2006-05-02 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b
AM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
b99bd4ef 28#include <string.h>
5287ad62 29#include <limits.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33
34/* Need TARGET_CPU. */
35#include "config.h"
36#include "subsegs.h"
37#include "obstack.h"
38#include "symbols.h"
39#include "listing.h"
40
f263249b
RE
41#include "opcode/arm.h"
42
b99bd4ef
NC
43#ifdef OBJ_ELF
44#include "elf/arm.h"
45#include "dwarf2dbg.h"
a394c00f 46#include "dw2gencfi.h"
b99bd4ef
NC
47#endif
48
7ed4c4c5 49/* XXX Set this to 1 after the next binutils release. */
03b1477f
RE
50#define WARN_DEPRECATED 0
51
7ed4c4c5
NC
52#ifdef OBJ_ELF
53/* Must be at least the size of the largest unwind opcode (currently two). */
54#define ARM_OPCODE_CHUNK_SIZE 8
55
56/* This structure holds the unwinding state. */
57
58static struct
59{
c19d1205
ZW
60 symbolS * proc_start;
61 symbolS * table_entry;
62 symbolS * personality_routine;
63 int personality_index;
7ed4c4c5 64 /* The segment containing the function. */
c19d1205
ZW
65 segT saved_seg;
66 subsegT saved_subseg;
7ed4c4c5
NC
67 /* Opcodes generated from this function. */
68 unsigned char * opcodes;
c19d1205
ZW
69 int opcode_count;
70 int opcode_alloc;
7ed4c4c5 71 /* The number of bytes pushed to the stack. */
c19d1205 72 offsetT frame_size;
7ed4c4c5
NC
73 /* We don't add stack adjustment opcodes immediately so that we can merge
74 multiple adjustments. We can also omit the final adjustment
75 when using a frame pointer. */
c19d1205 76 offsetT pending_offset;
7ed4c4c5 77 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
78 hold the reg+offset to use when restoring sp from a frame pointer. */
79 offsetT fp_offset;
80 int fp_reg;
7ed4c4c5 81 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 82 unsigned fp_used:1;
7ed4c4c5 83 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 84 unsigned sp_restored:1;
7ed4c4c5
NC
85} unwind;
86
84798bd6
JB
87/* Bit N indicates that an R_ARM_NONE relocation has been output for
88 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
89 emitted only once per section, to save unnecessary bloat. */
90static unsigned int marked_pr_dependency = 0;
91
7ed4c4c5
NC
92#endif /* OBJ_ELF */
93
33a392fb
PB
94enum arm_float_abi
95{
96 ARM_FLOAT_ABI_HARD,
97 ARM_FLOAT_ABI_SOFTFP,
98 ARM_FLOAT_ABI_SOFT
99};
100
c19d1205 101/* Types of processor to assemble for. */
b99bd4ef
NC
102#ifndef CPU_DEFAULT
103#if defined __XSCALE__
e74cfd16 104#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
105#else
106#if defined __thumb__
e74cfd16 107#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
108#endif
109#endif
110#endif
111
112#ifndef FPU_DEFAULT
c820d418
MM
113# ifdef TE_LINUX
114# define FPU_DEFAULT FPU_ARCH_FPA
115# elif defined (TE_NetBSD)
116# ifdef OBJ_ELF
117# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
118# else
119 /* Legacy a.out format. */
120# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
121# endif
4e7fd91e
PB
122# elif defined (TE_VXWORKS)
123# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
124# else
125 /* For backwards compatibility, default to FPA. */
126# define FPU_DEFAULT FPU_ARCH_FPA
127# endif
128#endif /* ifndef FPU_DEFAULT */
b99bd4ef 129
c19d1205 130#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 131
e74cfd16
PB
132static arm_feature_set cpu_variant;
133static arm_feature_set arm_arch_used;
134static arm_feature_set thumb_arch_used;
b99bd4ef 135
b99bd4ef 136/* Flags stored in private area of BFD structure. */
c19d1205
ZW
137static int uses_apcs_26 = FALSE;
138static int atpcs = FALSE;
b34976b6
AM
139static int support_interwork = FALSE;
140static int uses_apcs_float = FALSE;
c19d1205 141static int pic_code = FALSE;
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
154
155/* Constants for known architecture features. */
156static const arm_feature_set fpu_default = FPU_DEFAULT;
157static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
158static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
159static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
160static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
161static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
162static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
163static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
164static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
165
166#ifdef CPU_DEFAULT
167static const arm_feature_set cpu_default = CPU_DEFAULT;
168#endif
169
170static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
171static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
173static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
174static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
175static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
176static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
177static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
178static const arm_feature_set arm_ext_v4t_5 =
179 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
180static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
181static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
182static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
183static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
184static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
185static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
186static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311
PB
188static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
189static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
190static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
191static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
192static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
193static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
e74cfd16
PB
194
195static const arm_feature_set arm_arch_any = ARM_ANY;
196static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
197static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
198static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
199
200static const arm_feature_set arm_cext_iwmmxt =
201 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
202static const arm_feature_set arm_cext_xscale =
203 ARM_FEATURE (0, ARM_CEXT_XSCALE);
204static const arm_feature_set arm_cext_maverick =
205 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
206static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
207static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
208static const arm_feature_set fpu_vfp_ext_v1xd =
209 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
210static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
211static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62
JB
212static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
213static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
214static const arm_feature_set fpu_vfp_v3_or_neon_ext =
215 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
e74cfd16 216
33a392fb 217static int mfloat_abi_opt = -1;
e74cfd16
PB
218/* Record user cpu selection for object attributes. */
219static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
220/* Must be long enough to hold any of the names in arm_cpus. */
221static char selected_cpu_name[16];
7cc69913 222#ifdef OBJ_ELF
deeaaff8
DJ
223# ifdef EABI_DEFAULT
224static int meabi_flags = EABI_DEFAULT;
225# else
d507cf36 226static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 227# endif
7cc69913 228#endif
b99bd4ef 229
b99bd4ef 230#ifdef OBJ_ELF
c19d1205 231/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
232symbolS * GOT_symbol;
233#endif
234
b99bd4ef
NC
235/* 0: assemble for ARM,
236 1: assemble for Thumb,
237 2: assemble for Thumb even though target CPU does not support thumb
238 instructions. */
239static int thumb_mode = 0;
240
c19d1205
ZW
241/* If unified_syntax is true, we are processing the new unified
242 ARM/Thumb syntax. Important differences from the old ARM mode:
243
244 - Immediate operands do not require a # prefix.
245 - Conditional affixes always appear at the end of the
246 instruction. (For backward compatibility, those instructions
247 that formerly had them in the middle, continue to accept them
248 there.)
249 - The IT instruction may appear, and if it does is validated
250 against subsequent conditional affixes. It does not generate
251 machine code.
252
253 Important differences from the old Thumb mode:
254
255 - Immediate operands do not require a # prefix.
256 - Most of the V6T2 instructions are only available in unified mode.
257 - The .N and .W suffixes are recognized and honored (it is an error
258 if they cannot be honored).
259 - All instructions set the flags if and only if they have an 's' affix.
260 - Conditional affixes may be used. They are validated against
261 preceding IT instructions. Unlike ARM mode, you cannot use a
262 conditional affix except in the scope of an IT instruction. */
263
264static bfd_boolean unified_syntax = FALSE;
b99bd4ef 265
5287ad62
JB
266enum neon_el_type
267{
dcbf9037 268 NT_invtype,
5287ad62
JB
269 NT_untyped,
270 NT_integer,
271 NT_float,
272 NT_poly,
273 NT_signed,
dcbf9037 274 NT_unsigned
5287ad62
JB
275};
276
277struct neon_type_el
278{
279 enum neon_el_type type;
280 unsigned size;
281};
282
283#define NEON_MAX_TYPE_ELS 4
284
285struct neon_type
286{
287 struct neon_type_el el[NEON_MAX_TYPE_ELS];
288 unsigned elems;
289};
290
b99bd4ef
NC
291struct arm_it
292{
c19d1205 293 const char * error;
b99bd4ef 294 unsigned long instruction;
c19d1205
ZW
295 int size;
296 int size_req;
297 int cond;
5287ad62 298 struct neon_type vectype;
0110f2b8
PB
299 /* Set to the opcode if the instruction needs relaxation.
300 Zero if the instruction is not relaxed. */
301 unsigned long relax;
b99bd4ef
NC
302 struct
303 {
304 bfd_reloc_code_real_type type;
c19d1205
ZW
305 expressionS exp;
306 int pc_rel;
b99bd4ef 307 } reloc;
b99bd4ef 308
c19d1205
ZW
309 struct
310 {
311 unsigned reg;
ca3f61f7 312 signed int imm;
dcbf9037 313 struct neon_type_el vectype;
ca3f61f7
NC
314 unsigned present : 1; /* Operand present. */
315 unsigned isreg : 1; /* Operand was a register. */
316 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
317 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
318 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
319 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
320 instructions. This allows us to disambiguate ARM <-> vector insns. */
321 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
322 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
ca3f61f7
NC
323 unsigned hasreloc : 1; /* Operand has relocation suffix. */
324 unsigned writeback : 1; /* Operand has trailing ! */
325 unsigned preind : 1; /* Preindexed address. */
326 unsigned postind : 1; /* Postindexed address. */
327 unsigned negative : 1; /* Index register was negated. */
328 unsigned shifted : 1; /* Shift applied to operation. */
329 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 330 } operands[6];
b99bd4ef
NC
331};
332
c19d1205 333static struct arm_it inst;
b99bd4ef
NC
334
335#define NUM_FLOAT_VALS 8
336
05d2d07e 337const char * fp_const[] =
b99bd4ef
NC
338{
339 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
340};
341
c19d1205 342/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
343#define MAX_LITTLENUMS 6
344
345LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
346
347#define FAIL (-1)
348#define SUCCESS (0)
349
350#define SUFF_S 1
351#define SUFF_D 2
352#define SUFF_E 3
353#define SUFF_P 4
354
c19d1205
ZW
355#define CP_T_X 0x00008000
356#define CP_T_Y 0x00400000
b99bd4ef 357
c19d1205
ZW
358#define CONDS_BIT 0x00100000
359#define LOAD_BIT 0x00100000
b99bd4ef
NC
360
361#define DOUBLE_LOAD_FLAG 0x00000001
362
363struct asm_cond
364{
c19d1205 365 const char * template;
b99bd4ef
NC
366 unsigned long value;
367};
368
c19d1205 369#define COND_ALWAYS 0xE
b99bd4ef 370
b99bd4ef
NC
371struct asm_psr
372{
b34976b6 373 const char *template;
b99bd4ef
NC
374 unsigned long field;
375};
376
62b3e311
PB
377struct asm_barrier_opt
378{
379 const char *template;
380 unsigned long value;
381};
382
2d2255b5 383/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
384#define SPSR_BIT (1 << 22)
385
c19d1205
ZW
386/* The individual PSR flag bits. */
387#define PSR_c (1 << 16)
388#define PSR_x (1 << 17)
389#define PSR_s (1 << 18)
390#define PSR_f (1 << 19)
b99bd4ef 391
c19d1205 392struct reloc_entry
bfae80f2 393{
c19d1205
ZW
394 char *name;
395 bfd_reloc_code_real_type reloc;
bfae80f2
RE
396};
397
5287ad62 398enum vfp_reg_pos
bfae80f2 399{
5287ad62
JB
400 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
401 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
402};
403
404enum vfp_ldstm_type
405{
406 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
407};
408
dcbf9037
JB
409/* Bits for DEFINED field in neon_typed_alias. */
410#define NTA_HASTYPE 1
411#define NTA_HASINDEX 2
412
413struct neon_typed_alias
414{
415 unsigned char defined;
416 unsigned char index;
417 struct neon_type_el eltype;
418};
419
c19d1205
ZW
420/* ARM register categories. This includes coprocessor numbers and various
421 architecture extensions' registers. */
422enum arm_reg_type
bfae80f2 423{
c19d1205
ZW
424 REG_TYPE_RN,
425 REG_TYPE_CP,
426 REG_TYPE_CN,
427 REG_TYPE_FN,
428 REG_TYPE_VFS,
429 REG_TYPE_VFD,
5287ad62
JB
430 REG_TYPE_NQ,
431 REG_TYPE_NDQ,
c19d1205
ZW
432 REG_TYPE_VFC,
433 REG_TYPE_MVF,
434 REG_TYPE_MVD,
435 REG_TYPE_MVFX,
436 REG_TYPE_MVDX,
437 REG_TYPE_MVAX,
438 REG_TYPE_DSPSC,
439 REG_TYPE_MMXWR,
440 REG_TYPE_MMXWC,
441 REG_TYPE_MMXWCG,
442 REG_TYPE_XSCALE,
bfae80f2
RE
443};
444
dcbf9037
JB
445/* Structure for a hash table entry for a register.
446 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
447 information which states whether a vector type or index is specified (for a
448 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
449struct reg_entry
450{
dcbf9037
JB
451 const char *name;
452 unsigned char number;
453 unsigned char type;
454 unsigned char builtin;
455 struct neon_typed_alias *neon;
6c43fab6
RE
456};
457
c19d1205
ZW
458/* Diagnostics used when we don't get a register of the expected type. */
459const char *const reg_expected_msgs[] =
460{
461 N_("ARM register expected"),
462 N_("bad or missing co-processor number"),
463 N_("co-processor register expected"),
464 N_("FPA register expected"),
465 N_("VFP single precision register expected"),
5287ad62
JB
466 N_("VFP/Neon double precision register expected"),
467 N_("Neon quad precision register expected"),
468 N_("Neon double or quad precision register expected"),
c19d1205
ZW
469 N_("VFP system register expected"),
470 N_("Maverick MVF register expected"),
471 N_("Maverick MVD register expected"),
472 N_("Maverick MVFX register expected"),
473 N_("Maverick MVDX register expected"),
474 N_("Maverick MVAX register expected"),
475 N_("Maverick DSPSC register expected"),
476 N_("iWMMXt data register expected"),
477 N_("iWMMXt control register expected"),
478 N_("iWMMXt scalar register expected"),
479 N_("XScale accumulator register expected"),
6c43fab6
RE
480};
481
c19d1205
ZW
482/* Some well known registers that we refer to directly elsewhere. */
483#define REG_SP 13
484#define REG_LR 14
485#define REG_PC 15
404ff6b5 486
b99bd4ef
NC
487/* ARM instructions take 4bytes in the object file, Thumb instructions
488 take 2: */
c19d1205 489#define INSN_SIZE 4
b99bd4ef
NC
490
491struct asm_opcode
492{
493 /* Basic string to match. */
c19d1205
ZW
494 const char *template;
495
496 /* Parameters to instruction. */
497 unsigned char operands[8];
498
499 /* Conditional tag - see opcode_lookup. */
500 unsigned int tag : 4;
b99bd4ef
NC
501
502 /* Basic instruction code. */
c19d1205 503 unsigned int avalue : 28;
b99bd4ef 504
c19d1205
ZW
505 /* Thumb-format instruction code. */
506 unsigned int tvalue;
b99bd4ef 507
90e4755a 508 /* Which architecture variant provides this instruction. */
e74cfd16
PB
509 const arm_feature_set *avariant;
510 const arm_feature_set *tvariant;
c19d1205
ZW
511
512 /* Function to call to encode instruction in ARM format. */
513 void (* aencode) (void);
b99bd4ef 514
c19d1205
ZW
515 /* Function to call to encode instruction in Thumb format. */
516 void (* tencode) (void);
b99bd4ef
NC
517};
518
a737bd4d
NC
519/* Defines for various bits that we will want to toggle. */
520#define INST_IMMEDIATE 0x02000000
521#define OFFSET_REG 0x02000000
c19d1205 522#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
523#define SHIFT_BY_REG 0x00000010
524#define PRE_INDEX 0x01000000
525#define INDEX_UP 0x00800000
526#define WRITE_BACK 0x00200000
527#define LDM_TYPE_2_OR_3 0x00400000
90e4755a 528
a737bd4d
NC
529#define LITERAL_MASK 0xf000f000
530#define OPCODE_MASK 0xfe1fffff
531#define V4_STR_BIT 0x00000020
90e4755a 532
a737bd4d 533#define DATA_OP_SHIFT 21
90e4755a 534
ef8d22e6
PB
535#define T2_OPCODE_MASK 0xfe1fffff
536#define T2_DATA_OP_SHIFT 21
537
a737bd4d
NC
538/* Codes to distinguish the arithmetic instructions. */
539#define OPCODE_AND 0
540#define OPCODE_EOR 1
541#define OPCODE_SUB 2
542#define OPCODE_RSB 3
543#define OPCODE_ADD 4
544#define OPCODE_ADC 5
545#define OPCODE_SBC 6
546#define OPCODE_RSC 7
547#define OPCODE_TST 8
548#define OPCODE_TEQ 9
549#define OPCODE_CMP 10
550#define OPCODE_CMN 11
551#define OPCODE_ORR 12
552#define OPCODE_MOV 13
553#define OPCODE_BIC 14
554#define OPCODE_MVN 15
90e4755a 555
ef8d22e6
PB
556#define T2_OPCODE_AND 0
557#define T2_OPCODE_BIC 1
558#define T2_OPCODE_ORR 2
559#define T2_OPCODE_ORN 3
560#define T2_OPCODE_EOR 4
561#define T2_OPCODE_ADD 8
562#define T2_OPCODE_ADC 10
563#define T2_OPCODE_SBC 11
564#define T2_OPCODE_SUB 13
565#define T2_OPCODE_RSB 14
566
a737bd4d
NC
567#define T_OPCODE_MUL 0x4340
568#define T_OPCODE_TST 0x4200
569#define T_OPCODE_CMN 0x42c0
570#define T_OPCODE_NEG 0x4240
571#define T_OPCODE_MVN 0x43c0
90e4755a 572
a737bd4d
NC
573#define T_OPCODE_ADD_R3 0x1800
574#define T_OPCODE_SUB_R3 0x1a00
575#define T_OPCODE_ADD_HI 0x4400
576#define T_OPCODE_ADD_ST 0xb000
577#define T_OPCODE_SUB_ST 0xb080
578#define T_OPCODE_ADD_SP 0xa800
579#define T_OPCODE_ADD_PC 0xa000
580#define T_OPCODE_ADD_I8 0x3000
581#define T_OPCODE_SUB_I8 0x3800
582#define T_OPCODE_ADD_I3 0x1c00
583#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 584
a737bd4d
NC
585#define T_OPCODE_ASR_R 0x4100
586#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
587#define T_OPCODE_LSR_R 0x40c0
588#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
589#define T_OPCODE_ASR_I 0x1000
590#define T_OPCODE_LSL_I 0x0000
591#define T_OPCODE_LSR_I 0x0800
b99bd4ef 592
a737bd4d
NC
593#define T_OPCODE_MOV_I8 0x2000
594#define T_OPCODE_CMP_I8 0x2800
595#define T_OPCODE_CMP_LR 0x4280
596#define T_OPCODE_MOV_HR 0x4600
597#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 598
a737bd4d
NC
599#define T_OPCODE_LDR_PC 0x4800
600#define T_OPCODE_LDR_SP 0x9800
601#define T_OPCODE_STR_SP 0x9000
602#define T_OPCODE_LDR_IW 0x6800
603#define T_OPCODE_STR_IW 0x6000
604#define T_OPCODE_LDR_IH 0x8800
605#define T_OPCODE_STR_IH 0x8000
606#define T_OPCODE_LDR_IB 0x7800
607#define T_OPCODE_STR_IB 0x7000
608#define T_OPCODE_LDR_RW 0x5800
609#define T_OPCODE_STR_RW 0x5000
610#define T_OPCODE_LDR_RH 0x5a00
611#define T_OPCODE_STR_RH 0x5200
612#define T_OPCODE_LDR_RB 0x5c00
613#define T_OPCODE_STR_RB 0x5400
c9b604bd 614
a737bd4d
NC
615#define T_OPCODE_PUSH 0xb400
616#define T_OPCODE_POP 0xbc00
b99bd4ef 617
2fc8bdac 618#define T_OPCODE_BRANCH 0xe000
b99bd4ef 619
a737bd4d 620#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 621#define THUMB_PP_PC_LR 0x0100
c19d1205 622#define THUMB_LOAD_BIT 0x0800
53365c0d 623#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
624
625#define BAD_ARGS _("bad arguments to instruction")
626#define BAD_PC _("r15 not allowed here")
627#define BAD_COND _("instruction cannot be conditional")
628#define BAD_OVERLAP _("registers may not be the same")
629#define BAD_HIREG _("lo register required")
630#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 631#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
632#define BAD_BRANCH _("branch must be last instruction in IT block")
633#define BAD_NOT_IT _("instruction not allowed in IT block")
c19d1205
ZW
634
635static struct hash_control *arm_ops_hsh;
636static struct hash_control *arm_cond_hsh;
637static struct hash_control *arm_shift_hsh;
638static struct hash_control *arm_psr_hsh;
62b3e311 639static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
640static struct hash_control *arm_reg_hsh;
641static struct hash_control *arm_reloc_hsh;
62b3e311 642static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 643
b99bd4ef
NC
644/* Stuff needed to resolve the label ambiguity
645 As:
646 ...
647 label: <insn>
648 may differ from:
649 ...
650 label:
c19d1205 651 <insn>
b99bd4ef
NC
652*/
653
654symbolS * last_label_seen;
b34976b6 655static int label_is_thumb_function_name = FALSE;
a737bd4d 656\f
3d0c9500
NC
657/* Literal pool structure. Held on a per-section
658 and per-sub-section basis. */
a737bd4d 659
c19d1205 660#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 661typedef struct literal_pool
b99bd4ef 662{
c19d1205
ZW
663 expressionS literals [MAX_LITERAL_POOL_SIZE];
664 unsigned int next_free_entry;
665 unsigned int id;
666 symbolS * symbol;
667 segT section;
668 subsegT sub_section;
61b5f74b 669 struct literal_pool * next;
3d0c9500 670} literal_pool;
b99bd4ef 671
3d0c9500
NC
672/* Pointer to a linked list of literal pools. */
673literal_pool * list_of_pools = NULL;
e27ec89e
PB
674
675/* State variables for IT block handling. */
676static bfd_boolean current_it_mask = 0;
677static int current_cc;
678
c19d1205
ZW
679\f
680/* Pure syntax. */
b99bd4ef 681
c19d1205
ZW
682/* This array holds the chars that always start a comment. If the
683 pre-processor is disabled, these aren't very useful. */
684const char comment_chars[] = "@";
3d0c9500 685
c19d1205
ZW
686/* This array holds the chars that only start a comment at the beginning of
687 a line. If the line seems to have the form '# 123 filename'
688 .line and .file directives will appear in the pre-processed output. */
689/* Note that input_file.c hand checks for '#' at the beginning of the
690 first line of the input file. This is because the compiler outputs
691 #NO_APP at the beginning of its output. */
692/* Also note that comments like this one will always work. */
693const char line_comment_chars[] = "#";
3d0c9500 694
c19d1205 695const char line_separator_chars[] = ";";
b99bd4ef 696
c19d1205
ZW
697/* Chars that can be used to separate mant
698 from exp in floating point numbers. */
699const char EXP_CHARS[] = "eE";
3d0c9500 700
c19d1205
ZW
701/* Chars that mean this number is a floating point constant. */
702/* As in 0f12.456 */
703/* or 0d1.2345e12 */
b99bd4ef 704
c19d1205 705const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 706
c19d1205
ZW
707/* Prefix characters that indicate the start of an immediate
708 value. */
709#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 710
c19d1205
ZW
711/* Separator character handling. */
712
713#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
714
715static inline int
716skip_past_char (char ** str, char c)
717{
718 if (**str == c)
719 {
720 (*str)++;
721 return SUCCESS;
3d0c9500 722 }
c19d1205
ZW
723 else
724 return FAIL;
725}
726#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 727
c19d1205
ZW
728/* Arithmetic expressions (possibly involving symbols). */
729
730/* Return TRUE if anything in the expression is a bignum. */
731
732static int
733walk_no_bignums (symbolS * sp)
734{
735 if (symbol_get_value_expression (sp)->X_op == O_big)
736 return 1;
737
738 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 739 {
c19d1205
ZW
740 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
741 || (symbol_get_value_expression (sp)->X_op_symbol
742 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
743 }
744
c19d1205 745 return 0;
3d0c9500
NC
746}
747
c19d1205
ZW
748static int in_my_get_expression = 0;
749
750/* Third argument to my_get_expression. */
751#define GE_NO_PREFIX 0
752#define GE_IMM_PREFIX 1
753#define GE_OPT_PREFIX 2
5287ad62
JB
754/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
755 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
756#define GE_OPT_PREFIX_BIG 3
a737bd4d 757
b99bd4ef 758static int
c19d1205 759my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 760{
c19d1205
ZW
761 char * save_in;
762 segT seg;
b99bd4ef 763
c19d1205
ZW
764 /* In unified syntax, all prefixes are optional. */
765 if (unified_syntax)
5287ad62
JB
766 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
767 : GE_OPT_PREFIX;
b99bd4ef 768
c19d1205 769 switch (prefix_mode)
b99bd4ef 770 {
c19d1205
ZW
771 case GE_NO_PREFIX: break;
772 case GE_IMM_PREFIX:
773 if (!is_immediate_prefix (**str))
774 {
775 inst.error = _("immediate expression requires a # prefix");
776 return FAIL;
777 }
778 (*str)++;
779 break;
780 case GE_OPT_PREFIX:
5287ad62 781 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
782 if (is_immediate_prefix (**str))
783 (*str)++;
784 break;
785 default: abort ();
786 }
b99bd4ef 787
c19d1205 788 memset (ep, 0, sizeof (expressionS));
b99bd4ef 789
c19d1205
ZW
790 save_in = input_line_pointer;
791 input_line_pointer = *str;
792 in_my_get_expression = 1;
793 seg = expression (ep);
794 in_my_get_expression = 0;
795
796 if (ep->X_op == O_illegal)
b99bd4ef 797 {
c19d1205
ZW
798 /* We found a bad expression in md_operand(). */
799 *str = input_line_pointer;
800 input_line_pointer = save_in;
801 if (inst.error == NULL)
802 inst.error = _("bad expression");
803 return 1;
804 }
b99bd4ef 805
c19d1205
ZW
806#ifdef OBJ_AOUT
807 if (seg != absolute_section
808 && seg != text_section
809 && seg != data_section
810 && seg != bss_section
811 && seg != undefined_section)
812 {
813 inst.error = _("bad segment");
814 *str = input_line_pointer;
815 input_line_pointer = save_in;
816 return 1;
b99bd4ef 817 }
c19d1205 818#endif
b99bd4ef 819
c19d1205
ZW
820 /* Get rid of any bignums now, so that we don't generate an error for which
821 we can't establish a line number later on. Big numbers are never valid
822 in instructions, which is where this routine is always called. */
5287ad62
JB
823 if (prefix_mode != GE_OPT_PREFIX_BIG
824 && (ep->X_op == O_big
825 || (ep->X_add_symbol
826 && (walk_no_bignums (ep->X_add_symbol)
827 || (ep->X_op_symbol
828 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
829 {
830 inst.error = _("invalid constant");
831 *str = input_line_pointer;
832 input_line_pointer = save_in;
833 return 1;
834 }
b99bd4ef 835
c19d1205
ZW
836 *str = input_line_pointer;
837 input_line_pointer = save_in;
838 return 0;
b99bd4ef
NC
839}
840
c19d1205
ZW
841/* Turn a string in input_line_pointer into a floating point constant
842 of type TYPE, and store the appropriate bytes in *LITP. The number
843 of LITTLENUMS emitted is stored in *SIZEP. An error message is
844 returned, or NULL on OK.
b99bd4ef 845
c19d1205
ZW
846 Note that fp constants aren't represent in the normal way on the ARM.
847 In big endian mode, things are as expected. However, in little endian
848 mode fp constants are big-endian word-wise, and little-endian byte-wise
849 within the words. For example, (double) 1.1 in big endian mode is
850 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
851 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 852
c19d1205 853 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 854
c19d1205
ZW
855char *
856md_atof (int type, char * litP, int * sizeP)
857{
858 int prec;
859 LITTLENUM_TYPE words[MAX_LITTLENUMS];
860 char *t;
861 int i;
b99bd4ef 862
c19d1205
ZW
863 switch (type)
864 {
865 case 'f':
866 case 'F':
867 case 's':
868 case 'S':
869 prec = 2;
870 break;
b99bd4ef 871
c19d1205
ZW
872 case 'd':
873 case 'D':
874 case 'r':
875 case 'R':
876 prec = 4;
877 break;
b99bd4ef 878
c19d1205
ZW
879 case 'x':
880 case 'X':
881 prec = 6;
882 break;
b99bd4ef 883
c19d1205
ZW
884 case 'p':
885 case 'P':
886 prec = 6;
887 break;
a737bd4d 888
c19d1205
ZW
889 default:
890 *sizeP = 0;
891 return _("bad call to MD_ATOF()");
892 }
b99bd4ef 893
c19d1205
ZW
894 t = atof_ieee (input_line_pointer, type, words);
895 if (t)
896 input_line_pointer = t;
897 *sizeP = prec * 2;
b99bd4ef 898
c19d1205
ZW
899 if (target_big_endian)
900 {
901 for (i = 0; i < prec; i++)
902 {
903 md_number_to_chars (litP, (valueT) words[i], 2);
904 litP += 2;
905 }
906 }
907 else
908 {
e74cfd16 909 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
910 for (i = prec - 1; i >= 0; i--)
911 {
912 md_number_to_chars (litP, (valueT) words[i], 2);
913 litP += 2;
914 }
915 else
916 /* For a 4 byte float the order of elements in `words' is 1 0.
917 For an 8 byte float the order is 1 0 3 2. */
918 for (i = 0; i < prec; i += 2)
919 {
920 md_number_to_chars (litP, (valueT) words[i + 1], 2);
921 md_number_to_chars (litP + 2, (valueT) words[i], 2);
922 litP += 4;
923 }
924 }
b99bd4ef 925
c19d1205
ZW
926 return 0;
927}
b99bd4ef 928
c19d1205
ZW
929/* We handle all bad expressions here, so that we can report the faulty
930 instruction in the error message. */
931void
932md_operand (expressionS * expr)
933{
934 if (in_my_get_expression)
935 expr->X_op = O_illegal;
b99bd4ef
NC
936}
937
c19d1205 938/* Immediate values. */
b99bd4ef 939
c19d1205
ZW
940/* Generic immediate-value read function for use in directives.
941 Accepts anything that 'expression' can fold to a constant.
942 *val receives the number. */
943#ifdef OBJ_ELF
944static int
945immediate_for_directive (int *val)
b99bd4ef 946{
c19d1205
ZW
947 expressionS exp;
948 exp.X_op = O_illegal;
b99bd4ef 949
c19d1205
ZW
950 if (is_immediate_prefix (*input_line_pointer))
951 {
952 input_line_pointer++;
953 expression (&exp);
954 }
b99bd4ef 955
c19d1205
ZW
956 if (exp.X_op != O_constant)
957 {
958 as_bad (_("expected #constant"));
959 ignore_rest_of_line ();
960 return FAIL;
961 }
962 *val = exp.X_add_number;
963 return SUCCESS;
b99bd4ef 964}
c19d1205 965#endif
b99bd4ef 966
c19d1205 967/* Register parsing. */
b99bd4ef 968
c19d1205
ZW
969/* Generic register parser. CCP points to what should be the
970 beginning of a register name. If it is indeed a valid register
971 name, advance CCP over it and return the reg_entry structure;
972 otherwise return NULL. Does not issue diagnostics. */
973
974static struct reg_entry *
975arm_reg_parse_multi (char **ccp)
b99bd4ef 976{
c19d1205
ZW
977 char *start = *ccp;
978 char *p;
979 struct reg_entry *reg;
b99bd4ef 980
c19d1205
ZW
981#ifdef REGISTER_PREFIX
982 if (*start != REGISTER_PREFIX)
01cfc07f 983 return NULL;
c19d1205
ZW
984 start++;
985#endif
986#ifdef OPTIONAL_REGISTER_PREFIX
987 if (*start == OPTIONAL_REGISTER_PREFIX)
988 start++;
989#endif
b99bd4ef 990
c19d1205
ZW
991 p = start;
992 if (!ISALPHA (*p) || !is_name_beginner (*p))
993 return NULL;
b99bd4ef 994
c19d1205
ZW
995 do
996 p++;
997 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
998
999 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1000
1001 if (!reg)
1002 return NULL;
1003
1004 *ccp = p;
1005 return reg;
b99bd4ef
NC
1006}
1007
1008static int
dcbf9037
JB
1009arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1010 enum arm_reg_type type)
b99bd4ef 1011{
c19d1205
ZW
1012 /* Alternative syntaxes are accepted for a few register classes. */
1013 switch (type)
1014 {
1015 case REG_TYPE_MVF:
1016 case REG_TYPE_MVD:
1017 case REG_TYPE_MVFX:
1018 case REG_TYPE_MVDX:
1019 /* Generic coprocessor register names are allowed for these. */
79134647 1020 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1021 return reg->number;
1022 break;
69b97547 1023
c19d1205
ZW
1024 case REG_TYPE_CP:
1025 /* For backward compatibility, a bare number is valid here. */
1026 {
1027 unsigned long processor = strtoul (start, ccp, 10);
1028 if (*ccp != start && processor <= 15)
1029 return processor;
1030 }
6057a28f 1031
c19d1205
ZW
1032 case REG_TYPE_MMXWC:
1033 /* WC includes WCG. ??? I'm not sure this is true for all
1034 instructions that take WC registers. */
79134647 1035 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1036 return reg->number;
6057a28f 1037 break;
c19d1205 1038
6057a28f 1039 default:
c19d1205 1040 break;
6057a28f
NC
1041 }
1042
dcbf9037
JB
1043 return FAIL;
1044}
1045
1046/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1047 return value is the register number or FAIL. */
1048
1049static int
1050arm_reg_parse (char **ccp, enum arm_reg_type type)
1051{
1052 char *start = *ccp;
1053 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1054 int ret;
1055
1056 /* Do not allow a scalar (reg+index) to parse as a register. */
1057 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1058 return FAIL;
1059
1060 if (reg && reg->type == type)
1061 return reg->number;
1062
1063 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1064 return ret;
1065
c19d1205
ZW
1066 *ccp = start;
1067 return FAIL;
1068}
69b97547 1069
dcbf9037
JB
1070/* Parse a Neon type specifier. *STR should point at the leading '.'
1071 character. Does no verification at this stage that the type fits the opcode
1072 properly. E.g.,
1073
1074 .i32.i32.s16
1075 .s32.f32
1076 .u16
1077
1078 Can all be legally parsed by this function.
1079
1080 Fills in neon_type struct pointer with parsed information, and updates STR
1081 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1082 type, FAIL if not. */
1083
1084static int
1085parse_neon_type (struct neon_type *type, char **str)
1086{
1087 char *ptr = *str;
1088
1089 if (type)
1090 type->elems = 0;
1091
1092 while (type->elems < NEON_MAX_TYPE_ELS)
1093 {
1094 enum neon_el_type thistype = NT_untyped;
1095 unsigned thissize = -1u;
1096
1097 if (*ptr != '.')
1098 break;
1099
1100 ptr++;
1101
1102 /* Just a size without an explicit type. */
1103 if (ISDIGIT (*ptr))
1104 goto parsesize;
1105
1106 switch (TOLOWER (*ptr))
1107 {
1108 case 'i': thistype = NT_integer; break;
1109 case 'f': thistype = NT_float; break;
1110 case 'p': thistype = NT_poly; break;
1111 case 's': thistype = NT_signed; break;
1112 case 'u': thistype = NT_unsigned; break;
1113 default:
1114 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1115 return FAIL;
1116 }
1117
1118 ptr++;
1119
1120 /* .f is an abbreviation for .f32. */
1121 if (thistype == NT_float && !ISDIGIT (*ptr))
1122 thissize = 32;
1123 else
1124 {
1125 parsesize:
1126 thissize = strtoul (ptr, &ptr, 10);
1127
1128 if (thissize != 8 && thissize != 16 && thissize != 32
1129 && thissize != 64)
1130 {
1131 as_bad (_("bad size %d in type specifier"), thissize);
1132 return FAIL;
1133 }
1134 }
1135
1136 if (type)
1137 {
1138 type->el[type->elems].type = thistype;
1139 type->el[type->elems].size = thissize;
1140 type->elems++;
1141 }
1142 }
1143
1144 /* Empty/missing type is not a successful parse. */
1145 if (type->elems == 0)
1146 return FAIL;
1147
1148 *str = ptr;
1149
1150 return SUCCESS;
1151}
1152
1153/* Errors may be set multiple times during parsing or bit encoding
1154 (particularly in the Neon bits), but usually the earliest error which is set
1155 will be the most meaningful. Avoid overwriting it with later (cascading)
1156 errors by calling this function. */
1157
1158static void
1159first_error (const char *err)
1160{
1161 if (!inst.error)
1162 inst.error = err;
1163}
1164
1165/* Parse a single type, e.g. ".s32", leading period included. */
1166static int
1167parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1168{
1169 char *str = *ccp;
1170 struct neon_type optype;
1171
1172 if (*str == '.')
1173 {
1174 if (parse_neon_type (&optype, &str) == SUCCESS)
1175 {
1176 if (optype.elems == 1)
1177 *vectype = optype.el[0];
1178 else
1179 {
1180 first_error (_("only one type should be specified for operand"));
1181 return FAIL;
1182 }
1183 }
1184 else
1185 {
1186 first_error (_("vector type expected"));
1187 return FAIL;
1188 }
1189 }
1190 else
1191 return FAIL;
1192
1193 *ccp = str;
1194
1195 return SUCCESS;
1196}
1197
1198/* Special meanings for indices (which have a range of 0-7), which will fit into
1199 a 4-bit integer. */
1200
1201#define NEON_ALL_LANES 15
1202#define NEON_INTERLEAVE_LANES 14
1203
1204/* Parse either a register or a scalar, with an optional type. Return the
1205 register number, and optionally fill in the actual type of the register
1206 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1207 type/index information in *TYPEINFO. */
1208
1209static int
1210parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1211 enum arm_reg_type *rtype,
1212 struct neon_typed_alias *typeinfo)
1213{
1214 char *str = *ccp;
1215 struct reg_entry *reg = arm_reg_parse_multi (&str);
1216 struct neon_typed_alias atype;
1217 struct neon_type_el parsetype;
1218
1219 atype.defined = 0;
1220 atype.index = -1;
1221 atype.eltype.type = NT_invtype;
1222 atype.eltype.size = -1;
1223
1224 /* Try alternate syntax for some types of register. Note these are mutually
1225 exclusive with the Neon syntax extensions. */
1226 if (reg == NULL)
1227 {
1228 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1229 if (altreg != FAIL)
1230 *ccp = str;
1231 if (typeinfo)
1232 *typeinfo = atype;
1233 return altreg;
1234 }
1235
1236 /* Undo polymorphism for Neon D and Q registers. */
1237 if (type == REG_TYPE_NDQ
1238 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1239 type = reg->type;
1240
1241 if (type != reg->type)
1242 return FAIL;
1243
1244 if (reg->neon)
1245 atype = *reg->neon;
1246
1247 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1248 {
1249 if ((atype.defined & NTA_HASTYPE) != 0)
1250 {
1251 first_error (_("can't redefine type for operand"));
1252 return FAIL;
1253 }
1254 atype.defined |= NTA_HASTYPE;
1255 atype.eltype = parsetype;
1256 }
1257
1258 if (skip_past_char (&str, '[') == SUCCESS)
1259 {
1260 if (type != REG_TYPE_VFD)
1261 {
1262 first_error (_("only D registers may be indexed"));
1263 return FAIL;
1264 }
1265
1266 if ((atype.defined & NTA_HASINDEX) != 0)
1267 {
1268 first_error (_("can't change index for operand"));
1269 return FAIL;
1270 }
1271
1272 atype.defined |= NTA_HASINDEX;
1273
1274 if (skip_past_char (&str, ']') == SUCCESS)
1275 atype.index = NEON_ALL_LANES;
1276 else
1277 {
1278 expressionS exp;
1279
1280 my_get_expression (&exp, &str, GE_NO_PREFIX);
1281
1282 if (exp.X_op != O_constant)
1283 {
1284 first_error (_("constant expression required"));
1285 return FAIL;
1286 }
1287
1288 if (skip_past_char (&str, ']') == FAIL)
1289 return FAIL;
1290
1291 atype.index = exp.X_add_number;
1292 }
1293 }
1294
1295 if (typeinfo)
1296 *typeinfo = atype;
1297
1298 if (rtype)
1299 *rtype = type;
1300
1301 *ccp = str;
1302
1303 return reg->number;
1304}
1305
1306/* Like arm_reg_parse, but allow allow the following extra features:
1307 - If RTYPE is non-zero, return the (possibly restricted) type of the
1308 register (e.g. Neon double or quad reg when either has been requested).
1309 - If this is a Neon vector type with additional type information, fill
1310 in the struct pointed to by VECTYPE (if non-NULL).
1311 This function will fault on encountering a scalar.
1312*/
1313
1314static int
1315arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1316 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1317{
1318 struct neon_typed_alias atype;
1319 char *str = *ccp;
1320 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1321
1322 if (reg == FAIL)
1323 return FAIL;
1324
1325 /* Do not allow a scalar (reg+index) to parse as a register. */
1326 if ((atype.defined & NTA_HASINDEX) != 0)
1327 {
1328 first_error (_("register operand expected, but got scalar"));
1329 return FAIL;
1330 }
1331
1332 if (vectype)
1333 *vectype = atype.eltype;
1334
1335 *ccp = str;
1336
1337 return reg;
1338}
1339
1340#define NEON_SCALAR_REG(X) ((X) >> 4)
1341#define NEON_SCALAR_INDEX(X) ((X) & 15)
1342
5287ad62
JB
1343/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1344 have enough information to be able to do a good job bounds-checking. So, we
1345 just do easy checks here, and do further checks later. */
1346
1347static int
dcbf9037 1348parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1349{
dcbf9037 1350 int reg;
5287ad62 1351 char *str = *ccp;
dcbf9037 1352 struct neon_typed_alias atype;
5287ad62 1353
dcbf9037 1354 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5287ad62 1355
dcbf9037 1356 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62
JB
1357 return FAIL;
1358
dcbf9037 1359 if (atype.index == NEON_ALL_LANES)
5287ad62 1360 {
dcbf9037 1361 first_error (_("scalar must have an index"));
5287ad62
JB
1362 return FAIL;
1363 }
dcbf9037 1364 else if (atype.index >= 64 / elsize)
5287ad62 1365 {
dcbf9037 1366 first_error (_("scalar index out of range"));
5287ad62
JB
1367 return FAIL;
1368 }
1369
dcbf9037
JB
1370 if (type)
1371 *type = atype.eltype;
5287ad62 1372
5287ad62
JB
1373 *ccp = str;
1374
dcbf9037 1375 return reg * 16 + atype.index;
5287ad62
JB
1376}
1377
c19d1205
ZW
1378/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1379static long
1380parse_reg_list (char ** strp)
1381{
1382 char * str = * strp;
1383 long range = 0;
1384 int another_range;
a737bd4d 1385
c19d1205
ZW
1386 /* We come back here if we get ranges concatenated by '+' or '|'. */
1387 do
6057a28f 1388 {
c19d1205 1389 another_range = 0;
a737bd4d 1390
c19d1205
ZW
1391 if (*str == '{')
1392 {
1393 int in_range = 0;
1394 int cur_reg = -1;
a737bd4d 1395
c19d1205
ZW
1396 str++;
1397 do
1398 {
1399 int reg;
6057a28f 1400
dcbf9037 1401 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1402 {
dcbf9037 1403 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1404 return FAIL;
1405 }
a737bd4d 1406
c19d1205
ZW
1407 if (in_range)
1408 {
1409 int i;
a737bd4d 1410
c19d1205
ZW
1411 if (reg <= cur_reg)
1412 {
dcbf9037 1413 first_error (_("bad range in register list"));
c19d1205
ZW
1414 return FAIL;
1415 }
40a18ebd 1416
c19d1205
ZW
1417 for (i = cur_reg + 1; i < reg; i++)
1418 {
1419 if (range & (1 << i))
1420 as_tsktsk
1421 (_("Warning: duplicated register (r%d) in register list"),
1422 i);
1423 else
1424 range |= 1 << i;
1425 }
1426 in_range = 0;
1427 }
a737bd4d 1428
c19d1205
ZW
1429 if (range & (1 << reg))
1430 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1431 reg);
1432 else if (reg <= cur_reg)
1433 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1434
c19d1205
ZW
1435 range |= 1 << reg;
1436 cur_reg = reg;
1437 }
1438 while (skip_past_comma (&str) != FAIL
1439 || (in_range = 1, *str++ == '-'));
1440 str--;
a737bd4d 1441
c19d1205
ZW
1442 if (*str++ != '}')
1443 {
dcbf9037 1444 first_error (_("missing `}'"));
c19d1205
ZW
1445 return FAIL;
1446 }
1447 }
1448 else
1449 {
1450 expressionS expr;
40a18ebd 1451
c19d1205
ZW
1452 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1453 return FAIL;
40a18ebd 1454
c19d1205
ZW
1455 if (expr.X_op == O_constant)
1456 {
1457 if (expr.X_add_number
1458 != (expr.X_add_number & 0x0000ffff))
1459 {
1460 inst.error = _("invalid register mask");
1461 return FAIL;
1462 }
a737bd4d 1463
c19d1205
ZW
1464 if ((range & expr.X_add_number) != 0)
1465 {
1466 int regno = range & expr.X_add_number;
a737bd4d 1467
c19d1205
ZW
1468 regno &= -regno;
1469 regno = (1 << regno) - 1;
1470 as_tsktsk
1471 (_("Warning: duplicated register (r%d) in register list"),
1472 regno);
1473 }
a737bd4d 1474
c19d1205
ZW
1475 range |= expr.X_add_number;
1476 }
1477 else
1478 {
1479 if (inst.reloc.type != 0)
1480 {
1481 inst.error = _("expression too complex");
1482 return FAIL;
1483 }
a737bd4d 1484
c19d1205
ZW
1485 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1486 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1487 inst.reloc.pc_rel = 0;
1488 }
1489 }
a737bd4d 1490
c19d1205
ZW
1491 if (*str == '|' || *str == '+')
1492 {
1493 str++;
1494 another_range = 1;
1495 }
a737bd4d 1496 }
c19d1205 1497 while (another_range);
a737bd4d 1498
c19d1205
ZW
1499 *strp = str;
1500 return range;
a737bd4d
NC
1501}
1502
5287ad62
JB
1503/* Types of registers in a list. */
1504
1505enum reg_list_els
1506{
1507 REGLIST_VFP_S,
1508 REGLIST_VFP_D,
1509 REGLIST_NEON_D
1510};
1511
c19d1205
ZW
1512/* Parse a VFP register list. If the string is invalid return FAIL.
1513 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1514 register. Parses registers of type ETYPE.
1515 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1516 - Q registers can be used to specify pairs of D registers
1517 - { } can be omitted from around a singleton register list
1518 FIXME: This is not implemented, as it would require backtracking in
1519 some cases, e.g.:
1520 vtbl.8 d3,d4,d5
1521 This could be done (the meaning isn't really ambiguous), but doesn't
1522 fit in well with the current parsing framework.
dcbf9037
JB
1523 - 32 D registers may be used (also true for VFPv3).
1524 FIXME: Types are ignored in these register lists, which is probably a
1525 bug. */
6057a28f 1526
c19d1205 1527static int
5287ad62 1528parse_vfp_reg_list (char **str, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1529{
c19d1205
ZW
1530 int base_reg;
1531 int new_base;
5287ad62
JB
1532 enum arm_reg_type regtype = 0;
1533 int max_regs = 0;
c19d1205
ZW
1534 int count = 0;
1535 int warned = 0;
1536 unsigned long mask = 0;
a737bd4d 1537 int i;
6057a28f 1538
c19d1205 1539 if (**str != '{')
5287ad62
JB
1540 {
1541 inst.error = _("expecting {");
1542 return FAIL;
1543 }
6057a28f 1544
c19d1205 1545 (*str)++;
6057a28f 1546
5287ad62 1547 switch (etype)
c19d1205 1548 {
5287ad62 1549 case REGLIST_VFP_S:
c19d1205
ZW
1550 regtype = REG_TYPE_VFS;
1551 max_regs = 32;
5287ad62
JB
1552 break;
1553
1554 case REGLIST_VFP_D:
1555 regtype = REG_TYPE_VFD;
1556 /* VFPv3 allows 32 D registers. */
1557 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1558 {
1559 max_regs = 32;
1560 if (thumb_mode)
1561 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1562 fpu_vfp_ext_v3);
1563 else
1564 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1565 fpu_vfp_ext_v3);
1566 }
1567 else
1568 max_regs = 16;
1569 break;
1570
1571 case REGLIST_NEON_D:
1572 regtype = REG_TYPE_NDQ;
1573 max_regs = 32;
1574 break;
c19d1205 1575 }
6057a28f 1576
c19d1205 1577 base_reg = max_regs;
a737bd4d 1578
c19d1205
ZW
1579 do
1580 {
5287ad62 1581 int setmask = 1, addregs = 1;
dcbf9037
JB
1582
1583 new_base = arm_typed_reg_parse (str, regtype, &regtype, NULL);
1584
c19d1205 1585 if (new_base == FAIL)
a737bd4d 1586 {
dcbf9037 1587 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1588 return FAIL;
1589 }
dcbf9037 1590
5287ad62
JB
1591 /* Note: a value of 2 * n is returned for the register Q<n>. */
1592 if (regtype == REG_TYPE_NQ)
1593 {
1594 setmask = 3;
1595 addregs = 2;
1596 }
1597
c19d1205
ZW
1598 if (new_base < base_reg)
1599 base_reg = new_base;
a737bd4d 1600
5287ad62 1601 if (mask & (setmask << new_base))
c19d1205 1602 {
dcbf9037 1603 first_error (_("invalid register list"));
c19d1205 1604 return FAIL;
a737bd4d 1605 }
a737bd4d 1606
c19d1205
ZW
1607 if ((mask >> new_base) != 0 && ! warned)
1608 {
1609 as_tsktsk (_("register list not in ascending order"));
1610 warned = 1;
1611 }
0bbf2aa4 1612
5287ad62
JB
1613 mask |= setmask << new_base;
1614 count += addregs;
0bbf2aa4 1615
c19d1205
ZW
1616 if (**str == '-') /* We have the start of a range expression */
1617 {
1618 int high_range;
0bbf2aa4 1619
c19d1205 1620 (*str)++;
0bbf2aa4 1621
dcbf9037
JB
1622 if ((high_range = arm_typed_reg_parse (str, regtype, NULL, NULL))
1623 == FAIL)
c19d1205
ZW
1624 {
1625 inst.error = gettext (reg_expected_msgs[regtype]);
1626 return FAIL;
1627 }
0bbf2aa4 1628
5287ad62
JB
1629 if (regtype == REG_TYPE_NQ)
1630 high_range = high_range + 1;
1631
c19d1205
ZW
1632 if (high_range <= new_base)
1633 {
1634 inst.error = _("register range not in ascending order");
1635 return FAIL;
1636 }
0bbf2aa4 1637
5287ad62 1638 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1639 {
5287ad62 1640 if (mask & (setmask << new_base))
0bbf2aa4 1641 {
c19d1205
ZW
1642 inst.error = _("invalid register list");
1643 return FAIL;
0bbf2aa4 1644 }
c19d1205 1645
5287ad62
JB
1646 mask |= setmask << new_base;
1647 count += addregs;
0bbf2aa4 1648 }
0bbf2aa4 1649 }
0bbf2aa4 1650 }
c19d1205 1651 while (skip_past_comma (str) != FAIL);
0bbf2aa4 1652
c19d1205 1653 (*str)++;
0bbf2aa4 1654
c19d1205
ZW
1655 /* Sanity check -- should have raised a parse error above. */
1656 if (count == 0 || count > max_regs)
1657 abort ();
1658
1659 *pbase = base_reg;
1660
1661 /* Final test -- the registers must be consecutive. */
1662 mask >>= base_reg;
1663 for (i = 0; i < count; i++)
1664 {
1665 if ((mask & (1u << i)) == 0)
1666 {
1667 inst.error = _("non-contiguous register range");
1668 return FAIL;
1669 }
1670 }
1671
1672 return count;
b99bd4ef
NC
1673}
1674
dcbf9037
JB
1675/* True if two alias types are the same. */
1676
1677static int
1678neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1679{
1680 if (!a && !b)
1681 return 1;
1682
1683 if (!a || !b)
1684 return 0;
1685
1686 if (a->defined != b->defined)
1687 return 0;
1688
1689 if ((a->defined & NTA_HASTYPE) != 0
1690 && (a->eltype.type != b->eltype.type
1691 || a->eltype.size != b->eltype.size))
1692 return 0;
1693
1694 if ((a->defined & NTA_HASINDEX) != 0
1695 && (a->index != b->index))
1696 return 0;
1697
1698 return 1;
1699}
1700
5287ad62
JB
1701/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1702 The base register is put in *PBASE.
dcbf9037 1703 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1704 the return value.
1705 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1706 Bits [6:5] encode the list length (minus one).
1707 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1708
5287ad62 1709#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1710#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1711#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1712
1713static int
dcbf9037
JB
1714parse_neon_el_struct_list (char **str, unsigned *pbase,
1715 struct neon_type_el *eltype)
5287ad62
JB
1716{
1717 char *ptr = *str;
1718 int base_reg = -1;
1719 int reg_incr = -1;
1720 int count = 0;
1721 int lane = -1;
1722 int leading_brace = 0;
1723 enum arm_reg_type rtype = REG_TYPE_NDQ;
1724 int addregs = 1;
1725 const char *const incr_error = "register stride must be 1 or 2";
1726 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1727 struct neon_typed_alias firsttype;
5287ad62
JB
1728
1729 if (skip_past_char (&ptr, '{') == SUCCESS)
1730 leading_brace = 1;
1731
1732 do
1733 {
dcbf9037
JB
1734 struct neon_typed_alias atype;
1735 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1736
5287ad62
JB
1737 if (getreg == FAIL)
1738 {
dcbf9037 1739 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1740 return FAIL;
1741 }
1742
1743 if (base_reg == -1)
1744 {
1745 base_reg = getreg;
1746 if (rtype == REG_TYPE_NQ)
1747 {
1748 reg_incr = 1;
1749 addregs = 2;
1750 }
dcbf9037 1751 firsttype = atype;
5287ad62
JB
1752 }
1753 else if (reg_incr == -1)
1754 {
1755 reg_incr = getreg - base_reg;
1756 if (reg_incr < 1 || reg_incr > 2)
1757 {
dcbf9037 1758 first_error (_(incr_error));
5287ad62
JB
1759 return FAIL;
1760 }
1761 }
1762 else if (getreg != base_reg + reg_incr * count)
1763 {
dcbf9037
JB
1764 first_error (_(incr_error));
1765 return FAIL;
1766 }
1767
1768 if (!neon_alias_types_same (&atype, &firsttype))
1769 {
1770 first_error (_(type_error));
5287ad62
JB
1771 return FAIL;
1772 }
1773
1774 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1775 modes. */
1776 if (ptr[0] == '-')
1777 {
dcbf9037 1778 struct neon_typed_alias htype;
5287ad62
JB
1779 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1780 if (lane == -1)
1781 lane = NEON_INTERLEAVE_LANES;
1782 else if (lane != NEON_INTERLEAVE_LANES)
1783 {
dcbf9037 1784 first_error (_(type_error));
5287ad62
JB
1785 return FAIL;
1786 }
1787 if (reg_incr == -1)
1788 reg_incr = 1;
1789 else if (reg_incr != 1)
1790 {
dcbf9037 1791 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1792 return FAIL;
1793 }
1794 ptr++;
dcbf9037 1795 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1796 if (hireg == FAIL)
1797 {
dcbf9037
JB
1798 first_error (_(reg_expected_msgs[rtype]));
1799 return FAIL;
1800 }
1801 if (!neon_alias_types_same (&htype, &firsttype))
1802 {
1803 first_error (_(type_error));
5287ad62
JB
1804 return FAIL;
1805 }
1806 count += hireg + dregs - getreg;
1807 continue;
1808 }
1809
1810 /* If we're using Q registers, we can't use [] or [n] syntax. */
1811 if (rtype == REG_TYPE_NQ)
1812 {
1813 count += 2;
1814 continue;
1815 }
1816
dcbf9037 1817 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1818 {
dcbf9037
JB
1819 if (lane == -1)
1820 lane = atype.index;
1821 else if (lane != atype.index)
5287ad62 1822 {
dcbf9037
JB
1823 first_error (_(type_error));
1824 return FAIL;
5287ad62
JB
1825 }
1826 }
1827 else if (lane == -1)
1828 lane = NEON_INTERLEAVE_LANES;
1829 else if (lane != NEON_INTERLEAVE_LANES)
1830 {
dcbf9037 1831 first_error (_(type_error));
5287ad62
JB
1832 return FAIL;
1833 }
1834 count++;
1835 }
1836 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1837
1838 /* No lane set by [x]. We must be interleaving structures. */
1839 if (lane == -1)
1840 lane = NEON_INTERLEAVE_LANES;
1841
1842 /* Sanity check. */
1843 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1844 || (count > 1 && reg_incr == -1))
1845 {
dcbf9037 1846 first_error (_("error parsing element/structure list"));
5287ad62
JB
1847 return FAIL;
1848 }
1849
1850 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1851 {
dcbf9037 1852 first_error (_("expected }"));
5287ad62
JB
1853 return FAIL;
1854 }
1855
1856 if (reg_incr == -1)
1857 reg_incr = 1;
1858
dcbf9037
JB
1859 if (eltype)
1860 *eltype = firsttype.eltype;
1861
5287ad62
JB
1862 *pbase = base_reg;
1863 *str = ptr;
1864
1865 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1866}
1867
c19d1205
ZW
1868/* Parse an explicit relocation suffix on an expression. This is
1869 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1870 arm_reloc_hsh contains no entries, so this function can only
1871 succeed if there is no () after the word. Returns -1 on error,
1872 BFD_RELOC_UNUSED if there wasn't any suffix. */
1873static int
1874parse_reloc (char **str)
b99bd4ef 1875{
c19d1205
ZW
1876 struct reloc_entry *r;
1877 char *p, *q;
b99bd4ef 1878
c19d1205
ZW
1879 if (**str != '(')
1880 return BFD_RELOC_UNUSED;
b99bd4ef 1881
c19d1205
ZW
1882 p = *str + 1;
1883 q = p;
1884
1885 while (*q && *q != ')' && *q != ',')
1886 q++;
1887 if (*q != ')')
1888 return -1;
1889
1890 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1891 return -1;
1892
1893 *str = q + 1;
1894 return r->reloc;
b99bd4ef
NC
1895}
1896
c19d1205
ZW
1897/* Directives: register aliases. */
1898
dcbf9037 1899static struct reg_entry *
c19d1205 1900insert_reg_alias (char *str, int number, int type)
b99bd4ef 1901{
c19d1205
ZW
1902 struct reg_entry *new;
1903 const char *name;
b99bd4ef 1904
c19d1205
ZW
1905 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1906 {
1907 if (new->builtin)
1908 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1909
c19d1205
ZW
1910 /* Only warn about a redefinition if it's not defined as the
1911 same register. */
1912 else if (new->number != number || new->type != type)
1913 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1914
dcbf9037 1915 return 0;
c19d1205 1916 }
b99bd4ef 1917
c19d1205
ZW
1918 name = xstrdup (str);
1919 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1920
c19d1205
ZW
1921 new->name = name;
1922 new->number = number;
1923 new->type = type;
1924 new->builtin = FALSE;
dcbf9037 1925 new->neon = NULL;
b99bd4ef 1926
c19d1205
ZW
1927 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1928 abort ();
dcbf9037
JB
1929
1930 return new;
1931}
1932
1933static void
1934insert_neon_reg_alias (char *str, int number, int type,
1935 struct neon_typed_alias *atype)
1936{
1937 struct reg_entry *reg = insert_reg_alias (str, number, type);
1938
1939 if (!reg)
1940 {
1941 first_error (_("attempt to redefine typed alias"));
1942 return;
1943 }
1944
1945 if (atype)
1946 {
1947 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
1948 *reg->neon = *atype;
1949 }
c19d1205 1950}
b99bd4ef 1951
c19d1205 1952/* Look for the .req directive. This is of the form:
b99bd4ef 1953
c19d1205 1954 new_register_name .req existing_register_name
b99bd4ef 1955
c19d1205
ZW
1956 If we find one, or if it looks sufficiently like one that we want to
1957 handle any error here, return non-zero. Otherwise return zero. */
b99bd4ef 1958
c19d1205
ZW
1959static int
1960create_register_alias (char * newname, char *p)
1961{
1962 struct reg_entry *old;
1963 char *oldname, *nbuf;
1964 size_t nlen;
b99bd4ef 1965
c19d1205
ZW
1966 /* The input scrubber ensures that whitespace after the mnemonic is
1967 collapsed to single spaces. */
1968 oldname = p;
1969 if (strncmp (oldname, " .req ", 6) != 0)
1970 return 0;
b99bd4ef 1971
c19d1205
ZW
1972 oldname += 6;
1973 if (*oldname == '\0')
1974 return 0;
b99bd4ef 1975
c19d1205
ZW
1976 old = hash_find (arm_reg_hsh, oldname);
1977 if (!old)
b99bd4ef 1978 {
c19d1205
ZW
1979 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1980 return 1;
b99bd4ef
NC
1981 }
1982
c19d1205
ZW
1983 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1984 the desired alias name, and p points to its end. If not, then
1985 the desired alias name is in the global original_case_string. */
1986#ifdef TC_CASE_SENSITIVE
1987 nlen = p - newname;
1988#else
1989 newname = original_case_string;
1990 nlen = strlen (newname);
1991#endif
b99bd4ef 1992
c19d1205
ZW
1993 nbuf = alloca (nlen + 1);
1994 memcpy (nbuf, newname, nlen);
1995 nbuf[nlen] = '\0';
b99bd4ef 1996
c19d1205
ZW
1997 /* Create aliases under the new name as stated; an all-lowercase
1998 version of the new name; and an all-uppercase version of the new
1999 name. */
2000 insert_reg_alias (nbuf, old->number, old->type);
b99bd4ef 2001
c19d1205
ZW
2002 for (p = nbuf; *p; p++)
2003 *p = TOUPPER (*p);
2004
2005 if (strncmp (nbuf, newname, nlen))
2006 insert_reg_alias (nbuf, old->number, old->type);
2007
2008 for (p = nbuf; *p; p++)
2009 *p = TOLOWER (*p);
2010
2011 if (strncmp (nbuf, newname, nlen))
2012 insert_reg_alias (nbuf, old->number, old->type);
2013
2014 return 1;
b99bd4ef
NC
2015}
2016
dcbf9037
JB
2017/* Create a Neon typed/indexed register alias using directives, e.g.:
2018 X .dn d5.s32[1]
2019 Y .qn 6.s16
2020 Z .dn d7
2021 T .dn Z[0]
2022 These typed registers can be used instead of the types specified after the
2023 Neon mnemonic, so long as all operands given have types. Types can also be
2024 specified directly, e.g.:
2025 vadd d0.s32, d1.s32, d2.s32
2026*/
2027
2028static int
2029create_neon_reg_alias (char *newname, char *p)
2030{
2031 enum arm_reg_type basetype;
2032 struct reg_entry *basereg;
2033 struct reg_entry mybasereg;
2034 struct neon_type ntype;
2035 struct neon_typed_alias typeinfo;
2036 char *namebuf, *nameend;
2037 int namelen;
2038
2039 typeinfo.defined = 0;
2040 typeinfo.eltype.type = NT_invtype;
2041 typeinfo.eltype.size = -1;
2042 typeinfo.index = -1;
2043
2044 nameend = p;
2045
2046 if (strncmp (p, " .dn ", 5) == 0)
2047 basetype = REG_TYPE_VFD;
2048 else if (strncmp (p, " .qn ", 5) == 0)
2049 basetype = REG_TYPE_NQ;
2050 else
2051 return 0;
2052
2053 p += 5;
2054
2055 if (*p == '\0')
2056 return 0;
2057
2058 basereg = arm_reg_parse_multi (&p);
2059
2060 if (basereg && basereg->type != basetype)
2061 {
2062 as_bad (_("bad type for register"));
2063 return 0;
2064 }
2065
2066 if (basereg == NULL)
2067 {
2068 expressionS exp;
2069 /* Try parsing as an integer. */
2070 my_get_expression (&exp, &p, GE_NO_PREFIX);
2071 if (exp.X_op != O_constant)
2072 {
2073 as_bad (_("expression must be constant"));
2074 return 0;
2075 }
2076 basereg = &mybasereg;
2077 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2078 : exp.X_add_number;
2079 basereg->neon = 0;
2080 }
2081
2082 if (basereg->neon)
2083 typeinfo = *basereg->neon;
2084
2085 if (parse_neon_type (&ntype, &p) == SUCCESS)
2086 {
2087 /* We got a type. */
2088 if (typeinfo.defined & NTA_HASTYPE)
2089 {
2090 as_bad (_("can't redefine the type of a register alias"));
2091 return 0;
2092 }
2093
2094 typeinfo.defined |= NTA_HASTYPE;
2095 if (ntype.elems != 1)
2096 {
2097 as_bad (_("you must specify a single type only"));
2098 return 0;
2099 }
2100 typeinfo.eltype = ntype.el[0];
2101 }
2102
2103 if (skip_past_char (&p, '[') == SUCCESS)
2104 {
2105 expressionS exp;
2106 /* We got a scalar index. */
2107
2108 if (typeinfo.defined & NTA_HASINDEX)
2109 {
2110 as_bad (_("can't redefine the index of a scalar alias"));
2111 return 0;
2112 }
2113
2114 my_get_expression (&exp, &p, GE_NO_PREFIX);
2115
2116 if (exp.X_op != O_constant)
2117 {
2118 as_bad (_("scalar index must be constant"));
2119 return 0;
2120 }
2121
2122 typeinfo.defined |= NTA_HASINDEX;
2123 typeinfo.index = exp.X_add_number;
2124
2125 if (skip_past_char (&p, ']') == FAIL)
2126 {
2127 as_bad (_("expecting ]"));
2128 return 0;
2129 }
2130 }
2131
2132 namelen = nameend - newname;
2133 namebuf = alloca (namelen + 1);
2134 strncpy (namebuf, newname, namelen);
2135 namebuf[namelen] = '\0';
2136
2137 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2138 typeinfo.defined != 0 ? &typeinfo : NULL);
2139
2140 /* Insert name in all uppercase. */
2141 for (p = namebuf; *p; p++)
2142 *p = TOUPPER (*p);
2143
2144 if (strncmp (namebuf, newname, namelen))
2145 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2146 typeinfo.defined != 0 ? &typeinfo : NULL);
2147
2148 /* Insert name in all lowercase. */
2149 for (p = namebuf; *p; p++)
2150 *p = TOLOWER (*p);
2151
2152 if (strncmp (namebuf, newname, namelen))
2153 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2154 typeinfo.defined != 0 ? &typeinfo : NULL);
2155
2156 return 1;
2157}
2158
c19d1205
ZW
2159/* Should never be called, as .req goes between the alias and the
2160 register name, not at the beginning of the line. */
b99bd4ef 2161static void
c19d1205 2162s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2163{
c19d1205
ZW
2164 as_bad (_("invalid syntax for .req directive"));
2165}
b99bd4ef 2166
dcbf9037
JB
2167static void
2168s_dn (int a ATTRIBUTE_UNUSED)
2169{
2170 as_bad (_("invalid syntax for .dn directive"));
2171}
2172
2173static void
2174s_qn (int a ATTRIBUTE_UNUSED)
2175{
2176 as_bad (_("invalid syntax for .qn directive"));
2177}
2178
c19d1205
ZW
2179/* The .unreq directive deletes an alias which was previously defined
2180 by .req. For example:
b99bd4ef 2181
c19d1205
ZW
2182 my_alias .req r11
2183 .unreq my_alias */
b99bd4ef
NC
2184
2185static void
c19d1205 2186s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2187{
c19d1205
ZW
2188 char * name;
2189 char saved_char;
b99bd4ef 2190
c19d1205
ZW
2191 name = input_line_pointer;
2192
2193 while (*input_line_pointer != 0
2194 && *input_line_pointer != ' '
2195 && *input_line_pointer != '\n')
2196 ++input_line_pointer;
2197
2198 saved_char = *input_line_pointer;
2199 *input_line_pointer = 0;
2200
2201 if (!*name)
2202 as_bad (_("invalid syntax for .unreq directive"));
2203 else
2204 {
2205 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2206
2207 if (!reg)
2208 as_bad (_("unknown register alias '%s'"), name);
2209 else if (reg->builtin)
2210 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2211 name);
2212 else
2213 {
2214 hash_delete (arm_reg_hsh, name);
2215 free ((char *) reg->name);
dcbf9037
JB
2216 if (reg->neon)
2217 free (reg->neon);
c19d1205
ZW
2218 free (reg);
2219 }
2220 }
b99bd4ef 2221
c19d1205 2222 *input_line_pointer = saved_char;
b99bd4ef
NC
2223 demand_empty_rest_of_line ();
2224}
2225
c19d1205
ZW
2226/* Directives: Instruction set selection. */
2227
2228#ifdef OBJ_ELF
2229/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2230 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2231 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2232 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2233
2234static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef
NC
2235
2236static void
c19d1205 2237mapping_state (enum mstate state)
b99bd4ef 2238{
a737bd4d 2239 symbolS * symbolP;
c19d1205
ZW
2240 const char * symname;
2241 int type;
b99bd4ef 2242
c19d1205
ZW
2243 if (mapstate == state)
2244 /* The mapping symbol has already been emitted.
2245 There is nothing else to do. */
2246 return;
b99bd4ef 2247
c19d1205 2248 mapstate = state;
b99bd4ef 2249
c19d1205 2250 switch (state)
b99bd4ef 2251 {
c19d1205
ZW
2252 case MAP_DATA:
2253 symname = "$d";
2254 type = BSF_NO_FLAGS;
2255 break;
2256 case MAP_ARM:
2257 symname = "$a";
2258 type = BSF_NO_FLAGS;
2259 break;
2260 case MAP_THUMB:
2261 symname = "$t";
2262 type = BSF_NO_FLAGS;
2263 break;
2264 case MAP_UNDEFINED:
2265 return;
2266 default:
2267 abort ();
2268 }
2269
2270 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2271
2272 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2273 symbol_table_insert (symbolP);
2274 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2275
2276 switch (state)
2277 {
2278 case MAP_ARM:
2279 THUMB_SET_FUNC (symbolP, 0);
2280 ARM_SET_THUMB (symbolP, 0);
2281 ARM_SET_INTERWORK (symbolP, support_interwork);
2282 break;
2283
2284 case MAP_THUMB:
2285 THUMB_SET_FUNC (symbolP, 1);
2286 ARM_SET_THUMB (symbolP, 1);
2287 ARM_SET_INTERWORK (symbolP, support_interwork);
2288 break;
2289
2290 case MAP_DATA:
2291 default:
2292 return;
2293 }
2294}
2295#else
2296#define mapping_state(x) /* nothing */
2297#endif
2298
2299/* Find the real, Thumb encoded start of a Thumb function. */
2300
2301static symbolS *
2302find_real_start (symbolS * symbolP)
2303{
2304 char * real_start;
2305 const char * name = S_GET_NAME (symbolP);
2306 symbolS * new_target;
2307
2308 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2309#define STUB_NAME ".real_start_of"
2310
2311 if (name == NULL)
2312 abort ();
2313
37f6032b
ZW
2314 /* The compiler may generate BL instructions to local labels because
2315 it needs to perform a branch to a far away location. These labels
2316 do not have a corresponding ".real_start_of" label. We check
2317 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2318 the ".real_start_of" convention for nonlocal branches. */
2319 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2320 return symbolP;
2321
37f6032b 2322 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2323 new_target = symbol_find (real_start);
2324
2325 if (new_target == NULL)
2326 {
2327 as_warn ("Failed to find real start of function: %s\n", name);
2328 new_target = symbolP;
2329 }
2330
c19d1205
ZW
2331 return new_target;
2332}
2333
2334static void
2335opcode_select (int width)
2336{
2337 switch (width)
2338 {
2339 case 16:
2340 if (! thumb_mode)
2341 {
e74cfd16 2342 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2343 as_bad (_("selected processor does not support THUMB opcodes"));
2344
2345 thumb_mode = 1;
2346 /* No need to force the alignment, since we will have been
2347 coming from ARM mode, which is word-aligned. */
2348 record_alignment (now_seg, 1);
2349 }
2350 mapping_state (MAP_THUMB);
2351 break;
2352
2353 case 32:
2354 if (thumb_mode)
2355 {
e74cfd16 2356 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2357 as_bad (_("selected processor does not support ARM opcodes"));
2358
2359 thumb_mode = 0;
2360
2361 if (!need_pass_2)
2362 frag_align (2, 0, 0);
2363
2364 record_alignment (now_seg, 1);
2365 }
2366 mapping_state (MAP_ARM);
2367 break;
2368
2369 default:
2370 as_bad (_("invalid instruction size selected (%d)"), width);
2371 }
2372}
2373
2374static void
2375s_arm (int ignore ATTRIBUTE_UNUSED)
2376{
2377 opcode_select (32);
2378 demand_empty_rest_of_line ();
2379}
2380
2381static void
2382s_thumb (int ignore ATTRIBUTE_UNUSED)
2383{
2384 opcode_select (16);
2385 demand_empty_rest_of_line ();
2386}
2387
2388static void
2389s_code (int unused ATTRIBUTE_UNUSED)
2390{
2391 int temp;
2392
2393 temp = get_absolute_expression ();
2394 switch (temp)
2395 {
2396 case 16:
2397 case 32:
2398 opcode_select (temp);
2399 break;
2400
2401 default:
2402 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2403 }
2404}
2405
2406static void
2407s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2408{
2409 /* If we are not already in thumb mode go into it, EVEN if
2410 the target processor does not support thumb instructions.
2411 This is used by gcc/config/arm/lib1funcs.asm for example
2412 to compile interworking support functions even if the
2413 target processor should not support interworking. */
2414 if (! thumb_mode)
2415 {
2416 thumb_mode = 2;
2417 record_alignment (now_seg, 1);
2418 }
2419
2420 demand_empty_rest_of_line ();
2421}
2422
2423static void
2424s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2425{
2426 s_thumb (0);
2427
2428 /* The following label is the name/address of the start of a Thumb function.
2429 We need to know this for the interworking support. */
2430 label_is_thumb_function_name = TRUE;
2431}
2432
2433/* Perform a .set directive, but also mark the alias as
2434 being a thumb function. */
2435
2436static void
2437s_thumb_set (int equiv)
2438{
2439 /* XXX the following is a duplicate of the code for s_set() in read.c
2440 We cannot just call that code as we need to get at the symbol that
2441 is created. */
2442 char * name;
2443 char delim;
2444 char * end_name;
2445 symbolS * symbolP;
2446
2447 /* Especial apologies for the random logic:
2448 This just grew, and could be parsed much more simply!
2449 Dean - in haste. */
2450 name = input_line_pointer;
2451 delim = get_symbol_end ();
2452 end_name = input_line_pointer;
2453 *end_name = delim;
2454
2455 if (*input_line_pointer != ',')
2456 {
2457 *end_name = 0;
2458 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2459 *end_name = delim;
2460 ignore_rest_of_line ();
2461 return;
2462 }
2463
2464 input_line_pointer++;
2465 *end_name = 0;
2466
2467 if (name[0] == '.' && name[1] == '\0')
2468 {
2469 /* XXX - this should not happen to .thumb_set. */
2470 abort ();
2471 }
2472
2473 if ((symbolP = symbol_find (name)) == NULL
2474 && (symbolP = md_undefined_symbol (name)) == NULL)
2475 {
2476#ifndef NO_LISTING
2477 /* When doing symbol listings, play games with dummy fragments living
2478 outside the normal fragment chain to record the file and line info
c19d1205 2479 for this symbol. */
b99bd4ef
NC
2480 if (listing & LISTING_SYMBOLS)
2481 {
2482 extern struct list_info_struct * listing_tail;
a737bd4d 2483 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2484
2485 memset (dummy_frag, 0, sizeof (fragS));
2486 dummy_frag->fr_type = rs_fill;
2487 dummy_frag->line = listing_tail;
2488 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2489 dummy_frag->fr_symbol = symbolP;
2490 }
2491 else
2492#endif
2493 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2494
2495#ifdef OBJ_COFF
2496 /* "set" symbols are local unless otherwise specified. */
2497 SF_SET_LOCAL (symbolP);
2498#endif /* OBJ_COFF */
2499 } /* Make a new symbol. */
2500
2501 symbol_table_insert (symbolP);
2502
2503 * end_name = delim;
2504
2505 if (equiv
2506 && S_IS_DEFINED (symbolP)
2507 && S_GET_SEGMENT (symbolP) != reg_section)
2508 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2509
2510 pseudo_set (symbolP);
2511
2512 demand_empty_rest_of_line ();
2513
c19d1205 2514 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2515
2516 THUMB_SET_FUNC (symbolP, 1);
2517 ARM_SET_THUMB (symbolP, 1);
2518#if defined OBJ_ELF || defined OBJ_COFF
2519 ARM_SET_INTERWORK (symbolP, support_interwork);
2520#endif
2521}
2522
c19d1205 2523/* Directives: Mode selection. */
b99bd4ef 2524
c19d1205
ZW
2525/* .syntax [unified|divided] - choose the new unified syntax
2526 (same for Arm and Thumb encoding, modulo slight differences in what
2527 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2528static void
c19d1205 2529s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2530{
c19d1205
ZW
2531 char *name, delim;
2532
2533 name = input_line_pointer;
2534 delim = get_symbol_end ();
2535
2536 if (!strcasecmp (name, "unified"))
2537 unified_syntax = TRUE;
2538 else if (!strcasecmp (name, "divided"))
2539 unified_syntax = FALSE;
2540 else
2541 {
2542 as_bad (_("unrecognized syntax mode \"%s\""), name);
2543 return;
2544 }
2545 *input_line_pointer = delim;
b99bd4ef
NC
2546 demand_empty_rest_of_line ();
2547}
2548
c19d1205
ZW
2549/* Directives: sectioning and alignment. */
2550
2551/* Same as s_align_ptwo but align 0 => align 2. */
2552
b99bd4ef 2553static void
c19d1205 2554s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2555{
a737bd4d 2556 int temp;
c19d1205
ZW
2557 long temp_fill;
2558 long max_alignment = 15;
b99bd4ef
NC
2559
2560 temp = get_absolute_expression ();
c19d1205
ZW
2561 if (temp > max_alignment)
2562 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2563 else if (temp < 0)
b99bd4ef 2564 {
c19d1205
ZW
2565 as_bad (_("alignment negative. 0 assumed."));
2566 temp = 0;
2567 }
b99bd4ef 2568
c19d1205
ZW
2569 if (*input_line_pointer == ',')
2570 {
2571 input_line_pointer++;
2572 temp_fill = get_absolute_expression ();
b99bd4ef 2573 }
c19d1205
ZW
2574 else
2575 temp_fill = 0;
b99bd4ef 2576
c19d1205
ZW
2577 if (!temp)
2578 temp = 2;
b99bd4ef 2579
c19d1205
ZW
2580 /* Only make a frag if we HAVE to. */
2581 if (temp && !need_pass_2)
2582 frag_align (temp, (int) temp_fill, 0);
2583 demand_empty_rest_of_line ();
2584
2585 record_alignment (now_seg, temp);
b99bd4ef
NC
2586}
2587
c19d1205
ZW
2588static void
2589s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2590{
c19d1205
ZW
2591 /* We don't support putting frags in the BSS segment, we fake it by
2592 marking in_bss, then looking at s_skip for clues. */
2593 subseg_set (bss_section, 0);
2594 demand_empty_rest_of_line ();
2595 mapping_state (MAP_DATA);
2596}
b99bd4ef 2597
c19d1205
ZW
2598static void
2599s_even (int ignore ATTRIBUTE_UNUSED)
2600{
2601 /* Never make frag if expect extra pass. */
2602 if (!need_pass_2)
2603 frag_align (1, 0, 0);
b99bd4ef 2604
c19d1205 2605 record_alignment (now_seg, 1);
b99bd4ef 2606
c19d1205 2607 demand_empty_rest_of_line ();
b99bd4ef
NC
2608}
2609
c19d1205 2610/* Directives: Literal pools. */
a737bd4d 2611
c19d1205
ZW
2612static literal_pool *
2613find_literal_pool (void)
a737bd4d 2614{
c19d1205 2615 literal_pool * pool;
a737bd4d 2616
c19d1205 2617 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2618 {
c19d1205
ZW
2619 if (pool->section == now_seg
2620 && pool->sub_section == now_subseg)
2621 break;
a737bd4d
NC
2622 }
2623
c19d1205 2624 return pool;
a737bd4d
NC
2625}
2626
c19d1205
ZW
2627static literal_pool *
2628find_or_make_literal_pool (void)
a737bd4d 2629{
c19d1205
ZW
2630 /* Next literal pool ID number. */
2631 static unsigned int latest_pool_num = 1;
2632 literal_pool * pool;
a737bd4d 2633
c19d1205 2634 pool = find_literal_pool ();
a737bd4d 2635
c19d1205 2636 if (pool == NULL)
a737bd4d 2637 {
c19d1205
ZW
2638 /* Create a new pool. */
2639 pool = xmalloc (sizeof (* pool));
2640 if (! pool)
2641 return NULL;
a737bd4d 2642
c19d1205
ZW
2643 pool->next_free_entry = 0;
2644 pool->section = now_seg;
2645 pool->sub_section = now_subseg;
2646 pool->next = list_of_pools;
2647 pool->symbol = NULL;
2648
2649 /* Add it to the list. */
2650 list_of_pools = pool;
a737bd4d 2651 }
a737bd4d 2652
c19d1205
ZW
2653 /* New pools, and emptied pools, will have a NULL symbol. */
2654 if (pool->symbol == NULL)
a737bd4d 2655 {
c19d1205
ZW
2656 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2657 (valueT) 0, &zero_address_frag);
2658 pool->id = latest_pool_num ++;
a737bd4d
NC
2659 }
2660
c19d1205
ZW
2661 /* Done. */
2662 return pool;
a737bd4d
NC
2663}
2664
c19d1205
ZW
2665/* Add the literal in the global 'inst'
2666 structure to the relevent literal pool. */
b99bd4ef
NC
2667
2668static int
c19d1205 2669add_to_lit_pool (void)
b99bd4ef 2670{
c19d1205
ZW
2671 literal_pool * pool;
2672 unsigned int entry;
b99bd4ef 2673
c19d1205
ZW
2674 pool = find_or_make_literal_pool ();
2675
2676 /* Check if this literal value is already in the pool. */
2677 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2678 {
c19d1205
ZW
2679 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2680 && (inst.reloc.exp.X_op == O_constant)
2681 && (pool->literals[entry].X_add_number
2682 == inst.reloc.exp.X_add_number)
2683 && (pool->literals[entry].X_unsigned
2684 == inst.reloc.exp.X_unsigned))
2685 break;
2686
2687 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2688 && (inst.reloc.exp.X_op == O_symbol)
2689 && (pool->literals[entry].X_add_number
2690 == inst.reloc.exp.X_add_number)
2691 && (pool->literals[entry].X_add_symbol
2692 == inst.reloc.exp.X_add_symbol)
2693 && (pool->literals[entry].X_op_symbol
2694 == inst.reloc.exp.X_op_symbol))
2695 break;
b99bd4ef
NC
2696 }
2697
c19d1205
ZW
2698 /* Do we need to create a new entry? */
2699 if (entry == pool->next_free_entry)
2700 {
2701 if (entry >= MAX_LITERAL_POOL_SIZE)
2702 {
2703 inst.error = _("literal pool overflow");
2704 return FAIL;
2705 }
2706
2707 pool->literals[entry] = inst.reloc.exp;
2708 pool->next_free_entry += 1;
2709 }
b99bd4ef 2710
c19d1205
ZW
2711 inst.reloc.exp.X_op = O_symbol;
2712 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2713 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2714
c19d1205 2715 return SUCCESS;
b99bd4ef
NC
2716}
2717
c19d1205
ZW
2718/* Can't use symbol_new here, so have to create a symbol and then at
2719 a later date assign it a value. Thats what these functions do. */
e16bb312 2720
c19d1205
ZW
2721static void
2722symbol_locate (symbolS * symbolP,
2723 const char * name, /* It is copied, the caller can modify. */
2724 segT segment, /* Segment identifier (SEG_<something>). */
2725 valueT valu, /* Symbol value. */
2726 fragS * frag) /* Associated fragment. */
2727{
2728 unsigned int name_length;
2729 char * preserved_copy_of_name;
e16bb312 2730
c19d1205
ZW
2731 name_length = strlen (name) + 1; /* +1 for \0. */
2732 obstack_grow (&notes, name, name_length);
2733 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2734
c19d1205
ZW
2735#ifdef tc_canonicalize_symbol_name
2736 preserved_copy_of_name =
2737 tc_canonicalize_symbol_name (preserved_copy_of_name);
2738#endif
b99bd4ef 2739
c19d1205 2740 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2741
c19d1205
ZW
2742 S_SET_SEGMENT (symbolP, segment);
2743 S_SET_VALUE (symbolP, valu);
2744 symbol_clear_list_pointers (symbolP);
b99bd4ef 2745
c19d1205 2746 symbol_set_frag (symbolP, frag);
b99bd4ef 2747
c19d1205
ZW
2748 /* Link to end of symbol chain. */
2749 {
2750 extern int symbol_table_frozen;
b99bd4ef 2751
c19d1205
ZW
2752 if (symbol_table_frozen)
2753 abort ();
2754 }
b99bd4ef 2755
c19d1205 2756 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2757
c19d1205 2758 obj_symbol_new_hook (symbolP);
b99bd4ef 2759
c19d1205
ZW
2760#ifdef tc_symbol_new_hook
2761 tc_symbol_new_hook (symbolP);
2762#endif
2763
2764#ifdef DEBUG_SYMS
2765 verify_symbol_chain (symbol_rootP, symbol_lastP);
2766#endif /* DEBUG_SYMS */
b99bd4ef
NC
2767}
2768
b99bd4ef 2769
c19d1205
ZW
2770static void
2771s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2772{
c19d1205
ZW
2773 unsigned int entry;
2774 literal_pool * pool;
2775 char sym_name[20];
b99bd4ef 2776
c19d1205
ZW
2777 pool = find_literal_pool ();
2778 if (pool == NULL
2779 || pool->symbol == NULL
2780 || pool->next_free_entry == 0)
2781 return;
b99bd4ef 2782
c19d1205 2783 mapping_state (MAP_DATA);
b99bd4ef 2784
c19d1205
ZW
2785 /* Align pool as you have word accesses.
2786 Only make a frag if we have to. */
2787 if (!need_pass_2)
2788 frag_align (2, 0, 0);
b99bd4ef 2789
c19d1205 2790 record_alignment (now_seg, 2);
b99bd4ef 2791
c19d1205 2792 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2793
c19d1205
ZW
2794 symbol_locate (pool->symbol, sym_name, now_seg,
2795 (valueT) frag_now_fix (), frag_now);
2796 symbol_table_insert (pool->symbol);
b99bd4ef 2797
c19d1205 2798 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2799
c19d1205
ZW
2800#if defined OBJ_COFF || defined OBJ_ELF
2801 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2802#endif
6c43fab6 2803
c19d1205
ZW
2804 for (entry = 0; entry < pool->next_free_entry; entry ++)
2805 /* First output the expression in the instruction to the pool. */
2806 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2807
c19d1205
ZW
2808 /* Mark the pool as empty. */
2809 pool->next_free_entry = 0;
2810 pool->symbol = NULL;
b99bd4ef
NC
2811}
2812
c19d1205
ZW
2813#ifdef OBJ_ELF
2814/* Forward declarations for functions below, in the MD interface
2815 section. */
2816static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2817static valueT create_unwind_entry (int);
2818static void start_unwind_section (const segT, int);
2819static void add_unwind_opcode (valueT, int);
2820static void flush_pending_unwind (void);
b99bd4ef 2821
c19d1205 2822/* Directives: Data. */
b99bd4ef 2823
c19d1205
ZW
2824static void
2825s_arm_elf_cons (int nbytes)
2826{
2827 expressionS exp;
b99bd4ef 2828
c19d1205
ZW
2829#ifdef md_flush_pending_output
2830 md_flush_pending_output ();
2831#endif
b99bd4ef 2832
c19d1205 2833 if (is_it_end_of_statement ())
b99bd4ef 2834 {
c19d1205
ZW
2835 demand_empty_rest_of_line ();
2836 return;
b99bd4ef
NC
2837 }
2838
c19d1205
ZW
2839#ifdef md_cons_align
2840 md_cons_align (nbytes);
2841#endif
b99bd4ef 2842
c19d1205
ZW
2843 mapping_state (MAP_DATA);
2844 do
b99bd4ef 2845 {
c19d1205
ZW
2846 int reloc;
2847 char *base = input_line_pointer;
b99bd4ef 2848
c19d1205 2849 expression (& exp);
b99bd4ef 2850
c19d1205
ZW
2851 if (exp.X_op != O_symbol)
2852 emit_expr (&exp, (unsigned int) nbytes);
2853 else
2854 {
2855 char *before_reloc = input_line_pointer;
2856 reloc = parse_reloc (&input_line_pointer);
2857 if (reloc == -1)
2858 {
2859 as_bad (_("unrecognized relocation suffix"));
2860 ignore_rest_of_line ();
2861 return;
2862 }
2863 else if (reloc == BFD_RELOC_UNUSED)
2864 emit_expr (&exp, (unsigned int) nbytes);
2865 else
2866 {
2867 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2868 int size = bfd_get_reloc_size (howto);
b99bd4ef 2869
2fc8bdac
ZW
2870 if (reloc == BFD_RELOC_ARM_PLT32)
2871 {
2872 as_bad (_("(plt) is only valid on branch targets"));
2873 reloc = BFD_RELOC_UNUSED;
2874 size = 0;
2875 }
2876
c19d1205 2877 if (size > nbytes)
2fc8bdac 2878 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
2879 howto->name, nbytes);
2880 else
2881 {
2882 /* We've parsed an expression stopping at O_symbol.
2883 But there may be more expression left now that we
2884 have parsed the relocation marker. Parse it again.
2885 XXX Surely there is a cleaner way to do this. */
2886 char *p = input_line_pointer;
2887 int offset;
2888 char *save_buf = alloca (input_line_pointer - base);
2889 memcpy (save_buf, base, input_line_pointer - base);
2890 memmove (base + (input_line_pointer - before_reloc),
2891 base, before_reloc - base);
2892
2893 input_line_pointer = base + (input_line_pointer-before_reloc);
2894 expression (&exp);
2895 memcpy (base, save_buf, p - base);
2896
2897 offset = nbytes - size;
2898 p = frag_more ((int) nbytes);
2899 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2900 size, &exp, 0, reloc);
2901 }
2902 }
2903 }
b99bd4ef 2904 }
c19d1205 2905 while (*input_line_pointer++ == ',');
b99bd4ef 2906
c19d1205
ZW
2907 /* Put terminator back into stream. */
2908 input_line_pointer --;
2909 demand_empty_rest_of_line ();
b99bd4ef
NC
2910}
2911
b99bd4ef 2912
c19d1205 2913/* Parse a .rel31 directive. */
b99bd4ef 2914
c19d1205
ZW
2915static void
2916s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2917{
2918 expressionS exp;
2919 char *p;
2920 valueT highbit;
b99bd4ef 2921
c19d1205
ZW
2922 highbit = 0;
2923 if (*input_line_pointer == '1')
2924 highbit = 0x80000000;
2925 else if (*input_line_pointer != '0')
2926 as_bad (_("expected 0 or 1"));
b99bd4ef 2927
c19d1205
ZW
2928 input_line_pointer++;
2929 if (*input_line_pointer != ',')
2930 as_bad (_("missing comma"));
2931 input_line_pointer++;
b99bd4ef 2932
c19d1205
ZW
2933#ifdef md_flush_pending_output
2934 md_flush_pending_output ();
2935#endif
b99bd4ef 2936
c19d1205
ZW
2937#ifdef md_cons_align
2938 md_cons_align (4);
2939#endif
b99bd4ef 2940
c19d1205 2941 mapping_state (MAP_DATA);
b99bd4ef 2942
c19d1205 2943 expression (&exp);
b99bd4ef 2944
c19d1205
ZW
2945 p = frag_more (4);
2946 md_number_to_chars (p, highbit, 4);
2947 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2948 BFD_RELOC_ARM_PREL31);
b99bd4ef 2949
c19d1205 2950 demand_empty_rest_of_line ();
b99bd4ef
NC
2951}
2952
c19d1205 2953/* Directives: AEABI stack-unwind tables. */
b99bd4ef 2954
c19d1205 2955/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 2956
c19d1205
ZW
2957static void
2958s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
2959{
2960 demand_empty_rest_of_line ();
2961 /* Mark the start of the function. */
2962 unwind.proc_start = expr_build_dot ();
b99bd4ef 2963
c19d1205
ZW
2964 /* Reset the rest of the unwind info. */
2965 unwind.opcode_count = 0;
2966 unwind.table_entry = NULL;
2967 unwind.personality_routine = NULL;
2968 unwind.personality_index = -1;
2969 unwind.frame_size = 0;
2970 unwind.fp_offset = 0;
2971 unwind.fp_reg = 13;
2972 unwind.fp_used = 0;
2973 unwind.sp_restored = 0;
2974}
b99bd4ef 2975
b99bd4ef 2976
c19d1205
ZW
2977/* Parse a handlerdata directive. Creates the exception handling table entry
2978 for the function. */
b99bd4ef 2979
c19d1205
ZW
2980static void
2981s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
2982{
2983 demand_empty_rest_of_line ();
2984 if (unwind.table_entry)
2985 as_bad (_("dupicate .handlerdata directive"));
f02232aa 2986
c19d1205
ZW
2987 create_unwind_entry (1);
2988}
a737bd4d 2989
c19d1205 2990/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 2991
c19d1205
ZW
2992static void
2993s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
2994{
2995 long where;
2996 char *ptr;
2997 valueT val;
f02232aa 2998
c19d1205 2999 demand_empty_rest_of_line ();
f02232aa 3000
c19d1205
ZW
3001 /* Add eh table entry. */
3002 if (unwind.table_entry == NULL)
3003 val = create_unwind_entry (0);
3004 else
3005 val = 0;
f02232aa 3006
c19d1205
ZW
3007 /* Add index table entry. This is two words. */
3008 start_unwind_section (unwind.saved_seg, 1);
3009 frag_align (2, 0, 0);
3010 record_alignment (now_seg, 2);
b99bd4ef 3011
c19d1205
ZW
3012 ptr = frag_more (8);
3013 where = frag_now_fix () - 8;
f02232aa 3014
c19d1205
ZW
3015 /* Self relative offset of the function start. */
3016 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3017 BFD_RELOC_ARM_PREL31);
f02232aa 3018
c19d1205
ZW
3019 /* Indicate dependency on EHABI-defined personality routines to the
3020 linker, if it hasn't been done already. */
3021 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3022 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3023 {
3024 static const char *const name[] = {
3025 "__aeabi_unwind_cpp_pr0",
3026 "__aeabi_unwind_cpp_pr1",
3027 "__aeabi_unwind_cpp_pr2"
3028 };
3029 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3030 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3031 marked_pr_dependency |= 1 << unwind.personality_index;
3032 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3033 = marked_pr_dependency;
3034 }
f02232aa 3035
c19d1205
ZW
3036 if (val)
3037 /* Inline exception table entry. */
3038 md_number_to_chars (ptr + 4, val, 4);
3039 else
3040 /* Self relative offset of the table entry. */
3041 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3042 BFD_RELOC_ARM_PREL31);
f02232aa 3043
c19d1205
ZW
3044 /* Restore the original section. */
3045 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3046}
f02232aa 3047
f02232aa 3048
c19d1205 3049/* Parse an unwind_cantunwind directive. */
b99bd4ef 3050
c19d1205
ZW
3051static void
3052s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3053{
3054 demand_empty_rest_of_line ();
3055 if (unwind.personality_routine || unwind.personality_index != -1)
3056 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3057
c19d1205
ZW
3058 unwind.personality_index = -2;
3059}
b99bd4ef 3060
b99bd4ef 3061
c19d1205 3062/* Parse a personalityindex directive. */
b99bd4ef 3063
c19d1205
ZW
3064static void
3065s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3066{
3067 expressionS exp;
b99bd4ef 3068
c19d1205
ZW
3069 if (unwind.personality_routine || unwind.personality_index != -1)
3070 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3071
c19d1205 3072 expression (&exp);
b99bd4ef 3073
c19d1205
ZW
3074 if (exp.X_op != O_constant
3075 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3076 {
c19d1205
ZW
3077 as_bad (_("bad personality routine number"));
3078 ignore_rest_of_line ();
3079 return;
b99bd4ef
NC
3080 }
3081
c19d1205 3082 unwind.personality_index = exp.X_add_number;
b99bd4ef 3083
c19d1205
ZW
3084 demand_empty_rest_of_line ();
3085}
e16bb312 3086
e16bb312 3087
c19d1205 3088/* Parse a personality directive. */
e16bb312 3089
c19d1205
ZW
3090static void
3091s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3092{
3093 char *name, *p, c;
a737bd4d 3094
c19d1205
ZW
3095 if (unwind.personality_routine || unwind.personality_index != -1)
3096 as_bad (_("duplicate .personality directive"));
a737bd4d 3097
c19d1205
ZW
3098 name = input_line_pointer;
3099 c = get_symbol_end ();
3100 p = input_line_pointer;
3101 unwind.personality_routine = symbol_find_or_make (name);
3102 *p = c;
3103 demand_empty_rest_of_line ();
3104}
e16bb312 3105
e16bb312 3106
c19d1205 3107/* Parse a directive saving core registers. */
e16bb312 3108
c19d1205
ZW
3109static void
3110s_arm_unwind_save_core (void)
e16bb312 3111{
c19d1205
ZW
3112 valueT op;
3113 long range;
3114 int n;
e16bb312 3115
c19d1205
ZW
3116 range = parse_reg_list (&input_line_pointer);
3117 if (range == FAIL)
e16bb312 3118 {
c19d1205
ZW
3119 as_bad (_("expected register list"));
3120 ignore_rest_of_line ();
3121 return;
3122 }
e16bb312 3123
c19d1205 3124 demand_empty_rest_of_line ();
e16bb312 3125
c19d1205
ZW
3126 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3127 into .unwind_save {..., sp...}. We aren't bothered about the value of
3128 ip because it is clobbered by calls. */
3129 if (unwind.sp_restored && unwind.fp_reg == 12
3130 && (range & 0x3000) == 0x1000)
3131 {
3132 unwind.opcode_count--;
3133 unwind.sp_restored = 0;
3134 range = (range | 0x2000) & ~0x1000;
3135 unwind.pending_offset = 0;
3136 }
e16bb312 3137
01ae4198
DJ
3138 /* Pop r4-r15. */
3139 if (range & 0xfff0)
c19d1205 3140 {
01ae4198
DJ
3141 /* See if we can use the short opcodes. These pop a block of up to 8
3142 registers starting with r4, plus maybe r14. */
3143 for (n = 0; n < 8; n++)
3144 {
3145 /* Break at the first non-saved register. */
3146 if ((range & (1 << (n + 4))) == 0)
3147 break;
3148 }
3149 /* See if there are any other bits set. */
3150 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3151 {
3152 /* Use the long form. */
3153 op = 0x8000 | ((range >> 4) & 0xfff);
3154 add_unwind_opcode (op, 2);
3155 }
0dd132b6 3156 else
01ae4198
DJ
3157 {
3158 /* Use the short form. */
3159 if (range & 0x4000)
3160 op = 0xa8; /* Pop r14. */
3161 else
3162 op = 0xa0; /* Do not pop r14. */
3163 op |= (n - 1);
3164 add_unwind_opcode (op, 1);
3165 }
c19d1205 3166 }
0dd132b6 3167
c19d1205
ZW
3168 /* Pop r0-r3. */
3169 if (range & 0xf)
3170 {
3171 op = 0xb100 | (range & 0xf);
3172 add_unwind_opcode (op, 2);
0dd132b6
NC
3173 }
3174
c19d1205
ZW
3175 /* Record the number of bytes pushed. */
3176 for (n = 0; n < 16; n++)
3177 {
3178 if (range & (1 << n))
3179 unwind.frame_size += 4;
3180 }
0dd132b6
NC
3181}
3182
c19d1205
ZW
3183
3184/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3185
3186static void
c19d1205 3187s_arm_unwind_save_fpa (int reg)
b99bd4ef 3188{
c19d1205
ZW
3189 expressionS exp;
3190 int num_regs;
3191 valueT op;
b99bd4ef 3192
c19d1205
ZW
3193 /* Get Number of registers to transfer. */
3194 if (skip_past_comma (&input_line_pointer) != FAIL)
3195 expression (&exp);
3196 else
3197 exp.X_op = O_illegal;
b99bd4ef 3198
c19d1205 3199 if (exp.X_op != O_constant)
b99bd4ef 3200 {
c19d1205
ZW
3201 as_bad (_("expected , <constant>"));
3202 ignore_rest_of_line ();
b99bd4ef
NC
3203 return;
3204 }
3205
c19d1205
ZW
3206 num_regs = exp.X_add_number;
3207
3208 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3209 {
c19d1205
ZW
3210 as_bad (_("number of registers must be in the range [1:4]"));
3211 ignore_rest_of_line ();
b99bd4ef
NC
3212 return;
3213 }
3214
c19d1205 3215 demand_empty_rest_of_line ();
b99bd4ef 3216
c19d1205
ZW
3217 if (reg == 4)
3218 {
3219 /* Short form. */
3220 op = 0xb4 | (num_regs - 1);
3221 add_unwind_opcode (op, 1);
3222 }
b99bd4ef
NC
3223 else
3224 {
c19d1205
ZW
3225 /* Long form. */
3226 op = 0xc800 | (reg << 4) | (num_regs - 1);
3227 add_unwind_opcode (op, 2);
b99bd4ef 3228 }
c19d1205 3229 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3230}
3231
c19d1205
ZW
3232
3233/* Parse a directive saving VFP registers. */
b99bd4ef
NC
3234
3235static void
c19d1205 3236s_arm_unwind_save_vfp (void)
b99bd4ef 3237{
c19d1205 3238 int count;
ca3f61f7 3239 unsigned int reg;
c19d1205 3240 valueT op;
b99bd4ef 3241
5287ad62 3242 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3243 if (count == FAIL)
b99bd4ef 3244 {
c19d1205
ZW
3245 as_bad (_("expected register list"));
3246 ignore_rest_of_line ();
b99bd4ef
NC
3247 return;
3248 }
3249
c19d1205 3250 demand_empty_rest_of_line ();
b99bd4ef 3251
c19d1205 3252 if (reg == 8)
b99bd4ef 3253 {
c19d1205
ZW
3254 /* Short form. */
3255 op = 0xb8 | (count - 1);
3256 add_unwind_opcode (op, 1);
b99bd4ef 3257 }
c19d1205 3258 else
b99bd4ef 3259 {
c19d1205
ZW
3260 /* Long form. */
3261 op = 0xb300 | (reg << 4) | (count - 1);
3262 add_unwind_opcode (op, 2);
b99bd4ef 3263 }
c19d1205
ZW
3264 unwind.frame_size += count * 8 + 4;
3265}
b99bd4ef 3266
b99bd4ef 3267
c19d1205
ZW
3268/* Parse a directive saving iWMMXt data registers. */
3269
3270static void
3271s_arm_unwind_save_mmxwr (void)
3272{
3273 int reg;
3274 int hi_reg;
3275 int i;
3276 unsigned mask = 0;
3277 valueT op;
b99bd4ef 3278
c19d1205
ZW
3279 if (*input_line_pointer == '{')
3280 input_line_pointer++;
b99bd4ef 3281
c19d1205 3282 do
b99bd4ef 3283 {
dcbf9037 3284 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3285
c19d1205 3286 if (reg == FAIL)
b99bd4ef 3287 {
c19d1205
ZW
3288 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3289 goto error;
b99bd4ef
NC
3290 }
3291
c19d1205
ZW
3292 if (mask >> reg)
3293 as_tsktsk (_("register list not in ascending order"));
3294 mask |= 1 << reg;
b99bd4ef 3295
c19d1205
ZW
3296 if (*input_line_pointer == '-')
3297 {
3298 input_line_pointer++;
dcbf9037 3299 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3300 if (hi_reg == FAIL)
3301 {
3302 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3303 goto error;
3304 }
3305 else if (reg >= hi_reg)
3306 {
3307 as_bad (_("bad register range"));
3308 goto error;
3309 }
3310 for (; reg < hi_reg; reg++)
3311 mask |= 1 << reg;
3312 }
3313 }
3314 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3315
c19d1205
ZW
3316 if (*input_line_pointer == '}')
3317 input_line_pointer++;
b99bd4ef 3318
c19d1205 3319 demand_empty_rest_of_line ();
b99bd4ef 3320
708587a4 3321 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3322 the list. */
3323 flush_pending_unwind ();
b99bd4ef 3324
c19d1205 3325 for (i = 0; i < 16; i++)
b99bd4ef 3326 {
c19d1205
ZW
3327 if (mask & (1 << i))
3328 unwind.frame_size += 8;
b99bd4ef
NC
3329 }
3330
c19d1205
ZW
3331 /* Attempt to combine with a previous opcode. We do this because gcc
3332 likes to output separate unwind directives for a single block of
3333 registers. */
3334 if (unwind.opcode_count > 0)
b99bd4ef 3335 {
c19d1205
ZW
3336 i = unwind.opcodes[unwind.opcode_count - 1];
3337 if ((i & 0xf8) == 0xc0)
3338 {
3339 i &= 7;
3340 /* Only merge if the blocks are contiguous. */
3341 if (i < 6)
3342 {
3343 if ((mask & 0xfe00) == (1 << 9))
3344 {
3345 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3346 unwind.opcode_count--;
3347 }
3348 }
3349 else if (i == 6 && unwind.opcode_count >= 2)
3350 {
3351 i = unwind.opcodes[unwind.opcode_count - 2];
3352 reg = i >> 4;
3353 i &= 0xf;
b99bd4ef 3354
c19d1205
ZW
3355 op = 0xffff << (reg - 1);
3356 if (reg > 0
3357 || ((mask & op) == (1u << (reg - 1))))
3358 {
3359 op = (1 << (reg + i + 1)) - 1;
3360 op &= ~((1 << reg) - 1);
3361 mask |= op;
3362 unwind.opcode_count -= 2;
3363 }
3364 }
3365 }
b99bd4ef
NC
3366 }
3367
c19d1205
ZW
3368 hi_reg = 15;
3369 /* We want to generate opcodes in the order the registers have been
3370 saved, ie. descending order. */
3371 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3372 {
c19d1205
ZW
3373 /* Save registers in blocks. */
3374 if (reg < 0
3375 || !(mask & (1 << reg)))
3376 {
3377 /* We found an unsaved reg. Generate opcodes to save the
3378 preceeding block. */
3379 if (reg != hi_reg)
3380 {
3381 if (reg == 9)
3382 {
3383 /* Short form. */
3384 op = 0xc0 | (hi_reg - 10);
3385 add_unwind_opcode (op, 1);
3386 }
3387 else
3388 {
3389 /* Long form. */
3390 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3391 add_unwind_opcode (op, 2);
3392 }
3393 }
3394 hi_reg = reg - 1;
3395 }
b99bd4ef
NC
3396 }
3397
c19d1205
ZW
3398 return;
3399error:
3400 ignore_rest_of_line ();
b99bd4ef
NC
3401}
3402
3403static void
c19d1205 3404s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3405{
c19d1205
ZW
3406 int reg;
3407 int hi_reg;
3408 unsigned mask = 0;
3409 valueT op;
b99bd4ef 3410
c19d1205
ZW
3411 if (*input_line_pointer == '{')
3412 input_line_pointer++;
b99bd4ef 3413
c19d1205 3414 do
b99bd4ef 3415 {
dcbf9037 3416 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3417
c19d1205
ZW
3418 if (reg == FAIL)
3419 {
3420 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3421 goto error;
3422 }
b99bd4ef 3423
c19d1205
ZW
3424 reg -= 8;
3425 if (mask >> reg)
3426 as_tsktsk (_("register list not in ascending order"));
3427 mask |= 1 << reg;
b99bd4ef 3428
c19d1205
ZW
3429 if (*input_line_pointer == '-')
3430 {
3431 input_line_pointer++;
dcbf9037 3432 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3433 if (hi_reg == FAIL)
3434 {
3435 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3436 goto error;
3437 }
3438 else if (reg >= hi_reg)
3439 {
3440 as_bad (_("bad register range"));
3441 goto error;
3442 }
3443 for (; reg < hi_reg; reg++)
3444 mask |= 1 << reg;
3445 }
b99bd4ef 3446 }
c19d1205 3447 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3448
c19d1205
ZW
3449 if (*input_line_pointer == '}')
3450 input_line_pointer++;
b99bd4ef 3451
c19d1205
ZW
3452 demand_empty_rest_of_line ();
3453
708587a4 3454 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3455 the list. */
3456 flush_pending_unwind ();
b99bd4ef 3457
c19d1205 3458 for (reg = 0; reg < 16; reg++)
b99bd4ef 3459 {
c19d1205
ZW
3460 if (mask & (1 << reg))
3461 unwind.frame_size += 4;
b99bd4ef 3462 }
c19d1205
ZW
3463 op = 0xc700 | mask;
3464 add_unwind_opcode (op, 2);
3465 return;
3466error:
3467 ignore_rest_of_line ();
b99bd4ef
NC
3468}
3469
c19d1205
ZW
3470
3471/* Parse an unwind_save directive. */
3472
b99bd4ef 3473static void
c19d1205 3474s_arm_unwind_save (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3475{
c19d1205
ZW
3476 char *peek;
3477 struct reg_entry *reg;
3478 bfd_boolean had_brace = FALSE;
b99bd4ef 3479
c19d1205
ZW
3480 /* Figure out what sort of save we have. */
3481 peek = input_line_pointer;
b99bd4ef 3482
c19d1205 3483 if (*peek == '{')
b99bd4ef 3484 {
c19d1205
ZW
3485 had_brace = TRUE;
3486 peek++;
b99bd4ef
NC
3487 }
3488
c19d1205 3489 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3490
c19d1205 3491 if (!reg)
b99bd4ef 3492 {
c19d1205
ZW
3493 as_bad (_("register expected"));
3494 ignore_rest_of_line ();
b99bd4ef
NC
3495 return;
3496 }
3497
c19d1205 3498 switch (reg->type)
b99bd4ef 3499 {
c19d1205
ZW
3500 case REG_TYPE_FN:
3501 if (had_brace)
3502 {
3503 as_bad (_("FPA .unwind_save does not take a register list"));
3504 ignore_rest_of_line ();
3505 return;
3506 }
3507 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3508 return;
c19d1205
ZW
3509
3510 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3511 case REG_TYPE_VFD: s_arm_unwind_save_vfp (); return;
3512 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3513 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3514
3515 default:
3516 as_bad (_(".unwind_save does not support this kind of register"));
3517 ignore_rest_of_line ();
b99bd4ef 3518 }
c19d1205 3519}
b99bd4ef 3520
b99bd4ef 3521
c19d1205
ZW
3522/* Parse an unwind_movsp directive. */
3523
3524static void
3525s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3526{
3527 int reg;
3528 valueT op;
3529
dcbf9037 3530 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3531 if (reg == FAIL)
b99bd4ef 3532 {
c19d1205
ZW
3533 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3534 ignore_rest_of_line ();
b99bd4ef
NC
3535 return;
3536 }
c19d1205 3537 demand_empty_rest_of_line ();
b99bd4ef 3538
c19d1205 3539 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3540 {
c19d1205 3541 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3542 return;
3543 }
3544
c19d1205
ZW
3545 if (unwind.fp_reg != REG_SP)
3546 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3547
c19d1205
ZW
3548 /* Generate opcode to restore the value. */
3549 op = 0x90 | reg;
3550 add_unwind_opcode (op, 1);
3551
3552 /* Record the information for later. */
3553 unwind.fp_reg = reg;
3554 unwind.fp_offset = unwind.frame_size;
3555 unwind.sp_restored = 1;
b05fe5cf
ZW
3556}
3557
c19d1205
ZW
3558/* Parse an unwind_pad directive. */
3559
b05fe5cf 3560static void
c19d1205 3561s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3562{
c19d1205 3563 int offset;
b05fe5cf 3564
c19d1205
ZW
3565 if (immediate_for_directive (&offset) == FAIL)
3566 return;
b99bd4ef 3567
c19d1205
ZW
3568 if (offset & 3)
3569 {
3570 as_bad (_("stack increment must be multiple of 4"));
3571 ignore_rest_of_line ();
3572 return;
3573 }
b99bd4ef 3574
c19d1205
ZW
3575 /* Don't generate any opcodes, just record the details for later. */
3576 unwind.frame_size += offset;
3577 unwind.pending_offset += offset;
3578
3579 demand_empty_rest_of_line ();
3580}
3581
3582/* Parse an unwind_setfp directive. */
3583
3584static void
3585s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3586{
c19d1205
ZW
3587 int sp_reg;
3588 int fp_reg;
3589 int offset;
3590
dcbf9037 3591 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3592 if (skip_past_comma (&input_line_pointer) == FAIL)
3593 sp_reg = FAIL;
3594 else
dcbf9037 3595 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3596
c19d1205
ZW
3597 if (fp_reg == FAIL || sp_reg == FAIL)
3598 {
3599 as_bad (_("expected <reg>, <reg>"));
3600 ignore_rest_of_line ();
3601 return;
3602 }
b99bd4ef 3603
c19d1205
ZW
3604 /* Optional constant. */
3605 if (skip_past_comma (&input_line_pointer) != FAIL)
3606 {
3607 if (immediate_for_directive (&offset) == FAIL)
3608 return;
3609 }
3610 else
3611 offset = 0;
a737bd4d 3612
c19d1205 3613 demand_empty_rest_of_line ();
a737bd4d 3614
c19d1205 3615 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 3616 {
c19d1205
ZW
3617 as_bad (_("register must be either sp or set by a previous"
3618 "unwind_movsp directive"));
3619 return;
a737bd4d
NC
3620 }
3621
c19d1205
ZW
3622 /* Don't generate any opcodes, just record the information for later. */
3623 unwind.fp_reg = fp_reg;
3624 unwind.fp_used = 1;
3625 if (sp_reg == 13)
3626 unwind.fp_offset = unwind.frame_size - offset;
3627 else
3628 unwind.fp_offset -= offset;
a737bd4d
NC
3629}
3630
c19d1205
ZW
3631/* Parse an unwind_raw directive. */
3632
3633static void
3634s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3635{
c19d1205 3636 expressionS exp;
708587a4 3637 /* This is an arbitrary limit. */
c19d1205
ZW
3638 unsigned char op[16];
3639 int count;
a737bd4d 3640
c19d1205
ZW
3641 expression (&exp);
3642 if (exp.X_op == O_constant
3643 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3644 {
c19d1205
ZW
3645 unwind.frame_size += exp.X_add_number;
3646 expression (&exp);
3647 }
3648 else
3649 exp.X_op = O_illegal;
a737bd4d 3650
c19d1205
ZW
3651 if (exp.X_op != O_constant)
3652 {
3653 as_bad (_("expected <offset>, <opcode>"));
3654 ignore_rest_of_line ();
3655 return;
3656 }
a737bd4d 3657
c19d1205 3658 count = 0;
a737bd4d 3659
c19d1205
ZW
3660 /* Parse the opcode. */
3661 for (;;)
3662 {
3663 if (count >= 16)
3664 {
3665 as_bad (_("unwind opcode too long"));
3666 ignore_rest_of_line ();
a737bd4d 3667 }
c19d1205 3668 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3669 {
c19d1205
ZW
3670 as_bad (_("invalid unwind opcode"));
3671 ignore_rest_of_line ();
3672 return;
a737bd4d 3673 }
c19d1205 3674 op[count++] = exp.X_add_number;
a737bd4d 3675
c19d1205
ZW
3676 /* Parse the next byte. */
3677 if (skip_past_comma (&input_line_pointer) == FAIL)
3678 break;
a737bd4d 3679
c19d1205
ZW
3680 expression (&exp);
3681 }
b99bd4ef 3682
c19d1205
ZW
3683 /* Add the opcode bytes in reverse order. */
3684 while (count--)
3685 add_unwind_opcode (op[count], 1);
b99bd4ef 3686
c19d1205 3687 demand_empty_rest_of_line ();
b99bd4ef 3688}
ee065d83
PB
3689
3690
3691/* Parse a .eabi_attribute directive. */
3692
3693static void
3694s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3695{
3696 expressionS exp;
3697 bfd_boolean is_string;
3698 int tag;
3699 unsigned int i = 0;
3700 char *s = NULL;
3701 char saved_char;
3702
3703 expression (& exp);
3704 if (exp.X_op != O_constant)
3705 goto bad;
3706
3707 tag = exp.X_add_number;
3708 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
3709 is_string = 1;
3710 else
3711 is_string = 0;
3712
3713 if (skip_past_comma (&input_line_pointer) == FAIL)
3714 goto bad;
3715 if (tag == 32 || !is_string)
3716 {
3717 expression (& exp);
3718 if (exp.X_op != O_constant)
3719 {
3720 as_bad (_("expected numeric constant"));
3721 ignore_rest_of_line ();
3722 return;
3723 }
3724 i = exp.X_add_number;
3725 }
3726 if (tag == Tag_compatibility
3727 && skip_past_comma (&input_line_pointer) == FAIL)
3728 {
3729 as_bad (_("expected comma"));
3730 ignore_rest_of_line ();
3731 return;
3732 }
3733 if (is_string)
3734 {
3735 skip_whitespace(input_line_pointer);
3736 if (*input_line_pointer != '"')
3737 goto bad_string;
3738 input_line_pointer++;
3739 s = input_line_pointer;
3740 while (*input_line_pointer && *input_line_pointer != '"')
3741 input_line_pointer++;
3742 if (*input_line_pointer != '"')
3743 goto bad_string;
3744 saved_char = *input_line_pointer;
3745 *input_line_pointer = 0;
3746 }
3747 else
3748 {
3749 s = NULL;
3750 saved_char = 0;
3751 }
3752
3753 if (tag == Tag_compatibility)
3754 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
3755 else if (is_string)
3756 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
3757 else
3758 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
3759
3760 if (s)
3761 {
3762 *input_line_pointer = saved_char;
3763 input_line_pointer++;
3764 }
3765 demand_empty_rest_of_line ();
3766 return;
3767bad_string:
3768 as_bad (_("bad string constant"));
3769 ignore_rest_of_line ();
3770 return;
3771bad:
3772 as_bad (_("expected <tag> , <value>"));
3773 ignore_rest_of_line ();
3774}
8463be01 3775#endif /* OBJ_ELF */
ee065d83
PB
3776
3777static void s_arm_arch (int);
3778static void s_arm_cpu (int);
3779static void s_arm_fpu (int);
b99bd4ef 3780
c19d1205
ZW
3781/* This table describes all the machine specific pseudo-ops the assembler
3782 has to support. The fields are:
3783 pseudo-op name without dot
3784 function to call to execute this pseudo-op
3785 Integer arg to pass to the function. */
b99bd4ef 3786
c19d1205 3787const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3788{
c19d1205
ZW
3789 /* Never called because '.req' does not start a line. */
3790 { "req", s_req, 0 },
dcbf9037
JB
3791 /* Following two are likewise never called. */
3792 { "dn", s_dn, 0 },
3793 { "qn", s_qn, 0 },
c19d1205
ZW
3794 { "unreq", s_unreq, 0 },
3795 { "bss", s_bss, 0 },
3796 { "align", s_align, 0 },
3797 { "arm", s_arm, 0 },
3798 { "thumb", s_thumb, 0 },
3799 { "code", s_code, 0 },
3800 { "force_thumb", s_force_thumb, 0 },
3801 { "thumb_func", s_thumb_func, 0 },
3802 { "thumb_set", s_thumb_set, 0 },
3803 { "even", s_even, 0 },
3804 { "ltorg", s_ltorg, 0 },
3805 { "pool", s_ltorg, 0 },
3806 { "syntax", s_syntax, 0 },
8463be01
PB
3807 { "cpu", s_arm_cpu, 0 },
3808 { "arch", s_arm_arch, 0 },
3809 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3810#ifdef OBJ_ELF
3811 { "word", s_arm_elf_cons, 4 },
3812 { "long", s_arm_elf_cons, 4 },
3813 { "rel31", s_arm_rel31, 0 },
3814 { "fnstart", s_arm_unwind_fnstart, 0 },
3815 { "fnend", s_arm_unwind_fnend, 0 },
3816 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3817 { "personality", s_arm_unwind_personality, 0 },
3818 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3819 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3820 { "save", s_arm_unwind_save, 0 },
3821 { "movsp", s_arm_unwind_movsp, 0 },
3822 { "pad", s_arm_unwind_pad, 0 },
3823 { "setfp", s_arm_unwind_setfp, 0 },
3824 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3825 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3826#else
3827 { "word", cons, 4},
3828#endif
3829 { "extend", float_cons, 'x' },
3830 { "ldouble", float_cons, 'x' },
3831 { "packed", float_cons, 'p' },
3832 { 0, 0, 0 }
3833};
3834\f
3835/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3836
c19d1205
ZW
3837/* Generic immediate-value read function for use in insn parsing.
3838 STR points to the beginning of the immediate (the leading #);
3839 VAL receives the value; if the value is outside [MIN, MAX]
3840 issue an error. PREFIX_OPT is true if the immediate prefix is
3841 optional. */
b99bd4ef 3842
c19d1205
ZW
3843static int
3844parse_immediate (char **str, int *val, int min, int max,
3845 bfd_boolean prefix_opt)
3846{
3847 expressionS exp;
3848 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3849 if (exp.X_op != O_constant)
b99bd4ef 3850 {
c19d1205
ZW
3851 inst.error = _("constant expression required");
3852 return FAIL;
3853 }
b99bd4ef 3854
c19d1205
ZW
3855 if (exp.X_add_number < min || exp.X_add_number > max)
3856 {
3857 inst.error = _("immediate value out of range");
3858 return FAIL;
3859 }
b99bd4ef 3860
c19d1205
ZW
3861 *val = exp.X_add_number;
3862 return SUCCESS;
3863}
b99bd4ef 3864
5287ad62
JB
3865/* Less-generic immediate-value read function with the possibility of loading a
3866 big (64-bit) immediate, as required by Neon VMOV and VMVN immediate
3867 instructions. Puts the result directly in inst.operands[i]. */
3868
3869static int
3870parse_big_immediate (char **str, int i)
3871{
3872 expressionS exp;
3873 char *ptr = *str;
3874
3875 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
3876
3877 if (exp.X_op == O_constant)
3878 inst.operands[i].imm = exp.X_add_number;
3879 else if (exp.X_op == O_big
3880 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
3881 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
3882 {
3883 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
3884 /* Bignums have their least significant bits in
3885 generic_bignum[0]. Make sure we put 32 bits in imm and
3886 32 bits in reg, in a (hopefully) portable way. */
3887 assert (parts != 0);
3888 inst.operands[i].imm = 0;
3889 for (j = 0; j < parts; j++, idx++)
3890 inst.operands[i].imm |= generic_bignum[idx]
3891 << (LITTLENUM_NUMBER_OF_BITS * j);
3892 inst.operands[i].reg = 0;
3893 for (j = 0; j < parts; j++, idx++)
3894 inst.operands[i].reg |= generic_bignum[idx]
3895 << (LITTLENUM_NUMBER_OF_BITS * j);
3896 inst.operands[i].regisimm = 1;
3897 }
3898 else
3899 return FAIL;
3900
3901 *str = ptr;
3902
3903 return SUCCESS;
3904}
3905
c19d1205
ZW
3906/* Returns the pseudo-register number of an FPA immediate constant,
3907 or FAIL if there isn't a valid constant here. */
b99bd4ef 3908
c19d1205
ZW
3909static int
3910parse_fpa_immediate (char ** str)
3911{
3912 LITTLENUM_TYPE words[MAX_LITTLENUMS];
3913 char * save_in;
3914 expressionS exp;
3915 int i;
3916 int j;
b99bd4ef 3917
c19d1205
ZW
3918 /* First try and match exact strings, this is to guarantee
3919 that some formats will work even for cross assembly. */
b99bd4ef 3920
c19d1205
ZW
3921 for (i = 0; fp_const[i]; i++)
3922 {
3923 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 3924 {
c19d1205 3925 char *start = *str;
b99bd4ef 3926
c19d1205
ZW
3927 *str += strlen (fp_const[i]);
3928 if (is_end_of_line[(unsigned char) **str])
3929 return i + 8;
3930 *str = start;
3931 }
3932 }
b99bd4ef 3933
c19d1205
ZW
3934 /* Just because we didn't get a match doesn't mean that the constant
3935 isn't valid, just that it is in a format that we don't
3936 automatically recognize. Try parsing it with the standard
3937 expression routines. */
b99bd4ef 3938
c19d1205 3939 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 3940
c19d1205
ZW
3941 /* Look for a raw floating point number. */
3942 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
3943 && is_end_of_line[(unsigned char) *save_in])
3944 {
3945 for (i = 0; i < NUM_FLOAT_VALS; i++)
3946 {
3947 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 3948 {
c19d1205
ZW
3949 if (words[j] != fp_values[i][j])
3950 break;
b99bd4ef
NC
3951 }
3952
c19d1205 3953 if (j == MAX_LITTLENUMS)
b99bd4ef 3954 {
c19d1205
ZW
3955 *str = save_in;
3956 return i + 8;
b99bd4ef
NC
3957 }
3958 }
3959 }
b99bd4ef 3960
c19d1205
ZW
3961 /* Try and parse a more complex expression, this will probably fail
3962 unless the code uses a floating point prefix (eg "0f"). */
3963 save_in = input_line_pointer;
3964 input_line_pointer = *str;
3965 if (expression (&exp) == absolute_section
3966 && exp.X_op == O_big
3967 && exp.X_add_number < 0)
3968 {
3969 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
3970 Ditto for 15. */
3971 if (gen_to_words (words, 5, (long) 15) == 0)
3972 {
3973 for (i = 0; i < NUM_FLOAT_VALS; i++)
3974 {
3975 for (j = 0; j < MAX_LITTLENUMS; j++)
3976 {
3977 if (words[j] != fp_values[i][j])
3978 break;
3979 }
b99bd4ef 3980
c19d1205
ZW
3981 if (j == MAX_LITTLENUMS)
3982 {
3983 *str = input_line_pointer;
3984 input_line_pointer = save_in;
3985 return i + 8;
3986 }
3987 }
3988 }
b99bd4ef
NC
3989 }
3990
c19d1205
ZW
3991 *str = input_line_pointer;
3992 input_line_pointer = save_in;
3993 inst.error = _("invalid FPA immediate expression");
3994 return FAIL;
b99bd4ef
NC
3995}
3996
136da414
JB
3997/* Returns 1 if a number has "quarter-precision" float format
3998 0baBbbbbbc defgh000 00000000 00000000. */
3999
4000static int
4001is_quarter_float (unsigned imm)
4002{
4003 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4004 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4005}
4006
4007/* Parse an 8-bit "quarter-precision" floating point number of the form:
4008 0baBbbbbbc defgh000 00000000 00000000.
4009 The minus-zero case needs special handling, since it can't be encoded in the
4010 "quarter-precision" float format, but can nonetheless be loaded as an integer
4011 constant. */
4012
4013static unsigned
4014parse_qfloat_immediate (char **ccp, int *immed)
4015{
4016 char *str = *ccp;
4017 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4018
4019 skip_past_char (&str, '#');
4020
4021 if ((str = atof_ieee (str, 's', words)) != NULL)
4022 {
4023 unsigned fpword = 0;
4024 int i;
4025
4026 /* Our FP word must be 32 bits (single-precision FP). */
4027 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4028 {
4029 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4030 fpword |= words[i];
4031 }
4032
4033 if (is_quarter_float (fpword) || fpword == 0x80000000)
4034 *immed = fpword;
4035 else
4036 return FAIL;
4037
4038 *ccp = str;
4039
4040 return SUCCESS;
4041 }
4042
4043 return FAIL;
4044}
4045
c19d1205
ZW
4046/* Shift operands. */
4047enum shift_kind
b99bd4ef 4048{
c19d1205
ZW
4049 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4050};
b99bd4ef 4051
c19d1205
ZW
4052struct asm_shift_name
4053{
4054 const char *name;
4055 enum shift_kind kind;
4056};
b99bd4ef 4057
c19d1205
ZW
4058/* Third argument to parse_shift. */
4059enum parse_shift_mode
4060{
4061 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4062 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4063 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4064 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4065 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4066};
b99bd4ef 4067
c19d1205
ZW
4068/* Parse a <shift> specifier on an ARM data processing instruction.
4069 This has three forms:
b99bd4ef 4070
c19d1205
ZW
4071 (LSL|LSR|ASL|ASR|ROR) Rs
4072 (LSL|LSR|ASL|ASR|ROR) #imm
4073 RRX
b99bd4ef 4074
c19d1205
ZW
4075 Note that ASL is assimilated to LSL in the instruction encoding, and
4076 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4077
c19d1205
ZW
4078static int
4079parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4080{
c19d1205
ZW
4081 const struct asm_shift_name *shift_name;
4082 enum shift_kind shift;
4083 char *s = *str;
4084 char *p = s;
4085 int reg;
b99bd4ef 4086
c19d1205
ZW
4087 for (p = *str; ISALPHA (*p); p++)
4088 ;
b99bd4ef 4089
c19d1205 4090 if (p == *str)
b99bd4ef 4091 {
c19d1205
ZW
4092 inst.error = _("shift expression expected");
4093 return FAIL;
b99bd4ef
NC
4094 }
4095
c19d1205
ZW
4096 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4097
4098 if (shift_name == NULL)
b99bd4ef 4099 {
c19d1205
ZW
4100 inst.error = _("shift expression expected");
4101 return FAIL;
b99bd4ef
NC
4102 }
4103
c19d1205 4104 shift = shift_name->kind;
b99bd4ef 4105
c19d1205
ZW
4106 switch (mode)
4107 {
4108 case NO_SHIFT_RESTRICT:
4109 case SHIFT_IMMEDIATE: break;
b99bd4ef 4110
c19d1205
ZW
4111 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4112 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4113 {
4114 inst.error = _("'LSL' or 'ASR' required");
4115 return FAIL;
4116 }
4117 break;
b99bd4ef 4118
c19d1205
ZW
4119 case SHIFT_LSL_IMMEDIATE:
4120 if (shift != SHIFT_LSL)
4121 {
4122 inst.error = _("'LSL' required");
4123 return FAIL;
4124 }
4125 break;
b99bd4ef 4126
c19d1205
ZW
4127 case SHIFT_ASR_IMMEDIATE:
4128 if (shift != SHIFT_ASR)
4129 {
4130 inst.error = _("'ASR' required");
4131 return FAIL;
4132 }
4133 break;
b99bd4ef 4134
c19d1205
ZW
4135 default: abort ();
4136 }
b99bd4ef 4137
c19d1205
ZW
4138 if (shift != SHIFT_RRX)
4139 {
4140 /* Whitespace can appear here if the next thing is a bare digit. */
4141 skip_whitespace (p);
b99bd4ef 4142
c19d1205 4143 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4144 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4145 {
4146 inst.operands[i].imm = reg;
4147 inst.operands[i].immisreg = 1;
4148 }
4149 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4150 return FAIL;
4151 }
4152 inst.operands[i].shift_kind = shift;
4153 inst.operands[i].shifted = 1;
4154 *str = p;
4155 return SUCCESS;
b99bd4ef
NC
4156}
4157
c19d1205 4158/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4159
c19d1205
ZW
4160 #<immediate>
4161 #<immediate>, <rotate>
4162 <Rm>
4163 <Rm>, <shift>
b99bd4ef 4164
c19d1205
ZW
4165 where <shift> is defined by parse_shift above, and <rotate> is a
4166 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4167 is deferred to md_apply_fix. */
b99bd4ef 4168
c19d1205
ZW
4169static int
4170parse_shifter_operand (char **str, int i)
4171{
4172 int value;
4173 expressionS expr;
b99bd4ef 4174
dcbf9037 4175 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4176 {
4177 inst.operands[i].reg = value;
4178 inst.operands[i].isreg = 1;
b99bd4ef 4179
c19d1205
ZW
4180 /* parse_shift will override this if appropriate */
4181 inst.reloc.exp.X_op = O_constant;
4182 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4183
c19d1205
ZW
4184 if (skip_past_comma (str) == FAIL)
4185 return SUCCESS;
b99bd4ef 4186
c19d1205
ZW
4187 /* Shift operation on register. */
4188 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4189 }
4190
c19d1205
ZW
4191 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4192 return FAIL;
b99bd4ef 4193
c19d1205 4194 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4195 {
c19d1205
ZW
4196 /* #x, y -- ie explicit rotation by Y. */
4197 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4198 return FAIL;
b99bd4ef 4199
c19d1205
ZW
4200 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4201 {
4202 inst.error = _("constant expression expected");
4203 return FAIL;
4204 }
b99bd4ef 4205
c19d1205
ZW
4206 value = expr.X_add_number;
4207 if (value < 0 || value > 30 || value % 2 != 0)
4208 {
4209 inst.error = _("invalid rotation");
4210 return FAIL;
4211 }
4212 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4213 {
4214 inst.error = _("invalid constant");
4215 return FAIL;
4216 }
09d92015 4217
55cf6793 4218 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4219 inst.reloc.exp.X_add_number
4220 = (((inst.reloc.exp.X_add_number << (32 - value))
4221 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4222 }
4223
c19d1205
ZW
4224 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4225 inst.reloc.pc_rel = 0;
4226 return SUCCESS;
09d92015
MM
4227}
4228
c19d1205
ZW
4229/* Parse all forms of an ARM address expression. Information is written
4230 to inst.operands[i] and/or inst.reloc.
09d92015 4231
c19d1205 4232 Preindexed addressing (.preind=1):
09d92015 4233
c19d1205
ZW
4234 [Rn, #offset] .reg=Rn .reloc.exp=offset
4235 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4236 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4237 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4238
c19d1205 4239 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4240
c19d1205 4241 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4242
c19d1205
ZW
4243 [Rn], #offset .reg=Rn .reloc.exp=offset
4244 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4245 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4246 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4247
c19d1205 4248 Unindexed addressing (.preind=0, .postind=0):
09d92015 4249
c19d1205 4250 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4251
c19d1205 4252 Other:
09d92015 4253
c19d1205
ZW
4254 [Rn]{!} shorthand for [Rn,#0]{!}
4255 =immediate .isreg=0 .reloc.exp=immediate
4256 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4257
c19d1205
ZW
4258 It is the caller's responsibility to check for addressing modes not
4259 supported by the instruction, and to set inst.reloc.type. */
4260
4261static int
4262parse_address (char **str, int i)
09d92015 4263{
c19d1205
ZW
4264 char *p = *str;
4265 int reg;
09d92015 4266
c19d1205 4267 if (skip_past_char (&p, '[') == FAIL)
09d92015 4268 {
c19d1205
ZW
4269 if (skip_past_char (&p, '=') == FAIL)
4270 {
4271 /* bare address - translate to PC-relative offset */
4272 inst.reloc.pc_rel = 1;
4273 inst.operands[i].reg = REG_PC;
4274 inst.operands[i].isreg = 1;
4275 inst.operands[i].preind = 1;
4276 }
4277 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4278
c19d1205
ZW
4279 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4280 return FAIL;
09d92015 4281
c19d1205
ZW
4282 *str = p;
4283 return SUCCESS;
09d92015
MM
4284 }
4285
dcbf9037 4286 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4287 {
c19d1205
ZW
4288 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4289 return FAIL;
09d92015 4290 }
c19d1205
ZW
4291 inst.operands[i].reg = reg;
4292 inst.operands[i].isreg = 1;
09d92015 4293
c19d1205 4294 if (skip_past_comma (&p) == SUCCESS)
09d92015 4295 {
c19d1205 4296 inst.operands[i].preind = 1;
09d92015 4297
c19d1205
ZW
4298 if (*p == '+') p++;
4299 else if (*p == '-') p++, inst.operands[i].negative = 1;
4300
dcbf9037 4301 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4302 {
c19d1205
ZW
4303 inst.operands[i].imm = reg;
4304 inst.operands[i].immisreg = 1;
4305
4306 if (skip_past_comma (&p) == SUCCESS)
4307 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4308 return FAIL;
4309 }
5287ad62
JB
4310 else if (skip_past_char (&p, ':') == SUCCESS)
4311 {
4312 /* FIXME: '@' should be used here, but it's filtered out by generic
4313 code before we get to see it here. This may be subject to
4314 change. */
4315 expressionS exp;
4316 my_get_expression (&exp, &p, GE_NO_PREFIX);
4317 if (exp.X_op != O_constant)
4318 {
4319 inst.error = _("alignment must be constant");
4320 return FAIL;
4321 }
4322 inst.operands[i].imm = exp.X_add_number << 8;
4323 inst.operands[i].immisalign = 1;
4324 /* Alignments are not pre-indexes. */
4325 inst.operands[i].preind = 0;
4326 }
c19d1205
ZW
4327 else
4328 {
4329 if (inst.operands[i].negative)
4330 {
4331 inst.operands[i].negative = 0;
4332 p--;
4333 }
4334 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4335 return FAIL;
09d92015
MM
4336 }
4337 }
4338
c19d1205 4339 if (skip_past_char (&p, ']') == FAIL)
09d92015 4340 {
c19d1205
ZW
4341 inst.error = _("']' expected");
4342 return FAIL;
09d92015
MM
4343 }
4344
c19d1205
ZW
4345 if (skip_past_char (&p, '!') == SUCCESS)
4346 inst.operands[i].writeback = 1;
09d92015 4347
c19d1205 4348 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4349 {
c19d1205
ZW
4350 if (skip_past_char (&p, '{') == SUCCESS)
4351 {
4352 /* [Rn], {expr} - unindexed, with option */
4353 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4354 0, 255, TRUE) == FAIL)
c19d1205 4355 return FAIL;
09d92015 4356
c19d1205
ZW
4357 if (skip_past_char (&p, '}') == FAIL)
4358 {
4359 inst.error = _("'}' expected at end of 'option' field");
4360 return FAIL;
4361 }
4362 if (inst.operands[i].preind)
4363 {
4364 inst.error = _("cannot combine index with option");
4365 return FAIL;
4366 }
4367 *str = p;
4368 return SUCCESS;
09d92015 4369 }
c19d1205
ZW
4370 else
4371 {
4372 inst.operands[i].postind = 1;
4373 inst.operands[i].writeback = 1;
09d92015 4374
c19d1205
ZW
4375 if (inst.operands[i].preind)
4376 {
4377 inst.error = _("cannot combine pre- and post-indexing");
4378 return FAIL;
4379 }
09d92015 4380
c19d1205
ZW
4381 if (*p == '+') p++;
4382 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4383
dcbf9037 4384 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4385 {
5287ad62
JB
4386 /* We might be using the immediate for alignment already. If we
4387 are, OR the register number into the low-order bits. */
4388 if (inst.operands[i].immisalign)
4389 inst.operands[i].imm |= reg;
4390 else
4391 inst.operands[i].imm = reg;
c19d1205 4392 inst.operands[i].immisreg = 1;
a737bd4d 4393
c19d1205
ZW
4394 if (skip_past_comma (&p) == SUCCESS)
4395 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4396 return FAIL;
4397 }
4398 else
4399 {
4400 if (inst.operands[i].negative)
4401 {
4402 inst.operands[i].negative = 0;
4403 p--;
4404 }
4405 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4406 return FAIL;
4407 }
4408 }
a737bd4d
NC
4409 }
4410
c19d1205
ZW
4411 /* If at this point neither .preind nor .postind is set, we have a
4412 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4413 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4414 {
4415 inst.operands[i].preind = 1;
4416 inst.reloc.exp.X_op = O_constant;
4417 inst.reloc.exp.X_add_number = 0;
4418 }
4419 *str = p;
4420 return SUCCESS;
a737bd4d
NC
4421}
4422
c19d1205 4423/* Miscellaneous. */
a737bd4d 4424
c19d1205
ZW
4425/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4426 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4427static int
4428parse_psr (char **str)
09d92015 4429{
c19d1205
ZW
4430 char *p;
4431 unsigned long psr_field;
62b3e311
PB
4432 const struct asm_psr *psr;
4433 char *start;
09d92015 4434
c19d1205
ZW
4435 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4436 feature for ease of use and backwards compatibility. */
4437 p = *str;
62b3e311 4438 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4439 psr_field = SPSR_BIT;
62b3e311 4440 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4441 psr_field = 0;
4442 else
62b3e311
PB
4443 {
4444 start = p;
4445 do
4446 p++;
4447 while (ISALNUM (*p) || *p == '_');
4448
4449 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4450 if (!psr)
4451 return FAIL;
09d92015 4452
62b3e311
PB
4453 *str = p;
4454 return psr->field;
4455 }
09d92015 4456
62b3e311 4457 p += 4;
c19d1205
ZW
4458 if (*p == '_')
4459 {
4460 /* A suffix follows. */
c19d1205
ZW
4461 p++;
4462 start = p;
a737bd4d 4463
c19d1205
ZW
4464 do
4465 p++;
4466 while (ISALNUM (*p) || *p == '_');
a737bd4d 4467
c19d1205
ZW
4468 psr = hash_find_n (arm_psr_hsh, start, p - start);
4469 if (!psr)
4470 goto error;
a737bd4d 4471
c19d1205 4472 psr_field |= psr->field;
a737bd4d 4473 }
c19d1205 4474 else
a737bd4d 4475 {
c19d1205
ZW
4476 if (ISALNUM (*p))
4477 goto error; /* Garbage after "[CS]PSR". */
4478
4479 psr_field |= (PSR_c | PSR_f);
a737bd4d 4480 }
c19d1205
ZW
4481 *str = p;
4482 return psr_field;
a737bd4d 4483
c19d1205
ZW
4484 error:
4485 inst.error = _("flag for {c}psr instruction expected");
4486 return FAIL;
a737bd4d
NC
4487}
4488
c19d1205
ZW
4489/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4490 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4491
c19d1205
ZW
4492static int
4493parse_cps_flags (char **str)
a737bd4d 4494{
c19d1205
ZW
4495 int val = 0;
4496 int saw_a_flag = 0;
4497 char *s = *str;
a737bd4d 4498
c19d1205
ZW
4499 for (;;)
4500 switch (*s++)
4501 {
4502 case '\0': case ',':
4503 goto done;
a737bd4d 4504
c19d1205
ZW
4505 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4506 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4507 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4508
c19d1205
ZW
4509 default:
4510 inst.error = _("unrecognized CPS flag");
4511 return FAIL;
4512 }
a737bd4d 4513
c19d1205
ZW
4514 done:
4515 if (saw_a_flag == 0)
a737bd4d 4516 {
c19d1205
ZW
4517 inst.error = _("missing CPS flags");
4518 return FAIL;
a737bd4d 4519 }
a737bd4d 4520
c19d1205
ZW
4521 *str = s - 1;
4522 return val;
a737bd4d
NC
4523}
4524
c19d1205
ZW
4525/* Parse an endian specifier ("BE" or "LE", case insensitive);
4526 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4527
4528static int
c19d1205 4529parse_endian_specifier (char **str)
a737bd4d 4530{
c19d1205
ZW
4531 int little_endian;
4532 char *s = *str;
a737bd4d 4533
c19d1205
ZW
4534 if (strncasecmp (s, "BE", 2))
4535 little_endian = 0;
4536 else if (strncasecmp (s, "LE", 2))
4537 little_endian = 1;
4538 else
a737bd4d 4539 {
c19d1205 4540 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4541 return FAIL;
4542 }
4543
c19d1205 4544 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 4545 {
c19d1205 4546 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4547 return FAIL;
4548 }
4549
c19d1205
ZW
4550 *str = s + 2;
4551 return little_endian;
4552}
a737bd4d 4553
c19d1205
ZW
4554/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
4555 value suitable for poking into the rotate field of an sxt or sxta
4556 instruction, or FAIL on error. */
4557
4558static int
4559parse_ror (char **str)
4560{
4561 int rot;
4562 char *s = *str;
4563
4564 if (strncasecmp (s, "ROR", 3) == 0)
4565 s += 3;
4566 else
a737bd4d 4567 {
c19d1205 4568 inst.error = _("missing rotation field after comma");
a737bd4d
NC
4569 return FAIL;
4570 }
c19d1205
ZW
4571
4572 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
4573 return FAIL;
4574
4575 switch (rot)
a737bd4d 4576 {
c19d1205
ZW
4577 case 0: *str = s; return 0x0;
4578 case 8: *str = s; return 0x1;
4579 case 16: *str = s; return 0x2;
4580 case 24: *str = s; return 0x3;
4581
4582 default:
4583 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
4584 return FAIL;
4585 }
c19d1205 4586}
a737bd4d 4587
c19d1205
ZW
4588/* Parse a conditional code (from conds[] below). The value returned is in the
4589 range 0 .. 14, or FAIL. */
4590static int
4591parse_cond (char **str)
4592{
4593 char *p, *q;
4594 const struct asm_cond *c;
a737bd4d 4595
c19d1205
ZW
4596 p = q = *str;
4597 while (ISALPHA (*q))
4598 q++;
a737bd4d 4599
c19d1205
ZW
4600 c = hash_find_n (arm_cond_hsh, p, q - p);
4601 if (!c)
a737bd4d 4602 {
c19d1205 4603 inst.error = _("condition required");
a737bd4d
NC
4604 return FAIL;
4605 }
4606
c19d1205
ZW
4607 *str = q;
4608 return c->value;
4609}
4610
62b3e311
PB
4611/* Parse an option for a barrier instruction. Returns the encoding for the
4612 option, or FAIL. */
4613static int
4614parse_barrier (char **str)
4615{
4616 char *p, *q;
4617 const struct asm_barrier_opt *o;
4618
4619 p = q = *str;
4620 while (ISALPHA (*q))
4621 q++;
4622
4623 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
4624 if (!o)
4625 return FAIL;
4626
4627 *str = q;
4628 return o->value;
4629}
4630
92e90b6e
PB
4631/* Parse the operands of a table branch instruction. Similar to a memory
4632 operand. */
4633static int
4634parse_tb (char **str)
4635{
4636 char * p = *str;
4637 int reg;
4638
4639 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
4640 {
4641 inst.error = _("'[' expected");
4642 return FAIL;
4643 }
92e90b6e 4644
dcbf9037 4645 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
4646 {
4647 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4648 return FAIL;
4649 }
4650 inst.operands[0].reg = reg;
4651
4652 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
4653 {
4654 inst.error = _("',' expected");
4655 return FAIL;
4656 }
92e90b6e 4657
dcbf9037 4658 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
4659 {
4660 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4661 return FAIL;
4662 }
4663 inst.operands[0].imm = reg;
4664
4665 if (skip_past_comma (&p) == SUCCESS)
4666 {
4667 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
4668 return FAIL;
4669 if (inst.reloc.exp.X_add_number != 1)
4670 {
4671 inst.error = _("invalid shift");
4672 return FAIL;
4673 }
4674 inst.operands[0].shifted = 1;
4675 }
4676
4677 if (skip_past_char (&p, ']') == FAIL)
4678 {
4679 inst.error = _("']' expected");
4680 return FAIL;
4681 }
4682 *str = p;
4683 return SUCCESS;
4684}
4685
5287ad62
JB
4686/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
4687 information on the types the operands can take and how they are encoded.
4688 Note particularly the abuse of ".regisimm" to signify a Neon register.
4689 Up to three operands may be read; this function handles setting the
4690 ".present" field for each operand itself.
4691 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
4692 else returns FAIL. */
4693
4694static int
4695parse_neon_mov (char **str, int *which_operand)
4696{
4697 int i = *which_operand, val;
4698 enum arm_reg_type rtype;
4699 char *ptr = *str;
dcbf9037 4700 struct neon_type_el optype;
5287ad62 4701
dcbf9037 4702 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
4703 {
4704 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
4705 inst.operands[i].reg = val;
4706 inst.operands[i].isscalar = 1;
dcbf9037 4707 inst.operands[i].vectype = optype;
5287ad62
JB
4708 inst.operands[i++].present = 1;
4709
4710 if (skip_past_comma (&ptr) == FAIL)
4711 goto wanted_comma;
4712
dcbf9037 4713 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62
JB
4714 goto wanted_arm;
4715
4716 inst.operands[i].reg = val;
4717 inst.operands[i].isreg = 1;
4718 inst.operands[i].present = 1;
4719 }
dcbf9037
JB
4720 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NDQ, &rtype, &optype))
4721 != FAIL)
5287ad62
JB
4722 {
4723 /* Cases 0, 1, 2, 3, 5 (D only). */
4724 if (skip_past_comma (&ptr) == FAIL)
4725 goto wanted_comma;
4726
4727 inst.operands[i].reg = val;
4728 inst.operands[i].isreg = 1;
4729 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
dcbf9037 4730 inst.operands[i].vectype = optype;
5287ad62
JB
4731 inst.operands[i++].present = 1;
4732
dcbf9037 4733 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
4734 {
4735 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>. */
4736 inst.operands[i-1].regisimm = 1;
4737 inst.operands[i].reg = val;
4738 inst.operands[i].isreg = 1;
4739 inst.operands[i++].present = 1;
4740
4741 if (rtype == REG_TYPE_NQ)
4742 {
dcbf9037 4743 first_error (_("can't use Neon quad register here"));
5287ad62
JB
4744 return FAIL;
4745 }
4746 if (skip_past_comma (&ptr) == FAIL)
4747 goto wanted_comma;
dcbf9037 4748 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62
JB
4749 goto wanted_arm;
4750 inst.operands[i].reg = val;
4751 inst.operands[i].isreg = 1;
4752 inst.operands[i].present = 1;
4753 }
136da414
JB
4754 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
4755 {
4756 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
4757 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm> */
4758 if (!thumb_mode && (inst.instruction & 0xf0000000) != 0xe0000000)
4759 goto bad_cond;
4760 }
5287ad62
JB
4761 else if (parse_big_immediate (&ptr, i) == SUCCESS)
4762 {
4763 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
4764 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
4765 if (!thumb_mode && (inst.instruction & 0xf0000000) != 0xe0000000)
4766 goto bad_cond;
4767 }
dcbf9037
JB
4768 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NDQ, &rtype, &optype))
4769 != FAIL)
5287ad62
JB
4770 {
4771 /* Case 0: VMOV<c><q> <Qd>, <Qm>
4772 Case 1: VMOV<c><q> <Dd>, <Dm> */
4773 if (!thumb_mode && (inst.instruction & 0xf0000000) != 0xe0000000)
4774 goto bad_cond;
4775
4776 inst.operands[i].reg = val;
4777 inst.operands[i].isreg = 1;
4778 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
dcbf9037 4779 inst.operands[i].vectype = optype;
5287ad62
JB
4780 inst.operands[i].present = 1;
4781 }
4782 else
4783 {
dcbf9037 4784 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
4785 return FAIL;
4786 }
4787 }
dcbf9037 4788 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
4789 {
4790 /* Cases 6, 7. */
4791 inst.operands[i].reg = val;
4792 inst.operands[i].isreg = 1;
4793 inst.operands[i++].present = 1;
4794
4795 if (skip_past_comma (&ptr) == FAIL)
4796 goto wanted_comma;
4797
dcbf9037 4798 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
4799 {
4800 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
4801 inst.operands[i].reg = val;
4802 inst.operands[i].isscalar = 1;
4803 inst.operands[i].present = 1;
dcbf9037 4804 inst.operands[i].vectype = optype;
5287ad62 4805 }
dcbf9037 4806 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
4807 {
4808 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
4809 inst.operands[i].reg = val;
4810 inst.operands[i].isreg = 1;
4811 inst.operands[i++].present = 1;
4812
4813 if (skip_past_comma (&ptr) == FAIL)
4814 goto wanted_comma;
4815
dcbf9037
JB
4816 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFD, NULL, &optype))
4817 == FAIL)
5287ad62 4818 {
dcbf9037 4819 first_error (_(reg_expected_msgs[REG_TYPE_VFD]));
5287ad62
JB
4820 return FAIL;
4821 }
4822
4823 inst.operands[i].reg = val;
4824 inst.operands[i].isreg = 1;
4825 inst.operands[i].regisimm = 1;
dcbf9037 4826 inst.operands[i].vectype = optype;
5287ad62
JB
4827 inst.operands[i].present = 1;
4828 }
4829 }
4830 else
4831 {
dcbf9037 4832 first_error (_("parse error"));
5287ad62
JB
4833 return FAIL;
4834 }
4835
4836 /* Successfully parsed the operands. Update args. */
4837 *which_operand = i;
4838 *str = ptr;
4839 return SUCCESS;
4840
4841 wanted_comma:
dcbf9037 4842 first_error (_("expected comma"));
5287ad62
JB
4843 return FAIL;
4844
4845 wanted_arm:
dcbf9037 4846 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62
JB
4847 return FAIL;
4848
4849 bad_cond:
dcbf9037 4850 first_error (_("instruction cannot be conditionalized"));
5287ad62
JB
4851 return FAIL;
4852}
4853
c19d1205
ZW
4854/* Matcher codes for parse_operands. */
4855enum operand_parse_code
4856{
4857 OP_stop, /* end of line */
4858
4859 OP_RR, /* ARM register */
4860 OP_RRnpc, /* ARM register, not r15 */
4861 OP_RRnpcb, /* ARM register, not r15, in square brackets */
4862 OP_RRw, /* ARM register, not r15, optional trailing ! */
4863 OP_RCP, /* Coprocessor number */
4864 OP_RCN, /* Coprocessor register */
4865 OP_RF, /* FPA register */
4866 OP_RVS, /* VFP single precision register */
5287ad62
JB
4867 OP_RVD, /* VFP double precision register (0..15) */
4868 OP_RND, /* Neon double precision register (0..31) */
4869 OP_RNQ, /* Neon quad precision register */
4870 OP_RNDQ, /* Neon double or quad precision register */
4871 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
4872 OP_RVC, /* VFP control register */
4873 OP_RMF, /* Maverick F register */
4874 OP_RMD, /* Maverick D register */
4875 OP_RMFX, /* Maverick FX register */
4876 OP_RMDX, /* Maverick DX register */
4877 OP_RMAX, /* Maverick AX register */
4878 OP_RMDS, /* Maverick DSPSC register */
4879 OP_RIWR, /* iWMMXt wR register */
4880 OP_RIWC, /* iWMMXt wC register */
4881 OP_RIWG, /* iWMMXt wCG register */
4882 OP_RXA, /* XScale accumulator register */
4883
4884 OP_REGLST, /* ARM register list */
4885 OP_VRSLST, /* VFP single-precision register list */
4886 OP_VRDLST, /* VFP double-precision register list */
5287ad62
JB
4887 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
4888 OP_NSTRLST, /* Neon element/structure list */
4889
4890 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
4891 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
4892 OP_RR_RNSC, /* ARM reg or Neon scalar. */
4893 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
4894 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
4895 OP_VMOV, /* Neon VMOV operands. */
4896 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
4897 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
4898
4899 OP_I0, /* immediate zero */
c19d1205
ZW
4900 OP_I7, /* immediate value 0 .. 7 */
4901 OP_I15, /* 0 .. 15 */
4902 OP_I16, /* 1 .. 16 */
5287ad62 4903 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
4904 OP_I31, /* 0 .. 31 */
4905 OP_I31w, /* 0 .. 31, optional trailing ! */
4906 OP_I32, /* 1 .. 32 */
5287ad62
JB
4907 OP_I32z, /* 0 .. 32 */
4908 OP_I63, /* 0 .. 63 */
c19d1205 4909 OP_I63s, /* -64 .. 63 */
5287ad62
JB
4910 OP_I64, /* 1 .. 64 */
4911 OP_I64z, /* 0 .. 64 */
c19d1205
ZW
4912 OP_I255, /* 0 .. 255 */
4913 OP_Iffff, /* 0 .. 65535 */
4914
4915 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
4916 OP_I7b, /* 0 .. 7 */
4917 OP_I15b, /* 0 .. 15 */
4918 OP_I31b, /* 0 .. 31 */
4919
4920 OP_SH, /* shifter operand */
4921 OP_ADDR, /* Memory address expression (any mode) */
4922 OP_EXP, /* arbitrary expression */
4923 OP_EXPi, /* same, with optional immediate prefix */
4924 OP_EXPr, /* same, with optional relocation suffix */
4925
4926 OP_CPSF, /* CPS flags */
4927 OP_ENDI, /* Endianness specifier */
4928 OP_PSR, /* CPSR/SPSR mask for msr */
4929 OP_COND, /* conditional code */
92e90b6e 4930 OP_TB, /* Table branch. */
c19d1205
ZW
4931
4932 OP_RRnpc_I0, /* ARM register or literal 0 */
4933 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
4934 OP_RR_EXi, /* ARM register or expression with imm prefix */
4935 OP_RF_IF, /* FPA register or immediate */
4936 OP_RIWR_RIWC, /* iWMMXt R or C reg */
4937
4938 /* Optional operands. */
4939 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
4940 OP_oI31b, /* 0 .. 31 */
5287ad62 4941 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
4942 OP_oIffffb, /* 0 .. 65535 */
4943 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
4944
4945 OP_oRR, /* ARM register */
4946 OP_oRRnpc, /* ARM register, not the PC */
5287ad62
JB
4947 OP_oRND, /* Optional Neon double precision register */
4948 OP_oRNQ, /* Optional Neon quad precision register */
4949 OP_oRNDQ, /* Optional Neon double or quad precision register */
c19d1205
ZW
4950 OP_oSHll, /* LSL immediate */
4951 OP_oSHar, /* ASR immediate */
4952 OP_oSHllar, /* LSL or ASR immediate */
4953 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 4954 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
4955
4956 OP_FIRST_OPTIONAL = OP_oI7b
4957};
a737bd4d 4958
c19d1205
ZW
4959/* Generic instruction operand parser. This does no encoding and no
4960 semantic validation; it merely squirrels values away in the inst
4961 structure. Returns SUCCESS or FAIL depending on whether the
4962 specified grammar matched. */
4963static int
ca3f61f7 4964parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
4965{
4966 unsigned const char *upat = pattern;
4967 char *backtrack_pos = 0;
4968 const char *backtrack_error = 0;
4969 int i, val, backtrack_index = 0;
5287ad62 4970 enum arm_reg_type rtype;
c19d1205
ZW
4971
4972#define po_char_or_fail(chr) do { \
4973 if (skip_past_char (&str, chr) == FAIL) \
4974 goto bad_args; \
4975} while (0)
4976
dcbf9037
JB
4977#define po_reg_or_fail(regtype) do { \
4978 val = arm_typed_reg_parse (&str, regtype, &rtype, \
4979 &inst.operands[i].vectype); \
4980 if (val == FAIL) \
4981 { \
4982 first_error (_(reg_expected_msgs[regtype])); \
4983 goto failure; \
4984 } \
4985 inst.operands[i].reg = val; \
4986 inst.operands[i].isreg = 1; \
4987 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
c19d1205
ZW
4988} while (0)
4989
dcbf9037
JB
4990#define po_reg_or_goto(regtype, label) do { \
4991 val = arm_typed_reg_parse (&str, regtype, &rtype, \
4992 &inst.operands[i].vectype); \
4993 if (val == FAIL) \
4994 goto label; \
4995 \
4996 inst.operands[i].reg = val; \
4997 inst.operands[i].isreg = 1; \
4998 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
c19d1205
ZW
4999} while (0)
5000
5001#define po_imm_or_fail(min, max, popt) do { \
5002 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5003 goto failure; \
5004 inst.operands[i].imm = val; \
5005} while (0)
5006
dcbf9037
JB
5007#define po_scalar_or_goto(elsz, label) do { \
5008 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5009 if (val == FAIL) \
5010 goto label; \
5011 inst.operands[i].reg = val; \
5012 inst.operands[i].isscalar = 1; \
5287ad62
JB
5013} while (0)
5014
c19d1205
ZW
5015#define po_misc_or_fail(expr) do { \
5016 if (expr) \
5017 goto failure; \
5018} while (0)
5019
5020 skip_whitespace (str);
5021
5022 for (i = 0; upat[i] != OP_stop; i++)
5023 {
5024 if (upat[i] >= OP_FIRST_OPTIONAL)
5025 {
5026 /* Remember where we are in case we need to backtrack. */
5027 assert (!backtrack_pos);
5028 backtrack_pos = str;
5029 backtrack_error = inst.error;
5030 backtrack_index = i;
5031 }
5032
5033 if (i > 0)
5034 po_char_or_fail (',');
5035
5036 switch (upat[i])
5037 {
5038 /* Registers */
5039 case OP_oRRnpc:
5040 case OP_RRnpc:
5041 case OP_oRR:
5042 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5043 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5044 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5045 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5046 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5047 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5048 case OP_oRND:
5049 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
c19d1205
ZW
5050 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
5051 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5052 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5053 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5054 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5055 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5056 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5057 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5058 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5059 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5060 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5061 case OP_oRNQ:
5062 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5063 case OP_oRNDQ:
5064 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5065
5066 /* Neon scalar. Using an element size of 8 means that some invalid
5067 scalars are accepted here, so deal with those in later code. */
5068 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5069
5070 /* WARNING: We can expand to two operands here. This has the potential
5071 to totally confuse the backtracking mechanism! It will be OK at
5072 least as long as we don't try to use optional args as well,
5073 though. */
5074 case OP_NILO:
5075 {
5076 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5077 i++;
5078 skip_past_comma (&str);
5079 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5080 break;
5081 one_reg_only:
5082 /* Optional register operand was omitted. Unfortunately, it's in
5083 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5084 here (this is a bit grotty). */
5085 inst.operands[i] = inst.operands[i-1];
5086 inst.operands[i-1].present = 0;
5087 break;
5088 try_imm:
5089 /* Immediate gets verified properly later, so accept any now. */
5090 po_imm_or_fail (INT_MIN, INT_MAX, TRUE);
5091 }
5092 break;
5093
5094 case OP_RNDQ_I0:
5095 {
5096 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5097 break;
5098 try_imm0:
5099 po_imm_or_fail (0, 0, TRUE);
5100 }
5101 break;
5102
5103 case OP_RR_RNSC:
5104 {
5105 po_scalar_or_goto (8, try_rr);
5106 break;
5107 try_rr:
5108 po_reg_or_fail (REG_TYPE_RN);
5109 }
5110 break;
5111
5112 case OP_RNDQ_RNSC:
5113 {
5114 po_scalar_or_goto (8, try_ndq);
5115 break;
5116 try_ndq:
5117 po_reg_or_fail (REG_TYPE_NDQ);
5118 }
5119 break;
5120
5121 case OP_RND_RNSC:
5122 {
5123 po_scalar_or_goto (8, try_vfd);
5124 break;
5125 try_vfd:
5126 po_reg_or_fail (REG_TYPE_VFD);
5127 }
5128 break;
5129
5130 case OP_VMOV:
5131 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5132 not careful then bad things might happen. */
5133 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5134 break;
5135
5136 case OP_RNDQ_IMVNb:
5137 {
5138 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5139 break;
5140 try_mvnimm:
5141 /* There's a possibility of getting a 64-bit immediate here, so
5142 we need special handling. */
5143 if (parse_big_immediate (&str, i) == FAIL)
5144 {
5145 inst.error = _("immediate value is out of range");
5146 goto failure;
5147 }
5148 }
5149 break;
5150
5151 case OP_RNDQ_I63b:
5152 {
5153 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5154 break;
5155 try_shimm:
5156 po_imm_or_fail (0, 63, TRUE);
5157 }
5158 break;
c19d1205
ZW
5159
5160 case OP_RRnpcb:
5161 po_char_or_fail ('[');
5162 po_reg_or_fail (REG_TYPE_RN);
5163 po_char_or_fail (']');
5164 break;
a737bd4d 5165
c19d1205
ZW
5166 case OP_RRw:
5167 po_reg_or_fail (REG_TYPE_RN);
5168 if (skip_past_char (&str, '!') == SUCCESS)
5169 inst.operands[i].writeback = 1;
5170 break;
5171
5172 /* Immediates */
5173 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5174 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5175 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5176 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5177 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5178 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5179 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5180 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5181 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5182 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5183 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205
ZW
5184 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5185 case OP_Iffff: po_imm_or_fail ( 0, 0xffff, FALSE); break;
5186
5187 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5188 case OP_oI7b:
5189 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5190 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5191 case OP_oI31b:
5192 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5193 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5194 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5195
5196 /* Immediate variants */
5197 case OP_oI255c:
5198 po_char_or_fail ('{');
5199 po_imm_or_fail (0, 255, TRUE);
5200 po_char_or_fail ('}');
5201 break;
5202
5203 case OP_I31w:
5204 /* The expression parser chokes on a trailing !, so we have
5205 to find it first and zap it. */
5206 {
5207 char *s = str;
5208 while (*s && *s != ',')
5209 s++;
5210 if (s[-1] == '!')
5211 {
5212 s[-1] = '\0';
5213 inst.operands[i].writeback = 1;
5214 }
5215 po_imm_or_fail (0, 31, TRUE);
5216 if (str == s - 1)
5217 str = s;
5218 }
5219 break;
5220
5221 /* Expressions */
5222 case OP_EXPi: EXPi:
5223 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5224 GE_OPT_PREFIX));
5225 break;
5226
5227 case OP_EXP:
5228 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5229 GE_NO_PREFIX));
5230 break;
5231
5232 case OP_EXPr: EXPr:
5233 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5234 GE_NO_PREFIX));
5235 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5236 {
c19d1205
ZW
5237 val = parse_reloc (&str);
5238 if (val == -1)
5239 {
5240 inst.error = _("unrecognized relocation suffix");
5241 goto failure;
5242 }
5243 else if (val != BFD_RELOC_UNUSED)
5244 {
5245 inst.operands[i].imm = val;
5246 inst.operands[i].hasreloc = 1;
5247 }
a737bd4d 5248 }
c19d1205 5249 break;
a737bd4d 5250
c19d1205
ZW
5251 /* Register or expression */
5252 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5253 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5254
c19d1205
ZW
5255 /* Register or immediate */
5256 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5257 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5258
c19d1205
ZW
5259 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5260 IF:
5261 if (!is_immediate_prefix (*str))
5262 goto bad_args;
5263 str++;
5264 val = parse_fpa_immediate (&str);
5265 if (val == FAIL)
5266 goto failure;
5267 /* FPA immediates are encoded as registers 8-15.
5268 parse_fpa_immediate has already applied the offset. */
5269 inst.operands[i].reg = val;
5270 inst.operands[i].isreg = 1;
5271 break;
09d92015 5272
c19d1205
ZW
5273 /* Two kinds of register */
5274 case OP_RIWR_RIWC:
5275 {
5276 struct reg_entry *rege = arm_reg_parse_multi (&str);
5277 if (rege->type != REG_TYPE_MMXWR
5278 && rege->type != REG_TYPE_MMXWC
5279 && rege->type != REG_TYPE_MMXWCG)
5280 {
5281 inst.error = _("iWMMXt data or control register expected");
5282 goto failure;
5283 }
5284 inst.operands[i].reg = rege->number;
5285 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5286 }
5287 break;
09d92015 5288
c19d1205
ZW
5289 /* Misc */
5290 case OP_CPSF: val = parse_cps_flags (&str); break;
5291 case OP_ENDI: val = parse_endian_specifier (&str); break;
5292 case OP_oROR: val = parse_ror (&str); break;
5293 case OP_PSR: val = parse_psr (&str); break;
5294 case OP_COND: val = parse_cond (&str); break;
62b3e311 5295 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5296
92e90b6e
PB
5297 case OP_TB:
5298 po_misc_or_fail (parse_tb (&str));
5299 break;
5300
c19d1205
ZW
5301 /* Register lists */
5302 case OP_REGLST:
5303 val = parse_reg_list (&str);
5304 if (*str == '^')
5305 {
5306 inst.operands[1].writeback = 1;
5307 str++;
5308 }
5309 break;
09d92015 5310
c19d1205 5311 case OP_VRSLST:
5287ad62 5312 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5313 break;
09d92015 5314
c19d1205 5315 case OP_VRDLST:
5287ad62 5316 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5317 break;
a737bd4d 5318
5287ad62
JB
5319 case OP_NRDLST:
5320 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5321 REGLIST_NEON_D);
5322 break;
5323
5324 case OP_NSTRLST:
dcbf9037
JB
5325 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5326 &inst.operands[i].vectype);
5287ad62
JB
5327 break;
5328
c19d1205
ZW
5329 /* Addressing modes */
5330 case OP_ADDR:
5331 po_misc_or_fail (parse_address (&str, i));
5332 break;
09d92015 5333
c19d1205
ZW
5334 case OP_SH:
5335 po_misc_or_fail (parse_shifter_operand (&str, i));
5336 break;
09d92015 5337
c19d1205
ZW
5338 case OP_oSHll:
5339 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5340 break;
09d92015 5341
c19d1205
ZW
5342 case OP_oSHar:
5343 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5344 break;
09d92015 5345
c19d1205
ZW
5346 case OP_oSHllar:
5347 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
5348 break;
09d92015 5349
c19d1205
ZW
5350 default:
5351 as_fatal ("unhandled operand code %d", upat[i]);
5352 }
09d92015 5353
c19d1205
ZW
5354 /* Various value-based sanity checks and shared operations. We
5355 do not signal immediate failures for the register constraints;
5356 this allows a syntax error to take precedence. */
5357 switch (upat[i])
5358 {
5359 case OP_oRRnpc:
5360 case OP_RRnpc:
5361 case OP_RRnpcb:
5362 case OP_RRw:
5363 case OP_RRnpc_I0:
5364 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
5365 inst.error = BAD_PC;
5366 break;
09d92015 5367
c19d1205
ZW
5368 case OP_CPSF:
5369 case OP_ENDI:
5370 case OP_oROR:
5371 case OP_PSR:
5372 case OP_COND:
62b3e311 5373 case OP_oBARRIER:
c19d1205
ZW
5374 case OP_REGLST:
5375 case OP_VRSLST:
5376 case OP_VRDLST:
5287ad62
JB
5377 case OP_NRDLST:
5378 case OP_NSTRLST:
c19d1205
ZW
5379 if (val == FAIL)
5380 goto failure;
5381 inst.operands[i].imm = val;
5382 break;
a737bd4d 5383
c19d1205
ZW
5384 default:
5385 break;
5386 }
09d92015 5387
c19d1205
ZW
5388 /* If we get here, this operand was successfully parsed. */
5389 inst.operands[i].present = 1;
5390 continue;
09d92015 5391
c19d1205 5392 bad_args:
09d92015 5393 inst.error = BAD_ARGS;
c19d1205
ZW
5394
5395 failure:
5396 if (!backtrack_pos)
d252fdde
PB
5397 {
5398 /* The parse routine should already have set inst.error, but set a
5399 defaut here just in case. */
5400 if (!inst.error)
5401 inst.error = _("syntax error");
5402 return FAIL;
5403 }
c19d1205
ZW
5404
5405 /* Do not backtrack over a trailing optional argument that
5406 absorbed some text. We will only fail again, with the
5407 'garbage following instruction' error message, which is
5408 probably less helpful than the current one. */
5409 if (backtrack_index == i && backtrack_pos != str
5410 && upat[i+1] == OP_stop)
d252fdde
PB
5411 {
5412 if (!inst.error)
5413 inst.error = _("syntax error");
5414 return FAIL;
5415 }
c19d1205
ZW
5416
5417 /* Try again, skipping the optional argument at backtrack_pos. */
5418 str = backtrack_pos;
5419 inst.error = backtrack_error;
5420 inst.operands[backtrack_index].present = 0;
5421 i = backtrack_index;
5422 backtrack_pos = 0;
09d92015 5423 }
09d92015 5424
c19d1205
ZW
5425 /* Check that we have parsed all the arguments. */
5426 if (*str != '\0' && !inst.error)
5427 inst.error = _("garbage following instruction");
09d92015 5428
c19d1205 5429 return inst.error ? FAIL : SUCCESS;
09d92015
MM
5430}
5431
c19d1205
ZW
5432#undef po_char_or_fail
5433#undef po_reg_or_fail
5434#undef po_reg_or_goto
5435#undef po_imm_or_fail
5287ad62 5436#undef po_scalar_or_fail
c19d1205
ZW
5437\f
5438/* Shorthand macro for instruction encoding functions issuing errors. */
5439#define constraint(expr, err) do { \
5440 if (expr) \
5441 { \
5442 inst.error = err; \
5443 return; \
5444 } \
5445} while (0)
5446
5447/* Functions for operand encoding. ARM, then Thumb. */
5448
5449#define rotate_left(v, n) (v << n | v >> (32 - n))
5450
5451/* If VAL can be encoded in the immediate field of an ARM instruction,
5452 return the encoded form. Otherwise, return FAIL. */
5453
5454static unsigned int
5455encode_arm_immediate (unsigned int val)
09d92015 5456{
c19d1205
ZW
5457 unsigned int a, i;
5458
5459 for (i = 0; i < 32; i += 2)
5460 if ((a = rotate_left (val, i)) <= 0xff)
5461 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
5462
5463 return FAIL;
09d92015
MM
5464}
5465
c19d1205
ZW
5466/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
5467 return the encoded form. Otherwise, return FAIL. */
5468static unsigned int
5469encode_thumb32_immediate (unsigned int val)
09d92015 5470{
c19d1205 5471 unsigned int a, i;
09d92015 5472
9c3c69f2 5473 if (val <= 0xff)
c19d1205 5474 return val;
a737bd4d 5475
9c3c69f2 5476 for (i = 1; i <= 24; i++)
09d92015 5477 {
9c3c69f2
PB
5478 a = val >> i;
5479 if ((val & ~(0xff << i)) == 0)
5480 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 5481 }
a737bd4d 5482
c19d1205
ZW
5483 a = val & 0xff;
5484 if (val == ((a << 16) | a))
5485 return 0x100 | a;
5486 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
5487 return 0x300 | a;
09d92015 5488
c19d1205
ZW
5489 a = val & 0xff00;
5490 if (val == ((a << 16) | a))
5491 return 0x200 | (a >> 8);
a737bd4d 5492
c19d1205 5493 return FAIL;
09d92015 5494}
5287ad62 5495/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
5496
5497static void
5287ad62
JB
5498encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
5499{
5500 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
5501 && reg > 15)
5502 {
5503 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
5504 {
5505 if (thumb_mode)
5506 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
5507 fpu_vfp_ext_v3);
5508 else
5509 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
5510 fpu_vfp_ext_v3);
5511 }
5512 else
5513 {
dcbf9037 5514 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
5515 return;
5516 }
5517 }
5518
c19d1205 5519 switch (pos)
09d92015 5520 {
c19d1205
ZW
5521 case VFP_REG_Sd:
5522 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
5523 break;
5524
5525 case VFP_REG_Sn:
5526 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
5527 break;
5528
5529 case VFP_REG_Sm:
5530 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
5531 break;
5532
5287ad62
JB
5533 case VFP_REG_Dd:
5534 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
5535 break;
5536
5537 case VFP_REG_Dn:
5538 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
5539 break;
5540
5541 case VFP_REG_Dm:
5542 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
5543 break;
5544
c19d1205
ZW
5545 default:
5546 abort ();
09d92015 5547 }
09d92015
MM
5548}
5549
c19d1205 5550/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 5551 if any, is handled by md_apply_fix. */
09d92015 5552static void
c19d1205 5553encode_arm_shift (int i)
09d92015 5554{
c19d1205
ZW
5555 if (inst.operands[i].shift_kind == SHIFT_RRX)
5556 inst.instruction |= SHIFT_ROR << 5;
5557 else
09d92015 5558 {
c19d1205
ZW
5559 inst.instruction |= inst.operands[i].shift_kind << 5;
5560 if (inst.operands[i].immisreg)
5561 {
5562 inst.instruction |= SHIFT_BY_REG;
5563 inst.instruction |= inst.operands[i].imm << 8;
5564 }
5565 else
5566 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 5567 }
c19d1205 5568}
09d92015 5569
c19d1205
ZW
5570static void
5571encode_arm_shifter_operand (int i)
5572{
5573 if (inst.operands[i].isreg)
09d92015 5574 {
c19d1205
ZW
5575 inst.instruction |= inst.operands[i].reg;
5576 encode_arm_shift (i);
09d92015 5577 }
c19d1205
ZW
5578 else
5579 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
5580}
5581
c19d1205 5582/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 5583static void
c19d1205 5584encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 5585{
c19d1205
ZW
5586 assert (inst.operands[i].isreg);
5587 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 5588
c19d1205 5589 if (inst.operands[i].preind)
09d92015 5590 {
c19d1205
ZW
5591 if (is_t)
5592 {
5593 inst.error = _("instruction does not accept preindexed addressing");
5594 return;
5595 }
5596 inst.instruction |= PRE_INDEX;
5597 if (inst.operands[i].writeback)
5598 inst.instruction |= WRITE_BACK;
09d92015 5599
c19d1205
ZW
5600 }
5601 else if (inst.operands[i].postind)
5602 {
5603 assert (inst.operands[i].writeback);
5604 if (is_t)
5605 inst.instruction |= WRITE_BACK;
5606 }
5607 else /* unindexed - only for coprocessor */
09d92015 5608 {
c19d1205 5609 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
5610 return;
5611 }
5612
c19d1205
ZW
5613 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
5614 && (((inst.instruction & 0x000f0000) >> 16)
5615 == ((inst.instruction & 0x0000f000) >> 12)))
5616 as_warn ((inst.instruction & LOAD_BIT)
5617 ? _("destination register same as write-back base")
5618 : _("source register same as write-back base"));
09d92015
MM
5619}
5620
c19d1205
ZW
5621/* inst.operands[i] was set up by parse_address. Encode it into an
5622 ARM-format mode 2 load or store instruction. If is_t is true,
5623 reject forms that cannot be used with a T instruction (i.e. not
5624 post-indexed). */
a737bd4d 5625static void
c19d1205 5626encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 5627{
c19d1205 5628 encode_arm_addr_mode_common (i, is_t);
a737bd4d 5629
c19d1205 5630 if (inst.operands[i].immisreg)
09d92015 5631 {
c19d1205
ZW
5632 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
5633 inst.instruction |= inst.operands[i].imm;
5634 if (!inst.operands[i].negative)
5635 inst.instruction |= INDEX_UP;
5636 if (inst.operands[i].shifted)
5637 {
5638 if (inst.operands[i].shift_kind == SHIFT_RRX)
5639 inst.instruction |= SHIFT_ROR << 5;
5640 else
5641 {
5642 inst.instruction |= inst.operands[i].shift_kind << 5;
5643 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
5644 }
5645 }
09d92015 5646 }
c19d1205 5647 else /* immediate offset in inst.reloc */
09d92015 5648 {
c19d1205
ZW
5649 if (inst.reloc.type == BFD_RELOC_UNUSED)
5650 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 5651 }
09d92015
MM
5652}
5653
c19d1205
ZW
5654/* inst.operands[i] was set up by parse_address. Encode it into an
5655 ARM-format mode 3 load or store instruction. Reject forms that
5656 cannot be used with such instructions. If is_t is true, reject
5657 forms that cannot be used with a T instruction (i.e. not
5658 post-indexed). */
5659static void
5660encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 5661{
c19d1205 5662 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 5663 {
c19d1205
ZW
5664 inst.error = _("instruction does not accept scaled register index");
5665 return;
09d92015 5666 }
a737bd4d 5667
c19d1205 5668 encode_arm_addr_mode_common (i, is_t);
a737bd4d 5669
c19d1205
ZW
5670 if (inst.operands[i].immisreg)
5671 {
5672 inst.instruction |= inst.operands[i].imm;
5673 if (!inst.operands[i].negative)
5674 inst.instruction |= INDEX_UP;
5675 }
5676 else /* immediate offset in inst.reloc */
5677 {
5678 inst.instruction |= HWOFFSET_IMM;
5679 if (inst.reloc.type == BFD_RELOC_UNUSED)
5680 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 5681 }
a737bd4d
NC
5682}
5683
c19d1205
ZW
5684/* inst.operands[i] was set up by parse_address. Encode it into an
5685 ARM-format instruction. Reject all forms which cannot be encoded
5686 into a coprocessor load/store instruction. If wb_ok is false,
5687 reject use of writeback; if unind_ok is false, reject use of
5688 unindexed addressing. If reloc_override is not 0, use it instead
5689 of BFD_ARM_CP_OFF_IMM. */
09d92015 5690
c19d1205
ZW
5691static int
5692encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 5693{
c19d1205 5694 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 5695
c19d1205 5696 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 5697
c19d1205 5698 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 5699 {
c19d1205
ZW
5700 assert (!inst.operands[i].writeback);
5701 if (!unind_ok)
5702 {
5703 inst.error = _("instruction does not support unindexed addressing");
5704 return FAIL;
5705 }
5706 inst.instruction |= inst.operands[i].imm;
5707 inst.instruction |= INDEX_UP;
5708 return SUCCESS;
09d92015 5709 }
a737bd4d 5710
c19d1205
ZW
5711 if (inst.operands[i].preind)
5712 inst.instruction |= PRE_INDEX;
a737bd4d 5713
c19d1205 5714 if (inst.operands[i].writeback)
09d92015 5715 {
c19d1205
ZW
5716 if (inst.operands[i].reg == REG_PC)
5717 {
5718 inst.error = _("pc may not be used with write-back");
5719 return FAIL;
5720 }
5721 if (!wb_ok)
5722 {
5723 inst.error = _("instruction does not support writeback");
5724 return FAIL;
5725 }
5726 inst.instruction |= WRITE_BACK;
09d92015 5727 }
a737bd4d 5728
c19d1205
ZW
5729 if (reloc_override)
5730 inst.reloc.type = reloc_override;
8f06b2d8
PB
5731 else if (thumb_mode)
5732 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
09d92015 5733 else
c19d1205 5734 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205
ZW
5735 return SUCCESS;
5736}
a737bd4d 5737
c19d1205
ZW
5738/* inst.reloc.exp describes an "=expr" load pseudo-operation.
5739 Determine whether it can be performed with a move instruction; if
5740 it can, convert inst.instruction to that move instruction and
5741 return 1; if it can't, convert inst.instruction to a literal-pool
5742 load and return 0. If this is not a valid thing to do in the
5743 current context, set inst.error and return 1.
a737bd4d 5744
c19d1205
ZW
5745 inst.operands[i] describes the destination register. */
5746
5747static int
5748move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
5749{
53365c0d
PB
5750 unsigned long tbit;
5751
5752 if (thumb_p)
5753 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
5754 else
5755 tbit = LOAD_BIT;
5756
5757 if ((inst.instruction & tbit) == 0)
09d92015 5758 {
c19d1205
ZW
5759 inst.error = _("invalid pseudo operation");
5760 return 1;
09d92015 5761 }
c19d1205 5762 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
5763 {
5764 inst.error = _("constant expression expected");
c19d1205 5765 return 1;
09d92015 5766 }
c19d1205 5767 if (inst.reloc.exp.X_op == O_constant)
09d92015 5768 {
c19d1205
ZW
5769 if (thumb_p)
5770 {
53365c0d 5771 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
5772 {
5773 /* This can be done with a mov(1) instruction. */
5774 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
5775 inst.instruction |= inst.reloc.exp.X_add_number;
5776 return 1;
5777 }
5778 }
5779 else
5780 {
5781 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
5782 if (value != FAIL)
5783 {
5784 /* This can be done with a mov instruction. */
5785 inst.instruction &= LITERAL_MASK;
5786 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
5787 inst.instruction |= value & 0xfff;
5788 return 1;
5789 }
09d92015 5790
c19d1205
ZW
5791 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
5792 if (value != FAIL)
5793 {
5794 /* This can be done with a mvn instruction. */
5795 inst.instruction &= LITERAL_MASK;
5796 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
5797 inst.instruction |= value & 0xfff;
5798 return 1;
5799 }
5800 }
09d92015
MM
5801 }
5802
c19d1205
ZW
5803 if (add_to_lit_pool () == FAIL)
5804 {
5805 inst.error = _("literal pool insertion failed");
5806 return 1;
5807 }
5808 inst.operands[1].reg = REG_PC;
5809 inst.operands[1].isreg = 1;
5810 inst.operands[1].preind = 1;
5811 inst.reloc.pc_rel = 1;
5812 inst.reloc.type = (thumb_p
5813 ? BFD_RELOC_ARM_THUMB_OFFSET
5814 : (mode_3
5815 ? BFD_RELOC_ARM_HWLITERAL
5816 : BFD_RELOC_ARM_LITERAL));
5817 return 0;
09d92015
MM
5818}
5819
c19d1205
ZW
5820/* Functions for instruction encoding, sorted by subarchitecture.
5821 First some generics; their names are taken from the conventional
5822 bit positions for register arguments in ARM format instructions. */
09d92015 5823
a737bd4d 5824static void
c19d1205 5825do_noargs (void)
09d92015 5826{
c19d1205 5827}
a737bd4d 5828
c19d1205
ZW
5829static void
5830do_rd (void)
5831{
5832 inst.instruction |= inst.operands[0].reg << 12;
5833}
a737bd4d 5834
c19d1205
ZW
5835static void
5836do_rd_rm (void)
5837{
5838 inst.instruction |= inst.operands[0].reg << 12;
5839 inst.instruction |= inst.operands[1].reg;
5840}
09d92015 5841
c19d1205
ZW
5842static void
5843do_rd_rn (void)
5844{
5845 inst.instruction |= inst.operands[0].reg << 12;
5846 inst.instruction |= inst.operands[1].reg << 16;
5847}
a737bd4d 5848
c19d1205
ZW
5849static void
5850do_rn_rd (void)
5851{
5852 inst.instruction |= inst.operands[0].reg << 16;
5853 inst.instruction |= inst.operands[1].reg << 12;
5854}
09d92015 5855
c19d1205
ZW
5856static void
5857do_rd_rm_rn (void)
5858{
9a64e435 5859 unsigned Rn = inst.operands[2].reg;
708587a4 5860 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
5861 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
5862 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
5863 _("Rn must not overlap other operands"));
c19d1205
ZW
5864 inst.instruction |= inst.operands[0].reg << 12;
5865 inst.instruction |= inst.operands[1].reg;
9a64e435 5866 inst.instruction |= Rn << 16;
c19d1205 5867}
09d92015 5868
c19d1205
ZW
5869static void
5870do_rd_rn_rm (void)
5871{
5872 inst.instruction |= inst.operands[0].reg << 12;
5873 inst.instruction |= inst.operands[1].reg << 16;
5874 inst.instruction |= inst.operands[2].reg;
5875}
a737bd4d 5876
c19d1205
ZW
5877static void
5878do_rm_rd_rn (void)
5879{
5880 inst.instruction |= inst.operands[0].reg;
5881 inst.instruction |= inst.operands[1].reg << 12;
5882 inst.instruction |= inst.operands[2].reg << 16;
5883}
09d92015 5884
c19d1205
ZW
5885static void
5886do_imm0 (void)
5887{
5888 inst.instruction |= inst.operands[0].imm;
5889}
09d92015 5890
c19d1205
ZW
5891static void
5892do_rd_cpaddr (void)
5893{
5894 inst.instruction |= inst.operands[0].reg << 12;
5895 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 5896}
a737bd4d 5897
c19d1205
ZW
5898/* ARM instructions, in alphabetical order by function name (except
5899 that wrapper functions appear immediately after the function they
5900 wrap). */
09d92015 5901
c19d1205
ZW
5902/* This is a pseudo-op of the form "adr rd, label" to be converted
5903 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
5904
5905static void
c19d1205 5906do_adr (void)
09d92015 5907{
c19d1205 5908 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 5909
c19d1205
ZW
5910 /* Frag hacking will turn this into a sub instruction if the offset turns
5911 out to be negative. */
5912 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 5913 inst.reloc.pc_rel = 1;
2fc8bdac 5914 inst.reloc.exp.X_add_number -= 8;
c19d1205 5915}
b99bd4ef 5916
c19d1205
ZW
5917/* This is a pseudo-op of the form "adrl rd, label" to be converted
5918 into a relative address of the form:
5919 add rd, pc, #low(label-.-8)"
5920 add rd, rd, #high(label-.-8)" */
b99bd4ef 5921
c19d1205
ZW
5922static void
5923do_adrl (void)
5924{
5925 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 5926
c19d1205
ZW
5927 /* Frag hacking will turn this into a sub instruction if the offset turns
5928 out to be negative. */
5929 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
5930 inst.reloc.pc_rel = 1;
5931 inst.size = INSN_SIZE * 2;
2fc8bdac 5932 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
5933}
5934
b99bd4ef 5935static void
c19d1205 5936do_arit (void)
b99bd4ef 5937{
c19d1205
ZW
5938 if (!inst.operands[1].present)
5939 inst.operands[1].reg = inst.operands[0].reg;
5940 inst.instruction |= inst.operands[0].reg << 12;
5941 inst.instruction |= inst.operands[1].reg << 16;
5942 encode_arm_shifter_operand (2);
5943}
b99bd4ef 5944
62b3e311
PB
5945static void
5946do_barrier (void)
5947{
5948 if (inst.operands[0].present)
5949 {
5950 constraint ((inst.instruction & 0xf0) != 0x40
5951 && inst.operands[0].imm != 0xf,
5952 "bad barrier type");
5953 inst.instruction |= inst.operands[0].imm;
5954 }
5955 else
5956 inst.instruction |= 0xf;
5957}
5958
c19d1205
ZW
5959static void
5960do_bfc (void)
5961{
5962 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
5963 constraint (msb > 32, _("bit-field extends past end of register"));
5964 /* The instruction encoding stores the LSB and MSB,
5965 not the LSB and width. */
5966 inst.instruction |= inst.operands[0].reg << 12;
5967 inst.instruction |= inst.operands[1].imm << 7;
5968 inst.instruction |= (msb - 1) << 16;
5969}
b99bd4ef 5970
c19d1205
ZW
5971static void
5972do_bfi (void)
5973{
5974 unsigned int msb;
b99bd4ef 5975
c19d1205
ZW
5976 /* #0 in second position is alternative syntax for bfc, which is
5977 the same instruction but with REG_PC in the Rm field. */
5978 if (!inst.operands[1].isreg)
5979 inst.operands[1].reg = REG_PC;
b99bd4ef 5980
c19d1205
ZW
5981 msb = inst.operands[2].imm + inst.operands[3].imm;
5982 constraint (msb > 32, _("bit-field extends past end of register"));
5983 /* The instruction encoding stores the LSB and MSB,
5984 not the LSB and width. */
5985 inst.instruction |= inst.operands[0].reg << 12;
5986 inst.instruction |= inst.operands[1].reg;
5987 inst.instruction |= inst.operands[2].imm << 7;
5988 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
5989}
5990
b99bd4ef 5991static void
c19d1205 5992do_bfx (void)
b99bd4ef 5993{
c19d1205
ZW
5994 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
5995 _("bit-field extends past end of register"));
5996 inst.instruction |= inst.operands[0].reg << 12;
5997 inst.instruction |= inst.operands[1].reg;
5998 inst.instruction |= inst.operands[2].imm << 7;
5999 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6000}
09d92015 6001
c19d1205
ZW
6002/* ARM V5 breakpoint instruction (argument parse)
6003 BKPT <16 bit unsigned immediate>
6004 Instruction is not conditional.
6005 The bit pattern given in insns[] has the COND_ALWAYS condition,
6006 and it is an error if the caller tried to override that. */
b99bd4ef 6007
c19d1205
ZW
6008static void
6009do_bkpt (void)
6010{
6011 /* Top 12 of 16 bits to bits 19:8. */
6012 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6013
c19d1205
ZW
6014 /* Bottom 4 of 16 bits to bits 3:0. */
6015 inst.instruction |= inst.operands[0].imm & 0xf;
6016}
09d92015 6017
c19d1205
ZW
6018static void
6019encode_branch (int default_reloc)
6020{
6021 if (inst.operands[0].hasreloc)
6022 {
6023 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6024 _("the only suffix valid here is '(plt)'"));
6025 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6026 }
b99bd4ef 6027 else
c19d1205
ZW
6028 {
6029 inst.reloc.type = default_reloc;
c19d1205 6030 }
2fc8bdac 6031 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6032}
6033
b99bd4ef 6034static void
c19d1205 6035do_branch (void)
b99bd4ef 6036{
39b41c9c
PB
6037#ifdef OBJ_ELF
6038 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6039 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6040 else
6041#endif
6042 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6043}
6044
6045static void
6046do_bl (void)
6047{
6048#ifdef OBJ_ELF
6049 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6050 {
6051 if (inst.cond == COND_ALWAYS)
6052 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6053 else
6054 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6055 }
6056 else
6057#endif
6058 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6059}
b99bd4ef 6060
c19d1205
ZW
6061/* ARM V5 branch-link-exchange instruction (argument parse)
6062 BLX <target_addr> ie BLX(1)
6063 BLX{<condition>} <Rm> ie BLX(2)
6064 Unfortunately, there are two different opcodes for this mnemonic.
6065 So, the insns[].value is not used, and the code here zaps values
6066 into inst.instruction.
6067 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6068
c19d1205
ZW
6069static void
6070do_blx (void)
6071{
6072 if (inst.operands[0].isreg)
b99bd4ef 6073 {
c19d1205
ZW
6074 /* Arg is a register; the opcode provided by insns[] is correct.
6075 It is not illegal to do "blx pc", just useless. */
6076 if (inst.operands[0].reg == REG_PC)
6077 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6078
c19d1205
ZW
6079 inst.instruction |= inst.operands[0].reg;
6080 }
6081 else
b99bd4ef 6082 {
c19d1205
ZW
6083 /* Arg is an address; this instruction cannot be executed
6084 conditionally, and the opcode must be adjusted. */
6085 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6086 inst.instruction = 0xfa000000;
39b41c9c
PB
6087#ifdef OBJ_ELF
6088 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6089 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6090 else
6091#endif
6092 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6093 }
c19d1205
ZW
6094}
6095
6096static void
6097do_bx (void)
6098{
6099 if (inst.operands[0].reg == REG_PC)
6100 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6101
c19d1205 6102 inst.instruction |= inst.operands[0].reg;
09d92015
MM
6103}
6104
c19d1205
ZW
6105
6106/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6107
6108static void
c19d1205 6109do_bxj (void)
a737bd4d 6110{
c19d1205
ZW
6111 if (inst.operands[0].reg == REG_PC)
6112 as_tsktsk (_("use of r15 in bxj is not really useful"));
6113
6114 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6115}
6116
c19d1205
ZW
6117/* Co-processor data operation:
6118 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6119 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6120static void
6121do_cdp (void)
6122{
6123 inst.instruction |= inst.operands[0].reg << 8;
6124 inst.instruction |= inst.operands[1].imm << 20;
6125 inst.instruction |= inst.operands[2].reg << 12;
6126 inst.instruction |= inst.operands[3].reg << 16;
6127 inst.instruction |= inst.operands[4].reg;
6128 inst.instruction |= inst.operands[5].imm << 5;
6129}
a737bd4d
NC
6130
6131static void
c19d1205 6132do_cmp (void)
a737bd4d 6133{
c19d1205
ZW
6134 inst.instruction |= inst.operands[0].reg << 16;
6135 encode_arm_shifter_operand (1);
a737bd4d
NC
6136}
6137
c19d1205
ZW
6138/* Transfer between coprocessor and ARM registers.
6139 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6140 MRC2
6141 MCR{cond}
6142 MCR2
6143
6144 No special properties. */
09d92015
MM
6145
6146static void
c19d1205 6147do_co_reg (void)
09d92015 6148{
c19d1205
ZW
6149 inst.instruction |= inst.operands[0].reg << 8;
6150 inst.instruction |= inst.operands[1].imm << 21;
6151 inst.instruction |= inst.operands[2].reg << 12;
6152 inst.instruction |= inst.operands[3].reg << 16;
6153 inst.instruction |= inst.operands[4].reg;
6154 inst.instruction |= inst.operands[5].imm << 5;
6155}
09d92015 6156
c19d1205
ZW
6157/* Transfer between coprocessor register and pair of ARM registers.
6158 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6159 MCRR2
6160 MRRC{cond}
6161 MRRC2
b99bd4ef 6162
c19d1205 6163 Two XScale instructions are special cases of these:
09d92015 6164
c19d1205
ZW
6165 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6166 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6167
c19d1205 6168 Result unpredicatable if Rd or Rn is R15. */
a737bd4d 6169
c19d1205
ZW
6170static void
6171do_co_reg2c (void)
6172{
6173 inst.instruction |= inst.operands[0].reg << 8;
6174 inst.instruction |= inst.operands[1].imm << 4;
6175 inst.instruction |= inst.operands[2].reg << 12;
6176 inst.instruction |= inst.operands[3].reg << 16;
6177 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6178}
6179
c19d1205
ZW
6180static void
6181do_cpsi (void)
6182{
6183 inst.instruction |= inst.operands[0].imm << 6;
6184 inst.instruction |= inst.operands[1].imm;
6185}
b99bd4ef 6186
62b3e311
PB
6187static void
6188do_dbg (void)
6189{
6190 inst.instruction |= inst.operands[0].imm;
6191}
6192
b99bd4ef 6193static void
c19d1205 6194do_it (void)
b99bd4ef 6195{
c19d1205
ZW
6196 /* There is no IT instruction in ARM mode. We
6197 process it but do not generate code for it. */
6198 inst.size = 0;
09d92015 6199}
b99bd4ef 6200
09d92015 6201static void
c19d1205 6202do_ldmstm (void)
ea6ef066 6203{
c19d1205
ZW
6204 int base_reg = inst.operands[0].reg;
6205 int range = inst.operands[1].imm;
ea6ef066 6206
c19d1205
ZW
6207 inst.instruction |= base_reg << 16;
6208 inst.instruction |= range;
ea6ef066 6209
c19d1205
ZW
6210 if (inst.operands[1].writeback)
6211 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6212
c19d1205 6213 if (inst.operands[0].writeback)
ea6ef066 6214 {
c19d1205
ZW
6215 inst.instruction |= WRITE_BACK;
6216 /* Check for unpredictable uses of writeback. */
6217 if (inst.instruction & LOAD_BIT)
09d92015 6218 {
c19d1205
ZW
6219 /* Not allowed in LDM type 2. */
6220 if ((inst.instruction & LDM_TYPE_2_OR_3)
6221 && ((range & (1 << REG_PC)) == 0))
6222 as_warn (_("writeback of base register is UNPREDICTABLE"));
6223 /* Only allowed if base reg not in list for other types. */
6224 else if (range & (1 << base_reg))
6225 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6226 }
6227 else /* STM. */
6228 {
6229 /* Not allowed for type 2. */
6230 if (inst.instruction & LDM_TYPE_2_OR_3)
6231 as_warn (_("writeback of base register is UNPREDICTABLE"));
6232 /* Only allowed if base reg not in list, or first in list. */
6233 else if ((range & (1 << base_reg))
6234 && (range & ((1 << base_reg) - 1)))
6235 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 6236 }
ea6ef066 6237 }
a737bd4d
NC
6238}
6239
c19d1205
ZW
6240/* ARMv5TE load-consecutive (argument parse)
6241 Mode is like LDRH.
6242
6243 LDRccD R, mode
6244 STRccD R, mode. */
6245
a737bd4d 6246static void
c19d1205 6247do_ldrd (void)
a737bd4d 6248{
c19d1205
ZW
6249 constraint (inst.operands[0].reg % 2 != 0,
6250 _("first destination register must be even"));
6251 constraint (inst.operands[1].present
6252 && inst.operands[1].reg != inst.operands[0].reg + 1,
6253 _("can only load two consecutive registers"));
6254 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6255 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 6256
c19d1205
ZW
6257 if (!inst.operands[1].present)
6258 inst.operands[1].reg = inst.operands[0].reg + 1;
6259
6260 if (inst.instruction & LOAD_BIT)
a737bd4d 6261 {
c19d1205
ZW
6262 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6263 register and the first register written; we have to diagnose
6264 overlap between the base and the second register written here. */
ea6ef066 6265
c19d1205
ZW
6266 if (inst.operands[2].reg == inst.operands[1].reg
6267 && (inst.operands[2].writeback || inst.operands[2].postind))
6268 as_warn (_("base register written back, and overlaps "
6269 "second destination register"));
b05fe5cf 6270
c19d1205
ZW
6271 /* For an index-register load, the index register must not overlap the
6272 destination (even if not write-back). */
6273 else if (inst.operands[2].immisreg
ca3f61f7
NC
6274 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6275 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 6276 as_warn (_("index register overlaps destination register"));
b05fe5cf 6277 }
c19d1205
ZW
6278
6279 inst.instruction |= inst.operands[0].reg << 12;
6280 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
6281}
6282
6283static void
c19d1205 6284do_ldrex (void)
b05fe5cf 6285{
c19d1205
ZW
6286 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6287 || inst.operands[1].postind || inst.operands[1].writeback
6288 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
6289 || inst.operands[1].negative
6290 /* This can arise if the programmer has written
6291 strex rN, rM, foo
6292 or if they have mistakenly used a register name as the last
6293 operand, eg:
6294 strex rN, rM, rX
6295 It is very difficult to distinguish between these two cases
6296 because "rX" might actually be a label. ie the register
6297 name has been occluded by a symbol of the same name. So we
6298 just generate a general 'bad addressing mode' type error
6299 message and leave it up to the programmer to discover the
6300 true cause and fix their mistake. */
6301 || (inst.operands[1].reg == REG_PC),
6302 BAD_ADDR_MODE);
b05fe5cf 6303
c19d1205
ZW
6304 constraint (inst.reloc.exp.X_op != O_constant
6305 || inst.reloc.exp.X_add_number != 0,
6306 _("offset must be zero in ARM encoding"));
b05fe5cf 6307
c19d1205
ZW
6308 inst.instruction |= inst.operands[0].reg << 12;
6309 inst.instruction |= inst.operands[1].reg << 16;
6310 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
6311}
6312
6313static void
c19d1205 6314do_ldrexd (void)
b05fe5cf 6315{
c19d1205
ZW
6316 constraint (inst.operands[0].reg % 2 != 0,
6317 _("even register required"));
6318 constraint (inst.operands[1].present
6319 && inst.operands[1].reg != inst.operands[0].reg + 1,
6320 _("can only load two consecutive registers"));
6321 /* If op 1 were present and equal to PC, this function wouldn't
6322 have been called in the first place. */
6323 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 6324
c19d1205
ZW
6325 inst.instruction |= inst.operands[0].reg << 12;
6326 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
6327}
6328
6329static void
c19d1205 6330do_ldst (void)
b05fe5cf 6331{
c19d1205
ZW
6332 inst.instruction |= inst.operands[0].reg << 12;
6333 if (!inst.operands[1].isreg)
6334 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 6335 return;
c19d1205 6336 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
6337}
6338
6339static void
c19d1205 6340do_ldstt (void)
b05fe5cf 6341{
c19d1205
ZW
6342 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6343 reject [Rn,...]. */
6344 if (inst.operands[1].preind)
b05fe5cf 6345 {
c19d1205
ZW
6346 constraint (inst.reloc.exp.X_op != O_constant ||
6347 inst.reloc.exp.X_add_number != 0,
6348 _("this instruction requires a post-indexed address"));
b05fe5cf 6349
c19d1205
ZW
6350 inst.operands[1].preind = 0;
6351 inst.operands[1].postind = 1;
6352 inst.operands[1].writeback = 1;
b05fe5cf 6353 }
c19d1205
ZW
6354 inst.instruction |= inst.operands[0].reg << 12;
6355 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
6356}
b05fe5cf 6357
c19d1205 6358/* Halfword and signed-byte load/store operations. */
b05fe5cf 6359
c19d1205
ZW
6360static void
6361do_ldstv4 (void)
6362{
6363 inst.instruction |= inst.operands[0].reg << 12;
6364 if (!inst.operands[1].isreg)
6365 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 6366 return;
c19d1205 6367 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
6368}
6369
6370static void
c19d1205 6371do_ldsttv4 (void)
b05fe5cf 6372{
c19d1205
ZW
6373 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6374 reject [Rn,...]. */
6375 if (inst.operands[1].preind)
b05fe5cf 6376 {
c19d1205
ZW
6377 constraint (inst.reloc.exp.X_op != O_constant ||
6378 inst.reloc.exp.X_add_number != 0,
6379 _("this instruction requires a post-indexed address"));
b05fe5cf 6380
c19d1205
ZW
6381 inst.operands[1].preind = 0;
6382 inst.operands[1].postind = 1;
6383 inst.operands[1].writeback = 1;
b05fe5cf 6384 }
c19d1205
ZW
6385 inst.instruction |= inst.operands[0].reg << 12;
6386 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
6387}
b05fe5cf 6388
c19d1205
ZW
6389/* Co-processor register load/store.
6390 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
6391static void
6392do_lstc (void)
6393{
6394 inst.instruction |= inst.operands[0].reg << 8;
6395 inst.instruction |= inst.operands[1].reg << 12;
6396 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
6397}
6398
b05fe5cf 6399static void
c19d1205 6400do_mlas (void)
b05fe5cf 6401{
c19d1205
ZW
6402 /* This restriction does not apply to mls (nor to mla in v6, but
6403 that's hard to detect at present). */
6404 if (inst.operands[0].reg == inst.operands[1].reg
6405 && !(inst.instruction & 0x00400000))
6406 as_tsktsk (_("rd and rm should be different in mla"));
b05fe5cf 6407
c19d1205
ZW
6408 inst.instruction |= inst.operands[0].reg << 16;
6409 inst.instruction |= inst.operands[1].reg;
6410 inst.instruction |= inst.operands[2].reg << 8;
6411 inst.instruction |= inst.operands[3].reg << 12;
b05fe5cf 6412
c19d1205 6413}
b05fe5cf 6414
c19d1205
ZW
6415static void
6416do_mov (void)
6417{
6418 inst.instruction |= inst.operands[0].reg << 12;
6419 encode_arm_shifter_operand (1);
6420}
b05fe5cf 6421
c19d1205
ZW
6422/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
6423static void
6424do_mov16 (void)
6425{
6426 inst.instruction |= inst.operands[0].reg << 12;
b05fe5cf 6427 /* The value is in two pieces: 0:11, 16:19. */
c19d1205
ZW
6428 inst.instruction |= (inst.operands[1].imm & 0x00000fff);
6429 inst.instruction |= (inst.operands[1].imm & 0x0000f000) << 4;
b05fe5cf 6430}
b99bd4ef
NC
6431
6432static void
c19d1205 6433do_mrs (void)
b99bd4ef 6434{
c19d1205
ZW
6435 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
6436 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
6437 != (PSR_c|PSR_f),
6438 _("'CPSR' or 'SPSR' expected"));
6439 inst.instruction |= inst.operands[0].reg << 12;
6440 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
6441}
b99bd4ef 6442
c19d1205
ZW
6443/* Two possible forms:
6444 "{C|S}PSR_<field>, Rm",
6445 "{C|S}PSR_f, #expression". */
b99bd4ef 6446
c19d1205
ZW
6447static void
6448do_msr (void)
6449{
6450 inst.instruction |= inst.operands[0].imm;
6451 if (inst.operands[1].isreg)
6452 inst.instruction |= inst.operands[1].reg;
6453 else
b99bd4ef 6454 {
c19d1205
ZW
6455 inst.instruction |= INST_IMMEDIATE;
6456 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6457 inst.reloc.pc_rel = 0;
b99bd4ef 6458 }
b99bd4ef
NC
6459}
6460
c19d1205
ZW
6461static void
6462do_mul (void)
a737bd4d 6463{
c19d1205
ZW
6464 if (!inst.operands[2].present)
6465 inst.operands[2].reg = inst.operands[0].reg;
6466 inst.instruction |= inst.operands[0].reg << 16;
6467 inst.instruction |= inst.operands[1].reg;
6468 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 6469
c19d1205
ZW
6470 if (inst.operands[0].reg == inst.operands[1].reg)
6471 as_tsktsk (_("rd and rm should be different in mul"));
a737bd4d
NC
6472}
6473
c19d1205
ZW
6474/* Long Multiply Parser
6475 UMULL RdLo, RdHi, Rm, Rs
6476 SMULL RdLo, RdHi, Rm, Rs
6477 UMLAL RdLo, RdHi, Rm, Rs
6478 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
6479
6480static void
c19d1205 6481do_mull (void)
b99bd4ef 6482{
c19d1205
ZW
6483 inst.instruction |= inst.operands[0].reg << 12;
6484 inst.instruction |= inst.operands[1].reg << 16;
6485 inst.instruction |= inst.operands[2].reg;
6486 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 6487
c19d1205
ZW
6488 /* rdhi, rdlo and rm must all be different. */
6489 if (inst.operands[0].reg == inst.operands[1].reg
6490 || inst.operands[0].reg == inst.operands[2].reg
6491 || inst.operands[1].reg == inst.operands[2].reg)
6492 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
6493}
b99bd4ef 6494
c19d1205
ZW
6495static void
6496do_nop (void)
6497{
6498 if (inst.operands[0].present)
6499 {
6500 /* Architectural NOP hints are CPSR sets with no bits selected. */
6501 inst.instruction &= 0xf0000000;
6502 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
6503 }
b99bd4ef
NC
6504}
6505
c19d1205
ZW
6506/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
6507 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
6508 Condition defaults to COND_ALWAYS.
6509 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
6510
6511static void
c19d1205 6512do_pkhbt (void)
b99bd4ef 6513{
c19d1205
ZW
6514 inst.instruction |= inst.operands[0].reg << 12;
6515 inst.instruction |= inst.operands[1].reg << 16;
6516 inst.instruction |= inst.operands[2].reg;
6517 if (inst.operands[3].present)
6518 encode_arm_shift (3);
6519}
b99bd4ef 6520
c19d1205 6521/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 6522
c19d1205
ZW
6523static void
6524do_pkhtb (void)
6525{
6526 if (!inst.operands[3].present)
b99bd4ef 6527 {
c19d1205
ZW
6528 /* If the shift specifier is omitted, turn the instruction
6529 into pkhbt rd, rm, rn. */
6530 inst.instruction &= 0xfff00010;
6531 inst.instruction |= inst.operands[0].reg << 12;
6532 inst.instruction |= inst.operands[1].reg;
6533 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
6534 }
6535 else
6536 {
c19d1205
ZW
6537 inst.instruction |= inst.operands[0].reg << 12;
6538 inst.instruction |= inst.operands[1].reg << 16;
6539 inst.instruction |= inst.operands[2].reg;
6540 encode_arm_shift (3);
b99bd4ef
NC
6541 }
6542}
6543
c19d1205
ZW
6544/* ARMv5TE: Preload-Cache
6545
6546 PLD <addr_mode>
6547
6548 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
6549
6550static void
c19d1205 6551do_pld (void)
b99bd4ef 6552{
c19d1205
ZW
6553 constraint (!inst.operands[0].isreg,
6554 _("'[' expected after PLD mnemonic"));
6555 constraint (inst.operands[0].postind,
6556 _("post-indexed expression used in preload instruction"));
6557 constraint (inst.operands[0].writeback,
6558 _("writeback used in preload instruction"));
6559 constraint (!inst.operands[0].preind,
6560 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
6561 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
6562}
b99bd4ef 6563
62b3e311
PB
6564/* ARMv7: PLI <addr_mode> */
6565static void
6566do_pli (void)
6567{
6568 constraint (!inst.operands[0].isreg,
6569 _("'[' expected after PLI mnemonic"));
6570 constraint (inst.operands[0].postind,
6571 _("post-indexed expression used in preload instruction"));
6572 constraint (inst.operands[0].writeback,
6573 _("writeback used in preload instruction"));
6574 constraint (!inst.operands[0].preind,
6575 _("unindexed addressing used in preload instruction"));
6576 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
6577 inst.instruction &= ~PRE_INDEX;
6578}
6579
c19d1205
ZW
6580static void
6581do_push_pop (void)
6582{
6583 inst.operands[1] = inst.operands[0];
6584 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
6585 inst.operands[0].isreg = 1;
6586 inst.operands[0].writeback = 1;
6587 inst.operands[0].reg = REG_SP;
6588 do_ldmstm ();
6589}
b99bd4ef 6590
c19d1205
ZW
6591/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
6592 word at the specified address and the following word
6593 respectively.
6594 Unconditionally executed.
6595 Error if Rn is R15. */
b99bd4ef 6596
c19d1205
ZW
6597static void
6598do_rfe (void)
6599{
6600 inst.instruction |= inst.operands[0].reg << 16;
6601 if (inst.operands[0].writeback)
6602 inst.instruction |= WRITE_BACK;
6603}
b99bd4ef 6604
c19d1205 6605/* ARM V6 ssat (argument parse). */
b99bd4ef 6606
c19d1205
ZW
6607static void
6608do_ssat (void)
6609{
6610 inst.instruction |= inst.operands[0].reg << 12;
6611 inst.instruction |= (inst.operands[1].imm - 1) << 16;
6612 inst.instruction |= inst.operands[2].reg;
b99bd4ef 6613
c19d1205
ZW
6614 if (inst.operands[3].present)
6615 encode_arm_shift (3);
b99bd4ef
NC
6616}
6617
c19d1205 6618/* ARM V6 usat (argument parse). */
b99bd4ef
NC
6619
6620static void
c19d1205 6621do_usat (void)
b99bd4ef 6622{
c19d1205
ZW
6623 inst.instruction |= inst.operands[0].reg << 12;
6624 inst.instruction |= inst.operands[1].imm << 16;
6625 inst.instruction |= inst.operands[2].reg;
b99bd4ef 6626
c19d1205
ZW
6627 if (inst.operands[3].present)
6628 encode_arm_shift (3);
b99bd4ef
NC
6629}
6630
c19d1205 6631/* ARM V6 ssat16 (argument parse). */
09d92015
MM
6632
6633static void
c19d1205 6634do_ssat16 (void)
09d92015 6635{
c19d1205
ZW
6636 inst.instruction |= inst.operands[0].reg << 12;
6637 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
6638 inst.instruction |= inst.operands[2].reg;
09d92015
MM
6639}
6640
c19d1205
ZW
6641static void
6642do_usat16 (void)
a737bd4d 6643{
c19d1205
ZW
6644 inst.instruction |= inst.operands[0].reg << 12;
6645 inst.instruction |= inst.operands[1].imm << 16;
6646 inst.instruction |= inst.operands[2].reg;
6647}
a737bd4d 6648
c19d1205
ZW
6649/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
6650 preserving the other bits.
a737bd4d 6651
c19d1205
ZW
6652 setend <endian_specifier>, where <endian_specifier> is either
6653 BE or LE. */
a737bd4d 6654
c19d1205
ZW
6655static void
6656do_setend (void)
6657{
6658 if (inst.operands[0].imm)
6659 inst.instruction |= 0x200;
a737bd4d
NC
6660}
6661
6662static void
c19d1205 6663do_shift (void)
a737bd4d 6664{
c19d1205
ZW
6665 unsigned int Rm = (inst.operands[1].present
6666 ? inst.operands[1].reg
6667 : inst.operands[0].reg);
a737bd4d 6668
c19d1205
ZW
6669 inst.instruction |= inst.operands[0].reg << 12;
6670 inst.instruction |= Rm;
6671 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 6672 {
c19d1205
ZW
6673 inst.instruction |= inst.operands[2].reg << 8;
6674 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
6675 }
6676 else
c19d1205 6677 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
6678}
6679
09d92015 6680static void
3eb17e6b 6681do_smc (void)
09d92015 6682{
3eb17e6b 6683 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 6684 inst.reloc.pc_rel = 0;
09d92015
MM
6685}
6686
09d92015 6687static void
c19d1205 6688do_swi (void)
09d92015 6689{
c19d1205
ZW
6690 inst.reloc.type = BFD_RELOC_ARM_SWI;
6691 inst.reloc.pc_rel = 0;
09d92015
MM
6692}
6693
c19d1205
ZW
6694/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
6695 SMLAxy{cond} Rd,Rm,Rs,Rn
6696 SMLAWy{cond} Rd,Rm,Rs,Rn
6697 Error if any register is R15. */
e16bb312 6698
c19d1205
ZW
6699static void
6700do_smla (void)
e16bb312 6701{
c19d1205
ZW
6702 inst.instruction |= inst.operands[0].reg << 16;
6703 inst.instruction |= inst.operands[1].reg;
6704 inst.instruction |= inst.operands[2].reg << 8;
6705 inst.instruction |= inst.operands[3].reg << 12;
6706}
a737bd4d 6707
c19d1205
ZW
6708/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
6709 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
6710 Error if any register is R15.
6711 Warning if Rdlo == Rdhi. */
a737bd4d 6712
c19d1205
ZW
6713static void
6714do_smlal (void)
6715{
6716 inst.instruction |= inst.operands[0].reg << 12;
6717 inst.instruction |= inst.operands[1].reg << 16;
6718 inst.instruction |= inst.operands[2].reg;
6719 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 6720
c19d1205
ZW
6721 if (inst.operands[0].reg == inst.operands[1].reg)
6722 as_tsktsk (_("rdhi and rdlo must be different"));
6723}
a737bd4d 6724
c19d1205
ZW
6725/* ARM V5E (El Segundo) signed-multiply (argument parse)
6726 SMULxy{cond} Rd,Rm,Rs
6727 Error if any register is R15. */
a737bd4d 6728
c19d1205
ZW
6729static void
6730do_smul (void)
6731{
6732 inst.instruction |= inst.operands[0].reg << 16;
6733 inst.instruction |= inst.operands[1].reg;
6734 inst.instruction |= inst.operands[2].reg << 8;
6735}
a737bd4d 6736
c19d1205 6737/* ARM V6 srs (argument parse). */
a737bd4d 6738
c19d1205
ZW
6739static void
6740do_srs (void)
6741{
6742 inst.instruction |= inst.operands[0].imm;
6743 if (inst.operands[0].writeback)
6744 inst.instruction |= WRITE_BACK;
6745}
a737bd4d 6746
c19d1205 6747/* ARM V6 strex (argument parse). */
a737bd4d 6748
c19d1205
ZW
6749static void
6750do_strex (void)
6751{
6752 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
6753 || inst.operands[2].postind || inst.operands[2].writeback
6754 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
6755 || inst.operands[2].negative
6756 /* See comment in do_ldrex(). */
6757 || (inst.operands[2].reg == REG_PC),
6758 BAD_ADDR_MODE);
a737bd4d 6759
c19d1205
ZW
6760 constraint (inst.operands[0].reg == inst.operands[1].reg
6761 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 6762
c19d1205
ZW
6763 constraint (inst.reloc.exp.X_op != O_constant
6764 || inst.reloc.exp.X_add_number != 0,
6765 _("offset must be zero in ARM encoding"));
a737bd4d 6766
c19d1205
ZW
6767 inst.instruction |= inst.operands[0].reg << 12;
6768 inst.instruction |= inst.operands[1].reg;
6769 inst.instruction |= inst.operands[2].reg << 16;
6770 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
6771}
6772
6773static void
c19d1205 6774do_strexd (void)
e16bb312 6775{
c19d1205
ZW
6776 constraint (inst.operands[1].reg % 2 != 0,
6777 _("even register required"));
6778 constraint (inst.operands[2].present
6779 && inst.operands[2].reg != inst.operands[1].reg + 1,
6780 _("can only store two consecutive registers"));
6781 /* If op 2 were present and equal to PC, this function wouldn't
6782 have been called in the first place. */
6783 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 6784
c19d1205
ZW
6785 constraint (inst.operands[0].reg == inst.operands[1].reg
6786 || inst.operands[0].reg == inst.operands[1].reg + 1
6787 || inst.operands[0].reg == inst.operands[3].reg,
6788 BAD_OVERLAP);
e16bb312 6789
c19d1205
ZW
6790 inst.instruction |= inst.operands[0].reg << 12;
6791 inst.instruction |= inst.operands[1].reg;
6792 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
6793}
6794
c19d1205
ZW
6795/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
6796 extends it to 32-bits, and adds the result to a value in another
6797 register. You can specify a rotation by 0, 8, 16, or 24 bits
6798 before extracting the 16-bit value.
6799 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
6800 Condition defaults to COND_ALWAYS.
6801 Error if any register uses R15. */
6802
e16bb312 6803static void
c19d1205 6804do_sxtah (void)
e16bb312 6805{
c19d1205
ZW
6806 inst.instruction |= inst.operands[0].reg << 12;
6807 inst.instruction |= inst.operands[1].reg << 16;
6808 inst.instruction |= inst.operands[2].reg;
6809 inst.instruction |= inst.operands[3].imm << 10;
6810}
e16bb312 6811
c19d1205 6812/* ARM V6 SXTH.
e16bb312 6813
c19d1205
ZW
6814 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
6815 Condition defaults to COND_ALWAYS.
6816 Error if any register uses R15. */
e16bb312
NC
6817
6818static void
c19d1205 6819do_sxth (void)
e16bb312 6820{
c19d1205
ZW
6821 inst.instruction |= inst.operands[0].reg << 12;
6822 inst.instruction |= inst.operands[1].reg;
6823 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 6824}
c19d1205
ZW
6825\f
6826/* VFP instructions. In a logical order: SP variant first, monad
6827 before dyad, arithmetic then move then load/store. */
e16bb312
NC
6828
6829static void
c19d1205 6830do_vfp_sp_monadic (void)
e16bb312 6831{
5287ad62
JB
6832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
6833 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
6834}
6835
6836static void
c19d1205 6837do_vfp_sp_dyadic (void)
e16bb312 6838{
5287ad62
JB
6839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
6840 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
6841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
6842}
6843
6844static void
c19d1205 6845do_vfp_sp_compare_z (void)
e16bb312 6846{
5287ad62 6847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
6848}
6849
6850static void
c19d1205 6851do_vfp_dp_sp_cvt (void)
e16bb312 6852{
5287ad62
JB
6853 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
6854 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
6855}
6856
6857static void
c19d1205 6858do_vfp_sp_dp_cvt (void)
e16bb312 6859{
5287ad62
JB
6860 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
6861 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
6862}
6863
6864static void
c19d1205 6865do_vfp_reg_from_sp (void)
e16bb312 6866{
c19d1205 6867 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 6868 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
6869}
6870
6871static void
c19d1205 6872do_vfp_reg2_from_sp2 (void)
e16bb312 6873{
c19d1205
ZW
6874 constraint (inst.operands[2].imm != 2,
6875 _("only two consecutive VFP SP registers allowed here"));
6876 inst.instruction |= inst.operands[0].reg << 12;
6877 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 6878 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
6879}
6880
6881static void
c19d1205 6882do_vfp_sp_from_reg (void)
e16bb312 6883{
5287ad62 6884 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 6885 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
6886}
6887
6888static void
c19d1205 6889do_vfp_sp2_from_reg2 (void)
e16bb312 6890{
c19d1205
ZW
6891 constraint (inst.operands[0].imm != 2,
6892 _("only two consecutive VFP SP registers allowed here"));
5287ad62 6893 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
6894 inst.instruction |= inst.operands[1].reg << 12;
6895 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
6896}
6897
6898static void
c19d1205 6899do_vfp_sp_ldst (void)
e16bb312 6900{
5287ad62 6901 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 6902 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
6903}
6904
6905static void
c19d1205 6906do_vfp_dp_ldst (void)
e16bb312 6907{
5287ad62 6908 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 6909 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
6910}
6911
c19d1205 6912
e16bb312 6913static void
c19d1205 6914vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 6915{
c19d1205
ZW
6916 if (inst.operands[0].writeback)
6917 inst.instruction |= WRITE_BACK;
6918 else
6919 constraint (ldstm_type != VFP_LDSTMIA,
6920 _("this addressing mode requires base-register writeback"));
6921 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 6922 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 6923 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
6924}
6925
6926static void
c19d1205 6927vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 6928{
c19d1205 6929 int count;
e16bb312 6930
c19d1205
ZW
6931 if (inst.operands[0].writeback)
6932 inst.instruction |= WRITE_BACK;
6933 else
6934 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
6935 _("this addressing mode requires base-register writeback"));
e16bb312 6936
c19d1205 6937 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 6938 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 6939
c19d1205
ZW
6940 count = inst.operands[1].imm << 1;
6941 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
6942 count += 1;
e16bb312 6943
c19d1205 6944 inst.instruction |= count;
e16bb312
NC
6945}
6946
6947static void
c19d1205 6948do_vfp_sp_ldstmia (void)
e16bb312 6949{
c19d1205 6950 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
6951}
6952
6953static void
c19d1205 6954do_vfp_sp_ldstmdb (void)
e16bb312 6955{
c19d1205 6956 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
6957}
6958
6959static void
c19d1205 6960do_vfp_dp_ldstmia (void)
e16bb312 6961{
c19d1205 6962 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
6963}
6964
6965static void
c19d1205 6966do_vfp_dp_ldstmdb (void)
e16bb312 6967{
c19d1205 6968 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
6969}
6970
6971static void
c19d1205 6972do_vfp_xp_ldstmia (void)
e16bb312 6973{
c19d1205
ZW
6974 vfp_dp_ldstm (VFP_LDSTMIAX);
6975}
e16bb312 6976
c19d1205
ZW
6977static void
6978do_vfp_xp_ldstmdb (void)
6979{
6980 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 6981}
5287ad62
JB
6982
6983static void
6984do_vfp_dp_rd_rm (void)
6985{
6986 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
6987 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
6988}
6989
6990static void
6991do_vfp_dp_rn_rd (void)
6992{
6993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
6994 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
6995}
6996
6997static void
6998do_vfp_dp_rd_rn (void)
6999{
7000 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7001 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7002}
7003
7004static void
7005do_vfp_dp_rd_rn_rm (void)
7006{
7007 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7008 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7009 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7010}
7011
7012static void
7013do_vfp_dp_rd (void)
7014{
7015 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7016}
7017
7018static void
7019do_vfp_dp_rm_rd_rn (void)
7020{
7021 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7022 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7023 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7024}
7025
7026/* VFPv3 instructions. */
7027static void
7028do_vfp_sp_const (void)
7029{
7030 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7031 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7032 inst.instruction |= (inst.operands[1].imm >> 4);
7033}
7034
7035static void
7036do_vfp_dp_const (void)
7037{
7038 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7039 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7040 inst.instruction |= (inst.operands[1].imm >> 4);
7041}
7042
7043static void
7044vfp_conv (int srcsize)
7045{
7046 unsigned immbits = srcsize - inst.operands[1].imm;
7047 inst.instruction |= (immbits & 1) << 5;
7048 inst.instruction |= (immbits >> 1);
7049}
7050
7051static void
7052do_vfp_sp_conv_16 (void)
7053{
7054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7055 vfp_conv (16);
7056}
7057
7058static void
7059do_vfp_dp_conv_16 (void)
7060{
7061 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7062 vfp_conv (16);
7063}
7064
7065static void
7066do_vfp_sp_conv_32 (void)
7067{
7068 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7069 vfp_conv (32);
7070}
7071
7072static void
7073do_vfp_dp_conv_32 (void)
7074{
7075 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7076 vfp_conv (32);
7077}
7078
c19d1205
ZW
7079\f
7080/* FPA instructions. Also in a logical order. */
e16bb312 7081
c19d1205
ZW
7082static void
7083do_fpa_cmp (void)
7084{
7085 inst.instruction |= inst.operands[0].reg << 16;
7086 inst.instruction |= inst.operands[1].reg;
7087}
b99bd4ef
NC
7088
7089static void
c19d1205 7090do_fpa_ldmstm (void)
b99bd4ef 7091{
c19d1205
ZW
7092 inst.instruction |= inst.operands[0].reg << 12;
7093 switch (inst.operands[1].imm)
7094 {
7095 case 1: inst.instruction |= CP_T_X; break;
7096 case 2: inst.instruction |= CP_T_Y; break;
7097 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7098 case 4: break;
7099 default: abort ();
7100 }
b99bd4ef 7101
c19d1205
ZW
7102 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7103 {
7104 /* The instruction specified "ea" or "fd", so we can only accept
7105 [Rn]{!}. The instruction does not really support stacking or
7106 unstacking, so we have to emulate these by setting appropriate
7107 bits and offsets. */
7108 constraint (inst.reloc.exp.X_op != O_constant
7109 || inst.reloc.exp.X_add_number != 0,
7110 _("this instruction does not support indexing"));
b99bd4ef 7111
c19d1205
ZW
7112 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7113 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7114
c19d1205
ZW
7115 if (!(inst.instruction & INDEX_UP))
7116 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7117
c19d1205
ZW
7118 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7119 {
7120 inst.operands[2].preind = 0;
7121 inst.operands[2].postind = 1;
7122 }
7123 }
b99bd4ef 7124
c19d1205 7125 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7126}
c19d1205
ZW
7127\f
7128/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7129
c19d1205
ZW
7130static void
7131do_iwmmxt_tandorc (void)
7132{
7133 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7134}
b99bd4ef 7135
c19d1205
ZW
7136static void
7137do_iwmmxt_textrc (void)
7138{
7139 inst.instruction |= inst.operands[0].reg << 12;
7140 inst.instruction |= inst.operands[1].imm;
7141}
b99bd4ef
NC
7142
7143static void
c19d1205 7144do_iwmmxt_textrm (void)
b99bd4ef 7145{
c19d1205
ZW
7146 inst.instruction |= inst.operands[0].reg << 12;
7147 inst.instruction |= inst.operands[1].reg << 16;
7148 inst.instruction |= inst.operands[2].imm;
7149}
b99bd4ef 7150
c19d1205
ZW
7151static void
7152do_iwmmxt_tinsr (void)
7153{
7154 inst.instruction |= inst.operands[0].reg << 16;
7155 inst.instruction |= inst.operands[1].reg << 12;
7156 inst.instruction |= inst.operands[2].imm;
7157}
b99bd4ef 7158
c19d1205
ZW
7159static void
7160do_iwmmxt_tmia (void)
7161{
7162 inst.instruction |= inst.operands[0].reg << 5;
7163 inst.instruction |= inst.operands[1].reg;
7164 inst.instruction |= inst.operands[2].reg << 12;
7165}
b99bd4ef 7166
c19d1205
ZW
7167static void
7168do_iwmmxt_waligni (void)
7169{
7170 inst.instruction |= inst.operands[0].reg << 12;
7171 inst.instruction |= inst.operands[1].reg << 16;
7172 inst.instruction |= inst.operands[2].reg;
7173 inst.instruction |= inst.operands[3].imm << 20;
7174}
b99bd4ef 7175
c19d1205
ZW
7176static void
7177do_iwmmxt_wmov (void)
7178{
7179 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7180 inst.instruction |= inst.operands[0].reg << 12;
7181 inst.instruction |= inst.operands[1].reg << 16;
7182 inst.instruction |= inst.operands[1].reg;
7183}
b99bd4ef 7184
c19d1205
ZW
7185static void
7186do_iwmmxt_wldstbh (void)
7187{
8f06b2d8 7188 int reloc;
c19d1205
ZW
7189 inst.instruction |= inst.operands[0].reg << 12;
7190 inst.reloc.exp.X_add_number *= 4;
8f06b2d8
PB
7191 if (thumb_mode)
7192 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7193 else
7194 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7195 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
7196}
7197
c19d1205
ZW
7198static void
7199do_iwmmxt_wldstw (void)
7200{
7201 /* RIWR_RIWC clears .isreg for a control register. */
7202 if (!inst.operands[0].isreg)
7203 {
7204 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7205 inst.instruction |= 0xf0000000;
7206 }
b99bd4ef 7207
c19d1205
ZW
7208 inst.instruction |= inst.operands[0].reg << 12;
7209 encode_arm_cp_address (1, TRUE, TRUE, 0);
7210}
b99bd4ef
NC
7211
7212static void
c19d1205 7213do_iwmmxt_wldstd (void)
b99bd4ef 7214{
c19d1205 7215 inst.instruction |= inst.operands[0].reg << 12;
f2184508 7216 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 7217}
b99bd4ef 7218
c19d1205
ZW
7219static void
7220do_iwmmxt_wshufh (void)
7221{
7222 inst.instruction |= inst.operands[0].reg << 12;
7223 inst.instruction |= inst.operands[1].reg << 16;
7224 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7225 inst.instruction |= (inst.operands[2].imm & 0x0f);
7226}
b99bd4ef 7227
c19d1205
ZW
7228static void
7229do_iwmmxt_wzero (void)
7230{
7231 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7232 inst.instruction |= inst.operands[0].reg;
7233 inst.instruction |= inst.operands[0].reg << 12;
7234 inst.instruction |= inst.operands[0].reg << 16;
7235}
7236\f
7237/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
7238 operations first, then control, shift, and load/store. */
b99bd4ef 7239
c19d1205 7240/* Insns like "foo X,Y,Z". */
b99bd4ef 7241
c19d1205
ZW
7242static void
7243do_mav_triple (void)
7244{
7245 inst.instruction |= inst.operands[0].reg << 16;
7246 inst.instruction |= inst.operands[1].reg;
7247 inst.instruction |= inst.operands[2].reg << 12;
7248}
b99bd4ef 7249
c19d1205
ZW
7250/* Insns like "foo W,X,Y,Z".
7251 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 7252
c19d1205
ZW
7253static void
7254do_mav_quad (void)
7255{
7256 inst.instruction |= inst.operands[0].reg << 5;
7257 inst.instruction |= inst.operands[1].reg << 12;
7258 inst.instruction |= inst.operands[2].reg << 16;
7259 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
7260}
7261
c19d1205
ZW
7262/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
7263static void
7264do_mav_dspsc (void)
a737bd4d 7265{
c19d1205
ZW
7266 inst.instruction |= inst.operands[1].reg << 12;
7267}
a737bd4d 7268
c19d1205
ZW
7269/* Maverick shift immediate instructions.
7270 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
7271 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 7272
c19d1205
ZW
7273static void
7274do_mav_shift (void)
7275{
7276 int imm = inst.operands[2].imm;
a737bd4d 7277
c19d1205
ZW
7278 inst.instruction |= inst.operands[0].reg << 12;
7279 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 7280
c19d1205
ZW
7281 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
7282 Bits 5-7 of the insn should have bits 4-6 of the immediate.
7283 Bit 4 should be 0. */
7284 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 7285
c19d1205
ZW
7286 inst.instruction |= imm;
7287}
7288\f
7289/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 7290
c19d1205
ZW
7291/* Xscale multiply-accumulate (argument parse)
7292 MIAcc acc0,Rm,Rs
7293 MIAPHcc acc0,Rm,Rs
7294 MIAxycc acc0,Rm,Rs. */
a737bd4d 7295
c19d1205
ZW
7296static void
7297do_xsc_mia (void)
7298{
7299 inst.instruction |= inst.operands[1].reg;
7300 inst.instruction |= inst.operands[2].reg << 12;
7301}
a737bd4d 7302
c19d1205 7303/* Xscale move-accumulator-register (argument parse)
a737bd4d 7304
c19d1205 7305 MARcc acc0,RdLo,RdHi. */
b99bd4ef 7306
c19d1205
ZW
7307static void
7308do_xsc_mar (void)
7309{
7310 inst.instruction |= inst.operands[1].reg << 12;
7311 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7312}
7313
c19d1205 7314/* Xscale move-register-accumulator (argument parse)
b99bd4ef 7315
c19d1205 7316 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
7317
7318static void
c19d1205 7319do_xsc_mra (void)
b99bd4ef 7320{
c19d1205
ZW
7321 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
7322 inst.instruction |= inst.operands[0].reg << 12;
7323 inst.instruction |= inst.operands[1].reg << 16;
7324}
7325\f
7326/* Encoding functions relevant only to Thumb. */
b99bd4ef 7327
c19d1205
ZW
7328/* inst.operands[i] is a shifted-register operand; encode
7329 it into inst.instruction in the format used by Thumb32. */
7330
7331static void
7332encode_thumb32_shifted_operand (int i)
7333{
7334 unsigned int value = inst.reloc.exp.X_add_number;
7335 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 7336
9c3c69f2
PB
7337 constraint (inst.operands[i].immisreg,
7338 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
7339 inst.instruction |= inst.operands[i].reg;
7340 if (shift == SHIFT_RRX)
7341 inst.instruction |= SHIFT_ROR << 4;
7342 else
b99bd4ef 7343 {
c19d1205
ZW
7344 constraint (inst.reloc.exp.X_op != O_constant,
7345 _("expression too complex"));
7346
7347 constraint (value > 32
7348 || (value == 32 && (shift == SHIFT_LSL
7349 || shift == SHIFT_ROR)),
7350 _("shift expression is too large"));
7351
7352 if (value == 0)
7353 shift = SHIFT_LSL;
7354 else if (value == 32)
7355 value = 0;
7356
7357 inst.instruction |= shift << 4;
7358 inst.instruction |= (value & 0x1c) << 10;
7359 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 7360 }
c19d1205 7361}
b99bd4ef 7362
b99bd4ef 7363
c19d1205
ZW
7364/* inst.operands[i] was set up by parse_address. Encode it into a
7365 Thumb32 format load or store instruction. Reject forms that cannot
7366 be used with such instructions. If is_t is true, reject forms that
7367 cannot be used with a T instruction; if is_d is true, reject forms
7368 that cannot be used with a D instruction. */
b99bd4ef 7369
c19d1205
ZW
7370static void
7371encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
7372{
7373 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7374
7375 constraint (!inst.operands[i].isreg,
53365c0d 7376 _("Instruction does not support =N addresses"));
b99bd4ef 7377
c19d1205
ZW
7378 inst.instruction |= inst.operands[i].reg << 16;
7379 if (inst.operands[i].immisreg)
b99bd4ef 7380 {
c19d1205
ZW
7381 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
7382 constraint (is_t || is_d, _("cannot use register index with this instruction"));
7383 constraint (inst.operands[i].negative,
7384 _("Thumb does not support negative register indexing"));
7385 constraint (inst.operands[i].postind,
7386 _("Thumb does not support register post-indexing"));
7387 constraint (inst.operands[i].writeback,
7388 _("Thumb does not support register indexing with writeback"));
7389 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
7390 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 7391
f40d1643 7392 inst.instruction |= inst.operands[i].imm;
c19d1205 7393 if (inst.operands[i].shifted)
b99bd4ef 7394 {
c19d1205
ZW
7395 constraint (inst.reloc.exp.X_op != O_constant,
7396 _("expression too complex"));
9c3c69f2
PB
7397 constraint (inst.reloc.exp.X_add_number < 0
7398 || inst.reloc.exp.X_add_number > 3,
c19d1205 7399 _("shift out of range"));
9c3c69f2 7400 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
7401 }
7402 inst.reloc.type = BFD_RELOC_UNUSED;
7403 }
7404 else if (inst.operands[i].preind)
7405 {
7406 constraint (is_pc && inst.operands[i].writeback,
7407 _("cannot use writeback with PC-relative addressing"));
f40d1643 7408 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
7409 _("cannot use writeback with this instruction"));
7410
7411 if (is_d)
7412 {
7413 inst.instruction |= 0x01000000;
7414 if (inst.operands[i].writeback)
7415 inst.instruction |= 0x00200000;
b99bd4ef 7416 }
c19d1205 7417 else
b99bd4ef 7418 {
c19d1205
ZW
7419 inst.instruction |= 0x00000c00;
7420 if (inst.operands[i].writeback)
7421 inst.instruction |= 0x00000100;
b99bd4ef 7422 }
c19d1205 7423 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 7424 }
c19d1205 7425 else if (inst.operands[i].postind)
b99bd4ef 7426 {
c19d1205
ZW
7427 assert (inst.operands[i].writeback);
7428 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
7429 constraint (is_t, _("cannot use post-indexing with this instruction"));
7430
7431 if (is_d)
7432 inst.instruction |= 0x00200000;
7433 else
7434 inst.instruction |= 0x00000900;
7435 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
7436 }
7437 else /* unindexed - only for coprocessor */
7438 inst.error = _("instruction does not accept unindexed addressing");
7439}
7440
7441/* Table of Thumb instructions which exist in both 16- and 32-bit
7442 encodings (the latter only in post-V6T2 cores). The index is the
7443 value used in the insns table below. When there is more than one
7444 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
7445 holds variant (1).
7446 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
7447#define T16_32_TAB \
7448 X(adc, 4140, eb400000), \
7449 X(adcs, 4140, eb500000), \
7450 X(add, 1c00, eb000000), \
7451 X(adds, 1c00, eb100000), \
0110f2b8
PB
7452 X(addi, 0000, f1000000), \
7453 X(addis, 0000, f1100000), \
7454 X(add_pc,000f, f20f0000), \
7455 X(add_sp,000d, f10d0000), \
e9f89963 7456 X(adr, 000f, f20f0000), \
c19d1205
ZW
7457 X(and, 4000, ea000000), \
7458 X(ands, 4000, ea100000), \
7459 X(asr, 1000, fa40f000), \
7460 X(asrs, 1000, fa50f000), \
0110f2b8
PB
7461 X(b, e000, f000b000), \
7462 X(bcond, d000, f0008000), \
c19d1205
ZW
7463 X(bic, 4380, ea200000), \
7464 X(bics, 4380, ea300000), \
7465 X(cmn, 42c0, eb100f00), \
7466 X(cmp, 2800, ebb00f00), \
7467 X(cpsie, b660, f3af8400), \
7468 X(cpsid, b670, f3af8600), \
7469 X(cpy, 4600, ea4f0000), \
0110f2b8 7470 X(dec_sp,80dd, f1bd0d00), \
c19d1205
ZW
7471 X(eor, 4040, ea800000), \
7472 X(eors, 4040, ea900000), \
0110f2b8 7473 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
7474 X(ldmia, c800, e8900000), \
7475 X(ldr, 6800, f8500000), \
7476 X(ldrb, 7800, f8100000), \
7477 X(ldrh, 8800, f8300000), \
7478 X(ldrsb, 5600, f9100000), \
7479 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
7480 X(ldr_pc,4800, f85f0000), \
7481 X(ldr_pc2,4800, f85f0000), \
7482 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
7483 X(lsl, 0000, fa00f000), \
7484 X(lsls, 0000, fa10f000), \
7485 X(lsr, 0800, fa20f000), \
7486 X(lsrs, 0800, fa30f000), \
7487 X(mov, 2000, ea4f0000), \
7488 X(movs, 2000, ea5f0000), \
7489 X(mul, 4340, fb00f000), \
7490 X(muls, 4340, ffffffff), /* no 32b muls */ \
7491 X(mvn, 43c0, ea6f0000), \
7492 X(mvns, 43c0, ea7f0000), \
7493 X(neg, 4240, f1c00000), /* rsb #0 */ \
7494 X(negs, 4240, f1d00000), /* rsbs #0 */ \
7495 X(orr, 4300, ea400000), \
7496 X(orrs, 4300, ea500000), \
e9f89963
PB
7497 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
7498 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
7499 X(rev, ba00, fa90f080), \
7500 X(rev16, ba40, fa90f090), \
7501 X(revsh, bac0, fa90f0b0), \
7502 X(ror, 41c0, fa60f000), \
7503 X(rors, 41c0, fa70f000), \
7504 X(sbc, 4180, eb600000), \
7505 X(sbcs, 4180, eb700000), \
7506 X(stmia, c000, e8800000), \
7507 X(str, 6000, f8400000), \
7508 X(strb, 7000, f8000000), \
7509 X(strh, 8000, f8200000), \
0110f2b8 7510 X(str_sp,9000, f84d0000), \
c19d1205
ZW
7511 X(sub, 1e00, eba00000), \
7512 X(subs, 1e00, ebb00000), \
0110f2b8
PB
7513 X(subi, 8000, f1a00000), \
7514 X(subis, 8000, f1b00000), \
c19d1205
ZW
7515 X(sxtb, b240, fa4ff080), \
7516 X(sxth, b200, fa0ff080), \
7517 X(tst, 4200, ea100f00), \
7518 X(uxtb, b2c0, fa5ff080), \
7519 X(uxth, b280, fa1ff080), \
7520 X(nop, bf00, f3af8000), \
7521 X(yield, bf10, f3af8001), \
7522 X(wfe, bf20, f3af8002), \
7523 X(wfi, bf30, f3af8003), \
7524 X(sev, bf40, f3af9004), /* typo, 8004? */
7525
7526/* To catch errors in encoding functions, the codes are all offset by
7527 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
7528 as 16-bit instructions. */
7529#define X(a,b,c) T_MNEM_##a
7530enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
7531#undef X
7532
7533#define X(a,b,c) 0x##b
7534static const unsigned short thumb_op16[] = { T16_32_TAB };
7535#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
7536#undef X
7537
7538#define X(a,b,c) 0x##c
7539static const unsigned int thumb_op32[] = { T16_32_TAB };
7540#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
7541#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
7542#undef X
7543#undef T16_32_TAB
7544
7545/* Thumb instruction encoders, in alphabetical order. */
7546
92e90b6e
PB
7547/* ADDW or SUBW. */
7548static void
7549do_t_add_sub_w (void)
7550{
7551 int Rd, Rn;
7552
7553 Rd = inst.operands[0].reg;
7554 Rn = inst.operands[1].reg;
7555
7556 constraint (Rd == 15, _("PC not allowed as destination"));
7557 inst.instruction |= (Rn << 16) | (Rd << 8);
7558 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
7559}
7560
c19d1205
ZW
7561/* Parse an add or subtract instruction. We get here with inst.instruction
7562 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
7563
7564static void
7565do_t_add_sub (void)
7566{
7567 int Rd, Rs, Rn;
7568
7569 Rd = inst.operands[0].reg;
7570 Rs = (inst.operands[1].present
7571 ? inst.operands[1].reg /* Rd, Rs, foo */
7572 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
7573
7574 if (unified_syntax)
7575 {
0110f2b8
PB
7576 bfd_boolean flags;
7577 bfd_boolean narrow;
7578 int opcode;
7579
7580 flags = (inst.instruction == T_MNEM_adds
7581 || inst.instruction == T_MNEM_subs);
7582 if (flags)
7583 narrow = (current_it_mask == 0);
7584 else
7585 narrow = (current_it_mask != 0);
c19d1205 7586 if (!inst.operands[2].isreg)
b99bd4ef 7587 {
0110f2b8
PB
7588 opcode = 0;
7589 if (inst.size_req != 4)
7590 {
7591 int add;
7592
7593 add = (inst.instruction == T_MNEM_add
7594 || inst.instruction == T_MNEM_adds);
7595 /* Attempt to use a narrow opcode, with relaxation if
7596 appropriate. */
7597 if (Rd == REG_SP && Rs == REG_SP && !flags)
7598 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
7599 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
7600 opcode = T_MNEM_add_sp;
7601 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
7602 opcode = T_MNEM_add_pc;
7603 else if (Rd <= 7 && Rs <= 7 && narrow)
7604 {
7605 if (flags)
7606 opcode = add ? T_MNEM_addis : T_MNEM_subis;
7607 else
7608 opcode = add ? T_MNEM_addi : T_MNEM_subi;
7609 }
7610 if (opcode)
7611 {
7612 inst.instruction = THUMB_OP16(opcode);
7613 inst.instruction |= (Rd << 4) | Rs;
7614 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
7615 if (inst.size_req != 2)
7616 inst.relax = opcode;
7617 }
7618 else
7619 constraint (inst.size_req == 2, BAD_HIREG);
7620 }
7621 if (inst.size_req == 4
7622 || (inst.size_req != 2 && !opcode))
7623 {
7624 /* ??? Convert large immediates to addw/subw. */
7625 inst.instruction = THUMB_OP32 (inst.instruction);
7626 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
7627 inst.instruction |= inst.operands[0].reg << 8;
7628 inst.instruction |= inst.operands[1].reg << 16;
7629 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
7630 }
b99bd4ef 7631 }
c19d1205
ZW
7632 else
7633 {
7634 Rn = inst.operands[2].reg;
7635 /* See if we can do this with a 16-bit instruction. */
7636 if (!inst.operands[2].shifted && inst.size_req != 4)
7637 {
e27ec89e
PB
7638 if (Rd > 7 || Rs > 7 || Rn > 7)
7639 narrow = FALSE;
7640
7641 if (narrow)
c19d1205 7642 {
e27ec89e
PB
7643 inst.instruction = ((inst.instruction == T_MNEM_adds
7644 || inst.instruction == T_MNEM_add)
c19d1205
ZW
7645 ? T_OPCODE_ADD_R3
7646 : T_OPCODE_SUB_R3);
7647 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
7648 return;
7649 }
b99bd4ef 7650
c19d1205
ZW
7651 if (inst.instruction == T_MNEM_add)
7652 {
7653 if (Rd == Rs)
7654 {
7655 inst.instruction = T_OPCODE_ADD_HI;
7656 inst.instruction |= (Rd & 8) << 4;
7657 inst.instruction |= (Rd & 7);
7658 inst.instruction |= Rn << 3;
7659 return;
7660 }
7661 /* ... because addition is commutative! */
7662 else if (Rd == Rn)
7663 {
7664 inst.instruction = T_OPCODE_ADD_HI;
7665 inst.instruction |= (Rd & 8) << 4;
7666 inst.instruction |= (Rd & 7);
7667 inst.instruction |= Rs << 3;
7668 return;
7669 }
7670 }
7671 }
7672 /* If we get here, it can't be done in 16 bits. */
7673 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
7674 _("shift must be constant"));
7675 inst.instruction = THUMB_OP32 (inst.instruction);
7676 inst.instruction |= Rd << 8;
7677 inst.instruction |= Rs << 16;
7678 encode_thumb32_shifted_operand (2);
7679 }
7680 }
7681 else
7682 {
7683 constraint (inst.instruction == T_MNEM_adds
7684 || inst.instruction == T_MNEM_subs,
7685 BAD_THUMB32);
b99bd4ef 7686
c19d1205 7687 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 7688 {
c19d1205
ZW
7689 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
7690 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
7691 BAD_HIREG);
7692
7693 inst.instruction = (inst.instruction == T_MNEM_add
7694 ? 0x0000 : 0x8000);
7695 inst.instruction |= (Rd << 4) | Rs;
7696 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
7697 return;
7698 }
7699
c19d1205
ZW
7700 Rn = inst.operands[2].reg;
7701 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 7702
c19d1205
ZW
7703 /* We now have Rd, Rs, and Rn set to registers. */
7704 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 7705 {
c19d1205
ZW
7706 /* Can't do this for SUB. */
7707 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
7708 inst.instruction = T_OPCODE_ADD_HI;
7709 inst.instruction |= (Rd & 8) << 4;
7710 inst.instruction |= (Rd & 7);
7711 if (Rs == Rd)
7712 inst.instruction |= Rn << 3;
7713 else if (Rn == Rd)
7714 inst.instruction |= Rs << 3;
7715 else
7716 constraint (1, _("dest must overlap one source register"));
7717 }
7718 else
7719 {
7720 inst.instruction = (inst.instruction == T_MNEM_add
7721 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
7722 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 7723 }
b99bd4ef 7724 }
b99bd4ef
NC
7725}
7726
c19d1205
ZW
7727static void
7728do_t_adr (void)
7729{
0110f2b8
PB
7730 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
7731 {
7732 /* Defer to section relaxation. */
7733 inst.relax = inst.instruction;
7734 inst.instruction = THUMB_OP16 (inst.instruction);
7735 inst.instruction |= inst.operands[0].reg << 4;
7736 }
7737 else if (unified_syntax && inst.size_req != 2)
e9f89963 7738 {
0110f2b8 7739 /* Generate a 32-bit opcode. */
e9f89963
PB
7740 inst.instruction = THUMB_OP32 (inst.instruction);
7741 inst.instruction |= inst.operands[0].reg << 8;
7742 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
7743 inst.reloc.pc_rel = 1;
7744 }
7745 else
7746 {
0110f2b8 7747 /* Generate a 16-bit opcode. */
e9f89963
PB
7748 inst.instruction = THUMB_OP16 (inst.instruction);
7749 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
7750 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
7751 inst.reloc.pc_rel = 1;
b99bd4ef 7752
e9f89963
PB
7753 inst.instruction |= inst.operands[0].reg << 4;
7754 }
c19d1205 7755}
b99bd4ef 7756
c19d1205
ZW
7757/* Arithmetic instructions for which there is just one 16-bit
7758 instruction encoding, and it allows only two low registers.
7759 For maximal compatibility with ARM syntax, we allow three register
7760 operands even when Thumb-32 instructions are not available, as long
7761 as the first two are identical. For instance, both "sbc r0,r1" and
7762 "sbc r0,r0,r1" are allowed. */
b99bd4ef 7763static void
c19d1205 7764do_t_arit3 (void)
b99bd4ef 7765{
c19d1205 7766 int Rd, Rs, Rn;
b99bd4ef 7767
c19d1205
ZW
7768 Rd = inst.operands[0].reg;
7769 Rs = (inst.operands[1].present
7770 ? inst.operands[1].reg /* Rd, Rs, foo */
7771 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
7772 Rn = inst.operands[2].reg;
b99bd4ef 7773
c19d1205 7774 if (unified_syntax)
b99bd4ef 7775 {
c19d1205
ZW
7776 if (!inst.operands[2].isreg)
7777 {
7778 /* For an immediate, we always generate a 32-bit opcode;
7779 section relaxation will shrink it later if possible. */
7780 inst.instruction = THUMB_OP32 (inst.instruction);
7781 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
7782 inst.instruction |= Rd << 8;
7783 inst.instruction |= Rs << 16;
7784 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
7785 }
7786 else
7787 {
e27ec89e
PB
7788 bfd_boolean narrow;
7789
c19d1205 7790 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
7791 if (THUMB_SETS_FLAGS (inst.instruction))
7792 narrow = current_it_mask == 0;
7793 else
7794 narrow = current_it_mask != 0;
7795
7796 if (Rd > 7 || Rn > 7 || Rs > 7)
7797 narrow = FALSE;
7798 if (inst.operands[2].shifted)
7799 narrow = FALSE;
7800 if (inst.size_req == 4)
7801 narrow = FALSE;
7802
7803 if (narrow
c19d1205
ZW
7804 && Rd == Rs)
7805 {
7806 inst.instruction = THUMB_OP16 (inst.instruction);
7807 inst.instruction |= Rd;
7808 inst.instruction |= Rn << 3;
7809 return;
7810 }
b99bd4ef 7811
c19d1205
ZW
7812 /* If we get here, it can't be done in 16 bits. */
7813 constraint (inst.operands[2].shifted
7814 && inst.operands[2].immisreg,
7815 _("shift must be constant"));
7816 inst.instruction = THUMB_OP32 (inst.instruction);
7817 inst.instruction |= Rd << 8;
7818 inst.instruction |= Rs << 16;
7819 encode_thumb32_shifted_operand (2);
7820 }
a737bd4d 7821 }
c19d1205 7822 else
b99bd4ef 7823 {
c19d1205
ZW
7824 /* On its face this is a lie - the instruction does set the
7825 flags. However, the only supported mnemonic in this mode
7826 says it doesn't. */
7827 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 7828
c19d1205
ZW
7829 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
7830 _("unshifted register required"));
7831 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
7832 constraint (Rd != Rs,
7833 _("dest and source1 must be the same register"));
a737bd4d 7834
c19d1205
ZW
7835 inst.instruction = THUMB_OP16 (inst.instruction);
7836 inst.instruction |= Rd;
7837 inst.instruction |= Rn << 3;
b99bd4ef 7838 }
a737bd4d 7839}
b99bd4ef 7840
c19d1205
ZW
7841/* Similarly, but for instructions where the arithmetic operation is
7842 commutative, so we can allow either of them to be different from
7843 the destination operand in a 16-bit instruction. For instance, all
7844 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
7845 accepted. */
7846static void
7847do_t_arit3c (void)
a737bd4d 7848{
c19d1205 7849 int Rd, Rs, Rn;
b99bd4ef 7850
c19d1205
ZW
7851 Rd = inst.operands[0].reg;
7852 Rs = (inst.operands[1].present
7853 ? inst.operands[1].reg /* Rd, Rs, foo */
7854 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
7855 Rn = inst.operands[2].reg;
a737bd4d 7856
c19d1205 7857 if (unified_syntax)
a737bd4d 7858 {
c19d1205 7859 if (!inst.operands[2].isreg)
b99bd4ef 7860 {
c19d1205
ZW
7861 /* For an immediate, we always generate a 32-bit opcode;
7862 section relaxation will shrink it later if possible. */
7863 inst.instruction = THUMB_OP32 (inst.instruction);
7864 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
7865 inst.instruction |= Rd << 8;
7866 inst.instruction |= Rs << 16;
7867 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 7868 }
c19d1205 7869 else
a737bd4d 7870 {
e27ec89e
PB
7871 bfd_boolean narrow;
7872
c19d1205 7873 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
7874 if (THUMB_SETS_FLAGS (inst.instruction))
7875 narrow = current_it_mask == 0;
7876 else
7877 narrow = current_it_mask != 0;
7878
7879 if (Rd > 7 || Rn > 7 || Rs > 7)
7880 narrow = FALSE;
7881 if (inst.operands[2].shifted)
7882 narrow = FALSE;
7883 if (inst.size_req == 4)
7884 narrow = FALSE;
7885
7886 if (narrow)
a737bd4d 7887 {
c19d1205 7888 if (Rd == Rs)
a737bd4d 7889 {
c19d1205
ZW
7890 inst.instruction = THUMB_OP16 (inst.instruction);
7891 inst.instruction |= Rd;
7892 inst.instruction |= Rn << 3;
7893 return;
a737bd4d 7894 }
c19d1205 7895 if (Rd == Rn)
a737bd4d 7896 {
c19d1205
ZW
7897 inst.instruction = THUMB_OP16 (inst.instruction);
7898 inst.instruction |= Rd;
7899 inst.instruction |= Rs << 3;
7900 return;
a737bd4d
NC
7901 }
7902 }
c19d1205
ZW
7903
7904 /* If we get here, it can't be done in 16 bits. */
7905 constraint (inst.operands[2].shifted
7906 && inst.operands[2].immisreg,
7907 _("shift must be constant"));
7908 inst.instruction = THUMB_OP32 (inst.instruction);
7909 inst.instruction |= Rd << 8;
7910 inst.instruction |= Rs << 16;
7911 encode_thumb32_shifted_operand (2);
a737bd4d 7912 }
b99bd4ef 7913 }
c19d1205
ZW
7914 else
7915 {
7916 /* On its face this is a lie - the instruction does set the
7917 flags. However, the only supported mnemonic in this mode
7918 says it doesn't. */
7919 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 7920
c19d1205
ZW
7921 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
7922 _("unshifted register required"));
7923 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
7924
7925 inst.instruction = THUMB_OP16 (inst.instruction);
7926 inst.instruction |= Rd;
7927
7928 if (Rd == Rs)
7929 inst.instruction |= Rn << 3;
7930 else if (Rd == Rn)
7931 inst.instruction |= Rs << 3;
7932 else
7933 constraint (1, _("dest must overlap one source register"));
7934 }
a737bd4d
NC
7935}
7936
62b3e311
PB
7937static void
7938do_t_barrier (void)
7939{
7940 if (inst.operands[0].present)
7941 {
7942 constraint ((inst.instruction & 0xf0) != 0x40
7943 && inst.operands[0].imm != 0xf,
7944 "bad barrier type");
7945 inst.instruction |= inst.operands[0].imm;
7946 }
7947 else
7948 inst.instruction |= 0xf;
7949}
7950
c19d1205
ZW
7951static void
7952do_t_bfc (void)
a737bd4d 7953{
c19d1205
ZW
7954 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7955 constraint (msb > 32, _("bit-field extends past end of register"));
7956 /* The instruction encoding stores the LSB and MSB,
7957 not the LSB and width. */
7958 inst.instruction |= inst.operands[0].reg << 8;
7959 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
7960 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
7961 inst.instruction |= msb - 1;
b99bd4ef
NC
7962}
7963
c19d1205
ZW
7964static void
7965do_t_bfi (void)
b99bd4ef 7966{
c19d1205 7967 unsigned int msb;
b99bd4ef 7968
c19d1205
ZW
7969 /* #0 in second position is alternative syntax for bfc, which is
7970 the same instruction but with REG_PC in the Rm field. */
7971 if (!inst.operands[1].isreg)
7972 inst.operands[1].reg = REG_PC;
b99bd4ef 7973
c19d1205
ZW
7974 msb = inst.operands[2].imm + inst.operands[3].imm;
7975 constraint (msb > 32, _("bit-field extends past end of register"));
7976 /* The instruction encoding stores the LSB and MSB,
7977 not the LSB and width. */
7978 inst.instruction |= inst.operands[0].reg << 8;
7979 inst.instruction |= inst.operands[1].reg << 16;
7980 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
7981 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
7982 inst.instruction |= msb - 1;
b99bd4ef
NC
7983}
7984
c19d1205
ZW
7985static void
7986do_t_bfx (void)
b99bd4ef 7987{
c19d1205
ZW
7988 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7989 _("bit-field extends past end of register"));
7990 inst.instruction |= inst.operands[0].reg << 8;
7991 inst.instruction |= inst.operands[1].reg << 16;
7992 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
7993 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
7994 inst.instruction |= inst.operands[3].imm - 1;
7995}
b99bd4ef 7996
c19d1205
ZW
7997/* ARM V5 Thumb BLX (argument parse)
7998 BLX <target_addr> which is BLX(1)
7999 BLX <Rm> which is BLX(2)
8000 Unfortunately, there are two different opcodes for this mnemonic.
8001 So, the insns[].value is not used, and the code here zaps values
8002 into inst.instruction.
b99bd4ef 8003
c19d1205
ZW
8004 ??? How to take advantage of the additional two bits of displacement
8005 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8006
c19d1205
ZW
8007static void
8008do_t_blx (void)
8009{
dfa9f0d5 8010 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8011 if (inst.operands[0].isreg)
8012 /* We have a register, so this is BLX(2). */
8013 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
8014 else
8015 {
c19d1205 8016 /* No register. This must be BLX(1). */
2fc8bdac 8017 inst.instruction = 0xf000e800;
39b41c9c
PB
8018#ifdef OBJ_ELF
8019 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8020 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8021 else
8022#endif
8023 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 8024 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8025 }
8026}
8027
c19d1205
ZW
8028static void
8029do_t_branch (void)
b99bd4ef 8030{
0110f2b8 8031 int opcode;
dfa9f0d5
PB
8032 int cond;
8033
8034 if (current_it_mask)
8035 {
8036 /* Conditional branches inside IT blocks are encoded as unconditional
8037 branches. */
8038 cond = COND_ALWAYS;
8039 /* A branch must be the last instruction in an IT block. */
8040 constraint (current_it_mask != 0x10, BAD_BRANCH);
8041 }
8042 else
8043 cond = inst.cond;
8044
8045 if (cond != COND_ALWAYS)
0110f2b8
PB
8046 opcode = T_MNEM_bcond;
8047 else
8048 opcode = inst.instruction;
8049
8050 if (unified_syntax && inst.size_req == 4)
c19d1205 8051 {
0110f2b8 8052 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 8053 if (cond == COND_ALWAYS)
0110f2b8 8054 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
8055 else
8056 {
dfa9f0d5
PB
8057 assert (cond != 0xF);
8058 inst.instruction |= cond << 22;
c19d1205
ZW
8059 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8060 }
8061 }
b99bd4ef
NC
8062 else
8063 {
0110f2b8 8064 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 8065 if (cond == COND_ALWAYS)
c19d1205
ZW
8066 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8067 else
b99bd4ef 8068 {
dfa9f0d5 8069 inst.instruction |= cond << 8;
c19d1205 8070 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 8071 }
0110f2b8
PB
8072 /* Allow section relaxation. */
8073 if (unified_syntax && inst.size_req != 2)
8074 inst.relax = opcode;
b99bd4ef 8075 }
c19d1205
ZW
8076
8077 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8078}
8079
8080static void
c19d1205 8081do_t_bkpt (void)
b99bd4ef 8082{
dfa9f0d5
PB
8083 constraint (inst.cond != COND_ALWAYS,
8084 _("instruction is always unconditional"));
c19d1205 8085 if (inst.operands[0].present)
b99bd4ef 8086 {
c19d1205
ZW
8087 constraint (inst.operands[0].imm > 255,
8088 _("immediate value out of range"));
8089 inst.instruction |= inst.operands[0].imm;
b99bd4ef 8090 }
b99bd4ef
NC
8091}
8092
8093static void
c19d1205 8094do_t_branch23 (void)
b99bd4ef 8095{
dfa9f0d5 8096 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8097 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
8098 inst.reloc.pc_rel = 1;
8099
c19d1205
ZW
8100 /* If the destination of the branch is a defined symbol which does not have
8101 the THUMB_FUNC attribute, then we must be calling a function which has
8102 the (interfacearm) attribute. We look for the Thumb entry point to that
8103 function and change the branch to refer to that function instead. */
8104 if ( inst.reloc.exp.X_op == O_symbol
8105 && inst.reloc.exp.X_add_symbol != NULL
8106 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8107 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8108 inst.reloc.exp.X_add_symbol =
8109 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
8110}
8111
8112static void
c19d1205 8113do_t_bx (void)
90e4755a 8114{
dfa9f0d5 8115 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8116 inst.instruction |= inst.operands[0].reg << 3;
8117 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8118 should cause the alignment to be checked once it is known. This is
8119 because BX PC only works if the instruction is word aligned. */
8120}
90e4755a 8121
c19d1205
ZW
8122static void
8123do_t_bxj (void)
8124{
dfa9f0d5 8125 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8126 if (inst.operands[0].reg == REG_PC)
8127 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 8128
c19d1205 8129 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
8130}
8131
8132static void
c19d1205 8133do_t_clz (void)
90e4755a 8134{
c19d1205
ZW
8135 inst.instruction |= inst.operands[0].reg << 8;
8136 inst.instruction |= inst.operands[1].reg << 16;
8137 inst.instruction |= inst.operands[1].reg;
8138}
90e4755a 8139
dfa9f0d5
PB
8140static void
8141do_t_cps (void)
8142{
8143 constraint (current_it_mask, BAD_NOT_IT);
8144 inst.instruction |= inst.operands[0].imm;
8145}
8146
c19d1205
ZW
8147static void
8148do_t_cpsi (void)
8149{
dfa9f0d5 8150 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 8151 if (unified_syntax
62b3e311
PB
8152 && (inst.operands[1].present || inst.size_req == 4)
8153 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 8154 {
c19d1205
ZW
8155 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8156 inst.instruction = 0xf3af8000;
8157 inst.instruction |= imod << 9;
8158 inst.instruction |= inst.operands[0].imm << 5;
8159 if (inst.operands[1].present)
8160 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 8161 }
c19d1205 8162 else
90e4755a 8163 {
62b3e311
PB
8164 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8165 && (inst.operands[0].imm & 4),
8166 _("selected processor does not support 'A' form "
8167 "of this instruction"));
8168 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
8169 _("Thumb does not support the 2-argument "
8170 "form of this instruction"));
8171 inst.instruction |= inst.operands[0].imm;
90e4755a 8172 }
90e4755a
RE
8173}
8174
c19d1205
ZW
8175/* THUMB CPY instruction (argument parse). */
8176
90e4755a 8177static void
c19d1205 8178do_t_cpy (void)
90e4755a 8179{
c19d1205 8180 if (inst.size_req == 4)
90e4755a 8181 {
c19d1205
ZW
8182 inst.instruction = THUMB_OP32 (T_MNEM_mov);
8183 inst.instruction |= inst.operands[0].reg << 8;
8184 inst.instruction |= inst.operands[1].reg;
90e4755a 8185 }
c19d1205 8186 else
90e4755a 8187 {
c19d1205
ZW
8188 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
8189 inst.instruction |= (inst.operands[0].reg & 0x7);
8190 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 8191 }
90e4755a
RE
8192}
8193
90e4755a 8194static void
c19d1205 8195do_t_czb (void)
90e4755a 8196{
dfa9f0d5 8197 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
8198 constraint (inst.operands[0].reg > 7, BAD_HIREG);
8199 inst.instruction |= inst.operands[0].reg;
8200 inst.reloc.pc_rel = 1;
8201 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
8202}
90e4755a 8203
62b3e311
PB
8204static void
8205do_t_dbg (void)
8206{
8207 inst.instruction |= inst.operands[0].imm;
8208}
8209
8210static void
8211do_t_div (void)
8212{
8213 if (!inst.operands[1].present)
8214 inst.operands[1].reg = inst.operands[0].reg;
8215 inst.instruction |= inst.operands[0].reg << 8;
8216 inst.instruction |= inst.operands[1].reg << 16;
8217 inst.instruction |= inst.operands[2].reg;
8218}
8219
c19d1205
ZW
8220static void
8221do_t_hint (void)
8222{
8223 if (unified_syntax && inst.size_req == 4)
8224 inst.instruction = THUMB_OP32 (inst.instruction);
8225 else
8226 inst.instruction = THUMB_OP16 (inst.instruction);
8227}
90e4755a 8228
c19d1205
ZW
8229static void
8230do_t_it (void)
8231{
8232 unsigned int cond = inst.operands[0].imm;
e27ec89e 8233
dfa9f0d5 8234 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
8235 current_it_mask = (inst.instruction & 0xf) | 0x10;
8236 current_cc = cond;
8237
8238 /* If the condition is a negative condition, invert the mask. */
c19d1205 8239 if ((cond & 0x1) == 0x0)
90e4755a 8240 {
c19d1205 8241 unsigned int mask = inst.instruction & 0x000f;
90e4755a 8242
c19d1205
ZW
8243 if ((mask & 0x7) == 0)
8244 /* no conversion needed */;
8245 else if ((mask & 0x3) == 0)
e27ec89e
PB
8246 mask ^= 0x8;
8247 else if ((mask & 0x1) == 0)
8248 mask ^= 0xC;
c19d1205 8249 else
e27ec89e 8250 mask ^= 0xE;
90e4755a 8251
e27ec89e
PB
8252 inst.instruction &= 0xfff0;
8253 inst.instruction |= mask;
c19d1205 8254 }
90e4755a 8255
c19d1205
ZW
8256 inst.instruction |= cond << 4;
8257}
90e4755a 8258
c19d1205
ZW
8259static void
8260do_t_ldmstm (void)
8261{
8262 /* This really doesn't seem worth it. */
8263 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
8264 _("expression too complex"));
8265 constraint (inst.operands[1].writeback,
8266 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 8267
c19d1205
ZW
8268 if (unified_syntax)
8269 {
8270 /* See if we can use a 16-bit instruction. */
8271 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
8272 && inst.size_req != 4
8273 && inst.operands[0].reg <= 7
8274 && !(inst.operands[1].imm & ~0xff)
8275 && (inst.instruction == T_MNEM_stmia
8276 ? inst.operands[0].writeback
8277 : (inst.operands[0].writeback
8278 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
90e4755a 8279 {
c19d1205
ZW
8280 if (inst.instruction == T_MNEM_stmia
8281 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
8282 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8283 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8284 inst.operands[0].reg);
90e4755a 8285
c19d1205
ZW
8286 inst.instruction = THUMB_OP16 (inst.instruction);
8287 inst.instruction |= inst.operands[0].reg << 8;
8288 inst.instruction |= inst.operands[1].imm;
8289 }
8290 else
8291 {
8292 if (inst.operands[1].imm & (1 << 13))
8293 as_warn (_("SP should not be in register list"));
8294 if (inst.instruction == T_MNEM_stmia)
90e4755a 8295 {
c19d1205
ZW
8296 if (inst.operands[1].imm & (1 << 15))
8297 as_warn (_("PC should not be in register list"));
8298 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
8299 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8300 inst.operands[0].reg);
90e4755a
RE
8301 }
8302 else
8303 {
c19d1205
ZW
8304 if (inst.operands[1].imm & (1 << 14)
8305 && inst.operands[1].imm & (1 << 15))
8306 as_warn (_("LR and PC should not both be in register list"));
8307 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8308 && inst.operands[0].writeback)
8309 as_warn (_("base register should not be in register list "
8310 "when written back"));
90e4755a 8311 }
c19d1205
ZW
8312 if (inst.instruction < 0xffff)
8313 inst.instruction = THUMB_OP32 (inst.instruction);
8314 inst.instruction |= inst.operands[0].reg << 16;
8315 inst.instruction |= inst.operands[1].imm;
8316 if (inst.operands[0].writeback)
8317 inst.instruction |= WRITE_BACK;
90e4755a
RE
8318 }
8319 }
c19d1205 8320 else
90e4755a 8321 {
c19d1205
ZW
8322 constraint (inst.operands[0].reg > 7
8323 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
8324 if (inst.instruction == T_MNEM_stmia)
f03698e6 8325 {
c19d1205
ZW
8326 if (!inst.operands[0].writeback)
8327 as_warn (_("this instruction will write back the base register"));
8328 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8329 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8330 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8331 inst.operands[0].reg);
f03698e6 8332 }
c19d1205 8333 else
90e4755a 8334 {
c19d1205
ZW
8335 if (!inst.operands[0].writeback
8336 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
8337 as_warn (_("this instruction will write back the base register"));
8338 else if (inst.operands[0].writeback
8339 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
8340 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
8341 }
8342
c19d1205
ZW
8343 inst.instruction = THUMB_OP16 (inst.instruction);
8344 inst.instruction |= inst.operands[0].reg << 8;
8345 inst.instruction |= inst.operands[1].imm;
8346 }
8347}
e28cd48c 8348
c19d1205
ZW
8349static void
8350do_t_ldrex (void)
8351{
8352 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8353 || inst.operands[1].postind || inst.operands[1].writeback
8354 || inst.operands[1].immisreg || inst.operands[1].shifted
8355 || inst.operands[1].negative,
01cfc07f 8356 BAD_ADDR_MODE);
e28cd48c 8357
c19d1205
ZW
8358 inst.instruction |= inst.operands[0].reg << 12;
8359 inst.instruction |= inst.operands[1].reg << 16;
8360 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
8361}
e28cd48c 8362
c19d1205
ZW
8363static void
8364do_t_ldrexd (void)
8365{
8366 if (!inst.operands[1].present)
1cac9012 8367 {
c19d1205
ZW
8368 constraint (inst.operands[0].reg == REG_LR,
8369 _("r14 not allowed as first register "
8370 "when second register is omitted"));
8371 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 8372 }
c19d1205
ZW
8373 constraint (inst.operands[0].reg == inst.operands[1].reg,
8374 BAD_OVERLAP);
b99bd4ef 8375
c19d1205
ZW
8376 inst.instruction |= inst.operands[0].reg << 12;
8377 inst.instruction |= inst.operands[1].reg << 8;
8378 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8379}
8380
8381static void
c19d1205 8382do_t_ldst (void)
b99bd4ef 8383{
0110f2b8
PB
8384 unsigned long opcode;
8385 int Rn;
8386
8387 opcode = inst.instruction;
c19d1205 8388 if (unified_syntax)
b99bd4ef 8389 {
53365c0d
PB
8390 if (!inst.operands[1].isreg)
8391 {
8392 if (opcode <= 0xffff)
8393 inst.instruction = THUMB_OP32 (opcode);
8394 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
8395 return;
8396 }
0110f2b8
PB
8397 if (inst.operands[1].isreg
8398 && !inst.operands[1].writeback
c19d1205
ZW
8399 && !inst.operands[1].shifted && !inst.operands[1].postind
8400 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
8401 && opcode <= 0xffff
8402 && inst.size_req != 4)
c19d1205 8403 {
0110f2b8
PB
8404 /* Insn may have a 16-bit form. */
8405 Rn = inst.operands[1].reg;
8406 if (inst.operands[1].immisreg)
8407 {
8408 inst.instruction = THUMB_OP16 (opcode);
8409 /* [Rn, Ri] */
8410 if (Rn <= 7 && inst.operands[1].imm <= 7)
8411 goto op16;
8412 }
8413 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
8414 && opcode != T_MNEM_ldrsb)
8415 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
8416 || (Rn == REG_SP && opcode == T_MNEM_str))
8417 {
8418 /* [Rn, #const] */
8419 if (Rn > 7)
8420 {
8421 if (Rn == REG_PC)
8422 {
8423 if (inst.reloc.pc_rel)
8424 opcode = T_MNEM_ldr_pc2;
8425 else
8426 opcode = T_MNEM_ldr_pc;
8427 }
8428 else
8429 {
8430 if (opcode == T_MNEM_ldr)
8431 opcode = T_MNEM_ldr_sp;
8432 else
8433 opcode = T_MNEM_str_sp;
8434 }
8435 inst.instruction = inst.operands[0].reg << 8;
8436 }
8437 else
8438 {
8439 inst.instruction = inst.operands[0].reg;
8440 inst.instruction |= inst.operands[1].reg << 3;
8441 }
8442 inst.instruction |= THUMB_OP16 (opcode);
8443 if (inst.size_req == 2)
8444 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
8445 else
8446 inst.relax = opcode;
8447 return;
8448 }
c19d1205 8449 }
0110f2b8
PB
8450 /* Definitely a 32-bit variant. */
8451 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
8452 inst.instruction |= inst.operands[0].reg << 12;
8453 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
8454 return;
8455 }
8456
c19d1205
ZW
8457 constraint (inst.operands[0].reg > 7, BAD_HIREG);
8458
8459 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 8460 {
c19d1205
ZW
8461 /* Only [Rn,Rm] is acceptable. */
8462 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
8463 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
8464 || inst.operands[1].postind || inst.operands[1].shifted
8465 || inst.operands[1].negative,
8466 _("Thumb does not support this addressing mode"));
8467 inst.instruction = THUMB_OP16 (inst.instruction);
8468 goto op16;
b99bd4ef 8469 }
c19d1205
ZW
8470
8471 inst.instruction = THUMB_OP16 (inst.instruction);
8472 if (!inst.operands[1].isreg)
8473 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
8474 return;
b99bd4ef 8475
c19d1205
ZW
8476 constraint (!inst.operands[1].preind
8477 || inst.operands[1].shifted
8478 || inst.operands[1].writeback,
8479 _("Thumb does not support this addressing mode"));
8480 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 8481 {
c19d1205
ZW
8482 constraint (inst.instruction & 0x0600,
8483 _("byte or halfword not valid for base register"));
8484 constraint (inst.operands[1].reg == REG_PC
8485 && !(inst.instruction & THUMB_LOAD_BIT),
8486 _("r15 based store not allowed"));
8487 constraint (inst.operands[1].immisreg,
8488 _("invalid base register for register offset"));
b99bd4ef 8489
c19d1205
ZW
8490 if (inst.operands[1].reg == REG_PC)
8491 inst.instruction = T_OPCODE_LDR_PC;
8492 else if (inst.instruction & THUMB_LOAD_BIT)
8493 inst.instruction = T_OPCODE_LDR_SP;
8494 else
8495 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 8496
c19d1205
ZW
8497 inst.instruction |= inst.operands[0].reg << 8;
8498 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
8499 return;
8500 }
90e4755a 8501
c19d1205
ZW
8502 constraint (inst.operands[1].reg > 7, BAD_HIREG);
8503 if (!inst.operands[1].immisreg)
8504 {
8505 /* Immediate offset. */
8506 inst.instruction |= inst.operands[0].reg;
8507 inst.instruction |= inst.operands[1].reg << 3;
8508 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
8509 return;
8510 }
90e4755a 8511
c19d1205
ZW
8512 /* Register offset. */
8513 constraint (inst.operands[1].imm > 7, BAD_HIREG);
8514 constraint (inst.operands[1].negative,
8515 _("Thumb does not support this addressing mode"));
90e4755a 8516
c19d1205
ZW
8517 op16:
8518 switch (inst.instruction)
8519 {
8520 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
8521 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
8522 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
8523 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
8524 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
8525 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
8526 case 0x5600 /* ldrsb */:
8527 case 0x5e00 /* ldrsh */: break;
8528 default: abort ();
8529 }
90e4755a 8530
c19d1205
ZW
8531 inst.instruction |= inst.operands[0].reg;
8532 inst.instruction |= inst.operands[1].reg << 3;
8533 inst.instruction |= inst.operands[1].imm << 6;
8534}
90e4755a 8535
c19d1205
ZW
8536static void
8537do_t_ldstd (void)
8538{
8539 if (!inst.operands[1].present)
b99bd4ef 8540 {
c19d1205
ZW
8541 inst.operands[1].reg = inst.operands[0].reg + 1;
8542 constraint (inst.operands[0].reg == REG_LR,
8543 _("r14 not allowed here"));
b99bd4ef 8544 }
c19d1205
ZW
8545 inst.instruction |= inst.operands[0].reg << 12;
8546 inst.instruction |= inst.operands[1].reg << 8;
8547 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
8548
b99bd4ef
NC
8549}
8550
c19d1205
ZW
8551static void
8552do_t_ldstt (void)
8553{
8554 inst.instruction |= inst.operands[0].reg << 12;
8555 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
8556}
a737bd4d 8557
b99bd4ef 8558static void
c19d1205 8559do_t_mla (void)
b99bd4ef 8560{
c19d1205
ZW
8561 inst.instruction |= inst.operands[0].reg << 8;
8562 inst.instruction |= inst.operands[1].reg << 16;
8563 inst.instruction |= inst.operands[2].reg;
8564 inst.instruction |= inst.operands[3].reg << 12;
8565}
b99bd4ef 8566
c19d1205
ZW
8567static void
8568do_t_mlal (void)
8569{
8570 inst.instruction |= inst.operands[0].reg << 12;
8571 inst.instruction |= inst.operands[1].reg << 8;
8572 inst.instruction |= inst.operands[2].reg << 16;
8573 inst.instruction |= inst.operands[3].reg;
8574}
b99bd4ef 8575
c19d1205
ZW
8576static void
8577do_t_mov_cmp (void)
8578{
8579 if (unified_syntax)
b99bd4ef 8580 {
c19d1205
ZW
8581 int r0off = (inst.instruction == T_MNEM_mov
8582 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 8583 unsigned long opcode;
3d388997
PB
8584 bfd_boolean narrow;
8585 bfd_boolean low_regs;
8586
8587 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 8588 opcode = inst.instruction;
3d388997 8589 if (current_it_mask)
0110f2b8 8590 narrow = opcode != T_MNEM_movs;
3d388997 8591 else
0110f2b8 8592 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
8593 if (inst.size_req == 4
8594 || inst.operands[1].shifted)
8595 narrow = FALSE;
8596
c19d1205
ZW
8597 if (!inst.operands[1].isreg)
8598 {
0110f2b8
PB
8599 /* Immediate operand. */
8600 if (current_it_mask == 0 && opcode == T_MNEM_mov)
8601 narrow = 0;
8602 if (low_regs && narrow)
8603 {
8604 inst.instruction = THUMB_OP16 (opcode);
8605 inst.instruction |= inst.operands[0].reg << 8;
8606 if (inst.size_req == 2)
8607 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
8608 else
8609 inst.relax = opcode;
8610 }
8611 else
8612 {
8613 inst.instruction = THUMB_OP32 (inst.instruction);
8614 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8615 inst.instruction |= inst.operands[0].reg << r0off;
8616 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8617 }
c19d1205 8618 }
3d388997 8619 else if (!narrow)
c19d1205
ZW
8620 {
8621 inst.instruction = THUMB_OP32 (inst.instruction);
8622 inst.instruction |= inst.operands[0].reg << r0off;
8623 encode_thumb32_shifted_operand (1);
8624 }
8625 else
8626 switch (inst.instruction)
8627 {
8628 case T_MNEM_mov:
8629 inst.instruction = T_OPCODE_MOV_HR;
8630 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
8631 inst.instruction |= (inst.operands[0].reg & 0x7);
8632 inst.instruction |= inst.operands[1].reg << 3;
8633 break;
b99bd4ef 8634
c19d1205
ZW
8635 case T_MNEM_movs:
8636 /* We know we have low registers at this point.
8637 Generate ADD Rd, Rs, #0. */
8638 inst.instruction = T_OPCODE_ADD_I3;
8639 inst.instruction |= inst.operands[0].reg;
8640 inst.instruction |= inst.operands[1].reg << 3;
8641 break;
8642
8643 case T_MNEM_cmp:
3d388997 8644 if (low_regs)
c19d1205
ZW
8645 {
8646 inst.instruction = T_OPCODE_CMP_LR;
8647 inst.instruction |= inst.operands[0].reg;
8648 inst.instruction |= inst.operands[1].reg << 3;
8649 }
8650 else
8651 {
8652 inst.instruction = T_OPCODE_CMP_HR;
8653 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
8654 inst.instruction |= (inst.operands[0].reg & 0x7);
8655 inst.instruction |= inst.operands[1].reg << 3;
8656 }
8657 break;
8658 }
b99bd4ef
NC
8659 return;
8660 }
8661
c19d1205
ZW
8662 inst.instruction = THUMB_OP16 (inst.instruction);
8663 if (inst.operands[1].isreg)
b99bd4ef 8664 {
c19d1205 8665 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 8666 {
c19d1205
ZW
8667 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
8668 since a MOV instruction produces unpredictable results. */
8669 if (inst.instruction == T_OPCODE_MOV_I8)
8670 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 8671 else
c19d1205 8672 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 8673
c19d1205
ZW
8674 inst.instruction |= inst.operands[0].reg;
8675 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
8676 }
8677 else
8678 {
c19d1205
ZW
8679 if (inst.instruction == T_OPCODE_MOV_I8)
8680 inst.instruction = T_OPCODE_MOV_HR;
8681 else
8682 inst.instruction = T_OPCODE_CMP_HR;
8683 do_t_cpy ();
b99bd4ef
NC
8684 }
8685 }
c19d1205 8686 else
b99bd4ef 8687 {
c19d1205
ZW
8688 constraint (inst.operands[0].reg > 7,
8689 _("only lo regs allowed with immediate"));
8690 inst.instruction |= inst.operands[0].reg << 8;
8691 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
8692 }
8693}
b99bd4ef 8694
c19d1205
ZW
8695static void
8696do_t_mov16 (void)
8697{
8698 inst.instruction |= inst.operands[0].reg << 8;
8699 inst.instruction |= (inst.operands[1].imm & 0xf000) << 4;
8700 inst.instruction |= (inst.operands[1].imm & 0x0800) << 15;
8701 inst.instruction |= (inst.operands[1].imm & 0x0700) << 4;
8702 inst.instruction |= (inst.operands[1].imm & 0x00ff);
8703}
b99bd4ef 8704
c19d1205
ZW
8705static void
8706do_t_mvn_tst (void)
8707{
8708 if (unified_syntax)
8709 {
8710 int r0off = (inst.instruction == T_MNEM_mvn
8711 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
8712 bfd_boolean narrow;
8713
8714 if (inst.size_req == 4
8715 || inst.instruction > 0xffff
8716 || inst.operands[1].shifted
8717 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
8718 narrow = FALSE;
8719 else if (inst.instruction == T_MNEM_cmn)
8720 narrow = TRUE;
8721 else if (THUMB_SETS_FLAGS (inst.instruction))
8722 narrow = (current_it_mask == 0);
8723 else
8724 narrow = (current_it_mask != 0);
8725
c19d1205 8726 if (!inst.operands[1].isreg)
b99bd4ef 8727 {
c19d1205
ZW
8728 /* For an immediate, we always generate a 32-bit opcode;
8729 section relaxation will shrink it later if possible. */
8730 if (inst.instruction < 0xffff)
8731 inst.instruction = THUMB_OP32 (inst.instruction);
8732 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8733 inst.instruction |= inst.operands[0].reg << r0off;
8734 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8735 }
c19d1205 8736 else
b99bd4ef 8737 {
c19d1205 8738 /* See if we can do this with a 16-bit instruction. */
3d388997 8739 if (narrow)
b99bd4ef 8740 {
c19d1205
ZW
8741 inst.instruction = THUMB_OP16 (inst.instruction);
8742 inst.instruction |= inst.operands[0].reg;
8743 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 8744 }
c19d1205 8745 else
b99bd4ef 8746 {
c19d1205
ZW
8747 constraint (inst.operands[1].shifted
8748 && inst.operands[1].immisreg,
8749 _("shift must be constant"));
8750 if (inst.instruction < 0xffff)
8751 inst.instruction = THUMB_OP32 (inst.instruction);
8752 inst.instruction |= inst.operands[0].reg << r0off;
8753 encode_thumb32_shifted_operand (1);
b99bd4ef 8754 }
b99bd4ef
NC
8755 }
8756 }
8757 else
8758 {
c19d1205
ZW
8759 constraint (inst.instruction > 0xffff
8760 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
8761 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
8762 _("unshifted register required"));
8763 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
8764 BAD_HIREG);
b99bd4ef 8765
c19d1205
ZW
8766 inst.instruction = THUMB_OP16 (inst.instruction);
8767 inst.instruction |= inst.operands[0].reg;
8768 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 8769 }
b99bd4ef
NC
8770}
8771
b05fe5cf 8772static void
c19d1205 8773do_t_mrs (void)
b05fe5cf 8774{
62b3e311
PB
8775 int flags;
8776 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
8777 if (flags == 0)
8778 {
8779 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
8780 _("selected processor does not support "
8781 "requested special purpose register"));
8782 }
8783 else
8784 {
8785 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
8786 _("selected processor does not support "
8787 "requested special purpose register %x"));
8788 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8789 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
8790 _("'CPSR' or 'SPSR' expected"));
8791 }
8792
c19d1205 8793 inst.instruction |= inst.operands[0].reg << 8;
62b3e311
PB
8794 inst.instruction |= (flags & SPSR_BIT) >> 2;
8795 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 8796}
b05fe5cf 8797
c19d1205
ZW
8798static void
8799do_t_msr (void)
8800{
62b3e311
PB
8801 int flags;
8802
c19d1205
ZW
8803 constraint (!inst.operands[1].isreg,
8804 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
8805 flags = inst.operands[0].imm;
8806 if (flags & ~0xff)
8807 {
8808 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
8809 _("selected processor does not support "
8810 "requested special purpose register"));
8811 }
8812 else
8813 {
8814 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
8815 _("selected processor does not support "
8816 "requested special purpose register"));
8817 flags |= PSR_f;
8818 }
8819 inst.instruction |= (flags & SPSR_BIT) >> 2;
8820 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
8821 inst.instruction |= (flags & 0xff);
c19d1205
ZW
8822 inst.instruction |= inst.operands[1].reg << 16;
8823}
b05fe5cf 8824
c19d1205
ZW
8825static void
8826do_t_mul (void)
8827{
8828 if (!inst.operands[2].present)
8829 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 8830
c19d1205
ZW
8831 /* There is no 32-bit MULS and no 16-bit MUL. */
8832 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 8833 {
c19d1205
ZW
8834 inst.instruction = THUMB_OP32 (inst.instruction);
8835 inst.instruction |= inst.operands[0].reg << 8;
8836 inst.instruction |= inst.operands[1].reg << 16;
8837 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 8838 }
c19d1205 8839 else
b05fe5cf 8840 {
c19d1205
ZW
8841 constraint (!unified_syntax
8842 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
8843 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
8844 BAD_HIREG);
b05fe5cf 8845
c19d1205
ZW
8846 inst.instruction = THUMB_OP16 (inst.instruction);
8847 inst.instruction |= inst.operands[0].reg;
b05fe5cf 8848
c19d1205
ZW
8849 if (inst.operands[0].reg == inst.operands[1].reg)
8850 inst.instruction |= inst.operands[2].reg << 3;
8851 else if (inst.operands[0].reg == inst.operands[2].reg)
8852 inst.instruction |= inst.operands[1].reg << 3;
8853 else
8854 constraint (1, _("dest must overlap one source register"));
8855 }
8856}
b05fe5cf 8857
c19d1205
ZW
8858static void
8859do_t_mull (void)
8860{
8861 inst.instruction |= inst.operands[0].reg << 12;
8862 inst.instruction |= inst.operands[1].reg << 8;
8863 inst.instruction |= inst.operands[2].reg << 16;
8864 inst.instruction |= inst.operands[3].reg;
b05fe5cf 8865
c19d1205
ZW
8866 if (inst.operands[0].reg == inst.operands[1].reg)
8867 as_tsktsk (_("rdhi and rdlo must be different"));
8868}
b05fe5cf 8869
c19d1205
ZW
8870static void
8871do_t_nop (void)
8872{
8873 if (unified_syntax)
8874 {
8875 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 8876 {
c19d1205
ZW
8877 inst.instruction = THUMB_OP32 (inst.instruction);
8878 inst.instruction |= inst.operands[0].imm;
8879 }
8880 else
8881 {
8882 inst.instruction = THUMB_OP16 (inst.instruction);
8883 inst.instruction |= inst.operands[0].imm << 4;
8884 }
8885 }
8886 else
8887 {
8888 constraint (inst.operands[0].present,
8889 _("Thumb does not support NOP with hints"));
8890 inst.instruction = 0x46c0;
8891 }
8892}
b05fe5cf 8893
c19d1205
ZW
8894static void
8895do_t_neg (void)
8896{
8897 if (unified_syntax)
8898 {
3d388997
PB
8899 bfd_boolean narrow;
8900
8901 if (THUMB_SETS_FLAGS (inst.instruction))
8902 narrow = (current_it_mask == 0);
8903 else
8904 narrow = (current_it_mask != 0);
8905 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
8906 narrow = FALSE;
8907 if (inst.size_req == 4)
8908 narrow = FALSE;
8909
8910 if (!narrow)
c19d1205
ZW
8911 {
8912 inst.instruction = THUMB_OP32 (inst.instruction);
8913 inst.instruction |= inst.operands[0].reg << 8;
8914 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
8915 }
8916 else
8917 {
c19d1205
ZW
8918 inst.instruction = THUMB_OP16 (inst.instruction);
8919 inst.instruction |= inst.operands[0].reg;
8920 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
8921 }
8922 }
8923 else
8924 {
c19d1205
ZW
8925 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
8926 BAD_HIREG);
8927 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8928
8929 inst.instruction = THUMB_OP16 (inst.instruction);
8930 inst.instruction |= inst.operands[0].reg;
8931 inst.instruction |= inst.operands[1].reg << 3;
8932 }
8933}
8934
8935static void
8936do_t_pkhbt (void)
8937{
8938 inst.instruction |= inst.operands[0].reg << 8;
8939 inst.instruction |= inst.operands[1].reg << 16;
8940 inst.instruction |= inst.operands[2].reg;
8941 if (inst.operands[3].present)
8942 {
8943 unsigned int val = inst.reloc.exp.X_add_number;
8944 constraint (inst.reloc.exp.X_op != O_constant,
8945 _("expression too complex"));
8946 inst.instruction |= (val & 0x1c) << 10;
8947 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 8948 }
c19d1205 8949}
b05fe5cf 8950
c19d1205
ZW
8951static void
8952do_t_pkhtb (void)
8953{
8954 if (!inst.operands[3].present)
8955 inst.instruction &= ~0x00000020;
8956 do_t_pkhbt ();
b05fe5cf
ZW
8957}
8958
c19d1205
ZW
8959static void
8960do_t_pld (void)
8961{
8962 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
8963}
b05fe5cf 8964
c19d1205
ZW
8965static void
8966do_t_push_pop (void)
b99bd4ef 8967{
e9f89963
PB
8968 unsigned mask;
8969
c19d1205
ZW
8970 constraint (inst.operands[0].writeback,
8971 _("push/pop do not support {reglist}^"));
8972 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
8973 _("expression too complex"));
b99bd4ef 8974
e9f89963
PB
8975 mask = inst.operands[0].imm;
8976 if ((mask & ~0xff) == 0)
c19d1205
ZW
8977 inst.instruction = THUMB_OP16 (inst.instruction);
8978 else if ((inst.instruction == T_MNEM_push
e9f89963 8979 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 8980 || (inst.instruction == T_MNEM_pop
e9f89963 8981 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 8982 {
c19d1205
ZW
8983 inst.instruction = THUMB_OP16 (inst.instruction);
8984 inst.instruction |= THUMB_PP_PC_LR;
e9f89963 8985 mask &= 0xff;
c19d1205
ZW
8986 }
8987 else if (unified_syntax)
8988 {
e9f89963
PB
8989 if (mask & (1 << 13))
8990 inst.error = _("SP not allowed in register list");
c19d1205 8991 if (inst.instruction == T_MNEM_push)
b99bd4ef 8992 {
e9f89963
PB
8993 if (mask & (1 << 15))
8994 inst.error = _("PC not allowed in register list");
c19d1205
ZW
8995 }
8996 else
8997 {
e9f89963
PB
8998 if (mask & (1 << 14)
8999 && mask & (1 << 15))
9000 inst.error = _("LR and PC should not both be in register list");
c19d1205 9001 }
e9f89963
PB
9002 if ((mask & (mask - 1)) == 0)
9003 {
9004 /* Single register push/pop implemented as str/ldr. */
9005 if (inst.instruction == T_MNEM_push)
9006 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
9007 else
9008 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
9009 mask = ffs(mask) - 1;
9010 mask <<= 12;
9011 }
9012 else
9013 inst.instruction = THUMB_OP32 (inst.instruction);
c19d1205
ZW
9014 }
9015 else
9016 {
9017 inst.error = _("invalid register list to push/pop instruction");
9018 return;
9019 }
b99bd4ef 9020
e9f89963 9021 inst.instruction |= mask;
c19d1205 9022}
b99bd4ef 9023
c19d1205
ZW
9024static void
9025do_t_rbit (void)
9026{
9027 inst.instruction |= inst.operands[0].reg << 8;
9028 inst.instruction |= inst.operands[1].reg << 16;
9029}
b99bd4ef 9030
c19d1205
ZW
9031static void
9032do_t_rev (void)
9033{
9034 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9035 && inst.size_req != 4)
9036 {
9037 inst.instruction = THUMB_OP16 (inst.instruction);
9038 inst.instruction |= inst.operands[0].reg;
9039 inst.instruction |= inst.operands[1].reg << 3;
9040 }
9041 else if (unified_syntax)
9042 {
9043 inst.instruction = THUMB_OP32 (inst.instruction);
9044 inst.instruction |= inst.operands[0].reg << 8;
9045 inst.instruction |= inst.operands[1].reg << 16;
9046 inst.instruction |= inst.operands[1].reg;
9047 }
9048 else
9049 inst.error = BAD_HIREG;
9050}
b99bd4ef 9051
c19d1205
ZW
9052static void
9053do_t_rsb (void)
9054{
9055 int Rd, Rs;
b99bd4ef 9056
c19d1205
ZW
9057 Rd = inst.operands[0].reg;
9058 Rs = (inst.operands[1].present
9059 ? inst.operands[1].reg /* Rd, Rs, foo */
9060 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 9061
c19d1205
ZW
9062 inst.instruction |= Rd << 8;
9063 inst.instruction |= Rs << 16;
9064 if (!inst.operands[2].isreg)
9065 {
9066 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9067 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9068 }
9069 else
9070 encode_thumb32_shifted_operand (2);
9071}
b99bd4ef 9072
c19d1205
ZW
9073static void
9074do_t_setend (void)
9075{
dfa9f0d5 9076 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9077 if (inst.operands[0].imm)
9078 inst.instruction |= 0x8;
9079}
b99bd4ef 9080
c19d1205
ZW
9081static void
9082do_t_shift (void)
9083{
9084 if (!inst.operands[1].present)
9085 inst.operands[1].reg = inst.operands[0].reg;
9086
9087 if (unified_syntax)
9088 {
3d388997
PB
9089 bfd_boolean narrow;
9090 int shift_kind;
9091
9092 switch (inst.instruction)
9093 {
9094 case T_MNEM_asr:
9095 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
9096 case T_MNEM_lsl:
9097 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
9098 case T_MNEM_lsr:
9099 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
9100 case T_MNEM_ror:
9101 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
9102 default: abort ();
9103 }
9104
9105 if (THUMB_SETS_FLAGS (inst.instruction))
9106 narrow = (current_it_mask == 0);
9107 else
9108 narrow = (current_it_mask != 0);
9109 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9110 narrow = FALSE;
9111 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
9112 narrow = FALSE;
9113 if (inst.operands[2].isreg
9114 && (inst.operands[1].reg != inst.operands[0].reg
9115 || inst.operands[2].reg > 7))
9116 narrow = FALSE;
9117 if (inst.size_req == 4)
9118 narrow = FALSE;
9119
9120 if (!narrow)
c19d1205
ZW
9121 {
9122 if (inst.operands[2].isreg)
b99bd4ef 9123 {
c19d1205
ZW
9124 inst.instruction = THUMB_OP32 (inst.instruction);
9125 inst.instruction |= inst.operands[0].reg << 8;
9126 inst.instruction |= inst.operands[1].reg << 16;
9127 inst.instruction |= inst.operands[2].reg;
9128 }
9129 else
9130 {
9131 inst.operands[1].shifted = 1;
3d388997 9132 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
9133 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
9134 ? T_MNEM_movs : T_MNEM_mov);
9135 inst.instruction |= inst.operands[0].reg << 8;
9136 encode_thumb32_shifted_operand (1);
9137 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
9138 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
9139 }
9140 }
9141 else
9142 {
c19d1205 9143 if (inst.operands[2].isreg)
b99bd4ef 9144 {
3d388997 9145 switch (shift_kind)
b99bd4ef 9146 {
3d388997
PB
9147 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
9148 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
9149 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
9150 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 9151 default: abort ();
b99bd4ef 9152 }
c19d1205
ZW
9153
9154 inst.instruction |= inst.operands[0].reg;
9155 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
9156 }
9157 else
9158 {
3d388997 9159 switch (shift_kind)
b99bd4ef 9160 {
3d388997
PB
9161 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9162 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9163 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 9164 default: abort ();
b99bd4ef 9165 }
c19d1205
ZW
9166 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9167 inst.instruction |= inst.operands[0].reg;
9168 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9169 }
9170 }
c19d1205
ZW
9171 }
9172 else
9173 {
9174 constraint (inst.operands[0].reg > 7
9175 || inst.operands[1].reg > 7, BAD_HIREG);
9176 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 9177
c19d1205
ZW
9178 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
9179 {
9180 constraint (inst.operands[2].reg > 7, BAD_HIREG);
9181 constraint (inst.operands[0].reg != inst.operands[1].reg,
9182 _("source1 and dest must be same register"));
b99bd4ef 9183
c19d1205
ZW
9184 switch (inst.instruction)
9185 {
9186 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
9187 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
9188 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
9189 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
9190 default: abort ();
9191 }
9192
9193 inst.instruction |= inst.operands[0].reg;
9194 inst.instruction |= inst.operands[2].reg << 3;
9195 }
9196 else
b99bd4ef 9197 {
c19d1205
ZW
9198 switch (inst.instruction)
9199 {
9200 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
9201 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
9202 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
9203 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
9204 default: abort ();
9205 }
9206 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9207 inst.instruction |= inst.operands[0].reg;
9208 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9209 }
9210 }
b99bd4ef
NC
9211}
9212
9213static void
c19d1205 9214do_t_simd (void)
b99bd4ef 9215{
c19d1205
ZW
9216 inst.instruction |= inst.operands[0].reg << 8;
9217 inst.instruction |= inst.operands[1].reg << 16;
9218 inst.instruction |= inst.operands[2].reg;
9219}
b99bd4ef 9220
c19d1205 9221static void
3eb17e6b 9222do_t_smc (void)
c19d1205
ZW
9223{
9224 unsigned int value = inst.reloc.exp.X_add_number;
9225 constraint (inst.reloc.exp.X_op != O_constant,
9226 _("expression too complex"));
9227 inst.reloc.type = BFD_RELOC_UNUSED;
9228 inst.instruction |= (value & 0xf000) >> 12;
9229 inst.instruction |= (value & 0x0ff0);
9230 inst.instruction |= (value & 0x000f) << 16;
9231}
b99bd4ef 9232
c19d1205
ZW
9233static void
9234do_t_ssat (void)
9235{
9236 inst.instruction |= inst.operands[0].reg << 8;
9237 inst.instruction |= inst.operands[1].imm - 1;
9238 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 9239
c19d1205 9240 if (inst.operands[3].present)
b99bd4ef 9241 {
c19d1205
ZW
9242 constraint (inst.reloc.exp.X_op != O_constant,
9243 _("expression too complex"));
b99bd4ef 9244
c19d1205 9245 if (inst.reloc.exp.X_add_number != 0)
6189168b 9246 {
c19d1205
ZW
9247 if (inst.operands[3].shift_kind == SHIFT_ASR)
9248 inst.instruction |= 0x00200000; /* sh bit */
9249 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
9250 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 9251 }
c19d1205 9252 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 9253 }
b99bd4ef
NC
9254}
9255
0dd132b6 9256static void
c19d1205 9257do_t_ssat16 (void)
0dd132b6 9258{
c19d1205
ZW
9259 inst.instruction |= inst.operands[0].reg << 8;
9260 inst.instruction |= inst.operands[1].imm - 1;
9261 inst.instruction |= inst.operands[2].reg << 16;
9262}
0dd132b6 9263
c19d1205
ZW
9264static void
9265do_t_strex (void)
9266{
9267 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9268 || inst.operands[2].postind || inst.operands[2].writeback
9269 || inst.operands[2].immisreg || inst.operands[2].shifted
9270 || inst.operands[2].negative,
01cfc07f 9271 BAD_ADDR_MODE);
0dd132b6 9272
c19d1205
ZW
9273 inst.instruction |= inst.operands[0].reg << 8;
9274 inst.instruction |= inst.operands[1].reg << 12;
9275 inst.instruction |= inst.operands[2].reg << 16;
9276 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
9277}
9278
b99bd4ef 9279static void
c19d1205 9280do_t_strexd (void)
b99bd4ef 9281{
c19d1205
ZW
9282 if (!inst.operands[2].present)
9283 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 9284
c19d1205
ZW
9285 constraint (inst.operands[0].reg == inst.operands[1].reg
9286 || inst.operands[0].reg == inst.operands[2].reg
9287 || inst.operands[0].reg == inst.operands[3].reg
9288 || inst.operands[1].reg == inst.operands[2].reg,
9289 BAD_OVERLAP);
b99bd4ef 9290
c19d1205
ZW
9291 inst.instruction |= inst.operands[0].reg;
9292 inst.instruction |= inst.operands[1].reg << 12;
9293 inst.instruction |= inst.operands[2].reg << 8;
9294 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
9295}
9296
9297static void
c19d1205 9298do_t_sxtah (void)
b99bd4ef 9299{
c19d1205
ZW
9300 inst.instruction |= inst.operands[0].reg << 8;
9301 inst.instruction |= inst.operands[1].reg << 16;
9302 inst.instruction |= inst.operands[2].reg;
9303 inst.instruction |= inst.operands[3].imm << 4;
9304}
b99bd4ef 9305
c19d1205
ZW
9306static void
9307do_t_sxth (void)
9308{
9309 if (inst.instruction <= 0xffff && inst.size_req != 4
9310 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9311 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 9312 {
c19d1205
ZW
9313 inst.instruction = THUMB_OP16 (inst.instruction);
9314 inst.instruction |= inst.operands[0].reg;
9315 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9316 }
c19d1205 9317 else if (unified_syntax)
b99bd4ef 9318 {
c19d1205
ZW
9319 if (inst.instruction <= 0xffff)
9320 inst.instruction = THUMB_OP32 (inst.instruction);
9321 inst.instruction |= inst.operands[0].reg << 8;
9322 inst.instruction |= inst.operands[1].reg;
9323 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 9324 }
c19d1205 9325 else
b99bd4ef 9326 {
c19d1205
ZW
9327 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
9328 _("Thumb encoding does not support rotation"));
9329 constraint (1, BAD_HIREG);
b99bd4ef 9330 }
c19d1205 9331}
b99bd4ef 9332
c19d1205
ZW
9333static void
9334do_t_swi (void)
9335{
9336 inst.reloc.type = BFD_RELOC_ARM_SWI;
9337}
b99bd4ef 9338
92e90b6e
PB
9339static void
9340do_t_tb (void)
9341{
9342 int half;
9343
9344 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
9345 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9346 constraint (inst.operands[0].immisreg,
9347 _("instruction requires register index"));
92e90b6e
PB
9348 constraint (inst.operands[0].imm == 15,
9349 _("PC is not a valid index register"));
9350 constraint (!half && inst.operands[0].shifted,
9351 _("instruction does not allow shifted index"));
92e90b6e
PB
9352 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
9353}
9354
c19d1205
ZW
9355static void
9356do_t_usat (void)
9357{
9358 inst.instruction |= inst.operands[0].reg << 8;
9359 inst.instruction |= inst.operands[1].imm;
9360 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 9361
c19d1205 9362 if (inst.operands[3].present)
b99bd4ef 9363 {
c19d1205
ZW
9364 constraint (inst.reloc.exp.X_op != O_constant,
9365 _("expression too complex"));
9366 if (inst.reloc.exp.X_add_number != 0)
9367 {
9368 if (inst.operands[3].shift_kind == SHIFT_ASR)
9369 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 9370
c19d1205
ZW
9371 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
9372 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
9373 }
9374 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 9375 }
b99bd4ef
NC
9376}
9377
9378static void
c19d1205 9379do_t_usat16 (void)
b99bd4ef 9380{
c19d1205
ZW
9381 inst.instruction |= inst.operands[0].reg << 8;
9382 inst.instruction |= inst.operands[1].imm;
9383 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 9384}
c19d1205 9385
5287ad62
JB
9386/* Neon instruction encoder helpers. */
9387
9388/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 9389
5287ad62
JB
9390/* An "invalid" code for the following tables. */
9391#define N_INV -1u
9392
9393struct neon_tab_entry
b99bd4ef 9394{
5287ad62
JB
9395 unsigned integer;
9396 unsigned float_or_poly;
9397 unsigned scalar_or_imm;
9398};
9399
9400/* Map overloaded Neon opcodes to their respective encodings. */
9401#define NEON_ENC_TAB \
9402 X(vabd, 0x0000700, 0x1200d00, N_INV), \
9403 X(vmax, 0x0000600, 0x0000f00, N_INV), \
9404 X(vmin, 0x0000610, 0x0200f00, N_INV), \
9405 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
9406 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
9407 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
9408 X(vadd, 0x0000800, 0x0000d00, N_INV), \
9409 X(vsub, 0x1000800, 0x0200d00, N_INV), \
9410 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
9411 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
9412 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
9413 /* Register variants of the following two instructions are encoded as
9414 vcge / vcgt with the operands reversed. */ \
9415 X(vclt, 0x0000310, 0x1000e00, 0x1b10200), \
9416 X(vcle, 0x0000300, 0x1200e00, 0x1b10180), \
9417 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
9418 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
9419 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
9420 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
9421 X(vmlal, 0x0800800, N_INV, 0x0800240), \
9422 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
9423 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
9424 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
9425 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
9426 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
9427 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
9428 X(vshl, 0x0000400, N_INV, 0x0800510), \
9429 X(vqshl, 0x0000410, N_INV, 0x0800710), \
9430 X(vand, 0x0000110, N_INV, 0x0800030), \
9431 X(vbic, 0x0100110, N_INV, 0x0800030), \
9432 X(veor, 0x1000110, N_INV, N_INV), \
9433 X(vorn, 0x0300110, N_INV, 0x0800010), \
9434 X(vorr, 0x0200110, N_INV, 0x0800010), \
9435 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
9436 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
9437 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
9438 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
9439 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
9440 X(vst1, 0x0000000, 0x0800000, N_INV), \
9441 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
9442 X(vst2, 0x0000100, 0x0800100, N_INV), \
9443 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
9444 X(vst3, 0x0000200, 0x0800200, N_INV), \
9445 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
9446 X(vst4, 0x0000300, 0x0800300, N_INV), \
9447 X(vmovn, 0x1b20200, N_INV, N_INV), \
9448 X(vtrn, 0x1b20080, N_INV, N_INV), \
9449 X(vqmovn, 0x1b20200, N_INV, N_INV), \
9450 X(vqmovun, 0x1b20240, N_INV, N_INV)
9451
9452enum neon_opc
9453{
9454#define X(OPC,I,F,S) N_MNEM_##OPC
9455NEON_ENC_TAB
9456#undef X
9457};
b99bd4ef 9458
5287ad62
JB
9459static const struct neon_tab_entry neon_enc_tab[] =
9460{
9461#define X(OPC,I,F,S) { (I), (F), (S) }
9462NEON_ENC_TAB
9463#undef X
9464};
b99bd4ef 9465
5287ad62
JB
9466#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
9467#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
9468#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
9469#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
9470#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
9471#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
9472#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
9473#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
9474#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
9475
9476/* Shapes for instruction operands. Some (e.g. NS_DDD_QQQ) represent multiple
9477 shapes which an instruction can accept. The following mnemonic characters
9478 are used in the tag names for this enumeration:
9479
9480 D - Neon D<n> register
9481 Q - Neon Q<n> register
9482 I - Immediate
9483 S - Scalar
9484 R - ARM register
9485 L - D<n> register list
9486*/
b99bd4ef 9487
5287ad62
JB
9488enum neon_shape
9489{
9490 NS_DDD_QQQ,
9491 NS_DDD,
9492 NS_QQQ,
9493 NS_DDI_QQI,
9494 NS_DDI,
9495 NS_QQI,
9496 NS_DDS_QQS,
9497 NS_DDS,
9498 NS_QQS,
9499 NS_DD_QQ,
9500 NS_DD,
9501 NS_QQ,
9502 NS_DS_QS,
9503 NS_DS,
9504 NS_QS,
9505 NS_DR_QR,
9506 NS_DR,
9507 NS_QR,
9508 NS_DI_QI,
9509 NS_DI,
9510 NS_QI,
9511 NS_DLD,
9512 NS_DQ,
9513 NS_QD,
9514 NS_DQI,
9515 NS_QDI,
9516 NS_QDD,
9517 NS_QDS,
9518 NS_QQD,
9519 NS_DQQ,
9520 NS_DDDI_QQQI,
9521 NS_DDDI,
9522 NS_QQQI,
9523 NS_IGNORE
9524};
b99bd4ef 9525
5287ad62
JB
9526/* Bit masks used in type checking given instructions.
9527 'N_EQK' means the type must be the same as (or based on in some way) the key
9528 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
9529 set, various other bits can be set as well in order to modify the meaning of
9530 the type constraint. */
9531
9532enum neon_type_mask
9533{
9534 N_S8 = 0x000001,
9535 N_S16 = 0x000002,
9536 N_S32 = 0x000004,
9537 N_S64 = 0x000008,
9538 N_U8 = 0x000010,
9539 N_U16 = 0x000020,
9540 N_U32 = 0x000040,
9541 N_U64 = 0x000080,
9542 N_I8 = 0x000100,
9543 N_I16 = 0x000200,
9544 N_I32 = 0x000400,
9545 N_I64 = 0x000800,
9546 N_8 = 0x001000,
9547 N_16 = 0x002000,
9548 N_32 = 0x004000,
9549 N_64 = 0x008000,
9550 N_P8 = 0x010000,
9551 N_P16 = 0x020000,
9552 N_F32 = 0x040000,
9553 N_KEY = 0x080000, /* key element (main type specifier). */
9554 N_EQK = 0x100000, /* given operand has the same type & size as the key. */
9555 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
9556 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
9557 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
9558 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
9559 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
9560 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
dcbf9037 9561 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62
JB
9562 N_UTYP = 0,
9563 N_MAX_NONSPECIAL = N_F32
9564};
9565
dcbf9037
JB
9566#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
9567
5287ad62
JB
9568#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
9569#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
9570#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
9571#define N_SUF_32 (N_SU_32 | N_F32)
9572#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
9573#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
9574
9575/* Pass this as the first type argument to neon_check_type to ignore types
9576 altogether. */
9577#define N_IGNORE_TYPE (N_KEY | N_EQK)
9578
9579/* Check the shape of a Neon instruction (sizes of registers). Returns the more
9580 specific shape when there are two alternatives. For non-polymorphic shapes,
9581 checking is done during operand parsing, so is not implemented here. */
9582
9583static enum neon_shape
9584neon_check_shape (enum neon_shape req)
9585{
9586#define RR(X) (inst.operands[(X)].isreg)
9587#define RD(X) (inst.operands[(X)].isreg && !inst.operands[(X)].isquad)
9588#define RQ(X) (inst.operands[(X)].isreg && inst.operands[(X)].isquad)
9589#define IM(X) (!inst.operands[(X)].isreg && !inst.operands[(X)].isscalar)
9590#define SC(X) (!inst.operands[(X)].isreg && inst.operands[(X)].isscalar)
9591
9592 /* Fix missing optional operands. FIXME: we don't know at this point how
9593 many arguments we should have, so this makes the assumption that we have
9594 > 1. This is true of all current Neon opcodes, I think, but may not be
9595 true in the future. */
9596 if (!inst.operands[1].present)
9597 inst.operands[1] = inst.operands[0];
9598
9599 switch (req)
9600 {
9601 case NS_DDD_QQQ:
9602 {
9603 if (RD(0) && RD(1) && RD(2))
9604 return NS_DDD;
dcbf9037 9605 else if (RQ(0) && RQ(1) && RQ(2))
5287ad62
JB
9606 return NS_QQQ;
9607 else
dcbf9037
JB
9608 first_error (_("expected <Qd>, <Qn>, <Qm> or <Dd>, <Dn>, <Dm> "
9609 "operands"));
5287ad62
JB
9610 }
9611 break;
9612
9613 case NS_DDI_QQI:
9614 {
9615 if (RD(0) && RD(1) && IM(2))
9616 return NS_DDI;
9617 else if (RQ(0) && RQ(1) && IM(2))
9618 return NS_QQI;
9619 else
dcbf9037
JB
9620 first_error (_("expected <Qd>, <Qn>, #<imm> or <Dd>, <Dn>, #<imm> "
9621 "operands"));
5287ad62
JB
9622 }
9623 break;
9624
9625 case NS_DDDI_QQQI:
9626 {
9627 if (RD(0) && RD(1) && RD(2) && IM(3))
9628 return NS_DDDI;
9629 if (RQ(0) && RQ(1) && RQ(2) && IM(3))
9630 return NS_QQQI;
9631 else
dcbf9037
JB
9632 first_error (_("expected <Qd>, <Qn>, <Qm>, #<imm> or "
9633 "<Dd>, <Dn>, <Dm>, #<imm> operands"));
5287ad62
JB
9634 }
9635 break;
9636
9637 case NS_DDS_QQS:
9638 {
9639 if (RD(0) && RD(1) && SC(2))
9640 return NS_DDS;
9641 else if (RQ(0) && RQ(1) && SC(2))
9642 return NS_QQS;
9643 else
dcbf9037
JB
9644 first_error (_("expected <Qd>, <Qn>, <Dm[x]> or <Dd>, <Dn>, <Dm[x]> "
9645 "operands"));
5287ad62
JB
9646 }
9647 break;
9648
9649 case NS_DD_QQ:
9650 {
9651 if (RD(0) && RD(1))
9652 return NS_DD;
9653 else if (RQ(0) && RQ(1))
9654 return NS_QQ;
9655 else
dcbf9037 9656 first_error (_("expected <Qd>, <Qm> or <Dd>, <Dm> operands"));
5287ad62
JB
9657 }
9658 break;
9659
9660 case NS_DS_QS:
9661 {
9662 if (RD(0) && SC(1))
9663 return NS_DS;
9664 else if (RQ(0) && SC(1))
9665 return NS_QS;
9666 else
dcbf9037 9667 first_error (_("expected <Qd>, <Dm[x]> or <Dd>, <Dm[x]> operands"));
5287ad62
JB
9668 }
9669 break;
9670
9671 case NS_DR_QR:
9672 {
9673 if (RD(0) && RR(1))
9674 return NS_DR;
9675 else if (RQ(0) && RR(1))
9676 return NS_QR;
9677 else
dcbf9037 9678 first_error (_("expected <Qd>, <Rm> or <Dd>, <Rm> operands"));
5287ad62
JB
9679 }
9680 break;
9681
9682 case NS_DI_QI:
9683 {
9684 if (RD(0) && IM(1))
9685 return NS_DI;
9686 else if (RQ(0) && IM(1))
9687 return NS_QI;
9688 else
dcbf9037 9689 first_error (_("expected <Qd>, #<imm> or <Dd>, #<imm> operands"));
5287ad62
JB
9690 }
9691 break;
9692
9693 default:
9694 abort ();
9695 }
9696
9697 return req;
9698#undef RR
9699#undef RD
9700#undef RQ
9701#undef IM
9702#undef SC
9703}
9704
9705static void
9706neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
9707 unsigned *g_size)
9708{
9709 /* Allow modification to be made to types which are constrained to be
9710 based on the key element, based on bits set alongside N_EQK. */
9711 if ((typebits & N_EQK) != 0)
9712 {
9713 if ((typebits & N_HLF) != 0)
9714 *g_size /= 2;
9715 else if ((typebits & N_DBL) != 0)
9716 *g_size *= 2;
9717 if ((typebits & N_SGN) != 0)
9718 *g_type = NT_signed;
9719 else if ((typebits & N_UNS) != 0)
9720 *g_type = NT_unsigned;
9721 else if ((typebits & N_INT) != 0)
9722 *g_type = NT_integer;
9723 else if ((typebits & N_FLT) != 0)
9724 *g_type = NT_float;
dcbf9037
JB
9725 else if ((typebits & N_SIZ) != 0)
9726 *g_type = NT_untyped;
5287ad62
JB
9727 }
9728}
9729
9730/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
9731 operand type, i.e. the single type specified in a Neon instruction when it
9732 is the only one given. */
9733
9734static struct neon_type_el
9735neon_type_promote (struct neon_type_el *key, unsigned thisarg)
9736{
9737 struct neon_type_el dest = *key;
9738
9739 assert ((thisarg & N_EQK) != 0);
9740
9741 neon_modify_type_size (thisarg, &dest.type, &dest.size);
9742
9743 return dest;
9744}
9745
9746/* Convert Neon type and size into compact bitmask representation. */
9747
9748static enum neon_type_mask
9749type_chk_of_el_type (enum neon_el_type type, unsigned size)
9750{
9751 switch (type)
9752 {
9753 case NT_untyped:
9754 switch (size)
9755 {
9756 case 8: return N_8;
9757 case 16: return N_16;
9758 case 32: return N_32;
9759 case 64: return N_64;
9760 default: ;
9761 }
9762 break;
9763
9764 case NT_integer:
9765 switch (size)
9766 {
9767 case 8: return N_I8;
9768 case 16: return N_I16;
9769 case 32: return N_I32;
9770 case 64: return N_I64;
9771 default: ;
9772 }
9773 break;
9774
9775 case NT_float:
9776 if (size == 32)
9777 return N_F32;
9778 break;
9779
9780 case NT_poly:
9781 switch (size)
9782 {
9783 case 8: return N_P8;
9784 case 16: return N_P16;
9785 default: ;
9786 }
9787 break;
9788
9789 case NT_signed:
9790 switch (size)
9791 {
9792 case 8: return N_S8;
9793 case 16: return N_S16;
9794 case 32: return N_S32;
9795 case 64: return N_S64;
9796 default: ;
9797 }
9798 break;
9799
9800 case NT_unsigned:
9801 switch (size)
9802 {
9803 case 8: return N_U8;
9804 case 16: return N_U16;
9805 case 32: return N_U32;
9806 case 64: return N_U64;
9807 default: ;
9808 }
9809 break;
9810
9811 default: ;
9812 }
9813
9814 return N_UTYP;
9815}
9816
9817/* Convert compact Neon bitmask type representation to a type and size. Only
9818 handles the case where a single bit is set in the mask. */
9819
dcbf9037 9820static int
5287ad62
JB
9821el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
9822 enum neon_type_mask mask)
9823{
dcbf9037
JB
9824 if ((mask & N_EQK) != 0)
9825 return FAIL;
9826
5287ad62
JB
9827 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
9828 *size = 8;
dcbf9037 9829 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 9830 *size = 16;
dcbf9037 9831 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 9832 *size = 32;
dcbf9037 9833 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64)) != 0)
5287ad62 9834 *size = 64;
dcbf9037
JB
9835 else
9836 return FAIL;
9837
5287ad62
JB
9838 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
9839 *type = NT_signed;
dcbf9037 9840 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 9841 *type = NT_unsigned;
dcbf9037 9842 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 9843 *type = NT_integer;
dcbf9037 9844 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 9845 *type = NT_untyped;
dcbf9037 9846 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 9847 *type = NT_poly;
dcbf9037 9848 else if ((mask & N_F32) != 0)
5287ad62 9849 *type = NT_float;
dcbf9037
JB
9850 else
9851 return FAIL;
9852
9853 return SUCCESS;
5287ad62
JB
9854}
9855
9856/* Modify a bitmask of allowed types. This is only needed for type
9857 relaxation. */
9858
9859static unsigned
9860modify_types_allowed (unsigned allowed, unsigned mods)
9861{
9862 unsigned size;
9863 enum neon_el_type type;
9864 unsigned destmask;
9865 int i;
9866
9867 destmask = 0;
9868
9869 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
9870 {
dcbf9037
JB
9871 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
9872 {
9873 neon_modify_type_size (mods, &type, &size);
9874 destmask |= type_chk_of_el_type (type, size);
9875 }
5287ad62
JB
9876 }
9877
9878 return destmask;
9879}
9880
9881/* Check type and return type classification.
9882 The manual states (paraphrase): If one datatype is given, it indicates the
9883 type given in:
9884 - the second operand, if there is one
9885 - the operand, if there is no second operand
9886 - the result, if there are no operands.
9887 This isn't quite good enough though, so we use a concept of a "key" datatype
9888 which is set on a per-instruction basis, which is the one which matters when
9889 only one data type is written.
9890 Note: this function has side-effects (e.g. filling in missing operands). All
9891 Neon instructions should call it before performing bit encoding.
9892*/
9893
9894static struct neon_type_el
9895neon_check_type (unsigned els, enum neon_shape ns, ...)
9896{
9897 va_list ap;
9898 unsigned i, pass, key_el = 0;
9899 unsigned types[NEON_MAX_TYPE_ELS];
9900 enum neon_el_type k_type = NT_invtype;
9901 unsigned k_size = -1u;
9902 struct neon_type_el badtype = {NT_invtype, -1};
9903 unsigned key_allowed = 0;
9904
9905 /* Optional registers in Neon instructions are always (not) in operand 1.
9906 Fill in the missing operand here, if it was omitted. */
9907 if (els > 1 && !inst.operands[1].present)
9908 inst.operands[1] = inst.operands[0];
9909
9910 /* Suck up all the varargs. */
9911 va_start (ap, ns);
9912 for (i = 0; i < els; i++)
9913 {
9914 unsigned thisarg = va_arg (ap, unsigned);
9915 if (thisarg == N_IGNORE_TYPE)
9916 {
9917 va_end (ap);
9918 return badtype;
9919 }
9920 types[i] = thisarg;
9921 if ((thisarg & N_KEY) != 0)
9922 key_el = i;
9923 }
9924 va_end (ap);
9925
dcbf9037
JB
9926 if (inst.vectype.elems > 0)
9927 for (i = 0; i < els; i++)
9928 if (inst.operands[i].vectype.type != NT_invtype)
9929 {
9930 first_error (_("types specified in both the mnemonic and operands"));
9931 return badtype;
9932 }
9933
5287ad62
JB
9934 /* Duplicate inst.vectype elements here as necessary.
9935 FIXME: No idea if this is exactly the same as the ARM assembler,
9936 particularly when an insn takes one register and one non-register
9937 operand. */
9938 if (inst.vectype.elems == 1 && els > 1)
9939 {
9940 unsigned j;
9941 inst.vectype.elems = els;
9942 inst.vectype.el[key_el] = inst.vectype.el[0];
9943 for (j = 0; j < els; j++)
dcbf9037
JB
9944 if (j != key_el)
9945 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
9946 types[j]);
9947 }
9948 else if (inst.vectype.elems == 0 && els > 0)
9949 {
9950 unsigned j;
9951 /* No types were given after the mnemonic, so look for types specified
9952 after each operand. We allow some flexibility here; as long as the
9953 "key" operand has a type, we can infer the others. */
9954 for (j = 0; j < els; j++)
9955 if (inst.operands[j].vectype.type != NT_invtype)
9956 inst.vectype.el[j] = inst.operands[j].vectype;
9957
9958 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 9959 {
dcbf9037
JB
9960 for (j = 0; j < els; j++)
9961 if (inst.operands[j].vectype.type == NT_invtype)
9962 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
9963 types[j]);
9964 }
9965 else
9966 {
9967 first_error (_("operand types can't be inferred"));
9968 return badtype;
5287ad62
JB
9969 }
9970 }
9971 else if (inst.vectype.elems != els)
9972 {
dcbf9037 9973 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
9974 return badtype;
9975 }
9976
9977 for (pass = 0; pass < 2; pass++)
9978 {
9979 for (i = 0; i < els; i++)
9980 {
9981 unsigned thisarg = types[i];
9982 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
9983 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
9984 enum neon_el_type g_type = inst.vectype.el[i].type;
9985 unsigned g_size = inst.vectype.el[i].size;
9986
9987 /* Decay more-specific signed & unsigned types to sign-insensitive
9988 integer types if sign-specific variants are unavailable. */
9989 if ((g_type == NT_signed || g_type == NT_unsigned)
9990 && (types_allowed & N_SU_ALL) == 0)
9991 g_type = NT_integer;
9992
9993 /* If only untyped args are allowed, decay any more specific types to
9994 them. Some instructions only care about signs for some element
9995 sizes, so handle that properly. */
9996 if ((g_size == 8 && (types_allowed & N_8) != 0)
9997 || (g_size == 16 && (types_allowed & N_16) != 0)
9998 || (g_size == 32 && (types_allowed & N_32) != 0)
9999 || (g_size == 64 && (types_allowed & N_64) != 0))
10000 g_type = NT_untyped;
10001
10002 if (pass == 0)
10003 {
10004 if ((thisarg & N_KEY) != 0)
10005 {
10006 k_type = g_type;
10007 k_size = g_size;
10008 key_allowed = thisarg & ~N_KEY;
10009 }
10010 }
10011 else
10012 {
10013 if ((thisarg & N_EQK) == 0)
10014 {
10015 unsigned given_type = type_chk_of_el_type (g_type, g_size);
10016
10017 if ((given_type & types_allowed) == 0)
10018 {
dcbf9037 10019 first_error (_("bad type in Neon instruction"));
5287ad62
JB
10020 return badtype;
10021 }
10022 }
10023 else
10024 {
10025 enum neon_el_type mod_k_type = k_type;
10026 unsigned mod_k_size = k_size;
10027 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
10028 if (g_type != mod_k_type || g_size != mod_k_size)
10029 {
dcbf9037 10030 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
10031 return badtype;
10032 }
10033 }
10034 }
10035 }
10036 }
10037
10038 return inst.vectype.el[key_el];
10039}
10040
10041/* Fix up Neon data-processing instructions, ORing in the correct bits for
10042 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
10043
10044static unsigned
10045neon_dp_fixup (unsigned i)
10046{
10047 if (thumb_mode)
10048 {
10049 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
10050 if (i & (1 << 24))
10051 i |= 1 << 28;
10052
10053 i &= ~(1 << 24);
10054
10055 i |= 0xef000000;
10056 }
10057 else
10058 i |= 0xf2000000;
10059
10060 return i;
10061}
10062
10063/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
10064 (0, 1, 2, 3). */
10065
10066static unsigned
10067neon_logbits (unsigned x)
10068{
10069 return ffs (x) - 4;
10070}
10071
10072#define LOW4(R) ((R) & 0xf)
10073#define HI1(R) (((R) >> 4) & 1)
10074
10075/* Encode insns with bit pattern:
10076
10077 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
10078 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
10079
10080 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
10081 different meaning for some instruction. */
10082
10083static void
dcbf9037 10084neon_three_same (int isquad, int ubit, int size)
5287ad62 10085{
5287ad62
JB
10086 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10087 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10088 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
10089 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
10090 inst.instruction |= LOW4 (inst.operands[2].reg);
10091 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
10092 inst.instruction |= (isquad != 0) << 6;
10093 inst.instruction |= (ubit != 0) << 24;
10094 if (size != -1)
10095 inst.instruction |= neon_logbits (size) << 20;
10096
10097 inst.instruction = neon_dp_fixup (inst.instruction);
10098}
10099
10100/* Encode instructions of the form:
10101
10102 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
10103 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
10104
10105 Don't write size if SIZE == -1. */
10106
10107static void
10108neon_two_same (int qbit, int ubit, int size)
10109{
10110 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10111 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10112 inst.instruction |= LOW4 (inst.operands[1].reg);
10113 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
10114 inst.instruction |= (qbit != 0) << 6;
10115 inst.instruction |= (ubit != 0) << 24;
10116
10117 if (size != -1)
10118 inst.instruction |= neon_logbits (size) << 18;
10119
10120 inst.instruction = neon_dp_fixup (inst.instruction);
10121}
10122
10123/* Neon instruction encoders, in approximate order of appearance. */
10124
10125static void
10126do_neon_dyadic_i_su (void)
10127{
10128 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10129 struct neon_type_el et = neon_check_type (3, rs,
10130 N_EQK, N_EQK, N_SU_32 | N_KEY);
dcbf9037 10131 neon_three_same (rs == NS_QQQ, et.type == NT_unsigned, et.size);
5287ad62
JB
10132}
10133
10134static void
10135do_neon_dyadic_i64_su (void)
10136{
10137 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10138 struct neon_type_el et = neon_check_type (3, rs,
10139 N_EQK, N_EQK, N_SU_ALL | N_KEY);
dcbf9037 10140 neon_three_same (rs == NS_QQQ, et.type == NT_unsigned, et.size);
5287ad62
JB
10141}
10142
10143static void
10144neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
10145 unsigned immbits)
10146{
10147 unsigned size = et.size >> 3;
10148 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10149 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10150 inst.instruction |= LOW4 (inst.operands[1].reg);
10151 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
10152 inst.instruction |= (isquad != 0) << 6;
10153 inst.instruction |= immbits << 16;
10154 inst.instruction |= (size >> 3) << 7;
10155 inst.instruction |= (size & 0x7) << 19;
10156 if (write_ubit)
10157 inst.instruction |= (uval != 0) << 24;
10158
10159 inst.instruction = neon_dp_fixup (inst.instruction);
10160}
10161
10162static void
10163do_neon_shl_imm (void)
10164{
10165 if (!inst.operands[2].isreg)
10166 {
10167 enum neon_shape rs = neon_check_shape (NS_DDI_QQI);
10168 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
10169 inst.instruction = NEON_ENC_IMMED (inst.instruction);
10170 neon_imm_shift (FALSE, 0, rs == NS_QQI, et, inst.operands[2].imm);
10171 }
10172 else
10173 {
10174 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10175 struct neon_type_el et = neon_check_type (3, rs,
10176 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
10177 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
dcbf9037 10178 neon_three_same (rs == NS_QQQ, et.type == NT_unsigned, et.size);
5287ad62
JB
10179 }
10180}
10181
10182static void
10183do_neon_qshl_imm (void)
10184{
10185 if (!inst.operands[2].isreg)
10186 {
10187 enum neon_shape rs = neon_check_shape (NS_DDI_QQI);
10188 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
10189 inst.instruction = NEON_ENC_IMMED (inst.instruction);
10190 neon_imm_shift (TRUE, et.type == NT_unsigned, rs == NS_QQI, et,
10191 inst.operands[2].imm);
10192 }
10193 else
10194 {
10195 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10196 struct neon_type_el et = neon_check_type (3, rs,
10197 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
10198 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
dcbf9037 10199 neon_three_same (rs == NS_QQQ, et.type == NT_unsigned, et.size);
5287ad62
JB
10200 }
10201}
10202
10203static int
10204neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
10205{
10206 /* Handle .I8 and .I64 as pseudo-instructions. */
10207 switch (size)
10208 {
10209 case 8:
10210 /* Unfortunately, this will make everything apart from zero out-of-range.
10211 FIXME is this the intended semantics? There doesn't seem much point in
10212 accepting .I8 if so. */
10213 immediate |= immediate << 8;
10214 size = 16;
10215 break;
10216 case 64:
10217 /* Similarly, anything other than zero will be replicated in bits [63:32],
10218 which probably isn't want we want if we specified .I64. */
10219 if (immediate != 0)
10220 goto bad_immediate;
10221 size = 32;
10222 break;
10223 default: ;
10224 }
10225
10226 if (immediate == (immediate & 0x000000ff))
10227 {
10228 *immbits = immediate;
10229 return (size == 16) ? 0x9 : 0x1;
10230 }
10231 else if (immediate == (immediate & 0x0000ff00))
10232 {
10233 *immbits = immediate >> 8;
10234 return (size == 16) ? 0xb : 0x3;
10235 }
10236 else if (immediate == (immediate & 0x00ff0000))
10237 {
10238 *immbits = immediate >> 16;
10239 return 0x5;
10240 }
10241 else if (immediate == (immediate & 0xff000000))
10242 {
10243 *immbits = immediate >> 24;
10244 return 0x7;
10245 }
10246
10247 bad_immediate:
dcbf9037 10248 first_error (_("immediate value out of range"));
5287ad62
JB
10249 return FAIL;
10250}
10251
10252/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
10253 A, B, C, D. */
10254
10255static int
10256neon_bits_same_in_bytes (unsigned imm)
10257{
10258 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
10259 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
10260 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
10261 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
10262}
10263
10264/* For immediate of above form, return 0bABCD. */
10265
10266static unsigned
10267neon_squash_bits (unsigned imm)
10268{
10269 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
10270 | ((imm & 0x01000000) >> 21);
10271}
10272
136da414 10273/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
10274
10275static unsigned
10276neon_qfloat_bits (unsigned imm)
10277{
136da414 10278 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
10279}
10280
10281/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
10282 the instruction. *OP is passed as the initial value of the op field, and
10283 may be set to a different value depending on the constant (i.e.
10284 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
10285 MVN). */
10286
10287static int
10288neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, unsigned *immbits,
136da414 10289 int *op, int size, enum neon_el_type type)
5287ad62 10290{
136da414
JB
10291 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
10292 {
10293 if (size != 32 || *op == 1)
10294 return FAIL;
10295 *immbits = neon_qfloat_bits (immlo);
10296 return 0xf;
10297 }
10298 else if (size == 64 && neon_bits_same_in_bytes (immhi)
5287ad62
JB
10299 && neon_bits_same_in_bytes (immlo))
10300 {
10301 /* Check this one first so we don't have to bother with immhi in later
10302 tests. */
10303 if (*op == 1)
10304 return FAIL;
10305 *immbits = (neon_squash_bits (immhi) << 4) | neon_squash_bits (immlo);
10306 *op = 1;
10307 return 0xe;
10308 }
10309 else if (immhi != 0)
10310 return FAIL;
10311 else if (immlo == (immlo & 0x000000ff))
10312 {
10313 /* 64-bit case was already handled. Don't allow MVN with 8-bit
10314 immediate. */
10315 if ((size != 8 && size != 16 && size != 32)
10316 || (size == 8 && *op == 1))
10317 return FAIL;
10318 *immbits = immlo;
10319 return (size == 8) ? 0xe : (size == 16) ? 0x8 : 0x0;
10320 }
10321 else if (immlo == (immlo & 0x0000ff00))
10322 {
10323 if (size != 16 && size != 32)
10324 return FAIL;
10325 *immbits = immlo >> 8;
10326 return (size == 16) ? 0xa : 0x2;
10327 }
10328 else if (immlo == (immlo & 0x00ff0000))
10329 {
10330 if (size != 32)
10331 return FAIL;
10332 *immbits = immlo >> 16;
10333 return 0x4;
10334 }
10335 else if (immlo == (immlo & 0xff000000))
10336 {
10337 if (size != 32)
10338 return FAIL;
10339 *immbits = immlo >> 24;
10340 return 0x6;
10341 }
10342 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
10343 {
10344 if (size != 32)
10345 return FAIL;
10346 *immbits = (immlo >> 8) & 0xff;
10347 return 0xc;
10348 }
10349 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
10350 {
10351 if (size != 32)
10352 return FAIL;
10353 *immbits = (immlo >> 16) & 0xff;
10354 return 0xd;
10355 }
5287ad62
JB
10356
10357 return FAIL;
10358}
10359
10360/* Write immediate bits [7:0] to the following locations:
10361
10362 |28/24|23 19|18 16|15 4|3 0|
10363 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
10364
10365 This function is used by VMOV/VMVN/VORR/VBIC. */
10366
10367static void
10368neon_write_immbits (unsigned immbits)
10369{
10370 inst.instruction |= immbits & 0xf;
10371 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
10372 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
10373}
10374
10375/* Invert low-order SIZE bits of XHI:XLO. */
10376
10377static void
10378neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
10379{
10380 unsigned immlo = xlo ? *xlo : 0;
10381 unsigned immhi = xhi ? *xhi : 0;
10382
10383 switch (size)
10384 {
10385 case 8:
10386 immlo = (~immlo) & 0xff;
10387 break;
10388
10389 case 16:
10390 immlo = (~immlo) & 0xffff;
10391 break;
10392
10393 case 64:
10394 immhi = (~immhi) & 0xffffffff;
10395 /* fall through. */
10396
10397 case 32:
10398 immlo = (~immlo) & 0xffffffff;
10399 break;
10400
10401 default:
10402 abort ();
10403 }
10404
10405 if (xlo)
10406 *xlo = immlo;
10407
10408 if (xhi)
10409 *xhi = immhi;
10410}
10411
10412static void
10413do_neon_logic (void)
10414{
10415 if (inst.operands[2].present && inst.operands[2].isreg)
10416 {
10417 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10418 neon_check_type (3, rs, N_IGNORE_TYPE);
10419 /* U bit and size field were set as part of the bitmask. */
10420 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
dcbf9037 10421 neon_three_same (rs == NS_QQQ, 0, -1);
5287ad62
JB
10422 }
10423 else
10424 {
10425 enum neon_shape rs = neon_check_shape (NS_DI_QI);
10426 struct neon_type_el et = neon_check_type (1, rs, N_I8 | N_I16 | N_I32
10427 | N_I64 | N_F32);
10428 enum neon_opc opcode = inst.instruction & 0x0fffffff;
10429 unsigned immbits;
10430 int cmode;
10431
10432 if (et.type == NT_invtype)
10433 return;
10434
10435 inst.instruction = NEON_ENC_IMMED (inst.instruction);
10436
10437 switch (opcode)
10438 {
10439 case N_MNEM_vbic:
10440 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
10441 et.size);
10442 break;
10443
10444 case N_MNEM_vorr:
10445 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
10446 et.size);
10447 break;
10448
10449 case N_MNEM_vand:
10450 /* Pseudo-instruction for VBIC. */
10451 immbits = inst.operands[1].imm;
10452 neon_invert_size (&immbits, 0, et.size);
10453 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
10454 break;
10455
10456 case N_MNEM_vorn:
10457 /* Pseudo-instruction for VORR. */
10458 immbits = inst.operands[1].imm;
10459 neon_invert_size (&immbits, 0, et.size);
10460 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
10461 break;
10462
10463 default:
10464 abort ();
10465 }
10466
10467 if (cmode == FAIL)
10468 return;
10469
10470 inst.instruction |= (rs == NS_QI) << 6;
10471 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10472 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10473 inst.instruction |= cmode << 8;
10474 neon_write_immbits (immbits);
10475
10476 inst.instruction = neon_dp_fixup (inst.instruction);
10477 }
10478}
10479
10480static void
10481do_neon_bitfield (void)
10482{
10483 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
dcbf9037
JB
10484 neon_check_type (3, rs, N_IGNORE_TYPE);
10485 neon_three_same (rs == NS_QQQ, 0, -1);
5287ad62
JB
10486}
10487
10488static void
dcbf9037
JB
10489neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
10490 unsigned destbits)
5287ad62
JB
10491{
10492 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
dcbf9037
JB
10493 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
10494 types | N_KEY);
5287ad62
JB
10495 if (et.type == NT_float)
10496 {
10497 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
dcbf9037 10498 neon_three_same (rs == NS_QQQ, 0, -1);
5287ad62
JB
10499 }
10500 else
10501 {
10502 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
dcbf9037 10503 neon_three_same (rs == NS_QQQ, et.type == ubit_meaning, et.size);
5287ad62
JB
10504 }
10505}
10506
10507static void
10508do_neon_dyadic_if_su (void)
10509{
dcbf9037 10510 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
10511}
10512
10513static void
10514do_neon_dyadic_if_su_d (void)
10515{
10516 /* This version only allow D registers, but that constraint is enforced during
10517 operand parsing so we don't need to do anything extra here. */
dcbf9037 10518 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
10519}
10520
10521static void
10522do_neon_dyadic_if_i (void)
10523{
dcbf9037 10524 neon_dyadic_misc (NT_unsigned, N_IF_32, 0);
5287ad62
JB
10525}
10526
10527static void
10528do_neon_dyadic_if_i_d (void)
10529{
dcbf9037 10530 neon_dyadic_misc (NT_unsigned, N_IF_32, 0);
5287ad62
JB
10531}
10532
10533static void
10534do_neon_addsub_if_i (void)
10535{
10536 /* The "untyped" case can't happen. Do this to stop the "U" bit being
10537 affected if we specify unsigned args. */
dcbf9037 10538 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
10539}
10540
10541/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
10542 result to be:
10543 V<op> A,B (A is operand 0, B is operand 2)
10544 to mean:
10545 V<op> A,B,A
10546 not:
10547 V<op> A,B,B
10548 so handle that case specially. */
10549
10550static void
10551neon_exchange_operands (void)
10552{
10553 void *scratch = alloca (sizeof (inst.operands[0]));
10554 if (inst.operands[1].present)
10555 {
10556 /* Swap operands[1] and operands[2]. */
10557 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
10558 inst.operands[1] = inst.operands[2];
10559 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
10560 }
10561 else
10562 {
10563 inst.operands[1] = inst.operands[2];
10564 inst.operands[2] = inst.operands[0];
10565 }
10566}
10567
10568static void
10569neon_compare (unsigned regtypes, unsigned immtypes, int invert)
10570{
10571 if (inst.operands[2].isreg)
10572 {
10573 if (invert)
10574 neon_exchange_operands ();
dcbf9037 10575 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
10576 }
10577 else
10578 {
10579 enum neon_shape rs = neon_check_shape (NS_DDI_QQI);
dcbf9037
JB
10580 struct neon_type_el et = neon_check_type (2, rs,
10581 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
10582
10583 inst.instruction = NEON_ENC_IMMED (inst.instruction);
10584 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10585 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10586 inst.instruction |= LOW4 (inst.operands[1].reg);
10587 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
10588 inst.instruction |= (rs == NS_QQI) << 6;
10589 inst.instruction |= (et.type == NT_float) << 10;
10590 inst.instruction |= neon_logbits (et.size) << 18;
10591
10592 inst.instruction = neon_dp_fixup (inst.instruction);
10593 }
10594}
10595
10596static void
10597do_neon_cmp (void)
10598{
10599 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
10600}
10601
10602static void
10603do_neon_cmp_inv (void)
10604{
10605 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
10606}
10607
10608static void
10609do_neon_ceq (void)
10610{
10611 neon_compare (N_IF_32, N_IF_32, FALSE);
10612}
10613
10614/* For multiply instructions, we have the possibility of 16-bit or 32-bit
10615 scalars, which are encoded in 5 bits, M : Rm.
10616 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
10617 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
10618 index in M. */
10619
10620static unsigned
10621neon_scalar_for_mul (unsigned scalar, unsigned elsize)
10622{
dcbf9037
JB
10623 unsigned regno = NEON_SCALAR_REG (scalar);
10624 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
10625
10626 switch (elsize)
10627 {
10628 case 16:
10629 if (regno > 7 || elno > 3)
10630 goto bad_scalar;
10631 return regno | (elno << 3);
10632
10633 case 32:
10634 if (regno > 15 || elno > 1)
10635 goto bad_scalar;
10636 return regno | (elno << 4);
10637
10638 default:
10639 bad_scalar:
dcbf9037 10640 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
10641 }
10642
10643 return 0;
10644}
10645
10646/* Encode multiply / multiply-accumulate scalar instructions. */
10647
10648static void
10649neon_mul_mac (struct neon_type_el et, int ubit)
10650{
dcbf9037
JB
10651 unsigned scalar;
10652
10653 /* Give a more helpful error message if we have an invalid type. */
10654 if (et.type == NT_invtype)
10655 return;
10656
10657 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
10658 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10659 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10660 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
10661 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
10662 inst.instruction |= LOW4 (scalar);
10663 inst.instruction |= HI1 (scalar) << 5;
10664 inst.instruction |= (et.type == NT_float) << 8;
10665 inst.instruction |= neon_logbits (et.size) << 20;
10666 inst.instruction |= (ubit != 0) << 24;
10667
10668 inst.instruction = neon_dp_fixup (inst.instruction);
10669}
10670
10671static void
10672do_neon_mac_maybe_scalar (void)
10673{
10674 if (inst.operands[2].isscalar)
10675 {
10676 enum neon_shape rs = neon_check_shape (NS_DDS_QQS);
10677 struct neon_type_el et = neon_check_type (3, rs,
10678 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
10679 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
10680 neon_mul_mac (et, rs == NS_QQS);
10681 }
10682 else
10683 do_neon_dyadic_if_i ();
10684}
10685
10686static void
10687do_neon_tst (void)
10688{
10689 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10690 struct neon_type_el et = neon_check_type (3, rs,
10691 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
dcbf9037 10692 neon_three_same (rs == NS_QQQ, 0, et.size);
5287ad62
JB
10693}
10694
10695/* VMUL with 3 registers allows the P8 type. The scalar version supports the
10696 same types as the MAC equivalents. The polynomial type for this instruction
10697 is encoded the same as the integer type. */
10698
10699static void
10700do_neon_mul (void)
10701{
10702 if (inst.operands[2].isscalar)
10703 do_neon_mac_maybe_scalar ();
10704 else
dcbf9037 10705 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
10706}
10707
10708static void
10709do_neon_qdmulh (void)
10710{
10711 if (inst.operands[2].isscalar)
10712 {
10713 enum neon_shape rs = neon_check_shape (NS_DDS_QQS);
10714 struct neon_type_el et = neon_check_type (3, rs,
10715 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
10716 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
10717 neon_mul_mac (et, rs == NS_QQS);
10718 }
10719 else
10720 {
10721 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10722 struct neon_type_el et = neon_check_type (3, rs,
10723 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
10724 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
10725 /* The U bit (rounding) comes from bit mask. */
dcbf9037 10726 neon_three_same (rs == NS_QQQ, 0, et.size);
5287ad62
JB
10727 }
10728}
10729
10730static void
10731do_neon_fcmp_absolute (void)
10732{
10733 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10734 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
10735 /* Size field comes from bit mask. */
dcbf9037 10736 neon_three_same (rs == NS_QQQ, 1, -1);
5287ad62
JB
10737}
10738
10739static void
10740do_neon_fcmp_absolute_inv (void)
10741{
10742 neon_exchange_operands ();
10743 do_neon_fcmp_absolute ();
10744}
10745
10746static void
10747do_neon_step (void)
10748{
10749 enum neon_shape rs = neon_check_shape (NS_DDD_QQQ);
10750 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
dcbf9037 10751 neon_three_same (rs == NS_QQQ, 0, -1);
5287ad62
JB
10752}
10753
10754static void
10755do_neon_abs_neg (void)
10756{
10757 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
10758 struct neon_type_el et = neon_check_type (3, rs,
10759 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
10760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10761 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10762 inst.instruction |= LOW4 (inst.operands[1].reg);
10763 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
10764 inst.instruction |= (rs == NS_QQ) << 6;
10765 inst.instruction |= (et.type == NT_float) << 10;
10766 inst.instruction |= neon_logbits (et.size) << 18;
10767
10768 inst.instruction = neon_dp_fixup (inst.instruction);
10769}
10770
10771static void
10772do_neon_sli (void)
10773{
10774 enum neon_shape rs = neon_check_shape (NS_DDI_QQI);
10775 struct neon_type_el et = neon_check_type (2, rs,
10776 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
10777 int imm = inst.operands[2].imm;
10778 constraint (imm < 0 || (unsigned)imm >= et.size,
10779 _("immediate out of range for insert"));
10780 neon_imm_shift (FALSE, 0, rs == NS_QQI, et, imm);
10781}
10782
10783static void
10784do_neon_sri (void)
10785{
10786 enum neon_shape rs = neon_check_shape (NS_DDI_QQI);
10787 struct neon_type_el et = neon_check_type (2, rs,
10788 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
10789 int imm = inst.operands[2].imm;
10790 constraint (imm < 1 || (unsigned)imm > et.size,
10791 _("immediate out of range for insert"));
10792 neon_imm_shift (FALSE, 0, rs == NS_QQI, et, et.size - imm);
10793}
10794
10795static void
10796do_neon_qshlu_imm (void)
10797{
10798 enum neon_shape rs = neon_check_shape (NS_DDI_QQI);
10799 struct neon_type_el et = neon_check_type (2, rs,
10800 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
10801 int imm = inst.operands[2].imm;
10802 constraint (imm < 0 || (unsigned)imm >= et.size,
10803 _("immediate out of range for shift"));
10804 /* Only encodes the 'U present' variant of the instruction.
10805 In this case, signed types have OP (bit 8) set to 0.
10806 Unsigned types have OP set to 1. */
10807 inst.instruction |= (et.type == NT_unsigned) << 8;
10808 /* The rest of the bits are the same as other immediate shifts. */
10809 neon_imm_shift (FALSE, 0, rs == NS_QQI, et, imm);
10810}
10811
10812static void
10813do_neon_qmovn (void)
10814{
10815 struct neon_type_el et = neon_check_type (2, NS_DQ,
10816 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
10817 /* Saturating move where operands can be signed or unsigned, and the
10818 destination has the same signedness. */
10819 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
10820 if (et.type == NT_unsigned)
10821 inst.instruction |= 0xc0;
10822 else
10823 inst.instruction |= 0x80;
10824 neon_two_same (0, 1, et.size / 2);
10825}
10826
10827static void
10828do_neon_qmovun (void)
10829{
10830 struct neon_type_el et = neon_check_type (2, NS_DQ,
10831 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
10832 /* Saturating move with unsigned results. Operands must be signed. */
10833 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
10834 neon_two_same (0, 1, et.size / 2);
10835}
10836
10837static void
10838do_neon_rshift_sat_narrow (void)
10839{
10840 /* FIXME: Types for narrowing. If operands are signed, results can be signed
10841 or unsigned. If operands are unsigned, results must also be unsigned. */
10842 struct neon_type_el et = neon_check_type (2, NS_DQI,
10843 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
10844 int imm = inst.operands[2].imm;
10845 /* This gets the bounds check, size encoding and immediate bits calculation
10846 right. */
10847 et.size /= 2;
10848
10849 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
10850 VQMOVN.I<size> <Dd>, <Qm>. */
10851 if (imm == 0)
10852 {
10853 inst.operands[2].present = 0;
10854 inst.instruction = N_MNEM_vqmovn;
10855 do_neon_qmovn ();
10856 return;
10857 }
10858
10859 constraint (imm < 1 || (unsigned)imm > et.size,
10860 _("immediate out of range"));
10861 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
10862}
10863
10864static void
10865do_neon_rshift_sat_narrow_u (void)
10866{
10867 /* FIXME: Types for narrowing. If operands are signed, results can be signed
10868 or unsigned. If operands are unsigned, results must also be unsigned. */
10869 struct neon_type_el et = neon_check_type (2, NS_DQI,
10870 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
10871 int imm = inst.operands[2].imm;
10872 /* This gets the bounds check, size encoding and immediate bits calculation
10873 right. */
10874 et.size /= 2;
10875
10876 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
10877 VQMOVUN.I<size> <Dd>, <Qm>. */
10878 if (imm == 0)
10879 {
10880 inst.operands[2].present = 0;
10881 inst.instruction = N_MNEM_vqmovun;
10882 do_neon_qmovun ();
10883 return;
10884 }
10885
10886 constraint (imm < 1 || (unsigned)imm > et.size,
10887 _("immediate out of range"));
10888 /* FIXME: The manual is kind of unclear about what value U should have in
10889 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
10890 must be 1. */
10891 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
10892}
10893
10894static void
10895do_neon_movn (void)
10896{
10897 struct neon_type_el et = neon_check_type (2, NS_DQ,
10898 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
10899 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
10900 neon_two_same (0, 1, et.size / 2);
10901}
10902
10903static void
10904do_neon_rshift_narrow (void)
10905{
10906 struct neon_type_el et = neon_check_type (2, NS_DQI,
10907 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
10908 int imm = inst.operands[2].imm;
10909 /* This gets the bounds check, size encoding and immediate bits calculation
10910 right. */
10911 et.size /= 2;
10912
10913 /* If immediate is zero then we are a pseudo-instruction for
10914 VMOVN.I<size> <Dd>, <Qm> */
10915 if (imm == 0)
10916 {
10917 inst.operands[2].present = 0;
10918 inst.instruction = N_MNEM_vmovn;
10919 do_neon_movn ();
10920 return;
10921 }
10922
10923 constraint (imm < 1 || (unsigned)imm > et.size,
10924 _("immediate out of range for narrowing operation"));
10925 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
10926}
10927
10928static void
10929do_neon_shll (void)
10930{
10931 /* FIXME: Type checking when lengthening. */
10932 struct neon_type_el et = neon_check_type (2, NS_QDI,
10933 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
10934 unsigned imm = inst.operands[2].imm;
10935
10936 if (imm == et.size)
10937 {
10938 /* Maximum shift variant. */
10939 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
10940 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10941 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10942 inst.instruction |= LOW4 (inst.operands[1].reg);
10943 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
10944 inst.instruction |= neon_logbits (et.size) << 18;
10945
10946 inst.instruction = neon_dp_fixup (inst.instruction);
10947 }
10948 else
10949 {
10950 /* A more-specific type check for non-max versions. */
10951 et = neon_check_type (2, NS_QDI,
10952 N_EQK | N_DBL, N_SU_32 | N_KEY);
10953 inst.instruction = NEON_ENC_IMMED (inst.instruction);
10954 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
10955 }
10956}
10957
10958/* Check the various types for the VCVT instruction, and return the one that
10959 the current instruction is. */
10960
10961static int
10962neon_cvt_flavour (enum neon_shape rs)
10963{
10964#define CVT_VAR(C,X,Y) \
10965 et = neon_check_type (2, rs, (X), (Y)); \
10966 if (et.type != NT_invtype) \
10967 { \
10968 inst.error = NULL; \
10969 return (C); \
10970 }
10971 struct neon_type_el et;
10972
10973 CVT_VAR (0, N_S32, N_F32);
10974 CVT_VAR (1, N_U32, N_F32);
10975 CVT_VAR (2, N_F32, N_S32);
10976 CVT_VAR (3, N_F32, N_U32);
10977
10978 return -1;
10979#undef CVT_VAR
10980}
10981
10982static void
10983do_neon_cvt (void)
10984{
10985 /* Fixed-point conversion with #0 immediate is encoded as an integer
10986 conversion. */
10987 if (inst.operands[2].present && inst.operands[2].imm != 0)
10988 {
10989 enum neon_shape rs = neon_check_shape (NS_DDI_QQI);
10990 int flavour = neon_cvt_flavour (rs);
10991 unsigned immbits = 32 - inst.operands[2].imm;
10992 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
10993 inst.instruction = NEON_ENC_IMMED (inst.instruction);
10994 if (flavour != -1)
10995 inst.instruction |= enctab[flavour];
10996 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
10997 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
10998 inst.instruction |= LOW4 (inst.operands[1].reg);
10999 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11000 inst.instruction |= (rs == NS_QQI) << 6;
11001 inst.instruction |= 1 << 21;
11002 inst.instruction |= immbits << 16;
11003 }
11004 else
11005 {
11006 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11007 int flavour = neon_cvt_flavour (rs);
11008 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
11009 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11010 if (flavour != -1)
11011 inst.instruction |= enctab[flavour];
11012 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11013 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11014 inst.instruction |= LOW4 (inst.operands[1].reg);
11015 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11016 inst.instruction |= (rs == NS_QQ) << 6;
11017 inst.instruction |= 2 << 18;
11018 }
11019 inst.instruction = neon_dp_fixup (inst.instruction);
11020}
11021
11022static void
11023neon_move_immediate (void)
11024{
11025 enum neon_shape rs = neon_check_shape (NS_DI_QI);
11026 struct neon_type_el et = neon_check_type (1, rs,
11027 N_I8 | N_I16 | N_I32 | N_I64 | N_F32);
11028 unsigned immlo, immhi = 0, immbits;
11029 int op, cmode;
11030
11031 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
11032 op = (inst.instruction & (1 << 5)) != 0;
11033
11034 immlo = inst.operands[1].imm;
11035 if (inst.operands[1].regisimm)
11036 immhi = inst.operands[1].reg;
11037
11038 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
11039 _("immediate has bits set outside the operand size"));
11040
11041 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
136da414 11042 et.size, et.type)) == FAIL)
5287ad62
JB
11043 {
11044 /* Invert relevant bits only. */
11045 neon_invert_size (&immlo, &immhi, et.size);
11046 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
11047 with one or the other; those cases are caught by
11048 neon_cmode_for_move_imm. */
11049 op = !op;
11050 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
136da414 11051 et.size, et.type)) == FAIL)
5287ad62 11052 {
dcbf9037 11053 first_error (_("immediate out of range"));
5287ad62
JB
11054 return;
11055 }
11056 }
11057
11058 inst.instruction &= ~(1 << 5);
11059 inst.instruction |= op << 5;
11060
11061 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11062 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11063 inst.instruction |= (rs == NS_QI) << 6;
11064 inst.instruction |= cmode << 8;
11065
11066 neon_write_immbits (immbits);
11067}
11068
11069static void
11070do_neon_mvn (void)
11071{
11072 if (inst.operands[1].isreg)
11073 {
11074 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11075
11076 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11077 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11078 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11079 inst.instruction |= LOW4 (inst.operands[1].reg);
11080 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11081 inst.instruction |= (rs == NS_QQ) << 6;
11082 }
11083 else
11084 {
11085 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11086 neon_move_immediate ();
11087 }
11088
11089 inst.instruction = neon_dp_fixup (inst.instruction);
11090}
11091
11092/* Encode instructions of form:
11093
11094 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11095 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
11096
11097*/
11098
11099static void
11100neon_mixed_length (struct neon_type_el et, unsigned size)
11101{
11102 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11103 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11104 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11105 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11106 inst.instruction |= LOW4 (inst.operands[2].reg);
11107 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11108 inst.instruction |= (et.type == NT_unsigned) << 24;
11109 inst.instruction |= neon_logbits (size) << 20;
11110
11111 inst.instruction = neon_dp_fixup (inst.instruction);
11112}
11113
11114static void
11115do_neon_dyadic_long (void)
11116{
11117 /* FIXME: Type checking for lengthening op. */
11118 struct neon_type_el et = neon_check_type (3, NS_QDD,
11119 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
11120 neon_mixed_length (et, et.size);
11121}
11122
11123static void
11124do_neon_abal (void)
11125{
11126 struct neon_type_el et = neon_check_type (3, NS_QDD,
11127 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
11128 neon_mixed_length (et, et.size);
11129}
11130
11131static void
11132neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
11133{
11134 if (inst.operands[2].isscalar)
11135 {
dcbf9037
JB
11136 struct neon_type_el et = neon_check_type (3, NS_QDS,
11137 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
11138 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
11139 neon_mul_mac (et, et.type == NT_unsigned);
11140 }
11141 else
11142 {
11143 struct neon_type_el et = neon_check_type (3, NS_QDD,
11144 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
11145 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11146 neon_mixed_length (et, et.size);
11147 }
11148}
11149
11150static void
11151do_neon_mac_maybe_scalar_long (void)
11152{
11153 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
11154}
11155
11156static void
11157do_neon_dyadic_wide (void)
11158{
11159 struct neon_type_el et = neon_check_type (3, NS_QQD,
11160 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
11161 neon_mixed_length (et, et.size);
11162}
11163
11164static void
11165do_neon_dyadic_narrow (void)
11166{
11167 struct neon_type_el et = neon_check_type (3, NS_QDD,
11168 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
11169 neon_mixed_length (et, et.size / 2);
11170}
11171
11172static void
11173do_neon_mul_sat_scalar_long (void)
11174{
11175 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
11176}
11177
11178static void
11179do_neon_vmull (void)
11180{
11181 if (inst.operands[2].isscalar)
11182 do_neon_mac_maybe_scalar_long ();
11183 else
11184 {
11185 struct neon_type_el et = neon_check_type (3, NS_QDD,
11186 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
11187 if (et.type == NT_poly)
11188 inst.instruction = NEON_ENC_POLY (inst.instruction);
11189 else
11190 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11191 /* For polynomial encoding, size field must be 0b00 and the U bit must be
11192 zero. Should be OK as-is. */
11193 neon_mixed_length (et, et.size);
11194 }
11195}
11196
11197static void
11198do_neon_ext (void)
11199{
11200 enum neon_shape rs = neon_check_shape (NS_DDDI_QQQI);
11201 struct neon_type_el et = neon_check_type (3, rs,
11202 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11203 unsigned imm = (inst.operands[3].imm * et.size) / 8;
11204 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11205 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11206 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11207 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11208 inst.instruction |= LOW4 (inst.operands[2].reg);
11209 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11210 inst.instruction |= (rs == NS_QQQI) << 6;
11211 inst.instruction |= imm << 8;
11212
11213 inst.instruction = neon_dp_fixup (inst.instruction);
11214}
11215
11216static void
11217do_neon_rev (void)
11218{
11219 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11220 struct neon_type_el et = neon_check_type (2, rs,
11221 N_EQK, N_8 | N_16 | N_32 | N_KEY);
11222 unsigned op = (inst.instruction >> 7) & 3;
11223 /* N (width of reversed regions) is encoded as part of the bitmask. We
11224 extract it here to check the elements to be reversed are smaller.
11225 Otherwise we'd get a reserved instruction. */
11226 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
11227 assert (elsize != 0);
11228 constraint (et.size >= elsize,
11229 _("elements must be smaller than reversal region"));
11230 neon_two_same (rs == NS_QQ, 1, et.size);
11231}
11232
11233static void
11234do_neon_dup (void)
11235{
11236 if (inst.operands[1].isscalar)
11237 {
11238 enum neon_shape rs = neon_check_shape (NS_DS_QS);
dcbf9037
JB
11239 struct neon_type_el et = neon_check_type (2, rs,
11240 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 11241 unsigned sizebits = et.size >> 3;
dcbf9037 11242 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 11243 int logsize = neon_logbits (et.size);
dcbf9037 11244 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
5287ad62
JB
11245 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
11246 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11247 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11248 inst.instruction |= LOW4 (dm);
11249 inst.instruction |= HI1 (dm) << 5;
11250 inst.instruction |= (rs == NS_QS) << 6;
11251 inst.instruction |= x << 17;
11252 inst.instruction |= sizebits << 16;
11253
11254 inst.instruction = neon_dp_fixup (inst.instruction);
11255 }
11256 else
11257 {
11258 enum neon_shape rs = neon_check_shape (NS_DR_QR);
dcbf9037
JB
11259 struct neon_type_el et = neon_check_type (1, rs,
11260 N_8 | N_16 | N_32 | N_KEY);
5287ad62
JB
11261 unsigned save_cond = inst.instruction & 0xf0000000;
11262 /* Duplicate ARM register to lanes of vector. */
11263 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
11264 switch (et.size)
11265 {
11266 case 8: inst.instruction |= 0x400000; break;
11267 case 16: inst.instruction |= 0x000020; break;
11268 case 32: inst.instruction |= 0x000000; break;
11269 default: break;
11270 }
11271 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
11272 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
11273 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
11274 inst.instruction |= (rs == NS_QR) << 21;
11275 /* The encoding for this instruction is identical for the ARM and Thumb
11276 variants, except for the condition field. */
11277 if (thumb_mode)
11278 inst.instruction |= 0xe0000000;
11279 else
11280 inst.instruction |= save_cond;
11281 }
11282}
11283
11284/* VMOV has particularly many variations. It can be one of:
11285 0. VMOV<c><q> <Qd>, <Qm>
11286 1. VMOV<c><q> <Dd>, <Dm>
11287 (Register operations, which are VORR with Rm = Rn.)
11288 2. VMOV<c><q>.<dt> <Qd>, #<imm>
11289 3. VMOV<c><q>.<dt> <Dd>, #<imm>
11290 (Immediate loads.)
11291 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
11292 (ARM register to scalar.)
11293 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
11294 (Two ARM registers to vector.)
11295 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
11296 (Scalar to ARM register.)
11297 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
11298 (Vector to two ARM registers.)
11299
11300 We should have just enough information to be able to disambiguate most of
11301 these, apart from "Two ARM registers to vector" and "Vector to two ARM
11302 registers" cases. For these, abuse the .regisimm operand field to signify a
11303 Neon register.
11304
11305 All the encoded bits are hardcoded by this function.
11306
11307 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
11308 can specify a type where it doesn't make sense to, and is ignored).
11309*/
11310
11311static void
11312do_neon_mov (void)
11313{
11314 int nargs = inst.operands[0].present + inst.operands[1].present
11315 + inst.operands[2].present;
11316 unsigned save_cond = thumb_mode ? 0xe0000000 : inst.instruction & 0xf0000000;
11317
11318 switch (nargs)
11319 {
11320 case 2:
11321 /* Cases 0, 1, 2, 3, 4, 6. */
11322 if (inst.operands[1].isscalar)
11323 {
11324 /* Case 6. */
dcbf9037
JB
11325 struct neon_type_el et = neon_check_type (2, NS_IGNORE,
11326 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
5287ad62 11327 unsigned logsize = neon_logbits (et.size);
dcbf9037
JB
11328 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
11329 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
5287ad62
JB
11330 unsigned abcdebits = 0;
11331
dcbf9037 11332 constraint (et.type == NT_invtype, _("bad type for scalar"));
5287ad62
JB
11333 constraint (x >= 64 / et.size, _("scalar index out of range"));
11334
11335 switch (et.size)
11336 {
11337 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
11338 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
11339 case 32: abcdebits = 0x00; break;
11340 default: ;
11341 }
11342
11343 abcdebits |= x << logsize;
11344 inst.instruction = save_cond;
11345 inst.instruction |= 0xe100b10;
11346 inst.instruction |= LOW4 (dn) << 16;
11347 inst.instruction |= HI1 (dn) << 7;
11348 inst.instruction |= inst.operands[0].reg << 12;
11349 inst.instruction |= (abcdebits & 3) << 5;
11350 inst.instruction |= (abcdebits >> 2) << 21;
11351 }
11352 else if (inst.operands[1].isreg)
11353 {
11354 /* Cases 0, 1, 4. */
11355 if (inst.operands[0].isscalar)
11356 {
11357 /* Case 4. */
11358 unsigned bcdebits = 0;
dcbf9037
JB
11359 struct neon_type_el et = neon_check_type (2, NS_IGNORE,
11360 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 11361 int logsize = neon_logbits (et.size);
dcbf9037
JB
11362 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
11363 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
5287ad62 11364
dcbf9037 11365 constraint (et.type == NT_invtype, _("bad type for scalar"));
5287ad62
JB
11366 constraint (x >= 64 / et.size, _("scalar index out of range"));
11367
11368 switch (et.size)
11369 {
11370 case 8: bcdebits = 0x8; break;
11371 case 16: bcdebits = 0x1; break;
11372 case 32: bcdebits = 0x0; break;
11373 default: ;
11374 }
11375
11376 bcdebits |= x << logsize;
11377 inst.instruction = save_cond;
11378 inst.instruction |= 0xe000b10;
11379 inst.instruction |= LOW4 (dn) << 16;
11380 inst.instruction |= HI1 (dn) << 7;
11381 inst.instruction |= inst.operands[1].reg << 12;
11382 inst.instruction |= (bcdebits & 3) << 5;
11383 inst.instruction |= (bcdebits >> 2) << 21;
11384 }
11385 else
11386 {
11387 /* Cases 0, 1. */
11388 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11389 /* The architecture manual I have doesn't explicitly state which
11390 value the U bit should have for register->register moves, but
11391 the equivalent VORR instruction has U = 0, so do that. */
11392 inst.instruction = 0x0200110;
11393 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11394 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11395 inst.instruction |= LOW4 (inst.operands[1].reg);
11396 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11397 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11398 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11399 inst.instruction |= (rs == NS_QQ) << 6;
11400
11401 inst.instruction = neon_dp_fixup (inst.instruction);
11402 }
11403 }
11404 else
11405 {
11406 /* Cases 2, 3. */
11407 inst.instruction = 0x0800010;
11408 neon_move_immediate ();
11409 inst.instruction = neon_dp_fixup (inst.instruction);
11410 }
11411 break;
11412
11413 case 3:
11414 /* Cases 5, 7. */
11415 if (inst.operands[0].regisimm)
11416 {
11417 /* Case 5. */
11418 inst.instruction = save_cond;
11419 inst.instruction |= 0xc400b10;
11420 inst.instruction |= LOW4 (inst.operands[0].reg);
11421 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
11422 inst.instruction |= inst.operands[1].reg << 12;
11423 inst.instruction |= inst.operands[2].reg << 16;
11424 }
11425 else
11426 {
11427 /* Case 7. */
11428 inst.instruction = save_cond;
11429 inst.instruction |= 0xc500b10;
11430 inst.instruction |= inst.operands[0].reg << 12;
11431 inst.instruction |= inst.operands[1].reg << 16;
11432 inst.instruction |= LOW4 (inst.operands[2].reg);
11433 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11434 }
11435 break;
11436
11437 default:
11438 abort ();
11439 }
11440}
11441
11442static void
11443do_neon_rshift_round_imm (void)
11444{
11445 enum neon_shape rs = neon_check_shape (NS_DDI_QQI);
11446 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11447 int imm = inst.operands[2].imm;
11448
11449 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
11450 if (imm == 0)
11451 {
11452 inst.operands[2].present = 0;
11453 do_neon_mov ();
11454 return;
11455 }
11456
11457 constraint (imm < 1 || (unsigned)imm > et.size,
11458 _("immediate out of range for shift"));
11459 neon_imm_shift (TRUE, et.type == NT_unsigned, rs == NS_QQI, et,
11460 et.size - imm);
11461}
11462
11463static void
11464do_neon_movl (void)
11465{
11466 struct neon_type_el et = neon_check_type (2, NS_QD,
11467 N_EQK | N_DBL, N_SU_32 | N_KEY);
11468 unsigned sizebits = et.size >> 3;
11469 inst.instruction |= sizebits << 19;
11470 neon_two_same (0, et.type == NT_unsigned, -1);
11471}
11472
11473static void
11474do_neon_trn (void)
11475{
11476 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11477 struct neon_type_el et = neon_check_type (2, rs,
11478 N_EQK, N_8 | N_16 | N_32 | N_KEY);
11479 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11480 neon_two_same (rs == NS_QQ, 1, et.size);
11481}
11482
11483static void
11484do_neon_zip_uzp (void)
11485{
11486 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11487 struct neon_type_el et = neon_check_type (2, rs,
11488 N_EQK, N_8 | N_16 | N_32 | N_KEY);
11489 if (rs == NS_DD && et.size == 32)
11490 {
11491 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
11492 inst.instruction = N_MNEM_vtrn;
11493 do_neon_trn ();
11494 return;
11495 }
11496 neon_two_same (rs == NS_QQ, 1, et.size);
11497}
11498
11499static void
11500do_neon_sat_abs_neg (void)
11501{
11502 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11503 struct neon_type_el et = neon_check_type (2, rs,
11504 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
11505 neon_two_same (rs == NS_QQ, 1, et.size);
11506}
11507
11508static void
11509do_neon_pair_long (void)
11510{
11511 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11512 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
11513 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
11514 inst.instruction |= (et.type == NT_unsigned) << 7;
11515 neon_two_same (rs == NS_QQ, 1, et.size);
11516}
11517
11518static void
11519do_neon_recip_est (void)
11520{
11521 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11522 struct neon_type_el et = neon_check_type (2, rs,
11523 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
11524 inst.instruction |= (et.type == NT_float) << 8;
11525 neon_two_same (rs == NS_QQ, 1, et.size);
11526}
11527
11528static void
11529do_neon_cls (void)
11530{
11531 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11532 struct neon_type_el et = neon_check_type (2, rs,
11533 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
11534 neon_two_same (rs == NS_QQ, 1, et.size);
11535}
11536
11537static void
11538do_neon_clz (void)
11539{
11540 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11541 struct neon_type_el et = neon_check_type (2, rs,
11542 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
11543 neon_two_same (rs == NS_QQ, 1, et.size);
11544}
11545
11546static void
11547do_neon_cnt (void)
11548{
11549 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11550 struct neon_type_el et = neon_check_type (2, rs,
11551 N_EQK | N_INT, N_8 | N_KEY);
11552 neon_two_same (rs == NS_QQ, 1, et.size);
11553}
11554
11555static void
11556do_neon_swp (void)
11557{
11558 enum neon_shape rs = neon_check_shape (NS_DD_QQ);
11559 neon_two_same (rs == NS_QQ, 1, -1);
11560}
11561
11562static void
11563do_neon_tbl_tbx (void)
11564{
11565 unsigned listlenbits;
dcbf9037 11566 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5287ad62
JB
11567
11568 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
11569 {
dcbf9037 11570 first_error (_("bad list length for table lookup"));
5287ad62
JB
11571 return;
11572 }
11573
11574 listlenbits = inst.operands[1].imm - 1;
11575 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11576 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11577 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11578 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11579 inst.instruction |= LOW4 (inst.operands[2].reg);
11580 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11581 inst.instruction |= listlenbits << 8;
11582
11583 inst.instruction = neon_dp_fixup (inst.instruction);
11584}
11585
11586static void
11587do_neon_ldm_stm (void)
11588{
11589 /* P, U and L bits are part of bitmask. */
11590 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
11591 unsigned offsetbits = inst.operands[1].imm * 2;
11592
11593 constraint (is_dbmode && !inst.operands[0].writeback,
11594 _("writeback (!) must be used for VLDMDB and VSTMDB"));
11595
11596 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
11597 _("register list must contain at least 1 and at most 16 "
11598 "registers"));
11599
11600 inst.instruction |= inst.operands[0].reg << 16;
11601 inst.instruction |= inst.operands[0].writeback << 21;
11602 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
11603 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
11604
11605 inst.instruction |= offsetbits;
11606
11607 if (thumb_mode)
11608 inst.instruction |= 0xe0000000;
11609}
11610
11611static void
11612do_neon_ldr_str (void)
11613{
11614 unsigned offsetbits;
11615 int offset_up = 1;
11616 int is_ldr = (inst.instruction & (1 << 20)) != 0;
11617
11618 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11619 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11620
11621 constraint (inst.reloc.pc_rel && !is_ldr,
11622 _("PC-relative addressing unavailable with VSTR"));
11623
11624 constraint (!inst.reloc.pc_rel && inst.reloc.exp.X_op != O_constant,
11625 _("Immediate value must be a constant"));
11626
11627 if (inst.reloc.exp.X_add_number < 0)
11628 {
11629 offset_up = 0;
11630 offsetbits = -inst.reloc.exp.X_add_number / 4;
11631 }
11632 else
11633 offsetbits = inst.reloc.exp.X_add_number / 4;
11634
11635 /* FIXME: Does this catch everything? */
11636 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11637 || inst.operands[1].postind || inst.operands[1].writeback
11638 || inst.operands[1].immisreg || inst.operands[1].shifted,
11639 BAD_ADDR_MODE);
11640 constraint ((inst.operands[1].imm & 3) != 0,
11641 _("Offset must be a multiple of 4"));
11642 constraint (offsetbits != (offsetbits & 0xff),
11643 _("Immediate offset out of range"));
11644
11645 inst.instruction |= inst.operands[1].reg << 16;
11646 inst.instruction |= offsetbits & 0xff;
11647 inst.instruction |= offset_up << 23;
11648
11649 if (thumb_mode)
11650 inst.instruction |= 0xe0000000;
11651
11652 if (inst.reloc.pc_rel)
11653 {
11654 if (thumb_mode)
11655 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
11656 else
11657 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
11658 }
11659 else
11660 inst.reloc.type = BFD_RELOC_UNUSED;
11661}
11662
11663/* "interleave" version also handles non-interleaving register VLD1/VST1
11664 instructions. */
11665
11666static void
11667do_neon_ld_st_interleave (void)
11668{
11669 struct neon_type_el et = neon_check_type (1, NS_IGNORE,
11670 N_8 | N_16 | N_32 | N_64);
11671 unsigned alignbits = 0;
11672 unsigned idx;
11673 /* The bits in this table go:
11674 0: register stride of one (0) or two (1)
11675 1,2: register list length, minus one (1, 2, 3, 4).
11676 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
11677 We use -1 for invalid entries. */
11678 const int typetable[] =
11679 {
11680 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
11681 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
11682 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
11683 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
11684 };
11685 int typebits;
11686
dcbf9037
JB
11687 if (et.type == NT_invtype)
11688 return;
11689
5287ad62
JB
11690 if (inst.operands[1].immisalign)
11691 switch (inst.operands[1].imm >> 8)
11692 {
11693 case 64: alignbits = 1; break;
11694 case 128:
11695 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
11696 goto bad_alignment;
11697 alignbits = 2;
11698 break;
11699 case 256:
11700 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
11701 goto bad_alignment;
11702 alignbits = 3;
11703 break;
11704 default:
11705 bad_alignment:
dcbf9037 11706 first_error (_("bad alignment"));
5287ad62
JB
11707 return;
11708 }
11709
11710 inst.instruction |= alignbits << 4;
11711 inst.instruction |= neon_logbits (et.size) << 6;
11712
11713 /* Bits [4:6] of the immediate in a list specifier encode register stride
11714 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
11715 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
11716 up the right value for "type" in a table based on this value and the given
11717 list style, then stick it back. */
11718 idx = ((inst.operands[0].imm >> 4) & 7)
11719 | (((inst.instruction >> 8) & 3) << 3);
11720
11721 typebits = typetable[idx];
11722
11723 constraint (typebits == -1, _("bad list type for instruction"));
11724
11725 inst.instruction &= ~0xf00;
11726 inst.instruction |= typebits << 8;
11727}
11728
11729/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
11730 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
11731 otherwise. The variable arguments are a list of pairs of legal (size, align)
11732 values, terminated with -1. */
11733
11734static int
11735neon_alignment_bit (int size, int align, int *do_align, ...)
11736{
11737 va_list ap;
11738 int result = FAIL, thissize, thisalign;
11739
11740 if (!inst.operands[1].immisalign)
11741 {
11742 *do_align = 0;
11743 return SUCCESS;
11744 }
11745
11746 va_start (ap, do_align);
11747
11748 do
11749 {
11750 thissize = va_arg (ap, int);
11751 if (thissize == -1)
11752 break;
11753 thisalign = va_arg (ap, int);
11754
11755 if (size == thissize && align == thisalign)
11756 result = SUCCESS;
11757 }
11758 while (result != SUCCESS);
11759
11760 va_end (ap);
11761
11762 if (result == SUCCESS)
11763 *do_align = 1;
11764 else
dcbf9037 11765 first_error (_("unsupported alignment for instruction"));
5287ad62
JB
11766
11767 return result;
11768}
11769
11770static void
11771do_neon_ld_st_lane (void)
11772{
11773 struct neon_type_el et = neon_check_type (1, NS_IGNORE, N_8 | N_16 | N_32);
11774 int align_good, do_align = 0;
11775 int logsize = neon_logbits (et.size);
11776 int align = inst.operands[1].imm >> 8;
11777 int n = (inst.instruction >> 8) & 3;
11778 int max_el = 64 / et.size;
11779
dcbf9037
JB
11780 if (et.type == NT_invtype)
11781 return;
11782
5287ad62
JB
11783 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
11784 _("bad list length"));
11785 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
11786 _("scalar index out of range"));
11787 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
11788 && et.size == 8,
11789 _("stride of 2 unavailable when element size is 8"));
11790
11791 switch (n)
11792 {
11793 case 0: /* VLD1 / VST1. */
11794 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
11795 32, 32, -1);
11796 if (align_good == FAIL)
11797 return;
11798 if (do_align)
11799 {
11800 unsigned alignbits = 0;
11801 switch (et.size)
11802 {
11803 case 16: alignbits = 0x1; break;
11804 case 32: alignbits = 0x3; break;
11805 default: ;
11806 }
11807 inst.instruction |= alignbits << 4;
11808 }
11809 break;
11810
11811 case 1: /* VLD2 / VST2. */
11812 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
11813 32, 64, -1);
11814 if (align_good == FAIL)
11815 return;
11816 if (do_align)
11817 inst.instruction |= 1 << 4;
11818 break;
11819
11820 case 2: /* VLD3 / VST3. */
11821 constraint (inst.operands[1].immisalign,
11822 _("can't use alignment with this instruction"));
11823 break;
11824
11825 case 3: /* VLD4 / VST4. */
11826 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
11827 16, 64, 32, 64, 32, 128, -1);
11828 if (align_good == FAIL)
11829 return;
11830 if (do_align)
11831 {
11832 unsigned alignbits = 0;
11833 switch (et.size)
11834 {
11835 case 8: alignbits = 0x1; break;
11836 case 16: alignbits = 0x1; break;
11837 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
11838 default: ;
11839 }
11840 inst.instruction |= alignbits << 4;
11841 }
11842 break;
11843
11844 default: ;
11845 }
11846
11847 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
11848 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
11849 inst.instruction |= 1 << (4 + logsize);
11850
11851 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
11852 inst.instruction |= logsize << 10;
11853}
11854
11855/* Encode single n-element structure to all lanes VLD<n> instructions. */
11856
11857static void
11858do_neon_ld_dup (void)
11859{
11860 struct neon_type_el et = neon_check_type (1, NS_IGNORE, N_8 | N_16 | N_32);
11861 int align_good, do_align = 0;
11862
dcbf9037
JB
11863 if (et.type == NT_invtype)
11864 return;
11865
5287ad62
JB
11866 switch ((inst.instruction >> 8) & 3)
11867 {
11868 case 0: /* VLD1. */
11869 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
11870 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
11871 &do_align, 16, 16, 32, 32, -1);
11872 if (align_good == FAIL)
11873 return;
11874 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
11875 {
11876 case 1: break;
11877 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 11878 default: first_error (_("bad list length")); return;
5287ad62
JB
11879 }
11880 inst.instruction |= neon_logbits (et.size) << 6;
11881 break;
11882
11883 case 1: /* VLD2. */
11884 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
11885 &do_align, 8, 16, 16, 32, 32, 64, -1);
11886 if (align_good == FAIL)
11887 return;
11888 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
11889 _("bad list length"));
11890 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
11891 inst.instruction |= 1 << 5;
11892 inst.instruction |= neon_logbits (et.size) << 6;
11893 break;
11894
11895 case 2: /* VLD3. */
11896 constraint (inst.operands[1].immisalign,
11897 _("can't use alignment with this instruction"));
11898 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
11899 _("bad list length"));
11900 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
11901 inst.instruction |= 1 << 5;
11902 inst.instruction |= neon_logbits (et.size) << 6;
11903 break;
11904
11905 case 3: /* VLD4. */
11906 {
11907 int align = inst.operands[1].imm >> 8;
11908 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
11909 16, 64, 32, 64, 32, 128, -1);
11910 if (align_good == FAIL)
11911 return;
11912 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
11913 _("bad list length"));
11914 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
11915 inst.instruction |= 1 << 5;
11916 if (et.size == 32 && align == 128)
11917 inst.instruction |= 0x3 << 6;
11918 else
11919 inst.instruction |= neon_logbits (et.size) << 6;
11920 }
11921 break;
11922
11923 default: ;
11924 }
11925
11926 inst.instruction |= do_align << 4;
11927}
11928
11929/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
11930 apart from bits [11:4]. */
11931
11932static void
11933do_neon_ldx_stx (void)
11934{
11935 switch (NEON_LANE (inst.operands[0].imm))
11936 {
11937 case NEON_INTERLEAVE_LANES:
11938 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
11939 do_neon_ld_st_interleave ();
11940 break;
11941
11942 case NEON_ALL_LANES:
11943 inst.instruction = NEON_ENC_DUP (inst.instruction);
11944 do_neon_ld_dup ();
11945 break;
11946
11947 default:
11948 inst.instruction = NEON_ENC_LANE (inst.instruction);
11949 do_neon_ld_st_lane ();
11950 }
11951
11952 /* L bit comes from bit mask. */
11953 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11954 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11955 inst.instruction |= inst.operands[1].reg << 16;
11956
11957 if (inst.operands[1].postind)
11958 {
11959 int postreg = inst.operands[1].imm & 0xf;
11960 constraint (!inst.operands[1].immisreg,
11961 _("post-index must be a register"));
11962 constraint (postreg == 0xd || postreg == 0xf,
11963 _("bad register for post-index"));
11964 inst.instruction |= postreg;
11965 }
11966 else if (inst.operands[1].writeback)
11967 {
11968 inst.instruction |= 0xd;
11969 }
11970 else
11971 inst.instruction |= 0xf;
11972
11973 if (thumb_mode)
11974 inst.instruction |= 0xf9000000;
11975 else
11976 inst.instruction |= 0xf4000000;
11977}
11978
11979\f
11980/* Overall per-instruction processing. */
11981
11982/* We need to be able to fix up arbitrary expressions in some statements.
11983 This is so that we can handle symbols that are an arbitrary distance from
11984 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
11985 which returns part of an address in a form which will be valid for
11986 a data instruction. We do this by pushing the expression into a symbol
11987 in the expr_section, and creating a fix for that. */
11988
11989static void
11990fix_new_arm (fragS * frag,
11991 int where,
11992 short int size,
11993 expressionS * exp,
11994 int pc_rel,
11995 int reloc)
11996{
11997 fixS * new_fix;
11998
11999 switch (exp->X_op)
12000 {
12001 case O_constant:
12002 case O_symbol:
12003 case O_add:
12004 case O_subtract:
12005 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
12006 break;
12007
12008 default:
12009 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
12010 pc_rel, reloc);
12011 break;
12012 }
12013
12014 /* Mark whether the fix is to a THUMB instruction, or an ARM
12015 instruction. */
12016 new_fix->tc_fix_data = thumb_mode;
12017}
12018
12019/* Create a frg for an instruction requiring relaxation. */
12020static void
12021output_relax_insn (void)
12022{
12023 char * to;
12024 symbolS *sym;
0110f2b8
PB
12025 int offset;
12026
6e1cb1a6
PB
12027#ifdef OBJ_ELF
12028 /* The size of the instruction is unknown, so tie the debug info to the
12029 start of the instruction. */
12030 dwarf2_emit_insn (0);
12031#endif
12032
0110f2b8
PB
12033 switch (inst.reloc.exp.X_op)
12034 {
12035 case O_symbol:
12036 sym = inst.reloc.exp.X_add_symbol;
12037 offset = inst.reloc.exp.X_add_number;
12038 break;
12039 case O_constant:
12040 sym = NULL;
12041 offset = inst.reloc.exp.X_add_number;
12042 break;
12043 default:
12044 sym = make_expr_symbol (&inst.reloc.exp);
12045 offset = 0;
12046 break;
12047 }
12048 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
12049 inst.relax, sym, offset, NULL/*offset, opcode*/);
12050 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
12051}
12052
12053/* Write a 32-bit thumb instruction to buf. */
12054static void
12055put_thumb32_insn (char * buf, unsigned long insn)
12056{
12057 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
12058 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
12059}
12060
b99bd4ef 12061static void
c19d1205 12062output_inst (const char * str)
b99bd4ef 12063{
c19d1205 12064 char * to = NULL;
b99bd4ef 12065
c19d1205 12066 if (inst.error)
b99bd4ef 12067 {
c19d1205 12068 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
12069 return;
12070 }
0110f2b8
PB
12071 if (inst.relax) {
12072 output_relax_insn();
12073 return;
12074 }
c19d1205
ZW
12075 if (inst.size == 0)
12076 return;
b99bd4ef 12077
c19d1205
ZW
12078 to = frag_more (inst.size);
12079
12080 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 12081 {
c19d1205 12082 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 12083 put_thumb32_insn (to, inst.instruction);
b99bd4ef 12084 }
c19d1205 12085 else if (inst.size > INSN_SIZE)
b99bd4ef 12086 {
c19d1205
ZW
12087 assert (inst.size == (2 * INSN_SIZE));
12088 md_number_to_chars (to, inst.instruction, INSN_SIZE);
12089 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 12090 }
c19d1205
ZW
12091 else
12092 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 12093
c19d1205
ZW
12094 if (inst.reloc.type != BFD_RELOC_UNUSED)
12095 fix_new_arm (frag_now, to - frag_now->fr_literal,
12096 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
12097 inst.reloc.type);
b99bd4ef 12098
c19d1205
ZW
12099#ifdef OBJ_ELF
12100 dwarf2_emit_insn (inst.size);
12101#endif
12102}
b99bd4ef 12103
c19d1205
ZW
12104/* Tag values used in struct asm_opcode's tag field. */
12105enum opcode_tag
12106{
12107 OT_unconditional, /* Instruction cannot be conditionalized.
12108 The ARM condition field is still 0xE. */
12109 OT_unconditionalF, /* Instruction cannot be conditionalized
12110 and carries 0xF in its ARM condition field. */
12111 OT_csuffix, /* Instruction takes a conditional suffix. */
12112 OT_cinfix3, /* Instruction takes a conditional infix,
12113 beginning at character index 3. (In
12114 unified mode, it becomes a suffix.) */
e3cb604e
PB
12115 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
12116 character index 3, even in unified mode. Used for
12117 legacy instructions where suffix and infix forms
12118 may be ambiguous. */
c19d1205 12119 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 12120 suffix or an infix at character index 3. */
c19d1205
ZW
12121 OT_odd_infix_unc, /* This is the unconditional variant of an
12122 instruction that takes a conditional infix
12123 at an unusual position. In unified mode,
12124 this variant will accept a suffix. */
12125 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
12126 are the conditional variants of instructions that
12127 take conditional infixes in unusual positions.
12128 The infix appears at character index
12129 (tag - OT_odd_infix_0). These are not accepted
12130 in unified mode. */
12131};
b99bd4ef 12132
c19d1205
ZW
12133/* Subroutine of md_assemble, responsible for looking up the primary
12134 opcode from the mnemonic the user wrote. STR points to the
12135 beginning of the mnemonic.
12136
12137 This is not simply a hash table lookup, because of conditional
12138 variants. Most instructions have conditional variants, which are
12139 expressed with a _conditional affix_ to the mnemonic. If we were
12140 to encode each conditional variant as a literal string in the opcode
12141 table, it would have approximately 20,000 entries.
12142
12143 Most mnemonics take this affix as a suffix, and in unified syntax,
12144 'most' is upgraded to 'all'. However, in the divided syntax, some
12145 instructions take the affix as an infix, notably the s-variants of
12146 the arithmetic instructions. Of those instructions, all but six
12147 have the infix appear after the third character of the mnemonic.
12148
12149 Accordingly, the algorithm for looking up primary opcodes given
12150 an identifier is:
12151
12152 1. Look up the identifier in the opcode table.
12153 If we find a match, go to step U.
12154
12155 2. Look up the last two characters of the identifier in the
12156 conditions table. If we find a match, look up the first N-2
12157 characters of the identifier in the opcode table. If we
12158 find a match, go to step CE.
12159
12160 3. Look up the fourth and fifth characters of the identifier in
12161 the conditions table. If we find a match, extract those
12162 characters from the identifier, and look up the remaining
12163 characters in the opcode table. If we find a match, go
12164 to step CM.
12165
12166 4. Fail.
12167
12168 U. Examine the tag field of the opcode structure, in case this is
12169 one of the six instructions with its conditional infix in an
12170 unusual place. If it is, the tag tells us where to find the
12171 infix; look it up in the conditions table and set inst.cond
12172 accordingly. Otherwise, this is an unconditional instruction.
12173 Again set inst.cond accordingly. Return the opcode structure.
12174
12175 CE. Examine the tag field to make sure this is an instruction that
12176 should receive a conditional suffix. If it is not, fail.
12177 Otherwise, set inst.cond from the suffix we already looked up,
12178 and return the opcode structure.
12179
12180 CM. Examine the tag field to make sure this is an instruction that
12181 should receive a conditional infix after the third character.
12182 If it is not, fail. Otherwise, undo the edits to the current
12183 line of input and proceed as for case CE. */
12184
12185static const struct asm_opcode *
12186opcode_lookup (char **str)
12187{
12188 char *end, *base;
12189 char *affix;
12190 const struct asm_opcode *opcode;
12191 const struct asm_cond *cond;
e3cb604e 12192 char save[2];
c19d1205
ZW
12193
12194 /* Scan up to the end of the mnemonic, which must end in white space,
12195 '.' (in unified mode only), or end of string. */
12196 for (base = end = *str; *end != '\0'; end++)
12197 if (*end == ' ' || (unified_syntax && *end == '.'))
12198 break;
b99bd4ef 12199
c19d1205
ZW
12200 if (end == base)
12201 return 0;
b99bd4ef 12202
5287ad62 12203 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 12204 if (end[0] == '.')
b99bd4ef 12205 {
5287ad62
JB
12206 int offset = 2;
12207
12208 if (end[1] == 'w')
c19d1205 12209 inst.size_req = 4;
5287ad62 12210 else if (end[1] == 'n')
c19d1205
ZW
12211 inst.size_req = 2;
12212 else
5287ad62
JB
12213 offset = 0;
12214
12215 inst.vectype.elems = 0;
12216
12217 *str = end + offset;
b99bd4ef 12218
5287ad62
JB
12219 if (end[offset] == '.')
12220 {
12221 /* See if we have a Neon type suffix. */
dcbf9037 12222 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
12223 return 0;
12224 }
12225 else if (end[offset] != '\0' && end[offset] != ' ')
12226 return 0;
b99bd4ef 12227 }
c19d1205
ZW
12228 else
12229 *str = end;
b99bd4ef 12230
c19d1205
ZW
12231 /* Look for unaffixed or special-case affixed mnemonic. */
12232 opcode = hash_find_n (arm_ops_hsh, base, end - base);
12233 if (opcode)
b99bd4ef 12234 {
c19d1205
ZW
12235 /* step U */
12236 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 12237 {
c19d1205
ZW
12238 inst.cond = COND_ALWAYS;
12239 return opcode;
b99bd4ef 12240 }
b99bd4ef 12241
c19d1205
ZW
12242 if (unified_syntax)
12243 as_warn (_("conditional infixes are deprecated in unified syntax"));
12244 affix = base + (opcode->tag - OT_odd_infix_0);
12245 cond = hash_find_n (arm_cond_hsh, affix, 2);
12246 assert (cond);
b99bd4ef 12247
c19d1205
ZW
12248 inst.cond = cond->value;
12249 return opcode;
12250 }
b99bd4ef 12251
c19d1205
ZW
12252 /* Cannot have a conditional suffix on a mnemonic of less than two
12253 characters. */
12254 if (end - base < 3)
12255 return 0;
b99bd4ef 12256
c19d1205
ZW
12257 /* Look for suffixed mnemonic. */
12258 affix = end - 2;
12259 cond = hash_find_n (arm_cond_hsh, affix, 2);
12260 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
12261 if (opcode && cond)
12262 {
12263 /* step CE */
12264 switch (opcode->tag)
12265 {
e3cb604e
PB
12266 case OT_cinfix3_legacy:
12267 /* Ignore conditional suffixes matched on infix only mnemonics. */
12268 break;
12269
c19d1205
ZW
12270 case OT_cinfix3:
12271 case OT_odd_infix_unc:
12272 if (!unified_syntax)
e3cb604e 12273 return 0;
c19d1205
ZW
12274 /* else fall through */
12275
12276 case OT_csuffix:
12277 case OT_csuf_or_in3:
12278 inst.cond = cond->value;
12279 return opcode;
12280
12281 case OT_unconditional:
12282 case OT_unconditionalF:
dfa9f0d5
PB
12283 if (thumb_mode)
12284 {
12285 inst.cond = cond->value;
12286 }
12287 else
12288 {
12289 /* delayed diagnostic */
12290 inst.error = BAD_COND;
12291 inst.cond = COND_ALWAYS;
12292 }
c19d1205 12293 return opcode;
b99bd4ef 12294
c19d1205
ZW
12295 default:
12296 return 0;
12297 }
12298 }
b99bd4ef 12299
c19d1205
ZW
12300 /* Cannot have a usual-position infix on a mnemonic of less than
12301 six characters (five would be a suffix). */
12302 if (end - base < 6)
12303 return 0;
b99bd4ef 12304
c19d1205
ZW
12305 /* Look for infixed mnemonic in the usual position. */
12306 affix = base + 3;
12307 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
12308 if (!cond)
12309 return 0;
12310
12311 memcpy (save, affix, 2);
12312 memmove (affix, affix + 2, (end - affix) - 2);
12313 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
12314 memmove (affix + 2, affix, (end - affix) - 2);
12315 memcpy (affix, save, 2);
12316
12317 if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_csuf_or_in3
12318 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 12319 {
c19d1205 12320 /* step CM */
e3cb604e 12321 if (unified_syntax && opcode->tag == OT_cinfix3)
c19d1205
ZW
12322 as_warn (_("conditional infixes are deprecated in unified syntax"));
12323
12324 inst.cond = cond->value;
12325 return opcode;
b99bd4ef
NC
12326 }
12327
c19d1205 12328 return 0;
b99bd4ef
NC
12329}
12330
c19d1205
ZW
12331void
12332md_assemble (char *str)
b99bd4ef 12333{
c19d1205
ZW
12334 char *p = str;
12335 const struct asm_opcode * opcode;
b99bd4ef 12336
c19d1205
ZW
12337 /* Align the previous label if needed. */
12338 if (last_label_seen != NULL)
b99bd4ef 12339 {
c19d1205
ZW
12340 symbol_set_frag (last_label_seen, frag_now);
12341 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
12342 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
12343 }
12344
c19d1205
ZW
12345 memset (&inst, '\0', sizeof (inst));
12346 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 12347
c19d1205
ZW
12348 opcode = opcode_lookup (&p);
12349 if (!opcode)
b99bd4ef 12350 {
c19d1205 12351 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
12352 the form alias .req reg, or a Neon .dn/.qn directive. */
12353 if (!create_register_alias (str, p)
12354 && !create_neon_reg_alias (str, p))
c19d1205 12355 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 12356
b99bd4ef
NC
12357 return;
12358 }
12359
c19d1205 12360 if (thumb_mode)
b99bd4ef 12361 {
e74cfd16 12362 arm_feature_set variant;
8f06b2d8
PB
12363
12364 variant = cpu_variant;
12365 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
12366 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
12367 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 12368 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
12369 if (!opcode->tvariant
12370 || (thumb_mode == 1
12371 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 12372 {
c19d1205 12373 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
12374 return;
12375 }
c19d1205
ZW
12376 if (inst.cond != COND_ALWAYS && !unified_syntax
12377 && opcode->tencode != do_t_branch)
b99bd4ef 12378 {
c19d1205 12379 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
12380 return;
12381 }
12382
e27ec89e
PB
12383 /* Check conditional suffixes. */
12384 if (current_it_mask)
12385 {
12386 int cond;
12387 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
12388 current_it_mask <<= 1;
12389 current_it_mask &= 0x1f;
12390 /* The BKPT instruction is unconditional even in an IT block. */
12391 if (!inst.error
12392 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
12393 {
12394 as_bad (_("incorrect condition in IT block"));
12395 return;
12396 }
e27ec89e
PB
12397 }
12398 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
12399 {
12400 as_bad (_("thumb conditional instrunction not in IT block"));
12401 return;
12402 }
12403
c19d1205
ZW
12404 mapping_state (MAP_THUMB);
12405 inst.instruction = opcode->tvalue;
12406
12407 if (!parse_operands (p, opcode->operands))
12408 opcode->tencode ();
12409
e27ec89e
PB
12410 /* Clear current_it_mask at the end of an IT block. */
12411 if (current_it_mask == 0x10)
12412 current_it_mask = 0;
12413
0110f2b8 12414 if (!(inst.error || inst.relax))
b99bd4ef 12415 {
c19d1205
ZW
12416 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
12417 inst.size = (inst.instruction > 0xffff ? 4 : 2);
12418 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 12419 {
c19d1205 12420 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
12421 return;
12422 }
12423 }
e74cfd16
PB
12424 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12425 *opcode->tvariant);
ee065d83 12426 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 12427 set those bits when Thumb-2 32-bit instructions are seen. ie.
ee065d83
PB
12428 anything other than bl/blx.
12429 This is overly pessimistic for relaxable instructions. */
12430 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
12431 || inst.relax)
e74cfd16
PB
12432 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12433 arm_ext_v6t2);
c19d1205
ZW
12434 }
12435 else
12436 {
12437 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
12438 if (!opcode->avariant ||
12439 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
b99bd4ef 12440 {
c19d1205
ZW
12441 as_bad (_("selected processor does not support `%s'"), str);
12442 return;
b99bd4ef 12443 }
c19d1205 12444 if (inst.size_req)
b99bd4ef 12445 {
c19d1205
ZW
12446 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
12447 return;
b99bd4ef
NC
12448 }
12449
c19d1205
ZW
12450 mapping_state (MAP_ARM);
12451 inst.instruction = opcode->avalue;
12452 if (opcode->tag == OT_unconditionalF)
12453 inst.instruction |= 0xF << 28;
12454 else
12455 inst.instruction |= inst.cond << 28;
12456 inst.size = INSN_SIZE;
12457 if (!parse_operands (p, opcode->operands))
12458 opcode->aencode ();
ee065d83
PB
12459 /* Arm mode bx is marked as both v4T and v5 because it's still required
12460 on a hypothetical non-thumb v5 core. */
e74cfd16
PB
12461 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
12462 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
12463 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 12464 else
e74cfd16
PB
12465 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
12466 *opcode->avariant);
b99bd4ef 12467 }
c19d1205
ZW
12468 output_inst (str);
12469}
b99bd4ef 12470
c19d1205
ZW
12471/* Various frobbings of labels and their addresses. */
12472
12473void
12474arm_start_line_hook (void)
12475{
12476 last_label_seen = NULL;
b99bd4ef
NC
12477}
12478
c19d1205
ZW
12479void
12480arm_frob_label (symbolS * sym)
b99bd4ef 12481{
c19d1205 12482 last_label_seen = sym;
b99bd4ef 12483
c19d1205 12484 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 12485
c19d1205
ZW
12486#if defined OBJ_COFF || defined OBJ_ELF
12487 ARM_SET_INTERWORK (sym, support_interwork);
12488#endif
b99bd4ef 12489
c19d1205
ZW
12490 /* Note - do not allow local symbols (.Lxxx) to be labeled
12491 as Thumb functions. This is because these labels, whilst
12492 they exist inside Thumb code, are not the entry points for
12493 possible ARM->Thumb calls. Also, these labels can be used
12494 as part of a computed goto or switch statement. eg gcc
12495 can generate code that looks like this:
b99bd4ef 12496
c19d1205
ZW
12497 ldr r2, [pc, .Laaa]
12498 lsl r3, r3, #2
12499 ldr r2, [r3, r2]
12500 mov pc, r2
b99bd4ef 12501
c19d1205
ZW
12502 .Lbbb: .word .Lxxx
12503 .Lccc: .word .Lyyy
12504 ..etc...
12505 .Laaa: .word Lbbb
b99bd4ef 12506
c19d1205
ZW
12507 The first instruction loads the address of the jump table.
12508 The second instruction converts a table index into a byte offset.
12509 The third instruction gets the jump address out of the table.
12510 The fourth instruction performs the jump.
b99bd4ef 12511
c19d1205
ZW
12512 If the address stored at .Laaa is that of a symbol which has the
12513 Thumb_Func bit set, then the linker will arrange for this address
12514 to have the bottom bit set, which in turn would mean that the
12515 address computation performed by the third instruction would end
12516 up with the bottom bit set. Since the ARM is capable of unaligned
12517 word loads, the instruction would then load the incorrect address
12518 out of the jump table, and chaos would ensue. */
12519 if (label_is_thumb_function_name
12520 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
12521 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 12522 {
c19d1205
ZW
12523 /* When the address of a Thumb function is taken the bottom
12524 bit of that address should be set. This will allow
12525 interworking between Arm and Thumb functions to work
12526 correctly. */
b99bd4ef 12527
c19d1205 12528 THUMB_SET_FUNC (sym, 1);
b99bd4ef 12529
c19d1205 12530 label_is_thumb_function_name = FALSE;
b99bd4ef 12531 }
07a53e5c
RH
12532
12533#ifdef OBJ_ELF
12534 dwarf2_emit_label (sym);
12535#endif
b99bd4ef
NC
12536}
12537
c19d1205
ZW
12538int
12539arm_data_in_code (void)
b99bd4ef 12540{
c19d1205 12541 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 12542 {
c19d1205
ZW
12543 *input_line_pointer = '/';
12544 input_line_pointer += 5;
12545 *input_line_pointer = 0;
12546 return 1;
b99bd4ef
NC
12547 }
12548
c19d1205 12549 return 0;
b99bd4ef
NC
12550}
12551
c19d1205
ZW
12552char *
12553arm_canonicalize_symbol_name (char * name)
b99bd4ef 12554{
c19d1205 12555 int len;
b99bd4ef 12556
c19d1205
ZW
12557 if (thumb_mode && (len = strlen (name)) > 5
12558 && streq (name + len - 5, "/data"))
12559 *(name + len - 5) = 0;
b99bd4ef 12560
c19d1205 12561 return name;
b99bd4ef 12562}
c19d1205
ZW
12563\f
12564/* Table of all register names defined by default. The user can
12565 define additional names with .req. Note that all register names
12566 should appear in both upper and lowercase variants. Some registers
12567 also have mixed-case names. */
b99bd4ef 12568
dcbf9037 12569#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 12570#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 12571#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
12572#define REGSET(p,t) \
12573 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
12574 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
12575 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
12576 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
12577#define REGSETH(p,t) \
12578 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
12579 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
12580 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
12581 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
12582#define REGSET2(p,t) \
12583 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
12584 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
12585 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
12586 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 12587
c19d1205 12588static const struct reg_entry reg_names[] =
7ed4c4c5 12589{
c19d1205
ZW
12590 /* ARM integer registers. */
12591 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 12592
c19d1205
ZW
12593 /* ATPCS synonyms. */
12594 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
12595 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
12596 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 12597
c19d1205
ZW
12598 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
12599 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
12600 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 12601
c19d1205
ZW
12602 /* Well-known aliases. */
12603 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
12604 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
12605
12606 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
12607 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
12608
12609 /* Coprocessor numbers. */
12610 REGSET(p, CP), REGSET(P, CP),
12611
12612 /* Coprocessor register numbers. The "cr" variants are for backward
12613 compatibility. */
12614 REGSET(c, CN), REGSET(C, CN),
12615 REGSET(cr, CN), REGSET(CR, CN),
12616
12617 /* FPA registers. */
12618 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
12619 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
12620
12621 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
12622 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
12623
12624 /* VFP SP registers. */
5287ad62
JB
12625 REGSET(s,VFS), REGSET(S,VFS),
12626 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
12627
12628 /* VFP DP Registers. */
5287ad62
JB
12629 REGSET(d,VFD), REGSET(D,VFD),
12630 /* Extra Neon DP registers. */
12631 REGSETH(d,VFD), REGSETH(D,VFD),
12632
12633 /* Neon QP registers. */
12634 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
12635
12636 /* VFP control registers. */
12637 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
12638 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
12639
12640 /* Maverick DSP coprocessor registers. */
12641 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
12642 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
12643
12644 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
12645 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
12646 REGDEF(dspsc,0,DSPSC),
12647
12648 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
12649 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
12650 REGDEF(DSPSC,0,DSPSC),
12651
12652 /* iWMMXt data registers - p0, c0-15. */
12653 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
12654
12655 /* iWMMXt control registers - p1, c0-3. */
12656 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
12657 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
12658 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
12659 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
12660
12661 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
12662 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
12663 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
12664 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
12665 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
12666
12667 /* XScale accumulator registers. */
12668 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
12669};
12670#undef REGDEF
12671#undef REGNUM
12672#undef REGSET
7ed4c4c5 12673
c19d1205
ZW
12674/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
12675 within psr_required_here. */
12676static const struct asm_psr psrs[] =
12677{
12678 /* Backward compatibility notation. Note that "all" is no longer
12679 truly all possible PSR bits. */
12680 {"all", PSR_c | PSR_f},
12681 {"flg", PSR_f},
12682 {"ctl", PSR_c},
12683
12684 /* Individual flags. */
12685 {"f", PSR_f},
12686 {"c", PSR_c},
12687 {"x", PSR_x},
12688 {"s", PSR_s},
12689 /* Combinations of flags. */
12690 {"fs", PSR_f | PSR_s},
12691 {"fx", PSR_f | PSR_x},
12692 {"fc", PSR_f | PSR_c},
12693 {"sf", PSR_s | PSR_f},
12694 {"sx", PSR_s | PSR_x},
12695 {"sc", PSR_s | PSR_c},
12696 {"xf", PSR_x | PSR_f},
12697 {"xs", PSR_x | PSR_s},
12698 {"xc", PSR_x | PSR_c},
12699 {"cf", PSR_c | PSR_f},
12700 {"cs", PSR_c | PSR_s},
12701 {"cx", PSR_c | PSR_x},
12702 {"fsx", PSR_f | PSR_s | PSR_x},
12703 {"fsc", PSR_f | PSR_s | PSR_c},
12704 {"fxs", PSR_f | PSR_x | PSR_s},
12705 {"fxc", PSR_f | PSR_x | PSR_c},
12706 {"fcs", PSR_f | PSR_c | PSR_s},
12707 {"fcx", PSR_f | PSR_c | PSR_x},
12708 {"sfx", PSR_s | PSR_f | PSR_x},
12709 {"sfc", PSR_s | PSR_f | PSR_c},
12710 {"sxf", PSR_s | PSR_x | PSR_f},
12711 {"sxc", PSR_s | PSR_x | PSR_c},
12712 {"scf", PSR_s | PSR_c | PSR_f},
12713 {"scx", PSR_s | PSR_c | PSR_x},
12714 {"xfs", PSR_x | PSR_f | PSR_s},
12715 {"xfc", PSR_x | PSR_f | PSR_c},
12716 {"xsf", PSR_x | PSR_s | PSR_f},
12717 {"xsc", PSR_x | PSR_s | PSR_c},
12718 {"xcf", PSR_x | PSR_c | PSR_f},
12719 {"xcs", PSR_x | PSR_c | PSR_s},
12720 {"cfs", PSR_c | PSR_f | PSR_s},
12721 {"cfx", PSR_c | PSR_f | PSR_x},
12722 {"csf", PSR_c | PSR_s | PSR_f},
12723 {"csx", PSR_c | PSR_s | PSR_x},
12724 {"cxf", PSR_c | PSR_x | PSR_f},
12725 {"cxs", PSR_c | PSR_x | PSR_s},
12726 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
12727 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
12728 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
12729 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
12730 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
12731 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
12732 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
12733 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
12734 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
12735 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
12736 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
12737 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
12738 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
12739 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
12740 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
12741 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
12742 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
12743 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
12744 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
12745 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
12746 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
12747 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
12748 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
12749 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
12750};
12751
62b3e311
PB
12752/* Table of V7M psr names. */
12753static const struct asm_psr v7m_psrs[] =
12754{
12755 {"apsr", 0 },
12756 {"iapsr", 1 },
12757 {"eapsr", 2 },
12758 {"psr", 3 },
12759 {"ipsr", 5 },
12760 {"epsr", 6 },
12761 {"iepsr", 7 },
12762 {"msp", 8 },
12763 {"psp", 9 },
12764 {"primask", 16},
12765 {"basepri", 17},
12766 {"basepri_max", 18},
12767 {"faultmask", 19},
12768 {"control", 20}
12769};
12770
c19d1205
ZW
12771/* Table of all shift-in-operand names. */
12772static const struct asm_shift_name shift_names [] =
b99bd4ef 12773{
c19d1205
ZW
12774 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
12775 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
12776 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
12777 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
12778 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
12779 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
12780};
b99bd4ef 12781
c19d1205
ZW
12782/* Table of all explicit relocation names. */
12783#ifdef OBJ_ELF
12784static struct reloc_entry reloc_names[] =
12785{
12786 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
12787 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
12788 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
12789 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
12790 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
12791 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
12792 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
12793 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
12794 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
12795 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
12796 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
12797};
12798#endif
b99bd4ef 12799
c19d1205
ZW
12800/* Table of all conditional affixes. 0xF is not defined as a condition code. */
12801static const struct asm_cond conds[] =
12802{
12803 {"eq", 0x0},
12804 {"ne", 0x1},
12805 {"cs", 0x2}, {"hs", 0x2},
12806 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
12807 {"mi", 0x4},
12808 {"pl", 0x5},
12809 {"vs", 0x6},
12810 {"vc", 0x7},
12811 {"hi", 0x8},
12812 {"ls", 0x9},
12813 {"ge", 0xa},
12814 {"lt", 0xb},
12815 {"gt", 0xc},
12816 {"le", 0xd},
12817 {"al", 0xe}
12818};
bfae80f2 12819
62b3e311
PB
12820static struct asm_barrier_opt barrier_opt_names[] =
12821{
12822 { "sy", 0xf },
12823 { "un", 0x7 },
12824 { "st", 0xe },
12825 { "unst", 0x6 }
12826};
12827
c19d1205
ZW
12828/* Table of ARM-format instructions. */
12829
12830/* Macros for gluing together operand strings. N.B. In all cases
12831 other than OPS0, the trailing OP_stop comes from default
12832 zero-initialization of the unspecified elements of the array. */
12833#define OPS0() { OP_stop, }
12834#define OPS1(a) { OP_##a, }
12835#define OPS2(a,b) { OP_##a,OP_##b, }
12836#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
12837#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
12838#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
12839#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
12840
12841/* These macros abstract out the exact format of the mnemonic table and
12842 save some repeated characters. */
12843
12844/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
12845#define TxCE(mnem, op, top, nops, ops, ae, te) \
12846 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 12847 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
12848
12849/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
12850 a T_MNEM_xyz enumerator. */
12851#define TCE(mnem, aop, top, nops, ops, ae, te) \
12852 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
12853#define tCE(mnem, aop, top, nops, ops, ae, te) \
12854 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
12855
12856/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
12857 infix after the third character. */
12858#define TxC3(mnem, op, top, nops, ops, ae, te) \
12859 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 12860 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
12861#define TC3(mnem, aop, top, nops, ops, ae, te) \
12862 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
12863#define tC3(mnem, aop, top, nops, ops, ae, te) \
12864 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
12865
12866/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
12867 appear in the condition table. */
12868#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
12869 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 12870 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
12871
12872#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
12873 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
12874 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
12875 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
12876 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
12877 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
12878 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
12879 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
12880 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
12881 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
12882 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
12883 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
12884 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
12885 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
12886 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
12887 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
12888 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
12889 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
12890 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
12891 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
12892
12893#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
12894 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
12895#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
12896 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
12897
12898/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
12899 field is still 0xE. Many of the Thumb variants can be executed
12900 conditionally, so this is checked separately. */
c19d1205
ZW
12901#define TUE(mnem, op, top, nops, ops, ae, te) \
12902 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 12903 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
12904
12905/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
12906 condition code field. */
12907#define TUF(mnem, op, top, nops, ops, ae, te) \
12908 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 12909 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
12910
12911/* ARM-only variants of all the above. */
6a86118a
NC
12912#define CE(mnem, op, nops, ops, ae) \
12913 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
12914
12915#define C3(mnem, op, nops, ops, ae) \
12916 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
12917
e3cb604e
PB
12918/* Legacy mnemonics that always have conditional infix after the third
12919 character. */
12920#define CL(mnem, op, nops, ops, ae) \
12921 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
12922 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
12923
8f06b2d8
PB
12924/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
12925#define cCE(mnem, op, nops, ops, ae) \
12926 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
12927
e3cb604e
PB
12928/* Legacy coprocessor instructions where conditional infix and conditional
12929 suffix are ambiguous. For consistency this includes all FPA instructions,
12930 not just the potentially ambiguous ones. */
12931#define cCL(mnem, op, nops, ops, ae) \
12932 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
12933 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
12934
12935/* Coprocessor, takes either a suffix or a position-3 infix
12936 (for an FPA corner case). */
12937#define C3E(mnem, op, nops, ops, ae) \
12938 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
12939 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 12940
6a86118a
NC
12941#define xCM_(m1, m2, m3, op, nops, ops, ae) \
12942 { #m1 #m2 #m3, OPS##nops ops, \
12943 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
12944 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
12945
12946#define CM(m1, m2, op, nops, ops, ae) \
12947 xCM_(m1, , m2, op, nops, ops, ae), \
12948 xCM_(m1, eq, m2, op, nops, ops, ae), \
12949 xCM_(m1, ne, m2, op, nops, ops, ae), \
12950 xCM_(m1, cs, m2, op, nops, ops, ae), \
12951 xCM_(m1, hs, m2, op, nops, ops, ae), \
12952 xCM_(m1, cc, m2, op, nops, ops, ae), \
12953 xCM_(m1, ul, m2, op, nops, ops, ae), \
12954 xCM_(m1, lo, m2, op, nops, ops, ae), \
12955 xCM_(m1, mi, m2, op, nops, ops, ae), \
12956 xCM_(m1, pl, m2, op, nops, ops, ae), \
12957 xCM_(m1, vs, m2, op, nops, ops, ae), \
12958 xCM_(m1, vc, m2, op, nops, ops, ae), \
12959 xCM_(m1, hi, m2, op, nops, ops, ae), \
12960 xCM_(m1, ls, m2, op, nops, ops, ae), \
12961 xCM_(m1, ge, m2, op, nops, ops, ae), \
12962 xCM_(m1, lt, m2, op, nops, ops, ae), \
12963 xCM_(m1, gt, m2, op, nops, ops, ae), \
12964 xCM_(m1, le, m2, op, nops, ops, ae), \
12965 xCM_(m1, al, m2, op, nops, ops, ae)
12966
12967#define UE(mnem, op, nops, ops, ae) \
12968 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
12969
12970#define UF(mnem, op, nops, ops, ae) \
12971 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
12972
5287ad62
JB
12973/* Neon data-processing. ARM versions are unconditional with cond=0xf.
12974 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
12975 use the same encoding function for each. */
12976#define NUF(mnem, op, nops, ops, enc) \
12977 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
12978 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
12979
12980/* Neon data processing, version which indirects through neon_enc_tab for
12981 the various overloaded versions of opcodes. */
12982#define nUF(mnem, op, nops, ops, enc) \
12983 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
12984 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
12985
12986/* Neon insn with conditional suffix for the ARM version, non-overloaded
12987 version. */
12988#define NCE(mnem, op, nops, ops, enc) \
12989 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x##op, ARM_VARIANT, \
12990 THUMB_VARIANT, do_##enc, do_##enc }
12991
12992/* Neon insn with conditional suffix for the ARM version, overloaded types. */
12993#define nCE(mnem, op, nops, ops, enc) \
12994 { #mnem, OPS##nops ops, OT_csuffix, N_MNEM_##op, N_MNEM_##op, \
12995 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
12996
c19d1205
ZW
12997#define do_0 0
12998
12999/* Thumb-only, unconditional. */
13000#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
13001
c19d1205 13002static const struct asm_opcode insns[] =
bfae80f2 13003{
e74cfd16
PB
13004#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
13005#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
13006 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
13007 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
13008 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
13009 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
13010 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
13011 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
13012 tCE(add, 0800000, add, 3, (RR, oRR, SH), arit, t_add_sub),
13013 tC3(adds, 0900000, adds, 3, (RR, oRR, SH), arit, t_add_sub),
13014 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
13015 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
13016 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
13017 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
13018 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
13019 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
13020 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
13021 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
13022
13023 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
13024 for setting PSR flag bits. They are obsolete in V6 and do not
13025 have Thumb equivalents. */
13026 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
13027 tC3(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 13028 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205
ZW
13029 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
13030 tC3(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 13031 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205
ZW
13032 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
13033 tC3(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 13034 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
13035
13036 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
13037 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
13038 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
13039 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
13040
13041 tCE(ldr, 4100000, ldr, 2, (RR, ADDR), ldst, t_ldst),
13042 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDR), ldst, t_ldst),
13043 tCE(str, 4000000, str, 2, (RR, ADDR), ldst, t_ldst),
13044 tC3(strb, 4400000, strb, 2, (RR, ADDR), ldst, t_ldst),
13045
f5208ef2 13046 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
13047 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
13048 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 13049 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
13050 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
13051 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
13052
13053 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 13054 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 13055 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 13056 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 13057
c19d1205 13058 /* Pseudo ops. */
e9f89963 13059 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
13060 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
13061 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
13062
13063 /* Thumb-compatibility pseudo ops. */
13064 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
13065 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
13066 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
13067 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
13068 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 13069 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
13070 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
13071 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
13072 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
13073 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
13074 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
13075 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
13076
13077#undef THUMB_VARIANT
e74cfd16 13078#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 13079 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
13080
13081 /* V1 instructions with no Thumb analogue prior to V6T2. */
13082#undef THUMB_VARIANT
e74cfd16 13083#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
13084 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
13085 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
13086 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
13087 TC3(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 13088 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
13089
13090 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 13091 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 13092 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 13093 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 13094
9c3c69f2
PB
13095 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
13096 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 13097
9c3c69f2
PB
13098 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
13099 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
13100
13101 /* V1 instructions with no Thumb analogue at all. */
13102 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
13103 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
13104
13105 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
13106 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
13107 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
13108 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
13109 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
13110 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
13111 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
13112 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
13113
13114#undef ARM_VARIANT
e74cfd16 13115#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 13116#undef THUMB_VARIANT
e74cfd16 13117#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
13118 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
13119 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
13120
13121#undef THUMB_VARIANT
e74cfd16 13122#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
13123 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
13124 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
13125
13126 /* Generic coprocessor instructions. */
13127 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
13128 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDR), lstc, lstc),
13129 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDR), lstc, lstc),
13130 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDR), lstc, lstc),
13131 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDR), lstc, lstc),
13132 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
13133 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
13134
13135#undef ARM_VARIANT
e74cfd16 13136#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
13137 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
13138 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
13139
13140#undef ARM_VARIANT
e74cfd16 13141#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
c19d1205
ZW
13142 TCE(mrs, 10f0000, f3ef8000, 2, (RR, PSR), mrs, t_mrs),
13143 TCE(msr, 120f000, f3808000, 2, (PSR, RR_EXi), msr, t_msr),
13144
13145#undef ARM_VARIANT
e74cfd16 13146#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
c19d1205
ZW
13147 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
13148 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
13149 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
13150 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
13151 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
13152 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
13153 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
13154 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
13155
13156#undef ARM_VARIANT
e74cfd16 13157#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 13158#undef THUMB_VARIANT
e74cfd16 13159#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
13160 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDR), ldstv4, t_ldst),
13161 tC3(strh, 00000b0, strh, 2, (RR, ADDR), ldstv4, t_ldst),
13162 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
13163 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
13164 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
13165 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
13166
13167#undef ARM_VARIANT
e74cfd16 13168#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
13169 /* ARM Architecture 4T. */
13170 /* Note: bx (and blx) are required on V5, even if the processor does
13171 not support Thumb. */
13172 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
13173
13174#undef ARM_VARIANT
e74cfd16 13175#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 13176#undef THUMB_VARIANT
e74cfd16 13177#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
13178 /* Note: blx has 2 variants; the .value coded here is for
13179 BLX(2). Only this variant has conditional execution. */
13180 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
13181 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
13182
13183#undef THUMB_VARIANT
e74cfd16 13184#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
13185 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
13186 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDR), lstc, lstc),
13187 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDR), lstc, lstc),
13188 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDR), lstc, lstc),
13189 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDR), lstc, lstc),
13190 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
13191 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
13192 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
13193
13194#undef ARM_VARIANT
e74cfd16 13195#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
13196 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
13197 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
13198 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
13199 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
13200
13201 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
13202 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
13203
13204 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
13205 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
13206 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
13207 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
13208
13209 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13210 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13211 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13212 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13213
13214 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13215 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13216
13217 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
13218 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
13219 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
13220 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
13221
13222#undef ARM_VARIANT
e74cfd16 13223#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205
ZW
13224 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
13225 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
13226 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
13227
13228 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
13229 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
13230
13231#undef ARM_VARIANT
e74cfd16 13232#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
13233 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
13234
13235#undef ARM_VARIANT
e74cfd16 13236#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 13237#undef THUMB_VARIANT
e74cfd16 13238#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
13239 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
13240 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
13241 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
13242 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
13243 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
13244 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
13245 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
13246 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
13247 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
13248 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
13249
13250#undef THUMB_VARIANT
e74cfd16 13251#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
13252 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
13253 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
13254 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
13255
13256 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
13257 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
13258
13259/* ARM V6 not included in V7M (eg. integer SIMD). */
13260#undef THUMB_VARIANT
13261#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 13262 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
13263 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
13264 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
13265 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13266 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13267 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13268 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13269 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13270 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13271 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13272 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13273 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13274 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13275 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13276 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13277 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13278 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13279 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13280 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13281 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13282 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13283 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13284 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13285 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13286 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13287 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13288 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13289 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13290 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13291 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13292 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13293 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13294 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13295 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13296 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13297 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13298 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13299 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13300 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
13301 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
13302 UF(rfeib, 9900a00, 1, (RRw), rfe),
13303 UF(rfeda, 8100a00, 1, (RRw), rfe),
13304 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
13305 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
13306 UF(rfefa, 9900a00, 1, (RRw), rfe),
13307 UF(rfeea, 8100a00, 1, (RRw), rfe),
13308 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
13309 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
13310 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
13311 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
13312 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
13313 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
13314 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
13315 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
13316 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 13317 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
13318 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
13319 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
13320 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
13321 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
13322 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
13323 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
13324 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
13325 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
13326 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
13327 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
13328 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
13329 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
13330 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13331 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13332 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13333 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13334 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13335 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13336 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
13337 UF(srsib, 9cd0500, 1, (I31w), srs),
13338 UF(srsda, 84d0500, 1, (I31w), srs),
13339 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
c19d1205
ZW
13340 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
13341 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
13342 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
13343 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
13344 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
13345 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
13346
13347#undef ARM_VARIANT
e74cfd16 13348#define ARM_VARIANT &arm_ext_v6k
c19d1205 13349#undef THUMB_VARIANT
e74cfd16 13350#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
13351 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
13352 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
13353 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
13354 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
13355
ebdca51a
PB
13356#undef THUMB_VARIANT
13357#define THUMB_VARIANT &arm_ext_v6_notm
13358 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
13359 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
13360
c19d1205 13361#undef THUMB_VARIANT
e74cfd16 13362#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
13363 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
13364 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
13365 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
13366 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
13367 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
13368
13369#undef ARM_VARIANT
e74cfd16 13370#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 13371 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
13372
13373#undef ARM_VARIANT
e74cfd16 13374#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
13375 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
13376 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
13377 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
13378 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
13379
13380 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
13381 TCE(movw, 3000000, f2400000, 2, (RRnpc, Iffff), mov16, t_mov16),
13382 TCE(movt, 3400000, f2c00000, 2, (RRnpc, Iffff), mov16, t_mov16),
13383 TCE(rbit, 3ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
13384
13385 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
13386 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
13387 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
13388 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
13389
13390 UT(cbnz, b900, 2, (RR, EXP), t_czb),
13391 UT(cbz, b100, 2, (RR, EXP), t_czb),
13392 /* ARM does not really have an IT instruction. */
13393 TUE(it, 0, bf08, 1, (COND), it, t_it),
13394 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
13395 TUE(ite, 0, bf04, 1, (COND), it, t_it),
13396 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
13397 TUE(itet, 0, bf06, 1, (COND), it, t_it),
13398 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
13399 TUE(itee, 0, bf02, 1, (COND), it, t_it),
13400 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
13401 TUE(itett, 0, bf07, 1, (COND), it, t_it),
13402 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
13403 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
13404 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
13405 TUE(itete, 0, bf05, 1, (COND), it, t_it),
13406 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
13407 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
13408
92e90b6e
PB
13409 /* Thumb2 only instructions. */
13410#undef ARM_VARIANT
e74cfd16 13411#define ARM_VARIANT NULL
92e90b6e
PB
13412
13413 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
13414 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
13415 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
13416 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
13417
62b3e311
PB
13418 /* Thumb-2 hardware division instructions (R and M profiles only). */
13419#undef THUMB_VARIANT
13420#define THUMB_VARIANT &arm_ext_div
13421 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
13422 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
13423
13424 /* ARM V7 instructions. */
13425#undef ARM_VARIANT
13426#define ARM_VARIANT &arm_ext_v7
13427#undef THUMB_VARIANT
13428#define THUMB_VARIANT &arm_ext_v7
13429 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
13430 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
13431 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
13432 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
13433 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
13434
c19d1205 13435#undef ARM_VARIANT
e74cfd16 13436#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
13437 cCE(wfs, e200110, 1, (RR), rd),
13438 cCE(rfs, e300110, 1, (RR), rd),
13439 cCE(wfc, e400110, 1, (RR), rd),
13440 cCE(rfc, e500110, 1, (RR), rd),
13441
e3cb604e
PB
13442 cCL(ldfs, c100100, 2, (RF, ADDR), rd_cpaddr),
13443 cCL(ldfd, c108100, 2, (RF, ADDR), rd_cpaddr),
13444 cCL(ldfe, c500100, 2, (RF, ADDR), rd_cpaddr),
13445 cCL(ldfp, c508100, 2, (RF, ADDR), rd_cpaddr),
13446
13447 cCL(stfs, c000100, 2, (RF, ADDR), rd_cpaddr),
13448 cCL(stfd, c008100, 2, (RF, ADDR), rd_cpaddr),
13449 cCL(stfe, c400100, 2, (RF, ADDR), rd_cpaddr),
13450 cCL(stfp, c408100, 2, (RF, ADDR), rd_cpaddr),
13451
13452 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
13453 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
13454 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
13455 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
13456 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
13457 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
13458 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
13459 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
13460 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
13461 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
13462 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
13463 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
13464
13465 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
13466 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
13467 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
13468 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
13469 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
13470 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
13471 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
13472 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
13473 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
13474 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
13475 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
13476 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
13477
13478 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
13479 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
13480 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
13481 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
13482 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
13483 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
13484 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
13485 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
13486 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
13487 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
13488 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
13489 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
13490
13491 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
13492 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
13493 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
13494 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
13495 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
13496 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
13497 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
13498 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
13499 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
13500 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
13501 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
13502 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
13503
13504 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
13505 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
13506 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
13507 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
13508 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
13509 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
13510 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
13511 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
13512 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
13513 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
13514 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
13515 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
13516
13517 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
13518 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
13519 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
13520 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
13521 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
13522 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
13523 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
13524 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
13525 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
13526 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
13527 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
13528 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
13529
13530 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
13531 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
13532 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
13533 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
13534 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
13535 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
13536 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
13537 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
13538 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
13539 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
13540 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
13541 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
13542
13543 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
13544 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
13545 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
13546 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
13547 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
13548 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
13549 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
13550 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
13551 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
13552 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
13553 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
13554 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
13555
13556 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
13557 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
13558 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
13559 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
13560 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
13561 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
13562 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
13563 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
13564 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
13565 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
13566 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
13567 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
13568
13569 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
13570 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
13571 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
13572 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
13573 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
13574 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
13575 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
13576 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
13577 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
13578 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
13579 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
13580 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
13581
13582 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
13583 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
13584 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
13585 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
13586 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
13587 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
13588 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
13589 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
13590 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
13591 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
13592 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
13593 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
13594
13595 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
13596 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
13597 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
13598 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
13599 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
13600 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
13601 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
13602 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
13603 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
13604 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
13605 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
13606 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
13607
13608 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
13609 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
13610 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
13611 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
13612 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
13613 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
13614 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
13615 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
13616 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
13617 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
13618 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
13619 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
13620
13621 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
13622 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
13623 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
13624 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
13625 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
13626 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
13627 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
13628 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
13629 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
13630 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
13631 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
13632 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
13633
13634 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
13635 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
13636 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
13637 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
13638 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
13639 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
13640 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
13641 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
13642 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
13643 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
13644 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
13645 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
13646
13647 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
13648 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
13649 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
13650 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
13651 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
13652 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
13653 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
13654 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
13655 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
13656 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
13657 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
13658 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
13659
13660 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
13661 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
13662 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
13663 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
13664 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
13665 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13666 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13667 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13668 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
13669 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
13670 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
13671 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
13672
13673 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
13674 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
13675 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
13676 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
13677 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
13678 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13679 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13680 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13681 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
13682 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
13683 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
13684 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
13685
13686 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
13687 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
13688 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
13689 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
13690 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
13691 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13692 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13693 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13694 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
13695 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
13696 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
13697 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
13698
13699 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
13700 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
13701 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
13702 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
13703 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
13704 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13705 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13706 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13707 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
13708 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
13709 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
13710 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
13711
13712 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
13713 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
13714 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
13715 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
13716 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
13717 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13718 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13719 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13720 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
13721 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
13722 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
13723 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
13724
13725 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
13726 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
13727 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
13728 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
13729 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
13730 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13731 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13732 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13733 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
13734 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
13735 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
13736 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
13737
13738 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
13739 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
13740 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
13741 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
13742 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
13743 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13744 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13745 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13746 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
13747 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
13748 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
13749 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
13750
13751 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
13752 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
13753 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
13754 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
13755 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
13756 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13757 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13758 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13759 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
13760 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
13761 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
13762 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
13763
13764 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
13765 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
13766 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
13767 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
13768 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
13769 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13770 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13771 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13772 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
13773 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
13774 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
13775 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
13776
13777 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
13778 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
13779 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
13780 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
13781 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
13782 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13783 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13784 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13785 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
13786 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
13787 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
13788 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
13789
13790 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
13791 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
13792 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
13793 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
13794 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
13795 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13796 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13797 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13798 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
13799 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
13800 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
13801 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
13802
13803 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
13804 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
13805 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
13806 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
13807 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
13808 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13809 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13810 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13811 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
13812 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
13813 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
13814 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
13815
13816 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
13817 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
13818 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
13819 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
13820 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
13821 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
13822 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
13823 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
13824 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
13825 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
13826 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
13827 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
13828
13829 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 13830 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 13831 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
13832 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
13833
e3cb604e
PB
13834 cCL(flts, e000110, 2, (RF, RR), rn_rd),
13835 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
13836 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
13837 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
13838 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
13839 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
13840 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
13841 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
13842 cCL(flte, e080110, 2, (RF, RR), rn_rd),
13843 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
13844 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
13845 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 13846
c19d1205
ZW
13847 /* The implementation of the FIX instruction is broken on some
13848 assemblers, in that it accepts a precision specifier as well as a
13849 rounding specifier, despite the fact that this is meaningless.
13850 To be more compatible, we accept it as well, though of course it
13851 does not set any bits. */
8f06b2d8 13852 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
13853 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
13854 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
13855 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
13856 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
13857 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
13858 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
13859 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
13860 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
13861 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
13862 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
13863 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
13864 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 13865
c19d1205
ZW
13866 /* Instructions that were new with the real FPA, call them V2. */
13867#undef ARM_VARIANT
e74cfd16 13868#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 13869 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
13870 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
13871 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 13872 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
13873 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
13874 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
13875
13876#undef ARM_VARIANT
e74cfd16 13877#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 13878 /* Moves and type conversions. */
8f06b2d8
PB
13879 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
13880 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
13881 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
13882 cCE(fmstat, ef1fa10, 0, (), noargs),
13883 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
13884 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
13885 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
13886 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
13887 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
13888 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
13889 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
13890 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
13891
13892 /* Memory operations. */
8f06b2d8
PB
13893 cCE(flds, d100a00, 2, (RVS, ADDR), vfp_sp_ldst),
13894 cCE(fsts, d000a00, 2, (RVS, ADDR), vfp_sp_ldst),
13895 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
13896 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
13897 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
13898 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
13899 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
13900 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
13901 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
13902 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
13903 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
13904 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
13905 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
13906 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
13907 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
13908 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
13909 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
13910 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 13911
c19d1205 13912 /* Monadic operations. */
8f06b2d8
PB
13913 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
13914 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
13915 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
13916
13917 /* Dyadic operations. */
8f06b2d8
PB
13918 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
13919 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
13920 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
13921 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
13922 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
13923 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
13924 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
13925 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
13926 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 13927
c19d1205 13928 /* Comparisons. */
8f06b2d8
PB
13929 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
13930 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
13931 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
13932 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 13933
c19d1205 13934#undef ARM_VARIANT
e74cfd16 13935#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 13936 /* Moves and type conversions. */
5287ad62 13937 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
13938 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
13939 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
13940 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
13941 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
13942 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
13943 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
13944 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
13945 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
13946 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
13947 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
13948 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
13949 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
13950
13951 /* Memory operations. */
8f06b2d8
PB
13952 cCE(fldd, d100b00, 2, (RVD, ADDR), vfp_dp_ldst),
13953 cCE(fstd, d000b00, 2, (RVD, ADDR), vfp_dp_ldst),
13954 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
13955 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
13956 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
13957 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
13958 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
13959 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
13960 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
13961 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 13962
c19d1205 13963 /* Monadic operations. */
5287ad62
JB
13964 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
13965 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
13966 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
13967
13968 /* Dyadic operations. */
5287ad62
JB
13969 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
13970 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
13971 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
13972 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
13973 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
13974 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
13975 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
13976 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
13977 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 13978
c19d1205 13979 /* Comparisons. */
5287ad62
JB
13980 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
13981 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
13982 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
13983 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
13984
13985#undef ARM_VARIANT
e74cfd16 13986#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
13987 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
13988 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
13989 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
13990 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
13991
13992#undef THUMB_VARIANT
13993#define THUMB_VARIANT &fpu_neon_ext_v1
13994#undef ARM_VARIANT
13995#define ARM_VARIANT &fpu_neon_ext_v1
13996 /* Data processing with three registers of the same length. */
13997 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
13998 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
13999 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
14000 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
14001 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
14002 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
14003 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
14004 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
14005 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
14006 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
14007 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
14008 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
14009 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
14010 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
14011 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
14012 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
14013 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
14014 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
14015 /* If not immediate, fall back to neon_dyadic_i64_su.
14016 shl_imm should accept I8 I16 I32 I64,
14017 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
14018 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
14019 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
14020 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
14021 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
14022 /* Logic ops, types optional & ignored. */
14023 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
14024 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
14025 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
14026 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
14027 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
14028 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
14029 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
14030 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
14031 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
14032 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
14033 /* Bitfield ops, untyped. */
14034 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
14035 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
14036 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
14037 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
14038 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
14039 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
14040 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
14041 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
14042 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
14043 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
14044 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
14045 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
14046 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
14047 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
14048 back to neon_dyadic_if_su. */
14049 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
14050 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
14051 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
14052 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
14053 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
14054 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
14055 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
14056 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
14057 /* Comparison. Type I8 I16 I32 F32. Non-immediate -> neon_dyadic_if_i. */
14058 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
14059 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
14060 /* As above, D registers only. */
14061 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
14062 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
14063 /* Int and float variants, signedness unimportant. */
14064 /* If not scalar, fall back to neon_dyadic_if_i. */
14065 nUF(vmla, vmla, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_mac_maybe_scalar),
14066 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
14067 nUF(vmls, vmls, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_mac_maybe_scalar),
14068 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
14069 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
14070 /* Add/sub take types I8 I16 I32 I64 F32. */
14071 nUF(vadd, vadd, 3, (RNDQ, oRNDQ, RNDQ), neon_addsub_if_i),
14072 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
14073 nUF(vsub, vsub, 3, (RNDQ, oRNDQ, RNDQ), neon_addsub_if_i),
14074 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
14075 /* vtst takes sizes 8, 16, 32. */
14076 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
14077 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
14078 /* VMUL takes I8 I16 I32 F32 P8. */
14079 nUF(vmul, vmul, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_mul),
14080 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
14081 /* VQD{R}MULH takes S16 S32. */
14082 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
14083 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
14084 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
14085 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
14086 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
14087 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
14088 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
14089 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
14090 NUF(vaclt, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
14091 NUF(vacltq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
14092 NUF(vacle, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
14093 NUF(vacleq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
14094 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
14095 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
14096 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
14097 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
14098
14099 /* Two address, int/float. Types S8 S16 S32 F32. */
14100 NUF(vabs, 1b10300, 2, (RNDQ, RNDQ), neon_abs_neg),
14101 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
14102 NUF(vneg, 1b10380, 2, (RNDQ, RNDQ), neon_abs_neg),
14103 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
14104
14105 /* Data processing with two registers and a shift amount. */
14106 /* Right shifts, and variants with rounding.
14107 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
14108 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
14109 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
14110 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
14111 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
14112 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
14113 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
14114 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
14115 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
14116 /* Shift and insert. Sizes accepted 8 16 32 64. */
14117 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
14118 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
14119 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
14120 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
14121 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
14122 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
14123 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
14124 /* Right shift immediate, saturating & narrowing, with rounding variants.
14125 Types accepted S16 S32 S64 U16 U32 U64. */
14126 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
14127 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
14128 /* As above, unsigned. Types accepted S16 S32 S64. */
14129 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
14130 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
14131 /* Right shift narrowing. Types accepted I16 I32 I64. */
14132 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
14133 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
14134 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
14135 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
14136 /* CVT with optional immediate for fixed-point variant. */
14137 nUF(vcvt, vcvt, 3, (RNDQ, RNDQ, oI32b), neon_cvt),
14138 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
14139
14140 /* One register and an immediate value. All encoding special-cased! */
14141 NCE(vmov, 0, 1, (VMOV), neon_mov),
14142 NCE(vmovq, 0, 1, (VMOV), neon_mov),
14143 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
14144 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
14145
14146 /* Data processing, three registers of different lengths. */
14147 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
14148 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
14149 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
14150 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
14151 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
14152 /* If not scalar, fall back to neon_dyadic_long.
14153 Vector types as above, scalar types S16 S32 U16 U32. */
14154 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
14155 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
14156 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
14157 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
14158 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
14159 /* Dyadic, narrowing insns. Types I16 I32 I64. */
14160 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
14161 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
14162 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
14163 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
14164 /* Saturating doubling multiplies. Types S16 S32. */
14165 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
14166 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
14167 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
14168 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
14169 S16 S32 U16 U32. */
14170 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
14171
14172 /* Extract. Size 8. */
14173 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I7), neon_ext),
14174 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I7), neon_ext),
14175
14176 /* Two registers, miscellaneous. */
14177 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
14178 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
14179 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
14180 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
14181 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
14182 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
14183 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
14184 /* Vector replicate. Sizes 8 16 32. */
14185 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
14186 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
14187 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
14188 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
14189 /* VMOVN. Types I16 I32 I64. */
14190 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
14191 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
14192 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
14193 /* VQMOVUN. Types S16 S32 S64. */
14194 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
14195 /* VZIP / VUZP. Sizes 8 16 32. */
14196 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
14197 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
14198 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
14199 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
14200 /* VQABS / VQNEG. Types S8 S16 S32. */
14201 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
14202 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
14203 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
14204 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
14205 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
14206 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
14207 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
14208 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
14209 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
14210 /* Reciprocal estimates. Types U32 F32. */
14211 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
14212 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
14213 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
14214 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
14215 /* VCLS. Types S8 S16 S32. */
14216 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
14217 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
14218 /* VCLZ. Types I8 I16 I32. */
14219 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
14220 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
14221 /* VCNT. Size 8. */
14222 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
14223 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
14224 /* Two address, untyped. */
14225 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
14226 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
14227 /* VTRN. Sizes 8 16 32. */
14228 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
14229 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
14230
14231 /* Table lookup. Size 8. */
14232 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
14233 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
14234
14235#undef THUMB_VARIANT
14236#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
14237#undef ARM_VARIANT
14238#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
14239
14240 /* Load/store instructions. Available in Neon or VFPv3. */
14241 NCE(vldm, c900b00, 2, (RRw, NRDLST), neon_ldm_stm),
14242 NCE(vldmia, c900b00, 2, (RRw, NRDLST), neon_ldm_stm),
14243 NCE(vldmdb, d100b00, 2, (RRw, NRDLST), neon_ldm_stm),
14244 NCE(vstm, c800b00, 2, (RRw, NRDLST), neon_ldm_stm),
14245 NCE(vstmia, c800b00, 2, (RRw, NRDLST), neon_ldm_stm),
14246 NCE(vstmdb, d000b00, 2, (RRw, NRDLST), neon_ldm_stm),
14247 NCE(vldr, d100b00, 2, (RND, ADDR), neon_ldr_str),
14248 NCE(vstr, d000b00, 2, (RND, ADDR), neon_ldr_str),
14249
14250 /* Neon element/structure load/store. */
14251 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
14252 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
14253 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
14254 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
14255 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
14256 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
14257 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
14258 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
14259
14260#undef THUMB_VARIANT
14261#define THUMB_VARIANT &fpu_vfp_ext_v3
14262#undef ARM_VARIANT
14263#define ARM_VARIANT &fpu_vfp_ext_v3
14264
14265 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
14266 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
14267 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
14268 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
14269 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
14270 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
14271 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
14272 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
14273 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
14274 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
14275 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
14276 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
14277 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
14278 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
14279 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
14280 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
14281 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
14282 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 14283
5287ad62 14284#undef THUMB_VARIANT
c19d1205 14285#undef ARM_VARIANT
e74cfd16 14286#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
14287 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
14288 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
14289 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
14290 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
14291 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
14292 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
14293 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
14294 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
14295
14296#undef ARM_VARIANT
e74cfd16 14297#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
14298 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
14299 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
14300 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
14301 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
14302 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
14303 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
14304 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
14305 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
14306 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
14307 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
14308 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
14309 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
14310 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
14311 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
14312 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
14313 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
14314 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
14315 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
14316 cCE(tmcr, e000110, 2, (RIWC, RR), rn_rd),
14317 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
14318 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
14319 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
14320 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
14321 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
14322 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
14323 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
14324 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
14325 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
14326 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
14327 cCE(tmrc, e100110, 2, (RR, RIWC), rd_rn),
14328 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
14329 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
14330 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
14331 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
14332 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
14333 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
14334 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
14335 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14336 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14337 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14338 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14339 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14340 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14341 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14342 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14343 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14344 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
14345 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14346 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14347 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14348 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14349 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14350 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14351 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14352 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14353 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14354 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14355 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14356 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14357 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14358 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14359 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14360 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14361 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14362 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14363 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14364 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
14365 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
14366 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
14367 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
14368 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14369 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14370 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14371 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14372 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14373 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14374 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14375 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14376 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14377 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14378 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14379 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14380 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14381 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14382 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14383 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14384 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14385 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14386 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
14387 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14388 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14389 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14390 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14391 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14392 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14393 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14394 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14395 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14396 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14397 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14398 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14399 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14400 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14401 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14402 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14403 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14404 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14405 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14406 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14407 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14408 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
14409 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14410 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14411 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14412 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14413 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14414 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14415 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14416 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14417 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14418 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14419 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14420 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14421 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14422 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14423 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14424 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14425 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14426 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
14427 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
14428 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
14429 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
14430 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
14431 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14432 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14433 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14434 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14435 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14436 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14437 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14438 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14439 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14440 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
14441 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
14442 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
14443 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
14444 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
14445 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
14446 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14447 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14448 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14449 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
14450 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
14451 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
14452 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
14453 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
14454 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
14455 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14456 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14457 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14458 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
14459 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205
ZW
14460
14461#undef ARM_VARIANT
e74cfd16 14462#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
8f06b2d8
PB
14463 cCE(cfldrs, c100400, 2, (RMF, ADDR), rd_cpaddr),
14464 cCE(cfldrd, c500400, 2, (RMD, ADDR), rd_cpaddr),
14465 cCE(cfldr32, c100500, 2, (RMFX, ADDR), rd_cpaddr),
14466 cCE(cfldr64, c500500, 2, (RMDX, ADDR), rd_cpaddr),
14467 cCE(cfstrs, c000400, 2, (RMF, ADDR), rd_cpaddr),
14468 cCE(cfstrd, c400400, 2, (RMD, ADDR), rd_cpaddr),
14469 cCE(cfstr32, c000500, 2, (RMFX, ADDR), rd_cpaddr),
14470 cCE(cfstr64, c400500, 2, (RMDX, ADDR), rd_cpaddr),
14471 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
14472 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
14473 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
14474 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
14475 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
14476 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
14477 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
14478 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
14479 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
14480 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
14481 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
14482 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
14483 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
14484 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
14485 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
14486 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
14487 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
14488 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
14489 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
14490 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
14491 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
14492 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
14493 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
14494 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
14495 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
14496 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
14497 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
14498 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
14499 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
14500 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
14501 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
14502 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
14503 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
14504 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
14505 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
14506 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
14507 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
14508 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
14509 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
14510 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
14511 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
14512 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
14513 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
14514 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
14515 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
14516 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
14517 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
14518 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
14519 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
14520 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
14521 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
14522 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
14523 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
14524 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
14525 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
14526 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
14527 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
14528 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
14529 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
14530 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
14531 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
14532 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
14533 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
14534 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
14535 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
14536 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
14537 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
14538 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
14539};
14540#undef ARM_VARIANT
14541#undef THUMB_VARIANT
14542#undef TCE
14543#undef TCM
14544#undef TUE
14545#undef TUF
14546#undef TCC
8f06b2d8 14547#undef cCE
e3cb604e
PB
14548#undef cCL
14549#undef C3E
c19d1205
ZW
14550#undef CE
14551#undef CM
14552#undef UE
14553#undef UF
14554#undef UT
5287ad62
JB
14555#undef NUF
14556#undef nUF
14557#undef NCE
14558#undef nCE
c19d1205
ZW
14559#undef OPS0
14560#undef OPS1
14561#undef OPS2
14562#undef OPS3
14563#undef OPS4
14564#undef OPS5
14565#undef OPS6
14566#undef do_0
14567\f
14568/* MD interface: bits in the object file. */
bfae80f2 14569
c19d1205
ZW
14570/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
14571 for use in the a.out file, and stores them in the array pointed to by buf.
14572 This knows about the endian-ness of the target machine and does
14573 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
14574 2 (short) and 4 (long) Floating numbers are put out as a series of
14575 LITTLENUMS (shorts, here at least). */
b99bd4ef 14576
c19d1205
ZW
14577void
14578md_number_to_chars (char * buf, valueT val, int n)
14579{
14580 if (target_big_endian)
14581 number_to_chars_bigendian (buf, val, n);
14582 else
14583 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
14584}
14585
c19d1205
ZW
14586static valueT
14587md_chars_to_number (char * buf, int n)
bfae80f2 14588{
c19d1205
ZW
14589 valueT result = 0;
14590 unsigned char * where = (unsigned char *) buf;
bfae80f2 14591
c19d1205 14592 if (target_big_endian)
b99bd4ef 14593 {
c19d1205
ZW
14594 while (n--)
14595 {
14596 result <<= 8;
14597 result |= (*where++ & 255);
14598 }
b99bd4ef 14599 }
c19d1205 14600 else
b99bd4ef 14601 {
c19d1205
ZW
14602 while (n--)
14603 {
14604 result <<= 8;
14605 result |= (where[n] & 255);
14606 }
bfae80f2 14607 }
b99bd4ef 14608
c19d1205 14609 return result;
bfae80f2 14610}
b99bd4ef 14611
c19d1205 14612/* MD interface: Sections. */
b99bd4ef 14613
0110f2b8
PB
14614/* Estimate the size of a frag before relaxing. Assume everything fits in
14615 2 bytes. */
14616
c19d1205 14617int
0110f2b8 14618md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
14619 segT segtype ATTRIBUTE_UNUSED)
14620{
0110f2b8
PB
14621 fragp->fr_var = 2;
14622 return 2;
14623}
14624
14625/* Convert a machine dependent frag. */
14626
14627void
14628md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
14629{
14630 unsigned long insn;
14631 unsigned long old_op;
14632 char *buf;
14633 expressionS exp;
14634 fixS *fixp;
14635 int reloc_type;
14636 int pc_rel;
14637 int opcode;
14638
14639 buf = fragp->fr_literal + fragp->fr_fix;
14640
14641 old_op = bfd_get_16(abfd, buf);
14642 if (fragp->fr_symbol) {
14643 exp.X_op = O_symbol;
14644 exp.X_add_symbol = fragp->fr_symbol;
14645 } else {
14646 exp.X_op = O_constant;
14647 }
14648 exp.X_add_number = fragp->fr_offset;
14649 opcode = fragp->fr_subtype;
14650 switch (opcode)
14651 {
14652 case T_MNEM_ldr_pc:
14653 case T_MNEM_ldr_pc2:
14654 case T_MNEM_ldr_sp:
14655 case T_MNEM_str_sp:
14656 case T_MNEM_ldr:
14657 case T_MNEM_ldrb:
14658 case T_MNEM_ldrh:
14659 case T_MNEM_str:
14660 case T_MNEM_strb:
14661 case T_MNEM_strh:
14662 if (fragp->fr_var == 4)
14663 {
14664 insn = THUMB_OP32(opcode);
14665 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
14666 {
14667 insn |= (old_op & 0x700) << 4;
14668 }
14669 else
14670 {
14671 insn |= (old_op & 7) << 12;
14672 insn |= (old_op & 0x38) << 13;
14673 }
14674 insn |= 0x00000c00;
14675 put_thumb32_insn (buf, insn);
14676 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
14677 }
14678 else
14679 {
14680 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
14681 }
14682 pc_rel = (opcode == T_MNEM_ldr_pc2);
14683 break;
14684 case T_MNEM_adr:
14685 if (fragp->fr_var == 4)
14686 {
14687 insn = THUMB_OP32 (opcode);
14688 insn |= (old_op & 0xf0) << 4;
14689 put_thumb32_insn (buf, insn);
14690 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
14691 }
14692 else
14693 {
14694 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
14695 exp.X_add_number -= 4;
14696 }
14697 pc_rel = 1;
14698 break;
14699 case T_MNEM_mov:
14700 case T_MNEM_movs:
14701 case T_MNEM_cmp:
14702 case T_MNEM_cmn:
14703 if (fragp->fr_var == 4)
14704 {
14705 int r0off = (opcode == T_MNEM_mov
14706 || opcode == T_MNEM_movs) ? 0 : 8;
14707 insn = THUMB_OP32 (opcode);
14708 insn = (insn & 0xe1ffffff) | 0x10000000;
14709 insn |= (old_op & 0x700) << r0off;
14710 put_thumb32_insn (buf, insn);
14711 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
14712 }
14713 else
14714 {
14715 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
14716 }
14717 pc_rel = 0;
14718 break;
14719 case T_MNEM_b:
14720 if (fragp->fr_var == 4)
14721 {
14722 insn = THUMB_OP32(opcode);
14723 put_thumb32_insn (buf, insn);
14724 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
14725 }
14726 else
14727 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
14728 pc_rel = 1;
14729 break;
14730 case T_MNEM_bcond:
14731 if (fragp->fr_var == 4)
14732 {
14733 insn = THUMB_OP32(opcode);
14734 insn |= (old_op & 0xf00) << 14;
14735 put_thumb32_insn (buf, insn);
14736 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
14737 }
14738 else
14739 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
14740 pc_rel = 1;
14741 break;
14742 case T_MNEM_add_sp:
14743 case T_MNEM_add_pc:
14744 case T_MNEM_inc_sp:
14745 case T_MNEM_dec_sp:
14746 if (fragp->fr_var == 4)
14747 {
14748 /* ??? Choose between add and addw. */
14749 insn = THUMB_OP32 (opcode);
14750 insn |= (old_op & 0xf0) << 4;
14751 put_thumb32_insn (buf, insn);
14752 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
14753 }
14754 else
14755 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
14756 pc_rel = 0;
14757 break;
14758
14759 case T_MNEM_addi:
14760 case T_MNEM_addis:
14761 case T_MNEM_subi:
14762 case T_MNEM_subis:
14763 if (fragp->fr_var == 4)
14764 {
14765 insn = THUMB_OP32 (opcode);
14766 insn |= (old_op & 0xf0) << 4;
14767 insn |= (old_op & 0xf) << 16;
14768 put_thumb32_insn (buf, insn);
14769 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
14770 }
14771 else
14772 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
14773 pc_rel = 0;
14774 break;
14775 default:
14776 abort();
14777 }
14778 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
14779 reloc_type);
14780 fixp->fx_file = fragp->fr_file;
14781 fixp->fx_line = fragp->fr_line;
14782 fragp->fr_fix += fragp->fr_var;
14783}
14784
14785/* Return the size of a relaxable immediate operand instruction.
14786 SHIFT and SIZE specify the form of the allowable immediate. */
14787static int
14788relax_immediate (fragS *fragp, int size, int shift)
14789{
14790 offsetT offset;
14791 offsetT mask;
14792 offsetT low;
14793
14794 /* ??? Should be able to do better than this. */
14795 if (fragp->fr_symbol)
14796 return 4;
14797
14798 low = (1 << shift) - 1;
14799 mask = (1 << (shift + size)) - (1 << shift);
14800 offset = fragp->fr_offset;
14801 /* Force misaligned offsets to 32-bit variant. */
14802 if (offset & low)
14803 return -4;
14804 if (offset & ~mask)
14805 return 4;
14806 return 2;
14807}
14808
14809/* Return the size of a relaxable adr pseudo-instruction or PC-relative
14810 load. */
14811static int
14812relax_adr (fragS *fragp, asection *sec)
14813{
14814 addressT addr;
14815 offsetT val;
14816
14817 /* Assume worst case for symbols not known to be in the same section. */
14818 if (!S_IS_DEFINED(fragp->fr_symbol)
14819 || sec != S_GET_SEGMENT (fragp->fr_symbol))
14820 return 4;
14821
14822 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
14823 addr = fragp->fr_address + fragp->fr_fix;
14824 addr = (addr + 4) & ~3;
14825 /* Fix the insn as the 4-byte version if the target address is not
14826 sufficiently aligned. This is prevents an infinite loop when two
14827 instructions have contradictory range/alignment requirements. */
14828 if (val & 3)
14829 return -4;
14830 val -= addr;
14831 if (val < 0 || val > 1020)
14832 return 4;
14833 return 2;
14834}
14835
14836/* Return the size of a relaxable add/sub immediate instruction. */
14837static int
14838relax_addsub (fragS *fragp, asection *sec)
14839{
14840 char *buf;
14841 int op;
14842
14843 buf = fragp->fr_literal + fragp->fr_fix;
14844 op = bfd_get_16(sec->owner, buf);
14845 if ((op & 0xf) == ((op >> 4) & 0xf))
14846 return relax_immediate (fragp, 8, 0);
14847 else
14848 return relax_immediate (fragp, 3, 0);
14849}
14850
14851
14852/* Return the size of a relaxable branch instruction. BITS is the
14853 size of the offset field in the narrow instruction. */
14854
14855static int
14856relax_branch (fragS *fragp, asection *sec, int bits)
14857{
14858 addressT addr;
14859 offsetT val;
14860 offsetT limit;
14861
14862 /* Assume worst case for symbols not known to be in the same section. */
14863 if (!S_IS_DEFINED(fragp->fr_symbol)
14864 || sec != S_GET_SEGMENT (fragp->fr_symbol))
14865 return 4;
14866
14867 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
14868 addr = fragp->fr_address + fragp->fr_fix + 4;
14869 val -= addr;
14870
14871 /* Offset is a signed value *2 */
14872 limit = 1 << bits;
14873 if (val >= limit || val < -limit)
14874 return 4;
14875 return 2;
14876}
14877
14878
14879/* Relax a machine dependent frag. This returns the amount by which
14880 the current size of the frag should change. */
14881
14882int
14883arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
14884{
14885 int oldsize;
14886 int newsize;
14887
14888 oldsize = fragp->fr_var;
14889 switch (fragp->fr_subtype)
14890 {
14891 case T_MNEM_ldr_pc2:
14892 newsize = relax_adr(fragp, sec);
14893 break;
14894 case T_MNEM_ldr_pc:
14895 case T_MNEM_ldr_sp:
14896 case T_MNEM_str_sp:
14897 newsize = relax_immediate(fragp, 8, 2);
14898 break;
14899 case T_MNEM_ldr:
14900 case T_MNEM_str:
14901 newsize = relax_immediate(fragp, 5, 2);
14902 break;
14903 case T_MNEM_ldrh:
14904 case T_MNEM_strh:
14905 newsize = relax_immediate(fragp, 5, 1);
14906 break;
14907 case T_MNEM_ldrb:
14908 case T_MNEM_strb:
14909 newsize = relax_immediate(fragp, 5, 0);
14910 break;
14911 case T_MNEM_adr:
14912 newsize = relax_adr(fragp, sec);
14913 break;
14914 case T_MNEM_mov:
14915 case T_MNEM_movs:
14916 case T_MNEM_cmp:
14917 case T_MNEM_cmn:
14918 newsize = relax_immediate(fragp, 8, 0);
14919 break;
14920 case T_MNEM_b:
14921 newsize = relax_branch(fragp, sec, 11);
14922 break;
14923 case T_MNEM_bcond:
14924 newsize = relax_branch(fragp, sec, 8);
14925 break;
14926 case T_MNEM_add_sp:
14927 case T_MNEM_add_pc:
14928 newsize = relax_immediate (fragp, 8, 2);
14929 break;
14930 case T_MNEM_inc_sp:
14931 case T_MNEM_dec_sp:
14932 newsize = relax_immediate (fragp, 7, 2);
14933 break;
14934 case T_MNEM_addi:
14935 case T_MNEM_addis:
14936 case T_MNEM_subi:
14937 case T_MNEM_subis:
14938 newsize = relax_addsub (fragp, sec);
14939 break;
14940 default:
14941 abort();
14942 }
14943 if (newsize < 0)
14944 {
14945 fragp->fr_var = -newsize;
14946 md_convert_frag (sec->owner, sec, fragp);
14947 frag_wane(fragp);
14948 return -(newsize + oldsize);
14949 }
14950 fragp->fr_var = newsize;
14951 return newsize - oldsize;
c19d1205 14952}
b99bd4ef 14953
c19d1205 14954/* Round up a section size to the appropriate boundary. */
b99bd4ef 14955
c19d1205
ZW
14956valueT
14957md_section_align (segT segment ATTRIBUTE_UNUSED,
14958 valueT size)
14959{
14960#ifdef OBJ_ELF
14961 return size;
14962#else
14963 /* Round all sects to multiple of 4. */
14964 return (size + 3) & ~3;
14965#endif
bfae80f2 14966}
b99bd4ef 14967
c19d1205
ZW
14968/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
14969 of an rs_align_code fragment. */
14970
14971void
14972arm_handle_align (fragS * fragP)
bfae80f2 14973{
c19d1205
ZW
14974 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
14975 static char const thumb_noop[2] = { 0xc0, 0x46 };
14976 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
14977 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
14978
14979 int bytes, fix, noop_size;
14980 char * p;
14981 const char * noop;
bfae80f2 14982
c19d1205 14983 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
14984 return;
14985
c19d1205
ZW
14986 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
14987 p = fragP->fr_literal + fragP->fr_fix;
14988 fix = 0;
bfae80f2 14989
c19d1205
ZW
14990 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
14991 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 14992
c19d1205 14993 if (fragP->tc_frag_data)
a737bd4d 14994 {
c19d1205
ZW
14995 if (target_big_endian)
14996 noop = thumb_bigend_noop;
14997 else
14998 noop = thumb_noop;
14999 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
15000 }
15001 else
15002 {
c19d1205
ZW
15003 if (target_big_endian)
15004 noop = arm_bigend_noop;
15005 else
15006 noop = arm_noop;
15007 noop_size = sizeof (arm_noop);
7ed4c4c5 15008 }
a737bd4d 15009
c19d1205 15010 if (bytes & (noop_size - 1))
7ed4c4c5 15011 {
c19d1205
ZW
15012 fix = bytes & (noop_size - 1);
15013 memset (p, 0, fix);
15014 p += fix;
15015 bytes -= fix;
a737bd4d 15016 }
a737bd4d 15017
c19d1205 15018 while (bytes >= noop_size)
a737bd4d 15019 {
c19d1205
ZW
15020 memcpy (p, noop, noop_size);
15021 p += noop_size;
15022 bytes -= noop_size;
15023 fix += noop_size;
a737bd4d
NC
15024 }
15025
c19d1205
ZW
15026 fragP->fr_fix += fix;
15027 fragP->fr_var = noop_size;
a737bd4d
NC
15028}
15029
c19d1205
ZW
15030/* Called from md_do_align. Used to create an alignment
15031 frag in a code section. */
15032
15033void
15034arm_frag_align_code (int n, int max)
bfae80f2 15035{
c19d1205 15036 char * p;
7ed4c4c5 15037
c19d1205
ZW
15038 /* We assume that there will never be a requirement
15039 to support alignments greater than 32 bytes. */
15040 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
15041 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 15042
c19d1205
ZW
15043 p = frag_var (rs_align_code,
15044 MAX_MEM_FOR_RS_ALIGN_CODE,
15045 1,
15046 (relax_substateT) max,
15047 (symbolS *) NULL,
15048 (offsetT) n,
15049 (char *) NULL);
15050 *p = 0;
15051}
bfae80f2 15052
c19d1205 15053/* Perform target specific initialisation of a frag. */
bfae80f2 15054
c19d1205
ZW
15055void
15056arm_init_frag (fragS * fragP)
15057{
15058 /* Record whether this frag is in an ARM or a THUMB area. */
15059 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
15060}
15061
c19d1205
ZW
15062#ifdef OBJ_ELF
15063/* When we change sections we need to issue a new mapping symbol. */
15064
15065void
15066arm_elf_change_section (void)
bfae80f2 15067{
c19d1205
ZW
15068 flagword flags;
15069 segment_info_type *seginfo;
bfae80f2 15070
c19d1205
ZW
15071 /* Link an unlinked unwind index table section to the .text section. */
15072 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
15073 && elf_linked_to_section (now_seg) == NULL)
15074 elf_linked_to_section (now_seg) = text_section;
15075
15076 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
15077 return;
15078
c19d1205
ZW
15079 flags = bfd_get_section_flags (stdoutput, now_seg);
15080
15081 /* We can ignore sections that only contain debug info. */
15082 if ((flags & SEC_ALLOC) == 0)
15083 return;
bfae80f2 15084
c19d1205
ZW
15085 seginfo = seg_info (now_seg);
15086 mapstate = seginfo->tc_segment_info_data.mapstate;
15087 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
15088}
15089
c19d1205
ZW
15090int
15091arm_elf_section_type (const char * str, size_t len)
e45d0630 15092{
c19d1205
ZW
15093 if (len == 5 && strncmp (str, "exidx", 5) == 0)
15094 return SHT_ARM_EXIDX;
e45d0630 15095
c19d1205
ZW
15096 return -1;
15097}
15098\f
15099/* Code to deal with unwinding tables. */
e45d0630 15100
c19d1205 15101static void add_unwind_adjustsp (offsetT);
e45d0630 15102
c19d1205 15103/* Cenerate and deferred unwind frame offset. */
e45d0630 15104
bfae80f2 15105static void
c19d1205 15106flush_pending_unwind (void)
bfae80f2 15107{
c19d1205 15108 offsetT offset;
bfae80f2 15109
c19d1205
ZW
15110 offset = unwind.pending_offset;
15111 unwind.pending_offset = 0;
15112 if (offset != 0)
15113 add_unwind_adjustsp (offset);
bfae80f2
RE
15114}
15115
c19d1205
ZW
15116/* Add an opcode to this list for this function. Two-byte opcodes should
15117 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
15118 order. */
15119
bfae80f2 15120static void
c19d1205 15121add_unwind_opcode (valueT op, int length)
bfae80f2 15122{
c19d1205
ZW
15123 /* Add any deferred stack adjustment. */
15124 if (unwind.pending_offset)
15125 flush_pending_unwind ();
bfae80f2 15126
c19d1205 15127 unwind.sp_restored = 0;
bfae80f2 15128
c19d1205 15129 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 15130 {
c19d1205
ZW
15131 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
15132 if (unwind.opcodes)
15133 unwind.opcodes = xrealloc (unwind.opcodes,
15134 unwind.opcode_alloc);
15135 else
15136 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 15137 }
c19d1205 15138 while (length > 0)
bfae80f2 15139 {
c19d1205
ZW
15140 length--;
15141 unwind.opcodes[unwind.opcode_count] = op & 0xff;
15142 op >>= 8;
15143 unwind.opcode_count++;
bfae80f2 15144 }
bfae80f2
RE
15145}
15146
c19d1205
ZW
15147/* Add unwind opcodes to adjust the stack pointer. */
15148
bfae80f2 15149static void
c19d1205 15150add_unwind_adjustsp (offsetT offset)
bfae80f2 15151{
c19d1205 15152 valueT op;
bfae80f2 15153
c19d1205 15154 if (offset > 0x200)
bfae80f2 15155 {
c19d1205
ZW
15156 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
15157 char bytes[5];
15158 int n;
15159 valueT o;
bfae80f2 15160
c19d1205
ZW
15161 /* Long form: 0xb2, uleb128. */
15162 /* This might not fit in a word so add the individual bytes,
15163 remembering the list is built in reverse order. */
15164 o = (valueT) ((offset - 0x204) >> 2);
15165 if (o == 0)
15166 add_unwind_opcode (0, 1);
bfae80f2 15167
c19d1205
ZW
15168 /* Calculate the uleb128 encoding of the offset. */
15169 n = 0;
15170 while (o)
15171 {
15172 bytes[n] = o & 0x7f;
15173 o >>= 7;
15174 if (o)
15175 bytes[n] |= 0x80;
15176 n++;
15177 }
15178 /* Add the insn. */
15179 for (; n; n--)
15180 add_unwind_opcode (bytes[n - 1], 1);
15181 add_unwind_opcode (0xb2, 1);
15182 }
15183 else if (offset > 0x100)
bfae80f2 15184 {
c19d1205
ZW
15185 /* Two short opcodes. */
15186 add_unwind_opcode (0x3f, 1);
15187 op = (offset - 0x104) >> 2;
15188 add_unwind_opcode (op, 1);
bfae80f2 15189 }
c19d1205
ZW
15190 else if (offset > 0)
15191 {
15192 /* Short opcode. */
15193 op = (offset - 4) >> 2;
15194 add_unwind_opcode (op, 1);
15195 }
15196 else if (offset < 0)
bfae80f2 15197 {
c19d1205
ZW
15198 offset = -offset;
15199 while (offset > 0x100)
bfae80f2 15200 {
c19d1205
ZW
15201 add_unwind_opcode (0x7f, 1);
15202 offset -= 0x100;
bfae80f2 15203 }
c19d1205
ZW
15204 op = ((offset - 4) >> 2) | 0x40;
15205 add_unwind_opcode (op, 1);
bfae80f2 15206 }
bfae80f2
RE
15207}
15208
c19d1205
ZW
15209/* Finish the list of unwind opcodes for this function. */
15210static void
15211finish_unwind_opcodes (void)
bfae80f2 15212{
c19d1205 15213 valueT op;
bfae80f2 15214
c19d1205 15215 if (unwind.fp_used)
bfae80f2 15216 {
708587a4 15217 /* Adjust sp as necessary. */
c19d1205
ZW
15218 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
15219 flush_pending_unwind ();
bfae80f2 15220
c19d1205
ZW
15221 /* After restoring sp from the frame pointer. */
15222 op = 0x90 | unwind.fp_reg;
15223 add_unwind_opcode (op, 1);
15224 }
15225 else
15226 flush_pending_unwind ();
bfae80f2
RE
15227}
15228
bfae80f2 15229
c19d1205
ZW
15230/* Start an exception table entry. If idx is nonzero this is an index table
15231 entry. */
bfae80f2
RE
15232
15233static void
c19d1205 15234start_unwind_section (const segT text_seg, int idx)
bfae80f2 15235{
c19d1205
ZW
15236 const char * text_name;
15237 const char * prefix;
15238 const char * prefix_once;
15239 const char * group_name;
15240 size_t prefix_len;
15241 size_t text_len;
15242 char * sec_name;
15243 size_t sec_name_len;
15244 int type;
15245 int flags;
15246 int linkonce;
bfae80f2 15247
c19d1205 15248 if (idx)
bfae80f2 15249 {
c19d1205
ZW
15250 prefix = ELF_STRING_ARM_unwind;
15251 prefix_once = ELF_STRING_ARM_unwind_once;
15252 type = SHT_ARM_EXIDX;
bfae80f2 15253 }
c19d1205 15254 else
bfae80f2 15255 {
c19d1205
ZW
15256 prefix = ELF_STRING_ARM_unwind_info;
15257 prefix_once = ELF_STRING_ARM_unwind_info_once;
15258 type = SHT_PROGBITS;
bfae80f2
RE
15259 }
15260
c19d1205
ZW
15261 text_name = segment_name (text_seg);
15262 if (streq (text_name, ".text"))
15263 text_name = "";
15264
15265 if (strncmp (text_name, ".gnu.linkonce.t.",
15266 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 15267 {
c19d1205
ZW
15268 prefix = prefix_once;
15269 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
15270 }
15271
c19d1205
ZW
15272 prefix_len = strlen (prefix);
15273 text_len = strlen (text_name);
15274 sec_name_len = prefix_len + text_len;
15275 sec_name = xmalloc (sec_name_len + 1);
15276 memcpy (sec_name, prefix, prefix_len);
15277 memcpy (sec_name + prefix_len, text_name, text_len);
15278 sec_name[prefix_len + text_len] = '\0';
bfae80f2 15279
c19d1205
ZW
15280 flags = SHF_ALLOC;
15281 linkonce = 0;
15282 group_name = 0;
bfae80f2 15283
c19d1205
ZW
15284 /* Handle COMDAT group. */
15285 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 15286 {
c19d1205
ZW
15287 group_name = elf_group_name (text_seg);
15288 if (group_name == NULL)
15289 {
15290 as_bad ("Group section `%s' has no group signature",
15291 segment_name (text_seg));
15292 ignore_rest_of_line ();
15293 return;
15294 }
15295 flags |= SHF_GROUP;
15296 linkonce = 1;
bfae80f2
RE
15297 }
15298
c19d1205 15299 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 15300
c19d1205
ZW
15301 /* Set the setion link for index tables. */
15302 if (idx)
15303 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
15304}
15305
bfae80f2 15306
c19d1205
ZW
15307/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
15308 personality routine data. Returns zero, or the index table value for
15309 and inline entry. */
15310
15311static valueT
15312create_unwind_entry (int have_data)
bfae80f2 15313{
c19d1205
ZW
15314 int size;
15315 addressT where;
15316 char *ptr;
15317 /* The current word of data. */
15318 valueT data;
15319 /* The number of bytes left in this word. */
15320 int n;
bfae80f2 15321
c19d1205 15322 finish_unwind_opcodes ();
bfae80f2 15323
c19d1205
ZW
15324 /* Remember the current text section. */
15325 unwind.saved_seg = now_seg;
15326 unwind.saved_subseg = now_subseg;
bfae80f2 15327
c19d1205 15328 start_unwind_section (now_seg, 0);
bfae80f2 15329
c19d1205 15330 if (unwind.personality_routine == NULL)
bfae80f2 15331 {
c19d1205
ZW
15332 if (unwind.personality_index == -2)
15333 {
15334 if (have_data)
15335 as_bad (_("handerdata in cantunwind frame"));
15336 return 1; /* EXIDX_CANTUNWIND. */
15337 }
bfae80f2 15338
c19d1205
ZW
15339 /* Use a default personality routine if none is specified. */
15340 if (unwind.personality_index == -1)
15341 {
15342 if (unwind.opcode_count > 3)
15343 unwind.personality_index = 1;
15344 else
15345 unwind.personality_index = 0;
15346 }
bfae80f2 15347
c19d1205
ZW
15348 /* Space for the personality routine entry. */
15349 if (unwind.personality_index == 0)
15350 {
15351 if (unwind.opcode_count > 3)
15352 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 15353
c19d1205
ZW
15354 if (!have_data)
15355 {
15356 /* All the data is inline in the index table. */
15357 data = 0x80;
15358 n = 3;
15359 while (unwind.opcode_count > 0)
15360 {
15361 unwind.opcode_count--;
15362 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
15363 n--;
15364 }
bfae80f2 15365
c19d1205
ZW
15366 /* Pad with "finish" opcodes. */
15367 while (n--)
15368 data = (data << 8) | 0xb0;
bfae80f2 15369
c19d1205
ZW
15370 return data;
15371 }
15372 size = 0;
15373 }
15374 else
15375 /* We get two opcodes "free" in the first word. */
15376 size = unwind.opcode_count - 2;
15377 }
15378 else
15379 /* An extra byte is required for the opcode count. */
15380 size = unwind.opcode_count + 1;
bfae80f2 15381
c19d1205
ZW
15382 size = (size + 3) >> 2;
15383 if (size > 0xff)
15384 as_bad (_("too many unwind opcodes"));
bfae80f2 15385
c19d1205
ZW
15386 frag_align (2, 0, 0);
15387 record_alignment (now_seg, 2);
15388 unwind.table_entry = expr_build_dot ();
15389
15390 /* Allocate the table entry. */
15391 ptr = frag_more ((size << 2) + 4);
15392 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 15393
c19d1205 15394 switch (unwind.personality_index)
bfae80f2 15395 {
c19d1205
ZW
15396 case -1:
15397 /* ??? Should this be a PLT generating relocation? */
15398 /* Custom personality routine. */
15399 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
15400 BFD_RELOC_ARM_PREL31);
bfae80f2 15401
c19d1205
ZW
15402 where += 4;
15403 ptr += 4;
bfae80f2 15404
c19d1205
ZW
15405 /* Set the first byte to the number of additional words. */
15406 data = size - 1;
15407 n = 3;
15408 break;
bfae80f2 15409
c19d1205
ZW
15410 /* ABI defined personality routines. */
15411 case 0:
15412 /* Three opcodes bytes are packed into the first word. */
15413 data = 0x80;
15414 n = 3;
15415 break;
bfae80f2 15416
c19d1205
ZW
15417 case 1:
15418 case 2:
15419 /* The size and first two opcode bytes go in the first word. */
15420 data = ((0x80 + unwind.personality_index) << 8) | size;
15421 n = 2;
15422 break;
bfae80f2 15423
c19d1205
ZW
15424 default:
15425 /* Should never happen. */
15426 abort ();
15427 }
bfae80f2 15428
c19d1205
ZW
15429 /* Pack the opcodes into words (MSB first), reversing the list at the same
15430 time. */
15431 while (unwind.opcode_count > 0)
15432 {
15433 if (n == 0)
15434 {
15435 md_number_to_chars (ptr, data, 4);
15436 ptr += 4;
15437 n = 4;
15438 data = 0;
15439 }
15440 unwind.opcode_count--;
15441 n--;
15442 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
15443 }
15444
15445 /* Finish off the last word. */
15446 if (n < 4)
15447 {
15448 /* Pad with "finish" opcodes. */
15449 while (n--)
15450 data = (data << 8) | 0xb0;
15451
15452 md_number_to_chars (ptr, data, 4);
15453 }
15454
15455 if (!have_data)
15456 {
15457 /* Add an empty descriptor if there is no user-specified data. */
15458 ptr = frag_more (4);
15459 md_number_to_chars (ptr, 0, 4);
15460 }
15461
15462 return 0;
bfae80f2
RE
15463}
15464
c19d1205
ZW
15465/* Convert REGNAME to a DWARF-2 register number. */
15466
15467int
15468tc_arm_regname_to_dw2regnum (const char *regname)
bfae80f2 15469{
dcbf9037 15470 int reg = arm_reg_parse ((char **) &regname, REG_TYPE_RN);
c19d1205
ZW
15471
15472 if (reg == FAIL)
15473 return -1;
15474
15475 return reg;
bfae80f2
RE
15476}
15477
c19d1205
ZW
15478/* Initialize the DWARF-2 unwind information for this procedure. */
15479
15480void
15481tc_arm_frame_initial_instructions (void)
bfae80f2 15482{
c19d1205 15483 cfi_add_CFA_def_cfa (REG_SP, 0);
bfae80f2 15484}
c19d1205 15485#endif /* OBJ_ELF */
bfae80f2 15486
bfae80f2 15487
c19d1205 15488/* MD interface: Symbol and relocation handling. */
bfae80f2 15489
2fc8bdac
ZW
15490/* Return the address within the segment that a PC-relative fixup is
15491 relative to. For ARM, PC-relative fixups applied to instructions
15492 are generally relative to the location of the fixup plus 8 bytes.
15493 Thumb branches are offset by 4, and Thumb loads relative to PC
15494 require special handling. */
bfae80f2 15495
c19d1205 15496long
2fc8bdac 15497md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 15498{
2fc8bdac
ZW
15499 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
15500
15501 /* If this is pc-relative and we are going to emit a relocation
15502 then we just want to put out any pipeline compensation that the linker
15503 will need. Otherwise we want to use the calculated base. */
15504 if (fixP->fx_pcrel
15505 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
15506 || arm_force_relocation (fixP)))
15507 base = 0;
bfae80f2 15508
c19d1205 15509 switch (fixP->fx_r_type)
bfae80f2 15510 {
2fc8bdac
ZW
15511 /* PC relative addressing on the Thumb is slightly odd as the
15512 bottom two bits of the PC are forced to zero for the
15513 calculation. This happens *after* application of the
15514 pipeline offset. However, Thumb adrl already adjusts for
15515 this, so we need not do it again. */
c19d1205 15516 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 15517 return base & ~3;
c19d1205
ZW
15518
15519 case BFD_RELOC_ARM_THUMB_OFFSET:
15520 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 15521 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 15522 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 15523 return (base + 4) & ~3;
c19d1205 15524
2fc8bdac
ZW
15525 /* Thumb branches are simply offset by +4. */
15526 case BFD_RELOC_THUMB_PCREL_BRANCH7:
15527 case BFD_RELOC_THUMB_PCREL_BRANCH9:
15528 case BFD_RELOC_THUMB_PCREL_BRANCH12:
15529 case BFD_RELOC_THUMB_PCREL_BRANCH20:
15530 case BFD_RELOC_THUMB_PCREL_BRANCH23:
15531 case BFD_RELOC_THUMB_PCREL_BRANCH25:
15532 case BFD_RELOC_THUMB_PCREL_BLX:
15533 return base + 4;
bfae80f2 15534
2fc8bdac
ZW
15535 /* ARM mode branches are offset by +8. However, the Windows CE
15536 loader expects the relocation not to take this into account. */
15537 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
15538 case BFD_RELOC_ARM_PCREL_CALL:
15539 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
15540 case BFD_RELOC_ARM_PCREL_BLX:
15541 case BFD_RELOC_ARM_PLT32:
c19d1205 15542#ifdef TE_WINCE
2fc8bdac 15543 return base;
c19d1205 15544#else
2fc8bdac 15545 return base + 8;
c19d1205 15546#endif
2fc8bdac
ZW
15547
15548 /* ARM mode loads relative to PC are also offset by +8. Unlike
15549 branches, the Windows CE loader *does* expect the relocation
15550 to take this into account. */
15551 case BFD_RELOC_ARM_OFFSET_IMM:
15552 case BFD_RELOC_ARM_OFFSET_IMM8:
15553 case BFD_RELOC_ARM_HWLITERAL:
15554 case BFD_RELOC_ARM_LITERAL:
15555 case BFD_RELOC_ARM_CP_OFF_IMM:
15556 return base + 8;
15557
15558
15559 /* Other PC-relative relocations are un-offset. */
15560 default:
15561 return base;
15562 }
bfae80f2
RE
15563}
15564
c19d1205
ZW
15565/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
15566 Otherwise we have no need to default values of symbols. */
15567
15568symbolS *
15569md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 15570{
c19d1205
ZW
15571#ifdef OBJ_ELF
15572 if (name[0] == '_' && name[1] == 'G'
15573 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
15574 {
15575 if (!GOT_symbol)
15576 {
15577 if (symbol_find (name))
15578 as_bad ("GOT already in the symbol table");
bfae80f2 15579
c19d1205
ZW
15580 GOT_symbol = symbol_new (name, undefined_section,
15581 (valueT) 0, & zero_address_frag);
15582 }
bfae80f2 15583
c19d1205 15584 return GOT_symbol;
bfae80f2 15585 }
c19d1205 15586#endif
bfae80f2 15587
c19d1205 15588 return 0;
bfae80f2
RE
15589}
15590
55cf6793 15591/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
15592 computed as two separate immediate values, added together. We
15593 already know that this value cannot be computed by just one ARM
15594 instruction. */
15595
15596static unsigned int
15597validate_immediate_twopart (unsigned int val,
15598 unsigned int * highpart)
bfae80f2 15599{
c19d1205
ZW
15600 unsigned int a;
15601 unsigned int i;
bfae80f2 15602
c19d1205
ZW
15603 for (i = 0; i < 32; i += 2)
15604 if (((a = rotate_left (val, i)) & 0xff) != 0)
15605 {
15606 if (a & 0xff00)
15607 {
15608 if (a & ~ 0xffff)
15609 continue;
15610 * highpart = (a >> 8) | ((i + 24) << 7);
15611 }
15612 else if (a & 0xff0000)
15613 {
15614 if (a & 0xff000000)
15615 continue;
15616 * highpart = (a >> 16) | ((i + 16) << 7);
15617 }
15618 else
15619 {
15620 assert (a & 0xff000000);
15621 * highpart = (a >> 24) | ((i + 8) << 7);
15622 }
bfae80f2 15623
c19d1205
ZW
15624 return (a & 0xff) | (i << 7);
15625 }
bfae80f2 15626
c19d1205 15627 return FAIL;
bfae80f2
RE
15628}
15629
c19d1205
ZW
15630static int
15631validate_offset_imm (unsigned int val, int hwse)
15632{
15633 if ((hwse && val > 255) || val > 4095)
15634 return FAIL;
15635 return val;
15636}
bfae80f2 15637
55cf6793 15638/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
15639 negative immediate constant by altering the instruction. A bit of
15640 a hack really.
15641 MOV <-> MVN
15642 AND <-> BIC
15643 ADC <-> SBC
15644 by inverting the second operand, and
15645 ADD <-> SUB
15646 CMP <-> CMN
15647 by negating the second operand. */
bfae80f2 15648
c19d1205
ZW
15649static int
15650negate_data_op (unsigned long * instruction,
15651 unsigned long value)
bfae80f2 15652{
c19d1205
ZW
15653 int op, new_inst;
15654 unsigned long negated, inverted;
bfae80f2 15655
c19d1205
ZW
15656 negated = encode_arm_immediate (-value);
15657 inverted = encode_arm_immediate (~value);
bfae80f2 15658
c19d1205
ZW
15659 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
15660 switch (op)
bfae80f2 15661 {
c19d1205
ZW
15662 /* First negates. */
15663 case OPCODE_SUB: /* ADD <-> SUB */
15664 new_inst = OPCODE_ADD;
15665 value = negated;
15666 break;
bfae80f2 15667
c19d1205
ZW
15668 case OPCODE_ADD:
15669 new_inst = OPCODE_SUB;
15670 value = negated;
15671 break;
bfae80f2 15672
c19d1205
ZW
15673 case OPCODE_CMP: /* CMP <-> CMN */
15674 new_inst = OPCODE_CMN;
15675 value = negated;
15676 break;
bfae80f2 15677
c19d1205
ZW
15678 case OPCODE_CMN:
15679 new_inst = OPCODE_CMP;
15680 value = negated;
15681 break;
bfae80f2 15682
c19d1205
ZW
15683 /* Now Inverted ops. */
15684 case OPCODE_MOV: /* MOV <-> MVN */
15685 new_inst = OPCODE_MVN;
15686 value = inverted;
15687 break;
bfae80f2 15688
c19d1205
ZW
15689 case OPCODE_MVN:
15690 new_inst = OPCODE_MOV;
15691 value = inverted;
15692 break;
bfae80f2 15693
c19d1205
ZW
15694 case OPCODE_AND: /* AND <-> BIC */
15695 new_inst = OPCODE_BIC;
15696 value = inverted;
15697 break;
bfae80f2 15698
c19d1205
ZW
15699 case OPCODE_BIC:
15700 new_inst = OPCODE_AND;
15701 value = inverted;
15702 break;
bfae80f2 15703
c19d1205
ZW
15704 case OPCODE_ADC: /* ADC <-> SBC */
15705 new_inst = OPCODE_SBC;
15706 value = inverted;
15707 break;
bfae80f2 15708
c19d1205
ZW
15709 case OPCODE_SBC:
15710 new_inst = OPCODE_ADC;
15711 value = inverted;
15712 break;
bfae80f2 15713
c19d1205
ZW
15714 /* We cannot do anything. */
15715 default:
15716 return FAIL;
b99bd4ef
NC
15717 }
15718
c19d1205
ZW
15719 if (value == (unsigned) FAIL)
15720 return FAIL;
15721
15722 *instruction &= OPCODE_MASK;
15723 *instruction |= new_inst << DATA_OP_SHIFT;
15724 return value;
b99bd4ef
NC
15725}
15726
ef8d22e6
PB
15727/* Like negate_data_op, but for Thumb-2. */
15728
15729static unsigned int
15730thumb32_negate_data_op (offsetT *instruction, offsetT value)
15731{
15732 int op, new_inst;
15733 int rd;
15734 offsetT negated, inverted;
15735
15736 negated = encode_thumb32_immediate (-value);
15737 inverted = encode_thumb32_immediate (~value);
15738
15739 rd = (*instruction >> 8) & 0xf;
15740 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
15741 switch (op)
15742 {
15743 /* ADD <-> SUB. Includes CMP <-> CMN. */
15744 case T2_OPCODE_SUB:
15745 new_inst = T2_OPCODE_ADD;
15746 value = negated;
15747 break;
15748
15749 case T2_OPCODE_ADD:
15750 new_inst = T2_OPCODE_SUB;
15751 value = negated;
15752 break;
15753
15754 /* ORR <-> ORN. Includes MOV <-> MVN. */
15755 case T2_OPCODE_ORR:
15756 new_inst = T2_OPCODE_ORN;
15757 value = inverted;
15758 break;
15759
15760 case T2_OPCODE_ORN:
15761 new_inst = T2_OPCODE_ORR;
15762 value = inverted;
15763 break;
15764
15765 /* AND <-> BIC. TST has no inverted equivalent. */
15766 case T2_OPCODE_AND:
15767 new_inst = T2_OPCODE_BIC;
15768 if (rd == 15)
15769 value = FAIL;
15770 else
15771 value = inverted;
15772 break;
15773
15774 case T2_OPCODE_BIC:
15775 new_inst = T2_OPCODE_AND;
15776 value = inverted;
15777 break;
15778
15779 /* ADC <-> SBC */
15780 case T2_OPCODE_ADC:
15781 new_inst = T2_OPCODE_SBC;
15782 value = inverted;
15783 break;
15784
15785 case T2_OPCODE_SBC:
15786 new_inst = T2_OPCODE_ADC;
15787 value = inverted;
15788 break;
15789
15790 /* We cannot do anything. */
15791 default:
15792 return FAIL;
15793 }
15794
15795 if (value == FAIL)
15796 return FAIL;
15797
15798 *instruction &= T2_OPCODE_MASK;
15799 *instruction |= new_inst << T2_DATA_OP_SHIFT;
15800 return value;
15801}
15802
8f06b2d8
PB
15803/* Read a 32-bit thumb instruction from buf. */
15804static unsigned long
15805get_thumb32_insn (char * buf)
15806{
15807 unsigned long insn;
15808 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
15809 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
15810
15811 return insn;
15812}
15813
a8bc6c78
PB
15814
15815/* We usually want to set the low bit on the address of thumb function
15816 symbols. In particular .word foo - . should have the low bit set.
15817 Generic code tries to fold the difference of two symbols to
15818 a constant. Prevent this and force a relocation when the first symbols
15819 is a thumb function. */
15820int
15821arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
15822{
15823 if (op == O_subtract
15824 && l->X_op == O_symbol
15825 && r->X_op == O_symbol
15826 && THUMB_IS_FUNC (l->X_add_symbol))
15827 {
15828 l->X_op = O_subtract;
15829 l->X_op_symbol = r->X_add_symbol;
15830 l->X_add_number -= r->X_add_number;
15831 return 1;
15832 }
15833 /* Process as normal. */
15834 return 0;
15835}
15836
c19d1205 15837void
55cf6793 15838md_apply_fix (fixS * fixP,
c19d1205
ZW
15839 valueT * valP,
15840 segT seg)
15841{
15842 offsetT value = * valP;
15843 offsetT newval;
15844 unsigned int newimm;
15845 unsigned long temp;
15846 int sign;
15847 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 15848
c19d1205 15849 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 15850
c19d1205
ZW
15851 /* Note whether this will delete the relocation. */
15852 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
15853 fixP->fx_done = 1;
b99bd4ef 15854
adbaf948
ZW
15855 /* On a 64-bit host, silently truncate 'value' to 32 bits for
15856 consistency with the behavior on 32-bit hosts. Remember value
15857 for emit_reloc. */
15858 value &= 0xffffffff;
15859 value ^= 0x80000000;
15860 value -= 0x80000000;
15861
15862 *valP = value;
c19d1205 15863 fixP->fx_addnumber = value;
b99bd4ef 15864
adbaf948
ZW
15865 /* Same treatment for fixP->fx_offset. */
15866 fixP->fx_offset &= 0xffffffff;
15867 fixP->fx_offset ^= 0x80000000;
15868 fixP->fx_offset -= 0x80000000;
15869
c19d1205 15870 switch (fixP->fx_r_type)
b99bd4ef 15871 {
c19d1205
ZW
15872 case BFD_RELOC_NONE:
15873 /* This will need to go in the object file. */
15874 fixP->fx_done = 0;
15875 break;
b99bd4ef 15876
c19d1205
ZW
15877 case BFD_RELOC_ARM_IMMEDIATE:
15878 /* We claim that this fixup has been processed here,
15879 even if in fact we generate an error because we do
15880 not have a reloc for it, so tc_gen_reloc will reject it. */
15881 fixP->fx_done = 1;
b99bd4ef 15882
c19d1205
ZW
15883 if (fixP->fx_addsy
15884 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 15885 {
c19d1205
ZW
15886 as_bad_where (fixP->fx_file, fixP->fx_line,
15887 _("undefined symbol %s used as an immediate value"),
15888 S_GET_NAME (fixP->fx_addsy));
15889 break;
b99bd4ef
NC
15890 }
15891
c19d1205
ZW
15892 newimm = encode_arm_immediate (value);
15893 temp = md_chars_to_number (buf, INSN_SIZE);
15894
15895 /* If the instruction will fail, see if we can fix things up by
15896 changing the opcode. */
15897 if (newimm == (unsigned int) FAIL
15898 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 15899 {
c19d1205
ZW
15900 as_bad_where (fixP->fx_file, fixP->fx_line,
15901 _("invalid constant (%lx) after fixup"),
15902 (unsigned long) value);
15903 break;
b99bd4ef 15904 }
b99bd4ef 15905
c19d1205
ZW
15906 newimm |= (temp & 0xfffff000);
15907 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
15908 break;
b99bd4ef 15909
c19d1205
ZW
15910 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
15911 {
15912 unsigned int highpart = 0;
15913 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 15914
c19d1205
ZW
15915 newimm = encode_arm_immediate (value);
15916 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 15917
c19d1205
ZW
15918 /* If the instruction will fail, see if we can fix things up by
15919 changing the opcode. */
15920 if (newimm == (unsigned int) FAIL
15921 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
15922 {
15923 /* No ? OK - try using two ADD instructions to generate
15924 the value. */
15925 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 15926
c19d1205
ZW
15927 /* Yes - then make sure that the second instruction is
15928 also an add. */
15929 if (newimm != (unsigned int) FAIL)
15930 newinsn = temp;
15931 /* Still No ? Try using a negated value. */
15932 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
15933 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
15934 /* Otherwise - give up. */
15935 else
15936 {
15937 as_bad_where (fixP->fx_file, fixP->fx_line,
15938 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
15939 (long) value);
15940 break;
15941 }
b99bd4ef 15942
c19d1205
ZW
15943 /* Replace the first operand in the 2nd instruction (which
15944 is the PC) with the destination register. We have
15945 already added in the PC in the first instruction and we
15946 do not want to do it again. */
15947 newinsn &= ~ 0xf0000;
15948 newinsn |= ((newinsn & 0x0f000) << 4);
15949 }
b99bd4ef 15950
c19d1205
ZW
15951 newimm |= (temp & 0xfffff000);
15952 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 15953
c19d1205
ZW
15954 highpart |= (newinsn & 0xfffff000);
15955 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
15956 }
15957 break;
b99bd4ef 15958
c19d1205 15959 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
15960 if (!fixP->fx_done && seg->use_rela_p)
15961 value = 0;
15962
c19d1205
ZW
15963 case BFD_RELOC_ARM_LITERAL:
15964 sign = value >= 0;
b99bd4ef 15965
c19d1205
ZW
15966 if (value < 0)
15967 value = - value;
b99bd4ef 15968
c19d1205 15969 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 15970 {
c19d1205
ZW
15971 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
15972 as_bad_where (fixP->fx_file, fixP->fx_line,
15973 _("invalid literal constant: pool needs to be closer"));
15974 else
15975 as_bad_where (fixP->fx_file, fixP->fx_line,
15976 _("bad immediate value for offset (%ld)"),
15977 (long) value);
15978 break;
f03698e6
RE
15979 }
15980
c19d1205
ZW
15981 newval = md_chars_to_number (buf, INSN_SIZE);
15982 newval &= 0xff7ff000;
15983 newval |= value | (sign ? INDEX_UP : 0);
15984 md_number_to_chars (buf, newval, INSN_SIZE);
15985 break;
b99bd4ef 15986
c19d1205
ZW
15987 case BFD_RELOC_ARM_OFFSET_IMM8:
15988 case BFD_RELOC_ARM_HWLITERAL:
15989 sign = value >= 0;
b99bd4ef 15990
c19d1205
ZW
15991 if (value < 0)
15992 value = - value;
b99bd4ef 15993
c19d1205 15994 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 15995 {
c19d1205
ZW
15996 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
15997 as_bad_where (fixP->fx_file, fixP->fx_line,
15998 _("invalid literal constant: pool needs to be closer"));
15999 else
16000 as_bad (_("bad immediate value for half-word offset (%ld)"),
16001 (long) value);
16002 break;
b99bd4ef
NC
16003 }
16004
c19d1205
ZW
16005 newval = md_chars_to_number (buf, INSN_SIZE);
16006 newval &= 0xff7ff0f0;
16007 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
16008 md_number_to_chars (buf, newval, INSN_SIZE);
16009 break;
b99bd4ef 16010
c19d1205
ZW
16011 case BFD_RELOC_ARM_T32_OFFSET_U8:
16012 if (value < 0 || value > 1020 || value % 4 != 0)
16013 as_bad_where (fixP->fx_file, fixP->fx_line,
16014 _("bad immediate value for offset (%ld)"), (long) value);
16015 value /= 4;
b99bd4ef 16016
c19d1205 16017 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
16018 newval |= value;
16019 md_number_to_chars (buf+2, newval, THUMB_SIZE);
16020 break;
b99bd4ef 16021
c19d1205
ZW
16022 case BFD_RELOC_ARM_T32_OFFSET_IMM:
16023 /* This is a complicated relocation used for all varieties of Thumb32
16024 load/store instruction with immediate offset:
16025
16026 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
16027 *4, optional writeback(W)
16028 (doubleword load/store)
16029
16030 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
16031 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
16032 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
16033 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
16034 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
16035
16036 Uppercase letters indicate bits that are already encoded at
16037 this point. Lowercase letters are our problem. For the
16038 second block of instructions, the secondary opcode nybble
16039 (bits 8..11) is present, and bit 23 is zero, even if this is
16040 a PC-relative operation. */
16041 newval = md_chars_to_number (buf, THUMB_SIZE);
16042 newval <<= 16;
16043 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 16044
c19d1205 16045 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 16046 {
c19d1205
ZW
16047 /* Doubleword load/store: 8-bit offset, scaled by 4. */
16048 if (value >= 0)
16049 newval |= (1 << 23);
16050 else
16051 value = -value;
16052 if (value % 4 != 0)
16053 {
16054 as_bad_where (fixP->fx_file, fixP->fx_line,
16055 _("offset not a multiple of 4"));
16056 break;
16057 }
16058 value /= 4;
216d22bc 16059 if (value > 0xff)
c19d1205
ZW
16060 {
16061 as_bad_where (fixP->fx_file, fixP->fx_line,
16062 _("offset out of range"));
16063 break;
16064 }
16065 newval &= ~0xff;
b99bd4ef 16066 }
c19d1205 16067 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 16068 {
c19d1205
ZW
16069 /* PC-relative, 12-bit offset. */
16070 if (value >= 0)
16071 newval |= (1 << 23);
16072 else
16073 value = -value;
216d22bc 16074 if (value > 0xfff)
c19d1205
ZW
16075 {
16076 as_bad_where (fixP->fx_file, fixP->fx_line,
16077 _("offset out of range"));
16078 break;
16079 }
16080 newval &= ~0xfff;
b99bd4ef 16081 }
c19d1205 16082 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 16083 {
c19d1205
ZW
16084 /* Writeback: 8-bit, +/- offset. */
16085 if (value >= 0)
16086 newval |= (1 << 9);
16087 else
16088 value = -value;
216d22bc 16089 if (value > 0xff)
c19d1205
ZW
16090 {
16091 as_bad_where (fixP->fx_file, fixP->fx_line,
16092 _("offset out of range"));
16093 break;
16094 }
16095 newval &= ~0xff;
b99bd4ef 16096 }
c19d1205 16097 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 16098 {
c19d1205 16099 /* T-instruction: positive 8-bit offset. */
216d22bc 16100 if (value < 0 || value > 0xff)
b99bd4ef 16101 {
c19d1205
ZW
16102 as_bad_where (fixP->fx_file, fixP->fx_line,
16103 _("offset out of range"));
16104 break;
b99bd4ef 16105 }
c19d1205
ZW
16106 newval &= ~0xff;
16107 newval |= value;
b99bd4ef
NC
16108 }
16109 else
b99bd4ef 16110 {
c19d1205
ZW
16111 /* Positive 12-bit or negative 8-bit offset. */
16112 int limit;
16113 if (value >= 0)
b99bd4ef 16114 {
c19d1205
ZW
16115 newval |= (1 << 23);
16116 limit = 0xfff;
16117 }
16118 else
16119 {
16120 value = -value;
16121 limit = 0xff;
16122 }
16123 if (value > limit)
16124 {
16125 as_bad_where (fixP->fx_file, fixP->fx_line,
16126 _("offset out of range"));
16127 break;
b99bd4ef 16128 }
c19d1205 16129 newval &= ~limit;
b99bd4ef 16130 }
b99bd4ef 16131
c19d1205
ZW
16132 newval |= value;
16133 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
16134 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
16135 break;
404ff6b5 16136
c19d1205
ZW
16137 case BFD_RELOC_ARM_SHIFT_IMM:
16138 newval = md_chars_to_number (buf, INSN_SIZE);
16139 if (((unsigned long) value) > 32
16140 || (value == 32
16141 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
16142 {
16143 as_bad_where (fixP->fx_file, fixP->fx_line,
16144 _("shift expression is too large"));
16145 break;
16146 }
404ff6b5 16147
c19d1205
ZW
16148 if (value == 0)
16149 /* Shifts of zero must be done as lsl. */
16150 newval &= ~0x60;
16151 else if (value == 32)
16152 value = 0;
16153 newval &= 0xfffff07f;
16154 newval |= (value & 0x1f) << 7;
16155 md_number_to_chars (buf, newval, INSN_SIZE);
16156 break;
404ff6b5 16157
c19d1205 16158 case BFD_RELOC_ARM_T32_IMMEDIATE:
92e90b6e 16159 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 16160 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
16161 /* We claim that this fixup has been processed here,
16162 even if in fact we generate an error because we do
16163 not have a reloc for it, so tc_gen_reloc will reject it. */
16164 fixP->fx_done = 1;
404ff6b5 16165
c19d1205
ZW
16166 if (fixP->fx_addsy
16167 && ! S_IS_DEFINED (fixP->fx_addsy))
16168 {
16169 as_bad_where (fixP->fx_file, fixP->fx_line,
16170 _("undefined symbol %s used as an immediate value"),
16171 S_GET_NAME (fixP->fx_addsy));
16172 break;
16173 }
404ff6b5 16174
c19d1205
ZW
16175 newval = md_chars_to_number (buf, THUMB_SIZE);
16176 newval <<= 16;
16177 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 16178
e9f89963
PB
16179 /* FUTURE: Implement analogue of negate_data_op for T32. */
16180 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE)
ef8d22e6
PB
16181 {
16182 newimm = encode_thumb32_immediate (value);
16183 if (newimm == (unsigned int) FAIL)
16184 newimm = thumb32_negate_data_op (&newval, value);
16185 }
e9f89963 16186 else
92e90b6e 16187 {
e9f89963
PB
16188 /* 12 bit immediate for addw/subw. */
16189 if (value < 0)
16190 {
16191 value = -value;
16192 newval ^= 0x00a00000;
16193 }
92e90b6e
PB
16194 if (value > 0xfff)
16195 newimm = (unsigned int) FAIL;
16196 else
16197 newimm = value;
16198 }
cc8a6dd0 16199
c19d1205 16200 if (newimm == (unsigned int)FAIL)
3631a3c8 16201 {
c19d1205
ZW
16202 as_bad_where (fixP->fx_file, fixP->fx_line,
16203 _("invalid constant (%lx) after fixup"),
16204 (unsigned long) value);
16205 break;
3631a3c8
NC
16206 }
16207
c19d1205
ZW
16208 newval |= (newimm & 0x800) << 15;
16209 newval |= (newimm & 0x700) << 4;
16210 newval |= (newimm & 0x0ff);
cc8a6dd0 16211
c19d1205
ZW
16212 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
16213 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
16214 break;
a737bd4d 16215
3eb17e6b 16216 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
16217 if (((unsigned long) value) > 0xffff)
16218 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 16219 _("invalid smc expression"));
2fc8bdac 16220 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
16221 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
16222 md_number_to_chars (buf, newval, INSN_SIZE);
16223 break;
a737bd4d 16224
c19d1205 16225 case BFD_RELOC_ARM_SWI:
adbaf948 16226 if (fixP->tc_fix_data != 0)
c19d1205
ZW
16227 {
16228 if (((unsigned long) value) > 0xff)
16229 as_bad_where (fixP->fx_file, fixP->fx_line,
16230 _("invalid swi expression"));
2fc8bdac 16231 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
16232 newval |= value;
16233 md_number_to_chars (buf, newval, THUMB_SIZE);
16234 }
16235 else
16236 {
16237 if (((unsigned long) value) > 0x00ffffff)
16238 as_bad_where (fixP->fx_file, fixP->fx_line,
16239 _("invalid swi expression"));
2fc8bdac 16240 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
16241 newval |= value;
16242 md_number_to_chars (buf, newval, INSN_SIZE);
16243 }
16244 break;
a737bd4d 16245
c19d1205
ZW
16246 case BFD_RELOC_ARM_MULTI:
16247 if (((unsigned long) value) > 0xffff)
16248 as_bad_where (fixP->fx_file, fixP->fx_line,
16249 _("invalid expression in load/store multiple"));
16250 newval = value | md_chars_to_number (buf, INSN_SIZE);
16251 md_number_to_chars (buf, newval, INSN_SIZE);
16252 break;
a737bd4d 16253
c19d1205 16254#ifdef OBJ_ELF
39b41c9c
PB
16255 case BFD_RELOC_ARM_PCREL_CALL:
16256 newval = md_chars_to_number (buf, INSN_SIZE);
16257 if ((newval & 0xf0000000) == 0xf0000000)
16258 temp = 1;
16259 else
16260 temp = 3;
16261 goto arm_branch_common;
16262
16263 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 16264 case BFD_RELOC_ARM_PLT32:
c19d1205 16265#endif
39b41c9c
PB
16266 case BFD_RELOC_ARM_PCREL_BRANCH:
16267 temp = 3;
16268 goto arm_branch_common;
a737bd4d 16269
39b41c9c
PB
16270 case BFD_RELOC_ARM_PCREL_BLX:
16271 temp = 1;
16272 arm_branch_common:
c19d1205 16273 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
16274 instruction, in a 24 bit, signed field. Bits 26 through 32 either
16275 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
16276 also be be clear. */
16277 if (value & temp)
c19d1205 16278 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
16279 _("misaligned branch destination"));
16280 if ((value & (offsetT)0xfe000000) != (offsetT)0
16281 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
16282 as_bad_where (fixP->fx_file, fixP->fx_line,
16283 _("branch out of range"));
a737bd4d 16284
2fc8bdac 16285 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 16286 {
2fc8bdac
ZW
16287 newval = md_chars_to_number (buf, INSN_SIZE);
16288 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
16289 /* Set the H bit on BLX instructions. */
16290 if (temp == 1)
16291 {
16292 if (value & 2)
16293 newval |= 0x01000000;
16294 else
16295 newval &= ~0x01000000;
16296 }
2fc8bdac 16297 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 16298 }
c19d1205 16299 break;
a737bd4d 16300
c19d1205 16301 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
2fc8bdac
ZW
16302 /* CZB can only branch forward. */
16303 if (value & ~0x7e)
16304 as_bad_where (fixP->fx_file, fixP->fx_line,
16305 _("branch out of range"));
a737bd4d 16306
2fc8bdac
ZW
16307 if (fixP->fx_done || !seg->use_rela_p)
16308 {
16309 newval = md_chars_to_number (buf, THUMB_SIZE);
080eb7fe 16310 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
2fc8bdac
ZW
16311 md_number_to_chars (buf, newval, THUMB_SIZE);
16312 }
c19d1205 16313 break;
a737bd4d 16314
c19d1205 16315 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
16316 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
16317 as_bad_where (fixP->fx_file, fixP->fx_line,
16318 _("branch out of range"));
a737bd4d 16319
2fc8bdac
ZW
16320 if (fixP->fx_done || !seg->use_rela_p)
16321 {
16322 newval = md_chars_to_number (buf, THUMB_SIZE);
16323 newval |= (value & 0x1ff) >> 1;
16324 md_number_to_chars (buf, newval, THUMB_SIZE);
16325 }
c19d1205 16326 break;
a737bd4d 16327
c19d1205 16328 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
16329 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
16330 as_bad_where (fixP->fx_file, fixP->fx_line,
16331 _("branch out of range"));
a737bd4d 16332
2fc8bdac
ZW
16333 if (fixP->fx_done || !seg->use_rela_p)
16334 {
16335 newval = md_chars_to_number (buf, THUMB_SIZE);
16336 newval |= (value & 0xfff) >> 1;
16337 md_number_to_chars (buf, newval, THUMB_SIZE);
16338 }
c19d1205 16339 break;
a737bd4d 16340
c19d1205 16341 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
16342 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
16343 as_bad_where (fixP->fx_file, fixP->fx_line,
16344 _("conditional branch out of range"));
404ff6b5 16345
2fc8bdac
ZW
16346 if (fixP->fx_done || !seg->use_rela_p)
16347 {
16348 offsetT newval2;
16349 addressT S, J1, J2, lo, hi;
404ff6b5 16350
2fc8bdac
ZW
16351 S = (value & 0x00100000) >> 20;
16352 J2 = (value & 0x00080000) >> 19;
16353 J1 = (value & 0x00040000) >> 18;
16354 hi = (value & 0x0003f000) >> 12;
16355 lo = (value & 0x00000ffe) >> 1;
6c43fab6 16356
2fc8bdac
ZW
16357 newval = md_chars_to_number (buf, THUMB_SIZE);
16358 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
16359 newval |= (S << 10) | hi;
16360 newval2 |= (J1 << 13) | (J2 << 11) | lo;
16361 md_number_to_chars (buf, newval, THUMB_SIZE);
16362 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
16363 }
c19d1205 16364 break;
6c43fab6 16365
c19d1205
ZW
16366 case BFD_RELOC_THUMB_PCREL_BLX:
16367 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
16368 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
16369 as_bad_where (fixP->fx_file, fixP->fx_line,
16370 _("branch out of range"));
404ff6b5 16371
2fc8bdac
ZW
16372 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
16373 /* For a BLX instruction, make sure that the relocation is rounded up
16374 to a word boundary. This follows the semantics of the instruction
16375 which specifies that bit 1 of the target address will come from bit
16376 1 of the base address. */
16377 value = (value + 1) & ~ 1;
404ff6b5 16378
2fc8bdac 16379 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 16380 {
2fc8bdac
ZW
16381 offsetT newval2;
16382
16383 newval = md_chars_to_number (buf, THUMB_SIZE);
16384 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
16385 newval |= (value & 0x7fffff) >> 12;
16386 newval2 |= (value & 0xfff) >> 1;
16387 md_number_to_chars (buf, newval, THUMB_SIZE);
16388 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 16389 }
c19d1205 16390 break;
404ff6b5 16391
c19d1205 16392 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
16393 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
16394 as_bad_where (fixP->fx_file, fixP->fx_line,
16395 _("branch out of range"));
6c43fab6 16396
2fc8bdac
ZW
16397 if (fixP->fx_done || !seg->use_rela_p)
16398 {
16399 offsetT newval2;
16400 addressT S, I1, I2, lo, hi;
6c43fab6 16401
2fc8bdac
ZW
16402 S = (value & 0x01000000) >> 24;
16403 I1 = (value & 0x00800000) >> 23;
16404 I2 = (value & 0x00400000) >> 22;
16405 hi = (value & 0x003ff000) >> 12;
16406 lo = (value & 0x00000ffe) >> 1;
6c43fab6 16407
2fc8bdac
ZW
16408 I1 = !(I1 ^ S);
16409 I2 = !(I2 ^ S);
a737bd4d 16410
2fc8bdac
ZW
16411 newval = md_chars_to_number (buf, THUMB_SIZE);
16412 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
16413 newval |= (S << 10) | hi;
16414 newval2 |= (I1 << 13) | (I2 << 11) | lo;
16415 md_number_to_chars (buf, newval, THUMB_SIZE);
16416 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
16417 }
16418 break;
a737bd4d 16419
2fc8bdac
ZW
16420 case BFD_RELOC_8:
16421 if (fixP->fx_done || !seg->use_rela_p)
16422 md_number_to_chars (buf, value, 1);
c19d1205 16423 break;
a737bd4d 16424
c19d1205 16425 case BFD_RELOC_16:
2fc8bdac 16426 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 16427 md_number_to_chars (buf, value, 2);
c19d1205 16428 break;
a737bd4d 16429
c19d1205
ZW
16430#ifdef OBJ_ELF
16431 case BFD_RELOC_ARM_TLS_GD32:
16432 case BFD_RELOC_ARM_TLS_LE32:
16433 case BFD_RELOC_ARM_TLS_IE32:
16434 case BFD_RELOC_ARM_TLS_LDM32:
16435 case BFD_RELOC_ARM_TLS_LDO32:
16436 S_SET_THREAD_LOCAL (fixP->fx_addsy);
16437 /* fall through */
6c43fab6 16438
c19d1205
ZW
16439 case BFD_RELOC_ARM_GOT32:
16440 case BFD_RELOC_ARM_GOTOFF:
16441 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
16442 if (fixP->fx_done || !seg->use_rela_p)
16443 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
16444 break;
16445#endif
6c43fab6 16446
c19d1205
ZW
16447 case BFD_RELOC_RVA:
16448 case BFD_RELOC_32:
16449 case BFD_RELOC_ARM_TARGET1:
16450 case BFD_RELOC_ARM_ROSEGREL32:
16451 case BFD_RELOC_ARM_SBREL32:
16452 case BFD_RELOC_32_PCREL:
2fc8bdac 16453 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 16454 md_number_to_chars (buf, value, 4);
c19d1205 16455 break;
6c43fab6 16456
c19d1205
ZW
16457#ifdef OBJ_ELF
16458 case BFD_RELOC_ARM_PREL31:
2fc8bdac 16459 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
16460 {
16461 newval = md_chars_to_number (buf, 4) & 0x80000000;
16462 if ((value ^ (value >> 1)) & 0x40000000)
16463 {
16464 as_bad_where (fixP->fx_file, fixP->fx_line,
16465 _("rel31 relocation overflow"));
16466 }
16467 newval |= value & 0x7fffffff;
16468 md_number_to_chars (buf, newval, 4);
16469 }
16470 break;
c19d1205 16471#endif
a737bd4d 16472
c19d1205 16473 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 16474 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
16475 if (value < -1023 || value > 1023 || (value & 3))
16476 as_bad_where (fixP->fx_file, fixP->fx_line,
16477 _("co-processor offset out of range"));
16478 cp_off_common:
16479 sign = value >= 0;
16480 if (value < 0)
16481 value = -value;
8f06b2d8
PB
16482 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
16483 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
16484 newval = md_chars_to_number (buf, INSN_SIZE);
16485 else
16486 newval = get_thumb32_insn (buf);
16487 newval &= 0xff7fff00;
c19d1205
ZW
16488 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
16489 if (value == 0)
16490 newval &= ~WRITE_BACK;
8f06b2d8
PB
16491 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
16492 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
16493 md_number_to_chars (buf, newval, INSN_SIZE);
16494 else
16495 put_thumb32_insn (buf, newval);
c19d1205 16496 break;
a737bd4d 16497
c19d1205 16498 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 16499 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
16500 if (value < -255 || value > 255)
16501 as_bad_where (fixP->fx_file, fixP->fx_line,
16502 _("co-processor offset out of range"));
16503 goto cp_off_common;
6c43fab6 16504
c19d1205
ZW
16505 case BFD_RELOC_ARM_THUMB_OFFSET:
16506 newval = md_chars_to_number (buf, THUMB_SIZE);
16507 /* Exactly what ranges, and where the offset is inserted depends
16508 on the type of instruction, we can establish this from the
16509 top 4 bits. */
16510 switch (newval >> 12)
16511 {
16512 case 4: /* PC load. */
16513 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
16514 forced to zero for these loads; md_pcrel_from has already
16515 compensated for this. */
16516 if (value & 3)
16517 as_bad_where (fixP->fx_file, fixP->fx_line,
16518 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
16519 (((unsigned long) fixP->fx_frag->fr_address
16520 + (unsigned long) fixP->fx_where) & ~3)
16521 + (unsigned long) value);
a737bd4d 16522
c19d1205
ZW
16523 if (value & ~0x3fc)
16524 as_bad_where (fixP->fx_file, fixP->fx_line,
16525 _("invalid offset, value too big (0x%08lX)"),
16526 (long) value);
a737bd4d 16527
c19d1205
ZW
16528 newval |= value >> 2;
16529 break;
a737bd4d 16530
c19d1205
ZW
16531 case 9: /* SP load/store. */
16532 if (value & ~0x3fc)
16533 as_bad_where (fixP->fx_file, fixP->fx_line,
16534 _("invalid offset, value too big (0x%08lX)"),
16535 (long) value);
16536 newval |= value >> 2;
16537 break;
6c43fab6 16538
c19d1205
ZW
16539 case 6: /* Word load/store. */
16540 if (value & ~0x7c)
16541 as_bad_where (fixP->fx_file, fixP->fx_line,
16542 _("invalid offset, value too big (0x%08lX)"),
16543 (long) value);
16544 newval |= value << 4; /* 6 - 2. */
16545 break;
a737bd4d 16546
c19d1205
ZW
16547 case 7: /* Byte load/store. */
16548 if (value & ~0x1f)
16549 as_bad_where (fixP->fx_file, fixP->fx_line,
16550 _("invalid offset, value too big (0x%08lX)"),
16551 (long) value);
16552 newval |= value << 6;
16553 break;
a737bd4d 16554
c19d1205
ZW
16555 case 8: /* Halfword load/store. */
16556 if (value & ~0x3e)
16557 as_bad_where (fixP->fx_file, fixP->fx_line,
16558 _("invalid offset, value too big (0x%08lX)"),
16559 (long) value);
16560 newval |= value << 5; /* 6 - 1. */
16561 break;
a737bd4d 16562
c19d1205
ZW
16563 default:
16564 as_bad_where (fixP->fx_file, fixP->fx_line,
16565 "Unable to process relocation for thumb opcode: %lx",
16566 (unsigned long) newval);
16567 break;
16568 }
16569 md_number_to_chars (buf, newval, THUMB_SIZE);
16570 break;
a737bd4d 16571
c19d1205
ZW
16572 case BFD_RELOC_ARM_THUMB_ADD:
16573 /* This is a complicated relocation, since we use it for all of
16574 the following immediate relocations:
a737bd4d 16575
c19d1205
ZW
16576 3bit ADD/SUB
16577 8bit ADD/SUB
16578 9bit ADD/SUB SP word-aligned
16579 10bit ADD PC/SP word-aligned
a737bd4d 16580
c19d1205
ZW
16581 The type of instruction being processed is encoded in the
16582 instruction field:
a737bd4d 16583
c19d1205
ZW
16584 0x8000 SUB
16585 0x00F0 Rd
16586 0x000F Rs
16587 */
16588 newval = md_chars_to_number (buf, THUMB_SIZE);
16589 {
16590 int rd = (newval >> 4) & 0xf;
16591 int rs = newval & 0xf;
16592 int subtract = !!(newval & 0x8000);
a737bd4d 16593
c19d1205
ZW
16594 /* Check for HI regs, only very restricted cases allowed:
16595 Adjusting SP, and using PC or SP to get an address. */
16596 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
16597 || (rs > 7 && rs != REG_SP && rs != REG_PC))
16598 as_bad_where (fixP->fx_file, fixP->fx_line,
16599 _("invalid Hi register with immediate"));
a737bd4d 16600
c19d1205
ZW
16601 /* If value is negative, choose the opposite instruction. */
16602 if (value < 0)
16603 {
16604 value = -value;
16605 subtract = !subtract;
16606 if (value < 0)
16607 as_bad_where (fixP->fx_file, fixP->fx_line,
16608 _("immediate value out of range"));
16609 }
a737bd4d 16610
c19d1205
ZW
16611 if (rd == REG_SP)
16612 {
16613 if (value & ~0x1fc)
16614 as_bad_where (fixP->fx_file, fixP->fx_line,
16615 _("invalid immediate for stack address calculation"));
16616 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
16617 newval |= value >> 2;
16618 }
16619 else if (rs == REG_PC || rs == REG_SP)
16620 {
16621 if (subtract || value & ~0x3fc)
16622 as_bad_where (fixP->fx_file, fixP->fx_line,
16623 _("invalid immediate for address calculation (value = 0x%08lX)"),
16624 (unsigned long) value);
16625 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
16626 newval |= rd << 8;
16627 newval |= value >> 2;
16628 }
16629 else if (rs == rd)
16630 {
16631 if (value & ~0xff)
16632 as_bad_where (fixP->fx_file, fixP->fx_line,
16633 _("immediate value out of range"));
16634 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
16635 newval |= (rd << 8) | value;
16636 }
16637 else
16638 {
16639 if (value & ~0x7)
16640 as_bad_where (fixP->fx_file, fixP->fx_line,
16641 _("immediate value out of range"));
16642 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
16643 newval |= rd | (rs << 3) | (value << 6);
16644 }
16645 }
16646 md_number_to_chars (buf, newval, THUMB_SIZE);
16647 break;
a737bd4d 16648
c19d1205
ZW
16649 case BFD_RELOC_ARM_THUMB_IMM:
16650 newval = md_chars_to_number (buf, THUMB_SIZE);
16651 if (value < 0 || value > 255)
16652 as_bad_where (fixP->fx_file, fixP->fx_line,
16653 _("invalid immediate: %ld is too large"),
16654 (long) value);
16655 newval |= value;
16656 md_number_to_chars (buf, newval, THUMB_SIZE);
16657 break;
a737bd4d 16658
c19d1205
ZW
16659 case BFD_RELOC_ARM_THUMB_SHIFT:
16660 /* 5bit shift value (0..32). LSL cannot take 32. */
16661 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
16662 temp = newval & 0xf800;
16663 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
16664 as_bad_where (fixP->fx_file, fixP->fx_line,
16665 _("invalid shift value: %ld"), (long) value);
16666 /* Shifts of zero must be encoded as LSL. */
16667 if (value == 0)
16668 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
16669 /* Shifts of 32 are encoded as zero. */
16670 else if (value == 32)
16671 value = 0;
16672 newval |= value << 6;
16673 md_number_to_chars (buf, newval, THUMB_SIZE);
16674 break;
a737bd4d 16675
c19d1205
ZW
16676 case BFD_RELOC_VTABLE_INHERIT:
16677 case BFD_RELOC_VTABLE_ENTRY:
16678 fixP->fx_done = 0;
16679 return;
6c43fab6 16680
c19d1205
ZW
16681 case BFD_RELOC_UNUSED:
16682 default:
16683 as_bad_where (fixP->fx_file, fixP->fx_line,
16684 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
16685 }
6c43fab6
RE
16686}
16687
c19d1205
ZW
16688/* Translate internal representation of relocation info to BFD target
16689 format. */
a737bd4d 16690
c19d1205 16691arelent *
00a97672 16692tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 16693{
c19d1205
ZW
16694 arelent * reloc;
16695 bfd_reloc_code_real_type code;
a737bd4d 16696
c19d1205 16697 reloc = xmalloc (sizeof (arelent));
a737bd4d 16698
c19d1205
ZW
16699 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
16700 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
16701 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 16702
2fc8bdac 16703 if (fixp->fx_pcrel)
00a97672
RS
16704 {
16705 if (section->use_rela_p)
16706 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
16707 else
16708 fixp->fx_offset = reloc->address;
16709 }
c19d1205 16710 reloc->addend = fixp->fx_offset;
a737bd4d 16711
c19d1205 16712 switch (fixp->fx_r_type)
a737bd4d 16713 {
c19d1205
ZW
16714 case BFD_RELOC_8:
16715 if (fixp->fx_pcrel)
16716 {
16717 code = BFD_RELOC_8_PCREL;
16718 break;
16719 }
a737bd4d 16720
c19d1205
ZW
16721 case BFD_RELOC_16:
16722 if (fixp->fx_pcrel)
16723 {
16724 code = BFD_RELOC_16_PCREL;
16725 break;
16726 }
6c43fab6 16727
c19d1205
ZW
16728 case BFD_RELOC_32:
16729 if (fixp->fx_pcrel)
16730 {
16731 code = BFD_RELOC_32_PCREL;
16732 break;
16733 }
a737bd4d 16734
c19d1205
ZW
16735 case BFD_RELOC_NONE:
16736 case BFD_RELOC_ARM_PCREL_BRANCH:
16737 case BFD_RELOC_ARM_PCREL_BLX:
16738 case BFD_RELOC_RVA:
16739 case BFD_RELOC_THUMB_PCREL_BRANCH7:
16740 case BFD_RELOC_THUMB_PCREL_BRANCH9:
16741 case BFD_RELOC_THUMB_PCREL_BRANCH12:
16742 case BFD_RELOC_THUMB_PCREL_BRANCH20:
16743 case BFD_RELOC_THUMB_PCREL_BRANCH23:
16744 case BFD_RELOC_THUMB_PCREL_BRANCH25:
16745 case BFD_RELOC_THUMB_PCREL_BLX:
16746 case BFD_RELOC_VTABLE_ENTRY:
16747 case BFD_RELOC_VTABLE_INHERIT:
16748 code = fixp->fx_r_type;
16749 break;
a737bd4d 16750
c19d1205
ZW
16751 case BFD_RELOC_ARM_LITERAL:
16752 case BFD_RELOC_ARM_HWLITERAL:
16753 /* If this is called then the a literal has
16754 been referenced across a section boundary. */
16755 as_bad_where (fixp->fx_file, fixp->fx_line,
16756 _("literal referenced across section boundary"));
16757 return NULL;
a737bd4d 16758
c19d1205
ZW
16759#ifdef OBJ_ELF
16760 case BFD_RELOC_ARM_GOT32:
16761 case BFD_RELOC_ARM_GOTOFF:
16762 case BFD_RELOC_ARM_PLT32:
16763 case BFD_RELOC_ARM_TARGET1:
16764 case BFD_RELOC_ARM_ROSEGREL32:
16765 case BFD_RELOC_ARM_SBREL32:
16766 case BFD_RELOC_ARM_PREL31:
16767 case BFD_RELOC_ARM_TARGET2:
16768 case BFD_RELOC_ARM_TLS_LE32:
16769 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
16770 case BFD_RELOC_ARM_PCREL_CALL:
16771 case BFD_RELOC_ARM_PCREL_JUMP:
c19d1205
ZW
16772 code = fixp->fx_r_type;
16773 break;
a737bd4d 16774
c19d1205
ZW
16775 case BFD_RELOC_ARM_TLS_GD32:
16776 case BFD_RELOC_ARM_TLS_IE32:
16777 case BFD_RELOC_ARM_TLS_LDM32:
16778 /* BFD will include the symbol's address in the addend.
16779 But we don't want that, so subtract it out again here. */
16780 if (!S_IS_COMMON (fixp->fx_addsy))
16781 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
16782 code = fixp->fx_r_type;
16783 break;
16784#endif
a737bd4d 16785
c19d1205
ZW
16786 case BFD_RELOC_ARM_IMMEDIATE:
16787 as_bad_where (fixp->fx_file, fixp->fx_line,
16788 _("internal relocation (type: IMMEDIATE) not fixed up"));
16789 return NULL;
a737bd4d 16790
c19d1205
ZW
16791 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
16792 as_bad_where (fixp->fx_file, fixp->fx_line,
16793 _("ADRL used for a symbol not defined in the same file"));
16794 return NULL;
a737bd4d 16795
c19d1205 16796 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
16797 if (section->use_rela_p)
16798 {
16799 code = fixp->fx_r_type;
16800 break;
16801 }
16802
c19d1205
ZW
16803 if (fixp->fx_addsy != NULL
16804 && !S_IS_DEFINED (fixp->fx_addsy)
16805 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 16806 {
c19d1205
ZW
16807 as_bad_where (fixp->fx_file, fixp->fx_line,
16808 _("undefined local label `%s'"),
16809 S_GET_NAME (fixp->fx_addsy));
16810 return NULL;
a737bd4d
NC
16811 }
16812
c19d1205
ZW
16813 as_bad_where (fixp->fx_file, fixp->fx_line,
16814 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
16815 return NULL;
a737bd4d 16816
c19d1205
ZW
16817 default:
16818 {
16819 char * type;
6c43fab6 16820
c19d1205
ZW
16821 switch (fixp->fx_r_type)
16822 {
16823 case BFD_RELOC_NONE: type = "NONE"; break;
16824 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
16825 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 16826 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
16827 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
16828 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
16829 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 16830 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
16831 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
16832 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
16833 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
16834 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
16835 default: type = _("<unknown>"); break;
16836 }
16837 as_bad_where (fixp->fx_file, fixp->fx_line,
16838 _("cannot represent %s relocation in this object file format"),
16839 type);
16840 return NULL;
16841 }
a737bd4d 16842 }
6c43fab6 16843
c19d1205
ZW
16844#ifdef OBJ_ELF
16845 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
16846 && GOT_symbol
16847 && fixp->fx_addsy == GOT_symbol)
16848 {
16849 code = BFD_RELOC_ARM_GOTPC;
16850 reloc->addend = fixp->fx_offset = reloc->address;
16851 }
16852#endif
6c43fab6 16853
c19d1205 16854 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 16855
c19d1205
ZW
16856 if (reloc->howto == NULL)
16857 {
16858 as_bad_where (fixp->fx_file, fixp->fx_line,
16859 _("cannot represent %s relocation in this object file format"),
16860 bfd_get_reloc_code_name (code));
16861 return NULL;
16862 }
6c43fab6 16863
c19d1205
ZW
16864 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
16865 vtable entry to be used in the relocation's section offset. */
16866 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16867 reloc->address = fixp->fx_offset;
6c43fab6 16868
c19d1205 16869 return reloc;
6c43fab6
RE
16870}
16871
c19d1205 16872/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 16873
c19d1205
ZW
16874void
16875cons_fix_new_arm (fragS * frag,
16876 int where,
16877 int size,
16878 expressionS * exp)
6c43fab6 16879{
c19d1205
ZW
16880 bfd_reloc_code_real_type type;
16881 int pcrel = 0;
6c43fab6 16882
c19d1205
ZW
16883 /* Pick a reloc.
16884 FIXME: @@ Should look at CPU word size. */
16885 switch (size)
16886 {
16887 case 1:
16888 type = BFD_RELOC_8;
16889 break;
16890 case 2:
16891 type = BFD_RELOC_16;
16892 break;
16893 case 4:
16894 default:
16895 type = BFD_RELOC_32;
16896 break;
16897 case 8:
16898 type = BFD_RELOC_64;
16899 break;
16900 }
6c43fab6 16901
c19d1205
ZW
16902 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
16903}
6c43fab6 16904
c19d1205
ZW
16905#if defined OBJ_COFF || defined OBJ_ELF
16906void
16907arm_validate_fix (fixS * fixP)
6c43fab6 16908{
c19d1205
ZW
16909 /* If the destination of the branch is a defined symbol which does not have
16910 the THUMB_FUNC attribute, then we must be calling a function which has
16911 the (interfacearm) attribute. We look for the Thumb entry point to that
16912 function and change the branch to refer to that function instead. */
16913 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
16914 && fixP->fx_addsy != NULL
16915 && S_IS_DEFINED (fixP->fx_addsy)
16916 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 16917 {
c19d1205 16918 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 16919 }
c19d1205
ZW
16920}
16921#endif
6c43fab6 16922
c19d1205
ZW
16923int
16924arm_force_relocation (struct fix * fixp)
16925{
16926#if defined (OBJ_COFF) && defined (TE_PE)
16927 if (fixp->fx_r_type == BFD_RELOC_RVA)
16928 return 1;
16929#endif
6c43fab6 16930
c19d1205
ZW
16931 /* Resolve these relocations even if the symbol is extern or weak. */
16932 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
16933 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8
PB
16934 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16935 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
16936 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
16937 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 16938 return 0;
a737bd4d 16939
c19d1205 16940 return generic_force_reloc (fixp);
404ff6b5
AH
16941}
16942
c19d1205
ZW
16943#ifdef OBJ_COFF
16944/* This is a little hack to help the gas/arm/adrl.s test. It prevents
16945 local labels from being added to the output symbol table when they
16946 are used with the ADRL pseudo op. The ADRL relocation should always
16947 be resolved before the binbary is emitted, so it is safe to say that
16948 it is adjustable. */
404ff6b5 16949
c19d1205
ZW
16950bfd_boolean
16951arm_fix_adjustable (fixS * fixP)
404ff6b5 16952{
c19d1205
ZW
16953 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
16954 return 1;
16955 return 0;
404ff6b5 16956}
c19d1205 16957#endif
404ff6b5 16958
c19d1205
ZW
16959#ifdef OBJ_ELF
16960/* Relocations against Thumb function names must be left unadjusted,
16961 so that the linker can use this information to correctly set the
16962 bottom bit of their addresses. The MIPS version of this function
16963 also prevents relocations that are mips-16 specific, but I do not
16964 know why it does this.
404ff6b5 16965
c19d1205
ZW
16966 FIXME:
16967 There is one other problem that ought to be addressed here, but
16968 which currently is not: Taking the address of a label (rather
16969 than a function) and then later jumping to that address. Such
16970 addresses also ought to have their bottom bit set (assuming that
16971 they reside in Thumb code), but at the moment they will not. */
404ff6b5 16972
c19d1205
ZW
16973bfd_boolean
16974arm_fix_adjustable (fixS * fixP)
404ff6b5 16975{
c19d1205
ZW
16976 if (fixP->fx_addsy == NULL)
16977 return 1;
404ff6b5 16978
c19d1205
ZW
16979 if (THUMB_IS_FUNC (fixP->fx_addsy)
16980 && fixP->fx_subsy == NULL)
16981 return 0;
a737bd4d 16982
c19d1205
ZW
16983 /* We need the symbol name for the VTABLE entries. */
16984 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
16985 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16986 return 0;
404ff6b5 16987
c19d1205
ZW
16988 /* Don't allow symbols to be discarded on GOT related relocs. */
16989 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
16990 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
16991 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
16992 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
16993 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
16994 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
16995 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
16996 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
16997 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
16998 return 0;
a737bd4d 16999
c19d1205 17000 return 1;
a737bd4d 17001}
404ff6b5 17002
c19d1205
ZW
17003const char *
17004elf32_arm_target_format (void)
404ff6b5 17005{
c19d1205
ZW
17006#ifdef TE_SYMBIAN
17007 return (target_big_endian
17008 ? "elf32-bigarm-symbian"
17009 : "elf32-littlearm-symbian");
17010#elif defined (TE_VXWORKS)
17011 return (target_big_endian
17012 ? "elf32-bigarm-vxworks"
17013 : "elf32-littlearm-vxworks");
17014#else
17015 if (target_big_endian)
17016 return "elf32-bigarm";
17017 else
17018 return "elf32-littlearm";
17019#endif
404ff6b5
AH
17020}
17021
c19d1205
ZW
17022void
17023armelf_frob_symbol (symbolS * symp,
17024 int * puntp)
404ff6b5 17025{
c19d1205
ZW
17026 elf_frob_symbol (symp, puntp);
17027}
17028#endif
404ff6b5 17029
c19d1205 17030/* MD interface: Finalization. */
a737bd4d 17031
c19d1205
ZW
17032/* A good place to do this, although this was probably not intended
17033 for this kind of use. We need to dump the literal pool before
17034 references are made to a null symbol pointer. */
a737bd4d 17035
c19d1205
ZW
17036void
17037arm_cleanup (void)
17038{
17039 literal_pool * pool;
a737bd4d 17040
c19d1205
ZW
17041 for (pool = list_of_pools; pool; pool = pool->next)
17042 {
17043 /* Put it at the end of the relevent section. */
17044 subseg_set (pool->section, pool->sub_section);
17045#ifdef OBJ_ELF
17046 arm_elf_change_section ();
17047#endif
17048 s_ltorg (0);
17049 }
404ff6b5
AH
17050}
17051
c19d1205
ZW
17052/* Adjust the symbol table. This marks Thumb symbols as distinct from
17053 ARM ones. */
404ff6b5 17054
c19d1205
ZW
17055void
17056arm_adjust_symtab (void)
404ff6b5 17057{
c19d1205
ZW
17058#ifdef OBJ_COFF
17059 symbolS * sym;
404ff6b5 17060
c19d1205
ZW
17061 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
17062 {
17063 if (ARM_IS_THUMB (sym))
17064 {
17065 if (THUMB_IS_FUNC (sym))
17066 {
17067 /* Mark the symbol as a Thumb function. */
17068 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
17069 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
17070 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 17071
c19d1205
ZW
17072 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
17073 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
17074 else
17075 as_bad (_("%s: unexpected function type: %d"),
17076 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
17077 }
17078 else switch (S_GET_STORAGE_CLASS (sym))
17079 {
17080 case C_EXT:
17081 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
17082 break;
17083 case C_STAT:
17084 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
17085 break;
17086 case C_LABEL:
17087 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
17088 break;
17089 default:
17090 /* Do nothing. */
17091 break;
17092 }
17093 }
a737bd4d 17094
c19d1205
ZW
17095 if (ARM_IS_INTERWORK (sym))
17096 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 17097 }
c19d1205
ZW
17098#endif
17099#ifdef OBJ_ELF
17100 symbolS * sym;
17101 char bind;
404ff6b5 17102
c19d1205 17103 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 17104 {
c19d1205
ZW
17105 if (ARM_IS_THUMB (sym))
17106 {
17107 elf_symbol_type * elf_sym;
404ff6b5 17108
c19d1205
ZW
17109 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
17110 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 17111
c19d1205
ZW
17112 if (! bfd_is_arm_mapping_symbol_name (elf_sym->symbol.name))
17113 {
17114 /* If it's a .thumb_func, declare it as so,
17115 otherwise tag label as .code 16. */
17116 if (THUMB_IS_FUNC (sym))
17117 elf_sym->internal_elf_sym.st_info =
17118 ELF_ST_INFO (bind, STT_ARM_TFUNC);
17119 else
17120 elf_sym->internal_elf_sym.st_info =
17121 ELF_ST_INFO (bind, STT_ARM_16BIT);
17122 }
17123 }
17124 }
17125#endif
404ff6b5
AH
17126}
17127
c19d1205 17128/* MD interface: Initialization. */
404ff6b5 17129
a737bd4d 17130static void
c19d1205 17131set_constant_flonums (void)
a737bd4d 17132{
c19d1205 17133 int i;
404ff6b5 17134
c19d1205
ZW
17135 for (i = 0; i < NUM_FLOAT_VALS; i++)
17136 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
17137 abort ();
a737bd4d 17138}
404ff6b5 17139
c19d1205
ZW
17140void
17141md_begin (void)
a737bd4d 17142{
c19d1205
ZW
17143 unsigned mach;
17144 unsigned int i;
404ff6b5 17145
c19d1205
ZW
17146 if ( (arm_ops_hsh = hash_new ()) == NULL
17147 || (arm_cond_hsh = hash_new ()) == NULL
17148 || (arm_shift_hsh = hash_new ()) == NULL
17149 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 17150 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 17151 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
17152 || (arm_reloc_hsh = hash_new ()) == NULL
17153 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
17154 as_fatal (_("virtual memory exhausted"));
17155
17156 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
17157 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
17158 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
17159 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
17160 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
17161 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
17162 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
17163 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
62b3e311
PB
17164 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
17165 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
c19d1205
ZW
17166 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
17167 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
62b3e311
PB
17168 for (i = 0;
17169 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
17170 i++)
17171 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
17172 (PTR) (barrier_opt_names + i));
c19d1205
ZW
17173#ifdef OBJ_ELF
17174 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
17175 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
17176#endif
17177
17178 set_constant_flonums ();
404ff6b5 17179
c19d1205
ZW
17180 /* Set the cpu variant based on the command-line options. We prefer
17181 -mcpu= over -march= if both are set (as for GCC); and we prefer
17182 -mfpu= over any other way of setting the floating point unit.
17183 Use of legacy options with new options are faulted. */
e74cfd16 17184 if (legacy_cpu)
404ff6b5 17185 {
e74cfd16 17186 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
17187 as_bad (_("use of old and new-style options to set CPU type"));
17188
17189 mcpu_cpu_opt = legacy_cpu;
404ff6b5 17190 }
e74cfd16 17191 else if (!mcpu_cpu_opt)
c19d1205 17192 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 17193
e74cfd16 17194 if (legacy_fpu)
c19d1205 17195 {
e74cfd16 17196 if (mfpu_opt)
c19d1205 17197 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
17198
17199 mfpu_opt = legacy_fpu;
17200 }
e74cfd16 17201 else if (!mfpu_opt)
03b1477f 17202 {
c19d1205 17203#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
17204 /* Some environments specify a default FPU. If they don't, infer it
17205 from the processor. */
e74cfd16 17206 if (mcpu_fpu_opt)
03b1477f
RE
17207 mfpu_opt = mcpu_fpu_opt;
17208 else
17209 mfpu_opt = march_fpu_opt;
39c2da32 17210#else
e74cfd16 17211 mfpu_opt = &fpu_default;
39c2da32 17212#endif
03b1477f
RE
17213 }
17214
e74cfd16 17215 if (!mfpu_opt)
03b1477f 17216 {
e74cfd16
PB
17217 if (!mcpu_cpu_opt)
17218 mfpu_opt = &fpu_default;
17219 else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
17220 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 17221 else
e74cfd16 17222 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
17223 }
17224
ee065d83 17225#ifdef CPU_DEFAULT
e74cfd16 17226 if (!mcpu_cpu_opt)
ee065d83 17227 {
e74cfd16
PB
17228 mcpu_cpu_opt = &cpu_default;
17229 selected_cpu = cpu_default;
ee065d83 17230 }
e74cfd16
PB
17231#else
17232 if (mcpu_cpu_opt)
17233 selected_cpu = *mcpu_cpu_opt;
ee065d83 17234 else
e74cfd16 17235 mcpu_cpu_opt = &arm_arch_any;
ee065d83 17236#endif
03b1477f 17237
e74cfd16 17238 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 17239
e74cfd16 17240 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 17241
f17c130b 17242#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 17243 {
7cc69913
NC
17244 unsigned int flags = 0;
17245
17246#if defined OBJ_ELF
17247 flags = meabi_flags;
d507cf36
PB
17248
17249 switch (meabi_flags)
33a392fb 17250 {
d507cf36 17251 case EF_ARM_EABI_UNKNOWN:
7cc69913 17252#endif
d507cf36
PB
17253 /* Set the flags in the private structure. */
17254 if (uses_apcs_26) flags |= F_APCS26;
17255 if (support_interwork) flags |= F_INTERWORK;
17256 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 17257 if (pic_code) flags |= F_PIC;
e74cfd16 17258 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
17259 flags |= F_SOFT_FLOAT;
17260
d507cf36
PB
17261 switch (mfloat_abi_opt)
17262 {
17263 case ARM_FLOAT_ABI_SOFT:
17264 case ARM_FLOAT_ABI_SOFTFP:
17265 flags |= F_SOFT_FLOAT;
17266 break;
33a392fb 17267
d507cf36
PB
17268 case ARM_FLOAT_ABI_HARD:
17269 if (flags & F_SOFT_FLOAT)
17270 as_bad (_("hard-float conflicts with specified fpu"));
17271 break;
17272 }
03b1477f 17273
e74cfd16
PB
17274 /* Using pure-endian doubles (even if soft-float). */
17275 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 17276 flags |= F_VFP_FLOAT;
f17c130b 17277
fde78edd 17278#if defined OBJ_ELF
e74cfd16 17279 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 17280 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
17281 break;
17282
8cb51566 17283 case EF_ARM_EABI_VER4:
3a4a14e9 17284 case EF_ARM_EABI_VER5:
c19d1205 17285 /* No additional flags to set. */
d507cf36
PB
17286 break;
17287
17288 default:
17289 abort ();
17290 }
7cc69913 17291#endif
b99bd4ef
NC
17292 bfd_set_private_flags (stdoutput, flags);
17293
17294 /* We have run out flags in the COFF header to encode the
17295 status of ATPCS support, so instead we create a dummy,
c19d1205 17296 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
17297 if (atpcs)
17298 {
17299 asection * sec;
17300
17301 sec = bfd_make_section (stdoutput, ".arm.atpcs");
17302
17303 if (sec != NULL)
17304 {
17305 bfd_set_section_flags
17306 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
17307 bfd_set_section_size (stdoutput, sec, 0);
17308 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
17309 }
17310 }
7cc69913 17311 }
f17c130b 17312#endif
b99bd4ef
NC
17313
17314 /* Record the CPU type as well. */
e74cfd16 17315 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 17316 mach = bfd_mach_arm_iWMMXt;
e74cfd16 17317 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 17318 mach = bfd_mach_arm_XScale;
e74cfd16 17319 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 17320 mach = bfd_mach_arm_ep9312;
e74cfd16 17321 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 17322 mach = bfd_mach_arm_5TE;
e74cfd16 17323 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 17324 {
e74cfd16 17325 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
17326 mach = bfd_mach_arm_5T;
17327 else
17328 mach = bfd_mach_arm_5;
17329 }
e74cfd16 17330 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 17331 {
e74cfd16 17332 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
17333 mach = bfd_mach_arm_4T;
17334 else
17335 mach = bfd_mach_arm_4;
17336 }
e74cfd16 17337 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 17338 mach = bfd_mach_arm_3M;
e74cfd16
PB
17339 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
17340 mach = bfd_mach_arm_3;
17341 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
17342 mach = bfd_mach_arm_2a;
17343 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
17344 mach = bfd_mach_arm_2;
17345 else
17346 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
17347
17348 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
17349}
17350
c19d1205 17351/* Command line processing. */
b99bd4ef 17352
c19d1205
ZW
17353/* md_parse_option
17354 Invocation line includes a switch not recognized by the base assembler.
17355 See if it's a processor-specific option.
b99bd4ef 17356
c19d1205
ZW
17357 This routine is somewhat complicated by the need for backwards
17358 compatibility (since older releases of gcc can't be changed).
17359 The new options try to make the interface as compatible as
17360 possible with GCC.
b99bd4ef 17361
c19d1205 17362 New options (supported) are:
b99bd4ef 17363
c19d1205
ZW
17364 -mcpu=<cpu name> Assemble for selected processor
17365 -march=<architecture name> Assemble for selected architecture
17366 -mfpu=<fpu architecture> Assemble for selected FPU.
17367 -EB/-mbig-endian Big-endian
17368 -EL/-mlittle-endian Little-endian
17369 -k Generate PIC code
17370 -mthumb Start in Thumb mode
17371 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 17372
c19d1205 17373 For now we will also provide support for:
b99bd4ef 17374
c19d1205
ZW
17375 -mapcs-32 32-bit Program counter
17376 -mapcs-26 26-bit Program counter
17377 -macps-float Floats passed in FP registers
17378 -mapcs-reentrant Reentrant code
17379 -matpcs
17380 (sometime these will probably be replaced with -mapcs=<list of options>
17381 and -matpcs=<list of options>)
b99bd4ef 17382
c19d1205
ZW
17383 The remaining options are only supported for back-wards compatibility.
17384 Cpu variants, the arm part is optional:
17385 -m[arm]1 Currently not supported.
17386 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
17387 -m[arm]3 Arm 3 processor
17388 -m[arm]6[xx], Arm 6 processors
17389 -m[arm]7[xx][t][[d]m] Arm 7 processors
17390 -m[arm]8[10] Arm 8 processors
17391 -m[arm]9[20][tdmi] Arm 9 processors
17392 -mstrongarm[110[0]] StrongARM processors
17393 -mxscale XScale processors
17394 -m[arm]v[2345[t[e]]] Arm architectures
17395 -mall All (except the ARM1)
17396 FP variants:
17397 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
17398 -mfpe-old (No float load/store multiples)
17399 -mvfpxd VFP Single precision
17400 -mvfp All VFP
17401 -mno-fpu Disable all floating point instructions
b99bd4ef 17402
c19d1205
ZW
17403 The following CPU names are recognized:
17404 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
17405 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
17406 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
17407 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
17408 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
17409 arm10t arm10e, arm1020t, arm1020e, arm10200e,
17410 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 17411
c19d1205 17412 */
b99bd4ef 17413
c19d1205 17414const char * md_shortopts = "m:k";
b99bd4ef 17415
c19d1205
ZW
17416#ifdef ARM_BI_ENDIAN
17417#define OPTION_EB (OPTION_MD_BASE + 0)
17418#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 17419#else
c19d1205
ZW
17420#if TARGET_BYTES_BIG_ENDIAN
17421#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 17422#else
c19d1205
ZW
17423#define OPTION_EL (OPTION_MD_BASE + 1)
17424#endif
b99bd4ef 17425#endif
b99bd4ef 17426
c19d1205 17427struct option md_longopts[] =
b99bd4ef 17428{
c19d1205
ZW
17429#ifdef OPTION_EB
17430 {"EB", no_argument, NULL, OPTION_EB},
17431#endif
17432#ifdef OPTION_EL
17433 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 17434#endif
c19d1205
ZW
17435 {NULL, no_argument, NULL, 0}
17436};
b99bd4ef 17437
c19d1205 17438size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 17439
c19d1205 17440struct arm_option_table
b99bd4ef 17441{
c19d1205
ZW
17442 char *option; /* Option name to match. */
17443 char *help; /* Help information. */
17444 int *var; /* Variable to change. */
17445 int value; /* What to change it to. */
17446 char *deprecated; /* If non-null, print this message. */
17447};
b99bd4ef 17448
c19d1205
ZW
17449struct arm_option_table arm_opts[] =
17450{
17451 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
17452 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
17453 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
17454 &support_interwork, 1, NULL},
17455 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
17456 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
17457 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
17458 1, NULL},
17459 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
17460 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
17461 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
17462 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
17463 NULL},
b99bd4ef 17464
c19d1205
ZW
17465 /* These are recognized by the assembler, but have no affect on code. */
17466 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
17467 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
e74cfd16
PB
17468 {NULL, NULL, NULL, 0, NULL}
17469};
17470
17471struct arm_legacy_option_table
17472{
17473 char *option; /* Option name to match. */
17474 const arm_feature_set **var; /* Variable to change. */
17475 const arm_feature_set value; /* What to change it to. */
17476 char *deprecated; /* If non-null, print this message. */
17477};
b99bd4ef 17478
e74cfd16
PB
17479const struct arm_legacy_option_table arm_legacy_opts[] =
17480{
c19d1205
ZW
17481 /* DON'T add any new processors to this list -- we want the whole list
17482 to go away... Add them to the processors table instead. */
e74cfd16
PB
17483 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
17484 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
17485 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
17486 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
17487 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
17488 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
17489 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
17490 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
17491 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
17492 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
17493 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
17494 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
17495 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
17496 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
17497 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
17498 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
17499 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
17500 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
17501 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
17502 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
17503 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
17504 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
17505 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
17506 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
17507 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
17508 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
17509 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
17510 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
17511 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
17512 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
17513 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
17514 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
17515 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
17516 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
17517 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
17518 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
17519 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
17520 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
17521 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
17522 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
17523 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
17524 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
17525 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
17526 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
17527 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
17528 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
17529 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
17530 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
17531 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
17532 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
17533 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
17534 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
17535 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
17536 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
17537 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
17538 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
17539 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
17540 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
17541 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
17542 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
17543 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
17544 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
17545 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
17546 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
17547 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
17548 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
17549 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
17550 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
17551 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
17552 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 17553 N_("use -mcpu=strongarm110")},
e74cfd16 17554 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 17555 N_("use -mcpu=strongarm1100")},
e74cfd16 17556 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 17557 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
17558 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
17559 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
17560 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 17561
c19d1205 17562 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
17563 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
17564 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
17565 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
17566 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
17567 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
17568 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
17569 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
17570 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
17571 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
17572 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
17573 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
17574 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
17575 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
17576 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
17577 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
17578 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
17579 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
17580 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 17581
c19d1205 17582 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
17583 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
17584 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
17585 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
17586 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 17587 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 17588
e74cfd16 17589 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 17590};
7ed4c4c5 17591
c19d1205 17592struct arm_cpu_option_table
7ed4c4c5 17593{
c19d1205 17594 char *name;
e74cfd16 17595 const arm_feature_set value;
c19d1205
ZW
17596 /* For some CPUs we assume an FPU unless the user explicitly sets
17597 -mfpu=... */
e74cfd16 17598 const arm_feature_set default_fpu;
ee065d83
PB
17599 /* The canonical name of the CPU, or NULL to use NAME converted to upper
17600 case. */
17601 const char *canonical_name;
c19d1205 17602};
7ed4c4c5 17603
c19d1205
ZW
17604/* This list should, at a minimum, contain all the cpu names
17605 recognized by GCC. */
e74cfd16 17606static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 17607{
ee065d83
PB
17608 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
17609 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
17610 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
17611 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
17612 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
17613 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17614 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17615 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17616 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17617 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17618 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17619 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
17620 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17621 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
17622 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17623 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
17624 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17625 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17626 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17627 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17628 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17629 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17630 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17631 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17632 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17633 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17634 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17635 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
17636 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17637 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17638 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17639 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
17640 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
17641 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
17642 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
17643 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
17644 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
17645 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
17646 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17647 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
17648 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17649 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17650 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
17651 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
c19d1205
ZW
17652 /* For V5 or later processors we default to using VFP; but the user
17653 should really set the FPU type explicitly. */
ee065d83
PB
17654 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
17655 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
17656 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
17657 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
17658 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
17659 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
17660 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
17661 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
17662 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
17663 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
17664 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
17665 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
17666 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
17667 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
17668 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
17669 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
17670 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
17671 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
17672 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
17673 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
17674 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
17675 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
17676 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
17677 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
17678 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
17679 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
17680 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
17681 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
17682 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
17683 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
17684 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
17685 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
17686 | FPU_NEON_EXT_V1),
17687 NULL},
62b3e311
PB
17688 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
17689 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
c19d1205 17690 /* ??? XSCALE is really an architecture. */
ee065d83 17691 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 17692 /* ??? iwmmxt is not a processor. */
ee065d83
PB
17693 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
17694 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 17695 /* Maverick */
e74cfd16
PB
17696 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
17697 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 17698};
7ed4c4c5 17699
c19d1205 17700struct arm_arch_option_table
7ed4c4c5 17701{
c19d1205 17702 char *name;
e74cfd16
PB
17703 const arm_feature_set value;
17704 const arm_feature_set default_fpu;
c19d1205 17705};
7ed4c4c5 17706
c19d1205
ZW
17707/* This list should, at a minimum, contain all the architecture names
17708 recognized by GCC. */
e74cfd16 17709static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
17710{
17711 {"all", ARM_ANY, FPU_ARCH_FPA},
17712 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
17713 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
17714 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
17715 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
17716 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
17717 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
17718 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
17719 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
17720 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
17721 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
17722 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
17723 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
17724 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
17725 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
17726 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
17727 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
17728 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
17729 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
17730 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
17731 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
17732 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
17733 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
17734 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
17735 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
17736 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
62b3e311
PB
17737 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
17738 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
17739 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
17740 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
17741 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
17742 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
e74cfd16 17743 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 17744};
7ed4c4c5 17745
c19d1205 17746/* ISA extensions in the co-processor space. */
e74cfd16 17747struct arm_option_cpu_value_table
c19d1205
ZW
17748{
17749 char *name;
e74cfd16 17750 const arm_feature_set value;
c19d1205 17751};
7ed4c4c5 17752
e74cfd16 17753static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 17754{
e74cfd16
PB
17755 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
17756 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
17757 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
17758 {NULL, ARM_ARCH_NONE}
c19d1205 17759};
7ed4c4c5 17760
c19d1205
ZW
17761/* This list should, at a minimum, contain all the fpu names
17762 recognized by GCC. */
e74cfd16 17763static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
17764{
17765 {"softfpa", FPU_NONE},
17766 {"fpe", FPU_ARCH_FPE},
17767 {"fpe2", FPU_ARCH_FPE},
17768 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
17769 {"fpa", FPU_ARCH_FPA},
17770 {"fpa10", FPU_ARCH_FPA},
17771 {"fpa11", FPU_ARCH_FPA},
17772 {"arm7500fe", FPU_ARCH_FPA},
17773 {"softvfp", FPU_ARCH_VFP},
17774 {"softvfp+vfp", FPU_ARCH_VFP_V2},
17775 {"vfp", FPU_ARCH_VFP_V2},
17776 {"vfp9", FPU_ARCH_VFP_V2},
5287ad62 17777 {"vfp3", FPU_ARCH_VFP_V3},
c19d1205
ZW
17778 {"vfp10", FPU_ARCH_VFP_V2},
17779 {"vfp10-r0", FPU_ARCH_VFP_V1},
17780 {"vfpxd", FPU_ARCH_VFP_V1xD},
17781 {"arm1020t", FPU_ARCH_VFP_V1},
17782 {"arm1020e", FPU_ARCH_VFP_V2},
17783 {"arm1136jfs", FPU_ARCH_VFP_V2},
17784 {"arm1136jf-s", FPU_ARCH_VFP_V2},
17785 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 17786 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
e74cfd16
PB
17787 {NULL, ARM_ARCH_NONE}
17788};
17789
17790struct arm_option_value_table
17791{
17792 char *name;
17793 long value;
c19d1205 17794};
7ed4c4c5 17795
e74cfd16 17796static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
17797{
17798 {"hard", ARM_FLOAT_ABI_HARD},
17799 {"softfp", ARM_FLOAT_ABI_SOFTFP},
17800 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 17801 {NULL, 0}
c19d1205 17802};
7ed4c4c5 17803
c19d1205 17804#ifdef OBJ_ELF
3a4a14e9 17805/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 17806static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
17807{
17808 {"gnu", EF_ARM_EABI_UNKNOWN},
17809 {"4", EF_ARM_EABI_VER4},
3a4a14e9 17810 {"5", EF_ARM_EABI_VER5},
e74cfd16 17811 {NULL, 0}
c19d1205
ZW
17812};
17813#endif
7ed4c4c5 17814
c19d1205
ZW
17815struct arm_long_option_table
17816{
17817 char * option; /* Substring to match. */
17818 char * help; /* Help information. */
17819 int (* func) (char * subopt); /* Function to decode sub-option. */
17820 char * deprecated; /* If non-null, print this message. */
17821};
7ed4c4c5
NC
17822
17823static int
e74cfd16 17824arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 17825{
e74cfd16
PB
17826 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
17827
17828 /* Copy the feature set, so that we can modify it. */
17829 *ext_set = **opt_p;
17830 *opt_p = ext_set;
17831
c19d1205 17832 while (str != NULL && *str != 0)
7ed4c4c5 17833 {
e74cfd16 17834 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
17835 char * ext;
17836 int optlen;
7ed4c4c5 17837
c19d1205
ZW
17838 if (*str != '+')
17839 {
17840 as_bad (_("invalid architectural extension"));
17841 return 0;
17842 }
7ed4c4c5 17843
c19d1205
ZW
17844 str++;
17845 ext = strchr (str, '+');
7ed4c4c5 17846
c19d1205
ZW
17847 if (ext != NULL)
17848 optlen = ext - str;
17849 else
17850 optlen = strlen (str);
7ed4c4c5 17851
c19d1205
ZW
17852 if (optlen == 0)
17853 {
17854 as_bad (_("missing architectural extension"));
17855 return 0;
17856 }
7ed4c4c5 17857
c19d1205
ZW
17858 for (opt = arm_extensions; opt->name != NULL; opt++)
17859 if (strncmp (opt->name, str, optlen) == 0)
17860 {
e74cfd16 17861 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
17862 break;
17863 }
7ed4c4c5 17864
c19d1205
ZW
17865 if (opt->name == NULL)
17866 {
17867 as_bad (_("unknown architectural extnsion `%s'"), str);
17868 return 0;
17869 }
7ed4c4c5 17870
c19d1205
ZW
17871 str = ext;
17872 };
7ed4c4c5 17873
c19d1205
ZW
17874 return 1;
17875}
7ed4c4c5 17876
c19d1205
ZW
17877static int
17878arm_parse_cpu (char * str)
7ed4c4c5 17879{
e74cfd16 17880 const struct arm_cpu_option_table * opt;
c19d1205
ZW
17881 char * ext = strchr (str, '+');
17882 int optlen;
7ed4c4c5 17883
c19d1205
ZW
17884 if (ext != NULL)
17885 optlen = ext - str;
7ed4c4c5 17886 else
c19d1205 17887 optlen = strlen (str);
7ed4c4c5 17888
c19d1205 17889 if (optlen == 0)
7ed4c4c5 17890 {
c19d1205
ZW
17891 as_bad (_("missing cpu name `%s'"), str);
17892 return 0;
7ed4c4c5
NC
17893 }
17894
c19d1205
ZW
17895 for (opt = arm_cpus; opt->name != NULL; opt++)
17896 if (strncmp (opt->name, str, optlen) == 0)
17897 {
e74cfd16
PB
17898 mcpu_cpu_opt = &opt->value;
17899 mcpu_fpu_opt = &opt->default_fpu;
ee065d83
PB
17900 if (opt->canonical_name)
17901 strcpy(selected_cpu_name, opt->canonical_name);
17902 else
17903 {
17904 int i;
17905 for (i = 0; i < optlen; i++)
17906 selected_cpu_name[i] = TOUPPER (opt->name[i]);
17907 selected_cpu_name[i] = 0;
17908 }
7ed4c4c5 17909
c19d1205
ZW
17910 if (ext != NULL)
17911 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 17912
c19d1205
ZW
17913 return 1;
17914 }
7ed4c4c5 17915
c19d1205
ZW
17916 as_bad (_("unknown cpu `%s'"), str);
17917 return 0;
7ed4c4c5
NC
17918}
17919
c19d1205
ZW
17920static int
17921arm_parse_arch (char * str)
7ed4c4c5 17922{
e74cfd16 17923 const struct arm_arch_option_table *opt;
c19d1205
ZW
17924 char *ext = strchr (str, '+');
17925 int optlen;
7ed4c4c5 17926
c19d1205
ZW
17927 if (ext != NULL)
17928 optlen = ext - str;
7ed4c4c5 17929 else
c19d1205 17930 optlen = strlen (str);
7ed4c4c5 17931
c19d1205 17932 if (optlen == 0)
7ed4c4c5 17933 {
c19d1205
ZW
17934 as_bad (_("missing architecture name `%s'"), str);
17935 return 0;
7ed4c4c5
NC
17936 }
17937
c19d1205
ZW
17938 for (opt = arm_archs; opt->name != NULL; opt++)
17939 if (streq (opt->name, str))
17940 {
e74cfd16
PB
17941 march_cpu_opt = &opt->value;
17942 march_fpu_opt = &opt->default_fpu;
ee065d83 17943 strcpy(selected_cpu_name, opt->name);
7ed4c4c5 17944
c19d1205
ZW
17945 if (ext != NULL)
17946 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 17947
c19d1205
ZW
17948 return 1;
17949 }
17950
17951 as_bad (_("unknown architecture `%s'\n"), str);
17952 return 0;
7ed4c4c5 17953}
eb043451 17954
c19d1205
ZW
17955static int
17956arm_parse_fpu (char * str)
17957{
e74cfd16 17958 const struct arm_option_cpu_value_table * opt;
b99bd4ef 17959
c19d1205
ZW
17960 for (opt = arm_fpus; opt->name != NULL; opt++)
17961 if (streq (opt->name, str))
17962 {
e74cfd16 17963 mfpu_opt = &opt->value;
c19d1205
ZW
17964 return 1;
17965 }
b99bd4ef 17966
c19d1205
ZW
17967 as_bad (_("unknown floating point format `%s'\n"), str);
17968 return 0;
17969}
17970
17971static int
17972arm_parse_float_abi (char * str)
b99bd4ef 17973{
e74cfd16 17974 const struct arm_option_value_table * opt;
b99bd4ef 17975
c19d1205
ZW
17976 for (opt = arm_float_abis; opt->name != NULL; opt++)
17977 if (streq (opt->name, str))
17978 {
17979 mfloat_abi_opt = opt->value;
17980 return 1;
17981 }
cc8a6dd0 17982
c19d1205
ZW
17983 as_bad (_("unknown floating point abi `%s'\n"), str);
17984 return 0;
17985}
b99bd4ef 17986
c19d1205
ZW
17987#ifdef OBJ_ELF
17988static int
17989arm_parse_eabi (char * str)
17990{
e74cfd16 17991 const struct arm_option_value_table *opt;
cc8a6dd0 17992
c19d1205
ZW
17993 for (opt = arm_eabis; opt->name != NULL; opt++)
17994 if (streq (opt->name, str))
17995 {
17996 meabi_flags = opt->value;
17997 return 1;
17998 }
17999 as_bad (_("unknown EABI `%s'\n"), str);
18000 return 0;
18001}
18002#endif
cc8a6dd0 18003
c19d1205
ZW
18004struct arm_long_option_table arm_long_opts[] =
18005{
18006 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
18007 arm_parse_cpu, NULL},
18008 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
18009 arm_parse_arch, NULL},
18010 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
18011 arm_parse_fpu, NULL},
18012 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
18013 arm_parse_float_abi, NULL},
18014#ifdef OBJ_ELF
18015 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
18016 arm_parse_eabi, NULL},
18017#endif
18018 {NULL, NULL, 0, NULL}
18019};
cc8a6dd0 18020
c19d1205
ZW
18021int
18022md_parse_option (int c, char * arg)
18023{
18024 struct arm_option_table *opt;
e74cfd16 18025 const struct arm_legacy_option_table *fopt;
c19d1205 18026 struct arm_long_option_table *lopt;
b99bd4ef 18027
c19d1205 18028 switch (c)
b99bd4ef 18029 {
c19d1205
ZW
18030#ifdef OPTION_EB
18031 case OPTION_EB:
18032 target_big_endian = 1;
18033 break;
18034#endif
cc8a6dd0 18035
c19d1205
ZW
18036#ifdef OPTION_EL
18037 case OPTION_EL:
18038 target_big_endian = 0;
18039 break;
18040#endif
b99bd4ef 18041
c19d1205
ZW
18042 case 'a':
18043 /* Listing option. Just ignore these, we don't support additional
18044 ones. */
18045 return 0;
b99bd4ef 18046
c19d1205
ZW
18047 default:
18048 for (opt = arm_opts; opt->option != NULL; opt++)
18049 {
18050 if (c == opt->option[0]
18051 && ((arg == NULL && opt->option[1] == 0)
18052 || streq (arg, opt->option + 1)))
18053 {
18054#if WARN_DEPRECATED
18055 /* If the option is deprecated, tell the user. */
18056 if (opt->deprecated != NULL)
18057 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
18058 arg ? arg : "", _(opt->deprecated));
18059#endif
b99bd4ef 18060
c19d1205
ZW
18061 if (opt->var != NULL)
18062 *opt->var = opt->value;
cc8a6dd0 18063
c19d1205
ZW
18064 return 1;
18065 }
18066 }
b99bd4ef 18067
e74cfd16
PB
18068 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
18069 {
18070 if (c == fopt->option[0]
18071 && ((arg == NULL && fopt->option[1] == 0)
18072 || streq (arg, fopt->option + 1)))
18073 {
18074#if WARN_DEPRECATED
18075 /* If the option is deprecated, tell the user. */
18076 if (fopt->deprecated != NULL)
18077 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
18078 arg ? arg : "", _(fopt->deprecated));
18079#endif
18080
18081 if (fopt->var != NULL)
18082 *fopt->var = &fopt->value;
18083
18084 return 1;
18085 }
18086 }
18087
c19d1205
ZW
18088 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
18089 {
18090 /* These options are expected to have an argument. */
18091 if (c == lopt->option[0]
18092 && arg != NULL
18093 && strncmp (arg, lopt->option + 1,
18094 strlen (lopt->option + 1)) == 0)
18095 {
18096#if WARN_DEPRECATED
18097 /* If the option is deprecated, tell the user. */
18098 if (lopt->deprecated != NULL)
18099 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
18100 _(lopt->deprecated));
18101#endif
b99bd4ef 18102
c19d1205
ZW
18103 /* Call the sup-option parser. */
18104 return lopt->func (arg + strlen (lopt->option) - 1);
18105 }
18106 }
a737bd4d 18107
c19d1205
ZW
18108 return 0;
18109 }
a394c00f 18110
c19d1205
ZW
18111 return 1;
18112}
a394c00f 18113
c19d1205
ZW
18114void
18115md_show_usage (FILE * fp)
a394c00f 18116{
c19d1205
ZW
18117 struct arm_option_table *opt;
18118 struct arm_long_option_table *lopt;
a394c00f 18119
c19d1205 18120 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 18121
c19d1205
ZW
18122 for (opt = arm_opts; opt->option != NULL; opt++)
18123 if (opt->help != NULL)
18124 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 18125
c19d1205
ZW
18126 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
18127 if (lopt->help != NULL)
18128 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 18129
c19d1205
ZW
18130#ifdef OPTION_EB
18131 fprintf (fp, _("\
18132 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
18133#endif
18134
c19d1205
ZW
18135#ifdef OPTION_EL
18136 fprintf (fp, _("\
18137 -EL assemble code for a little-endian cpu\n"));
a737bd4d 18138#endif
c19d1205 18139}
ee065d83
PB
18140
18141
18142#ifdef OBJ_ELF
62b3e311
PB
18143typedef struct
18144{
18145 int val;
18146 arm_feature_set flags;
18147} cpu_arch_ver_table;
18148
18149/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
18150 least features first. */
18151static const cpu_arch_ver_table cpu_arch_ver[] =
18152{
18153 {1, ARM_ARCH_V4},
18154 {2, ARM_ARCH_V4T},
18155 {3, ARM_ARCH_V5},
18156 {4, ARM_ARCH_V5TE},
18157 {5, ARM_ARCH_V5TEJ},
18158 {6, ARM_ARCH_V6},
18159 {7, ARM_ARCH_V6Z},
18160 {8, ARM_ARCH_V6K},
18161 {9, ARM_ARCH_V6T2},
18162 {10, ARM_ARCH_V7A},
18163 {10, ARM_ARCH_V7R},
18164 {10, ARM_ARCH_V7M},
18165 {0, ARM_ARCH_NONE}
18166};
18167
ee065d83
PB
18168/* Set the public EABI object attributes. */
18169static void
18170aeabi_set_public_attributes (void)
18171{
18172 int arch;
e74cfd16 18173 arm_feature_set flags;
62b3e311
PB
18174 arm_feature_set tmp;
18175 const cpu_arch_ver_table *p;
ee065d83
PB
18176
18177 /* Choose the architecture based on the capabilities of the requested cpu
18178 (if any) and/or the instructions actually used. */
e74cfd16
PB
18179 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
18180 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
18181 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
5287ad62 18182
62b3e311
PB
18183 tmp = flags;
18184 arch = 0;
18185 for (p = cpu_arch_ver; p->val; p++)
18186 {
18187 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
18188 {
18189 arch = p->val;
18190 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
18191 }
18192 }
ee065d83
PB
18193
18194 /* Tag_CPU_name. */
18195 if (selected_cpu_name[0])
18196 {
18197 char *p;
18198
18199 p = selected_cpu_name;
18200 if (strncmp(p, "armv", 4) == 0)
18201 {
18202 int i;
18203
18204 p += 4;
18205 for (i = 0; p[i]; i++)
18206 p[i] = TOUPPER (p[i]);
18207 }
18208 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
18209 }
18210 /* Tag_CPU_arch. */
18211 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
62b3e311
PB
18212 /* Tag_CPU_arch_profile. */
18213 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
18214 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
18215 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
18216 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
18217 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
18218 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
ee065d83 18219 /* Tag_ARM_ISA_use. */
e74cfd16 18220 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
ee065d83
PB
18221 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
18222 /* Tag_THUMB_ISA_use. */
e74cfd16 18223 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
ee065d83 18224 elf32_arm_add_eabi_attr_int (stdoutput, 9,
e74cfd16 18225 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
ee065d83 18226 /* Tag_VFP_arch. */
5287ad62
JB
18227 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
18228 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
18229 elf32_arm_add_eabi_attr_int (stdoutput, 10, 3);
18230 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
18231 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
ee065d83 18232 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
5287ad62
JB
18233 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
18234 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
18235 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
18236 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
ee065d83
PB
18237 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
18238 /* Tag_WMMX_arch. */
e74cfd16
PB
18239 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
18240 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
ee065d83 18241 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
5287ad62
JB
18242 /* Tag_NEON_arch. */
18243 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
18244 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
18245 elf32_arm_add_eabi_attr_int (stdoutput, 12, 1);
ee065d83
PB
18246}
18247
18248/* Add the .ARM.attributes section. */
18249void
18250arm_md_end (void)
18251{
18252 segT s;
18253 char *p;
18254 addressT addr;
18255 offsetT size;
18256
18257 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
18258 return;
18259
18260 aeabi_set_public_attributes ();
18261 size = elf32_arm_eabi_attr_size (stdoutput);
18262 s = subseg_new (".ARM.attributes", 0);
18263 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
18264 addr = frag_now_fix ();
18265 p = frag_more (size);
18266 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
18267}
8463be01 18268#endif /* OBJ_ELF */
ee065d83
PB
18269
18270
18271/* Parse a .cpu directive. */
18272
18273static void
18274s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
18275{
e74cfd16 18276 const struct arm_cpu_option_table *opt;
ee065d83
PB
18277 char *name;
18278 char saved_char;
18279
18280 name = input_line_pointer;
18281 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
18282 input_line_pointer++;
18283 saved_char = *input_line_pointer;
18284 *input_line_pointer = 0;
18285
18286 /* Skip the first "all" entry. */
18287 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
18288 if (streq (opt->name, name))
18289 {
e74cfd16
PB
18290 mcpu_cpu_opt = &opt->value;
18291 selected_cpu = opt->value;
ee065d83
PB
18292 if (opt->canonical_name)
18293 strcpy(selected_cpu_name, opt->canonical_name);
18294 else
18295 {
18296 int i;
18297 for (i = 0; opt->name[i]; i++)
18298 selected_cpu_name[i] = TOUPPER (opt->name[i]);
18299 selected_cpu_name[i] = 0;
18300 }
e74cfd16 18301 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
18302 *input_line_pointer = saved_char;
18303 demand_empty_rest_of_line ();
18304 return;
18305 }
18306 as_bad (_("unknown cpu `%s'"), name);
18307 *input_line_pointer = saved_char;
18308 ignore_rest_of_line ();
18309}
18310
18311
18312/* Parse a .arch directive. */
18313
18314static void
18315s_arm_arch (int ignored ATTRIBUTE_UNUSED)
18316{
e74cfd16 18317 const struct arm_arch_option_table *opt;
ee065d83
PB
18318 char saved_char;
18319 char *name;
18320
18321 name = input_line_pointer;
18322 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
18323 input_line_pointer++;
18324 saved_char = *input_line_pointer;
18325 *input_line_pointer = 0;
18326
18327 /* Skip the first "all" entry. */
18328 for (opt = arm_archs + 1; opt->name != NULL; opt++)
18329 if (streq (opt->name, name))
18330 {
e74cfd16
PB
18331 mcpu_cpu_opt = &opt->value;
18332 selected_cpu = opt->value;
ee065d83 18333 strcpy(selected_cpu_name, opt->name);
e74cfd16 18334 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
18335 *input_line_pointer = saved_char;
18336 demand_empty_rest_of_line ();
18337 return;
18338 }
18339
18340 as_bad (_("unknown architecture `%s'\n"), name);
18341 *input_line_pointer = saved_char;
18342 ignore_rest_of_line ();
18343}
18344
18345
18346/* Parse a .fpu directive. */
18347
18348static void
18349s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
18350{
e74cfd16 18351 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
18352 char saved_char;
18353 char *name;
18354
18355 name = input_line_pointer;
18356 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
18357 input_line_pointer++;
18358 saved_char = *input_line_pointer;
18359 *input_line_pointer = 0;
18360
18361 for (opt = arm_fpus; opt->name != NULL; opt++)
18362 if (streq (opt->name, name))
18363 {
e74cfd16
PB
18364 mfpu_opt = &opt->value;
18365 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
18366 *input_line_pointer = saved_char;
18367 demand_empty_rest_of_line ();
18368 return;
18369 }
18370
18371 as_bad (_("unknown floating point format `%s'\n"), name);
18372 *input_line_pointer = saved_char;
18373 ignore_rest_of_line ();
18374}
ee065d83 18375
This page took 1.509509 seconds and 4 git commands to generate.