[PATCH 26/57][Arm][GAS] Add support for MVE instructions: vpnot and vpsel
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
a302e574 6926
60f993ce
AV
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR, /* ARM LR register */
a302e574
AV
6929 OP_RRe, /* ARM register, only even numbered. */
6930 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6931 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6932
c19d1205 6933 OP_REGLST, /* ARM register list */
4b5a202f 6934 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6935 OP_VRSLST, /* VFP single-precision register list */
6936 OP_VRDLST, /* VFP double-precision register list */
037e8744 6937 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6938 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6940 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6941 OP_MSTRLST2, /* MVE vector list with two elements. */
6942 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6943
5287ad62 6944 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6945 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6946 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6947 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6948 zero. */
5287ad62 6949 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6950 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6951 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6952 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 */
a8465a06
AV
6954 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6955 scalar, or ARM register. */
5287ad62 6956 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5d281bf0 6957 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6958 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6959 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6960 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6961 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6962 OP_RNDQMQ_Ibig,
5287ad62 6963 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6964 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6965 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6966
6967 OP_I0, /* immediate zero */
c19d1205
ZW
6968 OP_I7, /* immediate value 0 .. 7 */
6969 OP_I15, /* 0 .. 15 */
6970 OP_I16, /* 1 .. 16 */
5287ad62 6971 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6972 OP_I31, /* 0 .. 31 */
6973 OP_I31w, /* 0 .. 31, optional trailing ! */
6974 OP_I32, /* 1 .. 32 */
5287ad62
JB
6975 OP_I32z, /* 0 .. 32 */
6976 OP_I63, /* 0 .. 63 */
c19d1205 6977 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6978 OP_I64, /* 1 .. 64 */
6979 OP_I64z, /* 0 .. 64 */
c19d1205 6980 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6981
6982 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6983 OP_I7b, /* 0 .. 7 */
6984 OP_I15b, /* 0 .. 15 */
6985 OP_I31b, /* 0 .. 31 */
6986
6987 OP_SH, /* shifter operand */
4962c51a 6988 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6989 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6990 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6991 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6992 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6993 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6994 OP_EXP, /* arbitrary expression */
6995 OP_EXPi, /* same, with optional immediate prefix */
6996 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6997 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6998 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6999 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7000 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
7001
7002 OP_CPSF, /* CPS flags */
7003 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7004 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7005 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7006 OP_COND, /* conditional code */
92e90b6e 7007 OP_TB, /* Table branch. */
c19d1205 7008
037e8744
JB
7009 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7010
c19d1205 7011 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7012 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7013 OP_RR_EXi, /* ARM register or expression with imm prefix */
7014 OP_RF_IF, /* FPA register or immediate */
7015 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7016 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7017
7018 /* Optional operands. */
7019 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7020 OP_oI31b, /* 0 .. 31 */
5287ad62 7021 OP_oI32b, /* 1 .. 32 */
5f1af56b 7022 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7023 OP_oIffffb, /* 0 .. 65535 */
7024 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7025
7026 OP_oRR, /* ARM register */
60f993ce 7027 OP_oLR, /* ARM LR register */
c19d1205 7028 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7029 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7030 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7031 OP_oRND, /* Optional Neon double precision register */
7032 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7033 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7034 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7035 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7036 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7037 register. */
c19d1205
ZW
7038 OP_oSHll, /* LSL immediate */
7039 OP_oSHar, /* ASR immediate */
7040 OP_oSHllar, /* LSL or ASR immediate */
7041 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7042 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7043
1b883319
AV
7044 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7045
5be8be5d
DG
7046 /* Some pre-defined mixed (ARM/THUMB) operands. */
7047 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7048 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7049 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7050
c19d1205
ZW
7051 OP_FIRST_OPTIONAL = OP_oI7b
7052};
a737bd4d 7053
c19d1205
ZW
7054/* Generic instruction operand parser. This does no encoding and no
7055 semantic validation; it merely squirrels values away in the inst
7056 structure. Returns SUCCESS or FAIL depending on whether the
7057 specified grammar matched. */
7058static int
5be8be5d 7059parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7060{
5be8be5d 7061 unsigned const int *upat = pattern;
c19d1205
ZW
7062 char *backtrack_pos = 0;
7063 const char *backtrack_error = 0;
99aad254 7064 int i, val = 0, backtrack_index = 0;
5287ad62 7065 enum arm_reg_type rtype;
4962c51a 7066 parse_operand_result result;
5be8be5d 7067 unsigned int op_parse_code;
efd6b359 7068 bfd_boolean partial_match;
c19d1205 7069
e07e6e58
NC
7070#define po_char_or_fail(chr) \
7071 do \
7072 { \
7073 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7074 goto bad_args; \
e07e6e58
NC
7075 } \
7076 while (0)
c19d1205 7077
e07e6e58
NC
7078#define po_reg_or_fail(regtype) \
7079 do \
dcbf9037 7080 { \
e07e6e58 7081 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7082 & inst.operands[i].vectype); \
e07e6e58 7083 if (val == FAIL) \
477330fc
RM
7084 { \
7085 first_error (_(reg_expected_msgs[regtype])); \
7086 goto failure; \
7087 } \
e07e6e58
NC
7088 inst.operands[i].reg = val; \
7089 inst.operands[i].isreg = 1; \
7090 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7091 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7092 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7093 || rtype == REG_TYPE_VFD \
7094 || rtype == REG_TYPE_NQ); \
1b883319 7095 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7096 } \
e07e6e58
NC
7097 while (0)
7098
7099#define po_reg_or_goto(regtype, label) \
7100 do \
7101 { \
7102 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7103 & inst.operands[i].vectype); \
7104 if (val == FAIL) \
7105 goto label; \
dcbf9037 7106 \
e07e6e58
NC
7107 inst.operands[i].reg = val; \
7108 inst.operands[i].isreg = 1; \
7109 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7110 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7111 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7112 || rtype == REG_TYPE_VFD \
e07e6e58 7113 || rtype == REG_TYPE_NQ); \
1b883319 7114 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7115 } \
7116 while (0)
7117
7118#define po_imm_or_fail(min, max, popt) \
7119 do \
7120 { \
7121 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7122 goto failure; \
7123 inst.operands[i].imm = val; \
7124 } \
7125 while (0)
7126
57785aa2 7127#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7128 do \
7129 { \
57785aa2
AV
7130 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7131 reg_type); \
e07e6e58
NC
7132 if (val == FAIL) \
7133 goto label; \
7134 inst.operands[i].reg = val; \
7135 inst.operands[i].isscalar = 1; \
7136 } \
7137 while (0)
7138
7139#define po_misc_or_fail(expr) \
7140 do \
7141 { \
7142 if (expr) \
7143 goto failure; \
7144 } \
7145 while (0)
7146
7147#define po_misc_or_fail_no_backtrack(expr) \
7148 do \
7149 { \
7150 result = expr; \
7151 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7152 backtrack_pos = 0; \
7153 if (result != PARSE_OPERAND_SUCCESS) \
7154 goto failure; \
7155 } \
7156 while (0)
4962c51a 7157
52e7f43d
RE
7158#define po_barrier_or_imm(str) \
7159 do \
7160 { \
7161 val = parse_barrier (&str); \
ccb84d65
JB
7162 if (val == FAIL && ! ISALPHA (*str)) \
7163 goto immediate; \
7164 if (val == FAIL \
7165 /* ISB can only take SY as an option. */ \
7166 || ((inst.instruction & 0xf0) == 0x60 \
7167 && val != 0xf)) \
52e7f43d 7168 { \
ccb84d65
JB
7169 inst.error = _("invalid barrier type"); \
7170 backtrack_pos = 0; \
7171 goto failure; \
52e7f43d
RE
7172 } \
7173 } \
7174 while (0)
7175
c19d1205
ZW
7176 skip_whitespace (str);
7177
7178 for (i = 0; upat[i] != OP_stop; i++)
7179 {
5be8be5d
DG
7180 op_parse_code = upat[i];
7181 if (op_parse_code >= 1<<16)
7182 op_parse_code = thumb ? (op_parse_code >> 16)
7183 : (op_parse_code & ((1<<16)-1));
7184
7185 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7186 {
7187 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7188 backtrack_pos = str;
7189 backtrack_error = inst.error;
7190 backtrack_index = i;
7191 }
7192
b6702015 7193 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7194 po_char_or_fail (',');
7195
5be8be5d 7196 switch (op_parse_code)
c19d1205
ZW
7197 {
7198 /* Registers */
7199 case OP_oRRnpc:
5be8be5d 7200 case OP_oRRnpcsp:
c19d1205 7201 case OP_RRnpc:
5be8be5d 7202 case OP_RRnpcsp:
c19d1205 7203 case OP_oRR:
a302e574
AV
7204 case OP_RRe:
7205 case OP_RRo:
60f993ce
AV
7206 case OP_LR:
7207 case OP_oLR:
c19d1205
ZW
7208 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7209 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7210 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7211 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7212 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7213 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7214 case OP_oRND:
5ee91343
AV
7215 case OP_RNDMQR:
7216 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7217 break;
7218 try_rndmq:
7219 case OP_RNDMQ:
7220 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7221 break;
7222 try_rnd:
5287ad62 7223 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7224 case OP_RVC:
7225 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7226 break;
7227 /* Also accept generic coprocessor regs for unknown registers. */
7228 coproc_reg:
7229 po_reg_or_fail (REG_TYPE_CN);
7230 break;
c19d1205
ZW
7231 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7232 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7233 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7234 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7235 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7236 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7237 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7238 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7239 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7240 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7241 case OP_oRNQ:
5ee91343
AV
7242 case OP_RNQMQ:
7243 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7244 break;
7245 try_nq:
5287ad62 7246 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7247 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7248 case OP_RNDQMQR:
7249 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7250 break;
7251 try_rndqmq:
5ee91343
AV
7252 case OP_oRNDQMQ:
7253 case OP_RNDQMQ:
7254 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7255 break;
7256 try_rndq:
477330fc 7257 case OP_oRNDQ:
5287ad62 7258 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7259 case OP_RVSDMQ:
7260 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7261 break;
7262 try_rvsd:
477330fc 7263 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7264 case OP_RVSD_COND:
7265 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7266 break;
477330fc
RM
7267 case OP_oRNSDQ:
7268 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7269 case OP_RNSDQMQR:
7270 po_reg_or_goto (REG_TYPE_RN, try_mq);
7271 break;
7272 try_mq:
7273 case OP_oRNSDQMQ:
7274 case OP_RNSDQMQ:
7275 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7276 break;
7277 try_nsdq2:
7278 po_reg_or_fail (REG_TYPE_NSDQ);
7279 inst.error = 0;
7280 break;
a302e574
AV
7281 case OP_RMQ:
7282 po_reg_or_fail (REG_TYPE_MQ);
7283 break;
477330fc
RM
7284 /* Neon scalar. Using an element size of 8 means that some invalid
7285 scalars are accepted here, so deal with those in later code. */
57785aa2 7286 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7287
7288 case OP_RNDQ_I0:
7289 {
7290 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7291 break;
7292 try_imm0:
7293 po_imm_or_fail (0, 0, TRUE);
7294 }
7295 break;
7296
7297 case OP_RVSD_I0:
7298 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7299 break;
7300
1b883319
AV
7301 case OP_RSVDMQ_FI0:
7302 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7303 break;
7304 try_rsvd_fi0:
aacf0b33
KT
7305 case OP_RSVD_FI0:
7306 {
7307 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7308 break;
7309 try_ifimm0:
7310 if (parse_ifimm_zero (&str))
7311 inst.operands[i].imm = 0;
7312 else
7313 {
7314 inst.error
7315 = _("only floating point zero is allowed as immediate value");
7316 goto failure;
7317 }
7318 }
7319 break;
7320
477330fc
RM
7321 case OP_RR_RNSC:
7322 {
57785aa2 7323 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7324 break;
7325 try_rr:
7326 po_reg_or_fail (REG_TYPE_RN);
7327 }
7328 break;
7329
a8465a06
AV
7330 case OP_RNSDQ_RNSC_MQ_RR:
7331 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7332 break;
7333 try_rnsdq_rnsc_mq:
886e1c73
AV
7334 case OP_RNSDQ_RNSC_MQ:
7335 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7336 break;
7337 try_rnsdq_rnsc:
477330fc
RM
7338 case OP_RNSDQ_RNSC:
7339 {
57785aa2
AV
7340 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7341 inst.error = 0;
477330fc
RM
7342 break;
7343 try_nsdq:
7344 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7345 inst.error = 0;
477330fc
RM
7346 }
7347 break;
7348
dec41383
JW
7349 case OP_RNSD_RNSC:
7350 {
57785aa2 7351 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7352 break;
7353 try_s_scalar:
57785aa2 7354 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7355 break;
7356 try_nsd:
7357 po_reg_or_fail (REG_TYPE_NSD);
7358 }
7359 break;
7360
5d281bf0
AV
7361 case OP_RNDQMQ_RNSC:
7362 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7363 break;
7364 try_rndq_rnsc:
477330fc
RM
7365 case OP_RNDQ_RNSC:
7366 {
57785aa2 7367 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7368 break;
7369 try_ndq:
7370 po_reg_or_fail (REG_TYPE_NDQ);
7371 }
7372 break;
7373
7374 case OP_RND_RNSC:
7375 {
57785aa2 7376 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7377 break;
7378 try_vfd:
7379 po_reg_or_fail (REG_TYPE_VFD);
7380 }
7381 break;
7382
7383 case OP_VMOV:
7384 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7385 not careful then bad things might happen. */
7386 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7387 break;
7388
f601a00c
AV
7389 case OP_RNDQMQ_Ibig:
7390 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7391 break;
7392 try_rndq_ibig:
477330fc
RM
7393 case OP_RNDQ_Ibig:
7394 {
7395 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7396 break;
7397 try_immbig:
7398 /* There's a possibility of getting a 64-bit immediate here, so
7399 we need special handling. */
8335d6aa
JW
7400 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7401 == FAIL)
477330fc
RM
7402 {
7403 inst.error = _("immediate value is out of range");
7404 goto failure;
7405 }
7406 }
7407 break;
7408
7409 case OP_RNDQ_I63b:
7410 {
7411 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7412 break;
7413 try_shimm:
7414 po_imm_or_fail (0, 63, TRUE);
7415 }
7416 break;
c19d1205
ZW
7417
7418 case OP_RRnpcb:
7419 po_char_or_fail ('[');
7420 po_reg_or_fail (REG_TYPE_RN);
7421 po_char_or_fail (']');
7422 break;
a737bd4d 7423
55881a11 7424 case OP_RRnpctw:
c19d1205 7425 case OP_RRw:
b6702015 7426 case OP_oRRw:
c19d1205
ZW
7427 po_reg_or_fail (REG_TYPE_RN);
7428 if (skip_past_char (&str, '!') == SUCCESS)
7429 inst.operands[i].writeback = 1;
7430 break;
7431
7432 /* Immediates */
7433 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7434 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7435 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7436 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7437 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7438 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7439 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7440 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7441 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7442 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7443 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7444 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7445
7446 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7447 case OP_oI7b:
7448 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7449 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7450 case OP_oI31b:
7451 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7452 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7453 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7454 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7455
7456 /* Immediate variants */
7457 case OP_oI255c:
7458 po_char_or_fail ('{');
7459 po_imm_or_fail (0, 255, TRUE);
7460 po_char_or_fail ('}');
7461 break;
7462
7463 case OP_I31w:
7464 /* The expression parser chokes on a trailing !, so we have
7465 to find it first and zap it. */
7466 {
7467 char *s = str;
7468 while (*s && *s != ',')
7469 s++;
7470 if (s[-1] == '!')
7471 {
7472 s[-1] = '\0';
7473 inst.operands[i].writeback = 1;
7474 }
7475 po_imm_or_fail (0, 31, TRUE);
7476 if (str == s - 1)
7477 str = s;
7478 }
7479 break;
7480
7481 /* Expressions */
7482 case OP_EXPi: EXPi:
e2b0ab59 7483 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7484 GE_OPT_PREFIX));
7485 break;
7486
7487 case OP_EXP:
e2b0ab59 7488 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7489 GE_NO_PREFIX));
7490 break;
7491
7492 case OP_EXPr: EXPr:
e2b0ab59 7493 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7494 GE_NO_PREFIX));
e2b0ab59 7495 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7496 {
c19d1205
ZW
7497 val = parse_reloc (&str);
7498 if (val == -1)
7499 {
7500 inst.error = _("unrecognized relocation suffix");
7501 goto failure;
7502 }
7503 else if (val != BFD_RELOC_UNUSED)
7504 {
7505 inst.operands[i].imm = val;
7506 inst.operands[i].hasreloc = 1;
7507 }
a737bd4d 7508 }
c19d1205 7509 break;
a737bd4d 7510
e2b0ab59
AV
7511 case OP_EXPs:
7512 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7513 GE_NO_PREFIX));
7514 if (inst.relocs[i].exp.X_op == O_symbol)
7515 {
7516 inst.operands[i].hasreloc = 1;
7517 }
7518 else if (inst.relocs[i].exp.X_op == O_constant)
7519 {
7520 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7521 inst.operands[i].hasreloc = 0;
7522 }
7523 break;
7524
b6895b4f
PB
7525 /* Operand for MOVW or MOVT. */
7526 case OP_HALF:
7527 po_misc_or_fail (parse_half (&str));
7528 break;
7529
e07e6e58 7530 /* Register or expression. */
c19d1205
ZW
7531 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7532 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7533
e07e6e58 7534 /* Register or immediate. */
c19d1205
ZW
7535 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7536 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7537
c19d1205
ZW
7538 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7539 IF:
7540 if (!is_immediate_prefix (*str))
7541 goto bad_args;
7542 str++;
7543 val = parse_fpa_immediate (&str);
7544 if (val == FAIL)
7545 goto failure;
7546 /* FPA immediates are encoded as registers 8-15.
7547 parse_fpa_immediate has already applied the offset. */
7548 inst.operands[i].reg = val;
7549 inst.operands[i].isreg = 1;
7550 break;
09d92015 7551
2d447fca
JM
7552 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7553 I32z: po_imm_or_fail (0, 32, FALSE); break;
7554
e07e6e58 7555 /* Two kinds of register. */
c19d1205
ZW
7556 case OP_RIWR_RIWC:
7557 {
7558 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7559 if (!rege
7560 || (rege->type != REG_TYPE_MMXWR
7561 && rege->type != REG_TYPE_MMXWC
7562 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7563 {
7564 inst.error = _("iWMMXt data or control register expected");
7565 goto failure;
7566 }
7567 inst.operands[i].reg = rege->number;
7568 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7569 }
7570 break;
09d92015 7571
41adaa5c
JM
7572 case OP_RIWC_RIWG:
7573 {
7574 struct reg_entry *rege = arm_reg_parse_multi (&str);
7575 if (!rege
7576 || (rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
7578 {
7579 inst.error = _("iWMMXt control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = 1;
7584 }
7585 break;
7586
c19d1205
ZW
7587 /* Misc */
7588 case OP_CPSF: val = parse_cps_flags (&str); break;
7589 case OP_ENDI: val = parse_endian_specifier (&str); break;
7590 case OP_oROR: val = parse_ror (&str); break;
1b883319 7591 try_cond:
c19d1205 7592 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7593 case OP_oBARRIER_I15:
7594 po_barrier_or_imm (str); break;
7595 immediate:
7596 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7597 goto failure;
52e7f43d 7598 break;
c19d1205 7599
fa94de6b 7600 case OP_wPSR:
d2cd1205 7601 case OP_rPSR:
90ec0d68
MGD
7602 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7603 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7604 {
7605 inst.error = _("Banked registers are not available with this "
7606 "architecture.");
7607 goto failure;
7608 }
7609 break;
d2cd1205
JB
7610 try_psr:
7611 val = parse_psr (&str, op_parse_code == OP_wPSR);
7612 break;
037e8744 7613
32c36c3c
AV
7614 case OP_VLDR:
7615 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7616 break;
7617 try_sysreg:
7618 val = parse_sys_vldr_vstr (&str);
7619 break;
7620
477330fc
RM
7621 case OP_APSR_RR:
7622 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7623 break;
7624 try_apsr:
7625 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7626 instruction). */
7627 if (strncasecmp (str, "APSR_", 5) == 0)
7628 {
7629 unsigned found = 0;
7630 str += 5;
7631 while (found < 15)
7632 switch (*str++)
7633 {
7634 case 'c': found = (found & 1) ? 16 : found | 1; break;
7635 case 'n': found = (found & 2) ? 16 : found | 2; break;
7636 case 'z': found = (found & 4) ? 16 : found | 4; break;
7637 case 'v': found = (found & 8) ? 16 : found | 8; break;
7638 default: found = 16;
7639 }
7640 if (found != 15)
7641 goto failure;
7642 inst.operands[i].isvec = 1;
f7c21dc7
NC
7643 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7644 inst.operands[i].reg = REG_PC;
477330fc
RM
7645 }
7646 else
7647 goto failure;
7648 break;
037e8744 7649
92e90b6e
PB
7650 case OP_TB:
7651 po_misc_or_fail (parse_tb (&str));
7652 break;
7653
e07e6e58 7654 /* Register lists. */
c19d1205 7655 case OP_REGLST:
4b5a202f 7656 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7657 if (*str == '^')
7658 {
5e0d7f77 7659 inst.operands[i].writeback = 1;
c19d1205
ZW
7660 str++;
7661 }
7662 break;
09d92015 7663
4b5a202f
AV
7664 case OP_CLRMLST:
7665 val = parse_reg_list (&str, REGLIST_CLRM);
7666 break;
7667
c19d1205 7668 case OP_VRSLST:
efd6b359
AV
7669 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7670 &partial_match);
c19d1205 7671 break;
09d92015 7672
c19d1205 7673 case OP_VRDLST:
efd6b359
AV
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7675 &partial_match);
c19d1205 7676 break;
a737bd4d 7677
477330fc
RM
7678 case OP_VRSDLST:
7679 /* Allow Q registers too. */
7680 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7681 REGLIST_NEON_D, &partial_match);
477330fc
RM
7682 if (val == FAIL)
7683 {
7684 inst.error = NULL;
7685 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7686 REGLIST_VFP_S, &partial_match);
7687 inst.operands[i].issingle = 1;
7688 }
7689 break;
7690
7691 case OP_VRSDVLST:
7692 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7693 REGLIST_VFP_D_VPR, &partial_match);
7694 if (val == FAIL && !partial_match)
7695 {
7696 inst.error = NULL;
7697 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7698 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7699 inst.operands[i].issingle = 1;
7700 }
7701 break;
7702
7703 case OP_NRDLST:
7704 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7705 REGLIST_NEON_D, &partial_match);
477330fc 7706 break;
5287ad62 7707
35c228db
AV
7708 case OP_MSTRLST4:
7709 case OP_MSTRLST2:
7710 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7711 1, &inst.operands[i].vectype);
7712 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7713 goto failure;
7714 break;
5287ad62 7715 case OP_NSTRLST:
477330fc 7716 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7717 0, &inst.operands[i].vectype);
477330fc 7718 break;
5287ad62 7719
c19d1205 7720 /* Addressing modes */
35c228db
AV
7721 case OP_ADDRMVE:
7722 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7723 break;
7724
c19d1205
ZW
7725 case OP_ADDR:
7726 po_misc_or_fail (parse_address (&str, i));
7727 break;
09d92015 7728
4962c51a
MS
7729 case OP_ADDRGLDR:
7730 po_misc_or_fail_no_backtrack (
477330fc 7731 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7732 break;
7733
7734 case OP_ADDRGLDRS:
7735 po_misc_or_fail_no_backtrack (
477330fc 7736 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7737 break;
7738
7739 case OP_ADDRGLDC:
7740 po_misc_or_fail_no_backtrack (
477330fc 7741 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7742 break;
7743
c19d1205
ZW
7744 case OP_SH:
7745 po_misc_or_fail (parse_shifter_operand (&str, i));
7746 break;
09d92015 7747
4962c51a
MS
7748 case OP_SHG:
7749 po_misc_or_fail_no_backtrack (
477330fc 7750 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7751 break;
7752
c19d1205
ZW
7753 case OP_oSHll:
7754 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7755 break;
09d92015 7756
c19d1205
ZW
7757 case OP_oSHar:
7758 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7759 break;
09d92015 7760
c19d1205
ZW
7761 case OP_oSHllar:
7762 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7763 break;
09d92015 7764
1b883319
AV
7765 case OP_RMQRZ:
7766 case OP_oRMQRZ:
7767 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7768 break;
7769 try_rr_zr:
7770 po_reg_or_goto (REG_TYPE_RN, ZR);
7771 break;
7772 ZR:
7773 po_reg_or_fail (REG_TYPE_ZR);
7774 break;
7775
c19d1205 7776 default:
5be8be5d 7777 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7778 }
09d92015 7779
c19d1205
ZW
7780 /* Various value-based sanity checks and shared operations. We
7781 do not signal immediate failures for the register constraints;
7782 this allows a syntax error to take precedence. */
5be8be5d 7783 switch (op_parse_code)
c19d1205
ZW
7784 {
7785 case OP_oRRnpc:
7786 case OP_RRnpc:
7787 case OP_RRnpcb:
7788 case OP_RRw:
b6702015 7789 case OP_oRRw:
c19d1205
ZW
7790 case OP_RRnpc_I0:
7791 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7792 inst.error = BAD_PC;
7793 break;
09d92015 7794
5be8be5d
DG
7795 case OP_oRRnpcsp:
7796 case OP_RRnpcsp:
7797 if (inst.operands[i].isreg)
7798 {
7799 if (inst.operands[i].reg == REG_PC)
7800 inst.error = BAD_PC;
5c8ed6a4
JW
7801 else if (inst.operands[i].reg == REG_SP
7802 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7803 relaxed since ARMv8-A. */
7804 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7805 {
7806 gas_assert (thumb);
7807 inst.error = BAD_SP;
7808 }
5be8be5d
DG
7809 }
7810 break;
7811
55881a11 7812 case OP_RRnpctw:
fa94de6b
RM
7813 if (inst.operands[i].isreg
7814 && inst.operands[i].reg == REG_PC
55881a11
MGD
7815 && (inst.operands[i].writeback || thumb))
7816 inst.error = BAD_PC;
7817 break;
7818
1b883319 7819 case OP_RVSD_COND:
32c36c3c
AV
7820 case OP_VLDR:
7821 if (inst.operands[i].isreg)
7822 break;
7823 /* fall through. */
1b883319 7824
c19d1205
ZW
7825 case OP_CPSF:
7826 case OP_ENDI:
7827 case OP_oROR:
d2cd1205
JB
7828 case OP_wPSR:
7829 case OP_rPSR:
c19d1205 7830 case OP_COND:
52e7f43d 7831 case OP_oBARRIER_I15:
c19d1205 7832 case OP_REGLST:
4b5a202f 7833 case OP_CLRMLST:
c19d1205
ZW
7834 case OP_VRSLST:
7835 case OP_VRDLST:
477330fc 7836 case OP_VRSDLST:
efd6b359 7837 case OP_VRSDVLST:
477330fc
RM
7838 case OP_NRDLST:
7839 case OP_NSTRLST:
35c228db
AV
7840 case OP_MSTRLST2:
7841 case OP_MSTRLST4:
c19d1205
ZW
7842 if (val == FAIL)
7843 goto failure;
7844 inst.operands[i].imm = val;
7845 break;
a737bd4d 7846
60f993ce
AV
7847 case OP_LR:
7848 case OP_oLR:
7849 if (inst.operands[i].reg != REG_LR)
7850 inst.error = _("operand must be LR register");
7851 break;
7852
1b883319
AV
7853 case OP_RMQRZ:
7854 case OP_oRMQRZ:
7855 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7856 inst.error = BAD_PC;
7857 break;
7858
a302e574
AV
7859 case OP_RRe:
7860 if (inst.operands[i].isreg
7861 && (inst.operands[i].reg & 0x00000001) != 0)
7862 inst.error = BAD_ODD;
7863 break;
7864
7865 case OP_RRo:
7866 if (inst.operands[i].isreg)
7867 {
7868 if ((inst.operands[i].reg & 0x00000001) != 1)
7869 inst.error = BAD_EVEN;
7870 else if (inst.operands[i].reg == REG_SP)
7871 as_tsktsk (MVE_BAD_SP);
7872 else if (inst.operands[i].reg == REG_PC)
7873 inst.error = BAD_PC;
7874 }
7875 break;
7876
c19d1205
ZW
7877 default:
7878 break;
7879 }
09d92015 7880
c19d1205
ZW
7881 /* If we get here, this operand was successfully parsed. */
7882 inst.operands[i].present = 1;
7883 continue;
09d92015 7884
c19d1205 7885 bad_args:
09d92015 7886 inst.error = BAD_ARGS;
c19d1205
ZW
7887
7888 failure:
7889 if (!backtrack_pos)
d252fdde
PB
7890 {
7891 /* The parse routine should already have set inst.error, but set a
5f4273c7 7892 default here just in case. */
d252fdde 7893 if (!inst.error)
5ee91343 7894 inst.error = BAD_SYNTAX;
d252fdde
PB
7895 return FAIL;
7896 }
c19d1205
ZW
7897
7898 /* Do not backtrack over a trailing optional argument that
7899 absorbed some text. We will only fail again, with the
7900 'garbage following instruction' error message, which is
7901 probably less helpful than the current one. */
7902 if (backtrack_index == i && backtrack_pos != str
7903 && upat[i+1] == OP_stop)
d252fdde
PB
7904 {
7905 if (!inst.error)
5ee91343 7906 inst.error = BAD_SYNTAX;
d252fdde
PB
7907 return FAIL;
7908 }
c19d1205
ZW
7909
7910 /* Try again, skipping the optional argument at backtrack_pos. */
7911 str = backtrack_pos;
7912 inst.error = backtrack_error;
7913 inst.operands[backtrack_index].present = 0;
7914 i = backtrack_index;
7915 backtrack_pos = 0;
09d92015 7916 }
09d92015 7917
c19d1205
ZW
7918 /* Check that we have parsed all the arguments. */
7919 if (*str != '\0' && !inst.error)
7920 inst.error = _("garbage following instruction");
09d92015 7921
c19d1205 7922 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7923}
7924
c19d1205
ZW
7925#undef po_char_or_fail
7926#undef po_reg_or_fail
7927#undef po_reg_or_goto
7928#undef po_imm_or_fail
5287ad62 7929#undef po_scalar_or_fail
52e7f43d 7930#undef po_barrier_or_imm
e07e6e58 7931
c19d1205 7932/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7933#define constraint(expr, err) \
7934 do \
c19d1205 7935 { \
e07e6e58
NC
7936 if (expr) \
7937 { \
7938 inst.error = err; \
7939 return; \
7940 } \
c19d1205 7941 } \
e07e6e58 7942 while (0)
c19d1205 7943
fdfde340
JM
7944/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7945 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7946 is the BadReg predicate in ARM's Thumb-2 documentation.
7947
7948 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7949 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7950#define reject_bad_reg(reg) \
7951 do \
7952 if (reg == REG_PC) \
7953 { \
7954 inst.error = BAD_PC; \
7955 return; \
7956 } \
7957 else if (reg == REG_SP \
7958 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7959 { \
7960 inst.error = BAD_SP; \
7961 return; \
7962 } \
fdfde340
JM
7963 while (0)
7964
94206790
MM
7965/* If REG is R13 (the stack pointer), warn that its use is
7966 deprecated. */
7967#define warn_deprecated_sp(reg) \
7968 do \
7969 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7970 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7971 while (0)
7972
c19d1205
ZW
7973/* Functions for operand encoding. ARM, then Thumb. */
7974
d840c081 7975#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7976
9db2f6b4
RL
7977/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7978
7979 The only binary encoding difference is the Coprocessor number. Coprocessor
7980 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7981 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7982 exists for Single-Precision operation. */
7983
7984static void
7985do_scalar_fp16_v82_encode (void)
7986{
5ee91343 7987 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
7988 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7989 " the behaviour is UNPREDICTABLE"));
7990 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7991 _(BAD_FP16));
7992
7993 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7994 mark_feature_used (&arm_ext_fp16);
7995}
7996
c19d1205
ZW
7997/* If VAL can be encoded in the immediate field of an ARM instruction,
7998 return the encoded form. Otherwise, return FAIL. */
7999
8000static unsigned int
8001encode_arm_immediate (unsigned int val)
09d92015 8002{
c19d1205
ZW
8003 unsigned int a, i;
8004
4f1d6205
L
8005 if (val <= 0xff)
8006 return val;
8007
8008 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8009 if ((a = rotate_left (val, i)) <= 0xff)
8010 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8011
8012 return FAIL;
09d92015
MM
8013}
8014
c19d1205
ZW
8015/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8016 return the encoded form. Otherwise, return FAIL. */
8017static unsigned int
8018encode_thumb32_immediate (unsigned int val)
09d92015 8019{
c19d1205 8020 unsigned int a, i;
09d92015 8021
9c3c69f2 8022 if (val <= 0xff)
c19d1205 8023 return val;
a737bd4d 8024
9c3c69f2 8025 for (i = 1; i <= 24; i++)
09d92015 8026 {
9c3c69f2
PB
8027 a = val >> i;
8028 if ((val & ~(0xff << i)) == 0)
8029 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8030 }
a737bd4d 8031
c19d1205
ZW
8032 a = val & 0xff;
8033 if (val == ((a << 16) | a))
8034 return 0x100 | a;
8035 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8036 return 0x300 | a;
09d92015 8037
c19d1205
ZW
8038 a = val & 0xff00;
8039 if (val == ((a << 16) | a))
8040 return 0x200 | (a >> 8);
a737bd4d 8041
c19d1205 8042 return FAIL;
09d92015 8043}
5287ad62 8044/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8045
8046static void
5287ad62
JB
8047encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8048{
8049 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8050 && reg > 15)
8051 {
b1cc4aeb 8052 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8053 {
8054 if (thumb_mode)
8055 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8056 fpu_vfp_ext_d32);
8057 else
8058 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8059 fpu_vfp_ext_d32);
8060 }
5287ad62 8061 else
477330fc
RM
8062 {
8063 first_error (_("D register out of range for selected VFP version"));
8064 return;
8065 }
5287ad62
JB
8066 }
8067
c19d1205 8068 switch (pos)
09d92015 8069 {
c19d1205
ZW
8070 case VFP_REG_Sd:
8071 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8072 break;
8073
8074 case VFP_REG_Sn:
8075 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8076 break;
8077
8078 case VFP_REG_Sm:
8079 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8080 break;
8081
5287ad62
JB
8082 case VFP_REG_Dd:
8083 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8084 break;
5f4273c7 8085
5287ad62
JB
8086 case VFP_REG_Dn:
8087 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8088 break;
5f4273c7 8089
5287ad62
JB
8090 case VFP_REG_Dm:
8091 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8092 break;
8093
c19d1205
ZW
8094 default:
8095 abort ();
09d92015 8096 }
09d92015
MM
8097}
8098
c19d1205 8099/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8100 if any, is handled by md_apply_fix. */
09d92015 8101static void
c19d1205 8102encode_arm_shift (int i)
09d92015 8103{
008a97ef
RL
8104 /* register-shifted register. */
8105 if (inst.operands[i].immisreg)
8106 {
bf355b69
MR
8107 int op_index;
8108 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8109 {
5689c942
RL
8110 /* Check the operand only when it's presented. In pre-UAL syntax,
8111 if the destination register is the same as the first operand, two
8112 register form of the instruction can be used. */
bf355b69
MR
8113 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8114 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8115 as_warn (UNPRED_REG ("r15"));
8116 }
8117
8118 if (inst.operands[i].imm == REG_PC)
8119 as_warn (UNPRED_REG ("r15"));
8120 }
8121
c19d1205
ZW
8122 if (inst.operands[i].shift_kind == SHIFT_RRX)
8123 inst.instruction |= SHIFT_ROR << 5;
8124 else
09d92015 8125 {
c19d1205
ZW
8126 inst.instruction |= inst.operands[i].shift_kind << 5;
8127 if (inst.operands[i].immisreg)
8128 {
8129 inst.instruction |= SHIFT_BY_REG;
8130 inst.instruction |= inst.operands[i].imm << 8;
8131 }
8132 else
e2b0ab59 8133 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8134 }
c19d1205 8135}
09d92015 8136
c19d1205
ZW
8137static void
8138encode_arm_shifter_operand (int i)
8139{
8140 if (inst.operands[i].isreg)
09d92015 8141 {
c19d1205
ZW
8142 inst.instruction |= inst.operands[i].reg;
8143 encode_arm_shift (i);
09d92015 8144 }
c19d1205 8145 else
a415b1cd
JB
8146 {
8147 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8148 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8149 inst.instruction |= inst.operands[i].imm;
8150 }
09d92015
MM
8151}
8152
c19d1205 8153/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8154static void
c19d1205 8155encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8156{
2b2f5df9
NC
8157 /* PR 14260:
8158 Generate an error if the operand is not a register. */
8159 constraint (!inst.operands[i].isreg,
8160 _("Instruction does not support =N addresses"));
8161
c19d1205 8162 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8163
c19d1205 8164 if (inst.operands[i].preind)
09d92015 8165 {
c19d1205
ZW
8166 if (is_t)
8167 {
8168 inst.error = _("instruction does not accept preindexed addressing");
8169 return;
8170 }
8171 inst.instruction |= PRE_INDEX;
8172 if (inst.operands[i].writeback)
8173 inst.instruction |= WRITE_BACK;
09d92015 8174
c19d1205
ZW
8175 }
8176 else if (inst.operands[i].postind)
8177 {
9c2799c2 8178 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8179 if (is_t)
8180 inst.instruction |= WRITE_BACK;
8181 }
8182 else /* unindexed - only for coprocessor */
09d92015 8183 {
c19d1205 8184 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8185 return;
8186 }
8187
c19d1205
ZW
8188 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8189 && (((inst.instruction & 0x000f0000) >> 16)
8190 == ((inst.instruction & 0x0000f000) >> 12)))
8191 as_warn ((inst.instruction & LOAD_BIT)
8192 ? _("destination register same as write-back base")
8193 : _("source register same as write-back base"));
09d92015
MM
8194}
8195
c19d1205
ZW
8196/* inst.operands[i] was set up by parse_address. Encode it into an
8197 ARM-format mode 2 load or store instruction. If is_t is true,
8198 reject forms that cannot be used with a T instruction (i.e. not
8199 post-indexed). */
a737bd4d 8200static void
c19d1205 8201encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8202{
5be8be5d
DG
8203 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8204
c19d1205 8205 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8206
c19d1205 8207 if (inst.operands[i].immisreg)
09d92015 8208 {
5be8be5d
DG
8209 constraint ((inst.operands[i].imm == REG_PC
8210 || (is_pc && inst.operands[i].writeback)),
8211 BAD_PC_ADDRESSING);
c19d1205
ZW
8212 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8213 inst.instruction |= inst.operands[i].imm;
8214 if (!inst.operands[i].negative)
8215 inst.instruction |= INDEX_UP;
8216 if (inst.operands[i].shifted)
8217 {
8218 if (inst.operands[i].shift_kind == SHIFT_RRX)
8219 inst.instruction |= SHIFT_ROR << 5;
8220 else
8221 {
8222 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8223 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8224 }
8225 }
09d92015 8226 }
e2b0ab59 8227 else /* immediate offset in inst.relocs[0] */
09d92015 8228 {
e2b0ab59 8229 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8230 {
8231 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8232
8233 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8234 cannot use PC in addressing.
8235 PC cannot be used in writeback addressing, either. */
8236 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8237 BAD_PC_ADDRESSING);
23a10334 8238
dc5ec521 8239 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8240 if (warn_on_deprecated
8241 && !is_load
8242 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8243 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8244 }
8245
e2b0ab59 8246 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8247 {
8248 /* Prefer + for zero encoded value. */
8249 if (!inst.operands[i].negative)
8250 inst.instruction |= INDEX_UP;
e2b0ab59 8251 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8252 }
09d92015 8253 }
09d92015
MM
8254}
8255
c19d1205
ZW
8256/* inst.operands[i] was set up by parse_address. Encode it into an
8257 ARM-format mode 3 load or store instruction. Reject forms that
8258 cannot be used with such instructions. If is_t is true, reject
8259 forms that cannot be used with a T instruction (i.e. not
8260 post-indexed). */
8261static void
8262encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8263{
c19d1205 8264 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8265 {
c19d1205
ZW
8266 inst.error = _("instruction does not accept scaled register index");
8267 return;
09d92015 8268 }
a737bd4d 8269
c19d1205 8270 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8271
c19d1205
ZW
8272 if (inst.operands[i].immisreg)
8273 {
5be8be5d 8274 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8275 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8276 BAD_PC_ADDRESSING);
eb9f3f00
JB
8277 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8278 BAD_PC_WRITEBACK);
c19d1205
ZW
8279 inst.instruction |= inst.operands[i].imm;
8280 if (!inst.operands[i].negative)
8281 inst.instruction |= INDEX_UP;
8282 }
e2b0ab59 8283 else /* immediate offset in inst.relocs[0] */
c19d1205 8284 {
e2b0ab59 8285 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8286 && inst.operands[i].writeback),
8287 BAD_PC_WRITEBACK);
c19d1205 8288 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8289 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8290 {
8291 /* Prefer + for zero encoded value. */
8292 if (!inst.operands[i].negative)
8293 inst.instruction |= INDEX_UP;
8294
e2b0ab59 8295 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8296 }
c19d1205 8297 }
a737bd4d
NC
8298}
8299
8335d6aa
JW
8300/* Write immediate bits [7:0] to the following locations:
8301
8302 |28/24|23 19|18 16|15 4|3 0|
8303 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8304
8305 This function is used by VMOV/VMVN/VORR/VBIC. */
8306
8307static void
8308neon_write_immbits (unsigned immbits)
8309{
8310 inst.instruction |= immbits & 0xf;
8311 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8312 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8313}
8314
8315/* Invert low-order SIZE bits of XHI:XLO. */
8316
8317static void
8318neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8319{
8320 unsigned immlo = xlo ? *xlo : 0;
8321 unsigned immhi = xhi ? *xhi : 0;
8322
8323 switch (size)
8324 {
8325 case 8:
8326 immlo = (~immlo) & 0xff;
8327 break;
8328
8329 case 16:
8330 immlo = (~immlo) & 0xffff;
8331 break;
8332
8333 case 64:
8334 immhi = (~immhi) & 0xffffffff;
8335 /* fall through. */
8336
8337 case 32:
8338 immlo = (~immlo) & 0xffffffff;
8339 break;
8340
8341 default:
8342 abort ();
8343 }
8344
8345 if (xlo)
8346 *xlo = immlo;
8347
8348 if (xhi)
8349 *xhi = immhi;
8350}
8351
8352/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8353 A, B, C, D. */
09d92015 8354
c19d1205 8355static int
8335d6aa 8356neon_bits_same_in_bytes (unsigned imm)
09d92015 8357{
8335d6aa
JW
8358 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8359 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8360 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8361 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8362}
a737bd4d 8363
8335d6aa 8364/* For immediate of above form, return 0bABCD. */
09d92015 8365
8335d6aa
JW
8366static unsigned
8367neon_squash_bits (unsigned imm)
8368{
8369 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8370 | ((imm & 0x01000000) >> 21);
8371}
8372
8373/* Compress quarter-float representation to 0b...000 abcdefgh. */
8374
8375static unsigned
8376neon_qfloat_bits (unsigned imm)
8377{
8378 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8379}
8380
8381/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8382 the instruction. *OP is passed as the initial value of the op field, and
8383 may be set to a different value depending on the constant (i.e.
8384 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8385 MVN). If the immediate looks like a repeated pattern then also
8386 try smaller element sizes. */
8387
8388static int
8389neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8390 unsigned *immbits, int *op, int size,
8391 enum neon_el_type type)
8392{
8393 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8394 float. */
8395 if (type == NT_float && !float_p)
8396 return FAIL;
8397
8398 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8399 {
8335d6aa
JW
8400 if (size != 32 || *op == 1)
8401 return FAIL;
8402 *immbits = neon_qfloat_bits (immlo);
8403 return 0xf;
8404 }
8405
8406 if (size == 64)
8407 {
8408 if (neon_bits_same_in_bytes (immhi)
8409 && neon_bits_same_in_bytes (immlo))
c19d1205 8410 {
8335d6aa
JW
8411 if (*op == 1)
8412 return FAIL;
8413 *immbits = (neon_squash_bits (immhi) << 4)
8414 | neon_squash_bits (immlo);
8415 *op = 1;
8416 return 0xe;
c19d1205 8417 }
a737bd4d 8418
8335d6aa
JW
8419 if (immhi != immlo)
8420 return FAIL;
8421 }
a737bd4d 8422
8335d6aa 8423 if (size >= 32)
09d92015 8424 {
8335d6aa 8425 if (immlo == (immlo & 0x000000ff))
c19d1205 8426 {
8335d6aa
JW
8427 *immbits = immlo;
8428 return 0x0;
c19d1205 8429 }
8335d6aa 8430 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8431 {
8335d6aa
JW
8432 *immbits = immlo >> 8;
8433 return 0x2;
c19d1205 8434 }
8335d6aa
JW
8435 else if (immlo == (immlo & 0x00ff0000))
8436 {
8437 *immbits = immlo >> 16;
8438 return 0x4;
8439 }
8440 else if (immlo == (immlo & 0xff000000))
8441 {
8442 *immbits = immlo >> 24;
8443 return 0x6;
8444 }
8445 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8446 {
8447 *immbits = (immlo >> 8) & 0xff;
8448 return 0xc;
8449 }
8450 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8451 {
8452 *immbits = (immlo >> 16) & 0xff;
8453 return 0xd;
8454 }
8455
8456 if ((immlo & 0xffff) != (immlo >> 16))
8457 return FAIL;
8458 immlo &= 0xffff;
09d92015 8459 }
a737bd4d 8460
8335d6aa 8461 if (size >= 16)
4962c51a 8462 {
8335d6aa
JW
8463 if (immlo == (immlo & 0x000000ff))
8464 {
8465 *immbits = immlo;
8466 return 0x8;
8467 }
8468 else if (immlo == (immlo & 0x0000ff00))
8469 {
8470 *immbits = immlo >> 8;
8471 return 0xa;
8472 }
8473
8474 if ((immlo & 0xff) != (immlo >> 8))
8475 return FAIL;
8476 immlo &= 0xff;
4962c51a
MS
8477 }
8478
8335d6aa
JW
8479 if (immlo == (immlo & 0x000000ff))
8480 {
8481 /* Don't allow MVN with 8-bit immediate. */
8482 if (*op == 1)
8483 return FAIL;
8484 *immbits = immlo;
8485 return 0xe;
8486 }
26d97720 8487
8335d6aa 8488 return FAIL;
c19d1205 8489}
a737bd4d 8490
5fc177c8 8491#if defined BFD_HOST_64_BIT
ba592044
AM
8492/* Returns TRUE if double precision value V may be cast
8493 to single precision without loss of accuracy. */
8494
8495static bfd_boolean
5fc177c8 8496is_double_a_single (bfd_int64_t v)
ba592044 8497{
5fc177c8 8498 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8499 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8500
8501 return (exp == 0 || exp == 0x7FF
8502 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8503 && (mantissa & 0x1FFFFFFFl) == 0;
8504}
8505
3739860c 8506/* Returns a double precision value casted to single precision
ba592044
AM
8507 (ignoring the least significant bits in exponent and mantissa). */
8508
8509static int
5fc177c8 8510double_to_single (bfd_int64_t v)
ba592044
AM
8511{
8512 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8513 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8515
8516 if (exp == 0x7FF)
8517 exp = 0xFF;
8518 else
8519 {
8520 exp = exp - 1023 + 127;
8521 if (exp >= 0xFF)
8522 {
8523 /* Infinity. */
8524 exp = 0x7F;
8525 mantissa = 0;
8526 }
8527 else if (exp < 0)
8528 {
8529 /* No denormalized numbers. */
8530 exp = 0;
8531 mantissa = 0;
8532 }
8533 }
8534 mantissa >>= 29;
8535 return (sign << 31) | (exp << 23) | mantissa;
8536}
5fc177c8 8537#endif /* BFD_HOST_64_BIT */
ba592044 8538
8335d6aa
JW
8539enum lit_type
8540{
8541 CONST_THUMB,
8542 CONST_ARM,
8543 CONST_VEC
8544};
8545
ba592044
AM
8546static void do_vfp_nsyn_opcode (const char *);
8547
e2b0ab59 8548/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8549 Determine whether it can be performed with a move instruction; if
8550 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8551 return TRUE; if it can't, convert inst.instruction to a literal-pool
8552 load and return FALSE. If this is not a valid thing to do in the
8553 current context, set inst.error and return TRUE.
a737bd4d 8554
c19d1205
ZW
8555 inst.operands[i] describes the destination register. */
8556
c921be7d 8557static bfd_boolean
8335d6aa 8558move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8559{
53365c0d 8560 unsigned long tbit;
8335d6aa
JW
8561 bfd_boolean thumb_p = (t == CONST_THUMB);
8562 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8563
8564 if (thumb_p)
8565 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8566 else
8567 tbit = LOAD_BIT;
8568
8569 if ((inst.instruction & tbit) == 0)
09d92015 8570 {
c19d1205 8571 inst.error = _("invalid pseudo operation");
c921be7d 8572 return TRUE;
09d92015 8573 }
ba592044 8574
e2b0ab59
AV
8575 if (inst.relocs[0].exp.X_op != O_constant
8576 && inst.relocs[0].exp.X_op != O_symbol
8577 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8578 {
8579 inst.error = _("constant expression expected");
c921be7d 8580 return TRUE;
09d92015 8581 }
ba592044 8582
e2b0ab59
AV
8583 if (inst.relocs[0].exp.X_op == O_constant
8584 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8585 {
5fc177c8
NC
8586#if defined BFD_HOST_64_BIT
8587 bfd_int64_t v;
8588#else
ba592044 8589 offsetT v;
5fc177c8 8590#endif
e2b0ab59 8591 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8592 {
ba592044
AM
8593 LITTLENUM_TYPE w[X_PRECISION];
8594 LITTLENUM_TYPE * l;
8595
e2b0ab59 8596 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8597 {
ba592044
AM
8598 gen_to_words (w, X_PRECISION, E_PRECISION);
8599 l = w;
8600 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8601 }
ba592044
AM
8602 else
8603 l = generic_bignum;
3739860c 8604
5fc177c8
NC
8605#if defined BFD_HOST_64_BIT
8606 v =
8607 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8608 << LITTLENUM_NUMBER_OF_BITS)
8609 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8610 << LITTLENUM_NUMBER_OF_BITS)
8611 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8612 << LITTLENUM_NUMBER_OF_BITS)
8613 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8614#else
ba592044
AM
8615 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8616 | (l[0] & LITTLENUM_MASK);
5fc177c8 8617#endif
8335d6aa 8618 }
ba592044 8619 else
e2b0ab59 8620 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8621
8622 if (!inst.operands[i].issingle)
8335d6aa 8623 {
12569877 8624 if (thumb_p)
8335d6aa 8625 {
53445554
TP
8626 /* LDR should not use lead in a flag-setting instruction being
8627 chosen so we do not check whether movs can be used. */
12569877 8628
53445554 8629 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8630 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8631 && inst.operands[i].reg != 13
8632 && inst.operands[i].reg != 15)
12569877 8633 {
fc289b0a
TP
8634 /* Check if on thumb2 it can be done with a mov.w, mvn or
8635 movw instruction. */
12569877
AM
8636 unsigned int newimm;
8637 bfd_boolean isNegated;
8638
8639 newimm = encode_thumb32_immediate (v);
8640 if (newimm != (unsigned int) FAIL)
8641 isNegated = FALSE;
8642 else
8643 {
582cfe03 8644 newimm = encode_thumb32_immediate (~v);
12569877
AM
8645 if (newimm != (unsigned int) FAIL)
8646 isNegated = TRUE;
8647 }
8648
fc289b0a
TP
8649 /* The number can be loaded with a mov.w or mvn
8650 instruction. */
ff8646ee
TP
8651 if (newimm != (unsigned int) FAIL
8652 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8653 {
fc289b0a 8654 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8655 | (inst.operands[i].reg << 8));
fc289b0a 8656 /* Change to MOVN. */
582cfe03 8657 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8658 inst.instruction |= (newimm & 0x800) << 15;
8659 inst.instruction |= (newimm & 0x700) << 4;
8660 inst.instruction |= (newimm & 0x0ff);
8661 return TRUE;
8662 }
fc289b0a 8663 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8664 else if ((v & ~0xFFFF) == 0
8665 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8666 {
582cfe03 8667 int imm = v & 0xFFFF;
12569877 8668
582cfe03 8669 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8670 inst.instruction |= (inst.operands[i].reg << 8);
8671 inst.instruction |= (imm & 0xf000) << 4;
8672 inst.instruction |= (imm & 0x0800) << 15;
8673 inst.instruction |= (imm & 0x0700) << 4;
8674 inst.instruction |= (imm & 0x00ff);
8675 return TRUE;
8676 }
8677 }
8335d6aa 8678 }
12569877 8679 else if (arm_p)
ba592044
AM
8680 {
8681 int value = encode_arm_immediate (v);
12569877 8682
ba592044
AM
8683 if (value != FAIL)
8684 {
8685 /* This can be done with a mov instruction. */
8686 inst.instruction &= LITERAL_MASK;
8687 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8688 inst.instruction |= value & 0xfff;
8689 return TRUE;
8690 }
8335d6aa 8691
ba592044
AM
8692 value = encode_arm_immediate (~ v);
8693 if (value != FAIL)
8694 {
8695 /* This can be done with a mvn instruction. */
8696 inst.instruction &= LITERAL_MASK;
8697 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8698 inst.instruction |= value & 0xfff;
8699 return TRUE;
8700 }
8701 }
934c2632 8702 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8703 {
ba592044
AM
8704 int op = 0;
8705 unsigned immbits = 0;
8706 unsigned immlo = inst.operands[1].imm;
8707 unsigned immhi = inst.operands[1].regisimm
8708 ? inst.operands[1].reg
e2b0ab59 8709 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8710 ? 0
8711 : ((bfd_int64_t)((int) immlo)) >> 32;
8712 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8713 &op, 64, NT_invtype);
8714
8715 if (cmode == FAIL)
8716 {
8717 neon_invert_size (&immlo, &immhi, 64);
8718 op = !op;
8719 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8720 &op, 64, NT_invtype);
8721 }
8722
8723 if (cmode != FAIL)
8724 {
8725 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8726 | (1 << 23)
8727 | (cmode << 8)
8728 | (op << 5)
8729 | (1 << 4);
8730
8731 /* Fill other bits in vmov encoding for both thumb and arm. */
8732 if (thumb_mode)
eff0bc54 8733 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8734 else
eff0bc54 8735 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8736 neon_write_immbits (immbits);
8737 return TRUE;
8738 }
8335d6aa
JW
8739 }
8740 }
8335d6aa 8741
ba592044
AM
8742 if (t == CONST_VEC)
8743 {
8744 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8745 if (inst.operands[i].issingle
8746 && is_quarter_float (inst.operands[1].imm)
8747 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8748 {
ba592044
AM
8749 inst.operands[1].imm =
8750 neon_qfloat_bits (v);
8751 do_vfp_nsyn_opcode ("fconsts");
8752 return TRUE;
8335d6aa 8753 }
5fc177c8
NC
8754
8755 /* If our host does not support a 64-bit type then we cannot perform
8756 the following optimization. This mean that there will be a
8757 discrepancy between the output produced by an assembler built for
8758 a 32-bit-only host and the output produced from a 64-bit host, but
8759 this cannot be helped. */
8760#if defined BFD_HOST_64_BIT
ba592044
AM
8761 else if (!inst.operands[1].issingle
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8763 {
ba592044
AM
8764 if (is_double_a_single (v)
8765 && is_quarter_float (double_to_single (v)))
8766 {
8767 inst.operands[1].imm =
8768 neon_qfloat_bits (double_to_single (v));
8769 do_vfp_nsyn_opcode ("fconstd");
8770 return TRUE;
8771 }
8335d6aa 8772 }
5fc177c8 8773#endif
8335d6aa
JW
8774 }
8775 }
8776
8777 if (add_to_lit_pool ((!inst.operands[i].isvec
8778 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8779 return TRUE;
8780
8781 inst.operands[1].reg = REG_PC;
8782 inst.operands[1].isreg = 1;
8783 inst.operands[1].preind = 1;
e2b0ab59
AV
8784 inst.relocs[0].pc_rel = 1;
8785 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8786 ? BFD_RELOC_ARM_THUMB_OFFSET
8787 : (mode_3
8788 ? BFD_RELOC_ARM_HWLITERAL
8789 : BFD_RELOC_ARM_LITERAL));
8790 return FALSE;
8791}
8792
8793/* inst.operands[i] was set up by parse_address. Encode it into an
8794 ARM-format instruction. Reject all forms which cannot be encoded
8795 into a coprocessor load/store instruction. If wb_ok is false,
8796 reject use of writeback; if unind_ok is false, reject use of
8797 unindexed addressing. If reloc_override is not 0, use it instead
8798 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8799 (in which case it is preserved). */
8800
8801static int
8802encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8803{
8804 if (!inst.operands[i].isreg)
8805 {
99b2a2dd
NC
8806 /* PR 18256 */
8807 if (! inst.operands[0].isvec)
8808 {
8809 inst.error = _("invalid co-processor operand");
8810 return FAIL;
8811 }
8335d6aa
JW
8812 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8813 return SUCCESS;
8814 }
8815
8816 inst.instruction |= inst.operands[i].reg << 16;
8817
8818 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8819
8820 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8821 {
8822 gas_assert (!inst.operands[i].writeback);
8823 if (!unind_ok)
8824 {
8825 inst.error = _("instruction does not support unindexed addressing");
8826 return FAIL;
8827 }
8828 inst.instruction |= inst.operands[i].imm;
8829 inst.instruction |= INDEX_UP;
8830 return SUCCESS;
8831 }
8832
8833 if (inst.operands[i].preind)
8834 inst.instruction |= PRE_INDEX;
8835
8836 if (inst.operands[i].writeback)
09d92015 8837 {
8335d6aa 8838 if (inst.operands[i].reg == REG_PC)
c19d1205 8839 {
8335d6aa
JW
8840 inst.error = _("pc may not be used with write-back");
8841 return FAIL;
c19d1205 8842 }
8335d6aa 8843 if (!wb_ok)
c19d1205 8844 {
8335d6aa
JW
8845 inst.error = _("instruction does not support writeback");
8846 return FAIL;
c19d1205 8847 }
8335d6aa 8848 inst.instruction |= WRITE_BACK;
09d92015
MM
8849 }
8850
8335d6aa 8851 if (reloc_override)
e2b0ab59
AV
8852 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8853 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8854 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8855 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8856 {
8335d6aa 8857 if (thumb_mode)
e2b0ab59 8858 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8859 else
e2b0ab59 8860 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8861 }
8335d6aa
JW
8862
8863 /* Prefer + for zero encoded value. */
8864 if (!inst.operands[i].negative)
8865 inst.instruction |= INDEX_UP;
8866
8867 return SUCCESS;
09d92015
MM
8868}
8869
5f4273c7 8870/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8871 First some generics; their names are taken from the conventional
8872 bit positions for register arguments in ARM format instructions. */
09d92015 8873
a737bd4d 8874static void
c19d1205 8875do_noargs (void)
09d92015 8876{
c19d1205 8877}
a737bd4d 8878
c19d1205
ZW
8879static void
8880do_rd (void)
8881{
8882 inst.instruction |= inst.operands[0].reg << 12;
8883}
a737bd4d 8884
16a1fa25
TP
8885static void
8886do_rn (void)
8887{
8888 inst.instruction |= inst.operands[0].reg << 16;
8889}
8890
c19d1205
ZW
8891static void
8892do_rd_rm (void)
8893{
8894 inst.instruction |= inst.operands[0].reg << 12;
8895 inst.instruction |= inst.operands[1].reg;
8896}
09d92015 8897
9eb6c0f1
MGD
8898static void
8899do_rm_rn (void)
8900{
8901 inst.instruction |= inst.operands[0].reg;
8902 inst.instruction |= inst.operands[1].reg << 16;
8903}
8904
c19d1205
ZW
8905static void
8906do_rd_rn (void)
8907{
8908 inst.instruction |= inst.operands[0].reg << 12;
8909 inst.instruction |= inst.operands[1].reg << 16;
8910}
a737bd4d 8911
c19d1205
ZW
8912static void
8913do_rn_rd (void)
8914{
8915 inst.instruction |= inst.operands[0].reg << 16;
8916 inst.instruction |= inst.operands[1].reg << 12;
8917}
09d92015 8918
4ed7ed8d
TP
8919static void
8920do_tt (void)
8921{
8922 inst.instruction |= inst.operands[0].reg << 8;
8923 inst.instruction |= inst.operands[1].reg << 16;
8924}
8925
59d09be6
MGD
8926static bfd_boolean
8927check_obsolete (const arm_feature_set *feature, const char *msg)
8928{
8929 if (ARM_CPU_IS_ANY (cpu_variant))
8930 {
5c3696f8 8931 as_tsktsk ("%s", msg);
59d09be6
MGD
8932 return TRUE;
8933 }
8934 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8935 {
8936 as_bad ("%s", msg);
8937 return TRUE;
8938 }
8939
8940 return FALSE;
8941}
8942
c19d1205
ZW
8943static void
8944do_rd_rm_rn (void)
8945{
9a64e435 8946 unsigned Rn = inst.operands[2].reg;
708587a4 8947 /* Enforce restrictions on SWP instruction. */
9a64e435 8948 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8949 {
8950 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8951 _("Rn must not overlap other operands"));
8952
59d09be6
MGD
8953 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8954 */
8955 if (!check_obsolete (&arm_ext_v8,
8956 _("swp{b} use is obsoleted for ARMv8 and later"))
8957 && warn_on_deprecated
8958 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8959 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8960 }
59d09be6 8961
c19d1205
ZW
8962 inst.instruction |= inst.operands[0].reg << 12;
8963 inst.instruction |= inst.operands[1].reg;
9a64e435 8964 inst.instruction |= Rn << 16;
c19d1205 8965}
09d92015 8966
c19d1205
ZW
8967static void
8968do_rd_rn_rm (void)
8969{
8970 inst.instruction |= inst.operands[0].reg << 12;
8971 inst.instruction |= inst.operands[1].reg << 16;
8972 inst.instruction |= inst.operands[2].reg;
8973}
a737bd4d 8974
c19d1205
ZW
8975static void
8976do_rm_rd_rn (void)
8977{
5be8be5d 8978 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8979 constraint (((inst.relocs[0].exp.X_op != O_constant
8980 && inst.relocs[0].exp.X_op != O_illegal)
8981 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8982 BAD_ADDR_MODE);
c19d1205
ZW
8983 inst.instruction |= inst.operands[0].reg;
8984 inst.instruction |= inst.operands[1].reg << 12;
8985 inst.instruction |= inst.operands[2].reg << 16;
8986}
09d92015 8987
c19d1205
ZW
8988static void
8989do_imm0 (void)
8990{
8991 inst.instruction |= inst.operands[0].imm;
8992}
09d92015 8993
c19d1205
ZW
8994static void
8995do_rd_cpaddr (void)
8996{
8997 inst.instruction |= inst.operands[0].reg << 12;
8998 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8999}
a737bd4d 9000
c19d1205
ZW
9001/* ARM instructions, in alphabetical order by function name (except
9002 that wrapper functions appear immediately after the function they
9003 wrap). */
09d92015 9004
c19d1205
ZW
9005/* This is a pseudo-op of the form "adr rd, label" to be converted
9006 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9007
9008static void
c19d1205 9009do_adr (void)
09d92015 9010{
c19d1205 9011 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9012
c19d1205
ZW
9013 /* Frag hacking will turn this into a sub instruction if the offset turns
9014 out to be negative. */
e2b0ab59
AV
9015 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9016 inst.relocs[0].pc_rel = 1;
9017 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9018
fc6141f0 9019 if (support_interwork
e2b0ab59
AV
9020 && inst.relocs[0].exp.X_op == O_symbol
9021 && inst.relocs[0].exp.X_add_symbol != NULL
9022 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9023 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9024 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9025}
b99bd4ef 9026
c19d1205
ZW
9027/* This is a pseudo-op of the form "adrl rd, label" to be converted
9028 into a relative address of the form:
9029 add rd, pc, #low(label-.-8)"
9030 add rd, rd, #high(label-.-8)" */
b99bd4ef 9031
c19d1205
ZW
9032static void
9033do_adrl (void)
9034{
9035 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9036
c19d1205
ZW
9037 /* Frag hacking will turn this into a sub instruction if the offset turns
9038 out to be negative. */
e2b0ab59
AV
9039 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9040 inst.relocs[0].pc_rel = 1;
c19d1205 9041 inst.size = INSN_SIZE * 2;
e2b0ab59 9042 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9043
fc6141f0 9044 if (support_interwork
e2b0ab59
AV
9045 && inst.relocs[0].exp.X_op == O_symbol
9046 && inst.relocs[0].exp.X_add_symbol != NULL
9047 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9048 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9049 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9050}
9051
b99bd4ef 9052static void
c19d1205 9053do_arit (void)
b99bd4ef 9054{
e2b0ab59
AV
9055 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9056 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9057 THUMB1_RELOC_ONLY);
c19d1205
ZW
9058 if (!inst.operands[1].present)
9059 inst.operands[1].reg = inst.operands[0].reg;
9060 inst.instruction |= inst.operands[0].reg << 12;
9061 inst.instruction |= inst.operands[1].reg << 16;
9062 encode_arm_shifter_operand (2);
9063}
b99bd4ef 9064
62b3e311
PB
9065static void
9066do_barrier (void)
9067{
9068 if (inst.operands[0].present)
ccb84d65 9069 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9070 else
9071 inst.instruction |= 0xf;
9072}
9073
c19d1205
ZW
9074static void
9075do_bfc (void)
9076{
9077 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9078 constraint (msb > 32, _("bit-field extends past end of register"));
9079 /* The instruction encoding stores the LSB and MSB,
9080 not the LSB and width. */
9081 inst.instruction |= inst.operands[0].reg << 12;
9082 inst.instruction |= inst.operands[1].imm << 7;
9083 inst.instruction |= (msb - 1) << 16;
9084}
b99bd4ef 9085
c19d1205
ZW
9086static void
9087do_bfi (void)
9088{
9089 unsigned int msb;
b99bd4ef 9090
c19d1205
ZW
9091 /* #0 in second position is alternative syntax for bfc, which is
9092 the same instruction but with REG_PC in the Rm field. */
9093 if (!inst.operands[1].isreg)
9094 inst.operands[1].reg = REG_PC;
b99bd4ef 9095
c19d1205
ZW
9096 msb = inst.operands[2].imm + inst.operands[3].imm;
9097 constraint (msb > 32, _("bit-field extends past end of register"));
9098 /* The instruction encoding stores the LSB and MSB,
9099 not the LSB and width. */
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 inst.instruction |= inst.operands[1].reg;
9102 inst.instruction |= inst.operands[2].imm << 7;
9103 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9104}
9105
b99bd4ef 9106static void
c19d1205 9107do_bfx (void)
b99bd4ef 9108{
c19d1205
ZW
9109 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9110 _("bit-field extends past end of register"));
9111 inst.instruction |= inst.operands[0].reg << 12;
9112 inst.instruction |= inst.operands[1].reg;
9113 inst.instruction |= inst.operands[2].imm << 7;
9114 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9115}
09d92015 9116
c19d1205
ZW
9117/* ARM V5 breakpoint instruction (argument parse)
9118 BKPT <16 bit unsigned immediate>
9119 Instruction is not conditional.
9120 The bit pattern given in insns[] has the COND_ALWAYS condition,
9121 and it is an error if the caller tried to override that. */
b99bd4ef 9122
c19d1205
ZW
9123static void
9124do_bkpt (void)
9125{
9126 /* Top 12 of 16 bits to bits 19:8. */
9127 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9128
c19d1205
ZW
9129 /* Bottom 4 of 16 bits to bits 3:0. */
9130 inst.instruction |= inst.operands[0].imm & 0xf;
9131}
09d92015 9132
c19d1205
ZW
9133static void
9134encode_branch (int default_reloc)
9135{
9136 if (inst.operands[0].hasreloc)
9137 {
0855e32b
NS
9138 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9139 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9140 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9141 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9142 ? BFD_RELOC_ARM_PLT32
9143 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9144 }
b99bd4ef 9145 else
e2b0ab59
AV
9146 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9147 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9148}
9149
b99bd4ef 9150static void
c19d1205 9151do_branch (void)
b99bd4ef 9152{
39b41c9c
PB
9153#ifdef OBJ_ELF
9154 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9155 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9156 else
9157#endif
9158 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9159}
9160
9161static void
9162do_bl (void)
9163{
9164#ifdef OBJ_ELF
9165 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9166 {
9167 if (inst.cond == COND_ALWAYS)
9168 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9169 else
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 }
9172 else
9173#endif
9174 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9175}
b99bd4ef 9176
c19d1205
ZW
9177/* ARM V5 branch-link-exchange instruction (argument parse)
9178 BLX <target_addr> ie BLX(1)
9179 BLX{<condition>} <Rm> ie BLX(2)
9180 Unfortunately, there are two different opcodes for this mnemonic.
9181 So, the insns[].value is not used, and the code here zaps values
9182 into inst.instruction.
9183 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9184
c19d1205
ZW
9185static void
9186do_blx (void)
9187{
9188 if (inst.operands[0].isreg)
b99bd4ef 9189 {
c19d1205
ZW
9190 /* Arg is a register; the opcode provided by insns[] is correct.
9191 It is not illegal to do "blx pc", just useless. */
9192 if (inst.operands[0].reg == REG_PC)
9193 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9194
c19d1205
ZW
9195 inst.instruction |= inst.operands[0].reg;
9196 }
9197 else
b99bd4ef 9198 {
c19d1205 9199 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9200 conditionally, and the opcode must be adjusted.
9201 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9202 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9203 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9204 inst.instruction = 0xfa000000;
267bf995 9205 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9206 }
c19d1205
ZW
9207}
9208
9209static void
9210do_bx (void)
9211{
845b51d6
PB
9212 bfd_boolean want_reloc;
9213
c19d1205
ZW
9214 if (inst.operands[0].reg == REG_PC)
9215 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9216
c19d1205 9217 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9218 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9219 it is for ARMv4t or earlier. */
9220 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9221 if (!ARM_FEATURE_ZERO (selected_object_arch)
9222 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9223 want_reloc = TRUE;
9224
5ad34203 9225#ifdef OBJ_ELF
845b51d6 9226 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9227#endif
584206db 9228 want_reloc = FALSE;
845b51d6
PB
9229
9230 if (want_reloc)
e2b0ab59 9231 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9232}
9233
c19d1205
ZW
9234
9235/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9236
9237static void
c19d1205 9238do_bxj (void)
a737bd4d 9239{
c19d1205
ZW
9240 if (inst.operands[0].reg == REG_PC)
9241 as_tsktsk (_("use of r15 in bxj is not really useful"));
9242
9243 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9244}
9245
c19d1205
ZW
9246/* Co-processor data operation:
9247 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9248 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9249static void
9250do_cdp (void)
9251{
9252 inst.instruction |= inst.operands[0].reg << 8;
9253 inst.instruction |= inst.operands[1].imm << 20;
9254 inst.instruction |= inst.operands[2].reg << 12;
9255 inst.instruction |= inst.operands[3].reg << 16;
9256 inst.instruction |= inst.operands[4].reg;
9257 inst.instruction |= inst.operands[5].imm << 5;
9258}
a737bd4d
NC
9259
9260static void
c19d1205 9261do_cmp (void)
a737bd4d 9262{
c19d1205
ZW
9263 inst.instruction |= inst.operands[0].reg << 16;
9264 encode_arm_shifter_operand (1);
a737bd4d
NC
9265}
9266
c19d1205
ZW
9267/* Transfer between coprocessor and ARM registers.
9268 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9269 MRC2
9270 MCR{cond}
9271 MCR2
9272
9273 No special properties. */
09d92015 9274
dcbd0d71
MGD
9275struct deprecated_coproc_regs_s
9276{
9277 unsigned cp;
9278 int opc1;
9279 unsigned crn;
9280 unsigned crm;
9281 int opc2;
9282 arm_feature_set deprecated;
9283 arm_feature_set obsoleted;
9284 const char *dep_msg;
9285 const char *obs_msg;
9286};
9287
9288#define DEPR_ACCESS_V8 \
9289 N_("This coprocessor register access is deprecated in ARMv8")
9290
9291/* Table of all deprecated coprocessor registers. */
9292static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9293{
9294 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9295 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9296 DEPR_ACCESS_V8, NULL},
9297 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9298 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9299 DEPR_ACCESS_V8, NULL},
9300 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9301 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9302 DEPR_ACCESS_V8, NULL},
9303 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9304 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9305 DEPR_ACCESS_V8, NULL},
9306 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9307 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9308 DEPR_ACCESS_V8, NULL},
9309};
9310
9311#undef DEPR_ACCESS_V8
9312
9313static const size_t deprecated_coproc_reg_count =
9314 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9315
09d92015 9316static void
c19d1205 9317do_co_reg (void)
09d92015 9318{
fdfde340 9319 unsigned Rd;
dcbd0d71 9320 size_t i;
fdfde340
JM
9321
9322 Rd = inst.operands[2].reg;
9323 if (thumb_mode)
9324 {
9325 if (inst.instruction == 0xee000010
9326 || inst.instruction == 0xfe000010)
9327 /* MCR, MCR2 */
9328 reject_bad_reg (Rd);
5c8ed6a4 9329 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9330 /* MRC, MRC2 */
9331 constraint (Rd == REG_SP, BAD_SP);
9332 }
9333 else
9334 {
9335 /* MCR */
9336 if (inst.instruction == 0xe000010)
9337 constraint (Rd == REG_PC, BAD_PC);
9338 }
9339
dcbd0d71
MGD
9340 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9341 {
9342 const struct deprecated_coproc_regs_s *r =
9343 deprecated_coproc_regs + i;
9344
9345 if (inst.operands[0].reg == r->cp
9346 && inst.operands[1].imm == r->opc1
9347 && inst.operands[3].reg == r->crn
9348 && inst.operands[4].reg == r->crm
9349 && inst.operands[5].imm == r->opc2)
9350 {
b10bf8c5 9351 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9352 && warn_on_deprecated
dcbd0d71 9353 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9354 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9355 }
9356 }
fdfde340 9357
c19d1205
ZW
9358 inst.instruction |= inst.operands[0].reg << 8;
9359 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9360 inst.instruction |= Rd << 12;
c19d1205
ZW
9361 inst.instruction |= inst.operands[3].reg << 16;
9362 inst.instruction |= inst.operands[4].reg;
9363 inst.instruction |= inst.operands[5].imm << 5;
9364}
09d92015 9365
c19d1205
ZW
9366/* Transfer between coprocessor register and pair of ARM registers.
9367 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9368 MCRR2
9369 MRRC{cond}
9370 MRRC2
b99bd4ef 9371
c19d1205 9372 Two XScale instructions are special cases of these:
09d92015 9373
c19d1205
ZW
9374 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9375 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9376
5f4273c7 9377 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9378
c19d1205
ZW
9379static void
9380do_co_reg2c (void)
9381{
fdfde340
JM
9382 unsigned Rd, Rn;
9383
9384 Rd = inst.operands[2].reg;
9385 Rn = inst.operands[3].reg;
9386
9387 if (thumb_mode)
9388 {
9389 reject_bad_reg (Rd);
9390 reject_bad_reg (Rn);
9391 }
9392 else
9393 {
9394 constraint (Rd == REG_PC, BAD_PC);
9395 constraint (Rn == REG_PC, BAD_PC);
9396 }
9397
873f10f0
TC
9398 /* Only check the MRRC{2} variants. */
9399 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9400 {
9401 /* If Rd == Rn, error that the operation is
9402 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9403 constraint (Rd == Rn, BAD_OVERLAP);
9404 }
9405
c19d1205
ZW
9406 inst.instruction |= inst.operands[0].reg << 8;
9407 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9408 inst.instruction |= Rd << 12;
9409 inst.instruction |= Rn << 16;
c19d1205 9410 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9411}
9412
c19d1205
ZW
9413static void
9414do_cpsi (void)
9415{
9416 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9417 if (inst.operands[1].present)
9418 {
9419 inst.instruction |= CPSI_MMOD;
9420 inst.instruction |= inst.operands[1].imm;
9421 }
c19d1205 9422}
b99bd4ef 9423
62b3e311
PB
9424static void
9425do_dbg (void)
9426{
9427 inst.instruction |= inst.operands[0].imm;
9428}
9429
eea54501
MGD
9430static void
9431do_div (void)
9432{
9433 unsigned Rd, Rn, Rm;
9434
9435 Rd = inst.operands[0].reg;
9436 Rn = (inst.operands[1].present
9437 ? inst.operands[1].reg : Rd);
9438 Rm = inst.operands[2].reg;
9439
9440 constraint ((Rd == REG_PC), BAD_PC);
9441 constraint ((Rn == REG_PC), BAD_PC);
9442 constraint ((Rm == REG_PC), BAD_PC);
9443
9444 inst.instruction |= Rd << 16;
9445 inst.instruction |= Rn << 0;
9446 inst.instruction |= Rm << 8;
9447}
9448
b99bd4ef 9449static void
c19d1205 9450do_it (void)
b99bd4ef 9451{
c19d1205 9452 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9453 process it to do the validation as if in
9454 thumb mode, just in case the code gets
9455 assembled for thumb using the unified syntax. */
9456
c19d1205 9457 inst.size = 0;
e07e6e58
NC
9458 if (unified_syntax)
9459 {
5ee91343
AV
9460 set_pred_insn_type (IT_INSN);
9461 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9462 now_pred.cc = inst.operands[0].imm;
e07e6e58 9463 }
09d92015 9464}
b99bd4ef 9465
6530b175
NC
9466/* If there is only one register in the register list,
9467 then return its register number. Otherwise return -1. */
9468static int
9469only_one_reg_in_list (int range)
9470{
9471 int i = ffs (range) - 1;
9472 return (i > 15 || range != (1 << i)) ? -1 : i;
9473}
9474
09d92015 9475static void
6530b175 9476encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9477{
c19d1205
ZW
9478 int base_reg = inst.operands[0].reg;
9479 int range = inst.operands[1].imm;
6530b175 9480 int one_reg;
ea6ef066 9481
c19d1205
ZW
9482 inst.instruction |= base_reg << 16;
9483 inst.instruction |= range;
ea6ef066 9484
c19d1205
ZW
9485 if (inst.operands[1].writeback)
9486 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9487
c19d1205 9488 if (inst.operands[0].writeback)
ea6ef066 9489 {
c19d1205
ZW
9490 inst.instruction |= WRITE_BACK;
9491 /* Check for unpredictable uses of writeback. */
9492 if (inst.instruction & LOAD_BIT)
09d92015 9493 {
c19d1205
ZW
9494 /* Not allowed in LDM type 2. */
9495 if ((inst.instruction & LDM_TYPE_2_OR_3)
9496 && ((range & (1 << REG_PC)) == 0))
9497 as_warn (_("writeback of base register is UNPREDICTABLE"));
9498 /* Only allowed if base reg not in list for other types. */
9499 else if (range & (1 << base_reg))
9500 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9501 }
9502 else /* STM. */
9503 {
9504 /* Not allowed for type 2. */
9505 if (inst.instruction & LDM_TYPE_2_OR_3)
9506 as_warn (_("writeback of base register is UNPREDICTABLE"));
9507 /* Only allowed if base reg not in list, or first in list. */
9508 else if ((range & (1 << base_reg))
9509 && (range & ((1 << base_reg) - 1)))
9510 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9511 }
ea6ef066 9512 }
6530b175
NC
9513
9514 /* If PUSH/POP has only one register, then use the A2 encoding. */
9515 one_reg = only_one_reg_in_list (range);
9516 if (from_push_pop_mnem && one_reg >= 0)
9517 {
9518 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9519
4f588891
NC
9520 if (is_push && one_reg == 13 /* SP */)
9521 /* PR 22483: The A2 encoding cannot be used when
9522 pushing the stack pointer as this is UNPREDICTABLE. */
9523 return;
9524
6530b175
NC
9525 inst.instruction &= A_COND_MASK;
9526 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9527 inst.instruction |= one_reg << 12;
9528 }
9529}
9530
9531static void
9532do_ldmstm (void)
9533{
9534 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9535}
9536
c19d1205
ZW
9537/* ARMv5TE load-consecutive (argument parse)
9538 Mode is like LDRH.
9539
9540 LDRccD R, mode
9541 STRccD R, mode. */
9542
a737bd4d 9543static void
c19d1205 9544do_ldrd (void)
a737bd4d 9545{
c19d1205 9546 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9547 _("first transfer register must be even"));
c19d1205
ZW
9548 constraint (inst.operands[1].present
9549 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9550 _("can only transfer two consecutive registers"));
c19d1205
ZW
9551 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9552 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9553
c19d1205
ZW
9554 if (!inst.operands[1].present)
9555 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9556
c56791bb
RE
9557 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9558 register and the first register written; we have to diagnose
9559 overlap between the base and the second register written here. */
ea6ef066 9560
c56791bb
RE
9561 if (inst.operands[2].reg == inst.operands[1].reg
9562 && (inst.operands[2].writeback || inst.operands[2].postind))
9563 as_warn (_("base register written back, and overlaps "
9564 "second transfer register"));
b05fe5cf 9565
c56791bb
RE
9566 if (!(inst.instruction & V4_STR_BIT))
9567 {
c19d1205 9568 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9569 destination (even if not write-back). */
9570 if (inst.operands[2].immisreg
9571 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9572 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9573 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9574 }
c19d1205
ZW
9575 inst.instruction |= inst.operands[0].reg << 12;
9576 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9577}
9578
9579static void
c19d1205 9580do_ldrex (void)
b05fe5cf 9581{
c19d1205
ZW
9582 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9583 || inst.operands[1].postind || inst.operands[1].writeback
9584 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9585 || inst.operands[1].negative
9586 /* This can arise if the programmer has written
9587 strex rN, rM, foo
9588 or if they have mistakenly used a register name as the last
9589 operand, eg:
9590 strex rN, rM, rX
9591 It is very difficult to distinguish between these two cases
9592 because "rX" might actually be a label. ie the register
9593 name has been occluded by a symbol of the same name. So we
9594 just generate a general 'bad addressing mode' type error
9595 message and leave it up to the programmer to discover the
9596 true cause and fix their mistake. */
9597 || (inst.operands[1].reg == REG_PC),
9598 BAD_ADDR_MODE);
b05fe5cf 9599
e2b0ab59
AV
9600 constraint (inst.relocs[0].exp.X_op != O_constant
9601 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9602 _("offset must be zero in ARM encoding"));
b05fe5cf 9603
5be8be5d
DG
9604 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9605
c19d1205
ZW
9606 inst.instruction |= inst.operands[0].reg << 12;
9607 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9608 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9609}
9610
9611static void
c19d1205 9612do_ldrexd (void)
b05fe5cf 9613{
c19d1205
ZW
9614 constraint (inst.operands[0].reg % 2 != 0,
9615 _("even register required"));
9616 constraint (inst.operands[1].present
9617 && inst.operands[1].reg != inst.operands[0].reg + 1,
9618 _("can only load two consecutive registers"));
9619 /* If op 1 were present and equal to PC, this function wouldn't
9620 have been called in the first place. */
9621 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9622
c19d1205
ZW
9623 inst.instruction |= inst.operands[0].reg << 12;
9624 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9625}
9626
1be5fd2e
NC
9627/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9628 which is not a multiple of four is UNPREDICTABLE. */
9629static void
9630check_ldr_r15_aligned (void)
9631{
9632 constraint (!(inst.operands[1].immisreg)
9633 && (inst.operands[0].reg == REG_PC
9634 && inst.operands[1].reg == REG_PC
e2b0ab59 9635 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9636 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9637}
9638
b05fe5cf 9639static void
c19d1205 9640do_ldst (void)
b05fe5cf 9641{
c19d1205
ZW
9642 inst.instruction |= inst.operands[0].reg << 12;
9643 if (!inst.operands[1].isreg)
8335d6aa 9644 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9645 return;
c19d1205 9646 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9647 check_ldr_r15_aligned ();
b05fe5cf
ZW
9648}
9649
9650static void
c19d1205 9651do_ldstt (void)
b05fe5cf 9652{
c19d1205
ZW
9653 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9654 reject [Rn,...]. */
9655 if (inst.operands[1].preind)
b05fe5cf 9656 {
e2b0ab59
AV
9657 constraint (inst.relocs[0].exp.X_op != O_constant
9658 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9659 _("this instruction requires a post-indexed address"));
b05fe5cf 9660
c19d1205
ZW
9661 inst.operands[1].preind = 0;
9662 inst.operands[1].postind = 1;
9663 inst.operands[1].writeback = 1;
b05fe5cf 9664 }
c19d1205
ZW
9665 inst.instruction |= inst.operands[0].reg << 12;
9666 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9667}
b05fe5cf 9668
c19d1205 9669/* Halfword and signed-byte load/store operations. */
b05fe5cf 9670
c19d1205
ZW
9671static void
9672do_ldstv4 (void)
9673{
ff4a8d2b 9674 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9675 inst.instruction |= inst.operands[0].reg << 12;
9676 if (!inst.operands[1].isreg)
8335d6aa 9677 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9678 return;
c19d1205 9679 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9680}
9681
9682static void
c19d1205 9683do_ldsttv4 (void)
b05fe5cf 9684{
c19d1205
ZW
9685 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9686 reject [Rn,...]. */
9687 if (inst.operands[1].preind)
b05fe5cf 9688 {
e2b0ab59
AV
9689 constraint (inst.relocs[0].exp.X_op != O_constant
9690 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9691 _("this instruction requires a post-indexed address"));
b05fe5cf 9692
c19d1205
ZW
9693 inst.operands[1].preind = 0;
9694 inst.operands[1].postind = 1;
9695 inst.operands[1].writeback = 1;
b05fe5cf 9696 }
c19d1205
ZW
9697 inst.instruction |= inst.operands[0].reg << 12;
9698 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9699}
b05fe5cf 9700
c19d1205
ZW
9701/* Co-processor register load/store.
9702 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9703static void
9704do_lstc (void)
9705{
9706 inst.instruction |= inst.operands[0].reg << 8;
9707 inst.instruction |= inst.operands[1].reg << 12;
9708 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9709}
9710
b05fe5cf 9711static void
c19d1205 9712do_mlas (void)
b05fe5cf 9713{
8fb9d7b9 9714 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9715 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9716 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9717 && !(inst.instruction & 0x00400000))
8fb9d7b9 9718 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9719
c19d1205
ZW
9720 inst.instruction |= inst.operands[0].reg << 16;
9721 inst.instruction |= inst.operands[1].reg;
9722 inst.instruction |= inst.operands[2].reg << 8;
9723 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9724}
b05fe5cf 9725
c19d1205
ZW
9726static void
9727do_mov (void)
9728{
e2b0ab59
AV
9729 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9730 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9731 THUMB1_RELOC_ONLY);
c19d1205
ZW
9732 inst.instruction |= inst.operands[0].reg << 12;
9733 encode_arm_shifter_operand (1);
9734}
b05fe5cf 9735
c19d1205
ZW
9736/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9737static void
9738do_mov16 (void)
9739{
b6895b4f
PB
9740 bfd_vma imm;
9741 bfd_boolean top;
9742
9743 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9744 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9745 _(":lower16: not allowed in this instruction"));
e2b0ab59 9746 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9747 _(":upper16: not allowed in this instruction"));
c19d1205 9748 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9749 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9750 {
e2b0ab59 9751 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9752 /* The value is in two pieces: 0:11, 16:19. */
9753 inst.instruction |= (imm & 0x00000fff);
9754 inst.instruction |= (imm & 0x0000f000) << 4;
9755 }
b05fe5cf 9756}
b99bd4ef 9757
037e8744
JB
9758static int
9759do_vfp_nsyn_mrs (void)
9760{
9761 if (inst.operands[0].isvec)
9762 {
9763 if (inst.operands[1].reg != 1)
477330fc 9764 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9765 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9766 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9767 do_vfp_nsyn_opcode ("fmstat");
9768 }
9769 else if (inst.operands[1].isvec)
9770 do_vfp_nsyn_opcode ("fmrx");
9771 else
9772 return FAIL;
5f4273c7 9773
037e8744
JB
9774 return SUCCESS;
9775}
9776
9777static int
9778do_vfp_nsyn_msr (void)
9779{
9780 if (inst.operands[0].isvec)
9781 do_vfp_nsyn_opcode ("fmxr");
9782 else
9783 return FAIL;
9784
9785 return SUCCESS;
9786}
9787
f7c21dc7
NC
9788static void
9789do_vmrs (void)
9790{
9791 unsigned Rt = inst.operands[0].reg;
fa94de6b 9792
16d02dc9 9793 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9794 {
9795 inst.error = BAD_SP;
9796 return;
9797 }
9798
40c7d507
RR
9799 /* MVFR2 is only valid at ARMv8-A. */
9800 if (inst.operands[1].reg == 5)
9801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9802 _(BAD_FPU));
9803
f7c21dc7 9804 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9805 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9806 {
9807 inst.error = BAD_PC;
9808 return;
9809 }
9810
16d02dc9
JB
9811 /* If we get through parsing the register name, we just insert the number
9812 generated into the instruction without further validation. */
9813 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9814 inst.instruction |= (Rt << 12);
9815}
9816
9817static void
9818do_vmsr (void)
9819{
9820 unsigned Rt = inst.operands[1].reg;
fa94de6b 9821
f7c21dc7
NC
9822 if (thumb_mode)
9823 reject_bad_reg (Rt);
9824 else if (Rt == REG_PC)
9825 {
9826 inst.error = BAD_PC;
9827 return;
9828 }
9829
40c7d507
RR
9830 /* MVFR2 is only valid for ARMv8-A. */
9831 if (inst.operands[0].reg == 5)
9832 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9833 _(BAD_FPU));
9834
16d02dc9
JB
9835 /* If we get through parsing the register name, we just insert the number
9836 generated into the instruction without further validation. */
9837 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9838 inst.instruction |= (Rt << 12);
9839}
9840
b99bd4ef 9841static void
c19d1205 9842do_mrs (void)
b99bd4ef 9843{
90ec0d68
MGD
9844 unsigned br;
9845
037e8744
JB
9846 if (do_vfp_nsyn_mrs () == SUCCESS)
9847 return;
9848
ff4a8d2b 9849 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9850 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9851
9852 if (inst.operands[1].isreg)
9853 {
9854 br = inst.operands[1].reg;
806ab1c0 9855 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9856 as_bad (_("bad register for mrs"));
9857 }
9858 else
9859 {
9860 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9861 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9862 != (PSR_c|PSR_f),
d2cd1205 9863 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9864 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9865 }
9866
9867 inst.instruction |= br;
c19d1205 9868}
b99bd4ef 9869
c19d1205
ZW
9870/* Two possible forms:
9871 "{C|S}PSR_<field>, Rm",
9872 "{C|S}PSR_f, #expression". */
b99bd4ef 9873
c19d1205
ZW
9874static void
9875do_msr (void)
9876{
037e8744
JB
9877 if (do_vfp_nsyn_msr () == SUCCESS)
9878 return;
9879
c19d1205
ZW
9880 inst.instruction |= inst.operands[0].imm;
9881 if (inst.operands[1].isreg)
9882 inst.instruction |= inst.operands[1].reg;
9883 else
b99bd4ef 9884 {
c19d1205 9885 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9886 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9887 inst.relocs[0].pc_rel = 0;
b99bd4ef 9888 }
b99bd4ef
NC
9889}
9890
c19d1205
ZW
9891static void
9892do_mul (void)
a737bd4d 9893{
ff4a8d2b
NC
9894 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9895
c19d1205
ZW
9896 if (!inst.operands[2].present)
9897 inst.operands[2].reg = inst.operands[0].reg;
9898 inst.instruction |= inst.operands[0].reg << 16;
9899 inst.instruction |= inst.operands[1].reg;
9900 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9901
8fb9d7b9
MS
9902 if (inst.operands[0].reg == inst.operands[1].reg
9903 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9904 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9905}
9906
c19d1205
ZW
9907/* Long Multiply Parser
9908 UMULL RdLo, RdHi, Rm, Rs
9909 SMULL RdLo, RdHi, Rm, Rs
9910 UMLAL RdLo, RdHi, Rm, Rs
9911 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9912
9913static void
c19d1205 9914do_mull (void)
b99bd4ef 9915{
c19d1205
ZW
9916 inst.instruction |= inst.operands[0].reg << 12;
9917 inst.instruction |= inst.operands[1].reg << 16;
9918 inst.instruction |= inst.operands[2].reg;
9919 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9920
682b27ad
PB
9921 /* rdhi and rdlo must be different. */
9922 if (inst.operands[0].reg == inst.operands[1].reg)
9923 as_tsktsk (_("rdhi and rdlo must be different"));
9924
9925 /* rdhi, rdlo and rm must all be different before armv6. */
9926 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9927 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9928 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9929 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9930}
b99bd4ef 9931
c19d1205
ZW
9932static void
9933do_nop (void)
9934{
e7495e45
NS
9935 if (inst.operands[0].present
9936 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9937 {
9938 /* Architectural NOP hints are CPSR sets with no bits selected. */
9939 inst.instruction &= 0xf0000000;
e7495e45
NS
9940 inst.instruction |= 0x0320f000;
9941 if (inst.operands[0].present)
9942 inst.instruction |= inst.operands[0].imm;
c19d1205 9943 }
b99bd4ef
NC
9944}
9945
c19d1205
ZW
9946/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9947 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9948 Condition defaults to COND_ALWAYS.
9949 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9950
9951static void
c19d1205 9952do_pkhbt (void)
b99bd4ef 9953{
c19d1205
ZW
9954 inst.instruction |= inst.operands[0].reg << 12;
9955 inst.instruction |= inst.operands[1].reg << 16;
9956 inst.instruction |= inst.operands[2].reg;
9957 if (inst.operands[3].present)
9958 encode_arm_shift (3);
9959}
b99bd4ef 9960
c19d1205 9961/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9962
c19d1205
ZW
9963static void
9964do_pkhtb (void)
9965{
9966 if (!inst.operands[3].present)
b99bd4ef 9967 {
c19d1205
ZW
9968 /* If the shift specifier is omitted, turn the instruction
9969 into pkhbt rd, rm, rn. */
9970 inst.instruction &= 0xfff00010;
9971 inst.instruction |= inst.operands[0].reg << 12;
9972 inst.instruction |= inst.operands[1].reg;
9973 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9974 }
9975 else
9976 {
c19d1205
ZW
9977 inst.instruction |= inst.operands[0].reg << 12;
9978 inst.instruction |= inst.operands[1].reg << 16;
9979 inst.instruction |= inst.operands[2].reg;
9980 encode_arm_shift (3);
b99bd4ef
NC
9981 }
9982}
9983
c19d1205 9984/* ARMv5TE: Preload-Cache
60e5ef9f 9985 MP Extensions: Preload for write
c19d1205 9986
60e5ef9f 9987 PLD(W) <addr_mode>
c19d1205
ZW
9988
9989 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9990
9991static void
c19d1205 9992do_pld (void)
b99bd4ef 9993{
c19d1205
ZW
9994 constraint (!inst.operands[0].isreg,
9995 _("'[' expected after PLD mnemonic"));
9996 constraint (inst.operands[0].postind,
9997 _("post-indexed expression used in preload instruction"));
9998 constraint (inst.operands[0].writeback,
9999 _("writeback used in preload instruction"));
10000 constraint (!inst.operands[0].preind,
10001 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
10002 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10003}
b99bd4ef 10004
62b3e311
PB
10005/* ARMv7: PLI <addr_mode> */
10006static void
10007do_pli (void)
10008{
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLI mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018 inst.instruction &= ~PRE_INDEX;
10019}
10020
c19d1205
ZW
10021static void
10022do_push_pop (void)
10023{
5e0d7f77
MP
10024 constraint (inst.operands[0].writeback,
10025 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10026 inst.operands[1] = inst.operands[0];
10027 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10028 inst.operands[0].isreg = 1;
10029 inst.operands[0].writeback = 1;
10030 inst.operands[0].reg = REG_SP;
6530b175 10031 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10032}
b99bd4ef 10033
c19d1205
ZW
10034/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10035 word at the specified address and the following word
10036 respectively.
10037 Unconditionally executed.
10038 Error if Rn is R15. */
b99bd4ef 10039
c19d1205
ZW
10040static void
10041do_rfe (void)
10042{
10043 inst.instruction |= inst.operands[0].reg << 16;
10044 if (inst.operands[0].writeback)
10045 inst.instruction |= WRITE_BACK;
10046}
b99bd4ef 10047
c19d1205 10048/* ARM V6 ssat (argument parse). */
b99bd4ef 10049
c19d1205
ZW
10050static void
10051do_ssat (void)
10052{
10053 inst.instruction |= inst.operands[0].reg << 12;
10054 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10055 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10056
c19d1205
ZW
10057 if (inst.operands[3].present)
10058 encode_arm_shift (3);
b99bd4ef
NC
10059}
10060
c19d1205 10061/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10062
10063static void
c19d1205 10064do_usat (void)
b99bd4ef 10065{
c19d1205
ZW
10066 inst.instruction |= inst.operands[0].reg << 12;
10067 inst.instruction |= inst.operands[1].imm << 16;
10068 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10069
c19d1205
ZW
10070 if (inst.operands[3].present)
10071 encode_arm_shift (3);
b99bd4ef
NC
10072}
10073
c19d1205 10074/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10075
10076static void
c19d1205 10077do_ssat16 (void)
09d92015 10078{
c19d1205
ZW
10079 inst.instruction |= inst.operands[0].reg << 12;
10080 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10081 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10082}
10083
c19d1205
ZW
10084static void
10085do_usat16 (void)
a737bd4d 10086{
c19d1205
ZW
10087 inst.instruction |= inst.operands[0].reg << 12;
10088 inst.instruction |= inst.operands[1].imm << 16;
10089 inst.instruction |= inst.operands[2].reg;
10090}
a737bd4d 10091
c19d1205
ZW
10092/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10093 preserving the other bits.
a737bd4d 10094
c19d1205
ZW
10095 setend <endian_specifier>, where <endian_specifier> is either
10096 BE or LE. */
a737bd4d 10097
c19d1205
ZW
10098static void
10099do_setend (void)
10100{
12e37cbc
MGD
10101 if (warn_on_deprecated
10102 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10103 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10104
c19d1205
ZW
10105 if (inst.operands[0].imm)
10106 inst.instruction |= 0x200;
a737bd4d
NC
10107}
10108
10109static void
c19d1205 10110do_shift (void)
a737bd4d 10111{
c19d1205
ZW
10112 unsigned int Rm = (inst.operands[1].present
10113 ? inst.operands[1].reg
10114 : inst.operands[0].reg);
a737bd4d 10115
c19d1205
ZW
10116 inst.instruction |= inst.operands[0].reg << 12;
10117 inst.instruction |= Rm;
10118 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10119 {
c19d1205
ZW
10120 inst.instruction |= inst.operands[2].reg << 8;
10121 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10122 /* PR 12854: Error on extraneous shifts. */
10123 constraint (inst.operands[2].shifted,
10124 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10125 }
10126 else
e2b0ab59 10127 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10128}
10129
09d92015 10130static void
3eb17e6b 10131do_smc (void)
09d92015 10132{
e2b0ab59
AV
10133 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10134 inst.relocs[0].pc_rel = 0;
09d92015
MM
10135}
10136
90ec0d68
MGD
10137static void
10138do_hvc (void)
10139{
e2b0ab59
AV
10140 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10141 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10142}
10143
09d92015 10144static void
c19d1205 10145do_swi (void)
09d92015 10146{
e2b0ab59
AV
10147 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10148 inst.relocs[0].pc_rel = 0;
09d92015
MM
10149}
10150
ddfded2f
MW
10151static void
10152do_setpan (void)
10153{
10154 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10155 _("selected processor does not support SETPAN instruction"));
10156
10157 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10158}
10159
10160static void
10161do_t_setpan (void)
10162{
10163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10164 _("selected processor does not support SETPAN instruction"));
10165
10166 inst.instruction |= (inst.operands[0].imm << 3);
10167}
10168
c19d1205
ZW
10169/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10170 SMLAxy{cond} Rd,Rm,Rs,Rn
10171 SMLAWy{cond} Rd,Rm,Rs,Rn
10172 Error if any register is R15. */
e16bb312 10173
c19d1205
ZW
10174static void
10175do_smla (void)
e16bb312 10176{
c19d1205
ZW
10177 inst.instruction |= inst.operands[0].reg << 16;
10178 inst.instruction |= inst.operands[1].reg;
10179 inst.instruction |= inst.operands[2].reg << 8;
10180 inst.instruction |= inst.operands[3].reg << 12;
10181}
a737bd4d 10182
c19d1205
ZW
10183/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10184 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10185 Error if any register is R15.
10186 Warning if Rdlo == Rdhi. */
a737bd4d 10187
c19d1205
ZW
10188static void
10189do_smlal (void)
10190{
10191 inst.instruction |= inst.operands[0].reg << 12;
10192 inst.instruction |= inst.operands[1].reg << 16;
10193 inst.instruction |= inst.operands[2].reg;
10194 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10195
c19d1205
ZW
10196 if (inst.operands[0].reg == inst.operands[1].reg)
10197 as_tsktsk (_("rdhi and rdlo must be different"));
10198}
a737bd4d 10199
c19d1205
ZW
10200/* ARM V5E (El Segundo) signed-multiply (argument parse)
10201 SMULxy{cond} Rd,Rm,Rs
10202 Error if any register is R15. */
a737bd4d 10203
c19d1205
ZW
10204static void
10205do_smul (void)
10206{
10207 inst.instruction |= inst.operands[0].reg << 16;
10208 inst.instruction |= inst.operands[1].reg;
10209 inst.instruction |= inst.operands[2].reg << 8;
10210}
a737bd4d 10211
b6702015
PB
10212/* ARM V6 srs (argument parse). The variable fields in the encoding are
10213 the same for both ARM and Thumb-2. */
a737bd4d 10214
c19d1205
ZW
10215static void
10216do_srs (void)
10217{
b6702015
PB
10218 int reg;
10219
10220 if (inst.operands[0].present)
10221 {
10222 reg = inst.operands[0].reg;
fdfde340 10223 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10224 }
10225 else
fdfde340 10226 reg = REG_SP;
b6702015
PB
10227
10228 inst.instruction |= reg << 16;
10229 inst.instruction |= inst.operands[1].imm;
10230 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10231 inst.instruction |= WRITE_BACK;
10232}
a737bd4d 10233
c19d1205 10234/* ARM V6 strex (argument parse). */
a737bd4d 10235
c19d1205
ZW
10236static void
10237do_strex (void)
10238{
10239 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10240 || inst.operands[2].postind || inst.operands[2].writeback
10241 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10242 || inst.operands[2].negative
10243 /* See comment in do_ldrex(). */
10244 || (inst.operands[2].reg == REG_PC),
10245 BAD_ADDR_MODE);
a737bd4d 10246
c19d1205
ZW
10247 constraint (inst.operands[0].reg == inst.operands[1].reg
10248 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10249
e2b0ab59
AV
10250 constraint (inst.relocs[0].exp.X_op != O_constant
10251 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10252 _("offset must be zero in ARM encoding"));
a737bd4d 10253
c19d1205
ZW
10254 inst.instruction |= inst.operands[0].reg << 12;
10255 inst.instruction |= inst.operands[1].reg;
10256 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10257 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10258}
10259
877807f8
NC
10260static void
10261do_t_strexbh (void)
10262{
10263 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10264 || inst.operands[2].postind || inst.operands[2].writeback
10265 || inst.operands[2].immisreg || inst.operands[2].shifted
10266 || inst.operands[2].negative,
10267 BAD_ADDR_MODE);
10268
10269 constraint (inst.operands[0].reg == inst.operands[1].reg
10270 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10271
10272 do_rm_rd_rn ();
10273}
10274
e16bb312 10275static void
c19d1205 10276do_strexd (void)
e16bb312 10277{
c19d1205
ZW
10278 constraint (inst.operands[1].reg % 2 != 0,
10279 _("even register required"));
10280 constraint (inst.operands[2].present
10281 && inst.operands[2].reg != inst.operands[1].reg + 1,
10282 _("can only store two consecutive registers"));
10283 /* If op 2 were present and equal to PC, this function wouldn't
10284 have been called in the first place. */
10285 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10286
c19d1205
ZW
10287 constraint (inst.operands[0].reg == inst.operands[1].reg
10288 || inst.operands[0].reg == inst.operands[1].reg + 1
10289 || inst.operands[0].reg == inst.operands[3].reg,
10290 BAD_OVERLAP);
e16bb312 10291
c19d1205
ZW
10292 inst.instruction |= inst.operands[0].reg << 12;
10293 inst.instruction |= inst.operands[1].reg;
10294 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10295}
10296
9eb6c0f1
MGD
10297/* ARM V8 STRL. */
10298static void
4b8c8c02 10299do_stlex (void)
9eb6c0f1
MGD
10300{
10301 constraint (inst.operands[0].reg == inst.operands[1].reg
10302 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10303
10304 do_rd_rm_rn ();
10305}
10306
10307static void
4b8c8c02 10308do_t_stlex (void)
9eb6c0f1
MGD
10309{
10310 constraint (inst.operands[0].reg == inst.operands[1].reg
10311 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10312
10313 do_rm_rd_rn ();
10314}
10315
c19d1205
ZW
10316/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10317 extends it to 32-bits, and adds the result to a value in another
10318 register. You can specify a rotation by 0, 8, 16, or 24 bits
10319 before extracting the 16-bit value.
10320 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10321 Condition defaults to COND_ALWAYS.
10322 Error if any register uses R15. */
10323
e16bb312 10324static void
c19d1205 10325do_sxtah (void)
e16bb312 10326{
c19d1205
ZW
10327 inst.instruction |= inst.operands[0].reg << 12;
10328 inst.instruction |= inst.operands[1].reg << 16;
10329 inst.instruction |= inst.operands[2].reg;
10330 inst.instruction |= inst.operands[3].imm << 10;
10331}
e16bb312 10332
c19d1205 10333/* ARM V6 SXTH.
e16bb312 10334
c19d1205
ZW
10335 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
e16bb312
NC
10338
10339static void
c19d1205 10340do_sxth (void)
e16bb312 10341{
c19d1205
ZW
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg;
10344 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10345}
c19d1205
ZW
10346\f
10347/* VFP instructions. In a logical order: SP variant first, monad
10348 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10349
10350static void
c19d1205 10351do_vfp_sp_monadic (void)
e16bb312 10352{
57785aa2
AV
10353 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10354 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10355 _(BAD_FPU));
10356
5287ad62
JB
10357 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10358 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10359}
10360
10361static void
c19d1205 10362do_vfp_sp_dyadic (void)
e16bb312 10363{
5287ad62
JB
10364 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10365 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10366 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10367}
10368
10369static void
c19d1205 10370do_vfp_sp_compare_z (void)
e16bb312 10371{
5287ad62 10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10373}
10374
10375static void
c19d1205 10376do_vfp_dp_sp_cvt (void)
e16bb312 10377{
5287ad62
JB
10378 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10379 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10380}
10381
10382static void
c19d1205 10383do_vfp_sp_dp_cvt (void)
e16bb312 10384{
5287ad62
JB
10385 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10386 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10387}
10388
10389static void
c19d1205 10390do_vfp_reg_from_sp (void)
e16bb312 10391{
57785aa2
AV
10392 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10393 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10394 _(BAD_FPU));
10395
c19d1205 10396 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10397 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10398}
10399
10400static void
c19d1205 10401do_vfp_reg2_from_sp2 (void)
e16bb312 10402{
c19d1205
ZW
10403 constraint (inst.operands[2].imm != 2,
10404 _("only two consecutive VFP SP registers allowed here"));
10405 inst.instruction |= inst.operands[0].reg << 12;
10406 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10407 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10408}
10409
10410static void
c19d1205 10411do_vfp_sp_from_reg (void)
e16bb312 10412{
57785aa2
AV
10413 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10414 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10415 _(BAD_FPU));
10416
5287ad62 10417 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10418 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10419}
10420
10421static void
c19d1205 10422do_vfp_sp2_from_reg2 (void)
e16bb312 10423{
c19d1205
ZW
10424 constraint (inst.operands[0].imm != 2,
10425 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10426 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10427 inst.instruction |= inst.operands[1].reg << 12;
10428 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10429}
10430
10431static void
c19d1205 10432do_vfp_sp_ldst (void)
e16bb312 10433{
5287ad62 10434 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10435 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10436}
10437
10438static void
c19d1205 10439do_vfp_dp_ldst (void)
e16bb312 10440{
5287ad62 10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10442 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10443}
10444
c19d1205 10445
e16bb312 10446static void
c19d1205 10447vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10448{
c19d1205
ZW
10449 if (inst.operands[0].writeback)
10450 inst.instruction |= WRITE_BACK;
10451 else
10452 constraint (ldstm_type != VFP_LDSTMIA,
10453 _("this addressing mode requires base-register writeback"));
10454 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10455 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10456 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10457}
10458
10459static void
c19d1205 10460vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10461{
c19d1205 10462 int count;
e16bb312 10463
c19d1205
ZW
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10468 _("this addressing mode requires base-register writeback"));
e16bb312 10469
c19d1205 10470 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10471 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10472
c19d1205
ZW
10473 count = inst.operands[1].imm << 1;
10474 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10475 count += 1;
e16bb312 10476
c19d1205 10477 inst.instruction |= count;
e16bb312
NC
10478}
10479
10480static void
c19d1205 10481do_vfp_sp_ldstmia (void)
e16bb312 10482{
c19d1205 10483 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10484}
10485
10486static void
c19d1205 10487do_vfp_sp_ldstmdb (void)
e16bb312 10488{
c19d1205 10489 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10490}
10491
10492static void
c19d1205 10493do_vfp_dp_ldstmia (void)
e16bb312 10494{
c19d1205 10495 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10496}
10497
10498static void
c19d1205 10499do_vfp_dp_ldstmdb (void)
e16bb312 10500{
c19d1205 10501 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10502}
10503
10504static void
c19d1205 10505do_vfp_xp_ldstmia (void)
e16bb312 10506{
c19d1205
ZW
10507 vfp_dp_ldstm (VFP_LDSTMIAX);
10508}
e16bb312 10509
c19d1205
ZW
10510static void
10511do_vfp_xp_ldstmdb (void)
10512{
10513 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10514}
5287ad62
JB
10515
10516static void
10517do_vfp_dp_rd_rm (void)
10518{
57785aa2
AV
10519 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10520 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10521 _(BAD_FPU));
10522
5287ad62
JB
10523 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10524 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10525}
10526
10527static void
10528do_vfp_dp_rn_rd (void)
10529{
10530 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10531 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10532}
10533
10534static void
10535do_vfp_dp_rd_rn (void)
10536{
10537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10538 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10539}
10540
10541static void
10542do_vfp_dp_rd_rn_rm (void)
10543{
57785aa2
AV
10544 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10545 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10546 _(BAD_FPU));
10547
5287ad62
JB
10548 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10549 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10550 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10551}
10552
10553static void
10554do_vfp_dp_rd (void)
10555{
10556 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10557}
10558
10559static void
10560do_vfp_dp_rm_rd_rn (void)
10561{
57785aa2
AV
10562 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10563 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10564 _(BAD_FPU));
10565
5287ad62
JB
10566 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10567 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10568 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10569}
10570
10571/* VFPv3 instructions. */
10572static void
10573do_vfp_sp_const (void)
10574{
10575 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10576 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10577 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10578}
10579
10580static void
10581do_vfp_dp_const (void)
10582{
10583 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10584 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10585 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10586}
10587
10588static void
10589vfp_conv (int srcsize)
10590{
5f1af56b
MGD
10591 int immbits = srcsize - inst.operands[1].imm;
10592
fa94de6b
RM
10593 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10594 {
5f1af56b 10595 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10596 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10597 inst.error = _("immediate value out of range, expected range [0, 16]");
10598 return;
10599 }
fa94de6b 10600 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10601 {
10602 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10603 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10604 inst.error = _("immediate value out of range, expected range [1, 32]");
10605 return;
10606 }
10607
5287ad62
JB
10608 inst.instruction |= (immbits & 1) << 5;
10609 inst.instruction |= (immbits >> 1);
10610}
10611
10612static void
10613do_vfp_sp_conv_16 (void)
10614{
10615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10616 vfp_conv (16);
10617}
10618
10619static void
10620do_vfp_dp_conv_16 (void)
10621{
10622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10623 vfp_conv (16);
10624}
10625
10626static void
10627do_vfp_sp_conv_32 (void)
10628{
10629 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10630 vfp_conv (32);
10631}
10632
10633static void
10634do_vfp_dp_conv_32 (void)
10635{
10636 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10637 vfp_conv (32);
10638}
c19d1205
ZW
10639\f
10640/* FPA instructions. Also in a logical order. */
e16bb312 10641
c19d1205
ZW
10642static void
10643do_fpa_cmp (void)
10644{
10645 inst.instruction |= inst.operands[0].reg << 16;
10646 inst.instruction |= inst.operands[1].reg;
10647}
b99bd4ef
NC
10648
10649static void
c19d1205 10650do_fpa_ldmstm (void)
b99bd4ef 10651{
c19d1205
ZW
10652 inst.instruction |= inst.operands[0].reg << 12;
10653 switch (inst.operands[1].imm)
10654 {
10655 case 1: inst.instruction |= CP_T_X; break;
10656 case 2: inst.instruction |= CP_T_Y; break;
10657 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10658 case 4: break;
10659 default: abort ();
10660 }
b99bd4ef 10661
c19d1205
ZW
10662 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10663 {
10664 /* The instruction specified "ea" or "fd", so we can only accept
10665 [Rn]{!}. The instruction does not really support stacking or
10666 unstacking, so we have to emulate these by setting appropriate
10667 bits and offsets. */
e2b0ab59
AV
10668 constraint (inst.relocs[0].exp.X_op != O_constant
10669 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10670 _("this instruction does not support indexing"));
b99bd4ef 10671
c19d1205 10672 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10673 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10674
c19d1205 10675 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10676 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10677
c19d1205
ZW
10678 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10679 {
10680 inst.operands[2].preind = 0;
10681 inst.operands[2].postind = 1;
10682 }
10683 }
b99bd4ef 10684
c19d1205 10685 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10686}
c19d1205
ZW
10687\f
10688/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10689
c19d1205
ZW
10690static void
10691do_iwmmxt_tandorc (void)
10692{
10693 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10694}
b99bd4ef 10695
c19d1205
ZW
10696static void
10697do_iwmmxt_textrc (void)
10698{
10699 inst.instruction |= inst.operands[0].reg << 12;
10700 inst.instruction |= inst.operands[1].imm;
10701}
b99bd4ef
NC
10702
10703static void
c19d1205 10704do_iwmmxt_textrm (void)
b99bd4ef 10705{
c19d1205
ZW
10706 inst.instruction |= inst.operands[0].reg << 12;
10707 inst.instruction |= inst.operands[1].reg << 16;
10708 inst.instruction |= inst.operands[2].imm;
10709}
b99bd4ef 10710
c19d1205
ZW
10711static void
10712do_iwmmxt_tinsr (void)
10713{
10714 inst.instruction |= inst.operands[0].reg << 16;
10715 inst.instruction |= inst.operands[1].reg << 12;
10716 inst.instruction |= inst.operands[2].imm;
10717}
b99bd4ef 10718
c19d1205
ZW
10719static void
10720do_iwmmxt_tmia (void)
10721{
10722 inst.instruction |= inst.operands[0].reg << 5;
10723 inst.instruction |= inst.operands[1].reg;
10724 inst.instruction |= inst.operands[2].reg << 12;
10725}
b99bd4ef 10726
c19d1205
ZW
10727static void
10728do_iwmmxt_waligni (void)
10729{
10730 inst.instruction |= inst.operands[0].reg << 12;
10731 inst.instruction |= inst.operands[1].reg << 16;
10732 inst.instruction |= inst.operands[2].reg;
10733 inst.instruction |= inst.operands[3].imm << 20;
10734}
b99bd4ef 10735
2d447fca
JM
10736static void
10737do_iwmmxt_wmerge (void)
10738{
10739 inst.instruction |= inst.operands[0].reg << 12;
10740 inst.instruction |= inst.operands[1].reg << 16;
10741 inst.instruction |= inst.operands[2].reg;
10742 inst.instruction |= inst.operands[3].imm << 21;
10743}
10744
c19d1205
ZW
10745static void
10746do_iwmmxt_wmov (void)
10747{
10748 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10749 inst.instruction |= inst.operands[0].reg << 12;
10750 inst.instruction |= inst.operands[1].reg << 16;
10751 inst.instruction |= inst.operands[1].reg;
10752}
b99bd4ef 10753
c19d1205
ZW
10754static void
10755do_iwmmxt_wldstbh (void)
10756{
8f06b2d8 10757 int reloc;
c19d1205 10758 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10759 if (thumb_mode)
10760 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10761 else
10762 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10763 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10764}
10765
c19d1205
ZW
10766static void
10767do_iwmmxt_wldstw (void)
10768{
10769 /* RIWR_RIWC clears .isreg for a control register. */
10770 if (!inst.operands[0].isreg)
10771 {
10772 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10773 inst.instruction |= 0xf0000000;
10774 }
b99bd4ef 10775
c19d1205
ZW
10776 inst.instruction |= inst.operands[0].reg << 12;
10777 encode_arm_cp_address (1, TRUE, TRUE, 0);
10778}
b99bd4ef
NC
10779
10780static void
c19d1205 10781do_iwmmxt_wldstd (void)
b99bd4ef 10782{
c19d1205 10783 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10784 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10785 && inst.operands[1].immisreg)
10786 {
10787 inst.instruction &= ~0x1a000ff;
eff0bc54 10788 inst.instruction |= (0xfU << 28);
2d447fca
JM
10789 if (inst.operands[1].preind)
10790 inst.instruction |= PRE_INDEX;
10791 if (!inst.operands[1].negative)
10792 inst.instruction |= INDEX_UP;
10793 if (inst.operands[1].writeback)
10794 inst.instruction |= WRITE_BACK;
10795 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10796 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10797 inst.instruction |= inst.operands[1].imm;
10798 }
10799 else
10800 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10801}
b99bd4ef 10802
c19d1205
ZW
10803static void
10804do_iwmmxt_wshufh (void)
10805{
10806 inst.instruction |= inst.operands[0].reg << 12;
10807 inst.instruction |= inst.operands[1].reg << 16;
10808 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10809 inst.instruction |= (inst.operands[2].imm & 0x0f);
10810}
b99bd4ef 10811
c19d1205
ZW
10812static void
10813do_iwmmxt_wzero (void)
10814{
10815 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10816 inst.instruction |= inst.operands[0].reg;
10817 inst.instruction |= inst.operands[0].reg << 12;
10818 inst.instruction |= inst.operands[0].reg << 16;
10819}
2d447fca
JM
10820
10821static void
10822do_iwmmxt_wrwrwr_or_imm5 (void)
10823{
10824 if (inst.operands[2].isreg)
10825 do_rd_rn_rm ();
10826 else {
10827 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10828 _("immediate operand requires iWMMXt2"));
10829 do_rd_rn ();
10830 if (inst.operands[2].imm == 0)
10831 {
10832 switch ((inst.instruction >> 20) & 0xf)
10833 {
10834 case 4:
10835 case 5:
10836 case 6:
5f4273c7 10837 case 7:
2d447fca
JM
10838 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10839 inst.operands[2].imm = 16;
10840 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10841 break;
10842 case 8:
10843 case 9:
10844 case 10:
10845 case 11:
10846 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10847 inst.operands[2].imm = 32;
10848 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10849 break;
10850 case 12:
10851 case 13:
10852 case 14:
10853 case 15:
10854 {
10855 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10856 unsigned long wrn;
10857 wrn = (inst.instruction >> 16) & 0xf;
10858 inst.instruction &= 0xff0fff0f;
10859 inst.instruction |= wrn;
10860 /* Bail out here; the instruction is now assembled. */
10861 return;
10862 }
10863 }
10864 }
10865 /* Map 32 -> 0, etc. */
10866 inst.operands[2].imm &= 0x1f;
eff0bc54 10867 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10868 }
10869}
c19d1205
ZW
10870\f
10871/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10872 operations first, then control, shift, and load/store. */
b99bd4ef 10873
c19d1205 10874/* Insns like "foo X,Y,Z". */
b99bd4ef 10875
c19d1205
ZW
10876static void
10877do_mav_triple (void)
10878{
10879 inst.instruction |= inst.operands[0].reg << 16;
10880 inst.instruction |= inst.operands[1].reg;
10881 inst.instruction |= inst.operands[2].reg << 12;
10882}
b99bd4ef 10883
c19d1205
ZW
10884/* Insns like "foo W,X,Y,Z".
10885 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10886
c19d1205
ZW
10887static void
10888do_mav_quad (void)
10889{
10890 inst.instruction |= inst.operands[0].reg << 5;
10891 inst.instruction |= inst.operands[1].reg << 12;
10892 inst.instruction |= inst.operands[2].reg << 16;
10893 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10894}
10895
c19d1205
ZW
10896/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10897static void
10898do_mav_dspsc (void)
a737bd4d 10899{
c19d1205
ZW
10900 inst.instruction |= inst.operands[1].reg << 12;
10901}
a737bd4d 10902
c19d1205
ZW
10903/* Maverick shift immediate instructions.
10904 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10905 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10906
c19d1205
ZW
10907static void
10908do_mav_shift (void)
10909{
10910 int imm = inst.operands[2].imm;
a737bd4d 10911
c19d1205
ZW
10912 inst.instruction |= inst.operands[0].reg << 12;
10913 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10914
c19d1205
ZW
10915 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10916 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10917 Bit 4 should be 0. */
10918 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10919
c19d1205
ZW
10920 inst.instruction |= imm;
10921}
10922\f
10923/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10924
c19d1205
ZW
10925/* Xscale multiply-accumulate (argument parse)
10926 MIAcc acc0,Rm,Rs
10927 MIAPHcc acc0,Rm,Rs
10928 MIAxycc acc0,Rm,Rs. */
a737bd4d 10929
c19d1205
ZW
10930static void
10931do_xsc_mia (void)
10932{
10933 inst.instruction |= inst.operands[1].reg;
10934 inst.instruction |= inst.operands[2].reg << 12;
10935}
a737bd4d 10936
c19d1205 10937/* Xscale move-accumulator-register (argument parse)
a737bd4d 10938
c19d1205 10939 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10940
c19d1205
ZW
10941static void
10942do_xsc_mar (void)
10943{
10944 inst.instruction |= inst.operands[1].reg << 12;
10945 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10946}
10947
c19d1205 10948/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10949
c19d1205 10950 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10951
10952static void
c19d1205 10953do_xsc_mra (void)
b99bd4ef 10954{
c19d1205
ZW
10955 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10956 inst.instruction |= inst.operands[0].reg << 12;
10957 inst.instruction |= inst.operands[1].reg << 16;
10958}
10959\f
10960/* Encoding functions relevant only to Thumb. */
b99bd4ef 10961
c19d1205
ZW
10962/* inst.operands[i] is a shifted-register operand; encode
10963 it into inst.instruction in the format used by Thumb32. */
10964
10965static void
10966encode_thumb32_shifted_operand (int i)
10967{
e2b0ab59 10968 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10969 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10970
9c3c69f2
PB
10971 constraint (inst.operands[i].immisreg,
10972 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10973 inst.instruction |= inst.operands[i].reg;
10974 if (shift == SHIFT_RRX)
10975 inst.instruction |= SHIFT_ROR << 4;
10976 else
b99bd4ef 10977 {
e2b0ab59 10978 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10979 _("expression too complex"));
10980
10981 constraint (value > 32
10982 || (value == 32 && (shift == SHIFT_LSL
10983 || shift == SHIFT_ROR)),
10984 _("shift expression is too large"));
10985
10986 if (value == 0)
10987 shift = SHIFT_LSL;
10988 else if (value == 32)
10989 value = 0;
10990
10991 inst.instruction |= shift << 4;
10992 inst.instruction |= (value & 0x1c) << 10;
10993 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10994 }
c19d1205 10995}
b99bd4ef 10996
b99bd4ef 10997
c19d1205
ZW
10998/* inst.operands[i] was set up by parse_address. Encode it into a
10999 Thumb32 format load or store instruction. Reject forms that cannot
11000 be used with such instructions. If is_t is true, reject forms that
11001 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
11002 that cannot be used with a D instruction. If it is a store insn,
11003 reject PC in Rn. */
b99bd4ef 11004
c19d1205
ZW
11005static void
11006encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11007{
5be8be5d 11008 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11009
11010 constraint (!inst.operands[i].isreg,
53365c0d 11011 _("Instruction does not support =N addresses"));
b99bd4ef 11012
c19d1205
ZW
11013 inst.instruction |= inst.operands[i].reg << 16;
11014 if (inst.operands[i].immisreg)
b99bd4ef 11015 {
5be8be5d 11016 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11017 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11018 constraint (inst.operands[i].negative,
11019 _("Thumb does not support negative register indexing"));
11020 constraint (inst.operands[i].postind,
11021 _("Thumb does not support register post-indexing"));
11022 constraint (inst.operands[i].writeback,
11023 _("Thumb does not support register indexing with writeback"));
11024 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11025 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11026
f40d1643 11027 inst.instruction |= inst.operands[i].imm;
c19d1205 11028 if (inst.operands[i].shifted)
b99bd4ef 11029 {
e2b0ab59 11030 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11031 _("expression too complex"));
e2b0ab59
AV
11032 constraint (inst.relocs[0].exp.X_add_number < 0
11033 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11034 _("shift out of range"));
e2b0ab59 11035 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11036 }
e2b0ab59 11037 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11038 }
11039 else if (inst.operands[i].preind)
11040 {
5be8be5d 11041 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11042 constraint (is_t && inst.operands[i].writeback,
c19d1205 11043 _("cannot use writeback with this instruction"));
4755303e
WN
11044 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11045 BAD_PC_ADDRESSING);
c19d1205
ZW
11046
11047 if (is_d)
11048 {
11049 inst.instruction |= 0x01000000;
11050 if (inst.operands[i].writeback)
11051 inst.instruction |= 0x00200000;
b99bd4ef 11052 }
c19d1205 11053 else
b99bd4ef 11054 {
c19d1205
ZW
11055 inst.instruction |= 0x00000c00;
11056 if (inst.operands[i].writeback)
11057 inst.instruction |= 0x00000100;
b99bd4ef 11058 }
e2b0ab59 11059 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11060 }
c19d1205 11061 else if (inst.operands[i].postind)
b99bd4ef 11062 {
9c2799c2 11063 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11064 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11065 constraint (is_t, _("cannot use post-indexing with this instruction"));
11066
11067 if (is_d)
11068 inst.instruction |= 0x00200000;
11069 else
11070 inst.instruction |= 0x00000900;
e2b0ab59 11071 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11072 }
11073 else /* unindexed - only for coprocessor */
11074 inst.error = _("instruction does not accept unindexed addressing");
11075}
11076
11077/* Table of Thumb instructions which exist in both 16- and 32-bit
11078 encodings (the latter only in post-V6T2 cores). The index is the
11079 value used in the insns table below. When there is more than one
11080 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11081 holds variant (1).
11082 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11083#define T16_32_TAB \
21d799b5
NC
11084 X(_adc, 4140, eb400000), \
11085 X(_adcs, 4140, eb500000), \
11086 X(_add, 1c00, eb000000), \
11087 X(_adds, 1c00, eb100000), \
11088 X(_addi, 0000, f1000000), \
11089 X(_addis, 0000, f1100000), \
11090 X(_add_pc,000f, f20f0000), \
11091 X(_add_sp,000d, f10d0000), \
11092 X(_adr, 000f, f20f0000), \
11093 X(_and, 4000, ea000000), \
11094 X(_ands, 4000, ea100000), \
11095 X(_asr, 1000, fa40f000), \
11096 X(_asrs, 1000, fa50f000), \
11097 X(_b, e000, f000b000), \
11098 X(_bcond, d000, f0008000), \
4389b29a 11099 X(_bf, 0000, f040e001), \
f6b2b12d 11100 X(_bfcsel,0000, f000e001), \
f1c7f421 11101 X(_bfx, 0000, f060e001), \
65d1bc05 11102 X(_bfl, 0000, f000c001), \
f1c7f421 11103 X(_bflx, 0000, f070e001), \
21d799b5
NC
11104 X(_bic, 4380, ea200000), \
11105 X(_bics, 4380, ea300000), \
11106 X(_cmn, 42c0, eb100f00), \
11107 X(_cmp, 2800, ebb00f00), \
11108 X(_cpsie, b660, f3af8400), \
11109 X(_cpsid, b670, f3af8600), \
11110 X(_cpy, 4600, ea4f0000), \
11111 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11112 X(_dls, 0000, f040e001), \
21d799b5
NC
11113 X(_eor, 4040, ea800000), \
11114 X(_eors, 4040, ea900000), \
11115 X(_inc_sp,00dd, f10d0d00), \
11116 X(_ldmia, c800, e8900000), \
11117 X(_ldr, 6800, f8500000), \
11118 X(_ldrb, 7800, f8100000), \
11119 X(_ldrh, 8800, f8300000), \
11120 X(_ldrsb, 5600, f9100000), \
11121 X(_ldrsh, 5e00, f9300000), \
11122 X(_ldr_pc,4800, f85f0000), \
11123 X(_ldr_pc2,4800, f85f0000), \
11124 X(_ldr_sp,9800, f85d0000), \
60f993ce 11125 X(_le, 0000, f00fc001), \
21d799b5
NC
11126 X(_lsl, 0000, fa00f000), \
11127 X(_lsls, 0000, fa10f000), \
11128 X(_lsr, 0800, fa20f000), \
11129 X(_lsrs, 0800, fa30f000), \
11130 X(_mov, 2000, ea4f0000), \
11131 X(_movs, 2000, ea5f0000), \
11132 X(_mul, 4340, fb00f000), \
11133 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11134 X(_mvn, 43c0, ea6f0000), \
11135 X(_mvns, 43c0, ea7f0000), \
11136 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11137 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11138 X(_orr, 4300, ea400000), \
11139 X(_orrs, 4300, ea500000), \
11140 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11141 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11142 X(_rev, ba00, fa90f080), \
11143 X(_rev16, ba40, fa90f090), \
11144 X(_revsh, bac0, fa90f0b0), \
11145 X(_ror, 41c0, fa60f000), \
11146 X(_rors, 41c0, fa70f000), \
11147 X(_sbc, 4180, eb600000), \
11148 X(_sbcs, 4180, eb700000), \
11149 X(_stmia, c000, e8800000), \
11150 X(_str, 6000, f8400000), \
11151 X(_strb, 7000, f8000000), \
11152 X(_strh, 8000, f8200000), \
11153 X(_str_sp,9000, f84d0000), \
11154 X(_sub, 1e00, eba00000), \
11155 X(_subs, 1e00, ebb00000), \
11156 X(_subi, 8000, f1a00000), \
11157 X(_subis, 8000, f1b00000), \
11158 X(_sxtb, b240, fa4ff080), \
11159 X(_sxth, b200, fa0ff080), \
11160 X(_tst, 4200, ea100f00), \
11161 X(_uxtb, b2c0, fa5ff080), \
11162 X(_uxth, b280, fa1ff080), \
11163 X(_nop, bf00, f3af8000), \
11164 X(_yield, bf10, f3af8001), \
11165 X(_wfe, bf20, f3af8002), \
11166 X(_wfi, bf30, f3af8003), \
60f993ce 11167 X(_wls, 0000, f040c001), \
53c4b28b 11168 X(_sev, bf40, f3af8004), \
74db7efb
NC
11169 X(_sevl, bf50, f3af8005), \
11170 X(_udf, de00, f7f0a000)
c19d1205
ZW
11171
11172/* To catch errors in encoding functions, the codes are all offset by
11173 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11174 as 16-bit instructions. */
21d799b5 11175#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11176enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11177#undef X
11178
11179#define X(a,b,c) 0x##b
11180static const unsigned short thumb_op16[] = { T16_32_TAB };
11181#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11182#undef X
11183
11184#define X(a,b,c) 0x##c
11185static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11186#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11187#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11188#undef X
11189#undef T16_32_TAB
11190
11191/* Thumb instruction encoders, in alphabetical order. */
11192
92e90b6e 11193/* ADDW or SUBW. */
c921be7d 11194
92e90b6e
PB
11195static void
11196do_t_add_sub_w (void)
11197{
11198 int Rd, Rn;
11199
11200 Rd = inst.operands[0].reg;
11201 Rn = inst.operands[1].reg;
11202
539d4391
NC
11203 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11204 is the SP-{plus,minus}-immediate form of the instruction. */
11205 if (Rn == REG_SP)
11206 constraint (Rd == REG_PC, BAD_PC);
11207 else
11208 reject_bad_reg (Rd);
fdfde340 11209
92e90b6e 11210 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11211 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11212}
11213
c19d1205 11214/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11215 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11216
11217static void
11218do_t_add_sub (void)
11219{
11220 int Rd, Rs, Rn;
11221
11222 Rd = inst.operands[0].reg;
11223 Rs = (inst.operands[1].present
11224 ? inst.operands[1].reg /* Rd, Rs, foo */
11225 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11226
e07e6e58 11227 if (Rd == REG_PC)
5ee91343 11228 set_pred_insn_type_last ();
e07e6e58 11229
c19d1205
ZW
11230 if (unified_syntax)
11231 {
0110f2b8
PB
11232 bfd_boolean flags;
11233 bfd_boolean narrow;
11234 int opcode;
11235
11236 flags = (inst.instruction == T_MNEM_adds
11237 || inst.instruction == T_MNEM_subs);
11238 if (flags)
5ee91343 11239 narrow = !in_pred_block ();
0110f2b8 11240 else
5ee91343 11241 narrow = in_pred_block ();
c19d1205 11242 if (!inst.operands[2].isreg)
b99bd4ef 11243 {
16805f35
PB
11244 int add;
11245
5c8ed6a4
JW
11246 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11247 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11248
16805f35
PB
11249 add = (inst.instruction == T_MNEM_add
11250 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11251 opcode = 0;
11252 if (inst.size_req != 4)
11253 {
0110f2b8 11254 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11255 appropriate. */
0110f2b8
PB
11256 if (Rd == REG_SP && Rs == REG_SP && !flags)
11257 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11258 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11259 opcode = T_MNEM_add_sp;
11260 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11261 opcode = T_MNEM_add_pc;
11262 else if (Rd <= 7 && Rs <= 7 && narrow)
11263 {
11264 if (flags)
11265 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11266 else
11267 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11268 }
11269 if (opcode)
11270 {
11271 inst.instruction = THUMB_OP16(opcode);
11272 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11273 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11274 || (inst.relocs[0].type
11275 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11276 {
11277 if (inst.size_req == 2)
e2b0ab59 11278 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11279 else
11280 inst.relax = opcode;
11281 }
0110f2b8
PB
11282 }
11283 else
11284 constraint (inst.size_req == 2, BAD_HIREG);
11285 }
11286 if (inst.size_req == 4
11287 || (inst.size_req != 2 && !opcode))
11288 {
e2b0ab59
AV
11289 constraint ((inst.relocs[0].type
11290 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11291 && (inst.relocs[0].type
11292 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11293 THUMB1_RELOC_ONLY);
efd81785
PB
11294 if (Rd == REG_PC)
11295 {
fdfde340 11296 constraint (add, BAD_PC);
efd81785
PB
11297 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11298 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11299 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11300 _("expression too complex"));
e2b0ab59
AV
11301 constraint (inst.relocs[0].exp.X_add_number < 0
11302 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11303 _("immediate value out of range"));
11304 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11305 | inst.relocs[0].exp.X_add_number;
11306 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11307 return;
11308 }
11309 else if (Rs == REG_PC)
16805f35
PB
11310 {
11311 /* Always use addw/subw. */
11312 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11313 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11314 }
11315 else
11316 {
11317 inst.instruction = THUMB_OP32 (inst.instruction);
11318 inst.instruction = (inst.instruction & 0xe1ffffff)
11319 | 0x10000000;
11320 if (flags)
e2b0ab59 11321 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11322 else
e2b0ab59 11323 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11324 }
dc4503c6
PB
11325 inst.instruction |= Rd << 8;
11326 inst.instruction |= Rs << 16;
0110f2b8 11327 }
b99bd4ef 11328 }
c19d1205
ZW
11329 else
11330 {
e2b0ab59 11331 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11332 unsigned int shift = inst.operands[2].shift_kind;
11333
c19d1205
ZW
11334 Rn = inst.operands[2].reg;
11335 /* See if we can do this with a 16-bit instruction. */
11336 if (!inst.operands[2].shifted && inst.size_req != 4)
11337 {
e27ec89e
PB
11338 if (Rd > 7 || Rs > 7 || Rn > 7)
11339 narrow = FALSE;
11340
11341 if (narrow)
c19d1205 11342 {
e27ec89e
PB
11343 inst.instruction = ((inst.instruction == T_MNEM_adds
11344 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11345 ? T_OPCODE_ADD_R3
11346 : T_OPCODE_SUB_R3);
11347 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11348 return;
11349 }
b99bd4ef 11350
7e806470 11351 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11352 {
7e806470
PB
11353 /* Thumb-1 cores (except v6-M) require at least one high
11354 register in a narrow non flag setting add. */
11355 if (Rd > 7 || Rn > 7
11356 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11357 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11358 {
7e806470
PB
11359 if (Rd == Rn)
11360 {
11361 Rn = Rs;
11362 Rs = Rd;
11363 }
c19d1205
ZW
11364 inst.instruction = T_OPCODE_ADD_HI;
11365 inst.instruction |= (Rd & 8) << 4;
11366 inst.instruction |= (Rd & 7);
11367 inst.instruction |= Rn << 3;
11368 return;
11369 }
c19d1205
ZW
11370 }
11371 }
c921be7d 11372
fdfde340 11373 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11374 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11375 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11376 constraint (Rs == REG_PC, BAD_PC);
11377 reject_bad_reg (Rn);
11378
c19d1205
ZW
11379 /* If we get here, it can't be done in 16 bits. */
11380 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11381 _("shift must be constant"));
11382 inst.instruction = THUMB_OP32 (inst.instruction);
11383 inst.instruction |= Rd << 8;
11384 inst.instruction |= Rs << 16;
5f4cb198
NC
11385 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11386 _("shift value over 3 not allowed in thumb mode"));
11387 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11388 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11389 encode_thumb32_shifted_operand (2);
11390 }
11391 }
11392 else
11393 {
11394 constraint (inst.instruction == T_MNEM_adds
11395 || inst.instruction == T_MNEM_subs,
11396 BAD_THUMB32);
b99bd4ef 11397
c19d1205 11398 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11399 {
c19d1205
ZW
11400 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11401 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11402 BAD_HIREG);
11403
11404 inst.instruction = (inst.instruction == T_MNEM_add
11405 ? 0x0000 : 0x8000);
11406 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11407 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11408 return;
11409 }
11410
c19d1205
ZW
11411 Rn = inst.operands[2].reg;
11412 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11413
c19d1205
ZW
11414 /* We now have Rd, Rs, and Rn set to registers. */
11415 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11416 {
c19d1205
ZW
11417 /* Can't do this for SUB. */
11418 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11419 inst.instruction = T_OPCODE_ADD_HI;
11420 inst.instruction |= (Rd & 8) << 4;
11421 inst.instruction |= (Rd & 7);
11422 if (Rs == Rd)
11423 inst.instruction |= Rn << 3;
11424 else if (Rn == Rd)
11425 inst.instruction |= Rs << 3;
11426 else
11427 constraint (1, _("dest must overlap one source register"));
11428 }
11429 else
11430 {
11431 inst.instruction = (inst.instruction == T_MNEM_add
11432 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11433 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11434 }
b99bd4ef 11435 }
b99bd4ef
NC
11436}
11437
c19d1205
ZW
11438static void
11439do_t_adr (void)
11440{
fdfde340
JM
11441 unsigned Rd;
11442
11443 Rd = inst.operands[0].reg;
11444 reject_bad_reg (Rd);
11445
11446 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11447 {
11448 /* Defer to section relaxation. */
11449 inst.relax = inst.instruction;
11450 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11451 inst.instruction |= Rd << 4;
0110f2b8
PB
11452 }
11453 else if (unified_syntax && inst.size_req != 2)
e9f89963 11454 {
0110f2b8 11455 /* Generate a 32-bit opcode. */
e9f89963 11456 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11457 inst.instruction |= Rd << 8;
e2b0ab59
AV
11458 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11459 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11460 }
11461 else
11462 {
0110f2b8 11463 /* Generate a 16-bit opcode. */
e9f89963 11464 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11465 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11466 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11467 inst.relocs[0].pc_rel = 1;
fdfde340 11468 inst.instruction |= Rd << 4;
e9f89963 11469 }
52a86f84 11470
e2b0ab59
AV
11471 if (inst.relocs[0].exp.X_op == O_symbol
11472 && inst.relocs[0].exp.X_add_symbol != NULL
11473 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11474 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11475 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11476}
b99bd4ef 11477
c19d1205
ZW
11478/* Arithmetic instructions for which there is just one 16-bit
11479 instruction encoding, and it allows only two low registers.
11480 For maximal compatibility with ARM syntax, we allow three register
11481 operands even when Thumb-32 instructions are not available, as long
11482 as the first two are identical. For instance, both "sbc r0,r1" and
11483 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11484static void
c19d1205 11485do_t_arit3 (void)
b99bd4ef 11486{
c19d1205 11487 int Rd, Rs, Rn;
b99bd4ef 11488
c19d1205
ZW
11489 Rd = inst.operands[0].reg;
11490 Rs = (inst.operands[1].present
11491 ? inst.operands[1].reg /* Rd, Rs, foo */
11492 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11493 Rn = inst.operands[2].reg;
b99bd4ef 11494
fdfde340
JM
11495 reject_bad_reg (Rd);
11496 reject_bad_reg (Rs);
11497 if (inst.operands[2].isreg)
11498 reject_bad_reg (Rn);
11499
c19d1205 11500 if (unified_syntax)
b99bd4ef 11501 {
c19d1205
ZW
11502 if (!inst.operands[2].isreg)
11503 {
11504 /* For an immediate, we always generate a 32-bit opcode;
11505 section relaxation will shrink it later if possible. */
11506 inst.instruction = THUMB_OP32 (inst.instruction);
11507 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11508 inst.instruction |= Rd << 8;
11509 inst.instruction |= Rs << 16;
e2b0ab59 11510 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11511 }
11512 else
11513 {
e27ec89e
PB
11514 bfd_boolean narrow;
11515
c19d1205 11516 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11517 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11518 narrow = !in_pred_block ();
e27ec89e 11519 else
5ee91343 11520 narrow = in_pred_block ();
e27ec89e
PB
11521
11522 if (Rd > 7 || Rn > 7 || Rs > 7)
11523 narrow = FALSE;
11524 if (inst.operands[2].shifted)
11525 narrow = FALSE;
11526 if (inst.size_req == 4)
11527 narrow = FALSE;
11528
11529 if (narrow
c19d1205
ZW
11530 && Rd == Rs)
11531 {
11532 inst.instruction = THUMB_OP16 (inst.instruction);
11533 inst.instruction |= Rd;
11534 inst.instruction |= Rn << 3;
11535 return;
11536 }
b99bd4ef 11537
c19d1205
ZW
11538 /* If we get here, it can't be done in 16 bits. */
11539 constraint (inst.operands[2].shifted
11540 && inst.operands[2].immisreg,
11541 _("shift must be constant"));
11542 inst.instruction = THUMB_OP32 (inst.instruction);
11543 inst.instruction |= Rd << 8;
11544 inst.instruction |= Rs << 16;
11545 encode_thumb32_shifted_operand (2);
11546 }
a737bd4d 11547 }
c19d1205 11548 else
b99bd4ef 11549 {
c19d1205
ZW
11550 /* On its face this is a lie - the instruction does set the
11551 flags. However, the only supported mnemonic in this mode
11552 says it doesn't. */
11553 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11554
c19d1205
ZW
11555 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11556 _("unshifted register required"));
11557 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11558 constraint (Rd != Rs,
11559 _("dest and source1 must be the same register"));
a737bd4d 11560
c19d1205
ZW
11561 inst.instruction = THUMB_OP16 (inst.instruction);
11562 inst.instruction |= Rd;
11563 inst.instruction |= Rn << 3;
b99bd4ef 11564 }
a737bd4d 11565}
b99bd4ef 11566
c19d1205
ZW
11567/* Similarly, but for instructions where the arithmetic operation is
11568 commutative, so we can allow either of them to be different from
11569 the destination operand in a 16-bit instruction. For instance, all
11570 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11571 accepted. */
11572static void
11573do_t_arit3c (void)
a737bd4d 11574{
c19d1205 11575 int Rd, Rs, Rn;
b99bd4ef 11576
c19d1205
ZW
11577 Rd = inst.operands[0].reg;
11578 Rs = (inst.operands[1].present
11579 ? inst.operands[1].reg /* Rd, Rs, foo */
11580 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11581 Rn = inst.operands[2].reg;
c921be7d 11582
fdfde340
JM
11583 reject_bad_reg (Rd);
11584 reject_bad_reg (Rs);
11585 if (inst.operands[2].isreg)
11586 reject_bad_reg (Rn);
a737bd4d 11587
c19d1205 11588 if (unified_syntax)
a737bd4d 11589 {
c19d1205 11590 if (!inst.operands[2].isreg)
b99bd4ef 11591 {
c19d1205
ZW
11592 /* For an immediate, we always generate a 32-bit opcode;
11593 section relaxation will shrink it later if possible. */
11594 inst.instruction = THUMB_OP32 (inst.instruction);
11595 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11596 inst.instruction |= Rd << 8;
11597 inst.instruction |= Rs << 16;
e2b0ab59 11598 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11599 }
c19d1205 11600 else
a737bd4d 11601 {
e27ec89e
PB
11602 bfd_boolean narrow;
11603
c19d1205 11604 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11605 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11606 narrow = !in_pred_block ();
e27ec89e 11607 else
5ee91343 11608 narrow = in_pred_block ();
e27ec89e
PB
11609
11610 if (Rd > 7 || Rn > 7 || Rs > 7)
11611 narrow = FALSE;
11612 if (inst.operands[2].shifted)
11613 narrow = FALSE;
11614 if (inst.size_req == 4)
11615 narrow = FALSE;
11616
11617 if (narrow)
a737bd4d 11618 {
c19d1205 11619 if (Rd == Rs)
a737bd4d 11620 {
c19d1205
ZW
11621 inst.instruction = THUMB_OP16 (inst.instruction);
11622 inst.instruction |= Rd;
11623 inst.instruction |= Rn << 3;
11624 return;
a737bd4d 11625 }
c19d1205 11626 if (Rd == Rn)
a737bd4d 11627 {
c19d1205
ZW
11628 inst.instruction = THUMB_OP16 (inst.instruction);
11629 inst.instruction |= Rd;
11630 inst.instruction |= Rs << 3;
11631 return;
a737bd4d
NC
11632 }
11633 }
c19d1205
ZW
11634
11635 /* If we get here, it can't be done in 16 bits. */
11636 constraint (inst.operands[2].shifted
11637 && inst.operands[2].immisreg,
11638 _("shift must be constant"));
11639 inst.instruction = THUMB_OP32 (inst.instruction);
11640 inst.instruction |= Rd << 8;
11641 inst.instruction |= Rs << 16;
11642 encode_thumb32_shifted_operand (2);
a737bd4d 11643 }
b99bd4ef 11644 }
c19d1205
ZW
11645 else
11646 {
11647 /* On its face this is a lie - the instruction does set the
11648 flags. However, the only supported mnemonic in this mode
11649 says it doesn't. */
11650 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11651
c19d1205
ZW
11652 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11653 _("unshifted register required"));
11654 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11655
11656 inst.instruction = THUMB_OP16 (inst.instruction);
11657 inst.instruction |= Rd;
11658
11659 if (Rd == Rs)
11660 inst.instruction |= Rn << 3;
11661 else if (Rd == Rn)
11662 inst.instruction |= Rs << 3;
11663 else
11664 constraint (1, _("dest must overlap one source register"));
11665 }
a737bd4d
NC
11666}
11667
c19d1205
ZW
11668static void
11669do_t_bfc (void)
a737bd4d 11670{
fdfde340 11671 unsigned Rd;
c19d1205
ZW
11672 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11673 constraint (msb > 32, _("bit-field extends past end of register"));
11674 /* The instruction encoding stores the LSB and MSB,
11675 not the LSB and width. */
fdfde340
JM
11676 Rd = inst.operands[0].reg;
11677 reject_bad_reg (Rd);
11678 inst.instruction |= Rd << 8;
c19d1205
ZW
11679 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11680 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11681 inst.instruction |= msb - 1;
b99bd4ef
NC
11682}
11683
c19d1205
ZW
11684static void
11685do_t_bfi (void)
b99bd4ef 11686{
fdfde340 11687 int Rd, Rn;
c19d1205 11688 unsigned int msb;
b99bd4ef 11689
fdfde340
JM
11690 Rd = inst.operands[0].reg;
11691 reject_bad_reg (Rd);
11692
c19d1205
ZW
11693 /* #0 in second position is alternative syntax for bfc, which is
11694 the same instruction but with REG_PC in the Rm field. */
11695 if (!inst.operands[1].isreg)
fdfde340
JM
11696 Rn = REG_PC;
11697 else
11698 {
11699 Rn = inst.operands[1].reg;
11700 reject_bad_reg (Rn);
11701 }
b99bd4ef 11702
c19d1205
ZW
11703 msb = inst.operands[2].imm + inst.operands[3].imm;
11704 constraint (msb > 32, _("bit-field extends past end of register"));
11705 /* The instruction encoding stores the LSB and MSB,
11706 not the LSB and width. */
fdfde340
JM
11707 inst.instruction |= Rd << 8;
11708 inst.instruction |= Rn << 16;
c19d1205
ZW
11709 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11710 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11711 inst.instruction |= msb - 1;
b99bd4ef
NC
11712}
11713
c19d1205
ZW
11714static void
11715do_t_bfx (void)
b99bd4ef 11716{
fdfde340
JM
11717 unsigned Rd, Rn;
11718
11719 Rd = inst.operands[0].reg;
11720 Rn = inst.operands[1].reg;
11721
11722 reject_bad_reg (Rd);
11723 reject_bad_reg (Rn);
11724
c19d1205
ZW
11725 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11726 _("bit-field extends past end of register"));
fdfde340
JM
11727 inst.instruction |= Rd << 8;
11728 inst.instruction |= Rn << 16;
c19d1205
ZW
11729 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11730 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11731 inst.instruction |= inst.operands[3].imm - 1;
11732}
b99bd4ef 11733
c19d1205
ZW
11734/* ARM V5 Thumb BLX (argument parse)
11735 BLX <target_addr> which is BLX(1)
11736 BLX <Rm> which is BLX(2)
11737 Unfortunately, there are two different opcodes for this mnemonic.
11738 So, the insns[].value is not used, and the code here zaps values
11739 into inst.instruction.
b99bd4ef 11740
c19d1205
ZW
11741 ??? How to take advantage of the additional two bits of displacement
11742 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11743
c19d1205
ZW
11744static void
11745do_t_blx (void)
11746{
5ee91343 11747 set_pred_insn_type_last ();
e07e6e58 11748
c19d1205 11749 if (inst.operands[0].isreg)
fdfde340
JM
11750 {
11751 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11752 /* We have a register, so this is BLX(2). */
11753 inst.instruction |= inst.operands[0].reg << 3;
11754 }
b99bd4ef
NC
11755 else
11756 {
c19d1205 11757 /* No register. This must be BLX(1). */
2fc8bdac 11758 inst.instruction = 0xf000e800;
0855e32b 11759 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11760 }
11761}
11762
c19d1205
ZW
11763static void
11764do_t_branch (void)
b99bd4ef 11765{
0110f2b8 11766 int opcode;
dfa9f0d5 11767 int cond;
2fe88214 11768 bfd_reloc_code_real_type reloc;
dfa9f0d5 11769
e07e6e58 11770 cond = inst.cond;
5ee91343 11771 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11772
5ee91343 11773 if (in_pred_block ())
dfa9f0d5
PB
11774 {
11775 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11776 branches. */
dfa9f0d5 11777 cond = COND_ALWAYS;
dfa9f0d5
PB
11778 }
11779 else
11780 cond = inst.cond;
11781
11782 if (cond != COND_ALWAYS)
0110f2b8
PB
11783 opcode = T_MNEM_bcond;
11784 else
11785 opcode = inst.instruction;
11786
12d6b0b7
RS
11787 if (unified_syntax
11788 && (inst.size_req == 4
10960bfb
PB
11789 || (inst.size_req != 2
11790 && (inst.operands[0].hasreloc
e2b0ab59 11791 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11792 {
0110f2b8 11793 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11794 if (cond == COND_ALWAYS)
9ae92b05 11795 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11796 else
11797 {
ff8646ee
TP
11798 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11799 _("selected architecture does not support "
11800 "wide conditional branch instruction"));
11801
9c2799c2 11802 gas_assert (cond != 0xF);
dfa9f0d5 11803 inst.instruction |= cond << 22;
9ae92b05 11804 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11805 }
11806 }
b99bd4ef
NC
11807 else
11808 {
0110f2b8 11809 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11810 if (cond == COND_ALWAYS)
9ae92b05 11811 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11812 else
b99bd4ef 11813 {
dfa9f0d5 11814 inst.instruction |= cond << 8;
9ae92b05 11815 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11816 }
0110f2b8
PB
11817 /* Allow section relaxation. */
11818 if (unified_syntax && inst.size_req != 2)
11819 inst.relax = opcode;
b99bd4ef 11820 }
e2b0ab59
AV
11821 inst.relocs[0].type = reloc;
11822 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11823}
11824
8884b720 11825/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11826 between the two is the maximum immediate allowed - which is passed in
8884b720 11827 RANGE. */
b99bd4ef 11828static void
8884b720 11829do_t_bkpt_hlt1 (int range)
b99bd4ef 11830{
dfa9f0d5
PB
11831 constraint (inst.cond != COND_ALWAYS,
11832 _("instruction is always unconditional"));
c19d1205 11833 if (inst.operands[0].present)
b99bd4ef 11834 {
8884b720 11835 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11836 _("immediate value out of range"));
11837 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11838 }
8884b720 11839
5ee91343 11840 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11841}
11842
11843static void
11844do_t_hlt (void)
11845{
11846 do_t_bkpt_hlt1 (63);
11847}
11848
11849static void
11850do_t_bkpt (void)
11851{
11852 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11853}
11854
11855static void
c19d1205 11856do_t_branch23 (void)
b99bd4ef 11857{
5ee91343 11858 set_pred_insn_type_last ();
0855e32b 11859 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11860
0855e32b
NS
11861 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11862 this file. We used to simply ignore the PLT reloc type here --
11863 the branch encoding is now needed to deal with TLSCALL relocs.
11864 So if we see a PLT reloc now, put it back to how it used to be to
11865 keep the preexisting behaviour. */
e2b0ab59
AV
11866 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11867 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11868
4343666d 11869#if defined(OBJ_COFF)
c19d1205
ZW
11870 /* If the destination of the branch is a defined symbol which does not have
11871 the THUMB_FUNC attribute, then we must be calling a function which has
11872 the (interfacearm) attribute. We look for the Thumb entry point to that
11873 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11874 if ( inst.relocs[0].exp.X_op == O_symbol
11875 && inst.relocs[0].exp.X_add_symbol != NULL
11876 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11877 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11878 inst.relocs[0].exp.X_add_symbol
11879 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11880#endif
90e4755a
RE
11881}
11882
11883static void
c19d1205 11884do_t_bx (void)
90e4755a 11885{
5ee91343 11886 set_pred_insn_type_last ();
c19d1205
ZW
11887 inst.instruction |= inst.operands[0].reg << 3;
11888 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11889 should cause the alignment to be checked once it is known. This is
11890 because BX PC only works if the instruction is word aligned. */
11891}
90e4755a 11892
c19d1205
ZW
11893static void
11894do_t_bxj (void)
11895{
fdfde340 11896 int Rm;
90e4755a 11897
5ee91343 11898 set_pred_insn_type_last ();
fdfde340
JM
11899 Rm = inst.operands[0].reg;
11900 reject_bad_reg (Rm);
11901 inst.instruction |= Rm << 16;
90e4755a
RE
11902}
11903
11904static void
c19d1205 11905do_t_clz (void)
90e4755a 11906{
fdfde340
JM
11907 unsigned Rd;
11908 unsigned Rm;
11909
11910 Rd = inst.operands[0].reg;
11911 Rm = inst.operands[1].reg;
11912
11913 reject_bad_reg (Rd);
11914 reject_bad_reg (Rm);
11915
11916 inst.instruction |= Rd << 8;
11917 inst.instruction |= Rm << 16;
11918 inst.instruction |= Rm;
c19d1205 11919}
90e4755a 11920
91d8b670
JG
11921static void
11922do_t_csdb (void)
11923{
5ee91343 11924 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11925}
11926
dfa9f0d5
PB
11927static void
11928do_t_cps (void)
11929{
5ee91343 11930 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11931 inst.instruction |= inst.operands[0].imm;
11932}
11933
c19d1205
ZW
11934static void
11935do_t_cpsi (void)
11936{
5ee91343 11937 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11938 if (unified_syntax
62b3e311
PB
11939 && (inst.operands[1].present || inst.size_req == 4)
11940 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11941 {
c19d1205
ZW
11942 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11943 inst.instruction = 0xf3af8000;
11944 inst.instruction |= imod << 9;
11945 inst.instruction |= inst.operands[0].imm << 5;
11946 if (inst.operands[1].present)
11947 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11948 }
c19d1205 11949 else
90e4755a 11950 {
62b3e311
PB
11951 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11952 && (inst.operands[0].imm & 4),
11953 _("selected processor does not support 'A' form "
11954 "of this instruction"));
11955 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11956 _("Thumb does not support the 2-argument "
11957 "form of this instruction"));
11958 inst.instruction |= inst.operands[0].imm;
90e4755a 11959 }
90e4755a
RE
11960}
11961
c19d1205
ZW
11962/* THUMB CPY instruction (argument parse). */
11963
90e4755a 11964static void
c19d1205 11965do_t_cpy (void)
90e4755a 11966{
c19d1205 11967 if (inst.size_req == 4)
90e4755a 11968 {
c19d1205
ZW
11969 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11970 inst.instruction |= inst.operands[0].reg << 8;
11971 inst.instruction |= inst.operands[1].reg;
90e4755a 11972 }
c19d1205 11973 else
90e4755a 11974 {
c19d1205
ZW
11975 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11976 inst.instruction |= (inst.operands[0].reg & 0x7);
11977 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11978 }
90e4755a
RE
11979}
11980
90e4755a 11981static void
25fe350b 11982do_t_cbz (void)
90e4755a 11983{
5ee91343 11984 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
11985 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11986 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11987 inst.relocs[0].pc_rel = 1;
11988 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11989}
90e4755a 11990
62b3e311
PB
11991static void
11992do_t_dbg (void)
11993{
11994 inst.instruction |= inst.operands[0].imm;
11995}
11996
11997static void
11998do_t_div (void)
11999{
fdfde340
JM
12000 unsigned Rd, Rn, Rm;
12001
12002 Rd = inst.operands[0].reg;
12003 Rn = (inst.operands[1].present
12004 ? inst.operands[1].reg : Rd);
12005 Rm = inst.operands[2].reg;
12006
12007 reject_bad_reg (Rd);
12008 reject_bad_reg (Rn);
12009 reject_bad_reg (Rm);
12010
12011 inst.instruction |= Rd << 8;
12012 inst.instruction |= Rn << 16;
12013 inst.instruction |= Rm;
62b3e311
PB
12014}
12015
c19d1205
ZW
12016static void
12017do_t_hint (void)
12018{
12019 if (unified_syntax && inst.size_req == 4)
12020 inst.instruction = THUMB_OP32 (inst.instruction);
12021 else
12022 inst.instruction = THUMB_OP16 (inst.instruction);
12023}
90e4755a 12024
c19d1205
ZW
12025static void
12026do_t_it (void)
12027{
12028 unsigned int cond = inst.operands[0].imm;
e27ec89e 12029
5ee91343
AV
12030 set_pred_insn_type (IT_INSN);
12031 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12032 now_pred.cc = cond;
12033 now_pred.warn_deprecated = FALSE;
12034 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12035
12036 /* If the condition is a negative condition, invert the mask. */
c19d1205 12037 if ((cond & 0x1) == 0x0)
90e4755a 12038 {
c19d1205 12039 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12040
c19d1205 12041 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12042 {
12043 /* No conversion needed. */
5ee91343 12044 now_pred.block_length = 1;
5a01bb1d 12045 }
c19d1205 12046 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12047 {
12048 mask ^= 0x8;
5ee91343 12049 now_pred.block_length = 2;
5a01bb1d 12050 }
e27ec89e 12051 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12052 {
12053 mask ^= 0xC;
5ee91343 12054 now_pred.block_length = 3;
5a01bb1d 12055 }
c19d1205 12056 else
5a01bb1d
MGD
12057 {
12058 mask ^= 0xE;
5ee91343 12059 now_pred.block_length = 4;
5a01bb1d 12060 }
90e4755a 12061
e27ec89e
PB
12062 inst.instruction &= 0xfff0;
12063 inst.instruction |= mask;
c19d1205 12064 }
90e4755a 12065
c19d1205
ZW
12066 inst.instruction |= cond << 4;
12067}
90e4755a 12068
3c707909
PB
12069/* Helper function used for both push/pop and ldm/stm. */
12070static void
4b5a202f
AV
12071encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12072 bfd_boolean writeback)
3c707909 12073{
4b5a202f 12074 bfd_boolean load, store;
3c707909 12075
4b5a202f
AV
12076 gas_assert (base != -1 || !do_io);
12077 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12078 store = do_io && !load;
3c707909
PB
12079
12080 if (mask & (1 << 13))
12081 inst.error = _("SP not allowed in register list");
1e5b0379 12082
4b5a202f 12083 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12084 && writeback)
12085 inst.error = _("having the base register in the register list when "
12086 "using write back is UNPREDICTABLE");
12087
3c707909
PB
12088 if (load)
12089 {
e07e6e58 12090 if (mask & (1 << 15))
477330fc
RM
12091 {
12092 if (mask & (1 << 14))
12093 inst.error = _("LR and PC should not both be in register list");
12094 else
5ee91343 12095 set_pred_insn_type_last ();
477330fc 12096 }
3c707909 12097 }
4b5a202f 12098 else if (store)
3c707909
PB
12099 {
12100 if (mask & (1 << 15))
12101 inst.error = _("PC not allowed in register list");
3c707909
PB
12102 }
12103
4b5a202f 12104 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12105 {
12106 /* Single register transfers implemented as str/ldr. */
12107 if (writeback)
12108 {
12109 if (inst.instruction & (1 << 23))
12110 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12111 else
12112 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12113 }
12114 else
12115 {
12116 if (inst.instruction & (1 << 23))
12117 inst.instruction = 0x00800000; /* ia -> [base] */
12118 else
12119 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12120 }
12121
12122 inst.instruction |= 0xf8400000;
12123 if (load)
12124 inst.instruction |= 0x00100000;
12125
5f4273c7 12126 mask = ffs (mask) - 1;
3c707909
PB
12127 mask <<= 12;
12128 }
12129 else if (writeback)
12130 inst.instruction |= WRITE_BACK;
12131
12132 inst.instruction |= mask;
4b5a202f
AV
12133 if (do_io)
12134 inst.instruction |= base << 16;
3c707909
PB
12135}
12136
c19d1205
ZW
12137static void
12138do_t_ldmstm (void)
12139{
12140 /* This really doesn't seem worth it. */
e2b0ab59 12141 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12142 _("expression too complex"));
12143 constraint (inst.operands[1].writeback,
12144 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12145
c19d1205
ZW
12146 if (unified_syntax)
12147 {
3c707909
PB
12148 bfd_boolean narrow;
12149 unsigned mask;
12150
12151 narrow = FALSE;
c19d1205
ZW
12152 /* See if we can use a 16-bit instruction. */
12153 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12154 && inst.size_req != 4
3c707909 12155 && !(inst.operands[1].imm & ~0xff))
90e4755a 12156 {
3c707909 12157 mask = 1 << inst.operands[0].reg;
90e4755a 12158
eab4f823 12159 if (inst.operands[0].reg <= 7)
90e4755a 12160 {
3c707909 12161 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12162 ? inst.operands[0].writeback
12163 : (inst.operands[0].writeback
12164 == !(inst.operands[1].imm & mask)))
477330fc 12165 {
eab4f823
MGD
12166 if (inst.instruction == T_MNEM_stmia
12167 && (inst.operands[1].imm & mask)
12168 && (inst.operands[1].imm & (mask - 1)))
12169 as_warn (_("value stored for r%d is UNKNOWN"),
12170 inst.operands[0].reg);
3c707909 12171
eab4f823
MGD
12172 inst.instruction = THUMB_OP16 (inst.instruction);
12173 inst.instruction |= inst.operands[0].reg << 8;
12174 inst.instruction |= inst.operands[1].imm;
12175 narrow = TRUE;
12176 }
12177 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12178 {
12179 /* This means 1 register in reg list one of 3 situations:
12180 1. Instruction is stmia, but without writeback.
12181 2. lmdia without writeback, but with Rn not in
477330fc 12182 reglist.
eab4f823
MGD
12183 3. ldmia with writeback, but with Rn in reglist.
12184 Case 3 is UNPREDICTABLE behaviour, so we handle
12185 case 1 and 2 which can be converted into a 16-bit
12186 str or ldr. The SP cases are handled below. */
12187 unsigned long opcode;
12188 /* First, record an error for Case 3. */
12189 if (inst.operands[1].imm & mask
12190 && inst.operands[0].writeback)
fa94de6b 12191 inst.error =
eab4f823
MGD
12192 _("having the base register in the register list when "
12193 "using write back is UNPREDICTABLE");
fa94de6b
RM
12194
12195 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12196 : T_MNEM_ldr);
12197 inst.instruction = THUMB_OP16 (opcode);
12198 inst.instruction |= inst.operands[0].reg << 3;
12199 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12200 narrow = TRUE;
12201 }
90e4755a 12202 }
eab4f823 12203 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12204 {
eab4f823
MGD
12205 if (inst.operands[0].writeback)
12206 {
fa94de6b 12207 inst.instruction =
eab4f823 12208 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12209 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12210 inst.instruction |= inst.operands[1].imm;
477330fc 12211 narrow = TRUE;
eab4f823
MGD
12212 }
12213 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12214 {
fa94de6b 12215 inst.instruction =
eab4f823 12216 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12217 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12218 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12219 narrow = TRUE;
eab4f823 12220 }
90e4755a 12221 }
3c707909
PB
12222 }
12223
12224 if (!narrow)
12225 {
c19d1205
ZW
12226 if (inst.instruction < 0xffff)
12227 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12228
4b5a202f
AV
12229 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12230 inst.operands[1].imm,
12231 inst.operands[0].writeback);
90e4755a
RE
12232 }
12233 }
c19d1205 12234 else
90e4755a 12235 {
c19d1205
ZW
12236 constraint (inst.operands[0].reg > 7
12237 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12238 constraint (inst.instruction != T_MNEM_ldmia
12239 && inst.instruction != T_MNEM_stmia,
12240 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12241 if (inst.instruction == T_MNEM_stmia)
f03698e6 12242 {
c19d1205
ZW
12243 if (!inst.operands[0].writeback)
12244 as_warn (_("this instruction will write back the base register"));
12245 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12246 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12247 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12248 inst.operands[0].reg);
f03698e6 12249 }
c19d1205 12250 else
90e4755a 12251 {
c19d1205
ZW
12252 if (!inst.operands[0].writeback
12253 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12254 as_warn (_("this instruction will write back the base register"));
12255 else if (inst.operands[0].writeback
12256 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12257 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12258 }
12259
c19d1205
ZW
12260 inst.instruction = THUMB_OP16 (inst.instruction);
12261 inst.instruction |= inst.operands[0].reg << 8;
12262 inst.instruction |= inst.operands[1].imm;
12263 }
12264}
e28cd48c 12265
c19d1205
ZW
12266static void
12267do_t_ldrex (void)
12268{
12269 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12270 || inst.operands[1].postind || inst.operands[1].writeback
12271 || inst.operands[1].immisreg || inst.operands[1].shifted
12272 || inst.operands[1].negative,
01cfc07f 12273 BAD_ADDR_MODE);
e28cd48c 12274
5be8be5d
DG
12275 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12276
c19d1205
ZW
12277 inst.instruction |= inst.operands[0].reg << 12;
12278 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12279 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12280}
e28cd48c 12281
c19d1205
ZW
12282static void
12283do_t_ldrexd (void)
12284{
12285 if (!inst.operands[1].present)
1cac9012 12286 {
c19d1205
ZW
12287 constraint (inst.operands[0].reg == REG_LR,
12288 _("r14 not allowed as first register "
12289 "when second register is omitted"));
12290 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12291 }
c19d1205
ZW
12292 constraint (inst.operands[0].reg == inst.operands[1].reg,
12293 BAD_OVERLAP);
b99bd4ef 12294
c19d1205
ZW
12295 inst.instruction |= inst.operands[0].reg << 12;
12296 inst.instruction |= inst.operands[1].reg << 8;
12297 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12298}
12299
12300static void
c19d1205 12301do_t_ldst (void)
b99bd4ef 12302{
0110f2b8
PB
12303 unsigned long opcode;
12304 int Rn;
12305
e07e6e58
NC
12306 if (inst.operands[0].isreg
12307 && !inst.operands[0].preind
12308 && inst.operands[0].reg == REG_PC)
5ee91343 12309 set_pred_insn_type_last ();
e07e6e58 12310
0110f2b8 12311 opcode = inst.instruction;
c19d1205 12312 if (unified_syntax)
b99bd4ef 12313 {
53365c0d
PB
12314 if (!inst.operands[1].isreg)
12315 {
12316 if (opcode <= 0xffff)
12317 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12318 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12319 return;
12320 }
0110f2b8
PB
12321 if (inst.operands[1].isreg
12322 && !inst.operands[1].writeback
c19d1205
ZW
12323 && !inst.operands[1].shifted && !inst.operands[1].postind
12324 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12325 && opcode <= 0xffff
12326 && inst.size_req != 4)
c19d1205 12327 {
0110f2b8
PB
12328 /* Insn may have a 16-bit form. */
12329 Rn = inst.operands[1].reg;
12330 if (inst.operands[1].immisreg)
12331 {
12332 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12333 /* [Rn, Rik] */
0110f2b8
PB
12334 if (Rn <= 7 && inst.operands[1].imm <= 7)
12335 goto op16;
5be8be5d
DG
12336 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12337 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12338 }
12339 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12340 && opcode != T_MNEM_ldrsb)
12341 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12342 || (Rn == REG_SP && opcode == T_MNEM_str))
12343 {
12344 /* [Rn, #const] */
12345 if (Rn > 7)
12346 {
12347 if (Rn == REG_PC)
12348 {
e2b0ab59 12349 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12350 opcode = T_MNEM_ldr_pc2;
12351 else
12352 opcode = T_MNEM_ldr_pc;
12353 }
12354 else
12355 {
12356 if (opcode == T_MNEM_ldr)
12357 opcode = T_MNEM_ldr_sp;
12358 else
12359 opcode = T_MNEM_str_sp;
12360 }
12361 inst.instruction = inst.operands[0].reg << 8;
12362 }
12363 else
12364 {
12365 inst.instruction = inst.operands[0].reg;
12366 inst.instruction |= inst.operands[1].reg << 3;
12367 }
12368 inst.instruction |= THUMB_OP16 (opcode);
12369 if (inst.size_req == 2)
e2b0ab59 12370 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12371 else
12372 inst.relax = opcode;
12373 return;
12374 }
c19d1205 12375 }
0110f2b8 12376 /* Definitely a 32-bit variant. */
5be8be5d 12377
8d67f500
NC
12378 /* Warning for Erratum 752419. */
12379 if (opcode == T_MNEM_ldr
12380 && inst.operands[0].reg == REG_SP
12381 && inst.operands[1].writeback == 1
12382 && !inst.operands[1].immisreg)
12383 {
12384 if (no_cpu_selected ()
12385 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12386 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12387 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12388 as_warn (_("This instruction may be unpredictable "
12389 "if executed on M-profile cores "
12390 "with interrupts enabled."));
12391 }
12392
5be8be5d 12393 /* Do some validations regarding addressing modes. */
1be5fd2e 12394 if (inst.operands[1].immisreg)
5be8be5d
DG
12395 reject_bad_reg (inst.operands[1].imm);
12396
1be5fd2e
NC
12397 constraint (inst.operands[1].writeback == 1
12398 && inst.operands[0].reg == inst.operands[1].reg,
12399 BAD_OVERLAP);
12400
0110f2b8 12401 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12402 inst.instruction |= inst.operands[0].reg << 12;
12403 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12404 check_ldr_r15_aligned ();
b99bd4ef
NC
12405 return;
12406 }
12407
c19d1205
ZW
12408 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12409
12410 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12411 {
c19d1205
ZW
12412 /* Only [Rn,Rm] is acceptable. */
12413 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12414 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12415 || inst.operands[1].postind || inst.operands[1].shifted
12416 || inst.operands[1].negative,
12417 _("Thumb does not support this addressing mode"));
12418 inst.instruction = THUMB_OP16 (inst.instruction);
12419 goto op16;
b99bd4ef 12420 }
5f4273c7 12421
c19d1205
ZW
12422 inst.instruction = THUMB_OP16 (inst.instruction);
12423 if (!inst.operands[1].isreg)
8335d6aa 12424 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12425 return;
b99bd4ef 12426
c19d1205
ZW
12427 constraint (!inst.operands[1].preind
12428 || inst.operands[1].shifted
12429 || inst.operands[1].writeback,
12430 _("Thumb does not support this addressing mode"));
12431 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12432 {
c19d1205
ZW
12433 constraint (inst.instruction & 0x0600,
12434 _("byte or halfword not valid for base register"));
12435 constraint (inst.operands[1].reg == REG_PC
12436 && !(inst.instruction & THUMB_LOAD_BIT),
12437 _("r15 based store not allowed"));
12438 constraint (inst.operands[1].immisreg,
12439 _("invalid base register for register offset"));
b99bd4ef 12440
c19d1205
ZW
12441 if (inst.operands[1].reg == REG_PC)
12442 inst.instruction = T_OPCODE_LDR_PC;
12443 else if (inst.instruction & THUMB_LOAD_BIT)
12444 inst.instruction = T_OPCODE_LDR_SP;
12445 else
12446 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12447
c19d1205 12448 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12449 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12450 return;
12451 }
90e4755a 12452
c19d1205
ZW
12453 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12454 if (!inst.operands[1].immisreg)
12455 {
12456 /* Immediate offset. */
12457 inst.instruction |= inst.operands[0].reg;
12458 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12459 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12460 return;
12461 }
90e4755a 12462
c19d1205
ZW
12463 /* Register offset. */
12464 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12465 constraint (inst.operands[1].negative,
12466 _("Thumb does not support this addressing mode"));
90e4755a 12467
c19d1205
ZW
12468 op16:
12469 switch (inst.instruction)
12470 {
12471 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12472 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12473 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12474 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12475 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12476 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12477 case 0x5600 /* ldrsb */:
12478 case 0x5e00 /* ldrsh */: break;
12479 default: abort ();
12480 }
90e4755a 12481
c19d1205
ZW
12482 inst.instruction |= inst.operands[0].reg;
12483 inst.instruction |= inst.operands[1].reg << 3;
12484 inst.instruction |= inst.operands[1].imm << 6;
12485}
90e4755a 12486
c19d1205
ZW
12487static void
12488do_t_ldstd (void)
12489{
12490 if (!inst.operands[1].present)
b99bd4ef 12491 {
c19d1205
ZW
12492 inst.operands[1].reg = inst.operands[0].reg + 1;
12493 constraint (inst.operands[0].reg == REG_LR,
12494 _("r14 not allowed here"));
bd340a04 12495 constraint (inst.operands[0].reg == REG_R12,
477330fc 12496 _("r12 not allowed here"));
b99bd4ef 12497 }
bd340a04
MGD
12498
12499 if (inst.operands[2].writeback
12500 && (inst.operands[0].reg == inst.operands[2].reg
12501 || inst.operands[1].reg == inst.operands[2].reg))
12502 as_warn (_("base register written back, and overlaps "
477330fc 12503 "one of transfer registers"));
bd340a04 12504
c19d1205
ZW
12505 inst.instruction |= inst.operands[0].reg << 12;
12506 inst.instruction |= inst.operands[1].reg << 8;
12507 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12508}
12509
c19d1205
ZW
12510static void
12511do_t_ldstt (void)
12512{
12513 inst.instruction |= inst.operands[0].reg << 12;
12514 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12515}
a737bd4d 12516
b99bd4ef 12517static void
c19d1205 12518do_t_mla (void)
b99bd4ef 12519{
fdfde340 12520 unsigned Rd, Rn, Rm, Ra;
c921be7d 12521
fdfde340
JM
12522 Rd = inst.operands[0].reg;
12523 Rn = inst.operands[1].reg;
12524 Rm = inst.operands[2].reg;
12525 Ra = inst.operands[3].reg;
12526
12527 reject_bad_reg (Rd);
12528 reject_bad_reg (Rn);
12529 reject_bad_reg (Rm);
12530 reject_bad_reg (Ra);
12531
12532 inst.instruction |= Rd << 8;
12533 inst.instruction |= Rn << 16;
12534 inst.instruction |= Rm;
12535 inst.instruction |= Ra << 12;
c19d1205 12536}
b99bd4ef 12537
c19d1205
ZW
12538static void
12539do_t_mlal (void)
12540{
fdfde340
JM
12541 unsigned RdLo, RdHi, Rn, Rm;
12542
12543 RdLo = inst.operands[0].reg;
12544 RdHi = inst.operands[1].reg;
12545 Rn = inst.operands[2].reg;
12546 Rm = inst.operands[3].reg;
12547
12548 reject_bad_reg (RdLo);
12549 reject_bad_reg (RdHi);
12550 reject_bad_reg (Rn);
12551 reject_bad_reg (Rm);
12552
12553 inst.instruction |= RdLo << 12;
12554 inst.instruction |= RdHi << 8;
12555 inst.instruction |= Rn << 16;
12556 inst.instruction |= Rm;
c19d1205 12557}
b99bd4ef 12558
c19d1205
ZW
12559static void
12560do_t_mov_cmp (void)
12561{
fdfde340
JM
12562 unsigned Rn, Rm;
12563
12564 Rn = inst.operands[0].reg;
12565 Rm = inst.operands[1].reg;
12566
e07e6e58 12567 if (Rn == REG_PC)
5ee91343 12568 set_pred_insn_type_last ();
e07e6e58 12569
c19d1205 12570 if (unified_syntax)
b99bd4ef 12571 {
c19d1205
ZW
12572 int r0off = (inst.instruction == T_MNEM_mov
12573 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12574 unsigned long opcode;
3d388997
PB
12575 bfd_boolean narrow;
12576 bfd_boolean low_regs;
12577
fdfde340 12578 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12579 opcode = inst.instruction;
5ee91343 12580 if (in_pred_block ())
0110f2b8 12581 narrow = opcode != T_MNEM_movs;
3d388997 12582 else
0110f2b8 12583 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12584 if (inst.size_req == 4
12585 || inst.operands[1].shifted)
12586 narrow = FALSE;
12587
efd81785
PB
12588 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12589 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12590 && !inst.operands[1].shifted
fdfde340
JM
12591 && Rn == REG_PC
12592 && Rm == REG_LR)
efd81785
PB
12593 {
12594 inst.instruction = T2_SUBS_PC_LR;
12595 return;
12596 }
12597
fdfde340
JM
12598 if (opcode == T_MNEM_cmp)
12599 {
12600 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12601 if (narrow)
12602 {
12603 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12604 but valid. */
12605 warn_deprecated_sp (Rm);
12606 /* R15 was documented as a valid choice for Rm in ARMv6,
12607 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12608 tools reject R15, so we do too. */
12609 constraint (Rm == REG_PC, BAD_PC);
12610 }
12611 else
12612 reject_bad_reg (Rm);
fdfde340
JM
12613 }
12614 else if (opcode == T_MNEM_mov
12615 || opcode == T_MNEM_movs)
12616 {
12617 if (inst.operands[1].isreg)
12618 {
12619 if (opcode == T_MNEM_movs)
12620 {
12621 reject_bad_reg (Rn);
12622 reject_bad_reg (Rm);
12623 }
76fa04a4
MGD
12624 else if (narrow)
12625 {
12626 /* This is mov.n. */
12627 if ((Rn == REG_SP || Rn == REG_PC)
12628 && (Rm == REG_SP || Rm == REG_PC))
12629 {
5c3696f8 12630 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12631 "deprecated when r%u is the destination "
12632 "register."), Rm, Rn);
12633 }
12634 }
12635 else
12636 {
12637 /* This is mov.w. */
12638 constraint (Rn == REG_PC, BAD_PC);
12639 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12640 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12641 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12642 }
fdfde340
JM
12643 }
12644 else
12645 reject_bad_reg (Rn);
12646 }
12647
c19d1205
ZW
12648 if (!inst.operands[1].isreg)
12649 {
0110f2b8 12650 /* Immediate operand. */
5ee91343 12651 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12652 narrow = 0;
12653 if (low_regs && narrow)
12654 {
12655 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12656 inst.instruction |= Rn << 8;
e2b0ab59
AV
12657 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12658 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12659 {
a9f02af8 12660 if (inst.size_req == 2)
e2b0ab59 12661 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12662 else
12663 inst.relax = opcode;
72d98d16 12664 }
0110f2b8
PB
12665 }
12666 else
12667 {
e2b0ab59
AV
12668 constraint ((inst.relocs[0].type
12669 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12670 && (inst.relocs[0].type
12671 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12672 THUMB1_RELOC_ONLY);
12673
0110f2b8
PB
12674 inst.instruction = THUMB_OP32 (inst.instruction);
12675 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12676 inst.instruction |= Rn << r0off;
e2b0ab59 12677 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12678 }
c19d1205 12679 }
728ca7c9
PB
12680 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12681 && (inst.instruction == T_MNEM_mov
12682 || inst.instruction == T_MNEM_movs))
12683 {
12684 /* Register shifts are encoded as separate shift instructions. */
12685 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12686
5ee91343 12687 if (in_pred_block ())
728ca7c9
PB
12688 narrow = !flags;
12689 else
12690 narrow = flags;
12691
12692 if (inst.size_req == 4)
12693 narrow = FALSE;
12694
12695 if (!low_regs || inst.operands[1].imm > 7)
12696 narrow = FALSE;
12697
fdfde340 12698 if (Rn != Rm)
728ca7c9
PB
12699 narrow = FALSE;
12700
12701 switch (inst.operands[1].shift_kind)
12702 {
12703 case SHIFT_LSL:
12704 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12705 break;
12706 case SHIFT_ASR:
12707 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12708 break;
12709 case SHIFT_LSR:
12710 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12711 break;
12712 case SHIFT_ROR:
12713 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12714 break;
12715 default:
5f4273c7 12716 abort ();
728ca7c9
PB
12717 }
12718
12719 inst.instruction = opcode;
12720 if (narrow)
12721 {
fdfde340 12722 inst.instruction |= Rn;
728ca7c9
PB
12723 inst.instruction |= inst.operands[1].imm << 3;
12724 }
12725 else
12726 {
12727 if (flags)
12728 inst.instruction |= CONDS_BIT;
12729
fdfde340
JM
12730 inst.instruction |= Rn << 8;
12731 inst.instruction |= Rm << 16;
728ca7c9
PB
12732 inst.instruction |= inst.operands[1].imm;
12733 }
12734 }
3d388997 12735 else if (!narrow)
c19d1205 12736 {
728ca7c9
PB
12737 /* Some mov with immediate shift have narrow variants.
12738 Register shifts are handled above. */
12739 if (low_regs && inst.operands[1].shifted
12740 && (inst.instruction == T_MNEM_mov
12741 || inst.instruction == T_MNEM_movs))
12742 {
5ee91343 12743 if (in_pred_block ())
728ca7c9
PB
12744 narrow = (inst.instruction == T_MNEM_mov);
12745 else
12746 narrow = (inst.instruction == T_MNEM_movs);
12747 }
12748
12749 if (narrow)
12750 {
12751 switch (inst.operands[1].shift_kind)
12752 {
12753 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12754 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12755 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12756 default: narrow = FALSE; break;
12757 }
12758 }
12759
12760 if (narrow)
12761 {
fdfde340
JM
12762 inst.instruction |= Rn;
12763 inst.instruction |= Rm << 3;
e2b0ab59 12764 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12765 }
12766 else
12767 {
12768 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12769 inst.instruction |= Rn << r0off;
728ca7c9
PB
12770 encode_thumb32_shifted_operand (1);
12771 }
c19d1205
ZW
12772 }
12773 else
12774 switch (inst.instruction)
12775 {
12776 case T_MNEM_mov:
837b3435 12777 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12778 results. Don't allow this. */
12779 if (low_regs)
12780 {
12781 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12782 "MOV Rd, Rs with two low registers is not "
12783 "permitted on this architecture");
fa94de6b 12784 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12785 arm_ext_v6);
12786 }
12787
c19d1205 12788 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12789 inst.instruction |= (Rn & 0x8) << 4;
12790 inst.instruction |= (Rn & 0x7);
12791 inst.instruction |= Rm << 3;
c19d1205 12792 break;
b99bd4ef 12793
c19d1205
ZW
12794 case T_MNEM_movs:
12795 /* We know we have low registers at this point.
941a8a52
MGD
12796 Generate LSLS Rd, Rs, #0. */
12797 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12798 inst.instruction |= Rn;
12799 inst.instruction |= Rm << 3;
c19d1205
ZW
12800 break;
12801
12802 case T_MNEM_cmp:
3d388997 12803 if (low_regs)
c19d1205
ZW
12804 {
12805 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12806 inst.instruction |= Rn;
12807 inst.instruction |= Rm << 3;
c19d1205
ZW
12808 }
12809 else
12810 {
12811 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12812 inst.instruction |= (Rn & 0x8) << 4;
12813 inst.instruction |= (Rn & 0x7);
12814 inst.instruction |= Rm << 3;
c19d1205
ZW
12815 }
12816 break;
12817 }
b99bd4ef
NC
12818 return;
12819 }
12820
c19d1205 12821 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12822
12823 /* PR 10443: Do not silently ignore shifted operands. */
12824 constraint (inst.operands[1].shifted,
12825 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12826
c19d1205 12827 if (inst.operands[1].isreg)
b99bd4ef 12828 {
fdfde340 12829 if (Rn < 8 && Rm < 8)
b99bd4ef 12830 {
c19d1205
ZW
12831 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12832 since a MOV instruction produces unpredictable results. */
12833 if (inst.instruction == T_OPCODE_MOV_I8)
12834 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12835 else
c19d1205 12836 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12837
fdfde340
JM
12838 inst.instruction |= Rn;
12839 inst.instruction |= Rm << 3;
b99bd4ef
NC
12840 }
12841 else
12842 {
c19d1205
ZW
12843 if (inst.instruction == T_OPCODE_MOV_I8)
12844 inst.instruction = T_OPCODE_MOV_HR;
12845 else
12846 inst.instruction = T_OPCODE_CMP_HR;
12847 do_t_cpy ();
b99bd4ef
NC
12848 }
12849 }
c19d1205 12850 else
b99bd4ef 12851 {
fdfde340 12852 constraint (Rn > 7,
c19d1205 12853 _("only lo regs allowed with immediate"));
fdfde340 12854 inst.instruction |= Rn << 8;
e2b0ab59 12855 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12856 }
12857}
b99bd4ef 12858
c19d1205
ZW
12859static void
12860do_t_mov16 (void)
12861{
fdfde340 12862 unsigned Rd;
b6895b4f
PB
12863 bfd_vma imm;
12864 bfd_boolean top;
12865
12866 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12867 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12868 {
33eaf5de 12869 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12871 }
e2b0ab59 12872 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12873 {
33eaf5de 12874 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12875 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12876 }
12877
fdfde340
JM
12878 Rd = inst.operands[0].reg;
12879 reject_bad_reg (Rd);
12880
12881 inst.instruction |= Rd << 8;
e2b0ab59 12882 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12883 {
e2b0ab59 12884 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12885 inst.instruction |= (imm & 0xf000) << 4;
12886 inst.instruction |= (imm & 0x0800) << 15;
12887 inst.instruction |= (imm & 0x0700) << 4;
12888 inst.instruction |= (imm & 0x00ff);
12889 }
c19d1205 12890}
b99bd4ef 12891
c19d1205
ZW
12892static void
12893do_t_mvn_tst (void)
12894{
fdfde340 12895 unsigned Rn, Rm;
c921be7d 12896
fdfde340
JM
12897 Rn = inst.operands[0].reg;
12898 Rm = inst.operands[1].reg;
12899
12900 if (inst.instruction == T_MNEM_cmp
12901 || inst.instruction == T_MNEM_cmn)
12902 constraint (Rn == REG_PC, BAD_PC);
12903 else
12904 reject_bad_reg (Rn);
12905 reject_bad_reg (Rm);
12906
c19d1205
ZW
12907 if (unified_syntax)
12908 {
12909 int r0off = (inst.instruction == T_MNEM_mvn
12910 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12911 bfd_boolean narrow;
12912
12913 if (inst.size_req == 4
12914 || inst.instruction > 0xffff
12915 || inst.operands[1].shifted
fdfde340 12916 || Rn > 7 || Rm > 7)
3d388997 12917 narrow = FALSE;
fe8b4cc3
KT
12918 else if (inst.instruction == T_MNEM_cmn
12919 || inst.instruction == T_MNEM_tst)
3d388997
PB
12920 narrow = TRUE;
12921 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12922 narrow = !in_pred_block ();
3d388997 12923 else
5ee91343 12924 narrow = in_pred_block ();
3d388997 12925
c19d1205 12926 if (!inst.operands[1].isreg)
b99bd4ef 12927 {
c19d1205
ZW
12928 /* For an immediate, we always generate a 32-bit opcode;
12929 section relaxation will shrink it later if possible. */
12930 if (inst.instruction < 0xffff)
12931 inst.instruction = THUMB_OP32 (inst.instruction);
12932 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12933 inst.instruction |= Rn << r0off;
e2b0ab59 12934 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12935 }
c19d1205 12936 else
b99bd4ef 12937 {
c19d1205 12938 /* See if we can do this with a 16-bit instruction. */
3d388997 12939 if (narrow)
b99bd4ef 12940 {
c19d1205 12941 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12942 inst.instruction |= Rn;
12943 inst.instruction |= Rm << 3;
b99bd4ef 12944 }
c19d1205 12945 else
b99bd4ef 12946 {
c19d1205
ZW
12947 constraint (inst.operands[1].shifted
12948 && inst.operands[1].immisreg,
12949 _("shift must be constant"));
12950 if (inst.instruction < 0xffff)
12951 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12952 inst.instruction |= Rn << r0off;
c19d1205 12953 encode_thumb32_shifted_operand (1);
b99bd4ef 12954 }
b99bd4ef
NC
12955 }
12956 }
12957 else
12958 {
c19d1205
ZW
12959 constraint (inst.instruction > 0xffff
12960 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12961 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12962 _("unshifted register required"));
fdfde340 12963 constraint (Rn > 7 || Rm > 7,
c19d1205 12964 BAD_HIREG);
b99bd4ef 12965
c19d1205 12966 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12967 inst.instruction |= Rn;
12968 inst.instruction |= Rm << 3;
b99bd4ef 12969 }
b99bd4ef
NC
12970}
12971
b05fe5cf 12972static void
c19d1205 12973do_t_mrs (void)
b05fe5cf 12974{
fdfde340 12975 unsigned Rd;
037e8744
JB
12976
12977 if (do_vfp_nsyn_mrs () == SUCCESS)
12978 return;
12979
90ec0d68
MGD
12980 Rd = inst.operands[0].reg;
12981 reject_bad_reg (Rd);
12982 inst.instruction |= Rd << 8;
12983
12984 if (inst.operands[1].isreg)
62b3e311 12985 {
90ec0d68
MGD
12986 unsigned br = inst.operands[1].reg;
12987 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12988 as_bad (_("bad register for mrs"));
12989
12990 inst.instruction |= br & (0xf << 16);
12991 inst.instruction |= (br & 0x300) >> 4;
12992 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12993 }
12994 else
12995 {
90ec0d68 12996 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12997
d2cd1205 12998 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12999 {
13000 /* PR gas/12698: The constraint is only applied for m_profile.
13001 If the user has specified -march=all, we want to ignore it as
13002 we are building for any CPU type, including non-m variants. */
823d2571
TG
13003 bfd_boolean m_profile =
13004 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
13005 constraint ((flags != 0) && m_profile, _("selected processor does "
13006 "not support requested special purpose register"));
13007 }
90ec0d68 13008 else
d2cd1205
JB
13009 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13010 devices). */
13011 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13012 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13013
90ec0d68
MGD
13014 inst.instruction |= (flags & SPSR_BIT) >> 2;
13015 inst.instruction |= inst.operands[1].imm & 0xff;
13016 inst.instruction |= 0xf0000;
13017 }
c19d1205 13018}
b05fe5cf 13019
c19d1205
ZW
13020static void
13021do_t_msr (void)
13022{
62b3e311 13023 int flags;
fdfde340 13024 unsigned Rn;
62b3e311 13025
037e8744
JB
13026 if (do_vfp_nsyn_msr () == SUCCESS)
13027 return;
13028
c19d1205
ZW
13029 constraint (!inst.operands[1].isreg,
13030 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13031
13032 if (inst.operands[0].isreg)
13033 flags = (int)(inst.operands[0].reg);
13034 else
13035 flags = inst.operands[0].imm;
13036
d2cd1205 13037 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13038 {
d2cd1205
JB
13039 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13040
1a43faaf 13041 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13042 If the user has specified -march=all, we want to ignore it as
13043 we are building for any CPU type, including non-m variants. */
823d2571
TG
13044 bfd_boolean m_profile =
13045 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13046 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13047 && (bits & ~(PSR_s | PSR_f)) != 0)
13048 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13049 && bits != PSR_f)) && m_profile,
13050 _("selected processor does not support requested special "
13051 "purpose register"));
62b3e311
PB
13052 }
13053 else
d2cd1205
JB
13054 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13055 "requested special purpose register"));
c921be7d 13056
fdfde340
JM
13057 Rn = inst.operands[1].reg;
13058 reject_bad_reg (Rn);
13059
62b3e311 13060 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13061 inst.instruction |= (flags & 0xf0000) >> 8;
13062 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13063 inst.instruction |= (flags & 0xff);
fdfde340 13064 inst.instruction |= Rn << 16;
c19d1205 13065}
b05fe5cf 13066
c19d1205
ZW
13067static void
13068do_t_mul (void)
13069{
17828f45 13070 bfd_boolean narrow;
fdfde340 13071 unsigned Rd, Rn, Rm;
17828f45 13072
c19d1205
ZW
13073 if (!inst.operands[2].present)
13074 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13075
fdfde340
JM
13076 Rd = inst.operands[0].reg;
13077 Rn = inst.operands[1].reg;
13078 Rm = inst.operands[2].reg;
13079
17828f45 13080 if (unified_syntax)
b05fe5cf 13081 {
17828f45 13082 if (inst.size_req == 4
fdfde340
JM
13083 || (Rd != Rn
13084 && Rd != Rm)
13085 || Rn > 7
13086 || Rm > 7)
17828f45
JM
13087 narrow = FALSE;
13088 else if (inst.instruction == T_MNEM_muls)
5ee91343 13089 narrow = !in_pred_block ();
17828f45 13090 else
5ee91343 13091 narrow = in_pred_block ();
b05fe5cf 13092 }
c19d1205 13093 else
b05fe5cf 13094 {
17828f45 13095 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13096 constraint (Rn > 7 || Rm > 7,
c19d1205 13097 BAD_HIREG);
17828f45
JM
13098 narrow = TRUE;
13099 }
b05fe5cf 13100
17828f45
JM
13101 if (narrow)
13102 {
13103 /* 16-bit MULS/Conditional MUL. */
c19d1205 13104 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13105 inst.instruction |= Rd;
b05fe5cf 13106
fdfde340
JM
13107 if (Rd == Rn)
13108 inst.instruction |= Rm << 3;
13109 else if (Rd == Rm)
13110 inst.instruction |= Rn << 3;
c19d1205
ZW
13111 else
13112 constraint (1, _("dest must overlap one source register"));
13113 }
17828f45
JM
13114 else
13115 {
e07e6e58
NC
13116 constraint (inst.instruction != T_MNEM_mul,
13117 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13118 /* 32-bit MUL. */
13119 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13120 inst.instruction |= Rd << 8;
13121 inst.instruction |= Rn << 16;
13122 inst.instruction |= Rm << 0;
13123
13124 reject_bad_reg (Rd);
13125 reject_bad_reg (Rn);
13126 reject_bad_reg (Rm);
17828f45 13127 }
c19d1205 13128}
b05fe5cf 13129
c19d1205
ZW
13130static void
13131do_t_mull (void)
13132{
fdfde340 13133 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13134
fdfde340
JM
13135 RdLo = inst.operands[0].reg;
13136 RdHi = inst.operands[1].reg;
13137 Rn = inst.operands[2].reg;
13138 Rm = inst.operands[3].reg;
13139
13140 reject_bad_reg (RdLo);
13141 reject_bad_reg (RdHi);
13142 reject_bad_reg (Rn);
13143 reject_bad_reg (Rm);
13144
13145 inst.instruction |= RdLo << 12;
13146 inst.instruction |= RdHi << 8;
13147 inst.instruction |= Rn << 16;
13148 inst.instruction |= Rm;
13149
13150 if (RdLo == RdHi)
c19d1205
ZW
13151 as_tsktsk (_("rdhi and rdlo must be different"));
13152}
b05fe5cf 13153
c19d1205
ZW
13154static void
13155do_t_nop (void)
13156{
5ee91343 13157 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13158
c19d1205
ZW
13159 if (unified_syntax)
13160 {
13161 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13162 {
c19d1205
ZW
13163 inst.instruction = THUMB_OP32 (inst.instruction);
13164 inst.instruction |= inst.operands[0].imm;
13165 }
13166 else
13167 {
bc2d1808
NC
13168 /* PR9722: Check for Thumb2 availability before
13169 generating a thumb2 nop instruction. */
afa62d5e 13170 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13171 {
13172 inst.instruction = THUMB_OP16 (inst.instruction);
13173 inst.instruction |= inst.operands[0].imm << 4;
13174 }
13175 else
13176 inst.instruction = 0x46c0;
c19d1205
ZW
13177 }
13178 }
13179 else
13180 {
13181 constraint (inst.operands[0].present,
13182 _("Thumb does not support NOP with hints"));
13183 inst.instruction = 0x46c0;
13184 }
13185}
b05fe5cf 13186
c19d1205
ZW
13187static void
13188do_t_neg (void)
13189{
13190 if (unified_syntax)
13191 {
3d388997
PB
13192 bfd_boolean narrow;
13193
13194 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13195 narrow = !in_pred_block ();
3d388997 13196 else
5ee91343 13197 narrow = in_pred_block ();
3d388997
PB
13198 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13199 narrow = FALSE;
13200 if (inst.size_req == 4)
13201 narrow = FALSE;
13202
13203 if (!narrow)
c19d1205
ZW
13204 {
13205 inst.instruction = THUMB_OP32 (inst.instruction);
13206 inst.instruction |= inst.operands[0].reg << 8;
13207 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13208 }
13209 else
13210 {
c19d1205
ZW
13211 inst.instruction = THUMB_OP16 (inst.instruction);
13212 inst.instruction |= inst.operands[0].reg;
13213 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13214 }
13215 }
13216 else
13217 {
c19d1205
ZW
13218 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13219 BAD_HIREG);
13220 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13221
13222 inst.instruction = THUMB_OP16 (inst.instruction);
13223 inst.instruction |= inst.operands[0].reg;
13224 inst.instruction |= inst.operands[1].reg << 3;
13225 }
13226}
13227
1c444d06
JM
13228static void
13229do_t_orn (void)
13230{
13231 unsigned Rd, Rn;
13232
13233 Rd = inst.operands[0].reg;
13234 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13235
fdfde340
JM
13236 reject_bad_reg (Rd);
13237 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13238 reject_bad_reg (Rn);
13239
1c444d06
JM
13240 inst.instruction |= Rd << 8;
13241 inst.instruction |= Rn << 16;
13242
13243 if (!inst.operands[2].isreg)
13244 {
13245 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13246 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13247 }
13248 else
13249 {
13250 unsigned Rm;
13251
13252 Rm = inst.operands[2].reg;
fdfde340 13253 reject_bad_reg (Rm);
1c444d06
JM
13254
13255 constraint (inst.operands[2].shifted
13256 && inst.operands[2].immisreg,
13257 _("shift must be constant"));
13258 encode_thumb32_shifted_operand (2);
13259 }
13260}
13261
c19d1205
ZW
13262static void
13263do_t_pkhbt (void)
13264{
fdfde340
JM
13265 unsigned Rd, Rn, Rm;
13266
13267 Rd = inst.operands[0].reg;
13268 Rn = inst.operands[1].reg;
13269 Rm = inst.operands[2].reg;
13270
13271 reject_bad_reg (Rd);
13272 reject_bad_reg (Rn);
13273 reject_bad_reg (Rm);
13274
13275 inst.instruction |= Rd << 8;
13276 inst.instruction |= Rn << 16;
13277 inst.instruction |= Rm;
c19d1205
ZW
13278 if (inst.operands[3].present)
13279 {
e2b0ab59
AV
13280 unsigned int val = inst.relocs[0].exp.X_add_number;
13281 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13282 _("expression too complex"));
13283 inst.instruction |= (val & 0x1c) << 10;
13284 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13285 }
c19d1205 13286}
b05fe5cf 13287
c19d1205
ZW
13288static void
13289do_t_pkhtb (void)
13290{
13291 if (!inst.operands[3].present)
1ef52f49
NC
13292 {
13293 unsigned Rtmp;
13294
13295 inst.instruction &= ~0x00000020;
13296
13297 /* PR 10168. Swap the Rm and Rn registers. */
13298 Rtmp = inst.operands[1].reg;
13299 inst.operands[1].reg = inst.operands[2].reg;
13300 inst.operands[2].reg = Rtmp;
13301 }
c19d1205 13302 do_t_pkhbt ();
b05fe5cf
ZW
13303}
13304
c19d1205
ZW
13305static void
13306do_t_pld (void)
13307{
fdfde340
JM
13308 if (inst.operands[0].immisreg)
13309 reject_bad_reg (inst.operands[0].imm);
13310
c19d1205
ZW
13311 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13312}
b05fe5cf 13313
c19d1205
ZW
13314static void
13315do_t_push_pop (void)
b99bd4ef 13316{
e9f89963 13317 unsigned mask;
5f4273c7 13318
c19d1205
ZW
13319 constraint (inst.operands[0].writeback,
13320 _("push/pop do not support {reglist}^"));
e2b0ab59 13321 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13322 _("expression too complex"));
b99bd4ef 13323
e9f89963 13324 mask = inst.operands[0].imm;
d3bfe16e 13325 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13326 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13327 else if (inst.size_req != 4
c6025a80 13328 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13329 ? REG_LR : REG_PC)))
b99bd4ef 13330 {
c19d1205
ZW
13331 inst.instruction = THUMB_OP16 (inst.instruction);
13332 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13333 inst.instruction |= mask & 0xff;
c19d1205
ZW
13334 }
13335 else if (unified_syntax)
13336 {
3c707909 13337 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13338 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13339 }
13340 else
13341 {
13342 inst.error = _("invalid register list to push/pop instruction");
13343 return;
c19d1205 13344 }
4b5a202f
AV
13345}
13346
13347static void
13348do_t_clrm (void)
13349{
13350 if (unified_syntax)
13351 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13352 else
13353 {
13354 inst.error = _("invalid register list to push/pop instruction");
13355 return;
13356 }
c19d1205 13357}
b99bd4ef 13358
efd6b359
AV
13359static void
13360do_t_vscclrm (void)
13361{
13362 if (inst.operands[0].issingle)
13363 {
13364 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13365 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13366 inst.instruction |= inst.operands[0].imm;
13367 }
13368 else
13369 {
13370 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13371 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13372 inst.instruction |= 1 << 8;
13373 inst.instruction |= inst.operands[0].imm << 1;
13374 }
13375}
13376
c19d1205
ZW
13377static void
13378do_t_rbit (void)
13379{
fdfde340
JM
13380 unsigned Rd, Rm;
13381
13382 Rd = inst.operands[0].reg;
13383 Rm = inst.operands[1].reg;
13384
13385 reject_bad_reg (Rd);
13386 reject_bad_reg (Rm);
13387
13388 inst.instruction |= Rd << 8;
13389 inst.instruction |= Rm << 16;
13390 inst.instruction |= Rm;
c19d1205 13391}
b99bd4ef 13392
c19d1205
ZW
13393static void
13394do_t_rev (void)
13395{
fdfde340
JM
13396 unsigned Rd, Rm;
13397
13398 Rd = inst.operands[0].reg;
13399 Rm = inst.operands[1].reg;
13400
13401 reject_bad_reg (Rd);
13402 reject_bad_reg (Rm);
13403
13404 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13405 && inst.size_req != 4)
13406 {
13407 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13408 inst.instruction |= Rd;
13409 inst.instruction |= Rm << 3;
c19d1205
ZW
13410 }
13411 else if (unified_syntax)
13412 {
13413 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13414 inst.instruction |= Rd << 8;
13415 inst.instruction |= Rm << 16;
13416 inst.instruction |= Rm;
c19d1205
ZW
13417 }
13418 else
13419 inst.error = BAD_HIREG;
13420}
b99bd4ef 13421
1c444d06
JM
13422static void
13423do_t_rrx (void)
13424{
13425 unsigned Rd, Rm;
13426
13427 Rd = inst.operands[0].reg;
13428 Rm = inst.operands[1].reg;
13429
fdfde340
JM
13430 reject_bad_reg (Rd);
13431 reject_bad_reg (Rm);
c921be7d 13432
1c444d06
JM
13433 inst.instruction |= Rd << 8;
13434 inst.instruction |= Rm;
13435}
13436
c19d1205
ZW
13437static void
13438do_t_rsb (void)
13439{
fdfde340 13440 unsigned Rd, Rs;
b99bd4ef 13441
c19d1205
ZW
13442 Rd = inst.operands[0].reg;
13443 Rs = (inst.operands[1].present
13444 ? inst.operands[1].reg /* Rd, Rs, foo */
13445 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13446
fdfde340
JM
13447 reject_bad_reg (Rd);
13448 reject_bad_reg (Rs);
13449 if (inst.operands[2].isreg)
13450 reject_bad_reg (inst.operands[2].reg);
13451
c19d1205
ZW
13452 inst.instruction |= Rd << 8;
13453 inst.instruction |= Rs << 16;
13454 if (!inst.operands[2].isreg)
13455 {
026d3abb
PB
13456 bfd_boolean narrow;
13457
13458 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13459 narrow = !in_pred_block ();
026d3abb 13460 else
5ee91343 13461 narrow = in_pred_block ();
026d3abb
PB
13462
13463 if (Rd > 7 || Rs > 7)
13464 narrow = FALSE;
13465
13466 if (inst.size_req == 4 || !unified_syntax)
13467 narrow = FALSE;
13468
e2b0ab59
AV
13469 if (inst.relocs[0].exp.X_op != O_constant
13470 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13471 narrow = FALSE;
13472
13473 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13474 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13475 if (narrow)
13476 {
e2b0ab59 13477 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13478 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13479 inst.instruction |= Rs << 3;
13480 inst.instruction |= Rd;
13481 }
13482 else
13483 {
13484 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13485 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13486 }
c19d1205
ZW
13487 }
13488 else
13489 encode_thumb32_shifted_operand (2);
13490}
b99bd4ef 13491
c19d1205
ZW
13492static void
13493do_t_setend (void)
13494{
12e37cbc
MGD
13495 if (warn_on_deprecated
13496 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13497 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13498
5ee91343 13499 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13500 if (inst.operands[0].imm)
13501 inst.instruction |= 0x8;
13502}
b99bd4ef 13503
c19d1205
ZW
13504static void
13505do_t_shift (void)
13506{
13507 if (!inst.operands[1].present)
13508 inst.operands[1].reg = inst.operands[0].reg;
13509
13510 if (unified_syntax)
13511 {
3d388997
PB
13512 bfd_boolean narrow;
13513 int shift_kind;
13514
13515 switch (inst.instruction)
13516 {
13517 case T_MNEM_asr:
13518 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13519 case T_MNEM_lsl:
13520 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13521 case T_MNEM_lsr:
13522 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13523 case T_MNEM_ror:
13524 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13525 default: abort ();
13526 }
13527
13528 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13529 narrow = !in_pred_block ();
3d388997 13530 else
5ee91343 13531 narrow = in_pred_block ();
3d388997
PB
13532 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13533 narrow = FALSE;
13534 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13535 narrow = FALSE;
13536 if (inst.operands[2].isreg
13537 && (inst.operands[1].reg != inst.operands[0].reg
13538 || inst.operands[2].reg > 7))
13539 narrow = FALSE;
13540 if (inst.size_req == 4)
13541 narrow = FALSE;
13542
fdfde340
JM
13543 reject_bad_reg (inst.operands[0].reg);
13544 reject_bad_reg (inst.operands[1].reg);
c921be7d 13545
3d388997 13546 if (!narrow)
c19d1205
ZW
13547 {
13548 if (inst.operands[2].isreg)
b99bd4ef 13549 {
fdfde340 13550 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13551 inst.instruction = THUMB_OP32 (inst.instruction);
13552 inst.instruction |= inst.operands[0].reg << 8;
13553 inst.instruction |= inst.operands[1].reg << 16;
13554 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13555
13556 /* PR 12854: Error on extraneous shifts. */
13557 constraint (inst.operands[2].shifted,
13558 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13559 }
13560 else
13561 {
13562 inst.operands[1].shifted = 1;
3d388997 13563 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13564 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13565 ? T_MNEM_movs : T_MNEM_mov);
13566 inst.instruction |= inst.operands[0].reg << 8;
13567 encode_thumb32_shifted_operand (1);
13568 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13569 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13570 }
13571 }
13572 else
13573 {
c19d1205 13574 if (inst.operands[2].isreg)
b99bd4ef 13575 {
3d388997 13576 switch (shift_kind)
b99bd4ef 13577 {
3d388997
PB
13578 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13579 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13580 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13581 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13582 default: abort ();
b99bd4ef 13583 }
5f4273c7 13584
c19d1205
ZW
13585 inst.instruction |= inst.operands[0].reg;
13586 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13587
13588 /* PR 12854: Error on extraneous shifts. */
13589 constraint (inst.operands[2].shifted,
13590 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13591 }
13592 else
13593 {
3d388997 13594 switch (shift_kind)
b99bd4ef 13595 {
3d388997
PB
13596 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13597 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13598 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13599 default: abort ();
b99bd4ef 13600 }
e2b0ab59 13601 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13602 inst.instruction |= inst.operands[0].reg;
13603 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13604 }
13605 }
c19d1205
ZW
13606 }
13607 else
13608 {
13609 constraint (inst.operands[0].reg > 7
13610 || inst.operands[1].reg > 7, BAD_HIREG);
13611 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13612
c19d1205
ZW
13613 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13614 {
13615 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13616 constraint (inst.operands[0].reg != inst.operands[1].reg,
13617 _("source1 and dest must be same register"));
b99bd4ef 13618
c19d1205
ZW
13619 switch (inst.instruction)
13620 {
13621 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13622 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13623 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13624 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13625 default: abort ();
13626 }
5f4273c7 13627
c19d1205
ZW
13628 inst.instruction |= inst.operands[0].reg;
13629 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13630
13631 /* PR 12854: Error on extraneous shifts. */
13632 constraint (inst.operands[2].shifted,
13633 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13634 }
13635 else
b99bd4ef 13636 {
c19d1205
ZW
13637 switch (inst.instruction)
13638 {
13639 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13640 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13641 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13642 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13643 default: abort ();
13644 }
e2b0ab59 13645 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13646 inst.instruction |= inst.operands[0].reg;
13647 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13648 }
13649 }
b99bd4ef
NC
13650}
13651
13652static void
c19d1205 13653do_t_simd (void)
b99bd4ef 13654{
fdfde340
JM
13655 unsigned Rd, Rn, Rm;
13656
13657 Rd = inst.operands[0].reg;
13658 Rn = inst.operands[1].reg;
13659 Rm = inst.operands[2].reg;
13660
13661 reject_bad_reg (Rd);
13662 reject_bad_reg (Rn);
13663 reject_bad_reg (Rm);
13664
13665 inst.instruction |= Rd << 8;
13666 inst.instruction |= Rn << 16;
13667 inst.instruction |= Rm;
c19d1205 13668}
b99bd4ef 13669
03ee1b7f
NC
13670static void
13671do_t_simd2 (void)
13672{
13673 unsigned Rd, Rn, Rm;
13674
13675 Rd = inst.operands[0].reg;
13676 Rm = inst.operands[1].reg;
13677 Rn = inst.operands[2].reg;
13678
13679 reject_bad_reg (Rd);
13680 reject_bad_reg (Rn);
13681 reject_bad_reg (Rm);
13682
13683 inst.instruction |= Rd << 8;
13684 inst.instruction |= Rn << 16;
13685 inst.instruction |= Rm;
13686}
13687
c19d1205 13688static void
3eb17e6b 13689do_t_smc (void)
c19d1205 13690{
e2b0ab59 13691 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13692 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13693 _("SMC is not permitted on this architecture"));
e2b0ab59 13694 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13695 _("expression too complex"));
e2b0ab59 13696 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13697 inst.instruction |= (value & 0xf000) >> 12;
13698 inst.instruction |= (value & 0x0ff0);
13699 inst.instruction |= (value & 0x000f) << 16;
24382199 13700 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13701 set_pred_insn_type_last ();
c19d1205 13702}
b99bd4ef 13703
90ec0d68
MGD
13704static void
13705do_t_hvc (void)
13706{
e2b0ab59 13707 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13708
e2b0ab59 13709 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13710 inst.instruction |= (value & 0x0fff);
13711 inst.instruction |= (value & 0xf000) << 4;
13712}
13713
c19d1205 13714static void
3a21c15a 13715do_t_ssat_usat (int bias)
c19d1205 13716{
fdfde340
JM
13717 unsigned Rd, Rn;
13718
13719 Rd = inst.operands[0].reg;
13720 Rn = inst.operands[2].reg;
13721
13722 reject_bad_reg (Rd);
13723 reject_bad_reg (Rn);
13724
13725 inst.instruction |= Rd << 8;
3a21c15a 13726 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13727 inst.instruction |= Rn << 16;
b99bd4ef 13728
c19d1205 13729 if (inst.operands[3].present)
b99bd4ef 13730 {
e2b0ab59 13731 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13732
e2b0ab59 13733 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13734
e2b0ab59 13735 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13736 _("expression too complex"));
b99bd4ef 13737
3a21c15a 13738 if (shift_amount != 0)
6189168b 13739 {
3a21c15a
NC
13740 constraint (shift_amount > 31,
13741 _("shift expression is too large"));
13742
c19d1205 13743 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13744 inst.instruction |= 0x00200000; /* sh bit. */
13745
13746 inst.instruction |= (shift_amount & 0x1c) << 10;
13747 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13748 }
13749 }
b99bd4ef 13750}
c921be7d 13751
3a21c15a
NC
13752static void
13753do_t_ssat (void)
13754{
13755 do_t_ssat_usat (1);
13756}
b99bd4ef 13757
0dd132b6 13758static void
c19d1205 13759do_t_ssat16 (void)
0dd132b6 13760{
fdfde340
JM
13761 unsigned Rd, Rn;
13762
13763 Rd = inst.operands[0].reg;
13764 Rn = inst.operands[2].reg;
13765
13766 reject_bad_reg (Rd);
13767 reject_bad_reg (Rn);
13768
13769 inst.instruction |= Rd << 8;
c19d1205 13770 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13771 inst.instruction |= Rn << 16;
c19d1205 13772}
0dd132b6 13773
c19d1205
ZW
13774static void
13775do_t_strex (void)
13776{
13777 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13778 || inst.operands[2].postind || inst.operands[2].writeback
13779 || inst.operands[2].immisreg || inst.operands[2].shifted
13780 || inst.operands[2].negative,
01cfc07f 13781 BAD_ADDR_MODE);
0dd132b6 13782
5be8be5d
DG
13783 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13784
c19d1205
ZW
13785 inst.instruction |= inst.operands[0].reg << 8;
13786 inst.instruction |= inst.operands[1].reg << 12;
13787 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13788 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13789}
13790
b99bd4ef 13791static void
c19d1205 13792do_t_strexd (void)
b99bd4ef 13793{
c19d1205
ZW
13794 if (!inst.operands[2].present)
13795 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13796
c19d1205
ZW
13797 constraint (inst.operands[0].reg == inst.operands[1].reg
13798 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13799 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13800 BAD_OVERLAP);
b99bd4ef 13801
c19d1205
ZW
13802 inst.instruction |= inst.operands[0].reg;
13803 inst.instruction |= inst.operands[1].reg << 12;
13804 inst.instruction |= inst.operands[2].reg << 8;
13805 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13806}
13807
13808static void
c19d1205 13809do_t_sxtah (void)
b99bd4ef 13810{
fdfde340
JM
13811 unsigned Rd, Rn, Rm;
13812
13813 Rd = inst.operands[0].reg;
13814 Rn = inst.operands[1].reg;
13815 Rm = inst.operands[2].reg;
13816
13817 reject_bad_reg (Rd);
13818 reject_bad_reg (Rn);
13819 reject_bad_reg (Rm);
13820
13821 inst.instruction |= Rd << 8;
13822 inst.instruction |= Rn << 16;
13823 inst.instruction |= Rm;
c19d1205
ZW
13824 inst.instruction |= inst.operands[3].imm << 4;
13825}
b99bd4ef 13826
c19d1205
ZW
13827static void
13828do_t_sxth (void)
13829{
fdfde340
JM
13830 unsigned Rd, Rm;
13831
13832 Rd = inst.operands[0].reg;
13833 Rm = inst.operands[1].reg;
13834
13835 reject_bad_reg (Rd);
13836 reject_bad_reg (Rm);
c921be7d
NC
13837
13838 if (inst.instruction <= 0xffff
13839 && inst.size_req != 4
fdfde340 13840 && Rd <= 7 && Rm <= 7
c19d1205 13841 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13842 {
c19d1205 13843 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13844 inst.instruction |= Rd;
13845 inst.instruction |= Rm << 3;
b99bd4ef 13846 }
c19d1205 13847 else if (unified_syntax)
b99bd4ef 13848 {
c19d1205
ZW
13849 if (inst.instruction <= 0xffff)
13850 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13851 inst.instruction |= Rd << 8;
13852 inst.instruction |= Rm;
c19d1205 13853 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13854 }
c19d1205 13855 else
b99bd4ef 13856 {
c19d1205
ZW
13857 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13858 _("Thumb encoding does not support rotation"));
13859 constraint (1, BAD_HIREG);
b99bd4ef 13860 }
c19d1205 13861}
b99bd4ef 13862
c19d1205
ZW
13863static void
13864do_t_swi (void)
13865{
e2b0ab59 13866 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13867}
b99bd4ef 13868
92e90b6e
PB
13869static void
13870do_t_tb (void)
13871{
fdfde340 13872 unsigned Rn, Rm;
92e90b6e
PB
13873 int half;
13874
13875 half = (inst.instruction & 0x10) != 0;
5ee91343 13876 set_pred_insn_type_last ();
dfa9f0d5
PB
13877 constraint (inst.operands[0].immisreg,
13878 _("instruction requires register index"));
fdfde340
JM
13879
13880 Rn = inst.operands[0].reg;
13881 Rm = inst.operands[0].imm;
c921be7d 13882
5c8ed6a4
JW
13883 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13884 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13885 reject_bad_reg (Rm);
13886
92e90b6e
PB
13887 constraint (!half && inst.operands[0].shifted,
13888 _("instruction does not allow shifted index"));
fdfde340 13889 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13890}
13891
74db7efb
NC
13892static void
13893do_t_udf (void)
13894{
13895 if (!inst.operands[0].present)
13896 inst.operands[0].imm = 0;
13897
13898 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13899 {
13900 constraint (inst.size_req == 2,
13901 _("immediate value out of range"));
13902 inst.instruction = THUMB_OP32 (inst.instruction);
13903 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13904 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13905 }
13906 else
13907 {
13908 inst.instruction = THUMB_OP16 (inst.instruction);
13909 inst.instruction |= inst.operands[0].imm;
13910 }
13911
5ee91343 13912 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13913}
13914
13915
c19d1205
ZW
13916static void
13917do_t_usat (void)
13918{
3a21c15a 13919 do_t_ssat_usat (0);
b99bd4ef
NC
13920}
13921
13922static void
c19d1205 13923do_t_usat16 (void)
b99bd4ef 13924{
fdfde340
JM
13925 unsigned Rd, Rn;
13926
13927 Rd = inst.operands[0].reg;
13928 Rn = inst.operands[2].reg;
13929
13930 reject_bad_reg (Rd);
13931 reject_bad_reg (Rn);
13932
13933 inst.instruction |= Rd << 8;
c19d1205 13934 inst.instruction |= inst.operands[1].imm;
fdfde340 13935 inst.instruction |= Rn << 16;
b99bd4ef 13936}
c19d1205 13937
e12437dc
AV
13938/* Checking the range of the branch offset (VAL) with NBITS bits
13939 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13940static int
13941v8_1_branch_value_check (int val, int nbits, int is_signed)
13942{
13943 gas_assert (nbits > 0 && nbits <= 32);
13944 if (is_signed)
13945 {
13946 int cmp = (1 << (nbits - 1));
13947 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13948 return FAIL;
13949 }
13950 else
13951 {
13952 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13953 return FAIL;
13954 }
13955 return SUCCESS;
13956}
13957
4389b29a
AV
13958/* For branches in Armv8.1-M Mainline. */
13959static void
13960do_t_branch_future (void)
13961{
13962 unsigned long insn = inst.instruction;
13963
13964 inst.instruction = THUMB_OP32 (inst.instruction);
13965 if (inst.operands[0].hasreloc == 0)
13966 {
13967 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13968 as_bad (BAD_BRANCH_OFF);
13969
13970 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13971 }
13972 else
13973 {
13974 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13975 inst.relocs[0].pc_rel = 1;
13976 }
13977
13978 switch (insn)
13979 {
13980 case T_MNEM_bf:
13981 if (inst.operands[1].hasreloc == 0)
13982 {
13983 int val = inst.operands[1].imm;
13984 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13985 as_bad (BAD_BRANCH_OFF);
13986
13987 int immA = (val & 0x0001f000) >> 12;
13988 int immB = (val & 0x00000ffc) >> 2;
13989 int immC = (val & 0x00000002) >> 1;
13990 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13991 }
13992 else
13993 {
13994 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13995 inst.relocs[1].pc_rel = 1;
13996 }
13997 break;
13998
65d1bc05
AV
13999 case T_MNEM_bfl:
14000 if (inst.operands[1].hasreloc == 0)
14001 {
14002 int val = inst.operands[1].imm;
14003 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14004 as_bad (BAD_BRANCH_OFF);
14005
14006 int immA = (val & 0x0007f000) >> 12;
14007 int immB = (val & 0x00000ffc) >> 2;
14008 int immC = (val & 0x00000002) >> 1;
14009 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14010 }
14011 else
14012 {
14013 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14014 inst.relocs[1].pc_rel = 1;
14015 }
14016 break;
14017
f6b2b12d
AV
14018 case T_MNEM_bfcsel:
14019 /* Operand 1. */
14020 if (inst.operands[1].hasreloc == 0)
14021 {
14022 int val = inst.operands[1].imm;
14023 int immA = (val & 0x00001000) >> 12;
14024 int immB = (val & 0x00000ffc) >> 2;
14025 int immC = (val & 0x00000002) >> 1;
14026 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14027 }
14028 else
14029 {
14030 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14031 inst.relocs[1].pc_rel = 1;
14032 }
14033
14034 /* Operand 2. */
14035 if (inst.operands[2].hasreloc == 0)
14036 {
14037 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14038 int val2 = inst.operands[2].imm;
14039 int val0 = inst.operands[0].imm & 0x1f;
14040 int diff = val2 - val0;
14041 if (diff == 4)
14042 inst.instruction |= 1 << 17; /* T bit. */
14043 else if (diff != 2)
14044 as_bad (_("out of range label-relative fixup value"));
14045 }
14046 else
14047 {
14048 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14049 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14050 inst.relocs[2].pc_rel = 1;
14051 }
14052
14053 /* Operand 3. */
14054 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14055 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14056 break;
14057
f1c7f421
AV
14058 case T_MNEM_bfx:
14059 case T_MNEM_bflx:
14060 inst.instruction |= inst.operands[1].reg << 16;
14061 break;
14062
4389b29a
AV
14063 default: abort ();
14064 }
14065}
14066
60f993ce
AV
14067/* Helper function for do_t_loloop to handle relocations. */
14068static void
14069v8_1_loop_reloc (int is_le)
14070{
14071 if (inst.relocs[0].exp.X_op == O_constant)
14072 {
14073 int value = inst.relocs[0].exp.X_add_number;
14074 value = (is_le) ? -value : value;
14075
14076 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14077 as_bad (BAD_BRANCH_OFF);
14078
14079 int imml, immh;
14080
14081 immh = (value & 0x00000ffc) >> 2;
14082 imml = (value & 0x00000002) >> 1;
14083
14084 inst.instruction |= (imml << 11) | (immh << 1);
14085 }
14086 else
14087 {
14088 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14089 inst.relocs[0].pc_rel = 1;
14090 }
14091}
14092
14093/* To handle the Scalar Low Overhead Loop instructions
14094 in Armv8.1-M Mainline. */
14095static void
14096do_t_loloop (void)
14097{
14098 unsigned long insn = inst.instruction;
14099
5ee91343 14100 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14101 inst.instruction = THUMB_OP32 (inst.instruction);
14102
14103 switch (insn)
14104 {
14105 case T_MNEM_le:
14106 /* le <label>. */
14107 if (!inst.operands[0].present)
14108 inst.instruction |= 1 << 21;
14109
14110 v8_1_loop_reloc (TRUE);
14111 break;
14112
14113 case T_MNEM_wls:
14114 v8_1_loop_reloc (FALSE);
14115 /* Fall through. */
14116 case T_MNEM_dls:
14117 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14118 inst.instruction |= (inst.operands[1].reg << 16);
14119 break;
14120
14121 default: abort();
14122 }
14123}
14124
a302e574
AV
14125/* MVE instruction encoder helpers. */
14126#define M_MNEM_vabav 0xee800f01
14127#define M_MNEM_vmladav 0xeef00e00
14128#define M_MNEM_vmladava 0xeef00e20
14129#define M_MNEM_vmladavx 0xeef01e00
14130#define M_MNEM_vmladavax 0xeef01e20
14131#define M_MNEM_vmlsdav 0xeef00e01
14132#define M_MNEM_vmlsdava 0xeef00e21
14133#define M_MNEM_vmlsdavx 0xeef01e01
14134#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14135#define M_MNEM_vmullt 0xee011e00
14136#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14137#define M_MNEM_vst20 0xfc801e00
14138#define M_MNEM_vst21 0xfc801e20
14139#define M_MNEM_vst40 0xfc801e01
14140#define M_MNEM_vst41 0xfc801e21
14141#define M_MNEM_vst42 0xfc801e41
14142#define M_MNEM_vst43 0xfc801e61
14143#define M_MNEM_vld20 0xfc901e00
14144#define M_MNEM_vld21 0xfc901e20
14145#define M_MNEM_vld40 0xfc901e01
14146#define M_MNEM_vld41 0xfc901e21
14147#define M_MNEM_vld42 0xfc901e41
14148#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14149#define M_MNEM_vstrb 0xec000e00
14150#define M_MNEM_vstrh 0xec000e10
14151#define M_MNEM_vstrw 0xec000e40
14152#define M_MNEM_vstrd 0xec000e50
14153#define M_MNEM_vldrb 0xec100e00
14154#define M_MNEM_vldrh 0xec100e10
14155#define M_MNEM_vldrw 0xec100e40
14156#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14157#define M_MNEM_vmovlt 0xeea01f40
14158#define M_MNEM_vmovlb 0xeea00f40
14159#define M_MNEM_vmovnt 0xfe311e81
14160#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14161#define M_MNEM_vadc 0xee300f00
14162#define M_MNEM_vadci 0xee301f00
14163#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14164#define M_MNEM_vaddlv 0xee890f00
14165#define M_MNEM_vaddlva 0xee890f20
14166#define M_MNEM_vaddv 0xeef10f00
14167#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14168#define M_MNEM_vddup 0xee011f6e
14169#define M_MNEM_vdwdup 0xee011f60
14170#define M_MNEM_vidup 0xee010f6e
14171#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14172#define M_MNEM_vmaxv 0xeee20f00
14173#define M_MNEM_vmaxav 0xeee00f00
14174#define M_MNEM_vminv 0xeee20f80
14175#define M_MNEM_vminav 0xeee00f80
93925576
AV
14176#define M_MNEM_vmlaldav 0xee800e00
14177#define M_MNEM_vmlaldava 0xee800e20
14178#define M_MNEM_vmlaldavx 0xee801e00
14179#define M_MNEM_vmlaldavax 0xee801e20
14180#define M_MNEM_vmlsldav 0xee800e01
14181#define M_MNEM_vmlsldava 0xee800e21
14182#define M_MNEM_vmlsldavx 0xee801e01
14183#define M_MNEM_vmlsldavax 0xee801e21
14184#define M_MNEM_vrmlaldavhx 0xee801f00
14185#define M_MNEM_vrmlaldavhax 0xee801f20
14186#define M_MNEM_vrmlsldavh 0xfe800e01
14187#define M_MNEM_vrmlsldavha 0xfe800e21
14188#define M_MNEM_vrmlsldavhx 0xfe801e01
14189#define M_MNEM_vrmlsldavhax 0xfe801e21
a302e574 14190
5287ad62 14191/* Neon instruction encoder helpers. */
5f4273c7 14192
5287ad62 14193/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14194
5287ad62
JB
14195/* An "invalid" code for the following tables. */
14196#define N_INV -1u
14197
14198struct neon_tab_entry
b99bd4ef 14199{
5287ad62
JB
14200 unsigned integer;
14201 unsigned float_or_poly;
14202 unsigned scalar_or_imm;
14203};
5f4273c7 14204
5287ad62
JB
14205/* Map overloaded Neon opcodes to their respective encodings. */
14206#define NEON_ENC_TAB \
14207 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14208 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14209 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14210 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14211 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14212 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14213 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14214 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14215 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14216 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14217 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14218 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14219 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14220 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14221 /* Register variants of the following two instructions are encoded as
e07e6e58 14222 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14223 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14224 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14225 X(vfma, N_INV, 0x0000c10, N_INV), \
14226 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14227 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14228 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14229 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14230 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14231 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14232 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14233 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14234 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14235 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14236 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14237 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14238 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14239 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14240 X(vshl, 0x0000400, N_INV, 0x0800510), \
14241 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14242 X(vand, 0x0000110, N_INV, 0x0800030), \
14243 X(vbic, 0x0100110, N_INV, 0x0800030), \
14244 X(veor, 0x1000110, N_INV, N_INV), \
14245 X(vorn, 0x0300110, N_INV, 0x0800010), \
14246 X(vorr, 0x0200110, N_INV, 0x0800010), \
14247 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14248 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14249 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14250 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14251 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14252 X(vst1, 0x0000000, 0x0800000, N_INV), \
14253 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14254 X(vst2, 0x0000100, 0x0800100, N_INV), \
14255 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14256 X(vst3, 0x0000200, 0x0800200, N_INV), \
14257 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14258 X(vst4, 0x0000300, 0x0800300, N_INV), \
14259 X(vmovn, 0x1b20200, N_INV, N_INV), \
14260 X(vtrn, 0x1b20080, N_INV, N_INV), \
14261 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14262 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14263 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14264 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14265 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14266 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14267 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14268 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14269 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14270 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14271 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14272 X(vseleq, 0xe000a00, N_INV, N_INV), \
14273 X(vselvs, 0xe100a00, N_INV, N_INV), \
14274 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14275 X(vselgt, 0xe300a00, N_INV, N_INV), \
14276 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14277 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14278 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14279 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14280 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14281 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14282 X(sha3op, 0x2000c00, N_INV, N_INV), \
14283 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14284 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14285
14286enum neon_opc
14287{
14288#define X(OPC,I,F,S) N_MNEM_##OPC
14289NEON_ENC_TAB
14290#undef X
14291};
b99bd4ef 14292
5287ad62
JB
14293static const struct neon_tab_entry neon_enc_tab[] =
14294{
14295#define X(OPC,I,F,S) { (I), (F), (S) }
14296NEON_ENC_TAB
14297#undef X
14298};
b99bd4ef 14299
88714cb8
DG
14300/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14301#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14302#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14303#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14304#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14305#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14306#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14307#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14308#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14309#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14310#define NEON_ENC_SINGLE_(X) \
037e8744 14311 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14312#define NEON_ENC_DOUBLE_(X) \
037e8744 14313 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14314#define NEON_ENC_FPV8_(X) \
14315 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14316
88714cb8
DG
14317#define NEON_ENCODE(type, inst) \
14318 do \
14319 { \
14320 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14321 inst.is_neon = 1; \
14322 } \
14323 while (0)
14324
14325#define check_neon_suffixes \
14326 do \
14327 { \
14328 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14329 { \
14330 as_bad (_("invalid neon suffix for non neon instruction")); \
14331 return; \
14332 } \
14333 } \
14334 while (0)
14335
037e8744
JB
14336/* Define shapes for instruction operands. The following mnemonic characters
14337 are used in this table:
5287ad62 14338
037e8744 14339 F - VFP S<n> register
5287ad62
JB
14340 D - Neon D<n> register
14341 Q - Neon Q<n> register
14342 I - Immediate
14343 S - Scalar
14344 R - ARM register
14345 L - D<n> register list
5f4273c7 14346
037e8744
JB
14347 This table is used to generate various data:
14348 - enumerations of the form NS_DDR to be used as arguments to
14349 neon_select_shape.
14350 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14351 - a table used to drive neon_select_shape. */
b99bd4ef 14352
037e8744 14353#define NEON_SHAPE_DEF \
93925576 14354 X(4, (R, R, Q, Q), QUAD), \
b409bdb6 14355 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14356 X(4, (R, R, S, S), QUAD), \
14357 X(4, (S, S, R, R), QUAD), \
b409bdb6 14358 X(3, (Q, R, I), QUAD), \
1b883319
AV
14359 X(3, (I, Q, Q), QUAD), \
14360 X(3, (I, Q, R), QUAD), \
a302e574 14361 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14362 X(3, (D, D, D), DOUBLE), \
14363 X(3, (Q, Q, Q), QUAD), \
14364 X(3, (D, D, I), DOUBLE), \
14365 X(3, (Q, Q, I), QUAD), \
14366 X(3, (D, D, S), DOUBLE), \
14367 X(3, (Q, Q, S), QUAD), \
5ee91343 14368 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14369 X(3, (R, R, Q), QUAD), \
14370 X(2, (R, Q), QUAD), \
037e8744
JB
14371 X(2, (D, D), DOUBLE), \
14372 X(2, (Q, Q), QUAD), \
14373 X(2, (D, S), DOUBLE), \
14374 X(2, (Q, S), QUAD), \
14375 X(2, (D, R), DOUBLE), \
14376 X(2, (Q, R), QUAD), \
14377 X(2, (D, I), DOUBLE), \
14378 X(2, (Q, I), QUAD), \
14379 X(3, (D, L, D), DOUBLE), \
14380 X(2, (D, Q), MIXED), \
14381 X(2, (Q, D), MIXED), \
14382 X(3, (D, Q, I), MIXED), \
14383 X(3, (Q, D, I), MIXED), \
14384 X(3, (Q, D, D), MIXED), \
14385 X(3, (D, Q, Q), MIXED), \
14386 X(3, (Q, Q, D), MIXED), \
14387 X(3, (Q, D, S), MIXED), \
14388 X(3, (D, Q, S), MIXED), \
14389 X(4, (D, D, D, I), DOUBLE), \
14390 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14391 X(4, (D, D, S, I), DOUBLE), \
14392 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14393 X(2, (F, F), SINGLE), \
14394 X(3, (F, F, F), SINGLE), \
14395 X(2, (F, I), SINGLE), \
14396 X(2, (F, D), MIXED), \
14397 X(2, (D, F), MIXED), \
14398 X(3, (F, F, I), MIXED), \
14399 X(4, (R, R, F, F), SINGLE), \
14400 X(4, (F, F, R, R), SINGLE), \
14401 X(3, (D, R, R), DOUBLE), \
14402 X(3, (R, R, D), DOUBLE), \
14403 X(2, (S, R), SINGLE), \
14404 X(2, (R, S), SINGLE), \
14405 X(2, (F, R), SINGLE), \
d54af2d0
RL
14406 X(2, (R, F), SINGLE), \
14407/* Half float shape supported so far. */\
14408 X (2, (H, D), MIXED), \
14409 X (2, (D, H), MIXED), \
14410 X (2, (H, F), MIXED), \
14411 X (2, (F, H), MIXED), \
14412 X (2, (H, H), HALF), \
14413 X (2, (H, R), HALF), \
14414 X (2, (R, H), HALF), \
14415 X (2, (H, I), HALF), \
14416 X (3, (H, H, H), HALF), \
14417 X (3, (H, F, I), MIXED), \
dec41383
JW
14418 X (3, (F, H, I), MIXED), \
14419 X (3, (D, H, H), MIXED), \
14420 X (3, (D, H, S), MIXED)
037e8744
JB
14421
14422#define S2(A,B) NS_##A##B
14423#define S3(A,B,C) NS_##A##B##C
14424#define S4(A,B,C,D) NS_##A##B##C##D
14425
14426#define X(N, L, C) S##N L
14427
5287ad62
JB
14428enum neon_shape
14429{
037e8744
JB
14430 NEON_SHAPE_DEF,
14431 NS_NULL
5287ad62 14432};
b99bd4ef 14433
037e8744
JB
14434#undef X
14435#undef S2
14436#undef S3
14437#undef S4
14438
14439enum neon_shape_class
14440{
d54af2d0 14441 SC_HALF,
037e8744
JB
14442 SC_SINGLE,
14443 SC_DOUBLE,
14444 SC_QUAD,
14445 SC_MIXED
14446};
14447
14448#define X(N, L, C) SC_##C
14449
14450static enum neon_shape_class neon_shape_class[] =
14451{
14452 NEON_SHAPE_DEF
14453};
14454
14455#undef X
14456
14457enum neon_shape_el
14458{
d54af2d0 14459 SE_H,
037e8744
JB
14460 SE_F,
14461 SE_D,
14462 SE_Q,
14463 SE_I,
14464 SE_S,
14465 SE_R,
14466 SE_L
14467};
14468
14469/* Register widths of above. */
14470static unsigned neon_shape_el_size[] =
14471{
d54af2d0 14472 16,
037e8744
JB
14473 32,
14474 64,
14475 128,
14476 0,
14477 32,
14478 32,
14479 0
14480};
14481
14482struct neon_shape_info
14483{
14484 unsigned els;
14485 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14486};
14487
14488#define S2(A,B) { SE_##A, SE_##B }
14489#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14490#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14491
14492#define X(N, L, C) { N, S##N L }
14493
14494static struct neon_shape_info neon_shape_tab[] =
14495{
14496 NEON_SHAPE_DEF
14497};
14498
14499#undef X
14500#undef S2
14501#undef S3
14502#undef S4
14503
5287ad62
JB
14504/* Bit masks used in type checking given instructions.
14505 'N_EQK' means the type must be the same as (or based on in some way) the key
14506 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14507 set, various other bits can be set as well in order to modify the meaning of
14508 the type constraint. */
14509
14510enum neon_type_mask
14511{
8e79c3df
CM
14512 N_S8 = 0x0000001,
14513 N_S16 = 0x0000002,
14514 N_S32 = 0x0000004,
14515 N_S64 = 0x0000008,
14516 N_U8 = 0x0000010,
14517 N_U16 = 0x0000020,
14518 N_U32 = 0x0000040,
14519 N_U64 = 0x0000080,
14520 N_I8 = 0x0000100,
14521 N_I16 = 0x0000200,
14522 N_I32 = 0x0000400,
14523 N_I64 = 0x0000800,
14524 N_8 = 0x0001000,
14525 N_16 = 0x0002000,
14526 N_32 = 0x0004000,
14527 N_64 = 0x0008000,
14528 N_P8 = 0x0010000,
14529 N_P16 = 0x0020000,
14530 N_F16 = 0x0040000,
14531 N_F32 = 0x0080000,
14532 N_F64 = 0x0100000,
4f51b4bd 14533 N_P64 = 0x0200000,
c921be7d
NC
14534 N_KEY = 0x1000000, /* Key element (main type specifier). */
14535 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14536 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14537 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14538 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14539 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14540 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14541 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14542 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14543 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14544 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14545 N_UTYP = 0,
4f51b4bd 14546 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14547};
14548
dcbf9037
JB
14549#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14550
5287ad62
JB
14551#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14552#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14553#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14554#define N_S_32 (N_S8 | N_S16 | N_S32)
14555#define N_F_16_32 (N_F16 | N_F32)
14556#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14557#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14558#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14559#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14560#define N_I_MVE (N_I8 | N_I16 | N_I32)
14561#define N_F_MVE (N_F16 | N_F32)
14562#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14563
14564/* Pass this as the first type argument to neon_check_type to ignore types
14565 altogether. */
14566#define N_IGNORE_TYPE (N_KEY | N_EQK)
14567
037e8744
JB
14568/* Select a "shape" for the current instruction (describing register types or
14569 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14570 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14571 function of operand parsing, so this function doesn't need to be called.
14572 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14573
14574static enum neon_shape
037e8744 14575neon_select_shape (enum neon_shape shape, ...)
5287ad62 14576{
037e8744
JB
14577 va_list ap;
14578 enum neon_shape first_shape = shape;
5287ad62
JB
14579
14580 /* Fix missing optional operands. FIXME: we don't know at this point how
14581 many arguments we should have, so this makes the assumption that we have
14582 > 1. This is true of all current Neon opcodes, I think, but may not be
14583 true in the future. */
14584 if (!inst.operands[1].present)
14585 inst.operands[1] = inst.operands[0];
14586
037e8744 14587 va_start (ap, shape);
5f4273c7 14588
21d799b5 14589 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14590 {
14591 unsigned j;
14592 int matches = 1;
14593
14594 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14595 {
14596 if (!inst.operands[j].present)
14597 {
14598 matches = 0;
14599 break;
14600 }
14601
14602 switch (neon_shape_tab[shape].el[j])
14603 {
d54af2d0
RL
14604 /* If a .f16, .16, .u16, .s16 type specifier is given over
14605 a VFP single precision register operand, it's essentially
14606 means only half of the register is used.
14607
14608 If the type specifier is given after the mnemonics, the
14609 information is stored in inst.vectype. If the type specifier
14610 is given after register operand, the information is stored
14611 in inst.operands[].vectype.
14612
14613 When there is only one type specifier, and all the register
14614 operands are the same type of hardware register, the type
14615 specifier applies to all register operands.
14616
14617 If no type specifier is given, the shape is inferred from
14618 operand information.
14619
14620 for example:
14621 vadd.f16 s0, s1, s2: NS_HHH
14622 vabs.f16 s0, s1: NS_HH
14623 vmov.f16 s0, r1: NS_HR
14624 vmov.f16 r0, s1: NS_RH
14625 vcvt.f16 r0, s1: NS_RH
14626 vcvt.f16.s32 s2, s2, #29: NS_HFI
14627 vcvt.f16.s32 s2, s2: NS_HF
14628 */
14629 case SE_H:
14630 if (!(inst.operands[j].isreg
14631 && inst.operands[j].isvec
14632 && inst.operands[j].issingle
14633 && !inst.operands[j].isquad
14634 && ((inst.vectype.elems == 1
14635 && inst.vectype.el[0].size == 16)
14636 || (inst.vectype.elems > 1
14637 && inst.vectype.el[j].size == 16)
14638 || (inst.vectype.elems == 0
14639 && inst.operands[j].vectype.type != NT_invtype
14640 && inst.operands[j].vectype.size == 16))))
14641 matches = 0;
14642 break;
14643
477330fc
RM
14644 case SE_F:
14645 if (!(inst.operands[j].isreg
14646 && inst.operands[j].isvec
14647 && inst.operands[j].issingle
d54af2d0
RL
14648 && !inst.operands[j].isquad
14649 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14650 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14651 || (inst.vectype.elems == 0
14652 && (inst.operands[j].vectype.size == 32
14653 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14654 matches = 0;
14655 break;
14656
14657 case SE_D:
14658 if (!(inst.operands[j].isreg
14659 && inst.operands[j].isvec
14660 && !inst.operands[j].isquad
14661 && !inst.operands[j].issingle))
14662 matches = 0;
14663 break;
14664
14665 case SE_R:
14666 if (!(inst.operands[j].isreg
14667 && !inst.operands[j].isvec))
14668 matches = 0;
14669 break;
14670
14671 case SE_Q:
14672 if (!(inst.operands[j].isreg
14673 && inst.operands[j].isvec
14674 && inst.operands[j].isquad
14675 && !inst.operands[j].issingle))
14676 matches = 0;
14677 break;
14678
14679 case SE_I:
14680 if (!(!inst.operands[j].isreg
14681 && !inst.operands[j].isscalar))
14682 matches = 0;
14683 break;
14684
14685 case SE_S:
14686 if (!(!inst.operands[j].isreg
14687 && inst.operands[j].isscalar))
14688 matches = 0;
14689 break;
14690
14691 case SE_L:
14692 break;
14693 }
3fde54a2
JZ
14694 if (!matches)
14695 break;
477330fc 14696 }
ad6cec43
MGD
14697 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14698 /* We've matched all the entries in the shape table, and we don't
14699 have any left over operands which have not been matched. */
477330fc 14700 break;
037e8744 14701 }
5f4273c7 14702
037e8744 14703 va_end (ap);
5287ad62 14704
037e8744
JB
14705 if (shape == NS_NULL && first_shape != NS_NULL)
14706 first_error (_("invalid instruction shape"));
5287ad62 14707
037e8744
JB
14708 return shape;
14709}
5287ad62 14710
037e8744
JB
14711/* True if SHAPE is predominantly a quadword operation (most of the time, this
14712 means the Q bit should be set). */
14713
14714static int
14715neon_quad (enum neon_shape shape)
14716{
14717 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14718}
037e8744 14719
5287ad62
JB
14720static void
14721neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14722 unsigned *g_size)
5287ad62
JB
14723{
14724 /* Allow modification to be made to types which are constrained to be
14725 based on the key element, based on bits set alongside N_EQK. */
14726 if ((typebits & N_EQK) != 0)
14727 {
14728 if ((typebits & N_HLF) != 0)
14729 *g_size /= 2;
14730 else if ((typebits & N_DBL) != 0)
14731 *g_size *= 2;
14732 if ((typebits & N_SGN) != 0)
14733 *g_type = NT_signed;
14734 else if ((typebits & N_UNS) != 0)
477330fc 14735 *g_type = NT_unsigned;
5287ad62 14736 else if ((typebits & N_INT) != 0)
477330fc 14737 *g_type = NT_integer;
5287ad62 14738 else if ((typebits & N_FLT) != 0)
477330fc 14739 *g_type = NT_float;
dcbf9037 14740 else if ((typebits & N_SIZ) != 0)
477330fc 14741 *g_type = NT_untyped;
5287ad62
JB
14742 }
14743}
5f4273c7 14744
5287ad62
JB
14745/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14746 operand type, i.e. the single type specified in a Neon instruction when it
14747 is the only one given. */
14748
14749static struct neon_type_el
14750neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14751{
14752 struct neon_type_el dest = *key;
5f4273c7 14753
9c2799c2 14754 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14755
5287ad62
JB
14756 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14757
14758 return dest;
14759}
14760
14761/* Convert Neon type and size into compact bitmask representation. */
14762
14763static enum neon_type_mask
14764type_chk_of_el_type (enum neon_el_type type, unsigned size)
14765{
14766 switch (type)
14767 {
14768 case NT_untyped:
14769 switch (size)
477330fc
RM
14770 {
14771 case 8: return N_8;
14772 case 16: return N_16;
14773 case 32: return N_32;
14774 case 64: return N_64;
14775 default: ;
14776 }
5287ad62
JB
14777 break;
14778
14779 case NT_integer:
14780 switch (size)
477330fc
RM
14781 {
14782 case 8: return N_I8;
14783 case 16: return N_I16;
14784 case 32: return N_I32;
14785 case 64: return N_I64;
14786 default: ;
14787 }
5287ad62
JB
14788 break;
14789
14790 case NT_float:
037e8744 14791 switch (size)
477330fc 14792 {
8e79c3df 14793 case 16: return N_F16;
477330fc
RM
14794 case 32: return N_F32;
14795 case 64: return N_F64;
14796 default: ;
14797 }
5287ad62
JB
14798 break;
14799
14800 case NT_poly:
14801 switch (size)
477330fc
RM
14802 {
14803 case 8: return N_P8;
14804 case 16: return N_P16;
4f51b4bd 14805 case 64: return N_P64;
477330fc
RM
14806 default: ;
14807 }
5287ad62
JB
14808 break;
14809
14810 case NT_signed:
14811 switch (size)
477330fc
RM
14812 {
14813 case 8: return N_S8;
14814 case 16: return N_S16;
14815 case 32: return N_S32;
14816 case 64: return N_S64;
14817 default: ;
14818 }
5287ad62
JB
14819 break;
14820
14821 case NT_unsigned:
14822 switch (size)
477330fc
RM
14823 {
14824 case 8: return N_U8;
14825 case 16: return N_U16;
14826 case 32: return N_U32;
14827 case 64: return N_U64;
14828 default: ;
14829 }
5287ad62
JB
14830 break;
14831
14832 default: ;
14833 }
5f4273c7 14834
5287ad62
JB
14835 return N_UTYP;
14836}
14837
14838/* Convert compact Neon bitmask type representation to a type and size. Only
14839 handles the case where a single bit is set in the mask. */
14840
dcbf9037 14841static int
5287ad62 14842el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14843 enum neon_type_mask mask)
5287ad62 14844{
dcbf9037
JB
14845 if ((mask & N_EQK) != 0)
14846 return FAIL;
14847
5287ad62
JB
14848 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14849 *size = 8;
c70a8987 14850 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14851 *size = 16;
dcbf9037 14852 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14853 *size = 32;
4f51b4bd 14854 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14855 *size = 64;
dcbf9037
JB
14856 else
14857 return FAIL;
14858
5287ad62
JB
14859 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14860 *type = NT_signed;
dcbf9037 14861 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14862 *type = NT_unsigned;
dcbf9037 14863 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14864 *type = NT_integer;
dcbf9037 14865 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14866 *type = NT_untyped;
4f51b4bd 14867 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14868 *type = NT_poly;
d54af2d0 14869 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14870 *type = NT_float;
dcbf9037
JB
14871 else
14872 return FAIL;
5f4273c7 14873
dcbf9037 14874 return SUCCESS;
5287ad62
JB
14875}
14876
14877/* Modify a bitmask of allowed types. This is only needed for type
14878 relaxation. */
14879
14880static unsigned
14881modify_types_allowed (unsigned allowed, unsigned mods)
14882{
14883 unsigned size;
14884 enum neon_el_type type;
14885 unsigned destmask;
14886 int i;
5f4273c7 14887
5287ad62 14888 destmask = 0;
5f4273c7 14889
5287ad62
JB
14890 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14891 {
21d799b5 14892 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14893 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14894 {
14895 neon_modify_type_size (mods, &type, &size);
14896 destmask |= type_chk_of_el_type (type, size);
14897 }
5287ad62 14898 }
5f4273c7 14899
5287ad62
JB
14900 return destmask;
14901}
14902
14903/* Check type and return type classification.
14904 The manual states (paraphrase): If one datatype is given, it indicates the
14905 type given in:
14906 - the second operand, if there is one
14907 - the operand, if there is no second operand
14908 - the result, if there are no operands.
14909 This isn't quite good enough though, so we use a concept of a "key" datatype
14910 which is set on a per-instruction basis, which is the one which matters when
14911 only one data type is written.
14912 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14913 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14914
14915static struct neon_type_el
14916neon_check_type (unsigned els, enum neon_shape ns, ...)
14917{
14918 va_list ap;
14919 unsigned i, pass, key_el = 0;
14920 unsigned types[NEON_MAX_TYPE_ELS];
14921 enum neon_el_type k_type = NT_invtype;
14922 unsigned k_size = -1u;
14923 struct neon_type_el badtype = {NT_invtype, -1};
14924 unsigned key_allowed = 0;
14925
14926 /* Optional registers in Neon instructions are always (not) in operand 1.
14927 Fill in the missing operand here, if it was omitted. */
14928 if (els > 1 && !inst.operands[1].present)
14929 inst.operands[1] = inst.operands[0];
14930
14931 /* Suck up all the varargs. */
14932 va_start (ap, ns);
14933 for (i = 0; i < els; i++)
14934 {
14935 unsigned thisarg = va_arg (ap, unsigned);
14936 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14937 {
14938 va_end (ap);
14939 return badtype;
14940 }
5287ad62
JB
14941 types[i] = thisarg;
14942 if ((thisarg & N_KEY) != 0)
477330fc 14943 key_el = i;
5287ad62
JB
14944 }
14945 va_end (ap);
14946
dcbf9037
JB
14947 if (inst.vectype.elems > 0)
14948 for (i = 0; i < els; i++)
14949 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14950 {
14951 first_error (_("types specified in both the mnemonic and operands"));
14952 return badtype;
14953 }
dcbf9037 14954
5287ad62
JB
14955 /* Duplicate inst.vectype elements here as necessary.
14956 FIXME: No idea if this is exactly the same as the ARM assembler,
14957 particularly when an insn takes one register and one non-register
14958 operand. */
14959 if (inst.vectype.elems == 1 && els > 1)
14960 {
14961 unsigned j;
14962 inst.vectype.elems = els;
14963 inst.vectype.el[key_el] = inst.vectype.el[0];
14964 for (j = 0; j < els; j++)
477330fc
RM
14965 if (j != key_el)
14966 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14967 types[j]);
dcbf9037
JB
14968 }
14969 else if (inst.vectype.elems == 0 && els > 0)
14970 {
14971 unsigned j;
14972 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14973 after each operand. We allow some flexibility here; as long as the
14974 "key" operand has a type, we can infer the others. */
dcbf9037 14975 for (j = 0; j < els; j++)
477330fc
RM
14976 if (inst.operands[j].vectype.type != NT_invtype)
14977 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14978
14979 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14980 {
14981 for (j = 0; j < els; j++)
14982 if (inst.operands[j].vectype.type == NT_invtype)
14983 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14984 types[j]);
14985 }
dcbf9037 14986 else
477330fc
RM
14987 {
14988 first_error (_("operand types can't be inferred"));
14989 return badtype;
14990 }
5287ad62
JB
14991 }
14992 else if (inst.vectype.elems != els)
14993 {
dcbf9037 14994 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14995 return badtype;
14996 }
14997
14998 for (pass = 0; pass < 2; pass++)
14999 {
15000 for (i = 0; i < els; i++)
477330fc
RM
15001 {
15002 unsigned thisarg = types[i];
15003 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15004 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15005 enum neon_el_type g_type = inst.vectype.el[i].type;
15006 unsigned g_size = inst.vectype.el[i].size;
15007
15008 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 15009 integer types if sign-specific variants are unavailable. */
477330fc 15010 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
15011 && (types_allowed & N_SU_ALL) == 0)
15012 g_type = NT_integer;
15013
477330fc 15014 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
15015 them. Some instructions only care about signs for some element
15016 sizes, so handle that properly. */
477330fc 15017 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
15018 && ((g_size == 8 && (types_allowed & N_8) != 0)
15019 || (g_size == 16 && (types_allowed & N_16) != 0)
15020 || (g_size == 32 && (types_allowed & N_32) != 0)
15021 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15022 g_type = NT_untyped;
15023
477330fc
RM
15024 if (pass == 0)
15025 {
15026 if ((thisarg & N_KEY) != 0)
15027 {
15028 k_type = g_type;
15029 k_size = g_size;
15030 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15031
15032 /* Check architecture constraint on FP16 extension. */
15033 if (k_size == 16
15034 && k_type == NT_float
15035 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15036 {
15037 inst.error = _(BAD_FP16);
15038 return badtype;
15039 }
477330fc
RM
15040 }
15041 }
15042 else
15043 {
15044 if ((thisarg & N_VFP) != 0)
15045 {
15046 enum neon_shape_el regshape;
15047 unsigned regwidth, match;
99b253c5
NC
15048
15049 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15050 if (ns == NS_NULL)
15051 {
15052 first_error (_("invalid instruction shape"));
15053 return badtype;
15054 }
477330fc
RM
15055 regshape = neon_shape_tab[ns].el[i];
15056 regwidth = neon_shape_el_size[regshape];
15057
15058 /* In VFP mode, operands must match register widths. If we
15059 have a key operand, use its width, else use the width of
15060 the current operand. */
15061 if (k_size != -1u)
15062 match = k_size;
15063 else
15064 match = g_size;
15065
9db2f6b4
RL
15066 /* FP16 will use a single precision register. */
15067 if (regwidth == 32 && match == 16)
15068 {
15069 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15070 match = regwidth;
15071 else
15072 {
15073 inst.error = _(BAD_FP16);
15074 return badtype;
15075 }
15076 }
15077
477330fc
RM
15078 if (regwidth != match)
15079 {
15080 first_error (_("operand size must match register width"));
15081 return badtype;
15082 }
15083 }
15084
15085 if ((thisarg & N_EQK) == 0)
15086 {
15087 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15088
15089 if ((given_type & types_allowed) == 0)
15090 {
a302e574 15091 first_error (BAD_SIMD_TYPE);
477330fc
RM
15092 return badtype;
15093 }
15094 }
15095 else
15096 {
15097 enum neon_el_type mod_k_type = k_type;
15098 unsigned mod_k_size = k_size;
15099 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15100 if (g_type != mod_k_type || g_size != mod_k_size)
15101 {
15102 first_error (_("inconsistent types in Neon instruction"));
15103 return badtype;
15104 }
15105 }
15106 }
15107 }
5287ad62
JB
15108 }
15109
15110 return inst.vectype.el[key_el];
15111}
15112
037e8744 15113/* Neon-style VFP instruction forwarding. */
5287ad62 15114
037e8744
JB
15115/* Thumb VFP instructions have 0xE in the condition field. */
15116
15117static void
15118do_vfp_cond_or_thumb (void)
5287ad62 15119{
88714cb8
DG
15120 inst.is_neon = 1;
15121
5287ad62 15122 if (thumb_mode)
037e8744 15123 inst.instruction |= 0xe0000000;
5287ad62 15124 else
037e8744 15125 inst.instruction |= inst.cond << 28;
5287ad62
JB
15126}
15127
037e8744
JB
15128/* Look up and encode a simple mnemonic, for use as a helper function for the
15129 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15130 etc. It is assumed that operand parsing has already been done, and that the
15131 operands are in the form expected by the given opcode (this isn't necessarily
15132 the same as the form in which they were parsed, hence some massaging must
15133 take place before this function is called).
15134 Checks current arch version against that in the looked-up opcode. */
5287ad62 15135
037e8744
JB
15136static void
15137do_vfp_nsyn_opcode (const char *opname)
5287ad62 15138{
037e8744 15139 const struct asm_opcode *opcode;
5f4273c7 15140
21d799b5 15141 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15142
037e8744
JB
15143 if (!opcode)
15144 abort ();
5287ad62 15145
037e8744 15146 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15147 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15148 _(BAD_FPU));
5287ad62 15149
88714cb8
DG
15150 inst.is_neon = 1;
15151
037e8744
JB
15152 if (thumb_mode)
15153 {
15154 inst.instruction = opcode->tvalue;
15155 opcode->tencode ();
15156 }
15157 else
15158 {
15159 inst.instruction = (inst.cond << 28) | opcode->avalue;
15160 opcode->aencode ();
15161 }
15162}
5287ad62
JB
15163
15164static void
037e8744 15165do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15166{
037e8744
JB
15167 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15168
9db2f6b4 15169 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15170 {
15171 if (is_add)
477330fc 15172 do_vfp_nsyn_opcode ("fadds");
037e8744 15173 else
477330fc 15174 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15175
15176 /* ARMv8.2 fp16 instruction. */
15177 if (rs == NS_HHH)
15178 do_scalar_fp16_v82_encode ();
037e8744
JB
15179 }
15180 else
15181 {
15182 if (is_add)
477330fc 15183 do_vfp_nsyn_opcode ("faddd");
037e8744 15184 else
477330fc 15185 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15186 }
15187}
15188
15189/* Check operand types to see if this is a VFP instruction, and if so call
15190 PFN (). */
15191
15192static int
15193try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15194{
15195 enum neon_shape rs;
15196 struct neon_type_el et;
15197
15198 switch (args)
15199 {
15200 case 2:
9db2f6b4
RL
15201 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15202 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15203 break;
5f4273c7 15204
037e8744 15205 case 3:
9db2f6b4
RL
15206 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15207 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15208 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15209 break;
15210
15211 default:
15212 abort ();
15213 }
15214
15215 if (et.type != NT_invtype)
15216 {
15217 pfn (rs);
15218 return SUCCESS;
15219 }
037e8744 15220
99b253c5 15221 inst.error = NULL;
037e8744
JB
15222 return FAIL;
15223}
15224
15225static void
15226do_vfp_nsyn_mla_mls (enum neon_shape rs)
15227{
15228 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15229
9db2f6b4 15230 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15231 {
15232 if (is_mla)
477330fc 15233 do_vfp_nsyn_opcode ("fmacs");
037e8744 15234 else
477330fc 15235 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15236
15237 /* ARMv8.2 fp16 instruction. */
15238 if (rs == NS_HHH)
15239 do_scalar_fp16_v82_encode ();
037e8744
JB
15240 }
15241 else
15242 {
15243 if (is_mla)
477330fc 15244 do_vfp_nsyn_opcode ("fmacd");
037e8744 15245 else
477330fc 15246 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15247 }
15248}
15249
62f3b8c8
PB
15250static void
15251do_vfp_nsyn_fma_fms (enum neon_shape rs)
15252{
15253 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15254
9db2f6b4 15255 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15256 {
15257 if (is_fma)
477330fc 15258 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15259 else
477330fc 15260 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15261
15262 /* ARMv8.2 fp16 instruction. */
15263 if (rs == NS_HHH)
15264 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15265 }
15266 else
15267 {
15268 if (is_fma)
477330fc 15269 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15270 else
477330fc 15271 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15272 }
15273}
15274
037e8744
JB
15275static void
15276do_vfp_nsyn_mul (enum neon_shape rs)
15277{
9db2f6b4
RL
15278 if (rs == NS_FFF || rs == NS_HHH)
15279 {
15280 do_vfp_nsyn_opcode ("fmuls");
15281
15282 /* ARMv8.2 fp16 instruction. */
15283 if (rs == NS_HHH)
15284 do_scalar_fp16_v82_encode ();
15285 }
037e8744
JB
15286 else
15287 do_vfp_nsyn_opcode ("fmuld");
15288}
15289
15290static void
15291do_vfp_nsyn_abs_neg (enum neon_shape rs)
15292{
15293 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15294 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15295
9db2f6b4 15296 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15297 {
15298 if (is_neg)
477330fc 15299 do_vfp_nsyn_opcode ("fnegs");
037e8744 15300 else
477330fc 15301 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15302
15303 /* ARMv8.2 fp16 instruction. */
15304 if (rs == NS_HH)
15305 do_scalar_fp16_v82_encode ();
037e8744
JB
15306 }
15307 else
15308 {
15309 if (is_neg)
477330fc 15310 do_vfp_nsyn_opcode ("fnegd");
037e8744 15311 else
477330fc 15312 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15313 }
15314}
15315
15316/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15317 insns belong to Neon, and are handled elsewhere. */
15318
15319static void
15320do_vfp_nsyn_ldm_stm (int is_dbmode)
15321{
15322 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15323 if (is_ldm)
15324 {
15325 if (is_dbmode)
477330fc 15326 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15327 else
477330fc 15328 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15329 }
15330 else
15331 {
15332 if (is_dbmode)
477330fc 15333 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15334 else
477330fc 15335 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15336 }
15337}
15338
037e8744
JB
15339static void
15340do_vfp_nsyn_sqrt (void)
15341{
9db2f6b4
RL
15342 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15343 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15344
9db2f6b4
RL
15345 if (rs == NS_FF || rs == NS_HH)
15346 {
15347 do_vfp_nsyn_opcode ("fsqrts");
15348
15349 /* ARMv8.2 fp16 instruction. */
15350 if (rs == NS_HH)
15351 do_scalar_fp16_v82_encode ();
15352 }
037e8744
JB
15353 else
15354 do_vfp_nsyn_opcode ("fsqrtd");
15355}
15356
15357static void
15358do_vfp_nsyn_div (void)
15359{
9db2f6b4 15360 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15361 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15362 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15363
9db2f6b4
RL
15364 if (rs == NS_FFF || rs == NS_HHH)
15365 {
15366 do_vfp_nsyn_opcode ("fdivs");
15367
15368 /* ARMv8.2 fp16 instruction. */
15369 if (rs == NS_HHH)
15370 do_scalar_fp16_v82_encode ();
15371 }
037e8744
JB
15372 else
15373 do_vfp_nsyn_opcode ("fdivd");
15374}
15375
15376static void
15377do_vfp_nsyn_nmul (void)
15378{
9db2f6b4 15379 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15380 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15381 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15382
9db2f6b4 15383 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15384 {
88714cb8 15385 NEON_ENCODE (SINGLE, inst);
037e8744 15386 do_vfp_sp_dyadic ();
9db2f6b4
RL
15387
15388 /* ARMv8.2 fp16 instruction. */
15389 if (rs == NS_HHH)
15390 do_scalar_fp16_v82_encode ();
037e8744
JB
15391 }
15392 else
15393 {
88714cb8 15394 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15395 do_vfp_dp_rd_rn_rm ();
15396 }
15397 do_vfp_cond_or_thumb ();
9db2f6b4 15398
037e8744
JB
15399}
15400
1b883319
AV
15401/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15402 (0, 1, 2, 3). */
15403
15404static unsigned
15405neon_logbits (unsigned x)
15406{
15407 return ffs (x) - 4;
15408}
15409
15410#define LOW4(R) ((R) & 0xf)
15411#define HI1(R) (((R) >> 4) & 1)
15412
15413static unsigned
15414mve_get_vcmp_vpt_cond (struct neon_type_el et)
15415{
15416 switch (et.type)
15417 {
15418 default:
15419 first_error (BAD_EL_TYPE);
15420 return 0;
15421 case NT_float:
15422 switch (inst.operands[0].imm)
15423 {
15424 default:
15425 first_error (_("invalid condition"));
15426 return 0;
15427 case 0x0:
15428 /* eq. */
15429 return 0;
15430 case 0x1:
15431 /* ne. */
15432 return 1;
15433 case 0xa:
15434 /* ge/ */
15435 return 4;
15436 case 0xb:
15437 /* lt. */
15438 return 5;
15439 case 0xc:
15440 /* gt. */
15441 return 6;
15442 case 0xd:
15443 /* le. */
15444 return 7;
15445 }
15446 case NT_integer:
15447 /* only accept eq and ne. */
15448 if (inst.operands[0].imm > 1)
15449 {
15450 first_error (_("invalid condition"));
15451 return 0;
15452 }
15453 return inst.operands[0].imm;
15454 case NT_unsigned:
15455 if (inst.operands[0].imm == 0x2)
15456 return 2;
15457 else if (inst.operands[0].imm == 0x8)
15458 return 3;
15459 else
15460 {
15461 first_error (_("invalid condition"));
15462 return 0;
15463 }
15464 case NT_signed:
15465 switch (inst.operands[0].imm)
15466 {
15467 default:
15468 first_error (_("invalid condition"));
15469 return 0;
15470 case 0xa:
15471 /* ge. */
15472 return 4;
15473 case 0xb:
15474 /* lt. */
15475 return 5;
15476 case 0xc:
15477 /* gt. */
15478 return 6;
15479 case 0xd:
15480 /* le. */
15481 return 7;
15482 }
15483 }
15484 /* Should be unreachable. */
15485 abort ();
15486}
15487
15488static void
15489do_mve_vpt (void)
15490{
15491 /* We are dealing with a vector predicated block. */
15492 if (inst.operands[0].present)
15493 {
15494 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15495 struct neon_type_el et
15496 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15497 N_EQK);
15498
15499 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15500
15501 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15502
15503 if (et.type == NT_invtype)
15504 return;
15505
15506 if (et.type == NT_float)
15507 {
15508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15509 BAD_FPU);
15510 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15511 inst.instruction |= (et.size == 16) << 28;
15512 inst.instruction |= 0x3 << 20;
15513 }
15514 else
15515 {
15516 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15517 BAD_EL_TYPE);
15518 inst.instruction |= 1 << 28;
15519 inst.instruction |= neon_logbits (et.size) << 20;
15520 }
15521
15522 if (inst.operands[2].isquad)
15523 {
15524 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15525 inst.instruction |= LOW4 (inst.operands[2].reg);
15526 inst.instruction |= (fcond & 0x2) >> 1;
15527 }
15528 else
15529 {
15530 if (inst.operands[2].reg == REG_SP)
15531 as_tsktsk (MVE_BAD_SP);
15532 inst.instruction |= 1 << 6;
15533 inst.instruction |= (fcond & 0x2) << 4;
15534 inst.instruction |= inst.operands[2].reg;
15535 }
15536 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15537 inst.instruction |= (fcond & 0x4) << 10;
15538 inst.instruction |= (fcond & 0x1) << 7;
15539
15540 }
15541 set_pred_insn_type (VPT_INSN);
15542 now_pred.cc = 0;
15543 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15544 | ((inst.instruction & 0xe000) >> 13);
15545 now_pred.warn_deprecated = FALSE;
15546 now_pred.type = VECTOR_PRED;
15547 inst.is_neon = 1;
15548}
15549
15550static void
15551do_mve_vcmp (void)
15552{
15553 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15554 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15555 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15556 if (!inst.operands[2].present)
15557 first_error (_("MVE vector or ARM register expected"));
15558 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15559
15560 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15561 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15562 && inst.operands[1].isquad)
15563 {
15564 inst.instruction = N_MNEM_vcmp;
15565 inst.cond = 0x10;
15566 }
15567
15568 if (inst.cond > COND_ALWAYS)
15569 inst.pred_insn_type = INSIDE_VPT_INSN;
15570 else
15571 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15572
15573 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15574 struct neon_type_el et
15575 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15576 N_EQK);
15577
15578 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15579 && !inst.operands[2].iszr, BAD_PC);
15580
15581 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15582
15583 inst.instruction = 0xee010f00;
15584 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15585 inst.instruction |= (fcond & 0x4) << 10;
15586 inst.instruction |= (fcond & 0x1) << 7;
15587 if (et.type == NT_float)
15588 {
15589 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15590 BAD_FPU);
15591 inst.instruction |= (et.size == 16) << 28;
15592 inst.instruction |= 0x3 << 20;
15593 }
15594 else
15595 {
15596 inst.instruction |= 1 << 28;
15597 inst.instruction |= neon_logbits (et.size) << 20;
15598 }
15599 if (inst.operands[2].isquad)
15600 {
15601 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15602 inst.instruction |= (fcond & 0x2) >> 1;
15603 inst.instruction |= LOW4 (inst.operands[2].reg);
15604 }
15605 else
15606 {
15607 if (inst.operands[2].reg == REG_SP)
15608 as_tsktsk (MVE_BAD_SP);
15609 inst.instruction |= 1 << 6;
15610 inst.instruction |= (fcond & 0x2) << 4;
15611 inst.instruction |= inst.operands[2].reg;
15612 }
15613
15614 inst.is_neon = 1;
15615 return;
15616}
15617
935295b5
AV
15618static void
15619do_mve_vmaxa_vmina (void)
15620{
15621 if (inst.cond > COND_ALWAYS)
15622 inst.pred_insn_type = INSIDE_VPT_INSN;
15623 else
15624 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15625
15626 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15627 struct neon_type_el et
15628 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15629
15630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15631 inst.instruction |= neon_logbits (et.size) << 18;
15632 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15633 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15634 inst.instruction |= LOW4 (inst.operands[1].reg);
15635 inst.is_neon = 1;
15636}
15637
f30ee27c
AV
15638static void
15639do_mve_vfmas (void)
15640{
15641 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15642 struct neon_type_el et
15643 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15644
15645 if (inst.cond > COND_ALWAYS)
15646 inst.pred_insn_type = INSIDE_VPT_INSN;
15647 else
15648 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15649
15650 if (inst.operands[2].reg == REG_SP)
15651 as_tsktsk (MVE_BAD_SP);
15652 else if (inst.operands[2].reg == REG_PC)
15653 as_tsktsk (MVE_BAD_PC);
15654
15655 inst.instruction |= (et.size == 16) << 28;
15656 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15657 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15658 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15659 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15660 inst.instruction |= inst.operands[2].reg;
15661 inst.is_neon = 1;
15662}
15663
b409bdb6
AV
15664static void
15665do_mve_viddup (void)
15666{
15667 if (inst.cond > COND_ALWAYS)
15668 inst.pred_insn_type = INSIDE_VPT_INSN;
15669 else
15670 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15671
15672 unsigned imm = inst.relocs[0].exp.X_add_number;
15673 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15674 _("immediate must be either 1, 2, 4 or 8"));
15675
15676 enum neon_shape rs;
15677 struct neon_type_el et;
15678 unsigned Rm;
15679 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15680 {
15681 rs = neon_select_shape (NS_QRI, NS_NULL);
15682 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15683 Rm = 7;
15684 }
15685 else
15686 {
15687 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15688 if (inst.operands[2].reg == REG_SP)
15689 as_tsktsk (MVE_BAD_SP);
15690 else if (inst.operands[2].reg == REG_PC)
15691 first_error (BAD_PC);
15692
15693 rs = neon_select_shape (NS_QRRI, NS_NULL);
15694 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15695 Rm = inst.operands[2].reg >> 1;
15696 }
15697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15698 inst.instruction |= neon_logbits (et.size) << 20;
15699 inst.instruction |= inst.operands[1].reg << 16;
15700 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15701 inst.instruction |= (imm > 2) << 7;
15702 inst.instruction |= Rm << 1;
15703 inst.instruction |= (imm == 2 || imm == 8);
15704 inst.is_neon = 1;
15705}
15706
2d78f95b
AV
15707static void
15708do_mve_vmlas (void)
15709{
15710 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15711 struct neon_type_el et
15712 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15713
15714 if (inst.operands[2].reg == REG_PC)
15715 as_tsktsk (MVE_BAD_PC);
15716 else if (inst.operands[2].reg == REG_SP)
15717 as_tsktsk (MVE_BAD_SP);
15718
15719 if (inst.cond > COND_ALWAYS)
15720 inst.pred_insn_type = INSIDE_VPT_INSN;
15721 else
15722 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15723
15724 inst.instruction |= (et.type == NT_unsigned) << 28;
15725 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15726 inst.instruction |= neon_logbits (et.size) << 20;
15727 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15728 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15729 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15730 inst.instruction |= inst.operands[2].reg;
15731 inst.is_neon = 1;
15732}
15733
3063888e
AV
15734static void
15735do_mve_vpsel (void)
15736{
15737 neon_select_shape (NS_QQQ, NS_NULL);
15738
15739 if (inst.cond > COND_ALWAYS)
15740 inst.pred_insn_type = INSIDE_VPT_INSN;
15741 else
15742 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15743
15744 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15745 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15746 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15747 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15748 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15749 inst.instruction |= LOW4 (inst.operands[2].reg);
15750 inst.is_neon = 1;
15751}
15752
15753static void
15754do_mve_vpnot (void)
15755{
15756 if (inst.cond > COND_ALWAYS)
15757 inst.pred_insn_type = INSIDE_VPT_INSN;
15758 else
15759 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15760}
15761
935295b5
AV
15762static void
15763do_mve_vmaxnma_vminnma (void)
15764{
15765 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15766 struct neon_type_el et
15767 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15768
15769 if (inst.cond > COND_ALWAYS)
15770 inst.pred_insn_type = INSIDE_VPT_INSN;
15771 else
15772 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15773
15774 inst.instruction |= (et.size == 16) << 28;
15775 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15776 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15777 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15778 inst.instruction |= LOW4 (inst.operands[1].reg);
15779 inst.is_neon = 1;
15780}
15781
5d281bf0
AV
15782static void
15783do_mve_vcmul (void)
15784{
15785 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15786 struct neon_type_el et
15787 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15788
15789 if (inst.cond > COND_ALWAYS)
15790 inst.pred_insn_type = INSIDE_VPT_INSN;
15791 else
15792 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15793
15794 unsigned rot = inst.relocs[0].exp.X_add_number;
15795 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15796 _("immediate out of range"));
15797
15798 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15799 || inst.operands[0].reg == inst.operands[2].reg))
15800 as_tsktsk (BAD_MVE_SRCDEST);
15801
15802 inst.instruction |= (et.size == 32) << 28;
15803 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15804 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15805 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15806 inst.instruction |= (rot > 90) << 12;
15807 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15808 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15809 inst.instruction |= LOW4 (inst.operands[2].reg);
15810 inst.instruction |= (rot == 90 || rot == 270);
15811 inst.is_neon = 1;
15812}
15813
037e8744
JB
15814static void
15815do_vfp_nsyn_cmp (void)
15816{
9db2f6b4 15817 enum neon_shape rs;
1b883319
AV
15818 if (!inst.operands[0].isreg)
15819 {
15820 do_mve_vcmp ();
15821 return;
15822 }
15823 else
15824 {
15825 constraint (inst.operands[2].present, BAD_SYNTAX);
15826 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15827 BAD_FPU);
15828 }
15829
037e8744
JB
15830 if (inst.operands[1].isreg)
15831 {
9db2f6b4
RL
15832 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15833 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15834
9db2f6b4 15835 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15836 {
15837 NEON_ENCODE (SINGLE, inst);
15838 do_vfp_sp_monadic ();
15839 }
037e8744 15840 else
477330fc
RM
15841 {
15842 NEON_ENCODE (DOUBLE, inst);
15843 do_vfp_dp_rd_rm ();
15844 }
037e8744
JB
15845 }
15846 else
15847 {
9db2f6b4
RL
15848 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15849 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15850
15851 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15852 {
15853 case N_MNEM_vcmp:
15854 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15855 break;
15856 case N_MNEM_vcmpe:
15857 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15858 break;
15859 default:
15860 abort ();
15861 }
5f4273c7 15862
9db2f6b4 15863 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15864 {
15865 NEON_ENCODE (SINGLE, inst);
15866 do_vfp_sp_compare_z ();
15867 }
037e8744 15868 else
477330fc
RM
15869 {
15870 NEON_ENCODE (DOUBLE, inst);
15871 do_vfp_dp_rd ();
15872 }
037e8744
JB
15873 }
15874 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15875
15876 /* ARMv8.2 fp16 instruction. */
15877 if (rs == NS_HI || rs == NS_HH)
15878 do_scalar_fp16_v82_encode ();
037e8744
JB
15879}
15880
15881static void
15882nsyn_insert_sp (void)
15883{
15884 inst.operands[1] = inst.operands[0];
15885 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15886 inst.operands[0].reg = REG_SP;
037e8744
JB
15887 inst.operands[0].isreg = 1;
15888 inst.operands[0].writeback = 1;
15889 inst.operands[0].present = 1;
15890}
15891
15892static void
15893do_vfp_nsyn_push (void)
15894{
15895 nsyn_insert_sp ();
b126985e
NC
15896
15897 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15898 _("register list must contain at least 1 and at most 16 "
15899 "registers"));
15900
037e8744
JB
15901 if (inst.operands[1].issingle)
15902 do_vfp_nsyn_opcode ("fstmdbs");
15903 else
15904 do_vfp_nsyn_opcode ("fstmdbd");
15905}
15906
15907static void
15908do_vfp_nsyn_pop (void)
15909{
15910 nsyn_insert_sp ();
b126985e
NC
15911
15912 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15913 _("register list must contain at least 1 and at most 16 "
15914 "registers"));
15915
037e8744 15916 if (inst.operands[1].issingle)
22b5b651 15917 do_vfp_nsyn_opcode ("fldmias");
037e8744 15918 else
22b5b651 15919 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
15920}
15921
15922/* Fix up Neon data-processing instructions, ORing in the correct bits for
15923 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15924
88714cb8
DG
15925static void
15926neon_dp_fixup (struct arm_it* insn)
037e8744 15927{
88714cb8
DG
15928 unsigned int i = insn->instruction;
15929 insn->is_neon = 1;
15930
037e8744
JB
15931 if (thumb_mode)
15932 {
15933 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15934 if (i & (1 << 24))
477330fc 15935 i |= 1 << 28;
5f4273c7 15936
037e8744 15937 i &= ~(1 << 24);
5f4273c7 15938
037e8744
JB
15939 i |= 0xef000000;
15940 }
15941 else
15942 i |= 0xf2000000;
5f4273c7 15943
88714cb8 15944 insn->instruction = i;
037e8744
JB
15945}
15946
5ee91343 15947static void
7df54120 15948mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
15949{
15950 if (inst.operands[2].reg == REG_SP)
15951 as_tsktsk (MVE_BAD_SP);
15952 else if (inst.operands[2].reg == REG_PC)
15953 as_tsktsk (MVE_BAD_PC);
15954
15955 if (fp)
15956 {
15957 /* vadd. */
15958 if (((unsigned)inst.instruction) == 0xd00)
15959 inst.instruction = 0xee300f40;
15960 /* vsub. */
15961 else if (((unsigned)inst.instruction) == 0x200d00)
15962 inst.instruction = 0xee301f40;
a8465a06
AV
15963 /* vmul. */
15964 else if (((unsigned)inst.instruction) == 0x1000d10)
15965 inst.instruction = 0xee310e60;
5ee91343
AV
15966
15967 /* Setting size which is 1 for F16 and 0 for F32. */
15968 inst.instruction |= (size == 16) << 28;
15969 }
15970 else
15971 {
15972 /* vadd. */
15973 if (((unsigned)inst.instruction) == 0x800)
15974 inst.instruction = 0xee010f40;
15975 /* vsub. */
15976 else if (((unsigned)inst.instruction) == 0x1000800)
15977 inst.instruction = 0xee011f40;
7df54120
AV
15978 /* vhadd. */
15979 else if (((unsigned)inst.instruction) == 0)
15980 inst.instruction = 0xee000f40;
15981 /* vhsub. */
15982 else if (((unsigned)inst.instruction) == 0x200)
15983 inst.instruction = 0xee001f40;
a8465a06
AV
15984 /* vmla. */
15985 else if (((unsigned)inst.instruction) == 0x900)
15986 inst.instruction = 0xee010e40;
15987 /* vmul. */
15988 else if (((unsigned)inst.instruction) == 0x910)
15989 inst.instruction = 0xee011e60;
15990 /* vqadd. */
15991 else if (((unsigned)inst.instruction) == 0x10)
15992 inst.instruction = 0xee000f60;
15993 /* vqsub. */
15994 else if (((unsigned)inst.instruction) == 0x210)
15995 inst.instruction = 0xee001f60;
7df54120
AV
15996
15997 /* Set U-bit. */
15998 inst.instruction |= U << 28;
15999
5ee91343
AV
16000 /* Setting bits for size. */
16001 inst.instruction |= neon_logbits (size) << 20;
16002 }
16003 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16004 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16005 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16006 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16007 inst.instruction |= inst.operands[2].reg;
16008 inst.is_neon = 1;
16009}
16010
a302e574
AV
16011static void
16012mve_encode_rqq (unsigned bit28, unsigned size)
16013{
16014 inst.instruction |= bit28 << 28;
16015 inst.instruction |= neon_logbits (size) << 20;
16016 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16017 inst.instruction |= inst.operands[0].reg << 12;
16018 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16019 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16020 inst.instruction |= LOW4 (inst.operands[2].reg);
16021 inst.is_neon = 1;
16022}
16023
886e1c73
AV
16024static void
16025mve_encode_qqq (int ubit, int size)
16026{
16027
16028 inst.instruction |= (ubit != 0) << 28;
16029 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16030 inst.instruction |= neon_logbits (size) << 20;
16031 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16032 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16033 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16034 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16035 inst.instruction |= LOW4 (inst.operands[2].reg);
16036
16037 inst.is_neon = 1;
16038}
16039
26c1e780
AV
16040static void
16041mve_encode_rq (unsigned bit28, unsigned size)
16042{
16043 inst.instruction |= bit28 << 28;
16044 inst.instruction |= neon_logbits (size) << 18;
16045 inst.instruction |= inst.operands[0].reg << 12;
16046 inst.instruction |= LOW4 (inst.operands[1].reg);
16047 inst.is_neon = 1;
16048}
886e1c73 16049
93925576
AV
16050static void
16051mve_encode_rrqq (unsigned U, unsigned size)
16052{
16053 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16054
16055 inst.instruction |= U << 28;
16056 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16057 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16058 inst.instruction |= (size == 32) << 16;
16059 inst.instruction |= inst.operands[0].reg << 12;
16060 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16061 inst.instruction |= inst.operands[3].reg;
16062 inst.is_neon = 1;
16063}
16064
037e8744
JB
16065/* Encode insns with bit pattern:
16066
16067 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16068 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 16069
037e8744
JB
16070 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16071 different meaning for some instruction. */
16072
16073static void
16074neon_three_same (int isquad, int ubit, int size)
16075{
16076 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16077 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16078 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16079 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16080 inst.instruction |= LOW4 (inst.operands[2].reg);
16081 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16082 inst.instruction |= (isquad != 0) << 6;
16083 inst.instruction |= (ubit != 0) << 24;
16084 if (size != -1)
16085 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16086
88714cb8 16087 neon_dp_fixup (&inst);
037e8744
JB
16088}
16089
16090/* Encode instructions of the form:
16091
16092 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16093 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
16094
16095 Don't write size if SIZE == -1. */
16096
16097static void
16098neon_two_same (int qbit, int ubit, int size)
16099{
16100 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16101 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16102 inst.instruction |= LOW4 (inst.operands[1].reg);
16103 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16104 inst.instruction |= (qbit != 0) << 6;
16105 inst.instruction |= (ubit != 0) << 24;
16106
16107 if (size != -1)
16108 inst.instruction |= neon_logbits (size) << 18;
16109
88714cb8 16110 neon_dp_fixup (&inst);
5287ad62
JB
16111}
16112
7df54120
AV
16113enum vfp_or_neon_is_neon_bits
16114{
16115NEON_CHECK_CC = 1,
16116NEON_CHECK_ARCH = 2,
16117NEON_CHECK_ARCH8 = 4
16118};
16119
16120/* Call this function if an instruction which may have belonged to the VFP or
16121 Neon instruction sets, but turned out to be a Neon instruction (due to the
16122 operand types involved, etc.). We have to check and/or fix-up a couple of
16123 things:
16124
16125 - Make sure the user hasn't attempted to make a Neon instruction
16126 conditional.
16127 - Alter the value in the condition code field if necessary.
16128 - Make sure that the arch supports Neon instructions.
16129
16130 Which of these operations take place depends on bits from enum
16131 vfp_or_neon_is_neon_bits.
16132
16133 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16134 current instruction's condition is COND_ALWAYS, the condition field is
16135 changed to inst.uncond_value. This is necessary because instructions shared
16136 between VFP and Neon may be conditional for the VFP variants only, and the
16137 unconditional Neon version must have, e.g., 0xF in the condition field. */
16138
16139static int
16140vfp_or_neon_is_neon (unsigned check)
16141{
16142/* Conditions are always legal in Thumb mode (IT blocks). */
16143if (!thumb_mode && (check & NEON_CHECK_CC))
16144 {
16145 if (inst.cond != COND_ALWAYS)
16146 {
16147 first_error (_(BAD_COND));
16148 return FAIL;
16149 }
16150 if (inst.uncond_value != -1)
16151 inst.instruction |= inst.uncond_value << 28;
16152 }
16153
16154
16155 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16156 || ((check & NEON_CHECK_ARCH8)
16157 && !mark_feature_used (&fpu_neon_ext_armv8)))
16158 {
16159 first_error (_(BAD_FPU));
16160 return FAIL;
16161 }
16162
16163return SUCCESS;
16164}
16165
16166static int
16167check_simd_pred_availability (int fp, unsigned check)
16168{
16169if (inst.cond > COND_ALWAYS)
16170 {
16171 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16172 {
16173 inst.error = BAD_FPU;
16174 return 1;
16175 }
16176 inst.pred_insn_type = INSIDE_VPT_INSN;
16177 }
16178else if (inst.cond < COND_ALWAYS)
16179 {
16180 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16181 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16182 else if (vfp_or_neon_is_neon (check) == FAIL)
16183 return 2;
16184 }
16185else
16186 {
16187 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16188 && vfp_or_neon_is_neon (check) == FAIL)
16189 return 3;
16190
16191 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16192 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16193 }
16194return 0;
16195}
16196
5287ad62
JB
16197/* Neon instruction encoders, in approximate order of appearance. */
16198
16199static void
16200do_neon_dyadic_i_su (void)
16201{
7df54120
AV
16202 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16203 return;
16204
16205 enum neon_shape rs;
16206 struct neon_type_el et;
16207 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16208 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16209 else
16210 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16211
16212 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16213
16214
16215 if (rs != NS_QQR)
16216 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16217 else
16218 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16219}
16220
16221static void
16222do_neon_dyadic_i64_su (void)
16223{
a8465a06
AV
16224 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16225 return;
16226 enum neon_shape rs;
16227 struct neon_type_el et;
16228 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16229 {
16230 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16231 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16232 }
16233 else
16234 {
16235 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16236 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16237 }
16238 if (rs == NS_QQR)
16239 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16240 else
16241 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16242}
16243
16244static void
16245neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16246 unsigned immbits)
5287ad62
JB
16247{
16248 unsigned size = et.size >> 3;
16249 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16250 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16251 inst.instruction |= LOW4 (inst.operands[1].reg);
16252 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16253 inst.instruction |= (isquad != 0) << 6;
16254 inst.instruction |= immbits << 16;
16255 inst.instruction |= (size >> 3) << 7;
16256 inst.instruction |= (size & 0x7) << 19;
16257 if (write_ubit)
16258 inst.instruction |= (uval != 0) << 24;
16259
88714cb8 16260 neon_dp_fixup (&inst);
5287ad62
JB
16261}
16262
16263static void
16264do_neon_shl_imm (void)
16265{
16266 if (!inst.operands[2].isreg)
16267 {
037e8744 16268 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16269 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
16270 int imm = inst.operands[2].imm;
16271
16272 constraint (imm < 0 || (unsigned)imm >= et.size,
16273 _("immediate out of range for shift"));
88714cb8 16274 NEON_ENCODE (IMMED, inst);
cb3b1e65 16275 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16276 }
16277 else
16278 {
037e8744 16279 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16280 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16281 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16282 unsigned int tmp;
16283
16284 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
16285 vshl.xx Dd, Dm, Dn
16286 whereas other 3-register operations encoded by neon_three_same have
16287 syntax like:
16288 vadd.xx Dd, Dn, Dm
16289 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16290 here. */
627907b7
JB
16291 tmp = inst.operands[2].reg;
16292 inst.operands[2].reg = inst.operands[1].reg;
16293 inst.operands[1].reg = tmp;
88714cb8 16294 NEON_ENCODE (INTEGER, inst);
037e8744 16295 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16296 }
16297}
16298
16299static void
16300do_neon_qshl_imm (void)
16301{
16302 if (!inst.operands[2].isreg)
16303 {
037e8744 16304 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16305 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 16306 int imm = inst.operands[2].imm;
627907b7 16307
cb3b1e65
JB
16308 constraint (imm < 0 || (unsigned)imm >= et.size,
16309 _("immediate out of range for shift"));
88714cb8 16310 NEON_ENCODE (IMMED, inst);
cb3b1e65 16311 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16312 }
16313 else
16314 {
037e8744 16315 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16316 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16317 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16318 unsigned int tmp;
16319
16320 /* See note in do_neon_shl_imm. */
16321 tmp = inst.operands[2].reg;
16322 inst.operands[2].reg = inst.operands[1].reg;
16323 inst.operands[1].reg = tmp;
88714cb8 16324 NEON_ENCODE (INTEGER, inst);
037e8744 16325 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16326 }
16327}
16328
627907b7
JB
16329static void
16330do_neon_rshl (void)
16331{
16332 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16333 struct neon_type_el et = neon_check_type (3, rs,
16334 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16335 unsigned int tmp;
16336
16337 tmp = inst.operands[2].reg;
16338 inst.operands[2].reg = inst.operands[1].reg;
16339 inst.operands[1].reg = tmp;
16340 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16341}
16342
5287ad62
JB
16343static int
16344neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16345{
036dc3f7
PB
16346 /* Handle .I8 pseudo-instructions. */
16347 if (size == 8)
5287ad62 16348 {
5287ad62 16349 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16350 FIXME is this the intended semantics? There doesn't seem much point in
16351 accepting .I8 if so. */
5287ad62
JB
16352 immediate |= immediate << 8;
16353 size = 16;
036dc3f7
PB
16354 }
16355
16356 if (size >= 32)
16357 {
16358 if (immediate == (immediate & 0x000000ff))
16359 {
16360 *immbits = immediate;
16361 return 0x1;
16362 }
16363 else if (immediate == (immediate & 0x0000ff00))
16364 {
16365 *immbits = immediate >> 8;
16366 return 0x3;
16367 }
16368 else if (immediate == (immediate & 0x00ff0000))
16369 {
16370 *immbits = immediate >> 16;
16371 return 0x5;
16372 }
16373 else if (immediate == (immediate & 0xff000000))
16374 {
16375 *immbits = immediate >> 24;
16376 return 0x7;
16377 }
16378 if ((immediate & 0xffff) != (immediate >> 16))
16379 goto bad_immediate;
16380 immediate &= 0xffff;
5287ad62
JB
16381 }
16382
16383 if (immediate == (immediate & 0x000000ff))
16384 {
16385 *immbits = immediate;
036dc3f7 16386 return 0x9;
5287ad62
JB
16387 }
16388 else if (immediate == (immediate & 0x0000ff00))
16389 {
16390 *immbits = immediate >> 8;
036dc3f7 16391 return 0xb;
5287ad62
JB
16392 }
16393
16394 bad_immediate:
dcbf9037 16395 first_error (_("immediate value out of range"));
5287ad62
JB
16396 return FAIL;
16397}
16398
5287ad62
JB
16399static void
16400do_neon_logic (void)
16401{
16402 if (inst.operands[2].present && inst.operands[2].isreg)
16403 {
037e8744 16404 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16405 if (rs == NS_QQQ
16406 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16407 == FAIL)
16408 return;
16409 else if (rs != NS_QQQ
16410 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16411 first_error (BAD_FPU);
16412
5287ad62
JB
16413 neon_check_type (3, rs, N_IGNORE_TYPE);
16414 /* U bit and size field were set as part of the bitmask. */
88714cb8 16415 NEON_ENCODE (INTEGER, inst);
037e8744 16416 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16417 }
16418 else
16419 {
4316f0d2
DG
16420 const int three_ops_form = (inst.operands[2].present
16421 && !inst.operands[2].isreg);
16422 const int immoperand = (three_ops_form ? 2 : 1);
16423 enum neon_shape rs = (three_ops_form
16424 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16425 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16426 /* Because neon_select_shape makes the second operand a copy of the first
16427 if the second operand is not present. */
16428 if (rs == NS_QQI
16429 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16430 == FAIL)
16431 return;
16432 else if (rs != NS_QQI
16433 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16434 first_error (BAD_FPU);
16435
16436 struct neon_type_el et;
16437 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16438 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16439 else
16440 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16441 | N_KEY, N_EQK);
16442
16443 if (et.type == NT_invtype)
16444 return;
21d799b5 16445 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16446 unsigned immbits;
16447 int cmode;
5f4273c7 16448
5f4273c7 16449
4316f0d2
DG
16450 if (three_ops_form)
16451 constraint (inst.operands[0].reg != inst.operands[1].reg,
16452 _("first and second operands shall be the same register"));
16453
88714cb8 16454 NEON_ENCODE (IMMED, inst);
5287ad62 16455
4316f0d2 16456 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16457 if (et.size == 64)
16458 {
16459 /* .i64 is a pseudo-op, so the immediate must be a repeating
16460 pattern. */
4316f0d2
DG
16461 if (immbits != (inst.operands[immoperand].regisimm ?
16462 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16463 {
16464 /* Set immbits to an invalid constant. */
16465 immbits = 0xdeadbeef;
16466 }
16467 }
16468
5287ad62 16469 switch (opcode)
477330fc
RM
16470 {
16471 case N_MNEM_vbic:
16472 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16473 break;
16474
16475 case N_MNEM_vorr:
16476 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16477 break;
16478
16479 case N_MNEM_vand:
16480 /* Pseudo-instruction for VBIC. */
16481 neon_invert_size (&immbits, 0, et.size);
16482 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16483 break;
16484
16485 case N_MNEM_vorn:
16486 /* Pseudo-instruction for VORR. */
16487 neon_invert_size (&immbits, 0, et.size);
16488 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16489 break;
16490
16491 default:
16492 abort ();
16493 }
5287ad62
JB
16494
16495 if (cmode == FAIL)
477330fc 16496 return;
5287ad62 16497
037e8744 16498 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16499 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16500 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16501 inst.instruction |= cmode << 8;
16502 neon_write_immbits (immbits);
5f4273c7 16503
88714cb8 16504 neon_dp_fixup (&inst);
5287ad62
JB
16505 }
16506}
16507
16508static void
16509do_neon_bitfield (void)
16510{
037e8744 16511 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16512 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16513 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16514}
16515
16516static void
dcbf9037 16517neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16518 unsigned destbits)
5287ad62 16519{
5ee91343 16520 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16521 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16522 types | N_KEY);
5287ad62
JB
16523 if (et.type == NT_float)
16524 {
88714cb8 16525 NEON_ENCODE (FLOAT, inst);
5ee91343 16526 if (rs == NS_QQR)
7df54120 16527 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16528 else
16529 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16530 }
16531 else
16532 {
88714cb8 16533 NEON_ENCODE (INTEGER, inst);
5ee91343 16534 if (rs == NS_QQR)
a8465a06 16535 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
5ee91343
AV
16536 else
16537 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16538 }
16539}
16540
5287ad62
JB
16541
16542static void
16543do_neon_dyadic_if_su_d (void)
16544{
16545 /* This version only allow D registers, but that constraint is enforced during
16546 operand parsing so we don't need to do anything extra here. */
dcbf9037 16547 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16548}
16549
5287ad62
JB
16550static void
16551do_neon_dyadic_if_i_d (void)
16552{
428e3f1f
PB
16553 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16554 affected if we specify unsigned args. */
16555 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16556}
16557
f5f10c66
AV
16558static void
16559do_mve_vstr_vldr_QI (int size, int elsize, int load)
16560{
16561 constraint (size < 32, BAD_ADDR_MODE);
16562 constraint (size != elsize, BAD_EL_TYPE);
16563 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16564 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16565 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16566 _("destination register and offset register may not be the"
16567 " same"));
16568
16569 int imm = inst.relocs[0].exp.X_add_number;
16570 int add = 1;
16571 if (imm < 0)
16572 {
16573 add = 0;
16574 imm = -imm;
16575 }
16576 constraint ((imm % (size / 8) != 0)
16577 || imm > (0x7f << neon_logbits (size)),
16578 (size == 32) ? _("immediate must be a multiple of 4 in the"
16579 " range of +/-[0,508]")
16580 : _("immediate must be a multiple of 8 in the"
16581 " range of +/-[0,1016]"));
16582 inst.instruction |= 0x11 << 24;
16583 inst.instruction |= add << 23;
16584 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16585 inst.instruction |= inst.operands[1].writeback << 21;
16586 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16587 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16588 inst.instruction |= 1 << 12;
16589 inst.instruction |= (size == 64) << 8;
16590 inst.instruction &= 0xffffff00;
16591 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16592 inst.instruction |= imm >> neon_logbits (size);
16593}
16594
16595static void
16596do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16597{
16598 unsigned os = inst.operands[1].imm >> 5;
16599 constraint (os != 0 && size == 8,
16600 _("can not shift offsets when accessing less than half-word"));
16601 constraint (os && os != neon_logbits (size),
16602 _("shift immediate must be 1, 2 or 3 for half-word, word"
16603 " or double-word accesses respectively"));
16604 if (inst.operands[1].reg == REG_PC)
16605 as_tsktsk (MVE_BAD_PC);
16606
16607 switch (size)
16608 {
16609 case 8:
16610 constraint (elsize >= 64, BAD_EL_TYPE);
16611 break;
16612 case 16:
16613 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16614 break;
16615 case 32:
16616 case 64:
16617 constraint (elsize != size, BAD_EL_TYPE);
16618 break;
16619 default:
16620 break;
16621 }
16622 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16623 BAD_ADDR_MODE);
16624 if (load)
16625 {
16626 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16627 _("destination register and offset register may not be"
16628 " the same"));
16629 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16630 BAD_EL_TYPE);
16631 constraint (inst.vectype.el[0].type != NT_unsigned
16632 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16633 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16634 }
16635 else
16636 {
16637 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16638 }
16639
16640 inst.instruction |= 1 << 23;
16641 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16642 inst.instruction |= inst.operands[1].reg << 16;
16643 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16644 inst.instruction |= neon_logbits (elsize) << 7;
16645 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16646 inst.instruction |= LOW4 (inst.operands[1].imm);
16647 inst.instruction |= !!os;
16648}
16649
16650static void
16651do_mve_vstr_vldr_RI (int size, int elsize, int load)
16652{
16653 enum neon_el_type type = inst.vectype.el[0].type;
16654
16655 constraint (size >= 64, BAD_ADDR_MODE);
16656 switch (size)
16657 {
16658 case 16:
16659 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16660 break;
16661 case 32:
16662 constraint (elsize != size, BAD_EL_TYPE);
16663 break;
16664 default:
16665 break;
16666 }
16667 if (load)
16668 {
16669 constraint (elsize != size && type != NT_unsigned
16670 && type != NT_signed, BAD_EL_TYPE);
16671 }
16672 else
16673 {
16674 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16675 }
16676
16677 int imm = inst.relocs[0].exp.X_add_number;
16678 int add = 1;
16679 if (imm < 0)
16680 {
16681 add = 0;
16682 imm = -imm;
16683 }
16684
16685 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16686 {
16687 switch (size)
16688 {
16689 case 8:
16690 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16691 break;
16692 case 16:
16693 constraint (1, _("immediate must be a multiple of 2 in the"
16694 " range of +/-[0,254]"));
16695 break;
16696 case 32:
16697 constraint (1, _("immediate must be a multiple of 4 in the"
16698 " range of +/-[0,508]"));
16699 break;
16700 }
16701 }
16702
16703 if (size != elsize)
16704 {
16705 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16706 constraint (inst.operands[0].reg > 14,
16707 _("MVE vector register in the range [Q0..Q7] expected"));
16708 inst.instruction |= (load && type == NT_unsigned) << 28;
16709 inst.instruction |= (size == 16) << 19;
16710 inst.instruction |= neon_logbits (elsize) << 7;
16711 }
16712 else
16713 {
16714 if (inst.operands[1].reg == REG_PC)
16715 as_tsktsk (MVE_BAD_PC);
16716 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16717 as_tsktsk (MVE_BAD_SP);
16718 inst.instruction |= 1 << 12;
16719 inst.instruction |= neon_logbits (size) << 7;
16720 }
16721 inst.instruction |= inst.operands[1].preind << 24;
16722 inst.instruction |= add << 23;
16723 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16724 inst.instruction |= inst.operands[1].writeback << 21;
16725 inst.instruction |= inst.operands[1].reg << 16;
16726 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16727 inst.instruction &= 0xffffff80;
16728 inst.instruction |= imm >> neon_logbits (size);
16729
16730}
16731
16732static void
16733do_mve_vstr_vldr (void)
16734{
16735 unsigned size;
16736 int load = 0;
16737
16738 if (inst.cond > COND_ALWAYS)
16739 inst.pred_insn_type = INSIDE_VPT_INSN;
16740 else
16741 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16742
16743 switch (inst.instruction)
16744 {
16745 default:
16746 gas_assert (0);
16747 break;
16748 case M_MNEM_vldrb:
16749 load = 1;
16750 /* fall through. */
16751 case M_MNEM_vstrb:
16752 size = 8;
16753 break;
16754 case M_MNEM_vldrh:
16755 load = 1;
16756 /* fall through. */
16757 case M_MNEM_vstrh:
16758 size = 16;
16759 break;
16760 case M_MNEM_vldrw:
16761 load = 1;
16762 /* fall through. */
16763 case M_MNEM_vstrw:
16764 size = 32;
16765 break;
16766 case M_MNEM_vldrd:
16767 load = 1;
16768 /* fall through. */
16769 case M_MNEM_vstrd:
16770 size = 64;
16771 break;
16772 }
16773 unsigned elsize = inst.vectype.el[0].size;
16774
16775 if (inst.operands[1].isquad)
16776 {
16777 /* We are dealing with [Q, imm]{!} cases. */
16778 do_mve_vstr_vldr_QI (size, elsize, load);
16779 }
16780 else
16781 {
16782 if (inst.operands[1].immisreg == 2)
16783 {
16784 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16785 do_mve_vstr_vldr_RQ (size, elsize, load);
16786 }
16787 else if (!inst.operands[1].immisreg)
16788 {
16789 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16790 do_mve_vstr_vldr_RI (size, elsize, load);
16791 }
16792 else
16793 constraint (1, BAD_ADDR_MODE);
16794 }
16795
16796 inst.is_neon = 1;
16797}
16798
35c228db
AV
16799static void
16800do_mve_vst_vld (void)
16801{
16802 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16803 return;
16804
16805 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16806 || inst.relocs[0].exp.X_add_number != 0
16807 || inst.operands[1].immisreg != 0,
16808 BAD_ADDR_MODE);
16809 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16810 if (inst.operands[1].reg == REG_PC)
16811 as_tsktsk (MVE_BAD_PC);
16812 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16813 as_tsktsk (MVE_BAD_SP);
16814
16815
16816 /* These instructions are one of the "exceptions" mentioned in
16817 handle_pred_state. They are MVE instructions that are not VPT compatible
16818 and do not accept a VPT code, thus appending such a code is a syntax
16819 error. */
16820 if (inst.cond > COND_ALWAYS)
16821 first_error (BAD_SYNTAX);
16822 /* If we append a scalar condition code we can set this to
16823 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16824 else if (inst.cond < COND_ALWAYS)
16825 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16826 else
16827 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16828
16829 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16830 inst.instruction |= inst.operands[1].writeback << 21;
16831 inst.instruction |= inst.operands[1].reg << 16;
16832 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16833 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16834 inst.is_neon = 1;
16835}
16836
26c1e780
AV
16837static void
16838do_mve_vaddlv (void)
16839{
16840 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16841 struct neon_type_el et
16842 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16843
16844 if (et.type == NT_invtype)
16845 first_error (BAD_EL_TYPE);
16846
16847 if (inst.cond > COND_ALWAYS)
16848 inst.pred_insn_type = INSIDE_VPT_INSN;
16849 else
16850 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16851
16852 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16853
16854 inst.instruction |= (et.type == NT_unsigned) << 28;
16855 inst.instruction |= inst.operands[1].reg << 19;
16856 inst.instruction |= inst.operands[0].reg << 12;
16857 inst.instruction |= inst.operands[2].reg;
16858 inst.is_neon = 1;
16859}
16860
5287ad62 16861static void
5ee91343 16862do_neon_dyadic_if_su (void)
5287ad62 16863{
5ee91343
AV
16864 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16865 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16866 N_SUF_32 | N_KEY);
16867
935295b5
AV
16868 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16869 || inst.instruction == ((unsigned) N_MNEM_vmin))
16870 && et.type == NT_float
16871 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16872
5ee91343
AV
16873 if (check_simd_pred_availability (et.type == NT_float,
16874 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
16875 return;
16876
5ee91343
AV
16877 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16878}
16879
16880static void
16881do_neon_addsub_if_i (void)
16882{
16883 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16884 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
16885 return;
16886
5ee91343
AV
16887 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16888 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16889 N_EQK, N_IF_32 | N_I64 | N_KEY);
16890
16891 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16892 /* If we are parsing Q registers and the element types match MVE, which NEON
16893 also supports, then we must check whether this is an instruction that can
16894 be used by both MVE/NEON. This distinction can be made based on whether
16895 they are predicated or not. */
16896 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16897 {
16898 if (check_simd_pred_availability (et.type == NT_float,
16899 NEON_CHECK_ARCH | NEON_CHECK_CC))
16900 return;
16901 }
16902 else
16903 {
16904 /* If they are either in a D register or are using an unsupported. */
16905 if (rs != NS_QQR
16906 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16907 return;
16908 }
16909
5287ad62
JB
16910 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16911 affected if we specify unsigned args. */
dcbf9037 16912 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
16913}
16914
16915/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16916 result to be:
16917 V<op> A,B (A is operand 0, B is operand 2)
16918 to mean:
16919 V<op> A,B,A
16920 not:
16921 V<op> A,B,B
16922 so handle that case specially. */
16923
16924static void
16925neon_exchange_operands (void)
16926{
5287ad62
JB
16927 if (inst.operands[1].present)
16928 {
e1fa0163
NC
16929 void *scratch = xmalloc (sizeof (inst.operands[0]));
16930
5287ad62
JB
16931 /* Swap operands[1] and operands[2]. */
16932 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16933 inst.operands[1] = inst.operands[2];
16934 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 16935 free (scratch);
5287ad62
JB
16936 }
16937 else
16938 {
16939 inst.operands[1] = inst.operands[2];
16940 inst.operands[2] = inst.operands[0];
16941 }
16942}
16943
16944static void
16945neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16946{
16947 if (inst.operands[2].isreg)
16948 {
16949 if (invert)
477330fc 16950 neon_exchange_operands ();
dcbf9037 16951 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
16952 }
16953 else
16954 {
037e8744 16955 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 16956 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16957 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 16958
88714cb8 16959 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16960 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16961 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16962 inst.instruction |= LOW4 (inst.operands[1].reg);
16963 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16964 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16965 inst.instruction |= (et.type == NT_float) << 10;
16966 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 16967
88714cb8 16968 neon_dp_fixup (&inst);
5287ad62
JB
16969 }
16970}
16971
16972static void
16973do_neon_cmp (void)
16974{
cc933301 16975 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
16976}
16977
16978static void
16979do_neon_cmp_inv (void)
16980{
cc933301 16981 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
16982}
16983
16984static void
16985do_neon_ceq (void)
16986{
16987 neon_compare (N_IF_32, N_IF_32, FALSE);
16988}
16989
16990/* For multiply instructions, we have the possibility of 16-bit or 32-bit
16991 scalars, which are encoded in 5 bits, M : Rm.
16992 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16993 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
16994 index in M.
16995
16996 Dot Product instructions are similar to multiply instructions except elsize
16997 should always be 32.
16998
16999 This function translates SCALAR, which is GAS's internal encoding of indexed
17000 scalar register, to raw encoding. There is also register and index range
17001 check based on ELSIZE. */
5287ad62
JB
17002
17003static unsigned
17004neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17005{
dcbf9037
JB
17006 unsigned regno = NEON_SCALAR_REG (scalar);
17007 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
17008
17009 switch (elsize)
17010 {
17011 case 16:
17012 if (regno > 7 || elno > 3)
477330fc 17013 goto bad_scalar;
5287ad62 17014 return regno | (elno << 3);
5f4273c7 17015
5287ad62
JB
17016 case 32:
17017 if (regno > 15 || elno > 1)
477330fc 17018 goto bad_scalar;
5287ad62
JB
17019 return regno | (elno << 4);
17020
17021 default:
17022 bad_scalar:
dcbf9037 17023 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
17024 }
17025
17026 return 0;
17027}
17028
17029/* Encode multiply / multiply-accumulate scalar instructions. */
17030
17031static void
17032neon_mul_mac (struct neon_type_el et, int ubit)
17033{
dcbf9037
JB
17034 unsigned scalar;
17035
17036 /* Give a more helpful error message if we have an invalid type. */
17037 if (et.type == NT_invtype)
17038 return;
5f4273c7 17039
dcbf9037 17040 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
17041 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17042 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17043 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17044 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17045 inst.instruction |= LOW4 (scalar);
17046 inst.instruction |= HI1 (scalar) << 5;
17047 inst.instruction |= (et.type == NT_float) << 8;
17048 inst.instruction |= neon_logbits (et.size) << 20;
17049 inst.instruction |= (ubit != 0) << 24;
17050
88714cb8 17051 neon_dp_fixup (&inst);
5287ad62
JB
17052}
17053
17054static void
17055do_neon_mac_maybe_scalar (void)
17056{
037e8744
JB
17057 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17058 return;
17059
a8465a06 17060 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17061 return;
17062
5287ad62
JB
17063 if (inst.operands[2].isscalar)
17064 {
a8465a06 17065 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17066 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17067 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 17068 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 17069 NEON_ENCODE (SCALAR, inst);
037e8744 17070 neon_mul_mac (et, neon_quad (rs));
5287ad62 17071 }
a8465a06
AV
17072 else if (!inst.operands[2].isvec)
17073 {
17074 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17075
17076 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17077 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17078
17079 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17080 }
5287ad62 17081 else
428e3f1f 17082 {
a8465a06 17083 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
428e3f1f
PB
17084 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17085 affected if we specify unsigned args. */
17086 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17087 }
5287ad62
JB
17088}
17089
62f3b8c8
PB
17090static void
17091do_neon_fmac (void)
17092{
d58196e0
AV
17093 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17094 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
17095 return;
17096
d58196e0 17097 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
17098 return;
17099
d58196e0
AV
17100 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17101 {
17102 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17103 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17104 N_EQK);
17105
17106 if (rs == NS_QQR)
17107 {
17108 if (inst.operands[2].reg == REG_SP)
17109 as_tsktsk (MVE_BAD_SP);
17110 else if (inst.operands[2].reg == REG_PC)
17111 as_tsktsk (MVE_BAD_PC);
17112
17113 inst.instruction = 0xee310e40;
17114 inst.instruction |= (et.size == 16) << 28;
17115 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17116 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17117 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17118 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17119 inst.instruction |= inst.operands[2].reg;
17120 inst.is_neon = 1;
17121 return;
17122 }
17123 }
17124 else
17125 {
17126 constraint (!inst.operands[2].isvec, BAD_FPU);
17127 }
17128
62f3b8c8
PB
17129 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17130}
17131
5287ad62
JB
17132static void
17133do_neon_tst (void)
17134{
037e8744 17135 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17136 struct neon_type_el et = neon_check_type (3, rs,
17137 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17138 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17139}
17140
17141/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17142 same types as the MAC equivalents. The polynomial type for this instruction
17143 is encoded the same as the integer type. */
17144
17145static void
17146do_neon_mul (void)
17147{
037e8744
JB
17148 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17149 return;
17150
a8465a06 17151 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17152 return;
17153
5287ad62 17154 if (inst.operands[2].isscalar)
a8465a06
AV
17155 {
17156 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17157 do_neon_mac_maybe_scalar ();
17158 }
5287ad62 17159 else
a8465a06
AV
17160 {
17161 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17162 {
17163 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17164 struct neon_type_el et
17165 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17166 if (et.type == NT_float)
17167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17168 BAD_FPU);
17169
17170 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17171 }
17172 else
17173 {
17174 constraint (!inst.operands[2].isvec, BAD_FPU);
17175 neon_dyadic_misc (NT_poly,
17176 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17177 }
17178 }
5287ad62
JB
17179}
17180
17181static void
17182do_neon_qdmulh (void)
17183{
17184 if (inst.operands[2].isscalar)
17185 {
037e8744 17186 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17187 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17188 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17189 NEON_ENCODE (SCALAR, inst);
037e8744 17190 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
17191 }
17192 else
17193 {
037e8744 17194 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 17195 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17196 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17197 NEON_ENCODE (INTEGER, inst);
5287ad62 17198 /* The U bit (rounding) comes from bit mask. */
037e8744 17199 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17200 }
17201}
17202
26c1e780
AV
17203static void
17204do_mve_vaddv (void)
17205{
17206 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17207 struct neon_type_el et
17208 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17209
17210 if (et.type == NT_invtype)
17211 first_error (BAD_EL_TYPE);
17212
17213 if (inst.cond > COND_ALWAYS)
17214 inst.pred_insn_type = INSIDE_VPT_INSN;
17215 else
17216 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17217
17218 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17219
17220 mve_encode_rq (et.type == NT_unsigned, et.size);
17221}
17222
7df54120
AV
17223static void
17224do_mve_vhcadd (void)
17225{
17226 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17227 struct neon_type_el et
17228 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17229
17230 if (inst.cond > COND_ALWAYS)
17231 inst.pred_insn_type = INSIDE_VPT_INSN;
17232 else
17233 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17234
17235 unsigned rot = inst.relocs[0].exp.X_add_number;
17236 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17237
17238 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17239 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17240 "operand makes instruction UNPREDICTABLE"));
17241
17242 mve_encode_qqq (0, et.size);
17243 inst.instruction |= (rot == 270) << 12;
17244 inst.is_neon = 1;
17245}
17246
c2dafc2a
AV
17247static void
17248do_mve_vadc (void)
17249{
17250 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17251 struct neon_type_el et
17252 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17253
17254 if (et.type == NT_invtype)
17255 first_error (BAD_EL_TYPE);
17256
17257 if (inst.cond > COND_ALWAYS)
17258 inst.pred_insn_type = INSIDE_VPT_INSN;
17259 else
17260 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17261
17262 mve_encode_qqq (0, 64);
17263}
17264
17265static void
17266do_mve_vbrsr (void)
17267{
17268 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17269 struct neon_type_el et
17270 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17271
17272 if (inst.cond > COND_ALWAYS)
17273 inst.pred_insn_type = INSIDE_VPT_INSN;
17274 else
17275 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17276
7df54120 17277 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17278}
17279
17280static void
17281do_mve_vsbc (void)
17282{
17283 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17284
17285 if (inst.cond > COND_ALWAYS)
17286 inst.pred_insn_type = INSIDE_VPT_INSN;
17287 else
17288 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17289
17290 mve_encode_qqq (1, 64);
17291}
17292
2d78f95b
AV
17293static void
17294do_mve_vmulh (void)
17295{
17296 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17297 struct neon_type_el et
17298 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17299
17300 if (inst.cond > COND_ALWAYS)
17301 inst.pred_insn_type = INSIDE_VPT_INSN;
17302 else
17303 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17304
17305 mve_encode_qqq (et.type == NT_unsigned, et.size);
17306}
17307
886e1c73
AV
17308static void
17309do_mve_vmull (void)
17310{
17311
17312 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17313 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17314 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17315 && inst.cond == COND_ALWAYS
17316 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17317 {
17318 if (rs == NS_QQQ)
17319 {
17320
17321 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17322 N_SUF_32 | N_F64 | N_P8
17323 | N_P16 | N_I_MVE | N_KEY);
17324 if (((et.type == NT_poly) && et.size == 8
17325 && ARM_CPU_IS_ANY (cpu_variant))
17326 || (et.type == NT_integer) || (et.type == NT_float))
17327 goto neon_vmul;
17328 }
17329 else
17330 goto neon_vmul;
17331 }
17332
17333 constraint (rs != NS_QQQ, BAD_FPU);
17334 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17335 N_SU_32 | N_P8 | N_P16 | N_KEY);
17336
17337 /* We are dealing with MVE's vmullt. */
17338 if (et.size == 32
17339 && (inst.operands[0].reg == inst.operands[1].reg
17340 || inst.operands[0].reg == inst.operands[2].reg))
17341 as_tsktsk (BAD_MVE_SRCDEST);
17342
17343 if (inst.cond > COND_ALWAYS)
17344 inst.pred_insn_type = INSIDE_VPT_INSN;
17345 else
17346 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17347
17348 if (et.type == NT_poly)
17349 mve_encode_qqq (neon_logbits (et.size), 64);
17350 else
17351 mve_encode_qqq (et.type == NT_unsigned, et.size);
17352
17353 return;
17354
17355neon_vmul:
17356 inst.instruction = N_MNEM_vmul;
17357 inst.cond = 0xb;
17358 if (thumb_mode)
17359 inst.pred_insn_type = INSIDE_IT_INSN;
17360 do_neon_mul ();
17361}
17362
a302e574
AV
17363static void
17364do_mve_vabav (void)
17365{
17366 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17367
17368 if (rs == NS_NULL)
17369 return;
17370
17371 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17372 return;
17373
17374 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17375 | N_S16 | N_S32 | N_U8 | N_U16
17376 | N_U32);
17377
17378 if (inst.cond > COND_ALWAYS)
17379 inst.pred_insn_type = INSIDE_VPT_INSN;
17380 else
17381 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17382
17383 mve_encode_rqq (et.type == NT_unsigned, et.size);
17384}
17385
17386static void
17387do_mve_vmladav (void)
17388{
17389 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17390 struct neon_type_el et = neon_check_type (3, rs,
17391 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17392
17393 if (et.type == NT_unsigned
17394 && (inst.instruction == M_MNEM_vmladavx
17395 || inst.instruction == M_MNEM_vmladavax
17396 || inst.instruction == M_MNEM_vmlsdav
17397 || inst.instruction == M_MNEM_vmlsdava
17398 || inst.instruction == M_MNEM_vmlsdavx
17399 || inst.instruction == M_MNEM_vmlsdavax))
17400 first_error (BAD_SIMD_TYPE);
17401
17402 constraint (inst.operands[2].reg > 14,
17403 _("MVE vector register in the range [Q0..Q7] expected"));
17404
17405 if (inst.cond > COND_ALWAYS)
17406 inst.pred_insn_type = INSIDE_VPT_INSN;
17407 else
17408 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17409
17410 if (inst.instruction == M_MNEM_vmlsdav
17411 || inst.instruction == M_MNEM_vmlsdava
17412 || inst.instruction == M_MNEM_vmlsdavx
17413 || inst.instruction == M_MNEM_vmlsdavax)
17414 inst.instruction |= (et.size == 8) << 28;
17415 else
17416 inst.instruction |= (et.size == 8) << 8;
17417
17418 mve_encode_rqq (et.type == NT_unsigned, 64);
17419 inst.instruction |= (et.size == 32) << 16;
17420}
17421
93925576
AV
17422static void
17423do_mve_vmlaldav (void)
17424{
17425 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17426 struct neon_type_el et
17427 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17428 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17429
17430 if (et.type == NT_unsigned
17431 && (inst.instruction == M_MNEM_vmlsldav
17432 || inst.instruction == M_MNEM_vmlsldava
17433 || inst.instruction == M_MNEM_vmlsldavx
17434 || inst.instruction == M_MNEM_vmlsldavax))
17435 first_error (BAD_SIMD_TYPE);
17436
17437 if (inst.cond > COND_ALWAYS)
17438 inst.pred_insn_type = INSIDE_VPT_INSN;
17439 else
17440 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17441
17442 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17443}
17444
17445static void
17446do_mve_vrmlaldavh (void)
17447{
17448 struct neon_type_el et;
17449 if (inst.instruction == M_MNEM_vrmlsldavh
17450 || inst.instruction == M_MNEM_vrmlsldavha
17451 || inst.instruction == M_MNEM_vrmlsldavhx
17452 || inst.instruction == M_MNEM_vrmlsldavhax)
17453 {
17454 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17455 if (inst.operands[1].reg == REG_SP)
17456 as_tsktsk (MVE_BAD_SP);
17457 }
17458 else
17459 {
17460 if (inst.instruction == M_MNEM_vrmlaldavhx
17461 || inst.instruction == M_MNEM_vrmlaldavhax)
17462 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17463 else
17464 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17465 N_U32 | N_S32 | N_KEY);
17466 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17467 with vmax/min instructions, making the use of SP in assembly really
17468 nonsensical, so instead of issuing a warning like we do for other uses
17469 of SP for the odd register operand we error out. */
17470 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17471 }
17472
17473 /* Make sure we still check the second operand is an odd one and that PC is
17474 disallowed. This because we are parsing for any GPR operand, to be able
17475 to distinguish between giving a warning or an error for SP as described
17476 above. */
17477 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17478 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17479
17480 if (inst.cond > COND_ALWAYS)
17481 inst.pred_insn_type = INSIDE_VPT_INSN;
17482 else
17483 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17484
17485 mve_encode_rrqq (et.type == NT_unsigned, 0);
17486}
17487
17488
8cd78170
AV
17489static void
17490do_mve_vmaxnmv (void)
17491{
17492 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17493 struct neon_type_el et
17494 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17495
17496 if (inst.cond > COND_ALWAYS)
17497 inst.pred_insn_type = INSIDE_VPT_INSN;
17498 else
17499 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17500
17501 if (inst.operands[0].reg == REG_SP)
17502 as_tsktsk (MVE_BAD_SP);
17503 else if (inst.operands[0].reg == REG_PC)
17504 as_tsktsk (MVE_BAD_PC);
17505
17506 mve_encode_rq (et.size == 16, 64);
17507}
17508
13ccd4c0
AV
17509static void
17510do_mve_vmaxv (void)
17511{
17512 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17513 struct neon_type_el et;
17514
17515 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17516 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17517 else
17518 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17519
17520 if (inst.cond > COND_ALWAYS)
17521 inst.pred_insn_type = INSIDE_VPT_INSN;
17522 else
17523 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17524
17525 if (inst.operands[0].reg == REG_SP)
17526 as_tsktsk (MVE_BAD_SP);
17527 else if (inst.operands[0].reg == REG_PC)
17528 as_tsktsk (MVE_BAD_PC);
17529
17530 mve_encode_rq (et.type == NT_unsigned, et.size);
17531}
17532
17533
643afb90
MW
17534static void
17535do_neon_qrdmlah (void)
17536{
17537 /* Check we're on the correct architecture. */
17538 if (!mark_feature_used (&fpu_neon_ext_armv8))
17539 inst.error =
17540 _("instruction form not available on this architecture.");
17541 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17542 {
17543 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17544 record_feature_use (&fpu_neon_ext_v8_1);
17545 }
17546
17547 if (inst.operands[2].isscalar)
17548 {
17549 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17550 struct neon_type_el et = neon_check_type (3, rs,
17551 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17552 NEON_ENCODE (SCALAR, inst);
17553 neon_mul_mac (et, neon_quad (rs));
17554 }
17555 else
17556 {
17557 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17558 struct neon_type_el et = neon_check_type (3, rs,
17559 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17560 NEON_ENCODE (INTEGER, inst);
17561 /* The U bit (rounding) comes from bit mask. */
17562 neon_three_same (neon_quad (rs), 0, et.size);
17563 }
17564}
17565
5287ad62
JB
17566static void
17567do_neon_fcmp_absolute (void)
17568{
037e8744 17569 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17570 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17571 N_F_16_32 | N_KEY);
5287ad62 17572 /* Size field comes from bit mask. */
cc933301 17573 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17574}
17575
17576static void
17577do_neon_fcmp_absolute_inv (void)
17578{
17579 neon_exchange_operands ();
17580 do_neon_fcmp_absolute ();
17581}
17582
17583static void
17584do_neon_step (void)
17585{
037e8744 17586 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17587 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17588 N_F_16_32 | N_KEY);
17589 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17590}
17591
17592static void
17593do_neon_abs_neg (void)
17594{
037e8744
JB
17595 enum neon_shape rs;
17596 struct neon_type_el et;
5f4273c7 17597
037e8744
JB
17598 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17599 return;
17600
037e8744 17601 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17602 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17603
485dee97
AV
17604 if (check_simd_pred_availability (et.type == NT_float,
17605 NEON_CHECK_ARCH | NEON_CHECK_CC))
17606 return;
17607
5287ad62
JB
17608 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17609 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17610 inst.instruction |= LOW4 (inst.operands[1].reg);
17611 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17612 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17613 inst.instruction |= (et.type == NT_float) << 10;
17614 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17615
88714cb8 17616 neon_dp_fixup (&inst);
5287ad62
JB
17617}
17618
17619static void
17620do_neon_sli (void)
17621{
037e8744 17622 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17623 struct neon_type_el et = neon_check_type (2, rs,
17624 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17625 int imm = inst.operands[2].imm;
17626 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17627 _("immediate out of range for insert"));
037e8744 17628 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17629}
17630
17631static void
17632do_neon_sri (void)
17633{
037e8744 17634 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17635 struct neon_type_el et = neon_check_type (2, rs,
17636 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17637 int imm = inst.operands[2].imm;
17638 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17639 _("immediate out of range for insert"));
037e8744 17640 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17641}
17642
17643static void
17644do_neon_qshlu_imm (void)
17645{
037e8744 17646 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17647 struct neon_type_el et = neon_check_type (2, rs,
17648 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17649 int imm = inst.operands[2].imm;
17650 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17651 _("immediate out of range for shift"));
5287ad62
JB
17652 /* Only encodes the 'U present' variant of the instruction.
17653 In this case, signed types have OP (bit 8) set to 0.
17654 Unsigned types have OP set to 1. */
17655 inst.instruction |= (et.type == NT_unsigned) << 8;
17656 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17657 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17658}
17659
17660static void
17661do_neon_qmovn (void)
17662{
17663 struct neon_type_el et = neon_check_type (2, NS_DQ,
17664 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17665 /* Saturating move where operands can be signed or unsigned, and the
17666 destination has the same signedness. */
88714cb8 17667 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17668 if (et.type == NT_unsigned)
17669 inst.instruction |= 0xc0;
17670 else
17671 inst.instruction |= 0x80;
17672 neon_two_same (0, 1, et.size / 2);
17673}
17674
17675static void
17676do_neon_qmovun (void)
17677{
17678 struct neon_type_el et = neon_check_type (2, NS_DQ,
17679 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17680 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17681 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17682 neon_two_same (0, 1, et.size / 2);
17683}
17684
17685static void
17686do_neon_rshift_sat_narrow (void)
17687{
17688 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17689 or unsigned. If operands are unsigned, results must also be unsigned. */
17690 struct neon_type_el et = neon_check_type (2, NS_DQI,
17691 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17692 int imm = inst.operands[2].imm;
17693 /* This gets the bounds check, size encoding and immediate bits calculation
17694 right. */
17695 et.size /= 2;
5f4273c7 17696
5287ad62
JB
17697 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17698 VQMOVN.I<size> <Dd>, <Qm>. */
17699 if (imm == 0)
17700 {
17701 inst.operands[2].present = 0;
17702 inst.instruction = N_MNEM_vqmovn;
17703 do_neon_qmovn ();
17704 return;
17705 }
5f4273c7 17706
5287ad62 17707 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17708 _("immediate out of range"));
5287ad62
JB
17709 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17710}
17711
17712static void
17713do_neon_rshift_sat_narrow_u (void)
17714{
17715 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17716 or unsigned. If operands are unsigned, results must also be unsigned. */
17717 struct neon_type_el et = neon_check_type (2, NS_DQI,
17718 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17719 int imm = inst.operands[2].imm;
17720 /* This gets the bounds check, size encoding and immediate bits calculation
17721 right. */
17722 et.size /= 2;
17723
17724 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17725 VQMOVUN.I<size> <Dd>, <Qm>. */
17726 if (imm == 0)
17727 {
17728 inst.operands[2].present = 0;
17729 inst.instruction = N_MNEM_vqmovun;
17730 do_neon_qmovun ();
17731 return;
17732 }
17733
17734 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17735 _("immediate out of range"));
5287ad62
JB
17736 /* FIXME: The manual is kind of unclear about what value U should have in
17737 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17738 must be 1. */
17739 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17740}
17741
17742static void
17743do_neon_movn (void)
17744{
17745 struct neon_type_el et = neon_check_type (2, NS_DQ,
17746 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 17747 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17748 neon_two_same (0, 1, et.size / 2);
17749}
17750
17751static void
17752do_neon_rshift_narrow (void)
17753{
17754 struct neon_type_el et = neon_check_type (2, NS_DQI,
17755 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17756 int imm = inst.operands[2].imm;
17757 /* This gets the bounds check, size encoding and immediate bits calculation
17758 right. */
17759 et.size /= 2;
5f4273c7 17760
5287ad62
JB
17761 /* If immediate is zero then we are a pseudo-instruction for
17762 VMOVN.I<size> <Dd>, <Qm> */
17763 if (imm == 0)
17764 {
17765 inst.operands[2].present = 0;
17766 inst.instruction = N_MNEM_vmovn;
17767 do_neon_movn ();
17768 return;
17769 }
5f4273c7 17770
5287ad62 17771 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17772 _("immediate out of range for narrowing operation"));
5287ad62
JB
17773 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17774}
17775
17776static void
17777do_neon_shll (void)
17778{
17779 /* FIXME: Type checking when lengthening. */
17780 struct neon_type_el et = neon_check_type (2, NS_QDI,
17781 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17782 unsigned imm = inst.operands[2].imm;
17783
17784 if (imm == et.size)
17785 {
17786 /* Maximum shift variant. */
88714cb8 17787 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17788 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17789 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17790 inst.instruction |= LOW4 (inst.operands[1].reg);
17791 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17792 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17793
88714cb8 17794 neon_dp_fixup (&inst);
5287ad62
JB
17795 }
17796 else
17797 {
17798 /* A more-specific type check for non-max versions. */
17799 et = neon_check_type (2, NS_QDI,
477330fc 17800 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 17801 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17802 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17803 }
17804}
17805
037e8744 17806/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
17807 the current instruction is. */
17808
6b9a8b67
MGD
17809#define CVT_FLAVOUR_VAR \
17810 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17811 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17812 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17813 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17814 /* Half-precision conversions. */ \
cc933301
JW
17815 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17816 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17817 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17818 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
17819 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17820 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
17821 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17822 Compared with single/double precision variants, only the co-processor \
17823 field is different, so the encoding flow is reused here. */ \
17824 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17825 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17826 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17827 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
17828 /* VFP instructions. */ \
17829 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17830 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17831 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17832 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17833 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17834 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17835 /* VFP instructions with bitshift. */ \
17836 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17837 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17838 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17839 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17840 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17841 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17842 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17843 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17844
17845#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17846 neon_cvt_flavour_##C,
17847
17848/* The different types of conversions we can do. */
17849enum neon_cvt_flavour
17850{
17851 CVT_FLAVOUR_VAR
17852 neon_cvt_flavour_invalid,
17853 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17854};
17855
17856#undef CVT_VAR
17857
17858static enum neon_cvt_flavour
17859get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 17860{
6b9a8b67
MGD
17861#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17862 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17863 if (et.type != NT_invtype) \
17864 { \
17865 inst.error = NULL; \
17866 return (neon_cvt_flavour_##C); \
5287ad62 17867 }
6b9a8b67 17868
5287ad62 17869 struct neon_type_el et;
037e8744 17870 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 17871 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
17872 /* The instruction versions which take an immediate take one register
17873 argument, which is extended to the width of the full register. Thus the
17874 "source" and "destination" registers must have the same width. Hack that
17875 here by making the size equal to the key (wider, in this case) operand. */
17876 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 17877
6b9a8b67
MGD
17878 CVT_FLAVOUR_VAR;
17879
17880 return neon_cvt_flavour_invalid;
5287ad62
JB
17881#undef CVT_VAR
17882}
17883
7e8e6784
MGD
17884enum neon_cvt_mode
17885{
17886 neon_cvt_mode_a,
17887 neon_cvt_mode_n,
17888 neon_cvt_mode_p,
17889 neon_cvt_mode_m,
17890 neon_cvt_mode_z,
30bdf752
MGD
17891 neon_cvt_mode_x,
17892 neon_cvt_mode_r
7e8e6784
MGD
17893};
17894
037e8744
JB
17895/* Neon-syntax VFP conversions. */
17896
5287ad62 17897static void
6b9a8b67 17898do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 17899{
037e8744 17900 const char *opname = 0;
5f4273c7 17901
d54af2d0
RL
17902 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17903 || rs == NS_FHI || rs == NS_HFI)
5287ad62 17904 {
037e8744
JB
17905 /* Conversions with immediate bitshift. */
17906 const char *enc[] =
477330fc 17907 {
6b9a8b67
MGD
17908#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17909 CVT_FLAVOUR_VAR
17910 NULL
17911#undef CVT_VAR
477330fc 17912 };
037e8744 17913
6b9a8b67 17914 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
17915 {
17916 opname = enc[flavour];
17917 constraint (inst.operands[0].reg != inst.operands[1].reg,
17918 _("operands 0 and 1 must be the same register"));
17919 inst.operands[1] = inst.operands[2];
17920 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17921 }
5287ad62
JB
17922 }
17923 else
17924 {
037e8744
JB
17925 /* Conversions without bitshift. */
17926 const char *enc[] =
477330fc 17927 {
6b9a8b67
MGD
17928#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17929 CVT_FLAVOUR_VAR
17930 NULL
17931#undef CVT_VAR
477330fc 17932 };
037e8744 17933
6b9a8b67 17934 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 17935 opname = enc[flavour];
037e8744
JB
17936 }
17937
17938 if (opname)
17939 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
17940
17941 /* ARMv8.2 fp16 VCVT instruction. */
17942 if (flavour == neon_cvt_flavour_s32_f16
17943 || flavour == neon_cvt_flavour_u32_f16
17944 || flavour == neon_cvt_flavour_f16_u32
17945 || flavour == neon_cvt_flavour_f16_s32)
17946 do_scalar_fp16_v82_encode ();
037e8744
JB
17947}
17948
17949static void
17950do_vfp_nsyn_cvtz (void)
17951{
d54af2d0 17952 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 17953 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
17954 const char *enc[] =
17955 {
6b9a8b67
MGD
17956#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17957 CVT_FLAVOUR_VAR
17958 NULL
17959#undef CVT_VAR
037e8744
JB
17960 };
17961
6b9a8b67 17962 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
17963 do_vfp_nsyn_opcode (enc[flavour]);
17964}
f31fef98 17965
037e8744 17966static void
bacebabc 17967do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
17968 enum neon_cvt_mode mode)
17969{
17970 int sz, op;
17971 int rm;
17972
a715796b
TG
17973 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17974 D register operands. */
17975 if (flavour == neon_cvt_flavour_s32_f64
17976 || flavour == neon_cvt_flavour_u32_f64)
17977 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17978 _(BAD_FPU));
17979
9db2f6b4
RL
17980 if (flavour == neon_cvt_flavour_s32_f16
17981 || flavour == neon_cvt_flavour_u32_f16)
17982 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17983 _(BAD_FP16));
17984
5ee91343 17985 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
17986
17987 switch (flavour)
17988 {
17989 case neon_cvt_flavour_s32_f64:
17990 sz = 1;
827f64ff 17991 op = 1;
7e8e6784
MGD
17992 break;
17993 case neon_cvt_flavour_s32_f32:
17994 sz = 0;
17995 op = 1;
17996 break;
9db2f6b4
RL
17997 case neon_cvt_flavour_s32_f16:
17998 sz = 0;
17999 op = 1;
18000 break;
7e8e6784
MGD
18001 case neon_cvt_flavour_u32_f64:
18002 sz = 1;
18003 op = 0;
18004 break;
18005 case neon_cvt_flavour_u32_f32:
18006 sz = 0;
18007 op = 0;
18008 break;
9db2f6b4
RL
18009 case neon_cvt_flavour_u32_f16:
18010 sz = 0;
18011 op = 0;
18012 break;
7e8e6784
MGD
18013 default:
18014 first_error (_("invalid instruction shape"));
18015 return;
18016 }
18017
18018 switch (mode)
18019 {
18020 case neon_cvt_mode_a: rm = 0; break;
18021 case neon_cvt_mode_n: rm = 1; break;
18022 case neon_cvt_mode_p: rm = 2; break;
18023 case neon_cvt_mode_m: rm = 3; break;
18024 default: first_error (_("invalid rounding mode")); return;
18025 }
18026
18027 NEON_ENCODE (FPV8, inst);
18028 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18029 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18030 inst.instruction |= sz << 8;
9db2f6b4
RL
18031
18032 /* ARMv8.2 fp16 VCVT instruction. */
18033 if (flavour == neon_cvt_flavour_s32_f16
18034 ||flavour == neon_cvt_flavour_u32_f16)
18035 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
18036 inst.instruction |= op << 7;
18037 inst.instruction |= rm << 16;
18038 inst.instruction |= 0xf0000000;
18039 inst.is_neon = TRUE;
18040}
18041
18042static void
18043do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
18044{
18045 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
18046 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18047 NS_FH, NS_HF, NS_FHI, NS_HFI,
18048 NS_NULL);
6b9a8b67 18049 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 18050
cc933301
JW
18051 if (flavour == neon_cvt_flavour_invalid)
18052 return;
18053
e3e535bc 18054 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 18055 if (mode == neon_cvt_mode_z
e3e535bc 18056 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
18057 && (flavour == neon_cvt_flavour_s16_f16
18058 || flavour == neon_cvt_flavour_u16_f16
18059 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
18060 || flavour == neon_cvt_flavour_u32_f32
18061 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 18062 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
18063 && (rs == NS_FD || rs == NS_FF))
18064 {
18065 do_vfp_nsyn_cvtz ();
18066 return;
18067 }
18068
9db2f6b4
RL
18069 /* ARMv8.2 fp16 VCVT conversions. */
18070 if (mode == neon_cvt_mode_z
18071 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18072 && (flavour == neon_cvt_flavour_s32_f16
18073 || flavour == neon_cvt_flavour_u32_f16)
18074 && (rs == NS_FH))
18075 {
18076 do_vfp_nsyn_cvtz ();
18077 do_scalar_fp16_v82_encode ();
18078 return;
18079 }
18080
037e8744 18081 /* VFP rather than Neon conversions. */
6b9a8b67 18082 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 18083 {
7e8e6784
MGD
18084 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18085 do_vfp_nsyn_cvt (rs, flavour);
18086 else
18087 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18088
037e8744
JB
18089 return;
18090 }
18091
18092 switch (rs)
18093 {
037e8744 18094 case NS_QQI:
dd9634d9
AV
18095 if (mode == neon_cvt_mode_z
18096 && (flavour == neon_cvt_flavour_f16_s16
18097 || flavour == neon_cvt_flavour_f16_u16
18098 || flavour == neon_cvt_flavour_s16_f16
18099 || flavour == neon_cvt_flavour_u16_f16
18100 || flavour == neon_cvt_flavour_f32_u32
18101 || flavour == neon_cvt_flavour_f32_s32
18102 || flavour == neon_cvt_flavour_s32_f32
18103 || flavour == neon_cvt_flavour_u32_f32))
18104 {
18105 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18106 return;
18107 }
18108 else if (mode == neon_cvt_mode_n)
18109 {
18110 /* We are dealing with vcvt with the 'ne' condition. */
18111 inst.cond = 0x1;
18112 inst.instruction = N_MNEM_vcvt;
18113 do_neon_cvt_1 (neon_cvt_mode_z);
18114 return;
18115 }
18116 /* fall through. */
18117 case NS_DDI:
037e8744 18118 {
477330fc 18119 unsigned immbits;
cc933301
JW
18120 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18121 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 18122
dd9634d9
AV
18123 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18124 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18125 return;
18126
18127 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18128 {
18129 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18130 _("immediate value out of range"));
18131 switch (flavour)
18132 {
18133 case neon_cvt_flavour_f16_s16:
18134 case neon_cvt_flavour_f16_u16:
18135 case neon_cvt_flavour_s16_f16:
18136 case neon_cvt_flavour_u16_f16:
18137 constraint (inst.operands[2].imm > 16,
18138 _("immediate value out of range"));
18139 break;
18140 case neon_cvt_flavour_f32_u32:
18141 case neon_cvt_flavour_f32_s32:
18142 case neon_cvt_flavour_s32_f32:
18143 case neon_cvt_flavour_u32_f32:
18144 constraint (inst.operands[2].imm > 32,
18145 _("immediate value out of range"));
18146 break;
18147 default:
18148 inst.error = BAD_FPU;
18149 return;
18150 }
18151 }
037e8744 18152
477330fc
RM
18153 /* Fixed-point conversion with #0 immediate is encoded as an
18154 integer conversion. */
18155 if (inst.operands[2].present && inst.operands[2].imm == 0)
18156 goto int_encode;
477330fc
RM
18157 NEON_ENCODE (IMMED, inst);
18158 if (flavour != neon_cvt_flavour_invalid)
18159 inst.instruction |= enctab[flavour];
18160 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18161 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18162 inst.instruction |= LOW4 (inst.operands[1].reg);
18163 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18164 inst.instruction |= neon_quad (rs) << 6;
18165 inst.instruction |= 1 << 21;
cc933301
JW
18166 if (flavour < neon_cvt_flavour_s16_f16)
18167 {
18168 inst.instruction |= 1 << 21;
18169 immbits = 32 - inst.operands[2].imm;
18170 inst.instruction |= immbits << 16;
18171 }
18172 else
18173 {
18174 inst.instruction |= 3 << 20;
18175 immbits = 16 - inst.operands[2].imm;
18176 inst.instruction |= immbits << 16;
18177 inst.instruction &= ~(1 << 9);
18178 }
477330fc
RM
18179
18180 neon_dp_fixup (&inst);
037e8744
JB
18181 }
18182 break;
18183
037e8744 18184 case NS_QQ:
dd9634d9
AV
18185 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18186 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18187 && (flavour == neon_cvt_flavour_s16_f16
18188 || flavour == neon_cvt_flavour_u16_f16
18189 || flavour == neon_cvt_flavour_s32_f32
18190 || flavour == neon_cvt_flavour_u32_f32))
18191 {
18192 if (check_simd_pred_availability (1,
18193 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18194 return;
18195 }
18196 else if (mode == neon_cvt_mode_z
18197 && (flavour == neon_cvt_flavour_f16_s16
18198 || flavour == neon_cvt_flavour_f16_u16
18199 || flavour == neon_cvt_flavour_s16_f16
18200 || flavour == neon_cvt_flavour_u16_f16
18201 || flavour == neon_cvt_flavour_f32_u32
18202 || flavour == neon_cvt_flavour_f32_s32
18203 || flavour == neon_cvt_flavour_s32_f32
18204 || flavour == neon_cvt_flavour_u32_f32))
18205 {
18206 if (check_simd_pred_availability (1,
18207 NEON_CHECK_CC | NEON_CHECK_ARCH))
18208 return;
18209 }
18210 /* fall through. */
18211 case NS_DD:
7e8e6784
MGD
18212 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18213 {
7e8e6784 18214
dd9634d9
AV
18215 NEON_ENCODE (FLOAT, inst);
18216 if (check_simd_pred_availability (1,
18217 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
18218 return;
18219
18220 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18221 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18222 inst.instruction |= LOW4 (inst.operands[1].reg);
18223 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18224 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18225 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18226 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 18227 inst.instruction |= mode << 8;
cc933301
JW
18228 if (flavour == neon_cvt_flavour_u16_f16
18229 || flavour == neon_cvt_flavour_s16_f16)
18230 /* Mask off the original size bits and reencode them. */
18231 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18232
7e8e6784
MGD
18233 if (thumb_mode)
18234 inst.instruction |= 0xfc000000;
18235 else
18236 inst.instruction |= 0xf0000000;
18237 }
18238 else
18239 {
037e8744 18240 int_encode:
7e8e6784 18241 {
cc933301
JW
18242 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18243 0x100, 0x180, 0x0, 0x080};
037e8744 18244
7e8e6784 18245 NEON_ENCODE (INTEGER, inst);
037e8744 18246
dd9634d9
AV
18247 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18248 {
18249 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18250 return;
18251 }
037e8744 18252
7e8e6784
MGD
18253 if (flavour != neon_cvt_flavour_invalid)
18254 inst.instruction |= enctab[flavour];
037e8744 18255
7e8e6784
MGD
18256 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18257 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18258 inst.instruction |= LOW4 (inst.operands[1].reg);
18259 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18260 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18261 if (flavour >= neon_cvt_flavour_s16_f16
18262 && flavour <= neon_cvt_flavour_f16_u16)
18263 /* Half precision. */
18264 inst.instruction |= 1 << 18;
18265 else
18266 inst.instruction |= 2 << 18;
037e8744 18267
7e8e6784
MGD
18268 neon_dp_fixup (&inst);
18269 }
18270 }
18271 break;
037e8744 18272
8e79c3df
CM
18273 /* Half-precision conversions for Advanced SIMD -- neon. */
18274 case NS_QD:
18275 case NS_DQ:
bc52d49c
MM
18276 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18277 return;
8e79c3df
CM
18278
18279 if ((rs == NS_DQ)
18280 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18281 {
18282 as_bad (_("operand size must match register width"));
18283 break;
18284 }
18285
18286 if ((rs == NS_QD)
18287 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18288 {
18289 as_bad (_("operand size must match register width"));
18290 break;
18291 }
18292
18293 if (rs == NS_DQ)
477330fc 18294 inst.instruction = 0x3b60600;
8e79c3df
CM
18295 else
18296 inst.instruction = 0x3b60700;
18297
18298 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18299 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18300 inst.instruction |= LOW4 (inst.operands[1].reg);
18301 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 18302 neon_dp_fixup (&inst);
8e79c3df
CM
18303 break;
18304
037e8744
JB
18305 default:
18306 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
18307 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18308 do_vfp_nsyn_cvt (rs, flavour);
18309 else
18310 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 18311 }
5287ad62
JB
18312}
18313
e3e535bc
NC
18314static void
18315do_neon_cvtr (void)
18316{
7e8e6784 18317 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
18318}
18319
18320static void
18321do_neon_cvt (void)
18322{
7e8e6784
MGD
18323 do_neon_cvt_1 (neon_cvt_mode_z);
18324}
18325
18326static void
18327do_neon_cvta (void)
18328{
18329 do_neon_cvt_1 (neon_cvt_mode_a);
18330}
18331
18332static void
18333do_neon_cvtn (void)
18334{
18335 do_neon_cvt_1 (neon_cvt_mode_n);
18336}
18337
18338static void
18339do_neon_cvtp (void)
18340{
18341 do_neon_cvt_1 (neon_cvt_mode_p);
18342}
18343
18344static void
18345do_neon_cvtm (void)
18346{
18347 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18348}
18349
8e79c3df 18350static void
c70a8987 18351do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18352{
c70a8987
MGD
18353 if (is_double)
18354 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18355
c70a8987
MGD
18356 encode_arm_vfp_reg (inst.operands[0].reg,
18357 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18358 encode_arm_vfp_reg (inst.operands[1].reg,
18359 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18360 inst.instruction |= to ? 0x10000 : 0;
18361 inst.instruction |= t ? 0x80 : 0;
18362 inst.instruction |= is_double ? 0x100 : 0;
18363 do_vfp_cond_or_thumb ();
18364}
8e79c3df 18365
c70a8987
MGD
18366static void
18367do_neon_cvttb_1 (bfd_boolean t)
18368{
d54af2d0 18369 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18370 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18371
c70a8987
MGD
18372 if (rs == NS_NULL)
18373 return;
dd9634d9
AV
18374 else if (rs == NS_QQ || rs == NS_QQI)
18375 {
18376 int single_to_half = 0;
18377 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18378 return;
18379
18380 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18381
18382 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18383 && (flavour == neon_cvt_flavour_u16_f16
18384 || flavour == neon_cvt_flavour_s16_f16
18385 || flavour == neon_cvt_flavour_f16_s16
18386 || flavour == neon_cvt_flavour_f16_u16
18387 || flavour == neon_cvt_flavour_u32_f32
18388 || flavour == neon_cvt_flavour_s32_f32
18389 || flavour == neon_cvt_flavour_f32_s32
18390 || flavour == neon_cvt_flavour_f32_u32))
18391 {
18392 inst.cond = 0xf;
18393 inst.instruction = N_MNEM_vcvt;
18394 set_pred_insn_type (INSIDE_VPT_INSN);
18395 do_neon_cvt_1 (neon_cvt_mode_z);
18396 return;
18397 }
18398 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18399 single_to_half = 1;
18400 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18401 {
18402 first_error (BAD_FPU);
18403 return;
18404 }
18405
18406 inst.instruction = 0xee3f0e01;
18407 inst.instruction |= single_to_half << 28;
18408 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18409 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18410 inst.instruction |= t << 12;
18411 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18412 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18413 inst.is_neon = 1;
18414 }
c70a8987
MGD
18415 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18416 {
18417 inst.error = NULL;
18418 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18419 }
18420 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18421 {
18422 inst.error = NULL;
18423 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18424 }
18425 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18426 {
a715796b
TG
18427 /* The VCVTB and VCVTT instructions with D-register operands
18428 don't work for SP only targets. */
18429 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18430 _(BAD_FPU));
18431
c70a8987
MGD
18432 inst.error = NULL;
18433 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18434 }
18435 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18436 {
a715796b
TG
18437 /* The VCVTB and VCVTT instructions with D-register operands
18438 don't work for SP only targets. */
18439 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18440 _(BAD_FPU));
18441
c70a8987
MGD
18442 inst.error = NULL;
18443 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18444 }
18445 else
18446 return;
18447}
18448
18449static void
18450do_neon_cvtb (void)
18451{
18452 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18453}
18454
18455
18456static void
18457do_neon_cvtt (void)
18458{
c70a8987 18459 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18460}
18461
5287ad62
JB
18462static void
18463neon_move_immediate (void)
18464{
037e8744
JB
18465 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18466 struct neon_type_el et = neon_check_type (2, rs,
18467 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18468 unsigned immlo, immhi = 0, immbits;
c96612cc 18469 int op, cmode, float_p;
5287ad62 18470
037e8744 18471 constraint (et.type == NT_invtype,
477330fc 18472 _("operand size must be specified for immediate VMOV"));
037e8744 18473
5287ad62
JB
18474 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18475 op = (inst.instruction & (1 << 5)) != 0;
18476
18477 immlo = inst.operands[1].imm;
18478 if (inst.operands[1].regisimm)
18479 immhi = inst.operands[1].reg;
18480
18481 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18482 _("immediate has bits set outside the operand size"));
5287ad62 18483
c96612cc
JB
18484 float_p = inst.operands[1].immisfloat;
18485
18486 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18487 et.size, et.type)) == FAIL)
5287ad62
JB
18488 {
18489 /* Invert relevant bits only. */
18490 neon_invert_size (&immlo, &immhi, et.size);
18491 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18492 with one or the other; those cases are caught by
18493 neon_cmode_for_move_imm. */
5287ad62 18494 op = !op;
c96612cc
JB
18495 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18496 &op, et.size, et.type)) == FAIL)
477330fc
RM
18497 {
18498 first_error (_("immediate out of range"));
18499 return;
18500 }
5287ad62
JB
18501 }
18502
18503 inst.instruction &= ~(1 << 5);
18504 inst.instruction |= op << 5;
18505
18506 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18507 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18508 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18509 inst.instruction |= cmode << 8;
18510
18511 neon_write_immbits (immbits);
18512}
18513
18514static void
18515do_neon_mvn (void)
18516{
1a186d29
AV
18517 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18518 return;
18519
5287ad62
JB
18520 if (inst.operands[1].isreg)
18521 {
1a186d29
AV
18522 enum neon_shape rs;
18523 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18524 rs = neon_select_shape (NS_QQ, NS_NULL);
18525 else
18526 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18527
88714cb8 18528 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18529 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18530 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18531 inst.instruction |= LOW4 (inst.operands[1].reg);
18532 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18533 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18534 }
18535 else
18536 {
88714cb8 18537 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18538 neon_move_immediate ();
18539 }
18540
88714cb8 18541 neon_dp_fixup (&inst);
1a186d29
AV
18542
18543 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18544 {
18545 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18546 constraint ((inst.instruction & 0xd00) == 0xd00,
18547 _("immediate value out of range"));
18548 }
5287ad62
JB
18549}
18550
18551/* Encode instructions of form:
18552
18553 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18554 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18555
18556static void
18557neon_mixed_length (struct neon_type_el et, unsigned size)
18558{
18559 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18560 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18561 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18562 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18563 inst.instruction |= LOW4 (inst.operands[2].reg);
18564 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18565 inst.instruction |= (et.type == NT_unsigned) << 24;
18566 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18567
88714cb8 18568 neon_dp_fixup (&inst);
5287ad62
JB
18569}
18570
18571static void
18572do_neon_dyadic_long (void)
18573{
5ee91343
AV
18574 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18575 if (rs == NS_QDD)
18576 {
18577 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18578 return;
18579
18580 NEON_ENCODE (INTEGER, inst);
18581 /* FIXME: Type checking for lengthening op. */
18582 struct neon_type_el et = neon_check_type (3, NS_QDD,
18583 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18584 neon_mixed_length (et, et.size);
18585 }
18586 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18587 && (inst.cond == 0xf || inst.cond == 0x10))
18588 {
18589 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18590 in an IT block with le/lt conditions. */
18591
18592 if (inst.cond == 0xf)
18593 inst.cond = 0xb;
18594 else if (inst.cond == 0x10)
18595 inst.cond = 0xd;
18596
18597 inst.pred_insn_type = INSIDE_IT_INSN;
18598
18599 if (inst.instruction == N_MNEM_vaddl)
18600 {
18601 inst.instruction = N_MNEM_vadd;
18602 do_neon_addsub_if_i ();
18603 }
18604 else if (inst.instruction == N_MNEM_vsubl)
18605 {
18606 inst.instruction = N_MNEM_vsub;
18607 do_neon_addsub_if_i ();
18608 }
18609 else if (inst.instruction == N_MNEM_vabdl)
18610 {
18611 inst.instruction = N_MNEM_vabd;
18612 do_neon_dyadic_if_su ();
18613 }
18614 }
18615 else
18616 first_error (BAD_FPU);
5287ad62
JB
18617}
18618
18619static void
18620do_neon_abal (void)
18621{
18622 struct neon_type_el et = neon_check_type (3, NS_QDD,
18623 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18624 neon_mixed_length (et, et.size);
18625}
18626
18627static void
18628neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18629{
18630 if (inst.operands[2].isscalar)
18631 {
dcbf9037 18632 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18633 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18634 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18635 neon_mul_mac (et, et.type == NT_unsigned);
18636 }
18637 else
18638 {
18639 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18640 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18641 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18642 neon_mixed_length (et, et.size);
18643 }
18644}
18645
18646static void
18647do_neon_mac_maybe_scalar_long (void)
18648{
18649 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18650}
18651
dec41383
JW
18652/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18653 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18654
18655static unsigned
18656neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18657{
18658 unsigned regno = NEON_SCALAR_REG (scalar);
18659 unsigned elno = NEON_SCALAR_INDEX (scalar);
18660
18661 if (quad_p)
18662 {
18663 if (regno > 7 || elno > 3)
18664 goto bad_scalar;
18665
18666 return ((regno & 0x7)
18667 | ((elno & 0x1) << 3)
18668 | (((elno >> 1) & 0x1) << 5));
18669 }
18670 else
18671 {
18672 if (regno > 15 || elno > 1)
18673 goto bad_scalar;
18674
18675 return (((regno & 0x1) << 5)
18676 | ((regno >> 1) & 0x7)
18677 | ((elno & 0x1) << 3));
18678 }
18679
18680bad_scalar:
18681 first_error (_("scalar out of range for multiply instruction"));
18682 return 0;
18683}
18684
18685static void
18686do_neon_fmac_maybe_scalar_long (int subtype)
18687{
18688 enum neon_shape rs;
18689 int high8;
18690 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18691 field (bits[21:20]) has different meaning. For scalar index variant, it's
18692 used to differentiate add and subtract, otherwise it's with fixed value
18693 0x2. */
18694 int size = -1;
18695
18696 if (inst.cond != COND_ALWAYS)
18697 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18698 "behaviour is UNPREDICTABLE"));
18699
01f48020 18700 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18701 _(BAD_FP16));
18702
18703 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18704 _(BAD_FPU));
18705
18706 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18707 be a scalar index register. */
18708 if (inst.operands[2].isscalar)
18709 {
18710 high8 = 0xfe000000;
18711 if (subtype)
18712 size = 16;
18713 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18714 }
18715 else
18716 {
18717 high8 = 0xfc000000;
18718 size = 32;
18719 if (subtype)
18720 inst.instruction |= (0x1 << 23);
18721 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18722 }
18723
18724 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18725
18726 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18727 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18728 so we simply pass -1 as size. */
18729 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18730 neon_three_same (quad_p, 0, size);
18731
18732 /* Undo neon_dp_fixup. Redo the high eight bits. */
18733 inst.instruction &= 0x00ffffff;
18734 inst.instruction |= high8;
18735
18736#define LOW1(R) ((R) & 0x1)
18737#define HI4(R) (((R) >> 1) & 0xf)
18738 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18739 whether the instruction is in Q form and whether Vm is a scalar indexed
18740 operand. */
18741 if (inst.operands[2].isscalar)
18742 {
18743 unsigned rm
18744 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18745 inst.instruction &= 0xffffffd0;
18746 inst.instruction |= rm;
18747
18748 if (!quad_p)
18749 {
18750 /* Redo Rn as well. */
18751 inst.instruction &= 0xfff0ff7f;
18752 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18753 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18754 }
18755 }
18756 else if (!quad_p)
18757 {
18758 /* Redo Rn and Rm. */
18759 inst.instruction &= 0xfff0ff50;
18760 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18761 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18762 inst.instruction |= HI4 (inst.operands[2].reg);
18763 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18764 }
18765}
18766
18767static void
18768do_neon_vfmal (void)
18769{
18770 return do_neon_fmac_maybe_scalar_long (0);
18771}
18772
18773static void
18774do_neon_vfmsl (void)
18775{
18776 return do_neon_fmac_maybe_scalar_long (1);
18777}
18778
5287ad62
JB
18779static void
18780do_neon_dyadic_wide (void)
18781{
18782 struct neon_type_el et = neon_check_type (3, NS_QQD,
18783 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18784 neon_mixed_length (et, et.size);
18785}
18786
18787static void
18788do_neon_dyadic_narrow (void)
18789{
18790 struct neon_type_el et = neon_check_type (3, NS_QDD,
18791 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
18792 /* Operand sign is unimportant, and the U bit is part of the opcode,
18793 so force the operand type to integer. */
18794 et.type = NT_integer;
5287ad62
JB
18795 neon_mixed_length (et, et.size / 2);
18796}
18797
18798static void
18799do_neon_mul_sat_scalar_long (void)
18800{
18801 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18802}
18803
18804static void
18805do_neon_vmull (void)
18806{
18807 if (inst.operands[2].isscalar)
18808 do_neon_mac_maybe_scalar_long ();
18809 else
18810 {
18811 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18812 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 18813
5287ad62 18814 if (et.type == NT_poly)
477330fc 18815 NEON_ENCODE (POLY, inst);
5287ad62 18816 else
477330fc 18817 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
18818
18819 /* For polynomial encoding the U bit must be zero, and the size must
18820 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18821 obviously, as 0b10). */
18822 if (et.size == 64)
18823 {
18824 /* Check we're on the correct architecture. */
18825 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18826 inst.error =
18827 _("Instruction form not available on this architecture.");
18828
18829 et.size = 32;
18830 }
18831
5287ad62
JB
18832 neon_mixed_length (et, et.size);
18833 }
18834}
18835
18836static void
18837do_neon_ext (void)
18838{
037e8744 18839 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
18840 struct neon_type_el et = neon_check_type (3, rs,
18841 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18842 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
18843
18844 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18845 _("shift out of range"));
5287ad62
JB
18846 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18847 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18848 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18849 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18850 inst.instruction |= LOW4 (inst.operands[2].reg);
18851 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 18852 inst.instruction |= neon_quad (rs) << 6;
5287ad62 18853 inst.instruction |= imm << 8;
5f4273c7 18854
88714cb8 18855 neon_dp_fixup (&inst);
5287ad62
JB
18856}
18857
18858static void
18859do_neon_rev (void)
18860{
037e8744 18861 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18862 struct neon_type_el et = neon_check_type (2, rs,
18863 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18864 unsigned op = (inst.instruction >> 7) & 3;
18865 /* N (width of reversed regions) is encoded as part of the bitmask. We
18866 extract it here to check the elements to be reversed are smaller.
18867 Otherwise we'd get a reserved instruction. */
18868 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 18869 gas_assert (elsize != 0);
5287ad62 18870 constraint (et.size >= elsize,
477330fc 18871 _("elements must be smaller than reversal region"));
037e8744 18872 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18873}
18874
18875static void
18876do_neon_dup (void)
18877{
18878 if (inst.operands[1].isscalar)
18879 {
b409bdb6
AV
18880 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18881 BAD_FPU);
037e8744 18882 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 18883 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18884 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 18885 unsigned sizebits = et.size >> 3;
dcbf9037 18886 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 18887 int logsize = neon_logbits (et.size);
dcbf9037 18888 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
18889
18890 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 18891 return;
037e8744 18892
88714cb8 18893 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18894 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18895 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18896 inst.instruction |= LOW4 (dm);
18897 inst.instruction |= HI1 (dm) << 5;
037e8744 18898 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18899 inst.instruction |= x << 17;
18900 inst.instruction |= sizebits << 16;
5f4273c7 18901
88714cb8 18902 neon_dp_fixup (&inst);
5287ad62
JB
18903 }
18904 else
18905 {
037e8744
JB
18906 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18907 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18908 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
18909 if (rs == NS_QR)
18910 {
18911 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18912 return;
18913 }
18914 else
18915 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18916 BAD_FPU);
18917
18918 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18919 {
18920 if (inst.operands[1].reg == REG_SP)
18921 as_tsktsk (MVE_BAD_SP);
18922 else if (inst.operands[1].reg == REG_PC)
18923 as_tsktsk (MVE_BAD_PC);
18924 }
18925
5287ad62 18926 /* Duplicate ARM register to lanes of vector. */
88714cb8 18927 NEON_ENCODE (ARMREG, inst);
5287ad62 18928 switch (et.size)
477330fc
RM
18929 {
18930 case 8: inst.instruction |= 0x400000; break;
18931 case 16: inst.instruction |= 0x000020; break;
18932 case 32: inst.instruction |= 0x000000; break;
18933 default: break;
18934 }
5287ad62
JB
18935 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18936 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18937 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 18938 inst.instruction |= neon_quad (rs) << 21;
5287ad62 18939 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 18940 variants, except for the condition field. */
037e8744 18941 do_vfp_cond_or_thumb ();
5287ad62
JB
18942 }
18943}
18944
57785aa2
AV
18945static void
18946do_mve_mov (int toQ)
18947{
18948 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18949 return;
18950 if (inst.cond > COND_ALWAYS)
18951 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18952
18953 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18954 if (toQ)
18955 {
18956 Q0 = 0;
18957 Q1 = 1;
18958 Rt = 2;
18959 Rt2 = 3;
18960 }
18961
18962 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18963 _("Index one must be [2,3] and index two must be two less than"
18964 " index one."));
18965 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18966 _("General purpose registers may not be the same"));
18967 constraint (inst.operands[Rt].reg == REG_SP
18968 || inst.operands[Rt2].reg == REG_SP,
18969 BAD_SP);
18970 constraint (inst.operands[Rt].reg == REG_PC
18971 || inst.operands[Rt2].reg == REG_PC,
18972 BAD_PC);
18973
18974 inst.instruction = 0xec000f00;
18975 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18976 inst.instruction |= !!toQ << 20;
18977 inst.instruction |= inst.operands[Rt2].reg << 16;
18978 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18979 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18980 inst.instruction |= inst.operands[Rt].reg;
18981}
18982
18983static void
18984do_mve_movn (void)
18985{
18986 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18987 return;
18988
18989 if (inst.cond > COND_ALWAYS)
18990 inst.pred_insn_type = INSIDE_VPT_INSN;
18991 else
18992 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18993
18994 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18995 | N_KEY);
18996
18997 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18998 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18999 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19000 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19001 inst.instruction |= LOW4 (inst.operands[1].reg);
19002 inst.is_neon = 1;
19003
19004}
19005
5287ad62
JB
19006/* VMOV has particularly many variations. It can be one of:
19007 0. VMOV<c><q> <Qd>, <Qm>
19008 1. VMOV<c><q> <Dd>, <Dm>
19009 (Register operations, which are VORR with Rm = Rn.)
19010 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19011 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19012 (Immediate loads.)
19013 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19014 (ARM register to scalar.)
19015 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19016 (Two ARM registers to vector.)
19017 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19018 (Scalar to ARM register.)
19019 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19020 (Vector to two ARM registers.)
037e8744
JB
19021 8. VMOV.F32 <Sd>, <Sm>
19022 9. VMOV.F64 <Dd>, <Dm>
19023 (VFP register moves.)
19024 10. VMOV.F32 <Sd>, #imm
19025 11. VMOV.F64 <Dd>, #imm
19026 (VFP float immediate load.)
19027 12. VMOV <Rd>, <Sm>
19028 (VFP single to ARM reg.)
19029 13. VMOV <Sd>, <Rm>
19030 (ARM reg to VFP single.)
19031 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19032 (Two ARM regs to two VFP singles.)
19033 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19034 (Two VFP singles to two ARM regs.)
57785aa2
AV
19035 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19036 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19037 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19038 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 19039
037e8744
JB
19040 These cases can be disambiguated using neon_select_shape, except cases 1/9
19041 and 3/11 which depend on the operand type too.
5f4273c7 19042
5287ad62 19043 All the encoded bits are hardcoded by this function.
5f4273c7 19044
b7fc2769
JB
19045 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19046 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 19047
5287ad62 19048 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 19049 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
19050
19051static void
19052do_neon_mov (void)
19053{
57785aa2
AV
19054 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19055 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19056 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19057 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19058 NS_NULL);
037e8744
JB
19059 struct neon_type_el et;
19060 const char *ldconst = 0;
5287ad62 19061
037e8744 19062 switch (rs)
5287ad62 19063 {
037e8744
JB
19064 case NS_DD: /* case 1/9. */
19065 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19066 /* It is not an error here if no type is given. */
19067 inst.error = NULL;
19068 if (et.type == NT_float && et.size == 64)
477330fc
RM
19069 {
19070 do_vfp_nsyn_opcode ("fcpyd");
19071 break;
19072 }
037e8744 19073 /* fall through. */
5287ad62 19074
037e8744
JB
19075 case NS_QQ: /* case 0/1. */
19076 {
57785aa2 19077 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
19078 return;
19079 /* The architecture manual I have doesn't explicitly state which
19080 value the U bit should have for register->register moves, but
19081 the equivalent VORR instruction has U = 0, so do that. */
19082 inst.instruction = 0x0200110;
19083 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19084 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19085 inst.instruction |= LOW4 (inst.operands[1].reg);
19086 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19087 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19088 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19089 inst.instruction |= neon_quad (rs) << 6;
19090
19091 neon_dp_fixup (&inst);
037e8744
JB
19092 }
19093 break;
5f4273c7 19094
037e8744
JB
19095 case NS_DI: /* case 3/11. */
19096 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19097 inst.error = NULL;
19098 if (et.type == NT_float && et.size == 64)
477330fc
RM
19099 {
19100 /* case 11 (fconstd). */
19101 ldconst = "fconstd";
19102 goto encode_fconstd;
19103 }
037e8744
JB
19104 /* fall through. */
19105
19106 case NS_QI: /* case 2/3. */
57785aa2 19107 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 19108 return;
037e8744
JB
19109 inst.instruction = 0x0800010;
19110 neon_move_immediate ();
88714cb8 19111 neon_dp_fixup (&inst);
5287ad62 19112 break;
5f4273c7 19113
037e8744
JB
19114 case NS_SR: /* case 4. */
19115 {
477330fc
RM
19116 unsigned bcdebits = 0;
19117 int logsize;
19118 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19119 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 19120
05ac0ffb
JB
19121 /* .<size> is optional here, defaulting to .32. */
19122 if (inst.vectype.elems == 0
19123 && inst.operands[0].vectype.type == NT_invtype
19124 && inst.operands[1].vectype.type == NT_invtype)
19125 {
19126 inst.vectype.el[0].type = NT_untyped;
19127 inst.vectype.el[0].size = 32;
19128 inst.vectype.elems = 1;
19129 }
19130
477330fc
RM
19131 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19132 logsize = neon_logbits (et.size);
19133
57785aa2
AV
19134 if (et.size != 32)
19135 {
19136 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19137 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19138 return;
19139 }
19140 else
19141 {
19142 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19143 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19144 _(BAD_FPU));
19145 }
19146
19147 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19148 {
19149 if (inst.operands[1].reg == REG_SP)
19150 as_tsktsk (MVE_BAD_SP);
19151 else if (inst.operands[1].reg == REG_PC)
19152 as_tsktsk (MVE_BAD_PC);
19153 }
19154 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19155
477330fc 19156 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
19157 constraint (x >= size / et.size, _("scalar index out of range"));
19158
477330fc
RM
19159
19160 switch (et.size)
19161 {
19162 case 8: bcdebits = 0x8; break;
19163 case 16: bcdebits = 0x1; break;
19164 case 32: bcdebits = 0x0; break;
19165 default: ;
19166 }
19167
57785aa2 19168 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19169
19170 inst.instruction = 0xe000b10;
19171 do_vfp_cond_or_thumb ();
19172 inst.instruction |= LOW4 (dn) << 16;
19173 inst.instruction |= HI1 (dn) << 7;
19174 inst.instruction |= inst.operands[1].reg << 12;
19175 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
19176 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19177 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19178 }
19179 break;
5f4273c7 19180
037e8744 19181 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
19182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19183 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19184 _(BAD_FPU));
b7fc2769 19185
037e8744
JB
19186 inst.instruction = 0xc400b10;
19187 do_vfp_cond_or_thumb ();
19188 inst.instruction |= LOW4 (inst.operands[0].reg);
19189 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19190 inst.instruction |= inst.operands[1].reg << 12;
19191 inst.instruction |= inst.operands[2].reg << 16;
19192 break;
5f4273c7 19193
037e8744
JB
19194 case NS_RS: /* case 6. */
19195 {
477330fc
RM
19196 unsigned logsize;
19197 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19198 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19199 unsigned abcdebits = 0;
037e8744 19200
05ac0ffb
JB
19201 /* .<dt> is optional here, defaulting to .32. */
19202 if (inst.vectype.elems == 0
19203 && inst.operands[0].vectype.type == NT_invtype
19204 && inst.operands[1].vectype.type == NT_invtype)
19205 {
19206 inst.vectype.el[0].type = NT_untyped;
19207 inst.vectype.el[0].size = 32;
19208 inst.vectype.elems = 1;
19209 }
19210
91d6fa6a
NC
19211 et = neon_check_type (2, NS_NULL,
19212 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
19213 logsize = neon_logbits (et.size);
19214
57785aa2
AV
19215 if (et.size != 32)
19216 {
19217 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19218 && vfp_or_neon_is_neon (NEON_CHECK_CC
19219 | NEON_CHECK_ARCH) == FAIL)
19220 return;
19221 }
19222 else
19223 {
19224 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19225 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19226 _(BAD_FPU));
19227 }
19228
19229 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19230 {
19231 if (inst.operands[0].reg == REG_SP)
19232 as_tsktsk (MVE_BAD_SP);
19233 else if (inst.operands[0].reg == REG_PC)
19234 as_tsktsk (MVE_BAD_PC);
19235 }
19236
19237 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19238
477330fc 19239 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 19240 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
19241
19242 switch (et.size)
19243 {
19244 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19245 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19246 case 32: abcdebits = 0x00; break;
19247 default: ;
19248 }
19249
57785aa2 19250 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19251 inst.instruction = 0xe100b10;
19252 do_vfp_cond_or_thumb ();
19253 inst.instruction |= LOW4 (dn) << 16;
19254 inst.instruction |= HI1 (dn) << 7;
19255 inst.instruction |= inst.operands[0].reg << 12;
19256 inst.instruction |= (abcdebits & 3) << 5;
19257 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 19258 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19259 }
19260 break;
5f4273c7 19261
037e8744 19262 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
19263 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19264 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19265 _(BAD_FPU));
037e8744
JB
19266
19267 inst.instruction = 0xc500b10;
19268 do_vfp_cond_or_thumb ();
19269 inst.instruction |= inst.operands[0].reg << 12;
19270 inst.instruction |= inst.operands[1].reg << 16;
19271 inst.instruction |= LOW4 (inst.operands[2].reg);
19272 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19273 break;
5f4273c7 19274
037e8744
JB
19275 case NS_FF: /* case 8 (fcpys). */
19276 do_vfp_nsyn_opcode ("fcpys");
19277 break;
5f4273c7 19278
9db2f6b4 19279 case NS_HI:
037e8744
JB
19280 case NS_FI: /* case 10 (fconsts). */
19281 ldconst = "fconsts";
4ef4710f 19282 encode_fconstd:
58ed5c38
TC
19283 if (!inst.operands[1].immisfloat)
19284 {
4ef4710f 19285 unsigned new_imm;
58ed5c38 19286 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
19287 float imm = (float) inst.operands[1].imm;
19288 memcpy (&new_imm, &imm, sizeof (float));
19289 /* But the assembly may have been written to provide an integer
19290 bit pattern that equates to a float, so check that the
19291 conversion has worked. */
19292 if (is_quarter_float (new_imm))
19293 {
19294 if (is_quarter_float (inst.operands[1].imm))
19295 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19296
19297 inst.operands[1].imm = new_imm;
19298 inst.operands[1].immisfloat = 1;
19299 }
58ed5c38
TC
19300 }
19301
037e8744 19302 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
19303 {
19304 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19305 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
19306
19307 /* ARMv8.2 fp16 vmov.f16 instruction. */
19308 if (rs == NS_HI)
19309 do_scalar_fp16_v82_encode ();
477330fc 19310 }
5287ad62 19311 else
477330fc 19312 first_error (_("immediate out of range"));
037e8744 19313 break;
5f4273c7 19314
9db2f6b4 19315 case NS_RH:
037e8744
JB
19316 case NS_RF: /* case 12 (fmrs). */
19317 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
19318 /* ARMv8.2 fp16 vmov.f16 instruction. */
19319 if (rs == NS_RH)
19320 do_scalar_fp16_v82_encode ();
037e8744 19321 break;
5f4273c7 19322
9db2f6b4 19323 case NS_HR:
037e8744
JB
19324 case NS_FR: /* case 13 (fmsr). */
19325 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
19326 /* ARMv8.2 fp16 vmov.f16 instruction. */
19327 if (rs == NS_HR)
19328 do_scalar_fp16_v82_encode ();
037e8744 19329 break;
5f4273c7 19330
57785aa2
AV
19331 case NS_RRSS:
19332 do_mve_mov (0);
19333 break;
19334 case NS_SSRR:
19335 do_mve_mov (1);
19336 break;
19337
037e8744
JB
19338 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19339 (one of which is a list), but we have parsed four. Do some fiddling to
19340 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19341 expect. */
19342 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19343 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19344 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19345 _(BAD_FPU));
037e8744 19346 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19347 _("VFP registers must be adjacent"));
037e8744
JB
19348 inst.operands[2].imm = 2;
19349 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19350 do_vfp_nsyn_opcode ("fmrrs");
19351 break;
5f4273c7 19352
037e8744 19353 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19354 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19355 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19356 _(BAD_FPU));
037e8744 19357 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19358 _("VFP registers must be adjacent"));
037e8744
JB
19359 inst.operands[1] = inst.operands[2];
19360 inst.operands[2] = inst.operands[3];
19361 inst.operands[0].imm = 2;
19362 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19363 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19364 break;
5f4273c7 19365
4c261dff
NC
19366 case NS_NULL:
19367 /* neon_select_shape has determined that the instruction
19368 shape is wrong and has already set the error message. */
19369 break;
19370
5287ad62
JB
19371 default:
19372 abort ();
19373 }
19374}
19375
57785aa2
AV
19376static void
19377do_mve_movl (void)
19378{
19379 if (!(inst.operands[0].present && inst.operands[0].isquad
19380 && inst.operands[1].present && inst.operands[1].isquad
19381 && !inst.operands[2].present))
19382 {
19383 inst.instruction = 0;
19384 inst.cond = 0xb;
19385 if (thumb_mode)
19386 set_pred_insn_type (INSIDE_IT_INSN);
19387 do_neon_mov ();
19388 return;
19389 }
19390
19391 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19392 return;
19393
19394 if (inst.cond != COND_ALWAYS)
19395 inst.pred_insn_type = INSIDE_VPT_INSN;
19396
19397 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19398 | N_S16 | N_U16 | N_KEY);
19399
19400 inst.instruction |= (et.type == NT_unsigned) << 28;
19401 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19402 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19403 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19404 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19405 inst.instruction |= LOW4 (inst.operands[1].reg);
19406 inst.is_neon = 1;
19407}
19408
5287ad62
JB
19409static void
19410do_neon_rshift_round_imm (void)
19411{
037e8744 19412 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
19413 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19414 int imm = inst.operands[2].imm;
19415
19416 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19417 if (imm == 0)
19418 {
19419 inst.operands[2].present = 0;
19420 do_neon_mov ();
19421 return;
19422 }
19423
19424 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19425 _("immediate out of range for shift"));
037e8744 19426 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19427 et.size - imm);
5287ad62
JB
19428}
19429
9db2f6b4
RL
19430static void
19431do_neon_movhf (void)
19432{
19433 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19434 constraint (rs != NS_HH, _("invalid suffix"));
19435
7bdf778b
ASDV
19436 if (inst.cond != COND_ALWAYS)
19437 {
19438 if (thumb_mode)
19439 {
19440 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19441 " the behaviour is UNPREDICTABLE"));
19442 }
19443 else
19444 {
19445 inst.error = BAD_COND;
19446 return;
19447 }
19448 }
19449
9db2f6b4
RL
19450 do_vfp_sp_monadic ();
19451
19452 inst.is_neon = 1;
19453 inst.instruction |= 0xf0000000;
19454}
19455
5287ad62
JB
19456static void
19457do_neon_movl (void)
19458{
19459 struct neon_type_el et = neon_check_type (2, NS_QD,
19460 N_EQK | N_DBL, N_SU_32 | N_KEY);
19461 unsigned sizebits = et.size >> 3;
19462 inst.instruction |= sizebits << 19;
19463 neon_two_same (0, et.type == NT_unsigned, -1);
19464}
19465
19466static void
19467do_neon_trn (void)
19468{
037e8744 19469 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19470 struct neon_type_el et = neon_check_type (2, rs,
19471 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19472 NEON_ENCODE (INTEGER, inst);
037e8744 19473 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19474}
19475
19476static void
19477do_neon_zip_uzp (void)
19478{
037e8744 19479 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19480 struct neon_type_el et = neon_check_type (2, rs,
19481 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19482 if (rs == NS_DD && et.size == 32)
19483 {
19484 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19485 inst.instruction = N_MNEM_vtrn;
19486 do_neon_trn ();
19487 return;
19488 }
037e8744 19489 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19490}
19491
19492static void
19493do_neon_sat_abs_neg (void)
19494{
1a186d29
AV
19495 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19496 return;
19497
19498 enum neon_shape rs;
19499 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19500 rs = neon_select_shape (NS_QQ, NS_NULL);
19501 else
19502 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19503 struct neon_type_el et = neon_check_type (2, rs,
19504 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19505 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19506}
19507
19508static void
19509do_neon_pair_long (void)
19510{
037e8744 19511 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19512 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19513 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19514 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19515 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19516}
19517
19518static void
19519do_neon_recip_est (void)
19520{
037e8744 19521 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19522 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19523 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19524 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19525 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19526}
19527
19528static void
19529do_neon_cls (void)
19530{
f30ee27c
AV
19531 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19532 return;
19533
19534 enum neon_shape rs;
19535 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19536 rs = neon_select_shape (NS_QQ, NS_NULL);
19537 else
19538 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19539
5287ad62
JB
19540 struct neon_type_el et = neon_check_type (2, rs,
19541 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19542 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19543}
19544
19545static void
19546do_neon_clz (void)
19547{
f30ee27c
AV
19548 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19549 return;
19550
19551 enum neon_shape rs;
19552 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19553 rs = neon_select_shape (NS_QQ, NS_NULL);
19554 else
19555 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19556
5287ad62
JB
19557 struct neon_type_el et = neon_check_type (2, rs,
19558 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19559 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19560}
19561
19562static void
19563do_neon_cnt (void)
19564{
037e8744 19565 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19566 struct neon_type_el et = neon_check_type (2, rs,
19567 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19568 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19569}
19570
19571static void
19572do_neon_swp (void)
19573{
037e8744
JB
19574 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19575 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19576}
19577
19578static void
19579do_neon_tbl_tbx (void)
19580{
19581 unsigned listlenbits;
dcbf9037 19582 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19583
5287ad62
JB
19584 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19585 {
dcbf9037 19586 first_error (_("bad list length for table lookup"));
5287ad62
JB
19587 return;
19588 }
5f4273c7 19589
5287ad62
JB
19590 listlenbits = inst.operands[1].imm - 1;
19591 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19592 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19593 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19594 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19595 inst.instruction |= LOW4 (inst.operands[2].reg);
19596 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19597 inst.instruction |= listlenbits << 8;
5f4273c7 19598
88714cb8 19599 neon_dp_fixup (&inst);
5287ad62
JB
19600}
19601
19602static void
19603do_neon_ldm_stm (void)
19604{
19605 /* P, U and L bits are part of bitmask. */
19606 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19607 unsigned offsetbits = inst.operands[1].imm * 2;
19608
037e8744
JB
19609 if (inst.operands[1].issingle)
19610 {
19611 do_vfp_nsyn_ldm_stm (is_dbmode);
19612 return;
19613 }
19614
5287ad62 19615 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19616 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19617
19618 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19619 _("register list must contain at least 1 and at most 16 "
19620 "registers"));
5287ad62
JB
19621
19622 inst.instruction |= inst.operands[0].reg << 16;
19623 inst.instruction |= inst.operands[0].writeback << 21;
19624 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19625 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19626
19627 inst.instruction |= offsetbits;
5f4273c7 19628
037e8744 19629 do_vfp_cond_or_thumb ();
5287ad62
JB
19630}
19631
19632static void
19633do_neon_ldr_str (void)
19634{
5287ad62 19635 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19636
6844b2c2
MGD
19637 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19638 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19639 if (!is_ldr
6844b2c2 19640 && inst.operands[1].reg == REG_PC
ba86b375 19641 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19642 {
94dcf8bf 19643 if (thumb_mode)
6844b2c2 19644 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19645 else if (warn_on_deprecated)
5c3696f8 19646 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19647 }
19648
037e8744
JB
19649 if (inst.operands[0].issingle)
19650 {
cd2f129f 19651 if (is_ldr)
477330fc 19652 do_vfp_nsyn_opcode ("flds");
cd2f129f 19653 else
477330fc 19654 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19655
19656 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19657 if (inst.vectype.el[0].size == 16)
19658 do_scalar_fp16_v82_encode ();
5287ad62
JB
19659 }
19660 else
5287ad62 19661 {
cd2f129f 19662 if (is_ldr)
477330fc 19663 do_vfp_nsyn_opcode ("fldd");
5287ad62 19664 else
477330fc 19665 do_vfp_nsyn_opcode ("fstd");
5287ad62 19666 }
5287ad62
JB
19667}
19668
32c36c3c
AV
19669static void
19670do_t_vldr_vstr_sysreg (void)
19671{
19672 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19673 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19674
19675 /* Use of PC is UNPREDICTABLE. */
19676 if (inst.operands[1].reg == REG_PC)
19677 inst.error = _("Use of PC here is UNPREDICTABLE");
19678
19679 if (inst.operands[1].immisreg)
19680 inst.error = _("instruction does not accept register index");
19681
19682 if (!inst.operands[1].isreg)
19683 inst.error = _("instruction does not accept PC-relative addressing");
19684
19685 if (abs (inst.operands[1].imm) >= (1 << 7))
19686 inst.error = _("immediate value out of range");
19687
19688 inst.instruction = 0xec000f80;
19689 if (is_vldr)
19690 inst.instruction |= 1 << sysreg_vldr_bitno;
19691 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19692 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19693 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19694}
19695
19696static void
19697do_vldr_vstr (void)
19698{
19699 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19700
19701 /* VLDR/VSTR (System Register). */
19702 if (sysreg_op)
19703 {
19704 if (!mark_feature_used (&arm_ext_v8_1m_main))
19705 as_bad (_("Instruction not permitted on this architecture"));
19706
19707 do_t_vldr_vstr_sysreg ();
19708 }
19709 /* VLDR/VSTR. */
19710 else
19711 {
19712 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19713 as_bad (_("Instruction not permitted on this architecture"));
19714 do_neon_ldr_str ();
19715 }
19716}
19717
5287ad62
JB
19718/* "interleave" version also handles non-interleaving register VLD1/VST1
19719 instructions. */
19720
19721static void
19722do_neon_ld_st_interleave (void)
19723{
037e8744 19724 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19725 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19726 unsigned alignbits = 0;
19727 unsigned idx;
19728 /* The bits in this table go:
19729 0: register stride of one (0) or two (1)
19730 1,2: register list length, minus one (1, 2, 3, 4).
19731 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19732 We use -1 for invalid entries. */
19733 const int typetable[] =
19734 {
19735 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19736 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19737 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19738 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19739 };
19740 int typebits;
19741
dcbf9037
JB
19742 if (et.type == NT_invtype)
19743 return;
19744
5287ad62
JB
19745 if (inst.operands[1].immisalign)
19746 switch (inst.operands[1].imm >> 8)
19747 {
19748 case 64: alignbits = 1; break;
19749 case 128:
477330fc 19750 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 19751 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
19752 goto bad_alignment;
19753 alignbits = 2;
19754 break;
5287ad62 19755 case 256:
477330fc
RM
19756 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19757 goto bad_alignment;
19758 alignbits = 3;
19759 break;
5287ad62
JB
19760 default:
19761 bad_alignment:
477330fc
RM
19762 first_error (_("bad alignment"));
19763 return;
5287ad62
JB
19764 }
19765
19766 inst.instruction |= alignbits << 4;
19767 inst.instruction |= neon_logbits (et.size) << 6;
19768
19769 /* Bits [4:6] of the immediate in a list specifier encode register stride
19770 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19771 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19772 up the right value for "type" in a table based on this value and the given
19773 list style, then stick it back. */
19774 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 19775 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
19776
19777 typebits = typetable[idx];
5f4273c7 19778
5287ad62 19779 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 19780 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 19781 BAD_EL_TYPE);
5287ad62
JB
19782
19783 inst.instruction &= ~0xf00;
19784 inst.instruction |= typebits << 8;
19785}
19786
19787/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19788 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19789 otherwise. The variable arguments are a list of pairs of legal (size, align)
19790 values, terminated with -1. */
19791
19792static int
aa8a0863 19793neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
19794{
19795 va_list ap;
19796 int result = FAIL, thissize, thisalign;
5f4273c7 19797
5287ad62
JB
19798 if (!inst.operands[1].immisalign)
19799 {
aa8a0863 19800 *do_alignment = 0;
5287ad62
JB
19801 return SUCCESS;
19802 }
5f4273c7 19803
aa8a0863 19804 va_start (ap, do_alignment);
5287ad62
JB
19805
19806 do
19807 {
19808 thissize = va_arg (ap, int);
19809 if (thissize == -1)
477330fc 19810 break;
5287ad62
JB
19811 thisalign = va_arg (ap, int);
19812
19813 if (size == thissize && align == thisalign)
477330fc 19814 result = SUCCESS;
5287ad62
JB
19815 }
19816 while (result != SUCCESS);
19817
19818 va_end (ap);
19819
19820 if (result == SUCCESS)
aa8a0863 19821 *do_alignment = 1;
5287ad62 19822 else
dcbf9037 19823 first_error (_("unsupported alignment for instruction"));
5f4273c7 19824
5287ad62
JB
19825 return result;
19826}
19827
19828static void
19829do_neon_ld_st_lane (void)
19830{
037e8744 19831 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19832 int align_good, do_alignment = 0;
5287ad62
JB
19833 int logsize = neon_logbits (et.size);
19834 int align = inst.operands[1].imm >> 8;
19835 int n = (inst.instruction >> 8) & 3;
19836 int max_el = 64 / et.size;
5f4273c7 19837
dcbf9037
JB
19838 if (et.type == NT_invtype)
19839 return;
5f4273c7 19840
5287ad62 19841 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 19842 _("bad list length"));
5287ad62 19843 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 19844 _("scalar index out of range"));
5287ad62 19845 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
19846 && et.size == 8,
19847 _("stride of 2 unavailable when element size is 8"));
5f4273c7 19848
5287ad62
JB
19849 switch (n)
19850 {
19851 case 0: /* VLD1 / VST1. */
aa8a0863 19852 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 19853 32, 32, -1);
5287ad62 19854 if (align_good == FAIL)
477330fc 19855 return;
aa8a0863 19856 if (do_alignment)
477330fc
RM
19857 {
19858 unsigned alignbits = 0;
19859 switch (et.size)
19860 {
19861 case 16: alignbits = 0x1; break;
19862 case 32: alignbits = 0x3; break;
19863 default: ;
19864 }
19865 inst.instruction |= alignbits << 4;
19866 }
5287ad62
JB
19867 break;
19868
19869 case 1: /* VLD2 / VST2. */
aa8a0863
TS
19870 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19871 16, 32, 32, 64, -1);
5287ad62 19872 if (align_good == FAIL)
477330fc 19873 return;
aa8a0863 19874 if (do_alignment)
477330fc 19875 inst.instruction |= 1 << 4;
5287ad62
JB
19876 break;
19877
19878 case 2: /* VLD3 / VST3. */
19879 constraint (inst.operands[1].immisalign,
477330fc 19880 _("can't use alignment with this instruction"));
5287ad62
JB
19881 break;
19882
19883 case 3: /* VLD4 / VST4. */
aa8a0863 19884 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 19885 16, 64, 32, 64, 32, 128, -1);
5287ad62 19886 if (align_good == FAIL)
477330fc 19887 return;
aa8a0863 19888 if (do_alignment)
477330fc
RM
19889 {
19890 unsigned alignbits = 0;
19891 switch (et.size)
19892 {
19893 case 8: alignbits = 0x1; break;
19894 case 16: alignbits = 0x1; break;
19895 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19896 default: ;
19897 }
19898 inst.instruction |= alignbits << 4;
19899 }
5287ad62
JB
19900 break;
19901
19902 default: ;
19903 }
19904
19905 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19906 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19907 inst.instruction |= 1 << (4 + logsize);
5f4273c7 19908
5287ad62
JB
19909 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19910 inst.instruction |= logsize << 10;
19911}
19912
19913/* Encode single n-element structure to all lanes VLD<n> instructions. */
19914
19915static void
19916do_neon_ld_dup (void)
19917{
037e8744 19918 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19919 int align_good, do_alignment = 0;
5287ad62 19920
dcbf9037
JB
19921 if (et.type == NT_invtype)
19922 return;
19923
5287ad62
JB
19924 switch ((inst.instruction >> 8) & 3)
19925 {
19926 case 0: /* VLD1. */
9c2799c2 19927 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 19928 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 19929 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 19930 if (align_good == FAIL)
477330fc 19931 return;
5287ad62 19932 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
19933 {
19934 case 1: break;
19935 case 2: inst.instruction |= 1 << 5; break;
19936 default: first_error (_("bad list length")); return;
19937 }
5287ad62
JB
19938 inst.instruction |= neon_logbits (et.size) << 6;
19939 break;
19940
19941 case 1: /* VLD2. */
19942 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
19943 &do_alignment, 8, 16, 16, 32, 32, 64,
19944 -1);
5287ad62 19945 if (align_good == FAIL)
477330fc 19946 return;
5287ad62 19947 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 19948 _("bad list length"));
5287ad62 19949 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19950 inst.instruction |= 1 << 5;
5287ad62
JB
19951 inst.instruction |= neon_logbits (et.size) << 6;
19952 break;
19953
19954 case 2: /* VLD3. */
19955 constraint (inst.operands[1].immisalign,
477330fc 19956 _("can't use alignment with this instruction"));
5287ad62 19957 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 19958 _("bad list length"));
5287ad62 19959 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19960 inst.instruction |= 1 << 5;
5287ad62
JB
19961 inst.instruction |= neon_logbits (et.size) << 6;
19962 break;
19963
19964 case 3: /* VLD4. */
19965 {
477330fc 19966 int align = inst.operands[1].imm >> 8;
aa8a0863 19967 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
19968 16, 64, 32, 64, 32, 128, -1);
19969 if (align_good == FAIL)
19970 return;
19971 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19972 _("bad list length"));
19973 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19974 inst.instruction |= 1 << 5;
19975 if (et.size == 32 && align == 128)
19976 inst.instruction |= 0x3 << 6;
19977 else
19978 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
19979 }
19980 break;
19981
19982 default: ;
19983 }
19984
aa8a0863 19985 inst.instruction |= do_alignment << 4;
5287ad62
JB
19986}
19987
19988/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19989 apart from bits [11:4]. */
19990
19991static void
19992do_neon_ldx_stx (void)
19993{
b1a769ed
DG
19994 if (inst.operands[1].isreg)
19995 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19996
5287ad62
JB
19997 switch (NEON_LANE (inst.operands[0].imm))
19998 {
19999 case NEON_INTERLEAVE_LANES:
88714cb8 20000 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
20001 do_neon_ld_st_interleave ();
20002 break;
5f4273c7 20003
5287ad62 20004 case NEON_ALL_LANES:
88714cb8 20005 NEON_ENCODE (DUP, inst);
2d51fb74
JB
20006 if (inst.instruction == N_INV)
20007 {
20008 first_error ("only loads support such operands");
20009 break;
20010 }
5287ad62
JB
20011 do_neon_ld_dup ();
20012 break;
5f4273c7 20013
5287ad62 20014 default:
88714cb8 20015 NEON_ENCODE (LANE, inst);
5287ad62
JB
20016 do_neon_ld_st_lane ();
20017 }
20018
20019 /* L bit comes from bit mask. */
20020 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20021 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20022 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 20023
5287ad62
JB
20024 if (inst.operands[1].postind)
20025 {
20026 int postreg = inst.operands[1].imm & 0xf;
20027 constraint (!inst.operands[1].immisreg,
477330fc 20028 _("post-index must be a register"));
5287ad62 20029 constraint (postreg == 0xd || postreg == 0xf,
477330fc 20030 _("bad register for post-index"));
5287ad62
JB
20031 inst.instruction |= postreg;
20032 }
4f2374c7 20033 else
5287ad62 20034 {
4f2374c7 20035 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
20036 constraint (inst.relocs[0].exp.X_op != O_constant
20037 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
20038 BAD_ADDR_MODE);
20039
20040 if (inst.operands[1].writeback)
20041 {
20042 inst.instruction |= 0xd;
20043 }
20044 else
20045 inst.instruction |= 0xf;
5287ad62 20046 }
5f4273c7 20047
5287ad62
JB
20048 if (thumb_mode)
20049 inst.instruction |= 0xf9000000;
20050 else
20051 inst.instruction |= 0xf4000000;
20052}
33399f07
MGD
20053
20054/* FP v8. */
20055static void
20056do_vfp_nsyn_fpv8 (enum neon_shape rs)
20057{
a715796b
TG
20058 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20059 D register operands. */
20060 if (neon_shape_class[rs] == SC_DOUBLE)
20061 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20062 _(BAD_FPU));
20063
33399f07
MGD
20064 NEON_ENCODE (FPV8, inst);
20065
9db2f6b4
RL
20066 if (rs == NS_FFF || rs == NS_HHH)
20067 {
20068 do_vfp_sp_dyadic ();
20069
20070 /* ARMv8.2 fp16 instruction. */
20071 if (rs == NS_HHH)
20072 do_scalar_fp16_v82_encode ();
20073 }
33399f07
MGD
20074 else
20075 do_vfp_dp_rd_rn_rm ();
20076
20077 if (rs == NS_DDD)
20078 inst.instruction |= 0x100;
20079
20080 inst.instruction |= 0xf0000000;
20081}
20082
20083static void
20084do_vsel (void)
20085{
5ee91343 20086 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
20087
20088 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20089 first_error (_("invalid instruction shape"));
20090}
20091
73924fbc
MGD
20092static void
20093do_vmaxnm (void)
20094{
935295b5
AV
20095 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20096 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
20097
20098 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20099 return;
20100
935295b5 20101 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
20102 return;
20103
cc933301 20104 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
20105}
20106
30bdf752
MGD
20107static void
20108do_vrint_1 (enum neon_cvt_mode mode)
20109{
9db2f6b4 20110 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
20111 struct neon_type_el et;
20112
20113 if (rs == NS_NULL)
20114 return;
20115
a715796b
TG
20116 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20117 D register operands. */
20118 if (neon_shape_class[rs] == SC_DOUBLE)
20119 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20120 _(BAD_FPU));
20121
9db2f6b4
RL
20122 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20123 | N_VFP);
30bdf752
MGD
20124 if (et.type != NT_invtype)
20125 {
20126 /* VFP encodings. */
20127 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20128 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 20129 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20130
20131 NEON_ENCODE (FPV8, inst);
9db2f6b4 20132 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
20133 do_vfp_sp_monadic ();
20134 else
20135 do_vfp_dp_rd_rm ();
20136
20137 switch (mode)
20138 {
20139 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20140 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20141 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20142 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20143 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20144 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20145 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20146 default: abort ();
20147 }
20148
20149 inst.instruction |= (rs == NS_DD) << 8;
20150 do_vfp_cond_or_thumb ();
9db2f6b4
RL
20151
20152 /* ARMv8.2 fp16 vrint instruction. */
20153 if (rs == NS_HH)
20154 do_scalar_fp16_v82_encode ();
30bdf752
MGD
20155 }
20156 else
20157 {
20158 /* Neon encodings (or something broken...). */
20159 inst.error = NULL;
cc933301 20160 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
20161
20162 if (et.type == NT_invtype)
20163 return;
20164
5ee91343 20165 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20166 NEON_ENCODE (FLOAT, inst);
20167
20168 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
20169 return;
20170
20171 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20172 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20173 inst.instruction |= LOW4 (inst.operands[1].reg);
20174 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20175 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
20176 /* Mask off the original size bits and reencode them. */
20177 inst.instruction = ((inst.instruction & 0xfff3ffff)
20178 | neon_logbits (et.size) << 18);
20179
30bdf752
MGD
20180 switch (mode)
20181 {
20182 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20183 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20184 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20185 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20186 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20187 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20188 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20189 default: abort ();
20190 }
20191
20192 if (thumb_mode)
20193 inst.instruction |= 0xfc000000;
20194 else
20195 inst.instruction |= 0xf0000000;
20196 }
20197}
20198
20199static void
20200do_vrintx (void)
20201{
20202 do_vrint_1 (neon_cvt_mode_x);
20203}
20204
20205static void
20206do_vrintz (void)
20207{
20208 do_vrint_1 (neon_cvt_mode_z);
20209}
20210
20211static void
20212do_vrintr (void)
20213{
20214 do_vrint_1 (neon_cvt_mode_r);
20215}
20216
20217static void
20218do_vrinta (void)
20219{
20220 do_vrint_1 (neon_cvt_mode_a);
20221}
20222
20223static void
20224do_vrintn (void)
20225{
20226 do_vrint_1 (neon_cvt_mode_n);
20227}
20228
20229static void
20230do_vrintp (void)
20231{
20232 do_vrint_1 (neon_cvt_mode_p);
20233}
20234
20235static void
20236do_vrintm (void)
20237{
20238 do_vrint_1 (neon_cvt_mode_m);
20239}
20240
c28eeff2
SN
20241static unsigned
20242neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20243{
20244 unsigned regno = NEON_SCALAR_REG (opnd);
20245 unsigned elno = NEON_SCALAR_INDEX (opnd);
20246
20247 if (elsize == 16 && elno < 2 && regno < 16)
20248 return regno | (elno << 4);
20249 else if (elsize == 32 && elno == 0)
20250 return regno;
20251
20252 first_error (_("scalar out of range"));
20253 return 0;
20254}
20255
20256static void
20257do_vcmla (void)
20258{
5d281bf0
AV
20259 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20260 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20261 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20262 constraint (inst.relocs[0].exp.X_op != O_constant,
20263 _("expression too complex"));
20264 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
20265 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20266 _("immediate out of range"));
20267 rot /= 90;
5d281bf0
AV
20268
20269 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20270 return;
20271
c28eeff2
SN
20272 if (inst.operands[2].isscalar)
20273 {
5d281bf0
AV
20274 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20275 first_error (_("invalid instruction shape"));
c28eeff2
SN
20276 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20277 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20278 N_KEY | N_F16 | N_F32).size;
20279 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20280 inst.is_neon = 1;
20281 inst.instruction = 0xfe000800;
20282 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20283 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20284 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20285 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20286 inst.instruction |= LOW4 (m);
20287 inst.instruction |= HI1 (m) << 5;
20288 inst.instruction |= neon_quad (rs) << 6;
20289 inst.instruction |= rot << 20;
20290 inst.instruction |= (size == 32) << 23;
20291 }
20292 else
20293 {
5d281bf0
AV
20294 enum neon_shape rs;
20295 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20296 rs = neon_select_shape (NS_QQQI, NS_NULL);
20297 else
20298 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20299
c28eeff2
SN
20300 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20301 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
20302 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20303 && (inst.operands[0].reg == inst.operands[1].reg
20304 || inst.operands[0].reg == inst.operands[2].reg))
20305 as_tsktsk (BAD_MVE_SRCDEST);
20306
c28eeff2
SN
20307 neon_three_same (neon_quad (rs), 0, -1);
20308 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20309 inst.instruction |= 0xfc200800;
20310 inst.instruction |= rot << 23;
20311 inst.instruction |= (size == 32) << 20;
20312 }
20313}
20314
20315static void
20316do_vcadd (void)
20317{
5d281bf0
AV
20318 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20319 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20320 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20321 constraint (inst.relocs[0].exp.X_op != O_constant,
20322 _("expression too complex"));
5d281bf0 20323
e2b0ab59 20324 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 20325 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
20326 enum neon_shape rs;
20327 struct neon_type_el et;
20328 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20329 {
20330 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20331 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20332 }
20333 else
20334 {
20335 rs = neon_select_shape (NS_QQQI, NS_NULL);
20336 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20337 | N_I16 | N_I32);
20338 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20339 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20340 "operand makes instruction UNPREDICTABLE"));
20341 }
20342
20343 if (et.type == NT_invtype)
20344 return;
20345
20346 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20347 | NEON_CHECK_CC))
20348 return;
20349
20350 if (et.type == NT_float)
20351 {
20352 neon_three_same (neon_quad (rs), 0, -1);
20353 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20354 inst.instruction |= 0xfc800800;
20355 inst.instruction |= (rot == 270) << 24;
20356 inst.instruction |= (et.size == 32) << 20;
20357 }
20358 else
20359 {
20360 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20361 inst.instruction = 0xfe000f00;
20362 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20363 inst.instruction |= neon_logbits (et.size) << 20;
20364 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20365 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20366 inst.instruction |= (rot == 270) << 12;
20367 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20368 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20369 inst.instruction |= LOW4 (inst.operands[2].reg);
20370 inst.is_neon = 1;
20371 }
c28eeff2
SN
20372}
20373
c604a79a
JW
20374/* Dot Product instructions encoding support. */
20375
20376static void
20377do_neon_dotproduct (int unsigned_p)
20378{
20379 enum neon_shape rs;
20380 unsigned scalar_oprd2 = 0;
20381 int high8;
20382
20383 if (inst.cond != COND_ALWAYS)
20384 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20385 "is UNPREDICTABLE"));
20386
20387 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20388 _(BAD_FPU));
20389
20390 /* Dot Product instructions are in three-same D/Q register format or the third
20391 operand can be a scalar index register. */
20392 if (inst.operands[2].isscalar)
20393 {
20394 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20395 high8 = 0xfe000000;
20396 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20397 }
20398 else
20399 {
20400 high8 = 0xfc000000;
20401 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20402 }
20403
20404 if (unsigned_p)
20405 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20406 else
20407 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20408
20409 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20410 Product instruction, so we pass 0 as the "ubit" parameter. And the
20411 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20412 neon_three_same (neon_quad (rs), 0, 32);
20413
20414 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20415 different NEON three-same encoding. */
20416 inst.instruction &= 0x00ffffff;
20417 inst.instruction |= high8;
20418 /* Encode 'U' bit which indicates signedness. */
20419 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20420 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20421 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20422 the instruction encoding. */
20423 if (inst.operands[2].isscalar)
20424 {
20425 inst.instruction &= 0xffffffd0;
20426 inst.instruction |= LOW4 (scalar_oprd2);
20427 inst.instruction |= HI1 (scalar_oprd2) << 5;
20428 }
20429}
20430
20431/* Dot Product instructions for signed integer. */
20432
20433static void
20434do_neon_dotproduct_s (void)
20435{
20436 return do_neon_dotproduct (0);
20437}
20438
20439/* Dot Product instructions for unsigned integer. */
20440
20441static void
20442do_neon_dotproduct_u (void)
20443{
20444 return do_neon_dotproduct (1);
20445}
20446
91ff7894
MGD
20447/* Crypto v1 instructions. */
20448static void
20449do_crypto_2op_1 (unsigned elttype, int op)
20450{
5ee91343 20451 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20452
20453 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20454 == NT_invtype)
20455 return;
20456
20457 inst.error = NULL;
20458
20459 NEON_ENCODE (INTEGER, inst);
20460 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20461 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20462 inst.instruction |= LOW4 (inst.operands[1].reg);
20463 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20464 if (op != -1)
20465 inst.instruction |= op << 6;
20466
20467 if (thumb_mode)
20468 inst.instruction |= 0xfc000000;
20469 else
20470 inst.instruction |= 0xf0000000;
20471}
20472
48adcd8e
MGD
20473static void
20474do_crypto_3op_1 (int u, int op)
20475{
5ee91343 20476 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
20477
20478 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20479 N_32 | N_UNT | N_KEY).type == NT_invtype)
20480 return;
20481
20482 inst.error = NULL;
20483
20484 NEON_ENCODE (INTEGER, inst);
20485 neon_three_same (1, u, 8 << op);
20486}
20487
91ff7894
MGD
20488static void
20489do_aese (void)
20490{
20491 do_crypto_2op_1 (N_8, 0);
20492}
20493
20494static void
20495do_aesd (void)
20496{
20497 do_crypto_2op_1 (N_8, 1);
20498}
20499
20500static void
20501do_aesmc (void)
20502{
20503 do_crypto_2op_1 (N_8, 2);
20504}
20505
20506static void
20507do_aesimc (void)
20508{
20509 do_crypto_2op_1 (N_8, 3);
20510}
20511
48adcd8e
MGD
20512static void
20513do_sha1c (void)
20514{
20515 do_crypto_3op_1 (0, 0);
20516}
20517
20518static void
20519do_sha1p (void)
20520{
20521 do_crypto_3op_1 (0, 1);
20522}
20523
20524static void
20525do_sha1m (void)
20526{
20527 do_crypto_3op_1 (0, 2);
20528}
20529
20530static void
20531do_sha1su0 (void)
20532{
20533 do_crypto_3op_1 (0, 3);
20534}
91ff7894 20535
48adcd8e
MGD
20536static void
20537do_sha256h (void)
20538{
20539 do_crypto_3op_1 (1, 0);
20540}
20541
20542static void
20543do_sha256h2 (void)
20544{
20545 do_crypto_3op_1 (1, 1);
20546}
20547
20548static void
20549do_sha256su1 (void)
20550{
20551 do_crypto_3op_1 (1, 2);
20552}
3c9017d2
MGD
20553
20554static void
20555do_sha1h (void)
20556{
20557 do_crypto_2op_1 (N_32, -1);
20558}
20559
20560static void
20561do_sha1su1 (void)
20562{
20563 do_crypto_2op_1 (N_32, 0);
20564}
20565
20566static void
20567do_sha256su0 (void)
20568{
20569 do_crypto_2op_1 (N_32, 1);
20570}
dd5181d5
KT
20571
20572static void
20573do_crc32_1 (unsigned int poly, unsigned int sz)
20574{
20575 unsigned int Rd = inst.operands[0].reg;
20576 unsigned int Rn = inst.operands[1].reg;
20577 unsigned int Rm = inst.operands[2].reg;
20578
5ee91343 20579 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20580 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20581 inst.instruction |= LOW4 (Rn) << 16;
20582 inst.instruction |= LOW4 (Rm);
20583 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20584 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20585
20586 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20587 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20588}
20589
20590static void
20591do_crc32b (void)
20592{
20593 do_crc32_1 (0, 0);
20594}
20595
20596static void
20597do_crc32h (void)
20598{
20599 do_crc32_1 (0, 1);
20600}
20601
20602static void
20603do_crc32w (void)
20604{
20605 do_crc32_1 (0, 2);
20606}
20607
20608static void
20609do_crc32cb (void)
20610{
20611 do_crc32_1 (1, 0);
20612}
20613
20614static void
20615do_crc32ch (void)
20616{
20617 do_crc32_1 (1, 1);
20618}
20619
20620static void
20621do_crc32cw (void)
20622{
20623 do_crc32_1 (1, 2);
20624}
20625
49e8a725
SN
20626static void
20627do_vjcvt (void)
20628{
20629 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20630 _(BAD_FPU));
20631 neon_check_type (2, NS_FD, N_S32, N_F64);
20632 do_vfp_sp_dp_cvt ();
20633 do_vfp_cond_or_thumb ();
20634}
20635
5287ad62
JB
20636\f
20637/* Overall per-instruction processing. */
20638
20639/* We need to be able to fix up arbitrary expressions in some statements.
20640 This is so that we can handle symbols that are an arbitrary distance from
20641 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20642 which returns part of an address in a form which will be valid for
20643 a data instruction. We do this by pushing the expression into a symbol
20644 in the expr_section, and creating a fix for that. */
20645
20646static void
20647fix_new_arm (fragS * frag,
20648 int where,
20649 short int size,
20650 expressionS * exp,
20651 int pc_rel,
20652 int reloc)
20653{
20654 fixS * new_fix;
20655
20656 switch (exp->X_op)
20657 {
20658 case O_constant:
6e7ce2cd
PB
20659 if (pc_rel)
20660 {
20661 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20662 refer to in the object file. Unfortunately for us, gas's
20663 generic expression parsing will already have folded out
20664 any use of .set foo/.type foo %function that may have
20665 been used to set type information of the target location,
20666 that's being specified symbolically. We have to presume
20667 the user knows what they are doing. */
6e7ce2cd
PB
20668 char name[16 + 8];
20669 symbolS *symbol;
20670
20671 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20672
20673 symbol = symbol_find_or_make (name);
20674 S_SET_SEGMENT (symbol, absolute_section);
20675 symbol_set_frag (symbol, &zero_address_frag);
20676 S_SET_VALUE (symbol, exp->X_add_number);
20677 exp->X_op = O_symbol;
20678 exp->X_add_symbol = symbol;
20679 exp->X_add_number = 0;
20680 }
20681 /* FALLTHROUGH */
5287ad62
JB
20682 case O_symbol:
20683 case O_add:
20684 case O_subtract:
21d799b5 20685 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20686 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20687 break;
20688
20689 default:
21d799b5 20690 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 20691 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20692 break;
20693 }
20694
20695 /* Mark whether the fix is to a THUMB instruction, or an ARM
20696 instruction. */
20697 new_fix->tc_fix_data = thumb_mode;
20698}
20699
20700/* Create a frg for an instruction requiring relaxation. */
20701static void
20702output_relax_insn (void)
20703{
20704 char * to;
20705 symbolS *sym;
0110f2b8
PB
20706 int offset;
20707
6e1cb1a6
PB
20708 /* The size of the instruction is unknown, so tie the debug info to the
20709 start of the instruction. */
20710 dwarf2_emit_insn (0);
6e1cb1a6 20711
e2b0ab59 20712 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
20713 {
20714 case O_symbol:
e2b0ab59
AV
20715 sym = inst.relocs[0].exp.X_add_symbol;
20716 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20717 break;
20718 case O_constant:
20719 sym = NULL;
e2b0ab59 20720 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20721 break;
20722 default:
e2b0ab59 20723 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20724 offset = 0;
20725 break;
20726 }
20727 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20728 inst.relax, sym, offset, NULL/*offset, opcode*/);
20729 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20730}
20731
20732/* Write a 32-bit thumb instruction to buf. */
20733static void
20734put_thumb32_insn (char * buf, unsigned long insn)
20735{
20736 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20737 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20738}
20739
b99bd4ef 20740static void
c19d1205 20741output_inst (const char * str)
b99bd4ef 20742{
c19d1205 20743 char * to = NULL;
b99bd4ef 20744
c19d1205 20745 if (inst.error)
b99bd4ef 20746 {
c19d1205 20747 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
20748 return;
20749 }
5f4273c7
NC
20750 if (inst.relax)
20751 {
20752 output_relax_insn ();
0110f2b8 20753 return;
5f4273c7 20754 }
c19d1205
ZW
20755 if (inst.size == 0)
20756 return;
b99bd4ef 20757
c19d1205 20758 to = frag_more (inst.size);
8dc2430f
NC
20759 /* PR 9814: Record the thumb mode into the current frag so that we know
20760 what type of NOP padding to use, if necessary. We override any previous
20761 setting so that if the mode has changed then the NOPS that we use will
20762 match the encoding of the last instruction in the frag. */
cd000bff 20763 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
20764
20765 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 20766 {
9c2799c2 20767 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 20768 put_thumb32_insn (to, inst.instruction);
b99bd4ef 20769 }
c19d1205 20770 else if (inst.size > INSN_SIZE)
b99bd4ef 20771 {
9c2799c2 20772 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
20773 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20774 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 20775 }
c19d1205
ZW
20776 else
20777 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 20778
e2b0ab59
AV
20779 int r;
20780 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20781 {
20782 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20783 fix_new_arm (frag_now, to - frag_now->fr_literal,
20784 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20785 inst.relocs[r].type);
20786 }
b99bd4ef 20787
c19d1205 20788 dwarf2_emit_insn (inst.size);
c19d1205 20789}
b99bd4ef 20790
e07e6e58
NC
20791static char *
20792output_it_inst (int cond, int mask, char * to)
20793{
20794 unsigned long instruction = 0xbf00;
20795
20796 mask &= 0xf;
20797 instruction |= mask;
20798 instruction |= cond << 4;
20799
20800 if (to == NULL)
20801 {
20802 to = frag_more (2);
20803#ifdef OBJ_ELF
20804 dwarf2_emit_insn (2);
20805#endif
20806 }
20807
20808 md_number_to_chars (to, instruction, 2);
20809
20810 return to;
20811}
20812
c19d1205
ZW
20813/* Tag values used in struct asm_opcode's tag field. */
20814enum opcode_tag
20815{
20816 OT_unconditional, /* Instruction cannot be conditionalized.
20817 The ARM condition field is still 0xE. */
20818 OT_unconditionalF, /* Instruction cannot be conditionalized
20819 and carries 0xF in its ARM condition field. */
20820 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
20821 OT_csuffixF, /* Some forms of the instruction take a scalar
20822 conditional suffix, others place 0xF where the
20823 condition field would be, others take a vector
20824 conditional suffix. */
c19d1205
ZW
20825 OT_cinfix3, /* Instruction takes a conditional infix,
20826 beginning at character index 3. (In
20827 unified mode, it becomes a suffix.) */
088fa78e
KH
20828 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20829 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
20830 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20831 character index 3, even in unified mode. Used for
20832 legacy instructions where suffix and infix forms
20833 may be ambiguous. */
c19d1205 20834 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 20835 suffix or an infix at character index 3. */
c19d1205
ZW
20836 OT_odd_infix_unc, /* This is the unconditional variant of an
20837 instruction that takes a conditional infix
20838 at an unusual position. In unified mode,
20839 this variant will accept a suffix. */
20840 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20841 are the conditional variants of instructions that
20842 take conditional infixes in unusual positions.
20843 The infix appears at character index
20844 (tag - OT_odd_infix_0). These are not accepted
20845 in unified mode. */
20846};
b99bd4ef 20847
c19d1205
ZW
20848/* Subroutine of md_assemble, responsible for looking up the primary
20849 opcode from the mnemonic the user wrote. STR points to the
20850 beginning of the mnemonic.
20851
20852 This is not simply a hash table lookup, because of conditional
20853 variants. Most instructions have conditional variants, which are
20854 expressed with a _conditional affix_ to the mnemonic. If we were
20855 to encode each conditional variant as a literal string in the opcode
20856 table, it would have approximately 20,000 entries.
20857
20858 Most mnemonics take this affix as a suffix, and in unified syntax,
20859 'most' is upgraded to 'all'. However, in the divided syntax, some
20860 instructions take the affix as an infix, notably the s-variants of
20861 the arithmetic instructions. Of those instructions, all but six
20862 have the infix appear after the third character of the mnemonic.
20863
20864 Accordingly, the algorithm for looking up primary opcodes given
20865 an identifier is:
20866
20867 1. Look up the identifier in the opcode table.
20868 If we find a match, go to step U.
20869
20870 2. Look up the last two characters of the identifier in the
20871 conditions table. If we find a match, look up the first N-2
20872 characters of the identifier in the opcode table. If we
20873 find a match, go to step CE.
20874
20875 3. Look up the fourth and fifth characters of the identifier in
20876 the conditions table. If we find a match, extract those
20877 characters from the identifier, and look up the remaining
20878 characters in the opcode table. If we find a match, go
20879 to step CM.
20880
20881 4. Fail.
20882
20883 U. Examine the tag field of the opcode structure, in case this is
20884 one of the six instructions with its conditional infix in an
20885 unusual place. If it is, the tag tells us where to find the
20886 infix; look it up in the conditions table and set inst.cond
20887 accordingly. Otherwise, this is an unconditional instruction.
20888 Again set inst.cond accordingly. Return the opcode structure.
20889
20890 CE. Examine the tag field to make sure this is an instruction that
20891 should receive a conditional suffix. If it is not, fail.
20892 Otherwise, set inst.cond from the suffix we already looked up,
20893 and return the opcode structure.
20894
20895 CM. Examine the tag field to make sure this is an instruction that
20896 should receive a conditional infix after the third character.
20897 If it is not, fail. Otherwise, undo the edits to the current
20898 line of input and proceed as for case CE. */
20899
20900static const struct asm_opcode *
20901opcode_lookup (char **str)
20902{
20903 char *end, *base;
20904 char *affix;
20905 const struct asm_opcode *opcode;
20906 const struct asm_cond *cond;
e3cb604e 20907 char save[2];
c19d1205
ZW
20908
20909 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 20910 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 20911 for (base = end = *str; *end != '\0'; end++)
721a8186 20912 if (*end == ' ' || *end == '.')
c19d1205 20913 break;
b99bd4ef 20914
c19d1205 20915 if (end == base)
c921be7d 20916 return NULL;
b99bd4ef 20917
5287ad62 20918 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 20919 if (end[0] == '.')
b99bd4ef 20920 {
5287ad62 20921 int offset = 2;
5f4273c7 20922
267d2029 20923 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 20924 use. */
267d2029 20925 if (unified_syntax && end[1] == 'w')
c19d1205 20926 inst.size_req = 4;
267d2029 20927 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
20928 inst.size_req = 2;
20929 else
477330fc 20930 offset = 0;
5287ad62
JB
20931
20932 inst.vectype.elems = 0;
20933
20934 *str = end + offset;
b99bd4ef 20935
5f4273c7 20936 if (end[offset] == '.')
5287ad62 20937 {
267d2029 20938 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
20939 non-unified ARM syntax mode). */
20940 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 20941 return NULL;
477330fc 20942 }
5287ad62 20943 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 20944 return NULL;
b99bd4ef 20945 }
c19d1205
ZW
20946 else
20947 *str = end;
b99bd4ef 20948
c19d1205 20949 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 20950 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20951 end - base);
c19d1205 20952 if (opcode)
b99bd4ef 20953 {
c19d1205
ZW
20954 /* step U */
20955 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 20956 {
c19d1205
ZW
20957 inst.cond = COND_ALWAYS;
20958 return opcode;
b99bd4ef 20959 }
b99bd4ef 20960
278df34e 20961 if (warn_on_deprecated && unified_syntax)
5c3696f8 20962 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 20963 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 20964 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 20965 gas_assert (cond);
b99bd4ef 20966
c19d1205
ZW
20967 inst.cond = cond->value;
20968 return opcode;
20969 }
5ee91343
AV
20970 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20971 {
20972 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20973 */
20974 if (end - base < 2)
20975 return NULL;
20976 affix = end - 1;
20977 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20978 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20979 affix - base);
20980 /* If this opcode can not be vector predicated then don't accept it with a
20981 vector predication code. */
20982 if (opcode && !opcode->mayBeVecPred)
20983 opcode = NULL;
20984 }
20985 if (!opcode || !cond)
20986 {
20987 /* Cannot have a conditional suffix on a mnemonic of less than two
20988 characters. */
20989 if (end - base < 3)
20990 return NULL;
b99bd4ef 20991
5ee91343
AV
20992 /* Look for suffixed mnemonic. */
20993 affix = end - 2;
20994 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20995 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20996 affix - base);
20997 }
b99bd4ef 20998
c19d1205
ZW
20999 if (opcode && cond)
21000 {
21001 /* step CE */
21002 switch (opcode->tag)
21003 {
e3cb604e
PB
21004 case OT_cinfix3_legacy:
21005 /* Ignore conditional suffixes matched on infix only mnemonics. */
21006 break;
21007
c19d1205 21008 case OT_cinfix3:
088fa78e 21009 case OT_cinfix3_deprecated:
c19d1205
ZW
21010 case OT_odd_infix_unc:
21011 if (!unified_syntax)
0198d5e6 21012 return NULL;
1a0670f3 21013 /* Fall through. */
c19d1205
ZW
21014
21015 case OT_csuffix:
477330fc 21016 case OT_csuffixF:
c19d1205
ZW
21017 case OT_csuf_or_in3:
21018 inst.cond = cond->value;
21019 return opcode;
21020
21021 case OT_unconditional:
21022 case OT_unconditionalF:
dfa9f0d5 21023 if (thumb_mode)
c921be7d 21024 inst.cond = cond->value;
dfa9f0d5
PB
21025 else
21026 {
c921be7d 21027 /* Delayed diagnostic. */
dfa9f0d5
PB
21028 inst.error = BAD_COND;
21029 inst.cond = COND_ALWAYS;
21030 }
c19d1205 21031 return opcode;
b99bd4ef 21032
c19d1205 21033 default:
c921be7d 21034 return NULL;
c19d1205
ZW
21035 }
21036 }
b99bd4ef 21037
c19d1205
ZW
21038 /* Cannot have a usual-position infix on a mnemonic of less than
21039 six characters (five would be a suffix). */
21040 if (end - base < 6)
c921be7d 21041 return NULL;
b99bd4ef 21042
c19d1205
ZW
21043 /* Look for infixed mnemonic in the usual position. */
21044 affix = base + 3;
21d799b5 21045 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 21046 if (!cond)
c921be7d 21047 return NULL;
e3cb604e
PB
21048
21049 memcpy (save, affix, 2);
21050 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 21051 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21052 (end - base) - 2);
e3cb604e
PB
21053 memmove (affix + 2, affix, (end - affix) - 2);
21054 memcpy (affix, save, 2);
21055
088fa78e
KH
21056 if (opcode
21057 && (opcode->tag == OT_cinfix3
21058 || opcode->tag == OT_cinfix3_deprecated
21059 || opcode->tag == OT_csuf_or_in3
21060 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 21061 {
c921be7d 21062 /* Step CM. */
278df34e 21063 if (warn_on_deprecated && unified_syntax
088fa78e
KH
21064 && (opcode->tag == OT_cinfix3
21065 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 21066 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
21067
21068 inst.cond = cond->value;
21069 return opcode;
b99bd4ef
NC
21070 }
21071
c921be7d 21072 return NULL;
b99bd4ef
NC
21073}
21074
e07e6e58
NC
21075/* This function generates an initial IT instruction, leaving its block
21076 virtually open for the new instructions. Eventually,
5ee91343 21077 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
21078 a new instruction needs to be included in the IT block.
21079 Finally, the block is closed with close_automatic_it_block ().
21080 The block closure can be requested either from md_assemble (),
21081 a tencode (), or due to a label hook. */
21082
21083static void
21084new_automatic_it_block (int cond)
21085{
5ee91343
AV
21086 now_pred.state = AUTOMATIC_PRED_BLOCK;
21087 now_pred.mask = 0x18;
21088 now_pred.cc = cond;
21089 now_pred.block_length = 1;
cd000bff 21090 mapping_state (MAP_THUMB);
5ee91343
AV
21091 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21092 now_pred.warn_deprecated = FALSE;
21093 now_pred.insn_cond = TRUE;
e07e6e58
NC
21094}
21095
21096/* Close an automatic IT block.
21097 See comments in new_automatic_it_block (). */
21098
21099static void
21100close_automatic_it_block (void)
21101{
5ee91343
AV
21102 now_pred.mask = 0x10;
21103 now_pred.block_length = 0;
e07e6e58
NC
21104}
21105
21106/* Update the mask of the current automatically-generated IT
21107 instruction. See comments in new_automatic_it_block (). */
21108
21109static void
5ee91343 21110now_pred_add_mask (int cond)
e07e6e58
NC
21111{
21112#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21113#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 21114 | ((bitvalue) << (nbit)))
e07e6e58 21115 const int resulting_bit = (cond & 1);
c921be7d 21116
5ee91343
AV
21117 now_pred.mask &= 0xf;
21118 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21119 resulting_bit,
5ee91343
AV
21120 (5 - now_pred.block_length));
21121 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21122 1,
5ee91343
AV
21123 ((5 - now_pred.block_length) - 1));
21124 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
21125
21126#undef CLEAR_BIT
21127#undef SET_BIT_VALUE
e07e6e58
NC
21128}
21129
21130/* The IT blocks handling machinery is accessed through the these functions:
21131 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
21132 set_pred_insn_type () optional, from the tencode functions
21133 set_pred_insn_type_last () ditto
21134 in_pred_block () ditto
e07e6e58 21135 it_fsm_post_encode () from md_assemble ()
33eaf5de 21136 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
21137
21138 Rationale:
21139 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
21140 initializing the IT insn type with a generic initial value depending
21141 on the inst.condition.
e07e6e58 21142 2) During the tencode function, two things may happen:
477330fc 21143 a) The tencode function overrides the IT insn type by
5ee91343
AV
21144 calling either set_pred_insn_type (type) or
21145 set_pred_insn_type_last ().
477330fc 21146 b) The tencode function queries the IT block state by
5ee91343 21147 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 21148
5ee91343
AV
21149 Both set_pred_insn_type and in_pred_block run the internal FSM state
21150 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
21151 type may incur in an invalid state (exiting the function),
21152 and b) querying the state requires the FSM to be updated.
21153 Specifically we want to avoid creating an IT block for conditional
21154 branches, so it_fsm_pre_encode is actually a guess and we can't
21155 determine whether an IT block is required until the tencode () routine
21156 has decided what type of instruction this actually it.
5ee91343
AV
21157 Because of this, if set_pred_insn_type and in_pred_block have to be
21158 used, set_pred_insn_type has to be called first.
477330fc 21159
5ee91343
AV
21160 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21161 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
21162 When a tencode () routine encodes an instruction that can be
21163 either outside an IT block, or, in the case of being inside, has to be
5ee91343 21164 the last one, set_pred_insn_type_last () will determine the proper
477330fc 21165 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 21166 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
21167 for covering other cases.
21168
5ee91343
AV
21169 Calling handle_pred_state () may not transition the IT block state to
21170 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 21171 still queried. Instead, if the FSM determines that the state should
5ee91343 21172 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
21173 after the tencode () function: that's what it_fsm_post_encode () does.
21174
5ee91343 21175 Since in_pred_block () calls the state handling function to get an
477330fc
RM
21176 updated state, an error may occur (due to invalid insns combination).
21177 In that case, inst.error is set.
21178 Therefore, inst.error has to be checked after the execution of
21179 the tencode () routine.
e07e6e58
NC
21180
21181 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 21182 any pending state change (if any) that didn't take place in
5ee91343 21183 handle_pred_state () as explained above. */
e07e6e58
NC
21184
21185static void
21186it_fsm_pre_encode (void)
21187{
21188 if (inst.cond != COND_ALWAYS)
5ee91343 21189 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 21190 else
5ee91343 21191 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 21192
5ee91343 21193 now_pred.state_handled = 0;
e07e6e58
NC
21194}
21195
21196/* IT state FSM handling function. */
5ee91343
AV
21197/* MVE instructions and non-MVE instructions are handled differently because of
21198 the introduction of VPT blocks.
21199 Specifications say that any non-MVE instruction inside a VPT block is
21200 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21201 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 21202 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
21203 The error messages provided depending on the different combinations possible
21204 are described in the cases below:
21205 For 'most' MVE instructions:
21206 1) In an IT block, with an IT code: syntax error
21207 2) In an IT block, with a VPT code: error: must be in a VPT block
21208 3) In an IT block, with no code: warning: UNPREDICTABLE
21209 4) In a VPT block, with an IT code: syntax error
21210 5) In a VPT block, with a VPT code: OK!
21211 6) In a VPT block, with no code: error: missing code
21212 7) Outside a pred block, with an IT code: error: syntax error
21213 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21214 9) Outside a pred block, with no code: OK!
21215 For non-MVE instructions:
21216 10) In an IT block, with an IT code: OK!
21217 11) In an IT block, with a VPT code: syntax error
21218 12) In an IT block, with no code: error: missing code
21219 13) In a VPT block, with an IT code: error: should be in an IT block
21220 14) In a VPT block, with a VPT code: syntax error
21221 15) In a VPT block, with no code: UNPREDICTABLE
21222 16) Outside a pred block, with an IT code: error: should be in an IT block
21223 17) Outside a pred block, with a VPT code: syntax error
21224 18) Outside a pred block, with no code: OK!
21225 */
21226
e07e6e58
NC
21227
21228static int
5ee91343 21229handle_pred_state (void)
e07e6e58 21230{
5ee91343
AV
21231 now_pred.state_handled = 1;
21232 now_pred.insn_cond = FALSE;
e07e6e58 21233
5ee91343 21234 switch (now_pred.state)
e07e6e58 21235 {
5ee91343
AV
21236 case OUTSIDE_PRED_BLOCK:
21237 switch (inst.pred_insn_type)
e07e6e58 21238 {
35c228db 21239 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21240 case MVE_OUTSIDE_PRED_INSN:
21241 if (inst.cond < COND_ALWAYS)
21242 {
21243 /* Case 7: Outside a pred block, with an IT code: error: syntax
21244 error. */
21245 inst.error = BAD_SYNTAX;
21246 return FAIL;
21247 }
21248 /* Case 9: Outside a pred block, with no code: OK! */
21249 break;
21250 case OUTSIDE_PRED_INSN:
21251 if (inst.cond > COND_ALWAYS)
21252 {
21253 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21254 */
21255 inst.error = BAD_SYNTAX;
21256 return FAIL;
21257 }
21258 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
21259 break;
21260
5ee91343
AV
21261 case INSIDE_VPT_INSN:
21262 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21263 a VPT block. */
21264 inst.error = BAD_OUT_VPT;
21265 return FAIL;
21266
e07e6e58
NC
21267 case INSIDE_IT_INSN:
21268 case INSIDE_IT_LAST_INSN:
5ee91343 21269 if (inst.cond < COND_ALWAYS)
e07e6e58 21270 {
5ee91343
AV
21271 /* Case 16: Outside a pred block, with an IT code: error: should
21272 be in an IT block. */
21273 if (thumb_mode == 0)
e07e6e58 21274 {
5ee91343
AV
21275 if (unified_syntax
21276 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21277 as_tsktsk (_("Warning: conditional outside an IT block"\
21278 " for Thumb."));
e07e6e58
NC
21279 }
21280 else
21281 {
5ee91343
AV
21282 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21283 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21284 {
21285 /* Automatically generate the IT instruction. */
21286 new_automatic_it_block (inst.cond);
21287 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21288 close_automatic_it_block ();
21289 }
21290 else
21291 {
21292 inst.error = BAD_OUT_IT;
21293 return FAIL;
21294 }
e07e6e58 21295 }
5ee91343 21296 break;
e07e6e58 21297 }
5ee91343
AV
21298 else if (inst.cond > COND_ALWAYS)
21299 {
21300 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21301 */
21302 inst.error = BAD_SYNTAX;
21303 return FAIL;
21304 }
21305 else
21306 gas_assert (0);
e07e6e58
NC
21307 case IF_INSIDE_IT_LAST_INSN:
21308 case NEUTRAL_IT_INSN:
21309 break;
21310
5ee91343
AV
21311 case VPT_INSN:
21312 if (inst.cond != COND_ALWAYS)
21313 first_error (BAD_SYNTAX);
21314 now_pred.state = MANUAL_PRED_BLOCK;
21315 now_pred.block_length = 0;
21316 now_pred.type = VECTOR_PRED;
21317 now_pred.cc = 0;
21318 break;
e07e6e58 21319 case IT_INSN:
5ee91343
AV
21320 now_pred.state = MANUAL_PRED_BLOCK;
21321 now_pred.block_length = 0;
21322 now_pred.type = SCALAR_PRED;
e07e6e58
NC
21323 break;
21324 }
21325 break;
21326
5ee91343 21327 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
21328 /* Three things may happen now:
21329 a) We should increment current it block size;
21330 b) We should close current it block (closing insn or 4 insns);
21331 c) We should close current it block and start a new one (due
21332 to incompatible conditions or
21333 4 insns-length block reached). */
21334
5ee91343 21335 switch (inst.pred_insn_type)
e07e6e58 21336 {
5ee91343
AV
21337 case INSIDE_VPT_INSN:
21338 case VPT_INSN:
35c228db 21339 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21340 case MVE_OUTSIDE_PRED_INSN:
21341 gas_assert (0);
21342 case OUTSIDE_PRED_INSN:
2b0f3761 21343 /* The closure of the block shall happen immediately,
5ee91343 21344 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
21345 force_automatic_it_block_close ();
21346 break;
21347
21348 case INSIDE_IT_INSN:
21349 case INSIDE_IT_LAST_INSN:
21350 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21351 now_pred.block_length++;
e07e6e58 21352
5ee91343
AV
21353 if (now_pred.block_length > 4
21354 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21355 {
21356 force_automatic_it_block_close ();
5ee91343 21357 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21358 new_automatic_it_block (inst.cond);
21359 }
21360 else
21361 {
5ee91343
AV
21362 now_pred.insn_cond = TRUE;
21363 now_pred_add_mask (inst.cond);
e07e6e58
NC
21364 }
21365
5ee91343
AV
21366 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21367 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21368 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21369 close_automatic_it_block ();
21370 break;
21371
21372 case NEUTRAL_IT_INSN:
5ee91343
AV
21373 now_pred.block_length++;
21374 now_pred.insn_cond = TRUE;
e07e6e58 21375
5ee91343 21376 if (now_pred.block_length > 4)
e07e6e58
NC
21377 force_automatic_it_block_close ();
21378 else
5ee91343 21379 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21380 break;
21381
21382 case IT_INSN:
21383 close_automatic_it_block ();
5ee91343 21384 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21385 break;
21386 }
21387 break;
21388
5ee91343 21389 case MANUAL_PRED_BLOCK:
e07e6e58 21390 {
5ee91343
AV
21391 int cond, is_last;
21392 if (now_pred.type == SCALAR_PRED)
e07e6e58 21393 {
5ee91343
AV
21394 /* Check conditional suffixes. */
21395 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21396 now_pred.mask <<= 1;
21397 now_pred.mask &= 0x1f;
21398 is_last = (now_pred.mask == 0x10);
21399 }
21400 else
21401 {
21402 now_pred.cc ^= (now_pred.mask >> 4);
21403 cond = now_pred.cc + 0xf;
21404 now_pred.mask <<= 1;
21405 now_pred.mask &= 0x1f;
21406 is_last = now_pred.mask == 0x10;
21407 }
21408 now_pred.insn_cond = TRUE;
e07e6e58 21409
5ee91343
AV
21410 switch (inst.pred_insn_type)
21411 {
21412 case OUTSIDE_PRED_INSN:
21413 if (now_pred.type == SCALAR_PRED)
21414 {
21415 if (inst.cond == COND_ALWAYS)
21416 {
21417 /* Case 12: In an IT block, with no code: error: missing
21418 code. */
21419 inst.error = BAD_NOT_IT;
21420 return FAIL;
21421 }
21422 else if (inst.cond > COND_ALWAYS)
21423 {
21424 /* Case 11: In an IT block, with a VPT code: syntax error.
21425 */
21426 inst.error = BAD_SYNTAX;
21427 return FAIL;
21428 }
21429 else if (thumb_mode)
21430 {
21431 /* This is for some special cases where a non-MVE
21432 instruction is not allowed in an IT block, such as cbz,
21433 but are put into one with a condition code.
21434 You could argue this should be a syntax error, but we
21435 gave the 'not allowed in IT block' diagnostic in the
21436 past so we will keep doing so. */
21437 inst.error = BAD_NOT_IT;
21438 return FAIL;
21439 }
21440 break;
21441 }
21442 else
21443 {
21444 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21445 as_tsktsk (MVE_NOT_VPT);
21446 return SUCCESS;
21447 }
21448 case MVE_OUTSIDE_PRED_INSN:
21449 if (now_pred.type == SCALAR_PRED)
21450 {
21451 if (inst.cond == COND_ALWAYS)
21452 {
21453 /* Case 3: In an IT block, with no code: warning:
21454 UNPREDICTABLE. */
21455 as_tsktsk (MVE_NOT_IT);
21456 return SUCCESS;
21457 }
21458 else if (inst.cond < COND_ALWAYS)
21459 {
21460 /* Case 1: In an IT block, with an IT code: syntax error.
21461 */
21462 inst.error = BAD_SYNTAX;
21463 return FAIL;
21464 }
21465 else
21466 gas_assert (0);
21467 }
21468 else
21469 {
21470 if (inst.cond < COND_ALWAYS)
21471 {
21472 /* Case 4: In a VPT block, with an IT code: syntax error.
21473 */
21474 inst.error = BAD_SYNTAX;
21475 return FAIL;
21476 }
21477 else if (inst.cond == COND_ALWAYS)
21478 {
21479 /* Case 6: In a VPT block, with no code: error: missing
21480 code. */
21481 inst.error = BAD_NOT_VPT;
21482 return FAIL;
21483 }
21484 else
21485 {
21486 gas_assert (0);
21487 }
21488 }
35c228db
AV
21489 case MVE_UNPREDICABLE_INSN:
21490 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21491 return SUCCESS;
e07e6e58 21492 case INSIDE_IT_INSN:
5ee91343 21493 if (inst.cond > COND_ALWAYS)
e07e6e58 21494 {
5ee91343
AV
21495 /* Case 11: In an IT block, with a VPT code: syntax error. */
21496 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21497 inst.error = BAD_SYNTAX;
21498 return FAIL;
21499 }
21500 else if (now_pred.type == SCALAR_PRED)
21501 {
21502 /* Case 10: In an IT block, with an IT code: OK! */
21503 if (cond != inst.cond)
21504 {
21505 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21506 BAD_VPT_COND;
21507 return FAIL;
21508 }
21509 }
21510 else
21511 {
21512 /* Case 13: In a VPT block, with an IT code: error: should be
21513 in an IT block. */
21514 inst.error = BAD_OUT_IT;
e07e6e58
NC
21515 return FAIL;
21516 }
21517 break;
21518
5ee91343
AV
21519 case INSIDE_VPT_INSN:
21520 if (now_pred.type == SCALAR_PRED)
21521 {
21522 /* Case 2: In an IT block, with a VPT code: error: must be in a
21523 VPT block. */
21524 inst.error = BAD_OUT_VPT;
21525 return FAIL;
21526 }
21527 /* Case 5: In a VPT block, with a VPT code: OK! */
21528 else if (cond != inst.cond)
21529 {
21530 inst.error = BAD_VPT_COND;
21531 return FAIL;
21532 }
21533 break;
e07e6e58
NC
21534 case INSIDE_IT_LAST_INSN:
21535 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21536 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21537 {
21538 /* Case 4: In a VPT block, with an IT code: syntax error. */
21539 /* Case 11: In an IT block, with a VPT code: syntax error. */
21540 inst.error = BAD_SYNTAX;
21541 return FAIL;
21542 }
21543 else if (cond != inst.cond)
e07e6e58
NC
21544 {
21545 inst.error = BAD_IT_COND;
21546 return FAIL;
21547 }
21548 if (!is_last)
21549 {
21550 inst.error = BAD_BRANCH;
21551 return FAIL;
21552 }
21553 break;
21554
21555 case NEUTRAL_IT_INSN:
5ee91343
AV
21556 /* The BKPT instruction is unconditional even in a IT or VPT
21557 block. */
e07e6e58
NC
21558 break;
21559
21560 case IT_INSN:
5ee91343
AV
21561 if (now_pred.type == SCALAR_PRED)
21562 {
21563 inst.error = BAD_IT_IT;
21564 return FAIL;
21565 }
21566 /* fall through. */
21567 case VPT_INSN:
21568 if (inst.cond == COND_ALWAYS)
21569 {
21570 /* Executing a VPT/VPST instruction inside an IT block or a
21571 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21572 */
21573 if (now_pred.type == SCALAR_PRED)
21574 as_tsktsk (MVE_NOT_IT);
21575 else
21576 as_tsktsk (MVE_NOT_VPT);
21577 return SUCCESS;
21578 }
21579 else
21580 {
21581 /* VPT/VPST do not accept condition codes. */
21582 inst.error = BAD_SYNTAX;
21583 return FAIL;
21584 }
e07e6e58 21585 }
5ee91343 21586 }
e07e6e58
NC
21587 break;
21588 }
21589
21590 return SUCCESS;
21591}
21592
5a01bb1d
MGD
21593struct depr_insn_mask
21594{
21595 unsigned long pattern;
21596 unsigned long mask;
21597 const char* description;
21598};
21599
21600/* List of 16-bit instruction patterns deprecated in an IT block in
21601 ARMv8. */
21602static const struct depr_insn_mask depr_it_insns[] = {
21603 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21604 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21605 { 0xa000, 0xb800, N_("ADR") },
21606 { 0x4800, 0xf800, N_("Literal loads") },
21607 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21608 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21609 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21610 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21611 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21612 { 0, 0, NULL }
21613};
21614
e07e6e58
NC
21615static void
21616it_fsm_post_encode (void)
21617{
21618 int is_last;
21619
5ee91343
AV
21620 if (!now_pred.state_handled)
21621 handle_pred_state ();
e07e6e58 21622
5ee91343
AV
21623 if (now_pred.insn_cond
21624 && !now_pred.warn_deprecated
5a01bb1d 21625 && warn_on_deprecated
df9909b8
TP
21626 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21627 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21628 {
21629 if (inst.instruction >= 0x10000)
21630 {
5c3696f8 21631 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21632 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21633 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21634 }
21635 else
21636 {
21637 const struct depr_insn_mask *p = depr_it_insns;
21638
21639 while (p->mask != 0)
21640 {
21641 if ((inst.instruction & p->mask) == p->pattern)
21642 {
df9909b8
TP
21643 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21644 "instructions of the following class are "
21645 "performance deprecated in ARMv8-A and "
21646 "ARMv8-R: %s"), p->description);
5ee91343 21647 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21648 break;
21649 }
21650
21651 ++p;
21652 }
21653 }
21654
5ee91343 21655 if (now_pred.block_length > 1)
5a01bb1d 21656 {
5c3696f8 21657 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21658 "instruction are performance deprecated in ARMv8-A and "
21659 "ARMv8-R"));
5ee91343 21660 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21661 }
21662 }
21663
5ee91343
AV
21664 is_last = (now_pred.mask == 0x10);
21665 if (is_last)
21666 {
21667 now_pred.state = OUTSIDE_PRED_BLOCK;
21668 now_pred.mask = 0;
21669 }
e07e6e58
NC
21670}
21671
21672static void
21673force_automatic_it_block_close (void)
21674{
5ee91343 21675 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21676 {
21677 close_automatic_it_block ();
5ee91343
AV
21678 now_pred.state = OUTSIDE_PRED_BLOCK;
21679 now_pred.mask = 0;
e07e6e58
NC
21680 }
21681}
21682
21683static int
5ee91343 21684in_pred_block (void)
e07e6e58 21685{
5ee91343
AV
21686 if (!now_pred.state_handled)
21687 handle_pred_state ();
e07e6e58 21688
5ee91343 21689 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21690}
21691
ff8646ee
TP
21692/* Whether OPCODE only has T32 encoding. Since this function is only used by
21693 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21694 here, hence the "known" in the function name. */
fc289b0a
TP
21695
21696static bfd_boolean
ff8646ee 21697known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
21698{
21699 /* Original Thumb-1 wide instruction. */
21700 if (opcode->tencode == do_t_blx
21701 || opcode->tencode == do_t_branch23
21702 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21703 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21704 return TRUE;
21705
16a1fa25
TP
21706 /* Wide-only instruction added to ARMv8-M Baseline. */
21707 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
21708 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21709 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21710 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21711 return TRUE;
21712
21713 return FALSE;
21714}
21715
21716/* Whether wide instruction variant can be used if available for a valid OPCODE
21717 in ARCH. */
21718
21719static bfd_boolean
21720t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21721{
21722 if (known_t32_only_insn (opcode))
21723 return TRUE;
21724
21725 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21726 of variant T3 of B.W is checked in do_t_branch. */
21727 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21728 && opcode->tencode == do_t_branch)
21729 return TRUE;
21730
bada4342
JW
21731 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21732 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21733 && opcode->tencode == do_t_mov_cmp
21734 /* Make sure CMP instruction is not affected. */
21735 && opcode->aencode == do_mov)
21736 return TRUE;
21737
ff8646ee
TP
21738 /* Wide instruction variants of all instructions with narrow *and* wide
21739 variants become available with ARMv6t2. Other opcodes are either
21740 narrow-only or wide-only and are thus available if OPCODE is valid. */
21741 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21742 return TRUE;
21743
21744 /* OPCODE with narrow only instruction variant or wide variant not
21745 available. */
fc289b0a
TP
21746 return FALSE;
21747}
21748
c19d1205
ZW
21749void
21750md_assemble (char *str)
b99bd4ef 21751{
c19d1205
ZW
21752 char *p = str;
21753 const struct asm_opcode * opcode;
b99bd4ef 21754
c19d1205
ZW
21755 /* Align the previous label if needed. */
21756 if (last_label_seen != NULL)
b99bd4ef 21757 {
c19d1205
ZW
21758 symbol_set_frag (last_label_seen, frag_now);
21759 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21760 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
21761 }
21762
c19d1205 21763 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
21764 int r;
21765 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21766 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 21767
c19d1205
ZW
21768 opcode = opcode_lookup (&p);
21769 if (!opcode)
b99bd4ef 21770 {
c19d1205 21771 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 21772 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 21773 if (! create_register_alias (str, p)
477330fc 21774 && ! create_neon_reg_alias (str, p))
c19d1205 21775 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 21776
b99bd4ef
NC
21777 return;
21778 }
21779
278df34e 21780 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 21781 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 21782
037e8744
JB
21783 /* The value which unconditional instructions should have in place of the
21784 condition field. */
21785 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21786
c19d1205 21787 if (thumb_mode)
b99bd4ef 21788 {
e74cfd16 21789 arm_feature_set variant;
8f06b2d8
PB
21790
21791 variant = cpu_variant;
21792 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
21793 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21794 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 21795 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
21796 if (!opcode->tvariant
21797 || (thumb_mode == 1
21798 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 21799 {
173205ca
TP
21800 if (opcode->tencode == do_t_swi)
21801 as_bad (_("SVC is not permitted on this architecture"));
21802 else
21803 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
21804 return;
21805 }
c19d1205
ZW
21806 if (inst.cond != COND_ALWAYS && !unified_syntax
21807 && opcode->tencode != do_t_branch)
b99bd4ef 21808 {
c19d1205 21809 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
21810 return;
21811 }
21812
fc289b0a
TP
21813 /* Two things are addressed here:
21814 1) Implicit require narrow instructions on Thumb-1.
21815 This avoids relaxation accidentally introducing Thumb-2
21816 instructions.
21817 2) Reject wide instructions in non Thumb-2 cores.
21818
21819 Only instructions with narrow and wide variants need to be handled
21820 but selecting all non wide-only instructions is easier. */
21821 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 21822 && !t32_insn_ok (variant, opcode))
076d447c 21823 {
fc289b0a
TP
21824 if (inst.size_req == 0)
21825 inst.size_req = 2;
21826 else if (inst.size_req == 4)
752d5da4 21827 {
ff8646ee
TP
21828 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21829 as_bad (_("selected processor does not support 32bit wide "
21830 "variant of instruction `%s'"), str);
21831 else
21832 as_bad (_("selected processor does not support `%s' in "
21833 "Thumb-2 mode"), str);
fc289b0a 21834 return;
752d5da4 21835 }
076d447c
PB
21836 }
21837
c19d1205
ZW
21838 inst.instruction = opcode->tvalue;
21839
5be8be5d 21840 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 21841 {
5ee91343 21842 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
21843 it. */
21844 it_fsm_pre_encode ();
c19d1205 21845
477330fc 21846 opcode->tencode ();
e07e6e58 21847
477330fc
RM
21848 it_fsm_post_encode ();
21849 }
e27ec89e 21850
0110f2b8 21851 if (!(inst.error || inst.relax))
b99bd4ef 21852 {
9c2799c2 21853 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
21854 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21855 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 21856 {
c19d1205 21857 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
21858 return;
21859 }
21860 }
076d447c
PB
21861
21862 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 21863 instruction. */
9c2799c2 21864 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 21865
e74cfd16
PB
21866 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21867 *opcode->tvariant);
ee065d83 21868 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
21869 set those bits when Thumb-2 32-bit instructions are seen. The impact
21870 of relaxable instructions will be considered later after we finish all
21871 relaxation. */
ff8646ee
TP
21872 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21873 variant = arm_arch_none;
21874 else
21875 variant = cpu_variant;
21876 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
21877 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21878 arm_ext_v6t2);
cd000bff 21879
88714cb8
DG
21880 check_neon_suffixes;
21881
cd000bff 21882 if (!inst.error)
c877a2f2
NC
21883 {
21884 mapping_state (MAP_THUMB);
21885 }
c19d1205 21886 }
3e9e4fcf 21887 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 21888 {
845b51d6
PB
21889 bfd_boolean is_bx;
21890
21891 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21892 is_bx = (opcode->aencode == do_bx);
21893
c19d1205 21894 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
21895 if (!(is_bx && fix_v4bx)
21896 && !(opcode->avariant &&
21897 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 21898 {
84b52b66 21899 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 21900 return;
b99bd4ef 21901 }
c19d1205 21902 if (inst.size_req)
b99bd4ef 21903 {
c19d1205
ZW
21904 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21905 return;
b99bd4ef
NC
21906 }
21907
c19d1205
ZW
21908 inst.instruction = opcode->avalue;
21909 if (opcode->tag == OT_unconditionalF)
eff0bc54 21910 inst.instruction |= 0xFU << 28;
c19d1205
ZW
21911 else
21912 inst.instruction |= inst.cond << 28;
21913 inst.size = INSN_SIZE;
5be8be5d 21914 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
21915 {
21916 it_fsm_pre_encode ();
21917 opcode->aencode ();
21918 it_fsm_post_encode ();
21919 }
ee065d83 21920 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 21921 on a hypothetical non-thumb v5 core. */
845b51d6 21922 if (is_bx)
e74cfd16 21923 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 21924 else
e74cfd16
PB
21925 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21926 *opcode->avariant);
88714cb8
DG
21927
21928 check_neon_suffixes;
21929
cd000bff 21930 if (!inst.error)
c877a2f2
NC
21931 {
21932 mapping_state (MAP_ARM);
21933 }
b99bd4ef 21934 }
3e9e4fcf
JB
21935 else
21936 {
21937 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21938 "-- `%s'"), str);
21939 return;
21940 }
c19d1205
ZW
21941 output_inst (str);
21942}
b99bd4ef 21943
e07e6e58 21944static void
5ee91343 21945check_pred_blocks_finished (void)
e07e6e58
NC
21946{
21947#ifdef OBJ_ELF
21948 asection *sect;
21949
21950 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
21951 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21952 == MANUAL_PRED_BLOCK)
e07e6e58 21953 {
5ee91343
AV
21954 if (now_pred.type == SCALAR_PRED)
21955 as_warn (_("section '%s' finished with an open IT block."),
21956 sect->name);
21957 else
21958 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21959 sect->name);
e07e6e58
NC
21960 }
21961#else
5ee91343
AV
21962 if (now_pred.state == MANUAL_PRED_BLOCK)
21963 {
21964 if (now_pred.type == SCALAR_PRED)
21965 as_warn (_("file finished with an open IT block."));
21966 else
21967 as_warn (_("file finished with an open VPT/VPST block."));
21968 }
e07e6e58
NC
21969#endif
21970}
21971
c19d1205
ZW
21972/* Various frobbings of labels and their addresses. */
21973
21974void
21975arm_start_line_hook (void)
21976{
21977 last_label_seen = NULL;
b99bd4ef
NC
21978}
21979
c19d1205
ZW
21980void
21981arm_frob_label (symbolS * sym)
b99bd4ef 21982{
c19d1205 21983 last_label_seen = sym;
b99bd4ef 21984
c19d1205 21985 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 21986
c19d1205
ZW
21987#if defined OBJ_COFF || defined OBJ_ELF
21988 ARM_SET_INTERWORK (sym, support_interwork);
21989#endif
b99bd4ef 21990
e07e6e58
NC
21991 force_automatic_it_block_close ();
21992
5f4273c7 21993 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
21994 as Thumb functions. This is because these labels, whilst
21995 they exist inside Thumb code, are not the entry points for
21996 possible ARM->Thumb calls. Also, these labels can be used
21997 as part of a computed goto or switch statement. eg gcc
21998 can generate code that looks like this:
b99bd4ef 21999
c19d1205
ZW
22000 ldr r2, [pc, .Laaa]
22001 lsl r3, r3, #2
22002 ldr r2, [r3, r2]
22003 mov pc, r2
b99bd4ef 22004
c19d1205
ZW
22005 .Lbbb: .word .Lxxx
22006 .Lccc: .word .Lyyy
22007 ..etc...
22008 .Laaa: .word Lbbb
b99bd4ef 22009
c19d1205
ZW
22010 The first instruction loads the address of the jump table.
22011 The second instruction converts a table index into a byte offset.
22012 The third instruction gets the jump address out of the table.
22013 The fourth instruction performs the jump.
b99bd4ef 22014
c19d1205
ZW
22015 If the address stored at .Laaa is that of a symbol which has the
22016 Thumb_Func bit set, then the linker will arrange for this address
22017 to have the bottom bit set, which in turn would mean that the
22018 address computation performed by the third instruction would end
22019 up with the bottom bit set. Since the ARM is capable of unaligned
22020 word loads, the instruction would then load the incorrect address
22021 out of the jump table, and chaos would ensue. */
22022 if (label_is_thumb_function_name
22023 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22024 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 22025 {
c19d1205
ZW
22026 /* When the address of a Thumb function is taken the bottom
22027 bit of that address should be set. This will allow
22028 interworking between Arm and Thumb functions to work
22029 correctly. */
b99bd4ef 22030
c19d1205 22031 THUMB_SET_FUNC (sym, 1);
b99bd4ef 22032
c19d1205 22033 label_is_thumb_function_name = FALSE;
b99bd4ef 22034 }
07a53e5c 22035
07a53e5c 22036 dwarf2_emit_label (sym);
b99bd4ef
NC
22037}
22038
c921be7d 22039bfd_boolean
c19d1205 22040arm_data_in_code (void)
b99bd4ef 22041{
c19d1205 22042 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 22043 {
c19d1205
ZW
22044 *input_line_pointer = '/';
22045 input_line_pointer += 5;
22046 *input_line_pointer = 0;
c921be7d 22047 return TRUE;
b99bd4ef
NC
22048 }
22049
c921be7d 22050 return FALSE;
b99bd4ef
NC
22051}
22052
c19d1205
ZW
22053char *
22054arm_canonicalize_symbol_name (char * name)
b99bd4ef 22055{
c19d1205 22056 int len;
b99bd4ef 22057
c19d1205
ZW
22058 if (thumb_mode && (len = strlen (name)) > 5
22059 && streq (name + len - 5, "/data"))
22060 *(name + len - 5) = 0;
b99bd4ef 22061
c19d1205 22062 return name;
b99bd4ef 22063}
c19d1205
ZW
22064\f
22065/* Table of all register names defined by default. The user can
22066 define additional names with .req. Note that all register names
22067 should appear in both upper and lowercase variants. Some registers
22068 also have mixed-case names. */
b99bd4ef 22069
dcbf9037 22070#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 22071#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 22072#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
22073#define REGSET(p,t) \
22074 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22075 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22076 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22077 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
22078#define REGSETH(p,t) \
22079 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22080 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22081 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22082 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22083#define REGSET2(p,t) \
22084 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22085 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22086 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22087 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
22088#define SPLRBANK(base,bank,t) \
22089 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22090 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22091 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22092 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22093 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22094 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 22095
c19d1205 22096static const struct reg_entry reg_names[] =
7ed4c4c5 22097{
c19d1205
ZW
22098 /* ARM integer registers. */
22099 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 22100
c19d1205
ZW
22101 /* ATPCS synonyms. */
22102 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22103 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22104 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 22105
c19d1205
ZW
22106 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22107 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22108 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 22109
c19d1205
ZW
22110 /* Well-known aliases. */
22111 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22112 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22113
22114 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22115 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22116
1b883319
AV
22117 /* Defining the new Zero register from ARMv8.1-M. */
22118 REGDEF(zr,15,ZR),
22119 REGDEF(ZR,15,ZR),
22120
c19d1205
ZW
22121 /* Coprocessor numbers. */
22122 REGSET(p, CP), REGSET(P, CP),
22123
22124 /* Coprocessor register numbers. The "cr" variants are for backward
22125 compatibility. */
22126 REGSET(c, CN), REGSET(C, CN),
22127 REGSET(cr, CN), REGSET(CR, CN),
22128
90ec0d68
MGD
22129 /* ARM banked registers. */
22130 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22131 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22132 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22133 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22134 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22135 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22136 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22137
22138 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22139 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22140 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22141 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22142 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 22143 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
22144 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22145 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22146
22147 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22148 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22149 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22150 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22151 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22152 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22153 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 22154 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
22155 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22156
c19d1205
ZW
22157 /* FPA registers. */
22158 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22159 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22160
22161 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22162 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22163
22164 /* VFP SP registers. */
5287ad62
JB
22165 REGSET(s,VFS), REGSET(S,VFS),
22166 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
22167
22168 /* VFP DP Registers. */
5287ad62
JB
22169 REGSET(d,VFD), REGSET(D,VFD),
22170 /* Extra Neon DP registers. */
22171 REGSETH(d,VFD), REGSETH(D,VFD),
22172
22173 /* Neon QP registers. */
22174 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
22175
22176 /* VFP control registers. */
22177 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22178 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
22179 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22180 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22181 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22182 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 22183 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
22184
22185 /* Maverick DSP coprocessor registers. */
22186 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22187 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22188
22189 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22190 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22191 REGDEF(dspsc,0,DSPSC),
22192
22193 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22194 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22195 REGDEF(DSPSC,0,DSPSC),
22196
22197 /* iWMMXt data registers - p0, c0-15. */
22198 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22199
22200 /* iWMMXt control registers - p1, c0-3. */
22201 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22202 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22203 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22204 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22205
22206 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22207 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22208 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22209 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22210 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22211
22212 /* XScale accumulator registers. */
22213 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22214};
22215#undef REGDEF
22216#undef REGNUM
22217#undef REGSET
7ed4c4c5 22218
c19d1205
ZW
22219/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22220 within psr_required_here. */
22221static const struct asm_psr psrs[] =
22222{
22223 /* Backward compatibility notation. Note that "all" is no longer
22224 truly all possible PSR bits. */
22225 {"all", PSR_c | PSR_f},
22226 {"flg", PSR_f},
22227 {"ctl", PSR_c},
22228
22229 /* Individual flags. */
22230 {"f", PSR_f},
22231 {"c", PSR_c},
22232 {"x", PSR_x},
22233 {"s", PSR_s},
59b42a0d 22234
c19d1205
ZW
22235 /* Combinations of flags. */
22236 {"fs", PSR_f | PSR_s},
22237 {"fx", PSR_f | PSR_x},
22238 {"fc", PSR_f | PSR_c},
22239 {"sf", PSR_s | PSR_f},
22240 {"sx", PSR_s | PSR_x},
22241 {"sc", PSR_s | PSR_c},
22242 {"xf", PSR_x | PSR_f},
22243 {"xs", PSR_x | PSR_s},
22244 {"xc", PSR_x | PSR_c},
22245 {"cf", PSR_c | PSR_f},
22246 {"cs", PSR_c | PSR_s},
22247 {"cx", PSR_c | PSR_x},
22248 {"fsx", PSR_f | PSR_s | PSR_x},
22249 {"fsc", PSR_f | PSR_s | PSR_c},
22250 {"fxs", PSR_f | PSR_x | PSR_s},
22251 {"fxc", PSR_f | PSR_x | PSR_c},
22252 {"fcs", PSR_f | PSR_c | PSR_s},
22253 {"fcx", PSR_f | PSR_c | PSR_x},
22254 {"sfx", PSR_s | PSR_f | PSR_x},
22255 {"sfc", PSR_s | PSR_f | PSR_c},
22256 {"sxf", PSR_s | PSR_x | PSR_f},
22257 {"sxc", PSR_s | PSR_x | PSR_c},
22258 {"scf", PSR_s | PSR_c | PSR_f},
22259 {"scx", PSR_s | PSR_c | PSR_x},
22260 {"xfs", PSR_x | PSR_f | PSR_s},
22261 {"xfc", PSR_x | PSR_f | PSR_c},
22262 {"xsf", PSR_x | PSR_s | PSR_f},
22263 {"xsc", PSR_x | PSR_s | PSR_c},
22264 {"xcf", PSR_x | PSR_c | PSR_f},
22265 {"xcs", PSR_x | PSR_c | PSR_s},
22266 {"cfs", PSR_c | PSR_f | PSR_s},
22267 {"cfx", PSR_c | PSR_f | PSR_x},
22268 {"csf", PSR_c | PSR_s | PSR_f},
22269 {"csx", PSR_c | PSR_s | PSR_x},
22270 {"cxf", PSR_c | PSR_x | PSR_f},
22271 {"cxs", PSR_c | PSR_x | PSR_s},
22272 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22273 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22274 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22275 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22276 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22277 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22278 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22279 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22280 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22281 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22282 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22283 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22284 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22285 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22286 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22287 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22288 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22289 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22290 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22291 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22292 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22293 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22294 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22295 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22296};
22297
62b3e311
PB
22298/* Table of V7M psr names. */
22299static const struct asm_psr v7m_psrs[] =
22300{
1a336194
TP
22301 {"apsr", 0x0 }, {"APSR", 0x0 },
22302 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22303 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22304 {"psr", 0x3 }, {"PSR", 0x3 },
22305 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22306 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22307 {"epsr", 0x6 }, {"EPSR", 0x6 },
22308 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22309 {"msp", 0x8 }, {"MSP", 0x8 },
22310 {"psp", 0x9 }, {"PSP", 0x9 },
22311 {"msplim", 0xa }, {"MSPLIM", 0xa },
22312 {"psplim", 0xb }, {"PSPLIM", 0xb },
22313 {"primask", 0x10}, {"PRIMASK", 0x10},
22314 {"basepri", 0x11}, {"BASEPRI", 0x11},
22315 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
22316 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22317 {"control", 0x14}, {"CONTROL", 0x14},
22318 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22319 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22320 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22321 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22322 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22323 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22324 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22325 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22326 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
22327};
22328
c19d1205
ZW
22329/* Table of all shift-in-operand names. */
22330static const struct asm_shift_name shift_names [] =
b99bd4ef 22331{
c19d1205
ZW
22332 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22333 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22334 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22335 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22336 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
22337 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22338 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 22339};
b99bd4ef 22340
c19d1205
ZW
22341/* Table of all explicit relocation names. */
22342#ifdef OBJ_ELF
22343static struct reloc_entry reloc_names[] =
22344{
22345 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22346 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22347 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22348 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22349 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22350 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22351 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22352 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22353 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22354 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22355 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22356 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22357 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22358 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22359 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22360 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22361 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22362 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22363 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22364 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22365 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22366 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22367 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22368 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22369 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22370 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22371 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22372};
22373#endif
b99bd4ef 22374
5ee91343 22375/* Table of all conditional affixes. */
c19d1205
ZW
22376static const struct asm_cond conds[] =
22377{
22378 {"eq", 0x0},
22379 {"ne", 0x1},
22380 {"cs", 0x2}, {"hs", 0x2},
22381 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22382 {"mi", 0x4},
22383 {"pl", 0x5},
22384 {"vs", 0x6},
22385 {"vc", 0x7},
22386 {"hi", 0x8},
22387 {"ls", 0x9},
22388 {"ge", 0xa},
22389 {"lt", 0xb},
22390 {"gt", 0xc},
22391 {"le", 0xd},
22392 {"al", 0xe}
22393};
5ee91343
AV
22394static const struct asm_cond vconds[] =
22395{
22396 {"t", 0xf},
22397 {"e", 0x10}
22398};
bfae80f2 22399
e797f7e0 22400#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22401 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22402 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22403
62b3e311
PB
22404static struct asm_barrier_opt barrier_opt_names[] =
22405{
e797f7e0
MGD
22406 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22407 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22408 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22409 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22410 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22411 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22412 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22413 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22414 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22415 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22416 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22417 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22418 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22419 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22420 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22421 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22422};
22423
e797f7e0
MGD
22424#undef UL_BARRIER
22425
c19d1205
ZW
22426/* Table of ARM-format instructions. */
22427
22428/* Macros for gluing together operand strings. N.B. In all cases
22429 other than OPS0, the trailing OP_stop comes from default
22430 zero-initialization of the unspecified elements of the array. */
22431#define OPS0() { OP_stop, }
22432#define OPS1(a) { OP_##a, }
22433#define OPS2(a,b) { OP_##a,OP_##b, }
22434#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22435#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22436#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22437#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22438
5be8be5d
DG
22439/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22440 This is useful when mixing operands for ARM and THUMB, i.e. using the
22441 MIX_ARM_THUMB_OPERANDS macro.
22442 In order to use these macros, prefix the number of operands with _
22443 e.g. _3. */
22444#define OPS_1(a) { a, }
22445#define OPS_2(a,b) { a,b, }
22446#define OPS_3(a,b,c) { a,b,c, }
22447#define OPS_4(a,b,c,d) { a,b,c,d, }
22448#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22449#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22450
c19d1205
ZW
22451/* These macros abstract out the exact format of the mnemonic table and
22452 save some repeated characters. */
22453
22454/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22455#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22456 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22457 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22458
22459/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22460 a T_MNEM_xyz enumerator. */
22461#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22462 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22463#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22464 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22465
22466/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22467 infix after the third character. */
22468#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22469 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22470 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22471#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22472 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 22473 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22474#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22475 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 22476#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22477 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22478#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22479 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 22480#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22481 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 22482
c19d1205 22483/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
22484 field is still 0xE. Many of the Thumb variants can be executed
22485 conditionally, so this is checked separately. */
c19d1205 22486#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22487 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22488 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22489
dd5181d5
KT
22490/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22491 Used by mnemonics that have very minimal differences in the encoding for
22492 ARM and Thumb variants and can be handled in a common function. */
22493#define TUEc(mnem, op, top, nops, ops, en) \
22494 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22495 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 22496
c19d1205
ZW
22497/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22498 condition code field. */
22499#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22500 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22501 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22502
22503/* ARM-only variants of all the above. */
6a86118a 22504#define CE(mnem, op, nops, ops, ae) \
5ee91343 22505 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22506
22507#define C3(mnem, op, nops, ops, ae) \
5ee91343 22508 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22509
cf3cf39d
TP
22510/* Thumb-only variants of TCE and TUE. */
22511#define ToC(mnem, top, nops, ops, te) \
22512 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22513 do_##te, 0 }
cf3cf39d
TP
22514
22515#define ToU(mnem, top, nops, ops, te) \
22516 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22517 NULL, do_##te, 0 }
cf3cf39d 22518
4389b29a
AV
22519/* T_MNEM_xyz enumerator variants of ToC. */
22520#define toC(mnem, top, nops, ops, te) \
22521 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22522 do_##te, 0 }
4389b29a 22523
f6b2b12d
AV
22524/* T_MNEM_xyz enumerator variants of ToU. */
22525#define toU(mnem, top, nops, ops, te) \
22526 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22527 NULL, do_##te, 0 }
f6b2b12d 22528
e3cb604e
PB
22529/* Legacy mnemonics that always have conditional infix after the third
22530 character. */
22531#define CL(mnem, op, nops, ops, ae) \
21d799b5 22532 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22533 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22534
8f06b2d8
PB
22535/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22536#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22537 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22538
57785aa2
AV
22539/* mov instructions that are shared between coprocessor and MVE. */
22540#define mcCE(mnem, op, nops, ops, ae) \
22541 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22542
e3cb604e
PB
22543/* Legacy coprocessor instructions where conditional infix and conditional
22544 suffix are ambiguous. For consistency this includes all FPA instructions,
22545 not just the potentially ambiguous ones. */
22546#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22547 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22548 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22549
22550/* Coprocessor, takes either a suffix or a position-3 infix
22551 (for an FPA corner case). */
22552#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22553 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22554 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22555
6a86118a 22556#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22557 { m1 #m2 m3, OPS##nops ops, \
22558 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22559 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22560
22561#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22562 xCM_ (m1, , m2, op, nops, ops, ae), \
22563 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22564 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22565 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22566 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22567 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22568 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22569 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22570 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22571 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22572 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22573 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22574 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22575 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22576 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22577 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22578 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22579 xCM_ (m1, le, m2, op, nops, ops, ae), \
22580 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22581
22582#define UE(mnem, op, nops, ops, ae) \
5ee91343 22583 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22584
22585#define UF(mnem, op, nops, ops, ae) \
5ee91343 22586 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22587
5287ad62
JB
22588/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22589 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22590 use the same encoding function for each. */
22591#define NUF(mnem, op, nops, ops, enc) \
22592 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22593 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22594
22595/* Neon data processing, version which indirects through neon_enc_tab for
22596 the various overloaded versions of opcodes. */
22597#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22598 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22599 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22600
22601/* Neon insn with conditional suffix for the ARM version, non-overloaded
22602 version. */
5ee91343 22603#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22604 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22605 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22606
037e8744 22607#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22608 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22609
22610#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22611 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22612
5287ad62 22613/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22614#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22615 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22616 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22617
037e8744 22618#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22619 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22620
22621#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22622 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22623
22624/* */
22625#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22626 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22627 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22628
22629
22630/* nCEF but for MVE predicated instructions. */
22631#define mnCEF(mnem, op, nops, ops, enc) \
22632 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22633
22634/* nCE but for MVE predicated instructions. */
22635#define mnCE(mnem, op, nops, ops, enc) \
22636 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22637
5ee91343
AV
22638/* NUF but for potentially MVE predicated instructions. */
22639#define MNUF(mnem, op, nops, ops, enc) \
22640 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22641 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22642
22643/* nUF but for potentially MVE predicated instructions. */
22644#define mnUF(mnem, op, nops, ops, enc) \
22645 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22646 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22647
22648/* ToC but for potentially MVE predicated instructions. */
22649#define mToC(mnem, top, nops, ops, te) \
22650 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22651 do_##te, 1 }
22652
22653/* NCE but for MVE predicated instructions. */
22654#define MNCE(mnem, op, nops, ops, enc) \
22655 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22656
22657/* NCEF but for MVE predicated instructions. */
22658#define MNCEF(mnem, op, nops, ops, enc) \
22659 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22660#define do_0 0
22661
c19d1205 22662static const struct asm_opcode insns[] =
bfae80f2 22663{
74db7efb
NC
22664#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22665#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22666 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22667 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22668 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22669 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22670 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22671 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22672 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22673 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22674 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22675 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22676 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22677 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22678 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22679 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22680 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22681 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22682
22683 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22684 for setting PSR flag bits. They are obsolete in V6 and do not
22685 have Thumb equivalents. */
21d799b5
NC
22686 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22687 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22688 CL("tstp", 110f000, 2, (RR, SH), cmp),
22689 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22690 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22691 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22692 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22693 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22694 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22695
22696 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 22697 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
22698 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22699 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22700
22701 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
22702 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22703 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22704 OP_RRnpc),
22705 OP_ADDRGLDR),ldst, t_ldst),
22706 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
22707
22708 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22709 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22710 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22711 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22712 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22713 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22714
21d799b5
NC
22715 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22716 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 22717
c19d1205 22718 /* Pseudo ops. */
21d799b5 22719 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 22720 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 22721 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 22722 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
22723
22724 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22725 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22726 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22727 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22728 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22729 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22730 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22731 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22732 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22733 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22734 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22735 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22736 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22737
16a4cf17 22738 /* These may simplify to neg. */
21d799b5
NC
22739 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22740 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22741
173205ca
TP
22742#undef THUMB_VARIANT
22743#define THUMB_VARIANT & arm_ext_os
22744
22745 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22746 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22747
c921be7d
NC
22748#undef THUMB_VARIANT
22749#define THUMB_VARIANT & arm_ext_v6
22750
21d799b5 22751 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
22752
22753 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
22754#undef THUMB_VARIANT
22755#define THUMB_VARIANT & arm_ext_v6t2
22756
21d799b5
NC
22757 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22758 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22759 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 22760
5be8be5d
DG
22761 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22762 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22763 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22764 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 22765
21d799b5
NC
22766 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22767 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 22768
21d799b5
NC
22769 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22770 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
22771
22772 /* V1 instructions with no Thumb analogue at all. */
21d799b5 22773 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
22774 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22775
22776 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22777 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22778 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22779 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22780 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22781 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22782 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22783 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22784
c921be7d
NC
22785#undef ARM_VARIANT
22786#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22787#undef THUMB_VARIANT
22788#define THUMB_VARIANT & arm_ext_v4t
22789
21d799b5
NC
22790 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22791 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 22792
c921be7d
NC
22793#undef THUMB_VARIANT
22794#define THUMB_VARIANT & arm_ext_v6t2
22795
21d799b5 22796 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
22797 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22798
22799 /* Generic coprocessor instructions. */
21d799b5
NC
22800 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22801 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22802 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22803 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22804 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22805 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 22806 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22807
c921be7d
NC
22808#undef ARM_VARIANT
22809#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22810
21d799b5 22811 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
22812 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22813
c921be7d
NC
22814#undef ARM_VARIANT
22815#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22816#undef THUMB_VARIANT
22817#define THUMB_VARIANT & arm_ext_msr
22818
d2cd1205
JB
22819 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22820 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 22821
c921be7d
NC
22822#undef ARM_VARIANT
22823#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22824#undef THUMB_VARIANT
22825#define THUMB_VARIANT & arm_ext_v6t2
22826
21d799b5
NC
22827 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22828 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22829 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22830 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22831 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22832 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22833 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22834 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 22835
c921be7d
NC
22836#undef ARM_VARIANT
22837#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22838#undef THUMB_VARIANT
22839#define THUMB_VARIANT & arm_ext_v4t
22840
5be8be5d
DG
22841 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22842 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22843 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22844 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
22845 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22846 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 22847
c921be7d
NC
22848#undef ARM_VARIANT
22849#define ARM_VARIANT & arm_ext_v4t_5
22850
c19d1205
ZW
22851 /* ARM Architecture 4T. */
22852 /* Note: bx (and blx) are required on V5, even if the processor does
22853 not support Thumb. */
21d799b5 22854 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 22855
c921be7d
NC
22856#undef ARM_VARIANT
22857#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22858#undef THUMB_VARIANT
22859#define THUMB_VARIANT & arm_ext_v5t
22860
c19d1205
ZW
22861 /* Note: blx has 2 variants; the .value coded here is for
22862 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
22863 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22864 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 22865
c921be7d
NC
22866#undef THUMB_VARIANT
22867#define THUMB_VARIANT & arm_ext_v6t2
22868
21d799b5
NC
22869 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22870 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22871 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22872 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22873 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22874 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22875 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22876 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22877
c921be7d 22878#undef ARM_VARIANT
74db7efb
NC
22879#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22880#undef THUMB_VARIANT
22881#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 22882
21d799b5
NC
22883 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22884 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22885 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22886 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22887
21d799b5
NC
22888 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22889 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22890
21d799b5
NC
22891 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22892 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22893 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22894 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 22895
21d799b5
NC
22896 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22897 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22898 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22899 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22900
21d799b5
NC
22901 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22902 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22903
03ee1b7f
NC
22904 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22905 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22906 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22907 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 22908
c921be7d 22909#undef ARM_VARIANT
74db7efb
NC
22910#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22911#undef THUMB_VARIANT
22912#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22913
21d799b5 22914 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
22915 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22916 ldrd, t_ldstd),
22917 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22918 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 22919
21d799b5
NC
22920 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22921 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 22922
c921be7d
NC
22923#undef ARM_VARIANT
22924#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22925
21d799b5 22926 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 22927
c921be7d
NC
22928#undef ARM_VARIANT
22929#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22930#undef THUMB_VARIANT
22931#define THUMB_VARIANT & arm_ext_v6
22932
21d799b5
NC
22933 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22934 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22935 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22936 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22937 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22938 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22939 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22940 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22941 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22942 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 22943
c921be7d 22944#undef THUMB_VARIANT
ff8646ee 22945#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 22946
5be8be5d
DG
22947 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22948 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22949 strex, t_strex),
ff8646ee
TP
22950#undef THUMB_VARIANT
22951#define THUMB_VARIANT & arm_ext_v6t2
22952
21d799b5
NC
22953 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22954 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 22955
21d799b5
NC
22956 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22957 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 22958
9e3c6df6 22959/* ARM V6 not included in V7M. */
c921be7d
NC
22960#undef THUMB_VARIANT
22961#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 22962 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 22963 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
22964 UF(rfeib, 9900a00, 1, (RRw), rfe),
22965 UF(rfeda, 8100a00, 1, (RRw), rfe),
22966 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22967 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
22968 UF(rfefa, 8100a00, 1, (RRw), rfe),
22969 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22970 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 22971 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
22972 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22973 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 22974 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 22975 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 22976 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 22977 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 22978 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 22979 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 22980 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 22981
9e3c6df6
PB
22982/* ARM V6 not included in V7M (eg. integer SIMD). */
22983#undef THUMB_VARIANT
22984#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
22985 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22986 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22987 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22988 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22989 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22990 /* Old name for QASX. */
74db7efb 22991 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22992 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22993 /* Old name for QSAX. */
74db7efb 22994 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22995 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22996 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22997 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22998 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22999 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23000 /* Old name for SASX. */
74db7efb 23001 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23002 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23003 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23004 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23005 /* Old name for SHASX. */
21d799b5 23006 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23007 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23008 /* Old name for SHSAX. */
21d799b5
NC
23009 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23010 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23011 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23012 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23013 /* Old name for SSAX. */
74db7efb 23014 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23015 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23016 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23017 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23018 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23019 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23020 /* Old name for UASX. */
74db7efb 23021 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23022 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23023 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23024 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23025 /* Old name for UHASX. */
21d799b5
NC
23026 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23027 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23028 /* Old name for UHSAX. */
21d799b5
NC
23029 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23030 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23031 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23032 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23033 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23034 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23035 /* Old name for UQASX. */
21d799b5
NC
23036 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23037 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23038 /* Old name for UQSAX. */
21d799b5
NC
23039 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23040 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23041 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23042 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23043 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23044 /* Old name for USAX. */
74db7efb 23045 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23046 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23047 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23048 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23049 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23050 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23051 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23052 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23053 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23054 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23055 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23056 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23057 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23058 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23059 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23060 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23061 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23062 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23063 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23064 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23065 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23066 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23067 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23068 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23069 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23070 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23071 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23072 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23073 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
23074 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23075 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23076 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23077 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23078 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 23079
c921be7d 23080#undef ARM_VARIANT
55e8aae7 23081#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 23082#undef THUMB_VARIANT
55e8aae7 23083#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 23084
21d799b5
NC
23085 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23086 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23087 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23088 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 23089
c921be7d
NC
23090#undef THUMB_VARIANT
23091#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
23092 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23093 ldrexd, t_ldrexd),
23094 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23095 RRnpcb), strexd, t_strexd),
ebdca51a 23096
c921be7d 23097#undef THUMB_VARIANT
ff8646ee 23098#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
23099 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23100 rd_rn, rd_rn),
23101 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23102 rd_rn, rd_rn),
23103 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23104 strex, t_strexbh),
5be8be5d 23105 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23106 strex, t_strexbh),
21d799b5 23107 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 23108
c921be7d 23109#undef ARM_VARIANT
f4c65163 23110#define ARM_VARIANT & arm_ext_sec
74db7efb 23111#undef THUMB_VARIANT
f4c65163 23112#define THUMB_VARIANT & arm_ext_sec
c921be7d 23113
21d799b5 23114 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 23115
90ec0d68
MGD
23116#undef ARM_VARIANT
23117#define ARM_VARIANT & arm_ext_virt
23118#undef THUMB_VARIANT
23119#define THUMB_VARIANT & arm_ext_virt
23120
23121 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23122 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23123
ddfded2f
MW
23124#undef ARM_VARIANT
23125#define ARM_VARIANT & arm_ext_pan
23126#undef THUMB_VARIANT
23127#define THUMB_VARIANT & arm_ext_pan
23128
23129 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23130
c921be7d 23131#undef ARM_VARIANT
74db7efb 23132#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
23133#undef THUMB_VARIANT
23134#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23135
21d799b5
NC
23136 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23137 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23138 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23139 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 23140
21d799b5 23141 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 23142 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 23143
5be8be5d
DG
23144 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23145 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23146 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23147 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 23148
91d8b670
JG
23149#undef ARM_VARIANT
23150#define ARM_VARIANT & arm_ext_v3
23151#undef THUMB_VARIANT
23152#define THUMB_VARIANT & arm_ext_v6t2
23153
23154 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
23155 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23156 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
23157
23158#undef ARM_VARIANT
23159#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
23160#undef THUMB_VARIANT
23161#define THUMB_VARIANT & arm_ext_v6t2_v8m
23162 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23163 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23164
bf3eeda7 23165 /* Thumb-only instructions. */
74db7efb 23166#undef ARM_VARIANT
bf3eeda7
NS
23167#define ARM_VARIANT NULL
23168 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23169 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
23170
23171 /* ARM does not really have an IT instruction, so always allow it.
23172 The opcode is copied from Thumb in order to allow warnings in
23173 -mimplicit-it=[never | arm] modes. */
23174#undef ARM_VARIANT
23175#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
23176#undef THUMB_VARIANT
23177#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23178
21d799b5
NC
23179 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23180 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23181 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23182 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23183 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23184 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23185 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23186 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23187 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23188 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23189 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23190 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23191 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23192 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23193 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 23194 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
23195 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23196 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 23197
92e90b6e 23198 /* Thumb2 only instructions. */
c921be7d
NC
23199#undef ARM_VARIANT
23200#define ARM_VARIANT NULL
92e90b6e 23201
21d799b5
NC
23202 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23203 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23204 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23205 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23206 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23207 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 23208
eea54501
MGD
23209 /* Hardware division instructions. */
23210#undef ARM_VARIANT
23211#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
23212#undef THUMB_VARIANT
23213#define THUMB_VARIANT & arm_ext_div
23214
eea54501
MGD
23215 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23216 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 23217
7e806470 23218 /* ARM V6M/V7 instructions. */
c921be7d
NC
23219#undef ARM_VARIANT
23220#define ARM_VARIANT & arm_ext_barrier
23221#undef THUMB_VARIANT
23222#define THUMB_VARIANT & arm_ext_barrier
23223
ccb84d65
JB
23224 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23225 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23226 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 23227
62b3e311 23228 /* ARM V7 instructions. */
c921be7d
NC
23229#undef ARM_VARIANT
23230#define ARM_VARIANT & arm_ext_v7
23231#undef THUMB_VARIANT
23232#define THUMB_VARIANT & arm_ext_v7
23233
21d799b5
NC
23234 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23235 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 23236
74db7efb 23237#undef ARM_VARIANT
60e5ef9f 23238#define ARM_VARIANT & arm_ext_mp
74db7efb 23239#undef THUMB_VARIANT
60e5ef9f
MGD
23240#define THUMB_VARIANT & arm_ext_mp
23241
23242 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23243
53c4b28b
MGD
23244 /* AArchv8 instructions. */
23245#undef ARM_VARIANT
23246#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
23247
23248/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 23249#undef THUMB_VARIANT
4ed7ed8d 23250#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 23251
4ed7ed8d
TP
23252 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23253 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23254 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23255 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23256 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23257 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 23258 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
23259 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23260 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23261 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23262 stlex, t_stlex),
4b8c8c02
RE
23263 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23264 stlex, t_stlex),
23265 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23266 stlex, t_stlex),
4ed7ed8d
TP
23267#undef THUMB_VARIANT
23268#define THUMB_VARIANT & arm_ext_v8
53c4b28b 23269
4ed7ed8d 23270 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
23271 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23272 ldrexd, t_ldrexd),
23273 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23274 strexd, t_strexd),
f7dd2fb2
TC
23275
23276/* Defined in V8 but is in undefined encoding space for earlier
23277 architectures. However earlier architectures are required to treat
23278 this instuction as a semihosting trap as well. Hence while not explicitly
23279 defined as such, it is in fact correct to define the instruction for all
23280 architectures. */
23281#undef THUMB_VARIANT
23282#define THUMB_VARIANT & arm_ext_v1
23283#undef ARM_VARIANT
23284#define ARM_VARIANT & arm_ext_v1
23285 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23286
8884b720 23287 /* ARMv8 T32 only. */
74db7efb 23288#undef ARM_VARIANT
b79f7053
MGD
23289#define ARM_VARIANT NULL
23290 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23291 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23292 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23293
33399f07
MGD
23294 /* FP for ARMv8. */
23295#undef ARM_VARIANT
a715796b 23296#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 23297#undef THUMB_VARIANT
a715796b 23298#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
23299
23300 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23301 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23302 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23303 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752
MGD
23304 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23305 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23306 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23307 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23308 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23309 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23310 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 23311
91ff7894
MGD
23312 /* Crypto v1 extensions. */
23313#undef ARM_VARIANT
23314#define ARM_VARIANT & fpu_crypto_ext_armv8
23315#undef THUMB_VARIANT
23316#define THUMB_VARIANT & fpu_crypto_ext_armv8
23317
23318 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23319 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23320 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23321 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
23322 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23323 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23324 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23325 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23326 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23327 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23328 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
23329 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23330 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23331 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 23332
dd5181d5 23333#undef ARM_VARIANT
74db7efb 23334#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
23335#undef THUMB_VARIANT
23336#define THUMB_VARIANT & crc_ext_armv8
23337 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23338 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23339 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23340 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23341 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23342 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23343
105bde57
MW
23344 /* ARMv8.2 RAS extension. */
23345#undef ARM_VARIANT
4d1464f2 23346#define ARM_VARIANT & arm_ext_ras
105bde57 23347#undef THUMB_VARIANT
4d1464f2 23348#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23349 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23350
49e8a725
SN
23351#undef ARM_VARIANT
23352#define ARM_VARIANT & arm_ext_v8_3
23353#undef THUMB_VARIANT
23354#define THUMB_VARIANT & arm_ext_v8_3
23355 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23356
c604a79a
JW
23357#undef ARM_VARIANT
23358#define ARM_VARIANT & fpu_neon_ext_dotprod
23359#undef THUMB_VARIANT
23360#define THUMB_VARIANT & fpu_neon_ext_dotprod
23361 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23362 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23363
c921be7d
NC
23364#undef ARM_VARIANT
23365#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23366#undef THUMB_VARIANT
23367#define THUMB_VARIANT NULL
c921be7d 23368
21d799b5
NC
23369 cCE("wfs", e200110, 1, (RR), rd),
23370 cCE("rfs", e300110, 1, (RR), rd),
23371 cCE("wfc", e400110, 1, (RR), rd),
23372 cCE("rfc", e500110, 1, (RR), rd),
23373
23374 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23375 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23376 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23377 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23378
23379 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23380 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23381 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23382 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23383
23384 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23385 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23386 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23387 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23388 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23389 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23390 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23391 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23392 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23393 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23394 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23395 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23396
23397 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23398 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23399 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23400 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23401 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23402 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23403 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23404 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23405 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23406 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23407 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23408 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23409
23410 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23411 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23412 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23413 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23414 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23415 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23416 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23417 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23418 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23419 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23420 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23421 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23422
23423 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23424 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23425 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23426 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23427 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23428 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23429 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23430 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23431 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23432 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23433 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23434 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23435
23436 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23437 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23438 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23439 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23440 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23441 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23442 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23443 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23444 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23445 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23446 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23447 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23448
23449 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23450 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23451 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23452 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23453 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23454 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23455 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23456 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23457 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23458 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23459 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23460 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23461
23462 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23463 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23464 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23465 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23466 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23467 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23468 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23469 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23470 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23471 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23472 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23473 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23474
23475 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23476 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23477 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23478 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23479 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23480 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23481 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23482 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23483 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23484 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23485 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23486 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23487
23488 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23489 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23490 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23491 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23492 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23493 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23494 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23495 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23496 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23497 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23498 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23499 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23500
23501 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23502 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23503 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23504 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23505 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23506 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23507 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23508 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23509 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23510 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23511 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23512 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23513
23514 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23515 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23516 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23517 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23518 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23519 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23520 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23521 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23522 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23523 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23524 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23525 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23526
23527 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23528 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23529 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23530 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23531 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23532 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23533 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23534 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23535 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23536 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23537 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23538 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23539
23540 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23541 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23542 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23543 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23544 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23545 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23546 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23547 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23548 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23549 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23550 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23551 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23552
23553 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23554 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23555 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23556 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23557 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23558 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23559 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23560 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23561 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23562 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23563 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23564 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23565
23566 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23567 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23568 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23569 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23570 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23571 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23572 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23573 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23574 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23575 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23576 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23577 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23578
23579 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23580 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23581 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23582 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23583 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23584 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23585 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23586 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23587 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23588 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23589 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23590 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23591
23592 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23593 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23594 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23595 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23596 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23597 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23598 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23599 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23600 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23601 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23602 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23603 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23604
23605 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23606 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23607 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23608 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23609 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23610 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23611 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23612 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23613 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23614 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23615 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23616 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23617
23618 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23619 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23620 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23621 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23622 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23623 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23624 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23625 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23626 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23627 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23628 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23629 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23630
23631 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23632 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23633 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23634 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23635 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23636 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23637 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23638 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23639 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23640 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23641 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23642 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23643
23644 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23645 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23646 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23647 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23648 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23649 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23650 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23651 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23652 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23653 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23654 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23655 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23656
23657 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23658 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23659 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23660 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23661 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23662 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23663 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23664 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23665 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23666 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23667 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23668 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23669
23670 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23671 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23672 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23673 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23674 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23675 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23676 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23677 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23678 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23679 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23680 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23681 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23682
23683 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23684 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23685 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23686 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23687 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23688 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23689 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23690 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23691 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23692 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23693 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23694 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23695
23696 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23697 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23698 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23699 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23700 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23701 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23702 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23703 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23704 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23705 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23706 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23707 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23708
23709 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23710 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23711 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23712 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23713 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23714 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23715 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23716 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23717 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23718 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23719 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23720 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23721
23722 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23723 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23724 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23725 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23726 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23727 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23728 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23729 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23730 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23731 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23732 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23733 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23734
23735 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23736 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23737 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23738 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23739 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23740 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23741 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23742 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23743 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23744 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23745 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23746 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23747
23748 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23749 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23750 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23751 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23752 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23753 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23754 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23755 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23756 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23757 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23758 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23759 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23760
23761 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23762 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23763 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23764 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23765
23766 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23767 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23768 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23769 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23770 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23771 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23772 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23773 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23774 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23775 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23776 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23777 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 23778
c19d1205
ZW
23779 /* The implementation of the FIX instruction is broken on some
23780 assemblers, in that it accepts a precision specifier as well as a
23781 rounding specifier, despite the fact that this is meaningless.
23782 To be more compatible, we accept it as well, though of course it
23783 does not set any bits. */
21d799b5
NC
23784 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23785 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23786 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23787 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23788 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23789 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23790 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23791 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23792 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23793 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23794 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23795 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23796 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 23797
c19d1205 23798 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
23799#undef ARM_VARIANT
23800#define ARM_VARIANT & fpu_fpa_ext_v2
23801
21d799b5
NC
23802 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23803 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23804 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23805 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23806 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23807 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 23808
c921be7d
NC
23809#undef ARM_VARIANT
23810#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23811
c19d1205 23812 /* Moves and type conversions. */
21d799b5 23813 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
23814 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23815 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
23816 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23817 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23818 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23819 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23820 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23821 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23822 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23823 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
23824
23825 /* Memory operations. */
21d799b5
NC
23826 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23827 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
23828 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23829 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23830 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23831 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23832 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23833 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23834 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23835 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23836 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23837 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23838 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23839 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23840 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23841 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23842 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23843 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 23844
c19d1205 23845 /* Monadic operations. */
21d799b5
NC
23846 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23847 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23848 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
23849
23850 /* Dyadic operations. */
21d799b5
NC
23851 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23852 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23853 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23854 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23855 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23856 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23857 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23858 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23859 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 23860
c19d1205 23861 /* Comparisons. */
21d799b5
NC
23862 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23863 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23864 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23865 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 23866
62f3b8c8
PB
23867 /* Double precision load/store are still present on single precision
23868 implementations. */
23869 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23870 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
23871 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23872 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23873 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23874 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23875 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23876 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23877 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23878 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 23879
c921be7d
NC
23880#undef ARM_VARIANT
23881#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23882
c19d1205 23883 /* Moves and type conversions. */
21d799b5
NC
23884 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23885 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23886 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23887 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23888 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23889 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23890 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23891 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23892 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23893 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23894 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23895 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 23896
c19d1205 23897 /* Monadic operations. */
21d799b5
NC
23898 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23899 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23900 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
23901
23902 /* Dyadic operations. */
21d799b5
NC
23903 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23904 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23905 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23906 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23907 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23908 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23909 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23910 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23911 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 23912
c19d1205 23913 /* Comparisons. */
21d799b5
NC
23914 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23915 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23916 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23917 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 23918
037e8744
JB
23919/* Instructions which may belong to either the Neon or VFP instruction sets.
23920 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
23921#undef ARM_VARIANT
23922#define ARM_VARIANT & fpu_vfp_ext_v1xd
23923#undef THUMB_VARIANT
23924#define THUMB_VARIANT & fpu_vfp_ext_v1xd
23925
037e8744
JB
23926 /* These mnemonics are unique to VFP. */
23927 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23928 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
23929 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23930 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23931 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
23932 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23933 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23934 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23935
23936 /* Mnemonics shared by Neon and VFP. */
21d799b5 23937 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 23938
55881a11
MGD
23939 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23940 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23941 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23942 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23943 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23944 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 23945
dd9634d9 23946 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 23947 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
23948 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23949 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 23950
037e8744
JB
23951
23952 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
23953 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23954
32c36c3c
AV
23955#undef THUMB_VARIANT
23956/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23957 by different feature bits. Since we are setting the Thumb guard, we can
23958 require Thumb-1 which makes it a nop guard and set the right feature bit in
23959 do_vldr_vstr (). */
23960#define THUMB_VARIANT & arm_ext_v4t
23961 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23962 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23963
9db2f6b4
RL
23964#undef ARM_VARIANT
23965#define ARM_VARIANT & arm_ext_fp16
23966#undef THUMB_VARIANT
23967#define THUMB_VARIANT & arm_ext_fp16
23968 /* New instructions added from v8.2, allowing the extraction and insertion of
23969 the upper 16 bits of a 32-bit vector register. */
23970 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23971 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23972
dec41383
JW
23973 /* New backported fma/fms instructions optional in v8.2. */
23974 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23975 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23976
c921be7d
NC
23977#undef THUMB_VARIANT
23978#define THUMB_VARIANT & fpu_neon_ext_v1
23979#undef ARM_VARIANT
23980#define ARM_VARIANT & fpu_neon_ext_v1
23981
5287ad62
JB
23982 /* Data processing with three registers of the same length. */
23983 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23984 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23985 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 23986 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 23987 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
23988 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23989 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 23990 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
5287ad62 23991 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
23992 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23993 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23994 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23995 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
23996 /* If not immediate, fall back to neon_dyadic_i64_su.
23997 shl_imm should accept I8 I16 I32 I64,
23998 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
23999 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24000 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24001 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24002 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 24003 /* Logic ops, types optional & ignored. */
4316f0d2 24004 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24005 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24006 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24007 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24008 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
24009 /* Bitfield ops, untyped. */
24010 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24011 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24012 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24013 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24014 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24015 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 24016 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 24017 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24018 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24019 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
24020 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24021 back to neon_dyadic_if_su. */
21d799b5
NC
24022 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24023 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24024 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24025 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24026 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24027 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24028 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24029 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 24030 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
24031 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24032 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 24033 /* As above, D registers only. */
21d799b5
NC
24034 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24035 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 24036 /* Int and float variants, signedness unimportant. */
21d799b5
NC
24037 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24038 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24039 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 24040 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
24041 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24042 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
24043 /* vtst takes sizes 8, 16, 32. */
24044 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24045 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24046 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 24047 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 24048 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
24049 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
24050 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24051 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
24052 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
24053 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24054 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24055 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24056 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
24057 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24058 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24059 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24060 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
24061 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24062 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24063 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24064 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 24065 /* ARM v8.1 extension. */
643afb90
MW
24066 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24067 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24068 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24069 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
24070
24071 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 24072 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
24073 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24074
24075 /* Data processing with two registers and a shift amount. */
24076 /* Right shifts, and variants with rounding.
24077 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24078 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24079 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24080 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24081 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24082 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24083 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24084 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24085 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24086 /* Shift and insert. Sizes accepted 8 16 32 64. */
24087 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24088 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24089 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24090 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24091 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24092 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24093 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24094 /* Right shift immediate, saturating & narrowing, with rounding variants.
24095 Types accepted S16 S32 S64 U16 U32 U64. */
24096 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24097 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24098 /* As above, unsigned. Types accepted S16 S32 S64. */
24099 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24100 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24101 /* Right shift narrowing. Types accepted I16 I32 I64. */
24102 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24103 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24104 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 24105 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 24106 /* CVT with optional immediate for fixed-point variant. */
21d799b5 24107 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 24108
4316f0d2 24109 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
24110
24111 /* Data processing, three registers of different lengths. */
24112 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24113 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
24114 /* If not scalar, fall back to neon_dyadic_long.
24115 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
24116 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24117 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
24118 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24119 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24120 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24121 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24122 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24123 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24124 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24125 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24126 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
24127 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24128 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24129 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
24130 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24131 S16 S32 U16 U32. */
21d799b5 24132 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
24133
24134 /* Extract. Size 8. */
3b8d421e
PB
24135 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24136 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
24137
24138 /* Two registers, miscellaneous. */
24139 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24140 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24141 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24142 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24143 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24144 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24145 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24146 /* Vector replicate. Sizes 8 16 32. */
21d799b5 24147 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
24148 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24149 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24150 /* VMOVN. Types I16 I32 I64. */
21d799b5 24151 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 24152 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 24153 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 24154 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 24155 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
24156 /* VZIP / VUZP. Sizes 8 16 32. */
24157 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24158 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24159 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24160 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24161 /* VQABS / VQNEG. Types S8 S16 S32. */
5287ad62 24162 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
5287ad62
JB
24163 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24164 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24165 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24166 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24167 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24168 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 24169 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
24170 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24171 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24172 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24173 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24174 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
24175 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24176 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
24177 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24178 /* VCNT. Size 8. */
24179 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24180 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24181 /* Two address, untyped. */
24182 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24183 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24184 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
24185 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24186 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
24187
24188 /* Table lookup. Size 8. */
24189 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24190 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24191
c921be7d
NC
24192#undef THUMB_VARIANT
24193#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24194#undef ARM_VARIANT
24195#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24196
5287ad62 24197 /* Neon element/structure load/store. */
21d799b5
NC
24198 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24199 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24200 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24201 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24202 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24203 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24204 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24205 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 24206
c921be7d 24207#undef THUMB_VARIANT
74db7efb
NC
24208#define THUMB_VARIANT & fpu_vfp_ext_v3xd
24209#undef ARM_VARIANT
24210#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
24211 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24212 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24213 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24214 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24215 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24216 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24217 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24218 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24219 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24220
74db7efb 24221#undef THUMB_VARIANT
c921be7d
NC
24222#define THUMB_VARIANT & fpu_vfp_ext_v3
24223#undef ARM_VARIANT
24224#define ARM_VARIANT & fpu_vfp_ext_v3
24225
21d799b5 24226 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 24227 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24228 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24229 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24230 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24231 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24232 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24233 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24234 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 24235
74db7efb
NC
24236#undef ARM_VARIANT
24237#define ARM_VARIANT & fpu_vfp_ext_fma
24238#undef THUMB_VARIANT
24239#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 24240 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
24241 VFP FMA variant; NEON and VFP FMA always includes the NEON
24242 FMA instructions. */
d58196e0
AV
24243 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24244 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24245
62f3b8c8
PB
24246 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24247 the v form should always be used. */
24248 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24249 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24250 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24251 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24252 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24253 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24254
5287ad62 24255#undef THUMB_VARIANT
c921be7d
NC
24256#undef ARM_VARIANT
24257#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24258
21d799b5
NC
24259 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24260 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24261 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24262 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24263 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24264 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24265 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24266 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 24267
c921be7d
NC
24268#undef ARM_VARIANT
24269#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24270
21d799b5
NC
24271 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24272 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24273 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24274 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24275 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24276 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24277 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24278 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24279 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
24280 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24281 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24282 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24283 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24284 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24285 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
24286 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24287 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24288 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24289 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24290 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24291 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24292 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24293 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24294 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24295 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24296 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
24297 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24298 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24299 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
24300 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24301 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24302 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24303 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24304 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24305 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24306 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24307 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24308 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24309 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24310 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24311 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24312 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24313 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24314 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24315 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24316 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24317 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
24318 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24319 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24320 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24321 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24322 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24323 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24324 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24325 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24326 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24327 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24328 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24329 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24330 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24331 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24332 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24333 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24334 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24335 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24336 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24337 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24338 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24339 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24340 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24341 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24342 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24343 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24344 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24345 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24346 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24347 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24348 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24349 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24350 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24351 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24352 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24353 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24354 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24355 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24356 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24357 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24358 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24359 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24360 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24361 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24362 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24363 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24364 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24365 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24366 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24367 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24368 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24369 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24370 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24371 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24372 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24373 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24374 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24375 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24376 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24377 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24378 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24379 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24380 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24381 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24382 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24383 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24384 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24385 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24386 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24387 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24388 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24389 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24390 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24391 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24392 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24393 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24394 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24395 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24396 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24397 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24398 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24399 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24400 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24401 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24402 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24403 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24404 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24405 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24406 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24407 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24408 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24409 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24410 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24411 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24412 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24413 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24414 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24415 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24416 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24417 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24418 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24419 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24420 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24421 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24422 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24423 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24424 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24425 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24426 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24427 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24428 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24429 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24430 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24431 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24432 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24433
c921be7d
NC
24434#undef ARM_VARIANT
24435#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24436
21d799b5
NC
24437 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24438 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24439 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24440 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24441 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24442 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24443 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24444 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24445 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24446 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24447 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24448 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24449 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24450 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24451 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24452 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24453 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24454 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24455 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24456 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24457 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24458 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24459 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24460 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24461 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24462 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24463 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24464 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24465 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24466 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24467 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24468 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24469 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24470 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24471 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24472 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24473 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24474 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24475 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24476 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24477 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24478 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24479 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24480 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24481 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24482 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24483 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24484 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24485 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24486 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24487 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24488 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24489 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24490 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24491 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24492 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24493 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24494
c921be7d
NC
24495#undef ARM_VARIANT
24496#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24497
21d799b5
NC
24498 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24499 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24500 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24501 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24502 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24503 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24504 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24505 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24506 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24507 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24508 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24509 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24510 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24511 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24512 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24513 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24514 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24515 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24516 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24517 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24518 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24519 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24520 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24521 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24522 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24523 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24524 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24525 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24526 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24527 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24528 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24529 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24530 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24531 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24532 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24533 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24534 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24535 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24536 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24537 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24538 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24539 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24540 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24541 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24542 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24543 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24544 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24545 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24546 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24547 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24548 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24549 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24550 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24551 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24552 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24553 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24554 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24555 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24556 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24557 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24558 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24559 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24560 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24561 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24562 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24563 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24564 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24565 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24566 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24567 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24568 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24569 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24570 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24571 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24572 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24573 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24574
7fadb25d
SD
24575 /* ARMv8.5-A instructions. */
24576#undef ARM_VARIANT
24577#define ARM_VARIANT & arm_ext_sb
24578#undef THUMB_VARIANT
24579#define THUMB_VARIANT & arm_ext_sb
24580 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24581
dad0c3bf
SD
24582#undef ARM_VARIANT
24583#define ARM_VARIANT & arm_ext_predres
24584#undef THUMB_VARIANT
24585#define THUMB_VARIANT & arm_ext_predres
24586 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24587 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24588 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24589
16a1fa25 24590 /* ARMv8-M instructions. */
4ed7ed8d
TP
24591#undef ARM_VARIANT
24592#define ARM_VARIANT NULL
24593#undef THUMB_VARIANT
24594#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24595 ToU("sg", e97fe97f, 0, (), noargs),
24596 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24597 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24598 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24599 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24600 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24601 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24602
24603 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24604 instructions behave as nop if no VFP is present. */
24605#undef THUMB_VARIANT
24606#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24607 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24608 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24609
24610 /* Armv8.1-M Mainline instructions. */
24611#undef THUMB_VARIANT
24612#define THUMB_VARIANT & arm_ext_v8_1m_main
24613 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24614 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24615 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24616 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24617 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24618
24619 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24620 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24621 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24622
efd6b359 24623 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24624 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24625
24626#undef THUMB_VARIANT
24627#define THUMB_VARIANT & mve_ext
1b883319
AV
24628
24629 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24630 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24631 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24632 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24633 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24634 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24635 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24636 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24637 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24638 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24639 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24640 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24641 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24642 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24643 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24644
5ee91343
AV
24645 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24646 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24647 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24648 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24649 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24650 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24651 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24652 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24653 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24654 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24655 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24656 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24657 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24658 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24659 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24660
a302e574 24661 /* MVE and MVE FP only. */
7df54120 24662 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
24663 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24664 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24665 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24666 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24667 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24668 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24669 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24670 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24671 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24672 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24673 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24674 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24675 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24676 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24677 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24678 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24679
35c228db
AV
24680 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24681 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24682 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24683 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24684 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24685 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24686 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24687 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24688 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24689 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24690 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24691 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24692 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24693 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24694 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24695 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24696 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24697 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24698 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24699 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24700
57785aa2
AV
24701 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24702 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24703 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
24704 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24705 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24706 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24707 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
24708 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24709 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24710 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24711 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
24712 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24713 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
24714 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24715 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24716 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24717 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 24718
93925576
AV
24719 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24720 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24721 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24722 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24723 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24724 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24725 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24726 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24727 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24728 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24729 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24730 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24731 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24732 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24733 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24734 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24735 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24736 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24737 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24738 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24739
2d78f95b
AV
24740 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24741 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24742 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
3063888e
AV
24743 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
24744 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
2d78f95b 24745
5d281bf0
AV
24746#undef THUMB_VARIANT
24747#define THUMB_VARIANT & mve_fp_ext
24748 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 24749 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
24750 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24751 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
24752 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24753 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24754 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24755 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 24756
5ee91343 24757#undef ARM_VARIANT
57785aa2 24758#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
24759#undef THUMB_VARIANT
24760#define THUMB_VARIANT & arm_ext_v6t2
a8465a06
AV
24761 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
24762 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
5ee91343 24763
57785aa2
AV
24764 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24765
24766#undef ARM_VARIANT
24767#define ARM_VARIANT & fpu_vfp_ext_v1xd
24768
24769 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24770 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24771 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24772 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24773
886e1c73
AV
24774 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24775 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24776 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 24777
485dee97
AV
24778 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24779 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24780
57785aa2
AV
24781 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24782 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24783
1b883319
AV
24784 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24785 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24786
57785aa2
AV
24787#undef ARM_VARIANT
24788#define ARM_VARIANT & fpu_vfp_ext_v2
24789
24790 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24791 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24792 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24793 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24794
dd9634d9
AV
24795#undef ARM_VARIANT
24796#define ARM_VARIANT & fpu_vfp_ext_armv8xd
24797 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24798 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24799 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24800 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
24801 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24802 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
24803
24804#undef ARM_VARIANT
5ee91343 24805#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 24806 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
24807 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24808 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24809 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
24810 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24811 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24812 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24813 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24814 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
24815 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24816 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 24817 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
24818 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24819 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24820 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
24821 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24822 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
a8465a06
AV
24823 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
24824 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
1a186d29
AV
24825 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
24826 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
24827 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
5d281bf0
AV
24828
24829#undef ARM_VARIANT
24830#define ARM_VARIANT & arm_ext_v8_3
24831#undef THUMB_VARIANT
24832#define THUMB_VARIANT & arm_ext_v6t2_v8m
24833 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24834 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
24835};
24836#undef ARM_VARIANT
24837#undef THUMB_VARIANT
24838#undef TCE
c19d1205
ZW
24839#undef TUE
24840#undef TUF
24841#undef TCC
8f06b2d8 24842#undef cCE
e3cb604e
PB
24843#undef cCL
24844#undef C3E
4389b29a 24845#undef C3
c19d1205
ZW
24846#undef CE
24847#undef CM
4389b29a 24848#undef CL
c19d1205
ZW
24849#undef UE
24850#undef UF
24851#undef UT
5287ad62
JB
24852#undef NUF
24853#undef nUF
24854#undef NCE
24855#undef nCE
c19d1205
ZW
24856#undef OPS0
24857#undef OPS1
24858#undef OPS2
24859#undef OPS3
24860#undef OPS4
24861#undef OPS5
24862#undef OPS6
24863#undef do_0
4389b29a
AV
24864#undef ToC
24865#undef toC
24866#undef ToU
f6b2b12d 24867#undef toU
c19d1205
ZW
24868\f
24869/* MD interface: bits in the object file. */
bfae80f2 24870
c19d1205
ZW
24871/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24872 for use in the a.out file, and stores them in the array pointed to by buf.
24873 This knows about the endian-ness of the target machine and does
24874 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24875 2 (short) and 4 (long) Floating numbers are put out as a series of
24876 LITTLENUMS (shorts, here at least). */
b99bd4ef 24877
c19d1205
ZW
24878void
24879md_number_to_chars (char * buf, valueT val, int n)
24880{
24881 if (target_big_endian)
24882 number_to_chars_bigendian (buf, val, n);
24883 else
24884 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
24885}
24886
c19d1205
ZW
24887static valueT
24888md_chars_to_number (char * buf, int n)
bfae80f2 24889{
c19d1205
ZW
24890 valueT result = 0;
24891 unsigned char * where = (unsigned char *) buf;
bfae80f2 24892
c19d1205 24893 if (target_big_endian)
b99bd4ef 24894 {
c19d1205
ZW
24895 while (n--)
24896 {
24897 result <<= 8;
24898 result |= (*where++ & 255);
24899 }
b99bd4ef 24900 }
c19d1205 24901 else
b99bd4ef 24902 {
c19d1205
ZW
24903 while (n--)
24904 {
24905 result <<= 8;
24906 result |= (where[n] & 255);
24907 }
bfae80f2 24908 }
b99bd4ef 24909
c19d1205 24910 return result;
bfae80f2 24911}
b99bd4ef 24912
c19d1205 24913/* MD interface: Sections. */
b99bd4ef 24914
fa94de6b
RM
24915/* Calculate the maximum variable size (i.e., excluding fr_fix)
24916 that an rs_machine_dependent frag may reach. */
24917
24918unsigned int
24919arm_frag_max_var (fragS *fragp)
24920{
24921 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24922 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24923
24924 Note that we generate relaxable instructions even for cases that don't
24925 really need it, like an immediate that's a trivial constant. So we're
24926 overestimating the instruction size for some of those cases. Rather
24927 than putting more intelligence here, it would probably be better to
24928 avoid generating a relaxation frag in the first place when it can be
24929 determined up front that a short instruction will suffice. */
24930
24931 gas_assert (fragp->fr_type == rs_machine_dependent);
24932 return INSN_SIZE;
24933}
24934
0110f2b8
PB
24935/* Estimate the size of a frag before relaxing. Assume everything fits in
24936 2 bytes. */
24937
c19d1205 24938int
0110f2b8 24939md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
24940 segT segtype ATTRIBUTE_UNUSED)
24941{
0110f2b8
PB
24942 fragp->fr_var = 2;
24943 return 2;
24944}
24945
24946/* Convert a machine dependent frag. */
24947
24948void
24949md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24950{
24951 unsigned long insn;
24952 unsigned long old_op;
24953 char *buf;
24954 expressionS exp;
24955 fixS *fixp;
24956 int reloc_type;
24957 int pc_rel;
24958 int opcode;
24959
24960 buf = fragp->fr_literal + fragp->fr_fix;
24961
24962 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
24963 if (fragp->fr_symbol)
24964 {
0110f2b8
PB
24965 exp.X_op = O_symbol;
24966 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
24967 }
24968 else
24969 {
0110f2b8 24970 exp.X_op = O_constant;
5f4273c7 24971 }
0110f2b8
PB
24972 exp.X_add_number = fragp->fr_offset;
24973 opcode = fragp->fr_subtype;
24974 switch (opcode)
24975 {
24976 case T_MNEM_ldr_pc:
24977 case T_MNEM_ldr_pc2:
24978 case T_MNEM_ldr_sp:
24979 case T_MNEM_str_sp:
24980 case T_MNEM_ldr:
24981 case T_MNEM_ldrb:
24982 case T_MNEM_ldrh:
24983 case T_MNEM_str:
24984 case T_MNEM_strb:
24985 case T_MNEM_strh:
24986 if (fragp->fr_var == 4)
24987 {
5f4273c7 24988 insn = THUMB_OP32 (opcode);
0110f2b8
PB
24989 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24990 {
24991 insn |= (old_op & 0x700) << 4;
24992 }
24993 else
24994 {
24995 insn |= (old_op & 7) << 12;
24996 insn |= (old_op & 0x38) << 13;
24997 }
24998 insn |= 0x00000c00;
24999 put_thumb32_insn (buf, insn);
25000 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25001 }
25002 else
25003 {
25004 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25005 }
25006 pc_rel = (opcode == T_MNEM_ldr_pc2);
25007 break;
25008 case T_MNEM_adr:
25009 if (fragp->fr_var == 4)
25010 {
25011 insn = THUMB_OP32 (opcode);
25012 insn |= (old_op & 0xf0) << 4;
25013 put_thumb32_insn (buf, insn);
25014 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25015 }
25016 else
25017 {
25018 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25019 exp.X_add_number -= 4;
25020 }
25021 pc_rel = 1;
25022 break;
25023 case T_MNEM_mov:
25024 case T_MNEM_movs:
25025 case T_MNEM_cmp:
25026 case T_MNEM_cmn:
25027 if (fragp->fr_var == 4)
25028 {
25029 int r0off = (opcode == T_MNEM_mov
25030 || opcode == T_MNEM_movs) ? 0 : 8;
25031 insn = THUMB_OP32 (opcode);
25032 insn = (insn & 0xe1ffffff) | 0x10000000;
25033 insn |= (old_op & 0x700) << r0off;
25034 put_thumb32_insn (buf, insn);
25035 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25036 }
25037 else
25038 {
25039 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25040 }
25041 pc_rel = 0;
25042 break;
25043 case T_MNEM_b:
25044 if (fragp->fr_var == 4)
25045 {
25046 insn = THUMB_OP32(opcode);
25047 put_thumb32_insn (buf, insn);
25048 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25049 }
25050 else
25051 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25052 pc_rel = 1;
25053 break;
25054 case T_MNEM_bcond:
25055 if (fragp->fr_var == 4)
25056 {
25057 insn = THUMB_OP32(opcode);
25058 insn |= (old_op & 0xf00) << 14;
25059 put_thumb32_insn (buf, insn);
25060 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25061 }
25062 else
25063 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25064 pc_rel = 1;
25065 break;
25066 case T_MNEM_add_sp:
25067 case T_MNEM_add_pc:
25068 case T_MNEM_inc_sp:
25069 case T_MNEM_dec_sp:
25070 if (fragp->fr_var == 4)
25071 {
25072 /* ??? Choose between add and addw. */
25073 insn = THUMB_OP32 (opcode);
25074 insn |= (old_op & 0xf0) << 4;
25075 put_thumb32_insn (buf, insn);
16805f35
PB
25076 if (opcode == T_MNEM_add_pc)
25077 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25078 else
25079 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
25080 }
25081 else
25082 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25083 pc_rel = 0;
25084 break;
25085
25086 case T_MNEM_addi:
25087 case T_MNEM_addis:
25088 case T_MNEM_subi:
25089 case T_MNEM_subis:
25090 if (fragp->fr_var == 4)
25091 {
25092 insn = THUMB_OP32 (opcode);
25093 insn |= (old_op & 0xf0) << 4;
25094 insn |= (old_op & 0xf) << 16;
25095 put_thumb32_insn (buf, insn);
16805f35
PB
25096 if (insn & (1 << 20))
25097 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25098 else
25099 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
25100 }
25101 else
25102 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25103 pc_rel = 0;
25104 break;
25105 default:
5f4273c7 25106 abort ();
0110f2b8
PB
25107 }
25108 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 25109 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
25110 fixp->fx_file = fragp->fr_file;
25111 fixp->fx_line = fragp->fr_line;
25112 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
25113
25114 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25115 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25116 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25117 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
25118}
25119
25120/* Return the size of a relaxable immediate operand instruction.
25121 SHIFT and SIZE specify the form of the allowable immediate. */
25122static int
25123relax_immediate (fragS *fragp, int size, int shift)
25124{
25125 offsetT offset;
25126 offsetT mask;
25127 offsetT low;
25128
25129 /* ??? Should be able to do better than this. */
25130 if (fragp->fr_symbol)
25131 return 4;
25132
25133 low = (1 << shift) - 1;
25134 mask = (1 << (shift + size)) - (1 << shift);
25135 offset = fragp->fr_offset;
25136 /* Force misaligned offsets to 32-bit variant. */
25137 if (offset & low)
5e77afaa 25138 return 4;
0110f2b8
PB
25139 if (offset & ~mask)
25140 return 4;
25141 return 2;
25142}
25143
5e77afaa
PB
25144/* Get the address of a symbol during relaxation. */
25145static addressT
5f4273c7 25146relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
25147{
25148 fragS *sym_frag;
25149 addressT addr;
25150 symbolS *sym;
25151
25152 sym = fragp->fr_symbol;
25153 sym_frag = symbol_get_frag (sym);
25154 know (S_GET_SEGMENT (sym) != absolute_section
25155 || sym_frag == &zero_address_frag);
25156 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25157
25158 /* If frag has yet to be reached on this pass, assume it will
25159 move by STRETCH just as we did. If this is not so, it will
25160 be because some frag between grows, and that will force
25161 another pass. */
25162
25163 if (stretch != 0
25164 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
25165 {
25166 fragS *f;
25167
25168 /* Adjust stretch for any alignment frag. Note that if have
25169 been expanding the earlier code, the symbol may be
25170 defined in what appears to be an earlier frag. FIXME:
25171 This doesn't handle the fr_subtype field, which specifies
25172 a maximum number of bytes to skip when doing an
25173 alignment. */
25174 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25175 {
25176 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25177 {
25178 if (stretch < 0)
25179 stretch = - ((- stretch)
25180 & ~ ((1 << (int) f->fr_offset) - 1));
25181 else
25182 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25183 if (stretch == 0)
25184 break;
25185 }
25186 }
25187 if (f != NULL)
25188 addr += stretch;
25189 }
5e77afaa
PB
25190
25191 return addr;
25192}
25193
0110f2b8
PB
25194/* Return the size of a relaxable adr pseudo-instruction or PC-relative
25195 load. */
25196static int
5e77afaa 25197relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
25198{
25199 addressT addr;
25200 offsetT val;
25201
25202 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
25203 if (fragp->fr_symbol == NULL
25204 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25205 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25206 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25207 return 4;
25208
5f4273c7 25209 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25210 addr = fragp->fr_address + fragp->fr_fix;
25211 addr = (addr + 4) & ~3;
5e77afaa 25212 /* Force misaligned targets to 32-bit variant. */
0110f2b8 25213 if (val & 3)
5e77afaa 25214 return 4;
0110f2b8
PB
25215 val -= addr;
25216 if (val < 0 || val > 1020)
25217 return 4;
25218 return 2;
25219}
25220
25221/* Return the size of a relaxable add/sub immediate instruction. */
25222static int
25223relax_addsub (fragS *fragp, asection *sec)
25224{
25225 char *buf;
25226 int op;
25227
25228 buf = fragp->fr_literal + fragp->fr_fix;
25229 op = bfd_get_16(sec->owner, buf);
25230 if ((op & 0xf) == ((op >> 4) & 0xf))
25231 return relax_immediate (fragp, 8, 0);
25232 else
25233 return relax_immediate (fragp, 3, 0);
25234}
25235
e83a675f
RE
25236/* Return TRUE iff the definition of symbol S could be pre-empted
25237 (overridden) at link or load time. */
25238static bfd_boolean
25239symbol_preemptible (symbolS *s)
25240{
25241 /* Weak symbols can always be pre-empted. */
25242 if (S_IS_WEAK (s))
25243 return TRUE;
25244
25245 /* Non-global symbols cannot be pre-empted. */
25246 if (! S_IS_EXTERNAL (s))
25247 return FALSE;
25248
25249#ifdef OBJ_ELF
25250 /* In ELF, a global symbol can be marked protected, or private. In that
25251 case it can't be pre-empted (other definitions in the same link unit
25252 would violate the ODR). */
25253 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25254 return FALSE;
25255#endif
25256
25257 /* Other global symbols might be pre-empted. */
25258 return TRUE;
25259}
0110f2b8
PB
25260
25261/* Return the size of a relaxable branch instruction. BITS is the
25262 size of the offset field in the narrow instruction. */
25263
25264static int
5e77afaa 25265relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
25266{
25267 addressT addr;
25268 offsetT val;
25269 offsetT limit;
25270
25271 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 25272 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25273 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25274 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25275 return 4;
25276
267bf995 25277#ifdef OBJ_ELF
e83a675f 25278 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
25279 if (S_IS_DEFINED (fragp->fr_symbol)
25280 && ARM_IS_FUNC (fragp->fr_symbol))
25281 return 4;
e83a675f 25282#endif
0d9b4b55 25283
e83a675f 25284 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 25285 return 4;
267bf995 25286
5f4273c7 25287 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25288 addr = fragp->fr_address + fragp->fr_fix + 4;
25289 val -= addr;
25290
25291 /* Offset is a signed value *2 */
25292 limit = 1 << bits;
25293 if (val >= limit || val < -limit)
25294 return 4;
25295 return 2;
25296}
25297
25298
25299/* Relax a machine dependent frag. This returns the amount by which
25300 the current size of the frag should change. */
25301
25302int
5e77afaa 25303arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
25304{
25305 int oldsize;
25306 int newsize;
25307
25308 oldsize = fragp->fr_var;
25309 switch (fragp->fr_subtype)
25310 {
25311 case T_MNEM_ldr_pc2:
5f4273c7 25312 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25313 break;
25314 case T_MNEM_ldr_pc:
25315 case T_MNEM_ldr_sp:
25316 case T_MNEM_str_sp:
5f4273c7 25317 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
25318 break;
25319 case T_MNEM_ldr:
25320 case T_MNEM_str:
5f4273c7 25321 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
25322 break;
25323 case T_MNEM_ldrh:
25324 case T_MNEM_strh:
5f4273c7 25325 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
25326 break;
25327 case T_MNEM_ldrb:
25328 case T_MNEM_strb:
5f4273c7 25329 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
25330 break;
25331 case T_MNEM_adr:
5f4273c7 25332 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25333 break;
25334 case T_MNEM_mov:
25335 case T_MNEM_movs:
25336 case T_MNEM_cmp:
25337 case T_MNEM_cmn:
5f4273c7 25338 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
25339 break;
25340 case T_MNEM_b:
5f4273c7 25341 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
25342 break;
25343 case T_MNEM_bcond:
5f4273c7 25344 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
25345 break;
25346 case T_MNEM_add_sp:
25347 case T_MNEM_add_pc:
25348 newsize = relax_immediate (fragp, 8, 2);
25349 break;
25350 case T_MNEM_inc_sp:
25351 case T_MNEM_dec_sp:
25352 newsize = relax_immediate (fragp, 7, 2);
25353 break;
25354 case T_MNEM_addi:
25355 case T_MNEM_addis:
25356 case T_MNEM_subi:
25357 case T_MNEM_subis:
25358 newsize = relax_addsub (fragp, sec);
25359 break;
25360 default:
5f4273c7 25361 abort ();
0110f2b8 25362 }
5e77afaa
PB
25363
25364 fragp->fr_var = newsize;
25365 /* Freeze wide instructions that are at or before the same location as
25366 in the previous pass. This avoids infinite loops.
5f4273c7
NC
25367 Don't freeze them unconditionally because targets may be artificially
25368 misaligned by the expansion of preceding frags. */
5e77afaa 25369 if (stretch <= 0 && newsize > 2)
0110f2b8 25370 {
0110f2b8 25371 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 25372 frag_wane (fragp);
0110f2b8 25373 }
5e77afaa 25374
0110f2b8 25375 return newsize - oldsize;
c19d1205 25376}
b99bd4ef 25377
c19d1205 25378/* Round up a section size to the appropriate boundary. */
b99bd4ef 25379
c19d1205
ZW
25380valueT
25381md_section_align (segT segment ATTRIBUTE_UNUSED,
25382 valueT size)
25383{
6844c0cc 25384 return size;
bfae80f2 25385}
b99bd4ef 25386
c19d1205
ZW
25387/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25388 of an rs_align_code fragment. */
25389
25390void
25391arm_handle_align (fragS * fragP)
bfae80f2 25392{
d9235011 25393 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25394 {
25395 { /* ARMv1 */
25396 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25397 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25398 },
25399 { /* ARMv6k */
25400 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25401 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25402 },
25403 };
d9235011 25404 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25405 {
25406 { /* Thumb-1 */
25407 {0xc0, 0x46}, /* LE */
25408 {0x46, 0xc0}, /* BE */
25409 },
25410 { /* Thumb-2 */
25411 {0x00, 0xbf}, /* LE */
25412 {0xbf, 0x00} /* BE */
25413 }
25414 };
d9235011 25415 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25416 { /* Wide Thumb-2 */
25417 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25418 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25419 };
c921be7d 25420
e7495e45 25421 unsigned bytes, fix, noop_size;
c19d1205 25422 char * p;
d9235011
TS
25423 const unsigned char * noop;
25424 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25425#ifdef OBJ_ELF
25426 enum mstate state;
25427#endif
bfae80f2 25428
c19d1205 25429 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25430 return;
25431
c19d1205
ZW
25432 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25433 p = fragP->fr_literal + fragP->fr_fix;
25434 fix = 0;
bfae80f2 25435
c19d1205
ZW
25436 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25437 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 25438
cd000bff 25439 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 25440
cd000bff 25441 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 25442 {
7f78eb34
JW
25443 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25444 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
25445 {
25446 narrow_noop = thumb_noop[1][target_big_endian];
25447 noop = wide_thumb_noop[target_big_endian];
25448 }
c19d1205 25449 else
e7495e45
NS
25450 noop = thumb_noop[0][target_big_endian];
25451 noop_size = 2;
cd000bff
DJ
25452#ifdef OBJ_ELF
25453 state = MAP_THUMB;
25454#endif
7ed4c4c5
NC
25455 }
25456 else
25457 {
7f78eb34
JW
25458 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25459 ? selected_cpu : arm_arch_none,
25460 arm_ext_v6k) != 0]
e7495e45
NS
25461 [target_big_endian];
25462 noop_size = 4;
cd000bff
DJ
25463#ifdef OBJ_ELF
25464 state = MAP_ARM;
25465#endif
7ed4c4c5 25466 }
c921be7d 25467
e7495e45 25468 fragP->fr_var = noop_size;
c921be7d 25469
c19d1205 25470 if (bytes & (noop_size - 1))
7ed4c4c5 25471 {
c19d1205 25472 fix = bytes & (noop_size - 1);
cd000bff
DJ
25473#ifdef OBJ_ELF
25474 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25475#endif
c19d1205
ZW
25476 memset (p, 0, fix);
25477 p += fix;
25478 bytes -= fix;
a737bd4d 25479 }
a737bd4d 25480
e7495e45
NS
25481 if (narrow_noop)
25482 {
25483 if (bytes & noop_size)
25484 {
25485 /* Insert a narrow noop. */
25486 memcpy (p, narrow_noop, noop_size);
25487 p += noop_size;
25488 bytes -= noop_size;
25489 fix += noop_size;
25490 }
25491
25492 /* Use wide noops for the remainder */
25493 noop_size = 4;
25494 }
25495
c19d1205 25496 while (bytes >= noop_size)
a737bd4d 25497 {
c19d1205
ZW
25498 memcpy (p, noop, noop_size);
25499 p += noop_size;
25500 bytes -= noop_size;
25501 fix += noop_size;
a737bd4d
NC
25502 }
25503
c19d1205 25504 fragP->fr_fix += fix;
a737bd4d
NC
25505}
25506
c19d1205
ZW
25507/* Called from md_do_align. Used to create an alignment
25508 frag in a code section. */
25509
25510void
25511arm_frag_align_code (int n, int max)
bfae80f2 25512{
c19d1205 25513 char * p;
7ed4c4c5 25514
c19d1205 25515 /* We assume that there will never be a requirement
6ec8e702 25516 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 25517 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
25518 {
25519 char err_msg[128];
25520
fa94de6b 25521 sprintf (err_msg,
477330fc
RM
25522 _("alignments greater than %d bytes not supported in .text sections."),
25523 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 25524 as_fatal ("%s", err_msg);
6ec8e702 25525 }
bfae80f2 25526
c19d1205
ZW
25527 p = frag_var (rs_align_code,
25528 MAX_MEM_FOR_RS_ALIGN_CODE,
25529 1,
25530 (relax_substateT) max,
25531 (symbolS *) NULL,
25532 (offsetT) n,
25533 (char *) NULL);
25534 *p = 0;
25535}
bfae80f2 25536
8dc2430f
NC
25537/* Perform target specific initialisation of a frag.
25538 Note - despite the name this initialisation is not done when the frag
25539 is created, but only when its type is assigned. A frag can be created
25540 and used a long time before its type is set, so beware of assuming that
33eaf5de 25541 this initialisation is performed first. */
bfae80f2 25542
cd000bff
DJ
25543#ifndef OBJ_ELF
25544void
25545arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25546{
25547 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25548 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
25549}
25550
25551#else /* OBJ_ELF is defined. */
c19d1205 25552void
cd000bff 25553arm_init_frag (fragS * fragP, int max_chars)
c19d1205 25554{
e8d84ca1 25555 bfd_boolean frag_thumb_mode;
b968d18a 25556
8dc2430f
NC
25557 /* If the current ARM vs THUMB mode has not already
25558 been recorded into this frag then do so now. */
cd000bff 25559 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
25560 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25561
e8d84ca1
NC
25562 /* PR 21809: Do not set a mapping state for debug sections
25563 - it just confuses other tools. */
25564 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25565 return;
25566
b968d18a 25567 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 25568
f9c1b181
RL
25569 /* Record a mapping symbol for alignment frags. We will delete this
25570 later if the alignment ends up empty. */
25571 switch (fragP->fr_type)
25572 {
25573 case rs_align:
25574 case rs_align_test:
25575 case rs_fill:
25576 mapping_state_2 (MAP_DATA, max_chars);
25577 break;
25578 case rs_align_code:
b968d18a 25579 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
25580 break;
25581 default:
25582 break;
cd000bff 25583 }
bfae80f2
RE
25584}
25585
c19d1205
ZW
25586/* When we change sections we need to issue a new mapping symbol. */
25587
25588void
25589arm_elf_change_section (void)
bfae80f2 25590{
c19d1205
ZW
25591 /* Link an unlinked unwind index table section to the .text section. */
25592 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25593 && elf_linked_to_section (now_seg) == NULL)
25594 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25595}
25596
c19d1205
ZW
25597int
25598arm_elf_section_type (const char * str, size_t len)
e45d0630 25599{
c19d1205
ZW
25600 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25601 return SHT_ARM_EXIDX;
e45d0630 25602
c19d1205
ZW
25603 return -1;
25604}
25605\f
25606/* Code to deal with unwinding tables. */
e45d0630 25607
c19d1205 25608static void add_unwind_adjustsp (offsetT);
e45d0630 25609
5f4273c7 25610/* Generate any deferred unwind frame offset. */
e45d0630 25611
bfae80f2 25612static void
c19d1205 25613flush_pending_unwind (void)
bfae80f2 25614{
c19d1205 25615 offsetT offset;
bfae80f2 25616
c19d1205
ZW
25617 offset = unwind.pending_offset;
25618 unwind.pending_offset = 0;
25619 if (offset != 0)
25620 add_unwind_adjustsp (offset);
bfae80f2
RE
25621}
25622
c19d1205
ZW
25623/* Add an opcode to this list for this function. Two-byte opcodes should
25624 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25625 order. */
25626
bfae80f2 25627static void
c19d1205 25628add_unwind_opcode (valueT op, int length)
bfae80f2 25629{
c19d1205
ZW
25630 /* Add any deferred stack adjustment. */
25631 if (unwind.pending_offset)
25632 flush_pending_unwind ();
bfae80f2 25633
c19d1205 25634 unwind.sp_restored = 0;
bfae80f2 25635
c19d1205 25636 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25637 {
c19d1205
ZW
25638 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25639 if (unwind.opcodes)
325801bd
TS
25640 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25641 unwind.opcode_alloc);
c19d1205 25642 else
325801bd 25643 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25644 }
c19d1205 25645 while (length > 0)
bfae80f2 25646 {
c19d1205
ZW
25647 length--;
25648 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25649 op >>= 8;
25650 unwind.opcode_count++;
bfae80f2 25651 }
bfae80f2
RE
25652}
25653
c19d1205
ZW
25654/* Add unwind opcodes to adjust the stack pointer. */
25655
bfae80f2 25656static void
c19d1205 25657add_unwind_adjustsp (offsetT offset)
bfae80f2 25658{
c19d1205 25659 valueT op;
bfae80f2 25660
c19d1205 25661 if (offset > 0x200)
bfae80f2 25662 {
c19d1205
ZW
25663 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25664 char bytes[5];
25665 int n;
25666 valueT o;
bfae80f2 25667
c19d1205
ZW
25668 /* Long form: 0xb2, uleb128. */
25669 /* This might not fit in a word so add the individual bytes,
25670 remembering the list is built in reverse order. */
25671 o = (valueT) ((offset - 0x204) >> 2);
25672 if (o == 0)
25673 add_unwind_opcode (0, 1);
bfae80f2 25674
c19d1205
ZW
25675 /* Calculate the uleb128 encoding of the offset. */
25676 n = 0;
25677 while (o)
25678 {
25679 bytes[n] = o & 0x7f;
25680 o >>= 7;
25681 if (o)
25682 bytes[n] |= 0x80;
25683 n++;
25684 }
25685 /* Add the insn. */
25686 for (; n; n--)
25687 add_unwind_opcode (bytes[n - 1], 1);
25688 add_unwind_opcode (0xb2, 1);
25689 }
25690 else if (offset > 0x100)
bfae80f2 25691 {
c19d1205
ZW
25692 /* Two short opcodes. */
25693 add_unwind_opcode (0x3f, 1);
25694 op = (offset - 0x104) >> 2;
25695 add_unwind_opcode (op, 1);
bfae80f2 25696 }
c19d1205
ZW
25697 else if (offset > 0)
25698 {
25699 /* Short opcode. */
25700 op = (offset - 4) >> 2;
25701 add_unwind_opcode (op, 1);
25702 }
25703 else if (offset < 0)
bfae80f2 25704 {
c19d1205
ZW
25705 offset = -offset;
25706 while (offset > 0x100)
bfae80f2 25707 {
c19d1205
ZW
25708 add_unwind_opcode (0x7f, 1);
25709 offset -= 0x100;
bfae80f2 25710 }
c19d1205
ZW
25711 op = ((offset - 4) >> 2) | 0x40;
25712 add_unwind_opcode (op, 1);
bfae80f2 25713 }
bfae80f2
RE
25714}
25715
c19d1205 25716/* Finish the list of unwind opcodes for this function. */
0198d5e6 25717
c19d1205
ZW
25718static void
25719finish_unwind_opcodes (void)
bfae80f2 25720{
c19d1205 25721 valueT op;
bfae80f2 25722
c19d1205 25723 if (unwind.fp_used)
bfae80f2 25724 {
708587a4 25725 /* Adjust sp as necessary. */
c19d1205
ZW
25726 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25727 flush_pending_unwind ();
bfae80f2 25728
c19d1205
ZW
25729 /* After restoring sp from the frame pointer. */
25730 op = 0x90 | unwind.fp_reg;
25731 add_unwind_opcode (op, 1);
25732 }
25733 else
25734 flush_pending_unwind ();
bfae80f2
RE
25735}
25736
bfae80f2 25737
c19d1205
ZW
25738/* Start an exception table entry. If idx is nonzero this is an index table
25739 entry. */
bfae80f2
RE
25740
25741static void
c19d1205 25742start_unwind_section (const segT text_seg, int idx)
bfae80f2 25743{
c19d1205
ZW
25744 const char * text_name;
25745 const char * prefix;
25746 const char * prefix_once;
25747 const char * group_name;
c19d1205 25748 char * sec_name;
c19d1205
ZW
25749 int type;
25750 int flags;
25751 int linkonce;
bfae80f2 25752
c19d1205 25753 if (idx)
bfae80f2 25754 {
c19d1205
ZW
25755 prefix = ELF_STRING_ARM_unwind;
25756 prefix_once = ELF_STRING_ARM_unwind_once;
25757 type = SHT_ARM_EXIDX;
bfae80f2 25758 }
c19d1205 25759 else
bfae80f2 25760 {
c19d1205
ZW
25761 prefix = ELF_STRING_ARM_unwind_info;
25762 prefix_once = ELF_STRING_ARM_unwind_info_once;
25763 type = SHT_PROGBITS;
bfae80f2
RE
25764 }
25765
c19d1205
ZW
25766 text_name = segment_name (text_seg);
25767 if (streq (text_name, ".text"))
25768 text_name = "";
25769
25770 if (strncmp (text_name, ".gnu.linkonce.t.",
25771 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 25772 {
c19d1205
ZW
25773 prefix = prefix_once;
25774 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
25775 }
25776
29a2809e 25777 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 25778
c19d1205
ZW
25779 flags = SHF_ALLOC;
25780 linkonce = 0;
25781 group_name = 0;
bfae80f2 25782
c19d1205
ZW
25783 /* Handle COMDAT group. */
25784 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 25785 {
c19d1205
ZW
25786 group_name = elf_group_name (text_seg);
25787 if (group_name == NULL)
25788 {
bd3ba5d1 25789 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
25790 segment_name (text_seg));
25791 ignore_rest_of_line ();
25792 return;
25793 }
25794 flags |= SHF_GROUP;
25795 linkonce = 1;
bfae80f2
RE
25796 }
25797
a91e1603
L
25798 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25799 linkonce, 0);
bfae80f2 25800
5f4273c7 25801 /* Set the section link for index tables. */
c19d1205
ZW
25802 if (idx)
25803 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
25804}
25805
bfae80f2 25806
c19d1205
ZW
25807/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25808 personality routine data. Returns zero, or the index table value for
cad0da33 25809 an inline entry. */
c19d1205
ZW
25810
25811static valueT
25812create_unwind_entry (int have_data)
bfae80f2 25813{
c19d1205
ZW
25814 int size;
25815 addressT where;
25816 char *ptr;
25817 /* The current word of data. */
25818 valueT data;
25819 /* The number of bytes left in this word. */
25820 int n;
bfae80f2 25821
c19d1205 25822 finish_unwind_opcodes ();
bfae80f2 25823
c19d1205
ZW
25824 /* Remember the current text section. */
25825 unwind.saved_seg = now_seg;
25826 unwind.saved_subseg = now_subseg;
bfae80f2 25827
c19d1205 25828 start_unwind_section (now_seg, 0);
bfae80f2 25829
c19d1205 25830 if (unwind.personality_routine == NULL)
bfae80f2 25831 {
c19d1205
ZW
25832 if (unwind.personality_index == -2)
25833 {
25834 if (have_data)
5f4273c7 25835 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
25836 return 1; /* EXIDX_CANTUNWIND. */
25837 }
bfae80f2 25838
c19d1205
ZW
25839 /* Use a default personality routine if none is specified. */
25840 if (unwind.personality_index == -1)
25841 {
25842 if (unwind.opcode_count > 3)
25843 unwind.personality_index = 1;
25844 else
25845 unwind.personality_index = 0;
25846 }
bfae80f2 25847
c19d1205
ZW
25848 /* Space for the personality routine entry. */
25849 if (unwind.personality_index == 0)
25850 {
25851 if (unwind.opcode_count > 3)
25852 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 25853
c19d1205
ZW
25854 if (!have_data)
25855 {
25856 /* All the data is inline in the index table. */
25857 data = 0x80;
25858 n = 3;
25859 while (unwind.opcode_count > 0)
25860 {
25861 unwind.opcode_count--;
25862 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25863 n--;
25864 }
bfae80f2 25865
c19d1205
ZW
25866 /* Pad with "finish" opcodes. */
25867 while (n--)
25868 data = (data << 8) | 0xb0;
bfae80f2 25869
c19d1205
ZW
25870 return data;
25871 }
25872 size = 0;
25873 }
25874 else
25875 /* We get two opcodes "free" in the first word. */
25876 size = unwind.opcode_count - 2;
25877 }
25878 else
5011093d 25879 {
cad0da33
NC
25880 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25881 if (unwind.personality_index != -1)
25882 {
25883 as_bad (_("attempt to recreate an unwind entry"));
25884 return 1;
25885 }
5011093d
NC
25886
25887 /* An extra byte is required for the opcode count. */
25888 size = unwind.opcode_count + 1;
25889 }
bfae80f2 25890
c19d1205
ZW
25891 size = (size + 3) >> 2;
25892 if (size > 0xff)
25893 as_bad (_("too many unwind opcodes"));
bfae80f2 25894
c19d1205
ZW
25895 frag_align (2, 0, 0);
25896 record_alignment (now_seg, 2);
25897 unwind.table_entry = expr_build_dot ();
25898
25899 /* Allocate the table entry. */
25900 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
25901 /* PR 13449: Zero the table entries in case some of them are not used. */
25902 memset (ptr, 0, (size << 2) + 4);
c19d1205 25903 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 25904
c19d1205 25905 switch (unwind.personality_index)
bfae80f2 25906 {
c19d1205
ZW
25907 case -1:
25908 /* ??? Should this be a PLT generating relocation? */
25909 /* Custom personality routine. */
25910 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25911 BFD_RELOC_ARM_PREL31);
bfae80f2 25912
c19d1205
ZW
25913 where += 4;
25914 ptr += 4;
bfae80f2 25915
c19d1205 25916 /* Set the first byte to the number of additional words. */
5011093d 25917 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
25918 n = 3;
25919 break;
bfae80f2 25920
c19d1205
ZW
25921 /* ABI defined personality routines. */
25922 case 0:
25923 /* Three opcodes bytes are packed into the first word. */
25924 data = 0x80;
25925 n = 3;
25926 break;
bfae80f2 25927
c19d1205
ZW
25928 case 1:
25929 case 2:
25930 /* The size and first two opcode bytes go in the first word. */
25931 data = ((0x80 + unwind.personality_index) << 8) | size;
25932 n = 2;
25933 break;
bfae80f2 25934
c19d1205
ZW
25935 default:
25936 /* Should never happen. */
25937 abort ();
25938 }
bfae80f2 25939
c19d1205
ZW
25940 /* Pack the opcodes into words (MSB first), reversing the list at the same
25941 time. */
25942 while (unwind.opcode_count > 0)
25943 {
25944 if (n == 0)
25945 {
25946 md_number_to_chars (ptr, data, 4);
25947 ptr += 4;
25948 n = 4;
25949 data = 0;
25950 }
25951 unwind.opcode_count--;
25952 n--;
25953 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25954 }
25955
25956 /* Finish off the last word. */
25957 if (n < 4)
25958 {
25959 /* Pad with "finish" opcodes. */
25960 while (n--)
25961 data = (data << 8) | 0xb0;
25962
25963 md_number_to_chars (ptr, data, 4);
25964 }
25965
25966 if (!have_data)
25967 {
25968 /* Add an empty descriptor if there is no user-specified data. */
25969 ptr = frag_more (4);
25970 md_number_to_chars (ptr, 0, 4);
25971 }
25972
25973 return 0;
bfae80f2
RE
25974}
25975
f0927246
NC
25976
25977/* Initialize the DWARF-2 unwind information for this procedure. */
25978
25979void
25980tc_arm_frame_initial_instructions (void)
25981{
25982 cfi_add_CFA_def_cfa (REG_SP, 0);
25983}
25984#endif /* OBJ_ELF */
25985
c19d1205
ZW
25986/* Convert REGNAME to a DWARF-2 register number. */
25987
25988int
1df69f4f 25989tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 25990{
1df69f4f 25991 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
25992 if (reg != FAIL)
25993 return reg;
c19d1205 25994
1f5afe1c
NC
25995 /* PR 16694: Allow VFP registers as well. */
25996 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25997 if (reg != FAIL)
25998 return 64 + reg;
c19d1205 25999
1f5afe1c
NC
26000 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26001 if (reg != FAIL)
26002 return reg + 256;
26003
0198d5e6 26004 return FAIL;
bfae80f2
RE
26005}
26006
f0927246 26007#ifdef TE_PE
c19d1205 26008void
f0927246 26009tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 26010{
91d6fa6a 26011 expressionS exp;
bfae80f2 26012
91d6fa6a
NC
26013 exp.X_op = O_secrel;
26014 exp.X_add_symbol = symbol;
26015 exp.X_add_number = 0;
26016 emit_expr (&exp, size);
f0927246
NC
26017}
26018#endif
bfae80f2 26019
c19d1205 26020/* MD interface: Symbol and relocation handling. */
bfae80f2 26021
2fc8bdac
ZW
26022/* Return the address within the segment that a PC-relative fixup is
26023 relative to. For ARM, PC-relative fixups applied to instructions
26024 are generally relative to the location of the fixup plus 8 bytes.
26025 Thumb branches are offset by 4, and Thumb loads relative to PC
26026 require special handling. */
bfae80f2 26027
c19d1205 26028long
2fc8bdac 26029md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 26030{
2fc8bdac
ZW
26031 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26032
26033 /* If this is pc-relative and we are going to emit a relocation
26034 then we just want to put out any pipeline compensation that the linker
53baae48
NC
26035 will need. Otherwise we want to use the calculated base.
26036 For WinCE we skip the bias for externals as well, since this
26037 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 26038 if (fixP->fx_pcrel
2fc8bdac 26039 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
26040 || (arm_force_relocation (fixP)
26041#ifdef TE_WINCE
26042 && !S_IS_EXTERNAL (fixP->fx_addsy)
26043#endif
26044 )))
2fc8bdac 26045 base = 0;
bfae80f2 26046
267bf995 26047
c19d1205 26048 switch (fixP->fx_r_type)
bfae80f2 26049 {
2fc8bdac
ZW
26050 /* PC relative addressing on the Thumb is slightly odd as the
26051 bottom two bits of the PC are forced to zero for the
26052 calculation. This happens *after* application of the
26053 pipeline offset. However, Thumb adrl already adjusts for
26054 this, so we need not do it again. */
c19d1205 26055 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 26056 return base & ~3;
c19d1205
ZW
26057
26058 case BFD_RELOC_ARM_THUMB_OFFSET:
26059 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 26060 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 26061 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 26062 return (base + 4) & ~3;
c19d1205 26063
2fc8bdac 26064 /* Thumb branches are simply offset by +4. */
e12437dc 26065 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
26066 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26067 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26068 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26069 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 26070 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 26071 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 26072 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 26073 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 26074 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 26075 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 26076 return base + 4;
bfae80f2 26077
267bf995 26078 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
26079 if (fixP->fx_addsy
26080 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26081 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 26082 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
26083 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26084 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
26085 return base + 4;
26086
00adf2d4
JB
26087 /* BLX is like branches above, but forces the low two bits of PC to
26088 zero. */
486499d0
CL
26089 case BFD_RELOC_THUMB_PCREL_BLX:
26090 if (fixP->fx_addsy
26091 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26092 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26093 && THUMB_IS_FUNC (fixP->fx_addsy)
26094 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26095 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
26096 return (base + 4) & ~3;
26097
2fc8bdac
ZW
26098 /* ARM mode branches are offset by +8. However, the Windows CE
26099 loader expects the relocation not to take this into account. */
267bf995 26100 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
26101 if (fixP->fx_addsy
26102 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26103 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26104 && ARM_IS_FUNC (fixP->fx_addsy)
26105 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26106 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26107 return base + 8;
267bf995 26108
486499d0
CL
26109 case BFD_RELOC_ARM_PCREL_CALL:
26110 if (fixP->fx_addsy
26111 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26112 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26113 && THUMB_IS_FUNC (fixP->fx_addsy)
26114 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26115 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26116 return base + 8;
267bf995 26117
2fc8bdac 26118 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 26119 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 26120 case BFD_RELOC_ARM_PLT32:
c19d1205 26121#ifdef TE_WINCE
5f4273c7 26122 /* When handling fixups immediately, because we have already
477330fc 26123 discovered the value of a symbol, or the address of the frag involved
53baae48 26124 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
26125 see fixup_segment() in write.c
26126 The S_IS_EXTERNAL test handles the case of global symbols.
26127 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
26128 if (fixP->fx_pcrel
26129 && fixP->fx_addsy != NULL
26130 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26131 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26132 return base + 8;
2fc8bdac 26133 return base;
c19d1205 26134#else
2fc8bdac 26135 return base + 8;
c19d1205 26136#endif
2fc8bdac 26137
267bf995 26138
2fc8bdac
ZW
26139 /* ARM mode loads relative to PC are also offset by +8. Unlike
26140 branches, the Windows CE loader *does* expect the relocation
26141 to take this into account. */
26142 case BFD_RELOC_ARM_OFFSET_IMM:
26143 case BFD_RELOC_ARM_OFFSET_IMM8:
26144 case BFD_RELOC_ARM_HWLITERAL:
26145 case BFD_RELOC_ARM_LITERAL:
26146 case BFD_RELOC_ARM_CP_OFF_IMM:
26147 return base + 8;
26148
26149
26150 /* Other PC-relative relocations are un-offset. */
26151 default:
26152 return base;
26153 }
bfae80f2
RE
26154}
26155
8b2d793c
NC
26156static bfd_boolean flag_warn_syms = TRUE;
26157
ae8714c2
NC
26158bfd_boolean
26159arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 26160{
8b2d793c
NC
26161 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26162 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26163 does mean that the resulting code might be very confusing to the reader.
26164 Also this warning can be triggered if the user omits an operand before
26165 an immediate address, eg:
26166
26167 LDR =foo
26168
26169 GAS treats this as an assignment of the value of the symbol foo to a
26170 symbol LDR, and so (without this code) it will not issue any kind of
26171 warning or error message.
26172
26173 Note - ARM instructions are case-insensitive but the strings in the hash
26174 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
26175 lower case too. */
26176 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
26177 {
26178 char * nbuf = strdup (name);
26179 char * p;
26180
26181 for (p = nbuf; *p; p++)
26182 *p = TOLOWER (*p);
26183 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26184 {
26185 static struct hash_control * already_warned = NULL;
26186
26187 if (already_warned == NULL)
26188 already_warned = hash_new ();
26189 /* Only warn about the symbol once. To keep the code
26190 simple we let hash_insert do the lookup for us. */
3076e594 26191 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 26192 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
26193 }
26194 else
26195 free (nbuf);
26196 }
3739860c 26197
ae8714c2
NC
26198 return FALSE;
26199}
26200
26201/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26202 Otherwise we have no need to default values of symbols. */
26203
26204symbolS *
26205md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26206{
26207#ifdef OBJ_ELF
26208 if (name[0] == '_' && name[1] == 'G'
26209 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26210 {
26211 if (!GOT_symbol)
26212 {
26213 if (symbol_find (name))
26214 as_bad (_("GOT already in the symbol table"));
26215
26216 GOT_symbol = symbol_new (name, undefined_section,
26217 (valueT) 0, & zero_address_frag);
26218 }
26219
26220 return GOT_symbol;
26221 }
26222#endif
26223
c921be7d 26224 return NULL;
bfae80f2
RE
26225}
26226
55cf6793 26227/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
26228 computed as two separate immediate values, added together. We
26229 already know that this value cannot be computed by just one ARM
26230 instruction. */
26231
26232static unsigned int
26233validate_immediate_twopart (unsigned int val,
26234 unsigned int * highpart)
bfae80f2 26235{
c19d1205
ZW
26236 unsigned int a;
26237 unsigned int i;
bfae80f2 26238
c19d1205
ZW
26239 for (i = 0; i < 32; i += 2)
26240 if (((a = rotate_left (val, i)) & 0xff) != 0)
26241 {
26242 if (a & 0xff00)
26243 {
26244 if (a & ~ 0xffff)
26245 continue;
26246 * highpart = (a >> 8) | ((i + 24) << 7);
26247 }
26248 else if (a & 0xff0000)
26249 {
26250 if (a & 0xff000000)
26251 continue;
26252 * highpart = (a >> 16) | ((i + 16) << 7);
26253 }
26254 else
26255 {
9c2799c2 26256 gas_assert (a & 0xff000000);
c19d1205
ZW
26257 * highpart = (a >> 24) | ((i + 8) << 7);
26258 }
bfae80f2 26259
c19d1205
ZW
26260 return (a & 0xff) | (i << 7);
26261 }
bfae80f2 26262
c19d1205 26263 return FAIL;
bfae80f2
RE
26264}
26265
c19d1205
ZW
26266static int
26267validate_offset_imm (unsigned int val, int hwse)
26268{
26269 if ((hwse && val > 255) || val > 4095)
26270 return FAIL;
26271 return val;
26272}
bfae80f2 26273
55cf6793 26274/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
26275 negative immediate constant by altering the instruction. A bit of
26276 a hack really.
26277 MOV <-> MVN
26278 AND <-> BIC
26279 ADC <-> SBC
26280 by inverting the second operand, and
26281 ADD <-> SUB
26282 CMP <-> CMN
26283 by negating the second operand. */
bfae80f2 26284
c19d1205
ZW
26285static int
26286negate_data_op (unsigned long * instruction,
26287 unsigned long value)
bfae80f2 26288{
c19d1205
ZW
26289 int op, new_inst;
26290 unsigned long negated, inverted;
bfae80f2 26291
c19d1205
ZW
26292 negated = encode_arm_immediate (-value);
26293 inverted = encode_arm_immediate (~value);
bfae80f2 26294
c19d1205
ZW
26295 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26296 switch (op)
bfae80f2 26297 {
c19d1205
ZW
26298 /* First negates. */
26299 case OPCODE_SUB: /* ADD <-> SUB */
26300 new_inst = OPCODE_ADD;
26301 value = negated;
26302 break;
bfae80f2 26303
c19d1205
ZW
26304 case OPCODE_ADD:
26305 new_inst = OPCODE_SUB;
26306 value = negated;
26307 break;
bfae80f2 26308
c19d1205
ZW
26309 case OPCODE_CMP: /* CMP <-> CMN */
26310 new_inst = OPCODE_CMN;
26311 value = negated;
26312 break;
bfae80f2 26313
c19d1205
ZW
26314 case OPCODE_CMN:
26315 new_inst = OPCODE_CMP;
26316 value = negated;
26317 break;
bfae80f2 26318
c19d1205
ZW
26319 /* Now Inverted ops. */
26320 case OPCODE_MOV: /* MOV <-> MVN */
26321 new_inst = OPCODE_MVN;
26322 value = inverted;
26323 break;
bfae80f2 26324
c19d1205
ZW
26325 case OPCODE_MVN:
26326 new_inst = OPCODE_MOV;
26327 value = inverted;
26328 break;
bfae80f2 26329
c19d1205
ZW
26330 case OPCODE_AND: /* AND <-> BIC */
26331 new_inst = OPCODE_BIC;
26332 value = inverted;
26333 break;
bfae80f2 26334
c19d1205
ZW
26335 case OPCODE_BIC:
26336 new_inst = OPCODE_AND;
26337 value = inverted;
26338 break;
bfae80f2 26339
c19d1205
ZW
26340 case OPCODE_ADC: /* ADC <-> SBC */
26341 new_inst = OPCODE_SBC;
26342 value = inverted;
26343 break;
bfae80f2 26344
c19d1205
ZW
26345 case OPCODE_SBC:
26346 new_inst = OPCODE_ADC;
26347 value = inverted;
26348 break;
bfae80f2 26349
c19d1205
ZW
26350 /* We cannot do anything. */
26351 default:
26352 return FAIL;
b99bd4ef
NC
26353 }
26354
c19d1205
ZW
26355 if (value == (unsigned) FAIL)
26356 return FAIL;
26357
26358 *instruction &= OPCODE_MASK;
26359 *instruction |= new_inst << DATA_OP_SHIFT;
26360 return value;
b99bd4ef
NC
26361}
26362
ef8d22e6
PB
26363/* Like negate_data_op, but for Thumb-2. */
26364
26365static unsigned int
16dd5e42 26366thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
26367{
26368 int op, new_inst;
26369 int rd;
16dd5e42 26370 unsigned int negated, inverted;
ef8d22e6
PB
26371
26372 negated = encode_thumb32_immediate (-value);
26373 inverted = encode_thumb32_immediate (~value);
26374
26375 rd = (*instruction >> 8) & 0xf;
26376 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26377 switch (op)
26378 {
26379 /* ADD <-> SUB. Includes CMP <-> CMN. */
26380 case T2_OPCODE_SUB:
26381 new_inst = T2_OPCODE_ADD;
26382 value = negated;
26383 break;
26384
26385 case T2_OPCODE_ADD:
26386 new_inst = T2_OPCODE_SUB;
26387 value = negated;
26388 break;
26389
26390 /* ORR <-> ORN. Includes MOV <-> MVN. */
26391 case T2_OPCODE_ORR:
26392 new_inst = T2_OPCODE_ORN;
26393 value = inverted;
26394 break;
26395
26396 case T2_OPCODE_ORN:
26397 new_inst = T2_OPCODE_ORR;
26398 value = inverted;
26399 break;
26400
26401 /* AND <-> BIC. TST has no inverted equivalent. */
26402 case T2_OPCODE_AND:
26403 new_inst = T2_OPCODE_BIC;
26404 if (rd == 15)
26405 value = FAIL;
26406 else
26407 value = inverted;
26408 break;
26409
26410 case T2_OPCODE_BIC:
26411 new_inst = T2_OPCODE_AND;
26412 value = inverted;
26413 break;
26414
26415 /* ADC <-> SBC */
26416 case T2_OPCODE_ADC:
26417 new_inst = T2_OPCODE_SBC;
26418 value = inverted;
26419 break;
26420
26421 case T2_OPCODE_SBC:
26422 new_inst = T2_OPCODE_ADC;
26423 value = inverted;
26424 break;
26425
26426 /* We cannot do anything. */
26427 default:
26428 return FAIL;
26429 }
26430
16dd5e42 26431 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26432 return FAIL;
26433
26434 *instruction &= T2_OPCODE_MASK;
26435 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26436 return value;
26437}
26438
8f06b2d8 26439/* Read a 32-bit thumb instruction from buf. */
0198d5e6 26440
8f06b2d8
PB
26441static unsigned long
26442get_thumb32_insn (char * buf)
26443{
26444 unsigned long insn;
26445 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26446 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26447
26448 return insn;
26449}
26450
a8bc6c78
PB
26451/* We usually want to set the low bit on the address of thumb function
26452 symbols. In particular .word foo - . should have the low bit set.
26453 Generic code tries to fold the difference of two symbols to
26454 a constant. Prevent this and force a relocation when the first symbols
26455 is a thumb function. */
c921be7d
NC
26456
26457bfd_boolean
a8bc6c78
PB
26458arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26459{
26460 if (op == O_subtract
26461 && l->X_op == O_symbol
26462 && r->X_op == O_symbol
26463 && THUMB_IS_FUNC (l->X_add_symbol))
26464 {
26465 l->X_op = O_subtract;
26466 l->X_op_symbol = r->X_add_symbol;
26467 l->X_add_number -= r->X_add_number;
c921be7d 26468 return TRUE;
a8bc6c78 26469 }
c921be7d 26470
a8bc6c78 26471 /* Process as normal. */
c921be7d 26472 return FALSE;
a8bc6c78
PB
26473}
26474
4a42ebbc
RR
26475/* Encode Thumb2 unconditional branches and calls. The encoding
26476 for the 2 are identical for the immediate values. */
26477
26478static void
26479encode_thumb2_b_bl_offset (char * buf, offsetT value)
26480{
26481#define T2I1I2MASK ((1 << 13) | (1 << 11))
26482 offsetT newval;
26483 offsetT newval2;
26484 addressT S, I1, I2, lo, hi;
26485
26486 S = (value >> 24) & 0x01;
26487 I1 = (value >> 23) & 0x01;
26488 I2 = (value >> 22) & 0x01;
26489 hi = (value >> 12) & 0x3ff;
fa94de6b 26490 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
26491 newval = md_chars_to_number (buf, THUMB_SIZE);
26492 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26493 newval |= (S << 10) | hi;
26494 newval2 &= ~T2I1I2MASK;
26495 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26496 md_number_to_chars (buf, newval, THUMB_SIZE);
26497 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26498}
26499
c19d1205 26500void
55cf6793 26501md_apply_fix (fixS * fixP,
c19d1205
ZW
26502 valueT * valP,
26503 segT seg)
26504{
26505 offsetT value = * valP;
26506 offsetT newval;
26507 unsigned int newimm;
26508 unsigned long temp;
26509 int sign;
26510 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 26511
9c2799c2 26512 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 26513
c19d1205 26514 /* Note whether this will delete the relocation. */
4962c51a 26515
c19d1205
ZW
26516 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26517 fixP->fx_done = 1;
b99bd4ef 26518
adbaf948 26519 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 26520 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
26521 for emit_reloc. */
26522 value &= 0xffffffff;
26523 value ^= 0x80000000;
5f4273c7 26524 value -= 0x80000000;
adbaf948
ZW
26525
26526 *valP = value;
c19d1205 26527 fixP->fx_addnumber = value;
b99bd4ef 26528
adbaf948
ZW
26529 /* Same treatment for fixP->fx_offset. */
26530 fixP->fx_offset &= 0xffffffff;
26531 fixP->fx_offset ^= 0x80000000;
26532 fixP->fx_offset -= 0x80000000;
26533
c19d1205 26534 switch (fixP->fx_r_type)
b99bd4ef 26535 {
c19d1205
ZW
26536 case BFD_RELOC_NONE:
26537 /* This will need to go in the object file. */
26538 fixP->fx_done = 0;
26539 break;
b99bd4ef 26540
c19d1205
ZW
26541 case BFD_RELOC_ARM_IMMEDIATE:
26542 /* We claim that this fixup has been processed here,
26543 even if in fact we generate an error because we do
26544 not have a reloc for it, so tc_gen_reloc will reject it. */
26545 fixP->fx_done = 1;
b99bd4ef 26546
77db8e2e 26547 if (fixP->fx_addsy)
b99bd4ef 26548 {
77db8e2e 26549 const char *msg = 0;
b99bd4ef 26550
77db8e2e
NC
26551 if (! S_IS_DEFINED (fixP->fx_addsy))
26552 msg = _("undefined symbol %s used as an immediate value");
26553 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26554 msg = _("symbol %s is in a different section");
26555 else if (S_IS_WEAK (fixP->fx_addsy))
26556 msg = _("symbol %s is weak and may be overridden later");
26557
26558 if (msg)
26559 {
26560 as_bad_where (fixP->fx_file, fixP->fx_line,
26561 msg, S_GET_NAME (fixP->fx_addsy));
26562 break;
26563 }
42e5fcbf
AS
26564 }
26565
c19d1205
ZW
26566 temp = md_chars_to_number (buf, INSN_SIZE);
26567
5e73442d
SL
26568 /* If the offset is negative, we should use encoding A2 for ADR. */
26569 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26570 newimm = negate_data_op (&temp, value);
26571 else
26572 {
26573 newimm = encode_arm_immediate (value);
26574
26575 /* If the instruction will fail, see if we can fix things up by
26576 changing the opcode. */
26577 if (newimm == (unsigned int) FAIL)
26578 newimm = negate_data_op (&temp, value);
bada4342
JW
26579 /* MOV accepts both ARM modified immediate (A1 encoding) and
26580 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26581 When disassembling, MOV is preferred when there is no encoding
26582 overlap. */
26583 if (newimm == (unsigned int) FAIL
26584 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26585 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26586 && !((temp >> SBIT_SHIFT) & 0x1)
26587 && value >= 0 && value <= 0xffff)
26588 {
26589 /* Clear bits[23:20] to change encoding from A1 to A2. */
26590 temp &= 0xff0fffff;
26591 /* Encoding high 4bits imm. Code below will encode the remaining
26592 low 12bits. */
26593 temp |= (value & 0x0000f000) << 4;
26594 newimm = value & 0x00000fff;
26595 }
5e73442d
SL
26596 }
26597
26598 if (newimm == (unsigned int) FAIL)
b99bd4ef 26599 {
c19d1205
ZW
26600 as_bad_where (fixP->fx_file, fixP->fx_line,
26601 _("invalid constant (%lx) after fixup"),
26602 (unsigned long) value);
26603 break;
b99bd4ef 26604 }
b99bd4ef 26605
c19d1205
ZW
26606 newimm |= (temp & 0xfffff000);
26607 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26608 break;
b99bd4ef 26609
c19d1205
ZW
26610 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26611 {
26612 unsigned int highpart = 0;
26613 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26614
77db8e2e 26615 if (fixP->fx_addsy)
42e5fcbf 26616 {
77db8e2e 26617 const char *msg = 0;
42e5fcbf 26618
77db8e2e
NC
26619 if (! S_IS_DEFINED (fixP->fx_addsy))
26620 msg = _("undefined symbol %s used as an immediate value");
26621 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26622 msg = _("symbol %s is in a different section");
26623 else if (S_IS_WEAK (fixP->fx_addsy))
26624 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26625
77db8e2e
NC
26626 if (msg)
26627 {
26628 as_bad_where (fixP->fx_file, fixP->fx_line,
26629 msg, S_GET_NAME (fixP->fx_addsy));
26630 break;
26631 }
26632 }
fa94de6b 26633
c19d1205
ZW
26634 newimm = encode_arm_immediate (value);
26635 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26636
c19d1205
ZW
26637 /* If the instruction will fail, see if we can fix things up by
26638 changing the opcode. */
26639 if (newimm == (unsigned int) FAIL
26640 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26641 {
26642 /* No ? OK - try using two ADD instructions to generate
26643 the value. */
26644 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26645
c19d1205
ZW
26646 /* Yes - then make sure that the second instruction is
26647 also an add. */
26648 if (newimm != (unsigned int) FAIL)
26649 newinsn = temp;
26650 /* Still No ? Try using a negated value. */
26651 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26652 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26653 /* Otherwise - give up. */
26654 else
26655 {
26656 as_bad_where (fixP->fx_file, fixP->fx_line,
26657 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26658 (long) value);
26659 break;
26660 }
b99bd4ef 26661
c19d1205
ZW
26662 /* Replace the first operand in the 2nd instruction (which
26663 is the PC) with the destination register. We have
26664 already added in the PC in the first instruction and we
26665 do not want to do it again. */
26666 newinsn &= ~ 0xf0000;
26667 newinsn |= ((newinsn & 0x0f000) << 4);
26668 }
b99bd4ef 26669
c19d1205
ZW
26670 newimm |= (temp & 0xfffff000);
26671 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 26672
c19d1205
ZW
26673 highpart |= (newinsn & 0xfffff000);
26674 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26675 }
26676 break;
b99bd4ef 26677
c19d1205 26678 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
26679 if (!fixP->fx_done && seg->use_rela_p)
26680 value = 0;
1a0670f3 26681 /* Fall through. */
00a97672 26682
c19d1205 26683 case BFD_RELOC_ARM_LITERAL:
26d97720 26684 sign = value > 0;
b99bd4ef 26685
c19d1205
ZW
26686 if (value < 0)
26687 value = - value;
b99bd4ef 26688
c19d1205 26689 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 26690 {
c19d1205
ZW
26691 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26692 as_bad_where (fixP->fx_file, fixP->fx_line,
26693 _("invalid literal constant: pool needs to be closer"));
26694 else
26695 as_bad_where (fixP->fx_file, fixP->fx_line,
26696 _("bad immediate value for offset (%ld)"),
26697 (long) value);
26698 break;
f03698e6
RE
26699 }
26700
c19d1205 26701 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26702 if (value == 0)
26703 newval &= 0xfffff000;
26704 else
26705 {
26706 newval &= 0xff7ff000;
26707 newval |= value | (sign ? INDEX_UP : 0);
26708 }
c19d1205
ZW
26709 md_number_to_chars (buf, newval, INSN_SIZE);
26710 break;
b99bd4ef 26711
c19d1205
ZW
26712 case BFD_RELOC_ARM_OFFSET_IMM8:
26713 case BFD_RELOC_ARM_HWLITERAL:
26d97720 26714 sign = value > 0;
b99bd4ef 26715
c19d1205
ZW
26716 if (value < 0)
26717 value = - value;
b99bd4ef 26718
c19d1205 26719 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 26720 {
c19d1205
ZW
26721 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26722 as_bad_where (fixP->fx_file, fixP->fx_line,
26723 _("invalid literal constant: pool needs to be closer"));
26724 else
427d0db6
RM
26725 as_bad_where (fixP->fx_file, fixP->fx_line,
26726 _("bad immediate value for 8-bit offset (%ld)"),
26727 (long) value);
c19d1205 26728 break;
b99bd4ef
NC
26729 }
26730
c19d1205 26731 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26732 if (value == 0)
26733 newval &= 0xfffff0f0;
26734 else
26735 {
26736 newval &= 0xff7ff0f0;
26737 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26738 }
c19d1205
ZW
26739 md_number_to_chars (buf, newval, INSN_SIZE);
26740 break;
b99bd4ef 26741
c19d1205
ZW
26742 case BFD_RELOC_ARM_T32_OFFSET_U8:
26743 if (value < 0 || value > 1020 || value % 4 != 0)
26744 as_bad_where (fixP->fx_file, fixP->fx_line,
26745 _("bad immediate value for offset (%ld)"), (long) value);
26746 value /= 4;
b99bd4ef 26747
c19d1205 26748 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
26749 newval |= value;
26750 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26751 break;
b99bd4ef 26752
c19d1205
ZW
26753 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26754 /* This is a complicated relocation used for all varieties of Thumb32
26755 load/store instruction with immediate offset:
26756
26757 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 26758 *4, optional writeback(W)
c19d1205
ZW
26759 (doubleword load/store)
26760
26761 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26762 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26763 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26764 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26765 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26766
26767 Uppercase letters indicate bits that are already encoded at
26768 this point. Lowercase letters are our problem. For the
26769 second block of instructions, the secondary opcode nybble
26770 (bits 8..11) is present, and bit 23 is zero, even if this is
26771 a PC-relative operation. */
26772 newval = md_chars_to_number (buf, THUMB_SIZE);
26773 newval <<= 16;
26774 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 26775
c19d1205 26776 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 26777 {
c19d1205
ZW
26778 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26779 if (value >= 0)
26780 newval |= (1 << 23);
26781 else
26782 value = -value;
26783 if (value % 4 != 0)
26784 {
26785 as_bad_where (fixP->fx_file, fixP->fx_line,
26786 _("offset not a multiple of 4"));
26787 break;
26788 }
26789 value /= 4;
216d22bc 26790 if (value > 0xff)
c19d1205
ZW
26791 {
26792 as_bad_where (fixP->fx_file, fixP->fx_line,
26793 _("offset out of range"));
26794 break;
26795 }
26796 newval &= ~0xff;
b99bd4ef 26797 }
c19d1205 26798 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 26799 {
c19d1205
ZW
26800 /* PC-relative, 12-bit offset. */
26801 if (value >= 0)
26802 newval |= (1 << 23);
26803 else
26804 value = -value;
216d22bc 26805 if (value > 0xfff)
c19d1205
ZW
26806 {
26807 as_bad_where (fixP->fx_file, fixP->fx_line,
26808 _("offset out of range"));
26809 break;
26810 }
26811 newval &= ~0xfff;
b99bd4ef 26812 }
c19d1205 26813 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 26814 {
c19d1205
ZW
26815 /* Writeback: 8-bit, +/- offset. */
26816 if (value >= 0)
26817 newval |= (1 << 9);
26818 else
26819 value = -value;
216d22bc 26820 if (value > 0xff)
c19d1205
ZW
26821 {
26822 as_bad_where (fixP->fx_file, fixP->fx_line,
26823 _("offset out of range"));
26824 break;
26825 }
26826 newval &= ~0xff;
b99bd4ef 26827 }
c19d1205 26828 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 26829 {
c19d1205 26830 /* T-instruction: positive 8-bit offset. */
216d22bc 26831 if (value < 0 || value > 0xff)
b99bd4ef 26832 {
c19d1205
ZW
26833 as_bad_where (fixP->fx_file, fixP->fx_line,
26834 _("offset out of range"));
26835 break;
b99bd4ef 26836 }
c19d1205
ZW
26837 newval &= ~0xff;
26838 newval |= value;
b99bd4ef
NC
26839 }
26840 else
b99bd4ef 26841 {
c19d1205
ZW
26842 /* Positive 12-bit or negative 8-bit offset. */
26843 int limit;
26844 if (value >= 0)
b99bd4ef 26845 {
c19d1205
ZW
26846 newval |= (1 << 23);
26847 limit = 0xfff;
26848 }
26849 else
26850 {
26851 value = -value;
26852 limit = 0xff;
26853 }
26854 if (value > limit)
26855 {
26856 as_bad_where (fixP->fx_file, fixP->fx_line,
26857 _("offset out of range"));
26858 break;
b99bd4ef 26859 }
c19d1205 26860 newval &= ~limit;
b99bd4ef 26861 }
b99bd4ef 26862
c19d1205
ZW
26863 newval |= value;
26864 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26865 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26866 break;
404ff6b5 26867
c19d1205
ZW
26868 case BFD_RELOC_ARM_SHIFT_IMM:
26869 newval = md_chars_to_number (buf, INSN_SIZE);
26870 if (((unsigned long) value) > 32
26871 || (value == 32
26872 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26873 {
26874 as_bad_where (fixP->fx_file, fixP->fx_line,
26875 _("shift expression is too large"));
26876 break;
26877 }
404ff6b5 26878
c19d1205
ZW
26879 if (value == 0)
26880 /* Shifts of zero must be done as lsl. */
26881 newval &= ~0x60;
26882 else if (value == 32)
26883 value = 0;
26884 newval &= 0xfffff07f;
26885 newval |= (value & 0x1f) << 7;
26886 md_number_to_chars (buf, newval, INSN_SIZE);
26887 break;
404ff6b5 26888
c19d1205 26889 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 26890 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 26891 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 26892 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
26893 /* We claim that this fixup has been processed here,
26894 even if in fact we generate an error because we do
26895 not have a reloc for it, so tc_gen_reloc will reject it. */
26896 fixP->fx_done = 1;
404ff6b5 26897
c19d1205
ZW
26898 if (fixP->fx_addsy
26899 && ! S_IS_DEFINED (fixP->fx_addsy))
26900 {
26901 as_bad_where (fixP->fx_file, fixP->fx_line,
26902 _("undefined symbol %s used as an immediate value"),
26903 S_GET_NAME (fixP->fx_addsy));
26904 break;
26905 }
404ff6b5 26906
c19d1205
ZW
26907 newval = md_chars_to_number (buf, THUMB_SIZE);
26908 newval <<= 16;
26909 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 26910
16805f35 26911 newimm = FAIL;
bada4342
JW
26912 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26913 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26914 Thumb2 modified immediate encoding (T2). */
26915 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 26916 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
26917 {
26918 newimm = encode_thumb32_immediate (value);
26919 if (newimm == (unsigned int) FAIL)
26920 newimm = thumb32_negate_data_op (&newval, value);
26921 }
bada4342 26922 if (newimm == (unsigned int) FAIL)
92e90b6e 26923 {
bada4342 26924 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 26925 {
bada4342
JW
26926 /* Turn add/sum into addw/subw. */
26927 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26928 newval = (newval & 0xfeffffff) | 0x02000000;
26929 /* No flat 12-bit imm encoding for addsw/subsw. */
26930 if ((newval & 0x00100000) == 0)
40f246e3 26931 {
bada4342
JW
26932 /* 12 bit immediate for addw/subw. */
26933 if (value < 0)
26934 {
26935 value = -value;
26936 newval ^= 0x00a00000;
26937 }
26938 if (value > 0xfff)
26939 newimm = (unsigned int) FAIL;
26940 else
26941 newimm = value;
26942 }
26943 }
26944 else
26945 {
26946 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26947 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26948 disassembling, MOV is preferred when there is no encoding
db7bf105 26949 overlap. */
bada4342 26950 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
26951 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26952 but with the Rn field [19:16] set to 1111. */
26953 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
26954 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26955 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 26956 && value >= 0 && value <= 0xffff)
bada4342
JW
26957 {
26958 /* Toggle bit[25] to change encoding from T2 to T3. */
26959 newval ^= 1 << 25;
26960 /* Clear bits[19:16]. */
26961 newval &= 0xfff0ffff;
26962 /* Encoding high 4bits imm. Code below will encode the
26963 remaining low 12bits. */
26964 newval |= (value & 0x0000f000) << 4;
26965 newimm = value & 0x00000fff;
40f246e3 26966 }
e9f89963 26967 }
92e90b6e 26968 }
cc8a6dd0 26969
c19d1205 26970 if (newimm == (unsigned int)FAIL)
3631a3c8 26971 {
c19d1205
ZW
26972 as_bad_where (fixP->fx_file, fixP->fx_line,
26973 _("invalid constant (%lx) after fixup"),
26974 (unsigned long) value);
26975 break;
3631a3c8
NC
26976 }
26977
c19d1205
ZW
26978 newval |= (newimm & 0x800) << 15;
26979 newval |= (newimm & 0x700) << 4;
26980 newval |= (newimm & 0x0ff);
cc8a6dd0 26981
c19d1205
ZW
26982 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26983 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26984 break;
a737bd4d 26985
3eb17e6b 26986 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
26987 if (((unsigned long) value) > 0xffff)
26988 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 26989 _("invalid smc expression"));
2fc8bdac 26990 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26991 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26992 md_number_to_chars (buf, newval, INSN_SIZE);
26993 break;
a737bd4d 26994
90ec0d68
MGD
26995 case BFD_RELOC_ARM_HVC:
26996 if (((unsigned long) value) > 0xffff)
26997 as_bad_where (fixP->fx_file, fixP->fx_line,
26998 _("invalid hvc expression"));
26999 newval = md_chars_to_number (buf, INSN_SIZE);
27000 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27001 md_number_to_chars (buf, newval, INSN_SIZE);
27002 break;
27003
c19d1205 27004 case BFD_RELOC_ARM_SWI:
adbaf948 27005 if (fixP->tc_fix_data != 0)
c19d1205
ZW
27006 {
27007 if (((unsigned long) value) > 0xff)
27008 as_bad_where (fixP->fx_file, fixP->fx_line,
27009 _("invalid swi expression"));
2fc8bdac 27010 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
27011 newval |= value;
27012 md_number_to_chars (buf, newval, THUMB_SIZE);
27013 }
27014 else
27015 {
27016 if (((unsigned long) value) > 0x00ffffff)
27017 as_bad_where (fixP->fx_file, fixP->fx_line,
27018 _("invalid swi expression"));
2fc8bdac 27019 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27020 newval |= value;
27021 md_number_to_chars (buf, newval, INSN_SIZE);
27022 }
27023 break;
a737bd4d 27024
c19d1205
ZW
27025 case BFD_RELOC_ARM_MULTI:
27026 if (((unsigned long) value) > 0xffff)
27027 as_bad_where (fixP->fx_file, fixP->fx_line,
27028 _("invalid expression in load/store multiple"));
27029 newval = value | md_chars_to_number (buf, INSN_SIZE);
27030 md_number_to_chars (buf, newval, INSN_SIZE);
27031 break;
a737bd4d 27032
c19d1205 27033#ifdef OBJ_ELF
39b41c9c 27034 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
27035
27036 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27037 && fixP->fx_addsy
34e77a92 27038 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27039 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27040 && THUMB_IS_FUNC (fixP->fx_addsy))
27041 /* Flip the bl to blx. This is a simple flip
27042 bit here because we generate PCREL_CALL for
27043 unconditional bls. */
27044 {
27045 newval = md_chars_to_number (buf, INSN_SIZE);
27046 newval = newval | 0x10000000;
27047 md_number_to_chars (buf, newval, INSN_SIZE);
27048 temp = 1;
27049 fixP->fx_done = 1;
27050 }
39b41c9c
PB
27051 else
27052 temp = 3;
27053 goto arm_branch_common;
27054
27055 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
27056 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27057 && fixP->fx_addsy
34e77a92 27058 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27059 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27060 && THUMB_IS_FUNC (fixP->fx_addsy))
27061 {
27062 /* This would map to a bl<cond>, b<cond>,
27063 b<always> to a Thumb function. We
27064 need to force a relocation for this particular
27065 case. */
27066 newval = md_chars_to_number (buf, INSN_SIZE);
27067 fixP->fx_done = 0;
27068 }
1a0670f3 27069 /* Fall through. */
267bf995 27070
2fc8bdac 27071 case BFD_RELOC_ARM_PLT32:
c19d1205 27072#endif
39b41c9c
PB
27073 case BFD_RELOC_ARM_PCREL_BRANCH:
27074 temp = 3;
27075 goto arm_branch_common;
a737bd4d 27076
39b41c9c 27077 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 27078
39b41c9c 27079 temp = 1;
267bf995
RR
27080 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27081 && fixP->fx_addsy
34e77a92 27082 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27083 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27084 && ARM_IS_FUNC (fixP->fx_addsy))
27085 {
27086 /* Flip the blx to a bl and warn. */
27087 const char *name = S_GET_NAME (fixP->fx_addsy);
27088 newval = 0xeb000000;
27089 as_warn_where (fixP->fx_file, fixP->fx_line,
27090 _("blx to '%s' an ARM ISA state function changed to bl"),
27091 name);
27092 md_number_to_chars (buf, newval, INSN_SIZE);
27093 temp = 3;
27094 fixP->fx_done = 1;
27095 }
27096
27097#ifdef OBJ_ELF
27098 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 27099 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
27100#endif
27101
39b41c9c 27102 arm_branch_common:
c19d1205 27103 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
27104 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27105 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 27106 also be clear. */
39b41c9c 27107 if (value & temp)
c19d1205 27108 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
27109 _("misaligned branch destination"));
27110 if ((value & (offsetT)0xfe000000) != (offsetT)0
27111 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 27112 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27113
2fc8bdac 27114 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27115 {
2fc8bdac
ZW
27116 newval = md_chars_to_number (buf, INSN_SIZE);
27117 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
27118 /* Set the H bit on BLX instructions. */
27119 if (temp == 1)
27120 {
27121 if (value & 2)
27122 newval |= 0x01000000;
27123 else
27124 newval &= ~0x01000000;
27125 }
2fc8bdac 27126 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 27127 }
c19d1205 27128 break;
a737bd4d 27129
25fe350b
MS
27130 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27131 /* CBZ can only branch forward. */
a737bd4d 27132
738755b0 27133 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
27134 (which, strictly speaking, are prohibited) will be turned into
27135 no-ops.
738755b0
MS
27136
27137 FIXME: It may be better to remove the instruction completely and
27138 perform relaxation. */
27139 if (value == -2)
2fc8bdac
ZW
27140 {
27141 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 27142 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
27143 md_number_to_chars (buf, newval, THUMB_SIZE);
27144 }
738755b0
MS
27145 else
27146 {
27147 if (value & ~0x7e)
08f10d51 27148 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 27149
477330fc 27150 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
27151 {
27152 newval = md_chars_to_number (buf, THUMB_SIZE);
27153 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27154 md_number_to_chars (buf, newval, THUMB_SIZE);
27155 }
27156 }
c19d1205 27157 break;
a737bd4d 27158
c19d1205 27159 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 27160 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 27161 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27162
2fc8bdac
ZW
27163 if (fixP->fx_done || !seg->use_rela_p)
27164 {
27165 newval = md_chars_to_number (buf, THUMB_SIZE);
27166 newval |= (value & 0x1ff) >> 1;
27167 md_number_to_chars (buf, newval, THUMB_SIZE);
27168 }
c19d1205 27169 break;
a737bd4d 27170
c19d1205 27171 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 27172 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 27173 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27174
2fc8bdac
ZW
27175 if (fixP->fx_done || !seg->use_rela_p)
27176 {
27177 newval = md_chars_to_number (buf, THUMB_SIZE);
27178 newval |= (value & 0xfff) >> 1;
27179 md_number_to_chars (buf, newval, THUMB_SIZE);
27180 }
c19d1205 27181 break;
a737bd4d 27182
c19d1205 27183 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
27184 if (fixP->fx_addsy
27185 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27186 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27187 && ARM_IS_FUNC (fixP->fx_addsy)
27188 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27189 {
27190 /* Force a relocation for a branch 20 bits wide. */
27191 fixP->fx_done = 0;
27192 }
08f10d51 27193 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
27194 as_bad_where (fixP->fx_file, fixP->fx_line,
27195 _("conditional branch out of range"));
404ff6b5 27196
2fc8bdac
ZW
27197 if (fixP->fx_done || !seg->use_rela_p)
27198 {
27199 offsetT newval2;
27200 addressT S, J1, J2, lo, hi;
404ff6b5 27201
2fc8bdac
ZW
27202 S = (value & 0x00100000) >> 20;
27203 J2 = (value & 0x00080000) >> 19;
27204 J1 = (value & 0x00040000) >> 18;
27205 hi = (value & 0x0003f000) >> 12;
27206 lo = (value & 0x00000ffe) >> 1;
6c43fab6 27207
2fc8bdac
ZW
27208 newval = md_chars_to_number (buf, THUMB_SIZE);
27209 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27210 newval |= (S << 10) | hi;
27211 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27212 md_number_to_chars (buf, newval, THUMB_SIZE);
27213 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27214 }
c19d1205 27215 break;
6c43fab6 27216
c19d1205 27217 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
27218 /* If there is a blx from a thumb state function to
27219 another thumb function flip this to a bl and warn
27220 about it. */
27221
27222 if (fixP->fx_addsy
34e77a92 27223 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27224 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27225 && THUMB_IS_FUNC (fixP->fx_addsy))
27226 {
27227 const char *name = S_GET_NAME (fixP->fx_addsy);
27228 as_warn_where (fixP->fx_file, fixP->fx_line,
27229 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27230 name);
27231 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27232 newval = newval | 0x1000;
27233 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27234 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27235 fixP->fx_done = 1;
27236 }
27237
27238
27239 goto thumb_bl_common;
27240
c19d1205 27241 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
27242 /* A bl from Thumb state ISA to an internal ARM state function
27243 is converted to a blx. */
27244 if (fixP->fx_addsy
27245 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27246 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27247 && ARM_IS_FUNC (fixP->fx_addsy)
27248 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27249 {
27250 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27251 newval = newval & ~0x1000;
27252 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27253 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27254 fixP->fx_done = 1;
27255 }
27256
27257 thumb_bl_common:
27258
2fc8bdac
ZW
27259 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27260 /* For a BLX instruction, make sure that the relocation is rounded up
27261 to a word boundary. This follows the semantics of the instruction
27262 which specifies that bit 1 of the target address will come from bit
27263 1 of the base address. */
d406f3e4
JB
27264 value = (value + 3) & ~ 3;
27265
27266#ifdef OBJ_ELF
27267 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27268 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27269 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27270#endif
404ff6b5 27271
2b2f5df9
NC
27272 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27273 {
fc289b0a 27274 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
27275 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27276 else if ((value & ~0x1ffffff)
27277 && ((value & ~0x1ffffff) != ~0x1ffffff))
27278 as_bad_where (fixP->fx_file, fixP->fx_line,
27279 _("Thumb2 branch out of range"));
27280 }
4a42ebbc
RR
27281
27282 if (fixP->fx_done || !seg->use_rela_p)
27283 encode_thumb2_b_bl_offset (buf, value);
27284
c19d1205 27285 break;
404ff6b5 27286
c19d1205 27287 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
27288 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27289 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 27290
2fc8bdac 27291 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 27292 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 27293
2fc8bdac 27294 break;
a737bd4d 27295
2fc8bdac
ZW
27296 case BFD_RELOC_8:
27297 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 27298 *buf = value;
c19d1205 27299 break;
a737bd4d 27300
c19d1205 27301 case BFD_RELOC_16:
2fc8bdac 27302 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27303 md_number_to_chars (buf, value, 2);
c19d1205 27304 break;
a737bd4d 27305
c19d1205 27306#ifdef OBJ_ELF
0855e32b
NS
27307 case BFD_RELOC_ARM_TLS_CALL:
27308 case BFD_RELOC_ARM_THM_TLS_CALL:
27309 case BFD_RELOC_ARM_TLS_DESCSEQ:
27310 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 27311 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
27312 case BFD_RELOC_ARM_TLS_GD32:
27313 case BFD_RELOC_ARM_TLS_LE32:
27314 case BFD_RELOC_ARM_TLS_IE32:
27315 case BFD_RELOC_ARM_TLS_LDM32:
27316 case BFD_RELOC_ARM_TLS_LDO32:
27317 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 27318 break;
6c43fab6 27319
5c5a4843
CL
27320 /* Same handling as above, but with the arm_fdpic guard. */
27321 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27322 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27323 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27324 if (arm_fdpic)
27325 {
27326 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27327 }
27328 else
27329 {
27330 as_bad_where (fixP->fx_file, fixP->fx_line,
27331 _("Relocation supported only in FDPIC mode"));
27332 }
27333 break;
27334
c19d1205
ZW
27335 case BFD_RELOC_ARM_GOT32:
27336 case BFD_RELOC_ARM_GOTOFF:
c19d1205 27337 break;
b43420e6
NC
27338
27339 case BFD_RELOC_ARM_GOT_PREL:
27340 if (fixP->fx_done || !seg->use_rela_p)
477330fc 27341 md_number_to_chars (buf, value, 4);
b43420e6
NC
27342 break;
27343
9a6f4e97
NS
27344 case BFD_RELOC_ARM_TARGET2:
27345 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
27346 addend here for REL targets, because it won't be written out
27347 during reloc processing later. */
9a6f4e97
NS
27348 if (fixP->fx_done || !seg->use_rela_p)
27349 md_number_to_chars (buf, fixP->fx_offset, 4);
27350 break;
188fd7ae
CL
27351
27352 /* Relocations for FDPIC. */
27353 case BFD_RELOC_ARM_GOTFUNCDESC:
27354 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27355 case BFD_RELOC_ARM_FUNCDESC:
27356 if (arm_fdpic)
27357 {
27358 if (fixP->fx_done || !seg->use_rela_p)
27359 md_number_to_chars (buf, 0, 4);
27360 }
27361 else
27362 {
27363 as_bad_where (fixP->fx_file, fixP->fx_line,
27364 _("Relocation supported only in FDPIC mode"));
27365 }
27366 break;
c19d1205 27367#endif
6c43fab6 27368
c19d1205
ZW
27369 case BFD_RELOC_RVA:
27370 case BFD_RELOC_32:
27371 case BFD_RELOC_ARM_TARGET1:
27372 case BFD_RELOC_ARM_ROSEGREL32:
27373 case BFD_RELOC_ARM_SBREL32:
27374 case BFD_RELOC_32_PCREL:
f0927246
NC
27375#ifdef TE_PE
27376 case BFD_RELOC_32_SECREL:
27377#endif
2fc8bdac 27378 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
27379#ifdef TE_WINCE
27380 /* For WinCE we only do this for pcrel fixups. */
27381 if (fixP->fx_done || fixP->fx_pcrel)
27382#endif
27383 md_number_to_chars (buf, value, 4);
c19d1205 27384 break;
6c43fab6 27385
c19d1205
ZW
27386#ifdef OBJ_ELF
27387 case BFD_RELOC_ARM_PREL31:
2fc8bdac 27388 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27389 {
27390 newval = md_chars_to_number (buf, 4) & 0x80000000;
27391 if ((value ^ (value >> 1)) & 0x40000000)
27392 {
27393 as_bad_where (fixP->fx_file, fixP->fx_line,
27394 _("rel31 relocation overflow"));
27395 }
27396 newval |= value & 0x7fffffff;
27397 md_number_to_chars (buf, newval, 4);
27398 }
27399 break;
c19d1205 27400#endif
a737bd4d 27401
c19d1205 27402 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27403 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27404 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27405 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27406 newval = md_chars_to_number (buf, INSN_SIZE);
27407 else
27408 newval = get_thumb32_insn (buf);
27409 if ((newval & 0x0f200f00) == 0x0d000900)
27410 {
27411 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27412 has permitted values that are multiples of 2, in the range 0
27413 to 510. */
27414 if (value < -510 || value > 510 || (value & 1))
27415 as_bad_where (fixP->fx_file, fixP->fx_line,
27416 _("co-processor offset out of range"));
27417 }
32c36c3c
AV
27418 else if ((newval & 0xfe001f80) == 0xec000f80)
27419 {
27420 if (value < -511 || value > 512 || (value & 3))
27421 as_bad_where (fixP->fx_file, fixP->fx_line,
27422 _("co-processor offset out of range"));
27423 }
9db2f6b4 27424 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27425 as_bad_where (fixP->fx_file, fixP->fx_line,
27426 _("co-processor offset out of range"));
27427 cp_off_common:
26d97720 27428 sign = value > 0;
c19d1205
ZW
27429 if (value < 0)
27430 value = -value;
8f06b2d8
PB
27431 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27432 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27433 newval = md_chars_to_number (buf, INSN_SIZE);
27434 else
27435 newval = get_thumb32_insn (buf);
26d97720 27436 if (value == 0)
32c36c3c
AV
27437 {
27438 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27439 newval &= 0xffffff80;
27440 else
27441 newval &= 0xffffff00;
27442 }
26d97720
NS
27443 else
27444 {
32c36c3c
AV
27445 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27446 newval &= 0xff7fff80;
27447 else
27448 newval &= 0xff7fff00;
9db2f6b4
RL
27449 if ((newval & 0x0f200f00) == 0x0d000900)
27450 {
27451 /* This is a fp16 vstr/vldr.
27452
27453 It requires the immediate offset in the instruction is shifted
27454 left by 1 to be a half-word offset.
27455
27456 Here, left shift by 1 first, and later right shift by 2
27457 should get the right offset. */
27458 value <<= 1;
27459 }
26d97720
NS
27460 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27461 }
8f06b2d8
PB
27462 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27463 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27464 md_number_to_chars (buf, newval, INSN_SIZE);
27465 else
27466 put_thumb32_insn (buf, newval);
c19d1205 27467 break;
a737bd4d 27468
c19d1205 27469 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 27470 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
27471 if (value < -255 || value > 255)
27472 as_bad_where (fixP->fx_file, fixP->fx_line,
27473 _("co-processor offset out of range"));
df7849c5 27474 value *= 4;
c19d1205 27475 goto cp_off_common;
6c43fab6 27476
c19d1205
ZW
27477 case BFD_RELOC_ARM_THUMB_OFFSET:
27478 newval = md_chars_to_number (buf, THUMB_SIZE);
27479 /* Exactly what ranges, and where the offset is inserted depends
27480 on the type of instruction, we can establish this from the
27481 top 4 bits. */
27482 switch (newval >> 12)
27483 {
27484 case 4: /* PC load. */
27485 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27486 forced to zero for these loads; md_pcrel_from has already
27487 compensated for this. */
27488 if (value & 3)
27489 as_bad_where (fixP->fx_file, fixP->fx_line,
27490 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
27491 (((unsigned long) fixP->fx_frag->fr_address
27492 + (unsigned long) fixP->fx_where) & ~3)
27493 + (unsigned long) value);
a737bd4d 27494
c19d1205
ZW
27495 if (value & ~0x3fc)
27496 as_bad_where (fixP->fx_file, fixP->fx_line,
27497 _("invalid offset, value too big (0x%08lX)"),
27498 (long) value);
a737bd4d 27499
c19d1205
ZW
27500 newval |= value >> 2;
27501 break;
a737bd4d 27502
c19d1205
ZW
27503 case 9: /* SP load/store. */
27504 if (value & ~0x3fc)
27505 as_bad_where (fixP->fx_file, fixP->fx_line,
27506 _("invalid offset, value too big (0x%08lX)"),
27507 (long) value);
27508 newval |= value >> 2;
27509 break;
6c43fab6 27510
c19d1205
ZW
27511 case 6: /* Word load/store. */
27512 if (value & ~0x7c)
27513 as_bad_where (fixP->fx_file, fixP->fx_line,
27514 _("invalid offset, value too big (0x%08lX)"),
27515 (long) value);
27516 newval |= value << 4; /* 6 - 2. */
27517 break;
a737bd4d 27518
c19d1205
ZW
27519 case 7: /* Byte load/store. */
27520 if (value & ~0x1f)
27521 as_bad_where (fixP->fx_file, fixP->fx_line,
27522 _("invalid offset, value too big (0x%08lX)"),
27523 (long) value);
27524 newval |= value << 6;
27525 break;
a737bd4d 27526
c19d1205
ZW
27527 case 8: /* Halfword load/store. */
27528 if (value & ~0x3e)
27529 as_bad_where (fixP->fx_file, fixP->fx_line,
27530 _("invalid offset, value too big (0x%08lX)"),
27531 (long) value);
27532 newval |= value << 5; /* 6 - 1. */
27533 break;
a737bd4d 27534
c19d1205
ZW
27535 default:
27536 as_bad_where (fixP->fx_file, fixP->fx_line,
27537 "Unable to process relocation for thumb opcode: %lx",
27538 (unsigned long) newval);
27539 break;
27540 }
27541 md_number_to_chars (buf, newval, THUMB_SIZE);
27542 break;
a737bd4d 27543
c19d1205
ZW
27544 case BFD_RELOC_ARM_THUMB_ADD:
27545 /* This is a complicated relocation, since we use it for all of
27546 the following immediate relocations:
a737bd4d 27547
c19d1205
ZW
27548 3bit ADD/SUB
27549 8bit ADD/SUB
27550 9bit ADD/SUB SP word-aligned
27551 10bit ADD PC/SP word-aligned
a737bd4d 27552
c19d1205
ZW
27553 The type of instruction being processed is encoded in the
27554 instruction field:
a737bd4d 27555
c19d1205
ZW
27556 0x8000 SUB
27557 0x00F0 Rd
27558 0x000F Rs
27559 */
27560 newval = md_chars_to_number (buf, THUMB_SIZE);
27561 {
27562 int rd = (newval >> 4) & 0xf;
27563 int rs = newval & 0xf;
27564 int subtract = !!(newval & 0x8000);
a737bd4d 27565
c19d1205
ZW
27566 /* Check for HI regs, only very restricted cases allowed:
27567 Adjusting SP, and using PC or SP to get an address. */
27568 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27569 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27570 as_bad_where (fixP->fx_file, fixP->fx_line,
27571 _("invalid Hi register with immediate"));
a737bd4d 27572
c19d1205
ZW
27573 /* If value is negative, choose the opposite instruction. */
27574 if (value < 0)
27575 {
27576 value = -value;
27577 subtract = !subtract;
27578 if (value < 0)
27579 as_bad_where (fixP->fx_file, fixP->fx_line,
27580 _("immediate value out of range"));
27581 }
a737bd4d 27582
c19d1205
ZW
27583 if (rd == REG_SP)
27584 {
75c11999 27585 if (value & ~0x1fc)
c19d1205
ZW
27586 as_bad_where (fixP->fx_file, fixP->fx_line,
27587 _("invalid immediate for stack address calculation"));
27588 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27589 newval |= value >> 2;
27590 }
27591 else if (rs == REG_PC || rs == REG_SP)
27592 {
c12d2c9d
NC
27593 /* PR gas/18541. If the addition is for a defined symbol
27594 within range of an ADR instruction then accept it. */
27595 if (subtract
27596 && value == 4
27597 && fixP->fx_addsy != NULL)
27598 {
27599 subtract = 0;
27600
27601 if (! S_IS_DEFINED (fixP->fx_addsy)
27602 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27603 || S_IS_WEAK (fixP->fx_addsy))
27604 {
27605 as_bad_where (fixP->fx_file, fixP->fx_line,
27606 _("address calculation needs a strongly defined nearby symbol"));
27607 }
27608 else
27609 {
27610 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27611
27612 /* Round up to the next 4-byte boundary. */
27613 if (v & 3)
27614 v = (v + 3) & ~ 3;
27615 else
27616 v += 4;
27617 v = S_GET_VALUE (fixP->fx_addsy) - v;
27618
27619 if (v & ~0x3fc)
27620 {
27621 as_bad_where (fixP->fx_file, fixP->fx_line,
27622 _("symbol too far away"));
27623 }
27624 else
27625 {
27626 fixP->fx_done = 1;
27627 value = v;
27628 }
27629 }
27630 }
27631
c19d1205
ZW
27632 if (subtract || value & ~0x3fc)
27633 as_bad_where (fixP->fx_file, fixP->fx_line,
27634 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27635 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27636 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27637 newval |= rd << 8;
27638 newval |= value >> 2;
27639 }
27640 else if (rs == rd)
27641 {
27642 if (value & ~0xff)
27643 as_bad_where (fixP->fx_file, fixP->fx_line,
27644 _("immediate value out of range"));
27645 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27646 newval |= (rd << 8) | value;
27647 }
27648 else
27649 {
27650 if (value & ~0x7)
27651 as_bad_where (fixP->fx_file, fixP->fx_line,
27652 _("immediate value out of range"));
27653 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27654 newval |= rd | (rs << 3) | (value << 6);
27655 }
27656 }
27657 md_number_to_chars (buf, newval, THUMB_SIZE);
27658 break;
a737bd4d 27659
c19d1205
ZW
27660 case BFD_RELOC_ARM_THUMB_IMM:
27661 newval = md_chars_to_number (buf, THUMB_SIZE);
27662 if (value < 0 || value > 255)
27663 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 27664 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
27665 (long) value);
27666 newval |= value;
27667 md_number_to_chars (buf, newval, THUMB_SIZE);
27668 break;
a737bd4d 27669
c19d1205
ZW
27670 case BFD_RELOC_ARM_THUMB_SHIFT:
27671 /* 5bit shift value (0..32). LSL cannot take 32. */
27672 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27673 temp = newval & 0xf800;
27674 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27675 as_bad_where (fixP->fx_file, fixP->fx_line,
27676 _("invalid shift value: %ld"), (long) value);
27677 /* Shifts of zero must be encoded as LSL. */
27678 if (value == 0)
27679 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27680 /* Shifts of 32 are encoded as zero. */
27681 else if (value == 32)
27682 value = 0;
27683 newval |= value << 6;
27684 md_number_to_chars (buf, newval, THUMB_SIZE);
27685 break;
a737bd4d 27686
c19d1205
ZW
27687 case BFD_RELOC_VTABLE_INHERIT:
27688 case BFD_RELOC_VTABLE_ENTRY:
27689 fixP->fx_done = 0;
27690 return;
6c43fab6 27691
b6895b4f
PB
27692 case BFD_RELOC_ARM_MOVW:
27693 case BFD_RELOC_ARM_MOVT:
27694 case BFD_RELOC_ARM_THUMB_MOVW:
27695 case BFD_RELOC_ARM_THUMB_MOVT:
27696 if (fixP->fx_done || !seg->use_rela_p)
27697 {
27698 /* REL format relocations are limited to a 16-bit addend. */
27699 if (!fixP->fx_done)
27700 {
39623e12 27701 if (value < -0x8000 || value > 0x7fff)
b6895b4f 27702 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 27703 _("offset out of range"));
b6895b4f
PB
27704 }
27705 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27706 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27707 {
27708 value >>= 16;
27709 }
27710
27711 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27712 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27713 {
27714 newval = get_thumb32_insn (buf);
27715 newval &= 0xfbf08f00;
27716 newval |= (value & 0xf000) << 4;
27717 newval |= (value & 0x0800) << 15;
27718 newval |= (value & 0x0700) << 4;
27719 newval |= (value & 0x00ff);
27720 put_thumb32_insn (buf, newval);
27721 }
27722 else
27723 {
27724 newval = md_chars_to_number (buf, 4);
27725 newval &= 0xfff0f000;
27726 newval |= value & 0x0fff;
27727 newval |= (value & 0xf000) << 4;
27728 md_number_to_chars (buf, newval, 4);
27729 }
27730 }
27731 return;
27732
72d98d16
MG
27733 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27734 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27735 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27736 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27737 gas_assert (!fixP->fx_done);
27738 {
27739 bfd_vma insn;
27740 bfd_boolean is_mov;
27741 bfd_vma encoded_addend = value;
27742
27743 /* Check that addend can be encoded in instruction. */
27744 if (!seg->use_rela_p && (value < 0 || value > 255))
27745 as_bad_where (fixP->fx_file, fixP->fx_line,
27746 _("the offset 0x%08lX is not representable"),
27747 (unsigned long) encoded_addend);
27748
27749 /* Extract the instruction. */
27750 insn = md_chars_to_number (buf, THUMB_SIZE);
27751 is_mov = (insn & 0xf800) == 0x2000;
27752
27753 /* Encode insn. */
27754 if (is_mov)
27755 {
27756 if (!seg->use_rela_p)
27757 insn |= encoded_addend;
27758 }
27759 else
27760 {
27761 int rd, rs;
27762
27763 /* Extract the instruction. */
27764 /* Encoding is the following
27765 0x8000 SUB
27766 0x00F0 Rd
27767 0x000F Rs
27768 */
27769 /* The following conditions must be true :
27770 - ADD
27771 - Rd == Rs
27772 - Rd <= 7
27773 */
27774 rd = (insn >> 4) & 0xf;
27775 rs = insn & 0xf;
27776 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27777 as_bad_where (fixP->fx_file, fixP->fx_line,
27778 _("Unable to process relocation for thumb opcode: %lx"),
27779 (unsigned long) insn);
27780
27781 /* Encode as ADD immediate8 thumb 1 code. */
27782 insn = 0x3000 | (rd << 8);
27783
27784 /* Place the encoded addend into the first 8 bits of the
27785 instruction. */
27786 if (!seg->use_rela_p)
27787 insn |= encoded_addend;
27788 }
27789
27790 /* Update the instruction. */
27791 md_number_to_chars (buf, insn, THUMB_SIZE);
27792 }
27793 break;
27794
4962c51a
MS
27795 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27796 case BFD_RELOC_ARM_ALU_PC_G0:
27797 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27798 case BFD_RELOC_ARM_ALU_PC_G1:
27799 case BFD_RELOC_ARM_ALU_PC_G2:
27800 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27801 case BFD_RELOC_ARM_ALU_SB_G0:
27802 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27803 case BFD_RELOC_ARM_ALU_SB_G1:
27804 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 27805 gas_assert (!fixP->fx_done);
4962c51a
MS
27806 if (!seg->use_rela_p)
27807 {
477330fc
RM
27808 bfd_vma insn;
27809 bfd_vma encoded_addend;
3ca4a8ec 27810 bfd_vma addend_abs = llabs (value);
477330fc
RM
27811
27812 /* Check that the absolute value of the addend can be
27813 expressed as an 8-bit constant plus a rotation. */
27814 encoded_addend = encode_arm_immediate (addend_abs);
27815 if (encoded_addend == (unsigned int) FAIL)
4962c51a 27816 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27817 _("the offset 0x%08lX is not representable"),
27818 (unsigned long) addend_abs);
27819
27820 /* Extract the instruction. */
27821 insn = md_chars_to_number (buf, INSN_SIZE);
27822
27823 /* If the addend is positive, use an ADD instruction.
27824 Otherwise use a SUB. Take care not to destroy the S bit. */
27825 insn &= 0xff1fffff;
27826 if (value < 0)
27827 insn |= 1 << 22;
27828 else
27829 insn |= 1 << 23;
27830
27831 /* Place the encoded addend into the first 12 bits of the
27832 instruction. */
27833 insn &= 0xfffff000;
27834 insn |= encoded_addend;
27835
27836 /* Update the instruction. */
27837 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
27838 }
27839 break;
27840
27841 case BFD_RELOC_ARM_LDR_PC_G0:
27842 case BFD_RELOC_ARM_LDR_PC_G1:
27843 case BFD_RELOC_ARM_LDR_PC_G2:
27844 case BFD_RELOC_ARM_LDR_SB_G0:
27845 case BFD_RELOC_ARM_LDR_SB_G1:
27846 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 27847 gas_assert (!fixP->fx_done);
4962c51a 27848 if (!seg->use_rela_p)
477330fc
RM
27849 {
27850 bfd_vma insn;
3ca4a8ec 27851 bfd_vma addend_abs = llabs (value);
4962c51a 27852
477330fc
RM
27853 /* Check that the absolute value of the addend can be
27854 encoded in 12 bits. */
27855 if (addend_abs >= 0x1000)
4962c51a 27856 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27857 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27858 (unsigned long) addend_abs);
27859
27860 /* Extract the instruction. */
27861 insn = md_chars_to_number (buf, INSN_SIZE);
27862
27863 /* If the addend is negative, clear bit 23 of the instruction.
27864 Otherwise set it. */
27865 if (value < 0)
27866 insn &= ~(1 << 23);
27867 else
27868 insn |= 1 << 23;
27869
27870 /* Place the absolute value of the addend into the first 12 bits
27871 of the instruction. */
27872 insn &= 0xfffff000;
27873 insn |= addend_abs;
27874
27875 /* Update the instruction. */
27876 md_number_to_chars (buf, insn, INSN_SIZE);
27877 }
4962c51a
MS
27878 break;
27879
27880 case BFD_RELOC_ARM_LDRS_PC_G0:
27881 case BFD_RELOC_ARM_LDRS_PC_G1:
27882 case BFD_RELOC_ARM_LDRS_PC_G2:
27883 case BFD_RELOC_ARM_LDRS_SB_G0:
27884 case BFD_RELOC_ARM_LDRS_SB_G1:
27885 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 27886 gas_assert (!fixP->fx_done);
4962c51a 27887 if (!seg->use_rela_p)
477330fc
RM
27888 {
27889 bfd_vma insn;
3ca4a8ec 27890 bfd_vma addend_abs = llabs (value);
4962c51a 27891
477330fc
RM
27892 /* Check that the absolute value of the addend can be
27893 encoded in 8 bits. */
27894 if (addend_abs >= 0x100)
4962c51a 27895 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27896 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27897 (unsigned long) addend_abs);
27898
27899 /* Extract the instruction. */
27900 insn = md_chars_to_number (buf, INSN_SIZE);
27901
27902 /* If the addend is negative, clear bit 23 of the instruction.
27903 Otherwise set it. */
27904 if (value < 0)
27905 insn &= ~(1 << 23);
27906 else
27907 insn |= 1 << 23;
27908
27909 /* Place the first four bits of the absolute value of the addend
27910 into the first 4 bits of the instruction, and the remaining
27911 four into bits 8 .. 11. */
27912 insn &= 0xfffff0f0;
27913 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27914
27915 /* Update the instruction. */
27916 md_number_to_chars (buf, insn, INSN_SIZE);
27917 }
4962c51a
MS
27918 break;
27919
27920 case BFD_RELOC_ARM_LDC_PC_G0:
27921 case BFD_RELOC_ARM_LDC_PC_G1:
27922 case BFD_RELOC_ARM_LDC_PC_G2:
27923 case BFD_RELOC_ARM_LDC_SB_G0:
27924 case BFD_RELOC_ARM_LDC_SB_G1:
27925 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 27926 gas_assert (!fixP->fx_done);
4962c51a 27927 if (!seg->use_rela_p)
477330fc
RM
27928 {
27929 bfd_vma insn;
3ca4a8ec 27930 bfd_vma addend_abs = llabs (value);
4962c51a 27931
477330fc
RM
27932 /* Check that the absolute value of the addend is a multiple of
27933 four and, when divided by four, fits in 8 bits. */
27934 if (addend_abs & 0x3)
4962c51a 27935 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27936 _("bad offset 0x%08lX (must be word-aligned)"),
27937 (unsigned long) addend_abs);
4962c51a 27938
477330fc 27939 if ((addend_abs >> 2) > 0xff)
4962c51a 27940 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27941 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27942 (unsigned long) addend_abs);
27943
27944 /* Extract the instruction. */
27945 insn = md_chars_to_number (buf, INSN_SIZE);
27946
27947 /* If the addend is negative, clear bit 23 of the instruction.
27948 Otherwise set it. */
27949 if (value < 0)
27950 insn &= ~(1 << 23);
27951 else
27952 insn |= 1 << 23;
27953
27954 /* Place the addend (divided by four) into the first eight
27955 bits of the instruction. */
27956 insn &= 0xfffffff0;
27957 insn |= addend_abs >> 2;
27958
27959 /* Update the instruction. */
27960 md_number_to_chars (buf, insn, INSN_SIZE);
27961 }
4962c51a
MS
27962 break;
27963
e12437dc
AV
27964 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27965 if (fixP->fx_addsy
27966 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27967 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27968 && ARM_IS_FUNC (fixP->fx_addsy)
27969 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27970 {
27971 /* Force a relocation for a branch 5 bits wide. */
27972 fixP->fx_done = 0;
27973 }
27974 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27975 as_bad_where (fixP->fx_file, fixP->fx_line,
27976 BAD_BRANCH_OFF);
27977
27978 if (fixP->fx_done || !seg->use_rela_p)
27979 {
27980 addressT boff = value >> 1;
27981
27982 newval = md_chars_to_number (buf, THUMB_SIZE);
27983 newval |= (boff << 7);
27984 md_number_to_chars (buf, newval, THUMB_SIZE);
27985 }
27986 break;
27987
f6b2b12d
AV
27988 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27989 if (fixP->fx_addsy
27990 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27991 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27992 && ARM_IS_FUNC (fixP->fx_addsy)
27993 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27994 {
27995 fixP->fx_done = 0;
27996 }
27997 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27998 as_bad_where (fixP->fx_file, fixP->fx_line,
27999 _("branch out of range"));
28000
28001 if (fixP->fx_done || !seg->use_rela_p)
28002 {
28003 newval = md_chars_to_number (buf, THUMB_SIZE);
28004
28005 addressT boff = ((newval & 0x0780) >> 7) << 1;
28006 addressT diff = value - boff;
28007
28008 if (diff == 4)
28009 {
28010 newval |= 1 << 1; /* T bit. */
28011 }
28012 else if (diff != 2)
28013 {
28014 as_bad_where (fixP->fx_file, fixP->fx_line,
28015 _("out of range label-relative fixup value"));
28016 }
28017 md_number_to_chars (buf, newval, THUMB_SIZE);
28018 }
28019 break;
28020
e5d6e09e
AV
28021 case BFD_RELOC_ARM_THUMB_BF17:
28022 if (fixP->fx_addsy
28023 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28024 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28025 && ARM_IS_FUNC (fixP->fx_addsy)
28026 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28027 {
28028 /* Force a relocation for a branch 17 bits wide. */
28029 fixP->fx_done = 0;
28030 }
28031
28032 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28033 as_bad_where (fixP->fx_file, fixP->fx_line,
28034 BAD_BRANCH_OFF);
28035
28036 if (fixP->fx_done || !seg->use_rela_p)
28037 {
28038 offsetT newval2;
28039 addressT immA, immB, immC;
28040
28041 immA = (value & 0x0001f000) >> 12;
28042 immB = (value & 0x00000ffc) >> 2;
28043 immC = (value & 0x00000002) >> 1;
28044
28045 newval = md_chars_to_number (buf, THUMB_SIZE);
28046 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28047 newval |= immA;
28048 newval2 |= (immC << 11) | (immB << 1);
28049 md_number_to_chars (buf, newval, THUMB_SIZE);
28050 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28051 }
28052 break;
28053
1caf72a5
AV
28054 case BFD_RELOC_ARM_THUMB_BF19:
28055 if (fixP->fx_addsy
28056 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28057 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28058 && ARM_IS_FUNC (fixP->fx_addsy)
28059 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28060 {
28061 /* Force a relocation for a branch 19 bits wide. */
28062 fixP->fx_done = 0;
28063 }
28064
28065 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28066 as_bad_where (fixP->fx_file, fixP->fx_line,
28067 BAD_BRANCH_OFF);
28068
28069 if (fixP->fx_done || !seg->use_rela_p)
28070 {
28071 offsetT newval2;
28072 addressT immA, immB, immC;
28073
28074 immA = (value & 0x0007f000) >> 12;
28075 immB = (value & 0x00000ffc) >> 2;
28076 immC = (value & 0x00000002) >> 1;
28077
28078 newval = md_chars_to_number (buf, THUMB_SIZE);
28079 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28080 newval |= immA;
28081 newval2 |= (immC << 11) | (immB << 1);
28082 md_number_to_chars (buf, newval, THUMB_SIZE);
28083 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28084 }
28085 break;
28086
1889da70
AV
28087 case BFD_RELOC_ARM_THUMB_BF13:
28088 if (fixP->fx_addsy
28089 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28090 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28091 && ARM_IS_FUNC (fixP->fx_addsy)
28092 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28093 {
28094 /* Force a relocation for a branch 13 bits wide. */
28095 fixP->fx_done = 0;
28096 }
28097
28098 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28099 as_bad_where (fixP->fx_file, fixP->fx_line,
28100 BAD_BRANCH_OFF);
28101
28102 if (fixP->fx_done || !seg->use_rela_p)
28103 {
28104 offsetT newval2;
28105 addressT immA, immB, immC;
28106
28107 immA = (value & 0x00001000) >> 12;
28108 immB = (value & 0x00000ffc) >> 2;
28109 immC = (value & 0x00000002) >> 1;
28110
28111 newval = md_chars_to_number (buf, THUMB_SIZE);
28112 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28113 newval |= immA;
28114 newval2 |= (immC << 11) | (immB << 1);
28115 md_number_to_chars (buf, newval, THUMB_SIZE);
28116 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28117 }
28118 break;
28119
60f993ce
AV
28120 case BFD_RELOC_ARM_THUMB_LOOP12:
28121 if (fixP->fx_addsy
28122 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28123 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28124 && ARM_IS_FUNC (fixP->fx_addsy)
28125 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28126 {
28127 /* Force a relocation for a branch 12 bits wide. */
28128 fixP->fx_done = 0;
28129 }
28130
28131 bfd_vma insn = get_thumb32_insn (buf);
28132 /* le lr, <label> or le <label> */
28133 if (((insn & 0xffffffff) == 0xf00fc001)
28134 || ((insn & 0xffffffff) == 0xf02fc001))
28135 value = -value;
28136
28137 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28138 as_bad_where (fixP->fx_file, fixP->fx_line,
28139 BAD_BRANCH_OFF);
28140 if (fixP->fx_done || !seg->use_rela_p)
28141 {
28142 addressT imml, immh;
28143
28144 immh = (value & 0x00000ffc) >> 2;
28145 imml = (value & 0x00000002) >> 1;
28146
28147 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28148 newval |= (imml << 11) | (immh << 1);
28149 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28150 }
28151 break;
28152
845b51d6
PB
28153 case BFD_RELOC_ARM_V4BX:
28154 /* This will need to go in the object file. */
28155 fixP->fx_done = 0;
28156 break;
28157
c19d1205
ZW
28158 case BFD_RELOC_UNUSED:
28159 default:
28160 as_bad_where (fixP->fx_file, fixP->fx_line,
28161 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28162 }
6c43fab6
RE
28163}
28164
c19d1205
ZW
28165/* Translate internal representation of relocation info to BFD target
28166 format. */
a737bd4d 28167
c19d1205 28168arelent *
00a97672 28169tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 28170{
c19d1205
ZW
28171 arelent * reloc;
28172 bfd_reloc_code_real_type code;
a737bd4d 28173
325801bd 28174 reloc = XNEW (arelent);
a737bd4d 28175
325801bd 28176 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
28177 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28178 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 28179
2fc8bdac 28180 if (fixp->fx_pcrel)
00a97672
RS
28181 {
28182 if (section->use_rela_p)
28183 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28184 else
28185 fixp->fx_offset = reloc->address;
28186 }
c19d1205 28187 reloc->addend = fixp->fx_offset;
a737bd4d 28188
c19d1205 28189 switch (fixp->fx_r_type)
a737bd4d 28190 {
c19d1205
ZW
28191 case BFD_RELOC_8:
28192 if (fixp->fx_pcrel)
28193 {
28194 code = BFD_RELOC_8_PCREL;
28195 break;
28196 }
1a0670f3 28197 /* Fall through. */
a737bd4d 28198
c19d1205
ZW
28199 case BFD_RELOC_16:
28200 if (fixp->fx_pcrel)
28201 {
28202 code = BFD_RELOC_16_PCREL;
28203 break;
28204 }
1a0670f3 28205 /* Fall through. */
6c43fab6 28206
c19d1205
ZW
28207 case BFD_RELOC_32:
28208 if (fixp->fx_pcrel)
28209 {
28210 code = BFD_RELOC_32_PCREL;
28211 break;
28212 }
1a0670f3 28213 /* Fall through. */
a737bd4d 28214
b6895b4f
PB
28215 case BFD_RELOC_ARM_MOVW:
28216 if (fixp->fx_pcrel)
28217 {
28218 code = BFD_RELOC_ARM_MOVW_PCREL;
28219 break;
28220 }
1a0670f3 28221 /* Fall through. */
b6895b4f
PB
28222
28223 case BFD_RELOC_ARM_MOVT:
28224 if (fixp->fx_pcrel)
28225 {
28226 code = BFD_RELOC_ARM_MOVT_PCREL;
28227 break;
28228 }
1a0670f3 28229 /* Fall through. */
b6895b4f
PB
28230
28231 case BFD_RELOC_ARM_THUMB_MOVW:
28232 if (fixp->fx_pcrel)
28233 {
28234 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28235 break;
28236 }
1a0670f3 28237 /* Fall through. */
b6895b4f
PB
28238
28239 case BFD_RELOC_ARM_THUMB_MOVT:
28240 if (fixp->fx_pcrel)
28241 {
28242 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28243 break;
28244 }
1a0670f3 28245 /* Fall through. */
b6895b4f 28246
c19d1205
ZW
28247 case BFD_RELOC_NONE:
28248 case BFD_RELOC_ARM_PCREL_BRANCH:
28249 case BFD_RELOC_ARM_PCREL_BLX:
28250 case BFD_RELOC_RVA:
28251 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28252 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28253 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28254 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28255 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28256 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
28257 case BFD_RELOC_VTABLE_ENTRY:
28258 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
28259#ifdef TE_PE
28260 case BFD_RELOC_32_SECREL:
28261#endif
c19d1205
ZW
28262 code = fixp->fx_r_type;
28263 break;
a737bd4d 28264
00adf2d4
JB
28265 case BFD_RELOC_THUMB_PCREL_BLX:
28266#ifdef OBJ_ELF
28267 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28268 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28269 else
28270#endif
28271 code = BFD_RELOC_THUMB_PCREL_BLX;
28272 break;
28273
c19d1205
ZW
28274 case BFD_RELOC_ARM_LITERAL:
28275 case BFD_RELOC_ARM_HWLITERAL:
28276 /* If this is called then the a literal has
28277 been referenced across a section boundary. */
28278 as_bad_where (fixp->fx_file, fixp->fx_line,
28279 _("literal referenced across section boundary"));
28280 return NULL;
a737bd4d 28281
c19d1205 28282#ifdef OBJ_ELF
0855e32b
NS
28283 case BFD_RELOC_ARM_TLS_CALL:
28284 case BFD_RELOC_ARM_THM_TLS_CALL:
28285 case BFD_RELOC_ARM_TLS_DESCSEQ:
28286 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
28287 case BFD_RELOC_ARM_GOT32:
28288 case BFD_RELOC_ARM_GOTOFF:
b43420e6 28289 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
28290 case BFD_RELOC_ARM_PLT32:
28291 case BFD_RELOC_ARM_TARGET1:
28292 case BFD_RELOC_ARM_ROSEGREL32:
28293 case BFD_RELOC_ARM_SBREL32:
28294 case BFD_RELOC_ARM_PREL31:
28295 case BFD_RELOC_ARM_TARGET2:
c19d1205 28296 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
28297 case BFD_RELOC_ARM_PCREL_CALL:
28298 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
28299 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28300 case BFD_RELOC_ARM_ALU_PC_G0:
28301 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28302 case BFD_RELOC_ARM_ALU_PC_G1:
28303 case BFD_RELOC_ARM_ALU_PC_G2:
28304 case BFD_RELOC_ARM_LDR_PC_G0:
28305 case BFD_RELOC_ARM_LDR_PC_G1:
28306 case BFD_RELOC_ARM_LDR_PC_G2:
28307 case BFD_RELOC_ARM_LDRS_PC_G0:
28308 case BFD_RELOC_ARM_LDRS_PC_G1:
28309 case BFD_RELOC_ARM_LDRS_PC_G2:
28310 case BFD_RELOC_ARM_LDC_PC_G0:
28311 case BFD_RELOC_ARM_LDC_PC_G1:
28312 case BFD_RELOC_ARM_LDC_PC_G2:
28313 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28314 case BFD_RELOC_ARM_ALU_SB_G0:
28315 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28316 case BFD_RELOC_ARM_ALU_SB_G1:
28317 case BFD_RELOC_ARM_ALU_SB_G2:
28318 case BFD_RELOC_ARM_LDR_SB_G0:
28319 case BFD_RELOC_ARM_LDR_SB_G1:
28320 case BFD_RELOC_ARM_LDR_SB_G2:
28321 case BFD_RELOC_ARM_LDRS_SB_G0:
28322 case BFD_RELOC_ARM_LDRS_SB_G1:
28323 case BFD_RELOC_ARM_LDRS_SB_G2:
28324 case BFD_RELOC_ARM_LDC_SB_G0:
28325 case BFD_RELOC_ARM_LDC_SB_G1:
28326 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 28327 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
28328 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28329 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28330 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28331 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
28332 case BFD_RELOC_ARM_GOTFUNCDESC:
28333 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28334 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 28335 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 28336 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 28337 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
28338 code = fixp->fx_r_type;
28339 break;
a737bd4d 28340
0855e32b 28341 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 28342 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 28343 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 28344 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 28345 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 28346 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 28347 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 28348 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
28349 /* BFD will include the symbol's address in the addend.
28350 But we don't want that, so subtract it out again here. */
28351 if (!S_IS_COMMON (fixp->fx_addsy))
28352 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28353 code = fixp->fx_r_type;
28354 break;
28355#endif
a737bd4d 28356
c19d1205
ZW
28357 case BFD_RELOC_ARM_IMMEDIATE:
28358 as_bad_where (fixp->fx_file, fixp->fx_line,
28359 _("internal relocation (type: IMMEDIATE) not fixed up"));
28360 return NULL;
a737bd4d 28361
c19d1205
ZW
28362 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28363 as_bad_where (fixp->fx_file, fixp->fx_line,
28364 _("ADRL used for a symbol not defined in the same file"));
28365 return NULL;
a737bd4d 28366
e12437dc 28367 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 28368 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 28369 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
28370 as_bad_where (fixp->fx_file, fixp->fx_line,
28371 _("%s used for a symbol not defined in the same file"),
28372 bfd_get_reloc_code_name (fixp->fx_r_type));
28373 return NULL;
28374
c19d1205 28375 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
28376 if (section->use_rela_p)
28377 {
28378 code = fixp->fx_r_type;
28379 break;
28380 }
28381
c19d1205
ZW
28382 if (fixp->fx_addsy != NULL
28383 && !S_IS_DEFINED (fixp->fx_addsy)
28384 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 28385 {
c19d1205
ZW
28386 as_bad_where (fixp->fx_file, fixp->fx_line,
28387 _("undefined local label `%s'"),
28388 S_GET_NAME (fixp->fx_addsy));
28389 return NULL;
a737bd4d
NC
28390 }
28391
c19d1205
ZW
28392 as_bad_where (fixp->fx_file, fixp->fx_line,
28393 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28394 return NULL;
a737bd4d 28395
c19d1205
ZW
28396 default:
28397 {
e0471c16 28398 const char * type;
6c43fab6 28399
c19d1205
ZW
28400 switch (fixp->fx_r_type)
28401 {
28402 case BFD_RELOC_NONE: type = "NONE"; break;
28403 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28404 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28405 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28406 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28407 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28408 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28409 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28410 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28411 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28412 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28413 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28414 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28415 default: type = _("<unknown>"); break;
28416 }
28417 as_bad_where (fixp->fx_file, fixp->fx_line,
28418 _("cannot represent %s relocation in this object file format"),
28419 type);
28420 return NULL;
28421 }
a737bd4d 28422 }
6c43fab6 28423
c19d1205
ZW
28424#ifdef OBJ_ELF
28425 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28426 && GOT_symbol
28427 && fixp->fx_addsy == GOT_symbol)
28428 {
28429 code = BFD_RELOC_ARM_GOTPC;
28430 reloc->addend = fixp->fx_offset = reloc->address;
28431 }
28432#endif
6c43fab6 28433
c19d1205 28434 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 28435
c19d1205
ZW
28436 if (reloc->howto == NULL)
28437 {
28438 as_bad_where (fixp->fx_file, fixp->fx_line,
28439 _("cannot represent %s relocation in this object file format"),
28440 bfd_get_reloc_code_name (code));
28441 return NULL;
28442 }
6c43fab6 28443
c19d1205
ZW
28444 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28445 vtable entry to be used in the relocation's section offset. */
28446 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28447 reloc->address = fixp->fx_offset;
6c43fab6 28448
c19d1205 28449 return reloc;
6c43fab6
RE
28450}
28451
c19d1205 28452/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 28453
c19d1205
ZW
28454void
28455cons_fix_new_arm (fragS * frag,
28456 int where,
28457 int size,
62ebcb5c
AM
28458 expressionS * exp,
28459 bfd_reloc_code_real_type reloc)
6c43fab6 28460{
c19d1205 28461 int pcrel = 0;
6c43fab6 28462
c19d1205
ZW
28463 /* Pick a reloc.
28464 FIXME: @@ Should look at CPU word size. */
28465 switch (size)
28466 {
28467 case 1:
62ebcb5c 28468 reloc = BFD_RELOC_8;
c19d1205
ZW
28469 break;
28470 case 2:
62ebcb5c 28471 reloc = BFD_RELOC_16;
c19d1205
ZW
28472 break;
28473 case 4:
28474 default:
62ebcb5c 28475 reloc = BFD_RELOC_32;
c19d1205
ZW
28476 break;
28477 case 8:
62ebcb5c 28478 reloc = BFD_RELOC_64;
c19d1205
ZW
28479 break;
28480 }
6c43fab6 28481
f0927246
NC
28482#ifdef TE_PE
28483 if (exp->X_op == O_secrel)
28484 {
28485 exp->X_op = O_symbol;
62ebcb5c 28486 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
28487 }
28488#endif
28489
62ebcb5c 28490 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 28491}
6c43fab6 28492
4343666d 28493#if defined (OBJ_COFF)
c19d1205
ZW
28494void
28495arm_validate_fix (fixS * fixP)
6c43fab6 28496{
c19d1205
ZW
28497 /* If the destination of the branch is a defined symbol which does not have
28498 the THUMB_FUNC attribute, then we must be calling a function which has
28499 the (interfacearm) attribute. We look for the Thumb entry point to that
28500 function and change the branch to refer to that function instead. */
28501 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28502 && fixP->fx_addsy != NULL
28503 && S_IS_DEFINED (fixP->fx_addsy)
28504 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 28505 {
c19d1205 28506 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 28507 }
c19d1205
ZW
28508}
28509#endif
6c43fab6 28510
267bf995 28511
c19d1205
ZW
28512int
28513arm_force_relocation (struct fix * fixp)
28514{
28515#if defined (OBJ_COFF) && defined (TE_PE)
28516 if (fixp->fx_r_type == BFD_RELOC_RVA)
28517 return 1;
28518#endif
6c43fab6 28519
267bf995
RR
28520 /* In case we have a call or a branch to a function in ARM ISA mode from
28521 a thumb function or vice-versa force the relocation. These relocations
28522 are cleared off for some cores that might have blx and simple transformations
28523 are possible. */
28524
28525#ifdef OBJ_ELF
28526 switch (fixp->fx_r_type)
28527 {
28528 case BFD_RELOC_ARM_PCREL_JUMP:
28529 case BFD_RELOC_ARM_PCREL_CALL:
28530 case BFD_RELOC_THUMB_PCREL_BLX:
28531 if (THUMB_IS_FUNC (fixp->fx_addsy))
28532 return 1;
28533 break;
28534
28535 case BFD_RELOC_ARM_PCREL_BLX:
28536 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28537 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28538 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28539 if (ARM_IS_FUNC (fixp->fx_addsy))
28540 return 1;
28541 break;
28542
28543 default:
28544 break;
28545 }
28546#endif
28547
b5884301
PB
28548 /* Resolve these relocations even if the symbol is extern or weak.
28549 Technically this is probably wrong due to symbol preemption.
28550 In practice these relocations do not have enough range to be useful
28551 at dynamic link time, and some code (e.g. in the Linux kernel)
28552 expects these references to be resolved. */
c19d1205
ZW
28553 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28554 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 28555 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 28556 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
28557 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28558 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28559 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 28560 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
28561 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28562 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
28563 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28564 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28565 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28566 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 28567 return 0;
a737bd4d 28568
4962c51a
MS
28569 /* Always leave these relocations for the linker. */
28570 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28571 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28572 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28573 return 1;
28574
f0291e4c
PB
28575 /* Always generate relocations against function symbols. */
28576 if (fixp->fx_r_type == BFD_RELOC_32
28577 && fixp->fx_addsy
28578 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28579 return 1;
28580
c19d1205 28581 return generic_force_reloc (fixp);
404ff6b5
AH
28582}
28583
0ffdc86c 28584#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
28585/* Relocations against function names must be left unadjusted,
28586 so that the linker can use this information to generate interworking
28587 stubs. The MIPS version of this function
c19d1205
ZW
28588 also prevents relocations that are mips-16 specific, but I do not
28589 know why it does this.
404ff6b5 28590
c19d1205
ZW
28591 FIXME:
28592 There is one other problem that ought to be addressed here, but
28593 which currently is not: Taking the address of a label (rather
28594 than a function) and then later jumping to that address. Such
28595 addresses also ought to have their bottom bit set (assuming that
28596 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28597
c19d1205
ZW
28598bfd_boolean
28599arm_fix_adjustable (fixS * fixP)
404ff6b5 28600{
c19d1205
ZW
28601 if (fixP->fx_addsy == NULL)
28602 return 1;
404ff6b5 28603
e28387c3
PB
28604 /* Preserve relocations against symbols with function type. */
28605 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28606 return FALSE;
e28387c3 28607
c19d1205
ZW
28608 if (THUMB_IS_FUNC (fixP->fx_addsy)
28609 && fixP->fx_subsy == NULL)
c921be7d 28610 return FALSE;
a737bd4d 28611
c19d1205
ZW
28612 /* We need the symbol name for the VTABLE entries. */
28613 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28614 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28615 return FALSE;
404ff6b5 28616
c19d1205
ZW
28617 /* Don't allow symbols to be discarded on GOT related relocs. */
28618 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28619 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28620 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28621 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28622 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28623 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28624 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28625 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28626 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28627 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28628 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28629 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28630 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28631 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28632 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28633 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28634 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28635 return FALSE;
a737bd4d 28636
4962c51a
MS
28637 /* Similarly for group relocations. */
28638 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28639 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28640 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28641 return FALSE;
4962c51a 28642
79947c54
CD
28643 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28644 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28645 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28646 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28647 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28648 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28649 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28650 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28651 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28652 return FALSE;
79947c54 28653
72d98d16
MG
28654 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28655 offsets, so keep these symbols. */
28656 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28657 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28658 return FALSE;
28659
c921be7d 28660 return TRUE;
a737bd4d 28661}
0ffdc86c
NC
28662#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28663
28664#ifdef OBJ_ELF
c19d1205
ZW
28665const char *
28666elf32_arm_target_format (void)
404ff6b5 28667{
c19d1205
ZW
28668#ifdef TE_SYMBIAN
28669 return (target_big_endian
28670 ? "elf32-bigarm-symbian"
28671 : "elf32-littlearm-symbian");
28672#elif defined (TE_VXWORKS)
28673 return (target_big_endian
28674 ? "elf32-bigarm-vxworks"
28675 : "elf32-littlearm-vxworks");
b38cadfb
NC
28676#elif defined (TE_NACL)
28677 return (target_big_endian
28678 ? "elf32-bigarm-nacl"
28679 : "elf32-littlearm-nacl");
c19d1205 28680#else
18a20338
CL
28681 if (arm_fdpic)
28682 {
28683 if (target_big_endian)
28684 return "elf32-bigarm-fdpic";
28685 else
28686 return "elf32-littlearm-fdpic";
28687 }
c19d1205 28688 else
18a20338
CL
28689 {
28690 if (target_big_endian)
28691 return "elf32-bigarm";
28692 else
28693 return "elf32-littlearm";
28694 }
c19d1205 28695#endif
404ff6b5
AH
28696}
28697
c19d1205
ZW
28698void
28699armelf_frob_symbol (symbolS * symp,
28700 int * puntp)
404ff6b5 28701{
c19d1205
ZW
28702 elf_frob_symbol (symp, puntp);
28703}
28704#endif
404ff6b5 28705
c19d1205 28706/* MD interface: Finalization. */
a737bd4d 28707
c19d1205
ZW
28708void
28709arm_cleanup (void)
28710{
28711 literal_pool * pool;
a737bd4d 28712
5ee91343
AV
28713 /* Ensure that all the predication blocks are properly closed. */
28714 check_pred_blocks_finished ();
e07e6e58 28715
c19d1205
ZW
28716 for (pool = list_of_pools; pool; pool = pool->next)
28717 {
5f4273c7 28718 /* Put it at the end of the relevant section. */
c19d1205
ZW
28719 subseg_set (pool->section, pool->sub_section);
28720#ifdef OBJ_ELF
28721 arm_elf_change_section ();
28722#endif
28723 s_ltorg (0);
28724 }
404ff6b5
AH
28725}
28726
cd000bff
DJ
28727#ifdef OBJ_ELF
28728/* Remove any excess mapping symbols generated for alignment frags in
28729 SEC. We may have created a mapping symbol before a zero byte
28730 alignment; remove it if there's a mapping symbol after the
28731 alignment. */
28732static void
28733check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28734 void *dummy ATTRIBUTE_UNUSED)
28735{
28736 segment_info_type *seginfo = seg_info (sec);
28737 fragS *fragp;
28738
28739 if (seginfo == NULL || seginfo->frchainP == NULL)
28740 return;
28741
28742 for (fragp = seginfo->frchainP->frch_root;
28743 fragp != NULL;
28744 fragp = fragp->fr_next)
28745 {
28746 symbolS *sym = fragp->tc_frag_data.last_map;
28747 fragS *next = fragp->fr_next;
28748
28749 /* Variable-sized frags have been converted to fixed size by
28750 this point. But if this was variable-sized to start with,
28751 there will be a fixed-size frag after it. So don't handle
28752 next == NULL. */
28753 if (sym == NULL || next == NULL)
28754 continue;
28755
28756 if (S_GET_VALUE (sym) < next->fr_address)
28757 /* Not at the end of this frag. */
28758 continue;
28759 know (S_GET_VALUE (sym) == next->fr_address);
28760
28761 do
28762 {
28763 if (next->tc_frag_data.first_map != NULL)
28764 {
28765 /* Next frag starts with a mapping symbol. Discard this
28766 one. */
28767 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28768 break;
28769 }
28770
28771 if (next->fr_next == NULL)
28772 {
28773 /* This mapping symbol is at the end of the section. Discard
28774 it. */
28775 know (next->fr_fix == 0 && next->fr_var == 0);
28776 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28777 break;
28778 }
28779
28780 /* As long as we have empty frags without any mapping symbols,
28781 keep looking. */
28782 /* If the next frag is non-empty and does not start with a
28783 mapping symbol, then this mapping symbol is required. */
28784 if (next->fr_address != next->fr_next->fr_address)
28785 break;
28786
28787 next = next->fr_next;
28788 }
28789 while (next != NULL);
28790 }
28791}
28792#endif
28793
c19d1205
ZW
28794/* Adjust the symbol table. This marks Thumb symbols as distinct from
28795 ARM ones. */
404ff6b5 28796
c19d1205
ZW
28797void
28798arm_adjust_symtab (void)
404ff6b5 28799{
c19d1205
ZW
28800#ifdef OBJ_COFF
28801 symbolS * sym;
404ff6b5 28802
c19d1205
ZW
28803 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28804 {
28805 if (ARM_IS_THUMB (sym))
28806 {
28807 if (THUMB_IS_FUNC (sym))
28808 {
28809 /* Mark the symbol as a Thumb function. */
28810 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28811 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28812 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 28813
c19d1205
ZW
28814 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28815 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28816 else
28817 as_bad (_("%s: unexpected function type: %d"),
28818 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28819 }
28820 else switch (S_GET_STORAGE_CLASS (sym))
28821 {
28822 case C_EXT:
28823 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28824 break;
28825 case C_STAT:
28826 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28827 break;
28828 case C_LABEL:
28829 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28830 break;
28831 default:
28832 /* Do nothing. */
28833 break;
28834 }
28835 }
a737bd4d 28836
c19d1205
ZW
28837 if (ARM_IS_INTERWORK (sym))
28838 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 28839 }
c19d1205
ZW
28840#endif
28841#ifdef OBJ_ELF
28842 symbolS * sym;
28843 char bind;
404ff6b5 28844
c19d1205 28845 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 28846 {
c19d1205
ZW
28847 if (ARM_IS_THUMB (sym))
28848 {
28849 elf_symbol_type * elf_sym;
404ff6b5 28850
c19d1205
ZW
28851 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28852 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 28853
b0796911
PB
28854 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28855 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
28856 {
28857 /* If it's a .thumb_func, declare it as so,
28858 otherwise tag label as .code 16. */
28859 if (THUMB_IS_FUNC (sym))
39d911fc
TP
28860 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28861 ST_BRANCH_TO_THUMB);
3ba67470 28862 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
28863 elf_sym->internal_elf_sym.st_info =
28864 ELF_ST_INFO (bind, STT_ARM_16BIT);
28865 }
28866 }
28867 }
cd000bff
DJ
28868
28869 /* Remove any overlapping mapping symbols generated by alignment frags. */
28870 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
28871 /* Now do generic ELF adjustments. */
28872 elf_adjust_symtab ();
c19d1205 28873#endif
404ff6b5
AH
28874}
28875
c19d1205 28876/* MD interface: Initialization. */
404ff6b5 28877
a737bd4d 28878static void
c19d1205 28879set_constant_flonums (void)
a737bd4d 28880{
c19d1205 28881 int i;
404ff6b5 28882
c19d1205
ZW
28883 for (i = 0; i < NUM_FLOAT_VALS; i++)
28884 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28885 abort ();
a737bd4d 28886}
404ff6b5 28887
3e9e4fcf
JB
28888/* Auto-select Thumb mode if it's the only available instruction set for the
28889 given architecture. */
28890
28891static void
28892autoselect_thumb_from_cpu_variant (void)
28893{
28894 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28895 opcode_select (16);
28896}
28897
c19d1205
ZW
28898void
28899md_begin (void)
a737bd4d 28900{
c19d1205
ZW
28901 unsigned mach;
28902 unsigned int i;
404ff6b5 28903
c19d1205
ZW
28904 if ( (arm_ops_hsh = hash_new ()) == NULL
28905 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 28906 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
28907 || (arm_shift_hsh = hash_new ()) == NULL
28908 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 28909 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 28910 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
28911 || (arm_reloc_hsh = hash_new ()) == NULL
28912 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
28913 as_fatal (_("virtual memory exhausted"));
28914
28915 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 28916 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 28917 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 28918 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
28919 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28920 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 28921 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 28922 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 28923 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28924 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 28925 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28926 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 28927 (void *) (v7m_psrs + i));
c19d1205 28928 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 28929 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
28930 for (i = 0;
28931 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28932 i++)
d3ce72d0 28933 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 28934 (void *) (barrier_opt_names + i));
c19d1205 28935#ifdef OBJ_ELF
3da1d841
NC
28936 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28937 {
28938 struct reloc_entry * entry = reloc_names + i;
28939
28940 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28941 /* This makes encode_branch() use the EABI versions of this relocation. */
28942 entry->reloc = BFD_RELOC_UNUSED;
28943
28944 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28945 }
c19d1205
ZW
28946#endif
28947
28948 set_constant_flonums ();
404ff6b5 28949
c19d1205
ZW
28950 /* Set the cpu variant based on the command-line options. We prefer
28951 -mcpu= over -march= if both are set (as for GCC); and we prefer
28952 -mfpu= over any other way of setting the floating point unit.
28953 Use of legacy options with new options are faulted. */
e74cfd16 28954 if (legacy_cpu)
404ff6b5 28955 {
e74cfd16 28956 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
28957 as_bad (_("use of old and new-style options to set CPU type"));
28958
4d354d8b 28959 selected_arch = *legacy_cpu;
404ff6b5 28960 }
4d354d8b
TP
28961 else if (mcpu_cpu_opt)
28962 {
28963 selected_arch = *mcpu_cpu_opt;
28964 selected_ext = *mcpu_ext_opt;
28965 }
28966 else if (march_cpu_opt)
c168ce07 28967 {
4d354d8b
TP
28968 selected_arch = *march_cpu_opt;
28969 selected_ext = *march_ext_opt;
c168ce07 28970 }
4d354d8b 28971 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 28972
e74cfd16 28973 if (legacy_fpu)
c19d1205 28974 {
e74cfd16 28975 if (mfpu_opt)
c19d1205 28976 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 28977
4d354d8b 28978 selected_fpu = *legacy_fpu;
03b1477f 28979 }
4d354d8b
TP
28980 else if (mfpu_opt)
28981 selected_fpu = *mfpu_opt;
28982 else
03b1477f 28983 {
45eb4c1b
NS
28984#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28985 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
28986 /* Some environments specify a default FPU. If they don't, infer it
28987 from the processor. */
e74cfd16 28988 if (mcpu_fpu_opt)
4d354d8b 28989 selected_fpu = *mcpu_fpu_opt;
e7da50fa 28990 else if (march_fpu_opt)
4d354d8b 28991 selected_fpu = *march_fpu_opt;
39c2da32 28992#else
4d354d8b 28993 selected_fpu = fpu_default;
39c2da32 28994#endif
03b1477f
RE
28995 }
28996
4d354d8b 28997 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 28998 {
4d354d8b
TP
28999 if (!no_cpu_selected ())
29000 selected_fpu = fpu_default;
03b1477f 29001 else
4d354d8b 29002 selected_fpu = fpu_arch_fpa;
03b1477f
RE
29003 }
29004
ee065d83 29005#ifdef CPU_DEFAULT
4d354d8b 29006 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 29007 {
4d354d8b
TP
29008 selected_arch = cpu_default;
29009 selected_cpu = selected_arch;
ee065d83 29010 }
4d354d8b 29011 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 29012#else
4d354d8b
TP
29013 /* Autodection of feature mode: allow all features in cpu_variant but leave
29014 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29015 after all instruction have been processed and we can decide what CPU
29016 should be selected. */
29017 if (ARM_FEATURE_ZERO (selected_arch))
29018 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 29019 else
4d354d8b 29020 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 29021#endif
03b1477f 29022
3e9e4fcf
JB
29023 autoselect_thumb_from_cpu_variant ();
29024
e74cfd16 29025 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 29026
f17c130b 29027#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 29028 {
7cc69913
NC
29029 unsigned int flags = 0;
29030
29031#if defined OBJ_ELF
29032 flags = meabi_flags;
d507cf36
PB
29033
29034 switch (meabi_flags)
33a392fb 29035 {
d507cf36 29036 case EF_ARM_EABI_UNKNOWN:
7cc69913 29037#endif
d507cf36
PB
29038 /* Set the flags in the private structure. */
29039 if (uses_apcs_26) flags |= F_APCS26;
29040 if (support_interwork) flags |= F_INTERWORK;
29041 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 29042 if (pic_code) flags |= F_PIC;
e74cfd16 29043 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
29044 flags |= F_SOFT_FLOAT;
29045
d507cf36
PB
29046 switch (mfloat_abi_opt)
29047 {
29048 case ARM_FLOAT_ABI_SOFT:
29049 case ARM_FLOAT_ABI_SOFTFP:
29050 flags |= F_SOFT_FLOAT;
29051 break;
33a392fb 29052
d507cf36
PB
29053 case ARM_FLOAT_ABI_HARD:
29054 if (flags & F_SOFT_FLOAT)
29055 as_bad (_("hard-float conflicts with specified fpu"));
29056 break;
29057 }
03b1477f 29058
e74cfd16
PB
29059 /* Using pure-endian doubles (even if soft-float). */
29060 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 29061 flags |= F_VFP_FLOAT;
f17c130b 29062
fde78edd 29063#if defined OBJ_ELF
e74cfd16 29064 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 29065 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
29066 break;
29067
8cb51566 29068 case EF_ARM_EABI_VER4:
3a4a14e9 29069 case EF_ARM_EABI_VER5:
c19d1205 29070 /* No additional flags to set. */
d507cf36
PB
29071 break;
29072
29073 default:
29074 abort ();
29075 }
7cc69913 29076#endif
b99bd4ef
NC
29077 bfd_set_private_flags (stdoutput, flags);
29078
29079 /* We have run out flags in the COFF header to encode the
29080 status of ATPCS support, so instead we create a dummy,
c19d1205 29081 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
29082 if (atpcs)
29083 {
29084 asection * sec;
29085
29086 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29087
29088 if (sec != NULL)
29089 {
29090 bfd_set_section_flags
29091 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29092 bfd_set_section_size (stdoutput, sec, 0);
29093 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29094 }
29095 }
7cc69913 29096 }
f17c130b 29097#endif
b99bd4ef
NC
29098
29099 /* Record the CPU type as well. */
2d447fca
JM
29100 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29101 mach = bfd_mach_arm_iWMMXt2;
29102 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 29103 mach = bfd_mach_arm_iWMMXt;
e74cfd16 29104 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 29105 mach = bfd_mach_arm_XScale;
e74cfd16 29106 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 29107 mach = bfd_mach_arm_ep9312;
e74cfd16 29108 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 29109 mach = bfd_mach_arm_5TE;
e74cfd16 29110 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 29111 {
e74cfd16 29112 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29113 mach = bfd_mach_arm_5T;
29114 else
29115 mach = bfd_mach_arm_5;
29116 }
e74cfd16 29117 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 29118 {
e74cfd16 29119 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29120 mach = bfd_mach_arm_4T;
29121 else
29122 mach = bfd_mach_arm_4;
29123 }
e74cfd16 29124 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 29125 mach = bfd_mach_arm_3M;
e74cfd16
PB
29126 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29127 mach = bfd_mach_arm_3;
29128 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29129 mach = bfd_mach_arm_2a;
29130 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29131 mach = bfd_mach_arm_2;
29132 else
29133 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
29134
29135 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29136}
29137
c19d1205 29138/* Command line processing. */
b99bd4ef 29139
c19d1205
ZW
29140/* md_parse_option
29141 Invocation line includes a switch not recognized by the base assembler.
29142 See if it's a processor-specific option.
b99bd4ef 29143
c19d1205
ZW
29144 This routine is somewhat complicated by the need for backwards
29145 compatibility (since older releases of gcc can't be changed).
29146 The new options try to make the interface as compatible as
29147 possible with GCC.
b99bd4ef 29148
c19d1205 29149 New options (supported) are:
b99bd4ef 29150
c19d1205
ZW
29151 -mcpu=<cpu name> Assemble for selected processor
29152 -march=<architecture name> Assemble for selected architecture
29153 -mfpu=<fpu architecture> Assemble for selected FPU.
29154 -EB/-mbig-endian Big-endian
29155 -EL/-mlittle-endian Little-endian
29156 -k Generate PIC code
29157 -mthumb Start in Thumb mode
29158 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 29159
278df34e 29160 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 29161 -m[no-]warn-syms Warn when symbols match instructions
267bf995 29162
c19d1205 29163 For now we will also provide support for:
b99bd4ef 29164
c19d1205
ZW
29165 -mapcs-32 32-bit Program counter
29166 -mapcs-26 26-bit Program counter
29167 -macps-float Floats passed in FP registers
29168 -mapcs-reentrant Reentrant code
29169 -matpcs
29170 (sometime these will probably be replaced with -mapcs=<list of options>
29171 and -matpcs=<list of options>)
b99bd4ef 29172
c19d1205
ZW
29173 The remaining options are only supported for back-wards compatibility.
29174 Cpu variants, the arm part is optional:
29175 -m[arm]1 Currently not supported.
29176 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29177 -m[arm]3 Arm 3 processor
29178 -m[arm]6[xx], Arm 6 processors
29179 -m[arm]7[xx][t][[d]m] Arm 7 processors
29180 -m[arm]8[10] Arm 8 processors
29181 -m[arm]9[20][tdmi] Arm 9 processors
29182 -mstrongarm[110[0]] StrongARM processors
29183 -mxscale XScale processors
29184 -m[arm]v[2345[t[e]]] Arm architectures
29185 -mall All (except the ARM1)
29186 FP variants:
29187 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29188 -mfpe-old (No float load/store multiples)
29189 -mvfpxd VFP Single precision
29190 -mvfp All VFP
29191 -mno-fpu Disable all floating point instructions
b99bd4ef 29192
c19d1205
ZW
29193 The following CPU names are recognized:
29194 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29195 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29196 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29197 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29198 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29199 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29200 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 29201
c19d1205 29202 */
b99bd4ef 29203
c19d1205 29204const char * md_shortopts = "m:k";
b99bd4ef 29205
c19d1205
ZW
29206#ifdef ARM_BI_ENDIAN
29207#define OPTION_EB (OPTION_MD_BASE + 0)
29208#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 29209#else
c19d1205
ZW
29210#if TARGET_BYTES_BIG_ENDIAN
29211#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 29212#else
c19d1205
ZW
29213#define OPTION_EL (OPTION_MD_BASE + 1)
29214#endif
b99bd4ef 29215#endif
845b51d6 29216#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 29217#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 29218
c19d1205 29219struct option md_longopts[] =
b99bd4ef 29220{
c19d1205
ZW
29221#ifdef OPTION_EB
29222 {"EB", no_argument, NULL, OPTION_EB},
29223#endif
29224#ifdef OPTION_EL
29225 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 29226#endif
845b51d6 29227 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
29228#ifdef OBJ_ELF
29229 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29230#endif
c19d1205
ZW
29231 {NULL, no_argument, NULL, 0}
29232};
b99bd4ef 29233
c19d1205 29234size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 29235
c19d1205 29236struct arm_option_table
b99bd4ef 29237{
0198d5e6
TC
29238 const char * option; /* Option name to match. */
29239 const char * help; /* Help information. */
29240 int * var; /* Variable to change. */
29241 int value; /* What to change it to. */
29242 const char * deprecated; /* If non-null, print this message. */
c19d1205 29243};
b99bd4ef 29244
c19d1205
ZW
29245struct arm_option_table arm_opts[] =
29246{
29247 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29248 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29249 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29250 &support_interwork, 1, NULL},
29251 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29252 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29253 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29254 1, NULL},
29255 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29256 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29257 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29258 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29259 NULL},
b99bd4ef 29260
c19d1205
ZW
29261 /* These are recognized by the assembler, but have no affect on code. */
29262 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29263 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
29264
29265 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29266 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29267 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
29268 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29269 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
29270 {NULL, NULL, NULL, 0, NULL}
29271};
29272
29273struct arm_legacy_option_table
29274{
0198d5e6
TC
29275 const char * option; /* Option name to match. */
29276 const arm_feature_set ** var; /* Variable to change. */
29277 const arm_feature_set value; /* What to change it to. */
29278 const char * deprecated; /* If non-null, print this message. */
e74cfd16 29279};
b99bd4ef 29280
e74cfd16
PB
29281const struct arm_legacy_option_table arm_legacy_opts[] =
29282{
c19d1205
ZW
29283 /* DON'T add any new processors to this list -- we want the whole list
29284 to go away... Add them to the processors table instead. */
e74cfd16
PB
29285 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29286 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29287 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29288 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29289 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29290 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29291 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29292 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29293 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29294 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29295 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29296 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29297 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29298 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29299 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29300 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29301 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29302 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29303 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29304 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29305 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29306 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29307 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29308 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29309 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29310 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29311 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29312 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29313 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29314 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29315 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29316 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29317 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29318 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29319 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29320 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29321 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29322 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29323 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29324 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29325 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29326 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29327 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29328 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29329 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29330 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29331 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29332 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29333 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29334 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29335 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29336 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29337 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29338 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29339 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29340 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29341 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29342 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29343 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29344 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29345 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29346 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29347 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29348 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29349 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29350 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29351 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29352 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29353 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29354 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29355 N_("use -mcpu=strongarm110")},
e74cfd16 29356 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29357 N_("use -mcpu=strongarm1100")},
e74cfd16 29358 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29359 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
29360 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29361 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29362 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 29363
c19d1205 29364 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
29365 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29366 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29367 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29368 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29369 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29370 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29371 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29372 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29373 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29374 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29375 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29376 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29377 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29378 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29379 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29380 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29381 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29382 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 29383
c19d1205 29384 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
29385 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29386 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29387 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29388 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29389 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29390
e74cfd16 29391 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29392};
7ed4c4c5 29393
c19d1205 29394struct arm_cpu_option_table
7ed4c4c5 29395{
0198d5e6
TC
29396 const char * name;
29397 size_t name_len;
29398 const arm_feature_set value;
29399 const arm_feature_set ext;
c19d1205
ZW
29400 /* For some CPUs we assume an FPU unless the user explicitly sets
29401 -mfpu=... */
0198d5e6 29402 const arm_feature_set default_fpu;
ee065d83
PB
29403 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29404 case. */
0198d5e6 29405 const char * canonical_name;
c19d1205 29406};
7ed4c4c5 29407
c19d1205
ZW
29408/* This list should, at a minimum, contain all the cpu names
29409 recognized by GCC. */
996b5569 29410#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29411
e74cfd16 29412static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29413{
996b5569
TP
29414 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29415 ARM_ARCH_NONE,
29416 FPU_ARCH_FPA),
29417 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29418 ARM_ARCH_NONE,
29419 FPU_ARCH_FPA),
29420 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29421 ARM_ARCH_NONE,
29422 FPU_ARCH_FPA),
29423 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29424 ARM_ARCH_NONE,
29425 FPU_ARCH_FPA),
29426 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29427 ARM_ARCH_NONE,
29428 FPU_ARCH_FPA),
29429 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29430 ARM_ARCH_NONE,
29431 FPU_ARCH_FPA),
29432 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29433 ARM_ARCH_NONE,
29434 FPU_ARCH_FPA),
29435 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29436 ARM_ARCH_NONE,
29437 FPU_ARCH_FPA),
29438 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29439 ARM_ARCH_NONE,
29440 FPU_ARCH_FPA),
29441 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29442 ARM_ARCH_NONE,
29443 FPU_ARCH_FPA),
29444 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29445 ARM_ARCH_NONE,
29446 FPU_ARCH_FPA),
29447 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29448 ARM_ARCH_NONE,
29449 FPU_ARCH_FPA),
29450 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29451 ARM_ARCH_NONE,
29452 FPU_ARCH_FPA),
29453 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29454 ARM_ARCH_NONE,
29455 FPU_ARCH_FPA),
29456 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29457 ARM_ARCH_NONE,
29458 FPU_ARCH_FPA),
29459 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29460 ARM_ARCH_NONE,
29461 FPU_ARCH_FPA),
29462 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29463 ARM_ARCH_NONE,
29464 FPU_ARCH_FPA),
29465 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29466 ARM_ARCH_NONE,
29467 FPU_ARCH_FPA),
29468 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29469 ARM_ARCH_NONE,
29470 FPU_ARCH_FPA),
29471 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29472 ARM_ARCH_NONE,
29473 FPU_ARCH_FPA),
29474 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29475 ARM_ARCH_NONE,
29476 FPU_ARCH_FPA),
29477 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29478 ARM_ARCH_NONE,
29479 FPU_ARCH_FPA),
29480 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29481 ARM_ARCH_NONE,
29482 FPU_ARCH_FPA),
29483 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29484 ARM_ARCH_NONE,
29485 FPU_ARCH_FPA),
29486 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29487 ARM_ARCH_NONE,
29488 FPU_ARCH_FPA),
29489 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29490 ARM_ARCH_NONE,
29491 FPU_ARCH_FPA),
29492 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29493 ARM_ARCH_NONE,
29494 FPU_ARCH_FPA),
29495 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29496 ARM_ARCH_NONE,
29497 FPU_ARCH_FPA),
29498 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29499 ARM_ARCH_NONE,
29500 FPU_ARCH_FPA),
29501 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29502 ARM_ARCH_NONE,
29503 FPU_ARCH_FPA),
29504 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29505 ARM_ARCH_NONE,
29506 FPU_ARCH_FPA),
29507 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29508 ARM_ARCH_NONE,
29509 FPU_ARCH_FPA),
29510 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29511 ARM_ARCH_NONE,
29512 FPU_ARCH_FPA),
29513 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29514 ARM_ARCH_NONE,
29515 FPU_ARCH_FPA),
29516 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29517 ARM_ARCH_NONE,
29518 FPU_ARCH_FPA),
29519 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29520 ARM_ARCH_NONE,
29521 FPU_ARCH_FPA),
29522 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29523 ARM_ARCH_NONE,
29524 FPU_ARCH_FPA),
29525 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29526 ARM_ARCH_NONE,
29527 FPU_ARCH_FPA),
29528 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29529 ARM_ARCH_NONE,
29530 FPU_ARCH_FPA),
29531 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29532 ARM_ARCH_NONE,
29533 FPU_ARCH_FPA),
29534 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29535 ARM_ARCH_NONE,
29536 FPU_ARCH_FPA),
29537 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29538 ARM_ARCH_NONE,
29539 FPU_ARCH_FPA),
29540 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29541 ARM_ARCH_NONE,
29542 FPU_ARCH_FPA),
29543 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29544 ARM_ARCH_NONE,
29545 FPU_ARCH_FPA),
29546 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29547 ARM_ARCH_NONE,
29548 FPU_ARCH_FPA),
29549 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29550 ARM_ARCH_NONE,
29551 FPU_ARCH_FPA),
29552
c19d1205
ZW
29553 /* For V5 or later processors we default to using VFP; but the user
29554 should really set the FPU type explicitly. */
996b5569
TP
29555 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29556 ARM_ARCH_NONE,
29557 FPU_ARCH_VFP_V2),
29558 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29559 ARM_ARCH_NONE,
29560 FPU_ARCH_VFP_V2),
29561 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29562 ARM_ARCH_NONE,
29563 FPU_ARCH_VFP_V2),
29564 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29565 ARM_ARCH_NONE,
29566 FPU_ARCH_VFP_V2),
29567 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29568 ARM_ARCH_NONE,
29569 FPU_ARCH_VFP_V2),
29570 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29571 ARM_ARCH_NONE,
29572 FPU_ARCH_VFP_V2),
29573 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29574 ARM_ARCH_NONE,
29575 FPU_ARCH_VFP_V2),
29576 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29577 ARM_ARCH_NONE,
29578 FPU_ARCH_VFP_V2),
29579 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29580 ARM_ARCH_NONE,
29581 FPU_ARCH_VFP_V2),
29582 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29583 ARM_ARCH_NONE,
29584 FPU_ARCH_VFP_V2),
29585 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29586 ARM_ARCH_NONE,
29587 FPU_ARCH_VFP_V2),
29588 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29589 ARM_ARCH_NONE,
29590 FPU_ARCH_VFP_V2),
29591 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29592 ARM_ARCH_NONE,
29593 FPU_ARCH_VFP_V1),
29594 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29595 ARM_ARCH_NONE,
29596 FPU_ARCH_VFP_V1),
29597 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29598 ARM_ARCH_NONE,
29599 FPU_ARCH_VFP_V2),
29600 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29601 ARM_ARCH_NONE,
29602 FPU_ARCH_VFP_V2),
29603 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29604 ARM_ARCH_NONE,
29605 FPU_ARCH_VFP_V1),
29606 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29607 ARM_ARCH_NONE,
29608 FPU_ARCH_VFP_V2),
29609 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29610 ARM_ARCH_NONE,
29611 FPU_ARCH_VFP_V2),
29612 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29613 ARM_ARCH_NONE,
29614 FPU_ARCH_VFP_V2),
29615 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29616 ARM_ARCH_NONE,
29617 FPU_ARCH_VFP_V2),
29618 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29619 ARM_ARCH_NONE,
29620 FPU_ARCH_VFP_V2),
29621 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29622 ARM_ARCH_NONE,
29623 FPU_ARCH_VFP_V2),
29624 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29625 ARM_ARCH_NONE,
29626 FPU_ARCH_VFP_V2),
29627 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29628 ARM_ARCH_NONE,
29629 FPU_ARCH_VFP_V2),
29630 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29631 ARM_ARCH_NONE,
29632 FPU_ARCH_VFP_V2),
29633 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29634 ARM_ARCH_NONE,
29635 FPU_NONE),
29636 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29637 ARM_ARCH_NONE,
29638 FPU_NONE),
29639 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29640 ARM_ARCH_NONE,
29641 FPU_ARCH_VFP_V2),
29642 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29643 ARM_ARCH_NONE,
29644 FPU_ARCH_VFP_V2),
29645 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29646 ARM_ARCH_NONE,
29647 FPU_ARCH_VFP_V2),
29648 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29649 ARM_ARCH_NONE,
29650 FPU_NONE),
29651 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29652 ARM_ARCH_NONE,
29653 FPU_NONE),
29654 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29655 ARM_ARCH_NONE,
29656 FPU_ARCH_VFP_V2),
29657 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29658 ARM_ARCH_NONE,
29659 FPU_NONE),
29660 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29661 ARM_ARCH_NONE,
29662 FPU_ARCH_VFP_V2),
29663 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29664 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29665 FPU_NONE),
29666 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29667 ARM_ARCH_NONE,
29668 FPU_ARCH_NEON_VFP_V4),
29669 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29670 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29671 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29672 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29673 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29674 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29675 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29676 ARM_ARCH_NONE,
29677 FPU_ARCH_NEON_VFP_V4),
29678 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29679 ARM_ARCH_NONE,
29680 FPU_ARCH_NEON_VFP_V4),
29681 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29682 ARM_ARCH_NONE,
29683 FPU_ARCH_NEON_VFP_V4),
29684 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29685 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29686 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29687 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29688 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29689 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29690 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29691 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29692 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29693 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29694 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29695 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29696 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29697 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29698 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29699 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29700 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29701 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29702 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29703 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29704 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29705 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29706 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29707 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 29708 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29709 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29710 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
29711 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29712 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29713 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29714 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29715 ARM_ARCH_NONE,
29716 FPU_NONE),
29717 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29718 ARM_ARCH_NONE,
29719 FPU_ARCH_VFP_V3D16),
29720 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29721 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29722 FPU_NONE),
29723 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29724 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29725 FPU_ARCH_VFP_V3D16),
29726 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29727 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29728 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
29729 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29730 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29731 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
29732 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29733 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29734 FPU_NONE),
29735 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29736 ARM_ARCH_NONE,
29737 FPU_NONE),
29738 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29739 ARM_ARCH_NONE,
29740 FPU_NONE),
29741 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29742 ARM_ARCH_NONE,
29743 FPU_NONE),
29744 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29745 ARM_ARCH_NONE,
29746 FPU_NONE),
29747 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29748 ARM_ARCH_NONE,
29749 FPU_NONE),
29750 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29751 ARM_ARCH_NONE,
29752 FPU_NONE),
29753 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29754 ARM_ARCH_NONE,
29755 FPU_NONE),
29756 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29757 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29758 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
29759 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29760 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29761 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 29762 /* ??? XSCALE is really an architecture. */
996b5569
TP
29763 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29764 ARM_ARCH_NONE,
29765 FPU_ARCH_VFP_V2),
29766
c19d1205 29767 /* ??? iwmmxt is not a processor. */
996b5569
TP
29768 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29769 ARM_ARCH_NONE,
29770 FPU_ARCH_VFP_V2),
29771 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29772 ARM_ARCH_NONE,
29773 FPU_ARCH_VFP_V2),
29774 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29775 ARM_ARCH_NONE,
29776 FPU_ARCH_VFP_V2),
29777
0198d5e6 29778 /* Maverick. */
996b5569
TP
29779 ARM_CPU_OPT ("ep9312", "ARM920T",
29780 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29781 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29782
da4339ed 29783 /* Marvell processors. */
996b5569
TP
29784 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29785 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29786 FPU_ARCH_VFP_V3D16),
29787 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29788 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29789 FPU_ARCH_NEON_VFP_V4),
da4339ed 29790
996b5569
TP
29791 /* APM X-Gene family. */
29792 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29793 ARM_ARCH_NONE,
29794 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29795 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29796 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29797 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29798
29799 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29800};
f3bad469 29801#undef ARM_CPU_OPT
7ed4c4c5 29802
34ef62f4
AV
29803struct arm_ext_table
29804{
29805 const char * name;
29806 size_t name_len;
29807 const arm_feature_set merge;
29808 const arm_feature_set clear;
29809};
29810
c19d1205 29811struct arm_arch_option_table
7ed4c4c5 29812{
34ef62f4
AV
29813 const char * name;
29814 size_t name_len;
29815 const arm_feature_set value;
29816 const arm_feature_set default_fpu;
29817 const struct arm_ext_table * ext_table;
29818};
29819
29820/* Used to add support for +E and +noE extension. */
29821#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29822/* Used to add support for a +E extension. */
29823#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29824/* Used to add support for a +noE extension. */
29825#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29826
29827#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29828 ~0 & ~FPU_ENDIAN_PURE)
29829
29830static const struct arm_ext_table armv5te_ext_table[] =
29831{
29832 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29833 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29834};
29835
29836static const struct arm_ext_table armv7_ext_table[] =
29837{
29838 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29839 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29840};
29841
29842static const struct arm_ext_table armv7ve_ext_table[] =
29843{
29844 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29845 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29846 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29847 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29848 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29849 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29850 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29851
29852 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29853 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29854
29855 /* Aliases for +simd. */
29856 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29857
29858 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29859 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29860 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29861
29862 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29863};
29864
29865static const struct arm_ext_table armv7a_ext_table[] =
29866{
29867 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29868 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29869 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29870 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29871 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29872 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29873 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29874
29875 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29876 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29877
29878 /* Aliases for +simd. */
29879 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29880 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29881
29882 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29883 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29884
29885 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29886 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29887 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29888};
29889
29890static const struct arm_ext_table armv7r_ext_table[] =
29891{
29892 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29893 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29894 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29895 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29896 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29897 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29898 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29899 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29900 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29901};
29902
29903static const struct arm_ext_table armv7em_ext_table[] =
29904{
29905 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29906 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29907 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29908 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29909 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29910 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29911 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29912};
29913
29914static const struct arm_ext_table armv8a_ext_table[] =
29915{
29916 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29917 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29918 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29919 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29920
29921 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29922 should use the +simd option to turn on FP. */
29923 ARM_REMOVE ("fp", ALL_FP),
29924 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29925 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29926 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29927};
29928
29929
29930static const struct arm_ext_table armv81a_ext_table[] =
29931{
29932 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29933 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29934 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29935
29936 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29937 should use the +simd option to turn on FP. */
29938 ARM_REMOVE ("fp", ALL_FP),
29939 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29940 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29941 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29942};
29943
29944static const struct arm_ext_table armv82a_ext_table[] =
29945{
29946 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29947 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29948 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29949 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29950 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29951 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29952
29953 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29954 should use the +simd option to turn on FP. */
29955 ARM_REMOVE ("fp", ALL_FP),
29956 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29957 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29958 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29959};
29960
29961static const struct arm_ext_table armv84a_ext_table[] =
29962{
29963 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29964 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29965 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29966 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29967
29968 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29969 should use the +simd option to turn on FP. */
29970 ARM_REMOVE ("fp", ALL_FP),
29971 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29972 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29973 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29974};
29975
29976static const struct arm_ext_table armv85a_ext_table[] =
29977{
29978 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29979 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29980 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29981 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29982
29983 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29984 should use the +simd option to turn on FP. */
29985 ARM_REMOVE ("fp", ALL_FP),
29986 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29987};
29988
29989static const struct arm_ext_table armv8m_main_ext_table[] =
29990{
29991 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29992 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29993 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29994 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29995 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29996};
29997
e0991585
AV
29998static const struct arm_ext_table armv8_1m_main_ext_table[] =
29999{
30000 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30001 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30002 ARM_EXT ("fp",
30003 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30004 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30005 ALL_FP),
30006 ARM_ADD ("fp.dp",
30007 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30008 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
30009 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30010 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30011 ARM_ADD ("mve.fp",
30012 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30013 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30014 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
30015 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30016};
30017
34ef62f4
AV
30018static const struct arm_ext_table armv8r_ext_table[] =
30019{
30020 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30021 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30022 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30023 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30024 ARM_REMOVE ("fp", ALL_FP),
30025 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30026 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 30027};
7ed4c4c5 30028
c19d1205
ZW
30029/* This list should, at a minimum, contain all the architecture names
30030 recognized by GCC. */
34ef62f4
AV
30031#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30032#define ARM_ARCH_OPT2(N, V, DF, ext) \
30033 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 30034
e74cfd16 30035static const struct arm_arch_option_table arm_archs[] =
c19d1205 30036{
497d849d
TP
30037 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30038 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30039 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30040 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30041 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30042 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30043 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30044 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30045 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30046 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30047 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30048 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30049 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30050 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
30051 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30052 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30053 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30054 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30055 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30056 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30057 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30058 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30059 kept to preserve existing behaviour. */
34ef62f4
AV
30060 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30061 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30062 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30063 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30064 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30065 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30066 kept to preserve existing behaviour. */
34ef62f4
AV
30067 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30068 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
30069 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30070 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 30071 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
30072 /* The official spelling of the ARMv7 profile variants is the dashed form.
30073 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
30074 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30075 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30076 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30077 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
30078 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30079 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30080 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 30081 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 30082 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
30083 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30084 armv8m_main),
e0991585
AV
30085 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30086 armv8_1m_main),
34ef62f4
AV
30087 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30088 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30089 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30090 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30091 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30092 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30093 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
30094 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30095 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30096 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 30097 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30098};
f3bad469 30099#undef ARM_ARCH_OPT
7ed4c4c5 30100
69133863 30101/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 30102
69133863 30103struct arm_option_extension_value_table
c19d1205 30104{
0198d5e6
TC
30105 const char * name;
30106 size_t name_len;
30107 const arm_feature_set merge_value;
30108 const arm_feature_set clear_value;
d942732e
TP
30109 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30110 indicates that an extension is available for all architectures while
30111 ARM_ANY marks an empty entry. */
0198d5e6 30112 const arm_feature_set allowed_archs[2];
c19d1205 30113};
7ed4c4c5 30114
0198d5e6
TC
30115/* The following table must be in alphabetical order with a NULL last entry. */
30116
d942732e
TP
30117#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30118#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 30119
34ef62f4
AV
30120/* DEPRECATED: Refrain from using this table to add any new extensions, instead
30121 use the context sensitive approach using arm_ext_table's. */
69133863 30122static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 30123{
823d2571
TG
30124 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30125 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 30126 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
30127 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30128 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
30129 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30130 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30131 ARM_ARCH_V8_2A),
15afaa63
TP
30132 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30133 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30134 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
30135 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30136 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
30137 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30138 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30139 ARM_ARCH_V8_2A),
01f48020
TC
30140 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30141 | ARM_EXT2_FP16_FML),
30142 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30143 | ARM_EXT2_FP16_FML),
30144 ARM_ARCH_V8_2A),
d942732e 30145 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 30146 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
30147 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30148 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
30149 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30150 Thumb divide instruction. Due to this having the same name as the
30151 previous entry, this will be ignored when doing command-line parsing and
30152 only considered by build attribute selection code. */
30153 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30154 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30155 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 30156 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 30157 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 30158 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 30159 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 30160 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
30161 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30162 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 30163 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
30164 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30165 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
30166 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30167 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30168 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
30169 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30170 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 30171 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
30172 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30173 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30174 ARM_ARCH_V8A),
4d1464f2
MW
30175 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30176 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 30177 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
30178 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30179 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 30180 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
30181 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30182 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30183 ARM_ARCH_V8A),
d942732e 30184 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 30185 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
30186 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30187 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
30188 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30189 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30190 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
30191 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30192 | ARM_EXT_DIV),
30193 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30194 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30195 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
30196 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30197 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 30198};
f3bad469 30199#undef ARM_EXT_OPT
69133863
MGD
30200
30201/* ISA floating-point and Advanced SIMD extensions. */
30202struct arm_option_fpu_value_table
30203{
0198d5e6
TC
30204 const char * name;
30205 const arm_feature_set value;
c19d1205 30206};
7ed4c4c5 30207
c19d1205
ZW
30208/* This list should, at a minimum, contain all the fpu names
30209 recognized by GCC. */
69133863 30210static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
30211{
30212 {"softfpa", FPU_NONE},
30213 {"fpe", FPU_ARCH_FPE},
30214 {"fpe2", FPU_ARCH_FPE},
30215 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30216 {"fpa", FPU_ARCH_FPA},
30217 {"fpa10", FPU_ARCH_FPA},
30218 {"fpa11", FPU_ARCH_FPA},
30219 {"arm7500fe", FPU_ARCH_FPA},
30220 {"softvfp", FPU_ARCH_VFP},
30221 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30222 {"vfp", FPU_ARCH_VFP_V2},
30223 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 30224 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
30225 {"vfp10", FPU_ARCH_VFP_V2},
30226 {"vfp10-r0", FPU_ARCH_VFP_V1},
30227 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
30228 {"vfpv2", FPU_ARCH_VFP_V2},
30229 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 30230 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 30231 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
30232 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30233 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30234 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
30235 {"arm1020t", FPU_ARCH_VFP_V1},
30236 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 30237 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
30238 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30239 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 30240 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 30241 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 30242 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
30243 {"vfpv4", FPU_ARCH_VFP_V4},
30244 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 30245 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
30246 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30247 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 30248 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
30249 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30250 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30251 {"crypto-neon-fp-armv8",
30252 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 30253 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
30254 {"crypto-neon-fp-armv8.1",
30255 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
30256 {NULL, ARM_ARCH_NONE}
30257};
30258
30259struct arm_option_value_table
30260{
e0471c16 30261 const char *name;
e74cfd16 30262 long value;
c19d1205 30263};
7ed4c4c5 30264
e74cfd16 30265static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
30266{
30267 {"hard", ARM_FLOAT_ABI_HARD},
30268 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30269 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 30270 {NULL, 0}
c19d1205 30271};
7ed4c4c5 30272
c19d1205 30273#ifdef OBJ_ELF
3a4a14e9 30274/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 30275static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
30276{
30277 {"gnu", EF_ARM_EABI_UNKNOWN},
30278 {"4", EF_ARM_EABI_VER4},
3a4a14e9 30279 {"5", EF_ARM_EABI_VER5},
e74cfd16 30280 {NULL, 0}
c19d1205
ZW
30281};
30282#endif
7ed4c4c5 30283
c19d1205
ZW
30284struct arm_long_option_table
30285{
0198d5e6 30286 const char * option; /* Substring to match. */
e0471c16 30287 const char * help; /* Help information. */
17b9d67d 30288 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 30289 const char * deprecated; /* If non-null, print this message. */
c19d1205 30290};
7ed4c4c5 30291
c921be7d 30292static bfd_boolean
c168ce07 30293arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
30294 arm_feature_set *ext_set,
30295 const struct arm_ext_table *ext_table)
7ed4c4c5 30296{
69133863 30297 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
30298 extensions being added before being removed. We achieve this by having
30299 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 30300 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 30301 or removing it (0) and only allowing it to change in the order
69133863
MGD
30302 -1 -> 1 -> 0. */
30303 const struct arm_option_extension_value_table * opt = NULL;
d942732e 30304 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
30305 int adding_value = -1;
30306
c19d1205 30307 while (str != NULL && *str != 0)
7ed4c4c5 30308 {
82b8a785 30309 const char *ext;
f3bad469 30310 size_t len;
7ed4c4c5 30311
c19d1205
ZW
30312 if (*str != '+')
30313 {
30314 as_bad (_("invalid architectural extension"));
c921be7d 30315 return FALSE;
c19d1205 30316 }
7ed4c4c5 30317
c19d1205
ZW
30318 str++;
30319 ext = strchr (str, '+');
7ed4c4c5 30320
c19d1205 30321 if (ext != NULL)
f3bad469 30322 len = ext - str;
c19d1205 30323 else
f3bad469 30324 len = strlen (str);
7ed4c4c5 30325
f3bad469 30326 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
30327 {
30328 if (adding_value != 0)
30329 {
30330 adding_value = 0;
30331 opt = arm_extensions;
30332 }
30333
f3bad469 30334 len -= 2;
69133863
MGD
30335 str += 2;
30336 }
f3bad469 30337 else if (len > 0)
69133863
MGD
30338 {
30339 if (adding_value == -1)
30340 {
30341 adding_value = 1;
30342 opt = arm_extensions;
30343 }
30344 else if (adding_value != 1)
30345 {
30346 as_bad (_("must specify extensions to add before specifying "
30347 "those to remove"));
30348 return FALSE;
30349 }
30350 }
30351
f3bad469 30352 if (len == 0)
c19d1205
ZW
30353 {
30354 as_bad (_("missing architectural extension"));
c921be7d 30355 return FALSE;
c19d1205 30356 }
7ed4c4c5 30357
69133863
MGD
30358 gas_assert (adding_value != -1);
30359 gas_assert (opt != NULL);
30360
34ef62f4
AV
30361 if (ext_table != NULL)
30362 {
30363 const struct arm_ext_table * ext_opt = ext_table;
30364 bfd_boolean found = FALSE;
30365 for (; ext_opt->name != NULL; ext_opt++)
30366 if (ext_opt->name_len == len
30367 && strncmp (ext_opt->name, str, len) == 0)
30368 {
30369 if (adding_value)
30370 {
30371 if (ARM_FEATURE_ZERO (ext_opt->merge))
30372 /* TODO: Option not supported. When we remove the
30373 legacy table this case should error out. */
30374 continue;
30375
30376 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30377 }
30378 else
30379 {
30380 if (ARM_FEATURE_ZERO (ext_opt->clear))
30381 /* TODO: Option not supported. When we remove the
30382 legacy table this case should error out. */
30383 continue;
30384 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30385 }
30386 found = TRUE;
30387 break;
30388 }
30389 if (found)
30390 {
30391 str = ext;
30392 continue;
30393 }
30394 }
30395
69133863
MGD
30396 /* Scan over the options table trying to find an exact match. */
30397 for (; opt->name != NULL; opt++)
f3bad469 30398 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30399 {
d942732e
TP
30400 int i, nb_allowed_archs =
30401 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30402 /* Check we can apply the extension to this architecture. */
d942732e
TP
30403 for (i = 0; i < nb_allowed_archs; i++)
30404 {
30405 /* Empty entry. */
30406 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30407 continue;
c168ce07 30408 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30409 break;
30410 }
30411 if (i == nb_allowed_archs)
69133863
MGD
30412 {
30413 as_bad (_("extension does not apply to the base architecture"));
30414 return FALSE;
30415 }
30416
30417 /* Add or remove the extension. */
30418 if (adding_value)
4d354d8b 30419 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30420 else
4d354d8b 30421 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30422
3d030cdb
TP
30423 /* Allowing Thumb division instructions for ARMv7 in autodetection
30424 rely on this break so that duplicate extensions (extensions
30425 with the same name as a previous extension in the list) are not
30426 considered for command-line parsing. */
c19d1205
ZW
30427 break;
30428 }
7ed4c4c5 30429
c19d1205
ZW
30430 if (opt->name == NULL)
30431 {
69133863
MGD
30432 /* Did we fail to find an extension because it wasn't specified in
30433 alphabetical order, or because it does not exist? */
30434
30435 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 30436 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
30437 break;
30438
30439 if (opt->name == NULL)
30440 as_bad (_("unknown architectural extension `%s'"), str);
30441 else
30442 as_bad (_("architectural extensions must be specified in "
30443 "alphabetical order"));
30444
c921be7d 30445 return FALSE;
c19d1205 30446 }
69133863
MGD
30447 else
30448 {
30449 /* We should skip the extension we've just matched the next time
30450 round. */
30451 opt++;
30452 }
7ed4c4c5 30453
c19d1205
ZW
30454 str = ext;
30455 };
7ed4c4c5 30456
c921be7d 30457 return TRUE;
c19d1205 30458}
7ed4c4c5 30459
c921be7d 30460static bfd_boolean
17b9d67d 30461arm_parse_cpu (const char *str)
7ed4c4c5 30462{
f3bad469 30463 const struct arm_cpu_option_table *opt;
82b8a785 30464 const char *ext = strchr (str, '+');
f3bad469 30465 size_t len;
7ed4c4c5 30466
c19d1205 30467 if (ext != NULL)
f3bad469 30468 len = ext - str;
7ed4c4c5 30469 else
f3bad469 30470 len = strlen (str);
7ed4c4c5 30471
f3bad469 30472 if (len == 0)
7ed4c4c5 30473 {
c19d1205 30474 as_bad (_("missing cpu name `%s'"), str);
c921be7d 30475 return FALSE;
7ed4c4c5
NC
30476 }
30477
c19d1205 30478 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 30479 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30480 {
c168ce07 30481 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
30482 if (mcpu_ext_opt == NULL)
30483 mcpu_ext_opt = XNEW (arm_feature_set);
30484 *mcpu_ext_opt = opt->ext;
e74cfd16 30485 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 30486 if (opt->canonical_name)
ef8e6722
JW
30487 {
30488 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30489 strcpy (selected_cpu_name, opt->canonical_name);
30490 }
ee065d83
PB
30491 else
30492 {
f3bad469 30493 size_t i;
c921be7d 30494
ef8e6722
JW
30495 if (len >= sizeof selected_cpu_name)
30496 len = (sizeof selected_cpu_name) - 1;
30497
f3bad469 30498 for (i = 0; i < len; i++)
ee065d83
PB
30499 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30500 selected_cpu_name[i] = 0;
30501 }
7ed4c4c5 30502
c19d1205 30503 if (ext != NULL)
34ef62f4 30504 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 30505
c921be7d 30506 return TRUE;
c19d1205 30507 }
7ed4c4c5 30508
c19d1205 30509 as_bad (_("unknown cpu `%s'"), str);
c921be7d 30510 return FALSE;
7ed4c4c5
NC
30511}
30512
c921be7d 30513static bfd_boolean
17b9d67d 30514arm_parse_arch (const char *str)
7ed4c4c5 30515{
e74cfd16 30516 const struct arm_arch_option_table *opt;
82b8a785 30517 const char *ext = strchr (str, '+');
f3bad469 30518 size_t len;
7ed4c4c5 30519
c19d1205 30520 if (ext != NULL)
f3bad469 30521 len = ext - str;
7ed4c4c5 30522 else
f3bad469 30523 len = strlen (str);
7ed4c4c5 30524
f3bad469 30525 if (len == 0)
7ed4c4c5 30526 {
c19d1205 30527 as_bad (_("missing architecture name `%s'"), str);
c921be7d 30528 return FALSE;
7ed4c4c5
NC
30529 }
30530
c19d1205 30531 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 30532 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30533 {
e74cfd16 30534 march_cpu_opt = &opt->value;
4d354d8b
TP
30535 if (march_ext_opt == NULL)
30536 march_ext_opt = XNEW (arm_feature_set);
30537 *march_ext_opt = arm_arch_none;
e74cfd16 30538 march_fpu_opt = &opt->default_fpu;
5f4273c7 30539 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 30540
c19d1205 30541 if (ext != NULL)
34ef62f4
AV
30542 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30543 opt->ext_table);
7ed4c4c5 30544
c921be7d 30545 return TRUE;
c19d1205
ZW
30546 }
30547
30548 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 30549 return FALSE;
7ed4c4c5 30550}
eb043451 30551
c921be7d 30552static bfd_boolean
17b9d67d 30553arm_parse_fpu (const char * str)
c19d1205 30554{
69133863 30555 const struct arm_option_fpu_value_table * opt;
b99bd4ef 30556
c19d1205
ZW
30557 for (opt = arm_fpus; opt->name != NULL; opt++)
30558 if (streq (opt->name, str))
30559 {
e74cfd16 30560 mfpu_opt = &opt->value;
c921be7d 30561 return TRUE;
c19d1205 30562 }
b99bd4ef 30563
c19d1205 30564 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 30565 return FALSE;
c19d1205
ZW
30566}
30567
c921be7d 30568static bfd_boolean
17b9d67d 30569arm_parse_float_abi (const char * str)
b99bd4ef 30570{
e74cfd16 30571 const struct arm_option_value_table * opt;
b99bd4ef 30572
c19d1205
ZW
30573 for (opt = arm_float_abis; opt->name != NULL; opt++)
30574 if (streq (opt->name, str))
30575 {
30576 mfloat_abi_opt = opt->value;
c921be7d 30577 return TRUE;
c19d1205 30578 }
cc8a6dd0 30579
c19d1205 30580 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 30581 return FALSE;
c19d1205 30582}
b99bd4ef 30583
c19d1205 30584#ifdef OBJ_ELF
c921be7d 30585static bfd_boolean
17b9d67d 30586arm_parse_eabi (const char * str)
c19d1205 30587{
e74cfd16 30588 const struct arm_option_value_table *opt;
cc8a6dd0 30589
c19d1205
ZW
30590 for (opt = arm_eabis; opt->name != NULL; opt++)
30591 if (streq (opt->name, str))
30592 {
30593 meabi_flags = opt->value;
c921be7d 30594 return TRUE;
c19d1205
ZW
30595 }
30596 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30597 return FALSE;
c19d1205
ZW
30598}
30599#endif
cc8a6dd0 30600
c921be7d 30601static bfd_boolean
17b9d67d 30602arm_parse_it_mode (const char * str)
e07e6e58 30603{
c921be7d 30604 bfd_boolean ret = TRUE;
e07e6e58
NC
30605
30606 if (streq ("arm", str))
30607 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30608 else if (streq ("thumb", str))
30609 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30610 else if (streq ("always", str))
30611 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30612 else if (streq ("never", str))
30613 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30614 else
30615 {
30616 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30617 "arm, thumb, always, or never."), str);
c921be7d 30618 ret = FALSE;
e07e6e58
NC
30619 }
30620
30621 return ret;
30622}
30623
2e6976a8 30624static bfd_boolean
17b9d67d 30625arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30626{
30627 codecomposer_syntax = TRUE;
30628 arm_comment_chars[0] = ';';
30629 arm_line_separator_chars[0] = 0;
30630 return TRUE;
30631}
30632
c19d1205
ZW
30633struct arm_long_option_table arm_long_opts[] =
30634{
30635 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30636 arm_parse_cpu, NULL},
30637 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30638 arm_parse_arch, NULL},
30639 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30640 arm_parse_fpu, NULL},
30641 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30642 arm_parse_float_abi, NULL},
30643#ifdef OBJ_ELF
7fac0536 30644 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30645 arm_parse_eabi, NULL},
30646#endif
e07e6e58
NC
30647 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30648 arm_parse_it_mode, NULL},
2e6976a8
DG
30649 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30650 arm_ccs_mode, NULL},
c19d1205
ZW
30651 {NULL, NULL, 0, NULL}
30652};
cc8a6dd0 30653
c19d1205 30654int
17b9d67d 30655md_parse_option (int c, const char * arg)
c19d1205
ZW
30656{
30657 struct arm_option_table *opt;
e74cfd16 30658 const struct arm_legacy_option_table *fopt;
c19d1205 30659 struct arm_long_option_table *lopt;
b99bd4ef 30660
c19d1205 30661 switch (c)
b99bd4ef 30662 {
c19d1205
ZW
30663#ifdef OPTION_EB
30664 case OPTION_EB:
30665 target_big_endian = 1;
30666 break;
30667#endif
cc8a6dd0 30668
c19d1205
ZW
30669#ifdef OPTION_EL
30670 case OPTION_EL:
30671 target_big_endian = 0;
30672 break;
30673#endif
b99bd4ef 30674
845b51d6
PB
30675 case OPTION_FIX_V4BX:
30676 fix_v4bx = TRUE;
30677 break;
30678
18a20338
CL
30679#ifdef OBJ_ELF
30680 case OPTION_FDPIC:
30681 arm_fdpic = TRUE;
30682 break;
30683#endif /* OBJ_ELF */
30684
c19d1205
ZW
30685 case 'a':
30686 /* Listing option. Just ignore these, we don't support additional
30687 ones. */
30688 return 0;
b99bd4ef 30689
c19d1205
ZW
30690 default:
30691 for (opt = arm_opts; opt->option != NULL; opt++)
30692 {
30693 if (c == opt->option[0]
30694 && ((arg == NULL && opt->option[1] == 0)
30695 || streq (arg, opt->option + 1)))
30696 {
c19d1205 30697 /* If the option is deprecated, tell the user. */
278df34e 30698 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
30699 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30700 arg ? arg : "", _(opt->deprecated));
b99bd4ef 30701
c19d1205
ZW
30702 if (opt->var != NULL)
30703 *opt->var = opt->value;
cc8a6dd0 30704
c19d1205
ZW
30705 return 1;
30706 }
30707 }
b99bd4ef 30708
e74cfd16
PB
30709 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30710 {
30711 if (c == fopt->option[0]
30712 && ((arg == NULL && fopt->option[1] == 0)
30713 || streq (arg, fopt->option + 1)))
30714 {
e74cfd16 30715 /* If the option is deprecated, tell the user. */
278df34e 30716 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
30717 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30718 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
30719
30720 if (fopt->var != NULL)
30721 *fopt->var = &fopt->value;
30722
30723 return 1;
30724 }
30725 }
30726
c19d1205
ZW
30727 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30728 {
30729 /* These options are expected to have an argument. */
30730 if (c == lopt->option[0]
30731 && arg != NULL
30732 && strncmp (arg, lopt->option + 1,
30733 strlen (lopt->option + 1)) == 0)
30734 {
c19d1205 30735 /* If the option is deprecated, tell the user. */
278df34e 30736 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
30737 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30738 _(lopt->deprecated));
b99bd4ef 30739
c19d1205
ZW
30740 /* Call the sup-option parser. */
30741 return lopt->func (arg + strlen (lopt->option) - 1);
30742 }
30743 }
a737bd4d 30744
c19d1205
ZW
30745 return 0;
30746 }
a394c00f 30747
c19d1205
ZW
30748 return 1;
30749}
a394c00f 30750
c19d1205
ZW
30751void
30752md_show_usage (FILE * fp)
a394c00f 30753{
c19d1205
ZW
30754 struct arm_option_table *opt;
30755 struct arm_long_option_table *lopt;
a394c00f 30756
c19d1205 30757 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 30758
c19d1205
ZW
30759 for (opt = arm_opts; opt->option != NULL; opt++)
30760 if (opt->help != NULL)
30761 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 30762
c19d1205
ZW
30763 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30764 if (lopt->help != NULL)
30765 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 30766
c19d1205
ZW
30767#ifdef OPTION_EB
30768 fprintf (fp, _("\
30769 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
30770#endif
30771
c19d1205
ZW
30772#ifdef OPTION_EL
30773 fprintf (fp, _("\
30774 -EL assemble code for a little-endian cpu\n"));
a737bd4d 30775#endif
845b51d6
PB
30776
30777 fprintf (fp, _("\
30778 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
30779
30780#ifdef OBJ_ELF
30781 fprintf (fp, _("\
30782 --fdpic generate an FDPIC object file\n"));
30783#endif /* OBJ_ELF */
c19d1205 30784}
ee065d83 30785
ee065d83 30786#ifdef OBJ_ELF
0198d5e6 30787
62b3e311
PB
30788typedef struct
30789{
30790 int val;
30791 arm_feature_set flags;
30792} cpu_arch_ver_table;
30793
2c6b98ea
TP
30794/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30795 chronologically for architectures, with an exception for ARMv6-M and
30796 ARMv6S-M due to legacy reasons. No new architecture should have a
30797 special case. This allows for build attribute selection results to be
30798 stable when new architectures are added. */
62b3e311
PB
30799static const cpu_arch_ver_table cpu_arch_ver[] =
30800{
031254f2
AV
30801 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30802 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30803 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30804 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30805 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30806 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30807 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30808 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30809 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30810 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30811 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30812 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30813 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30814 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30815 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30816 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30817 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30818 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30819 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30820 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30821 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30822 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30823 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30824 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
30825
30826 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30827 always selected build attributes to match those of ARMv6-M
30828 (resp. ARMv6S-M). However, due to these architectures being a strict
30829 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30830 would be selected when fully respecting chronology of architectures.
30831 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30832 move them before ARMv7 architectures. */
031254f2
AV
30833 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30834 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30835
30836 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30837 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30838 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30839 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30840 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30841 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30842 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30843 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30844 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30845 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30846 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30847 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30848 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30849 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30850 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30851 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30852 {-1, ARM_ARCH_NONE}
62b3e311
PB
30853};
30854
ee3c0378 30855/* Set an attribute if it has not already been set by the user. */
0198d5e6 30856
ee3c0378
AS
30857static void
30858aeabi_set_attribute_int (int tag, int value)
30859{
30860 if (tag < 1
30861 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30862 || !attributes_set_explicitly[tag])
30863 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30864}
30865
30866static void
30867aeabi_set_attribute_string (int tag, const char *value)
30868{
30869 if (tag < 1
30870 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30871 || !attributes_set_explicitly[tag])
30872 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30873}
30874
2c6b98ea
TP
30875/* Return whether features in the *NEEDED feature set are available via
30876 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 30877
2c6b98ea
TP
30878static bfd_boolean
30879have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30880 const arm_feature_set *needed)
30881{
30882 int i, nb_allowed_archs;
30883 arm_feature_set ext_fset;
30884 const struct arm_option_extension_value_table *opt;
30885
30886 ext_fset = arm_arch_none;
30887 for (opt = arm_extensions; opt->name != NULL; opt++)
30888 {
30889 /* Extension does not provide any feature we need. */
30890 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30891 continue;
30892
30893 nb_allowed_archs =
30894 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30895 for (i = 0; i < nb_allowed_archs; i++)
30896 {
30897 /* Empty entry. */
30898 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30899 break;
30900
30901 /* Extension is available, add it. */
30902 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30903 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30904 }
30905 }
30906
30907 /* Can we enable all features in *needed? */
30908 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30909}
30910
30911/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30912 a given architecture feature set *ARCH_EXT_FSET including extension feature
30913 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30914 - if true, check for an exact match of the architecture modulo extensions;
30915 - otherwise, select build attribute value of the first superset
30916 architecture released so that results remains stable when new architectures
30917 are added.
30918 For -march/-mcpu=all the build attribute value of the most featureful
30919 architecture is returned. Tag_CPU_arch_profile result is returned in
30920 PROFILE. */
0198d5e6 30921
2c6b98ea
TP
30922static int
30923get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30924 const arm_feature_set *ext_fset,
30925 char *profile, int exact_match)
30926{
30927 arm_feature_set arch_fset;
30928 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30929
30930 /* Select most featureful architecture with all its extensions if building
30931 for -march=all as the feature sets used to set build attributes. */
30932 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30933 {
30934 /* Force revisiting of decision for each new architecture. */
031254f2 30935 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
30936 *profile = 'A';
30937 return TAG_CPU_ARCH_V8;
30938 }
30939
30940 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30941
30942 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30943 {
30944 arm_feature_set known_arch_fset;
30945
30946 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30947 if (exact_match)
30948 {
30949 /* Base architecture match user-specified architecture and
30950 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30951 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30952 {
30953 p_ver_ret = p_ver;
30954 goto found;
30955 }
30956 /* Base architecture match user-specified architecture only
30957 (eg. ARMv6-M in the same case as above). Record it in case we
30958 find a match with above condition. */
30959 else if (p_ver_ret == NULL
30960 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30961 p_ver_ret = p_ver;
30962 }
30963 else
30964 {
30965
30966 /* Architecture has all features wanted. */
30967 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30968 {
30969 arm_feature_set added_fset;
30970
30971 /* Compute features added by this architecture over the one
30972 recorded in p_ver_ret. */
30973 if (p_ver_ret != NULL)
30974 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30975 p_ver_ret->flags);
30976 /* First architecture that match incl. with extensions, or the
30977 only difference in features over the recorded match is
30978 features that were optional and are now mandatory. */
30979 if (p_ver_ret == NULL
30980 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30981 {
30982 p_ver_ret = p_ver;
30983 goto found;
30984 }
30985 }
30986 else if (p_ver_ret == NULL)
30987 {
30988 arm_feature_set needed_ext_fset;
30989
30990 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30991
30992 /* Architecture has all features needed when using some
30993 extensions. Record it and continue searching in case there
30994 exist an architecture providing all needed features without
30995 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30996 OS extension). */
30997 if (have_ext_for_needed_feat_p (&known_arch_fset,
30998 &needed_ext_fset))
30999 p_ver_ret = p_ver;
31000 }
31001 }
31002 }
31003
31004 if (p_ver_ret == NULL)
31005 return -1;
31006
31007found:
31008 /* Tag_CPU_arch_profile. */
31009 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31010 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31011 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31012 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31013 *profile = 'A';
31014 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31015 *profile = 'R';
31016 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31017 *profile = 'M';
31018 else
31019 *profile = '\0';
31020 return p_ver_ret->val;
31021}
31022
ee065d83 31023/* Set the public EABI object attributes. */
0198d5e6 31024
c168ce07 31025static void
ee065d83
PB
31026aeabi_set_public_attributes (void)
31027{
b90d5ba0 31028 char profile = '\0';
2c6b98ea 31029 int arch = -1;
90ec0d68 31030 int virt_sec = 0;
bca38921 31031 int fp16_optional = 0;
2c6b98ea
TP
31032 int skip_exact_match = 0;
31033 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 31034
54bab281
TP
31035 /* Autodetection mode, choose the architecture based the instructions
31036 actually used. */
31037 if (no_cpu_selected ())
31038 {
31039 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 31040
54bab281
TP
31041 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31042 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 31043
54bab281
TP
31044 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31045 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 31046
54bab281 31047 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
31048 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31049 flags_ext = arm_arch_none;
31050 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31051 selected_ext = flags_ext;
54bab281
TP
31052 selected_cpu = flags;
31053 }
31054 /* Otherwise, choose the architecture based on the capabilities of the
31055 requested cpu. */
31056 else
4d354d8b
TP
31057 {
31058 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31059 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31060 flags_ext = selected_ext;
31061 flags = selected_cpu;
31062 }
31063 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 31064
ddd7f988 31065 /* Allow the user to override the reported architecture. */
4d354d8b 31066 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 31067 {
4d354d8b 31068 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 31069 flags_ext = arm_arch_none;
7a1d4c38 31070 }
2c6b98ea 31071 else
4d354d8b 31072 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
31073
31074 /* When this function is run again after relaxation has happened there is no
31075 way to determine whether an architecture or CPU was specified by the user:
31076 - selected_cpu is set above for relaxation to work;
31077 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31078 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31079 Therefore, if not in -march=all case we first try an exact match and fall
31080 back to autodetection. */
31081 if (!skip_exact_match)
31082 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31083 if (arch == -1)
31084 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31085 if (arch == -1)
31086 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 31087
ee065d83
PB
31088 /* Tag_CPU_name. */
31089 if (selected_cpu_name[0])
31090 {
91d6fa6a 31091 char *q;
ee065d83 31092
91d6fa6a
NC
31093 q = selected_cpu_name;
31094 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
31095 {
31096 int i;
5f4273c7 31097
91d6fa6a
NC
31098 q += 4;
31099 for (i = 0; q[i]; i++)
31100 q[i] = TOUPPER (q[i]);
ee065d83 31101 }
91d6fa6a 31102 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 31103 }
62f3b8c8 31104
ee065d83 31105 /* Tag_CPU_arch. */
ee3c0378 31106 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 31107
62b3e311 31108 /* Tag_CPU_arch_profile. */
69239280
MGD
31109 if (profile != '\0')
31110 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 31111
15afaa63 31112 /* Tag_DSP_extension. */
4d354d8b 31113 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 31114 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 31115
2c6b98ea 31116 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 31117 /* Tag_ARM_ISA_use. */
ee3c0378 31118 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 31119 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 31120 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 31121
ee065d83 31122 /* Tag_THUMB_ISA_use. */
ee3c0378 31123 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 31124 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
31125 {
31126 int thumb_isa_use;
31127
31128 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 31129 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
31130 thumb_isa_use = 3;
31131 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31132 thumb_isa_use = 2;
31133 else
31134 thumb_isa_use = 1;
31135 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31136 }
62f3b8c8 31137
ee065d83 31138 /* Tag_VFP_arch. */
a715796b
TG
31139 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31140 aeabi_set_attribute_int (Tag_VFP_arch,
31141 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31142 ? 7 : 8);
bca38921 31143 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
31144 aeabi_set_attribute_int (Tag_VFP_arch,
31145 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31146 ? 5 : 6);
31147 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
31148 {
31149 fp16_optional = 1;
31150 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31151 }
ada65aa3 31152 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
31153 {
31154 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31155 fp16_optional = 1;
31156 }
ee3c0378
AS
31157 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31158 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31159 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 31160 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 31161 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 31162
4547cb56
NC
31163 /* Tag_ABI_HardFP_use. */
31164 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31165 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31166 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31167
ee065d83 31168 /* Tag_WMMX_arch. */
ee3c0378
AS
31169 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31170 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31171 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31172 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 31173
ee3c0378 31174 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
31175 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31176 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31177 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
31178 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31179 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31180 {
31181 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31182 {
31183 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31184 }
31185 else
31186 {
31187 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31188 fp16_optional = 1;
31189 }
31190 }
fa94de6b 31191
a7ad558c
AV
31192 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31193 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31194 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31195 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31196
ee3c0378 31197 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 31198 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 31199 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 31200
69239280
MGD
31201 /* Tag_DIV_use.
31202
31203 We set Tag_DIV_use to two when integer divide instructions have been used
31204 in ARM state, or when Thumb integer divide instructions have been used,
31205 but we have no architecture profile set, nor have we any ARM instructions.
31206
4ed7ed8d
TP
31207 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31208 by the base architecture.
bca38921 31209
69239280 31210 For new architectures we will have to check these tests. */
031254f2 31211 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
31212 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31213 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
31214 aeabi_set_attribute_int (Tag_DIV_use, 0);
31215 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31216 || (profile == '\0'
31217 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31218 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 31219 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
31220
31221 /* Tag_MP_extension_use. */
31222 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31223 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
31224
31225 /* Tag Virtualization_use. */
31226 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
31227 virt_sec |= 1;
31228 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31229 virt_sec |= 2;
31230 if (virt_sec != 0)
31231 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
31232}
31233
c168ce07
TP
31234/* Post relaxation hook. Recompute ARM attributes now that relaxation is
31235 finished and free extension feature bits which will not be used anymore. */
0198d5e6 31236
c168ce07
TP
31237void
31238arm_md_post_relax (void)
31239{
31240 aeabi_set_public_attributes ();
4d354d8b
TP
31241 XDELETE (mcpu_ext_opt);
31242 mcpu_ext_opt = NULL;
31243 XDELETE (march_ext_opt);
31244 march_ext_opt = NULL;
c168ce07
TP
31245}
31246
104d59d1 31247/* Add the default contents for the .ARM.attributes section. */
0198d5e6 31248
ee065d83
PB
31249void
31250arm_md_end (void)
31251{
ee065d83
PB
31252 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31253 return;
31254
31255 aeabi_set_public_attributes ();
ee065d83 31256}
8463be01 31257#endif /* OBJ_ELF */
ee065d83 31258
ee065d83
PB
31259/* Parse a .cpu directive. */
31260
31261static void
31262s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31263{
e74cfd16 31264 const struct arm_cpu_option_table *opt;
ee065d83
PB
31265 char *name;
31266 char saved_char;
31267
31268 name = input_line_pointer;
5f4273c7 31269 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31270 input_line_pointer++;
31271 saved_char = *input_line_pointer;
31272 *input_line_pointer = 0;
31273
31274 /* Skip the first "all" entry. */
31275 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31276 if (streq (opt->name, name))
31277 {
4d354d8b
TP
31278 selected_arch = opt->value;
31279 selected_ext = opt->ext;
31280 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 31281 if (opt->canonical_name)
5f4273c7 31282 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
31283 else
31284 {
31285 int i;
31286 for (i = 0; opt->name[i]; i++)
31287 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 31288
ee065d83
PB
31289 selected_cpu_name[i] = 0;
31290 }
4d354d8b
TP
31291 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31292
ee065d83
PB
31293 *input_line_pointer = saved_char;
31294 demand_empty_rest_of_line ();
31295 return;
31296 }
31297 as_bad (_("unknown cpu `%s'"), name);
31298 *input_line_pointer = saved_char;
31299 ignore_rest_of_line ();
31300}
31301
ee065d83
PB
31302/* Parse a .arch directive. */
31303
31304static void
31305s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31306{
e74cfd16 31307 const struct arm_arch_option_table *opt;
ee065d83
PB
31308 char saved_char;
31309 char *name;
31310
31311 name = input_line_pointer;
5f4273c7 31312 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31313 input_line_pointer++;
31314 saved_char = *input_line_pointer;
31315 *input_line_pointer = 0;
31316
31317 /* Skip the first "all" entry. */
31318 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31319 if (streq (opt->name, name))
31320 {
4d354d8b
TP
31321 selected_arch = opt->value;
31322 selected_ext = arm_arch_none;
31323 selected_cpu = selected_arch;
5f4273c7 31324 strcpy (selected_cpu_name, opt->name);
4d354d8b 31325 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31326 *input_line_pointer = saved_char;
31327 demand_empty_rest_of_line ();
31328 return;
31329 }
31330
31331 as_bad (_("unknown architecture `%s'\n"), name);
31332 *input_line_pointer = saved_char;
31333 ignore_rest_of_line ();
31334}
31335
7a1d4c38
PB
31336/* Parse a .object_arch directive. */
31337
31338static void
31339s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31340{
31341 const struct arm_arch_option_table *opt;
31342 char saved_char;
31343 char *name;
31344
31345 name = input_line_pointer;
5f4273c7 31346 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
31347 input_line_pointer++;
31348 saved_char = *input_line_pointer;
31349 *input_line_pointer = 0;
31350
31351 /* Skip the first "all" entry. */
31352 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31353 if (streq (opt->name, name))
31354 {
4d354d8b 31355 selected_object_arch = opt->value;
7a1d4c38
PB
31356 *input_line_pointer = saved_char;
31357 demand_empty_rest_of_line ();
31358 return;
31359 }
31360
31361 as_bad (_("unknown architecture `%s'\n"), name);
31362 *input_line_pointer = saved_char;
31363 ignore_rest_of_line ();
31364}
31365
69133863
MGD
31366/* Parse a .arch_extension directive. */
31367
31368static void
31369s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31370{
31371 const struct arm_option_extension_value_table *opt;
31372 char saved_char;
31373 char *name;
31374 int adding_value = 1;
31375
31376 name = input_line_pointer;
31377 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31378 input_line_pointer++;
31379 saved_char = *input_line_pointer;
31380 *input_line_pointer = 0;
31381
31382 if (strlen (name) >= 2
31383 && strncmp (name, "no", 2) == 0)
31384 {
31385 adding_value = 0;
31386 name += 2;
31387 }
31388
31389 for (opt = arm_extensions; opt->name != NULL; opt++)
31390 if (streq (opt->name, name))
31391 {
d942732e
TP
31392 int i, nb_allowed_archs =
31393 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31394 for (i = 0; i < nb_allowed_archs; i++)
31395 {
31396 /* Empty entry. */
4d354d8b 31397 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31398 continue;
4d354d8b 31399 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31400 break;
31401 }
31402
31403 if (i == nb_allowed_archs)
69133863
MGD
31404 {
31405 as_bad (_("architectural extension `%s' is not allowed for the "
31406 "current base architecture"), name);
31407 break;
31408 }
31409
31410 if (adding_value)
4d354d8b 31411 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31412 opt->merge_value);
69133863 31413 else
4d354d8b 31414 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31415
4d354d8b
TP
31416 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31417 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31418 *input_line_pointer = saved_char;
31419 demand_empty_rest_of_line ();
3d030cdb
TP
31420 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31421 on this return so that duplicate extensions (extensions with the
31422 same name as a previous extension in the list) are not considered
31423 for command-line parsing. */
69133863
MGD
31424 return;
31425 }
31426
31427 if (opt->name == NULL)
e673710a 31428 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31429
31430 *input_line_pointer = saved_char;
31431 ignore_rest_of_line ();
31432}
31433
ee065d83
PB
31434/* Parse a .fpu directive. */
31435
31436static void
31437s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31438{
69133863 31439 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
31440 char saved_char;
31441 char *name;
31442
31443 name = input_line_pointer;
5f4273c7 31444 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31445 input_line_pointer++;
31446 saved_char = *input_line_pointer;
31447 *input_line_pointer = 0;
5f4273c7 31448
ee065d83
PB
31449 for (opt = arm_fpus; opt->name != NULL; opt++)
31450 if (streq (opt->name, name))
31451 {
4d354d8b
TP
31452 selected_fpu = opt->value;
31453#ifndef CPU_DEFAULT
31454 if (no_cpu_selected ())
31455 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31456 else
31457#endif
31458 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31459 *input_line_pointer = saved_char;
31460 demand_empty_rest_of_line ();
31461 return;
31462 }
31463
31464 as_bad (_("unknown floating point format `%s'\n"), name);
31465 *input_line_pointer = saved_char;
31466 ignore_rest_of_line ();
31467}
ee065d83 31468
794ba86a 31469/* Copy symbol information. */
f31fef98 31470
794ba86a
DJ
31471void
31472arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31473{
31474 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31475}
e04befd0 31476
f31fef98 31477#ifdef OBJ_ELF
e04befd0
AS
31478/* Given a symbolic attribute NAME, return the proper integer value.
31479 Returns -1 if the attribute is not known. */
f31fef98 31480
e04befd0
AS
31481int
31482arm_convert_symbolic_attribute (const char *name)
31483{
f31fef98
NC
31484 static const struct
31485 {
31486 const char * name;
31487 const int tag;
31488 }
31489 attribute_table[] =
31490 {
31491 /* When you modify this table you should
31492 also modify the list in doc/c-arm.texi. */
e04befd0 31493#define T(tag) {#tag, tag}
f31fef98
NC
31494 T (Tag_CPU_raw_name),
31495 T (Tag_CPU_name),
31496 T (Tag_CPU_arch),
31497 T (Tag_CPU_arch_profile),
31498 T (Tag_ARM_ISA_use),
31499 T (Tag_THUMB_ISA_use),
75375b3e 31500 T (Tag_FP_arch),
f31fef98
NC
31501 T (Tag_VFP_arch),
31502 T (Tag_WMMX_arch),
31503 T (Tag_Advanced_SIMD_arch),
31504 T (Tag_PCS_config),
31505 T (Tag_ABI_PCS_R9_use),
31506 T (Tag_ABI_PCS_RW_data),
31507 T (Tag_ABI_PCS_RO_data),
31508 T (Tag_ABI_PCS_GOT_use),
31509 T (Tag_ABI_PCS_wchar_t),
31510 T (Tag_ABI_FP_rounding),
31511 T (Tag_ABI_FP_denormal),
31512 T (Tag_ABI_FP_exceptions),
31513 T (Tag_ABI_FP_user_exceptions),
31514 T (Tag_ABI_FP_number_model),
75375b3e 31515 T (Tag_ABI_align_needed),
f31fef98 31516 T (Tag_ABI_align8_needed),
75375b3e 31517 T (Tag_ABI_align_preserved),
f31fef98
NC
31518 T (Tag_ABI_align8_preserved),
31519 T (Tag_ABI_enum_size),
31520 T (Tag_ABI_HardFP_use),
31521 T (Tag_ABI_VFP_args),
31522 T (Tag_ABI_WMMX_args),
31523 T (Tag_ABI_optimization_goals),
31524 T (Tag_ABI_FP_optimization_goals),
31525 T (Tag_compatibility),
31526 T (Tag_CPU_unaligned_access),
75375b3e 31527 T (Tag_FP_HP_extension),
f31fef98
NC
31528 T (Tag_VFP_HP_extension),
31529 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
31530 T (Tag_MPextension_use),
31531 T (Tag_DIV_use),
f31fef98
NC
31532 T (Tag_nodefaults),
31533 T (Tag_also_compatible_with),
31534 T (Tag_conformance),
31535 T (Tag_T2EE_use),
31536 T (Tag_Virtualization_use),
15afaa63 31537 T (Tag_DSP_extension),
a7ad558c 31538 T (Tag_MVE_arch),
cd21e546 31539 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 31540#undef T
f31fef98 31541 };
e04befd0
AS
31542 unsigned int i;
31543
31544 if (name == NULL)
31545 return -1;
31546
f31fef98 31547 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31548 if (streq (name, attribute_table[i].name))
e04befd0
AS
31549 return attribute_table[i].tag;
31550
31551 return -1;
31552}
267bf995 31553
93ef582d
NC
31554/* Apply sym value for relocations only in the case that they are for
31555 local symbols in the same segment as the fixup and you have the
31556 respective architectural feature for blx and simple switches. */
0198d5e6 31557
267bf995 31558int
93ef582d 31559arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
31560{
31561 if (fixP->fx_addsy
31562 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
31563 /* PR 17444: If the local symbol is in a different section then a reloc
31564 will always be generated for it, so applying the symbol value now
31565 will result in a double offset being stored in the relocation. */
31566 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 31567 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
31568 {
31569 switch (fixP->fx_r_type)
31570 {
31571 case BFD_RELOC_ARM_PCREL_BLX:
31572 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31573 if (ARM_IS_FUNC (fixP->fx_addsy))
31574 return 1;
31575 break;
31576
31577 case BFD_RELOC_ARM_PCREL_CALL:
31578 case BFD_RELOC_THUMB_PCREL_BLX:
31579 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 31580 return 1;
267bf995
RR
31581 break;
31582
31583 default:
31584 break;
31585 }
31586
31587 }
31588 return 0;
31589}
f31fef98 31590#endif /* OBJ_ELF */
This page took 4.324265 seconds and 4 git commands to generate.