reg (Rd);
12997 inst.instruction |= Rd << 8;
12998
12999 if (inst.operands[1].isreg)
62b3e311 13000 {
90ec0d68
MGD
13001 unsigned br = inst.operands[1].reg;
13002 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13003 as_bad (_("bad register for mrs"));
13004
13005 inst.instruction |= br & (0xf << 16);
13006 inst.instruction |= (br & 0x300) >> 4;
13007 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
13008 }
13009 else
13010 {
90ec0d68 13011 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 13012
d2cd1205 13013 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
13014 {
13015 /* PR gas/12698: The constraint is only applied for m_profile.
13016 If the user has specified -march=all, we want to ignore it as
13017 we are building for any CPU type, including non-m variants. */
823d2571
TG
13018 bfd_boolean m_profile =
13019 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
13020 constraint ((flags != 0) && m_profile, _("selected processor does "
13021 "not support requested special purpose register"));
13022 }
90ec0d68 13023 else
d2cd1205
JB
13024 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13025 devices). */
13026 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13027 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13028
90ec0d68
MGD
13029 inst.instruction |= (flags & SPSR_BIT) >> 2;
13030 inst.instruction |= inst.operands[1].imm & 0xff;
13031 inst.instruction |= 0xf0000;
13032 }
c19d1205 13033}
b05fe5cf 13034
c19d1205
ZW
13035static void
13036do_t_msr (void)
13037{
62b3e311 13038 int flags;
fdfde340 13039 unsigned Rn;
62b3e311 13040
037e8744
JB
13041 if (do_vfp_nsyn_msr () == SUCCESS)
13042 return;
13043
c19d1205
ZW
13044 constraint (!inst.operands[1].isreg,
13045 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13046
13047 if (inst.operands[0].isreg)
13048 flags = (int)(inst.operands[0].reg);
13049 else
13050 flags = inst.operands[0].imm;
13051
d2cd1205 13052 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13053 {
d2cd1205
JB
13054 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13055
1a43faaf 13056 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13057 If the user has specified -march=all, we want to ignore it as
13058 we are building for any CPU type, including non-m variants. */
823d2571
TG
13059 bfd_boolean m_profile =
13060 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13061 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13062 && (bits & ~(PSR_s | PSR_f)) != 0)
13063 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13064 && bits != PSR_f)) && m_profile,
13065 _("selected processor does not support requested special "
13066 "purpose register"));
62b3e311
PB
13067 }
13068 else
d2cd1205
JB
13069 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13070 "requested special purpose register"));
c921be7d 13071
fdfde340
JM
13072 Rn = inst.operands[1].reg;
13073 reject_bad_reg (Rn);
13074
62b3e311 13075 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13076 inst.instruction |= (flags & 0xf0000) >> 8;
13077 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13078 inst.instruction |= (flags & 0xff);
fdfde340 13079 inst.instruction |= Rn << 16;
c19d1205 13080}
b05fe5cf 13081
c19d1205
ZW
13082static void
13083do_t_mul (void)
13084{
17828f45 13085 bfd_boolean narrow;
fdfde340 13086 unsigned Rd, Rn, Rm;
17828f45 13087
c19d1205
ZW
13088 if (!inst.operands[2].present)
13089 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13090
fdfde340
JM
13091 Rd = inst.operands[0].reg;
13092 Rn = inst.operands[1].reg;
13093 Rm = inst.operands[2].reg;
13094
17828f45 13095 if (unified_syntax)
b05fe5cf 13096 {
17828f45 13097 if (inst.size_req == 4
fdfde340
JM
13098 || (Rd != Rn
13099 && Rd != Rm)
13100 || Rn > 7
13101 || Rm > 7)
17828f45
JM
13102 narrow = FALSE;
13103 else if (inst.instruction == T_MNEM_muls)
5ee91343 13104 narrow = !in_pred_block ();
17828f45 13105 else
5ee91343 13106 narrow = in_pred_block ();
b05fe5cf 13107 }
c19d1205 13108 else
b05fe5cf 13109 {
17828f45 13110 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13111 constraint (Rn > 7 || Rm > 7,
c19d1205 13112 BAD_HIREG);
17828f45
JM
13113 narrow = TRUE;
13114 }
b05fe5cf 13115
17828f45
JM
13116 if (narrow)
13117 {
13118 /* 16-bit MULS/Conditional MUL. */
c19d1205 13119 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13120 inst.instruction |= Rd;
b05fe5cf 13121
fdfde340
JM
13122 if (Rd == Rn)
13123 inst.instruction |= Rm << 3;
13124 else if (Rd == Rm)
13125 inst.instruction |= Rn << 3;
c19d1205
ZW
13126 else
13127 constraint (1, _("dest must overlap one source register"));
13128 }
17828f45
JM
13129 else
13130 {
e07e6e58
NC
13131 constraint (inst.instruction != T_MNEM_mul,
13132 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13133 /* 32-bit MUL. */
13134 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13135 inst.instruction |= Rd << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm << 0;
13138
13139 reject_bad_reg (Rd);
13140 reject_bad_reg (Rn);
13141 reject_bad_reg (Rm);
17828f45 13142 }
c19d1205 13143}
b05fe5cf 13144
c19d1205
ZW
13145static void
13146do_t_mull (void)
13147{
fdfde340 13148 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13149
fdfde340
JM
13150 RdLo = inst.operands[0].reg;
13151 RdHi = inst.operands[1].reg;
13152 Rn = inst.operands[2].reg;
13153 Rm = inst.operands[3].reg;
13154
13155 reject_bad_reg (RdLo);
13156 reject_bad_reg (RdHi);
13157 reject_bad_reg (Rn);
13158 reject_bad_reg (Rm);
13159
13160 inst.instruction |= RdLo << 12;
13161 inst.instruction |= RdHi << 8;
13162 inst.instruction |= Rn << 16;
13163 inst.instruction |= Rm;
13164
13165 if (RdLo == RdHi)
c19d1205
ZW
13166 as_tsktsk (_("rdhi and rdlo must be different"));
13167}
b05fe5cf 13168
c19d1205
ZW
13169static void
13170do_t_nop (void)
13171{
5ee91343 13172 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13173
c19d1205
ZW
13174 if (unified_syntax)
13175 {
13176 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13177 {
c19d1205
ZW
13178 inst.instruction = THUMB_OP32 (inst.instruction);
13179 inst.instruction |= inst.operands[0].imm;
13180 }
13181 else
13182 {
bc2d1808
NC
13183 /* PR9722: Check for Thumb2 availability before
13184 generating a thumb2 nop instruction. */
afa62d5e 13185 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13186 {
13187 inst.instruction = THUMB_OP16 (inst.instruction);
13188 inst.instruction |= inst.operands[0].imm << 4;
13189 }
13190 else
13191 inst.instruction = 0x46c0;
c19d1205
ZW
13192 }
13193 }
13194 else
13195 {
13196 constraint (inst.operands[0].present,
13197 _("Thumb does not support NOP with hints"));
13198 inst.instruction = 0x46c0;
13199 }
13200}
b05fe5cf 13201
c19d1205
ZW
13202static void
13203do_t_neg (void)
13204{
13205 if (unified_syntax)
13206 {
3d388997
PB
13207 bfd_boolean narrow;
13208
13209 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13210 narrow = !in_pred_block ();
3d388997 13211 else
5ee91343 13212 narrow = in_pred_block ();
3d388997
PB
13213 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13214 narrow = FALSE;
13215 if (inst.size_req == 4)
13216 narrow = FALSE;
13217
13218 if (!narrow)
c19d1205
ZW
13219 {
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= inst.operands[0].reg << 8;
13222 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13223 }
13224 else
13225 {
c19d1205
ZW
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].reg;
13228 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13229 }
13230 }
13231 else
13232 {
c19d1205
ZW
13233 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13234 BAD_HIREG);
13235 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13236
13237 inst.instruction = THUMB_OP16 (inst.instruction);
13238 inst.instruction |= inst.operands[0].reg;
13239 inst.instruction |= inst.operands[1].reg << 3;
13240 }
13241}
13242
1c444d06
JM
13243static void
13244do_t_orn (void)
13245{
13246 unsigned Rd, Rn;
13247
13248 Rd = inst.operands[0].reg;
13249 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13250
fdfde340
JM
13251 reject_bad_reg (Rd);
13252 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13253 reject_bad_reg (Rn);
13254
1c444d06
JM
13255 inst.instruction |= Rd << 8;
13256 inst.instruction |= Rn << 16;
13257
13258 if (!inst.operands[2].isreg)
13259 {
13260 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13261 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13262 }
13263 else
13264 {
13265 unsigned Rm;
13266
13267 Rm = inst.operands[2].reg;
fdfde340 13268 reject_bad_reg (Rm);
1c444d06
JM
13269
13270 constraint (inst.operands[2].shifted
13271 && inst.operands[2].immisreg,
13272 _("shift must be constant"));
13273 encode_thumb32_shifted_operand (2);
13274 }
13275}
13276
c19d1205
ZW
13277static void
13278do_t_pkhbt (void)
13279{
fdfde340
JM
13280 unsigned Rd, Rn, Rm;
13281
13282 Rd = inst.operands[0].reg;
13283 Rn = inst.operands[1].reg;
13284 Rm = inst.operands[2].reg;
13285
13286 reject_bad_reg (Rd);
13287 reject_bad_reg (Rn);
13288 reject_bad_reg (Rm);
13289
13290 inst.instruction |= Rd << 8;
13291 inst.instruction |= Rn << 16;
13292 inst.instruction |= Rm;
c19d1205
ZW
13293 if (inst.operands[3].present)
13294 {
e2b0ab59
AV
13295 unsigned int val = inst.relocs[0].exp.X_add_number;
13296 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13297 _("expression too complex"));
13298 inst.instruction |= (val & 0x1c) << 10;
13299 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13300 }
c19d1205 13301}
b05fe5cf 13302
c19d1205
ZW
13303static void
13304do_t_pkhtb (void)
13305{
13306 if (!inst.operands[3].present)
1ef52f49
NC
13307 {
13308 unsigned Rtmp;
13309
13310 inst.instruction &= ~0x00000020;
13311
13312 /* PR 10168. Swap the Rm and Rn registers. */
13313 Rtmp = inst.operands[1].reg;
13314 inst.operands[1].reg = inst.operands[2].reg;
13315 inst.operands[2].reg = Rtmp;
13316 }
c19d1205 13317 do_t_pkhbt ();
b05fe5cf
ZW
13318}
13319
c19d1205
ZW
13320static void
13321do_t_pld (void)
13322{
fdfde340
JM
13323 if (inst.operands[0].immisreg)
13324 reject_bad_reg (inst.operands[0].imm);
13325
c19d1205
ZW
13326 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13327}
b05fe5cf 13328
c19d1205
ZW
13329static void
13330do_t_push_pop (void)
b99bd4ef 13331{
e9f89963 13332 unsigned mask;
5f4273c7 13333
c19d1205
ZW
13334 constraint (inst.operands[0].writeback,
13335 _("push/pop do not support {reglist}^"));
e2b0ab59 13336 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13337 _("expression too complex"));
b99bd4ef 13338
e9f89963 13339 mask = inst.operands[0].imm;
d3bfe16e 13340 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13341 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13342 else if (inst.size_req != 4
c6025a80 13343 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13344 ? REG_LR : REG_PC)))
b99bd4ef 13345 {
c19d1205
ZW
13346 inst.instruction = THUMB_OP16 (inst.instruction);
13347 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13348 inst.instruction |= mask & 0xff;
c19d1205
ZW
13349 }
13350 else if (unified_syntax)
13351 {
3c707909 13352 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13353 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13354 }
13355 else
13356 {
13357 inst.error = _("invalid register list to push/pop instruction");
13358 return;
c19d1205 13359 }
4b5a202f
AV
13360}
13361
13362static void
13363do_t_clrm (void)
13364{
13365 if (unified_syntax)
13366 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13367 else
13368 {
13369 inst.error = _("invalid register list to push/pop instruction");
13370 return;
13371 }
c19d1205 13372}
b99bd4ef 13373
efd6b359
AV
13374static void
13375do_t_vscclrm (void)
13376{
13377 if (inst.operands[0].issingle)
13378 {
13379 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13380 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13381 inst.instruction |= inst.operands[0].imm;
13382 }
13383 else
13384 {
13385 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13386 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13387 inst.instruction |= 1 << 8;
13388 inst.instruction |= inst.operands[0].imm << 1;
13389 }
13390}
13391
c19d1205
ZW
13392static void
13393do_t_rbit (void)
13394{
fdfde340
JM
13395 unsigned Rd, Rm;
13396
13397 Rd = inst.operands[0].reg;
13398 Rm = inst.operands[1].reg;
13399
13400 reject_bad_reg (Rd);
13401 reject_bad_reg (Rm);
13402
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
c19d1205 13406}
b99bd4ef 13407
c19d1205
ZW
13408static void
13409do_t_rev (void)
13410{
fdfde340
JM
13411 unsigned Rd, Rm;
13412
13413 Rd = inst.operands[0].reg;
13414 Rm = inst.operands[1].reg;
13415
13416 reject_bad_reg (Rd);
13417 reject_bad_reg (Rm);
13418
13419 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13420 && inst.size_req != 4)
13421 {
13422 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13423 inst.instruction |= Rd;
13424 inst.instruction |= Rm << 3;
c19d1205
ZW
13425 }
13426 else if (unified_syntax)
13427 {
13428 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13429 inst.instruction |= Rd << 8;
13430 inst.instruction |= Rm << 16;
13431 inst.instruction |= Rm;
c19d1205
ZW
13432 }
13433 else
13434 inst.error = BAD_HIREG;
13435}
b99bd4ef 13436
1c444d06
JM
13437static void
13438do_t_rrx (void)
13439{
13440 unsigned Rd, Rm;
13441
13442 Rd = inst.operands[0].reg;
13443 Rm = inst.operands[1].reg;
13444
fdfde340
JM
13445 reject_bad_reg (Rd);
13446 reject_bad_reg (Rm);
c921be7d 13447
1c444d06
JM
13448 inst.instruction |= Rd << 8;
13449 inst.instruction |= Rm;
13450}
13451
c19d1205
ZW
13452static void
13453do_t_rsb (void)
13454{
fdfde340 13455 unsigned Rd, Rs;
b99bd4ef 13456
c19d1205
ZW
13457 Rd = inst.operands[0].reg;
13458 Rs = (inst.operands[1].present
13459 ? inst.operands[1].reg /* Rd, Rs, foo */
13460 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13461
fdfde340
JM
13462 reject_bad_reg (Rd);
13463 reject_bad_reg (Rs);
13464 if (inst.operands[2].isreg)
13465 reject_bad_reg (inst.operands[2].reg);
13466
c19d1205
ZW
13467 inst.instruction |= Rd << 8;
13468 inst.instruction |= Rs << 16;
13469 if (!inst.operands[2].isreg)
13470 {
026d3abb
PB
13471 bfd_boolean narrow;
13472
13473 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13474 narrow = !in_pred_block ();
026d3abb 13475 else
5ee91343 13476 narrow = in_pred_block ();
026d3abb
PB
13477
13478 if (Rd > 7 || Rs > 7)
13479 narrow = FALSE;
13480
13481 if (inst.size_req == 4 || !unified_syntax)
13482 narrow = FALSE;
13483
e2b0ab59
AV
13484 if (inst.relocs[0].exp.X_op != O_constant
13485 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13486 narrow = FALSE;
13487
13488 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13489 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13490 if (narrow)
13491 {
e2b0ab59 13492 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13493 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13494 inst.instruction |= Rs << 3;
13495 inst.instruction |= Rd;
13496 }
13497 else
13498 {
13499 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13500 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13501 }
c19d1205
ZW
13502 }
13503 else
13504 encode_thumb32_shifted_operand (2);
13505}
b99bd4ef 13506
c19d1205
ZW
13507static void
13508do_t_setend (void)
13509{
12e37cbc
MGD
13510 if (warn_on_deprecated
13511 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13512 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13513
5ee91343 13514 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13515 if (inst.operands[0].imm)
13516 inst.instruction |= 0x8;
13517}
b99bd4ef 13518
c19d1205
ZW
13519static void
13520do_t_shift (void)
13521{
13522 if (!inst.operands[1].present)
13523 inst.operands[1].reg = inst.operands[0].reg;
13524
13525 if (unified_syntax)
13526 {
3d388997
PB
13527 bfd_boolean narrow;
13528 int shift_kind;
13529
13530 switch (inst.instruction)
13531 {
13532 case T_MNEM_asr:
13533 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13534 case T_MNEM_lsl:
13535 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13536 case T_MNEM_lsr:
13537 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13538 case T_MNEM_ror:
13539 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13540 default: abort ();
13541 }
13542
13543 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13544 narrow = !in_pred_block ();
3d388997 13545 else
5ee91343 13546 narrow = in_pred_block ();
3d388997
PB
13547 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13548 narrow = FALSE;
13549 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13550 narrow = FALSE;
13551 if (inst.operands[2].isreg
13552 && (inst.operands[1].reg != inst.operands[0].reg
13553 || inst.operands[2].reg > 7))
13554 narrow = FALSE;
13555 if (inst.size_req == 4)
13556 narrow = FALSE;
13557
fdfde340
JM
13558 reject_bad_reg (inst.operands[0].reg);
13559 reject_bad_reg (inst.operands[1].reg);
c921be7d 13560
3d388997 13561 if (!narrow)
c19d1205
ZW
13562 {
13563 if (inst.operands[2].isreg)
b99bd4ef 13564 {
fdfde340 13565 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13566 inst.instruction = THUMB_OP32 (inst.instruction);
13567 inst.instruction |= inst.operands[0].reg << 8;
13568 inst.instruction |= inst.operands[1].reg << 16;
13569 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13570
13571 /* PR 12854: Error on extraneous shifts. */
13572 constraint (inst.operands[2].shifted,
13573 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13574 }
13575 else
13576 {
13577 inst.operands[1].shifted = 1;
3d388997 13578 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13579 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13580 ? T_MNEM_movs : T_MNEM_mov);
13581 inst.instruction |= inst.operands[0].reg << 8;
13582 encode_thumb32_shifted_operand (1);
13583 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13584 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13585 }
13586 }
13587 else
13588 {
c19d1205 13589 if (inst.operands[2].isreg)
b99bd4ef 13590 {
3d388997 13591 switch (shift_kind)
b99bd4ef 13592 {
3d388997
PB
13593 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13594 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13595 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13596 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13597 default: abort ();
b99bd4ef 13598 }
5f4273c7 13599
c19d1205
ZW
13600 inst.instruction |= inst.operands[0].reg;
13601 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13602
13603 /* PR 12854: Error on extraneous shifts. */
13604 constraint (inst.operands[2].shifted,
13605 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13606 }
13607 else
13608 {
3d388997 13609 switch (shift_kind)
b99bd4ef 13610 {
3d388997
PB
13611 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13612 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13613 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13614 default: abort ();
b99bd4ef 13615 }
e2b0ab59 13616 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13619 }
13620 }
c19d1205
ZW
13621 }
13622 else
13623 {
13624 constraint (inst.operands[0].reg > 7
13625 || inst.operands[1].reg > 7, BAD_HIREG);
13626 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13627
c19d1205
ZW
13628 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13629 {
13630 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13631 constraint (inst.operands[0].reg != inst.operands[1].reg,
13632 _("source1 and dest must be same register"));
b99bd4ef 13633
c19d1205
ZW
13634 switch (inst.instruction)
13635 {
13636 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13637 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13638 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13639 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13640 default: abort ();
13641 }
5f4273c7 13642
c19d1205
ZW
13643 inst.instruction |= inst.operands[0].reg;
13644 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13645
13646 /* PR 12854: Error on extraneous shifts. */
13647 constraint (inst.operands[2].shifted,
13648 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13649 }
13650 else
b99bd4ef 13651 {
c19d1205
ZW
13652 switch (inst.instruction)
13653 {
13654 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13655 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13656 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13657 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13658 default: abort ();
13659 }
e2b0ab59 13660 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13661 inst.instruction |= inst.operands[0].reg;
13662 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13663 }
13664 }
b99bd4ef
NC
13665}
13666
13667static void
c19d1205 13668do_t_simd (void)
b99bd4ef 13669{
fdfde340
JM
13670 unsigned Rd, Rn, Rm;
13671
13672 Rd = inst.operands[0].reg;
13673 Rn = inst.operands[1].reg;
13674 Rm = inst.operands[2].reg;
13675
13676 reject_bad_reg (Rd);
13677 reject_bad_reg (Rn);
13678 reject_bad_reg (Rm);
13679
13680 inst.instruction |= Rd << 8;
13681 inst.instruction |= Rn << 16;
13682 inst.instruction |= Rm;
c19d1205 13683}
b99bd4ef 13684
03ee1b7f
NC
13685static void
13686do_t_simd2 (void)
13687{
13688 unsigned Rd, Rn, Rm;
13689
13690 Rd = inst.operands[0].reg;
13691 Rm = inst.operands[1].reg;
13692 Rn = inst.operands[2].reg;
13693
13694 reject_bad_reg (Rd);
13695 reject_bad_reg (Rn);
13696 reject_bad_reg (Rm);
13697
13698 inst.instruction |= Rd << 8;
13699 inst.instruction |= Rn << 16;
13700 inst.instruction |= Rm;
13701}
13702
c19d1205 13703static void
3eb17e6b 13704do_t_smc (void)
c19d1205 13705{
e2b0ab59 13706 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13708 _("SMC is not permitted on this architecture"));
e2b0ab59 13709 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13710 _("expression too complex"));
e2b0ab59 13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13712 inst.instruction |= (value & 0xf000) >> 12;
13713 inst.instruction |= (value & 0x0ff0);
13714 inst.instruction |= (value & 0x000f) << 16;
24382199 13715 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13716 set_pred_insn_type_last ();
c19d1205 13717}
b99bd4ef 13718
90ec0d68
MGD
13719static void
13720do_t_hvc (void)
13721{
e2b0ab59 13722 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13723
e2b0ab59 13724 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13725 inst.instruction |= (value & 0x0fff);
13726 inst.instruction |= (value & 0xf000) << 4;
13727}
13728
c19d1205 13729static void
3a21c15a 13730do_t_ssat_usat (int bias)
c19d1205 13731{
fdfde340
JM
13732 unsigned Rd, Rn;
13733
13734 Rd = inst.operands[0].reg;
13735 Rn = inst.operands[2].reg;
13736
13737 reject_bad_reg (Rd);
13738 reject_bad_reg (Rn);
13739
13740 inst.instruction |= Rd << 8;
3a21c15a 13741 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13742 inst.instruction |= Rn << 16;
b99bd4ef 13743
c19d1205 13744 if (inst.operands[3].present)
b99bd4ef 13745 {
e2b0ab59 13746 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13747
e2b0ab59 13748 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13749
e2b0ab59 13750 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13751 _("expression too complex"));
b99bd4ef 13752
3a21c15a 13753 if (shift_amount != 0)
6189168b 13754 {
3a21c15a
NC
13755 constraint (shift_amount > 31,
13756 _("shift expression is too large"));
13757
c19d1205 13758 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13759 inst.instruction |= 0x00200000; /* sh bit. */
13760
13761 inst.instruction |= (shift_amount & 0x1c) << 10;
13762 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13763 }
13764 }
b99bd4ef 13765}
c921be7d 13766
3a21c15a
NC
13767static void
13768do_t_ssat (void)
13769{
13770 do_t_ssat_usat (1);
13771}
b99bd4ef 13772
0dd132b6 13773static void
c19d1205 13774do_t_ssat16 (void)
0dd132b6 13775{
fdfde340
JM
13776 unsigned Rd, Rn;
13777
13778 Rd = inst.operands[0].reg;
13779 Rn = inst.operands[2].reg;
13780
13781 reject_bad_reg (Rd);
13782 reject_bad_reg (Rn);
13783
13784 inst.instruction |= Rd << 8;
c19d1205 13785 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13786 inst.instruction |= Rn << 16;
c19d1205 13787}
0dd132b6 13788
c19d1205
ZW
13789static void
13790do_t_strex (void)
13791{
13792 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13793 || inst.operands[2].postind || inst.operands[2].writeback
13794 || inst.operands[2].immisreg || inst.operands[2].shifted
13795 || inst.operands[2].negative,
01cfc07f 13796 BAD_ADDR_MODE);
0dd132b6 13797
5be8be5d
DG
13798 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13799
c19d1205
ZW
13800 inst.instruction |= inst.operands[0].reg << 8;
13801 inst.instruction |= inst.operands[1].reg << 12;
13802 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13803 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13804}
13805
b99bd4ef 13806static void
c19d1205 13807do_t_strexd (void)
b99bd4ef 13808{
c19d1205
ZW
13809 if (!inst.operands[2].present)
13810 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13811
c19d1205
ZW
13812 constraint (inst.operands[0].reg == inst.operands[1].reg
13813 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13814 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13815 BAD_OVERLAP);
b99bd4ef 13816
c19d1205
ZW
13817 inst.instruction |= inst.operands[0].reg;
13818 inst.instruction |= inst.operands[1].reg << 12;
13819 inst.instruction |= inst.operands[2].reg << 8;
13820 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13821}
13822
13823static void
c19d1205 13824do_t_sxtah (void)
b99bd4ef 13825{
fdfde340
JM
13826 unsigned Rd, Rn, Rm;
13827
13828 Rd = inst.operands[0].reg;
13829 Rn = inst.operands[1].reg;
13830 Rm = inst.operands[2].reg;
13831
13832 reject_bad_reg (Rd);
13833 reject_bad_reg (Rn);
13834 reject_bad_reg (Rm);
13835
13836 inst.instruction |= Rd << 8;
13837 inst.instruction |= Rn << 16;
13838 inst.instruction |= Rm;
c19d1205
ZW
13839 inst.instruction |= inst.operands[3].imm << 4;
13840}
b99bd4ef 13841
c19d1205
ZW
13842static void
13843do_t_sxth (void)
13844{
fdfde340
JM
13845 unsigned Rd, Rm;
13846
13847 Rd = inst.operands[0].reg;
13848 Rm = inst.operands[1].reg;
13849
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rm);
c921be7d
NC
13852
13853 if (inst.instruction <= 0xffff
13854 && inst.size_req != 4
fdfde340 13855 && Rd <= 7 && Rm <= 7
c19d1205 13856 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13857 {
c19d1205 13858 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13859 inst.instruction |= Rd;
13860 inst.instruction |= Rm << 3;
b99bd4ef 13861 }
c19d1205 13862 else if (unified_syntax)
b99bd4ef 13863 {
c19d1205
ZW
13864 if (inst.instruction <= 0xffff)
13865 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13866 inst.instruction |= Rd << 8;
13867 inst.instruction |= Rm;
c19d1205 13868 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13869 }
c19d1205 13870 else
b99bd4ef 13871 {
c19d1205
ZW
13872 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13873 _("Thumb encoding does not support rotation"));
13874 constraint (1, BAD_HIREG);
b99bd4ef 13875 }
c19d1205 13876}
b99bd4ef 13877
c19d1205
ZW
13878static void
13879do_t_swi (void)
13880{
e2b0ab59 13881 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13882}
b99bd4ef 13883
92e90b6e
PB
13884static void
13885do_t_tb (void)
13886{
fdfde340 13887 unsigned Rn, Rm;
92e90b6e
PB
13888 int half;
13889
13890 half = (inst.instruction & 0x10) != 0;
5ee91343 13891 set_pred_insn_type_last ();
dfa9f0d5
PB
13892 constraint (inst.operands[0].immisreg,
13893 _("instruction requires register index"));
fdfde340
JM
13894
13895 Rn = inst.operands[0].reg;
13896 Rm = inst.operands[0].imm;
c921be7d 13897
5c8ed6a4
JW
13898 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13899 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13900 reject_bad_reg (Rm);
13901
92e90b6e
PB
13902 constraint (!half && inst.operands[0].shifted,
13903 _("instruction does not allow shifted index"));
fdfde340 13904 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13905}
13906
74db7efb
NC
13907static void
13908do_t_udf (void)
13909{
13910 if (!inst.operands[0].present)
13911 inst.operands[0].imm = 0;
13912
13913 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13914 {
13915 constraint (inst.size_req == 2,
13916 _("immediate value out of range"));
13917 inst.instruction = THUMB_OP32 (inst.instruction);
13918 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13919 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13920 }
13921 else
13922 {
13923 inst.instruction = THUMB_OP16 (inst.instruction);
13924 inst.instruction |= inst.operands[0].imm;
13925 }
13926
5ee91343 13927 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13928}
13929
13930
c19d1205
ZW
13931static void
13932do_t_usat (void)
13933{
3a21c15a 13934 do_t_ssat_usat (0);
b99bd4ef
NC
13935}
13936
13937static void
c19d1205 13938do_t_usat16 (void)
b99bd4ef 13939{
fdfde340
JM
13940 unsigned Rd, Rn;
13941
13942 Rd = inst.operands[0].reg;
13943 Rn = inst.operands[2].reg;
13944
13945 reject_bad_reg (Rd);
13946 reject_bad_reg (Rn);
13947
13948 inst.instruction |= Rd << 8;
c19d1205 13949 inst.instruction |= inst.operands[1].imm;
fdfde340 13950 inst.instruction |= Rn << 16;
b99bd4ef 13951}
c19d1205 13952
e12437dc
AV
13953/* Checking the range of the branch offset (VAL) with NBITS bits
13954 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13955static int
13956v8_1_branch_value_check (int val, int nbits, int is_signed)
13957{
13958 gas_assert (nbits > 0 && nbits <= 32);
13959 if (is_signed)
13960 {
13961 int cmp = (1 << (nbits - 1));
13962 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13963 return FAIL;
13964 }
13965 else
13966 {
13967 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13968 return FAIL;
13969 }
13970 return SUCCESS;
13971}
13972
4389b29a
AV
13973/* For branches in Armv8.1-M Mainline. */
13974static void
13975do_t_branch_future (void)
13976{
13977 unsigned long insn = inst.instruction;
13978
13979 inst.instruction = THUMB_OP32 (inst.instruction);
13980 if (inst.operands[0].hasreloc == 0)
13981 {
13982 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13983 as_bad (BAD_BRANCH_OFF);
13984
13985 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13986 }
13987 else
13988 {
13989 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13990 inst.relocs[0].pc_rel = 1;
13991 }
13992
13993 switch (insn)
13994 {
13995 case T_MNEM_bf:
13996 if (inst.operands[1].hasreloc == 0)
13997 {
13998 int val = inst.operands[1].imm;
13999 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14000 as_bad (BAD_BRANCH_OFF);
14001
14002 int immA = (val & 0x0001f000) >> 12;
14003 int immB = (val & 0x00000ffc) >> 2;
14004 int immC = (val & 0x00000002) >> 1;
14005 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14006 }
14007 else
14008 {
14009 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14010 inst.relocs[1].pc_rel = 1;
14011 }
14012 break;
14013
65d1bc05
AV
14014 case T_MNEM_bfl:
14015 if (inst.operands[1].hasreloc == 0)
14016 {
14017 int val = inst.operands[1].imm;
14018 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14019 as_bad (BAD_BRANCH_OFF);
14020
14021 int immA = (val & 0x0007f000) >> 12;
14022 int immB = (val & 0x00000ffc) >> 2;
14023 int immC = (val & 0x00000002) >> 1;
14024 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14025 }
14026 else
14027 {
14028 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14029 inst.relocs[1].pc_rel = 1;
14030 }
14031 break;
14032
f6b2b12d
AV
14033 case T_MNEM_bfcsel:
14034 /* Operand 1. */
14035 if (inst.operands[1].hasreloc == 0)
14036 {
14037 int val = inst.operands[1].imm;
14038 int immA = (val & 0x00001000) >> 12;
14039 int immB = (val & 0x00000ffc) >> 2;
14040 int immC = (val & 0x00000002) >> 1;
14041 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14042 }
14043 else
14044 {
14045 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14046 inst.relocs[1].pc_rel = 1;
14047 }
14048
14049 /* Operand 2. */
14050 if (inst.operands[2].hasreloc == 0)
14051 {
14052 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14053 int val2 = inst.operands[2].imm;
14054 int val0 = inst.operands[0].imm & 0x1f;
14055 int diff = val2 - val0;
14056 if (diff == 4)
14057 inst.instruction |= 1 << 17; /* T bit. */
14058 else if (diff != 2)
14059 as_bad (_("out of range label-relative fixup value"));
14060 }
14061 else
14062 {
14063 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14064 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14065 inst.relocs[2].pc_rel = 1;
14066 }
14067
14068 /* Operand 3. */
14069 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14070 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14071 break;
14072
f1c7f421
AV
14073 case T_MNEM_bfx:
14074 case T_MNEM_bflx:
14075 inst.instruction |= inst.operands[1].reg << 16;
14076 break;
14077
4389b29a
AV
14078 default: abort ();
14079 }
14080}
14081
60f993ce
AV
14082/* Helper function for do_t_loloop to handle relocations. */
14083static void
14084v8_1_loop_reloc (int is_le)
14085{
14086 if (inst.relocs[0].exp.X_op == O_constant)
14087 {
14088 int value = inst.relocs[0].exp.X_add_number;
14089 value = (is_le) ? -value : value;
14090
14091 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14092 as_bad (BAD_BRANCH_OFF);
14093
14094 int imml, immh;
14095
14096 immh = (value & 0x00000ffc) >> 2;
14097 imml = (value & 0x00000002) >> 1;
14098
14099 inst.instruction |= (imml << 11) | (immh << 1);
14100 }
14101 else
14102 {
14103 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14104 inst.relocs[0].pc_rel = 1;
14105 }
14106}
14107
14108/* To handle the Scalar Low Overhead Loop instructions
14109 in Armv8.1-M Mainline. */
14110static void
14111do_t_loloop (void)
14112{
14113 unsigned long insn = inst.instruction;
14114
5ee91343 14115 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14116 inst.instruction = THUMB_OP32 (inst.instruction);
14117
14118 switch (insn)
14119 {
14120 case T_MNEM_le:
14121 /* le <label>. */
14122 if (!inst.operands[0].present)
14123 inst.instruction |= 1 << 21;
14124
14125 v8_1_loop_reloc (TRUE);
14126 break;
14127
14128 case T_MNEM_wls:
14129 v8_1_loop_reloc (FALSE);
14130 /* Fall through. */
14131 case T_MNEM_dls:
14132 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14133 inst.instruction |= (inst.operands[1].reg << 16);
14134 break;
14135
14136 default: abort();
14137 }
14138}
14139
a302e574
AV
14140/* MVE instruction encoder helpers. */
14141#define M_MNEM_vabav 0xee800f01
14142#define M_MNEM_vmladav 0xeef00e00
14143#define M_MNEM_vmladava 0xeef00e20
14144#define M_MNEM_vmladavx 0xeef01e00
14145#define M_MNEM_vmladavax 0xeef01e20
14146#define M_MNEM_vmlsdav 0xeef00e01
14147#define M_MNEM_vmlsdava 0xeef00e21
14148#define M_MNEM_vmlsdavx 0xeef01e01
14149#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14150#define M_MNEM_vmullt 0xee011e00
14151#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14152#define M_MNEM_vst20 0xfc801e00
14153#define M_MNEM_vst21 0xfc801e20
14154#define M_MNEM_vst40 0xfc801e01
14155#define M_MNEM_vst41 0xfc801e21
14156#define M_MNEM_vst42 0xfc801e41
14157#define M_MNEM_vst43 0xfc801e61
14158#define M_MNEM_vld20 0xfc901e00
14159#define M_MNEM_vld21 0xfc901e20
14160#define M_MNEM_vld40 0xfc901e01
14161#define M_MNEM_vld41 0xfc901e21
14162#define M_MNEM_vld42 0xfc901e41
14163#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14164#define M_MNEM_vstrb 0xec000e00
14165#define M_MNEM_vstrh 0xec000e10
14166#define M_MNEM_vstrw 0xec000e40
14167#define M_MNEM_vstrd 0xec000e50
14168#define M_MNEM_vldrb 0xec100e00
14169#define M_MNEM_vldrh 0xec100e10
14170#define M_MNEM_vldrw 0xec100e40
14171#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14172#define M_MNEM_vmovlt 0xeea01f40
14173#define M_MNEM_vmovlb 0xeea00f40
14174#define M_MNEM_vmovnt 0xfe311e81
14175#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14176#define M_MNEM_vadc 0xee300f00
14177#define M_MNEM_vadci 0xee301f00
14178#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14179#define M_MNEM_vaddlv 0xee890f00
14180#define M_MNEM_vaddlva 0xee890f20
14181#define M_MNEM_vaddv 0xeef10f00
14182#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14183#define M_MNEM_vddup 0xee011f6e
14184#define M_MNEM_vdwdup 0xee011f60
14185#define M_MNEM_vidup 0xee010f6e
14186#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14187#define M_MNEM_vmaxv 0xeee20f00
14188#define M_MNEM_vmaxav 0xeee00f00
14189#define M_MNEM_vminv 0xeee20f80
14190#define M_MNEM_vminav 0xeee00f80
93925576
AV
14191#define M_MNEM_vmlaldav 0xee800e00
14192#define M_MNEM_vmlaldava 0xee800e20
14193#define M_MNEM_vmlaldavx 0xee801e00
14194#define M_MNEM_vmlaldavax 0xee801e20
14195#define M_MNEM_vmlsldav 0xee800e01
14196#define M_MNEM_vmlsldava 0xee800e21
14197#define M_MNEM_vmlsldavx 0xee801e01
14198#define M_MNEM_vmlsldavax 0xee801e21
14199#define M_MNEM_vrmlaldavhx 0xee801f00
14200#define M_MNEM_vrmlaldavhax 0xee801f20
14201#define M_MNEM_vrmlsldavh 0xfe800e01
14202#define M_MNEM_vrmlsldavha 0xfe800e21
14203#define M_MNEM_vrmlsldavhx 0xfe801e01
14204#define M_MNEM_vrmlsldavhax 0xfe801e21
1be7aba3
AV
14205#define M_MNEM_vqmovnt 0xee331e01
14206#define M_MNEM_vqmovnb 0xee330e01
14207#define M_MNEM_vqmovunt 0xee311e81
14208#define M_MNEM_vqmovunb 0xee310e81
a302e574 14209
5287ad62 14210/* Neon instruction encoder helpers. */
5f4273c7 14211
5287ad62 14212/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14213
5287ad62
JB
14214/* An "invalid" code for the following tables. */
14215#define N_INV -1u
14216
14217struct neon_tab_entry
b99bd4ef 14218{
5287ad62
JB
14219 unsigned integer;
14220 unsigned float_or_poly;
14221 unsigned scalar_or_imm;
14222};
5f4273c7 14223
5287ad62
JB
14224/* Map overloaded Neon opcodes to their respective encodings. */
14225#define NEON_ENC_TAB \
14226 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14227 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14228 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14229 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14230 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14231 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14232 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14233 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14234 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14235 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14236 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14237 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14238 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14239 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14240 /* Register variants of the following two instructions are encoded as
e07e6e58 14241 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14242 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14243 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14244 X(vfma, N_INV, 0x0000c10, N_INV), \
14245 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14246 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14247 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14248 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14249 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14250 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14251 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14252 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14253 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14254 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14255 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14256 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14257 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14258 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14259 X(vshl, 0x0000400, N_INV, 0x0800510), \
14260 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14261 X(vand, 0x0000110, N_INV, 0x0800030), \
14262 X(vbic, 0x0100110, N_INV, 0x0800030), \
14263 X(veor, 0x1000110, N_INV, N_INV), \
14264 X(vorn, 0x0300110, N_INV, 0x0800010), \
14265 X(vorr, 0x0200110, N_INV, 0x0800010), \
14266 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14267 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14268 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14269 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14270 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14271 X(vst1, 0x0000000, 0x0800000, N_INV), \
14272 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14273 X(vst2, 0x0000100, 0x0800100, N_INV), \
14274 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14275 X(vst3, 0x0000200, 0x0800200, N_INV), \
14276 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14277 X(vst4, 0x0000300, 0x0800300, N_INV), \
14278 X(vmovn, 0x1b20200, N_INV, N_INV), \
14279 X(vtrn, 0x1b20080, N_INV, N_INV), \
14280 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14281 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14282 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14283 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14284 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14285 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14286 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14287 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14288 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14289 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14290 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14291 X(vseleq, 0xe000a00, N_INV, N_INV), \
14292 X(vselvs, 0xe100a00, N_INV, N_INV), \
14293 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14294 X(vselgt, 0xe300a00, N_INV, N_INV), \
14295 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14296 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14297 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14298 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14299 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14300 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14301 X(sha3op, 0x2000c00, N_INV, N_INV), \
14302 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14303 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14304
14305enum neon_opc
14306{
14307#define X(OPC,I,F,S) N_MNEM_##OPC
14308NEON_ENC_TAB
14309#undef X
14310};
b99bd4ef 14311
5287ad62
JB
14312static const struct neon_tab_entry neon_enc_tab[] =
14313{
14314#define X(OPC,I,F,S) { (I), (F), (S) }
14315NEON_ENC_TAB
14316#undef X
14317};
b99bd4ef 14318
88714cb8
DG
14319/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14320#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14321#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14322#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14323#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14324#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14325#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14326#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14327#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14328#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14329#define NEON_ENC_SINGLE_(X) \
037e8744 14330 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14331#define NEON_ENC_DOUBLE_(X) \
037e8744 14332 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14333#define NEON_ENC_FPV8_(X) \
14334 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14335
88714cb8
DG
14336#define NEON_ENCODE(type, inst) \
14337 do \
14338 { \
14339 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14340 inst.is_neon = 1; \
14341 } \
14342 while (0)
14343
14344#define check_neon_suffixes \
14345 do \
14346 { \
14347 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14348 { \
14349 as_bad (_("invalid neon suffix for non neon instruction")); \
14350 return; \
14351 } \
14352 } \
14353 while (0)
14354
037e8744
JB
14355/* Define shapes for instruction operands. The following mnemonic characters
14356 are used in this table:
5287ad62 14357
037e8744 14358 F - VFP S<n> register
5287ad62
JB
14359 D - Neon D<n> register
14360 Q - Neon Q<n> register
14361 I - Immediate
14362 S - Scalar
14363 R - ARM register
14364 L - D<n> register list
5f4273c7 14365
037e8744
JB
14366 This table is used to generate various data:
14367 - enumerations of the form NS_DDR to be used as arguments to
14368 neon_select_shape.
14369 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14370 - a table used to drive neon_select_shape. */
b99bd4ef 14371
037e8744 14372#define NEON_SHAPE_DEF \
93925576 14373 X(4, (R, R, Q, Q), QUAD), \
b409bdb6 14374 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14375 X(4, (R, R, S, S), QUAD), \
14376 X(4, (S, S, R, R), QUAD), \
b409bdb6 14377 X(3, (Q, R, I), QUAD), \
1b883319
AV
14378 X(3, (I, Q, Q), QUAD), \
14379 X(3, (I, Q, R), QUAD), \
a302e574 14380 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14381 X(3, (D, D, D), DOUBLE), \
14382 X(3, (Q, Q, Q), QUAD), \
14383 X(3, (D, D, I), DOUBLE), \
14384 X(3, (Q, Q, I), QUAD), \
14385 X(3, (D, D, S), DOUBLE), \
14386 X(3, (Q, Q, S), QUAD), \
5ee91343 14387 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14388 X(3, (R, R, Q), QUAD), \
14389 X(2, (R, Q), QUAD), \
037e8744
JB
14390 X(2, (D, D), DOUBLE), \
14391 X(2, (Q, Q), QUAD), \
14392 X(2, (D, S), DOUBLE), \
14393 X(2, (Q, S), QUAD), \
14394 X(2, (D, R), DOUBLE), \
14395 X(2, (Q, R), QUAD), \
14396 X(2, (D, I), DOUBLE), \
14397 X(2, (Q, I), QUAD), \
14398 X(3, (D, L, D), DOUBLE), \
14399 X(2, (D, Q), MIXED), \
14400 X(2, (Q, D), MIXED), \
14401 X(3, (D, Q, I), MIXED), \
14402 X(3, (Q, D, I), MIXED), \
14403 X(3, (Q, D, D), MIXED), \
14404 X(3, (D, Q, Q), MIXED), \
14405 X(3, (Q, Q, D), MIXED), \
14406 X(3, (Q, D, S), MIXED), \
14407 X(3, (D, Q, S), MIXED), \
14408 X(4, (D, D, D, I), DOUBLE), \
14409 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14410 X(4, (D, D, S, I), DOUBLE), \
14411 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14412 X(2, (F, F), SINGLE), \
14413 X(3, (F, F, F), SINGLE), \
14414 X(2, (F, I), SINGLE), \
14415 X(2, (F, D), MIXED), \
14416 X(2, (D, F), MIXED), \
14417 X(3, (F, F, I), MIXED), \
14418 X(4, (R, R, F, F), SINGLE), \
14419 X(4, (F, F, R, R), SINGLE), \
14420 X(3, (D, R, R), DOUBLE), \
14421 X(3, (R, R, D), DOUBLE), \
14422 X(2, (S, R), SINGLE), \
14423 X(2, (R, S), SINGLE), \
14424 X(2, (F, R), SINGLE), \
d54af2d0
RL
14425 X(2, (R, F), SINGLE), \
14426/* Half float shape supported so far. */\
14427 X (2, (H, D), MIXED), \
14428 X (2, (D, H), MIXED), \
14429 X (2, (H, F), MIXED), \
14430 X (2, (F, H), MIXED), \
14431 X (2, (H, H), HALF), \
14432 X (2, (H, R), HALF), \
14433 X (2, (R, H), HALF), \
14434 X (2, (H, I), HALF), \
14435 X (3, (H, H, H), HALF), \
14436 X (3, (H, F, I), MIXED), \
dec41383
JW
14437 X (3, (F, H, I), MIXED), \
14438 X (3, (D, H, H), MIXED), \
14439 X (3, (D, H, S), MIXED)
037e8744
JB
14440
14441#define S2(A,B) NS_##A##B
14442#define S3(A,B,C) NS_##A##B##C
14443#define S4(A,B,C,D) NS_##A##B##C##D
14444
14445#define X(N, L, C) S##N L
14446
5287ad62
JB
14447enum neon_shape
14448{
037e8744
JB
14449 NEON_SHAPE_DEF,
14450 NS_NULL
5287ad62 14451};
b99bd4ef 14452
037e8744
JB
14453#undef X
14454#undef S2
14455#undef S3
14456#undef S4
14457
14458enum neon_shape_class
14459{
d54af2d0 14460 SC_HALF,
037e8744
JB
14461 SC_SINGLE,
14462 SC_DOUBLE,
14463 SC_QUAD,
14464 SC_MIXED
14465};
14466
14467#define X(N, L, C) SC_##C
14468
14469static enum neon_shape_class neon_shape_class[] =
14470{
14471 NEON_SHAPE_DEF
14472};
14473
14474#undef X
14475
14476enum neon_shape_el
14477{
d54af2d0 14478 SE_H,
037e8744
JB
14479 SE_F,
14480 SE_D,
14481 SE_Q,
14482 SE_I,
14483 SE_S,
14484 SE_R,
14485 SE_L
14486};
14487
14488/* Register widths of above. */
14489static unsigned neon_shape_el_size[] =
14490{
d54af2d0 14491 16,
037e8744
JB
14492 32,
14493 64,
14494 128,
14495 0,
14496 32,
14497 32,
14498 0
14499};
14500
14501struct neon_shape_info
14502{
14503 unsigned els;
14504 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14505};
14506
14507#define S2(A,B) { SE_##A, SE_##B }
14508#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14509#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14510
14511#define X(N, L, C) { N, S##N L }
14512
14513static struct neon_shape_info neon_shape_tab[] =
14514{
14515 NEON_SHAPE_DEF
14516};
14517
14518#undef X
14519#undef S2
14520#undef S3
14521#undef S4
14522
5287ad62
JB
14523/* Bit masks used in type checking given instructions.
14524 'N_EQK' means the type must be the same as (or based on in some way) the key
14525 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14526 set, various other bits can be set as well in order to modify the meaning of
14527 the type constraint. */
14528
14529enum neon_type_mask
14530{
8e79c3df
CM
14531 N_S8 = 0x0000001,
14532 N_S16 = 0x0000002,
14533 N_S32 = 0x0000004,
14534 N_S64 = 0x0000008,
14535 N_U8 = 0x0000010,
14536 N_U16 = 0x0000020,
14537 N_U32 = 0x0000040,
14538 N_U64 = 0x0000080,
14539 N_I8 = 0x0000100,
14540 N_I16 = 0x0000200,
14541 N_I32 = 0x0000400,
14542 N_I64 = 0x0000800,
14543 N_8 = 0x0001000,
14544 N_16 = 0x0002000,
14545 N_32 = 0x0004000,
14546 N_64 = 0x0008000,
14547 N_P8 = 0x0010000,
14548 N_P16 = 0x0020000,
14549 N_F16 = 0x0040000,
14550 N_F32 = 0x0080000,
14551 N_F64 = 0x0100000,
4f51b4bd 14552 N_P64 = 0x0200000,
c921be7d
NC
14553 N_KEY = 0x1000000, /* Key element (main type specifier). */
14554 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14555 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14556 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14557 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14558 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14559 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14560 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14561 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14562 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14563 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14564 N_UTYP = 0,
4f51b4bd 14565 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14566};
14567
dcbf9037
JB
14568#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14569
5287ad62
JB
14570#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14571#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14572#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14573#define N_S_32 (N_S8 | N_S16 | N_S32)
14574#define N_F_16_32 (N_F16 | N_F32)
14575#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14576#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14577#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14578#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14579#define N_I_MVE (N_I8 | N_I16 | N_I32)
14580#define N_F_MVE (N_F16 | N_F32)
14581#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14582
14583/* Pass this as the first type argument to neon_check_type to ignore types
14584 altogether. */
14585#define N_IGNORE_TYPE (N_KEY | N_EQK)
14586
037e8744
JB
14587/* Select a "shape" for the current instruction (describing register types or
14588 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14589 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14590 function of operand parsing, so this function doesn't need to be called.
14591 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14592
14593static enum neon_shape
037e8744 14594neon_select_shape (enum neon_shape shape, ...)
5287ad62 14595{
037e8744
JB
14596 va_list ap;
14597 enum neon_shape first_shape = shape;
5287ad62
JB
14598
14599 /* Fix missing optional operands. FIXME: we don't know at this point how
14600 many arguments we should have, so this makes the assumption that we have
14601 > 1. This is true of all current Neon opcodes, I think, but may not be
14602 true in the future. */
14603 if (!inst.operands[1].present)
14604 inst.operands[1] = inst.operands[0];
14605
037e8744 14606 va_start (ap, shape);
5f4273c7 14607
21d799b5 14608 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14609 {
14610 unsigned j;
14611 int matches = 1;
14612
14613 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14614 {
14615 if (!inst.operands[j].present)
14616 {
14617 matches = 0;
14618 break;
14619 }
14620
14621 switch (neon_shape_tab[shape].el[j])
14622 {
d54af2d0
RL
14623 /* If a .f16, .16, .u16, .s16 type specifier is given over
14624 a VFP single precision register operand, it's essentially
14625 means only half of the register is used.
14626
14627 If the type specifier is given after the mnemonics, the
14628 information is stored in inst.vectype. If the type specifier
14629 is given after register operand, the information is stored
14630 in inst.operands[].vectype.
14631
14632 When there is only one type specifier, and all the register
14633 operands are the same type of hardware register, the type
14634 specifier applies to all register operands.
14635
14636 If no type specifier is given, the shape is inferred from
14637 operand information.
14638
14639 for example:
14640 vadd.f16 s0, s1, s2: NS_HHH
14641 vabs.f16 s0, s1: NS_HH
14642 vmov.f16 s0, r1: NS_HR
14643 vmov.f16 r0, s1: NS_RH
14644 vcvt.f16 r0, s1: NS_RH
14645 vcvt.f16.s32 s2, s2, #29: NS_HFI
14646 vcvt.f16.s32 s2, s2: NS_HF
14647 */
14648 case SE_H:
14649 if (!(inst.operands[j].isreg
14650 && inst.operands[j].isvec
14651 && inst.operands[j].issingle
14652 && !inst.operands[j].isquad
14653 && ((inst.vectype.elems == 1
14654 && inst.vectype.el[0].size == 16)
14655 || (inst.vectype.elems > 1
14656 && inst.vectype.el[j].size == 16)
14657 || (inst.vectype.elems == 0
14658 && inst.operands[j].vectype.type != NT_invtype
14659 && inst.operands[j].vectype.size == 16))))
14660 matches = 0;
14661 break;
14662
477330fc
RM
14663 case SE_F:
14664 if (!(inst.operands[j].isreg
14665 && inst.operands[j].isvec
14666 && inst.operands[j].issingle
d54af2d0
RL
14667 && !inst.operands[j].isquad
14668 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14669 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14670 || (inst.vectype.elems == 0
14671 && (inst.operands[j].vectype.size == 32
14672 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14673 matches = 0;
14674 break;
14675
14676 case SE_D:
14677 if (!(inst.operands[j].isreg
14678 && inst.operands[j].isvec
14679 && !inst.operands[j].isquad
14680 && !inst.operands[j].issingle))
14681 matches = 0;
14682 break;
14683
14684 case SE_R:
14685 if (!(inst.operands[j].isreg
14686 && !inst.operands[j].isvec))
14687 matches = 0;
14688 break;
14689
14690 case SE_Q:
14691 if (!(inst.operands[j].isreg
14692 && inst.operands[j].isvec
14693 && inst.operands[j].isquad
14694 && !inst.operands[j].issingle))
14695 matches = 0;
14696 break;
14697
14698 case SE_I:
14699 if (!(!inst.operands[j].isreg
14700 && !inst.operands[j].isscalar))
14701 matches = 0;
14702 break;
14703
14704 case SE_S:
14705 if (!(!inst.operands[j].isreg
14706 && inst.operands[j].isscalar))
14707 matches = 0;
14708 break;
14709
14710 case SE_L:
14711 break;
14712 }
3fde54a2
JZ
14713 if (!matches)
14714 break;
477330fc 14715 }
ad6cec43
MGD
14716 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14717 /* We've matched all the entries in the shape table, and we don't
14718 have any left over operands which have not been matched. */
477330fc 14719 break;
037e8744 14720 }
5f4273c7 14721
037e8744 14722 va_end (ap);
5287ad62 14723
037e8744
JB
14724 if (shape == NS_NULL && first_shape != NS_NULL)
14725 first_error (_("invalid instruction shape"));
5287ad62 14726
037e8744
JB
14727 return shape;
14728}
5287ad62 14729
037e8744
JB
14730/* True if SHAPE is predominantly a quadword operation (most of the time, this
14731 means the Q bit should be set). */
14732
14733static int
14734neon_quad (enum neon_shape shape)
14735{
14736 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14737}
037e8744 14738
5287ad62
JB
14739static void
14740neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14741 unsigned *g_size)
5287ad62
JB
14742{
14743 /* Allow modification to be made to types which are constrained to be
14744 based on the key element, based on bits set alongside N_EQK. */
14745 if ((typebits & N_EQK) != 0)
14746 {
14747 if ((typebits & N_HLF) != 0)
14748 *g_size /= 2;
14749 else if ((typebits & N_DBL) != 0)
14750 *g_size *= 2;
14751 if ((typebits & N_SGN) != 0)
14752 *g_type = NT_signed;
14753 else if ((typebits & N_UNS) != 0)
477330fc 14754 *g_type = NT_unsigned;
5287ad62 14755 else if ((typebits & N_INT) != 0)
477330fc 14756 *g_type = NT_integer;
5287ad62 14757 else if ((typebits & N_FLT) != 0)
477330fc 14758 *g_type = NT_float;
dcbf9037 14759 else if ((typebits & N_SIZ) != 0)
477330fc 14760 *g_type = NT_untyped;
5287ad62
JB
14761 }
14762}
5f4273c7 14763
5287ad62
JB
14764/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14765 operand type, i.e. the single type specified in a Neon instruction when it
14766 is the only one given. */
14767
14768static struct neon_type_el
14769neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14770{
14771 struct neon_type_el dest = *key;
5f4273c7 14772
9c2799c2 14773 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14774
5287ad62
JB
14775 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14776
14777 return dest;
14778}
14779
14780/* Convert Neon type and size into compact bitmask representation. */
14781
14782static enum neon_type_mask
14783type_chk_of_el_type (enum neon_el_type type, unsigned size)
14784{
14785 switch (type)
14786 {
14787 case NT_untyped:
14788 switch (size)
477330fc
RM
14789 {
14790 case 8: return N_8;
14791 case 16: return N_16;
14792 case 32: return N_32;
14793 case 64: return N_64;
14794 default: ;
14795 }
5287ad62
JB
14796 break;
14797
14798 case NT_integer:
14799 switch (size)
477330fc
RM
14800 {
14801 case 8: return N_I8;
14802 case 16: return N_I16;
14803 case 32: return N_I32;
14804 case 64: return N_I64;
14805 default: ;
14806 }
5287ad62
JB
14807 break;
14808
14809 case NT_float:
037e8744 14810 switch (size)
477330fc 14811 {
8e79c3df 14812 case 16: return N_F16;
477330fc
RM
14813 case 32: return N_F32;
14814 case 64: return N_F64;
14815 default: ;
14816 }
5287ad62
JB
14817 break;
14818
14819 case NT_poly:
14820 switch (size)
477330fc
RM
14821 {
14822 case 8: return N_P8;
14823 case 16: return N_P16;
4f51b4bd 14824 case 64: return N_P64;
477330fc
RM
14825 default: ;
14826 }
5287ad62
JB
14827 break;
14828
14829 case NT_signed:
14830 switch (size)
477330fc
RM
14831 {
14832 case 8: return N_S8;
14833 case 16: return N_S16;
14834 case 32: return N_S32;
14835 case 64: return N_S64;
14836 default: ;
14837 }
5287ad62
JB
14838 break;
14839
14840 case NT_unsigned:
14841 switch (size)
477330fc
RM
14842 {
14843 case 8: return N_U8;
14844 case 16: return N_U16;
14845 case 32: return N_U32;
14846 case 64: return N_U64;
14847 default: ;
14848 }
5287ad62
JB
14849 break;
14850
14851 default: ;
14852 }
5f4273c7 14853
5287ad62
JB
14854 return N_UTYP;
14855}
14856
14857/* Convert compact Neon bitmask type representation to a type and size. Only
14858 handles the case where a single bit is set in the mask. */
14859
dcbf9037 14860static int
5287ad62 14861el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14862 enum neon_type_mask mask)
5287ad62 14863{
dcbf9037
JB
14864 if ((mask & N_EQK) != 0)
14865 return FAIL;
14866
5287ad62
JB
14867 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14868 *size = 8;
c70a8987 14869 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14870 *size = 16;
dcbf9037 14871 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14872 *size = 32;
4f51b4bd 14873 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14874 *size = 64;
dcbf9037
JB
14875 else
14876 return FAIL;
14877
5287ad62
JB
14878 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14879 *type = NT_signed;
dcbf9037 14880 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14881 *type = NT_unsigned;
dcbf9037 14882 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14883 *type = NT_integer;
dcbf9037 14884 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14885 *type = NT_untyped;
4f51b4bd 14886 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14887 *type = NT_poly;
d54af2d0 14888 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14889 *type = NT_float;
dcbf9037
JB
14890 else
14891 return FAIL;
5f4273c7 14892
dcbf9037 14893 return SUCCESS;
5287ad62
JB
14894}
14895
14896/* Modify a bitmask of allowed types. This is only needed for type
14897 relaxation. */
14898
14899static unsigned
14900modify_types_allowed (unsigned allowed, unsigned mods)
14901{
14902 unsigned size;
14903 enum neon_el_type type;
14904 unsigned destmask;
14905 int i;
5f4273c7 14906
5287ad62 14907 destmask = 0;
5f4273c7 14908
5287ad62
JB
14909 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14910 {
21d799b5 14911 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14912 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14913 {
14914 neon_modify_type_size (mods, &type, &size);
14915 destmask |= type_chk_of_el_type (type, size);
14916 }
5287ad62 14917 }
5f4273c7 14918
5287ad62
JB
14919 return destmask;
14920}
14921
14922/* Check type and return type classification.
14923 The manual states (paraphrase): If one datatype is given, it indicates the
14924 type given in:
14925 - the second operand, if there is one
14926 - the operand, if there is no second operand
14927 - the result, if there are no operands.
14928 This isn't quite good enough though, so we use a concept of a "key" datatype
14929 which is set on a per-instruction basis, which is the one which matters when
14930 only one data type is written.
14931 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14932 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14933
14934static struct neon_type_el
14935neon_check_type (unsigned els, enum neon_shape ns, ...)
14936{
14937 va_list ap;
14938 unsigned i, pass, key_el = 0;
14939 unsigned types[NEON_MAX_TYPE_ELS];
14940 enum neon_el_type k_type = NT_invtype;
14941 unsigned k_size = -1u;
14942 struct neon_type_el badtype = {NT_invtype, -1};
14943 unsigned key_allowed = 0;
14944
14945 /* Optional registers in Neon instructions are always (not) in operand 1.
14946 Fill in the missing operand here, if it was omitted. */
14947 if (els > 1 && !inst.operands[1].present)
14948 inst.operands[1] = inst.operands[0];
14949
14950 /* Suck up all the varargs. */
14951 va_start (ap, ns);
14952 for (i = 0; i < els; i++)
14953 {
14954 unsigned thisarg = va_arg (ap, unsigned);
14955 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14956 {
14957 va_end (ap);
14958 return badtype;
14959 }
5287ad62
JB
14960 types[i] = thisarg;
14961 if ((thisarg & N_KEY) != 0)
477330fc 14962 key_el = i;
5287ad62
JB
14963 }
14964 va_end (ap);
14965
dcbf9037
JB
14966 if (inst.vectype.elems > 0)
14967 for (i = 0; i < els; i++)
14968 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14969 {
14970 first_error (_("types specified in both the mnemonic and operands"));
14971 return badtype;
14972 }
dcbf9037 14973
5287ad62
JB
14974 /* Duplicate inst.vectype elements here as necessary.
14975 FIXME: No idea if this is exactly the same as the ARM assembler,
14976 particularly when an insn takes one register and one non-register
14977 operand. */
14978 if (inst.vectype.elems == 1 && els > 1)
14979 {
14980 unsigned j;
14981 inst.vectype.elems = els;
14982 inst.vectype.el[key_el] = inst.vectype.el[0];
14983 for (j = 0; j < els; j++)
477330fc
RM
14984 if (j != key_el)
14985 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14986 types[j]);
dcbf9037
JB
14987 }
14988 else if (inst.vectype.elems == 0 && els > 0)
14989 {
14990 unsigned j;
14991 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14992 after each operand. We allow some flexibility here; as long as the
14993 "key" operand has a type, we can infer the others. */
dcbf9037 14994 for (j = 0; j < els; j++)
477330fc
RM
14995 if (inst.operands[j].vectype.type != NT_invtype)
14996 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14997
14998 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14999 {
15000 for (j = 0; j < els; j++)
15001 if (inst.operands[j].vectype.type == NT_invtype)
15002 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15003 types[j]);
15004 }
dcbf9037 15005 else
477330fc
RM
15006 {
15007 first_error (_("operand types can't be inferred"));
15008 return badtype;
15009 }
5287ad62
JB
15010 }
15011 else if (inst.vectype.elems != els)
15012 {
dcbf9037 15013 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
15014 return badtype;
15015 }
15016
15017 for (pass = 0; pass < 2; pass++)
15018 {
15019 for (i = 0; i < els; i++)
477330fc
RM
15020 {
15021 unsigned thisarg = types[i];
15022 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15023 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15024 enum neon_el_type g_type = inst.vectype.el[i].type;
15025 unsigned g_size = inst.vectype.el[i].size;
15026
15027 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 15028 integer types if sign-specific variants are unavailable. */
477330fc 15029 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
15030 && (types_allowed & N_SU_ALL) == 0)
15031 g_type = NT_integer;
15032
477330fc 15033 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
15034 them. Some instructions only care about signs for some element
15035 sizes, so handle that properly. */
477330fc 15036 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
15037 && ((g_size == 8 && (types_allowed & N_8) != 0)
15038 || (g_size == 16 && (types_allowed & N_16) != 0)
15039 || (g_size == 32 && (types_allowed & N_32) != 0)
15040 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15041 g_type = NT_untyped;
15042
477330fc
RM
15043 if (pass == 0)
15044 {
15045 if ((thisarg & N_KEY) != 0)
15046 {
15047 k_type = g_type;
15048 k_size = g_size;
15049 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15050
15051 /* Check architecture constraint on FP16 extension. */
15052 if (k_size == 16
15053 && k_type == NT_float
15054 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15055 {
15056 inst.error = _(BAD_FP16);
15057 return badtype;
15058 }
477330fc
RM
15059 }
15060 }
15061 else
15062 {
15063 if ((thisarg & N_VFP) != 0)
15064 {
15065 enum neon_shape_el regshape;
15066 unsigned regwidth, match;
99b253c5
NC
15067
15068 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15069 if (ns == NS_NULL)
15070 {
15071 first_error (_("invalid instruction shape"));
15072 return badtype;
15073 }
477330fc
RM
15074 regshape = neon_shape_tab[ns].el[i];
15075 regwidth = neon_shape_el_size[regshape];
15076
15077 /* In VFP mode, operands must match register widths. If we
15078 have a key operand, use its width, else use the width of
15079 the current operand. */
15080 if (k_size != -1u)
15081 match = k_size;
15082 else
15083 match = g_size;
15084
9db2f6b4
RL
15085 /* FP16 will use a single precision register. */
15086 if (regwidth == 32 && match == 16)
15087 {
15088 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15089 match = regwidth;
15090 else
15091 {
15092 inst.error = _(BAD_FP16);
15093 return badtype;
15094 }
15095 }
15096
477330fc
RM
15097 if (regwidth != match)
15098 {
15099 first_error (_("operand size must match register width"));
15100 return badtype;
15101 }
15102 }
15103
15104 if ((thisarg & N_EQK) == 0)
15105 {
15106 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15107
15108 if ((given_type & types_allowed) == 0)
15109 {
a302e574 15110 first_error (BAD_SIMD_TYPE);
477330fc
RM
15111 return badtype;
15112 }
15113 }
15114 else
15115 {
15116 enum neon_el_type mod_k_type = k_type;
15117 unsigned mod_k_size = k_size;
15118 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15119 if (g_type != mod_k_type || g_size != mod_k_size)
15120 {
15121 first_error (_("inconsistent types in Neon instruction"));
15122 return badtype;
15123 }
15124 }
15125 }
15126 }
5287ad62
JB
15127 }
15128
15129 return inst.vectype.el[key_el];
15130}
15131
037e8744 15132/* Neon-style VFP instruction forwarding. */
5287ad62 15133
037e8744
JB
15134/* Thumb VFP instructions have 0xE in the condition field. */
15135
15136static void
15137do_vfp_cond_or_thumb (void)
5287ad62 15138{
88714cb8
DG
15139 inst.is_neon = 1;
15140
5287ad62 15141 if (thumb_mode)
037e8744 15142 inst.instruction |= 0xe0000000;
5287ad62 15143 else
037e8744 15144 inst.instruction |= inst.cond << 28;
5287ad62
JB
15145}
15146
037e8744
JB
15147/* Look up and encode a simple mnemonic, for use as a helper function for the
15148 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15149 etc. It is assumed that operand parsing has already been done, and that the
15150 operands are in the form expected by the given opcode (this isn't necessarily
15151 the same as the form in which they were parsed, hence some massaging must
15152 take place before this function is called).
15153 Checks current arch version against that in the looked-up opcode. */
5287ad62 15154
037e8744
JB
15155static void
15156do_vfp_nsyn_opcode (const char *opname)
5287ad62 15157{
037e8744 15158 const struct asm_opcode *opcode;
5f4273c7 15159
21d799b5 15160 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15161
037e8744
JB
15162 if (!opcode)
15163 abort ();
5287ad62 15164
037e8744 15165 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15166 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15167 _(BAD_FPU));
5287ad62 15168
88714cb8
DG
15169 inst.is_neon = 1;
15170
037e8744
JB
15171 if (thumb_mode)
15172 {
15173 inst.instruction = opcode->tvalue;
15174 opcode->tencode ();
15175 }
15176 else
15177 {
15178 inst.instruction = (inst.cond << 28) | opcode->avalue;
15179 opcode->aencode ();
15180 }
15181}
5287ad62
JB
15182
15183static void
037e8744 15184do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15185{
037e8744
JB
15186 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15187
9db2f6b4 15188 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15189 {
15190 if (is_add)
477330fc 15191 do_vfp_nsyn_opcode ("fadds");
037e8744 15192 else
477330fc 15193 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15194
15195 /* ARMv8.2 fp16 instruction. */
15196 if (rs == NS_HHH)
15197 do_scalar_fp16_v82_encode ();
037e8744
JB
15198 }
15199 else
15200 {
15201 if (is_add)
477330fc 15202 do_vfp_nsyn_opcode ("faddd");
037e8744 15203 else
477330fc 15204 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15205 }
15206}
15207
15208/* Check operand types to see if this is a VFP instruction, and if so call
15209 PFN (). */
15210
15211static int
15212try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15213{
15214 enum neon_shape rs;
15215 struct neon_type_el et;
15216
15217 switch (args)
15218 {
15219 case 2:
9db2f6b4
RL
15220 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15221 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15222 break;
5f4273c7 15223
037e8744 15224 case 3:
9db2f6b4
RL
15225 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15226 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15227 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15228 break;
15229
15230 default:
15231 abort ();
15232 }
15233
15234 if (et.type != NT_invtype)
15235 {
15236 pfn (rs);
15237 return SUCCESS;
15238 }
037e8744 15239
99b253c5 15240 inst.error = NULL;
037e8744
JB
15241 return FAIL;
15242}
15243
15244static void
15245do_vfp_nsyn_mla_mls (enum neon_shape rs)
15246{
15247 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15248
9db2f6b4 15249 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15250 {
15251 if (is_mla)
477330fc 15252 do_vfp_nsyn_opcode ("fmacs");
037e8744 15253 else
477330fc 15254 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15255
15256 /* ARMv8.2 fp16 instruction. */
15257 if (rs == NS_HHH)
15258 do_scalar_fp16_v82_encode ();
037e8744
JB
15259 }
15260 else
15261 {
15262 if (is_mla)
477330fc 15263 do_vfp_nsyn_opcode ("fmacd");
037e8744 15264 else
477330fc 15265 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15266 }
15267}
15268
62f3b8c8
PB
15269static void
15270do_vfp_nsyn_fma_fms (enum neon_shape rs)
15271{
15272 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15273
9db2f6b4 15274 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15275 {
15276 if (is_fma)
477330fc 15277 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15278 else
477330fc 15279 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15280
15281 /* ARMv8.2 fp16 instruction. */
15282 if (rs == NS_HHH)
15283 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15284 }
15285 else
15286 {
15287 if (is_fma)
477330fc 15288 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15289 else
477330fc 15290 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15291 }
15292}
15293
037e8744
JB
15294static void
15295do_vfp_nsyn_mul (enum neon_shape rs)
15296{
9db2f6b4
RL
15297 if (rs == NS_FFF || rs == NS_HHH)
15298 {
15299 do_vfp_nsyn_opcode ("fmuls");
15300
15301 /* ARMv8.2 fp16 instruction. */
15302 if (rs == NS_HHH)
15303 do_scalar_fp16_v82_encode ();
15304 }
037e8744
JB
15305 else
15306 do_vfp_nsyn_opcode ("fmuld");
15307}
15308
15309static void
15310do_vfp_nsyn_abs_neg (enum neon_shape rs)
15311{
15312 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15313 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15314
9db2f6b4 15315 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15316 {
15317 if (is_neg)
477330fc 15318 do_vfp_nsyn_opcode ("fnegs");
037e8744 15319 else
477330fc 15320 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15321
15322 /* ARMv8.2 fp16 instruction. */
15323 if (rs == NS_HH)
15324 do_scalar_fp16_v82_encode ();
037e8744
JB
15325 }
15326 else
15327 {
15328 if (is_neg)
477330fc 15329 do_vfp_nsyn_opcode ("fnegd");
037e8744 15330 else
477330fc 15331 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15332 }
15333}
15334
15335/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15336 insns belong to Neon, and are handled elsewhere. */
15337
15338static void
15339do_vfp_nsyn_ldm_stm (int is_dbmode)
15340{
15341 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15342 if (is_ldm)
15343 {
15344 if (is_dbmode)
477330fc 15345 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15346 else
477330fc 15347 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15348 }
15349 else
15350 {
15351 if (is_dbmode)
477330fc 15352 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15353 else
477330fc 15354 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15355 }
15356}
15357
037e8744
JB
15358static void
15359do_vfp_nsyn_sqrt (void)
15360{
9db2f6b4
RL
15361 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15362 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15363
9db2f6b4
RL
15364 if (rs == NS_FF || rs == NS_HH)
15365 {
15366 do_vfp_nsyn_opcode ("fsqrts");
15367
15368 /* ARMv8.2 fp16 instruction. */
15369 if (rs == NS_HH)
15370 do_scalar_fp16_v82_encode ();
15371 }
037e8744
JB
15372 else
15373 do_vfp_nsyn_opcode ("fsqrtd");
15374}
15375
15376static void
15377do_vfp_nsyn_div (void)
15378{
9db2f6b4 15379 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15380 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15381 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15382
9db2f6b4
RL
15383 if (rs == NS_FFF || rs == NS_HHH)
15384 {
15385 do_vfp_nsyn_opcode ("fdivs");
15386
15387 /* ARMv8.2 fp16 instruction. */
15388 if (rs == NS_HHH)
15389 do_scalar_fp16_v82_encode ();
15390 }
037e8744
JB
15391 else
15392 do_vfp_nsyn_opcode ("fdivd");
15393}
15394
15395static void
15396do_vfp_nsyn_nmul (void)
15397{
9db2f6b4 15398 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15399 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15400 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15401
9db2f6b4 15402 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15403 {
88714cb8 15404 NEON_ENCODE (SINGLE, inst);
037e8744 15405 do_vfp_sp_dyadic ();
9db2f6b4
RL
15406
15407 /* ARMv8.2 fp16 instruction. */
15408 if (rs == NS_HHH)
15409 do_scalar_fp16_v82_encode ();
037e8744
JB
15410 }
15411 else
15412 {
88714cb8 15413 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15414 do_vfp_dp_rd_rn_rm ();
15415 }
15416 do_vfp_cond_or_thumb ();
9db2f6b4 15417
037e8744
JB
15418}
15419
1b883319
AV
15420/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15421 (0, 1, 2, 3). */
15422
15423static unsigned
15424neon_logbits (unsigned x)
15425{
15426 return ffs (x) - 4;
15427}
15428
15429#define LOW4(R) ((R) & 0xf)
15430#define HI1(R) (((R) >> 4) & 1)
15431
15432static unsigned
15433mve_get_vcmp_vpt_cond (struct neon_type_el et)
15434{
15435 switch (et.type)
15436 {
15437 default:
15438 first_error (BAD_EL_TYPE);
15439 return 0;
15440 case NT_float:
15441 switch (inst.operands[0].imm)
15442 {
15443 default:
15444 first_error (_("invalid condition"));
15445 return 0;
15446 case 0x0:
15447 /* eq. */
15448 return 0;
15449 case 0x1:
15450 /* ne. */
15451 return 1;
15452 case 0xa:
15453 /* ge/ */
15454 return 4;
15455 case 0xb:
15456 /* lt. */
15457 return 5;
15458 case 0xc:
15459 /* gt. */
15460 return 6;
15461 case 0xd:
15462 /* le. */
15463 return 7;
15464 }
15465 case NT_integer:
15466 /* only accept eq and ne. */
15467 if (inst.operands[0].imm > 1)
15468 {
15469 first_error (_("invalid condition"));
15470 return 0;
15471 }
15472 return inst.operands[0].imm;
15473 case NT_unsigned:
15474 if (inst.operands[0].imm == 0x2)
15475 return 2;
15476 else if (inst.operands[0].imm == 0x8)
15477 return 3;
15478 else
15479 {
15480 first_error (_("invalid condition"));
15481 return 0;
15482 }
15483 case NT_signed:
15484 switch (inst.operands[0].imm)
15485 {
15486 default:
15487 first_error (_("invalid condition"));
15488 return 0;
15489 case 0xa:
15490 /* ge. */
15491 return 4;
15492 case 0xb:
15493 /* lt. */
15494 return 5;
15495 case 0xc:
15496 /* gt. */
15497 return 6;
15498 case 0xd:
15499 /* le. */
15500 return 7;
15501 }
15502 }
15503 /* Should be unreachable. */
15504 abort ();
15505}
15506
15507static void
15508do_mve_vpt (void)
15509{
15510 /* We are dealing with a vector predicated block. */
15511 if (inst.operands[0].present)
15512 {
15513 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15514 struct neon_type_el et
15515 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15516 N_EQK);
15517
15518 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15519
15520 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15521
15522 if (et.type == NT_invtype)
15523 return;
15524
15525 if (et.type == NT_float)
15526 {
15527 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15528 BAD_FPU);
15529 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15530 inst.instruction |= (et.size == 16) << 28;
15531 inst.instruction |= 0x3 << 20;
15532 }
15533 else
15534 {
15535 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15536 BAD_EL_TYPE);
15537 inst.instruction |= 1 << 28;
15538 inst.instruction |= neon_logbits (et.size) << 20;
15539 }
15540
15541 if (inst.operands[2].isquad)
15542 {
15543 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15544 inst.instruction |= LOW4 (inst.operands[2].reg);
15545 inst.instruction |= (fcond & 0x2) >> 1;
15546 }
15547 else
15548 {
15549 if (inst.operands[2].reg == REG_SP)
15550 as_tsktsk (MVE_BAD_SP);
15551 inst.instruction |= 1 << 6;
15552 inst.instruction |= (fcond & 0x2) << 4;
15553 inst.instruction |= inst.operands[2].reg;
15554 }
15555 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15556 inst.instruction |= (fcond & 0x4) << 10;
15557 inst.instruction |= (fcond & 0x1) << 7;
15558
15559 }
15560 set_pred_insn_type (VPT_INSN);
15561 now_pred.cc = 0;
15562 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15563 | ((inst.instruction & 0xe000) >> 13);
15564 now_pred.warn_deprecated = FALSE;
15565 now_pred.type = VECTOR_PRED;
15566 inst.is_neon = 1;
15567}
15568
15569static void
15570do_mve_vcmp (void)
15571{
15572 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15573 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15574 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15575 if (!inst.operands[2].present)
15576 first_error (_("MVE vector or ARM register expected"));
15577 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15578
15579 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15580 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15581 && inst.operands[1].isquad)
15582 {
15583 inst.instruction = N_MNEM_vcmp;
15584 inst.cond = 0x10;
15585 }
15586
15587 if (inst.cond > COND_ALWAYS)
15588 inst.pred_insn_type = INSIDE_VPT_INSN;
15589 else
15590 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15591
15592 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15593 struct neon_type_el et
15594 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15595 N_EQK);
15596
15597 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15598 && !inst.operands[2].iszr, BAD_PC);
15599
15600 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15601
15602 inst.instruction = 0xee010f00;
15603 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15604 inst.instruction |= (fcond & 0x4) << 10;
15605 inst.instruction |= (fcond & 0x1) << 7;
15606 if (et.type == NT_float)
15607 {
15608 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15609 BAD_FPU);
15610 inst.instruction |= (et.size == 16) << 28;
15611 inst.instruction |= 0x3 << 20;
15612 }
15613 else
15614 {
15615 inst.instruction |= 1 << 28;
15616 inst.instruction |= neon_logbits (et.size) << 20;
15617 }
15618 if (inst.operands[2].isquad)
15619 {
15620 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15621 inst.instruction |= (fcond & 0x2) >> 1;
15622 inst.instruction |= LOW4 (inst.operands[2].reg);
15623 }
15624 else
15625 {
15626 if (inst.operands[2].reg == REG_SP)
15627 as_tsktsk (MVE_BAD_SP);
15628 inst.instruction |= 1 << 6;
15629 inst.instruction |= (fcond & 0x2) << 4;
15630 inst.instruction |= inst.operands[2].reg;
15631 }
15632
15633 inst.is_neon = 1;
15634 return;
15635}
15636
935295b5
AV
15637static void
15638do_mve_vmaxa_vmina (void)
15639{
15640 if (inst.cond > COND_ALWAYS)
15641 inst.pred_insn_type = INSIDE_VPT_INSN;
15642 else
15643 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15644
15645 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15646 struct neon_type_el et
15647 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15648
15649 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15650 inst.instruction |= neon_logbits (et.size) << 18;
15651 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15652 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15653 inst.instruction |= LOW4 (inst.operands[1].reg);
15654 inst.is_neon = 1;
15655}
15656
f30ee27c
AV
15657static void
15658do_mve_vfmas (void)
15659{
15660 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15661 struct neon_type_el et
15662 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15663
15664 if (inst.cond > COND_ALWAYS)
15665 inst.pred_insn_type = INSIDE_VPT_INSN;
15666 else
15667 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15668
15669 if (inst.operands[2].reg == REG_SP)
15670 as_tsktsk (MVE_BAD_SP);
15671 else if (inst.operands[2].reg == REG_PC)
15672 as_tsktsk (MVE_BAD_PC);
15673
15674 inst.instruction |= (et.size == 16) << 28;
15675 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15676 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15677 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15678 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15679 inst.instruction |= inst.operands[2].reg;
15680 inst.is_neon = 1;
15681}
15682
b409bdb6
AV
15683static void
15684do_mve_viddup (void)
15685{
15686 if (inst.cond > COND_ALWAYS)
15687 inst.pred_insn_type = INSIDE_VPT_INSN;
15688 else
15689 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15690
15691 unsigned imm = inst.relocs[0].exp.X_add_number;
15692 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15693 _("immediate must be either 1, 2, 4 or 8"));
15694
15695 enum neon_shape rs;
15696 struct neon_type_el et;
15697 unsigned Rm;
15698 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15699 {
15700 rs = neon_select_shape (NS_QRI, NS_NULL);
15701 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15702 Rm = 7;
15703 }
15704 else
15705 {
15706 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15707 if (inst.operands[2].reg == REG_SP)
15708 as_tsktsk (MVE_BAD_SP);
15709 else if (inst.operands[2].reg == REG_PC)
15710 first_error (BAD_PC);
15711
15712 rs = neon_select_shape (NS_QRRI, NS_NULL);
15713 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15714 Rm = inst.operands[2].reg >> 1;
15715 }
15716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15717 inst.instruction |= neon_logbits (et.size) << 20;
15718 inst.instruction |= inst.operands[1].reg << 16;
15719 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15720 inst.instruction |= (imm > 2) << 7;
15721 inst.instruction |= Rm << 1;
15722 inst.instruction |= (imm == 2 || imm == 8);
15723 inst.is_neon = 1;
15724}
15725
2d78f95b
AV
15726static void
15727do_mve_vmlas (void)
15728{
15729 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15730 struct neon_type_el et
15731 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15732
15733 if (inst.operands[2].reg == REG_PC)
15734 as_tsktsk (MVE_BAD_PC);
15735 else if (inst.operands[2].reg == REG_SP)
15736 as_tsktsk (MVE_BAD_SP);
15737
15738 if (inst.cond > COND_ALWAYS)
15739 inst.pred_insn_type = INSIDE_VPT_INSN;
15740 else
15741 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15742
15743 inst.instruction |= (et.type == NT_unsigned) << 28;
15744 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15745 inst.instruction |= neon_logbits (et.size) << 20;
15746 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15747 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15748 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15749 inst.instruction |= inst.operands[2].reg;
15750 inst.is_neon = 1;
15751}
15752
1be7aba3
AV
15753static void
15754do_mve_vqmovn (void)
15755{
15756 struct neon_type_el et;
15757 if (inst.instruction == M_MNEM_vqmovnt
15758 || inst.instruction == M_MNEM_vqmovnb)
15759 et = neon_check_type (2, NS_QQ, N_EQK,
15760 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15761 else
15762 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15763
15764 if (inst.cond > COND_ALWAYS)
15765 inst.pred_insn_type = INSIDE_VPT_INSN;
15766 else
15767 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15768
15769 inst.instruction |= (et.type == NT_unsigned) << 28;
15770 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15771 inst.instruction |= (et.size == 32) << 18;
15772 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15773 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15774 inst.instruction |= LOW4 (inst.operands[1].reg);
15775 inst.is_neon = 1;
15776}
15777
3063888e
AV
15778static void
15779do_mve_vpsel (void)
15780{
15781 neon_select_shape (NS_QQQ, NS_NULL);
15782
15783 if (inst.cond > COND_ALWAYS)
15784 inst.pred_insn_type = INSIDE_VPT_INSN;
15785 else
15786 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15787
15788 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15789 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15790 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15791 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15792 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15793 inst.instruction |= LOW4 (inst.operands[2].reg);
15794 inst.is_neon = 1;
15795}
15796
15797static void
15798do_mve_vpnot (void)
15799{
15800 if (inst.cond > COND_ALWAYS)
15801 inst.pred_insn_type = INSIDE_VPT_INSN;
15802 else
15803 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15804}
15805
935295b5
AV
15806static void
15807do_mve_vmaxnma_vminnma (void)
15808{
15809 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15810 struct neon_type_el et
15811 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15812
15813 if (inst.cond > COND_ALWAYS)
15814 inst.pred_insn_type = INSIDE_VPT_INSN;
15815 else
15816 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15817
15818 inst.instruction |= (et.size == 16) << 28;
15819 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15820 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15821 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15822 inst.instruction |= LOW4 (inst.operands[1].reg);
15823 inst.is_neon = 1;
15824}
15825
5d281bf0
AV
15826static void
15827do_mve_vcmul (void)
15828{
15829 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15830 struct neon_type_el et
15831 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15832
15833 if (inst.cond > COND_ALWAYS)
15834 inst.pred_insn_type = INSIDE_VPT_INSN;
15835 else
15836 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15837
15838 unsigned rot = inst.relocs[0].exp.X_add_number;
15839 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15840 _("immediate out of range"));
15841
15842 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15843 || inst.operands[0].reg == inst.operands[2].reg))
15844 as_tsktsk (BAD_MVE_SRCDEST);
15845
15846 inst.instruction |= (et.size == 32) << 28;
15847 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15848 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15849 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15850 inst.instruction |= (rot > 90) << 12;
15851 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15852 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15853 inst.instruction |= LOW4 (inst.operands[2].reg);
15854 inst.instruction |= (rot == 90 || rot == 270);
15855 inst.is_neon = 1;
15856}
15857
037e8744
JB
15858static void
15859do_vfp_nsyn_cmp (void)
15860{
9db2f6b4 15861 enum neon_shape rs;
1b883319
AV
15862 if (!inst.operands[0].isreg)
15863 {
15864 do_mve_vcmp ();
15865 return;
15866 }
15867 else
15868 {
15869 constraint (inst.operands[2].present, BAD_SYNTAX);
15870 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15871 BAD_FPU);
15872 }
15873
037e8744
JB
15874 if (inst.operands[1].isreg)
15875 {
9db2f6b4
RL
15876 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15877 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15878
9db2f6b4 15879 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15880 {
15881 NEON_ENCODE (SINGLE, inst);
15882 do_vfp_sp_monadic ();
15883 }
037e8744 15884 else
477330fc
RM
15885 {
15886 NEON_ENCODE (DOUBLE, inst);
15887 do_vfp_dp_rd_rm ();
15888 }
037e8744
JB
15889 }
15890 else
15891 {
9db2f6b4
RL
15892 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15893 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15894
15895 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15896 {
15897 case N_MNEM_vcmp:
15898 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15899 break;
15900 case N_MNEM_vcmpe:
15901 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15902 break;
15903 default:
15904 abort ();
15905 }
5f4273c7 15906
9db2f6b4 15907 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15908 {
15909 NEON_ENCODE (SINGLE, inst);
15910 do_vfp_sp_compare_z ();
15911 }
037e8744 15912 else
477330fc
RM
15913 {
15914 NEON_ENCODE (DOUBLE, inst);
15915 do_vfp_dp_rd ();
15916 }
037e8744
JB
15917 }
15918 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15919
15920 /* ARMv8.2 fp16 instruction. */
15921 if (rs == NS_HI || rs == NS_HH)
15922 do_scalar_fp16_v82_encode ();
037e8744
JB
15923}
15924
15925static void
15926nsyn_insert_sp (void)
15927{
15928 inst.operands[1] = inst.operands[0];
15929 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15930 inst.operands[0].reg = REG_SP;
037e8744
JB
15931 inst.operands[0].isreg = 1;
15932 inst.operands[0].writeback = 1;
15933 inst.operands[0].present = 1;
15934}
15935
15936static void
15937do_vfp_nsyn_push (void)
15938{
15939 nsyn_insert_sp ();
b126985e
NC
15940
15941 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15942 _("register list must contain at least 1 and at most 16 "
15943 "registers"));
15944
037e8744
JB
15945 if (inst.operands[1].issingle)
15946 do_vfp_nsyn_opcode ("fstmdbs");
15947 else
15948 do_vfp_nsyn_opcode ("fstmdbd");
15949}
15950
15951static void
15952do_vfp_nsyn_pop (void)
15953{
15954 nsyn_insert_sp ();
b126985e
NC
15955
15956 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15957 _("register list must contain at least 1 and at most 16 "
15958 "registers"));
15959
037e8744 15960 if (inst.operands[1].issingle)
22b5b651 15961 do_vfp_nsyn_opcode ("fldmias");
037e8744 15962 else
22b5b651 15963 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
15964}
15965
15966/* Fix up Neon data-processing instructions, ORing in the correct bits for
15967 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15968
88714cb8
DG
15969static void
15970neon_dp_fixup (struct arm_it* insn)
037e8744 15971{
88714cb8
DG
15972 unsigned int i = insn->instruction;
15973 insn->is_neon = 1;
15974
037e8744
JB
15975 if (thumb_mode)
15976 {
15977 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15978 if (i & (1 << 24))
477330fc 15979 i |= 1 << 28;
5f4273c7 15980
037e8744 15981 i &= ~(1 << 24);
5f4273c7 15982
037e8744
JB
15983 i |= 0xef000000;
15984 }
15985 else
15986 i |= 0xf2000000;
5f4273c7 15987
88714cb8 15988 insn->instruction = i;
037e8744
JB
15989}
15990
5ee91343 15991static void
7df54120 15992mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
15993{
15994 if (inst.operands[2].reg == REG_SP)
15995 as_tsktsk (MVE_BAD_SP);
15996 else if (inst.operands[2].reg == REG_PC)
15997 as_tsktsk (MVE_BAD_PC);
15998
15999 if (fp)
16000 {
16001 /* vadd. */
16002 if (((unsigned)inst.instruction) == 0xd00)
16003 inst.instruction = 0xee300f40;
16004 /* vsub. */
16005 else if (((unsigned)inst.instruction) == 0x200d00)
16006 inst.instruction = 0xee301f40;
a8465a06
AV
16007 /* vmul. */
16008 else if (((unsigned)inst.instruction) == 0x1000d10)
16009 inst.instruction = 0xee310e60;
5ee91343
AV
16010
16011 /* Setting size which is 1 for F16 and 0 for F32. */
16012 inst.instruction |= (size == 16) << 28;
16013 }
16014 else
16015 {
16016 /* vadd. */
16017 if (((unsigned)inst.instruction) == 0x800)
16018 inst.instruction = 0xee010f40;
16019 /* vsub. */
16020 else if (((unsigned)inst.instruction) == 0x1000800)
16021 inst.instruction = 0xee011f40;
7df54120
AV
16022 /* vhadd. */
16023 else if (((unsigned)inst.instruction) == 0)
16024 inst.instruction = 0xee000f40;
16025 /* vhsub. */
16026 else if (((unsigned)inst.instruction) == 0x200)
16027 inst.instruction = 0xee001f40;
a8465a06
AV
16028 /* vmla. */
16029 else if (((unsigned)inst.instruction) == 0x900)
16030 inst.instruction = 0xee010e40;
16031 /* vmul. */
16032 else if (((unsigned)inst.instruction) == 0x910)
16033 inst.instruction = 0xee011e60;
16034 /* vqadd. */
16035 else if (((unsigned)inst.instruction) == 0x10)
16036 inst.instruction = 0xee000f60;
16037 /* vqsub. */
16038 else if (((unsigned)inst.instruction) == 0x210)
16039 inst.instruction = 0xee001f60;
42b16635
AV
16040 /* vqrdmlah. */
16041 else if (((unsigned)inst.instruction) == 0x3000b10)
16042 inst.instruction = 0xee000e40;
16043 /* vqdmulh. */
16044 else if (((unsigned)inst.instruction) == 0x0000b00)
16045 inst.instruction = 0xee010e60;
16046 /* vqrdmulh. */
16047 else if (((unsigned)inst.instruction) == 0x1000b00)
16048 inst.instruction = 0xfe010e60;
7df54120
AV
16049
16050 /* Set U-bit. */
16051 inst.instruction |= U << 28;
16052
5ee91343
AV
16053 /* Setting bits for size. */
16054 inst.instruction |= neon_logbits (size) << 20;
16055 }
16056 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16057 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16058 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16059 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16060 inst.instruction |= inst.operands[2].reg;
16061 inst.is_neon = 1;
16062}
16063
a302e574
AV
16064static void
16065mve_encode_rqq (unsigned bit28, unsigned size)
16066{
16067 inst.instruction |= bit28 << 28;
16068 inst.instruction |= neon_logbits (size) << 20;
16069 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16070 inst.instruction |= inst.operands[0].reg << 12;
16071 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16072 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16073 inst.instruction |= LOW4 (inst.operands[2].reg);
16074 inst.is_neon = 1;
16075}
16076
886e1c73
AV
16077static void
16078mve_encode_qqq (int ubit, int size)
16079{
16080
16081 inst.instruction |= (ubit != 0) << 28;
16082 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16083 inst.instruction |= neon_logbits (size) << 20;
16084 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16085 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16086 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16087 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16088 inst.instruction |= LOW4 (inst.operands[2].reg);
16089
16090 inst.is_neon = 1;
16091}
16092
26c1e780
AV
16093static void
16094mve_encode_rq (unsigned bit28, unsigned size)
16095{
16096 inst.instruction |= bit28 << 28;
16097 inst.instruction |= neon_logbits (size) << 18;
16098 inst.instruction |= inst.operands[0].reg << 12;
16099 inst.instruction |= LOW4 (inst.operands[1].reg);
16100 inst.is_neon = 1;
16101}
886e1c73 16102
93925576
AV
16103static void
16104mve_encode_rrqq (unsigned U, unsigned size)
16105{
16106 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16107
16108 inst.instruction |= U << 28;
16109 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16110 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16111 inst.instruction |= (size == 32) << 16;
16112 inst.instruction |= inst.operands[0].reg << 12;
16113 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16114 inst.instruction |= inst.operands[3].reg;
16115 inst.is_neon = 1;
16116}
16117
037e8744
JB
16118/* Encode insns with bit pattern:
16119
16120 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16121 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 16122
037e8744
JB
16123 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16124 different meaning for some instruction. */
16125
16126static void
16127neon_three_same (int isquad, int ubit, int size)
16128{
16129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16130 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16131 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16132 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16133 inst.instruction |= LOW4 (inst.operands[2].reg);
16134 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16135 inst.instruction |= (isquad != 0) << 6;
16136 inst.instruction |= (ubit != 0) << 24;
16137 if (size != -1)
16138 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16139
88714cb8 16140 neon_dp_fixup (&inst);
037e8744
JB
16141}
16142
16143/* Encode instructions of the form:
16144
16145 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16146 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
16147
16148 Don't write size if SIZE == -1. */
16149
16150static void
16151neon_two_same (int qbit, int ubit, int size)
16152{
16153 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16154 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16155 inst.instruction |= LOW4 (inst.operands[1].reg);
16156 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16157 inst.instruction |= (qbit != 0) << 6;
16158 inst.instruction |= (ubit != 0) << 24;
16159
16160 if (size != -1)
16161 inst.instruction |= neon_logbits (size) << 18;
16162
88714cb8 16163 neon_dp_fixup (&inst);
5287ad62
JB
16164}
16165
7df54120
AV
16166enum vfp_or_neon_is_neon_bits
16167{
16168NEON_CHECK_CC = 1,
16169NEON_CHECK_ARCH = 2,
16170NEON_CHECK_ARCH8 = 4
16171};
16172
16173/* Call this function if an instruction which may have belonged to the VFP or
16174 Neon instruction sets, but turned out to be a Neon instruction (due to the
16175 operand types involved, etc.). We have to check and/or fix-up a couple of
16176 things:
16177
16178 - Make sure the user hasn't attempted to make a Neon instruction
16179 conditional.
16180 - Alter the value in the condition code field if necessary.
16181 - Make sure that the arch supports Neon instructions.
16182
16183 Which of these operations take place depends on bits from enum
16184 vfp_or_neon_is_neon_bits.
16185
16186 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16187 current instruction's condition is COND_ALWAYS, the condition field is
16188 changed to inst.uncond_value. This is necessary because instructions shared
16189 between VFP and Neon may be conditional for the VFP variants only, and the
16190 unconditional Neon version must have, e.g., 0xF in the condition field. */
16191
16192static int
16193vfp_or_neon_is_neon (unsigned check)
16194{
16195/* Conditions are always legal in Thumb mode (IT blocks). */
16196if (!thumb_mode && (check & NEON_CHECK_CC))
16197 {
16198 if (inst.cond != COND_ALWAYS)
16199 {
16200 first_error (_(BAD_COND));
16201 return FAIL;
16202 }
16203 if (inst.uncond_value != -1)
16204 inst.instruction |= inst.uncond_value << 28;
16205 }
16206
16207
16208 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16209 || ((check & NEON_CHECK_ARCH8)
16210 && !mark_feature_used (&fpu_neon_ext_armv8)))
16211 {
16212 first_error (_(BAD_FPU));
16213 return FAIL;
16214 }
16215
16216return SUCCESS;
16217}
16218
16219static int
16220check_simd_pred_availability (int fp, unsigned check)
16221{
16222if (inst.cond > COND_ALWAYS)
16223 {
16224 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16225 {
16226 inst.error = BAD_FPU;
16227 return 1;
16228 }
16229 inst.pred_insn_type = INSIDE_VPT_INSN;
16230 }
16231else if (inst.cond < COND_ALWAYS)
16232 {
16233 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16234 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16235 else if (vfp_or_neon_is_neon (check) == FAIL)
16236 return 2;
16237 }
16238else
16239 {
16240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16241 && vfp_or_neon_is_neon (check) == FAIL)
16242 return 3;
16243
16244 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16245 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16246 }
16247return 0;
16248}
16249
5287ad62
JB
16250/* Neon instruction encoders, in approximate order of appearance. */
16251
16252static void
16253do_neon_dyadic_i_su (void)
16254{
7df54120
AV
16255 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16256 return;
16257
16258 enum neon_shape rs;
16259 struct neon_type_el et;
16260 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16261 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16262 else
16263 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16264
16265 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16266
16267
16268 if (rs != NS_QQR)
16269 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16270 else
16271 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16272}
16273
16274static void
16275do_neon_dyadic_i64_su (void)
16276{
a8465a06
AV
16277 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16278 return;
16279 enum neon_shape rs;
16280 struct neon_type_el et;
16281 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16282 {
16283 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16284 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16285 }
16286 else
16287 {
16288 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16289 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16290 }
16291 if (rs == NS_QQR)
16292 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16293 else
16294 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16295}
16296
16297static void
16298neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16299 unsigned immbits)
5287ad62
JB
16300{
16301 unsigned size = et.size >> 3;
16302 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16303 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16304 inst.instruction |= LOW4 (inst.operands[1].reg);
16305 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16306 inst.instruction |= (isquad != 0) << 6;
16307 inst.instruction |= immbits << 16;
16308 inst.instruction |= (size >> 3) << 7;
16309 inst.instruction |= (size & 0x7) << 19;
16310 if (write_ubit)
16311 inst.instruction |= (uval != 0) << 24;
16312
88714cb8 16313 neon_dp_fixup (&inst);
5287ad62
JB
16314}
16315
16316static void
16317do_neon_shl_imm (void)
16318{
16319 if (!inst.operands[2].isreg)
16320 {
037e8744 16321 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16322 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
16323 int imm = inst.operands[2].imm;
16324
16325 constraint (imm < 0 || (unsigned)imm >= et.size,
16326 _("immediate out of range for shift"));
88714cb8 16327 NEON_ENCODE (IMMED, inst);
cb3b1e65 16328 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16329 }
16330 else
16331 {
037e8744 16332 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16333 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16334 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16335 unsigned int tmp;
16336
16337 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
16338 vshl.xx Dd, Dm, Dn
16339 whereas other 3-register operations encoded by neon_three_same have
16340 syntax like:
16341 vadd.xx Dd, Dn, Dm
16342 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16343 here. */
627907b7
JB
16344 tmp = inst.operands[2].reg;
16345 inst.operands[2].reg = inst.operands[1].reg;
16346 inst.operands[1].reg = tmp;
88714cb8 16347 NEON_ENCODE (INTEGER, inst);
037e8744 16348 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16349 }
16350}
16351
16352static void
16353do_neon_qshl_imm (void)
16354{
16355 if (!inst.operands[2].isreg)
16356 {
037e8744 16357 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16358 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 16359 int imm = inst.operands[2].imm;
627907b7 16360
cb3b1e65
JB
16361 constraint (imm < 0 || (unsigned)imm >= et.size,
16362 _("immediate out of range for shift"));
88714cb8 16363 NEON_ENCODE (IMMED, inst);
cb3b1e65 16364 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16365 }
16366 else
16367 {
037e8744 16368 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16369 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16370 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16371 unsigned int tmp;
16372
16373 /* See note in do_neon_shl_imm. */
16374 tmp = inst.operands[2].reg;
16375 inst.operands[2].reg = inst.operands[1].reg;
16376 inst.operands[1].reg = tmp;
88714cb8 16377 NEON_ENCODE (INTEGER, inst);
037e8744 16378 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16379 }
16380}
16381
627907b7
JB
16382static void
16383do_neon_rshl (void)
16384{
1be7aba3
AV
16385 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16386 return;
16387
16388 enum neon_shape rs;
16389 struct neon_type_el et;
16390 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16391 {
16392 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16393 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16394 }
16395 else
16396 {
16397 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16398 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16399 }
16400
627907b7
JB
16401 unsigned int tmp;
16402
1be7aba3
AV
16403 if (rs == NS_QQR)
16404 {
16405 if (inst.operands[2].reg == REG_PC)
16406 as_tsktsk (MVE_BAD_PC);
16407 else if (inst.operands[2].reg == REG_SP)
16408 as_tsktsk (MVE_BAD_SP);
16409
16410 constraint (inst.operands[0].reg != inst.operands[1].reg,
16411 _("invalid instruction shape"));
16412
16413 if (inst.instruction == 0x0000510)
16414 /* We are dealing with vqrshl. */
16415 inst.instruction = 0xee331ee0;
16416 else
16417 /* We are dealing with vrshl. */
16418 inst.instruction = 0xee331e60;
16419
16420 inst.instruction |= (et.type == NT_unsigned) << 28;
16421 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16422 inst.instruction |= neon_logbits (et.size) << 18;
16423 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16424 inst.instruction |= inst.operands[2].reg;
16425 inst.is_neon = 1;
16426 }
16427 else
16428 {
16429 tmp = inst.operands[2].reg;
16430 inst.operands[2].reg = inst.operands[1].reg;
16431 inst.operands[1].reg = tmp;
16432 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16433 }
627907b7
JB
16434}
16435
5287ad62
JB
16436static int
16437neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16438{
036dc3f7
PB
16439 /* Handle .I8 pseudo-instructions. */
16440 if (size == 8)
5287ad62 16441 {
5287ad62 16442 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16443 FIXME is this the intended semantics? There doesn't seem much point in
16444 accepting .I8 if so. */
5287ad62
JB
16445 immediate |= immediate << 8;
16446 size = 16;
036dc3f7
PB
16447 }
16448
16449 if (size >= 32)
16450 {
16451 if (immediate == (immediate & 0x000000ff))
16452 {
16453 *immbits = immediate;
16454 return 0x1;
16455 }
16456 else if (immediate == (immediate & 0x0000ff00))
16457 {
16458 *immbits = immediate >> 8;
16459 return 0x3;
16460 }
16461 else if (immediate == (immediate & 0x00ff0000))
16462 {
16463 *immbits = immediate >> 16;
16464 return 0x5;
16465 }
16466 else if (immediate == (immediate & 0xff000000))
16467 {
16468 *immbits = immediate >> 24;
16469 return 0x7;
16470 }
16471 if ((immediate & 0xffff) != (immediate >> 16))
16472 goto bad_immediate;
16473 immediate &= 0xffff;
5287ad62
JB
16474 }
16475
16476 if (immediate == (immediate & 0x000000ff))
16477 {
16478 *immbits = immediate;
036dc3f7 16479 return 0x9;
5287ad62
JB
16480 }
16481 else if (immediate == (immediate & 0x0000ff00))
16482 {
16483 *immbits = immediate >> 8;
036dc3f7 16484 return 0xb;
5287ad62
JB
16485 }
16486
16487 bad_immediate:
dcbf9037 16488 first_error (_("immediate value out of range"));
5287ad62
JB
16489 return FAIL;
16490}
16491
5287ad62
JB
16492static void
16493do_neon_logic (void)
16494{
16495 if (inst.operands[2].present && inst.operands[2].isreg)
16496 {
037e8744 16497 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16498 if (rs == NS_QQQ
16499 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16500 == FAIL)
16501 return;
16502 else if (rs != NS_QQQ
16503 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16504 first_error (BAD_FPU);
16505
5287ad62
JB
16506 neon_check_type (3, rs, N_IGNORE_TYPE);
16507 /* U bit and size field were set as part of the bitmask. */
88714cb8 16508 NEON_ENCODE (INTEGER, inst);
037e8744 16509 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16510 }
16511 else
16512 {
4316f0d2
DG
16513 const int three_ops_form = (inst.operands[2].present
16514 && !inst.operands[2].isreg);
16515 const int immoperand = (three_ops_form ? 2 : 1);
16516 enum neon_shape rs = (three_ops_form
16517 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16518 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16519 /* Because neon_select_shape makes the second operand a copy of the first
16520 if the second operand is not present. */
16521 if (rs == NS_QQI
16522 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16523 == FAIL)
16524 return;
16525 else if (rs != NS_QQI
16526 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16527 first_error (BAD_FPU);
16528
16529 struct neon_type_el et;
16530 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16531 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16532 else
16533 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16534 | N_KEY, N_EQK);
16535
16536 if (et.type == NT_invtype)
16537 return;
21d799b5 16538 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16539 unsigned immbits;
16540 int cmode;
5f4273c7 16541
5f4273c7 16542
4316f0d2
DG
16543 if (three_ops_form)
16544 constraint (inst.operands[0].reg != inst.operands[1].reg,
16545 _("first and second operands shall be the same register"));
16546
88714cb8 16547 NEON_ENCODE (IMMED, inst);
5287ad62 16548
4316f0d2 16549 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16550 if (et.size == 64)
16551 {
16552 /* .i64 is a pseudo-op, so the immediate must be a repeating
16553 pattern. */
4316f0d2
DG
16554 if (immbits != (inst.operands[immoperand].regisimm ?
16555 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16556 {
16557 /* Set immbits to an invalid constant. */
16558 immbits = 0xdeadbeef;
16559 }
16560 }
16561
5287ad62 16562 switch (opcode)
477330fc
RM
16563 {
16564 case N_MNEM_vbic:
16565 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16566 break;
16567
16568 case N_MNEM_vorr:
16569 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16570 break;
16571
16572 case N_MNEM_vand:
16573 /* Pseudo-instruction for VBIC. */
16574 neon_invert_size (&immbits, 0, et.size);
16575 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16576 break;
16577
16578 case N_MNEM_vorn:
16579 /* Pseudo-instruction for VORR. */
16580 neon_invert_size (&immbits, 0, et.size);
16581 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16582 break;
16583
16584 default:
16585 abort ();
16586 }
5287ad62
JB
16587
16588 if (cmode == FAIL)
477330fc 16589 return;
5287ad62 16590
037e8744 16591 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16592 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16593 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16594 inst.instruction |= cmode << 8;
16595 neon_write_immbits (immbits);
5f4273c7 16596
88714cb8 16597 neon_dp_fixup (&inst);
5287ad62
JB
16598 }
16599}
16600
16601static void
16602do_neon_bitfield (void)
16603{
037e8744 16604 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16605 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16606 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16607}
16608
16609static void
dcbf9037 16610neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16611 unsigned destbits)
5287ad62 16612{
5ee91343 16613 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16614 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16615 types | N_KEY);
5287ad62
JB
16616 if (et.type == NT_float)
16617 {
88714cb8 16618 NEON_ENCODE (FLOAT, inst);
5ee91343 16619 if (rs == NS_QQR)
7df54120 16620 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16621 else
16622 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16623 }
16624 else
16625 {
88714cb8 16626 NEON_ENCODE (INTEGER, inst);
5ee91343 16627 if (rs == NS_QQR)
a8465a06 16628 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
5ee91343
AV
16629 else
16630 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16631 }
16632}
16633
5287ad62
JB
16634
16635static void
16636do_neon_dyadic_if_su_d (void)
16637{
16638 /* This version only allow D registers, but that constraint is enforced during
16639 operand parsing so we don't need to do anything extra here. */
dcbf9037 16640 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16641}
16642
5287ad62
JB
16643static void
16644do_neon_dyadic_if_i_d (void)
16645{
428e3f1f
PB
16646 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16647 affected if we specify unsigned args. */
16648 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16649}
16650
f5f10c66
AV
16651static void
16652do_mve_vstr_vldr_QI (int size, int elsize, int load)
16653{
16654 constraint (size < 32, BAD_ADDR_MODE);
16655 constraint (size != elsize, BAD_EL_TYPE);
16656 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16657 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16658 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16659 _("destination register and offset register may not be the"
16660 " same"));
16661
16662 int imm = inst.relocs[0].exp.X_add_number;
16663 int add = 1;
16664 if (imm < 0)
16665 {
16666 add = 0;
16667 imm = -imm;
16668 }
16669 constraint ((imm % (size / 8) != 0)
16670 || imm > (0x7f << neon_logbits (size)),
16671 (size == 32) ? _("immediate must be a multiple of 4 in the"
16672 " range of +/-[0,508]")
16673 : _("immediate must be a multiple of 8 in the"
16674 " range of +/-[0,1016]"));
16675 inst.instruction |= 0x11 << 24;
16676 inst.instruction |= add << 23;
16677 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16678 inst.instruction |= inst.operands[1].writeback << 21;
16679 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16680 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16681 inst.instruction |= 1 << 12;
16682 inst.instruction |= (size == 64) << 8;
16683 inst.instruction &= 0xffffff00;
16684 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16685 inst.instruction |= imm >> neon_logbits (size);
16686}
16687
16688static void
16689do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16690{
16691 unsigned os = inst.operands[1].imm >> 5;
16692 constraint (os != 0 && size == 8,
16693 _("can not shift offsets when accessing less than half-word"));
16694 constraint (os && os != neon_logbits (size),
16695 _("shift immediate must be 1, 2 or 3 for half-word, word"
16696 " or double-word accesses respectively"));
16697 if (inst.operands[1].reg == REG_PC)
16698 as_tsktsk (MVE_BAD_PC);
16699
16700 switch (size)
16701 {
16702 case 8:
16703 constraint (elsize >= 64, BAD_EL_TYPE);
16704 break;
16705 case 16:
16706 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16707 break;
16708 case 32:
16709 case 64:
16710 constraint (elsize != size, BAD_EL_TYPE);
16711 break;
16712 default:
16713 break;
16714 }
16715 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16716 BAD_ADDR_MODE);
16717 if (load)
16718 {
16719 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16720 _("destination register and offset register may not be"
16721 " the same"));
16722 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16723 BAD_EL_TYPE);
16724 constraint (inst.vectype.el[0].type != NT_unsigned
16725 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16726 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16727 }
16728 else
16729 {
16730 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16731 }
16732
16733 inst.instruction |= 1 << 23;
16734 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16735 inst.instruction |= inst.operands[1].reg << 16;
16736 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16737 inst.instruction |= neon_logbits (elsize) << 7;
16738 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16739 inst.instruction |= LOW4 (inst.operands[1].imm);
16740 inst.instruction |= !!os;
16741}
16742
16743static void
16744do_mve_vstr_vldr_RI (int size, int elsize, int load)
16745{
16746 enum neon_el_type type = inst.vectype.el[0].type;
16747
16748 constraint (size >= 64, BAD_ADDR_MODE);
16749 switch (size)
16750 {
16751 case 16:
16752 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16753 break;
16754 case 32:
16755 constraint (elsize != size, BAD_EL_TYPE);
16756 break;
16757 default:
16758 break;
16759 }
16760 if (load)
16761 {
16762 constraint (elsize != size && type != NT_unsigned
16763 && type != NT_signed, BAD_EL_TYPE);
16764 }
16765 else
16766 {
16767 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16768 }
16769
16770 int imm = inst.relocs[0].exp.X_add_number;
16771 int add = 1;
16772 if (imm < 0)
16773 {
16774 add = 0;
16775 imm = -imm;
16776 }
16777
16778 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16779 {
16780 switch (size)
16781 {
16782 case 8:
16783 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16784 break;
16785 case 16:
16786 constraint (1, _("immediate must be a multiple of 2 in the"
16787 " range of +/-[0,254]"));
16788 break;
16789 case 32:
16790 constraint (1, _("immediate must be a multiple of 4 in the"
16791 " range of +/-[0,508]"));
16792 break;
16793 }
16794 }
16795
16796 if (size != elsize)
16797 {
16798 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16799 constraint (inst.operands[0].reg > 14,
16800 _("MVE vector register in the range [Q0..Q7] expected"));
16801 inst.instruction |= (load && type == NT_unsigned) << 28;
16802 inst.instruction |= (size == 16) << 19;
16803 inst.instruction |= neon_logbits (elsize) << 7;
16804 }
16805 else
16806 {
16807 if (inst.operands[1].reg == REG_PC)
16808 as_tsktsk (MVE_BAD_PC);
16809 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16810 as_tsktsk (MVE_BAD_SP);
16811 inst.instruction |= 1 << 12;
16812 inst.instruction |= neon_logbits (size) << 7;
16813 }
16814 inst.instruction |= inst.operands[1].preind << 24;
16815 inst.instruction |= add << 23;
16816 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16817 inst.instruction |= inst.operands[1].writeback << 21;
16818 inst.instruction |= inst.operands[1].reg << 16;
16819 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16820 inst.instruction &= 0xffffff80;
16821 inst.instruction |= imm >> neon_logbits (size);
16822
16823}
16824
16825static void
16826do_mve_vstr_vldr (void)
16827{
16828 unsigned size;
16829 int load = 0;
16830
16831 if (inst.cond > COND_ALWAYS)
16832 inst.pred_insn_type = INSIDE_VPT_INSN;
16833 else
16834 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16835
16836 switch (inst.instruction)
16837 {
16838 default:
16839 gas_assert (0);
16840 break;
16841 case M_MNEM_vldrb:
16842 load = 1;
16843 /* fall through. */
16844 case M_MNEM_vstrb:
16845 size = 8;
16846 break;
16847 case M_MNEM_vldrh:
16848 load = 1;
16849 /* fall through. */
16850 case M_MNEM_vstrh:
16851 size = 16;
16852 break;
16853 case M_MNEM_vldrw:
16854 load = 1;
16855 /* fall through. */
16856 case M_MNEM_vstrw:
16857 size = 32;
16858 break;
16859 case M_MNEM_vldrd:
16860 load = 1;
16861 /* fall through. */
16862 case M_MNEM_vstrd:
16863 size = 64;
16864 break;
16865 }
16866 unsigned elsize = inst.vectype.el[0].size;
16867
16868 if (inst.operands[1].isquad)
16869 {
16870 /* We are dealing with [Q, imm]{!} cases. */
16871 do_mve_vstr_vldr_QI (size, elsize, load);
16872 }
16873 else
16874 {
16875 if (inst.operands[1].immisreg == 2)
16876 {
16877 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16878 do_mve_vstr_vldr_RQ (size, elsize, load);
16879 }
16880 else if (!inst.operands[1].immisreg)
16881 {
16882 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16883 do_mve_vstr_vldr_RI (size, elsize, load);
16884 }
16885 else
16886 constraint (1, BAD_ADDR_MODE);
16887 }
16888
16889 inst.is_neon = 1;
16890}
16891
35c228db
AV
16892static void
16893do_mve_vst_vld (void)
16894{
16895 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16896 return;
16897
16898 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16899 || inst.relocs[0].exp.X_add_number != 0
16900 || inst.operands[1].immisreg != 0,
16901 BAD_ADDR_MODE);
16902 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16903 if (inst.operands[1].reg == REG_PC)
16904 as_tsktsk (MVE_BAD_PC);
16905 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16906 as_tsktsk (MVE_BAD_SP);
16907
16908
16909 /* These instructions are one of the "exceptions" mentioned in
16910 handle_pred_state. They are MVE instructions that are not VPT compatible
16911 and do not accept a VPT code, thus appending such a code is a syntax
16912 error. */
16913 if (inst.cond > COND_ALWAYS)
16914 first_error (BAD_SYNTAX);
16915 /* If we append a scalar condition code we can set this to
16916 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16917 else if (inst.cond < COND_ALWAYS)
16918 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16919 else
16920 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16921
16922 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16923 inst.instruction |= inst.operands[1].writeback << 21;
16924 inst.instruction |= inst.operands[1].reg << 16;
16925 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16926 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16927 inst.is_neon = 1;
16928}
16929
26c1e780
AV
16930static void
16931do_mve_vaddlv (void)
16932{
16933 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16934 struct neon_type_el et
16935 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16936
16937 if (et.type == NT_invtype)
16938 first_error (BAD_EL_TYPE);
16939
16940 if (inst.cond > COND_ALWAYS)
16941 inst.pred_insn_type = INSIDE_VPT_INSN;
16942 else
16943 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16944
16945 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16946
16947 inst.instruction |= (et.type == NT_unsigned) << 28;
16948 inst.instruction |= inst.operands[1].reg << 19;
16949 inst.instruction |= inst.operands[0].reg << 12;
16950 inst.instruction |= inst.operands[2].reg;
16951 inst.is_neon = 1;
16952}
16953
5287ad62 16954static void
5ee91343 16955do_neon_dyadic_if_su (void)
5287ad62 16956{
5ee91343
AV
16957 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16958 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16959 N_SUF_32 | N_KEY);
16960
935295b5
AV
16961 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16962 || inst.instruction == ((unsigned) N_MNEM_vmin))
16963 && et.type == NT_float
16964 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16965
5ee91343
AV
16966 if (check_simd_pred_availability (et.type == NT_float,
16967 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
16968 return;
16969
5ee91343
AV
16970 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16971}
16972
16973static void
16974do_neon_addsub_if_i (void)
16975{
16976 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16977 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
16978 return;
16979
5ee91343
AV
16980 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16981 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16982 N_EQK, N_IF_32 | N_I64 | N_KEY);
16983
16984 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16985 /* If we are parsing Q registers and the element types match MVE, which NEON
16986 also supports, then we must check whether this is an instruction that can
16987 be used by both MVE/NEON. This distinction can be made based on whether
16988 they are predicated or not. */
16989 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16990 {
16991 if (check_simd_pred_availability (et.type == NT_float,
16992 NEON_CHECK_ARCH | NEON_CHECK_CC))
16993 return;
16994 }
16995 else
16996 {
16997 /* If they are either in a D register or are using an unsupported. */
16998 if (rs != NS_QQR
16999 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17000 return;
17001 }
17002
5287ad62
JB
17003 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17004 affected if we specify unsigned args. */
dcbf9037 17005 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
17006}
17007
17008/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17009 result to be:
17010 V<op> A,B (A is operand 0, B is operand 2)
17011 to mean:
17012 V<op> A,B,A
17013 not:
17014 V<op> A,B,B
17015 so handle that case specially. */
17016
17017static void
17018neon_exchange_operands (void)
17019{
5287ad62
JB
17020 if (inst.operands[1].present)
17021 {
e1fa0163
NC
17022 void *scratch = xmalloc (sizeof (inst.operands[0]));
17023
5287ad62
JB
17024 /* Swap operands[1] and operands[2]. */
17025 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17026 inst.operands[1] = inst.operands[2];
17027 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 17028 free (scratch);
5287ad62
JB
17029 }
17030 else
17031 {
17032 inst.operands[1] = inst.operands[2];
17033 inst.operands[2] = inst.operands[0];
17034 }
17035}
17036
17037static void
17038neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17039{
17040 if (inst.operands[2].isreg)
17041 {
17042 if (invert)
477330fc 17043 neon_exchange_operands ();
dcbf9037 17044 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
17045 }
17046 else
17047 {
037e8744 17048 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 17049 struct neon_type_el et = neon_check_type (2, rs,
477330fc 17050 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 17051
88714cb8 17052 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17053 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17054 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17055 inst.instruction |= LOW4 (inst.operands[1].reg);
17056 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17057 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17058 inst.instruction |= (et.type == NT_float) << 10;
17059 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17060
88714cb8 17061 neon_dp_fixup (&inst);
5287ad62
JB
17062 }
17063}
17064
17065static void
17066do_neon_cmp (void)
17067{
cc933301 17068 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
17069}
17070
17071static void
17072do_neon_cmp_inv (void)
17073{
cc933301 17074 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
17075}
17076
17077static void
17078do_neon_ceq (void)
17079{
17080 neon_compare (N_IF_32, N_IF_32, FALSE);
17081}
17082
17083/* For multiply instructions, we have the possibility of 16-bit or 32-bit
17084 scalars, which are encoded in 5 bits, M : Rm.
17085 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17086 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
17087 index in M.
17088
17089 Dot Product instructions are similar to multiply instructions except elsize
17090 should always be 32.
17091
17092 This function translates SCALAR, which is GAS's internal encoding of indexed
17093 scalar register, to raw encoding. There is also register and index range
17094 check based on ELSIZE. */
5287ad62
JB
17095
17096static unsigned
17097neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17098{
dcbf9037
JB
17099 unsigned regno = NEON_SCALAR_REG (scalar);
17100 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
17101
17102 switch (elsize)
17103 {
17104 case 16:
17105 if (regno > 7 || elno > 3)
477330fc 17106 goto bad_scalar;
5287ad62 17107 return regno | (elno << 3);
5f4273c7 17108
5287ad62
JB
17109 case 32:
17110 if (regno > 15 || elno > 1)
477330fc 17111 goto bad_scalar;
5287ad62
JB
17112 return regno | (elno << 4);
17113
17114 default:
17115 bad_scalar:
dcbf9037 17116 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
17117 }
17118
17119 return 0;
17120}
17121
17122/* Encode multiply / multiply-accumulate scalar instructions. */
17123
17124static void
17125neon_mul_mac (struct neon_type_el et, int ubit)
17126{
dcbf9037
JB
17127 unsigned scalar;
17128
17129 /* Give a more helpful error message if we have an invalid type. */
17130 if (et.type == NT_invtype)
17131 return;
5f4273c7 17132
dcbf9037 17133 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
17134 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17135 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17136 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17137 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17138 inst.instruction |= LOW4 (scalar);
17139 inst.instruction |= HI1 (scalar) << 5;
17140 inst.instruction |= (et.type == NT_float) << 8;
17141 inst.instruction |= neon_logbits (et.size) << 20;
17142 inst.instruction |= (ubit != 0) << 24;
17143
88714cb8 17144 neon_dp_fixup (&inst);
5287ad62
JB
17145}
17146
17147static void
17148do_neon_mac_maybe_scalar (void)
17149{
037e8744
JB
17150 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17151 return;
17152
a8465a06 17153 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17154 return;
17155
5287ad62
JB
17156 if (inst.operands[2].isscalar)
17157 {
a8465a06 17158 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17159 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17160 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 17161 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 17162 NEON_ENCODE (SCALAR, inst);
037e8744 17163 neon_mul_mac (et, neon_quad (rs));
5287ad62 17164 }
a8465a06
AV
17165 else if (!inst.operands[2].isvec)
17166 {
17167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17168
17169 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17170 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17171
17172 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17173 }
5287ad62 17174 else
428e3f1f 17175 {
a8465a06 17176 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
428e3f1f
PB
17177 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17178 affected if we specify unsigned args. */
17179 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17180 }
5287ad62
JB
17181}
17182
62f3b8c8
PB
17183static void
17184do_neon_fmac (void)
17185{
d58196e0
AV
17186 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17187 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
17188 return;
17189
d58196e0 17190 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
17191 return;
17192
d58196e0
AV
17193 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17194 {
17195 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17196 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17197 N_EQK);
17198
17199 if (rs == NS_QQR)
17200 {
17201 if (inst.operands[2].reg == REG_SP)
17202 as_tsktsk (MVE_BAD_SP);
17203 else if (inst.operands[2].reg == REG_PC)
17204 as_tsktsk (MVE_BAD_PC);
17205
17206 inst.instruction = 0xee310e40;
17207 inst.instruction |= (et.size == 16) << 28;
17208 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17209 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17211 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17212 inst.instruction |= inst.operands[2].reg;
17213 inst.is_neon = 1;
17214 return;
17215 }
17216 }
17217 else
17218 {
17219 constraint (!inst.operands[2].isvec, BAD_FPU);
17220 }
17221
62f3b8c8
PB
17222 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17223}
17224
5287ad62
JB
17225static void
17226do_neon_tst (void)
17227{
037e8744 17228 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17229 struct neon_type_el et = neon_check_type (3, rs,
17230 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17231 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17232}
17233
17234/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17235 same types as the MAC equivalents. The polynomial type for this instruction
17236 is encoded the same as the integer type. */
17237
17238static void
17239do_neon_mul (void)
17240{
037e8744
JB
17241 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17242 return;
17243
a8465a06 17244 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17245 return;
17246
5287ad62 17247 if (inst.operands[2].isscalar)
a8465a06
AV
17248 {
17249 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17250 do_neon_mac_maybe_scalar ();
17251 }
5287ad62 17252 else
a8465a06
AV
17253 {
17254 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17255 {
17256 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17257 struct neon_type_el et
17258 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17259 if (et.type == NT_float)
17260 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17261 BAD_FPU);
17262
17263 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17264 }
17265 else
17266 {
17267 constraint (!inst.operands[2].isvec, BAD_FPU);
17268 neon_dyadic_misc (NT_poly,
17269 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17270 }
17271 }
5287ad62
JB
17272}
17273
17274static void
17275do_neon_qdmulh (void)
17276{
42b16635
AV
17277 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17278 return;
17279
5287ad62
JB
17280 if (inst.operands[2].isscalar)
17281 {
42b16635 17282 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17283 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17284 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17285 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17286 NEON_ENCODE (SCALAR, inst);
037e8744 17287 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
17288 }
17289 else
17290 {
42b16635
AV
17291 enum neon_shape rs;
17292 struct neon_type_el et;
17293 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17294 {
17295 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17296 et = neon_check_type (3, rs,
17297 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17298 }
17299 else
17300 {
17301 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17302 et = neon_check_type (3, rs,
17303 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17304 }
17305
88714cb8 17306 NEON_ENCODE (INTEGER, inst);
42b16635
AV
17307 if (rs == NS_QQR)
17308 mve_encode_qqr (et.size, 0, 0);
17309 else
17310 /* The U bit (rounding) comes from bit mask. */
17311 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17312 }
17313}
17314
26c1e780
AV
17315static void
17316do_mve_vaddv (void)
17317{
17318 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17319 struct neon_type_el et
17320 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17321
17322 if (et.type == NT_invtype)
17323 first_error (BAD_EL_TYPE);
17324
17325 if (inst.cond > COND_ALWAYS)
17326 inst.pred_insn_type = INSIDE_VPT_INSN;
17327 else
17328 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17329
17330 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17331
17332 mve_encode_rq (et.type == NT_unsigned, et.size);
17333}
17334
7df54120
AV
17335static void
17336do_mve_vhcadd (void)
17337{
17338 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17339 struct neon_type_el et
17340 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17341
17342 if (inst.cond > COND_ALWAYS)
17343 inst.pred_insn_type = INSIDE_VPT_INSN;
17344 else
17345 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17346
17347 unsigned rot = inst.relocs[0].exp.X_add_number;
17348 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17349
17350 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17351 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17352 "operand makes instruction UNPREDICTABLE"));
17353
17354 mve_encode_qqq (0, et.size);
17355 inst.instruction |= (rot == 270) << 12;
17356 inst.is_neon = 1;
17357}
17358
35d1cfc2
AV
17359static void
17360do_mve_vqdmull (void)
17361{
17362 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17363 struct neon_type_el et
17364 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17365
17366 if (et.size == 32
17367 && (inst.operands[0].reg == inst.operands[1].reg
17368 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17369 as_tsktsk (BAD_MVE_SRCDEST);
17370
17371 if (inst.cond > COND_ALWAYS)
17372 inst.pred_insn_type = INSIDE_VPT_INSN;
17373 else
17374 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17375
17376 if (rs == NS_QQQ)
17377 {
17378 mve_encode_qqq (et.size == 32, 64);
17379 inst.instruction |= 1;
17380 }
17381 else
17382 {
17383 mve_encode_qqr (64, et.size == 32, 0);
17384 inst.instruction |= 0x3 << 5;
17385 }
17386}
17387
c2dafc2a
AV
17388static void
17389do_mve_vadc (void)
17390{
17391 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17392 struct neon_type_el et
17393 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17394
17395 if (et.type == NT_invtype)
17396 first_error (BAD_EL_TYPE);
17397
17398 if (inst.cond > COND_ALWAYS)
17399 inst.pred_insn_type = INSIDE_VPT_INSN;
17400 else
17401 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17402
17403 mve_encode_qqq (0, 64);
17404}
17405
17406static void
17407do_mve_vbrsr (void)
17408{
17409 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17410 struct neon_type_el et
17411 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17412
17413 if (inst.cond > COND_ALWAYS)
17414 inst.pred_insn_type = INSIDE_VPT_INSN;
17415 else
17416 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17417
7df54120 17418 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17419}
17420
17421static void
17422do_mve_vsbc (void)
17423{
17424 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17425
17426 if (inst.cond > COND_ALWAYS)
17427 inst.pred_insn_type = INSIDE_VPT_INSN;
17428 else
17429 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17430
17431 mve_encode_qqq (1, 64);
17432}
17433
2d78f95b
AV
17434static void
17435do_mve_vmulh (void)
17436{
17437 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17438 struct neon_type_el et
17439 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17440
17441 if (inst.cond > COND_ALWAYS)
17442 inst.pred_insn_type = INSIDE_VPT_INSN;
17443 else
17444 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17445
17446 mve_encode_qqq (et.type == NT_unsigned, et.size);
17447}
17448
42b16635
AV
17449static void
17450do_mve_vqdmlah (void)
17451{
17452 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17453 struct neon_type_el et
17454 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17455
17456 if (inst.cond > COND_ALWAYS)
17457 inst.pred_insn_type = INSIDE_VPT_INSN;
17458 else
17459 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17460
17461 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17462}
8b8b22a4
AV
17463
17464static void
17465do_mve_vqdmladh (void)
17466{
17467 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17468 struct neon_type_el et
17469 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17470
17471 if (inst.cond > COND_ALWAYS)
17472 inst.pred_insn_type = INSIDE_VPT_INSN;
17473 else
17474 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17475
17476 if (et.size == 32
17477 && (inst.operands[0].reg == inst.operands[1].reg
17478 || inst.operands[0].reg == inst.operands[2].reg))
17479 as_tsktsk (BAD_MVE_SRCDEST);
17480
17481 mve_encode_qqq (0, et.size);
17482}
17483
17484
886e1c73
AV
17485static void
17486do_mve_vmull (void)
17487{
17488
17489 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17490 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17491 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17492 && inst.cond == COND_ALWAYS
17493 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17494 {
17495 if (rs == NS_QQQ)
17496 {
17497
17498 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17499 N_SUF_32 | N_F64 | N_P8
17500 | N_P16 | N_I_MVE | N_KEY);
17501 if (((et.type == NT_poly) && et.size == 8
17502 && ARM_CPU_IS_ANY (cpu_variant))
17503 || (et.type == NT_integer) || (et.type == NT_float))
17504 goto neon_vmul;
17505 }
17506 else
17507 goto neon_vmul;
17508 }
17509
17510 constraint (rs != NS_QQQ, BAD_FPU);
17511 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17512 N_SU_32 | N_P8 | N_P16 | N_KEY);
17513
17514 /* We are dealing with MVE's vmullt. */
17515 if (et.size == 32
17516 && (inst.operands[0].reg == inst.operands[1].reg
17517 || inst.operands[0].reg == inst.operands[2].reg))
17518 as_tsktsk (BAD_MVE_SRCDEST);
17519
17520 if (inst.cond > COND_ALWAYS)
17521 inst.pred_insn_type = INSIDE_VPT_INSN;
17522 else
17523 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17524
17525 if (et.type == NT_poly)
17526 mve_encode_qqq (neon_logbits (et.size), 64);
17527 else
17528 mve_encode_qqq (et.type == NT_unsigned, et.size);
17529
17530 return;
17531
17532neon_vmul:
17533 inst.instruction = N_MNEM_vmul;
17534 inst.cond = 0xb;
17535 if (thumb_mode)
17536 inst.pred_insn_type = INSIDE_IT_INSN;
17537 do_neon_mul ();
17538}
17539
a302e574
AV
17540static void
17541do_mve_vabav (void)
17542{
17543 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17544
17545 if (rs == NS_NULL)
17546 return;
17547
17548 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17549 return;
17550
17551 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17552 | N_S16 | N_S32 | N_U8 | N_U16
17553 | N_U32);
17554
17555 if (inst.cond > COND_ALWAYS)
17556 inst.pred_insn_type = INSIDE_VPT_INSN;
17557 else
17558 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17559
17560 mve_encode_rqq (et.type == NT_unsigned, et.size);
17561}
17562
17563static void
17564do_mve_vmladav (void)
17565{
17566 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17567 struct neon_type_el et = neon_check_type (3, rs,
17568 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17569
17570 if (et.type == NT_unsigned
17571 && (inst.instruction == M_MNEM_vmladavx
17572 || inst.instruction == M_MNEM_vmladavax
17573 || inst.instruction == M_MNEM_vmlsdav
17574 || inst.instruction == M_MNEM_vmlsdava
17575 || inst.instruction == M_MNEM_vmlsdavx
17576 || inst.instruction == M_MNEM_vmlsdavax))
17577 first_error (BAD_SIMD_TYPE);
17578
17579 constraint (inst.operands[2].reg > 14,
17580 _("MVE vector register in the range [Q0..Q7] expected"));
17581
17582 if (inst.cond > COND_ALWAYS)
17583 inst.pred_insn_type = INSIDE_VPT_INSN;
17584 else
17585 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17586
17587 if (inst.instruction == M_MNEM_vmlsdav
17588 || inst.instruction == M_MNEM_vmlsdava
17589 || inst.instruction == M_MNEM_vmlsdavx
17590 || inst.instruction == M_MNEM_vmlsdavax)
17591 inst.instruction |= (et.size == 8) << 28;
17592 else
17593 inst.instruction |= (et.size == 8) << 8;
17594
17595 mve_encode_rqq (et.type == NT_unsigned, 64);
17596 inst.instruction |= (et.size == 32) << 16;
17597}
17598
93925576
AV
17599static void
17600do_mve_vmlaldav (void)
17601{
17602 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17603 struct neon_type_el et
17604 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17605 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17606
17607 if (et.type == NT_unsigned
17608 && (inst.instruction == M_MNEM_vmlsldav
17609 || inst.instruction == M_MNEM_vmlsldava
17610 || inst.instruction == M_MNEM_vmlsldavx
17611 || inst.instruction == M_MNEM_vmlsldavax))
17612 first_error (BAD_SIMD_TYPE);
17613
17614 if (inst.cond > COND_ALWAYS)
17615 inst.pred_insn_type = INSIDE_VPT_INSN;
17616 else
17617 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17618
17619 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17620}
17621
17622static void
17623do_mve_vrmlaldavh (void)
17624{
17625 struct neon_type_el et;
17626 if (inst.instruction == M_MNEM_vrmlsldavh
17627 || inst.instruction == M_MNEM_vrmlsldavha
17628 || inst.instruction == M_MNEM_vrmlsldavhx
17629 || inst.instruction == M_MNEM_vrmlsldavhax)
17630 {
17631 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17632 if (inst.operands[1].reg == REG_SP)
17633 as_tsktsk (MVE_BAD_SP);
17634 }
17635 else
17636 {
17637 if (inst.instruction == M_MNEM_vrmlaldavhx
17638 || inst.instruction == M_MNEM_vrmlaldavhax)
17639 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17640 else
17641 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17642 N_U32 | N_S32 | N_KEY);
17643 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17644 with vmax/min instructions, making the use of SP in assembly really
17645 nonsensical, so instead of issuing a warning like we do for other uses
17646 of SP for the odd register operand we error out. */
17647 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17648 }
17649
17650 /* Make sure we still check the second operand is an odd one and that PC is
17651 disallowed. This because we are parsing for any GPR operand, to be able
17652 to distinguish between giving a warning or an error for SP as described
17653 above. */
17654 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17655 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17656
17657 if (inst.cond > COND_ALWAYS)
17658 inst.pred_insn_type = INSIDE_VPT_INSN;
17659 else
17660 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17661
17662 mve_encode_rrqq (et.type == NT_unsigned, 0);
17663}
17664
17665
8cd78170
AV
17666static void
17667do_mve_vmaxnmv (void)
17668{
17669 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17670 struct neon_type_el et
17671 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17672
17673 if (inst.cond > COND_ALWAYS)
17674 inst.pred_insn_type = INSIDE_VPT_INSN;
17675 else
17676 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17677
17678 if (inst.operands[0].reg == REG_SP)
17679 as_tsktsk (MVE_BAD_SP);
17680 else if (inst.operands[0].reg == REG_PC)
17681 as_tsktsk (MVE_BAD_PC);
17682
17683 mve_encode_rq (et.size == 16, 64);
17684}
17685
13ccd4c0
AV
17686static void
17687do_mve_vmaxv (void)
17688{
17689 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17690 struct neon_type_el et;
17691
17692 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17693 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17694 else
17695 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17696
17697 if (inst.cond > COND_ALWAYS)
17698 inst.pred_insn_type = INSIDE_VPT_INSN;
17699 else
17700 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17701
17702 if (inst.operands[0].reg == REG_SP)
17703 as_tsktsk (MVE_BAD_SP);
17704 else if (inst.operands[0].reg == REG_PC)
17705 as_tsktsk (MVE_BAD_PC);
17706
17707 mve_encode_rq (et.type == NT_unsigned, et.size);
17708}
17709
17710
643afb90
MW
17711static void
17712do_neon_qrdmlah (void)
17713{
42b16635
AV
17714 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17715 return;
17716 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
643afb90 17717 {
42b16635
AV
17718 /* Check we're on the correct architecture. */
17719 if (!mark_feature_used (&fpu_neon_ext_armv8))
17720 inst.error
17721 = _("instruction form not available on this architecture.");
17722 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17723 {
17724 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17725 record_feature_use (&fpu_neon_ext_v8_1);
17726 }
17727 if (inst.operands[2].isscalar)
17728 {
17729 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17730 struct neon_type_el et = neon_check_type (3, rs,
17731 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17732 NEON_ENCODE (SCALAR, inst);
17733 neon_mul_mac (et, neon_quad (rs));
17734 }
17735 else
17736 {
17737 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17738 struct neon_type_el et = neon_check_type (3, rs,
17739 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17740 NEON_ENCODE (INTEGER, inst);
17741 /* The U bit (rounding) comes from bit mask. */
17742 neon_three_same (neon_quad (rs), 0, et.size);
17743 }
643afb90
MW
17744 }
17745 else
17746 {
42b16635
AV
17747 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17748 struct neon_type_el et
17749 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17750
643afb90 17751 NEON_ENCODE (INTEGER, inst);
42b16635 17752 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
643afb90
MW
17753 }
17754}
17755
5287ad62
JB
17756static void
17757do_neon_fcmp_absolute (void)
17758{
037e8744 17759 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17760 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17761 N_F_16_32 | N_KEY);
5287ad62 17762 /* Size field comes from bit mask. */
cc933301 17763 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17764}
17765
17766static void
17767do_neon_fcmp_absolute_inv (void)
17768{
17769 neon_exchange_operands ();
17770 do_neon_fcmp_absolute ();
17771}
17772
17773static void
17774do_neon_step (void)
17775{
037e8744 17776 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17777 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17778 N_F_16_32 | N_KEY);
17779 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17780}
17781
17782static void
17783do_neon_abs_neg (void)
17784{
037e8744
JB
17785 enum neon_shape rs;
17786 struct neon_type_el et;
5f4273c7 17787
037e8744
JB
17788 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17789 return;
17790
037e8744 17791 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17792 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17793
485dee97
AV
17794 if (check_simd_pred_availability (et.type == NT_float,
17795 NEON_CHECK_ARCH | NEON_CHECK_CC))
17796 return;
17797
5287ad62
JB
17798 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17799 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17800 inst.instruction |= LOW4 (inst.operands[1].reg);
17801 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17802 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17803 inst.instruction |= (et.type == NT_float) << 10;
17804 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17805
88714cb8 17806 neon_dp_fixup (&inst);
5287ad62
JB
17807}
17808
17809static void
17810do_neon_sli (void)
17811{
037e8744 17812 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17813 struct neon_type_el et = neon_check_type (2, rs,
17814 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17815 int imm = inst.operands[2].imm;
17816 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17817 _("immediate out of range for insert"));
037e8744 17818 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17819}
17820
17821static void
17822do_neon_sri (void)
17823{
037e8744 17824 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17825 struct neon_type_el et = neon_check_type (2, rs,
17826 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17827 int imm = inst.operands[2].imm;
17828 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17829 _("immediate out of range for insert"));
037e8744 17830 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17831}
17832
17833static void
17834do_neon_qshlu_imm (void)
17835{
037e8744 17836 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17837 struct neon_type_el et = neon_check_type (2, rs,
17838 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17839 int imm = inst.operands[2].imm;
17840 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17841 _("immediate out of range for shift"));
5287ad62
JB
17842 /* Only encodes the 'U present' variant of the instruction.
17843 In this case, signed types have OP (bit 8) set to 0.
17844 Unsigned types have OP set to 1. */
17845 inst.instruction |= (et.type == NT_unsigned) << 8;
17846 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17847 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17848}
17849
17850static void
17851do_neon_qmovn (void)
17852{
17853 struct neon_type_el et = neon_check_type (2, NS_DQ,
17854 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17855 /* Saturating move where operands can be signed or unsigned, and the
17856 destination has the same signedness. */
88714cb8 17857 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17858 if (et.type == NT_unsigned)
17859 inst.instruction |= 0xc0;
17860 else
17861 inst.instruction |= 0x80;
17862 neon_two_same (0, 1, et.size / 2);
17863}
17864
17865static void
17866do_neon_qmovun (void)
17867{
17868 struct neon_type_el et = neon_check_type (2, NS_DQ,
17869 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17870 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17871 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17872 neon_two_same (0, 1, et.size / 2);
17873}
17874
17875static void
17876do_neon_rshift_sat_narrow (void)
17877{
17878 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17879 or unsigned. If operands are unsigned, results must also be unsigned. */
17880 struct neon_type_el et = neon_check_type (2, NS_DQI,
17881 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17882 int imm = inst.operands[2].imm;
17883 /* This gets the bounds check, size encoding and immediate bits calculation
17884 right. */
17885 et.size /= 2;
5f4273c7 17886
5287ad62
JB
17887 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17888 VQMOVN.I<size> <Dd>, <Qm>. */
17889 if (imm == 0)
17890 {
17891 inst.operands[2].present = 0;
17892 inst.instruction = N_MNEM_vqmovn;
17893 do_neon_qmovn ();
17894 return;
17895 }
5f4273c7 17896
5287ad62 17897 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17898 _("immediate out of range"));
5287ad62
JB
17899 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17900}
17901
17902static void
17903do_neon_rshift_sat_narrow_u (void)
17904{
17905 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17906 or unsigned. If operands are unsigned, results must also be unsigned. */
17907 struct neon_type_el et = neon_check_type (2, NS_DQI,
17908 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17909 int imm = inst.operands[2].imm;
17910 /* This gets the bounds check, size encoding and immediate bits calculation
17911 right. */
17912 et.size /= 2;
17913
17914 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17915 VQMOVUN.I<size> <Dd>, <Qm>. */
17916 if (imm == 0)
17917 {
17918 inst.operands[2].present = 0;
17919 inst.instruction = N_MNEM_vqmovun;
17920 do_neon_qmovun ();
17921 return;
17922 }
17923
17924 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17925 _("immediate out of range"));
5287ad62
JB
17926 /* FIXME: The manual is kind of unclear about what value U should have in
17927 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17928 must be 1. */
17929 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17930}
17931
17932static void
17933do_neon_movn (void)
17934{
17935 struct neon_type_el et = neon_check_type (2, NS_DQ,
17936 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 17937 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17938 neon_two_same (0, 1, et.size / 2);
17939}
17940
17941static void
17942do_neon_rshift_narrow (void)
17943{
17944 struct neon_type_el et = neon_check_type (2, NS_DQI,
17945 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17946 int imm = inst.operands[2].imm;
17947 /* This gets the bounds check, size encoding and immediate bits calculation
17948 right. */
17949 et.size /= 2;
5f4273c7 17950
5287ad62
JB
17951 /* If immediate is zero then we are a pseudo-instruction for
17952 VMOVN.I<size> <Dd>, <Qm> */
17953 if (imm == 0)
17954 {
17955 inst.operands[2].present = 0;
17956 inst.instruction = N_MNEM_vmovn;
17957 do_neon_movn ();
17958 return;
17959 }
5f4273c7 17960
5287ad62 17961 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17962 _("immediate out of range for narrowing operation"));
5287ad62
JB
17963 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17964}
17965
17966static void
17967do_neon_shll (void)
17968{
17969 /* FIXME: Type checking when lengthening. */
17970 struct neon_type_el et = neon_check_type (2, NS_QDI,
17971 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17972 unsigned imm = inst.operands[2].imm;
17973
17974 if (imm == et.size)
17975 {
17976 /* Maximum shift variant. */
88714cb8 17977 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17978 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17979 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17980 inst.instruction |= LOW4 (inst.operands[1].reg);
17981 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17982 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17983
88714cb8 17984 neon_dp_fixup (&inst);
5287ad62
JB
17985 }
17986 else
17987 {
17988 /* A more-specific type check for non-max versions. */
17989 et = neon_check_type (2, NS_QDI,
477330fc 17990 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 17991 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17992 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17993 }
17994}
17995
037e8744 17996/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
17997 the current instruction is. */
17998
6b9a8b67
MGD
17999#define CVT_FLAVOUR_VAR \
18000 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18001 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18002 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18003 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18004 /* Half-precision conversions. */ \
cc933301
JW
18005 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18006 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18007 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18008 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
18009 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18010 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
18011 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18012 Compared with single/double precision variants, only the co-processor \
18013 field is different, so the encoding flow is reused here. */ \
18014 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18015 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18016 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18017 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
18018 /* VFP instructions. */ \
18019 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18020 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18021 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18022 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18023 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18024 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18025 /* VFP instructions with bitshift. */ \
18026 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18027 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18028 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18029 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18030 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18031 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18032 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18033 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18034
18035#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18036 neon_cvt_flavour_##C,
18037
18038/* The different types of conversions we can do. */
18039enum neon_cvt_flavour
18040{
18041 CVT_FLAVOUR_VAR
18042 neon_cvt_flavour_invalid,
18043 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18044};
18045
18046#undef CVT_VAR
18047
18048static enum neon_cvt_flavour
18049get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 18050{
6b9a8b67
MGD
18051#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18052 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18053 if (et.type != NT_invtype) \
18054 { \
18055 inst.error = NULL; \
18056 return (neon_cvt_flavour_##C); \
5287ad62 18057 }
6b9a8b67 18058
5287ad62 18059 struct neon_type_el et;
037e8744 18060 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 18061 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
18062 /* The instruction versions which take an immediate take one register
18063 argument, which is extended to the width of the full register. Thus the
18064 "source" and "destination" registers must have the same width. Hack that
18065 here by making the size equal to the key (wider, in this case) operand. */
18066 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 18067
6b9a8b67
MGD
18068 CVT_FLAVOUR_VAR;
18069
18070 return neon_cvt_flavour_invalid;
5287ad62
JB
18071#undef CVT_VAR
18072}
18073
7e8e6784
MGD
18074enum neon_cvt_mode
18075{
18076 neon_cvt_mode_a,
18077 neon_cvt_mode_n,
18078 neon_cvt_mode_p,
18079 neon_cvt_mode_m,
18080 neon_cvt_mode_z,
30bdf752
MGD
18081 neon_cvt_mode_x,
18082 neon_cvt_mode_r
7e8e6784
MGD
18083};
18084
037e8744
JB
18085/* Neon-syntax VFP conversions. */
18086
5287ad62 18087static void
6b9a8b67 18088do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 18089{
037e8744 18090 const char *opname = 0;
5f4273c7 18091
d54af2d0
RL
18092 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18093 || rs == NS_FHI || rs == NS_HFI)
5287ad62 18094 {
037e8744
JB
18095 /* Conversions with immediate bitshift. */
18096 const char *enc[] =
477330fc 18097 {
6b9a8b67
MGD
18098#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18099 CVT_FLAVOUR_VAR
18100 NULL
18101#undef CVT_VAR
477330fc 18102 };
037e8744 18103
6b9a8b67 18104 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
18105 {
18106 opname = enc[flavour];
18107 constraint (inst.operands[0].reg != inst.operands[1].reg,
18108 _("operands 0 and 1 must be the same register"));
18109 inst.operands[1] = inst.operands[2];
18110 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18111 }
5287ad62
JB
18112 }
18113 else
18114 {
037e8744
JB
18115 /* Conversions without bitshift. */
18116 const char *enc[] =
477330fc 18117 {
6b9a8b67
MGD
18118#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18119 CVT_FLAVOUR_VAR
18120 NULL
18121#undef CVT_VAR
477330fc 18122 };
037e8744 18123
6b9a8b67 18124 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 18125 opname = enc[flavour];
037e8744
JB
18126 }
18127
18128 if (opname)
18129 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
18130
18131 /* ARMv8.2 fp16 VCVT instruction. */
18132 if (flavour == neon_cvt_flavour_s32_f16
18133 || flavour == neon_cvt_flavour_u32_f16
18134 || flavour == neon_cvt_flavour_f16_u32
18135 || flavour == neon_cvt_flavour_f16_s32)
18136 do_scalar_fp16_v82_encode ();
037e8744
JB
18137}
18138
18139static void
18140do_vfp_nsyn_cvtz (void)
18141{
d54af2d0 18142 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 18143 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
18144 const char *enc[] =
18145 {
6b9a8b67
MGD
18146#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18147 CVT_FLAVOUR_VAR
18148 NULL
18149#undef CVT_VAR
037e8744
JB
18150 };
18151
6b9a8b67 18152 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
18153 do_vfp_nsyn_opcode (enc[flavour]);
18154}
f31fef98 18155
037e8744 18156static void
bacebabc 18157do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
18158 enum neon_cvt_mode mode)
18159{
18160 int sz, op;
18161 int rm;
18162
a715796b
TG
18163 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18164 D register operands. */
18165 if (flavour == neon_cvt_flavour_s32_f64
18166 || flavour == neon_cvt_flavour_u32_f64)
18167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18168 _(BAD_FPU));
18169
9db2f6b4
RL
18170 if (flavour == neon_cvt_flavour_s32_f16
18171 || flavour == neon_cvt_flavour_u32_f16)
18172 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18173 _(BAD_FP16));
18174
5ee91343 18175 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
18176
18177 switch (flavour)
18178 {
18179 case neon_cvt_flavour_s32_f64:
18180 sz = 1;
827f64ff 18181 op = 1;
7e8e6784
MGD
18182 break;
18183 case neon_cvt_flavour_s32_f32:
18184 sz = 0;
18185 op = 1;
18186 break;
9db2f6b4
RL
18187 case neon_cvt_flavour_s32_f16:
18188 sz = 0;
18189 op = 1;
18190 break;
7e8e6784
MGD
18191 case neon_cvt_flavour_u32_f64:
18192 sz = 1;
18193 op = 0;
18194 break;
18195 case neon_cvt_flavour_u32_f32:
18196 sz = 0;
18197 op = 0;
18198 break;
9db2f6b4
RL
18199 case neon_cvt_flavour_u32_f16:
18200 sz = 0;
18201 op = 0;
18202 break;
7e8e6784
MGD
18203 default:
18204 first_error (_("invalid instruction shape"));
18205 return;
18206 }
18207
18208 switch (mode)
18209 {
18210 case neon_cvt_mode_a: rm = 0; break;
18211 case neon_cvt_mode_n: rm = 1; break;
18212 case neon_cvt_mode_p: rm = 2; break;
18213 case neon_cvt_mode_m: rm = 3; break;
18214 default: first_error (_("invalid rounding mode")); return;
18215 }
18216
18217 NEON_ENCODE (FPV8, inst);
18218 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18219 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18220 inst.instruction |= sz << 8;
9db2f6b4
RL
18221
18222 /* ARMv8.2 fp16 VCVT instruction. */
18223 if (flavour == neon_cvt_flavour_s32_f16
18224 ||flavour == neon_cvt_flavour_u32_f16)
18225 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
18226 inst.instruction |= op << 7;
18227 inst.instruction |= rm << 16;
18228 inst.instruction |= 0xf0000000;
18229 inst.is_neon = TRUE;
18230}
18231
18232static void
18233do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
18234{
18235 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
18236 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18237 NS_FH, NS_HF, NS_FHI, NS_HFI,
18238 NS_NULL);
6b9a8b67 18239 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 18240
cc933301
JW
18241 if (flavour == neon_cvt_flavour_invalid)
18242 return;
18243
e3e535bc 18244 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 18245 if (mode == neon_cvt_mode_z
e3e535bc 18246 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
18247 && (flavour == neon_cvt_flavour_s16_f16
18248 || flavour == neon_cvt_flavour_u16_f16
18249 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
18250 || flavour == neon_cvt_flavour_u32_f32
18251 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 18252 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
18253 && (rs == NS_FD || rs == NS_FF))
18254 {
18255 do_vfp_nsyn_cvtz ();
18256 return;
18257 }
18258
9db2f6b4
RL
18259 /* ARMv8.2 fp16 VCVT conversions. */
18260 if (mode == neon_cvt_mode_z
18261 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18262 && (flavour == neon_cvt_flavour_s32_f16
18263 || flavour == neon_cvt_flavour_u32_f16)
18264 && (rs == NS_FH))
18265 {
18266 do_vfp_nsyn_cvtz ();
18267 do_scalar_fp16_v82_encode ();
18268 return;
18269 }
18270
037e8744 18271 /* VFP rather than Neon conversions. */
6b9a8b67 18272 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 18273 {
7e8e6784
MGD
18274 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18275 do_vfp_nsyn_cvt (rs, flavour);
18276 else
18277 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18278
037e8744
JB
18279 return;
18280 }
18281
18282 switch (rs)
18283 {
037e8744 18284 case NS_QQI:
dd9634d9
AV
18285 if (mode == neon_cvt_mode_z
18286 && (flavour == neon_cvt_flavour_f16_s16
18287 || flavour == neon_cvt_flavour_f16_u16
18288 || flavour == neon_cvt_flavour_s16_f16
18289 || flavour == neon_cvt_flavour_u16_f16
18290 || flavour == neon_cvt_flavour_f32_u32
18291 || flavour == neon_cvt_flavour_f32_s32
18292 || flavour == neon_cvt_flavour_s32_f32
18293 || flavour == neon_cvt_flavour_u32_f32))
18294 {
18295 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18296 return;
18297 }
18298 else if (mode == neon_cvt_mode_n)
18299 {
18300 /* We are dealing with vcvt with the 'ne' condition. */
18301 inst.cond = 0x1;
18302 inst.instruction = N_MNEM_vcvt;
18303 do_neon_cvt_1 (neon_cvt_mode_z);
18304 return;
18305 }
18306 /* fall through. */
18307 case NS_DDI:
037e8744 18308 {
477330fc 18309 unsigned immbits;
cc933301
JW
18310 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18311 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 18312
dd9634d9
AV
18313 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18314 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18315 return;
18316
18317 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18318 {
18319 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18320 _("immediate value out of range"));
18321 switch (flavour)
18322 {
18323 case neon_cvt_flavour_f16_s16:
18324 case neon_cvt_flavour_f16_u16:
18325 case neon_cvt_flavour_s16_f16:
18326 case neon_cvt_flavour_u16_f16:
18327 constraint (inst.operands[2].imm > 16,
18328 _("immediate value out of range"));
18329 break;
18330 case neon_cvt_flavour_f32_u32:
18331 case neon_cvt_flavour_f32_s32:
18332 case neon_cvt_flavour_s32_f32:
18333 case neon_cvt_flavour_u32_f32:
18334 constraint (inst.operands[2].imm > 32,
18335 _("immediate value out of range"));
18336 break;
18337 default:
18338 inst.error = BAD_FPU;
18339 return;
18340 }
18341 }
037e8744 18342
477330fc
RM
18343 /* Fixed-point conversion with #0 immediate is encoded as an
18344 integer conversion. */
18345 if (inst.operands[2].present && inst.operands[2].imm == 0)
18346 goto int_encode;
477330fc
RM
18347 NEON_ENCODE (IMMED, inst);
18348 if (flavour != neon_cvt_flavour_invalid)
18349 inst.instruction |= enctab[flavour];
18350 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18351 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18352 inst.instruction |= LOW4 (inst.operands[1].reg);
18353 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18354 inst.instruction |= neon_quad (rs) << 6;
18355 inst.instruction |= 1 << 21;
cc933301
JW
18356 if (flavour < neon_cvt_flavour_s16_f16)
18357 {
18358 inst.instruction |= 1 << 21;
18359 immbits = 32 - inst.operands[2].imm;
18360 inst.instruction |= immbits << 16;
18361 }
18362 else
18363 {
18364 inst.instruction |= 3 << 20;
18365 immbits = 16 - inst.operands[2].imm;
18366 inst.instruction |= immbits << 16;
18367 inst.instruction &= ~(1 << 9);
18368 }
477330fc
RM
18369
18370 neon_dp_fixup (&inst);
037e8744
JB
18371 }
18372 break;
18373
037e8744 18374 case NS_QQ:
dd9634d9
AV
18375 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18376 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18377 && (flavour == neon_cvt_flavour_s16_f16
18378 || flavour == neon_cvt_flavour_u16_f16
18379 || flavour == neon_cvt_flavour_s32_f32
18380 || flavour == neon_cvt_flavour_u32_f32))
18381 {
18382 if (check_simd_pred_availability (1,
18383 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18384 return;
18385 }
18386 else if (mode == neon_cvt_mode_z
18387 && (flavour == neon_cvt_flavour_f16_s16
18388 || flavour == neon_cvt_flavour_f16_u16
18389 || flavour == neon_cvt_flavour_s16_f16
18390 || flavour == neon_cvt_flavour_u16_f16
18391 || flavour == neon_cvt_flavour_f32_u32
18392 || flavour == neon_cvt_flavour_f32_s32
18393 || flavour == neon_cvt_flavour_s32_f32
18394 || flavour == neon_cvt_flavour_u32_f32))
18395 {
18396 if (check_simd_pred_availability (1,
18397 NEON_CHECK_CC | NEON_CHECK_ARCH))
18398 return;
18399 }
18400 /* fall through. */
18401 case NS_DD:
7e8e6784
MGD
18402 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18403 {
7e8e6784 18404
dd9634d9
AV
18405 NEON_ENCODE (FLOAT, inst);
18406 if (check_simd_pred_availability (1,
18407 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
18408 return;
18409
18410 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18411 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18412 inst.instruction |= LOW4 (inst.operands[1].reg);
18413 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18414 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18415 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18416 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 18417 inst.instruction |= mode << 8;
cc933301
JW
18418 if (flavour == neon_cvt_flavour_u16_f16
18419 || flavour == neon_cvt_flavour_s16_f16)
18420 /* Mask off the original size bits and reencode them. */
18421 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18422
7e8e6784
MGD
18423 if (thumb_mode)
18424 inst.instruction |= 0xfc000000;
18425 else
18426 inst.instruction |= 0xf0000000;
18427 }
18428 else
18429 {
037e8744 18430 int_encode:
7e8e6784 18431 {
cc933301
JW
18432 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18433 0x100, 0x180, 0x0, 0x080};
037e8744 18434
7e8e6784 18435 NEON_ENCODE (INTEGER, inst);
037e8744 18436
dd9634d9
AV
18437 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18438 {
18439 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18440 return;
18441 }
037e8744 18442
7e8e6784
MGD
18443 if (flavour != neon_cvt_flavour_invalid)
18444 inst.instruction |= enctab[flavour];
037e8744 18445
7e8e6784
MGD
18446 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18447 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18448 inst.instruction |= LOW4 (inst.operands[1].reg);
18449 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18450 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18451 if (flavour >= neon_cvt_flavour_s16_f16
18452 && flavour <= neon_cvt_flavour_f16_u16)
18453 /* Half precision. */
18454 inst.instruction |= 1 << 18;
18455 else
18456 inst.instruction |= 2 << 18;
037e8744 18457
7e8e6784
MGD
18458 neon_dp_fixup (&inst);
18459 }
18460 }
18461 break;
037e8744 18462
8e79c3df
CM
18463 /* Half-precision conversions for Advanced SIMD -- neon. */
18464 case NS_QD:
18465 case NS_DQ:
bc52d49c
MM
18466 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18467 return;
8e79c3df
CM
18468
18469 if ((rs == NS_DQ)
18470 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18471 {
18472 as_bad (_("operand size must match register width"));
18473 break;
18474 }
18475
18476 if ((rs == NS_QD)
18477 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18478 {
18479 as_bad (_("operand size must match register width"));
18480 break;
18481 }
18482
18483 if (rs == NS_DQ)
477330fc 18484 inst.instruction = 0x3b60600;
8e79c3df
CM
18485 else
18486 inst.instruction = 0x3b60700;
18487
18488 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18489 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18490 inst.instruction |= LOW4 (inst.operands[1].reg);
18491 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 18492 neon_dp_fixup (&inst);
8e79c3df
CM
18493 break;
18494
037e8744
JB
18495 default:
18496 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
18497 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18498 do_vfp_nsyn_cvt (rs, flavour);
18499 else
18500 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 18501 }
5287ad62
JB
18502}
18503
e3e535bc
NC
18504static void
18505do_neon_cvtr (void)
18506{
7e8e6784 18507 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
18508}
18509
18510static void
18511do_neon_cvt (void)
18512{
7e8e6784
MGD
18513 do_neon_cvt_1 (neon_cvt_mode_z);
18514}
18515
18516static void
18517do_neon_cvta (void)
18518{
18519 do_neon_cvt_1 (neon_cvt_mode_a);
18520}
18521
18522static void
18523do_neon_cvtn (void)
18524{
18525 do_neon_cvt_1 (neon_cvt_mode_n);
18526}
18527
18528static void
18529do_neon_cvtp (void)
18530{
18531 do_neon_cvt_1 (neon_cvt_mode_p);
18532}
18533
18534static void
18535do_neon_cvtm (void)
18536{
18537 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18538}
18539
8e79c3df 18540static void
c70a8987 18541do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18542{
c70a8987
MGD
18543 if (is_double)
18544 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18545
c70a8987
MGD
18546 encode_arm_vfp_reg (inst.operands[0].reg,
18547 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18548 encode_arm_vfp_reg (inst.operands[1].reg,
18549 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18550 inst.instruction |= to ? 0x10000 : 0;
18551 inst.instruction |= t ? 0x80 : 0;
18552 inst.instruction |= is_double ? 0x100 : 0;
18553 do_vfp_cond_or_thumb ();
18554}
8e79c3df 18555
c70a8987
MGD
18556static void
18557do_neon_cvttb_1 (bfd_boolean t)
18558{
d54af2d0 18559 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18560 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18561
c70a8987
MGD
18562 if (rs == NS_NULL)
18563 return;
dd9634d9
AV
18564 else if (rs == NS_QQ || rs == NS_QQI)
18565 {
18566 int single_to_half = 0;
18567 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18568 return;
18569
18570 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18571
18572 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18573 && (flavour == neon_cvt_flavour_u16_f16
18574 || flavour == neon_cvt_flavour_s16_f16
18575 || flavour == neon_cvt_flavour_f16_s16
18576 || flavour == neon_cvt_flavour_f16_u16
18577 || flavour == neon_cvt_flavour_u32_f32
18578 || flavour == neon_cvt_flavour_s32_f32
18579 || flavour == neon_cvt_flavour_f32_s32
18580 || flavour == neon_cvt_flavour_f32_u32))
18581 {
18582 inst.cond = 0xf;
18583 inst.instruction = N_MNEM_vcvt;
18584 set_pred_insn_type (INSIDE_VPT_INSN);
18585 do_neon_cvt_1 (neon_cvt_mode_z);
18586 return;
18587 }
18588 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18589 single_to_half = 1;
18590 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18591 {
18592 first_error (BAD_FPU);
18593 return;
18594 }
18595
18596 inst.instruction = 0xee3f0e01;
18597 inst.instruction |= single_to_half << 28;
18598 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18599 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18600 inst.instruction |= t << 12;
18601 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18602 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18603 inst.is_neon = 1;
18604 }
c70a8987
MGD
18605 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18606 {
18607 inst.error = NULL;
18608 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18609 }
18610 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18611 {
18612 inst.error = NULL;
18613 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18614 }
18615 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18616 {
a715796b
TG
18617 /* The VCVTB and VCVTT instructions with D-register operands
18618 don't work for SP only targets. */
18619 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18620 _(BAD_FPU));
18621
c70a8987
MGD
18622 inst.error = NULL;
18623 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18624 }
18625 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18626 {
a715796b
TG
18627 /* The VCVTB and VCVTT instructions with D-register operands
18628 don't work for SP only targets. */
18629 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18630 _(BAD_FPU));
18631
c70a8987
MGD
18632 inst.error = NULL;
18633 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18634 }
18635 else
18636 return;
18637}
18638
18639static void
18640do_neon_cvtb (void)
18641{
18642 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18643}
18644
18645
18646static void
18647do_neon_cvtt (void)
18648{
c70a8987 18649 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18650}
18651
5287ad62
JB
18652static void
18653neon_move_immediate (void)
18654{
037e8744
JB
18655 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18656 struct neon_type_el et = neon_check_type (2, rs,
18657 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18658 unsigned immlo, immhi = 0, immbits;
c96612cc 18659 int op, cmode, float_p;
5287ad62 18660
037e8744 18661 constraint (et.type == NT_invtype,
477330fc 18662 _("operand size must be specified for immediate VMOV"));
037e8744 18663
5287ad62
JB
18664 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18665 op = (inst.instruction & (1 << 5)) != 0;
18666
18667 immlo = inst.operands[1].imm;
18668 if (inst.operands[1].regisimm)
18669 immhi = inst.operands[1].reg;
18670
18671 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18672 _("immediate has bits set outside the operand size"));
5287ad62 18673
c96612cc
JB
18674 float_p = inst.operands[1].immisfloat;
18675
18676 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18677 et.size, et.type)) == FAIL)
5287ad62
JB
18678 {
18679 /* Invert relevant bits only. */
18680 neon_invert_size (&immlo, &immhi, et.size);
18681 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18682 with one or the other; those cases are caught by
18683 neon_cmode_for_move_imm. */
5287ad62 18684 op = !op;
c96612cc
JB
18685 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18686 &op, et.size, et.type)) == FAIL)
477330fc
RM
18687 {
18688 first_error (_("immediate out of range"));
18689 return;
18690 }
5287ad62
JB
18691 }
18692
18693 inst.instruction &= ~(1 << 5);
18694 inst.instruction |= op << 5;
18695
18696 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18698 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18699 inst.instruction |= cmode << 8;
18700
18701 neon_write_immbits (immbits);
18702}
18703
18704static void
18705do_neon_mvn (void)
18706{
1a186d29
AV
18707 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18708 return;
18709
5287ad62
JB
18710 if (inst.operands[1].isreg)
18711 {
1a186d29
AV
18712 enum neon_shape rs;
18713 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18714 rs = neon_select_shape (NS_QQ, NS_NULL);
18715 else
18716 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18717
88714cb8 18718 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18719 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18720 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18721 inst.instruction |= LOW4 (inst.operands[1].reg);
18722 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18723 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18724 }
18725 else
18726 {
88714cb8 18727 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18728 neon_move_immediate ();
18729 }
18730
88714cb8 18731 neon_dp_fixup (&inst);
1a186d29
AV
18732
18733 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18734 {
18735 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18736 constraint ((inst.instruction & 0xd00) == 0xd00,
18737 _("immediate value out of range"));
18738 }
5287ad62
JB
18739}
18740
18741/* Encode instructions of form:
18742
18743 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18744 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18745
18746static void
18747neon_mixed_length (struct neon_type_el et, unsigned size)
18748{
18749 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18750 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18751 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18752 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18753 inst.instruction |= LOW4 (inst.operands[2].reg);
18754 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18755 inst.instruction |= (et.type == NT_unsigned) << 24;
18756 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18757
88714cb8 18758 neon_dp_fixup (&inst);
5287ad62
JB
18759}
18760
18761static void
18762do_neon_dyadic_long (void)
18763{
5ee91343
AV
18764 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18765 if (rs == NS_QDD)
18766 {
18767 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18768 return;
18769
18770 NEON_ENCODE (INTEGER, inst);
18771 /* FIXME: Type checking for lengthening op. */
18772 struct neon_type_el et = neon_check_type (3, NS_QDD,
18773 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18774 neon_mixed_length (et, et.size);
18775 }
18776 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18777 && (inst.cond == 0xf || inst.cond == 0x10))
18778 {
18779 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18780 in an IT block with le/lt conditions. */
18781
18782 if (inst.cond == 0xf)
18783 inst.cond = 0xb;
18784 else if (inst.cond == 0x10)
18785 inst.cond = 0xd;
18786
18787 inst.pred_insn_type = INSIDE_IT_INSN;
18788
18789 if (inst.instruction == N_MNEM_vaddl)
18790 {
18791 inst.instruction = N_MNEM_vadd;
18792 do_neon_addsub_if_i ();
18793 }
18794 else if (inst.instruction == N_MNEM_vsubl)
18795 {
18796 inst.instruction = N_MNEM_vsub;
18797 do_neon_addsub_if_i ();
18798 }
18799 else if (inst.instruction == N_MNEM_vabdl)
18800 {
18801 inst.instruction = N_MNEM_vabd;
18802 do_neon_dyadic_if_su ();
18803 }
18804 }
18805 else
18806 first_error (BAD_FPU);
5287ad62
JB
18807}
18808
18809static void
18810do_neon_abal (void)
18811{
18812 struct neon_type_el et = neon_check_type (3, NS_QDD,
18813 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18814 neon_mixed_length (et, et.size);
18815}
18816
18817static void
18818neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18819{
18820 if (inst.operands[2].isscalar)
18821 {
dcbf9037 18822 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18823 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18824 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18825 neon_mul_mac (et, et.type == NT_unsigned);
18826 }
18827 else
18828 {
18829 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18830 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18831 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18832 neon_mixed_length (et, et.size);
18833 }
18834}
18835
18836static void
18837do_neon_mac_maybe_scalar_long (void)
18838{
18839 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18840}
18841
dec41383
JW
18842/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18843 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18844
18845static unsigned
18846neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18847{
18848 unsigned regno = NEON_SCALAR_REG (scalar);
18849 unsigned elno = NEON_SCALAR_INDEX (scalar);
18850
18851 if (quad_p)
18852 {
18853 if (regno > 7 || elno > 3)
18854 goto bad_scalar;
18855
18856 return ((regno & 0x7)
18857 | ((elno & 0x1) << 3)
18858 | (((elno >> 1) & 0x1) << 5));
18859 }
18860 else
18861 {
18862 if (regno > 15 || elno > 1)
18863 goto bad_scalar;
18864
18865 return (((regno & 0x1) << 5)
18866 | ((regno >> 1) & 0x7)
18867 | ((elno & 0x1) << 3));
18868 }
18869
18870bad_scalar:
18871 first_error (_("scalar out of range for multiply instruction"));
18872 return 0;
18873}
18874
18875static void
18876do_neon_fmac_maybe_scalar_long (int subtype)
18877{
18878 enum neon_shape rs;
18879 int high8;
18880 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18881 field (bits[21:20]) has different meaning. For scalar index variant, it's
18882 used to differentiate add and subtract, otherwise it's with fixed value
18883 0x2. */
18884 int size = -1;
18885
18886 if (inst.cond != COND_ALWAYS)
18887 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18888 "behaviour is UNPREDICTABLE"));
18889
01f48020 18890 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18891 _(BAD_FP16));
18892
18893 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18894 _(BAD_FPU));
18895
18896 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18897 be a scalar index register. */
18898 if (inst.operands[2].isscalar)
18899 {
18900 high8 = 0xfe000000;
18901 if (subtype)
18902 size = 16;
18903 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18904 }
18905 else
18906 {
18907 high8 = 0xfc000000;
18908 size = 32;
18909 if (subtype)
18910 inst.instruction |= (0x1 << 23);
18911 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18912 }
18913
18914 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18915
18916 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18917 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18918 so we simply pass -1 as size. */
18919 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18920 neon_three_same (quad_p, 0, size);
18921
18922 /* Undo neon_dp_fixup. Redo the high eight bits. */
18923 inst.instruction &= 0x00ffffff;
18924 inst.instruction |= high8;
18925
18926#define LOW1(R) ((R) & 0x1)
18927#define HI4(R) (((R) >> 1) & 0xf)
18928 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18929 whether the instruction is in Q form and whether Vm is a scalar indexed
18930 operand. */
18931 if (inst.operands[2].isscalar)
18932 {
18933 unsigned rm
18934 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18935 inst.instruction &= 0xffffffd0;
18936 inst.instruction |= rm;
18937
18938 if (!quad_p)
18939 {
18940 /* Redo Rn as well. */
18941 inst.instruction &= 0xfff0ff7f;
18942 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18943 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18944 }
18945 }
18946 else if (!quad_p)
18947 {
18948 /* Redo Rn and Rm. */
18949 inst.instruction &= 0xfff0ff50;
18950 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18951 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18952 inst.instruction |= HI4 (inst.operands[2].reg);
18953 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18954 }
18955}
18956
18957static void
18958do_neon_vfmal (void)
18959{
18960 return do_neon_fmac_maybe_scalar_long (0);
18961}
18962
18963static void
18964do_neon_vfmsl (void)
18965{
18966 return do_neon_fmac_maybe_scalar_long (1);
18967}
18968
5287ad62
JB
18969static void
18970do_neon_dyadic_wide (void)
18971{
18972 struct neon_type_el et = neon_check_type (3, NS_QQD,
18973 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18974 neon_mixed_length (et, et.size);
18975}
18976
18977static void
18978do_neon_dyadic_narrow (void)
18979{
18980 struct neon_type_el et = neon_check_type (3, NS_QDD,
18981 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
18982 /* Operand sign is unimportant, and the U bit is part of the opcode,
18983 so force the operand type to integer. */
18984 et.type = NT_integer;
5287ad62
JB
18985 neon_mixed_length (et, et.size / 2);
18986}
18987
18988static void
18989do_neon_mul_sat_scalar_long (void)
18990{
18991 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18992}
18993
18994static void
18995do_neon_vmull (void)
18996{
18997 if (inst.operands[2].isscalar)
18998 do_neon_mac_maybe_scalar_long ();
18999 else
19000 {
19001 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19002 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 19003
5287ad62 19004 if (et.type == NT_poly)
477330fc 19005 NEON_ENCODE (POLY, inst);
5287ad62 19006 else
477330fc 19007 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
19008
19009 /* For polynomial encoding the U bit must be zero, and the size must
19010 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19011 obviously, as 0b10). */
19012 if (et.size == 64)
19013 {
19014 /* Check we're on the correct architecture. */
19015 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19016 inst.error =
19017 _("Instruction form not available on this architecture.");
19018
19019 et.size = 32;
19020 }
19021
5287ad62
JB
19022 neon_mixed_length (et, et.size);
19023 }
19024}
19025
19026static void
19027do_neon_ext (void)
19028{
037e8744 19029 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
19030 struct neon_type_el et = neon_check_type (3, rs,
19031 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19032 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
19033
19034 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19035 _("shift out of range"));
5287ad62
JB
19036 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19037 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19038 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19039 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19040 inst.instruction |= LOW4 (inst.operands[2].reg);
19041 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 19042 inst.instruction |= neon_quad (rs) << 6;
5287ad62 19043 inst.instruction |= imm << 8;
5f4273c7 19044
88714cb8 19045 neon_dp_fixup (&inst);
5287ad62
JB
19046}
19047
19048static void
19049do_neon_rev (void)
19050{
037e8744 19051 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19052 struct neon_type_el et = neon_check_type (2, rs,
19053 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19054 unsigned op = (inst.instruction >> 7) & 3;
19055 /* N (width of reversed regions) is encoded as part of the bitmask. We
19056 extract it here to check the elements to be reversed are smaller.
19057 Otherwise we'd get a reserved instruction. */
19058 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 19059 gas_assert (elsize != 0);
5287ad62 19060 constraint (et.size >= elsize,
477330fc 19061 _("elements must be smaller than reversal region"));
037e8744 19062 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19063}
19064
19065static void
19066do_neon_dup (void)
19067{
19068 if (inst.operands[1].isscalar)
19069 {
b409bdb6
AV
19070 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19071 BAD_FPU);
037e8744 19072 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 19073 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19074 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 19075 unsigned sizebits = et.size >> 3;
dcbf9037 19076 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 19077 int logsize = neon_logbits (et.size);
dcbf9037 19078 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
19079
19080 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 19081 return;
037e8744 19082
88714cb8 19083 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19084 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19085 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19086 inst.instruction |= LOW4 (dm);
19087 inst.instruction |= HI1 (dm) << 5;
037e8744 19088 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19089 inst.instruction |= x << 17;
19090 inst.instruction |= sizebits << 16;
5f4273c7 19091
88714cb8 19092 neon_dp_fixup (&inst);
5287ad62
JB
19093 }
19094 else
19095 {
037e8744
JB
19096 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19097 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19098 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
19099 if (rs == NS_QR)
19100 {
19101 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
19102 return;
19103 }
19104 else
19105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19106 BAD_FPU);
19107
19108 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19109 {
19110 if (inst.operands[1].reg == REG_SP)
19111 as_tsktsk (MVE_BAD_SP);
19112 else if (inst.operands[1].reg == REG_PC)
19113 as_tsktsk (MVE_BAD_PC);
19114 }
19115
5287ad62 19116 /* Duplicate ARM register to lanes of vector. */
88714cb8 19117 NEON_ENCODE (ARMREG, inst);
5287ad62 19118 switch (et.size)
477330fc
RM
19119 {
19120 case 8: inst.instruction |= 0x400000; break;
19121 case 16: inst.instruction |= 0x000020; break;
19122 case 32: inst.instruction |= 0x000000; break;
19123 default: break;
19124 }
5287ad62
JB
19125 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19126 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19127 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 19128 inst.instruction |= neon_quad (rs) << 21;
5287ad62 19129 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 19130 variants, except for the condition field. */
037e8744 19131 do_vfp_cond_or_thumb ();
5287ad62
JB
19132 }
19133}
19134
57785aa2
AV
19135static void
19136do_mve_mov (int toQ)
19137{
19138 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19139 return;
19140 if (inst.cond > COND_ALWAYS)
19141 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19142
19143 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19144 if (toQ)
19145 {
19146 Q0 = 0;
19147 Q1 = 1;
19148 Rt = 2;
19149 Rt2 = 3;
19150 }
19151
19152 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19153 _("Index one must be [2,3] and index two must be two less than"
19154 " index one."));
19155 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19156 _("General purpose registers may not be the same"));
19157 constraint (inst.operands[Rt].reg == REG_SP
19158 || inst.operands[Rt2].reg == REG_SP,
19159 BAD_SP);
19160 constraint (inst.operands[Rt].reg == REG_PC
19161 || inst.operands[Rt2].reg == REG_PC,
19162 BAD_PC);
19163
19164 inst.instruction = 0xec000f00;
19165 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19166 inst.instruction |= !!toQ << 20;
19167 inst.instruction |= inst.operands[Rt2].reg << 16;
19168 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19169 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19170 inst.instruction |= inst.operands[Rt].reg;
19171}
19172
19173static void
19174do_mve_movn (void)
19175{
19176 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19177 return;
19178
19179 if (inst.cond > COND_ALWAYS)
19180 inst.pred_insn_type = INSIDE_VPT_INSN;
19181 else
19182 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19183
19184 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19185 | N_KEY);
19186
19187 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19188 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19189 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19190 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19191 inst.instruction |= LOW4 (inst.operands[1].reg);
19192 inst.is_neon = 1;
19193
19194}
19195
5287ad62
JB
19196/* VMOV has particularly many variations. It can be one of:
19197 0. VMOV<c><q> <Qd>, <Qm>
19198 1. VMOV<c><q> <Dd>, <Dm>
19199 (Register operations, which are VORR with Rm = Rn.)
19200 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19201 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19202 (Immediate loads.)
19203 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19204 (ARM register to scalar.)
19205 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19206 (Two ARM registers to vector.)
19207 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19208 (Scalar to ARM register.)
19209 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19210 (Vector to two ARM registers.)
037e8744
JB
19211 8. VMOV.F32 <Sd>, <Sm>
19212 9. VMOV.F64 <Dd>, <Dm>
19213 (VFP register moves.)
19214 10. VMOV.F32 <Sd>, #imm
19215 11. VMOV.F64 <Dd>, #imm
19216 (VFP float immediate load.)
19217 12. VMOV <Rd>, <Sm>
19218 (VFP single to ARM reg.)
19219 13. VMOV <Sd>, <Rm>
19220 (ARM reg to VFP single.)
19221 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19222 (Two ARM regs to two VFP singles.)
19223 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19224 (Two VFP singles to two ARM regs.)
57785aa2
AV
19225 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19226 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19227 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19228 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 19229
037e8744
JB
19230 These cases can be disambiguated using neon_select_shape, except cases 1/9
19231 and 3/11 which depend on the operand type too.
5f4273c7 19232
5287ad62 19233 All the encoded bits are hardcoded by this function.
5f4273c7 19234
b7fc2769
JB
19235 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19236 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 19237
5287ad62 19238 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 19239 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
19240
19241static void
19242do_neon_mov (void)
19243{
57785aa2
AV
19244 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19245 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19246 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19247 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19248 NS_NULL);
037e8744
JB
19249 struct neon_type_el et;
19250 const char *ldconst = 0;
5287ad62 19251
037e8744 19252 switch (rs)
5287ad62 19253 {
037e8744
JB
19254 case NS_DD: /* case 1/9. */
19255 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19256 /* It is not an error here if no type is given. */
19257 inst.error = NULL;
19258 if (et.type == NT_float && et.size == 64)
477330fc
RM
19259 {
19260 do_vfp_nsyn_opcode ("fcpyd");
19261 break;
19262 }
037e8744 19263 /* fall through. */
5287ad62 19264
037e8744
JB
19265 case NS_QQ: /* case 0/1. */
19266 {
57785aa2 19267 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
19268 return;
19269 /* The architecture manual I have doesn't explicitly state which
19270 value the U bit should have for register->register moves, but
19271 the equivalent VORR instruction has U = 0, so do that. */
19272 inst.instruction = 0x0200110;
19273 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19274 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19275 inst.instruction |= LOW4 (inst.operands[1].reg);
19276 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19277 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19278 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19279 inst.instruction |= neon_quad (rs) << 6;
19280
19281 neon_dp_fixup (&inst);
037e8744
JB
19282 }
19283 break;
5f4273c7 19284
037e8744
JB
19285 case NS_DI: /* case 3/11. */
19286 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19287 inst.error = NULL;
19288 if (et.type == NT_float && et.size == 64)
477330fc
RM
19289 {
19290 /* case 11 (fconstd). */
19291 ldconst = "fconstd";
19292 goto encode_fconstd;
19293 }
037e8744
JB
19294 /* fall through. */
19295
19296 case NS_QI: /* case 2/3. */
57785aa2 19297 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 19298 return;
037e8744
JB
19299 inst.instruction = 0x0800010;
19300 neon_move_immediate ();
88714cb8 19301 neon_dp_fixup (&inst);
5287ad62 19302 break;
5f4273c7 19303
037e8744
JB
19304 case NS_SR: /* case 4. */
19305 {
477330fc
RM
19306 unsigned bcdebits = 0;
19307 int logsize;
19308 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19309 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 19310
05ac0ffb
JB
19311 /* .<size> is optional here, defaulting to .32. */
19312 if (inst.vectype.elems == 0
19313 && inst.operands[0].vectype.type == NT_invtype
19314 && inst.operands[1].vectype.type == NT_invtype)
19315 {
19316 inst.vectype.el[0].type = NT_untyped;
19317 inst.vectype.el[0].size = 32;
19318 inst.vectype.elems = 1;
19319 }
19320
477330fc
RM
19321 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19322 logsize = neon_logbits (et.size);
19323
57785aa2
AV
19324 if (et.size != 32)
19325 {
19326 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19327 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19328 return;
19329 }
19330 else
19331 {
19332 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19333 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19334 _(BAD_FPU));
19335 }
19336
19337 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19338 {
19339 if (inst.operands[1].reg == REG_SP)
19340 as_tsktsk (MVE_BAD_SP);
19341 else if (inst.operands[1].reg == REG_PC)
19342 as_tsktsk (MVE_BAD_PC);
19343 }
19344 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19345
477330fc 19346 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
19347 constraint (x >= size / et.size, _("scalar index out of range"));
19348
477330fc
RM
19349
19350 switch (et.size)
19351 {
19352 case 8: bcdebits = 0x8; break;
19353 case 16: bcdebits = 0x1; break;
19354 case 32: bcdebits = 0x0; break;
19355 default: ;
19356 }
19357
57785aa2 19358 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19359
19360 inst.instruction = 0xe000b10;
19361 do_vfp_cond_or_thumb ();
19362 inst.instruction |= LOW4 (dn) << 16;
19363 inst.instruction |= HI1 (dn) << 7;
19364 inst.instruction |= inst.operands[1].reg << 12;
19365 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
19366 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19367 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19368 }
19369 break;
5f4273c7 19370
037e8744 19371 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
19372 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19373 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19374 _(BAD_FPU));
b7fc2769 19375
037e8744
JB
19376 inst.instruction = 0xc400b10;
19377 do_vfp_cond_or_thumb ();
19378 inst.instruction |= LOW4 (inst.operands[0].reg);
19379 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19380 inst.instruction |= inst.operands[1].reg << 12;
19381 inst.instruction |= inst.operands[2].reg << 16;
19382 break;
5f4273c7 19383
037e8744
JB
19384 case NS_RS: /* case 6. */
19385 {
477330fc
RM
19386 unsigned logsize;
19387 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19388 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19389 unsigned abcdebits = 0;
037e8744 19390
05ac0ffb
JB
19391 /* .<dt> is optional here, defaulting to .32. */
19392 if (inst.vectype.elems == 0
19393 && inst.operands[0].vectype.type == NT_invtype
19394 && inst.operands[1].vectype.type == NT_invtype)
19395 {
19396 inst.vectype.el[0].type = NT_untyped;
19397 inst.vectype.el[0].size = 32;
19398 inst.vectype.elems = 1;
19399 }
19400
91d6fa6a
NC
19401 et = neon_check_type (2, NS_NULL,
19402 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
19403 logsize = neon_logbits (et.size);
19404
57785aa2
AV
19405 if (et.size != 32)
19406 {
19407 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19408 && vfp_or_neon_is_neon (NEON_CHECK_CC
19409 | NEON_CHECK_ARCH) == FAIL)
19410 return;
19411 }
19412 else
19413 {
19414 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19415 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19416 _(BAD_FPU));
19417 }
19418
19419 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19420 {
19421 if (inst.operands[0].reg == REG_SP)
19422 as_tsktsk (MVE_BAD_SP);
19423 else if (inst.operands[0].reg == REG_PC)
19424 as_tsktsk (MVE_BAD_PC);
19425 }
19426
19427 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19428
477330fc 19429 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 19430 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
19431
19432 switch (et.size)
19433 {
19434 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19435 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19436 case 32: abcdebits = 0x00; break;
19437 default: ;
19438 }
19439
57785aa2 19440 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19441 inst.instruction = 0xe100b10;
19442 do_vfp_cond_or_thumb ();
19443 inst.instruction |= LOW4 (dn) << 16;
19444 inst.instruction |= HI1 (dn) << 7;
19445 inst.instruction |= inst.operands[0].reg << 12;
19446 inst.instruction |= (abcdebits & 3) << 5;
19447 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 19448 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19449 }
19450 break;
5f4273c7 19451
037e8744 19452 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
19453 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19454 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19455 _(BAD_FPU));
037e8744
JB
19456
19457 inst.instruction = 0xc500b10;
19458 do_vfp_cond_or_thumb ();
19459 inst.instruction |= inst.operands[0].reg << 12;
19460 inst.instruction |= inst.operands[1].reg << 16;
19461 inst.instruction |= LOW4 (inst.operands[2].reg);
19462 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19463 break;
5f4273c7 19464
037e8744
JB
19465 case NS_FF: /* case 8 (fcpys). */
19466 do_vfp_nsyn_opcode ("fcpys");
19467 break;
5f4273c7 19468
9db2f6b4 19469 case NS_HI:
037e8744
JB
19470 case NS_FI: /* case 10 (fconsts). */
19471 ldconst = "fconsts";
4ef4710f 19472 encode_fconstd:
58ed5c38
TC
19473 if (!inst.operands[1].immisfloat)
19474 {
4ef4710f 19475 unsigned new_imm;
58ed5c38 19476 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
19477 float imm = (float) inst.operands[1].imm;
19478 memcpy (&new_imm, &imm, sizeof (float));
19479 /* But the assembly may have been written to provide an integer
19480 bit pattern that equates to a float, so check that the
19481 conversion has worked. */
19482 if (is_quarter_float (new_imm))
19483 {
19484 if (is_quarter_float (inst.operands[1].imm))
19485 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19486
19487 inst.operands[1].imm = new_imm;
19488 inst.operands[1].immisfloat = 1;
19489 }
58ed5c38
TC
19490 }
19491
037e8744 19492 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
19493 {
19494 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19495 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
19496
19497 /* ARMv8.2 fp16 vmov.f16 instruction. */
19498 if (rs == NS_HI)
19499 do_scalar_fp16_v82_encode ();
477330fc 19500 }
5287ad62 19501 else
477330fc 19502 first_error (_("immediate out of range"));
037e8744 19503 break;
5f4273c7 19504
9db2f6b4 19505 case NS_RH:
037e8744
JB
19506 case NS_RF: /* case 12 (fmrs). */
19507 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
19508 /* ARMv8.2 fp16 vmov.f16 instruction. */
19509 if (rs == NS_RH)
19510 do_scalar_fp16_v82_encode ();
037e8744 19511 break;
5f4273c7 19512
9db2f6b4 19513 case NS_HR:
037e8744
JB
19514 case NS_FR: /* case 13 (fmsr). */
19515 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
19516 /* ARMv8.2 fp16 vmov.f16 instruction. */
19517 if (rs == NS_HR)
19518 do_scalar_fp16_v82_encode ();
037e8744 19519 break;
5f4273c7 19520
57785aa2
AV
19521 case NS_RRSS:
19522 do_mve_mov (0);
19523 break;
19524 case NS_SSRR:
19525 do_mve_mov (1);
19526 break;
19527
037e8744
JB
19528 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19529 (one of which is a list), but we have parsed four. Do some fiddling to
19530 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19531 expect. */
19532 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19534 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19535 _(BAD_FPU));
037e8744 19536 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19537 _("VFP registers must be adjacent"));
037e8744
JB
19538 inst.operands[2].imm = 2;
19539 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19540 do_vfp_nsyn_opcode ("fmrrs");
19541 break;
5f4273c7 19542
037e8744 19543 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19544 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19545 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19546 _(BAD_FPU));
037e8744 19547 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19548 _("VFP registers must be adjacent"));
037e8744
JB
19549 inst.operands[1] = inst.operands[2];
19550 inst.operands[2] = inst.operands[3];
19551 inst.operands[0].imm = 2;
19552 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19553 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19554 break;
5f4273c7 19555
4c261dff
NC
19556 case NS_NULL:
19557 /* neon_select_shape has determined that the instruction
19558 shape is wrong and has already set the error message. */
19559 break;
19560
5287ad62
JB
19561 default:
19562 abort ();
19563 }
19564}
19565
57785aa2
AV
19566static void
19567do_mve_movl (void)
19568{
19569 if (!(inst.operands[0].present && inst.operands[0].isquad
19570 && inst.operands[1].present && inst.operands[1].isquad
19571 && !inst.operands[2].present))
19572 {
19573 inst.instruction = 0;
19574 inst.cond = 0xb;
19575 if (thumb_mode)
19576 set_pred_insn_type (INSIDE_IT_INSN);
19577 do_neon_mov ();
19578 return;
19579 }
19580
19581 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19582 return;
19583
19584 if (inst.cond != COND_ALWAYS)
19585 inst.pred_insn_type = INSIDE_VPT_INSN;
19586
19587 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19588 | N_S16 | N_U16 | N_KEY);
19589
19590 inst.instruction |= (et.type == NT_unsigned) << 28;
19591 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19592 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19593 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19594 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19595 inst.instruction |= LOW4 (inst.operands[1].reg);
19596 inst.is_neon = 1;
19597}
19598
5287ad62
JB
19599static void
19600do_neon_rshift_round_imm (void)
19601{
037e8744 19602 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
19603 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19604 int imm = inst.operands[2].imm;
19605
19606 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19607 if (imm == 0)
19608 {
19609 inst.operands[2].present = 0;
19610 do_neon_mov ();
19611 return;
19612 }
19613
19614 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19615 _("immediate out of range for shift"));
037e8744 19616 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19617 et.size - imm);
5287ad62
JB
19618}
19619
9db2f6b4
RL
19620static void
19621do_neon_movhf (void)
19622{
19623 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19624 constraint (rs != NS_HH, _("invalid suffix"));
19625
7bdf778b
ASDV
19626 if (inst.cond != COND_ALWAYS)
19627 {
19628 if (thumb_mode)
19629 {
19630 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19631 " the behaviour is UNPREDICTABLE"));
19632 }
19633 else
19634 {
19635 inst.error = BAD_COND;
19636 return;
19637 }
19638 }
19639
9db2f6b4
RL
19640 do_vfp_sp_monadic ();
19641
19642 inst.is_neon = 1;
19643 inst.instruction |= 0xf0000000;
19644}
19645
5287ad62
JB
19646static void
19647do_neon_movl (void)
19648{
19649 struct neon_type_el et = neon_check_type (2, NS_QD,
19650 N_EQK | N_DBL, N_SU_32 | N_KEY);
19651 unsigned sizebits = et.size >> 3;
19652 inst.instruction |= sizebits << 19;
19653 neon_two_same (0, et.type == NT_unsigned, -1);
19654}
19655
19656static void
19657do_neon_trn (void)
19658{
037e8744 19659 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19660 struct neon_type_el et = neon_check_type (2, rs,
19661 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19662 NEON_ENCODE (INTEGER, inst);
037e8744 19663 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19664}
19665
19666static void
19667do_neon_zip_uzp (void)
19668{
037e8744 19669 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19670 struct neon_type_el et = neon_check_type (2, rs,
19671 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19672 if (rs == NS_DD && et.size == 32)
19673 {
19674 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19675 inst.instruction = N_MNEM_vtrn;
19676 do_neon_trn ();
19677 return;
19678 }
037e8744 19679 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19680}
19681
19682static void
19683do_neon_sat_abs_neg (void)
19684{
1a186d29
AV
19685 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19686 return;
19687
19688 enum neon_shape rs;
19689 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19690 rs = neon_select_shape (NS_QQ, NS_NULL);
19691 else
19692 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19693 struct neon_type_el et = neon_check_type (2, rs,
19694 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19695 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19696}
19697
19698static void
19699do_neon_pair_long (void)
19700{
037e8744 19701 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19702 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19703 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19704 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19705 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19706}
19707
19708static void
19709do_neon_recip_est (void)
19710{
037e8744 19711 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19712 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19713 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19714 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19715 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19716}
19717
19718static void
19719do_neon_cls (void)
19720{
f30ee27c
AV
19721 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19722 return;
19723
19724 enum neon_shape rs;
19725 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19726 rs = neon_select_shape (NS_QQ, NS_NULL);
19727 else
19728 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19729
5287ad62
JB
19730 struct neon_type_el et = neon_check_type (2, rs,
19731 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19732 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19733}
19734
19735static void
19736do_neon_clz (void)
19737{
f30ee27c
AV
19738 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19739 return;
19740
19741 enum neon_shape rs;
19742 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19743 rs = neon_select_shape (NS_QQ, NS_NULL);
19744 else
19745 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19746
5287ad62
JB
19747 struct neon_type_el et = neon_check_type (2, rs,
19748 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19749 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19750}
19751
19752static void
19753do_neon_cnt (void)
19754{
037e8744 19755 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19756 struct neon_type_el et = neon_check_type (2, rs,
19757 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19758 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19759}
19760
19761static void
19762do_neon_swp (void)
19763{
037e8744
JB
19764 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19765 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19766}
19767
19768static void
19769do_neon_tbl_tbx (void)
19770{
19771 unsigned listlenbits;
dcbf9037 19772 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19773
5287ad62
JB
19774 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19775 {
dcbf9037 19776 first_error (_("bad list length for table lookup"));
5287ad62
JB
19777 return;
19778 }
5f4273c7 19779
5287ad62
JB
19780 listlenbits = inst.operands[1].imm - 1;
19781 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19782 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19783 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19784 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19785 inst.instruction |= LOW4 (inst.operands[2].reg);
19786 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19787 inst.instruction |= listlenbits << 8;
5f4273c7 19788
88714cb8 19789 neon_dp_fixup (&inst);
5287ad62
JB
19790}
19791
19792static void
19793do_neon_ldm_stm (void)
19794{
19795 /* P, U and L bits are part of bitmask. */
19796 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19797 unsigned offsetbits = inst.operands[1].imm * 2;
19798
037e8744
JB
19799 if (inst.operands[1].issingle)
19800 {
19801 do_vfp_nsyn_ldm_stm (is_dbmode);
19802 return;
19803 }
19804
5287ad62 19805 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19806 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19807
19808 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19809 _("register list must contain at least 1 and at most 16 "
19810 "registers"));
5287ad62
JB
19811
19812 inst.instruction |= inst.operands[0].reg << 16;
19813 inst.instruction |= inst.operands[0].writeback << 21;
19814 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19815 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19816
19817 inst.instruction |= offsetbits;
5f4273c7 19818
037e8744 19819 do_vfp_cond_or_thumb ();
5287ad62
JB
19820}
19821
19822static void
19823do_neon_ldr_str (void)
19824{
5287ad62 19825 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19826
6844b2c2
MGD
19827 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19828 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19829 if (!is_ldr
6844b2c2 19830 && inst.operands[1].reg == REG_PC
ba86b375 19831 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19832 {
94dcf8bf 19833 if (thumb_mode)
6844b2c2 19834 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19835 else if (warn_on_deprecated)
5c3696f8 19836 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19837 }
19838
037e8744
JB
19839 if (inst.operands[0].issingle)
19840 {
cd2f129f 19841 if (is_ldr)
477330fc 19842 do_vfp_nsyn_opcode ("flds");
cd2f129f 19843 else
477330fc 19844 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19845
19846 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19847 if (inst.vectype.el[0].size == 16)
19848 do_scalar_fp16_v82_encode ();
5287ad62
JB
19849 }
19850 else
5287ad62 19851 {
cd2f129f 19852 if (is_ldr)
477330fc 19853 do_vfp_nsyn_opcode ("fldd");
5287ad62 19854 else
477330fc 19855 do_vfp_nsyn_opcode ("fstd");
5287ad62 19856 }
5287ad62
JB
19857}
19858
32c36c3c
AV
19859static void
19860do_t_vldr_vstr_sysreg (void)
19861{
19862 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19863 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19864
19865 /* Use of PC is UNPREDICTABLE. */
19866 if (inst.operands[1].reg == REG_PC)
19867 inst.error = _("Use of PC here is UNPREDICTABLE");
19868
19869 if (inst.operands[1].immisreg)
19870 inst.error = _("instruction does not accept register index");
19871
19872 if (!inst.operands[1].isreg)
19873 inst.error = _("instruction does not accept PC-relative addressing");
19874
19875 if (abs (inst.operands[1].imm) >= (1 << 7))
19876 inst.error = _("immediate value out of range");
19877
19878 inst.instruction = 0xec000f80;
19879 if (is_vldr)
19880 inst.instruction |= 1 << sysreg_vldr_bitno;
19881 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19882 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19883 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19884}
19885
19886static void
19887do_vldr_vstr (void)
19888{
19889 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19890
19891 /* VLDR/VSTR (System Register). */
19892 if (sysreg_op)
19893 {
19894 if (!mark_feature_used (&arm_ext_v8_1m_main))
19895 as_bad (_("Instruction not permitted on this architecture"));
19896
19897 do_t_vldr_vstr_sysreg ();
19898 }
19899 /* VLDR/VSTR. */
19900 else
19901 {
19902 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19903 as_bad (_("Instruction not permitted on this architecture"));
19904 do_neon_ldr_str ();
19905 }
19906}
19907
5287ad62
JB
19908/* "interleave" version also handles non-interleaving register VLD1/VST1
19909 instructions. */
19910
19911static void
19912do_neon_ld_st_interleave (void)
19913{
037e8744 19914 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19915 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19916 unsigned alignbits = 0;
19917 unsigned idx;
19918 /* The bits in this table go:
19919 0: register stride of one (0) or two (1)
19920 1,2: register list length, minus one (1, 2, 3, 4).
19921 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19922 We use -1 for invalid entries. */
19923 const int typetable[] =
19924 {
19925 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19926 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19927 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19928 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19929 };
19930 int typebits;
19931
dcbf9037
JB
19932 if (et.type == NT_invtype)
19933 return;
19934
5287ad62
JB
19935 if (inst.operands[1].immisalign)
19936 switch (inst.operands[1].imm >> 8)
19937 {
19938 case 64: alignbits = 1; break;
19939 case 128:
477330fc 19940 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 19941 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
19942 goto bad_alignment;
19943 alignbits = 2;
19944 break;
5287ad62 19945 case 256:
477330fc
RM
19946 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19947 goto bad_alignment;
19948 alignbits = 3;
19949 break;
5287ad62
JB
19950 default:
19951 bad_alignment:
477330fc
RM
19952 first_error (_("bad alignment"));
19953 return;
5287ad62
JB
19954 }
19955
19956 inst.instruction |= alignbits << 4;
19957 inst.instruction |= neon_logbits (et.size) << 6;
19958
19959 /* Bits [4:6] of the immediate in a list specifier encode register stride
19960 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19961 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19962 up the right value for "type" in a table based on this value and the given
19963 list style, then stick it back. */
19964 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 19965 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
19966
19967 typebits = typetable[idx];
5f4273c7 19968
5287ad62 19969 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 19970 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 19971 BAD_EL_TYPE);
5287ad62
JB
19972
19973 inst.instruction &= ~0xf00;
19974 inst.instruction |= typebits << 8;
19975}
19976
19977/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19978 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19979 otherwise. The variable arguments are a list of pairs of legal (size, align)
19980 values, terminated with -1. */
19981
19982static int
aa8a0863 19983neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
19984{
19985 va_list ap;
19986 int result = FAIL, thissize, thisalign;
5f4273c7 19987
5287ad62
JB
19988 if (!inst.operands[1].immisalign)
19989 {
aa8a0863 19990 *do_alignment = 0;
5287ad62
JB
19991 return SUCCESS;
19992 }
5f4273c7 19993
aa8a0863 19994 va_start (ap, do_alignment);
5287ad62
JB
19995
19996 do
19997 {
19998 thissize = va_arg (ap, int);
19999 if (thissize == -1)
477330fc 20000 break;
5287ad62
JB
20001 thisalign = va_arg (ap, int);
20002
20003 if (size == thissize && align == thisalign)
477330fc 20004 result = SUCCESS;
5287ad62
JB
20005 }
20006 while (result != SUCCESS);
20007
20008 va_end (ap);
20009
20010 if (result == SUCCESS)
aa8a0863 20011 *do_alignment = 1;
5287ad62 20012 else
dcbf9037 20013 first_error (_("unsupported alignment for instruction"));
5f4273c7 20014
5287ad62
JB
20015 return result;
20016}
20017
20018static void
20019do_neon_ld_st_lane (void)
20020{
037e8744 20021 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20022 int align_good, do_alignment = 0;
5287ad62
JB
20023 int logsize = neon_logbits (et.size);
20024 int align = inst.operands[1].imm >> 8;
20025 int n = (inst.instruction >> 8) & 3;
20026 int max_el = 64 / et.size;
5f4273c7 20027
dcbf9037
JB
20028 if (et.type == NT_invtype)
20029 return;
5f4273c7 20030
5287ad62 20031 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 20032 _("bad list length"));
5287ad62 20033 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 20034 _("scalar index out of range"));
5287ad62 20035 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
20036 && et.size == 8,
20037 _("stride of 2 unavailable when element size is 8"));
5f4273c7 20038
5287ad62
JB
20039 switch (n)
20040 {
20041 case 0: /* VLD1 / VST1. */
aa8a0863 20042 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 20043 32, 32, -1);
5287ad62 20044 if (align_good == FAIL)
477330fc 20045 return;
aa8a0863 20046 if (do_alignment)
477330fc
RM
20047 {
20048 unsigned alignbits = 0;
20049 switch (et.size)
20050 {
20051 case 16: alignbits = 0x1; break;
20052 case 32: alignbits = 0x3; break;
20053 default: ;
20054 }
20055 inst.instruction |= alignbits << 4;
20056 }
5287ad62
JB
20057 break;
20058
20059 case 1: /* VLD2 / VST2. */
aa8a0863
TS
20060 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20061 16, 32, 32, 64, -1);
5287ad62 20062 if (align_good == FAIL)
477330fc 20063 return;
aa8a0863 20064 if (do_alignment)
477330fc 20065 inst.instruction |= 1 << 4;
5287ad62
JB
20066 break;
20067
20068 case 2: /* VLD3 / VST3. */
20069 constraint (inst.operands[1].immisalign,
477330fc 20070 _("can't use alignment with this instruction"));
5287ad62
JB
20071 break;
20072
20073 case 3: /* VLD4 / VST4. */
aa8a0863 20074 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 20075 16, 64, 32, 64, 32, 128, -1);
5287ad62 20076 if (align_good == FAIL)
477330fc 20077 return;
aa8a0863 20078 if (do_alignment)
477330fc
RM
20079 {
20080 unsigned alignbits = 0;
20081 switch (et.size)
20082 {
20083 case 8: alignbits = 0x1; break;
20084 case 16: alignbits = 0x1; break;
20085 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20086 default: ;
20087 }
20088 inst.instruction |= alignbits << 4;
20089 }
5287ad62
JB
20090 break;
20091
20092 default: ;
20093 }
20094
20095 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20096 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20097 inst.instruction |= 1 << (4 + logsize);
5f4273c7 20098
5287ad62
JB
20099 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20100 inst.instruction |= logsize << 10;
20101}
20102
20103/* Encode single n-element structure to all lanes VLD<n> instructions. */
20104
20105static void
20106do_neon_ld_dup (void)
20107{
037e8744 20108 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20109 int align_good, do_alignment = 0;
5287ad62 20110
dcbf9037
JB
20111 if (et.type == NT_invtype)
20112 return;
20113
5287ad62
JB
20114 switch ((inst.instruction >> 8) & 3)
20115 {
20116 case 0: /* VLD1. */
9c2799c2 20117 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 20118 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 20119 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 20120 if (align_good == FAIL)
477330fc 20121 return;
5287ad62 20122 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
20123 {
20124 case 1: break;
20125 case 2: inst.instruction |= 1 << 5; break;
20126 default: first_error (_("bad list length")); return;
20127 }
5287ad62
JB
20128 inst.instruction |= neon_logbits (et.size) << 6;
20129 break;
20130
20131 case 1: /* VLD2. */
20132 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
20133 &do_alignment, 8, 16, 16, 32, 32, 64,
20134 -1);
5287ad62 20135 if (align_good == FAIL)
477330fc 20136 return;
5287ad62 20137 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 20138 _("bad list length"));
5287ad62 20139 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20140 inst.instruction |= 1 << 5;
5287ad62
JB
20141 inst.instruction |= neon_logbits (et.size) << 6;
20142 break;
20143
20144 case 2: /* VLD3. */
20145 constraint (inst.operands[1].immisalign,
477330fc 20146 _("can't use alignment with this instruction"));
5287ad62 20147 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 20148 _("bad list length"));
5287ad62 20149 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20150 inst.instruction |= 1 << 5;
5287ad62
JB
20151 inst.instruction |= neon_logbits (et.size) << 6;
20152 break;
20153
20154 case 3: /* VLD4. */
20155 {
477330fc 20156 int align = inst.operands[1].imm >> 8;
aa8a0863 20157 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
20158 16, 64, 32, 64, 32, 128, -1);
20159 if (align_good == FAIL)
20160 return;
20161 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20162 _("bad list length"));
20163 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20164 inst.instruction |= 1 << 5;
20165 if (et.size == 32 && align == 128)
20166 inst.instruction |= 0x3 << 6;
20167 else
20168 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
20169 }
20170 break;
20171
20172 default: ;
20173 }
20174
aa8a0863 20175 inst.instruction |= do_alignment << 4;
5287ad62
JB
20176}
20177
20178/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20179 apart from bits [11:4]. */
20180
20181static void
20182do_neon_ldx_stx (void)
20183{
b1a769ed
DG
20184 if (inst.operands[1].isreg)
20185 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20186
5287ad62
JB
20187 switch (NEON_LANE (inst.operands[0].imm))
20188 {
20189 case NEON_INTERLEAVE_LANES:
88714cb8 20190 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
20191 do_neon_ld_st_interleave ();
20192 break;
5f4273c7 20193
5287ad62 20194 case NEON_ALL_LANES:
88714cb8 20195 NEON_ENCODE (DUP, inst);
2d51fb74
JB
20196 if (inst.instruction == N_INV)
20197 {
20198 first_error ("only loads support such operands");
20199 break;
20200 }
5287ad62
JB
20201 do_neon_ld_dup ();
20202 break;
5f4273c7 20203
5287ad62 20204 default:
88714cb8 20205 NEON_ENCODE (LANE, inst);
5287ad62
JB
20206 do_neon_ld_st_lane ();
20207 }
20208
20209 /* L bit comes from bit mask. */
20210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20212 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 20213
5287ad62
JB
20214 if (inst.operands[1].postind)
20215 {
20216 int postreg = inst.operands[1].imm & 0xf;
20217 constraint (!inst.operands[1].immisreg,
477330fc 20218 _("post-index must be a register"));
5287ad62 20219 constraint (postreg == 0xd || postreg == 0xf,
477330fc 20220 _("bad register for post-index"));
5287ad62
JB
20221 inst.instruction |= postreg;
20222 }
4f2374c7 20223 else
5287ad62 20224 {
4f2374c7 20225 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
20226 constraint (inst.relocs[0].exp.X_op != O_constant
20227 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
20228 BAD_ADDR_MODE);
20229
20230 if (inst.operands[1].writeback)
20231 {
20232 inst.instruction |= 0xd;
20233 }
20234 else
20235 inst.instruction |= 0xf;
5287ad62 20236 }
5f4273c7 20237
5287ad62
JB
20238 if (thumb_mode)
20239 inst.instruction |= 0xf9000000;
20240 else
20241 inst.instruction |= 0xf4000000;
20242}
33399f07
MGD
20243
20244/* FP v8. */
20245static void
20246do_vfp_nsyn_fpv8 (enum neon_shape rs)
20247{
a715796b
TG
20248 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20249 D register operands. */
20250 if (neon_shape_class[rs] == SC_DOUBLE)
20251 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20252 _(BAD_FPU));
20253
33399f07
MGD
20254 NEON_ENCODE (FPV8, inst);
20255
9db2f6b4
RL
20256 if (rs == NS_FFF || rs == NS_HHH)
20257 {
20258 do_vfp_sp_dyadic ();
20259
20260 /* ARMv8.2 fp16 instruction. */
20261 if (rs == NS_HHH)
20262 do_scalar_fp16_v82_encode ();
20263 }
33399f07
MGD
20264 else
20265 do_vfp_dp_rd_rn_rm ();
20266
20267 if (rs == NS_DDD)
20268 inst.instruction |= 0x100;
20269
20270 inst.instruction |= 0xf0000000;
20271}
20272
20273static void
20274do_vsel (void)
20275{
5ee91343 20276 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
20277
20278 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20279 first_error (_("invalid instruction shape"));
20280}
20281
73924fbc
MGD
20282static void
20283do_vmaxnm (void)
20284{
935295b5
AV
20285 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20286 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
20287
20288 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20289 return;
20290
935295b5 20291 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
20292 return;
20293
cc933301 20294 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
20295}
20296
30bdf752
MGD
20297static void
20298do_vrint_1 (enum neon_cvt_mode mode)
20299{
9db2f6b4 20300 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
20301 struct neon_type_el et;
20302
20303 if (rs == NS_NULL)
20304 return;
20305
a715796b
TG
20306 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20307 D register operands. */
20308 if (neon_shape_class[rs] == SC_DOUBLE)
20309 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20310 _(BAD_FPU));
20311
9db2f6b4
RL
20312 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20313 | N_VFP);
30bdf752
MGD
20314 if (et.type != NT_invtype)
20315 {
20316 /* VFP encodings. */
20317 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20318 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 20319 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20320
20321 NEON_ENCODE (FPV8, inst);
9db2f6b4 20322 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
20323 do_vfp_sp_monadic ();
20324 else
20325 do_vfp_dp_rd_rm ();
20326
20327 switch (mode)
20328 {
20329 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20330 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20331 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20332 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20333 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20334 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20335 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20336 default: abort ();
20337 }
20338
20339 inst.instruction |= (rs == NS_DD) << 8;
20340 do_vfp_cond_or_thumb ();
9db2f6b4
RL
20341
20342 /* ARMv8.2 fp16 vrint instruction. */
20343 if (rs == NS_HH)
20344 do_scalar_fp16_v82_encode ();
30bdf752
MGD
20345 }
20346 else
20347 {
20348 /* Neon encodings (or something broken...). */
20349 inst.error = NULL;
cc933301 20350 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
20351
20352 if (et.type == NT_invtype)
20353 return;
20354
5ee91343 20355 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20356 NEON_ENCODE (FLOAT, inst);
20357
20358 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
20359 return;
20360
20361 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20362 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20363 inst.instruction |= LOW4 (inst.operands[1].reg);
20364 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20365 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
20366 /* Mask off the original size bits and reencode them. */
20367 inst.instruction = ((inst.instruction & 0xfff3ffff)
20368 | neon_logbits (et.size) << 18);
20369
30bdf752
MGD
20370 switch (mode)
20371 {
20372 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20373 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20374 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20375 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20376 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20377 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20378 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20379 default: abort ();
20380 }
20381
20382 if (thumb_mode)
20383 inst.instruction |= 0xfc000000;
20384 else
20385 inst.instruction |= 0xf0000000;
20386 }
20387}
20388
20389static void
20390do_vrintx (void)
20391{
20392 do_vrint_1 (neon_cvt_mode_x);
20393}
20394
20395static void
20396do_vrintz (void)
20397{
20398 do_vrint_1 (neon_cvt_mode_z);
20399}
20400
20401static void
20402do_vrintr (void)
20403{
20404 do_vrint_1 (neon_cvt_mode_r);
20405}
20406
20407static void
20408do_vrinta (void)
20409{
20410 do_vrint_1 (neon_cvt_mode_a);
20411}
20412
20413static void
20414do_vrintn (void)
20415{
20416 do_vrint_1 (neon_cvt_mode_n);
20417}
20418
20419static void
20420do_vrintp (void)
20421{
20422 do_vrint_1 (neon_cvt_mode_p);
20423}
20424
20425static void
20426do_vrintm (void)
20427{
20428 do_vrint_1 (neon_cvt_mode_m);
20429}
20430
c28eeff2
SN
20431static unsigned
20432neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20433{
20434 unsigned regno = NEON_SCALAR_REG (opnd);
20435 unsigned elno = NEON_SCALAR_INDEX (opnd);
20436
20437 if (elsize == 16 && elno < 2 && regno < 16)
20438 return regno | (elno << 4);
20439 else if (elsize == 32 && elno == 0)
20440 return regno;
20441
20442 first_error (_("scalar out of range"));
20443 return 0;
20444}
20445
20446static void
20447do_vcmla (void)
20448{
5d281bf0
AV
20449 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20450 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20451 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20452 constraint (inst.relocs[0].exp.X_op != O_constant,
20453 _("expression too complex"));
20454 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
20455 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20456 _("immediate out of range"));
20457 rot /= 90;
5d281bf0
AV
20458
20459 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20460 return;
20461
c28eeff2
SN
20462 if (inst.operands[2].isscalar)
20463 {
5d281bf0
AV
20464 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20465 first_error (_("invalid instruction shape"));
c28eeff2
SN
20466 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20467 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20468 N_KEY | N_F16 | N_F32).size;
20469 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20470 inst.is_neon = 1;
20471 inst.instruction = 0xfe000800;
20472 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20473 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20474 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20475 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20476 inst.instruction |= LOW4 (m);
20477 inst.instruction |= HI1 (m) << 5;
20478 inst.instruction |= neon_quad (rs) << 6;
20479 inst.instruction |= rot << 20;
20480 inst.instruction |= (size == 32) << 23;
20481 }
20482 else
20483 {
5d281bf0
AV
20484 enum neon_shape rs;
20485 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20486 rs = neon_select_shape (NS_QQQI, NS_NULL);
20487 else
20488 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20489
c28eeff2
SN
20490 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20491 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
20492 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20493 && (inst.operands[0].reg == inst.operands[1].reg
20494 || inst.operands[0].reg == inst.operands[2].reg))
20495 as_tsktsk (BAD_MVE_SRCDEST);
20496
c28eeff2
SN
20497 neon_three_same (neon_quad (rs), 0, -1);
20498 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20499 inst.instruction |= 0xfc200800;
20500 inst.instruction |= rot << 23;
20501 inst.instruction |= (size == 32) << 20;
20502 }
20503}
20504
20505static void
20506do_vcadd (void)
20507{
5d281bf0
AV
20508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20509 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20510 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20511 constraint (inst.relocs[0].exp.X_op != O_constant,
20512 _("expression too complex"));
5d281bf0 20513
e2b0ab59 20514 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 20515 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
20516 enum neon_shape rs;
20517 struct neon_type_el et;
20518 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20519 {
20520 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20521 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20522 }
20523 else
20524 {
20525 rs = neon_select_shape (NS_QQQI, NS_NULL);
20526 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20527 | N_I16 | N_I32);
20528 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20529 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20530 "operand makes instruction UNPREDICTABLE"));
20531 }
20532
20533 if (et.type == NT_invtype)
20534 return;
20535
20536 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20537 | NEON_CHECK_CC))
20538 return;
20539
20540 if (et.type == NT_float)
20541 {
20542 neon_three_same (neon_quad (rs), 0, -1);
20543 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20544 inst.instruction |= 0xfc800800;
20545 inst.instruction |= (rot == 270) << 24;
20546 inst.instruction |= (et.size == 32) << 20;
20547 }
20548 else
20549 {
20550 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20551 inst.instruction = 0xfe000f00;
20552 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20553 inst.instruction |= neon_logbits (et.size) << 20;
20554 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20555 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20556 inst.instruction |= (rot == 270) << 12;
20557 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20558 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20559 inst.instruction |= LOW4 (inst.operands[2].reg);
20560 inst.is_neon = 1;
20561 }
c28eeff2
SN
20562}
20563
c604a79a
JW
20564/* Dot Product instructions encoding support. */
20565
20566static void
20567do_neon_dotproduct (int unsigned_p)
20568{
20569 enum neon_shape rs;
20570 unsigned scalar_oprd2 = 0;
20571 int high8;
20572
20573 if (inst.cond != COND_ALWAYS)
20574 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20575 "is UNPREDICTABLE"));
20576
20577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20578 _(BAD_FPU));
20579
20580 /* Dot Product instructions are in three-same D/Q register format or the third
20581 operand can be a scalar index register. */
20582 if (inst.operands[2].isscalar)
20583 {
20584 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20585 high8 = 0xfe000000;
20586 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20587 }
20588 else
20589 {
20590 high8 = 0xfc000000;
20591 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20592 }
20593
20594 if (unsigned_p)
20595 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20596 else
20597 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20598
20599 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20600 Product instruction, so we pass 0 as the "ubit" parameter. And the
20601 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20602 neon_three_same (neon_quad (rs), 0, 32);
20603
20604 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20605 different NEON three-same encoding. */
20606 inst.instruction &= 0x00ffffff;
20607 inst.instruction |= high8;
20608 /* Encode 'U' bit which indicates signedness. */
20609 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20610 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20611 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20612 the instruction encoding. */
20613 if (inst.operands[2].isscalar)
20614 {
20615 inst.instruction &= 0xffffffd0;
20616 inst.instruction |= LOW4 (scalar_oprd2);
20617 inst.instruction |= HI1 (scalar_oprd2) << 5;
20618 }
20619}
20620
20621/* Dot Product instructions for signed integer. */
20622
20623static void
20624do_neon_dotproduct_s (void)
20625{
20626 return do_neon_dotproduct (0);
20627}
20628
20629/* Dot Product instructions for unsigned integer. */
20630
20631static void
20632do_neon_dotproduct_u (void)
20633{
20634 return do_neon_dotproduct (1);
20635}
20636
91ff7894
MGD
20637/* Crypto v1 instructions. */
20638static void
20639do_crypto_2op_1 (unsigned elttype, int op)
20640{
5ee91343 20641 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20642
20643 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20644 == NT_invtype)
20645 return;
20646
20647 inst.error = NULL;
20648
20649 NEON_ENCODE (INTEGER, inst);
20650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20652 inst.instruction |= LOW4 (inst.operands[1].reg);
20653 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20654 if (op != -1)
20655 inst.instruction |= op << 6;
20656
20657 if (thumb_mode)
20658 inst.instruction |= 0xfc000000;
20659 else
20660 inst.instruction |= 0xf0000000;
20661}
20662
48adcd8e
MGD
20663static void
20664do_crypto_3op_1 (int u, int op)
20665{
5ee91343 20666 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
20667
20668 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20669 N_32 | N_UNT | N_KEY).type == NT_invtype)
20670 return;
20671
20672 inst.error = NULL;
20673
20674 NEON_ENCODE (INTEGER, inst);
20675 neon_three_same (1, u, 8 << op);
20676}
20677
91ff7894
MGD
20678static void
20679do_aese (void)
20680{
20681 do_crypto_2op_1 (N_8, 0);
20682}
20683
20684static void
20685do_aesd (void)
20686{
20687 do_crypto_2op_1 (N_8, 1);
20688}
20689
20690static void
20691do_aesmc (void)
20692{
20693 do_crypto_2op_1 (N_8, 2);
20694}
20695
20696static void
20697do_aesimc (void)
20698{
20699 do_crypto_2op_1 (N_8, 3);
20700}
20701
48adcd8e
MGD
20702static void
20703do_sha1c (void)
20704{
20705 do_crypto_3op_1 (0, 0);
20706}
20707
20708static void
20709do_sha1p (void)
20710{
20711 do_crypto_3op_1 (0, 1);
20712}
20713
20714static void
20715do_sha1m (void)
20716{
20717 do_crypto_3op_1 (0, 2);
20718}
20719
20720static void
20721do_sha1su0 (void)
20722{
20723 do_crypto_3op_1 (0, 3);
20724}
91ff7894 20725
48adcd8e
MGD
20726static void
20727do_sha256h (void)
20728{
20729 do_crypto_3op_1 (1, 0);
20730}
20731
20732static void
20733do_sha256h2 (void)
20734{
20735 do_crypto_3op_1 (1, 1);
20736}
20737
20738static void
20739do_sha256su1 (void)
20740{
20741 do_crypto_3op_1 (1, 2);
20742}
3c9017d2
MGD
20743
20744static void
20745do_sha1h (void)
20746{
20747 do_crypto_2op_1 (N_32, -1);
20748}
20749
20750static void
20751do_sha1su1 (void)
20752{
20753 do_crypto_2op_1 (N_32, 0);
20754}
20755
20756static void
20757do_sha256su0 (void)
20758{
20759 do_crypto_2op_1 (N_32, 1);
20760}
dd5181d5
KT
20761
20762static void
20763do_crc32_1 (unsigned int poly, unsigned int sz)
20764{
20765 unsigned int Rd = inst.operands[0].reg;
20766 unsigned int Rn = inst.operands[1].reg;
20767 unsigned int Rm = inst.operands[2].reg;
20768
5ee91343 20769 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20770 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20771 inst.instruction |= LOW4 (Rn) << 16;
20772 inst.instruction |= LOW4 (Rm);
20773 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20774 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20775
20776 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20777 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20778}
20779
20780static void
20781do_crc32b (void)
20782{
20783 do_crc32_1 (0, 0);
20784}
20785
20786static void
20787do_crc32h (void)
20788{
20789 do_crc32_1 (0, 1);
20790}
20791
20792static void
20793do_crc32w (void)
20794{
20795 do_crc32_1 (0, 2);
20796}
20797
20798static void
20799do_crc32cb (void)
20800{
20801 do_crc32_1 (1, 0);
20802}
20803
20804static void
20805do_crc32ch (void)
20806{
20807 do_crc32_1 (1, 1);
20808}
20809
20810static void
20811do_crc32cw (void)
20812{
20813 do_crc32_1 (1, 2);
20814}
20815
49e8a725
SN
20816static void
20817do_vjcvt (void)
20818{
20819 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20820 _(BAD_FPU));
20821 neon_check_type (2, NS_FD, N_S32, N_F64);
20822 do_vfp_sp_dp_cvt ();
20823 do_vfp_cond_or_thumb ();
20824}
20825
5287ad62
JB
20826\f
20827/* Overall per-instruction processing. */
20828
20829/* We need to be able to fix up arbitrary expressions in some statements.
20830 This is so that we can handle symbols that are an arbitrary distance from
20831 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20832 which returns part of an address in a form which will be valid for
20833 a data instruction. We do this by pushing the expression into a symbol
20834 in the expr_section, and creating a fix for that. */
20835
20836static void
20837fix_new_arm (fragS * frag,
20838 int where,
20839 short int size,
20840 expressionS * exp,
20841 int pc_rel,
20842 int reloc)
20843{
20844 fixS * new_fix;
20845
20846 switch (exp->X_op)
20847 {
20848 case O_constant:
6e7ce2cd
PB
20849 if (pc_rel)
20850 {
20851 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20852 refer to in the object file. Unfortunately for us, gas's
20853 generic expression parsing will already have folded out
20854 any use of .set foo/.type foo %function that may have
20855 been used to set type information of the target location,
20856 that's being specified symbolically. We have to presume
20857 the user knows what they are doing. */
6e7ce2cd
PB
20858 char name[16 + 8];
20859 symbolS *symbol;
20860
20861 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20862
20863 symbol = symbol_find_or_make (name);
20864 S_SET_SEGMENT (symbol, absolute_section);
20865 symbol_set_frag (symbol, &zero_address_frag);
20866 S_SET_VALUE (symbol, exp->X_add_number);
20867 exp->X_op = O_symbol;
20868 exp->X_add_symbol = symbol;
20869 exp->X_add_number = 0;
20870 }
20871 /* FALLTHROUGH */
5287ad62
JB
20872 case O_symbol:
20873 case O_add:
20874 case O_subtract:
21d799b5 20875 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20876 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20877 break;
20878
20879 default:
21d799b5 20880 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 20881 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20882 break;
20883 }
20884
20885 /* Mark whether the fix is to a THUMB instruction, or an ARM
20886 instruction. */
20887 new_fix->tc_fix_data = thumb_mode;
20888}
20889
20890/* Create a frg for an instruction requiring relaxation. */
20891static void
20892output_relax_insn (void)
20893{
20894 char * to;
20895 symbolS *sym;
0110f2b8
PB
20896 int offset;
20897
6e1cb1a6
PB
20898 /* The size of the instruction is unknown, so tie the debug info to the
20899 start of the instruction. */
20900 dwarf2_emit_insn (0);
6e1cb1a6 20901
e2b0ab59 20902 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
20903 {
20904 case O_symbol:
e2b0ab59
AV
20905 sym = inst.relocs[0].exp.X_add_symbol;
20906 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20907 break;
20908 case O_constant:
20909 sym = NULL;
e2b0ab59 20910 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20911 break;
20912 default:
e2b0ab59 20913 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20914 offset = 0;
20915 break;
20916 }
20917 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20918 inst.relax, sym, offset, NULL/*offset, opcode*/);
20919 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20920}
20921
20922/* Write a 32-bit thumb instruction to buf. */
20923static void
20924put_thumb32_insn (char * buf, unsigned long insn)
20925{
20926 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20927 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20928}
20929
b99bd4ef 20930static void
c19d1205 20931output_inst (const char * str)
b99bd4ef 20932{
c19d1205 20933 char * to = NULL;
b99bd4ef 20934
c19d1205 20935 if (inst.error)
b99bd4ef 20936 {
c19d1205 20937 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
20938 return;
20939 }
5f4273c7
NC
20940 if (inst.relax)
20941 {
20942 output_relax_insn ();
0110f2b8 20943 return;
5f4273c7 20944 }
c19d1205
ZW
20945 if (inst.size == 0)
20946 return;
b99bd4ef 20947
c19d1205 20948 to = frag_more (inst.size);
8dc2430f
NC
20949 /* PR 9814: Record the thumb mode into the current frag so that we know
20950 what type of NOP padding to use, if necessary. We override any previous
20951 setting so that if the mode has changed then the NOPS that we use will
20952 match the encoding of the last instruction in the frag. */
cd000bff 20953 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
20954
20955 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 20956 {
9c2799c2 20957 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 20958 put_thumb32_insn (to, inst.instruction);
b99bd4ef 20959 }
c19d1205 20960 else if (inst.size > INSN_SIZE)
b99bd4ef 20961 {
9c2799c2 20962 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
20963 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20964 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 20965 }
c19d1205
ZW
20966 else
20967 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 20968
e2b0ab59
AV
20969 int r;
20970 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20971 {
20972 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20973 fix_new_arm (frag_now, to - frag_now->fr_literal,
20974 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20975 inst.relocs[r].type);
20976 }
b99bd4ef 20977
c19d1205 20978 dwarf2_emit_insn (inst.size);
c19d1205 20979}
b99bd4ef 20980
e07e6e58
NC
20981static char *
20982output_it_inst (int cond, int mask, char * to)
20983{
20984 unsigned long instruction = 0xbf00;
20985
20986 mask &= 0xf;
20987 instruction |= mask;
20988 instruction |= cond << 4;
20989
20990 if (to == NULL)
20991 {
20992 to = frag_more (2);
20993#ifdef OBJ_ELF
20994 dwarf2_emit_insn (2);
20995#endif
20996 }
20997
20998 md_number_to_chars (to, instruction, 2);
20999
21000 return to;
21001}
21002
c19d1205
ZW
21003/* Tag values used in struct asm_opcode's tag field. */
21004enum opcode_tag
21005{
21006 OT_unconditional, /* Instruction cannot be conditionalized.
21007 The ARM condition field is still 0xE. */
21008 OT_unconditionalF, /* Instruction cannot be conditionalized
21009 and carries 0xF in its ARM condition field. */
21010 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
21011 OT_csuffixF, /* Some forms of the instruction take a scalar
21012 conditional suffix, others place 0xF where the
21013 condition field would be, others take a vector
21014 conditional suffix. */
c19d1205
ZW
21015 OT_cinfix3, /* Instruction takes a conditional infix,
21016 beginning at character index 3. (In
21017 unified mode, it becomes a suffix.) */
088fa78e
KH
21018 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21019 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
21020 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21021 character index 3, even in unified mode. Used for
21022 legacy instructions where suffix and infix forms
21023 may be ambiguous. */
c19d1205 21024 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 21025 suffix or an infix at character index 3. */
c19d1205
ZW
21026 OT_odd_infix_unc, /* This is the unconditional variant of an
21027 instruction that takes a conditional infix
21028 at an unusual position. In unified mode,
21029 this variant will accept a suffix. */
21030 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21031 are the conditional variants of instructions that
21032 take conditional infixes in unusual positions.
21033 The infix appears at character index
21034 (tag - OT_odd_infix_0). These are not accepted
21035 in unified mode. */
21036};
b99bd4ef 21037
c19d1205
ZW
21038/* Subroutine of md_assemble, responsible for looking up the primary
21039 opcode from the mnemonic the user wrote. STR points to the
21040 beginning of the mnemonic.
21041
21042 This is not simply a hash table lookup, because of conditional
21043 variants. Most instructions have conditional variants, which are
21044 expressed with a _conditional affix_ to the mnemonic. If we were
21045 to encode each conditional variant as a literal string in the opcode
21046 table, it would have approximately 20,000 entries.
21047
21048 Most mnemonics take this affix as a suffix, and in unified syntax,
21049 'most' is upgraded to 'all'. However, in the divided syntax, some
21050 instructions take the affix as an infix, notably the s-variants of
21051 the arithmetic instructions. Of those instructions, all but six
21052 have the infix appear after the third character of the mnemonic.
21053
21054 Accordingly, the algorithm for looking up primary opcodes given
21055 an identifier is:
21056
21057 1. Look up the identifier in the opcode table.
21058 If we find a match, go to step U.
21059
21060 2. Look up the last two characters of the identifier in the
21061 conditions table. If we find a match, look up the first N-2
21062 characters of the identifier in the opcode table. If we
21063 find a match, go to step CE.
21064
21065 3. Look up the fourth and fifth characters of the identifier in
21066 the conditions table. If we find a match, extract those
21067 characters from the identifier, and look up the remaining
21068 characters in the opcode table. If we find a match, go
21069 to step CM.
21070
21071 4. Fail.
21072
21073 U. Examine the tag field of the opcode structure, in case this is
21074 one of the six instructions with its conditional infix in an
21075 unusual place. If it is, the tag tells us where to find the
21076 infix; look it up in the conditions table and set inst.cond
21077 accordingly. Otherwise, this is an unconditional instruction.
21078 Again set inst.cond accordingly. Return the opcode structure.
21079
21080 CE. Examine the tag field to make sure this is an instruction that
21081 should receive a conditional suffix. If it is not, fail.
21082 Otherwise, set inst.cond from the suffix we already looked up,
21083 and return the opcode structure.
21084
21085 CM. Examine the tag field to make sure this is an instruction that
21086 should receive a conditional infix after the third character.
21087 If it is not, fail. Otherwise, undo the edits to the current
21088 line of input and proceed as for case CE. */
21089
21090static const struct asm_opcode *
21091opcode_lookup (char **str)
21092{
21093 char *end, *base;
21094 char *affix;
21095 const struct asm_opcode *opcode;
21096 const struct asm_cond *cond;
e3cb604e 21097 char save[2];
c19d1205
ZW
21098
21099 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 21100 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 21101 for (base = end = *str; *end != '\0'; end++)
721a8186 21102 if (*end == ' ' || *end == '.')
c19d1205 21103 break;
b99bd4ef 21104
c19d1205 21105 if (end == base)
c921be7d 21106 return NULL;
b99bd4ef 21107
5287ad62 21108 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 21109 if (end[0] == '.')
b99bd4ef 21110 {
5287ad62 21111 int offset = 2;
5f4273c7 21112
267d2029 21113 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 21114 use. */
267d2029 21115 if (unified_syntax && end[1] == 'w')
c19d1205 21116 inst.size_req = 4;
267d2029 21117 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
21118 inst.size_req = 2;
21119 else
477330fc 21120 offset = 0;
5287ad62
JB
21121
21122 inst.vectype.elems = 0;
21123
21124 *str = end + offset;
b99bd4ef 21125
5f4273c7 21126 if (end[offset] == '.')
5287ad62 21127 {
267d2029 21128 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
21129 non-unified ARM syntax mode). */
21130 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 21131 return NULL;
477330fc 21132 }
5287ad62 21133 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 21134 return NULL;
b99bd4ef 21135 }
c19d1205
ZW
21136 else
21137 *str = end;
b99bd4ef 21138
c19d1205 21139 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 21140 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21141 end - base);
c19d1205 21142 if (opcode)
b99bd4ef 21143 {
c19d1205
ZW
21144 /* step U */
21145 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 21146 {
c19d1205
ZW
21147 inst.cond = COND_ALWAYS;
21148 return opcode;
b99bd4ef 21149 }
b99bd4ef 21150
278df34e 21151 if (warn_on_deprecated && unified_syntax)
5c3696f8 21152 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 21153 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 21154 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 21155 gas_assert (cond);
b99bd4ef 21156
c19d1205
ZW
21157 inst.cond = cond->value;
21158 return opcode;
21159 }
5ee91343
AV
21160 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21161 {
21162 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21163 */
21164 if (end - base < 2)
21165 return NULL;
21166 affix = end - 1;
21167 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21168 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21169 affix - base);
21170 /* If this opcode can not be vector predicated then don't accept it with a
21171 vector predication code. */
21172 if (opcode && !opcode->mayBeVecPred)
21173 opcode = NULL;
21174 }
21175 if (!opcode || !cond)
21176 {
21177 /* Cannot have a conditional suffix on a mnemonic of less than two
21178 characters. */
21179 if (end - base < 3)
21180 return NULL;
b99bd4ef 21181
5ee91343
AV
21182 /* Look for suffixed mnemonic. */
21183 affix = end - 2;
21184 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21185 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21186 affix - base);
21187 }
b99bd4ef 21188
c19d1205
ZW
21189 if (opcode && cond)
21190 {
21191 /* step CE */
21192 switch (opcode->tag)
21193 {
e3cb604e
PB
21194 case OT_cinfix3_legacy:
21195 /* Ignore conditional suffixes matched on infix only mnemonics. */
21196 break;
21197
c19d1205 21198 case OT_cinfix3:
088fa78e 21199 case OT_cinfix3_deprecated:
c19d1205
ZW
21200 case OT_odd_infix_unc:
21201 if (!unified_syntax)
0198d5e6 21202 return NULL;
1a0670f3 21203 /* Fall through. */
c19d1205
ZW
21204
21205 case OT_csuffix:
477330fc 21206 case OT_csuffixF:
c19d1205
ZW
21207 case OT_csuf_or_in3:
21208 inst.cond = cond->value;
21209 return opcode;
21210
21211 case OT_unconditional:
21212 case OT_unconditionalF:
dfa9f0d5 21213 if (thumb_mode)
c921be7d 21214 inst.cond = cond->value;
dfa9f0d5
PB
21215 else
21216 {
c921be7d 21217 /* Delayed diagnostic. */
dfa9f0d5
PB
21218 inst.error = BAD_COND;
21219 inst.cond = COND_ALWAYS;
21220 }
c19d1205 21221 return opcode;
b99bd4ef 21222
c19d1205 21223 default:
c921be7d 21224 return NULL;
c19d1205
ZW
21225 }
21226 }
b99bd4ef 21227
c19d1205
ZW
21228 /* Cannot have a usual-position infix on a mnemonic of less than
21229 six characters (five would be a suffix). */
21230 if (end - base < 6)
c921be7d 21231 return NULL;
b99bd4ef 21232
c19d1205
ZW
21233 /* Look for infixed mnemonic in the usual position. */
21234 affix = base + 3;
21d799b5 21235 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 21236 if (!cond)
c921be7d 21237 return NULL;
e3cb604e
PB
21238
21239 memcpy (save, affix, 2);
21240 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 21241 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21242 (end - base) - 2);
e3cb604e
PB
21243 memmove (affix + 2, affix, (end - affix) - 2);
21244 memcpy (affix, save, 2);
21245
088fa78e
KH
21246 if (opcode
21247 && (opcode->tag == OT_cinfix3
21248 || opcode->tag == OT_cinfix3_deprecated
21249 || opcode->tag == OT_csuf_or_in3
21250 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 21251 {
c921be7d 21252 /* Step CM. */
278df34e 21253 if (warn_on_deprecated && unified_syntax
088fa78e
KH
21254 && (opcode->tag == OT_cinfix3
21255 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 21256 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
21257
21258 inst.cond = cond->value;
21259 return opcode;
b99bd4ef
NC
21260 }
21261
c921be7d 21262 return NULL;
b99bd4ef
NC
21263}
21264
e07e6e58
NC
21265/* This function generates an initial IT instruction, leaving its block
21266 virtually open for the new instructions. Eventually,
5ee91343 21267 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
21268 a new instruction needs to be included in the IT block.
21269 Finally, the block is closed with close_automatic_it_block ().
21270 The block closure can be requested either from md_assemble (),
21271 a tencode (), or due to a label hook. */
21272
21273static void
21274new_automatic_it_block (int cond)
21275{
5ee91343
AV
21276 now_pred.state = AUTOMATIC_PRED_BLOCK;
21277 now_pred.mask = 0x18;
21278 now_pred.cc = cond;
21279 now_pred.block_length = 1;
cd000bff 21280 mapping_state (MAP_THUMB);
5ee91343
AV
21281 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21282 now_pred.warn_deprecated = FALSE;
21283 now_pred.insn_cond = TRUE;
e07e6e58
NC
21284}
21285
21286/* Close an automatic IT block.
21287 See comments in new_automatic_it_block (). */
21288
21289static void
21290close_automatic_it_block (void)
21291{
5ee91343
AV
21292 now_pred.mask = 0x10;
21293 now_pred.block_length = 0;
e07e6e58
NC
21294}
21295
21296/* Update the mask of the current automatically-generated IT
21297 instruction. See comments in new_automatic_it_block (). */
21298
21299static void
5ee91343 21300now_pred_add_mask (int cond)
e07e6e58
NC
21301{
21302#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21303#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 21304 | ((bitvalue) << (nbit)))
e07e6e58 21305 const int resulting_bit = (cond & 1);
c921be7d 21306
5ee91343
AV
21307 now_pred.mask &= 0xf;
21308 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21309 resulting_bit,
5ee91343
AV
21310 (5 - now_pred.block_length));
21311 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21312 1,
5ee91343
AV
21313 ((5 - now_pred.block_length) - 1));
21314 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
21315
21316#undef CLEAR_BIT
21317#undef SET_BIT_VALUE
e07e6e58
NC
21318}
21319
21320/* The IT blocks handling machinery is accessed through the these functions:
21321 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
21322 set_pred_insn_type () optional, from the tencode functions
21323 set_pred_insn_type_last () ditto
21324 in_pred_block () ditto
e07e6e58 21325 it_fsm_post_encode () from md_assemble ()
33eaf5de 21326 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
21327
21328 Rationale:
21329 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
21330 initializing the IT insn type with a generic initial value depending
21331 on the inst.condition.
e07e6e58 21332 2) During the tencode function, two things may happen:
477330fc 21333 a) The tencode function overrides the IT insn type by
5ee91343
AV
21334 calling either set_pred_insn_type (type) or
21335 set_pred_insn_type_last ().
477330fc 21336 b) The tencode function queries the IT block state by
5ee91343 21337 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 21338
5ee91343
AV
21339 Both set_pred_insn_type and in_pred_block run the internal FSM state
21340 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
21341 type may incur in an invalid state (exiting the function),
21342 and b) querying the state requires the FSM to be updated.
21343 Specifically we want to avoid creating an IT block for conditional
21344 branches, so it_fsm_pre_encode is actually a guess and we can't
21345 determine whether an IT block is required until the tencode () routine
21346 has decided what type of instruction this actually it.
5ee91343
AV
21347 Because of this, if set_pred_insn_type and in_pred_block have to be
21348 used, set_pred_insn_type has to be called first.
477330fc 21349
5ee91343
AV
21350 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21351 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
21352 When a tencode () routine encodes an instruction that can be
21353 either outside an IT block, or, in the case of being inside, has to be
5ee91343 21354 the last one, set_pred_insn_type_last () will determine the proper
477330fc 21355 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 21356 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
21357 for covering other cases.
21358
5ee91343
AV
21359 Calling handle_pred_state () may not transition the IT block state to
21360 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 21361 still queried. Instead, if the FSM determines that the state should
5ee91343 21362 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
21363 after the tencode () function: that's what it_fsm_post_encode () does.
21364
5ee91343 21365 Since in_pred_block () calls the state handling function to get an
477330fc
RM
21366 updated state, an error may occur (due to invalid insns combination).
21367 In that case, inst.error is set.
21368 Therefore, inst.error has to be checked after the execution of
21369 the tencode () routine.
e07e6e58
NC
21370
21371 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 21372 any pending state change (if any) that didn't take place in
5ee91343 21373 handle_pred_state () as explained above. */
e07e6e58
NC
21374
21375static void
21376it_fsm_pre_encode (void)
21377{
21378 if (inst.cond != COND_ALWAYS)
5ee91343 21379 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 21380 else
5ee91343 21381 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 21382
5ee91343 21383 now_pred.state_handled = 0;
e07e6e58
NC
21384}
21385
21386/* IT state FSM handling function. */
5ee91343
AV
21387/* MVE instructions and non-MVE instructions are handled differently because of
21388 the introduction of VPT blocks.
21389 Specifications say that any non-MVE instruction inside a VPT block is
21390 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21391 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 21392 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
21393 The error messages provided depending on the different combinations possible
21394 are described in the cases below:
21395 For 'most' MVE instructions:
21396 1) In an IT block, with an IT code: syntax error
21397 2) In an IT block, with a VPT code: error: must be in a VPT block
21398 3) In an IT block, with no code: warning: UNPREDICTABLE
21399 4) In a VPT block, with an IT code: syntax error
21400 5) In a VPT block, with a VPT code: OK!
21401 6) In a VPT block, with no code: error: missing code
21402 7) Outside a pred block, with an IT code: error: syntax error
21403 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21404 9) Outside a pred block, with no code: OK!
21405 For non-MVE instructions:
21406 10) In an IT block, with an IT code: OK!
21407 11) In an IT block, with a VPT code: syntax error
21408 12) In an IT block, with no code: error: missing code
21409 13) In a VPT block, with an IT code: error: should be in an IT block
21410 14) In a VPT block, with a VPT code: syntax error
21411 15) In a VPT block, with no code: UNPREDICTABLE
21412 16) Outside a pred block, with an IT code: error: should be in an IT block
21413 17) Outside a pred block, with a VPT code: syntax error
21414 18) Outside a pred block, with no code: OK!
21415 */
21416
e07e6e58
NC
21417
21418static int
5ee91343 21419handle_pred_state (void)
e07e6e58 21420{
5ee91343
AV
21421 now_pred.state_handled = 1;
21422 now_pred.insn_cond = FALSE;
e07e6e58 21423
5ee91343 21424 switch (now_pred.state)
e07e6e58 21425 {
5ee91343
AV
21426 case OUTSIDE_PRED_BLOCK:
21427 switch (inst.pred_insn_type)
e07e6e58 21428 {
35c228db 21429 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21430 case MVE_OUTSIDE_PRED_INSN:
21431 if (inst.cond < COND_ALWAYS)
21432 {
21433 /* Case 7: Outside a pred block, with an IT code: error: syntax
21434 error. */
21435 inst.error = BAD_SYNTAX;
21436 return FAIL;
21437 }
21438 /* Case 9: Outside a pred block, with no code: OK! */
21439 break;
21440 case OUTSIDE_PRED_INSN:
21441 if (inst.cond > COND_ALWAYS)
21442 {
21443 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21444 */
21445 inst.error = BAD_SYNTAX;
21446 return FAIL;
21447 }
21448 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
21449 break;
21450
5ee91343
AV
21451 case INSIDE_VPT_INSN:
21452 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21453 a VPT block. */
21454 inst.error = BAD_OUT_VPT;
21455 return FAIL;
21456
e07e6e58
NC
21457 case INSIDE_IT_INSN:
21458 case INSIDE_IT_LAST_INSN:
5ee91343 21459 if (inst.cond < COND_ALWAYS)
e07e6e58 21460 {
5ee91343
AV
21461 /* Case 16: Outside a pred block, with an IT code: error: should
21462 be in an IT block. */
21463 if (thumb_mode == 0)
e07e6e58 21464 {
5ee91343
AV
21465 if (unified_syntax
21466 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21467 as_tsktsk (_("Warning: conditional outside an IT block"\
21468 " for Thumb."));
e07e6e58
NC
21469 }
21470 else
21471 {
5ee91343
AV
21472 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21473 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21474 {
21475 /* Automatically generate the IT instruction. */
21476 new_automatic_it_block (inst.cond);
21477 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21478 close_automatic_it_block ();
21479 }
21480 else
21481 {
21482 inst.error = BAD_OUT_IT;
21483 return FAIL;
21484 }
e07e6e58 21485 }
5ee91343 21486 break;
e07e6e58 21487 }
5ee91343
AV
21488 else if (inst.cond > COND_ALWAYS)
21489 {
21490 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21491 */
21492 inst.error = BAD_SYNTAX;
21493 return FAIL;
21494 }
21495 else
21496 gas_assert (0);
e07e6e58
NC
21497 case IF_INSIDE_IT_LAST_INSN:
21498 case NEUTRAL_IT_INSN:
21499 break;
21500
5ee91343
AV
21501 case VPT_INSN:
21502 if (inst.cond != COND_ALWAYS)
21503 first_error (BAD_SYNTAX);
21504 now_pred.state = MANUAL_PRED_BLOCK;
21505 now_pred.block_length = 0;
21506 now_pred.type = VECTOR_PRED;
21507 now_pred.cc = 0;
21508 break;
e07e6e58 21509 case IT_INSN:
5ee91343
AV
21510 now_pred.state = MANUAL_PRED_BLOCK;
21511 now_pred.block_length = 0;
21512 now_pred.type = SCALAR_PRED;
e07e6e58
NC
21513 break;
21514 }
21515 break;
21516
5ee91343 21517 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
21518 /* Three things may happen now:
21519 a) We should increment current it block size;
21520 b) We should close current it block (closing insn or 4 insns);
21521 c) We should close current it block and start a new one (due
21522 to incompatible conditions or
21523 4 insns-length block reached). */
21524
5ee91343 21525 switch (inst.pred_insn_type)
e07e6e58 21526 {
5ee91343
AV
21527 case INSIDE_VPT_INSN:
21528 case VPT_INSN:
35c228db 21529 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21530 case MVE_OUTSIDE_PRED_INSN:
21531 gas_assert (0);
21532 case OUTSIDE_PRED_INSN:
2b0f3761 21533 /* The closure of the block shall happen immediately,
5ee91343 21534 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
21535 force_automatic_it_block_close ();
21536 break;
21537
21538 case INSIDE_IT_INSN:
21539 case INSIDE_IT_LAST_INSN:
21540 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21541 now_pred.block_length++;
e07e6e58 21542
5ee91343
AV
21543 if (now_pred.block_length > 4
21544 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21545 {
21546 force_automatic_it_block_close ();
5ee91343 21547 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21548 new_automatic_it_block (inst.cond);
21549 }
21550 else
21551 {
5ee91343
AV
21552 now_pred.insn_cond = TRUE;
21553 now_pred_add_mask (inst.cond);
e07e6e58
NC
21554 }
21555
5ee91343
AV
21556 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21557 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21558 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21559 close_automatic_it_block ();
21560 break;
21561
21562 case NEUTRAL_IT_INSN:
5ee91343
AV
21563 now_pred.block_length++;
21564 now_pred.insn_cond = TRUE;
e07e6e58 21565
5ee91343 21566 if (now_pred.block_length > 4)
e07e6e58
NC
21567 force_automatic_it_block_close ();
21568 else
5ee91343 21569 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21570 break;
21571
21572 case IT_INSN:
21573 close_automatic_it_block ();
5ee91343 21574 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21575 break;
21576 }
21577 break;
21578
5ee91343 21579 case MANUAL_PRED_BLOCK:
e07e6e58 21580 {
5ee91343
AV
21581 int cond, is_last;
21582 if (now_pred.type == SCALAR_PRED)
e07e6e58 21583 {
5ee91343
AV
21584 /* Check conditional suffixes. */
21585 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21586 now_pred.mask <<= 1;
21587 now_pred.mask &= 0x1f;
21588 is_last = (now_pred.mask == 0x10);
21589 }
21590 else
21591 {
21592 now_pred.cc ^= (now_pred.mask >> 4);
21593 cond = now_pred.cc + 0xf;
21594 now_pred.mask <<= 1;
21595 now_pred.mask &= 0x1f;
21596 is_last = now_pred.mask == 0x10;
21597 }
21598 now_pred.insn_cond = TRUE;
e07e6e58 21599
5ee91343
AV
21600 switch (inst.pred_insn_type)
21601 {
21602 case OUTSIDE_PRED_INSN:
21603 if (now_pred.type == SCALAR_PRED)
21604 {
21605 if (inst.cond == COND_ALWAYS)
21606 {
21607 /* Case 12: In an IT block, with no code: error: missing
21608 code. */
21609 inst.error = BAD_NOT_IT;
21610 return FAIL;
21611 }
21612 else if (inst.cond > COND_ALWAYS)
21613 {
21614 /* Case 11: In an IT block, with a VPT code: syntax error.
21615 */
21616 inst.error = BAD_SYNTAX;
21617 return FAIL;
21618 }
21619 else if (thumb_mode)
21620 {
21621 /* This is for some special cases where a non-MVE
21622 instruction is not allowed in an IT block, such as cbz,
21623 but are put into one with a condition code.
21624 You could argue this should be a syntax error, but we
21625 gave the 'not allowed in IT block' diagnostic in the
21626 past so we will keep doing so. */
21627 inst.error = BAD_NOT_IT;
21628 return FAIL;
21629 }
21630 break;
21631 }
21632 else
21633 {
21634 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21635 as_tsktsk (MVE_NOT_VPT);
21636 return SUCCESS;
21637 }
21638 case MVE_OUTSIDE_PRED_INSN:
21639 if (now_pred.type == SCALAR_PRED)
21640 {
21641 if (inst.cond == COND_ALWAYS)
21642 {
21643 /* Case 3: In an IT block, with no code: warning:
21644 UNPREDICTABLE. */
21645 as_tsktsk (MVE_NOT_IT);
21646 return SUCCESS;
21647 }
21648 else if (inst.cond < COND_ALWAYS)
21649 {
21650 /* Case 1: In an IT block, with an IT code: syntax error.
21651 */
21652 inst.error = BAD_SYNTAX;
21653 return FAIL;
21654 }
21655 else
21656 gas_assert (0);
21657 }
21658 else
21659 {
21660 if (inst.cond < COND_ALWAYS)
21661 {
21662 /* Case 4: In a VPT block, with an IT code: syntax error.
21663 */
21664 inst.error = BAD_SYNTAX;
21665 return FAIL;
21666 }
21667 else if (inst.cond == COND_ALWAYS)
21668 {
21669 /* Case 6: In a VPT block, with no code: error: missing
21670 code. */
21671 inst.error = BAD_NOT_VPT;
21672 return FAIL;
21673 }
21674 else
21675 {
21676 gas_assert (0);
21677 }
21678 }
35c228db
AV
21679 case MVE_UNPREDICABLE_INSN:
21680 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21681 return SUCCESS;
e07e6e58 21682 case INSIDE_IT_INSN:
5ee91343 21683 if (inst.cond > COND_ALWAYS)
e07e6e58 21684 {
5ee91343
AV
21685 /* Case 11: In an IT block, with a VPT code: syntax error. */
21686 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21687 inst.error = BAD_SYNTAX;
21688 return FAIL;
21689 }
21690 else if (now_pred.type == SCALAR_PRED)
21691 {
21692 /* Case 10: In an IT block, with an IT code: OK! */
21693 if (cond != inst.cond)
21694 {
21695 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21696 BAD_VPT_COND;
21697 return FAIL;
21698 }
21699 }
21700 else
21701 {
21702 /* Case 13: In a VPT block, with an IT code: error: should be
21703 in an IT block. */
21704 inst.error = BAD_OUT_IT;
e07e6e58
NC
21705 return FAIL;
21706 }
21707 break;
21708
5ee91343
AV
21709 case INSIDE_VPT_INSN:
21710 if (now_pred.type == SCALAR_PRED)
21711 {
21712 /* Case 2: In an IT block, with a VPT code: error: must be in a
21713 VPT block. */
21714 inst.error = BAD_OUT_VPT;
21715 return FAIL;
21716 }
21717 /* Case 5: In a VPT block, with a VPT code: OK! */
21718 else if (cond != inst.cond)
21719 {
21720 inst.error = BAD_VPT_COND;
21721 return FAIL;
21722 }
21723 break;
e07e6e58
NC
21724 case INSIDE_IT_LAST_INSN:
21725 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21726 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21727 {
21728 /* Case 4: In a VPT block, with an IT code: syntax error. */
21729 /* Case 11: In an IT block, with a VPT code: syntax error. */
21730 inst.error = BAD_SYNTAX;
21731 return FAIL;
21732 }
21733 else if (cond != inst.cond)
e07e6e58
NC
21734 {
21735 inst.error = BAD_IT_COND;
21736 return FAIL;
21737 }
21738 if (!is_last)
21739 {
21740 inst.error = BAD_BRANCH;
21741 return FAIL;
21742 }
21743 break;
21744
21745 case NEUTRAL_IT_INSN:
5ee91343
AV
21746 /* The BKPT instruction is unconditional even in a IT or VPT
21747 block. */
e07e6e58
NC
21748 break;
21749
21750 case IT_INSN:
5ee91343
AV
21751 if (now_pred.type == SCALAR_PRED)
21752 {
21753 inst.error = BAD_IT_IT;
21754 return FAIL;
21755 }
21756 /* fall through. */
21757 case VPT_INSN:
21758 if (inst.cond == COND_ALWAYS)
21759 {
21760 /* Executing a VPT/VPST instruction inside an IT block or a
21761 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21762 */
21763 if (now_pred.type == SCALAR_PRED)
21764 as_tsktsk (MVE_NOT_IT);
21765 else
21766 as_tsktsk (MVE_NOT_VPT);
21767 return SUCCESS;
21768 }
21769 else
21770 {
21771 /* VPT/VPST do not accept condition codes. */
21772 inst.error = BAD_SYNTAX;
21773 return FAIL;
21774 }
e07e6e58 21775 }
5ee91343 21776 }
e07e6e58
NC
21777 break;
21778 }
21779
21780 return SUCCESS;
21781}
21782
5a01bb1d
MGD
21783struct depr_insn_mask
21784{
21785 unsigned long pattern;
21786 unsigned long mask;
21787 const char* description;
21788};
21789
21790/* List of 16-bit instruction patterns deprecated in an IT block in
21791 ARMv8. */
21792static const struct depr_insn_mask depr_it_insns[] = {
21793 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21794 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21795 { 0xa000, 0xb800, N_("ADR") },
21796 { 0x4800, 0xf800, N_("Literal loads") },
21797 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21798 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21799 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21800 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21801 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21802 { 0, 0, NULL }
21803};
21804
e07e6e58
NC
21805static void
21806it_fsm_post_encode (void)
21807{
21808 int is_last;
21809
5ee91343
AV
21810 if (!now_pred.state_handled)
21811 handle_pred_state ();
e07e6e58 21812
5ee91343
AV
21813 if (now_pred.insn_cond
21814 && !now_pred.warn_deprecated
5a01bb1d 21815 && warn_on_deprecated
df9909b8
TP
21816 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21817 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21818 {
21819 if (inst.instruction >= 0x10000)
21820 {
5c3696f8 21821 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21822 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21823 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21824 }
21825 else
21826 {
21827 const struct depr_insn_mask *p = depr_it_insns;
21828
21829 while (p->mask != 0)
21830 {
21831 if ((inst.instruction & p->mask) == p->pattern)
21832 {
df9909b8
TP
21833 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21834 "instructions of the following class are "
21835 "performance deprecated in ARMv8-A and "
21836 "ARMv8-R: %s"), p->description);
5ee91343 21837 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21838 break;
21839 }
21840
21841 ++p;
21842 }
21843 }
21844
5ee91343 21845 if (now_pred.block_length > 1)
5a01bb1d 21846 {
5c3696f8 21847 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21848 "instruction are performance deprecated in ARMv8-A and "
21849 "ARMv8-R"));
5ee91343 21850 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21851 }
21852 }
21853
5ee91343
AV
21854 is_last = (now_pred.mask == 0x10);
21855 if (is_last)
21856 {
21857 now_pred.state = OUTSIDE_PRED_BLOCK;
21858 now_pred.mask = 0;
21859 }
e07e6e58
NC
21860}
21861
21862static void
21863force_automatic_it_block_close (void)
21864{
5ee91343 21865 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21866 {
21867 close_automatic_it_block ();
5ee91343
AV
21868 now_pred.state = OUTSIDE_PRED_BLOCK;
21869 now_pred.mask = 0;
e07e6e58
NC
21870 }
21871}
21872
21873static int
5ee91343 21874in_pred_block (void)
e07e6e58 21875{
5ee91343
AV
21876 if (!now_pred.state_handled)
21877 handle_pred_state ();
e07e6e58 21878
5ee91343 21879 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21880}
21881
ff8646ee
TP
21882/* Whether OPCODE only has T32 encoding. Since this function is only used by
21883 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21884 here, hence the "known" in the function name. */
fc289b0a
TP
21885
21886static bfd_boolean
ff8646ee 21887known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
21888{
21889 /* Original Thumb-1 wide instruction. */
21890 if (opcode->tencode == do_t_blx
21891 || opcode->tencode == do_t_branch23
21892 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21893 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21894 return TRUE;
21895
16a1fa25
TP
21896 /* Wide-only instruction added to ARMv8-M Baseline. */
21897 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
21898 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21899 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21900 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21901 return TRUE;
21902
21903 return FALSE;
21904}
21905
21906/* Whether wide instruction variant can be used if available for a valid OPCODE
21907 in ARCH. */
21908
21909static bfd_boolean
21910t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21911{
21912 if (known_t32_only_insn (opcode))
21913 return TRUE;
21914
21915 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21916 of variant T3 of B.W is checked in do_t_branch. */
21917 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21918 && opcode->tencode == do_t_branch)
21919 return TRUE;
21920
bada4342
JW
21921 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21922 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21923 && opcode->tencode == do_t_mov_cmp
21924 /* Make sure CMP instruction is not affected. */
21925 && opcode->aencode == do_mov)
21926 return TRUE;
21927
ff8646ee
TP
21928 /* Wide instruction variants of all instructions with narrow *and* wide
21929 variants become available with ARMv6t2. Other opcodes are either
21930 narrow-only or wide-only and are thus available if OPCODE is valid. */
21931 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21932 return TRUE;
21933
21934 /* OPCODE with narrow only instruction variant or wide variant not
21935 available. */
fc289b0a
TP
21936 return FALSE;
21937}
21938
c19d1205
ZW
21939void
21940md_assemble (char *str)
b99bd4ef 21941{
c19d1205
ZW
21942 char *p = str;
21943 const struct asm_opcode * opcode;
b99bd4ef 21944
c19d1205
ZW
21945 /* Align the previous label if needed. */
21946 if (last_label_seen != NULL)
b99bd4ef 21947 {
c19d1205
ZW
21948 symbol_set_frag (last_label_seen, frag_now);
21949 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21950 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
21951 }
21952
c19d1205 21953 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
21954 int r;
21955 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21956 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 21957
c19d1205
ZW
21958 opcode = opcode_lookup (&p);
21959 if (!opcode)
b99bd4ef 21960 {
c19d1205 21961 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 21962 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 21963 if (! create_register_alias (str, p)
477330fc 21964 && ! create_neon_reg_alias (str, p))
c19d1205 21965 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 21966
b99bd4ef
NC
21967 return;
21968 }
21969
278df34e 21970 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 21971 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 21972
037e8744
JB
21973 /* The value which unconditional instructions should have in place of the
21974 condition field. */
21975 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21976
c19d1205 21977 if (thumb_mode)
b99bd4ef 21978 {
e74cfd16 21979 arm_feature_set variant;
8f06b2d8
PB
21980
21981 variant = cpu_variant;
21982 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
21983 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21984 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 21985 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
21986 if (!opcode->tvariant
21987 || (thumb_mode == 1
21988 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 21989 {
173205ca
TP
21990 if (opcode->tencode == do_t_swi)
21991 as_bad (_("SVC is not permitted on this architecture"));
21992 else
21993 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
21994 return;
21995 }
c19d1205
ZW
21996 if (inst.cond != COND_ALWAYS && !unified_syntax
21997 && opcode->tencode != do_t_branch)
b99bd4ef 21998 {
c19d1205 21999 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
22000 return;
22001 }
22002
fc289b0a
TP
22003 /* Two things are addressed here:
22004 1) Implicit require narrow instructions on Thumb-1.
22005 This avoids relaxation accidentally introducing Thumb-2
22006 instructions.
22007 2) Reject wide instructions in non Thumb-2 cores.
22008
22009 Only instructions with narrow and wide variants need to be handled
22010 but selecting all non wide-only instructions is easier. */
22011 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 22012 && !t32_insn_ok (variant, opcode))
076d447c 22013 {
fc289b0a
TP
22014 if (inst.size_req == 0)
22015 inst.size_req = 2;
22016 else if (inst.size_req == 4)
752d5da4 22017 {
ff8646ee
TP
22018 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22019 as_bad (_("selected processor does not support 32bit wide "
22020 "variant of instruction `%s'"), str);
22021 else
22022 as_bad (_("selected processor does not support `%s' in "
22023 "Thumb-2 mode"), str);
fc289b0a 22024 return;
752d5da4 22025 }
076d447c
PB
22026 }
22027
c19d1205
ZW
22028 inst.instruction = opcode->tvalue;
22029
5be8be5d 22030 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 22031 {
5ee91343 22032 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
22033 it. */
22034 it_fsm_pre_encode ();
c19d1205 22035
477330fc 22036 opcode->tencode ();
e07e6e58 22037
477330fc
RM
22038 it_fsm_post_encode ();
22039 }
e27ec89e 22040
0110f2b8 22041 if (!(inst.error || inst.relax))
b99bd4ef 22042 {
9c2799c2 22043 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
22044 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22045 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 22046 {
c19d1205 22047 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
22048 return;
22049 }
22050 }
076d447c
PB
22051
22052 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 22053 instruction. */
9c2799c2 22054 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 22055
e74cfd16
PB
22056 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22057 *opcode->tvariant);
ee065d83 22058 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
22059 set those bits when Thumb-2 32-bit instructions are seen. The impact
22060 of relaxable instructions will be considered later after we finish all
22061 relaxation. */
ff8646ee
TP
22062 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22063 variant = arm_arch_none;
22064 else
22065 variant = cpu_variant;
22066 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
22067 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22068 arm_ext_v6t2);
cd000bff 22069
88714cb8
DG
22070 check_neon_suffixes;
22071
cd000bff 22072 if (!inst.error)
c877a2f2
NC
22073 {
22074 mapping_state (MAP_THUMB);
22075 }
c19d1205 22076 }
3e9e4fcf 22077 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 22078 {
845b51d6
PB
22079 bfd_boolean is_bx;
22080
22081 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22082 is_bx = (opcode->aencode == do_bx);
22083
c19d1205 22084 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
22085 if (!(is_bx && fix_v4bx)
22086 && !(opcode->avariant &&
22087 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 22088 {
84b52b66 22089 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 22090 return;
b99bd4ef 22091 }
c19d1205 22092 if (inst.size_req)
b99bd4ef 22093 {
c19d1205
ZW
22094 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22095 return;
b99bd4ef
NC
22096 }
22097
c19d1205
ZW
22098 inst.instruction = opcode->avalue;
22099 if (opcode->tag == OT_unconditionalF)
eff0bc54 22100 inst.instruction |= 0xFU << 28;
c19d1205
ZW
22101 else
22102 inst.instruction |= inst.cond << 28;
22103 inst.size = INSN_SIZE;
5be8be5d 22104 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
22105 {
22106 it_fsm_pre_encode ();
22107 opcode->aencode ();
22108 it_fsm_post_encode ();
22109 }
ee065d83 22110 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 22111 on a hypothetical non-thumb v5 core. */
845b51d6 22112 if (is_bx)
e74cfd16 22113 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 22114 else
e74cfd16
PB
22115 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22116 *opcode->avariant);
88714cb8
DG
22117
22118 check_neon_suffixes;
22119
cd000bff 22120 if (!inst.error)
c877a2f2
NC
22121 {
22122 mapping_state (MAP_ARM);
22123 }
b99bd4ef 22124 }
3e9e4fcf
JB
22125 else
22126 {
22127 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22128 "-- `%s'"), str);
22129 return;
22130 }
c19d1205
ZW
22131 output_inst (str);
22132}
b99bd4ef 22133
e07e6e58 22134static void
5ee91343 22135check_pred_blocks_finished (void)
e07e6e58
NC
22136{
22137#ifdef OBJ_ELF
22138 asection *sect;
22139
22140 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
22141 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22142 == MANUAL_PRED_BLOCK)
e07e6e58 22143 {
5ee91343
AV
22144 if (now_pred.type == SCALAR_PRED)
22145 as_warn (_("section '%s' finished with an open IT block."),
22146 sect->name);
22147 else
22148 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22149 sect->name);
e07e6e58
NC
22150 }
22151#else
5ee91343
AV
22152 if (now_pred.state == MANUAL_PRED_BLOCK)
22153 {
22154 if (now_pred.type == SCALAR_PRED)
22155 as_warn (_("file finished with an open IT block."));
22156 else
22157 as_warn (_("file finished with an open VPT/VPST block."));
22158 }
e07e6e58
NC
22159#endif
22160}
22161
c19d1205
ZW
22162/* Various frobbings of labels and their addresses. */
22163
22164void
22165arm_start_line_hook (void)
22166{
22167 last_label_seen = NULL;
b99bd4ef
NC
22168}
22169
c19d1205
ZW
22170void
22171arm_frob_label (symbolS * sym)
b99bd4ef 22172{
c19d1205 22173 last_label_seen = sym;
b99bd4ef 22174
c19d1205 22175 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 22176
c19d1205
ZW
22177#if defined OBJ_COFF || defined OBJ_ELF
22178 ARM_SET_INTERWORK (sym, support_interwork);
22179#endif
b99bd4ef 22180
e07e6e58
NC
22181 force_automatic_it_block_close ();
22182
5f4273c7 22183 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
22184 as Thumb functions. This is because these labels, whilst
22185 they exist inside Thumb code, are not the entry points for
22186 possible ARM->Thumb calls. Also, these labels can be used
22187 as part of a computed goto or switch statement. eg gcc
22188 can generate code that looks like this:
b99bd4ef 22189
c19d1205
ZW
22190 ldr r2, [pc, .Laaa]
22191 lsl r3, r3, #2
22192 ldr r2, [r3, r2]
22193 mov pc, r2
b99bd4ef 22194
c19d1205
ZW
22195 .Lbbb: .word .Lxxx
22196 .Lccc: .word .Lyyy
22197 ..etc...
22198 .Laaa: .word Lbbb
b99bd4ef 22199
c19d1205
ZW
22200 The first instruction loads the address of the jump table.
22201 The second instruction converts a table index into a byte offset.
22202 The third instruction gets the jump address out of the table.
22203 The fourth instruction performs the jump.
b99bd4ef 22204
c19d1205
ZW
22205 If the address stored at .Laaa is that of a symbol which has the
22206 Thumb_Func bit set, then the linker will arrange for this address
22207 to have the bottom bit set, which in turn would mean that the
22208 address computation performed by the third instruction would end
22209 up with the bottom bit set. Since the ARM is capable of unaligned
22210 word loads, the instruction would then load the incorrect address
22211 out of the jump table, and chaos would ensue. */
22212 if (label_is_thumb_function_name
22213 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22214 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 22215 {
c19d1205
ZW
22216 /* When the address of a Thumb function is taken the bottom
22217 bit of that address should be set. This will allow
22218 interworking between Arm and Thumb functions to work
22219 correctly. */
b99bd4ef 22220
c19d1205 22221 THUMB_SET_FUNC (sym, 1);
b99bd4ef 22222
c19d1205 22223 label_is_thumb_function_name = FALSE;
b99bd4ef 22224 }
07a53e5c 22225
07a53e5c 22226 dwarf2_emit_label (sym);
b99bd4ef
NC
22227}
22228
c921be7d 22229bfd_boolean
c19d1205 22230arm_data_in_code (void)
b99bd4ef 22231{
c19d1205 22232 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 22233 {
c19d1205
ZW
22234 *input_line_pointer = '/';
22235 input_line_pointer += 5;
22236 *input_line_pointer = 0;
c921be7d 22237 return TRUE;
b99bd4ef
NC
22238 }
22239
c921be7d 22240 return FALSE;
b99bd4ef
NC
22241}
22242
c19d1205
ZW
22243char *
22244arm_canonicalize_symbol_name (char * name)
b99bd4ef 22245{
c19d1205 22246 int len;
b99bd4ef 22247
c19d1205
ZW
22248 if (thumb_mode && (len = strlen (name)) > 5
22249 && streq (name + len - 5, "/data"))
22250 *(name + len - 5) = 0;
b99bd4ef 22251
c19d1205 22252 return name;
b99bd4ef 22253}
c19d1205
ZW
22254\f
22255/* Table of all register names defined by default. The user can
22256 define additional names with .req. Note that all register names
22257 should appear in both upper and lowercase variants. Some registers
22258 also have mixed-case names. */
b99bd4ef 22259
dcbf9037 22260#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 22261#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 22262#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
22263#define REGSET(p,t) \
22264 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22265 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22266 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22267 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
22268#define REGSETH(p,t) \
22269 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22270 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22271 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22272 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22273#define REGSET2(p,t) \
22274 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22275 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22276 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22277 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
22278#define SPLRBANK(base,bank,t) \
22279 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22280 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22281 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22282 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22283 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22284 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 22285
c19d1205 22286static const struct reg_entry reg_names[] =
7ed4c4c5 22287{
c19d1205
ZW
22288 /* ARM integer registers. */
22289 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 22290
c19d1205
ZW
22291 /* ATPCS synonyms. */
22292 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22293 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22294 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 22295
c19d1205
ZW
22296 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22297 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22298 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 22299
c19d1205
ZW
22300 /* Well-known aliases. */
22301 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22302 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22303
22304 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22305 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22306
1b883319
AV
22307 /* Defining the new Zero register from ARMv8.1-M. */
22308 REGDEF(zr,15,ZR),
22309 REGDEF(ZR,15,ZR),
22310
c19d1205
ZW
22311 /* Coprocessor numbers. */
22312 REGSET(p, CP), REGSET(P, CP),
22313
22314 /* Coprocessor register numbers. The "cr" variants are for backward
22315 compatibility. */
22316 REGSET(c, CN), REGSET(C, CN),
22317 REGSET(cr, CN), REGSET(CR, CN),
22318
90ec0d68
MGD
22319 /* ARM banked registers. */
22320 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22321 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22322 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22323 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22324 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22325 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22326 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22327
22328 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22329 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22330 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22331 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22332 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 22333 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
22334 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22335 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22336
22337 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22338 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22339 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22340 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22341 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22342 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22343 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 22344 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
22345 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22346
c19d1205
ZW
22347 /* FPA registers. */
22348 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22349 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22350
22351 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22352 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22353
22354 /* VFP SP registers. */
5287ad62
JB
22355 REGSET(s,VFS), REGSET(S,VFS),
22356 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
22357
22358 /* VFP DP Registers. */
5287ad62
JB
22359 REGSET(d,VFD), REGSET(D,VFD),
22360 /* Extra Neon DP registers. */
22361 REGSETH(d,VFD), REGSETH(D,VFD),
22362
22363 /* Neon QP registers. */
22364 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
22365
22366 /* VFP control registers. */
22367 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22368 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
22369 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22370 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22371 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22372 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 22373 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
22374
22375 /* Maverick DSP coprocessor registers. */
22376 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22377 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22378
22379 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22380 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22381 REGDEF(dspsc,0,DSPSC),
22382
22383 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22384 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22385 REGDEF(DSPSC,0,DSPSC),
22386
22387 /* iWMMXt data registers - p0, c0-15. */
22388 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22389
22390 /* iWMMXt control registers - p1, c0-3. */
22391 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22392 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22393 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22394 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22395
22396 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22397 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22398 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22399 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22400 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22401
22402 /* XScale accumulator registers. */
22403 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22404};
22405#undef REGDEF
22406#undef REGNUM
22407#undef REGSET
7ed4c4c5 22408
c19d1205
ZW
22409/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22410 within psr_required_here. */
22411static const struct asm_psr psrs[] =
22412{
22413 /* Backward compatibility notation. Note that "all" is no longer
22414 truly all possible PSR bits. */
22415 {"all", PSR_c | PSR_f},
22416 {"flg", PSR_f},
22417 {"ctl", PSR_c},
22418
22419 /* Individual flags. */
22420 {"f", PSR_f},
22421 {"c", PSR_c},
22422 {"x", PSR_x},
22423 {"s", PSR_s},
59b42a0d 22424
c19d1205
ZW
22425 /* Combinations of flags. */
22426 {"fs", PSR_f | PSR_s},
22427 {"fx", PSR_f | PSR_x},
22428 {"fc", PSR_f | PSR_c},
22429 {"sf", PSR_s | PSR_f},
22430 {"sx", PSR_s | PSR_x},
22431 {"sc", PSR_s | PSR_c},
22432 {"xf", PSR_x | PSR_f},
22433 {"xs", PSR_x | PSR_s},
22434 {"xc", PSR_x | PSR_c},
22435 {"cf", PSR_c | PSR_f},
22436 {"cs", PSR_c | PSR_s},
22437 {"cx", PSR_c | PSR_x},
22438 {"fsx", PSR_f | PSR_s | PSR_x},
22439 {"fsc", PSR_f | PSR_s | PSR_c},
22440 {"fxs", PSR_f | PSR_x | PSR_s},
22441 {"fxc", PSR_f | PSR_x | PSR_c},
22442 {"fcs", PSR_f | PSR_c | PSR_s},
22443 {"fcx", PSR_f | PSR_c | PSR_x},
22444 {"sfx", PSR_s | PSR_f | PSR_x},
22445 {"sfc", PSR_s | PSR_f | PSR_c},
22446 {"sxf", PSR_s | PSR_x | PSR_f},
22447 {"sxc", PSR_s | PSR_x | PSR_c},
22448 {"scf", PSR_s | PSR_c | PSR_f},
22449 {"scx", PSR_s | PSR_c | PSR_x},
22450 {"xfs", PSR_x | PSR_f | PSR_s},
22451 {"xfc", PSR_x | PSR_f | PSR_c},
22452 {"xsf", PSR_x | PSR_s | PSR_f},
22453 {"xsc", PSR_x | PSR_s | PSR_c},
22454 {"xcf", PSR_x | PSR_c | PSR_f},
22455 {"xcs", PSR_x | PSR_c | PSR_s},
22456 {"cfs", PSR_c | PSR_f | PSR_s},
22457 {"cfx", PSR_c | PSR_f | PSR_x},
22458 {"csf", PSR_c | PSR_s | PSR_f},
22459 {"csx", PSR_c | PSR_s | PSR_x},
22460 {"cxf", PSR_c | PSR_x | PSR_f},
22461 {"cxs", PSR_c | PSR_x | PSR_s},
22462 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22463 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22464 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22465 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22466 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22467 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22468 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22469 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22470 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22471 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22472 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22473 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22474 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22475 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22476 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22477 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22478 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22479 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22480 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22481 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22482 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22483 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22484 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22485 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22486};
22487
62b3e311
PB
22488/* Table of V7M psr names. */
22489static const struct asm_psr v7m_psrs[] =
22490{
1a336194
TP
22491 {"apsr", 0x0 }, {"APSR", 0x0 },
22492 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22493 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22494 {"psr", 0x3 }, {"PSR", 0x3 },
22495 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22496 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22497 {"epsr", 0x6 }, {"EPSR", 0x6 },
22498 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22499 {"msp", 0x8 }, {"MSP", 0x8 },
22500 {"psp", 0x9 }, {"PSP", 0x9 },
22501 {"msplim", 0xa }, {"MSPLIM", 0xa },
22502 {"psplim", 0xb }, {"PSPLIM", 0xb },
22503 {"primask", 0x10}, {"PRIMASK", 0x10},
22504 {"basepri", 0x11}, {"BASEPRI", 0x11},
22505 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
22506 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22507 {"control", 0x14}, {"CONTROL", 0x14},
22508 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22509 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22510 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22511 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22512 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22513 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22514 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22515 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22516 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
22517};
22518
c19d1205
ZW
22519/* Table of all shift-in-operand names. */
22520static const struct asm_shift_name shift_names [] =
b99bd4ef 22521{
c19d1205
ZW
22522 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22523 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22524 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22525 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22526 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
22527 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22528 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 22529};
b99bd4ef 22530
c19d1205
ZW
22531/* Table of all explicit relocation names. */
22532#ifdef OBJ_ELF
22533static struct reloc_entry reloc_names[] =
22534{
22535 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22536 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22537 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22538 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22539 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22540 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22541 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22542 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22543 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22544 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22545 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22546 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22547 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22548 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22549 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22550 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22551 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22552 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22553 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22554 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22555 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22556 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22557 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22558 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22559 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22560 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22561 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22562};
22563#endif
b99bd4ef 22564
5ee91343 22565/* Table of all conditional affixes. */
c19d1205
ZW
22566static const struct asm_cond conds[] =
22567{
22568 {"eq", 0x0},
22569 {"ne", 0x1},
22570 {"cs", 0x2}, {"hs", 0x2},
22571 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22572 {"mi", 0x4},
22573 {"pl", 0x5},
22574 {"vs", 0x6},
22575 {"vc", 0x7},
22576 {"hi", 0x8},
22577 {"ls", 0x9},
22578 {"ge", 0xa},
22579 {"lt", 0xb},
22580 {"gt", 0xc},
22581 {"le", 0xd},
22582 {"al", 0xe}
22583};
5ee91343
AV
22584static const struct asm_cond vconds[] =
22585{
22586 {"t", 0xf},
22587 {"e", 0x10}
22588};
bfae80f2 22589
e797f7e0 22590#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22591 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22592 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22593
62b3e311
PB
22594static struct asm_barrier_opt barrier_opt_names[] =
22595{
e797f7e0
MGD
22596 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22597 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22598 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22599 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22600 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22601 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22602 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22603 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22604 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22605 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22606 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22607 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22608 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22609 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22610 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22611 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22612};
22613
e797f7e0
MGD
22614#undef UL_BARRIER
22615
c19d1205
ZW
22616/* Table of ARM-format instructions. */
22617
22618/* Macros for gluing together operand strings. N.B. In all cases
22619 other than OPS0, the trailing OP_stop comes from default
22620 zero-initialization of the unspecified elements of the array. */
22621#define OPS0() { OP_stop, }
22622#define OPS1(a) { OP_##a, }
22623#define OPS2(a,b) { OP_##a,OP_##b, }
22624#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22625#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22626#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22627#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22628
5be8be5d
DG
22629/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22630 This is useful when mixing operands for ARM and THUMB, i.e. using the
22631 MIX_ARM_THUMB_OPERANDS macro.
22632 In order to use these macros, prefix the number of operands with _
22633 e.g. _3. */
22634#define OPS_1(a) { a, }
22635#define OPS_2(a,b) { a,b, }
22636#define OPS_3(a,b,c) { a,b,c, }
22637#define OPS_4(a,b,c,d) { a,b,c,d, }
22638#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22639#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22640
c19d1205
ZW
22641/* These macros abstract out the exact format of the mnemonic table and
22642 save some repeated characters. */
22643
22644/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22645#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22646 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22647 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22648
22649/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22650 a T_MNEM_xyz enumerator. */
22651#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22652 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22653#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22654 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22655
22656/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22657 infix after the third character. */
22658#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22659 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22660 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22661#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22662 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 22663 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22664#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22665 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 22666#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22667 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22668#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22669 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 22670#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22671 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 22672
c19d1205 22673/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
22674 field is still 0xE. Many of the Thumb variants can be executed
22675 conditionally, so this is checked separately. */
c19d1205 22676#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22677 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22678 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22679
dd5181d5
KT
22680/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22681 Used by mnemonics that have very minimal differences in the encoding for
22682 ARM and Thumb variants and can be handled in a common function. */
22683#define TUEc(mnem, op, top, nops, ops, en) \
22684 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22685 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 22686
c19d1205
ZW
22687/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22688 condition code field. */
22689#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22690 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22691 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22692
22693/* ARM-only variants of all the above. */
6a86118a 22694#define CE(mnem, op, nops, ops, ae) \
5ee91343 22695 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22696
22697#define C3(mnem, op, nops, ops, ae) \
5ee91343 22698 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22699
cf3cf39d
TP
22700/* Thumb-only variants of TCE and TUE. */
22701#define ToC(mnem, top, nops, ops, te) \
22702 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22703 do_##te, 0 }
cf3cf39d
TP
22704
22705#define ToU(mnem, top, nops, ops, te) \
22706 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22707 NULL, do_##te, 0 }
cf3cf39d 22708
4389b29a
AV
22709/* T_MNEM_xyz enumerator variants of ToC. */
22710#define toC(mnem, top, nops, ops, te) \
22711 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22712 do_##te, 0 }
4389b29a 22713
f6b2b12d
AV
22714/* T_MNEM_xyz enumerator variants of ToU. */
22715#define toU(mnem, top, nops, ops, te) \
22716 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22717 NULL, do_##te, 0 }
f6b2b12d 22718
e3cb604e
PB
22719/* Legacy mnemonics that always have conditional infix after the third
22720 character. */
22721#define CL(mnem, op, nops, ops, ae) \
21d799b5 22722 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22723 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22724
8f06b2d8
PB
22725/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22726#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22727 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22728
57785aa2
AV
22729/* mov instructions that are shared between coprocessor and MVE. */
22730#define mcCE(mnem, op, nops, ops, ae) \
22731 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22732
e3cb604e
PB
22733/* Legacy coprocessor instructions where conditional infix and conditional
22734 suffix are ambiguous. For consistency this includes all FPA instructions,
22735 not just the potentially ambiguous ones. */
22736#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22737 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22738 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22739
22740/* Coprocessor, takes either a suffix or a position-3 infix
22741 (for an FPA corner case). */
22742#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22743 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22744 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22745
6a86118a 22746#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22747 { m1 #m2 m3, OPS##nops ops, \
22748 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22749 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22750
22751#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22752 xCM_ (m1, , m2, op, nops, ops, ae), \
22753 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22754 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22755 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22756 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22757 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22758 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22759 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22760 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22761 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22762 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22763 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22764 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22765 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22766 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22767 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22768 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22769 xCM_ (m1, le, m2, op, nops, ops, ae), \
22770 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22771
22772#define UE(mnem, op, nops, ops, ae) \
5ee91343 22773 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22774
22775#define UF(mnem, op, nops, ops, ae) \
5ee91343 22776 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22777
5287ad62
JB
22778/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22779 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22780 use the same encoding function for each. */
22781#define NUF(mnem, op, nops, ops, enc) \
22782 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22783 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22784
22785/* Neon data processing, version which indirects through neon_enc_tab for
22786 the various overloaded versions of opcodes. */
22787#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22788 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22789 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22790
22791/* Neon insn with conditional suffix for the ARM version, non-overloaded
22792 version. */
5ee91343 22793#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22794 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22795 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22796
037e8744 22797#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22798 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22799
22800#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22801 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22802
5287ad62 22803/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22804#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22805 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22806 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22807
037e8744 22808#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22809 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22810
22811#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22812 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22813
22814/* */
22815#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22816 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22817 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22818
22819
22820/* nCEF but for MVE predicated instructions. */
22821#define mnCEF(mnem, op, nops, ops, enc) \
22822 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22823
22824/* nCE but for MVE predicated instructions. */
22825#define mnCE(mnem, op, nops, ops, enc) \
22826 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22827
5ee91343
AV
22828/* NUF but for potentially MVE predicated instructions. */
22829#define MNUF(mnem, op, nops, ops, enc) \
22830 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22831 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22832
22833/* nUF but for potentially MVE predicated instructions. */
22834#define mnUF(mnem, op, nops, ops, enc) \
22835 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22836 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22837
22838/* ToC but for potentially MVE predicated instructions. */
22839#define mToC(mnem, top, nops, ops, te) \
22840 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22841 do_##te, 1 }
22842
22843/* NCE but for MVE predicated instructions. */
22844#define MNCE(mnem, op, nops, ops, enc) \
22845 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22846
22847/* NCEF but for MVE predicated instructions. */
22848#define MNCEF(mnem, op, nops, ops, enc) \
22849 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22850#define do_0 0
22851
c19d1205 22852static const struct asm_opcode insns[] =
bfae80f2 22853{
74db7efb
NC
22854#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22855#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22856 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22857 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22858 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22859 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22860 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22861 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22862 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22863 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22864 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22865 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22866 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22867 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22868 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22869 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22870 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22871 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22872
22873 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22874 for setting PSR flag bits. They are obsolete in V6 and do not
22875 have Thumb equivalents. */
21d799b5
NC
22876 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22877 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22878 CL("tstp", 110f000, 2, (RR, SH), cmp),
22879 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22880 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22881 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22882 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22883 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22884 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22885
22886 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 22887 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
22888 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22889 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22890
22891 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
22892 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22893 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22894 OP_RRnpc),
22895 OP_ADDRGLDR),ldst, t_ldst),
22896 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
22897
22898 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22899 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22900 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22901 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22902 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22903 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22904
21d799b5
NC
22905 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22906 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 22907
c19d1205 22908 /* Pseudo ops. */
21d799b5 22909 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 22910 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 22911 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 22912 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
22913
22914 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22915 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22916 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22917 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22918 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22919 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22920 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22921 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22922 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22923 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22924 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22925 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22926 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22927
16a4cf17 22928 /* These may simplify to neg. */
21d799b5
NC
22929 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22930 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22931
173205ca
TP
22932#undef THUMB_VARIANT
22933#define THUMB_VARIANT & arm_ext_os
22934
22935 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22936 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22937
c921be7d
NC
22938#undef THUMB_VARIANT
22939#define THUMB_VARIANT & arm_ext_v6
22940
21d799b5 22941 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
22942
22943 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
22944#undef THUMB_VARIANT
22945#define THUMB_VARIANT & arm_ext_v6t2
22946
21d799b5
NC
22947 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22948 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22949 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 22950
5be8be5d
DG
22951 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22952 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22953 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22954 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 22955
21d799b5
NC
22956 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22957 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 22958
21d799b5
NC
22959 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22960 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
22961
22962 /* V1 instructions with no Thumb analogue at all. */
21d799b5 22963 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
22964 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22965
22966 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22967 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22968 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22969 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22970 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22971 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22972 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22973 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22974
c921be7d
NC
22975#undef ARM_VARIANT
22976#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22977#undef THUMB_VARIANT
22978#define THUMB_VARIANT & arm_ext_v4t
22979
21d799b5
NC
22980 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22981 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 22982
c921be7d
NC
22983#undef THUMB_VARIANT
22984#define THUMB_VARIANT & arm_ext_v6t2
22985
21d799b5 22986 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
22987 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22988
22989 /* Generic coprocessor instructions. */
21d799b5
NC
22990 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22991 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22992 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22993 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22994 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22995 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 22996 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22997
c921be7d
NC
22998#undef ARM_VARIANT
22999#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23000
21d799b5 23001 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
23002 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23003
c921be7d
NC
23004#undef ARM_VARIANT
23005#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23006#undef THUMB_VARIANT
23007#define THUMB_VARIANT & arm_ext_msr
23008
d2cd1205
JB
23009 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23010 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 23011
c921be7d
NC
23012#undef ARM_VARIANT
23013#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23014#undef THUMB_VARIANT
23015#define THUMB_VARIANT & arm_ext_v6t2
23016
21d799b5
NC
23017 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23018 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23019 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23020 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23021 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23022 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23023 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23024 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 23025
c921be7d
NC
23026#undef ARM_VARIANT
23027#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23028#undef THUMB_VARIANT
23029#define THUMB_VARIANT & arm_ext_v4t
23030
5be8be5d
DG
23031 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23032 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23033 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23034 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
23035 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23036 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 23037
c921be7d
NC
23038#undef ARM_VARIANT
23039#define ARM_VARIANT & arm_ext_v4t_5
23040
c19d1205
ZW
23041 /* ARM Architecture 4T. */
23042 /* Note: bx (and blx) are required on V5, even if the processor does
23043 not support Thumb. */
21d799b5 23044 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 23045
c921be7d
NC
23046#undef ARM_VARIANT
23047#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23048#undef THUMB_VARIANT
23049#define THUMB_VARIANT & arm_ext_v5t
23050
c19d1205
ZW
23051 /* Note: blx has 2 variants; the .value coded here is for
23052 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
23053 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23054 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 23055
c921be7d
NC
23056#undef THUMB_VARIANT
23057#define THUMB_VARIANT & arm_ext_v6t2
23058
21d799b5
NC
23059 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23060 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23061 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23062 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23063 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23064 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23065 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23066 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23067
c921be7d 23068#undef ARM_VARIANT
74db7efb
NC
23069#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23070#undef THUMB_VARIANT
23071#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 23072
21d799b5
NC
23073 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23074 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23075 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23076 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23077
21d799b5
NC
23078 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23079 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23080
21d799b5
NC
23081 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23082 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23083 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23084 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 23085
21d799b5
NC
23086 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23087 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23088 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23089 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23090
21d799b5
NC
23091 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23092 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23093
03ee1b7f
NC
23094 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23095 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23096 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23097 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 23098
c921be7d 23099#undef ARM_VARIANT
74db7efb
NC
23100#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23101#undef THUMB_VARIANT
23102#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23103
21d799b5 23104 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
23105 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23106 ldrd, t_ldstd),
23107 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23108 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 23109
21d799b5
NC
23110 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23111 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 23112
c921be7d
NC
23113#undef ARM_VARIANT
23114#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23115
21d799b5 23116 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 23117
c921be7d
NC
23118#undef ARM_VARIANT
23119#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23120#undef THUMB_VARIANT
23121#define THUMB_VARIANT & arm_ext_v6
23122
21d799b5
NC
23123 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23124 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23125 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23126 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23127 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23128 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23129 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23130 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23131 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23132 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 23133
c921be7d 23134#undef THUMB_VARIANT
ff8646ee 23135#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 23136
5be8be5d
DG
23137 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23138 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23139 strex, t_strex),
ff8646ee
TP
23140#undef THUMB_VARIANT
23141#define THUMB_VARIANT & arm_ext_v6t2
23142
21d799b5
NC
23143 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23144 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 23145
21d799b5
NC
23146 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23147 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 23148
9e3c6df6 23149/* ARM V6 not included in V7M. */
c921be7d
NC
23150#undef THUMB_VARIANT
23151#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 23152 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 23153 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
23154 UF(rfeib, 9900a00, 1, (RRw), rfe),
23155 UF(rfeda, 8100a00, 1, (RRw), rfe),
23156 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23157 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
23158 UF(rfefa, 8100a00, 1, (RRw), rfe),
23159 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23160 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 23161 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
23162 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23163 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 23164 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 23165 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 23166 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 23167 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 23168 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 23169 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 23170 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 23171
9e3c6df6
PB
23172/* ARM V6 not included in V7M (eg. integer SIMD). */
23173#undef THUMB_VARIANT
23174#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
23175 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23176 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23177 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23178 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23179 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23180 /* Old name for QASX. */
74db7efb 23181 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23182 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23183 /* Old name for QSAX. */
74db7efb 23184 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23185 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23186 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23187 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23188 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23189 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23190 /* Old name for SASX. */
74db7efb 23191 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23192 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23193 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23194 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23195 /* Old name for SHASX. */
21d799b5 23196 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23197 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23198 /* Old name for SHSAX. */
21d799b5
NC
23199 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23200 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23201 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23202 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23203 /* Old name for SSAX. */
74db7efb 23204 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23205 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23206 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23207 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23208 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23209 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23210 /* Old name for UASX. */
74db7efb 23211 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23212 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23213 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23214 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23215 /* Old name for UHASX. */
21d799b5
NC
23216 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23217 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23218 /* Old name for UHSAX. */
21d799b5
NC
23219 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23220 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23221 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23222 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23223 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23224 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23225 /* Old name for UQASX. */
21d799b5
NC
23226 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23227 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23228 /* Old name for UQSAX. */
21d799b5
NC
23229 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23230 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23231 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23232 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23233 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23234 /* Old name for USAX. */
74db7efb 23235 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23236 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23237 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23238 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23239 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23240 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23241 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23242 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23243 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23244 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23245 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23246 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23247 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23248 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23249 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23250 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23251 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23252 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23253 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23254 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23255 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23256 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23257 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23258 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23259 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23260 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23261 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23262 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23263 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
23264 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23265 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23266 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23267 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23268 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 23269
c921be7d 23270#undef ARM_VARIANT
55e8aae7 23271#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 23272#undef THUMB_VARIANT
55e8aae7 23273#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 23274
21d799b5
NC
23275 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23276 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23277 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23278 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 23279
c921be7d
NC
23280#undef THUMB_VARIANT
23281#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
23282 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23283 ldrexd, t_ldrexd),
23284 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23285 RRnpcb), strexd, t_strexd),
ebdca51a 23286
c921be7d 23287#undef THUMB_VARIANT
ff8646ee 23288#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
23289 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23290 rd_rn, rd_rn),
23291 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23292 rd_rn, rd_rn),
23293 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23294 strex, t_strexbh),
5be8be5d 23295 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23296 strex, t_strexbh),
21d799b5 23297 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 23298
c921be7d 23299#undef ARM_VARIANT
f4c65163 23300#define ARM_VARIANT & arm_ext_sec
74db7efb 23301#undef THUMB_VARIANT
f4c65163 23302#define THUMB_VARIANT & arm_ext_sec
c921be7d 23303
21d799b5 23304 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 23305
90ec0d68
MGD
23306#undef ARM_VARIANT
23307#define ARM_VARIANT & arm_ext_virt
23308#undef THUMB_VARIANT
23309#define THUMB_VARIANT & arm_ext_virt
23310
23311 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23312 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23313
ddfded2f
MW
23314#undef ARM_VARIANT
23315#define ARM_VARIANT & arm_ext_pan
23316#undef THUMB_VARIANT
23317#define THUMB_VARIANT & arm_ext_pan
23318
23319 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23320
c921be7d 23321#undef ARM_VARIANT
74db7efb 23322#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
23323#undef THUMB_VARIANT
23324#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23325
21d799b5
NC
23326 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23327 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23328 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23329 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 23330
21d799b5 23331 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 23332 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 23333
5be8be5d
DG
23334 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23335 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23336 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23337 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 23338
91d8b670
JG
23339#undef ARM_VARIANT
23340#define ARM_VARIANT & arm_ext_v3
23341#undef THUMB_VARIANT
23342#define THUMB_VARIANT & arm_ext_v6t2
23343
23344 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
23345 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23346 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
23347
23348#undef ARM_VARIANT
23349#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
23350#undef THUMB_VARIANT
23351#define THUMB_VARIANT & arm_ext_v6t2_v8m
23352 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23353 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23354
bf3eeda7 23355 /* Thumb-only instructions. */
74db7efb 23356#undef ARM_VARIANT
bf3eeda7
NS
23357#define ARM_VARIANT NULL
23358 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23359 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
23360
23361 /* ARM does not really have an IT instruction, so always allow it.
23362 The opcode is copied from Thumb in order to allow warnings in
23363 -mimplicit-it=[never | arm] modes. */
23364#undef ARM_VARIANT
23365#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
23366#undef THUMB_VARIANT
23367#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23368
21d799b5
NC
23369 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23370 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23371 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23372 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23373 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23374 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23375 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23376 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23377 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23378 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23379 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23380 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23381 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23382 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23383 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 23384 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
23385 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23386 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 23387
92e90b6e 23388 /* Thumb2 only instructions. */
c921be7d
NC
23389#undef ARM_VARIANT
23390#define ARM_VARIANT NULL
92e90b6e 23391
21d799b5
NC
23392 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23393 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23394 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23395 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23396 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23397 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 23398
eea54501
MGD
23399 /* Hardware division instructions. */
23400#undef ARM_VARIANT
23401#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
23402#undef THUMB_VARIANT
23403#define THUMB_VARIANT & arm_ext_div
23404
eea54501
MGD
23405 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23406 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 23407
7e806470 23408 /* ARM V6M/V7 instructions. */
c921be7d
NC
23409#undef ARM_VARIANT
23410#define ARM_VARIANT & arm_ext_barrier
23411#undef THUMB_VARIANT
23412#define THUMB_VARIANT & arm_ext_barrier
23413
ccb84d65
JB
23414 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23415 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23416 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 23417
62b3e311 23418 /* ARM V7 instructions. */
c921be7d
NC
23419#undef ARM_VARIANT
23420#define ARM_VARIANT & arm_ext_v7
23421#undef THUMB_VARIANT
23422#define THUMB_VARIANT & arm_ext_v7
23423
21d799b5
NC
23424 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23425 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 23426
74db7efb 23427#undef ARM_VARIANT
60e5ef9f 23428#define ARM_VARIANT & arm_ext_mp
74db7efb 23429#undef THUMB_VARIANT
60e5ef9f
MGD
23430#define THUMB_VARIANT & arm_ext_mp
23431
23432 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23433
53c4b28b
MGD
23434 /* AArchv8 instructions. */
23435#undef ARM_VARIANT
23436#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
23437
23438/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 23439#undef THUMB_VARIANT
4ed7ed8d 23440#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 23441
4ed7ed8d
TP
23442 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23443 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23444 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23445 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23446 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23447 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 23448 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
23449 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23450 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23451 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23452 stlex, t_stlex),
4b8c8c02
RE
23453 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23454 stlex, t_stlex),
23455 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23456 stlex, t_stlex),
4ed7ed8d
TP
23457#undef THUMB_VARIANT
23458#define THUMB_VARIANT & arm_ext_v8
53c4b28b 23459
4ed7ed8d 23460 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
23461 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23462 ldrexd, t_ldrexd),
23463 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23464 strexd, t_strexd),
f7dd2fb2
TC
23465
23466/* Defined in V8 but is in undefined encoding space for earlier
23467 architectures. However earlier architectures are required to treat
23468 this instuction as a semihosting trap as well. Hence while not explicitly
23469 defined as such, it is in fact correct to define the instruction for all
23470 architectures. */
23471#undef THUMB_VARIANT
23472#define THUMB_VARIANT & arm_ext_v1
23473#undef ARM_VARIANT
23474#define ARM_VARIANT & arm_ext_v1
23475 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23476
8884b720 23477 /* ARMv8 T32 only. */
74db7efb 23478#undef ARM_VARIANT
b79f7053
MGD
23479#define ARM_VARIANT NULL
23480 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23481 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23482 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23483
33399f07
MGD
23484 /* FP for ARMv8. */
23485#undef ARM_VARIANT
a715796b 23486#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 23487#undef THUMB_VARIANT
a715796b 23488#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
23489
23490 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23491 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23492 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23493 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752
MGD
23494 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23495 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23496 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23497 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23498 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23499 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23500 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 23501
91ff7894
MGD
23502 /* Crypto v1 extensions. */
23503#undef ARM_VARIANT
23504#define ARM_VARIANT & fpu_crypto_ext_armv8
23505#undef THUMB_VARIANT
23506#define THUMB_VARIANT & fpu_crypto_ext_armv8
23507
23508 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23509 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23510 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23511 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
23512 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23513 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23514 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23515 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23516 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23517 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23518 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
23519 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23520 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23521 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 23522
dd5181d5 23523#undef ARM_VARIANT
74db7efb 23524#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
23525#undef THUMB_VARIANT
23526#define THUMB_VARIANT & crc_ext_armv8
23527 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23528 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23529 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23530 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23531 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23532 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23533
105bde57
MW
23534 /* ARMv8.2 RAS extension. */
23535#undef ARM_VARIANT
4d1464f2 23536#define ARM_VARIANT & arm_ext_ras
105bde57 23537#undef THUMB_VARIANT
4d1464f2 23538#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23539 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23540
49e8a725
SN
23541#undef ARM_VARIANT
23542#define ARM_VARIANT & arm_ext_v8_3
23543#undef THUMB_VARIANT
23544#define THUMB_VARIANT & arm_ext_v8_3
23545 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23546
c604a79a
JW
23547#undef ARM_VARIANT
23548#define ARM_VARIANT & fpu_neon_ext_dotprod
23549#undef THUMB_VARIANT
23550#define THUMB_VARIANT & fpu_neon_ext_dotprod
23551 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23552 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23553
c921be7d
NC
23554#undef ARM_VARIANT
23555#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23556#undef THUMB_VARIANT
23557#define THUMB_VARIANT NULL
c921be7d 23558
21d799b5
NC
23559 cCE("wfs", e200110, 1, (RR), rd),
23560 cCE("rfs", e300110, 1, (RR), rd),
23561 cCE("wfc", e400110, 1, (RR), rd),
23562 cCE("rfc", e500110, 1, (RR), rd),
23563
23564 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23565 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23566 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23567 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23568
23569 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23570 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23571 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23572 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23573
23574 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23575 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23576 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23577 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23578 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23579 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23580 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23581 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23582 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23583 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23584 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23585 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23586
23587 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23588 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23589 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23590 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23591 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23592 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23593 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23594 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23595 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23596 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23597 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23598 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23599
23600 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23601 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23602 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23603 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23604 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23605 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23606 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23607 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23608 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23609 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23610 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23611 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23612
23613 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23614 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23615 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23616 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23617 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23618 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23619 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23620 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23621 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23622 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23623 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23624 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23625
23626 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23627 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23628 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23629 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23630 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23631 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23632 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23633 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23634 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23635 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23636 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23637 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23638
23639 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23640 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23641 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23642 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23643 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23644 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23645 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23646 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23647 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23648 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23649 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23650 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23651
23652 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23653 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23654 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23655 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23656 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23657 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23658 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23659 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23660 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23661 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23662 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23663 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23664
23665 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23666 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23667 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23668 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23669 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23670 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23671 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23672 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23673 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23674 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23675 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23676 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23677
23678 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23679 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23680 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23681 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23682 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23683 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23684 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23685 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23686 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23687 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23688 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23689 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23690
23691 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23692 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23693 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23694 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23695 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23696 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23697 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23698 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23699 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23700 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23701 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23702 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23703
23704 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23705 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23706 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23707 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23708 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23709 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23710 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23711 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23712 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23713 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23714 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23715 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23716
23717 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23718 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23719 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23720 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23721 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23722 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23723 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23724 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23725 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23726 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23727 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23728 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23729
23730 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23731 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23732 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23733 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23734 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23735 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23736 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23737 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23738 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23739 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23740 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23741 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23742
23743 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23744 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23745 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23746 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23747 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23748 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23749 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23750 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23751 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23752 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23753 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23754 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23755
23756 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23757 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23758 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23759 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23760 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23761 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23762 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23763 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23764 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23765 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23766 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23767 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23768
23769 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23770 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23771 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23772 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23773 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23774 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23775 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23776 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23777 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23778 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23779 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23780 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23781
23782 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23783 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23784 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23785 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23786 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23787 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23788 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23789 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23790 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23791 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23792 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23793 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23794
23795 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23796 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23797 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23798 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23799 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23800 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23801 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23802 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23803 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23804 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23805 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23806 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23807
23808 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23809 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23810 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23811 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23812 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23813 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23814 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23815 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23816 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23817 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23818 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23819 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23820
23821 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23822 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23823 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23824 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23825 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23826 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23827 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23828 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23829 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23830 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23831 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23832 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23833
23834 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23835 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23836 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23837 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23838 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23839 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23840 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23841 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23842 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23843 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23844 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23845 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23846
23847 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23848 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23849 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23850 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23851 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23852 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23853 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23854 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23855 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23856 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23857 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23858 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23859
23860 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23861 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23862 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23863 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23864 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23865 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23866 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23867 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23868 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23869 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23870 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23871 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23872
23873 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23874 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23875 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23876 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23877 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23878 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23879 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23880 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23881 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23882 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23883 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23884 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23885
23886 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23887 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23888 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23889 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23890 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23891 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23892 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23893 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23894 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23895 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23896 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23897 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23898
23899 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23900 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23901 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23902 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23903 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23904 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23905 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23906 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23907 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23908 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23909 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23910 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23911
23912 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23913 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23914 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23915 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23916 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23917 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23918 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23919 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23920 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23921 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23922 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23923 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23924
23925 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23926 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23927 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23928 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23929 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23930 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23931 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23932 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23933 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23934 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23935 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23936 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23937
23938 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23939 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23940 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23941 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23942 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23943 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23944 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23945 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23946 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23947 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23948 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23949 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23950
23951 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23952 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23953 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23954 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23955
23956 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23957 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23958 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23959 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23960 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23961 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23962 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23963 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23964 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23965 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23966 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23967 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 23968
c19d1205
ZW
23969 /* The implementation of the FIX instruction is broken on some
23970 assemblers, in that it accepts a precision specifier as well as a
23971 rounding specifier, despite the fact that this is meaningless.
23972 To be more compatible, we accept it as well, though of course it
23973 does not set any bits. */
21d799b5
NC
23974 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23975 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23976 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23977 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23978 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23979 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23980 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23981 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23982 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23983 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23984 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23985 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23986 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 23987
c19d1205 23988 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
23989#undef ARM_VARIANT
23990#define ARM_VARIANT & fpu_fpa_ext_v2
23991
21d799b5
NC
23992 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23993 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23994 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23995 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23996 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23997 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 23998
c921be7d
NC
23999#undef ARM_VARIANT
24000#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24001
c19d1205 24002 /* Moves and type conversions. */
21d799b5 24003 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
24004 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24005 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
24006 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24007 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24008 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24009 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24010 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24011 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24012 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24013 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
24014
24015 /* Memory operations. */
21d799b5
NC
24016 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24017 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
24018 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24019 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24020 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24021 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24022 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24023 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24024 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24025 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24026 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24027 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24028 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24029 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24030 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24031 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24032 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24033 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 24034
c19d1205 24035 /* Monadic operations. */
21d799b5
NC
24036 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24037 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24038 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
24039
24040 /* Dyadic operations. */
21d799b5
NC
24041 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24042 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24043 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24044 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24045 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24046 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24047 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24048 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24049 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 24050
c19d1205 24051 /* Comparisons. */
21d799b5
NC
24052 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24053 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24054 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24055 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 24056
62f3b8c8
PB
24057 /* Double precision load/store are still present on single precision
24058 implementations. */
24059 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24060 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
24061 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24062 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24063 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24064 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24065 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24066 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24067 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24068 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 24069
c921be7d
NC
24070#undef ARM_VARIANT
24071#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24072
c19d1205 24073 /* Moves and type conversions. */
21d799b5
NC
24074 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24075 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24076 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24077 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24078 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24079 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24080 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24081 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24082 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24083 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24084 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24085 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 24086
c19d1205 24087 /* Monadic operations. */
21d799b5
NC
24088 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24089 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24090 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
24091
24092 /* Dyadic operations. */
21d799b5
NC
24093 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24094 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24095 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24096 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24097 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24098 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24099 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24100 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24101 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 24102
c19d1205 24103 /* Comparisons. */
21d799b5
NC
24104 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24105 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24106 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24107 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 24108
037e8744
JB
24109/* Instructions which may belong to either the Neon or VFP instruction sets.
24110 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
24111#undef ARM_VARIANT
24112#define ARM_VARIANT & fpu_vfp_ext_v1xd
24113#undef THUMB_VARIANT
24114#define THUMB_VARIANT & fpu_vfp_ext_v1xd
24115
037e8744
JB
24116 /* These mnemonics are unique to VFP. */
24117 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24118 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
24119 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24120 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24121 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
24122 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24123 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24124 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24125
24126 /* Mnemonics shared by Neon and VFP. */
21d799b5 24127 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 24128
55881a11
MGD
24129 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24130 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24131 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24132 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24133 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24134 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 24135
dd9634d9 24136 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 24137 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
24138 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24139 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 24140
037e8744
JB
24141
24142 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
24143 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24144
32c36c3c
AV
24145#undef THUMB_VARIANT
24146/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24147 by different feature bits. Since we are setting the Thumb guard, we can
24148 require Thumb-1 which makes it a nop guard and set the right feature bit in
24149 do_vldr_vstr (). */
24150#define THUMB_VARIANT & arm_ext_v4t
24151 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24152 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24153
9db2f6b4
RL
24154#undef ARM_VARIANT
24155#define ARM_VARIANT & arm_ext_fp16
24156#undef THUMB_VARIANT
24157#define THUMB_VARIANT & arm_ext_fp16
24158 /* New instructions added from v8.2, allowing the extraction and insertion of
24159 the upper 16 bits of a 32-bit vector register. */
24160 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24161 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24162
dec41383
JW
24163 /* New backported fma/fms instructions optional in v8.2. */
24164 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24165 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24166
c921be7d
NC
24167#undef THUMB_VARIANT
24168#define THUMB_VARIANT & fpu_neon_ext_v1
24169#undef ARM_VARIANT
24170#define ARM_VARIANT & fpu_neon_ext_v1
24171
5287ad62
JB
24172 /* Data processing with three registers of the same length. */
24173 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24174 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24175 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 24176 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 24177 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
24178 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24179 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 24180 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
5287ad62 24181 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7 24182 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
627907b7 24183 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
24184 /* If not immediate, fall back to neon_dyadic_i64_su.
24185 shl_imm should accept I8 I16 I32 I64,
24186 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
24187 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24188 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24189 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24190 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 24191 /* Logic ops, types optional & ignored. */
4316f0d2 24192 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24193 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24194 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24195 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24196 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
24197 /* Bitfield ops, untyped. */
24198 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24199 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24200 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24201 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24202 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24203 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 24204 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 24205 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24206 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24207 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
24208 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24209 back to neon_dyadic_if_su. */
21d799b5
NC
24210 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24211 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24212 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24213 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24214 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24215 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24216 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24217 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 24218 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
24219 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24220 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 24221 /* As above, D registers only. */
21d799b5
NC
24222 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24223 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 24224 /* Int and float variants, signedness unimportant. */
21d799b5
NC
24225 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24226 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24227 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 24228 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
24229 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24230 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
24231 /* vtst takes sizes 8, 16, 32. */
24232 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24233 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24234 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 24235 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 24236 /* VQD{R}MULH takes S16 S32. */
21d799b5 24237 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21d799b5 24238 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
24239 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24240 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24241 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24242 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
24243 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24244 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24245 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24246 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
24247 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24248 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24249 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24250 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 24251 /* ARM v8.1 extension. */
643afb90
MW
24252 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24253 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24254 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
24255
24256 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 24257 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
24258 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24259
24260 /* Data processing with two registers and a shift amount. */
24261 /* Right shifts, and variants with rounding.
24262 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24263 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24264 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24265 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24266 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24267 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24268 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24269 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24270 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24271 /* Shift and insert. Sizes accepted 8 16 32 64. */
24272 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24273 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24274 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24275 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24276 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24277 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24278 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24279 /* Right shift immediate, saturating & narrowing, with rounding variants.
24280 Types accepted S16 S32 S64 U16 U32 U64. */
24281 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24282 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24283 /* As above, unsigned. Types accepted S16 S32 S64. */
24284 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24285 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24286 /* Right shift narrowing. Types accepted I16 I32 I64. */
24287 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24288 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24289 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 24290 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 24291 /* CVT with optional immediate for fixed-point variant. */
21d799b5 24292 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 24293
4316f0d2 24294 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
24295
24296 /* Data processing, three registers of different lengths. */
24297 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24298 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
24299 /* If not scalar, fall back to neon_dyadic_long.
24300 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
24301 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24302 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
24303 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24304 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24305 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24306 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24307 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24308 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24309 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24310 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24311 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
24312 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24313 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24314 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
24315 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24316 S16 S32 U16 U32. */
21d799b5 24317 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
24318
24319 /* Extract. Size 8. */
3b8d421e
PB
24320 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24321 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
24322
24323 /* Two registers, miscellaneous. */
24324 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24325 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24326 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24327 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24328 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24329 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24330 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24331 /* Vector replicate. Sizes 8 16 32. */
21d799b5 24332 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
24333 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24334 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24335 /* VMOVN. Types I16 I32 I64. */
21d799b5 24336 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 24337 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 24338 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 24339 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 24340 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
24341 /* VZIP / VUZP. Sizes 8 16 32. */
24342 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24343 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24344 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24345 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24346 /* VQABS / VQNEG. Types S8 S16 S32. */
5287ad62 24347 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
5287ad62
JB
24348 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24349 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24350 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24351 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24352 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24353 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 24354 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
24355 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24356 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24357 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24358 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24359 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
24360 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24361 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
24362 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24363 /* VCNT. Size 8. */
24364 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24365 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24366 /* Two address, untyped. */
24367 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24368 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24369 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
24370 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24371 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
24372
24373 /* Table lookup. Size 8. */
24374 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24375 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24376
c921be7d
NC
24377#undef THUMB_VARIANT
24378#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24379#undef ARM_VARIANT
24380#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24381
5287ad62 24382 /* Neon element/structure load/store. */
21d799b5
NC
24383 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24384 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24385 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24386 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24387 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24388 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24389 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24390 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 24391
c921be7d 24392#undef THUMB_VARIANT
74db7efb
NC
24393#define THUMB_VARIANT & fpu_vfp_ext_v3xd
24394#undef ARM_VARIANT
24395#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
24396 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24397 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24398 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24399 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24400 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24401 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24402 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24403 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24404 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24405
74db7efb 24406#undef THUMB_VARIANT
c921be7d
NC
24407#define THUMB_VARIANT & fpu_vfp_ext_v3
24408#undef ARM_VARIANT
24409#define ARM_VARIANT & fpu_vfp_ext_v3
24410
21d799b5 24411 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 24412 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24413 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24414 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24415 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24416 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24417 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24418 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24419 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 24420
74db7efb
NC
24421#undef ARM_VARIANT
24422#define ARM_VARIANT & fpu_vfp_ext_fma
24423#undef THUMB_VARIANT
24424#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 24425 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
24426 VFP FMA variant; NEON and VFP FMA always includes the NEON
24427 FMA instructions. */
d58196e0
AV
24428 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24429 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24430
62f3b8c8
PB
24431 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24432 the v form should always be used. */
24433 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24434 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24435 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24436 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24437 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24438 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24439
5287ad62 24440#undef THUMB_VARIANT
c921be7d
NC
24441#undef ARM_VARIANT
24442#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24443
21d799b5
NC
24444 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24445 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24446 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24447 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24448 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24449 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24450 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24451 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 24452
c921be7d
NC
24453#undef ARM_VARIANT
24454#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24455
21d799b5
NC
24456 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24457 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24458 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24459 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24460 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24461 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24462 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24463 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24464 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
24465 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24466 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24467 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24468 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24469 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24470 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
24471 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24472 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24473 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24474 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24475 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24476 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24477 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24478 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24479 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24480 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24481 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
24482 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24483 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24484 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
24485 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24486 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24487 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24488 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24489 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24490 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24491 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24492 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24493 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24494 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24495 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24496 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24497 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24498 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24499 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24500 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24501 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24502 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
24503 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24504 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24505 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24506 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24507 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24508 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24509 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24510 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24511 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24512 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24513 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24514 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24515 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24516 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24517 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24518 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24519 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24520 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24521 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24522 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24523 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24524 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24525 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24526 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24527 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24528 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24529 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24530 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24531 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24532 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24533 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24534 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24535 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24536 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24537 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24538 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24539 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24540 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24541 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24542 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24543 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24544 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24545 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24546 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24547 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24548 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24549 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24550 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24551 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24552 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24553 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24554 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24555 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24556 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24557 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24558 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24559 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24560 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24561 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24562 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24563 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24564 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24565 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24566 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24567 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24568 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24569 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24570 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24571 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24572 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24573 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24574 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24575 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24576 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24577 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24578 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24579 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24580 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24581 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24582 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24583 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24584 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24585 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24586 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24587 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24588 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24589 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24590 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24591 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24592 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24593 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24594 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24595 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24596 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24597 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24598 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24599 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24600 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24601 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24602 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24603 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24604 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24605 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24606 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24607 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24608 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24609 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24610 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24611 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24612 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24613 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24614 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24615 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24616 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24617 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24618
c921be7d
NC
24619#undef ARM_VARIANT
24620#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24621
21d799b5
NC
24622 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24623 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24624 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24625 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24626 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24627 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24628 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24629 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24630 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24631 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24632 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24633 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24634 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24635 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24636 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24637 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24638 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24639 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24640 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24641 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24642 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24643 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24644 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24645 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24646 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24647 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24648 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24649 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24650 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24651 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24652 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24653 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24654 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24655 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24656 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24657 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24658 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24659 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24660 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24661 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24662 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24663 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24664 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24665 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24666 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24667 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24668 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24669 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24670 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24671 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24672 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24673 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24674 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24675 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24676 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24677 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24678 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24679
c921be7d
NC
24680#undef ARM_VARIANT
24681#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24682
21d799b5
NC
24683 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24684 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24685 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24686 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24687 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24688 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24689 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24690 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24691 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24692 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24693 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24694 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24695 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24696 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24697 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24698 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24699 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24700 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24701 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24702 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24703 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24704 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24705 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24706 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24707 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24708 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24709 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24710 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24711 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24712 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24713 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24714 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24715 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24716 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24717 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24718 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24719 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24720 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24721 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24722 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24723 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24724 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24725 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24726 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24727 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24728 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24729 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24730 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24731 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24732 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24733 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24734 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24735 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24736 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24737 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24738 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24739 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24740 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24741 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24742 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24743 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24744 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24745 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24746 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24747 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24748 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24749 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24750 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24751 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24752 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24753 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24754 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24755 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24756 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24757 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24758 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24759
7fadb25d
SD
24760 /* ARMv8.5-A instructions. */
24761#undef ARM_VARIANT
24762#define ARM_VARIANT & arm_ext_sb
24763#undef THUMB_VARIANT
24764#define THUMB_VARIANT & arm_ext_sb
24765 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24766
dad0c3bf
SD
24767#undef ARM_VARIANT
24768#define ARM_VARIANT & arm_ext_predres
24769#undef THUMB_VARIANT
24770#define THUMB_VARIANT & arm_ext_predres
24771 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24772 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24773 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24774
16a1fa25 24775 /* ARMv8-M instructions. */
4ed7ed8d
TP
24776#undef ARM_VARIANT
24777#define ARM_VARIANT NULL
24778#undef THUMB_VARIANT
24779#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24780 ToU("sg", e97fe97f, 0, (), noargs),
24781 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24782 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24783 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24784 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24785 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24786 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24787
24788 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24789 instructions behave as nop if no VFP is present. */
24790#undef THUMB_VARIANT
24791#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24792 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24793 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24794
24795 /* Armv8.1-M Mainline instructions. */
24796#undef THUMB_VARIANT
24797#define THUMB_VARIANT & arm_ext_v8_1m_main
24798 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24799 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24800 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24801 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24802 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24803
24804 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24805 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24806 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24807
efd6b359 24808 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24809 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24810
24811#undef THUMB_VARIANT
24812#define THUMB_VARIANT & mve_ext
1b883319
AV
24813
24814 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24815 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24816 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24817 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24818 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24819 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24820 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24821 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24822 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24823 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24824 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24825 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24826 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24827 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24828 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24829
5ee91343
AV
24830 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24831 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24832 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24833 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24834 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24835 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24836 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24837 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24838 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24839 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24840 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24841 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24842 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24843 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24844 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24845
a302e574 24846 /* MVE and MVE FP only. */
7df54120 24847 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
24848 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24849 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24850 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24851 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24852 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24853 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24854 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24855 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24856 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24857 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24858 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24859 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24860 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24861 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24862 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24863 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24864
35c228db
AV
24865 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24866 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24867 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24868 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24869 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24870 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24871 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24872 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24873 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24874 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24875 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24876 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24877 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24878 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24879 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24880 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24881 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24882 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24883 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24884 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24885
57785aa2
AV
24886 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24887 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24888 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
24889 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24890 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24891 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24892 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
24893 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24894 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24895 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24896 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
24897 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24898 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
24899 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24900 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24901 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24902 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 24903
93925576
AV
24904 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24905 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24906 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24907 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24908 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24909 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24910 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24911 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24912 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24913 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24914 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24915 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24916 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24917 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24918 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24919 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24920 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24921 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24922 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24923 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24924
2d78f95b
AV
24925 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24926 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24927 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
3063888e
AV
24928 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
24929 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
2d78f95b 24930
8b8b22a4
AV
24931 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24932 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24933 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24934 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24935 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24936 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24937 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24938 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
42b16635
AV
24939 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24940 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24941 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
35d1cfc2
AV
24942 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
24943 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
1be7aba3
AV
24944 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
24945 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
24946 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
24947 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
8b8b22a4 24948
5d281bf0
AV
24949#undef THUMB_VARIANT
24950#define THUMB_VARIANT & mve_fp_ext
24951 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 24952 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
24953 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24954 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
24955 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24956 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24957 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24958 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 24959
5ee91343 24960#undef ARM_VARIANT
57785aa2 24961#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
24962#undef THUMB_VARIANT
24963#define THUMB_VARIANT & arm_ext_v6t2
a8465a06
AV
24964 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
24965 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
5ee91343 24966
57785aa2
AV
24967 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24968
24969#undef ARM_VARIANT
24970#define ARM_VARIANT & fpu_vfp_ext_v1xd
24971
24972 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24973 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24974 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24975 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24976
886e1c73
AV
24977 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24978 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24979 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 24980
485dee97
AV
24981 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24982 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24983
57785aa2
AV
24984 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24985 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24986
1b883319
AV
24987 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24988 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24989
57785aa2
AV
24990#undef ARM_VARIANT
24991#define ARM_VARIANT & fpu_vfp_ext_v2
24992
24993 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24994 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24995 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24996 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24997
dd9634d9
AV
24998#undef ARM_VARIANT
24999#define ARM_VARIANT & fpu_vfp_ext_armv8xd
25000 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25001 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25002 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25003 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
25004 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25005 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
25006
25007#undef ARM_VARIANT
5ee91343 25008#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 25009 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
25010 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25011 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25012 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
25013 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25014 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25015 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25016 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25017 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
25018 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25019 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 25020 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
25021 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25022 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25023 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
25024 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25025 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
a8465a06
AV
25026 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25027 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
1a186d29
AV
25028 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25029 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25030 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
42b16635
AV
25031 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25032 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25033 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
1be7aba3
AV
25034 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25035 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
5d281bf0
AV
25036
25037#undef ARM_VARIANT
25038#define ARM_VARIANT & arm_ext_v8_3
25039#undef THUMB_VARIANT
25040#define THUMB_VARIANT & arm_ext_v6t2_v8m
25041 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25042 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
25043};
25044#undef ARM_VARIANT
25045#undef THUMB_VARIANT
25046#undef TCE
c19d1205
ZW
25047#undef TUE
25048#undef TUF
25049#undef TCC
8f06b2d8 25050#undef cCE
e3cb604e
PB
25051#undef cCL
25052#undef C3E
4389b29a 25053#undef C3
c19d1205
ZW
25054#undef CE
25055#undef CM
4389b29a 25056#undef CL
c19d1205
ZW
25057#undef UE
25058#undef UF
25059#undef UT
5287ad62
JB
25060#undef NUF
25061#undef nUF
25062#undef NCE
25063#undef nCE
c19d1205
ZW
25064#undef OPS0
25065#undef OPS1
25066#undef OPS2
25067#undef OPS3
25068#undef OPS4
25069#undef OPS5
25070#undef OPS6
25071#undef do_0
4389b29a
AV
25072#undef ToC
25073#undef toC
25074#undef ToU
f6b2b12d 25075#undef toU
c19d1205
ZW
25076\f
25077/* MD interface: bits in the object file. */
bfae80f2 25078
c19d1205
ZW
25079/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25080 for use in the a.out file, and stores them in the array pointed to by buf.
25081 This knows about the endian-ness of the target machine and does
25082 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25083 2 (short) and 4 (long) Floating numbers are put out as a series of
25084 LITTLENUMS (shorts, here at least). */
b99bd4ef 25085
c19d1205
ZW
25086void
25087md_number_to_chars (char * buf, valueT val, int n)
25088{
25089 if (target_big_endian)
25090 number_to_chars_bigendian (buf, val, n);
25091 else
25092 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
25093}
25094
c19d1205
ZW
25095static valueT
25096md_chars_to_number (char * buf, int n)
bfae80f2 25097{
c19d1205
ZW
25098 valueT result = 0;
25099 unsigned char * where = (unsigned char *) buf;
bfae80f2 25100
c19d1205 25101 if (target_big_endian)
b99bd4ef 25102 {
c19d1205
ZW
25103 while (n--)
25104 {
25105 result <<= 8;
25106 result |= (*where++ & 255);
25107 }
b99bd4ef 25108 }
c19d1205 25109 else
b99bd4ef 25110 {
c19d1205
ZW
25111 while (n--)
25112 {
25113 result <<= 8;
25114 result |= (where[n] & 255);
25115 }
bfae80f2 25116 }
b99bd4ef 25117
c19d1205 25118 return result;
bfae80f2 25119}
b99bd4ef 25120
c19d1205 25121/* MD interface: Sections. */
b99bd4ef 25122
fa94de6b
RM
25123/* Calculate the maximum variable size (i.e., excluding fr_fix)
25124 that an rs_machine_dependent frag may reach. */
25125
25126unsigned int
25127arm_frag_max_var (fragS *fragp)
25128{
25129 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25130 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25131
25132 Note that we generate relaxable instructions even for cases that don't
25133 really need it, like an immediate that's a trivial constant. So we're
25134 overestimating the instruction size for some of those cases. Rather
25135 than putting more intelligence here, it would probably be better to
25136 avoid generating a relaxation frag in the first place when it can be
25137 determined up front that a short instruction will suffice. */
25138
25139 gas_assert (fragp->fr_type == rs_machine_dependent);
25140 return INSN_SIZE;
25141}
25142
0110f2b8
PB
25143/* Estimate the size of a frag before relaxing. Assume everything fits in
25144 2 bytes. */
25145
c19d1205 25146int
0110f2b8 25147md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
25148 segT segtype ATTRIBUTE_UNUSED)
25149{
0110f2b8
PB
25150 fragp->fr_var = 2;
25151 return 2;
25152}
25153
25154/* Convert a machine dependent frag. */
25155
25156void
25157md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25158{
25159 unsigned long insn;
25160 unsigned long old_op;
25161 char *buf;
25162 expressionS exp;
25163 fixS *fixp;
25164 int reloc_type;
25165 int pc_rel;
25166 int opcode;
25167
25168 buf = fragp->fr_literal + fragp->fr_fix;
25169
25170 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
25171 if (fragp->fr_symbol)
25172 {
0110f2b8
PB
25173 exp.X_op = O_symbol;
25174 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
25175 }
25176 else
25177 {
0110f2b8 25178 exp.X_op = O_constant;
5f4273c7 25179 }
0110f2b8
PB
25180 exp.X_add_number = fragp->fr_offset;
25181 opcode = fragp->fr_subtype;
25182 switch (opcode)
25183 {
25184 case T_MNEM_ldr_pc:
25185 case T_MNEM_ldr_pc2:
25186 case T_MNEM_ldr_sp:
25187 case T_MNEM_str_sp:
25188 case T_MNEM_ldr:
25189 case T_MNEM_ldrb:
25190 case T_MNEM_ldrh:
25191 case T_MNEM_str:
25192 case T_MNEM_strb:
25193 case T_MNEM_strh:
25194 if (fragp->fr_var == 4)
25195 {
5f4273c7 25196 insn = THUMB_OP32 (opcode);
0110f2b8
PB
25197 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25198 {
25199 insn |= (old_op & 0x700) << 4;
25200 }
25201 else
25202 {
25203 insn |= (old_op & 7) << 12;
25204 insn |= (old_op & 0x38) << 13;
25205 }
25206 insn |= 0x00000c00;
25207 put_thumb32_insn (buf, insn);
25208 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25209 }
25210 else
25211 {
25212 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25213 }
25214 pc_rel = (opcode == T_MNEM_ldr_pc2);
25215 break;
25216 case T_MNEM_adr:
25217 if (fragp->fr_var == 4)
25218 {
25219 insn = THUMB_OP32 (opcode);
25220 insn |= (old_op & 0xf0) << 4;
25221 put_thumb32_insn (buf, insn);
25222 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25223 }
25224 else
25225 {
25226 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25227 exp.X_add_number -= 4;
25228 }
25229 pc_rel = 1;
25230 break;
25231 case T_MNEM_mov:
25232 case T_MNEM_movs:
25233 case T_MNEM_cmp:
25234 case T_MNEM_cmn:
25235 if (fragp->fr_var == 4)
25236 {
25237 int r0off = (opcode == T_MNEM_mov
25238 || opcode == T_MNEM_movs) ? 0 : 8;
25239 insn = THUMB_OP32 (opcode);
25240 insn = (insn & 0xe1ffffff) | 0x10000000;
25241 insn |= (old_op & 0x700) << r0off;
25242 put_thumb32_insn (buf, insn);
25243 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25244 }
25245 else
25246 {
25247 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25248 }
25249 pc_rel = 0;
25250 break;
25251 case T_MNEM_b:
25252 if (fragp->fr_var == 4)
25253 {
25254 insn = THUMB_OP32(opcode);
25255 put_thumb32_insn (buf, insn);
25256 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25257 }
25258 else
25259 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25260 pc_rel = 1;
25261 break;
25262 case T_MNEM_bcond:
25263 if (fragp->fr_var == 4)
25264 {
25265 insn = THUMB_OP32(opcode);
25266 insn |= (old_op & 0xf00) << 14;
25267 put_thumb32_insn (buf, insn);
25268 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25269 }
25270 else
25271 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25272 pc_rel = 1;
25273 break;
25274 case T_MNEM_add_sp:
25275 case T_MNEM_add_pc:
25276 case T_MNEM_inc_sp:
25277 case T_MNEM_dec_sp:
25278 if (fragp->fr_var == 4)
25279 {
25280 /* ??? Choose between add and addw. */
25281 insn = THUMB_OP32 (opcode);
25282 insn |= (old_op & 0xf0) << 4;
25283 put_thumb32_insn (buf, insn);
16805f35
PB
25284 if (opcode == T_MNEM_add_pc)
25285 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25286 else
25287 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
25288 }
25289 else
25290 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25291 pc_rel = 0;
25292 break;
25293
25294 case T_MNEM_addi:
25295 case T_MNEM_addis:
25296 case T_MNEM_subi:
25297 case T_MNEM_subis:
25298 if (fragp->fr_var == 4)
25299 {
25300 insn = THUMB_OP32 (opcode);
25301 insn |= (old_op & 0xf0) << 4;
25302 insn |= (old_op & 0xf) << 16;
25303 put_thumb32_insn (buf, insn);
16805f35
PB
25304 if (insn & (1 << 20))
25305 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25306 else
25307 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
25308 }
25309 else
25310 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25311 pc_rel = 0;
25312 break;
25313 default:
5f4273c7 25314 abort ();
0110f2b8
PB
25315 }
25316 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 25317 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
25318 fixp->fx_file = fragp->fr_file;
25319 fixp->fx_line = fragp->fr_line;
25320 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
25321
25322 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25323 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25324 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25325 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
25326}
25327
25328/* Return the size of a relaxable immediate operand instruction.
25329 SHIFT and SIZE specify the form of the allowable immediate. */
25330static int
25331relax_immediate (fragS *fragp, int size, int shift)
25332{
25333 offsetT offset;
25334 offsetT mask;
25335 offsetT low;
25336
25337 /* ??? Should be able to do better than this. */
25338 if (fragp->fr_symbol)
25339 return 4;
25340
25341 low = (1 << shift) - 1;
25342 mask = (1 << (shift + size)) - (1 << shift);
25343 offset = fragp->fr_offset;
25344 /* Force misaligned offsets to 32-bit variant. */
25345 if (offset & low)
5e77afaa 25346 return 4;
0110f2b8
PB
25347 if (offset & ~mask)
25348 return 4;
25349 return 2;
25350}
25351
5e77afaa
PB
25352/* Get the address of a symbol during relaxation. */
25353static addressT
5f4273c7 25354relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
25355{
25356 fragS *sym_frag;
25357 addressT addr;
25358 symbolS *sym;
25359
25360 sym = fragp->fr_symbol;
25361 sym_frag = symbol_get_frag (sym);
25362 know (S_GET_SEGMENT (sym) != absolute_section
25363 || sym_frag == &zero_address_frag);
25364 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25365
25366 /* If frag has yet to be reached on this pass, assume it will
25367 move by STRETCH just as we did. If this is not so, it will
25368 be because some frag between grows, and that will force
25369 another pass. */
25370
25371 if (stretch != 0
25372 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
25373 {
25374 fragS *f;
25375
25376 /* Adjust stretch for any alignment frag. Note that if have
25377 been expanding the earlier code, the symbol may be
25378 defined in what appears to be an earlier frag. FIXME:
25379 This doesn't handle the fr_subtype field, which specifies
25380 a maximum number of bytes to skip when doing an
25381 alignment. */
25382 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25383 {
25384 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25385 {
25386 if (stretch < 0)
25387 stretch = - ((- stretch)
25388 & ~ ((1 << (int) f->fr_offset) - 1));
25389 else
25390 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25391 if (stretch == 0)
25392 break;
25393 }
25394 }
25395 if (f != NULL)
25396 addr += stretch;
25397 }
5e77afaa
PB
25398
25399 return addr;
25400}
25401
0110f2b8
PB
25402/* Return the size of a relaxable adr pseudo-instruction or PC-relative
25403 load. */
25404static int
5e77afaa 25405relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
25406{
25407 addressT addr;
25408 offsetT val;
25409
25410 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
25411 if (fragp->fr_symbol == NULL
25412 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25413 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25414 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25415 return 4;
25416
5f4273c7 25417 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25418 addr = fragp->fr_address + fragp->fr_fix;
25419 addr = (addr + 4) & ~3;
5e77afaa 25420 /* Force misaligned targets to 32-bit variant. */
0110f2b8 25421 if (val & 3)
5e77afaa 25422 return 4;
0110f2b8
PB
25423 val -= addr;
25424 if (val < 0 || val > 1020)
25425 return 4;
25426 return 2;
25427}
25428
25429/* Return the size of a relaxable add/sub immediate instruction. */
25430static int
25431relax_addsub (fragS *fragp, asection *sec)
25432{
25433 char *buf;
25434 int op;
25435
25436 buf = fragp->fr_literal + fragp->fr_fix;
25437 op = bfd_get_16(sec->owner, buf);
25438 if ((op & 0xf) == ((op >> 4) & 0xf))
25439 return relax_immediate (fragp, 8, 0);
25440 else
25441 return relax_immediate (fragp, 3, 0);
25442}
25443
e83a675f
RE
25444/* Return TRUE iff the definition of symbol S could be pre-empted
25445 (overridden) at link or load time. */
25446static bfd_boolean
25447symbol_preemptible (symbolS *s)
25448{
25449 /* Weak symbols can always be pre-empted. */
25450 if (S_IS_WEAK (s))
25451 return TRUE;
25452
25453 /* Non-global symbols cannot be pre-empted. */
25454 if (! S_IS_EXTERNAL (s))
25455 return FALSE;
25456
25457#ifdef OBJ_ELF
25458 /* In ELF, a global symbol can be marked protected, or private. In that
25459 case it can't be pre-empted (other definitions in the same link unit
25460 would violate the ODR). */
25461 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25462 return FALSE;
25463#endif
25464
25465 /* Other global symbols might be pre-empted. */
25466 return TRUE;
25467}
0110f2b8
PB
25468
25469/* Return the size of a relaxable branch instruction. BITS is the
25470 size of the offset field in the narrow instruction. */
25471
25472static int
5e77afaa 25473relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
25474{
25475 addressT addr;
25476 offsetT val;
25477 offsetT limit;
25478
25479 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 25480 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25481 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25482 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25483 return 4;
25484
267bf995 25485#ifdef OBJ_ELF
e83a675f 25486 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
25487 if (S_IS_DEFINED (fragp->fr_symbol)
25488 && ARM_IS_FUNC (fragp->fr_symbol))
25489 return 4;
e83a675f 25490#endif
0d9b4b55 25491
e83a675f 25492 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 25493 return 4;
267bf995 25494
5f4273c7 25495 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25496 addr = fragp->fr_address + fragp->fr_fix + 4;
25497 val -= addr;
25498
25499 /* Offset is a signed value *2 */
25500 limit = 1 << bits;
25501 if (val >= limit || val < -limit)
25502 return 4;
25503 return 2;
25504}
25505
25506
25507/* Relax a machine dependent frag. This returns the amount by which
25508 the current size of the frag should change. */
25509
25510int
5e77afaa 25511arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
25512{
25513 int oldsize;
25514 int newsize;
25515
25516 oldsize = fragp->fr_var;
25517 switch (fragp->fr_subtype)
25518 {
25519 case T_MNEM_ldr_pc2:
5f4273c7 25520 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25521 break;
25522 case T_MNEM_ldr_pc:
25523 case T_MNEM_ldr_sp:
25524 case T_MNEM_str_sp:
5f4273c7 25525 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
25526 break;
25527 case T_MNEM_ldr:
25528 case T_MNEM_str:
5f4273c7 25529 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
25530 break;
25531 case T_MNEM_ldrh:
25532 case T_MNEM_strh:
5f4273c7 25533 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
25534 break;
25535 case T_MNEM_ldrb:
25536 case T_MNEM_strb:
5f4273c7 25537 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
25538 break;
25539 case T_MNEM_adr:
5f4273c7 25540 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25541 break;
25542 case T_MNEM_mov:
25543 case T_MNEM_movs:
25544 case T_MNEM_cmp:
25545 case T_MNEM_cmn:
5f4273c7 25546 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
25547 break;
25548 case T_MNEM_b:
5f4273c7 25549 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
25550 break;
25551 case T_MNEM_bcond:
5f4273c7 25552 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
25553 break;
25554 case T_MNEM_add_sp:
25555 case T_MNEM_add_pc:
25556 newsize = relax_immediate (fragp, 8, 2);
25557 break;
25558 case T_MNEM_inc_sp:
25559 case T_MNEM_dec_sp:
25560 newsize = relax_immediate (fragp, 7, 2);
25561 break;
25562 case T_MNEM_addi:
25563 case T_MNEM_addis:
25564 case T_MNEM_subi:
25565 case T_MNEM_subis:
25566 newsize = relax_addsub (fragp, sec);
25567 break;
25568 default:
5f4273c7 25569 abort ();
0110f2b8 25570 }
5e77afaa
PB
25571
25572 fragp->fr_var = newsize;
25573 /* Freeze wide instructions that are at or before the same location as
25574 in the previous pass. This avoids infinite loops.
5f4273c7
NC
25575 Don't freeze them unconditionally because targets may be artificially
25576 misaligned by the expansion of preceding frags. */
5e77afaa 25577 if (stretch <= 0 && newsize > 2)
0110f2b8 25578 {
0110f2b8 25579 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 25580 frag_wane (fragp);
0110f2b8 25581 }
5e77afaa 25582
0110f2b8 25583 return newsize - oldsize;
c19d1205 25584}
b99bd4ef 25585
c19d1205 25586/* Round up a section size to the appropriate boundary. */
b99bd4ef 25587
c19d1205
ZW
25588valueT
25589md_section_align (segT segment ATTRIBUTE_UNUSED,
25590 valueT size)
25591{
6844c0cc 25592 return size;
bfae80f2 25593}
b99bd4ef 25594
c19d1205
ZW
25595/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25596 of an rs_align_code fragment. */
25597
25598void
25599arm_handle_align (fragS * fragP)
bfae80f2 25600{
d9235011 25601 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25602 {
25603 { /* ARMv1 */
25604 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25605 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25606 },
25607 { /* ARMv6k */
25608 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25609 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25610 },
25611 };
d9235011 25612 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25613 {
25614 { /* Thumb-1 */
25615 {0xc0, 0x46}, /* LE */
25616 {0x46, 0xc0}, /* BE */
25617 },
25618 { /* Thumb-2 */
25619 {0x00, 0xbf}, /* LE */
25620 {0xbf, 0x00} /* BE */
25621 }
25622 };
d9235011 25623 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25624 { /* Wide Thumb-2 */
25625 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25626 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25627 };
c921be7d 25628
e7495e45 25629 unsigned bytes, fix, noop_size;
c19d1205 25630 char * p;
d9235011
TS
25631 const unsigned char * noop;
25632 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25633#ifdef OBJ_ELF
25634 enum mstate state;
25635#endif
bfae80f2 25636
c19d1205 25637 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25638 return;
25639
c19d1205
ZW
25640 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25641 p = fragP->fr_literal + fragP->fr_fix;
25642 fix = 0;
bfae80f2 25643
c19d1205
ZW
25644 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25645 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 25646
cd000bff 25647 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 25648
cd000bff 25649 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 25650 {
7f78eb34
JW
25651 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25652 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
25653 {
25654 narrow_noop = thumb_noop[1][target_big_endian];
25655 noop = wide_thumb_noop[target_big_endian];
25656 }
c19d1205 25657 else
e7495e45
NS
25658 noop = thumb_noop[0][target_big_endian];
25659 noop_size = 2;
cd000bff
DJ
25660#ifdef OBJ_ELF
25661 state = MAP_THUMB;
25662#endif
7ed4c4c5
NC
25663 }
25664 else
25665 {
7f78eb34
JW
25666 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25667 ? selected_cpu : arm_arch_none,
25668 arm_ext_v6k) != 0]
e7495e45
NS
25669 [target_big_endian];
25670 noop_size = 4;
cd000bff
DJ
25671#ifdef OBJ_ELF
25672 state = MAP_ARM;
25673#endif
7ed4c4c5 25674 }
c921be7d 25675
e7495e45 25676 fragP->fr_var = noop_size;
c921be7d 25677
c19d1205 25678 if (bytes & (noop_size - 1))
7ed4c4c5 25679 {
c19d1205 25680 fix = bytes & (noop_size - 1);
cd000bff
DJ
25681#ifdef OBJ_ELF
25682 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25683#endif
c19d1205
ZW
25684 memset (p, 0, fix);
25685 p += fix;
25686 bytes -= fix;
a737bd4d 25687 }
a737bd4d 25688
e7495e45
NS
25689 if (narrow_noop)
25690 {
25691 if (bytes & noop_size)
25692 {
25693 /* Insert a narrow noop. */
25694 memcpy (p, narrow_noop, noop_size);
25695 p += noop_size;
25696 bytes -= noop_size;
25697 fix += noop_size;
25698 }
25699
25700 /* Use wide noops for the remainder */
25701 noop_size = 4;
25702 }
25703
c19d1205 25704 while (bytes >= noop_size)
a737bd4d 25705 {
c19d1205
ZW
25706 memcpy (p, noop, noop_size);
25707 p += noop_size;
25708 bytes -= noop_size;
25709 fix += noop_size;
a737bd4d
NC
25710 }
25711
c19d1205 25712 fragP->fr_fix += fix;
a737bd4d
NC
25713}
25714
c19d1205
ZW
25715/* Called from md_do_align. Used to create an alignment
25716 frag in a code section. */
25717
25718void
25719arm_frag_align_code (int n, int max)
bfae80f2 25720{
c19d1205 25721 char * p;
7ed4c4c5 25722
c19d1205 25723 /* We assume that there will never be a requirement
6ec8e702 25724 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 25725 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
25726 {
25727 char err_msg[128];
25728
fa94de6b 25729 sprintf (err_msg,
477330fc
RM
25730 _("alignments greater than %d bytes not supported in .text sections."),
25731 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 25732 as_fatal ("%s", err_msg);
6ec8e702 25733 }
bfae80f2 25734
c19d1205
ZW
25735 p = frag_var (rs_align_code,
25736 MAX_MEM_FOR_RS_ALIGN_CODE,
25737 1,
25738 (relax_substateT) max,
25739 (symbolS *) NULL,
25740 (offsetT) n,
25741 (char *) NULL);
25742 *p = 0;
25743}
bfae80f2 25744
8dc2430f
NC
25745/* Perform target specific initialisation of a frag.
25746 Note - despite the name this initialisation is not done when the frag
25747 is created, but only when its type is assigned. A frag can be created
25748 and used a long time before its type is set, so beware of assuming that
33eaf5de 25749 this initialisation is performed first. */
bfae80f2 25750
cd000bff
DJ
25751#ifndef OBJ_ELF
25752void
25753arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25754{
25755 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25756 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
25757}
25758
25759#else /* OBJ_ELF is defined. */
c19d1205 25760void
cd000bff 25761arm_init_frag (fragS * fragP, int max_chars)
c19d1205 25762{
e8d84ca1 25763 bfd_boolean frag_thumb_mode;
b968d18a 25764
8dc2430f
NC
25765 /* If the current ARM vs THUMB mode has not already
25766 been recorded into this frag then do so now. */
cd000bff 25767 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
25768 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25769
e8d84ca1
NC
25770 /* PR 21809: Do not set a mapping state for debug sections
25771 - it just confuses other tools. */
25772 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25773 return;
25774
b968d18a 25775 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 25776
f9c1b181
RL
25777 /* Record a mapping symbol for alignment frags. We will delete this
25778 later if the alignment ends up empty. */
25779 switch (fragP->fr_type)
25780 {
25781 case rs_align:
25782 case rs_align_test:
25783 case rs_fill:
25784 mapping_state_2 (MAP_DATA, max_chars);
25785 break;
25786 case rs_align_code:
b968d18a 25787 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
25788 break;
25789 default:
25790 break;
cd000bff 25791 }
bfae80f2
RE
25792}
25793
c19d1205
ZW
25794/* When we change sections we need to issue a new mapping symbol. */
25795
25796void
25797arm_elf_change_section (void)
bfae80f2 25798{
c19d1205
ZW
25799 /* Link an unlinked unwind index table section to the .text section. */
25800 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25801 && elf_linked_to_section (now_seg) == NULL)
25802 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25803}
25804
c19d1205
ZW
25805int
25806arm_elf_section_type (const char * str, size_t len)
e45d0630 25807{
c19d1205
ZW
25808 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25809 return SHT_ARM_EXIDX;
e45d0630 25810
c19d1205
ZW
25811 return -1;
25812}
25813\f
25814/* Code to deal with unwinding tables. */
e45d0630 25815
c19d1205 25816static void add_unwind_adjustsp (offsetT);
e45d0630 25817
5f4273c7 25818/* Generate any deferred unwind frame offset. */
e45d0630 25819
bfae80f2 25820static void
c19d1205 25821flush_pending_unwind (void)
bfae80f2 25822{
c19d1205 25823 offsetT offset;
bfae80f2 25824
c19d1205
ZW
25825 offset = unwind.pending_offset;
25826 unwind.pending_offset = 0;
25827 if (offset != 0)
25828 add_unwind_adjustsp (offset);
bfae80f2
RE
25829}
25830
c19d1205
ZW
25831/* Add an opcode to this list for this function. Two-byte opcodes should
25832 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25833 order. */
25834
bfae80f2 25835static void
c19d1205 25836add_unwind_opcode (valueT op, int length)
bfae80f2 25837{
c19d1205
ZW
25838 /* Add any deferred stack adjustment. */
25839 if (unwind.pending_offset)
25840 flush_pending_unwind ();
bfae80f2 25841
c19d1205 25842 unwind.sp_restored = 0;
bfae80f2 25843
c19d1205 25844 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25845 {
c19d1205
ZW
25846 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25847 if (unwind.opcodes)
325801bd
TS
25848 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25849 unwind.opcode_alloc);
c19d1205 25850 else
325801bd 25851 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25852 }
c19d1205 25853 while (length > 0)
bfae80f2 25854 {
c19d1205
ZW
25855 length--;
25856 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25857 op >>= 8;
25858 unwind.opcode_count++;
bfae80f2 25859 }
bfae80f2
RE
25860}
25861
c19d1205
ZW
25862/* Add unwind opcodes to adjust the stack pointer. */
25863
bfae80f2 25864static void
c19d1205 25865add_unwind_adjustsp (offsetT offset)
bfae80f2 25866{
c19d1205 25867 valueT op;
bfae80f2 25868
c19d1205 25869 if (offset > 0x200)
bfae80f2 25870 {
c19d1205
ZW
25871 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25872 char bytes[5];
25873 int n;
25874 valueT o;
bfae80f2 25875
c19d1205
ZW
25876 /* Long form: 0xb2, uleb128. */
25877 /* This might not fit in a word so add the individual bytes,
25878 remembering the list is built in reverse order. */
25879 o = (valueT) ((offset - 0x204) >> 2);
25880 if (o == 0)
25881 add_unwind_opcode (0, 1);
bfae80f2 25882
c19d1205
ZW
25883 /* Calculate the uleb128 encoding of the offset. */
25884 n = 0;
25885 while (o)
25886 {
25887 bytes[n] = o & 0x7f;
25888 o >>= 7;
25889 if (o)
25890 bytes[n] |= 0x80;
25891 n++;
25892 }
25893 /* Add the insn. */
25894 for (; n; n--)
25895 add_unwind_opcode (bytes[n - 1], 1);
25896 add_unwind_opcode (0xb2, 1);
25897 }
25898 else if (offset > 0x100)
bfae80f2 25899 {
c19d1205
ZW
25900 /* Two short opcodes. */
25901 add_unwind_opcode (0x3f, 1);
25902 op = (offset - 0x104) >> 2;
25903 add_unwind_opcode (op, 1);
bfae80f2 25904 }
c19d1205
ZW
25905 else if (offset > 0)
25906 {
25907 /* Short opcode. */
25908 op = (offset - 4) >> 2;
25909 add_unwind_opcode (op, 1);
25910 }
25911 else if (offset < 0)
bfae80f2 25912 {
c19d1205
ZW
25913 offset = -offset;
25914 while (offset > 0x100)
bfae80f2 25915 {
c19d1205
ZW
25916 add_unwind_opcode (0x7f, 1);
25917 offset -= 0x100;
bfae80f2 25918 }
c19d1205
ZW
25919 op = ((offset - 4) >> 2) | 0x40;
25920 add_unwind_opcode (op, 1);
bfae80f2 25921 }
bfae80f2
RE
25922}
25923
c19d1205 25924/* Finish the list of unwind opcodes for this function. */
0198d5e6 25925
c19d1205
ZW
25926static void
25927finish_unwind_opcodes (void)
bfae80f2 25928{
c19d1205 25929 valueT op;
bfae80f2 25930
c19d1205 25931 if (unwind.fp_used)
bfae80f2 25932 {
708587a4 25933 /* Adjust sp as necessary. */
c19d1205
ZW
25934 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25935 flush_pending_unwind ();
bfae80f2 25936
c19d1205
ZW
25937 /* After restoring sp from the frame pointer. */
25938 op = 0x90 | unwind.fp_reg;
25939 add_unwind_opcode (op, 1);
25940 }
25941 else
25942 flush_pending_unwind ();
bfae80f2
RE
25943}
25944
bfae80f2 25945
c19d1205
ZW
25946/* Start an exception table entry. If idx is nonzero this is an index table
25947 entry. */
bfae80f2
RE
25948
25949static void
c19d1205 25950start_unwind_section (const segT text_seg, int idx)
bfae80f2 25951{
c19d1205
ZW
25952 const char * text_name;
25953 const char * prefix;
25954 const char * prefix_once;
25955 const char * group_name;
c19d1205 25956 char * sec_name;
c19d1205
ZW
25957 int type;
25958 int flags;
25959 int linkonce;
bfae80f2 25960
c19d1205 25961 if (idx)
bfae80f2 25962 {
c19d1205
ZW
25963 prefix = ELF_STRING_ARM_unwind;
25964 prefix_once = ELF_STRING_ARM_unwind_once;
25965 type = SHT_ARM_EXIDX;
bfae80f2 25966 }
c19d1205 25967 else
bfae80f2 25968 {
c19d1205
ZW
25969 prefix = ELF_STRING_ARM_unwind_info;
25970 prefix_once = ELF_STRING_ARM_unwind_info_once;
25971 type = SHT_PROGBITS;
bfae80f2
RE
25972 }
25973
c19d1205
ZW
25974 text_name = segment_name (text_seg);
25975 if (streq (text_name, ".text"))
25976 text_name = "";
25977
25978 if (strncmp (text_name, ".gnu.linkonce.t.",
25979 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 25980 {
c19d1205
ZW
25981 prefix = prefix_once;
25982 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
25983 }
25984
29a2809e 25985 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 25986
c19d1205
ZW
25987 flags = SHF_ALLOC;
25988 linkonce = 0;
25989 group_name = 0;
bfae80f2 25990
c19d1205
ZW
25991 /* Handle COMDAT group. */
25992 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 25993 {
c19d1205
ZW
25994 group_name = elf_group_name (text_seg);
25995 if (group_name == NULL)
25996 {
bd3ba5d1 25997 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
25998 segment_name (text_seg));
25999 ignore_rest_of_line ();
26000 return;
26001 }
26002 flags |= SHF_GROUP;
26003 linkonce = 1;
bfae80f2
RE
26004 }
26005
a91e1603
L
26006 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26007 linkonce, 0);
bfae80f2 26008
5f4273c7 26009 /* Set the section link for index tables. */
c19d1205
ZW
26010 if (idx)
26011 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
26012}
26013
bfae80f2 26014
c19d1205
ZW
26015/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26016 personality routine data. Returns zero, or the index table value for
cad0da33 26017 an inline entry. */
c19d1205
ZW
26018
26019static valueT
26020create_unwind_entry (int have_data)
bfae80f2 26021{
c19d1205
ZW
26022 int size;
26023 addressT where;
26024 char *ptr;
26025 /* The current word of data. */
26026 valueT data;
26027 /* The number of bytes left in this word. */
26028 int n;
bfae80f2 26029
c19d1205 26030 finish_unwind_opcodes ();
bfae80f2 26031
c19d1205
ZW
26032 /* Remember the current text section. */
26033 unwind.saved_seg = now_seg;
26034 unwind.saved_subseg = now_subseg;
bfae80f2 26035
c19d1205 26036 start_unwind_section (now_seg, 0);
bfae80f2 26037
c19d1205 26038 if (unwind.personality_routine == NULL)
bfae80f2 26039 {
c19d1205
ZW
26040 if (unwind.personality_index == -2)
26041 {
26042 if (have_data)
5f4273c7 26043 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
26044 return 1; /* EXIDX_CANTUNWIND. */
26045 }
bfae80f2 26046
c19d1205
ZW
26047 /* Use a default personality routine if none is specified. */
26048 if (unwind.personality_index == -1)
26049 {
26050 if (unwind.opcode_count > 3)
26051 unwind.personality_index = 1;
26052 else
26053 unwind.personality_index = 0;
26054 }
bfae80f2 26055
c19d1205
ZW
26056 /* Space for the personality routine entry. */
26057 if (unwind.personality_index == 0)
26058 {
26059 if (unwind.opcode_count > 3)
26060 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 26061
c19d1205
ZW
26062 if (!have_data)
26063 {
26064 /* All the data is inline in the index table. */
26065 data = 0x80;
26066 n = 3;
26067 while (unwind.opcode_count > 0)
26068 {
26069 unwind.opcode_count--;
26070 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26071 n--;
26072 }
bfae80f2 26073
c19d1205
ZW
26074 /* Pad with "finish" opcodes. */
26075 while (n--)
26076 data = (data << 8) | 0xb0;
bfae80f2 26077
c19d1205
ZW
26078 return data;
26079 }
26080 size = 0;
26081 }
26082 else
26083 /* We get two opcodes "free" in the first word. */
26084 size = unwind.opcode_count - 2;
26085 }
26086 else
5011093d 26087 {
cad0da33
NC
26088 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26089 if (unwind.personality_index != -1)
26090 {
26091 as_bad (_("attempt to recreate an unwind entry"));
26092 return 1;
26093 }
5011093d
NC
26094
26095 /* An extra byte is required for the opcode count. */
26096 size = unwind.opcode_count + 1;
26097 }
bfae80f2 26098
c19d1205
ZW
26099 size = (size + 3) >> 2;
26100 if (size > 0xff)
26101 as_bad (_("too many unwind opcodes"));
bfae80f2 26102
c19d1205
ZW
26103 frag_align (2, 0, 0);
26104 record_alignment (now_seg, 2);
26105 unwind.table_entry = expr_build_dot ();
26106
26107 /* Allocate the table entry. */
26108 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
26109 /* PR 13449: Zero the table entries in case some of them are not used. */
26110 memset (ptr, 0, (size << 2) + 4);
c19d1205 26111 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 26112
c19d1205 26113 switch (unwind.personality_index)
bfae80f2 26114 {
c19d1205
ZW
26115 case -1:
26116 /* ??? Should this be a PLT generating relocation? */
26117 /* Custom personality routine. */
26118 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26119 BFD_RELOC_ARM_PREL31);
bfae80f2 26120
c19d1205
ZW
26121 where += 4;
26122 ptr += 4;
bfae80f2 26123
c19d1205 26124 /* Set the first byte to the number of additional words. */
5011093d 26125 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
26126 n = 3;
26127 break;
bfae80f2 26128
c19d1205
ZW
26129 /* ABI defined personality routines. */
26130 case 0:
26131 /* Three opcodes bytes are packed into the first word. */
26132 data = 0x80;
26133 n = 3;
26134 break;
bfae80f2 26135
c19d1205
ZW
26136 case 1:
26137 case 2:
26138 /* The size and first two opcode bytes go in the first word. */
26139 data = ((0x80 + unwind.personality_index) << 8) | size;
26140 n = 2;
26141 break;
bfae80f2 26142
c19d1205
ZW
26143 default:
26144 /* Should never happen. */
26145 abort ();
26146 }
bfae80f2 26147
c19d1205
ZW
26148 /* Pack the opcodes into words (MSB first), reversing the list at the same
26149 time. */
26150 while (unwind.opcode_count > 0)
26151 {
26152 if (n == 0)
26153 {
26154 md_number_to_chars (ptr, data, 4);
26155 ptr += 4;
26156 n = 4;
26157 data = 0;
26158 }
26159 unwind.opcode_count--;
26160 n--;
26161 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26162 }
26163
26164 /* Finish off the last word. */
26165 if (n < 4)
26166 {
26167 /* Pad with "finish" opcodes. */
26168 while (n--)
26169 data = (data << 8) | 0xb0;
26170
26171 md_number_to_chars (ptr, data, 4);
26172 }
26173
26174 if (!have_data)
26175 {
26176 /* Add an empty descriptor if there is no user-specified data. */
26177 ptr = frag_more (4);
26178 md_number_to_chars (ptr, 0, 4);
26179 }
26180
26181 return 0;
bfae80f2
RE
26182}
26183
f0927246
NC
26184
26185/* Initialize the DWARF-2 unwind information for this procedure. */
26186
26187void
26188tc_arm_frame_initial_instructions (void)
26189{
26190 cfi_add_CFA_def_cfa (REG_SP, 0);
26191}
26192#endif /* OBJ_ELF */
26193
c19d1205
ZW
26194/* Convert REGNAME to a DWARF-2 register number. */
26195
26196int
1df69f4f 26197tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 26198{
1df69f4f 26199 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
26200 if (reg != FAIL)
26201 return reg;
c19d1205 26202
1f5afe1c
NC
26203 /* PR 16694: Allow VFP registers as well. */
26204 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26205 if (reg != FAIL)
26206 return 64 + reg;
c19d1205 26207
1f5afe1c
NC
26208 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26209 if (reg != FAIL)
26210 return reg + 256;
26211
0198d5e6 26212 return FAIL;
bfae80f2
RE
26213}
26214
f0927246 26215#ifdef TE_PE
c19d1205 26216void
f0927246 26217tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 26218{
91d6fa6a 26219 expressionS exp;
bfae80f2 26220
91d6fa6a
NC
26221 exp.X_op = O_secrel;
26222 exp.X_add_symbol = symbol;
26223 exp.X_add_number = 0;
26224 emit_expr (&exp, size);
f0927246
NC
26225}
26226#endif
bfae80f2 26227
c19d1205 26228/* MD interface: Symbol and relocation handling. */
bfae80f2 26229
2fc8bdac
ZW
26230/* Return the address within the segment that a PC-relative fixup is
26231 relative to. For ARM, PC-relative fixups applied to instructions
26232 are generally relative to the location of the fixup plus 8 bytes.
26233 Thumb branches are offset by 4, and Thumb loads relative to PC
26234 require special handling. */
bfae80f2 26235
c19d1205 26236long
2fc8bdac 26237md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 26238{
2fc8bdac
ZW
26239 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26240
26241 /* If this is pc-relative and we are going to emit a relocation
26242 then we just want to put out any pipeline compensation that the linker
53baae48
NC
26243 will need. Otherwise we want to use the calculated base.
26244 For WinCE we skip the bias for externals as well, since this
26245 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 26246 if (fixP->fx_pcrel
2fc8bdac 26247 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
26248 || (arm_force_relocation (fixP)
26249#ifdef TE_WINCE
26250 && !S_IS_EXTERNAL (fixP->fx_addsy)
26251#endif
26252 )))
2fc8bdac 26253 base = 0;
bfae80f2 26254
267bf995 26255
c19d1205 26256 switch (fixP->fx_r_type)
bfae80f2 26257 {
2fc8bdac
ZW
26258 /* PC relative addressing on the Thumb is slightly odd as the
26259 bottom two bits of the PC are forced to zero for the
26260 calculation. This happens *after* application of the
26261 pipeline offset. However, Thumb adrl already adjusts for
26262 this, so we need not do it again. */
c19d1205 26263 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 26264 return base & ~3;
c19d1205
ZW
26265
26266 case BFD_RELOC_ARM_THUMB_OFFSET:
26267 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 26268 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 26269 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 26270 return (base + 4) & ~3;
c19d1205 26271
2fc8bdac 26272 /* Thumb branches are simply offset by +4. */
e12437dc 26273 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
26274 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26275 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26276 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26277 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 26278 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 26279 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 26280 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 26281 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 26282 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 26283 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 26284 return base + 4;
bfae80f2 26285
267bf995 26286 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
26287 if (fixP->fx_addsy
26288 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26289 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 26290 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
26291 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26292 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
26293 return base + 4;
26294
00adf2d4
JB
26295 /* BLX is like branches above, but forces the low two bits of PC to
26296 zero. */
486499d0
CL
26297 case BFD_RELOC_THUMB_PCREL_BLX:
26298 if (fixP->fx_addsy
26299 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26300 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26301 && THUMB_IS_FUNC (fixP->fx_addsy)
26302 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26303 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
26304 return (base + 4) & ~3;
26305
2fc8bdac
ZW
26306 /* ARM mode branches are offset by +8. However, the Windows CE
26307 loader expects the relocation not to take this into account. */
267bf995 26308 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
26309 if (fixP->fx_addsy
26310 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26311 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26312 && ARM_IS_FUNC (fixP->fx_addsy)
26313 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26314 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26315 return base + 8;
267bf995 26316
486499d0
CL
26317 case BFD_RELOC_ARM_PCREL_CALL:
26318 if (fixP->fx_addsy
26319 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26320 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26321 && THUMB_IS_FUNC (fixP->fx_addsy)
26322 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26323 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26324 return base + 8;
267bf995 26325
2fc8bdac 26326 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 26327 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 26328 case BFD_RELOC_ARM_PLT32:
c19d1205 26329#ifdef TE_WINCE
5f4273c7 26330 /* When handling fixups immediately, because we have already
477330fc 26331 discovered the value of a symbol, or the address of the frag involved
53baae48 26332 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
26333 see fixup_segment() in write.c
26334 The S_IS_EXTERNAL test handles the case of global symbols.
26335 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
26336 if (fixP->fx_pcrel
26337 && fixP->fx_addsy != NULL
26338 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26339 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26340 return base + 8;
2fc8bdac 26341 return base;
c19d1205 26342#else
2fc8bdac 26343 return base + 8;
c19d1205 26344#endif
2fc8bdac 26345
267bf995 26346
2fc8bdac
ZW
26347 /* ARM mode loads relative to PC are also offset by +8. Unlike
26348 branches, the Windows CE loader *does* expect the relocation
26349 to take this into account. */
26350 case BFD_RELOC_ARM_OFFSET_IMM:
26351 case BFD_RELOC_ARM_OFFSET_IMM8:
26352 case BFD_RELOC_ARM_HWLITERAL:
26353 case BFD_RELOC_ARM_LITERAL:
26354 case BFD_RELOC_ARM_CP_OFF_IMM:
26355 return base + 8;
26356
26357
26358 /* Other PC-relative relocations are un-offset. */
26359 default:
26360 return base;
26361 }
bfae80f2
RE
26362}
26363
8b2d793c
NC
26364static bfd_boolean flag_warn_syms = TRUE;
26365
ae8714c2
NC
26366bfd_boolean
26367arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 26368{
8b2d793c
NC
26369 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26370 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26371 does mean that the resulting code might be very confusing to the reader.
26372 Also this warning can be triggered if the user omits an operand before
26373 an immediate address, eg:
26374
26375 LDR =foo
26376
26377 GAS treats this as an assignment of the value of the symbol foo to a
26378 symbol LDR, and so (without this code) it will not issue any kind of
26379 warning or error message.
26380
26381 Note - ARM instructions are case-insensitive but the strings in the hash
26382 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
26383 lower case too. */
26384 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
26385 {
26386 char * nbuf = strdup (name);
26387 char * p;
26388
26389 for (p = nbuf; *p; p++)
26390 *p = TOLOWER (*p);
26391 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26392 {
26393 static struct hash_control * already_warned = NULL;
26394
26395 if (already_warned == NULL)
26396 already_warned = hash_new ();
26397 /* Only warn about the symbol once. To keep the code
26398 simple we let hash_insert do the lookup for us. */
3076e594 26399 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 26400 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
26401 }
26402 else
26403 free (nbuf);
26404 }
3739860c 26405
ae8714c2
NC
26406 return FALSE;
26407}
26408
26409/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26410 Otherwise we have no need to default values of symbols. */
26411
26412symbolS *
26413md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26414{
26415#ifdef OBJ_ELF
26416 if (name[0] == '_' && name[1] == 'G'
26417 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26418 {
26419 if (!GOT_symbol)
26420 {
26421 if (symbol_find (name))
26422 as_bad (_("GOT already in the symbol table"));
26423
26424 GOT_symbol = symbol_new (name, undefined_section,
26425 (valueT) 0, & zero_address_frag);
26426 }
26427
26428 return GOT_symbol;
26429 }
26430#endif
26431
c921be7d 26432 return NULL;
bfae80f2
RE
26433}
26434
55cf6793 26435/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
26436 computed as two separate immediate values, added together. We
26437 already know that this value cannot be computed by just one ARM
26438 instruction. */
26439
26440static unsigned int
26441validate_immediate_twopart (unsigned int val,
26442 unsigned int * highpart)
bfae80f2 26443{
c19d1205
ZW
26444 unsigned int a;
26445 unsigned int i;
bfae80f2 26446
c19d1205
ZW
26447 for (i = 0; i < 32; i += 2)
26448 if (((a = rotate_left (val, i)) & 0xff) != 0)
26449 {
26450 if (a & 0xff00)
26451 {
26452 if (a & ~ 0xffff)
26453 continue;
26454 * highpart = (a >> 8) | ((i + 24) << 7);
26455 }
26456 else if (a & 0xff0000)
26457 {
26458 if (a & 0xff000000)
26459 continue;
26460 * highpart = (a >> 16) | ((i + 16) << 7);
26461 }
26462 else
26463 {
9c2799c2 26464 gas_assert (a & 0xff000000);
c19d1205
ZW
26465 * highpart = (a >> 24) | ((i + 8) << 7);
26466 }
bfae80f2 26467
c19d1205
ZW
26468 return (a & 0xff) | (i << 7);
26469 }
bfae80f2 26470
c19d1205 26471 return FAIL;
bfae80f2
RE
26472}
26473
c19d1205
ZW
26474static int
26475validate_offset_imm (unsigned int val, int hwse)
26476{
26477 if ((hwse && val > 255) || val > 4095)
26478 return FAIL;
26479 return val;
26480}
bfae80f2 26481
55cf6793 26482/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
26483 negative immediate constant by altering the instruction. A bit of
26484 a hack really.
26485 MOV <-> MVN
26486 AND <-> BIC
26487 ADC <-> SBC
26488 by inverting the second operand, and
26489 ADD <-> SUB
26490 CMP <-> CMN
26491 by negating the second operand. */
bfae80f2 26492
c19d1205
ZW
26493static int
26494negate_data_op (unsigned long * instruction,
26495 unsigned long value)
bfae80f2 26496{
c19d1205
ZW
26497 int op, new_inst;
26498 unsigned long negated, inverted;
bfae80f2 26499
c19d1205
ZW
26500 negated = encode_arm_immediate (-value);
26501 inverted = encode_arm_immediate (~value);
bfae80f2 26502
c19d1205
ZW
26503 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26504 switch (op)
bfae80f2 26505 {
c19d1205
ZW
26506 /* First negates. */
26507 case OPCODE_SUB: /* ADD <-> SUB */
26508 new_inst = OPCODE_ADD;
26509 value = negated;
26510 break;
bfae80f2 26511
c19d1205
ZW
26512 case OPCODE_ADD:
26513 new_inst = OPCODE_SUB;
26514 value = negated;
26515 break;
bfae80f2 26516
c19d1205
ZW
26517 case OPCODE_CMP: /* CMP <-> CMN */
26518 new_inst = OPCODE_CMN;
26519 value = negated;
26520 break;
bfae80f2 26521
c19d1205
ZW
26522 case OPCODE_CMN:
26523 new_inst = OPCODE_CMP;
26524 value = negated;
26525 break;
bfae80f2 26526
c19d1205
ZW
26527 /* Now Inverted ops. */
26528 case OPCODE_MOV: /* MOV <-> MVN */
26529 new_inst = OPCODE_MVN;
26530 value = inverted;
26531 break;
bfae80f2 26532
c19d1205
ZW
26533 case OPCODE_MVN:
26534 new_inst = OPCODE_MOV;
26535 value = inverted;
26536 break;
bfae80f2 26537
c19d1205
ZW
26538 case OPCODE_AND: /* AND <-> BIC */
26539 new_inst = OPCODE_BIC;
26540 value = inverted;
26541 break;
bfae80f2 26542
c19d1205
ZW
26543 case OPCODE_BIC:
26544 new_inst = OPCODE_AND;
26545 value = inverted;
26546 break;
bfae80f2 26547
c19d1205
ZW
26548 case OPCODE_ADC: /* ADC <-> SBC */
26549 new_inst = OPCODE_SBC;
26550 value = inverted;
26551 break;
bfae80f2 26552
c19d1205
ZW
26553 case OPCODE_SBC:
26554 new_inst = OPCODE_ADC;
26555 value = inverted;
26556 break;
bfae80f2 26557
c19d1205
ZW
26558 /* We cannot do anything. */
26559 default:
26560 return FAIL;
b99bd4ef
NC
26561 }
26562
c19d1205
ZW
26563 if (value == (unsigned) FAIL)
26564 return FAIL;
26565
26566 *instruction &= OPCODE_MASK;
26567 *instruction |= new_inst << DATA_OP_SHIFT;
26568 return value;
b99bd4ef
NC
26569}
26570
ef8d22e6
PB
26571/* Like negate_data_op, but for Thumb-2. */
26572
26573static unsigned int
16dd5e42 26574thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
26575{
26576 int op, new_inst;
26577 int rd;
16dd5e42 26578 unsigned int negated, inverted;
ef8d22e6
PB
26579
26580 negated = encode_thumb32_immediate (-value);
26581 inverted = encode_thumb32_immediate (~value);
26582
26583 rd = (*instruction >> 8) & 0xf;
26584 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26585 switch (op)
26586 {
26587 /* ADD <-> SUB. Includes CMP <-> CMN. */
26588 case T2_OPCODE_SUB:
26589 new_inst = T2_OPCODE_ADD;
26590 value = negated;
26591 break;
26592
26593 case T2_OPCODE_ADD:
26594 new_inst = T2_OPCODE_SUB;
26595 value = negated;
26596 break;
26597
26598 /* ORR <-> ORN. Includes MOV <-> MVN. */
26599 case T2_OPCODE_ORR:
26600 new_inst = T2_OPCODE_ORN;
26601 value = inverted;
26602 break;
26603
26604 case T2_OPCODE_ORN:
26605 new_inst = T2_OPCODE_ORR;
26606 value = inverted;
26607 break;
26608
26609 /* AND <-> BIC. TST has no inverted equivalent. */
26610 case T2_OPCODE_AND:
26611 new_inst = T2_OPCODE_BIC;
26612 if (rd == 15)
26613 value = FAIL;
26614 else
26615 value = inverted;
26616 break;
26617
26618 case T2_OPCODE_BIC:
26619 new_inst = T2_OPCODE_AND;
26620 value = inverted;
26621 break;
26622
26623 /* ADC <-> SBC */
26624 case T2_OPCODE_ADC:
26625 new_inst = T2_OPCODE_SBC;
26626 value = inverted;
26627 break;
26628
26629 case T2_OPCODE_SBC:
26630 new_inst = T2_OPCODE_ADC;
26631 value = inverted;
26632 break;
26633
26634 /* We cannot do anything. */
26635 default:
26636 return FAIL;
26637 }
26638
16dd5e42 26639 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26640 return FAIL;
26641
26642 *instruction &= T2_OPCODE_MASK;
26643 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26644 return value;
26645}
26646
8f06b2d8 26647/* Read a 32-bit thumb instruction from buf. */
0198d5e6 26648
8f06b2d8
PB
26649static unsigned long
26650get_thumb32_insn (char * buf)
26651{
26652 unsigned long insn;
26653 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26654 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26655
26656 return insn;
26657}
26658
a8bc6c78
PB
26659/* We usually want to set the low bit on the address of thumb function
26660 symbols. In particular .word foo - . should have the low bit set.
26661 Generic code tries to fold the difference of two symbols to
26662 a constant. Prevent this and force a relocation when the first symbols
26663 is a thumb function. */
c921be7d
NC
26664
26665bfd_boolean
a8bc6c78
PB
26666arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26667{
26668 if (op == O_subtract
26669 && l->X_op == O_symbol
26670 && r->X_op == O_symbol
26671 && THUMB_IS_FUNC (l->X_add_symbol))
26672 {
26673 l->X_op = O_subtract;
26674 l->X_op_symbol = r->X_add_symbol;
26675 l->X_add_number -= r->X_add_number;
c921be7d 26676 return TRUE;
a8bc6c78 26677 }
c921be7d 26678
a8bc6c78 26679 /* Process as normal. */
c921be7d 26680 return FALSE;
a8bc6c78
PB
26681}
26682
4a42ebbc
RR
26683/* Encode Thumb2 unconditional branches and calls. The encoding
26684 for the 2 are identical for the immediate values. */
26685
26686static void
26687encode_thumb2_b_bl_offset (char * buf, offsetT value)
26688{
26689#define T2I1I2MASK ((1 << 13) | (1 << 11))
26690 offsetT newval;
26691 offsetT newval2;
26692 addressT S, I1, I2, lo, hi;
26693
26694 S = (value >> 24) & 0x01;
26695 I1 = (value >> 23) & 0x01;
26696 I2 = (value >> 22) & 0x01;
26697 hi = (value >> 12) & 0x3ff;
fa94de6b 26698 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
26699 newval = md_chars_to_number (buf, THUMB_SIZE);
26700 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26701 newval |= (S << 10) | hi;
26702 newval2 &= ~T2I1I2MASK;
26703 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26704 md_number_to_chars (buf, newval, THUMB_SIZE);
26705 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26706}
26707
c19d1205 26708void
55cf6793 26709md_apply_fix (fixS * fixP,
c19d1205
ZW
26710 valueT * valP,
26711 segT seg)
26712{
26713 offsetT value = * valP;
26714 offsetT newval;
26715 unsigned int newimm;
26716 unsigned long temp;
26717 int sign;
26718 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 26719
9c2799c2 26720 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 26721
c19d1205 26722 /* Note whether this will delete the relocation. */
4962c51a 26723
c19d1205
ZW
26724 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26725 fixP->fx_done = 1;
b99bd4ef 26726
adbaf948 26727 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 26728 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
26729 for emit_reloc. */
26730 value &= 0xffffffff;
26731 value ^= 0x80000000;
5f4273c7 26732 value -= 0x80000000;
adbaf948
ZW
26733
26734 *valP = value;
c19d1205 26735 fixP->fx_addnumber = value;
b99bd4ef 26736
adbaf948
ZW
26737 /* Same treatment for fixP->fx_offset. */
26738 fixP->fx_offset &= 0xffffffff;
26739 fixP->fx_offset ^= 0x80000000;
26740 fixP->fx_offset -= 0x80000000;
26741
c19d1205 26742 switch (fixP->fx_r_type)
b99bd4ef 26743 {
c19d1205
ZW
26744 case BFD_RELOC_NONE:
26745 /* This will need to go in the object file. */
26746 fixP->fx_done = 0;
26747 break;
b99bd4ef 26748
c19d1205
ZW
26749 case BFD_RELOC_ARM_IMMEDIATE:
26750 /* We claim that this fixup has been processed here,
26751 even if in fact we generate an error because we do
26752 not have a reloc for it, so tc_gen_reloc will reject it. */
26753 fixP->fx_done = 1;
b99bd4ef 26754
77db8e2e 26755 if (fixP->fx_addsy)
b99bd4ef 26756 {
77db8e2e 26757 const char *msg = 0;
b99bd4ef 26758
77db8e2e
NC
26759 if (! S_IS_DEFINED (fixP->fx_addsy))
26760 msg = _("undefined symbol %s used as an immediate value");
26761 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26762 msg = _("symbol %s is in a different section");
26763 else if (S_IS_WEAK (fixP->fx_addsy))
26764 msg = _("symbol %s is weak and may be overridden later");
26765
26766 if (msg)
26767 {
26768 as_bad_where (fixP->fx_file, fixP->fx_line,
26769 msg, S_GET_NAME (fixP->fx_addsy));
26770 break;
26771 }
42e5fcbf
AS
26772 }
26773
c19d1205
ZW
26774 temp = md_chars_to_number (buf, INSN_SIZE);
26775
5e73442d
SL
26776 /* If the offset is negative, we should use encoding A2 for ADR. */
26777 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26778 newimm = negate_data_op (&temp, value);
26779 else
26780 {
26781 newimm = encode_arm_immediate (value);
26782
26783 /* If the instruction will fail, see if we can fix things up by
26784 changing the opcode. */
26785 if (newimm == (unsigned int) FAIL)
26786 newimm = negate_data_op (&temp, value);
bada4342
JW
26787 /* MOV accepts both ARM modified immediate (A1 encoding) and
26788 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26789 When disassembling, MOV is preferred when there is no encoding
26790 overlap. */
26791 if (newimm == (unsigned int) FAIL
26792 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26793 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26794 && !((temp >> SBIT_SHIFT) & 0x1)
26795 && value >= 0 && value <= 0xffff)
26796 {
26797 /* Clear bits[23:20] to change encoding from A1 to A2. */
26798 temp &= 0xff0fffff;
26799 /* Encoding high 4bits imm. Code below will encode the remaining
26800 low 12bits. */
26801 temp |= (value & 0x0000f000) << 4;
26802 newimm = value & 0x00000fff;
26803 }
5e73442d
SL
26804 }
26805
26806 if (newimm == (unsigned int) FAIL)
b99bd4ef 26807 {
c19d1205
ZW
26808 as_bad_where (fixP->fx_file, fixP->fx_line,
26809 _("invalid constant (%lx) after fixup"),
26810 (unsigned long) value);
26811 break;
b99bd4ef 26812 }
b99bd4ef 26813
c19d1205
ZW
26814 newimm |= (temp & 0xfffff000);
26815 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26816 break;
b99bd4ef 26817
c19d1205
ZW
26818 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26819 {
26820 unsigned int highpart = 0;
26821 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26822
77db8e2e 26823 if (fixP->fx_addsy)
42e5fcbf 26824 {
77db8e2e 26825 const char *msg = 0;
42e5fcbf 26826
77db8e2e
NC
26827 if (! S_IS_DEFINED (fixP->fx_addsy))
26828 msg = _("undefined symbol %s used as an immediate value");
26829 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26830 msg = _("symbol %s is in a different section");
26831 else if (S_IS_WEAK (fixP->fx_addsy))
26832 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26833
77db8e2e
NC
26834 if (msg)
26835 {
26836 as_bad_where (fixP->fx_file, fixP->fx_line,
26837 msg, S_GET_NAME (fixP->fx_addsy));
26838 break;
26839 }
26840 }
fa94de6b 26841
c19d1205
ZW
26842 newimm = encode_arm_immediate (value);
26843 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26844
c19d1205
ZW
26845 /* If the instruction will fail, see if we can fix things up by
26846 changing the opcode. */
26847 if (newimm == (unsigned int) FAIL
26848 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26849 {
26850 /* No ? OK - try using two ADD instructions to generate
26851 the value. */
26852 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26853
c19d1205
ZW
26854 /* Yes - then make sure that the second instruction is
26855 also an add. */
26856 if (newimm != (unsigned int) FAIL)
26857 newinsn = temp;
26858 /* Still No ? Try using a negated value. */
26859 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26860 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26861 /* Otherwise - give up. */
26862 else
26863 {
26864 as_bad_where (fixP->fx_file, fixP->fx_line,
26865 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26866 (long) value);
26867 break;
26868 }
b99bd4ef 26869
c19d1205
ZW
26870 /* Replace the first operand in the 2nd instruction (which
26871 is the PC) with the destination register. We have
26872 already added in the PC in the first instruction and we
26873 do not want to do it again. */
26874 newinsn &= ~ 0xf0000;
26875 newinsn |= ((newinsn & 0x0f000) << 4);
26876 }
b99bd4ef 26877
c19d1205
ZW
26878 newimm |= (temp & 0xfffff000);
26879 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 26880
c19d1205
ZW
26881 highpart |= (newinsn & 0xfffff000);
26882 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26883 }
26884 break;
b99bd4ef 26885
c19d1205 26886 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
26887 if (!fixP->fx_done && seg->use_rela_p)
26888 value = 0;
1a0670f3 26889 /* Fall through. */
00a97672 26890
c19d1205 26891 case BFD_RELOC_ARM_LITERAL:
26d97720 26892 sign = value > 0;
b99bd4ef 26893
c19d1205
ZW
26894 if (value < 0)
26895 value = - value;
b99bd4ef 26896
c19d1205 26897 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 26898 {
c19d1205
ZW
26899 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26900 as_bad_where (fixP->fx_file, fixP->fx_line,
26901 _("invalid literal constant: pool needs to be closer"));
26902 else
26903 as_bad_where (fixP->fx_file, fixP->fx_line,
26904 _("bad immediate value for offset (%ld)"),
26905 (long) value);
26906 break;
f03698e6
RE
26907 }
26908
c19d1205 26909 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26910 if (value == 0)
26911 newval &= 0xfffff000;
26912 else
26913 {
26914 newval &= 0xff7ff000;
26915 newval |= value | (sign ? INDEX_UP : 0);
26916 }
c19d1205
ZW
26917 md_number_to_chars (buf, newval, INSN_SIZE);
26918 break;
b99bd4ef 26919
c19d1205
ZW
26920 case BFD_RELOC_ARM_OFFSET_IMM8:
26921 case BFD_RELOC_ARM_HWLITERAL:
26d97720 26922 sign = value > 0;
b99bd4ef 26923
c19d1205
ZW
26924 if (value < 0)
26925 value = - value;
b99bd4ef 26926
c19d1205 26927 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 26928 {
c19d1205
ZW
26929 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26930 as_bad_where (fixP->fx_file, fixP->fx_line,
26931 _("invalid literal constant: pool needs to be closer"));
26932 else
427d0db6
RM
26933 as_bad_where (fixP->fx_file, fixP->fx_line,
26934 _("bad immediate value for 8-bit offset (%ld)"),
26935 (long) value);
c19d1205 26936 break;
b99bd4ef
NC
26937 }
26938
c19d1205 26939 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26940 if (value == 0)
26941 newval &= 0xfffff0f0;
26942 else
26943 {
26944 newval &= 0xff7ff0f0;
26945 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26946 }
c19d1205
ZW
26947 md_number_to_chars (buf, newval, INSN_SIZE);
26948 break;
b99bd4ef 26949
c19d1205
ZW
26950 case BFD_RELOC_ARM_T32_OFFSET_U8:
26951 if (value < 0 || value > 1020 || value % 4 != 0)
26952 as_bad_where (fixP->fx_file, fixP->fx_line,
26953 _("bad immediate value for offset (%ld)"), (long) value);
26954 value /= 4;
b99bd4ef 26955
c19d1205 26956 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
26957 newval |= value;
26958 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26959 break;
b99bd4ef 26960
c19d1205
ZW
26961 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26962 /* This is a complicated relocation used for all varieties of Thumb32
26963 load/store instruction with immediate offset:
26964
26965 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 26966 *4, optional writeback(W)
c19d1205
ZW
26967 (doubleword load/store)
26968
26969 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26970 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26971 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26972 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26973 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26974
26975 Uppercase letters indicate bits that are already encoded at
26976 this point. Lowercase letters are our problem. For the
26977 second block of instructions, the secondary opcode nybble
26978 (bits 8..11) is present, and bit 23 is zero, even if this is
26979 a PC-relative operation. */
26980 newval = md_chars_to_number (buf, THUMB_SIZE);
26981 newval <<= 16;
26982 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 26983
c19d1205 26984 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 26985 {
c19d1205
ZW
26986 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26987 if (value >= 0)
26988 newval |= (1 << 23);
26989 else
26990 value = -value;
26991 if (value % 4 != 0)
26992 {
26993 as_bad_where (fixP->fx_file, fixP->fx_line,
26994 _("offset not a multiple of 4"));
26995 break;
26996 }
26997 value /= 4;
216d22bc 26998 if (value > 0xff)
c19d1205
ZW
26999 {
27000 as_bad_where (fixP->fx_file, fixP->fx_line,
27001 _("offset out of range"));
27002 break;
27003 }
27004 newval &= ~0xff;
b99bd4ef 27005 }
c19d1205 27006 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 27007 {
c19d1205
ZW
27008 /* PC-relative, 12-bit offset. */
27009 if (value >= 0)
27010 newval |= (1 << 23);
27011 else
27012 value = -value;
216d22bc 27013 if (value > 0xfff)
c19d1205
ZW
27014 {
27015 as_bad_where (fixP->fx_file, fixP->fx_line,
27016 _("offset out of range"));
27017 break;
27018 }
27019 newval &= ~0xfff;
b99bd4ef 27020 }
c19d1205 27021 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 27022 {
c19d1205
ZW
27023 /* Writeback: 8-bit, +/- offset. */
27024 if (value >= 0)
27025 newval |= (1 << 9);
27026 else
27027 value = -value;
216d22bc 27028 if (value > 0xff)
c19d1205
ZW
27029 {
27030 as_bad_where (fixP->fx_file, fixP->fx_line,
27031 _("offset out of range"));
27032 break;
27033 }
27034 newval &= ~0xff;
b99bd4ef 27035 }
c19d1205 27036 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 27037 {
c19d1205 27038 /* T-instruction: positive 8-bit offset. */
216d22bc 27039 if (value < 0 || value > 0xff)
b99bd4ef 27040 {
c19d1205
ZW
27041 as_bad_where (fixP->fx_file, fixP->fx_line,
27042 _("offset out of range"));
27043 break;
b99bd4ef 27044 }
c19d1205
ZW
27045 newval &= ~0xff;
27046 newval |= value;
b99bd4ef
NC
27047 }
27048 else
b99bd4ef 27049 {
c19d1205
ZW
27050 /* Positive 12-bit or negative 8-bit offset. */
27051 int limit;
27052 if (value >= 0)
b99bd4ef 27053 {
c19d1205
ZW
27054 newval |= (1 << 23);
27055 limit = 0xfff;
27056 }
27057 else
27058 {
27059 value = -value;
27060 limit = 0xff;
27061 }
27062 if (value > limit)
27063 {
27064 as_bad_where (fixP->fx_file, fixP->fx_line,
27065 _("offset out of range"));
27066 break;
b99bd4ef 27067 }
c19d1205 27068 newval &= ~limit;
b99bd4ef 27069 }
b99bd4ef 27070
c19d1205
ZW
27071 newval |= value;
27072 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27073 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27074 break;
404ff6b5 27075
c19d1205
ZW
27076 case BFD_RELOC_ARM_SHIFT_IMM:
27077 newval = md_chars_to_number (buf, INSN_SIZE);
27078 if (((unsigned long) value) > 32
27079 || (value == 32
27080 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27081 {
27082 as_bad_where (fixP->fx_file, fixP->fx_line,
27083 _("shift expression is too large"));
27084 break;
27085 }
404ff6b5 27086
c19d1205
ZW
27087 if (value == 0)
27088 /* Shifts of zero must be done as lsl. */
27089 newval &= ~0x60;
27090 else if (value == 32)
27091 value = 0;
27092 newval &= 0xfffff07f;
27093 newval |= (value & 0x1f) << 7;
27094 md_number_to_chars (buf, newval, INSN_SIZE);
27095 break;
404ff6b5 27096
c19d1205 27097 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 27098 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 27099 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 27100 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
27101 /* We claim that this fixup has been processed here,
27102 even if in fact we generate an error because we do
27103 not have a reloc for it, so tc_gen_reloc will reject it. */
27104 fixP->fx_done = 1;
404ff6b5 27105
c19d1205
ZW
27106 if (fixP->fx_addsy
27107 && ! S_IS_DEFINED (fixP->fx_addsy))
27108 {
27109 as_bad_where (fixP->fx_file, fixP->fx_line,
27110 _("undefined symbol %s used as an immediate value"),
27111 S_GET_NAME (fixP->fx_addsy));
27112 break;
27113 }
404ff6b5 27114
c19d1205
ZW
27115 newval = md_chars_to_number (buf, THUMB_SIZE);
27116 newval <<= 16;
27117 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 27118
16805f35 27119 newimm = FAIL;
bada4342
JW
27120 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27121 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27122 Thumb2 modified immediate encoding (T2). */
27123 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 27124 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
27125 {
27126 newimm = encode_thumb32_immediate (value);
27127 if (newimm == (unsigned int) FAIL)
27128 newimm = thumb32_negate_data_op (&newval, value);
27129 }
bada4342 27130 if (newimm == (unsigned int) FAIL)
92e90b6e 27131 {
bada4342 27132 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 27133 {
bada4342
JW
27134 /* Turn add/sum into addw/subw. */
27135 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27136 newval = (newval & 0xfeffffff) | 0x02000000;
27137 /* No flat 12-bit imm encoding for addsw/subsw. */
27138 if ((newval & 0x00100000) == 0)
40f246e3 27139 {
bada4342
JW
27140 /* 12 bit immediate for addw/subw. */
27141 if (value < 0)
27142 {
27143 value = -value;
27144 newval ^= 0x00a00000;
27145 }
27146 if (value > 0xfff)
27147 newimm = (unsigned int) FAIL;
27148 else
27149 newimm = value;
27150 }
27151 }
27152 else
27153 {
27154 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27155 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27156 disassembling, MOV is preferred when there is no encoding
db7bf105 27157 overlap. */
bada4342 27158 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
27159 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27160 but with the Rn field [19:16] set to 1111. */
27161 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
27162 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27163 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 27164 && value >= 0 && value <= 0xffff)
bada4342
JW
27165 {
27166 /* Toggle bit[25] to change encoding from T2 to T3. */
27167 newval ^= 1 << 25;
27168 /* Clear bits[19:16]. */
27169 newval &= 0xfff0ffff;
27170 /* Encoding high 4bits imm. Code below will encode the
27171 remaining low 12bits. */
27172 newval |= (value & 0x0000f000) << 4;
27173 newimm = value & 0x00000fff;
40f246e3 27174 }
e9f89963 27175 }
92e90b6e 27176 }
cc8a6dd0 27177
c19d1205 27178 if (newimm == (unsigned int)FAIL)
3631a3c8 27179 {
c19d1205
ZW
27180 as_bad_where (fixP->fx_file, fixP->fx_line,
27181 _("invalid constant (%lx) after fixup"),
27182 (unsigned long) value);
27183 break;
3631a3c8
NC
27184 }
27185
c19d1205
ZW
27186 newval |= (newimm & 0x800) << 15;
27187 newval |= (newimm & 0x700) << 4;
27188 newval |= (newimm & 0x0ff);
cc8a6dd0 27189
c19d1205
ZW
27190 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27191 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27192 break;
a737bd4d 27193
3eb17e6b 27194 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
27195 if (((unsigned long) value) > 0xffff)
27196 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 27197 _("invalid smc expression"));
2fc8bdac 27198 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27199 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27200 md_number_to_chars (buf, newval, INSN_SIZE);
27201 break;
a737bd4d 27202
90ec0d68
MGD
27203 case BFD_RELOC_ARM_HVC:
27204 if (((unsigned long) value) > 0xffff)
27205 as_bad_where (fixP->fx_file, fixP->fx_line,
27206 _("invalid hvc expression"));
27207 newval = md_chars_to_number (buf, INSN_SIZE);
27208 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27209 md_number_to_chars (buf, newval, INSN_SIZE);
27210 break;
27211
c19d1205 27212 case BFD_RELOC_ARM_SWI:
adbaf948 27213 if (fixP->tc_fix_data != 0)
c19d1205
ZW
27214 {
27215 if (((unsigned long) value) > 0xff)
27216 as_bad_where (fixP->fx_file, fixP->fx_line,
27217 _("invalid swi expression"));
2fc8bdac 27218 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
27219 newval |= value;
27220 md_number_to_chars (buf, newval, THUMB_SIZE);
27221 }
27222 else
27223 {
27224 if (((unsigned long) value) > 0x00ffffff)
27225 as_bad_where (fixP->fx_file, fixP->fx_line,
27226 _("invalid swi expression"));
2fc8bdac 27227 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27228 newval |= value;
27229 md_number_to_chars (buf, newval, INSN_SIZE);
27230 }
27231 break;
a737bd4d 27232
c19d1205
ZW
27233 case BFD_RELOC_ARM_MULTI:
27234 if (((unsigned long) value) > 0xffff)
27235 as_bad_where (fixP->fx_file, fixP->fx_line,
27236 _("invalid expression in load/store multiple"));
27237 newval = value | md_chars_to_number (buf, INSN_SIZE);
27238 md_number_to_chars (buf, newval, INSN_SIZE);
27239 break;
a737bd4d 27240
c19d1205 27241#ifdef OBJ_ELF
39b41c9c 27242 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
27243
27244 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27245 && fixP->fx_addsy
34e77a92 27246 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27247 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27248 && THUMB_IS_FUNC (fixP->fx_addsy))
27249 /* Flip the bl to blx. This is a simple flip
27250 bit here because we generate PCREL_CALL for
27251 unconditional bls. */
27252 {
27253 newval = md_chars_to_number (buf, INSN_SIZE);
27254 newval = newval | 0x10000000;
27255 md_number_to_chars (buf, newval, INSN_SIZE);
27256 temp = 1;
27257 fixP->fx_done = 1;
27258 }
39b41c9c
PB
27259 else
27260 temp = 3;
27261 goto arm_branch_common;
27262
27263 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
27264 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27265 && fixP->fx_addsy
34e77a92 27266 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27267 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27268 && THUMB_IS_FUNC (fixP->fx_addsy))
27269 {
27270 /* This would map to a bl<cond>, b<cond>,
27271 b<always> to a Thumb function. We
27272 need to force a relocation for this particular
27273 case. */
27274 newval = md_chars_to_number (buf, INSN_SIZE);
27275 fixP->fx_done = 0;
27276 }
1a0670f3 27277 /* Fall through. */
267bf995 27278
2fc8bdac 27279 case BFD_RELOC_ARM_PLT32:
c19d1205 27280#endif
39b41c9c
PB
27281 case BFD_RELOC_ARM_PCREL_BRANCH:
27282 temp = 3;
27283 goto arm_branch_common;
a737bd4d 27284
39b41c9c 27285 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 27286
39b41c9c 27287 temp = 1;
267bf995
RR
27288 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27289 && fixP->fx_addsy
34e77a92 27290 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27291 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27292 && ARM_IS_FUNC (fixP->fx_addsy))
27293 {
27294 /* Flip the blx to a bl and warn. */
27295 const char *name = S_GET_NAME (fixP->fx_addsy);
27296 newval = 0xeb000000;
27297 as_warn_where (fixP->fx_file, fixP->fx_line,
27298 _("blx to '%s' an ARM ISA state function changed to bl"),
27299 name);
27300 md_number_to_chars (buf, newval, INSN_SIZE);
27301 temp = 3;
27302 fixP->fx_done = 1;
27303 }
27304
27305#ifdef OBJ_ELF
27306 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 27307 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
27308#endif
27309
39b41c9c 27310 arm_branch_common:
c19d1205 27311 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
27312 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27313 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 27314 also be clear. */
39b41c9c 27315 if (value & temp)
c19d1205 27316 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
27317 _("misaligned branch destination"));
27318 if ((value & (offsetT)0xfe000000) != (offsetT)0
27319 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 27320 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27321
2fc8bdac 27322 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27323 {
2fc8bdac
ZW
27324 newval = md_chars_to_number (buf, INSN_SIZE);
27325 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
27326 /* Set the H bit on BLX instructions. */
27327 if (temp == 1)
27328 {
27329 if (value & 2)
27330 newval |= 0x01000000;
27331 else
27332 newval &= ~0x01000000;
27333 }
2fc8bdac 27334 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 27335 }
c19d1205 27336 break;
a737bd4d 27337
25fe350b
MS
27338 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27339 /* CBZ can only branch forward. */
a737bd4d 27340
738755b0 27341 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
27342 (which, strictly speaking, are prohibited) will be turned into
27343 no-ops.
738755b0
MS
27344
27345 FIXME: It may be better to remove the instruction completely and
27346 perform relaxation. */
27347 if (value == -2)
2fc8bdac
ZW
27348 {
27349 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 27350 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
27351 md_number_to_chars (buf, newval, THUMB_SIZE);
27352 }
738755b0
MS
27353 else
27354 {
27355 if (value & ~0x7e)
08f10d51 27356 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 27357
477330fc 27358 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
27359 {
27360 newval = md_chars_to_number (buf, THUMB_SIZE);
27361 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27362 md_number_to_chars (buf, newval, THUMB_SIZE);
27363 }
27364 }
c19d1205 27365 break;
a737bd4d 27366
c19d1205 27367 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 27368 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 27369 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27370
2fc8bdac
ZW
27371 if (fixP->fx_done || !seg->use_rela_p)
27372 {
27373 newval = md_chars_to_number (buf, THUMB_SIZE);
27374 newval |= (value & 0x1ff) >> 1;
27375 md_number_to_chars (buf, newval, THUMB_SIZE);
27376 }
c19d1205 27377 break;
a737bd4d 27378
c19d1205 27379 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 27380 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 27381 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27382
2fc8bdac
ZW
27383 if (fixP->fx_done || !seg->use_rela_p)
27384 {
27385 newval = md_chars_to_number (buf, THUMB_SIZE);
27386 newval |= (value & 0xfff) >> 1;
27387 md_number_to_chars (buf, newval, THUMB_SIZE);
27388 }
c19d1205 27389 break;
a737bd4d 27390
c19d1205 27391 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
27392 if (fixP->fx_addsy
27393 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27394 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27395 && ARM_IS_FUNC (fixP->fx_addsy)
27396 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27397 {
27398 /* Force a relocation for a branch 20 bits wide. */
27399 fixP->fx_done = 0;
27400 }
08f10d51 27401 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
27402 as_bad_where (fixP->fx_file, fixP->fx_line,
27403 _("conditional branch out of range"));
404ff6b5 27404
2fc8bdac
ZW
27405 if (fixP->fx_done || !seg->use_rela_p)
27406 {
27407 offsetT newval2;
27408 addressT S, J1, J2, lo, hi;
404ff6b5 27409
2fc8bdac
ZW
27410 S = (value & 0x00100000) >> 20;
27411 J2 = (value & 0x00080000) >> 19;
27412 J1 = (value & 0x00040000) >> 18;
27413 hi = (value & 0x0003f000) >> 12;
27414 lo = (value & 0x00000ffe) >> 1;
6c43fab6 27415
2fc8bdac
ZW
27416 newval = md_chars_to_number (buf, THUMB_SIZE);
27417 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27418 newval |= (S << 10) | hi;
27419 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27420 md_number_to_chars (buf, newval, THUMB_SIZE);
27421 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27422 }
c19d1205 27423 break;
6c43fab6 27424
c19d1205 27425 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
27426 /* If there is a blx from a thumb state function to
27427 another thumb function flip this to a bl and warn
27428 about it. */
27429
27430 if (fixP->fx_addsy
34e77a92 27431 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27432 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27433 && THUMB_IS_FUNC (fixP->fx_addsy))
27434 {
27435 const char *name = S_GET_NAME (fixP->fx_addsy);
27436 as_warn_where (fixP->fx_file, fixP->fx_line,
27437 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27438 name);
27439 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27440 newval = newval | 0x1000;
27441 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27442 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27443 fixP->fx_done = 1;
27444 }
27445
27446
27447 goto thumb_bl_common;
27448
c19d1205 27449 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
27450 /* A bl from Thumb state ISA to an internal ARM state function
27451 is converted to a blx. */
27452 if (fixP->fx_addsy
27453 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27454 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27455 && ARM_IS_FUNC (fixP->fx_addsy)
27456 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27457 {
27458 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27459 newval = newval & ~0x1000;
27460 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27461 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27462 fixP->fx_done = 1;
27463 }
27464
27465 thumb_bl_common:
27466
2fc8bdac
ZW
27467 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27468 /* For a BLX instruction, make sure that the relocation is rounded up
27469 to a word boundary. This follows the semantics of the instruction
27470 which specifies that bit 1 of the target address will come from bit
27471 1 of the base address. */
d406f3e4
JB
27472 value = (value + 3) & ~ 3;
27473
27474#ifdef OBJ_ELF
27475 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27476 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27477 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27478#endif
404ff6b5 27479
2b2f5df9
NC
27480 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27481 {
fc289b0a 27482 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
27483 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27484 else if ((value & ~0x1ffffff)
27485 && ((value & ~0x1ffffff) != ~0x1ffffff))
27486 as_bad_where (fixP->fx_file, fixP->fx_line,
27487 _("Thumb2 branch out of range"));
27488 }
4a42ebbc
RR
27489
27490 if (fixP->fx_done || !seg->use_rela_p)
27491 encode_thumb2_b_bl_offset (buf, value);
27492
c19d1205 27493 break;
404ff6b5 27494
c19d1205 27495 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
27496 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27497 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 27498
2fc8bdac 27499 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 27500 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 27501
2fc8bdac 27502 break;
a737bd4d 27503
2fc8bdac
ZW
27504 case BFD_RELOC_8:
27505 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 27506 *buf = value;
c19d1205 27507 break;
a737bd4d 27508
c19d1205 27509 case BFD_RELOC_16:
2fc8bdac 27510 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27511 md_number_to_chars (buf, value, 2);
c19d1205 27512 break;
a737bd4d 27513
c19d1205 27514#ifdef OBJ_ELF
0855e32b
NS
27515 case BFD_RELOC_ARM_TLS_CALL:
27516 case BFD_RELOC_ARM_THM_TLS_CALL:
27517 case BFD_RELOC_ARM_TLS_DESCSEQ:
27518 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 27519 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
27520 case BFD_RELOC_ARM_TLS_GD32:
27521 case BFD_RELOC_ARM_TLS_LE32:
27522 case BFD_RELOC_ARM_TLS_IE32:
27523 case BFD_RELOC_ARM_TLS_LDM32:
27524 case BFD_RELOC_ARM_TLS_LDO32:
27525 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 27526 break;
6c43fab6 27527
5c5a4843
CL
27528 /* Same handling as above, but with the arm_fdpic guard. */
27529 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27530 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27531 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27532 if (arm_fdpic)
27533 {
27534 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27535 }
27536 else
27537 {
27538 as_bad_where (fixP->fx_file, fixP->fx_line,
27539 _("Relocation supported only in FDPIC mode"));
27540 }
27541 break;
27542
c19d1205
ZW
27543 case BFD_RELOC_ARM_GOT32:
27544 case BFD_RELOC_ARM_GOTOFF:
c19d1205 27545 break;
b43420e6
NC
27546
27547 case BFD_RELOC_ARM_GOT_PREL:
27548 if (fixP->fx_done || !seg->use_rela_p)
477330fc 27549 md_number_to_chars (buf, value, 4);
b43420e6
NC
27550 break;
27551
9a6f4e97
NS
27552 case BFD_RELOC_ARM_TARGET2:
27553 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
27554 addend here for REL targets, because it won't be written out
27555 during reloc processing later. */
9a6f4e97
NS
27556 if (fixP->fx_done || !seg->use_rela_p)
27557 md_number_to_chars (buf, fixP->fx_offset, 4);
27558 break;
188fd7ae
CL
27559
27560 /* Relocations for FDPIC. */
27561 case BFD_RELOC_ARM_GOTFUNCDESC:
27562 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27563 case BFD_RELOC_ARM_FUNCDESC:
27564 if (arm_fdpic)
27565 {
27566 if (fixP->fx_done || !seg->use_rela_p)
27567 md_number_to_chars (buf, 0, 4);
27568 }
27569 else
27570 {
27571 as_bad_where (fixP->fx_file, fixP->fx_line,
27572 _("Relocation supported only in FDPIC mode"));
27573 }
27574 break;
c19d1205 27575#endif
6c43fab6 27576
c19d1205
ZW
27577 case BFD_RELOC_RVA:
27578 case BFD_RELOC_32:
27579 case BFD_RELOC_ARM_TARGET1:
27580 case BFD_RELOC_ARM_ROSEGREL32:
27581 case BFD_RELOC_ARM_SBREL32:
27582 case BFD_RELOC_32_PCREL:
f0927246
NC
27583#ifdef TE_PE
27584 case BFD_RELOC_32_SECREL:
27585#endif
2fc8bdac 27586 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
27587#ifdef TE_WINCE
27588 /* For WinCE we only do this for pcrel fixups. */
27589 if (fixP->fx_done || fixP->fx_pcrel)
27590#endif
27591 md_number_to_chars (buf, value, 4);
c19d1205 27592 break;
6c43fab6 27593
c19d1205
ZW
27594#ifdef OBJ_ELF
27595 case BFD_RELOC_ARM_PREL31:
2fc8bdac 27596 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27597 {
27598 newval = md_chars_to_number (buf, 4) & 0x80000000;
27599 if ((value ^ (value >> 1)) & 0x40000000)
27600 {
27601 as_bad_where (fixP->fx_file, fixP->fx_line,
27602 _("rel31 relocation overflow"));
27603 }
27604 newval |= value & 0x7fffffff;
27605 md_number_to_chars (buf, newval, 4);
27606 }
27607 break;
c19d1205 27608#endif
a737bd4d 27609
c19d1205 27610 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27611 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27612 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27613 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27614 newval = md_chars_to_number (buf, INSN_SIZE);
27615 else
27616 newval = get_thumb32_insn (buf);
27617 if ((newval & 0x0f200f00) == 0x0d000900)
27618 {
27619 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27620 has permitted values that are multiples of 2, in the range 0
27621 to 510. */
27622 if (value < -510 || value > 510 || (value & 1))
27623 as_bad_where (fixP->fx_file, fixP->fx_line,
27624 _("co-processor offset out of range"));
27625 }
32c36c3c
AV
27626 else if ((newval & 0xfe001f80) == 0xec000f80)
27627 {
27628 if (value < -511 || value > 512 || (value & 3))
27629 as_bad_where (fixP->fx_file, fixP->fx_line,
27630 _("co-processor offset out of range"));
27631 }
9db2f6b4 27632 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27633 as_bad_where (fixP->fx_file, fixP->fx_line,
27634 _("co-processor offset out of range"));
27635 cp_off_common:
26d97720 27636 sign = value > 0;
c19d1205
ZW
27637 if (value < 0)
27638 value = -value;
8f06b2d8
PB
27639 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27640 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27641 newval = md_chars_to_number (buf, INSN_SIZE);
27642 else
27643 newval = get_thumb32_insn (buf);
26d97720 27644 if (value == 0)
32c36c3c
AV
27645 {
27646 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27647 newval &= 0xffffff80;
27648 else
27649 newval &= 0xffffff00;
27650 }
26d97720
NS
27651 else
27652 {
32c36c3c
AV
27653 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27654 newval &= 0xff7fff80;
27655 else
27656 newval &= 0xff7fff00;
9db2f6b4
RL
27657 if ((newval & 0x0f200f00) == 0x0d000900)
27658 {
27659 /* This is a fp16 vstr/vldr.
27660
27661 It requires the immediate offset in the instruction is shifted
27662 left by 1 to be a half-word offset.
27663
27664 Here, left shift by 1 first, and later right shift by 2
27665 should get the right offset. */
27666 value <<= 1;
27667 }
26d97720
NS
27668 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27669 }
8f06b2d8
PB
27670 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27671 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27672 md_number_to_chars (buf, newval, INSN_SIZE);
27673 else
27674 put_thumb32_insn (buf, newval);
c19d1205 27675 break;
a737bd4d 27676
c19d1205 27677 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 27678 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
27679 if (value < -255 || value > 255)
27680 as_bad_where (fixP->fx_file, fixP->fx_line,
27681 _("co-processor offset out of range"));
df7849c5 27682 value *= 4;
c19d1205 27683 goto cp_off_common;
6c43fab6 27684
c19d1205
ZW
27685 case BFD_RELOC_ARM_THUMB_OFFSET:
27686 newval = md_chars_to_number (buf, THUMB_SIZE);
27687 /* Exactly what ranges, and where the offset is inserted depends
27688 on the type of instruction, we can establish this from the
27689 top 4 bits. */
27690 switch (newval >> 12)
27691 {
27692 case 4: /* PC load. */
27693 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27694 forced to zero for these loads; md_pcrel_from has already
27695 compensated for this. */
27696 if (value & 3)
27697 as_bad_where (fixP->fx_file, fixP->fx_line,
27698 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
27699 (((unsigned long) fixP->fx_frag->fr_address
27700 + (unsigned long) fixP->fx_where) & ~3)
27701 + (unsigned long) value);
a737bd4d 27702
c19d1205
ZW
27703 if (value & ~0x3fc)
27704 as_bad_where (fixP->fx_file, fixP->fx_line,
27705 _("invalid offset, value too big (0x%08lX)"),
27706 (long) value);
a737bd4d 27707
c19d1205
ZW
27708 newval |= value >> 2;
27709 break;
a737bd4d 27710
c19d1205
ZW
27711 case 9: /* SP load/store. */
27712 if (value & ~0x3fc)
27713 as_bad_where (fixP->fx_file, fixP->fx_line,
27714 _("invalid offset, value too big (0x%08lX)"),
27715 (long) value);
27716 newval |= value >> 2;
27717 break;
6c43fab6 27718
c19d1205
ZW
27719 case 6: /* Word load/store. */
27720 if (value & ~0x7c)
27721 as_bad_where (fixP->fx_file, fixP->fx_line,
27722 _("invalid offset, value too big (0x%08lX)"),
27723 (long) value);
27724 newval |= value << 4; /* 6 - 2. */
27725 break;
a737bd4d 27726
c19d1205
ZW
27727 case 7: /* Byte load/store. */
27728 if (value & ~0x1f)
27729 as_bad_where (fixP->fx_file, fixP->fx_line,
27730 _("invalid offset, value too big (0x%08lX)"),
27731 (long) value);
27732 newval |= value << 6;
27733 break;
a737bd4d 27734
c19d1205
ZW
27735 case 8: /* Halfword load/store. */
27736 if (value & ~0x3e)
27737 as_bad_where (fixP->fx_file, fixP->fx_line,
27738 _("invalid offset, value too big (0x%08lX)"),
27739 (long) value);
27740 newval |= value << 5; /* 6 - 1. */
27741 break;
a737bd4d 27742
c19d1205
ZW
27743 default:
27744 as_bad_where (fixP->fx_file, fixP->fx_line,
27745 "Unable to process relocation for thumb opcode: %lx",
27746 (unsigned long) newval);
27747 break;
27748 }
27749 md_number_to_chars (buf, newval, THUMB_SIZE);
27750 break;
a737bd4d 27751
c19d1205
ZW
27752 case BFD_RELOC_ARM_THUMB_ADD:
27753 /* This is a complicated relocation, since we use it for all of
27754 the following immediate relocations:
a737bd4d 27755
c19d1205
ZW
27756 3bit ADD/SUB
27757 8bit ADD/SUB
27758 9bit ADD/SUB SP word-aligned
27759 10bit ADD PC/SP word-aligned
a737bd4d 27760
c19d1205
ZW
27761 The type of instruction being processed is encoded in the
27762 instruction field:
a737bd4d 27763
c19d1205
ZW
27764 0x8000 SUB
27765 0x00F0 Rd
27766 0x000F Rs
27767 */
27768 newval = md_chars_to_number (buf, THUMB_SIZE);
27769 {
27770 int rd = (newval >> 4) & 0xf;
27771 int rs = newval & 0xf;
27772 int subtract = !!(newval & 0x8000);
a737bd4d 27773
c19d1205
ZW
27774 /* Check for HI regs, only very restricted cases allowed:
27775 Adjusting SP, and using PC or SP to get an address. */
27776 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27777 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27778 as_bad_where (fixP->fx_file, fixP->fx_line,
27779 _("invalid Hi register with immediate"));
a737bd4d 27780
c19d1205
ZW
27781 /* If value is negative, choose the opposite instruction. */
27782 if (value < 0)
27783 {
27784 value = -value;
27785 subtract = !subtract;
27786 if (value < 0)
27787 as_bad_where (fixP->fx_file, fixP->fx_line,
27788 _("immediate value out of range"));
27789 }
a737bd4d 27790
c19d1205
ZW
27791 if (rd == REG_SP)
27792 {
75c11999 27793 if (value & ~0x1fc)
c19d1205
ZW
27794 as_bad_where (fixP->fx_file, fixP->fx_line,
27795 _("invalid immediate for stack address calculation"));
27796 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27797 newval |= value >> 2;
27798 }
27799 else if (rs == REG_PC || rs == REG_SP)
27800 {
c12d2c9d
NC
27801 /* PR gas/18541. If the addition is for a defined symbol
27802 within range of an ADR instruction then accept it. */
27803 if (subtract
27804 && value == 4
27805 && fixP->fx_addsy != NULL)
27806 {
27807 subtract = 0;
27808
27809 if (! S_IS_DEFINED (fixP->fx_addsy)
27810 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27811 || S_IS_WEAK (fixP->fx_addsy))
27812 {
27813 as_bad_where (fixP->fx_file, fixP->fx_line,
27814 _("address calculation needs a strongly defined nearby symbol"));
27815 }
27816 else
27817 {
27818 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27819
27820 /* Round up to the next 4-byte boundary. */
27821 if (v & 3)
27822 v = (v + 3) & ~ 3;
27823 else
27824 v += 4;
27825 v = S_GET_VALUE (fixP->fx_addsy) - v;
27826
27827 if (v & ~0x3fc)
27828 {
27829 as_bad_where (fixP->fx_file, fixP->fx_line,
27830 _("symbol too far away"));
27831 }
27832 else
27833 {
27834 fixP->fx_done = 1;
27835 value = v;
27836 }
27837 }
27838 }
27839
c19d1205
ZW
27840 if (subtract || value & ~0x3fc)
27841 as_bad_where (fixP->fx_file, fixP->fx_line,
27842 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27843 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27844 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27845 newval |= rd << 8;
27846 newval |= value >> 2;
27847 }
27848 else if (rs == rd)
27849 {
27850 if (value & ~0xff)
27851 as_bad_where (fixP->fx_file, fixP->fx_line,
27852 _("immediate value out of range"));
27853 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27854 newval |= (rd << 8) | value;
27855 }
27856 else
27857 {
27858 if (value & ~0x7)
27859 as_bad_where (fixP->fx_file, fixP->fx_line,
27860 _("immediate value out of range"));
27861 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27862 newval |= rd | (rs << 3) | (value << 6);
27863 }
27864 }
27865 md_number_to_chars (buf, newval, THUMB_SIZE);
27866 break;
a737bd4d 27867
c19d1205
ZW
27868 case BFD_RELOC_ARM_THUMB_IMM:
27869 newval = md_chars_to_number (buf, THUMB_SIZE);
27870 if (value < 0 || value > 255)
27871 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 27872 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
27873 (long) value);
27874 newval |= value;
27875 md_number_to_chars (buf, newval, THUMB_SIZE);
27876 break;
a737bd4d 27877
c19d1205
ZW
27878 case BFD_RELOC_ARM_THUMB_SHIFT:
27879 /* 5bit shift value (0..32). LSL cannot take 32. */
27880 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27881 temp = newval & 0xf800;
27882 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27883 as_bad_where (fixP->fx_file, fixP->fx_line,
27884 _("invalid shift value: %ld"), (long) value);
27885 /* Shifts of zero must be encoded as LSL. */
27886 if (value == 0)
27887 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27888 /* Shifts of 32 are encoded as zero. */
27889 else if (value == 32)
27890 value = 0;
27891 newval |= value << 6;
27892 md_number_to_chars (buf, newval, THUMB_SIZE);
27893 break;
a737bd4d 27894
c19d1205
ZW
27895 case BFD_RELOC_VTABLE_INHERIT:
27896 case BFD_RELOC_VTABLE_ENTRY:
27897 fixP->fx_done = 0;
27898 return;
6c43fab6 27899
b6895b4f
PB
27900 case BFD_RELOC_ARM_MOVW:
27901 case BFD_RELOC_ARM_MOVT:
27902 case BFD_RELOC_ARM_THUMB_MOVW:
27903 case BFD_RELOC_ARM_THUMB_MOVT:
27904 if (fixP->fx_done || !seg->use_rela_p)
27905 {
27906 /* REL format relocations are limited to a 16-bit addend. */
27907 if (!fixP->fx_done)
27908 {
39623e12 27909 if (value < -0x8000 || value > 0x7fff)
b6895b4f 27910 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 27911 _("offset out of range"));
b6895b4f
PB
27912 }
27913 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27914 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27915 {
27916 value >>= 16;
27917 }
27918
27919 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27920 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27921 {
27922 newval = get_thumb32_insn (buf);
27923 newval &= 0xfbf08f00;
27924 newval |= (value & 0xf000) << 4;
27925 newval |= (value & 0x0800) << 15;
27926 newval |= (value & 0x0700) << 4;
27927 newval |= (value & 0x00ff);
27928 put_thumb32_insn (buf, newval);
27929 }
27930 else
27931 {
27932 newval = md_chars_to_number (buf, 4);
27933 newval &= 0xfff0f000;
27934 newval |= value & 0x0fff;
27935 newval |= (value & 0xf000) << 4;
27936 md_number_to_chars (buf, newval, 4);
27937 }
27938 }
27939 return;
27940
72d98d16
MG
27941 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27942 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27943 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27944 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27945 gas_assert (!fixP->fx_done);
27946 {
27947 bfd_vma insn;
27948 bfd_boolean is_mov;
27949 bfd_vma encoded_addend = value;
27950
27951 /* Check that addend can be encoded in instruction. */
27952 if (!seg->use_rela_p && (value < 0 || value > 255))
27953 as_bad_where (fixP->fx_file, fixP->fx_line,
27954 _("the offset 0x%08lX is not representable"),
27955 (unsigned long) encoded_addend);
27956
27957 /* Extract the instruction. */
27958 insn = md_chars_to_number (buf, THUMB_SIZE);
27959 is_mov = (insn & 0xf800) == 0x2000;
27960
27961 /* Encode insn. */
27962 if (is_mov)
27963 {
27964 if (!seg->use_rela_p)
27965 insn |= encoded_addend;
27966 }
27967 else
27968 {
27969 int rd, rs;
27970
27971 /* Extract the instruction. */
27972 /* Encoding is the following
27973 0x8000 SUB
27974 0x00F0 Rd
27975 0x000F Rs
27976 */
27977 /* The following conditions must be true :
27978 - ADD
27979 - Rd == Rs
27980 - Rd <= 7
27981 */
27982 rd = (insn >> 4) & 0xf;
27983 rs = insn & 0xf;
27984 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27985 as_bad_where (fixP->fx_file, fixP->fx_line,
27986 _("Unable to process relocation for thumb opcode: %lx"),
27987 (unsigned long) insn);
27988
27989 /* Encode as ADD immediate8 thumb 1 code. */
27990 insn = 0x3000 | (rd << 8);
27991
27992 /* Place the encoded addend into the first 8 bits of the
27993 instruction. */
27994 if (!seg->use_rela_p)
27995 insn |= encoded_addend;
27996 }
27997
27998 /* Update the instruction. */
27999 md_number_to_chars (buf, insn, THUMB_SIZE);
28000 }
28001 break;
28002
4962c51a
MS
28003 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28004 case BFD_RELOC_ARM_ALU_PC_G0:
28005 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28006 case BFD_RELOC_ARM_ALU_PC_G1:
28007 case BFD_RELOC_ARM_ALU_PC_G2:
28008 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28009 case BFD_RELOC_ARM_ALU_SB_G0:
28010 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28011 case BFD_RELOC_ARM_ALU_SB_G1:
28012 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 28013 gas_assert (!fixP->fx_done);
4962c51a
MS
28014 if (!seg->use_rela_p)
28015 {
477330fc
RM
28016 bfd_vma insn;
28017 bfd_vma encoded_addend;
3ca4a8ec 28018 bfd_vma addend_abs = llabs (value);
477330fc
RM
28019
28020 /* Check that the absolute value of the addend can be
28021 expressed as an 8-bit constant plus a rotation. */
28022 encoded_addend = encode_arm_immediate (addend_abs);
28023 if (encoded_addend == (unsigned int) FAIL)
4962c51a 28024 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28025 _("the offset 0x%08lX is not representable"),
28026 (unsigned long) addend_abs);
28027
28028 /* Extract the instruction. */
28029 insn = md_chars_to_number (buf, INSN_SIZE);
28030
28031 /* If the addend is positive, use an ADD instruction.
28032 Otherwise use a SUB. Take care not to destroy the S bit. */
28033 insn &= 0xff1fffff;
28034 if (value < 0)
28035 insn |= 1 << 22;
28036 else
28037 insn |= 1 << 23;
28038
28039 /* Place the encoded addend into the first 12 bits of the
28040 instruction. */
28041 insn &= 0xfffff000;
28042 insn |= encoded_addend;
28043
28044 /* Update the instruction. */
28045 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
28046 }
28047 break;
28048
28049 case BFD_RELOC_ARM_LDR_PC_G0:
28050 case BFD_RELOC_ARM_LDR_PC_G1:
28051 case BFD_RELOC_ARM_LDR_PC_G2:
28052 case BFD_RELOC_ARM_LDR_SB_G0:
28053 case BFD_RELOC_ARM_LDR_SB_G1:
28054 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 28055 gas_assert (!fixP->fx_done);
4962c51a 28056 if (!seg->use_rela_p)
477330fc
RM
28057 {
28058 bfd_vma insn;
3ca4a8ec 28059 bfd_vma addend_abs = llabs (value);
4962c51a 28060
477330fc
RM
28061 /* Check that the absolute value of the addend can be
28062 encoded in 12 bits. */
28063 if (addend_abs >= 0x1000)
4962c51a 28064 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28065 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28066 (unsigned long) addend_abs);
28067
28068 /* Extract the instruction. */
28069 insn = md_chars_to_number (buf, INSN_SIZE);
28070
28071 /* If the addend is negative, clear bit 23 of the instruction.
28072 Otherwise set it. */
28073 if (value < 0)
28074 insn &= ~(1 << 23);
28075 else
28076 insn |= 1 << 23;
28077
28078 /* Place the absolute value of the addend into the first 12 bits
28079 of the instruction. */
28080 insn &= 0xfffff000;
28081 insn |= addend_abs;
28082
28083 /* Update the instruction. */
28084 md_number_to_chars (buf, insn, INSN_SIZE);
28085 }
4962c51a
MS
28086 break;
28087
28088 case BFD_RELOC_ARM_LDRS_PC_G0:
28089 case BFD_RELOC_ARM_LDRS_PC_G1:
28090 case BFD_RELOC_ARM_LDRS_PC_G2:
28091 case BFD_RELOC_ARM_LDRS_SB_G0:
28092 case BFD_RELOC_ARM_LDRS_SB_G1:
28093 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 28094 gas_assert (!fixP->fx_done);
4962c51a 28095 if (!seg->use_rela_p)
477330fc
RM
28096 {
28097 bfd_vma insn;
3ca4a8ec 28098 bfd_vma addend_abs = llabs (value);
4962c51a 28099
477330fc
RM
28100 /* Check that the absolute value of the addend can be
28101 encoded in 8 bits. */
28102 if (addend_abs >= 0x100)
4962c51a 28103 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28104 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28105 (unsigned long) addend_abs);
28106
28107 /* Extract the instruction. */
28108 insn = md_chars_to_number (buf, INSN_SIZE);
28109
28110 /* If the addend is negative, clear bit 23 of the instruction.
28111 Otherwise set it. */
28112 if (value < 0)
28113 insn &= ~(1 << 23);
28114 else
28115 insn |= 1 << 23;
28116
28117 /* Place the first four bits of the absolute value of the addend
28118 into the first 4 bits of the instruction, and the remaining
28119 four into bits 8 .. 11. */
28120 insn &= 0xfffff0f0;
28121 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28122
28123 /* Update the instruction. */
28124 md_number_to_chars (buf, insn, INSN_SIZE);
28125 }
4962c51a
MS
28126 break;
28127
28128 case BFD_RELOC_ARM_LDC_PC_G0:
28129 case BFD_RELOC_ARM_LDC_PC_G1:
28130 case BFD_RELOC_ARM_LDC_PC_G2:
28131 case BFD_RELOC_ARM_LDC_SB_G0:
28132 case BFD_RELOC_ARM_LDC_SB_G1:
28133 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 28134 gas_assert (!fixP->fx_done);
4962c51a 28135 if (!seg->use_rela_p)
477330fc
RM
28136 {
28137 bfd_vma insn;
3ca4a8ec 28138 bfd_vma addend_abs = llabs (value);
4962c51a 28139
477330fc
RM
28140 /* Check that the absolute value of the addend is a multiple of
28141 four and, when divided by four, fits in 8 bits. */
28142 if (addend_abs & 0x3)
4962c51a 28143 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28144 _("bad offset 0x%08lX (must be word-aligned)"),
28145 (unsigned long) addend_abs);
4962c51a 28146
477330fc 28147 if ((addend_abs >> 2) > 0xff)
4962c51a 28148 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28149 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28150 (unsigned long) addend_abs);
28151
28152 /* Extract the instruction. */
28153 insn = md_chars_to_number (buf, INSN_SIZE);
28154
28155 /* If the addend is negative, clear bit 23 of the instruction.
28156 Otherwise set it. */
28157 if (value < 0)
28158 insn &= ~(1 << 23);
28159 else
28160 insn |= 1 << 23;
28161
28162 /* Place the addend (divided by four) into the first eight
28163 bits of the instruction. */
28164 insn &= 0xfffffff0;
28165 insn |= addend_abs >> 2;
28166
28167 /* Update the instruction. */
28168 md_number_to_chars (buf, insn, INSN_SIZE);
28169 }
4962c51a
MS
28170 break;
28171
e12437dc
AV
28172 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28173 if (fixP->fx_addsy
28174 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28175 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28176 && ARM_IS_FUNC (fixP->fx_addsy)
28177 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28178 {
28179 /* Force a relocation for a branch 5 bits wide. */
28180 fixP->fx_done = 0;
28181 }
28182 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28183 as_bad_where (fixP->fx_file, fixP->fx_line,
28184 BAD_BRANCH_OFF);
28185
28186 if (fixP->fx_done || !seg->use_rela_p)
28187 {
28188 addressT boff = value >> 1;
28189
28190 newval = md_chars_to_number (buf, THUMB_SIZE);
28191 newval |= (boff << 7);
28192 md_number_to_chars (buf, newval, THUMB_SIZE);
28193 }
28194 break;
28195
f6b2b12d
AV
28196 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28197 if (fixP->fx_addsy
28198 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28199 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28200 && ARM_IS_FUNC (fixP->fx_addsy)
28201 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28202 {
28203 fixP->fx_done = 0;
28204 }
28205 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28206 as_bad_where (fixP->fx_file, fixP->fx_line,
28207 _("branch out of range"));
28208
28209 if (fixP->fx_done || !seg->use_rela_p)
28210 {
28211 newval = md_chars_to_number (buf, THUMB_SIZE);
28212
28213 addressT boff = ((newval & 0x0780) >> 7) << 1;
28214 addressT diff = value - boff;
28215
28216 if (diff == 4)
28217 {
28218 newval |= 1 << 1; /* T bit. */
28219 }
28220 else if (diff != 2)
28221 {
28222 as_bad_where (fixP->fx_file, fixP->fx_line,
28223 _("out of range label-relative fixup value"));
28224 }
28225 md_number_to_chars (buf, newval, THUMB_SIZE);
28226 }
28227 break;
28228
e5d6e09e
AV
28229 case BFD_RELOC_ARM_THUMB_BF17:
28230 if (fixP->fx_addsy
28231 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28232 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28233 && ARM_IS_FUNC (fixP->fx_addsy)
28234 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28235 {
28236 /* Force a relocation for a branch 17 bits wide. */
28237 fixP->fx_done = 0;
28238 }
28239
28240 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28241 as_bad_where (fixP->fx_file, fixP->fx_line,
28242 BAD_BRANCH_OFF);
28243
28244 if (fixP->fx_done || !seg->use_rela_p)
28245 {
28246 offsetT newval2;
28247 addressT immA, immB, immC;
28248
28249 immA = (value & 0x0001f000) >> 12;
28250 immB = (value & 0x00000ffc) >> 2;
28251 immC = (value & 0x00000002) >> 1;
28252
28253 newval = md_chars_to_number (buf, THUMB_SIZE);
28254 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28255 newval |= immA;
28256 newval2 |= (immC << 11) | (immB << 1);
28257 md_number_to_chars (buf, newval, THUMB_SIZE);
28258 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28259 }
28260 break;
28261
1caf72a5
AV
28262 case BFD_RELOC_ARM_THUMB_BF19:
28263 if (fixP->fx_addsy
28264 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28265 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28266 && ARM_IS_FUNC (fixP->fx_addsy)
28267 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28268 {
28269 /* Force a relocation for a branch 19 bits wide. */
28270 fixP->fx_done = 0;
28271 }
28272
28273 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28274 as_bad_where (fixP->fx_file, fixP->fx_line,
28275 BAD_BRANCH_OFF);
28276
28277 if (fixP->fx_done || !seg->use_rela_p)
28278 {
28279 offsetT newval2;
28280 addressT immA, immB, immC;
28281
28282 immA = (value & 0x0007f000) >> 12;
28283 immB = (value & 0x00000ffc) >> 2;
28284 immC = (value & 0x00000002) >> 1;
28285
28286 newval = md_chars_to_number (buf, THUMB_SIZE);
28287 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28288 newval |= immA;
28289 newval2 |= (immC << 11) | (immB << 1);
28290 md_number_to_chars (buf, newval, THUMB_SIZE);
28291 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28292 }
28293 break;
28294
1889da70
AV
28295 case BFD_RELOC_ARM_THUMB_BF13:
28296 if (fixP->fx_addsy
28297 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28298 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28299 && ARM_IS_FUNC (fixP->fx_addsy)
28300 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28301 {
28302 /* Force a relocation for a branch 13 bits wide. */
28303 fixP->fx_done = 0;
28304 }
28305
28306 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28307 as_bad_where (fixP->fx_file, fixP->fx_line,
28308 BAD_BRANCH_OFF);
28309
28310 if (fixP->fx_done || !seg->use_rela_p)
28311 {
28312 offsetT newval2;
28313 addressT immA, immB, immC;
28314
28315 immA = (value & 0x00001000) >> 12;
28316 immB = (value & 0x00000ffc) >> 2;
28317 immC = (value & 0x00000002) >> 1;
28318
28319 newval = md_chars_to_number (buf, THUMB_SIZE);
28320 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28321 newval |= immA;
28322 newval2 |= (immC << 11) | (immB << 1);
28323 md_number_to_chars (buf, newval, THUMB_SIZE);
28324 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28325 }
28326 break;
28327
60f993ce
AV
28328 case BFD_RELOC_ARM_THUMB_LOOP12:
28329 if (fixP->fx_addsy
28330 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28331 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28332 && ARM_IS_FUNC (fixP->fx_addsy)
28333 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28334 {
28335 /* Force a relocation for a branch 12 bits wide. */
28336 fixP->fx_done = 0;
28337 }
28338
28339 bfd_vma insn = get_thumb32_insn (buf);
28340 /* le lr, <label> or le <label> */
28341 if (((insn & 0xffffffff) == 0xf00fc001)
28342 || ((insn & 0xffffffff) == 0xf02fc001))
28343 value = -value;
28344
28345 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28346 as_bad_where (fixP->fx_file, fixP->fx_line,
28347 BAD_BRANCH_OFF);
28348 if (fixP->fx_done || !seg->use_rela_p)
28349 {
28350 addressT imml, immh;
28351
28352 immh = (value & 0x00000ffc) >> 2;
28353 imml = (value & 0x00000002) >> 1;
28354
28355 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28356 newval |= (imml << 11) | (immh << 1);
28357 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28358 }
28359 break;
28360
845b51d6
PB
28361 case BFD_RELOC_ARM_V4BX:
28362 /* This will need to go in the object file. */
28363 fixP->fx_done = 0;
28364 break;
28365
c19d1205
ZW
28366 case BFD_RELOC_UNUSED:
28367 default:
28368 as_bad_where (fixP->fx_file, fixP->fx_line,
28369 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28370 }
6c43fab6
RE
28371}
28372
c19d1205
ZW
28373/* Translate internal representation of relocation info to BFD target
28374 format. */
a737bd4d 28375
c19d1205 28376arelent *
00a97672 28377tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 28378{
c19d1205
ZW
28379 arelent * reloc;
28380 bfd_reloc_code_real_type code;
a737bd4d 28381
325801bd 28382 reloc = XNEW (arelent);
a737bd4d 28383
325801bd 28384 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
28385 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28386 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 28387
2fc8bdac 28388 if (fixp->fx_pcrel)
00a97672
RS
28389 {
28390 if (section->use_rela_p)
28391 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28392 else
28393 fixp->fx_offset = reloc->address;
28394 }
c19d1205 28395 reloc->addend = fixp->fx_offset;
a737bd4d 28396
c19d1205 28397 switch (fixp->fx_r_type)
a737bd4d 28398 {
c19d1205
ZW
28399 case BFD_RELOC_8:
28400 if (fixp->fx_pcrel)
28401 {
28402 code = BFD_RELOC_8_PCREL;
28403 break;
28404 }
1a0670f3 28405 /* Fall through. */
a737bd4d 28406
c19d1205
ZW
28407 case BFD_RELOC_16:
28408 if (fixp->fx_pcrel)
28409 {
28410 code = BFD_RELOC_16_PCREL;
28411 break;
28412 }
1a0670f3 28413 /* Fall through. */
6c43fab6 28414
c19d1205
ZW
28415 case BFD_RELOC_32:
28416 if (fixp->fx_pcrel)
28417 {
28418 code = BFD_RELOC_32_PCREL;
28419 break;
28420 }
1a0670f3 28421 /* Fall through. */
a737bd4d 28422
b6895b4f
PB
28423 case BFD_RELOC_ARM_MOVW:
28424 if (fixp->fx_pcrel)
28425 {
28426 code = BFD_RELOC_ARM_MOVW_PCREL;
28427 break;
28428 }
1a0670f3 28429 /* Fall through. */
b6895b4f
PB
28430
28431 case BFD_RELOC_ARM_MOVT:
28432 if (fixp->fx_pcrel)
28433 {
28434 code = BFD_RELOC_ARM_MOVT_PCREL;
28435 break;
28436 }
1a0670f3 28437 /* Fall through. */
b6895b4f
PB
28438
28439 case BFD_RELOC_ARM_THUMB_MOVW:
28440 if (fixp->fx_pcrel)
28441 {
28442 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28443 break;
28444 }
1a0670f3 28445 /* Fall through. */
b6895b4f
PB
28446
28447 case BFD_RELOC_ARM_THUMB_MOVT:
28448 if (fixp->fx_pcrel)
28449 {
28450 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28451 break;
28452 }
1a0670f3 28453 /* Fall through. */
b6895b4f 28454
c19d1205
ZW
28455 case BFD_RELOC_NONE:
28456 case BFD_RELOC_ARM_PCREL_BRANCH:
28457 case BFD_RELOC_ARM_PCREL_BLX:
28458 case BFD_RELOC_RVA:
28459 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28460 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28461 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28462 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28463 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28464 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
28465 case BFD_RELOC_VTABLE_ENTRY:
28466 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
28467#ifdef TE_PE
28468 case BFD_RELOC_32_SECREL:
28469#endif
c19d1205
ZW
28470 code = fixp->fx_r_type;
28471 break;
a737bd4d 28472
00adf2d4
JB
28473 case BFD_RELOC_THUMB_PCREL_BLX:
28474#ifdef OBJ_ELF
28475 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28476 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28477 else
28478#endif
28479 code = BFD_RELOC_THUMB_PCREL_BLX;
28480 break;
28481
c19d1205
ZW
28482 case BFD_RELOC_ARM_LITERAL:
28483 case BFD_RELOC_ARM_HWLITERAL:
28484 /* If this is called then the a literal has
28485 been referenced across a section boundary. */
28486 as_bad_where (fixp->fx_file, fixp->fx_line,
28487 _("literal referenced across section boundary"));
28488 return NULL;
a737bd4d 28489
c19d1205 28490#ifdef OBJ_ELF
0855e32b
NS
28491 case BFD_RELOC_ARM_TLS_CALL:
28492 case BFD_RELOC_ARM_THM_TLS_CALL:
28493 case BFD_RELOC_ARM_TLS_DESCSEQ:
28494 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
28495 case BFD_RELOC_ARM_GOT32:
28496 case BFD_RELOC_ARM_GOTOFF:
b43420e6 28497 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
28498 case BFD_RELOC_ARM_PLT32:
28499 case BFD_RELOC_ARM_TARGET1:
28500 case BFD_RELOC_ARM_ROSEGREL32:
28501 case BFD_RELOC_ARM_SBREL32:
28502 case BFD_RELOC_ARM_PREL31:
28503 case BFD_RELOC_ARM_TARGET2:
c19d1205 28504 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
28505 case BFD_RELOC_ARM_PCREL_CALL:
28506 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
28507 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28508 case BFD_RELOC_ARM_ALU_PC_G0:
28509 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28510 case BFD_RELOC_ARM_ALU_PC_G1:
28511 case BFD_RELOC_ARM_ALU_PC_G2:
28512 case BFD_RELOC_ARM_LDR_PC_G0:
28513 case BFD_RELOC_ARM_LDR_PC_G1:
28514 case BFD_RELOC_ARM_LDR_PC_G2:
28515 case BFD_RELOC_ARM_LDRS_PC_G0:
28516 case BFD_RELOC_ARM_LDRS_PC_G1:
28517 case BFD_RELOC_ARM_LDRS_PC_G2:
28518 case BFD_RELOC_ARM_LDC_PC_G0:
28519 case BFD_RELOC_ARM_LDC_PC_G1:
28520 case BFD_RELOC_ARM_LDC_PC_G2:
28521 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28522 case BFD_RELOC_ARM_ALU_SB_G0:
28523 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28524 case BFD_RELOC_ARM_ALU_SB_G1:
28525 case BFD_RELOC_ARM_ALU_SB_G2:
28526 case BFD_RELOC_ARM_LDR_SB_G0:
28527 case BFD_RELOC_ARM_LDR_SB_G1:
28528 case BFD_RELOC_ARM_LDR_SB_G2:
28529 case BFD_RELOC_ARM_LDRS_SB_G0:
28530 case BFD_RELOC_ARM_LDRS_SB_G1:
28531 case BFD_RELOC_ARM_LDRS_SB_G2:
28532 case BFD_RELOC_ARM_LDC_SB_G0:
28533 case BFD_RELOC_ARM_LDC_SB_G1:
28534 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 28535 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
28536 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28537 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28538 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28539 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
28540 case BFD_RELOC_ARM_GOTFUNCDESC:
28541 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28542 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 28543 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 28544 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 28545 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
28546 code = fixp->fx_r_type;
28547 break;
a737bd4d 28548
0855e32b 28549 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 28550 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 28551 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 28552 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 28553 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 28554 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 28555 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 28556 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
28557 /* BFD will include the symbol's address in the addend.
28558 But we don't want that, so subtract it out again here. */
28559 if (!S_IS_COMMON (fixp->fx_addsy))
28560 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28561 code = fixp->fx_r_type;
28562 break;
28563#endif
a737bd4d 28564
c19d1205
ZW
28565 case BFD_RELOC_ARM_IMMEDIATE:
28566 as_bad_where (fixp->fx_file, fixp->fx_line,
28567 _("internal relocation (type: IMMEDIATE) not fixed up"));
28568 return NULL;
a737bd4d 28569
c19d1205
ZW
28570 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28571 as_bad_where (fixp->fx_file, fixp->fx_line,
28572 _("ADRL used for a symbol not defined in the same file"));
28573 return NULL;
a737bd4d 28574
e12437dc 28575 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 28576 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 28577 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
28578 as_bad_where (fixp->fx_file, fixp->fx_line,
28579 _("%s used for a symbol not defined in the same file"),
28580 bfd_get_reloc_code_name (fixp->fx_r_type));
28581 return NULL;
28582
c19d1205 28583 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
28584 if (section->use_rela_p)
28585 {
28586 code = fixp->fx_r_type;
28587 break;
28588 }
28589
c19d1205
ZW
28590 if (fixp->fx_addsy != NULL
28591 && !S_IS_DEFINED (fixp->fx_addsy)
28592 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 28593 {
c19d1205
ZW
28594 as_bad_where (fixp->fx_file, fixp->fx_line,
28595 _("undefined local label `%s'"),
28596 S_GET_NAME (fixp->fx_addsy));
28597 return NULL;
a737bd4d
NC
28598 }
28599
c19d1205
ZW
28600 as_bad_where (fixp->fx_file, fixp->fx_line,
28601 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28602 return NULL;
a737bd4d 28603
c19d1205
ZW
28604 default:
28605 {
e0471c16 28606 const char * type;
6c43fab6 28607
c19d1205
ZW
28608 switch (fixp->fx_r_type)
28609 {
28610 case BFD_RELOC_NONE: type = "NONE"; break;
28611 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28612 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28613 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28614 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28615 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28616 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28617 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28618 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28619 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28620 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28621 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28622 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28623 default: type = _("<unknown>"); break;
28624 }
28625 as_bad_where (fixp->fx_file, fixp->fx_line,
28626 _("cannot represent %s relocation in this object file format"),
28627 type);
28628 return NULL;
28629 }
a737bd4d 28630 }
6c43fab6 28631
c19d1205
ZW
28632#ifdef OBJ_ELF
28633 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28634 && GOT_symbol
28635 && fixp->fx_addsy == GOT_symbol)
28636 {
28637 code = BFD_RELOC_ARM_GOTPC;
28638 reloc->addend = fixp->fx_offset = reloc->address;
28639 }
28640#endif
6c43fab6 28641
c19d1205 28642 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 28643
c19d1205
ZW
28644 if (reloc->howto == NULL)
28645 {
28646 as_bad_where (fixp->fx_file, fixp->fx_line,
28647 _("cannot represent %s relocation in this object file format"),
28648 bfd_get_reloc_code_name (code));
28649 return NULL;
28650 }
6c43fab6 28651
c19d1205
ZW
28652 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28653 vtable entry to be used in the relocation's section offset. */
28654 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28655 reloc->address = fixp->fx_offset;
6c43fab6 28656
c19d1205 28657 return reloc;
6c43fab6
RE
28658}
28659
c19d1205 28660/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 28661
c19d1205
ZW
28662void
28663cons_fix_new_arm (fragS * frag,
28664 int where,
28665 int size,
62ebcb5c
AM
28666 expressionS * exp,
28667 bfd_reloc_code_real_type reloc)
6c43fab6 28668{
c19d1205 28669 int pcrel = 0;
6c43fab6 28670
c19d1205
ZW
28671 /* Pick a reloc.
28672 FIXME: @@ Should look at CPU word size. */
28673 switch (size)
28674 {
28675 case 1:
62ebcb5c 28676 reloc = BFD_RELOC_8;
c19d1205
ZW
28677 break;
28678 case 2:
62ebcb5c 28679 reloc = BFD_RELOC_16;
c19d1205
ZW
28680 break;
28681 case 4:
28682 default:
62ebcb5c 28683 reloc = BFD_RELOC_32;
c19d1205
ZW
28684 break;
28685 case 8:
62ebcb5c 28686 reloc = BFD_RELOC_64;
c19d1205
ZW
28687 break;
28688 }
6c43fab6 28689
f0927246
NC
28690#ifdef TE_PE
28691 if (exp->X_op == O_secrel)
28692 {
28693 exp->X_op = O_symbol;
62ebcb5c 28694 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
28695 }
28696#endif
28697
62ebcb5c 28698 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 28699}
6c43fab6 28700
4343666d 28701#if defined (OBJ_COFF)
c19d1205
ZW
28702void
28703arm_validate_fix (fixS * fixP)
6c43fab6 28704{
c19d1205
ZW
28705 /* If the destination of the branch is a defined symbol which does not have
28706 the THUMB_FUNC attribute, then we must be calling a function which has
28707 the (interfacearm) attribute. We look for the Thumb entry point to that
28708 function and change the branch to refer to that function instead. */
28709 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28710 && fixP->fx_addsy != NULL
28711 && S_IS_DEFINED (fixP->fx_addsy)
28712 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 28713 {
c19d1205 28714 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 28715 }
c19d1205
ZW
28716}
28717#endif
6c43fab6 28718
267bf995 28719
c19d1205
ZW
28720int
28721arm_force_relocation (struct fix * fixp)
28722{
28723#if defined (OBJ_COFF) && defined (TE_PE)
28724 if (fixp->fx_r_type == BFD_RELOC_RVA)
28725 return 1;
28726#endif
6c43fab6 28727
267bf995
RR
28728 /* In case we have a call or a branch to a function in ARM ISA mode from
28729 a thumb function or vice-versa force the relocation. These relocations
28730 are cleared off for some cores that might have blx and simple transformations
28731 are possible. */
28732
28733#ifdef OBJ_ELF
28734 switch (fixp->fx_r_type)
28735 {
28736 case BFD_RELOC_ARM_PCREL_JUMP:
28737 case BFD_RELOC_ARM_PCREL_CALL:
28738 case BFD_RELOC_THUMB_PCREL_BLX:
28739 if (THUMB_IS_FUNC (fixp->fx_addsy))
28740 return 1;
28741 break;
28742
28743 case BFD_RELOC_ARM_PCREL_BLX:
28744 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28745 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28746 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28747 if (ARM_IS_FUNC (fixp->fx_addsy))
28748 return 1;
28749 break;
28750
28751 default:
28752 break;
28753 }
28754#endif
28755
b5884301
PB
28756 /* Resolve these relocations even if the symbol is extern or weak.
28757 Technically this is probably wrong due to symbol preemption.
28758 In practice these relocations do not have enough range to be useful
28759 at dynamic link time, and some code (e.g. in the Linux kernel)
28760 expects these references to be resolved. */
c19d1205
ZW
28761 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28762 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 28763 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 28764 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
28765 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28766 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28767 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 28768 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
28769 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28770 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
28771 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28772 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28773 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28774 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 28775 return 0;
a737bd4d 28776
4962c51a
MS
28777 /* Always leave these relocations for the linker. */
28778 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28779 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28780 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28781 return 1;
28782
f0291e4c
PB
28783 /* Always generate relocations against function symbols. */
28784 if (fixp->fx_r_type == BFD_RELOC_32
28785 && fixp->fx_addsy
28786 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28787 return 1;
28788
c19d1205 28789 return generic_force_reloc (fixp);
404ff6b5
AH
28790}
28791
0ffdc86c 28792#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
28793/* Relocations against function names must be left unadjusted,
28794 so that the linker can use this information to generate interworking
28795 stubs. The MIPS version of this function
c19d1205
ZW
28796 also prevents relocations that are mips-16 specific, but I do not
28797 know why it does this.
404ff6b5 28798
c19d1205
ZW
28799 FIXME:
28800 There is one other problem that ought to be addressed here, but
28801 which currently is not: Taking the address of a label (rather
28802 than a function) and then later jumping to that address. Such
28803 addresses also ought to have their bottom bit set (assuming that
28804 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28805
c19d1205
ZW
28806bfd_boolean
28807arm_fix_adjustable (fixS * fixP)
404ff6b5 28808{
c19d1205
ZW
28809 if (fixP->fx_addsy == NULL)
28810 return 1;
404ff6b5 28811
e28387c3
PB
28812 /* Preserve relocations against symbols with function type. */
28813 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28814 return FALSE;
e28387c3 28815
c19d1205
ZW
28816 if (THUMB_IS_FUNC (fixP->fx_addsy)
28817 && fixP->fx_subsy == NULL)
c921be7d 28818 return FALSE;
a737bd4d 28819
c19d1205
ZW
28820 /* We need the symbol name for the VTABLE entries. */
28821 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28822 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28823 return FALSE;
404ff6b5 28824
c19d1205
ZW
28825 /* Don't allow symbols to be discarded on GOT related relocs. */
28826 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28827 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28828 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28829 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28830 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28831 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28832 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28833 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28834 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28835 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28836 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28837 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28838 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28839 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28840 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28841 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28842 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28843 return FALSE;
a737bd4d 28844
4962c51a
MS
28845 /* Similarly for group relocations. */
28846 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28847 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28848 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28849 return FALSE;
4962c51a 28850
79947c54
CD
28851 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28852 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28853 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28854 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28855 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28856 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28857 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28858 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28859 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28860 return FALSE;
79947c54 28861
72d98d16
MG
28862 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28863 offsets, so keep these symbols. */
28864 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28865 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28866 return FALSE;
28867
c921be7d 28868 return TRUE;
a737bd4d 28869}
0ffdc86c
NC
28870#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28871
28872#ifdef OBJ_ELF
c19d1205
ZW
28873const char *
28874elf32_arm_target_format (void)
404ff6b5 28875{
c19d1205
ZW
28876#ifdef TE_SYMBIAN
28877 return (target_big_endian
28878 ? "elf32-bigarm-symbian"
28879 : "elf32-littlearm-symbian");
28880#elif defined (TE_VXWORKS)
28881 return (target_big_endian
28882 ? "elf32-bigarm-vxworks"
28883 : "elf32-littlearm-vxworks");
b38cadfb
NC
28884#elif defined (TE_NACL)
28885 return (target_big_endian
28886 ? "elf32-bigarm-nacl"
28887 : "elf32-littlearm-nacl");
c19d1205 28888#else
18a20338
CL
28889 if (arm_fdpic)
28890 {
28891 if (target_big_endian)
28892 return "elf32-bigarm-fdpic";
28893 else
28894 return "elf32-littlearm-fdpic";
28895 }
c19d1205 28896 else
18a20338
CL
28897 {
28898 if (target_big_endian)
28899 return "elf32-bigarm";
28900 else
28901 return "elf32-littlearm";
28902 }
c19d1205 28903#endif
404ff6b5
AH
28904}
28905
c19d1205
ZW
28906void
28907armelf_frob_symbol (symbolS * symp,
28908 int * puntp)
404ff6b5 28909{
c19d1205
ZW
28910 elf_frob_symbol (symp, puntp);
28911}
28912#endif
404ff6b5 28913
c19d1205 28914/* MD interface: Finalization. */
a737bd4d 28915
c19d1205
ZW
28916void
28917arm_cleanup (void)
28918{
28919 literal_pool * pool;
a737bd4d 28920
5ee91343
AV
28921 /* Ensure that all the predication blocks are properly closed. */
28922 check_pred_blocks_finished ();
e07e6e58 28923
c19d1205
ZW
28924 for (pool = list_of_pools; pool; pool = pool->next)
28925 {
5f4273c7 28926 /* Put it at the end of the relevant section. */
c19d1205
ZW
28927 subseg_set (pool->section, pool->sub_section);
28928#ifdef OBJ_ELF
28929 arm_elf_change_section ();
28930#endif
28931 s_ltorg (0);
28932 }
404ff6b5
AH
28933}
28934
cd000bff
DJ
28935#ifdef OBJ_ELF
28936/* Remove any excess mapping symbols generated for alignment frags in
28937 SEC. We may have created a mapping symbol before a zero byte
28938 alignment; remove it if there's a mapping symbol after the
28939 alignment. */
28940static void
28941check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28942 void *dummy ATTRIBUTE_UNUSED)
28943{
28944 segment_info_type *seginfo = seg_info (sec);
28945 fragS *fragp;
28946
28947 if (seginfo == NULL || seginfo->frchainP == NULL)
28948 return;
28949
28950 for (fragp = seginfo->frchainP->frch_root;
28951 fragp != NULL;
28952 fragp = fragp->fr_next)
28953 {
28954 symbolS *sym = fragp->tc_frag_data.last_map;
28955 fragS *next = fragp->fr_next;
28956
28957 /* Variable-sized frags have been converted to fixed size by
28958 this point. But if this was variable-sized to start with,
28959 there will be a fixed-size frag after it. So don't handle
28960 next == NULL. */
28961 if (sym == NULL || next == NULL)
28962 continue;
28963
28964 if (S_GET_VALUE (sym) < next->fr_address)
28965 /* Not at the end of this frag. */
28966 continue;
28967 know (S_GET_VALUE (sym) == next->fr_address);
28968
28969 do
28970 {
28971 if (next->tc_frag_data.first_map != NULL)
28972 {
28973 /* Next frag starts with a mapping symbol. Discard this
28974 one. */
28975 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28976 break;
28977 }
28978
28979 if (next->fr_next == NULL)
28980 {
28981 /* This mapping symbol is at the end of the section. Discard
28982 it. */
28983 know (next->fr_fix == 0 && next->fr_var == 0);
28984 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28985 break;
28986 }
28987
28988 /* As long as we have empty frags without any mapping symbols,
28989 keep looking. */
28990 /* If the next frag is non-empty and does not start with a
28991 mapping symbol, then this mapping symbol is required. */
28992 if (next->fr_address != next->fr_next->fr_address)
28993 break;
28994
28995 next = next->fr_next;
28996 }
28997 while (next != NULL);
28998 }
28999}
29000#endif
29001
c19d1205
ZW
29002/* Adjust the symbol table. This marks Thumb symbols as distinct from
29003 ARM ones. */
404ff6b5 29004
c19d1205
ZW
29005void
29006arm_adjust_symtab (void)
404ff6b5 29007{
c19d1205
ZW
29008#ifdef OBJ_COFF
29009 symbolS * sym;
404ff6b5 29010
c19d1205
ZW
29011 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29012 {
29013 if (ARM_IS_THUMB (sym))
29014 {
29015 if (THUMB_IS_FUNC (sym))
29016 {
29017 /* Mark the symbol as a Thumb function. */
29018 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29019 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29020 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 29021
c19d1205
ZW
29022 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29023 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29024 else
29025 as_bad (_("%s: unexpected function type: %d"),
29026 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29027 }
29028 else switch (S_GET_STORAGE_CLASS (sym))
29029 {
29030 case C_EXT:
29031 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29032 break;
29033 case C_STAT:
29034 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29035 break;
29036 case C_LABEL:
29037 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29038 break;
29039 default:
29040 /* Do nothing. */
29041 break;
29042 }
29043 }
a737bd4d 29044
c19d1205
ZW
29045 if (ARM_IS_INTERWORK (sym))
29046 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 29047 }
c19d1205
ZW
29048#endif
29049#ifdef OBJ_ELF
29050 symbolS * sym;
29051 char bind;
404ff6b5 29052
c19d1205 29053 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 29054 {
c19d1205
ZW
29055 if (ARM_IS_THUMB (sym))
29056 {
29057 elf_symbol_type * elf_sym;
404ff6b5 29058
c19d1205
ZW
29059 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29060 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 29061
b0796911
PB
29062 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29063 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
29064 {
29065 /* If it's a .thumb_func, declare it as so,
29066 otherwise tag label as .code 16. */
29067 if (THUMB_IS_FUNC (sym))
39d911fc
TP
29068 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29069 ST_BRANCH_TO_THUMB);
3ba67470 29070 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
29071 elf_sym->internal_elf_sym.st_info =
29072 ELF_ST_INFO (bind, STT_ARM_16BIT);
29073 }
29074 }
29075 }
cd000bff
DJ
29076
29077 /* Remove any overlapping mapping symbols generated by alignment frags. */
29078 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
29079 /* Now do generic ELF adjustments. */
29080 elf_adjust_symtab ();
c19d1205 29081#endif
404ff6b5
AH
29082}
29083
c19d1205 29084/* MD interface: Initialization. */
404ff6b5 29085
a737bd4d 29086static void
c19d1205 29087set_constant_flonums (void)
a737bd4d 29088{
c19d1205 29089 int i;
404ff6b5 29090
c19d1205
ZW
29091 for (i = 0; i < NUM_FLOAT_VALS; i++)
29092 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29093 abort ();
a737bd4d 29094}
404ff6b5 29095
3e9e4fcf
JB
29096/* Auto-select Thumb mode if it's the only available instruction set for the
29097 given architecture. */
29098
29099static void
29100autoselect_thumb_from_cpu_variant (void)
29101{
29102 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29103 opcode_select (16);
29104}
29105
c19d1205
ZW
29106void
29107md_begin (void)
a737bd4d 29108{
c19d1205
ZW
29109 unsigned mach;
29110 unsigned int i;
404ff6b5 29111
c19d1205
ZW
29112 if ( (arm_ops_hsh = hash_new ()) == NULL
29113 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 29114 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
29115 || (arm_shift_hsh = hash_new ()) == NULL
29116 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 29117 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 29118 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
29119 || (arm_reloc_hsh = hash_new ()) == NULL
29120 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
29121 as_fatal (_("virtual memory exhausted"));
29122
29123 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 29124 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 29125 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 29126 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
29127 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29128 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 29129 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 29130 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 29131 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29132 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 29133 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29134 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 29135 (void *) (v7m_psrs + i));
c19d1205 29136 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 29137 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
29138 for (i = 0;
29139 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29140 i++)
d3ce72d0 29141 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 29142 (void *) (barrier_opt_names + i));
c19d1205 29143#ifdef OBJ_ELF
3da1d841
NC
29144 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29145 {
29146 struct reloc_entry * entry = reloc_names + i;
29147
29148 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29149 /* This makes encode_branch() use the EABI versions of this relocation. */
29150 entry->reloc = BFD_RELOC_UNUSED;
29151
29152 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29153 }
c19d1205
ZW
29154#endif
29155
29156 set_constant_flonums ();
404ff6b5 29157
c19d1205
ZW
29158 /* Set the cpu variant based on the command-line options. We prefer
29159 -mcpu= over -march= if both are set (as for GCC); and we prefer
29160 -mfpu= over any other way of setting the floating point unit.
29161 Use of legacy options with new options are faulted. */
e74cfd16 29162 if (legacy_cpu)
404ff6b5 29163 {
e74cfd16 29164 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
29165 as_bad (_("use of old and new-style options to set CPU type"));
29166
4d354d8b 29167 selected_arch = *legacy_cpu;
404ff6b5 29168 }
4d354d8b
TP
29169 else if (mcpu_cpu_opt)
29170 {
29171 selected_arch = *mcpu_cpu_opt;
29172 selected_ext = *mcpu_ext_opt;
29173 }
29174 else if (march_cpu_opt)
c168ce07 29175 {
4d354d8b
TP
29176 selected_arch = *march_cpu_opt;
29177 selected_ext = *march_ext_opt;
c168ce07 29178 }
4d354d8b 29179 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 29180
e74cfd16 29181 if (legacy_fpu)
c19d1205 29182 {
e74cfd16 29183 if (mfpu_opt)
c19d1205 29184 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 29185
4d354d8b 29186 selected_fpu = *legacy_fpu;
03b1477f 29187 }
4d354d8b
TP
29188 else if (mfpu_opt)
29189 selected_fpu = *mfpu_opt;
29190 else
03b1477f 29191 {
45eb4c1b
NS
29192#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29193 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
29194 /* Some environments specify a default FPU. If they don't, infer it
29195 from the processor. */
e74cfd16 29196 if (mcpu_fpu_opt)
4d354d8b 29197 selected_fpu = *mcpu_fpu_opt;
e7da50fa 29198 else if (march_fpu_opt)
4d354d8b 29199 selected_fpu = *march_fpu_opt;
39c2da32 29200#else
4d354d8b 29201 selected_fpu = fpu_default;
39c2da32 29202#endif
03b1477f
RE
29203 }
29204
4d354d8b 29205 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 29206 {
4d354d8b
TP
29207 if (!no_cpu_selected ())
29208 selected_fpu = fpu_default;
03b1477f 29209 else
4d354d8b 29210 selected_fpu = fpu_arch_fpa;
03b1477f
RE
29211 }
29212
ee065d83 29213#ifdef CPU_DEFAULT
4d354d8b 29214 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 29215 {
4d354d8b
TP
29216 selected_arch = cpu_default;
29217 selected_cpu = selected_arch;
ee065d83 29218 }
4d354d8b 29219 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 29220#else
4d354d8b
TP
29221 /* Autodection of feature mode: allow all features in cpu_variant but leave
29222 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29223 after all instruction have been processed and we can decide what CPU
29224 should be selected. */
29225 if (ARM_FEATURE_ZERO (selected_arch))
29226 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 29227 else
4d354d8b 29228 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 29229#endif
03b1477f 29230
3e9e4fcf
JB
29231 autoselect_thumb_from_cpu_variant ();
29232
e74cfd16 29233 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 29234
f17c130b 29235#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 29236 {
7cc69913
NC
29237 unsigned int flags = 0;
29238
29239#if defined OBJ_ELF
29240 flags = meabi_flags;
d507cf36
PB
29241
29242 switch (meabi_flags)
33a392fb 29243 {
d507cf36 29244 case EF_ARM_EABI_UNKNOWN:
7cc69913 29245#endif
d507cf36
PB
29246 /* Set the flags in the private structure. */
29247 if (uses_apcs_26) flags |= F_APCS26;
29248 if (support_interwork) flags |= F_INTERWORK;
29249 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 29250 if (pic_code) flags |= F_PIC;
e74cfd16 29251 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
29252 flags |= F_SOFT_FLOAT;
29253
d507cf36
PB
29254 switch (mfloat_abi_opt)
29255 {
29256 case ARM_FLOAT_ABI_SOFT:
29257 case ARM_FLOAT_ABI_SOFTFP:
29258 flags |= F_SOFT_FLOAT;
29259 break;
33a392fb 29260
d507cf36
PB
29261 case ARM_FLOAT_ABI_HARD:
29262 if (flags & F_SOFT_FLOAT)
29263 as_bad (_("hard-float conflicts with specified fpu"));
29264 break;
29265 }
03b1477f 29266
e74cfd16
PB
29267 /* Using pure-endian doubles (even if soft-float). */
29268 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 29269 flags |= F_VFP_FLOAT;
f17c130b 29270
fde78edd 29271#if defined OBJ_ELF
e74cfd16 29272 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 29273 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
29274 break;
29275
8cb51566 29276 case EF_ARM_EABI_VER4:
3a4a14e9 29277 case EF_ARM_EABI_VER5:
c19d1205 29278 /* No additional flags to set. */
d507cf36
PB
29279 break;
29280
29281 default:
29282 abort ();
29283 }
7cc69913 29284#endif
b99bd4ef
NC
29285 bfd_set_private_flags (stdoutput, flags);
29286
29287 /* We have run out flags in the COFF header to encode the
29288 status of ATPCS support, so instead we create a dummy,
c19d1205 29289 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
29290 if (atpcs)
29291 {
29292 asection * sec;
29293
29294 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29295
29296 if (sec != NULL)
29297 {
29298 bfd_set_section_flags
29299 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29300 bfd_set_section_size (stdoutput, sec, 0);
29301 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29302 }
29303 }
7cc69913 29304 }
f17c130b 29305#endif
b99bd4ef
NC
29306
29307 /* Record the CPU type as well. */
2d447fca
JM
29308 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29309 mach = bfd_mach_arm_iWMMXt2;
29310 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 29311 mach = bfd_mach_arm_iWMMXt;
e74cfd16 29312 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 29313 mach = bfd_mach_arm_XScale;
e74cfd16 29314 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 29315 mach = bfd_mach_arm_ep9312;
e74cfd16 29316 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 29317 mach = bfd_mach_arm_5TE;
e74cfd16 29318 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 29319 {
e74cfd16 29320 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29321 mach = bfd_mach_arm_5T;
29322 else
29323 mach = bfd_mach_arm_5;
29324 }
e74cfd16 29325 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 29326 {
e74cfd16 29327 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29328 mach = bfd_mach_arm_4T;
29329 else
29330 mach = bfd_mach_arm_4;
29331 }
e74cfd16 29332 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 29333 mach = bfd_mach_arm_3M;
e74cfd16
PB
29334 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29335 mach = bfd_mach_arm_3;
29336 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29337 mach = bfd_mach_arm_2a;
29338 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29339 mach = bfd_mach_arm_2;
29340 else
29341 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
29342
29343 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29344}
29345
c19d1205 29346/* Command line processing. */
b99bd4ef 29347
c19d1205
ZW
29348/* md_parse_option
29349 Invocation line includes a switch not recognized by the base assembler.
29350 See if it's a processor-specific option.
b99bd4ef 29351
c19d1205
ZW
29352 This routine is somewhat complicated by the need for backwards
29353 compatibility (since older releases of gcc can't be changed).
29354 The new options try to make the interface as compatible as
29355 possible with GCC.
b99bd4ef 29356
c19d1205 29357 New options (supported) are:
b99bd4ef 29358
c19d1205
ZW
29359 -mcpu=<cpu name> Assemble for selected processor
29360 -march=<architecture name> Assemble for selected architecture
29361 -mfpu=<fpu architecture> Assemble for selected FPU.
29362 -EB/-mbig-endian Big-endian
29363 -EL/-mlittle-endian Little-endian
29364 -k Generate PIC code
29365 -mthumb Start in Thumb mode
29366 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 29367
278df34e 29368 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 29369 -m[no-]warn-syms Warn when symbols match instructions
267bf995 29370
c19d1205 29371 For now we will also provide support for:
b99bd4ef 29372
c19d1205
ZW
29373 -mapcs-32 32-bit Program counter
29374 -mapcs-26 26-bit Program counter
29375 -macps-float Floats passed in FP registers
29376 -mapcs-reentrant Reentrant code
29377 -matpcs
29378 (sometime these will probably be replaced with -mapcs=<list of options>
29379 and -matpcs=<list of options>)
b99bd4ef 29380
c19d1205
ZW
29381 The remaining options are only supported for back-wards compatibility.
29382 Cpu variants, the arm part is optional:
29383 -m[arm]1 Currently not supported.
29384 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29385 -m[arm]3 Arm 3 processor
29386 -m[arm]6[xx], Arm 6 processors
29387 -m[arm]7[xx][t][[d]m] Arm 7 processors
29388 -m[arm]8[10] Arm 8 processors
29389 -m[arm]9[20][tdmi] Arm 9 processors
29390 -mstrongarm[110[0]] StrongARM processors
29391 -mxscale XScale processors
29392 -m[arm]v[2345[t[e]]] Arm architectures
29393 -mall All (except the ARM1)
29394 FP variants:
29395 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29396 -mfpe-old (No float load/store multiples)
29397 -mvfpxd VFP Single precision
29398 -mvfp All VFP
29399 -mno-fpu Disable all floating point instructions
b99bd4ef 29400
c19d1205
ZW
29401 The following CPU names are recognized:
29402 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29403 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29404 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29405 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29406 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29407 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29408 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 29409
c19d1205 29410 */
b99bd4ef 29411
c19d1205 29412const char * md_shortopts = "m:k";
b99bd4ef 29413
c19d1205
ZW
29414#ifdef ARM_BI_ENDIAN
29415#define OPTION_EB (OPTION_MD_BASE + 0)
29416#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 29417#else
c19d1205
ZW
29418#if TARGET_BYTES_BIG_ENDIAN
29419#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 29420#else
c19d1205
ZW
29421#define OPTION_EL (OPTION_MD_BASE + 1)
29422#endif
b99bd4ef 29423#endif
845b51d6 29424#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 29425#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 29426
c19d1205 29427struct option md_longopts[] =
b99bd4ef 29428{
c19d1205
ZW
29429#ifdef OPTION_EB
29430 {"EB", no_argument, NULL, OPTION_EB},
29431#endif
29432#ifdef OPTION_EL
29433 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 29434#endif
845b51d6 29435 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
29436#ifdef OBJ_ELF
29437 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29438#endif
c19d1205
ZW
29439 {NULL, no_argument, NULL, 0}
29440};
b99bd4ef 29441
c19d1205 29442size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 29443
c19d1205 29444struct arm_option_table
b99bd4ef 29445{
0198d5e6
TC
29446 const char * option; /* Option name to match. */
29447 const char * help; /* Help information. */
29448 int * var; /* Variable to change. */
29449 int value; /* What to change it to. */
29450 const char * deprecated; /* If non-null, print this message. */
c19d1205 29451};
b99bd4ef 29452
c19d1205
ZW
29453struct arm_option_table arm_opts[] =
29454{
29455 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29456 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29457 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29458 &support_interwork, 1, NULL},
29459 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29460 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29461 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29462 1, NULL},
29463 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29464 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29465 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29466 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29467 NULL},
b99bd4ef 29468
c19d1205
ZW
29469 /* These are recognized by the assembler, but have no affect on code. */
29470 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29471 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
29472
29473 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29474 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29475 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
29476 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29477 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
29478 {NULL, NULL, NULL, 0, NULL}
29479};
29480
29481struct arm_legacy_option_table
29482{
0198d5e6
TC
29483 const char * option; /* Option name to match. */
29484 const arm_feature_set ** var; /* Variable to change. */
29485 const arm_feature_set value; /* What to change it to. */
29486 const char * deprecated; /* If non-null, print this message. */
e74cfd16 29487};
b99bd4ef 29488
e74cfd16
PB
29489const struct arm_legacy_option_table arm_legacy_opts[] =
29490{
c19d1205
ZW
29491 /* DON'T add any new processors to this list -- we want the whole list
29492 to go away... Add them to the processors table instead. */
e74cfd16
PB
29493 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29494 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29495 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29496 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29497 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29498 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29499 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29500 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29501 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29502 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29503 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29504 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29505 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29506 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29507 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29508 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29509 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29510 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29511 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29512 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29513 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29514 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29515 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29516 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29517 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29518 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29519 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29520 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29521 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29522 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29523 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29524 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29525 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29526 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29527 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29528 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29529 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29530 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29531 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29532 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29533 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29534 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29535 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29536 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29537 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29538 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29539 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29540 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29541 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29542 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29543 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29544 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29545 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29546 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29547 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29548 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29549 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29550 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29551 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29552 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29553 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29554 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29555 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29556 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29557 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29558 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29559 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29560 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29561 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29562 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29563 N_("use -mcpu=strongarm110")},
e74cfd16 29564 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29565 N_("use -mcpu=strongarm1100")},
e74cfd16 29566 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29567 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
29568 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29569 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29570 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 29571
c19d1205 29572 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
29573 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29574 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29575 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29576 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29577 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29578 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29579 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29580 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29581 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29582 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29583 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29584 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29585 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29586 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29587 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29588 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29589 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29590 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 29591
c19d1205 29592 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
29593 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29594 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29595 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29596 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29597 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29598
e74cfd16 29599 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29600};
7ed4c4c5 29601
c19d1205 29602struct arm_cpu_option_table
7ed4c4c5 29603{
0198d5e6
TC
29604 const char * name;
29605 size_t name_len;
29606 const arm_feature_set value;
29607 const arm_feature_set ext;
c19d1205
ZW
29608 /* For some CPUs we assume an FPU unless the user explicitly sets
29609 -mfpu=... */
0198d5e6 29610 const arm_feature_set default_fpu;
ee065d83
PB
29611 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29612 case. */
0198d5e6 29613 const char * canonical_name;
c19d1205 29614};
7ed4c4c5 29615
c19d1205
ZW
29616/* This list should, at a minimum, contain all the cpu names
29617 recognized by GCC. */
996b5569 29618#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29619
e74cfd16 29620static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29621{
996b5569
TP
29622 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29623 ARM_ARCH_NONE,
29624 FPU_ARCH_FPA),
29625 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29626 ARM_ARCH_NONE,
29627 FPU_ARCH_FPA),
29628 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29629 ARM_ARCH_NONE,
29630 FPU_ARCH_FPA),
29631 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29632 ARM_ARCH_NONE,
29633 FPU_ARCH_FPA),
29634 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29635 ARM_ARCH_NONE,
29636 FPU_ARCH_FPA),
29637 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29638 ARM_ARCH_NONE,
29639 FPU_ARCH_FPA),
29640 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29641 ARM_ARCH_NONE,
29642 FPU_ARCH_FPA),
29643 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29644 ARM_ARCH_NONE,
29645 FPU_ARCH_FPA),
29646 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29647 ARM_ARCH_NONE,
29648 FPU_ARCH_FPA),
29649 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29650 ARM_ARCH_NONE,
29651 FPU_ARCH_FPA),
29652 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29653 ARM_ARCH_NONE,
29654 FPU_ARCH_FPA),
29655 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29656 ARM_ARCH_NONE,
29657 FPU_ARCH_FPA),
29658 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29659 ARM_ARCH_NONE,
29660 FPU_ARCH_FPA),
29661 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29662 ARM_ARCH_NONE,
29663 FPU_ARCH_FPA),
29664 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29665 ARM_ARCH_NONE,
29666 FPU_ARCH_FPA),
29667 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29668 ARM_ARCH_NONE,
29669 FPU_ARCH_FPA),
29670 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29671 ARM_ARCH_NONE,
29672 FPU_ARCH_FPA),
29673 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29674 ARM_ARCH_NONE,
29675 FPU_ARCH_FPA),
29676 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29677 ARM_ARCH_NONE,
29678 FPU_ARCH_FPA),
29679 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29680 ARM_ARCH_NONE,
29681 FPU_ARCH_FPA),
29682 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29683 ARM_ARCH_NONE,
29684 FPU_ARCH_FPA),
29685 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29686 ARM_ARCH_NONE,
29687 FPU_ARCH_FPA),
29688 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29689 ARM_ARCH_NONE,
29690 FPU_ARCH_FPA),
29691 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29692 ARM_ARCH_NONE,
29693 FPU_ARCH_FPA),
29694 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29695 ARM_ARCH_NONE,
29696 FPU_ARCH_FPA),
29697 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29698 ARM_ARCH_NONE,
29699 FPU_ARCH_FPA),
29700 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29701 ARM_ARCH_NONE,
29702 FPU_ARCH_FPA),
29703 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29704 ARM_ARCH_NONE,
29705 FPU_ARCH_FPA),
29706 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29707 ARM_ARCH_NONE,
29708 FPU_ARCH_FPA),
29709 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29710 ARM_ARCH_NONE,
29711 FPU_ARCH_FPA),
29712 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29713 ARM_ARCH_NONE,
29714 FPU_ARCH_FPA),
29715 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29716 ARM_ARCH_NONE,
29717 FPU_ARCH_FPA),
29718 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29719 ARM_ARCH_NONE,
29720 FPU_ARCH_FPA),
29721 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29722 ARM_ARCH_NONE,
29723 FPU_ARCH_FPA),
29724 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29725 ARM_ARCH_NONE,
29726 FPU_ARCH_FPA),
29727 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29728 ARM_ARCH_NONE,
29729 FPU_ARCH_FPA),
29730 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29731 ARM_ARCH_NONE,
29732 FPU_ARCH_FPA),
29733 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29734 ARM_ARCH_NONE,
29735 FPU_ARCH_FPA),
29736 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29737 ARM_ARCH_NONE,
29738 FPU_ARCH_FPA),
29739 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29740 ARM_ARCH_NONE,
29741 FPU_ARCH_FPA),
29742 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29743 ARM_ARCH_NONE,
29744 FPU_ARCH_FPA),
29745 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29746 ARM_ARCH_NONE,
29747 FPU_ARCH_FPA),
29748 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29749 ARM_ARCH_NONE,
29750 FPU_ARCH_FPA),
29751 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29752 ARM_ARCH_NONE,
29753 FPU_ARCH_FPA),
29754 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29755 ARM_ARCH_NONE,
29756 FPU_ARCH_FPA),
29757 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29758 ARM_ARCH_NONE,
29759 FPU_ARCH_FPA),
29760
c19d1205
ZW
29761 /* For V5 or later processors we default to using VFP; but the user
29762 should really set the FPU type explicitly. */
996b5569
TP
29763 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29764 ARM_ARCH_NONE,
29765 FPU_ARCH_VFP_V2),
29766 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29767 ARM_ARCH_NONE,
29768 FPU_ARCH_VFP_V2),
29769 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29770 ARM_ARCH_NONE,
29771 FPU_ARCH_VFP_V2),
29772 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29773 ARM_ARCH_NONE,
29774 FPU_ARCH_VFP_V2),
29775 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29776 ARM_ARCH_NONE,
29777 FPU_ARCH_VFP_V2),
29778 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29779 ARM_ARCH_NONE,
29780 FPU_ARCH_VFP_V2),
29781 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29782 ARM_ARCH_NONE,
29783 FPU_ARCH_VFP_V2),
29784 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29785 ARM_ARCH_NONE,
29786 FPU_ARCH_VFP_V2),
29787 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29788 ARM_ARCH_NONE,
29789 FPU_ARCH_VFP_V2),
29790 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29791 ARM_ARCH_NONE,
29792 FPU_ARCH_VFP_V2),
29793 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29794 ARM_ARCH_NONE,
29795 FPU_ARCH_VFP_V2),
29796 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29797 ARM_ARCH_NONE,
29798 FPU_ARCH_VFP_V2),
29799 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29800 ARM_ARCH_NONE,
29801 FPU_ARCH_VFP_V1),
29802 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29803 ARM_ARCH_NONE,
29804 FPU_ARCH_VFP_V1),
29805 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29806 ARM_ARCH_NONE,
29807 FPU_ARCH_VFP_V2),
29808 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29809 ARM_ARCH_NONE,
29810 FPU_ARCH_VFP_V2),
29811 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29812 ARM_ARCH_NONE,
29813 FPU_ARCH_VFP_V1),
29814 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29815 ARM_ARCH_NONE,
29816 FPU_ARCH_VFP_V2),
29817 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29818 ARM_ARCH_NONE,
29819 FPU_ARCH_VFP_V2),
29820 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29821 ARM_ARCH_NONE,
29822 FPU_ARCH_VFP_V2),
29823 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29824 ARM_ARCH_NONE,
29825 FPU_ARCH_VFP_V2),
29826 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29827 ARM_ARCH_NONE,
29828 FPU_ARCH_VFP_V2),
29829 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29830 ARM_ARCH_NONE,
29831 FPU_ARCH_VFP_V2),
29832 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29833 ARM_ARCH_NONE,
29834 FPU_ARCH_VFP_V2),
29835 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29836 ARM_ARCH_NONE,
29837 FPU_ARCH_VFP_V2),
29838 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29839 ARM_ARCH_NONE,
29840 FPU_ARCH_VFP_V2),
29841 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29842 ARM_ARCH_NONE,
29843 FPU_NONE),
29844 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29845 ARM_ARCH_NONE,
29846 FPU_NONE),
29847 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29848 ARM_ARCH_NONE,
29849 FPU_ARCH_VFP_V2),
29850 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29851 ARM_ARCH_NONE,
29852 FPU_ARCH_VFP_V2),
29853 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29854 ARM_ARCH_NONE,
29855 FPU_ARCH_VFP_V2),
29856 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29857 ARM_ARCH_NONE,
29858 FPU_NONE),
29859 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29860 ARM_ARCH_NONE,
29861 FPU_NONE),
29862 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29863 ARM_ARCH_NONE,
29864 FPU_ARCH_VFP_V2),
29865 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29866 ARM_ARCH_NONE,
29867 FPU_NONE),
29868 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29869 ARM_ARCH_NONE,
29870 FPU_ARCH_VFP_V2),
29871 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29872 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29873 FPU_NONE),
29874 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29875 ARM_ARCH_NONE,
29876 FPU_ARCH_NEON_VFP_V4),
29877 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29878 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29879 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29880 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29881 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29882 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29883 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29884 ARM_ARCH_NONE,
29885 FPU_ARCH_NEON_VFP_V4),
29886 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29887 ARM_ARCH_NONE,
29888 FPU_ARCH_NEON_VFP_V4),
29889 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29890 ARM_ARCH_NONE,
29891 FPU_ARCH_NEON_VFP_V4),
29892 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29893 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29894 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29895 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29896 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29897 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29898 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29899 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29900 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29901 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29902 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29903 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29904 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29905 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29906 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29907 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29908 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29909 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29910 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29911 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29912 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29913 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29914 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29915 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 29916 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29917 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29918 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
29919 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29920 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29921 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29922 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29923 ARM_ARCH_NONE,
29924 FPU_NONE),
29925 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29926 ARM_ARCH_NONE,
29927 FPU_ARCH_VFP_V3D16),
29928 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29929 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29930 FPU_NONE),
29931 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29932 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29933 FPU_ARCH_VFP_V3D16),
29934 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29935 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29936 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
29937 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29938 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29939 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
29940 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29941 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29942 FPU_NONE),
29943 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29944 ARM_ARCH_NONE,
29945 FPU_NONE),
29946 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29947 ARM_ARCH_NONE,
29948 FPU_NONE),
29949 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29950 ARM_ARCH_NONE,
29951 FPU_NONE),
29952 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29953 ARM_ARCH_NONE,
29954 FPU_NONE),
29955 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29956 ARM_ARCH_NONE,
29957 FPU_NONE),
29958 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29959 ARM_ARCH_NONE,
29960 FPU_NONE),
29961 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29962 ARM_ARCH_NONE,
29963 FPU_NONE),
29964 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29965 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29966 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
29967 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29968 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29969 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 29970 /* ??? XSCALE is really an architecture. */
996b5569
TP
29971 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29972 ARM_ARCH_NONE,
29973 FPU_ARCH_VFP_V2),
29974
c19d1205 29975 /* ??? iwmmxt is not a processor. */
996b5569
TP
29976 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29977 ARM_ARCH_NONE,
29978 FPU_ARCH_VFP_V2),
29979 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29980 ARM_ARCH_NONE,
29981 FPU_ARCH_VFP_V2),
29982 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29983 ARM_ARCH_NONE,
29984 FPU_ARCH_VFP_V2),
29985
0198d5e6 29986 /* Maverick. */
996b5569
TP
29987 ARM_CPU_OPT ("ep9312", "ARM920T",
29988 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29989 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29990
da4339ed 29991 /* Marvell processors. */
996b5569
TP
29992 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29993 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29994 FPU_ARCH_VFP_V3D16),
29995 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29996 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29997 FPU_ARCH_NEON_VFP_V4),
da4339ed 29998
996b5569
TP
29999 /* APM X-Gene family. */
30000 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30001 ARM_ARCH_NONE,
30002 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30003 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30004 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30005 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30006
30007 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30008};
f3bad469 30009#undef ARM_CPU_OPT
7ed4c4c5 30010
34ef62f4
AV
30011struct arm_ext_table
30012{
30013 const char * name;
30014 size_t name_len;
30015 const arm_feature_set merge;
30016 const arm_feature_set clear;
30017};
30018
c19d1205 30019struct arm_arch_option_table
7ed4c4c5 30020{
34ef62f4
AV
30021 const char * name;
30022 size_t name_len;
30023 const arm_feature_set value;
30024 const arm_feature_set default_fpu;
30025 const struct arm_ext_table * ext_table;
30026};
30027
30028/* Used to add support for +E and +noE extension. */
30029#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30030/* Used to add support for a +E extension. */
30031#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30032/* Used to add support for a +noE extension. */
30033#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30034
30035#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30036 ~0 & ~FPU_ENDIAN_PURE)
30037
30038static const struct arm_ext_table armv5te_ext_table[] =
30039{
30040 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30041 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30042};
30043
30044static const struct arm_ext_table armv7_ext_table[] =
30045{
30046 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30047 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30048};
30049
30050static const struct arm_ext_table armv7ve_ext_table[] =
30051{
30052 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30053 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30054 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30055 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30056 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30057 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30058 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30059
30060 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30061 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30062
30063 /* Aliases for +simd. */
30064 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30065
30066 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30067 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30068 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30069
30070 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30071};
30072
30073static const struct arm_ext_table armv7a_ext_table[] =
30074{
30075 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30076 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30077 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30078 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30079 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30080 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30081 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30082
30083 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30084 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30085
30086 /* Aliases for +simd. */
30087 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30088 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30089
30090 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30091 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30092
30093 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30094 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30095 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30096};
30097
30098static const struct arm_ext_table armv7r_ext_table[] =
30099{
30100 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30101 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30102 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30103 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30104 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30105 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30106 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30107 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30108 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30109};
30110
30111static const struct arm_ext_table armv7em_ext_table[] =
30112{
30113 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30114 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30115 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30116 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30117 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30118 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30119 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30120};
30121
30122static const struct arm_ext_table armv8a_ext_table[] =
30123{
30124 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30125 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30126 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30127 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30128
30129 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30130 should use the +simd option to turn on FP. */
30131 ARM_REMOVE ("fp", ALL_FP),
30132 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30133 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30134 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30135};
30136
30137
30138static const struct arm_ext_table armv81a_ext_table[] =
30139{
30140 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30141 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30142 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30143
30144 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30145 should use the +simd option to turn on FP. */
30146 ARM_REMOVE ("fp", ALL_FP),
30147 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30148 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30149 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30150};
30151
30152static const struct arm_ext_table armv82a_ext_table[] =
30153{
30154 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30155 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30156 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30157 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30158 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30159 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30160
30161 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30162 should use the +simd option to turn on FP. */
30163 ARM_REMOVE ("fp", ALL_FP),
30164 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30165 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30166 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30167};
30168
30169static const struct arm_ext_table armv84a_ext_table[] =
30170{
30171 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30172 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30173 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30174 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30175
30176 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30177 should use the +simd option to turn on FP. */
30178 ARM_REMOVE ("fp", ALL_FP),
30179 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30180 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30181 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30182};
30183
30184static const struct arm_ext_table armv85a_ext_table[] =
30185{
30186 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30187 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30188 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30189 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30190
30191 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30192 should use the +simd option to turn on FP. */
30193 ARM_REMOVE ("fp", ALL_FP),
30194 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30195};
30196
30197static const struct arm_ext_table armv8m_main_ext_table[] =
30198{
30199 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30200 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30201 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30202 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30203 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30204};
30205
e0991585
AV
30206static const struct arm_ext_table armv8_1m_main_ext_table[] =
30207{
30208 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30209 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30210 ARM_EXT ("fp",
30211 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30212 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30213 ALL_FP),
30214 ARM_ADD ("fp.dp",
30215 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30216 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
30217 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30218 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30219 ARM_ADD ("mve.fp",
30220 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30221 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30222 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
30223 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30224};
30225
34ef62f4
AV
30226static const struct arm_ext_table armv8r_ext_table[] =
30227{
30228 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30229 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30230 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30231 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30232 ARM_REMOVE ("fp", ALL_FP),
30233 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30234 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 30235};
7ed4c4c5 30236
c19d1205
ZW
30237/* This list should, at a minimum, contain all the architecture names
30238 recognized by GCC. */
34ef62f4
AV
30239#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30240#define ARM_ARCH_OPT2(N, V, DF, ext) \
30241 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 30242
e74cfd16 30243static const struct arm_arch_option_table arm_archs[] =
c19d1205 30244{
497d849d
TP
30245 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30246 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30247 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30248 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30249 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30250 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30251 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30252 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30253 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30254 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30255 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30256 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30257 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30258 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
30259 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30260 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30261 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30262 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30263 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30264 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30265 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30266 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30267 kept to preserve existing behaviour. */
34ef62f4
AV
30268 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30269 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30270 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30271 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30272 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30273 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30274 kept to preserve existing behaviour. */
34ef62f4
AV
30275 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30276 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
30277 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30278 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 30279 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
30280 /* The official spelling of the ARMv7 profile variants is the dashed form.
30281 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
30282 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30283 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30284 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30285 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
30286 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30287 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30288 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 30289 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 30290 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
30291 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30292 armv8m_main),
e0991585
AV
30293 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30294 armv8_1m_main),
34ef62f4
AV
30295 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30296 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30297 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30298 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30299 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30300 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30301 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
30302 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30303 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30304 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 30305 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30306};
f3bad469 30307#undef ARM_ARCH_OPT
7ed4c4c5 30308
69133863 30309/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 30310
69133863 30311struct arm_option_extension_value_table
c19d1205 30312{
0198d5e6
TC
30313 const char * name;
30314 size_t name_len;
30315 const arm_feature_set merge_value;
30316 const arm_feature_set clear_value;
d942732e
TP
30317 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30318 indicates that an extension is available for all architectures while
30319 ARM_ANY marks an empty entry. */
0198d5e6 30320 const arm_feature_set allowed_archs[2];
c19d1205 30321};
7ed4c4c5 30322
0198d5e6
TC
30323/* The following table must be in alphabetical order with a NULL last entry. */
30324
d942732e
TP
30325#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30326#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 30327
34ef62f4
AV
30328/* DEPRECATED: Refrain from using this table to add any new extensions, instead
30329 use the context sensitive approach using arm_ext_table's. */
69133863 30330static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 30331{
823d2571
TG
30332 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30333 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 30334 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
30335 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30336 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
30337 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30338 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30339 ARM_ARCH_V8_2A),
15afaa63
TP
30340 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30341 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30342 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
30343 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30344 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
30345 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30346 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30347 ARM_ARCH_V8_2A),
01f48020
TC
30348 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30349 | ARM_EXT2_FP16_FML),
30350 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30351 | ARM_EXT2_FP16_FML),
30352 ARM_ARCH_V8_2A),
d942732e 30353 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 30354 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
30355 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30356 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
30357 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30358 Thumb divide instruction. Due to this having the same name as the
30359 previous entry, this will be ignored when doing command-line parsing and
30360 only considered by build attribute selection code. */
30361 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30362 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30363 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 30364 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 30365 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 30366 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 30367 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 30368 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
30369 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30370 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 30371 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
30372 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30373 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
30374 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30375 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30376 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
30377 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30378 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 30379 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
30380 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30381 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30382 ARM_ARCH_V8A),
4d1464f2
MW
30383 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30384 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 30385 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
30386 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30387 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 30388 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
30389 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30390 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30391 ARM_ARCH_V8A),
d942732e 30392 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 30393 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
30394 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30395 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
30396 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30397 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30398 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
30399 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30400 | ARM_EXT_DIV),
30401 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30402 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30403 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
30404 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30405 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 30406};
f3bad469 30407#undef ARM_EXT_OPT
69133863
MGD
30408
30409/* ISA floating-point and Advanced SIMD extensions. */
30410struct arm_option_fpu_value_table
30411{
0198d5e6
TC
30412 const char * name;
30413 const arm_feature_set value;
c19d1205 30414};
7ed4c4c5 30415
c19d1205
ZW
30416/* This list should, at a minimum, contain all the fpu names
30417 recognized by GCC. */
69133863 30418static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
30419{
30420 {"softfpa", FPU_NONE},
30421 {"fpe", FPU_ARCH_FPE},
30422 {"fpe2", FPU_ARCH_FPE},
30423 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30424 {"fpa", FPU_ARCH_FPA},
30425 {"fpa10", FPU_ARCH_FPA},
30426 {"fpa11", FPU_ARCH_FPA},
30427 {"arm7500fe", FPU_ARCH_FPA},
30428 {"softvfp", FPU_ARCH_VFP},
30429 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30430 {"vfp", FPU_ARCH_VFP_V2},
30431 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 30432 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
30433 {"vfp10", FPU_ARCH_VFP_V2},
30434 {"vfp10-r0", FPU_ARCH_VFP_V1},
30435 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
30436 {"vfpv2", FPU_ARCH_VFP_V2},
30437 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 30438 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 30439 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
30440 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30441 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30442 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
30443 {"arm1020t", FPU_ARCH_VFP_V1},
30444 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 30445 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
30446 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30447 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 30448 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 30449 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 30450 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
30451 {"vfpv4", FPU_ARCH_VFP_V4},
30452 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 30453 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
30454 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30455 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 30456 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
30457 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30458 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30459 {"crypto-neon-fp-armv8",
30460 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 30461 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
30462 {"crypto-neon-fp-armv8.1",
30463 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
30464 {NULL, ARM_ARCH_NONE}
30465};
30466
30467struct arm_option_value_table
30468{
e0471c16 30469 const char *name;
e74cfd16 30470 long value;
c19d1205 30471};
7ed4c4c5 30472
e74cfd16 30473static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
30474{
30475 {"hard", ARM_FLOAT_ABI_HARD},
30476 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30477 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 30478 {NULL, 0}
c19d1205 30479};
7ed4c4c5 30480
c19d1205 30481#ifdef OBJ_ELF
3a4a14e9 30482/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 30483static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
30484{
30485 {"gnu", EF_ARM_EABI_UNKNOWN},
30486 {"4", EF_ARM_EABI_VER4},
3a4a14e9 30487 {"5", EF_ARM_EABI_VER5},
e74cfd16 30488 {NULL, 0}
c19d1205
ZW
30489};
30490#endif
7ed4c4c5 30491
c19d1205
ZW
30492struct arm_long_option_table
30493{
0198d5e6 30494 const char * option; /* Substring to match. */
e0471c16 30495 const char * help; /* Help information. */
17b9d67d 30496 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 30497 const char * deprecated; /* If non-null, print this message. */
c19d1205 30498};
7ed4c4c5 30499
c921be7d 30500static bfd_boolean
c168ce07 30501arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
30502 arm_feature_set *ext_set,
30503 const struct arm_ext_table *ext_table)
7ed4c4c5 30504{
69133863 30505 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
30506 extensions being added before being removed. We achieve this by having
30507 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 30508 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 30509 or removing it (0) and only allowing it to change in the order
69133863
MGD
30510 -1 -> 1 -> 0. */
30511 const struct arm_option_extension_value_table * opt = NULL;
d942732e 30512 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
30513 int adding_value = -1;
30514
c19d1205 30515 while (str != NULL && *str != 0)
7ed4c4c5 30516 {
82b8a785 30517 const char *ext;
f3bad469 30518 size_t len;
7ed4c4c5 30519
c19d1205
ZW
30520 if (*str != '+')
30521 {
30522 as_bad (_("invalid architectural extension"));
c921be7d 30523 return FALSE;
c19d1205 30524 }
7ed4c4c5 30525
c19d1205
ZW
30526 str++;
30527 ext = strchr (str, '+');
7ed4c4c5 30528
c19d1205 30529 if (ext != NULL)
f3bad469 30530 len = ext - str;
c19d1205 30531 else
f3bad469 30532 len = strlen (str);
7ed4c4c5 30533
f3bad469 30534 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
30535 {
30536 if (adding_value != 0)
30537 {
30538 adding_value = 0;
30539 opt = arm_extensions;
30540 }
30541
f3bad469 30542 len -= 2;
69133863
MGD
30543 str += 2;
30544 }
f3bad469 30545 else if (len > 0)
69133863
MGD
30546 {
30547 if (adding_value == -1)
30548 {
30549 adding_value = 1;
30550 opt = arm_extensions;
30551 }
30552 else if (adding_value != 1)
30553 {
30554 as_bad (_("must specify extensions to add before specifying "
30555 "those to remove"));
30556 return FALSE;
30557 }
30558 }
30559
f3bad469 30560 if (len == 0)
c19d1205
ZW
30561 {
30562 as_bad (_("missing architectural extension"));
c921be7d 30563 return FALSE;
c19d1205 30564 }
7ed4c4c5 30565
69133863
MGD
30566 gas_assert (adding_value != -1);
30567 gas_assert (opt != NULL);
30568
34ef62f4
AV
30569 if (ext_table != NULL)
30570 {
30571 const struct arm_ext_table * ext_opt = ext_table;
30572 bfd_boolean found = FALSE;
30573 for (; ext_opt->name != NULL; ext_opt++)
30574 if (ext_opt->name_len == len
30575 && strncmp (ext_opt->name, str, len) == 0)
30576 {
30577 if (adding_value)
30578 {
30579 if (ARM_FEATURE_ZERO (ext_opt->merge))
30580 /* TODO: Option not supported. When we remove the
30581 legacy table this case should error out. */
30582 continue;
30583
30584 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30585 }
30586 else
30587 {
30588 if (ARM_FEATURE_ZERO (ext_opt->clear))
30589 /* TODO: Option not supported. When we remove the
30590 legacy table this case should error out. */
30591 continue;
30592 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30593 }
30594 found = TRUE;
30595 break;
30596 }
30597 if (found)
30598 {
30599 str = ext;
30600 continue;
30601 }
30602 }
30603
69133863
MGD
30604 /* Scan over the options table trying to find an exact match. */
30605 for (; opt->name != NULL; opt++)
f3bad469 30606 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30607 {
d942732e
TP
30608 int i, nb_allowed_archs =
30609 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30610 /* Check we can apply the extension to this architecture. */
d942732e
TP
30611 for (i = 0; i < nb_allowed_archs; i++)
30612 {
30613 /* Empty entry. */
30614 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30615 continue;
c168ce07 30616 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30617 break;
30618 }
30619 if (i == nb_allowed_archs)
69133863
MGD
30620 {
30621 as_bad (_("extension does not apply to the base architecture"));
30622 return FALSE;
30623 }
30624
30625 /* Add or remove the extension. */
30626 if (adding_value)
4d354d8b 30627 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30628 else
4d354d8b 30629 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30630
3d030cdb
TP
30631 /* Allowing Thumb division instructions for ARMv7 in autodetection
30632 rely on this break so that duplicate extensions (extensions
30633 with the same name as a previous extension in the list) are not
30634 considered for command-line parsing. */
c19d1205
ZW
30635 break;
30636 }
7ed4c4c5 30637
c19d1205
ZW
30638 if (opt->name == NULL)
30639 {
69133863
MGD
30640 /* Did we fail to find an extension because it wasn't specified in
30641 alphabetical order, or because it does not exist? */
30642
30643 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 30644 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
30645 break;
30646
30647 if (opt->name == NULL)
30648 as_bad (_("unknown architectural extension `%s'"), str);
30649 else
30650 as_bad (_("architectural extensions must be specified in "
30651 "alphabetical order"));
30652
c921be7d 30653 return FALSE;
c19d1205 30654 }
69133863
MGD
30655 else
30656 {
30657 /* We should skip the extension we've just matched the next time
30658 round. */
30659 opt++;
30660 }
7ed4c4c5 30661
c19d1205
ZW
30662 str = ext;
30663 };
7ed4c4c5 30664
c921be7d 30665 return TRUE;
c19d1205 30666}
7ed4c4c5 30667
c921be7d 30668static bfd_boolean
17b9d67d 30669arm_parse_cpu (const char *str)
7ed4c4c5 30670{
f3bad469 30671 const struct arm_cpu_option_table *opt;
82b8a785 30672 const char *ext = strchr (str, '+');
f3bad469 30673 size_t len;
7ed4c4c5 30674
c19d1205 30675 if (ext != NULL)
f3bad469 30676 len = ext - str;
7ed4c4c5 30677 else
f3bad469 30678 len = strlen (str);
7ed4c4c5 30679
f3bad469 30680 if (len == 0)
7ed4c4c5 30681 {
c19d1205 30682 as_bad (_("missing cpu name `%s'"), str);
c921be7d 30683 return FALSE;
7ed4c4c5
NC
30684 }
30685
c19d1205 30686 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 30687 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30688 {
c168ce07 30689 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
30690 if (mcpu_ext_opt == NULL)
30691 mcpu_ext_opt = XNEW (arm_feature_set);
30692 *mcpu_ext_opt = opt->ext;
e74cfd16 30693 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 30694 if (opt->canonical_name)
ef8e6722
JW
30695 {
30696 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30697 strcpy (selected_cpu_name, opt->canonical_name);
30698 }
ee065d83
PB
30699 else
30700 {
f3bad469 30701 size_t i;
c921be7d 30702
ef8e6722
JW
30703 if (len >= sizeof selected_cpu_name)
30704 len = (sizeof selected_cpu_name) - 1;
30705
f3bad469 30706 for (i = 0; i < len; i++)
ee065d83
PB
30707 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30708 selected_cpu_name[i] = 0;
30709 }
7ed4c4c5 30710
c19d1205 30711 if (ext != NULL)
34ef62f4 30712 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 30713
c921be7d 30714 return TRUE;
c19d1205 30715 }
7ed4c4c5 30716
c19d1205 30717 as_bad (_("unknown cpu `%s'"), str);
c921be7d 30718 return FALSE;
7ed4c4c5
NC
30719}
30720
c921be7d 30721static bfd_boolean
17b9d67d 30722arm_parse_arch (const char *str)
7ed4c4c5 30723{
e74cfd16 30724 const struct arm_arch_option_table *opt;
82b8a785 30725 const char *ext = strchr (str, '+');
f3bad469 30726 size_t len;
7ed4c4c5 30727
c19d1205 30728 if (ext != NULL)
f3bad469 30729 len = ext - str;
7ed4c4c5 30730 else
f3bad469 30731 len = strlen (str);
7ed4c4c5 30732
f3bad469 30733 if (len == 0)
7ed4c4c5 30734 {
c19d1205 30735 as_bad (_("missing architecture name `%s'"), str);
c921be7d 30736 return FALSE;
7ed4c4c5
NC
30737 }
30738
c19d1205 30739 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 30740 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30741 {
e74cfd16 30742 march_cpu_opt = &opt->value;
4d354d8b
TP
30743 if (march_ext_opt == NULL)
30744 march_ext_opt = XNEW (arm_feature_set);
30745 *march_ext_opt = arm_arch_none;
e74cfd16 30746 march_fpu_opt = &opt->default_fpu;
5f4273c7 30747 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 30748
c19d1205 30749 if (ext != NULL)
34ef62f4
AV
30750 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30751 opt->ext_table);
7ed4c4c5 30752
c921be7d 30753 return TRUE;
c19d1205
ZW
30754 }
30755
30756 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 30757 return FALSE;
7ed4c4c5 30758}
eb043451 30759
c921be7d 30760static bfd_boolean
17b9d67d 30761arm_parse_fpu (const char * str)
c19d1205 30762{
69133863 30763 const struct arm_option_fpu_value_table * opt;
b99bd4ef 30764
c19d1205
ZW
30765 for (opt = arm_fpus; opt->name != NULL; opt++)
30766 if (streq (opt->name, str))
30767 {
e74cfd16 30768 mfpu_opt = &opt->value;
c921be7d 30769 return TRUE;
c19d1205 30770 }
b99bd4ef 30771
c19d1205 30772 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 30773 return FALSE;
c19d1205
ZW
30774}
30775
c921be7d 30776static bfd_boolean
17b9d67d 30777arm_parse_float_abi (const char * str)
b99bd4ef 30778{
e74cfd16 30779 const struct arm_option_value_table * opt;
b99bd4ef 30780
c19d1205
ZW
30781 for (opt = arm_float_abis; opt->name != NULL; opt++)
30782 if (streq (opt->name, str))
30783 {
30784 mfloat_abi_opt = opt->value;
c921be7d 30785 return TRUE;
c19d1205 30786 }
cc8a6dd0 30787
c19d1205 30788 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 30789 return FALSE;
c19d1205 30790}
b99bd4ef 30791
c19d1205 30792#ifdef OBJ_ELF
c921be7d 30793static bfd_boolean
17b9d67d 30794arm_parse_eabi (const char * str)
c19d1205 30795{
e74cfd16 30796 const struct arm_option_value_table *opt;
cc8a6dd0 30797
c19d1205
ZW
30798 for (opt = arm_eabis; opt->name != NULL; opt++)
30799 if (streq (opt->name, str))
30800 {
30801 meabi_flags = opt->value;
c921be7d 30802 return TRUE;
c19d1205
ZW
30803 }
30804 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30805 return FALSE;
c19d1205
ZW
30806}
30807#endif
cc8a6dd0 30808
c921be7d 30809static bfd_boolean
17b9d67d 30810arm_parse_it_mode (const char * str)
e07e6e58 30811{
c921be7d 30812 bfd_boolean ret = TRUE;
e07e6e58
NC
30813
30814 if (streq ("arm", str))
30815 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30816 else if (streq ("thumb", str))
30817 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30818 else if (streq ("always", str))
30819 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30820 else if (streq ("never", str))
30821 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30822 else
30823 {
30824 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30825 "arm, thumb, always, or never."), str);
c921be7d 30826 ret = FALSE;
e07e6e58
NC
30827 }
30828
30829 return ret;
30830}
30831
2e6976a8 30832static bfd_boolean
17b9d67d 30833arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30834{
30835 codecomposer_syntax = TRUE;
30836 arm_comment_chars[0] = ';';
30837 arm_line_separator_chars[0] = 0;
30838 return TRUE;
30839}
30840
c19d1205
ZW
30841struct arm_long_option_table arm_long_opts[] =
30842{
30843 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30844 arm_parse_cpu, NULL},
30845 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30846 arm_parse_arch, NULL},
30847 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30848 arm_parse_fpu, NULL},
30849 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30850 arm_parse_float_abi, NULL},
30851#ifdef OBJ_ELF
7fac0536 30852 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30853 arm_parse_eabi, NULL},
30854#endif
e07e6e58
NC
30855 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30856 arm_parse_it_mode, NULL},
2e6976a8
DG
30857 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30858 arm_ccs_mode, NULL},
c19d1205
ZW
30859 {NULL, NULL, 0, NULL}
30860};
cc8a6dd0 30861
c19d1205 30862int
17b9d67d 30863md_parse_option (int c, const char * arg)
c19d1205
ZW
30864{
30865 struct arm_option_table *opt;
e74cfd16 30866 const struct arm_legacy_option_table *fopt;
c19d1205 30867 struct arm_long_option_table *lopt;
b99bd4ef 30868
c19d1205 30869 switch (c)
b99bd4ef 30870 {
c19d1205
ZW
30871#ifdef OPTION_EB
30872 case OPTION_EB:
30873 target_big_endian = 1;
30874 break;
30875#endif
cc8a6dd0 30876
c19d1205
ZW
30877#ifdef OPTION_EL
30878 case OPTION_EL:
30879 target_big_endian = 0;
30880 break;
30881#endif
b99bd4ef 30882
845b51d6
PB
30883 case OPTION_FIX_V4BX:
30884 fix_v4bx = TRUE;
30885 break;
30886
18a20338
CL
30887#ifdef OBJ_ELF
30888 case OPTION_FDPIC:
30889 arm_fdpic = TRUE;
30890 break;
30891#endif /* OBJ_ELF */
30892
c19d1205
ZW
30893 case 'a':
30894 /* Listing option. Just ignore these, we don't support additional
30895 ones. */
30896 return 0;
b99bd4ef 30897
c19d1205
ZW
30898 default:
30899 for (opt = arm_opts; opt->option != NULL; opt++)
30900 {
30901 if (c == opt->option[0]
30902 && ((arg == NULL && opt->option[1] == 0)
30903 || streq (arg, opt->option + 1)))
30904 {
c19d1205 30905 /* If the option is deprecated, tell the user. */
278df34e 30906 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
30907 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30908 arg ? arg : "", _(opt->deprecated));
b99bd4ef 30909
c19d1205
ZW
30910 if (opt->var != NULL)
30911 *opt->var = opt->value;
cc8a6dd0 30912
c19d1205
ZW
30913 return 1;
30914 }
30915 }
b99bd4ef 30916
e74cfd16
PB
30917 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30918 {
30919 if (c == fopt->option[0]
30920 && ((arg == NULL && fopt->option[1] == 0)
30921 || streq (arg, fopt->option + 1)))
30922 {
e74cfd16 30923 /* If the option is deprecated, tell the user. */
278df34e 30924 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
30925 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30926 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
30927
30928 if (fopt->var != NULL)
30929 *fopt->var = &fopt->value;
30930
30931 return 1;
30932 }
30933 }
30934
c19d1205
ZW
30935 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30936 {
30937 /* These options are expected to have an argument. */
30938 if (c == lopt->option[0]
30939 && arg != NULL
30940 && strncmp (arg, lopt->option + 1,
30941 strlen (lopt->option + 1)) == 0)
30942 {
c19d1205 30943 /* If the option is deprecated, tell the user. */
278df34e 30944 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
30945 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30946 _(lopt->deprecated));
b99bd4ef 30947
c19d1205
ZW
30948 /* Call the sup-option parser. */
30949 return lopt->func (arg + strlen (lopt->option) - 1);
30950 }
30951 }
a737bd4d 30952
c19d1205
ZW
30953 return 0;
30954 }
a394c00f 30955
c19d1205
ZW
30956 return 1;
30957}
a394c00f 30958
c19d1205
ZW
30959void
30960md_show_usage (FILE * fp)
a394c00f 30961{
c19d1205
ZW
30962 struct arm_option_table *opt;
30963 struct arm_long_option_table *lopt;
a394c00f 30964
c19d1205 30965 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 30966
c19d1205
ZW
30967 for (opt = arm_opts; opt->option != NULL; opt++)
30968 if (opt->help != NULL)
30969 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 30970
c19d1205
ZW
30971 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30972 if (lopt->help != NULL)
30973 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 30974
c19d1205
ZW
30975#ifdef OPTION_EB
30976 fprintf (fp, _("\
30977 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
30978#endif
30979
c19d1205
ZW
30980#ifdef OPTION_EL
30981 fprintf (fp, _("\
30982 -EL assemble code for a little-endian cpu\n"));
a737bd4d 30983#endif
845b51d6
PB
30984
30985 fprintf (fp, _("\
30986 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
30987
30988#ifdef OBJ_ELF
30989 fprintf (fp, _("\
30990 --fdpic generate an FDPIC object file\n"));
30991#endif /* OBJ_ELF */
c19d1205 30992}
ee065d83 30993
ee065d83 30994#ifdef OBJ_ELF
0198d5e6 30995
62b3e311
PB
30996typedef struct
30997{
30998 int val;
30999 arm_feature_set flags;
31000} cpu_arch_ver_table;
31001
2c6b98ea
TP
31002/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31003 chronologically for architectures, with an exception for ARMv6-M and
31004 ARMv6S-M due to legacy reasons. No new architecture should have a
31005 special case. This allows for build attribute selection results to be
31006 stable when new architectures are added. */
62b3e311
PB
31007static const cpu_arch_ver_table cpu_arch_ver[] =
31008{
031254f2
AV
31009 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31010 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31011 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31012 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31013 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31014 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31015 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31016 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31017 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31018 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31019 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31020 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31021 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31022 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31023 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31024 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31025 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31026 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31027 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31028 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31029 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31030 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31031 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31032 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
31033
31034 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31035 always selected build attributes to match those of ARMv6-M
31036 (resp. ARMv6S-M). However, due to these architectures being a strict
31037 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31038 would be selected when fully respecting chronology of architectures.
31039 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31040 move them before ARMv7 architectures. */
031254f2
AV
31041 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31042 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31043
31044 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31045 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31046 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31047 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31048 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31049 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31050 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31051 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31052 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31053 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31054 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31055 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31056 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31057 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31058 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31059 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31060 {-1, ARM_ARCH_NONE}
62b3e311
PB
31061};
31062
ee3c0378 31063/* Set an attribute if it has not already been set by the user. */
0198d5e6 31064
ee3c0378
AS
31065static void
31066aeabi_set_attribute_int (int tag, int value)
31067{
31068 if (tag < 1
31069 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31070 || !attributes_set_explicitly[tag])
31071 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31072}
31073
31074static void
31075aeabi_set_attribute_string (int tag, const char *value)
31076{
31077 if (tag < 1
31078 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31079 || !attributes_set_explicitly[tag])
31080 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31081}
31082
2c6b98ea
TP
31083/* Return whether features in the *NEEDED feature set are available via
31084 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 31085
2c6b98ea
TP
31086static bfd_boolean
31087have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31088 const arm_feature_set *needed)
31089{
31090 int i, nb_allowed_archs;
31091 arm_feature_set ext_fset;
31092 const struct arm_option_extension_value_table *opt;
31093
31094 ext_fset = arm_arch_none;
31095 for (opt = arm_extensions; opt->name != NULL; opt++)
31096 {
31097 /* Extension does not provide any feature we need. */
31098 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31099 continue;
31100
31101 nb_allowed_archs =
31102 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31103 for (i = 0; i < nb_allowed_archs; i++)
31104 {
31105 /* Empty entry. */
31106 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31107 break;
31108
31109 /* Extension is available, add it. */
31110 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31111 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31112 }
31113 }
31114
31115 /* Can we enable all features in *needed? */
31116 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31117}
31118
31119/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31120 a given architecture feature set *ARCH_EXT_FSET including extension feature
31121 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31122 - if true, check for an exact match of the architecture modulo extensions;
31123 - otherwise, select build attribute value of the first superset
31124 architecture released so that results remains stable when new architectures
31125 are added.
31126 For -march/-mcpu=all the build attribute value of the most featureful
31127 architecture is returned. Tag_CPU_arch_profile result is returned in
31128 PROFILE. */
0198d5e6 31129
2c6b98ea
TP
31130static int
31131get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31132 const arm_feature_set *ext_fset,
31133 char *profile, int exact_match)
31134{
31135 arm_feature_set arch_fset;
31136 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31137
31138 /* Select most featureful architecture with all its extensions if building
31139 for -march=all as the feature sets used to set build attributes. */
31140 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31141 {
31142 /* Force revisiting of decision for each new architecture. */
031254f2 31143 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
31144 *profile = 'A';
31145 return TAG_CPU_ARCH_V8;
31146 }
31147
31148 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31149
31150 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31151 {
31152 arm_feature_set known_arch_fset;
31153
31154 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31155 if (exact_match)
31156 {
31157 /* Base architecture match user-specified architecture and
31158 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31159 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31160 {
31161 p_ver_ret = p_ver;
31162 goto found;
31163 }
31164 /* Base architecture match user-specified architecture only
31165 (eg. ARMv6-M in the same case as above). Record it in case we
31166 find a match with above condition. */
31167 else if (p_ver_ret == NULL
31168 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31169 p_ver_ret = p_ver;
31170 }
31171 else
31172 {
31173
31174 /* Architecture has all features wanted. */
31175 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31176 {
31177 arm_feature_set added_fset;
31178
31179 /* Compute features added by this architecture over the one
31180 recorded in p_ver_ret. */
31181 if (p_ver_ret != NULL)
31182 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31183 p_ver_ret->flags);
31184 /* First architecture that match incl. with extensions, or the
31185 only difference in features over the recorded match is
31186 features that were optional and are now mandatory. */
31187 if (p_ver_ret == NULL
31188 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31189 {
31190 p_ver_ret = p_ver;
31191 goto found;
31192 }
31193 }
31194 else if (p_ver_ret == NULL)
31195 {
31196 arm_feature_set needed_ext_fset;
31197
31198 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31199
31200 /* Architecture has all features needed when using some
31201 extensions. Record it and continue searching in case there
31202 exist an architecture providing all needed features without
31203 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31204 OS extension). */
31205 if (have_ext_for_needed_feat_p (&known_arch_fset,
31206 &needed_ext_fset))
31207 p_ver_ret = p_ver;
31208 }
31209 }
31210 }
31211
31212 if (p_ver_ret == NULL)
31213 return -1;
31214
31215found:
31216 /* Tag_CPU_arch_profile. */
31217 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31218 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31219 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31220 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31221 *profile = 'A';
31222 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31223 *profile = 'R';
31224 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31225 *profile = 'M';
31226 else
31227 *profile = '\0';
31228 return p_ver_ret->val;
31229}
31230
ee065d83 31231/* Set the public EABI object attributes. */
0198d5e6 31232
c168ce07 31233static void
ee065d83
PB
31234aeabi_set_public_attributes (void)
31235{
b90d5ba0 31236 char profile = '\0';
2c6b98ea 31237 int arch = -1;
90ec0d68 31238 int virt_sec = 0;
bca38921 31239 int fp16_optional = 0;
2c6b98ea
TP
31240 int skip_exact_match = 0;
31241 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 31242
54bab281
TP
31243 /* Autodetection mode, choose the architecture based the instructions
31244 actually used. */
31245 if (no_cpu_selected ())
31246 {
31247 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 31248
54bab281
TP
31249 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31250 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 31251
54bab281
TP
31252 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31253 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 31254
54bab281 31255 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
31256 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31257 flags_ext = arm_arch_none;
31258 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31259 selected_ext = flags_ext;
54bab281
TP
31260 selected_cpu = flags;
31261 }
31262 /* Otherwise, choose the architecture based on the capabilities of the
31263 requested cpu. */
31264 else
4d354d8b
TP
31265 {
31266 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31267 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31268 flags_ext = selected_ext;
31269 flags = selected_cpu;
31270 }
31271 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 31272
ddd7f988 31273 /* Allow the user to override the reported architecture. */
4d354d8b 31274 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 31275 {
4d354d8b 31276 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 31277 flags_ext = arm_arch_none;
7a1d4c38 31278 }
2c6b98ea 31279 else
4d354d8b 31280 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
31281
31282 /* When this function is run again after relaxation has happened there is no
31283 way to determine whether an architecture or CPU was specified by the user:
31284 - selected_cpu is set above for relaxation to work;
31285 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31286 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31287 Therefore, if not in -march=all case we first try an exact match and fall
31288 back to autodetection. */
31289 if (!skip_exact_match)
31290 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31291 if (arch == -1)
31292 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31293 if (arch == -1)
31294 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 31295
ee065d83
PB
31296 /* Tag_CPU_name. */
31297 if (selected_cpu_name[0])
31298 {
91d6fa6a 31299 char *q;
ee065d83 31300
91d6fa6a
NC
31301 q = selected_cpu_name;
31302 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
31303 {
31304 int i;
5f4273c7 31305
91d6fa6a
NC
31306 q += 4;
31307 for (i = 0; q[i]; i++)
31308 q[i] = TOUPPER (q[i]);
ee065d83 31309 }
91d6fa6a 31310 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 31311 }
62f3b8c8 31312
ee065d83 31313 /* Tag_CPU_arch. */
ee3c0378 31314 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 31315
62b3e311 31316 /* Tag_CPU_arch_profile. */
69239280
MGD
31317 if (profile != '\0')
31318 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 31319
15afaa63 31320 /* Tag_DSP_extension. */
4d354d8b 31321 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 31322 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 31323
2c6b98ea 31324 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 31325 /* Tag_ARM_ISA_use. */
ee3c0378 31326 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 31327 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 31328 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 31329
ee065d83 31330 /* Tag_THUMB_ISA_use. */
ee3c0378 31331 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 31332 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
31333 {
31334 int thumb_isa_use;
31335
31336 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 31337 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
31338 thumb_isa_use = 3;
31339 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31340 thumb_isa_use = 2;
31341 else
31342 thumb_isa_use = 1;
31343 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31344 }
62f3b8c8 31345
ee065d83 31346 /* Tag_VFP_arch. */
a715796b
TG
31347 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31348 aeabi_set_attribute_int (Tag_VFP_arch,
31349 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31350 ? 7 : 8);
bca38921 31351 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
31352 aeabi_set_attribute_int (Tag_VFP_arch,
31353 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31354 ? 5 : 6);
31355 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
31356 {
31357 fp16_optional = 1;
31358 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31359 }
ada65aa3 31360 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
31361 {
31362 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31363 fp16_optional = 1;
31364 }
ee3c0378
AS
31365 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31366 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31367 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 31368 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 31369 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 31370
4547cb56
NC
31371 /* Tag_ABI_HardFP_use. */
31372 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31373 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31374 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31375
ee065d83 31376 /* Tag_WMMX_arch. */
ee3c0378
AS
31377 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31378 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31379 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31380 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 31381
ee3c0378 31382 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
31383 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31384 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31385 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
31386 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31387 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31388 {
31389 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31390 {
31391 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31392 }
31393 else
31394 {
31395 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31396 fp16_optional = 1;
31397 }
31398 }
fa94de6b 31399
a7ad558c
AV
31400 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31401 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31402 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31403 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31404
ee3c0378 31405 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 31406 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 31407 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 31408
69239280
MGD
31409 /* Tag_DIV_use.
31410
31411 We set Tag_DIV_use to two when integer divide instructions have been used
31412 in ARM state, or when Thumb integer divide instructions have been used,
31413 but we have no architecture profile set, nor have we any ARM instructions.
31414
4ed7ed8d
TP
31415 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31416 by the base architecture.
bca38921 31417
69239280 31418 For new architectures we will have to check these tests. */
031254f2 31419 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
31420 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31421 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
31422 aeabi_set_attribute_int (Tag_DIV_use, 0);
31423 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31424 || (profile == '\0'
31425 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31426 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 31427 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
31428
31429 /* Tag_MP_extension_use. */
31430 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31431 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
31432
31433 /* Tag Virtualization_use. */
31434 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
31435 virt_sec |= 1;
31436 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31437 virt_sec |= 2;
31438 if (virt_sec != 0)
31439 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
31440}
31441
c168ce07
TP
31442/* Post relaxation hook. Recompute ARM attributes now that relaxation is
31443 finished and free extension feature bits which will not be used anymore. */
0198d5e6 31444
c168ce07
TP
31445void
31446arm_md_post_relax (void)
31447{
31448 aeabi_set_public_attributes ();
4d354d8b
TP
31449 XDELETE (mcpu_ext_opt);
31450 mcpu_ext_opt = NULL;
31451 XDELETE (march_ext_opt);
31452 march_ext_opt = NULL;
c168ce07
TP
31453}
31454
104d59d1 31455/* Add the default contents for the .ARM.attributes section. */
0198d5e6 31456
ee065d83
PB
31457void
31458arm_md_end (void)
31459{
ee065d83
PB
31460 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31461 return;
31462
31463 aeabi_set_public_attributes ();
ee065d83 31464}
8463be01 31465#endif /* OBJ_ELF */
ee065d83 31466
ee065d83
PB
31467/* Parse a .cpu directive. */
31468
31469static void
31470s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31471{
e74cfd16 31472 const struct arm_cpu_option_table *opt;
ee065d83
PB
31473 char *name;
31474 char saved_char;
31475
31476 name = input_line_pointer;
5f4273c7 31477 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31478 input_line_pointer++;
31479 saved_char = *input_line_pointer;
31480 *input_line_pointer = 0;
31481
31482 /* Skip the first "all" entry. */
31483 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31484 if (streq (opt->name, name))
31485 {
4d354d8b
TP
31486 selected_arch = opt->value;
31487 selected_ext = opt->ext;
31488 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 31489 if (opt->canonical_name)
5f4273c7 31490 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
31491 else
31492 {
31493 int i;
31494 for (i = 0; opt->name[i]; i++)
31495 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 31496
ee065d83
PB
31497 selected_cpu_name[i] = 0;
31498 }
4d354d8b
TP
31499 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31500
ee065d83
PB
31501 *input_line_pointer = saved_char;
31502 demand_empty_rest_of_line ();
31503 return;
31504 }
31505 as_bad (_("unknown cpu `%s'"), name);
31506 *input_line_pointer = saved_char;
31507 ignore_rest_of_line ();
31508}
31509
ee065d83
PB
31510/* Parse a .arch directive. */
31511
31512static void
31513s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31514{
e74cfd16 31515 const struct arm_arch_option_table *opt;
ee065d83
PB
31516 char saved_char;
31517 char *name;
31518
31519 name = input_line_pointer;
5f4273c7 31520 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31521 input_line_pointer++;
31522 saved_char = *input_line_pointer;
31523 *input_line_pointer = 0;
31524
31525 /* Skip the first "all" entry. */
31526 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31527 if (streq (opt->name, name))
31528 {
4d354d8b
TP
31529 selected_arch = opt->value;
31530 selected_ext = arm_arch_none;
31531 selected_cpu = selected_arch;
5f4273c7 31532 strcpy (selected_cpu_name, opt->name);
4d354d8b 31533 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31534 *input_line_pointer = saved_char;
31535 demand_empty_rest_of_line ();
31536 return;
31537 }
31538
31539 as_bad (_("unknown architecture `%s'\n"), name);
31540 *input_line_pointer = saved_char;
31541 ignore_rest_of_line ();
31542}
31543
7a1d4c38
PB
31544/* Parse a .object_arch directive. */
31545
31546static void
31547s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31548{
31549 const struct arm_arch_option_table *opt;
31550 char saved_char;
31551 char *name;
31552
31553 name = input_line_pointer;
5f4273c7 31554 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
31555 input_line_pointer++;
31556 saved_char = *input_line_pointer;
31557 *input_line_pointer = 0;
31558
31559 /* Skip the first "all" entry. */
31560 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31561 if (streq (opt->name, name))
31562 {
4d354d8b 31563 selected_object_arch = opt->value;
7a1d4c38
PB
31564 *input_line_pointer = saved_char;
31565 demand_empty_rest_of_line ();
31566 return;
31567 }
31568
31569 as_bad (_("unknown architecture `%s'\n"), name);
31570 *input_line_pointer = saved_char;
31571 ignore_rest_of_line ();
31572}
31573
69133863
MGD
31574/* Parse a .arch_extension directive. */
31575
31576static void
31577s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31578{
31579 const struct arm_option_extension_value_table *opt;
31580 char saved_char;
31581 char *name;
31582 int adding_value = 1;
31583
31584 name = input_line_pointer;
31585 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31586 input_line_pointer++;
31587 saved_char = *input_line_pointer;
31588 *input_line_pointer = 0;
31589
31590 if (strlen (name) >= 2
31591 && strncmp (name, "no", 2) == 0)
31592 {
31593 adding_value = 0;
31594 name += 2;
31595 }
31596
31597 for (opt = arm_extensions; opt->name != NULL; opt++)
31598 if (streq (opt->name, name))
31599 {
d942732e
TP
31600 int i, nb_allowed_archs =
31601 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31602 for (i = 0; i < nb_allowed_archs; i++)
31603 {
31604 /* Empty entry. */
4d354d8b 31605 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31606 continue;
4d354d8b 31607 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31608 break;
31609 }
31610
31611 if (i == nb_allowed_archs)
69133863
MGD
31612 {
31613 as_bad (_("architectural extension `%s' is not allowed for the "
31614 "current base architecture"), name);
31615 break;
31616 }
31617
31618 if (adding_value)
4d354d8b 31619 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31620 opt->merge_value);
69133863 31621 else
4d354d8b 31622 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31623
4d354d8b
TP
31624 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31625 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31626 *input_line_pointer = saved_char;
31627 demand_empty_rest_of_line ();
3d030cdb
TP
31628 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31629 on this return so that duplicate extensions (extensions with the
31630 same name as a previous extension in the list) are not considered
31631 for command-line parsing. */
69133863
MGD
31632 return;
31633 }
31634
31635 if (opt->name == NULL)
e673710a 31636 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31637
31638 *input_line_pointer = saved_char;
31639 ignore_rest_of_line ();
31640}
31641
ee065d83
PB
31642/* Parse a .fpu directive. */
31643
31644static void
31645s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31646{
69133863 31647 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
31648 char saved_char;
31649 char *name;
31650
31651 name = input_line_pointer;
5f4273c7 31652 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31653 input_line_pointer++;
31654 saved_char = *input_line_pointer;
31655 *input_line_pointer = 0;
5f4273c7 31656
ee065d83
PB
31657 for (opt = arm_fpus; opt->name != NULL; opt++)
31658 if (streq (opt->name, name))
31659 {
4d354d8b
TP
31660 selected_fpu = opt->value;
31661#ifndef CPU_DEFAULT
31662 if (no_cpu_selected ())
31663 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31664 else
31665#endif
31666 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31667 *input_line_pointer = saved_char;
31668 demand_empty_rest_of_line ();
31669 return;
31670 }
31671
31672 as_bad (_("unknown floating point format `%s'\n"), name);
31673 *input_line_pointer = saved_char;
31674 ignore_rest_of_line ();
31675}
ee065d83 31676
794ba86a 31677/* Copy symbol information. */
f31fef98 31678
794ba86a
DJ
31679void
31680arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31681{
31682 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31683}
e04befd0 31684
f31fef98 31685#ifdef OBJ_ELF
e04befd0
AS
31686/* Given a symbolic attribute NAME, return the proper integer value.
31687 Returns -1 if the attribute is not known. */
f31fef98 31688
e04befd0
AS
31689int
31690arm_convert_symbolic_attribute (const char *name)
31691{
f31fef98
NC
31692 static const struct
31693 {
31694 const char * name;
31695 const int tag;
31696 }
31697 attribute_table[] =
31698 {
31699 /* When you modify this table you should
31700 also modify the list in doc/c-arm.texi. */
e04befd0 31701#define T(tag) {#tag, tag}
f31fef98
NC
31702 T (Tag_CPU_raw_name),
31703 T (Tag_CPU_name),
31704 T (Tag_CPU_arch),
31705 T (Tag_CPU_arch_profile),
31706 T (Tag_ARM_ISA_use),
31707 T (Tag_THUMB_ISA_use),
75375b3e 31708 T (Tag_FP_arch),
f31fef98
NC
31709 T (Tag_VFP_arch),
31710 T (Tag_WMMX_arch),
31711 T (Tag_Advanced_SIMD_arch),
31712 T (Tag_PCS_config),
31713 T (Tag_ABI_PCS_R9_use),
31714 T (Tag_ABI_PCS_RW_data),
31715 T (Tag_ABI_PCS_RO_data),
31716 T (Tag_ABI_PCS_GOT_use),
31717 T (Tag_ABI_PCS_wchar_t),
31718 T (Tag_ABI_FP_rounding),
31719 T (Tag_ABI_FP_denormal),
31720 T (Tag_ABI_FP_exceptions),
31721 T (Tag_ABI_FP_user_exceptions),
31722 T (Tag_ABI_FP_number_model),
75375b3e 31723 T (Tag_ABI_align_needed),
f31fef98 31724 T (Tag_ABI_align8_needed),
75375b3e 31725 T (Tag_ABI_align_preserved),
f31fef98
NC
31726 T (Tag_ABI_align8_preserved),
31727 T (Tag_ABI_enum_size),
31728 T (Tag_ABI_HardFP_use),
31729 T (Tag_ABI_VFP_args),
31730 T (Tag_ABI_WMMX_args),
31731 T (Tag_ABI_optimization_goals),
31732 T (Tag_ABI_FP_optimization_goals),
31733 T (Tag_compatibility),
31734 T (Tag_CPU_unaligned_access),
75375b3e 31735 T (Tag_FP_HP_extension),
f31fef98
NC
31736 T (Tag_VFP_HP_extension),
31737 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
31738 T (Tag_MPextension_use),
31739 T (Tag_DIV_use),
f31fef98
NC
31740 T (Tag_nodefaults),
31741 T (Tag_also_compatible_with),
31742 T (Tag_conformance),
31743 T (Tag_T2EE_use),
31744 T (Tag_Virtualization_use),
15afaa63 31745 T (Tag_DSP_extension),
a7ad558c 31746 T (Tag_MVE_arch),
cd21e546 31747 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 31748#undef T
f31fef98 31749 };
e04befd0
AS
31750 unsigned int i;
31751
31752 if (name == NULL)
31753 return -1;
31754
f31fef98 31755 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31756 if (streq (name, attribute_table[i].name))
e04befd0
AS
31757 return attribute_table[i].tag;
31758
31759 return -1;
31760}
267bf995 31761
93ef582d
NC
31762/* Apply sym value for relocations only in the case that they are for
31763 local symbols in the same segment as the fixup and you have the
31764 respective architectural feature for blx and simple switches. */
0198d5e6 31765
267bf995 31766int
93ef582d 31767arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
31768{
31769 if (fixP->fx_addsy
31770 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
31771 /* PR 17444: If the local symbol is in a different section then a reloc
31772 will always be generated for it, so applying the symbol value now
31773 will result in a double offset being stored in the relocation. */
31774 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 31775 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
31776 {
31777 switch (fixP->fx_r_type)
31778 {
31779 case BFD_RELOC_ARM_PCREL_BLX:
31780 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31781 if (ARM_IS_FUNC (fixP->fx_addsy))
31782 return 1;
31783 break;
31784
31785 case BFD_RELOC_ARM_PCREL_CALL:
31786 case BFD_RELOC_THUMB_PCREL_BLX:
31787 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 31788 return 1;
267bf995
RR
31789 break;
31790
31791 default:
31792 break;
31793 }
31794
31795 }
31796 return 0;
31797}
f31fef98 31798#endif /* OBJ_ELF */
This page took 4.181272 seconds and 4 git commands to generate.